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ABSTRACT OF THE DISSERTATION
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Dissertation Director:

VLADIMIR PAVLOVIC

Human faces convey a large range of semantic meaning through facial expressions, which reflect

both actions, e.g. talking, and affective states such as happy, surprised, etc. More importantly, in

the coming age of artificial intelligence and virtual persona, facial expressions can serve as a two-

way communicative interface between human and machine. Thus, understanding human facial

expressions has been a premier research area in the computer vision and machine learning commu-

nity for decades, achieving significant advances in face tracking, reconstruction and synthesis. In

this dissertation, we study two aspects of face modeling: the analysis and reconstruction of human

facial expressions via interpretable 3D blendshape representation from different input modalities,

and the reversed problem in which we train a model to hallucinate coherent facial expressions

directly given any arbitrary portrait and facial action parameters.

First, we propose a real-time robust 3D face tracking framework from RGBD videos capable
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of tracking head pose, facial actions and on-the-fly identity adaptation without precalibration or

intervention from a user. In particular, we emphasize on improving the tracking performance in

instances where the quality of input data is drastically reduced, e.g. when the face is at long

distance or at large pose. This is accomplished by the combination of a flexible and extremely

efficient 3D shape regressor and the joint 2D+3D optimization on shape parameters.

Second, we present recurrent neural network frameworks which automatically estimate facial

action unit (AU) intensities of a speaker from just her speech, for real-time facial animation. Specif-

ically, the time-varying contextual non-linear mapping between audio stream and visual facial

transformations is realized by a recurrent neural network. Our models not only activate appro-

priate facial action units at inference to depict different utterance generating actions, in the form of

lip movements, but also, without any assumption, automatically estimate emotional intensity of the

speaker and reproduce her ever-changing affective states by adjusting strength of facial unit activa-

tions. We introduce a baseline model, which uses engineered acoustic features, and an end-to-end

model that learn feature representation directly from audio spectrograms.

Finally, we propose a novel deep generative neural network that enables fully automatic, real-

time facial expression synthesis of an arbitrary portrait with continuous action unit coefficients.

In particular, our model directly manipulates image pixels to make the unseen subject in the still

photo express various emotions controlled by values of facial AU coefficients, while maintaining

her personal characteristics, such as facial geometry, skin color and hair style, as well as the original

surrounding background. In contrast to prior work in facial expression editing, our proposed model

is purely data-driven and it requires neither a statistical face model nor image processing tricks to

enact facial deformations. Additionally, our model is trained from unpaired data, where the input

image and the target frame are from different persons. Our work gives rise to template-and-target-

free expression editing, where still faces can be effortlessly animated with arbitrary AU coefficients

provided by the user, or driven by our aforementioned tracker and speech models.
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Chapter 1

Introduction

Facial expression1 has long been a natural means of communicative interface between humans.

Particularly, it was shown in the seminal work of Ekman et al. [39, 40, 41] that human facial expres-

sions are universal across different cultures and languages. Nowadays when some aspects of life

are intertwined with the virtual world, it is increasingly important for the computer to understand

not only what the human wants but also how the human “feels”, via their facial expressions, so that

the machine (also called intelligent agent, or A.I. in this thesis) is able to produce a meaningful,

pleasant feedback.

Conversely, it is also important that the intelligent agent is able to communicate its “feelings”

back to the human as a part of its reaction, in order to make the mutual interaction between hu-

man and machine more natural and realistic. In other words, the agent can explicitly exhibit its

(artificial) emotion to the user via facial expressions as a form of communication, blurring the line

between human-machine and making the communicative interface be as transparent as between

real humans. Let us look at a futuristic example of human-machine interaction in Fig. 1.1.

In this example, the physical interface between human and machine consists of visual and

acoustic channels, and possibly other actions but here we focus on only voice and facial expres-

sions carried in those information streams. The intelligent agent listens to the user’s voice and

1The terms facial “expression”, “action” and “performance” are used interchangeably in this dissertation, with the
exception in Chapter 2, where facial performance also includes global head pose.
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Figure 1.1: An imaginary conversation between human and artificial intelligent agent. The user
says, and shows that, he is happy. The agent perceives his textural facial expression and speech
(via a webcam) and after proper reasoning, it responds with adequate (artificial) facial expression
and speech. The conversation becomes natural, similar to how humans interact with each other.
Source of images: Internet.

captures his facial expressions with a webcam, which comprises her senses. This process is ma-

chine perception, in which she processes the semantic content of the user’s speech, and recognizes

his emotions from video and audio. Both speech content and emotion of the user are then propa-

gated to a reasoning engine (equivalence of the neocortex of human brain) for further processing,

or “thinking”, to create a plausible, human-like answer to the human user. This response is man-

ifested as synthesized speech, as well as artificial facial expressions. For instance, when the user

says “Kids are really noisy today” with a happy face (and voice), the agent understands that he is

amused by the kids and does not mind them being noisy at all. The agent just merrily replies him

with a joke or something interesting to continue the conversation. But if he says that while being

angry, the agent interprets that the user is being annoyed, it will ask if the user wants close the doors

and windows. In this scenario, facial expressions are very important to explain the semantics of

the user’s true intent. Without knowing the context of the speech present in his emotion, the agent

may just interpret that the user is irritated. Hence, being able to analyze both the user’s words and

emotions helps the intelligent agent understand correctly what the user really meant. In another
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Figure 1.2: Virtual avatar animation. Courtesy: CrazyTalkTMby Reallusion.

example, the user thanks the agent for preparing his drink. The intelligent agent says that it is glad,

with a synthesized smile, showing that it is happy to be of help to the user, and thus it creates a

pleasant atmosphere for the user. In both scenarios, the machine can analyze the user input and

emotion, process them properly to create a correct and “natural” response with adequate synthetic

emotion that suits the situation, it is as if the user is really communicating with another human.

Although it is beyond the scope of this thesis, we believe that in near future the human-machine

interaction will be indistinguishable from real ones between humans.

Furthermore, there are various applications of facial expression/action modeling, such as com-

puter games, animated movies, teleconferencing, etc. Frameworks such as FaceshiftTMfor 3D

face tracking are integrated with graphics engines to enable in-game user-driven facial animation.

CrazyTalkTM(Fig. 1.2) provides a framework that lets user animate a 3D virtual avatar with their

speech. They can also be used to re-create and animate 3D face shape of a person for teleconferenc-

ing. In these applications, traditional facial capture approaches have gained tremendous successes,

reconstructing high level of realism. Yet, active face capture rigs utilizing motion sensors/markers

are expensive and time-consuming to use. Alternatively, passive techniques capturing facial trans-

formations from cameras, although less accurate, have achieved very impressive performance and

allowed easy deployment and can be used anywhere. We will show later that it is possible to predict

facial expressions/actions from video or audio efficiently with reasonable to high accuracy. Facial

capture is also heavily used in movies, where facial expressions are transferred from one actor to

another target. This process involves many steps, including 3D face alignment, deformation trans-

fer and texture mapping. We will show that using our learnt facial expression synthesis model,
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this process is greatly simplified, in which the user can specify which facial actions2 are desired

through a set of interpretable parameters.

1.1 Research Statement

In this thesis, we study how to model facial expression in human-machine interaction, as a two-

way communicative interface. Particularly, in machine perception, we let the agent learn to analyze

human facial expression from audio and visual channels. Moreover, we present an approach that

allows the agent to learn to generate any arbitrary facial expression, in order to convey its own

emotions to the user.

In summary, we study three problems of facial expression modeling:

• Learning facial expression for real-time 3D facial capture using a commodity RGB-D cam-

era: Combining learnt 3D face alignment and reconstruction for robust face tracking. An

efficient 3D face regression is proposed, which is trained from standard image datasets.

• Learning facial expression from speech in real-time: Training deep neural networks to infer

facial actions from just speech audio. Our models predict raw AU intensities, which can be

used to determine a specific type of emotion, or other tasks such as expressive talking face

animation.

• Learning to generate photo-real facial expression synthesis. Given any arbitrary portrait and

action unit intensities, our learnt generative neural network can hallucinate expressive facial

appearance without using any face template.

The first two topics make up the analysis part of this thesis, which enables the computer agent

to capture facial expressions from video and audio via learning, as well as synthesize 3D facial

2Facial action units and their parameterization are discussed in details in section 1.3.
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shape of the user. The third research topic is synthesis that enables the intelligent agent to learn

to generate its own realistic facial expressions. In the next section, we discuss motivations that

lead to the proposal of our models to solve three aforementioned tasks. It is followed by a brief

introduction of the face and facial expression model which is used throughout this thesis.

1.2 Motivations

1.2.1 Learning Facial Performance for Visual Tracking from RGBD Videos

3D facial capture has various applications, including not only facial expression/action analy-

sis - the main topic of this thesis, but also video games, animation, movies among others. Despite

capturing highly accurate facial geometric changes to minute details, active capture rig is very com-

plex and time-consuming to deploy. Passive (markerless) techniques, such as the solution provided

by FacewareTMTechnologies Inc., utilize head-mounted cameras to track every facial movement.

These techniques, although a little less accurate, have achieved very impressive performance. How-

ever, most commercial systems often require hi-resolution cameras, and do not work in real-time

without special hardware. Recently, there are real-time 3D face tracking systems that perform

very well using commodity capture devices with standard computer equipments. FaceshiftTM[118]

and its derivatives [13, 66] use low-cost RGBD camera to track and reconstruct 3D face, while

[19, 18, 17] use standard webcam for this task. All methods above reconstruct 3D face from per-

sonalized expression blendshapes.

Nonetheless, difficult problems remain due to variations in camera pose, video quality, head

movement and illumination, added to the challenge of tracking different people with many unique

facial expressions. Most systems assume that the input stream is clean and clear, i.e. the face is

at frontal pose, well lit and has high enough resolution. RGBD-based tracking systems such as

FaceshiftTMrely heavily on the quality of both input color and depth data. Tracking and reconstruc-

tion are formulated upon optical flow and Iterative Closest Point (ICP) optimizations. When the
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face is at a relatively large distance from the camera, quality of depth data deteriorates exponen-

tially, and the face texture resolution is low. These issues, which is common in consumer-grade

cameras, greatly impact performance of RGBD-based tracking systems. These methods only work

when the face is at close range, and the depth map retains fine geometric surface structure. One

way to overcome sensor limitations is to 1) not rely on depth and 2) train a robust facial transfor-

mation predictor that can perform well in different imagery conditions (as was shown in [18]). But

there exists other limitations with this approach. First, the face transformation predictor performs

more poorly when the image resolution is reduced. Second, 3D face reconstruction from only color

channels is an ill-posed problem, it lacks necessary information to resolve the depth ambiguity, e.g.

a smaller face at close distance will appear similar to a larger face at a further distance. Instead,

we expect to achieve more robust tracking results if we were able to incorporate depth data while

intelligently handling its inaccuracies at greater distances.

This motivates us to propose a robust RGBD face tracker combining the advantages of 3D shape

regression from standard RGB channels and 3D point cloud registration, which has the following

advantages:

• Our tracker works in real-time, does not require any calibration or user intervention. User

identity is adapted on-the-fly. It is driven by an extremely efficient 3D shape regressor, which

we believe to be the fastest 3D face alignment technique running on CPU.

• Our tracker is robust to extreme conditions, where the face is at large distance, the data (color

or depth) is noisy or has low quality, and the face is at large pose by intelligently exploiting

information from both color and depth streams.

• Our tracker is performance-driven, i.e. it recovers facial parameters directly, which can be

used to reconstruct a full 3D face model effortlessly, or they can be used to animate another

blendshape model sharing the same configuration.
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More details on 3D face shape regression and tracking can be found in Chapter 2.

1.2.2 Learning Facial Performance from Speech

In the previous section we mentioned applications of 3D face tracking and what motivates us to

propose our face tracker, which can handle low-quality, unreliable input visual stream. Still, there

raises a question: can we predict continuous facial expressions without visual input, and how? We

addressed this issue by predicting facial expressions exclusively from speech audio.

Speech, as a natural form of communication among various modes of interactions, is increas-

ingly used in human-machine interaction, evidenced by the ever-growing popularity of virtual

voice assistants, such as CortanaTM, AlexaTM, etc. embedded in cellphones, computers or IoT

devices. Speech recording carries not only the contextual information, but also emotional states of

the speaker. Both source of information is necessary in order to interpret the true intention of the

speaker, as in the example shown at the beginning of this chapter. Hence it is desirable that the

intelligent is able to predict the affective state of the user from her speech. As we will show later

in this work, it is possible to infer facial expressions from just speech without visual cues, so that

it allows the intelligent agent to correctly understand how the user feels from what he say, and the

agent can take the correct course of actions.

There are other applications of speech-driven facial expression estimation. For example, the

CrazytalkTMsoftware lets the user to animate his own avatar with speech (example in Fig. 1.2. Such

work can be used to replace FaceshiftTMfor in-game animation. Speech-driven animation methods

are even more convenient to deploy and use, because they do not require any camera device and

the user does not have to stay close to the camera all the time. Moreover, in many situations, only

audio recording of a person is available, which can be exploited to create her facial expressions.

In this work, we propose different recurrent neural network models to realize the highly non-

linear mapping between speech and facial actions. These models can be used to create a talking 3D
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virtual avatar that can naturally make micro facial movements to reflect the time-varying contextual

information and emotional intensity carried in the input speech. Intuitively, this work is analogous

to visual 3D face tracking, however, it is more challenging as we try to map acoustic signal to

visual space, instead of conveniently relying on textural cues from input video. Our work has the

following advantages:

• Our models are efficient, enabling real-time speech-driven 3D facial animation.

• Our models can implicitly infer various facial expressions represented by action unit param-

eters.

• Our end-to-end models are able to learn meaningful feature representation which not only

improves performance but also reduces running time.

More details on this topic and various examples are presented in Chapter 3.

1.2.3 Learning Facial Performance Synthesis

Facial expression editing is the research of transferring the semantic expression from a target

to a source face, which has achieved impressive results e.g. Face2Face [108]. Face retargeting has

been used extensively in movies and animation. Putting manual editing aside, there is a common

approach for automatic facial expression transfer: 1) aligning face shape models (2D or 3D tem-

plates) to both source and target; 2) transferring the transformation of the target face to the source;

and 3) applying texture mapping on the source and applying other image processing tricks to make

the transformed source face look realistic. However, this common approach is time-consuming to

use, and it still does not guarantee that the transformed source face will look natural.

In recent years, with the widespread applicability of deep learning in general, there are efforts

to let the computer learn how to perform expression transfer with a deep neural network, such

as the works by Olszewski [78] or Yeh et al. [126]. This approach has a couple of advantages:
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First, it performs facial expression transfer in one shot without many small steps involved. Second,

it can generate more natural faces after observing many different faces. The learning serves as

regularization itself, hence the generated face may not stray too far from the learnt natural face

manifold. In contrast, there is hardly anything in the aforementioned model-based approach that

enforces quality and realism of the transformed face.

The learning-based methods often assume that a pair of source face-target expressive face is

available for transferring. However, there are situations in which the target face to drive facial

deformation of the source does not exist, instead, facial expression can be inferred from other

input modalities, such as speech (presented in Chapter 3). Facial expression can also be explicitly

specified by user as vector of facial action unit (AU) intensities, in other words, the user is a director

and vectors of facial action unit intensities are script that describes how the actor (the source face)

should act.

In this thesis, we are interested in directly animating a human portrait given only AU coeffi-

cients. Particularly, our proposed deep model is able to modify a frontal face portrait of arbitrary

identity and expression at pixel level, hallucinating a novel facial image whose expressiveness

mimics that of a real face that has similar AU attributes. In other words, our model is formulated

similar to a human-like thought process, it learns to extract identity features to preserve individual

characteristic of the portrait, enact facial expression to animate the portrait according to values of

AU coefficients, perform texture mapping, all in an end-to-end deep neural network.

Learning identity features requires a large number of training images from thousands of sub-

jects, which are readily available in various public image datasets. On the other hand, the amount

of publicly available expressive videos such as [71], from which we could collect a wide range of

AU coefficients, is rather limited. A deep net trained on such a small number of subjects would not

generalize well to unseen identity. To address this shortcoming, we propose to train the deep net

with separate source and target sets, i.e. the animated facial image of subject A in the source set
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does not have an exact matching target image, but there exists an image of subject B in the target

set that has similar expression to the synthesized image of A, and their expressiveness similarity is

measured in a facial expressiveness subspace. Our model learns to generate an expressive face of

subject A by combining identity features extracted from the image of subject A, and expressiveness

features from image of subject B. We will demonstrate later that, by learning to separate identity

code from expression features, our model is able to not only stimulate facial expressions, but also

suppress them, without any using any face template, Our work enables a whole new level of flex-

ibility in facial editing, and we believe it is the first in introducing expression-mimicry learning

from separate source and target subjects.

In summary, our facial performance synthesis models have the following advantages:

• Our model learns to generate expressive face by combining identity features of one subject

with expressiveness features of another in an end-to-end learning framework. It does not

require tremendous amount of training data in order to learn facial expression transformation

effectively.

• Our model edits the source face expression by given AU coefficients, it does not require the

presence of the target face.

• Our model allows both facial expression enactment as well as suppression. It accepts any

arbitrary source image and the original expression in the image does not affect the generation

of final expression.

Our proposed model enables a whole new level of flexibility for facial expression editing. More

details can be found in Chapter 4.
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1.3 Face Shape and Facial Expression Representation

The studies of Ekman et al. [39, 40, 41] have shown that human facial expressions are universal.

This observation led to the design of Facial Action Coding System (FACS) [38], in which a partic-

ular expression is a weighted combination of facial action units (AUs), each unit represents micro

movements of muscles in a particular face region. For example, if the weight of ”Left brow raiser”

is high, the eyebrow is raised and vice versa; or ”lip raiser” and ”jaw dropper” control the talking

action. FACS defines common relative geometric changes of different parts on the human face

to manifest expression, regardless of individual characteristics. A few parametric 3D face models

have been designed based on FACS, e.g. Candide [3] and FaceWarehouse blendshape [20], shown

in Fig. 1.3. Although these models do not fully conform to the system, they allow user to explicitly

generate any (common) expression by adjusting intensities of different action units appropriately.

In this work we use exclusively the face model developed in the FaceWarehouse database,

shown in Fig. 1.3b. As specified in [20], an arbitrary 3D face of a person including expression can

be approximated by

V = Cr×2w
T
id×3w

T
exp (1.1)

where Cr is a 3D array (called reduced core tensor) of size (Nv, Nid, Ne + 1) (corresponding to

number of vertices, number of identities and number of expressions, respectively), wid is an Nid-

dimension identity vector, and wexp is anNe+1-dimension expression vector. Ne is the number of

facial expressions andNe+1 includes the neutral pose. (1.1) basically describes tensor contraction

at the 2nd mode by wid and at the 3rd mode by wexp.

Similar to [19], for real-time face tracking of one person, given his identity vector wid, it is

more convenient to reconstruct the Ne + 1 expression blendshapes for the person of identity wid as

Bi = Cr×2w
T
id×3u

T
expi

(1.2)

where uexpi is the pre-computed weight vector for the i-th expression mode. Bi is also called the
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(a) Candide-3

(b) FaceWarehouse blendshape

Figure 1.3: Some 3D face models based on FACS. In (a) we show some prominent action units of
the Candide-3 wireframe model. In (b), there are 46 expression blendshapes and a neutral shape
(at (0,0) coordinates).
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i-th action unit and B0 is the neutral shape. In this way, an arbitrary facial shape of the person can

be represented as a linear sum of his expression blendshapes:

V = B0 +

Ne∑
i=1

(Bi −B0)ei (1.3)

where ei ∈ [0, 1] is a blending weight, i = 1, . . . , Ne. Finally, a fully transformed 3D facial shape

can be represented as

S = R · V (B, e) + T (1.4)

with parameters θ = (R, T, e), where R and T respectively represent global rotation and trans-

lation, and e = {ei} defined in (1.3) represent expression deformation parameters (or action unit

intensities). In this work, we keep the 50 most significant identity knobs in the reduced core tensor

Cr, hence (Nv, Nid, Ne) = (11510, 50, 46).

However, not all parameters in (R, T, e, wid) are used throughout three tasks in this thesis. The

list below describes the number of parameters modeled in each task.

• In face tracking, all parameters (R, T, e, wid) are predicted. Specifically, the identity-agnostic

shape regressor estimates (R, T, e), and all parameters including identity coefficients are re-

fined using the 2D+3D optimization. More details in Chapter 2.

• In speech-driven facial expression analysis, e is inferred from speech, and used to animate

a generic-identity facial blendshape in our experiments (i.e. wid is fixed). More details in

Chapter 3.

• In facial expression synthesis, given e and a portrait, our proposed model generates a new

face image, portraying the given expression while preserving the identity of the source face,

i.e. the identity description includes not only facial geometric surface details, but also color

texture details such as hair, eyes and eyebrows, beard, ornaments and lastly, the image back-

ground. Since in this task we work on the image pixel space instead of the shape space, wid
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is replaced with more sophisticated identity code implicitly measured by hidden layers of a

deep net to reconstruct the personalized expressive facial image. More details in Chapter 4.

1.4 Dissertation Outline

In this chapter we introduced motivations that lead to the proposal of our models for 3D face

tracking, speech-driven facial expression analysis and facial expression synthesis, and their advan-

tages compared to other works in literature. We also described the blendshape face model and the

facial action unit system from the FaceWarehouse database that is exclusively used in this thesis.

Chapter 2 presents our real-time 3D face tracking framework. The tracker is driven by an

efficient identity-agnostic shape regressor that recovers facial transformation parameters directly

from RGB frame. These parameters and the identity code are refined using both raw estimates

as well as the available depth data. Furthermore, we provide different modifications to the shape

regressor to make it more robust to extreme head poses. Intensive experiments on synthetic and

real data demonstrate the accuracy and robustness of our proposed face tracker(s).

Chapter 3 describes a family of recurrent deep neural networks to estimate facial action unit

intensities directly from speech. Specifically, we first present a baseline model which utilizes

engineered acoustic features as input. We show that, better feature representation can be learned

directly from speech spectrograms, which brings significant performance gain in our experiments

on various public audiovisual datasets.

Chapter 4 introduces GATH, a novel deep generative neural network that can create any novel

facial expression image, given an arbitrary portrait and desired action unit parameters that control

the expression. We demonstrate that GATH can directly manipulate image pixels to hallucinate a

particular facial expression of the unseen subject, while maintaining her individual characteristics,

regardless of the expression displayed in the portrait.

We conclude the thesis in Chapter 5, with potential future work directions.
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Chapter 2

Learning Facial Performance for 3D Face Tracking from RGBD
Videos

In this chapter, we introduce a novel robust real-time hybrid 3D face tracking framework from

RGBD video streams, which is capable of tracking head pose and facial actions simultaneously

without pre-calibration or intervention from a user. In particular, we emphasize on improving the

tracking performance in instances where the tracked subject is at a large distance from the cameras,

the quality of point cloud deteriorates severely, and the face may be occluded or at large pose.

This is accomplished by the combination of a flexible 3D shape regressor and the joint 2D+3D

optimization on shape parameters.

Our approach fits facial blendshapes to the point cloud of the human head, while being driven

by an efficient and rapid 3D shape regressor trained on generic RGB datasets. Head pose-aware

versions of the regressor are able to predict facial parameters even at profile pose, where half of the

face is not visible. As an on-line tracking system, the identity of the unknown user is adapted on-

the-fly resulting in improved 3D model reconstruction and consequently better tracking accuracy.

The result is a robust on-line RGBD 3D face tracker that can model extreme head poses and facial

expressions accurately in challenging scenes, which are demonstrated in our extensive experiments.

This chapter contains materials from our published papers [84, 83].
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2.1 Introduction

Traditional facial capture approaches have gained tremendous successes, reconstructing high

level of realism. Yet, active face capture rigs utilizing motion sensors/markers are expensive and

time-consuming to use. Alternatively, passive vision-based techniques [7, 8, 45, 112] capturing

facial transformations from cameras, although a little less accurate, have achieved very impressive

performance. In particular, there are real-time systems that perform very well even when using

commodity capture devices [19, 18, 17, 118, 13, 66]. However, difficult problems remain due to

variations in camera pose, video quality, head movement and illumination, added to the challenge

of tracking different people with many unique facial expressions.

Blendshape-based face models, such as the shape tensor used in the FaceWareHouse [20] which

was introduced in Section 1.3, were developed for more sophisticated, accurate 3D face tracking.

By deforming dense 3D blendshapes to fit facial appearances, facial motions can be estimated with

high fidelity. Such techniques have gained attention recently due to the proliferation of consumer-

grade range sensing devices, such as the Microsoft Kinect [76], which provide synchronized color

(RGB) images and depth (D) maps in real time. By integrating blendshapes into dynamic expres-

sion models (DEM), several approaches [118, 13, 66] have demonstrated state-of-the-art tracking

performance on RGBD input. It can be observed that all of these tracking frameworks rely heav-

ily on the quality of input depth data. However, existing consumer-grade depth sensors tend to

provide increasingly unreliable depth measurements when the objects are farther [76]. Therefore,

these methods [118, 13, 66] only work well at close range, where the depth map retains fine struc-

tural details of the face. In many applications, such as room-sized teleconferencing, the individuals

tracked may be located at considerable distances from the camera, leading to poor performance

with existing methods.

One way of addressing depth sensor limitations is to use color as in [19, 18]. These RGB-based

methods require extensive training to learn a 3D shape regressor. The learned regressor serves
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as a prior for DEM registration to RGB frames. Despite the high training cost, these methods

have tracking results comparable to RGBD-based approaches. Although RGB-only methods are

not affected by inaccurate depth measures, it is still challenging to track with high fidelity at large

object-camera distances. This is in part due to reduced reliability of regression-based updates

at lower image resolutions, when there is less data for overcoming depth ambiguity. Instead, we

expect to achieve better tracking results if we were able to incorporate depth data while intelligently

handling its inaccuracies at greater distances.

This motivates us to propose a robust RGBD face tracker combining the advantages of RGB re-

gression and 3D point cloud registration. Our tracker is guided by a multi-stage 3D shape regressor

based on random forests and linear regression, which maps 2D image features back to blendshape

parameters for a 3D face model. This 3D shape regressor bypasses the problem of noisy depth data

when obtaining a good initial estimate of the blendshape. The subsequent joint 2D+3D optimiza-

tion matches the facial blendshape to both image and depth data robustly. This approach does not

require an apriori blendshape model of the user, as shape parameters are updated on-the-fly.

We further improve our framework to address the difficulty in tracking extreme poses, e.g.

profile-to-profile. To solve this problem, we propose a new unified RGBD face tracking framework.

A critical aspect of this new framework for making the tracking robust across such ”extreme”

conditions is (1) the ability to accurately and rapidly determine the visibility of landmarks and (2)

make the visibility estimation an integral part of the regressor training and online inference.

Specifically, we propose two approaches to integrate pose and expression regression with visi-

bility estimation. First, we leverage the local random forest framework to jointly predict landmark

visibility and landmark displacement by a forest of decision trees that minimize a joint regression-

classification entropy at no extra cost. While traditional visibility estimation approaches, based

on 3D object models, leverage geometric and deterministic visibility of surface points, they do

not readily take into account the uncertainty of the head pose, motion, and the surface structure
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(expression, subject identity) that arise in tracking. As a consequence, landmarks predicted based

on deterministic surface structure may not be sufficiently accurate. In contrast, our forest-based

framework can model the correlation between displacement of landmark and the probability of it

being visible. These probability scores are used as the feature vector for the global parameter re-

gression. Furthermore, a single regression mapping may not fit all data samples of different poses.

Therefore we propose the second extension by learning a visibility specific mixture of regression

experts, where the choice of regressor is directly determined based on the visibility feature. These

enhancements bring significant improvement in tracking large-posed faces.

(a) (b) (c) (d)

Figure 2.1: A tracking result of our proposed method. (a) The 3D landmarks projected to color
frame. (b) The 3D blendshape. (c) The 3D frontal view, with the blendshape model in red and
input point cloud in white. (d) The 3D side view.

2.2 Overview

Fig. 2.3 shows the pipeline of the proposed face tracking framework, which follows a coarse-

to-fine multi-stage optimization design. In particular, our framework consists of two major stages:

shape regression and shape refinement. The shape regressor performs the first optimization stage,

which is learned from training data, to quickly estimate shape parameters θ = (R, T, e) from the

RGB frame (cf. Section 2.3). Then, in the second stage, a carefully designed optimization is per-

formed on both the 2D image and the available 3D point cloud data to refine the shape parameters,
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Figure 2.2: A few tracked frames, when the faces are at large pose.

Figure 2.3: The pipeline of proposed face tracking framework.

and finally the identity parameter wid is updated to improve shape fitting to the input RGBD data

(cf. Section 2.4).

The 3D shape regressor is the key component to achieve our goal of 3D tracking at large dis-

tance, where quality of the depth map is often poor. Unlike the existing RGBD-based face tracking

works, which either heavily rely on the accurate input point cloud (at close distances) to model

shape transformation by ICP [118, 13] or use off-the-shelf 2D face tracker to guide the shape trans-

formation [66], we predict 3D shape parameters directly from the RGB frame by the developed
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3D regressor. This is motivated by the success of the 3D shape regression from RGB images used

in [19, 18]. The approach is especially meaningful for our considered large distance scenarios,

where the depth quality is poor. Thus, we do not make use of the depth information in the 3D

shape regression to avoid profusion of inaccuracies from the depth map.

Initially, a color frame I is passed through the regressor to recover shape parameters θ. The

projection of Nl (Nl = 73) landmarks vertices of the 3D shape to image plane typically does

not accurately match the 2D landmarks annotated in the training data. We therefore include 2D

displacements D in (2.3) into the parameter set and define a new global shape parameter set P =

(θ,D) = (R, T, e,D). The advantages of including D in P are two-fold. First, it helps train the

regressor to reproduce the landmarks in the test image similar to those in the training set. Second,

it prepares the regressor to work with unseen identity which does not appear in the training set [18].

In such case the displacement error D may be large to compensate for the difference in identities.

Hence we called the regressor “identity-agnostic”. The regression process can be expressed as

P out = fr(I, P
in), where fr is the regression function, I is the current frame, P in and P out

are the input (from the shape regression for the previous frame) and output shape parameter sets,

respectively. The coarse estimates P out are refined further in the next stage, using more precise

energy optimization added with depth information. Specifically, θ = (R, T, e) are optimized w.r.t

both the 2D prior constraints provided by 2D landmarks estimated by the shape regressor and the

3D point cloud. Lastly, the identity vector wid is re-estimated given the current transformation.

2.3 3D Shape Regression

As mentioned in Section 2.2, the shape regressor regresses over the parameter vector P =

(R, T, e,D). To train the regressor, we must first recover these parameters from training samples,

and form training data pairs to provide to the training algorithm. In this work, we use public face

databases from [54, 106, 20] for training.
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2.3.1 Shape Parameter Extraction

We follow the parameter estimation process in [19]. Denoting Πp the camera projection func-

tion from 3D world coordinates to 2D image coordinates, (R, T,wid, wexp) are first extracted by

minimizing the 2D errors in each sample:

min
R,T,wid,wexp

Nl∑
i=1

∥∥∥Πp

(
R
(
Cr×2w

T
id×3w

T
exp

)
i
+ T

)
− li

∥∥∥2 (2.1)

where {li|i = 1, . . . , Nl} are the ground truth landmarks of the training data and Nl = 73. Note

that wexp will be discarded since we only need wid to generate the individual expression blend-

shapes {Bj} of the current subject as in (1.2) for later optimization over (R, T, e).

With the initially extracted parameters in (2.1), we refine wid by alternatingly optimizing over

wid and (R, T,wexp). Particularly, we first keep (R, T,wexp) fixed for each sample, and optimize

over wid across all the samples of the same subject:

min
wid

Ns∑
k=1

Nl∑
i=1

∥∥∥Πp

(
Rk

(
Cr×2w

T
id×3w

T
kexp

)
i
+ Tk

)
− lki

∥∥∥2 (2.2)

where Ns denotes the total number of training samples for the same subject. Then for each sample

we keep wid fixed and optimize over (R, T,wexp) as in (2.1). This process is repeated until conver-

gence. We empirically observe that running the above process for three iterations gives reasonably

good results. We then can generate user-specific blendshapes {Bi} as in (1.2).

Finally, we recover the expression weights e by minimizing the 2D error over (R, T, e) again:

min
R,T,e

Nl∑
i=1

‖Di‖2 (2.3)

where Di = Πp (Si) − li and Si is a 3D landmark vertex of the blendshape corresponding to li.

From (2.3), we also obtain the 2D displacement vector D = {Di} as a by-product. Eventually, fol-

lowing [18], for each training data sample, we generate a number of guess-truth pairs
{
Ii, P

0
i , P

g
i

}
,

where the guessed vector P 0
i is produced by randomly perturbing the ground truth parameters P gi

extracted through the above optimization. In this way, we create N training pairs in total.
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2.3.2 Shape Regression Training

Figure 2.4: One regression stage, which updates global parameter vector P . It consists of two
sub-stages: the local sub-stage encodes visual features around each individual landmark into local
features, and the global sub-stage aggregates these local features to predict the parameter update
∆P t.

Given the training pairs from the previous section, we follow the feature extraction and shape

regression method in [92], which combines local binary features extracted using the trained random

forests of all the landmarks. The local binary features are aggregated into a global feature vector

which is then used to train a linear regression model to predict the shape parameters. In our work,

we train the regressor to predict (R, T, e,D) simultaneously, directly from the input RGB frame

in contrast to [92] where the regressor simply updates only the 2D displacements. The data flow

diagram of one regression stage is illustrated in Fig. 2.4.

Algorithm 1 shows the detailed training procedure. In particular, we calculate the 2D landmark
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positions from the shape parameters, and for each landmark li, we randomly sample pixel intensity-

difference features [22] within a radius ri. These pixel-difference features are then used to train a

random forest Foresti. For every training sample Mk, we pass it through the forest and recover

a binary vector Fk,i which has the length equal to the number of leaf nodes of the forest. Note

that these local displacement updates {Di} are discarded, instead, the local forests encode visual

features into local binary features. Each node that responds to the sample will be represented as

1 in Fk,i; otherwise it will be 0. The local binary vectors from Nl landmarks are concatenated to

form a global binary vector Φk representing the training sample k. Then, the global binary feature

vectors are used to learn a global linear regression matrix W which predicts the updating shape

parameters ∆P from those binary global vectors. After that, the guessed shape parameters are

updated and enter the next iteration.

Algorithm 1: The regressor training algorithm

Data: N training samples Mk =
{
Ik, P

0
k , P

g
k

}
Result: The shape regressor

1 for t← 1 to Nt do
2 for i← 1 to Nl do
3 Foresti←− TrainForest(li);
4 for k ← 1 to N do
5 Fk,i←− Pass(Mk, Foresti);
6 end
7 end
8 for k ← 1 to N do
9 Φt

(
Ik, P

t−1
k

)
← concat (Fk,i);

10 end

11 min
N∑
k=1

∥∥∆P tk −W tΦt
(
Ik, P

t−1
k

)∥∥2 + λ
∥∥W t

∥∥2;

12 for k ← 1 to N do
13 P tk ← P t−1k +W tΦt

(
Ik, P

t−1
k

)
;

14 end
15 end

Similar to [92], we let the regressor learn the best search radius ri during training. The training
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face samples have been normalized to the size of approximately 120x120 pixels, about the same

size as the face captured by Kinect at 0.7m distance. Thus at runtime, we simply rescale the radius

inversely proportional to the current z-translation Tz , making the regressor robust to distance.

The regressor shown in Fig. 2.4 and Algorithm 1 will be further improved to handle large

poses by incorporating landmark visibility into prediction. The modifications are explained in the

following section.

2.3.3 Pose-robust 3D Shape Regression

The approach described above assumes that all landmarks must be visible in the camera’s field

of view and does not take into account various out-of-plane head rotations, where a number of

landmarks are self-occluded. Thus, the regressor cannot effectively predict shape parameters in

such cases. One way to address this issue is to augment the regressor with landmark visibility to

indirectly model large head poses. Specifically, the visibility of the ith landmark is represented by a

Bernoulli random variable vi ∈ {0, 1} together with its associated probability p(vi). Two different

scenarios to integrate the landmark visibility information into the local regression framework and

a novel global piecewise regression to improve the error rate is explained are discussed in details

below.

3D Pose-deterministic Shape Regression

As a baseline model for visibility assessment, we used a traditional visibility test based on

fixed, deterministic structure of the current face geometry S. Specifically, we change the way local

binary features Fk,i are aggregated. Given current parameters θk, we calculate the 3D shape Sk,

and use z-buffer to determine which landmarks of Sk are visible (p(vk,i = 1) = 1), then the local

binary features is

F̂k,i = Fk,i · p(vk,i = 1) (2.4)
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This modification trains a global regression W capable of inferring shape parameters despite miss-

ing landmarks.

Joint Landmark Visibility-Displacement Prediction Local Forests

The extension described in the previous section is straightforward and works well in most cases.

There are two drawbacks, however. First, calculating the 3D shape and z-buffer requires substan-

tial computing power, especially with dense face models that we use, making the regressor less

efficient. Second, if the transition between frames is not smooth enough, visibility of landmarks

might not be predicted accurately. We therefore propose a data-driven approach, in which we train

a joint classification-regression random forest [47] for each landmark i to predict both its 2D dis-

placement Di and the visibility vi together with its associated probability p(vi). Random decision

trees are trained using standard information gain maximization procedure. The information gain

from a split at node S is defined as

I(S) = H(S)−
∑

i∈{Left,Right}

|Si|
|S|

H(Si), (2.5)

where H(S) is the joint entropy of D and v1

H(S) = −
∑
v

∫
D

p(D, v|x) log p(D, v|x)dD. (2.6)

H(S) can be decomposed into two terms, Hv(S) and Hr(S), which are the Shannon and joint

differential entropy, respectively:

Hv(S) = −
∑
v

p(v|x) log p(v|x), (2.7)

Hr(S) = −
∑
v

p(v|x)

∫
r

p(D|v, x) log p(D|v, x)dD, (2.8)

1We drop subscripts i, k for clarity.
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where p(D|v, x) , N (D;µD|v,ΣD|v|v, x), µD|v and ΣD|v are the mean and covariance ofD w.r.t.

v. Thus, the joint differential entropy Hr in (2.8) can be rewritten as

Hr =
∑
v

p(v|x)

(
1

2
log
[
(2πe)2

∣∣ΣD|v
∣∣]). (2.9)

Hv(S) and Hr(S) have different value ranges. In order to balance two tasks of classification and

regression in training, we calculate a normalized joint entropy termH(S) over the entropies of root

node S0:

H(S) =
1

2

(
Hv(S)

Hv(S0)
+

Hr(S)

Hr(S0)

)
. (2.10)

Local featuresFk,i are extracted as before, but the 1 bit is replaced by the probability pτ (vi = 1|xk),

Fk,i = pτ (v = 1|xk) =
ℵ`(xk)(v = 1)∑
v=0,1

ℵ`(xk)(v)
, (2.11)

of a landmark being visible at the leaf node S`(xk) of tree τ where x reaches; the leaf indicated by

index `(xk) contains histogram ℵ of v. Global features Φk are then collected to learn the global

regression matrix W .

Piecewise Global Regression

A single global linear regression matrix W as described above may not be able to map the

feature space to the parameter space correctly due to highly nonlinearly varying poses in training

data. We exploit the collection of landmark visibility probability from the previous section to

partition the training data into different subsets, to form a series of piecewise linear regressions to

better model the data.

The averaged probability of landmark i of sample xk being visible is measured as

p̄k,i = p̄(vi = 1|xk) =
1

Ti

∑
τ

pτ (vi = 1|xk), (2.12)

where Ti is the number of trees in the local forest of landmark i. Probabilities {p̄k,i} from Nl

landmarks are aggregated into a feature vector p̄k to be used in clustering. The data (p̄1, .., p̄N )
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is split into Nc subsets
{
P̄1, .., P̄Nc

}
with centers {µ1, .., µNc}. Finally, Nc regression matrices

{Wc}Nc
c=1 are learned, one for each subset of data, similar to [122].

To determine cluster assignments at run-time, we use the cluster representatives µi in the vis-

ibility feature space. Specifically, the most likely cluster that the incoming sample p̂ belongs to is

determined using nearest neighbor search:

c∗(p̂) = arg min
c
‖p̂− µc‖ . (2.13)

Fig. 2.5 demonstrates the advantage of using piecewise regression, leading to lower error rate

compared to using a single linear regression across all training samples, especially in the case of

translation, which is particularly important in tracking fast moving faces.

2.4 3D Shape Refinement

2.4.1 Facial Shape Expressions and Global Transformation

We simultaneously refine (R, T, e) by optimizing the following energy:

R, T, e = arg minE2D + ω3DE3D + Ereg (2.14)

where ω3D is a tradeoff parameter, E2D is the 2D error term measuring the 2D displacement errors,

E3D is the 3D ICP energy term measuring the geometry matching between the 3D face shape

model and the input point cloud, and Ereg is the regularization term to ensure the shape parameter

refinement is smooth across the time. Particularly, E2D, E3D and Ereg are defined as

E2D =
1

Nl

Nl∑
i=1

‖Πp (Si (R, T, e))− l∗i ‖
2 (2.15)

E3D =
1

Nd

Nd∑
k=1

((Sk (R, T, e)− dk) · nk)2 (2.16)

Ereg = α‖θ − θ∗‖2 + β
∥∥∥θ − 2θ(t−1) + θ(t−2)

∥∥∥2. (2.17)
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Figure 2.5: Comparing training error rates of single and piecewise regressions across seven itera-
tions. The curves show squared errors w.r.t. different parameters. Rotation is represented by a unit
quaternion, whereas translation is measured in meters.

In (2.15), the tracked 2D landmarks {l∗i } are computed from the raw shape parameters (R∗, T ∗, e∗, D∗),

which are usually quite reliable. In (2.16), Nd is the number of ICP corresponding pairs that we

sample from the blendshape and the point cloud, and dk and nk denote point k in the point cloud

and its normal, respectively. By minimizing E3D, we essentially minimize the point-to-plane ICP

distance between the blendshape and the point cloud [72]. This is to help slide the blendshape over

the point cloud to avoid local minima and recover a more accurate pose. In (2.17), θ∗ is the raw
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output (R∗, T ∗, e∗) from the shape regressor, θ(t−1) and θ(t−2) are the shape parameters from the

previous two frames, and α and β are tradeoff parameters. The two terms in (2.17) represent a data

fidelity term and a Laplacian smoothness term.

In our implementation, we iteratively optimize over the global transformation parameters (R, T )

and the local deformation parameter e, which leads to faster convergence and lower computational

cost. In the (R, T ) optimization, ω3D is set to 2; α, β are set to 100 and 10000 for R, 0.1 and 10

for T , respectively. For optimization over e, ω3D is set to 0.5; α and β are both set to zero so as to

maximize spontaneous local deformations. The non-linear energy function is minimized using the

ALGLIB::BLEIC bounded solver2 to keep e in the valid range of [0,1].

Fig. 2.6 gives an example to show the effect of the E3D term. We can see that for the result

without using E3D, there is a large displacement between the point cloud and the model and there

is also noticeable over-deformation of the mouth. This demonstrates that without using the 3D

information, the 2D tracking may appear fine yet the actual 3D transformation is largely incorrect,

because of the depth ambiguity problem.

(a) (b) (c) (d)

Figure 2.6: The effect of E3D term. (a,b): The result without using E3D. (c,d): The result us-
ing E3D. Notice the displacement between the point cloud and the model, as well as the over-
deformation of the mouth in (b).

2http://www.alglib.net/
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2.4.2 Updating Shape Identity

In the last step, we refine the identity vector to better adapt the expression blendshapes to the

input data. We solve for wid by minimizing the following objective function:

wid = arg minE′2D + ω3DE
′
3D (2.18)

where

E′2D =
1

Nl

Nl∑
i=1

∥∥Πp

(
R
(
Cr×2w

T
id×3γ

T
)
i
+ T

)
− l∗i

∥∥2
E′3D =

1

Nd

Nd∑
k=1

∥∥R(Cr×2w
T
id×3γ

T
)
k

+ T − dk
∥∥2 (2.19)

with γ = (1−
Ne−1∑
j=1

ej)uexp0 +
Ne−1∑
j=1

ejuexpj .

Note that E′3D is the point-to-point ICP energy and it behaves slightly differently from E3D

in (2.16). Minimizing E′3D helps align the blendshape to the point cloud in a more direct way on

the surface to recover detailed facial characteristics.

In our experiments, we empirically set ω3D to 0.5, meaning that we give more weight to the

2D term to encourage the face model to fit closer to the tracked landmarks, especially the face

countour. Gradient-based optimizations such as BFGS are ineffective toward this energy, and thus

we run one iteration of coordinate descent at each frame to stay within the computational budget.

We find that wid usually converges in under 10 frames after tracking starts. To save computational

time, we set a simple rule in which updating identity stops either after wid converges or after 10

frames.

Fig. 2.7 shows some results on adapting the identity parameter over time. After a few iterations

of updating wid, the face model fits significantly better to each individual subject.
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(a) (b) (c)

Figure 2.7: Adapting identity over time. (a) The common initial base shape. (b) Appearances
of two testers. (c) For the male tester, the identity parameter wid converges after three frames,
compared to the female tester’s four frame convergence.

2.5 Evaluation

We carried out extensive tracking experiments on synthetic RGBD sequences and real videos

captured by a Kinect(v1) camera to test our trackers driven by four of our proposed regressors. The

tracker using the original shape regressor in Section 2.3.2 is called 3DLGR. The tracker with pose-

deterministic regressor (Section 2.3.3) is called 3DLGR-Dt. The tracker with joint classfication-

regression forest single regression is henceforth denoted as 3DLGSR while the one using piecewise

regression is denoted as 3DLGMR.

We separate our experiments into two categories: near-frontal tracking and profile-to-profile

tracking. This is because 3DLGR always outperforms the other three models on frontal face

videos, as it was trained explicitly to track face with near-frontal pose. The other three models

must handle a much larger face manifold while having the same capacity, hence their near-frontal

tracking performance is not as good as 3DLGR.
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Test data includes synthetic and real RGBD sequences. Real sequences were captured with

a Kinect v1 camera, while synthetic sequences were rendered from the BU4DFE dataset [127].

Details of synthetic sequence rendering can be found in the following experiments.

2.5.1 Near-frontal Face Tracking Experiments

We compared the tracking performance of 3DLGR to that of RGB-based trackers DDER[18],

CoR[129] and RLMS[101] in terms of average root mean square error (RMSE) in pixel positions

of 2D landmarks. In the tracking context, we evaluated trackers’ robustness by comparing the

proportions of unsuccessfully tracked frames.

Evaluations on Synthetic Data

The BU4DFE dataset [127] contains sequences of high-resolution 3D dynamic facial expres-

sions of human subjects. We rendered these sequences into RGBD to simulate the Kinect cam-

era [76] at three distances: 1.5m, 1.75m and 2m with added rotation and translation. In total, we

collected tracking results from 270 sequences. The dataset does not provide ground truth, so we

used the RLMS tracker [101], which works well on BU4DFE sequences, to recover 2D landmarks

on the images rendered at 0.6m, which were then reprojected to different distances and treated as

ground truth.

The overall evaluation results are shown in Table 2.1. Our tracker performed comparably to

the state-of-the-art CoR [129] and outperformed the blendshape-based DDER [18]. CoR did not

produce results for sequences at 1.75m and 2m, with the faces too small for it to handle.

Experiments on Real Data

We compared the tracking performance of our approach to other methods on 11 real sequences

at various distances, with different lighting conditions, complex head movements as well as facial
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Table 2.1: Evaluation results of the proposed method and other face trackers on BU4DFE dataset.
RMSE is measured in pixels.

Dataset DDER [18] CoR [129] 3DLGR (Ours)
BU4D (1.5 m) 2.20 1.05 1.27
BU4D (1.75 m) 1.94 n/a 1.14
BU4D (2.0 m) 1.76 n/a 1.14

Figure 2.8: A sample from BU4DFE dataset, rendered at 1.5m. From left to right: results by CoR,
DDER and our tracker, 3DLGR.

expressions. We used RLMS to recover the ground truth, and manually labeled the frames that

were incorrectly tracked.

The results are shown in Table 2.2. For RLMS, we only considered the performance on frames

that had been manually labeled, since its results were otherwise used as ground truth. Note that the

inclusion of RLMS is mainly used as a reference and does not reflect its true performance, as only

incorrectly tracked frames were measured. Once again, our method outperformed DDER and was

very close to CoR. The consistent error values demonstrated that our tracker is stable, particularly

under large rotations or when the face is partially covered, as illustrated in Fig. 2.9 and Fig. 2.10.

To better assess the robustness of each tracker, we compared the percentage of aggregated lost

frames from all sequences in Table 2.3. The mistracked frames were decided either by empty

output, or by large RMSE (RMSE > τ , with τ = 10). We also did not count sequences luc03 for

DDER, nor luc03 and luc04 for CoR, toward their overall percentages because the faces were not

registered correctly from the beginning, which was perhaps largely due to the face detector failing



34

Figure 2.9: Each group of four shows results of four trackers on the same frame. From left to right:
RLMS, CoR, DDER and our method. Our tracker and RLMS can handle occlusion by hair. In
general, our tracker is robust to large rotation and it models realistic facial deformations.
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(a) (b) (c) (d) (e) (f)

Figure 2.10: Example showing that the proposed tracker 3DLGR can handle partial occlusion of
the face. The first row shows the resulting projected landmarks and the head orientation as 3 axes
(red, green, yellow axes are yaw, pitch and roll, respectively). The second row shows the 3D view
of the blendshape model (in red) and the input point cloud (in white) of each corresponding frame.
Except (c) where the frontal view is shown, (a,b,c,e,f) show the side view. In each frame, the
occlusion on the point cloud is circled in yellow. Tracking performance is not measured for this
video and it is not included in Table 2.2, because we recorded this sequence after we had finished
all the benchmarks.

to locate the face correctly. This showed that the 2D+3D optimization combination of our method

provides robust tracking overall.

2.5.2 Profile-to-profile Face Tracking Experiments

Regressor Training Data

We use real RGB image samples from the FaceWarehouse [20], Labeled Face in the Wild [54]

and GTAV [106] datasets. However, these datasets do not contain samples depicting large head

poses. Thus, after fitting the 3D blendshape model to each sample to extract shape parameters,

the sample image is artificial triangulated around the 3D head shape and rotated to create synthetic

large-posed images from real images. We also render synthetic large-posed samples from the

BU4DFE database [127] in order to increase the variation of face poses in the training set.
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Table 2.2: Evaluation results of the proposed method and other face trackers on real videos. RMSE
is measured in pixels.

Dataset DDER [18] CoR [129] RLMS [101] 3DLGR (Ours)
dt01 9.65 4.15 6.04 4.51
ar00 3.41 66.72 7.41 2.36
dt00 3.57 1.65 4.63 2.29
my01 5.61 2.79 4.35 2.89
fw01 6.5 3.27 36.11 4.85
fw02 5.34 1.80 2.56 3.50
luc01 4.96 2.38 5.86 3.49
luc02 3.95 1.51 2.04 3.02

luc03 (2m) 37.17 n/a 1.67 1.77
luc04 (2m) 2.63 62.45 n/a 1.84

luc05 3.39 2.39 3.44 2.88

Table 2.3: The overall percentage of lost frames during tracking from all real videos.

DDER [18] CoR [129] RLMS [101] 3DLGR (Ours)
2.21% 7.22% 3.61% 0.74%

Experiment Settings

We compared the tracking performance of our two proposed models: 3DLGSR and 3DLGMR,

against the baseline tracker using 3D geometry described in Section 2.3.3, 3DLGR-Dt, as well as

the near-frontal 3D face tracker 3DLGR. We measure the 2D landmark error as RMSE (in pixels)

w.r.t. 2D ground truth landmarks. Due to the lack of a publicly available profile-to-profile 3D

face tracking software, we alternatively compare our methods to other 2D face alignment methods

PMCDS [128] and TSPM [135], and a recent 3D dense face alignment method 3DDFA [134].

All three methods have been proven as capable of profile face registration. Particularly, PMCDS

is configured in tracking mode, in which the facial landmarks of the previous frame are used to

initialize the registration algorithm on the new frame. On the other hand, 3DDFA requires the

exact bounding box of face region to be provided for each frame in order to work properly. We use

the pre-trained models provided by the authors in all of our tests.
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Evaluation on Synthetic Data

Figure 2.11: Tracking results on two sample frames from the BU4DFE dataset, rendered at different
distances. From top to bottom, the figure shows results of 3DLGMR, 3DLGSR and 3DLGR-Dt,
respectively. Sub-images were rescaled to the same size, therefore the landmark circles in the 2m
samples appear larger than those in the 1.2m samples, which in turn are larger than those in the
70cm samples. Notice the differences in eyebrow and mouth areas in the 70cm frames, where
3DLGMR accurately registers both poses and mouth deformations.

We rendered BU4DFE sequences into RGBD to simulate the Kinect(v1) at six distances: 70cm,

1.2m, 1.5m, 1.75m, 2m and 2.5m with profile-to-profile head rotations, hence we can observe the

same sequence of facial movements at different distances and in different resolutions as shown

in Fig. 2.11. In total, we collected tracking results from 480 sequences. The dataset does not

provide ground truth, hence we used the 3DLGR tracker to recover 3D landmarks on the frontal

images of stationary head pose rendered at 0.7m, which were then rotated, readjusted using ICP,

and reprojected to different distances and treated as ground truth.

As shown in Table 2.4, 3DLGMR achieves the lowest RMSE on average compared to other

blendshape-based methods, including 3DLGSR. It also performs the best overall on sequences at
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distances ranging from 70cm to 2m, and only slightly worse than 3DDFA at 2.5m. In general,

performance of 3DLGSR is not as good as 3DLGR-Dt and 3DLGMR as expected, because single

regression model is not fully capable of modeling highly non-linear input features, while 3DLGR-

Dt only takes binary features. Fig. 2.11 demonstrates a few sample frames from the test set, where

3DLGMR was able to achieve stable and highly accurate tracking results. These results reflect

the advantage of combining local visibility prediction with piecewise linear regression models to

predict shape parameters.

Evaluation on Real Data

Table 2.6: Tracking errors on large-posed frames from different datasets. 3DLGMR has substantial
gain in majority of tests, except for sj01, sj02 and sy01. In general, errors on large-posed frames
are indeed larger than the average errors in Table 2.4 and 2.5.

Dataset 3DLGR-Dt 3DLGSR 3DLGMR
BU4D(70cm) 4.98 ± 1.07 5.14 ± 1.12 3.97 ± 0.74
BU4D(1.2m) 2.69 ± 0.66 2.74 ± 0.62 2.27 ± 0.62
BU4D(1.5m) 2.14 ± 0.49 2.16 ± 0.39 1.77 ± 0.33

BU4D(1.75m) 1.97 ± 0.69 2.12 ± 1.10 1.58 ± 0.33
BU4D(2m) 1.96 ± 0.86 1.99 ± 0.83 1.59 ± 0.74

BU4D(2.5m) 1.95 ± 1.23 2.05 ± 1.30 1.61 ± 0.83
ad01 5.50 ± 1.94 4.77 ± 1.45 4.64 ± 1.48
bn01 2.79 ± 0.83 2.95 ± 0.89 2.56 ± 0.57
bn02 3.50 ± 0.81 3.42 ± 0.69 3.31 ± 1.23
jp01 4.17 ± 1.19 7.36 ± 7.97 3.14 ± 0.68
ro01 9.11 ± 11.99 14.27 ± 15.56 6.59 ± 2.05
sj01 1.82 ± 0.54 2.55 ± 1.10 2.22 ± 0.93
sj02 2.76 ± 0.60 3.35 ± 0.90 2.81 ± 0.60
sy01 4.30 ± 1.70 3.38 ± 1.21 3.43 ± 0.65

Eight RGBD sequences capturing facial expressions, profile-to-profile head movements at dif-

ferent distances were recorded with a Kinect(v1) camera for testing, and ground truth landmarks

were manually annotated on one among every 10 frames. The tracking results on these videos are
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Figure 2.12: Cumulative Error Histograms of seven methods. Overall, 3DLGMR achieves the best
tracking performance, followed by 3DLGR-Dt. In fact, 3DLGMR has the fastest CEH growth
before reaching equilibrium of 98.6% at the 0.34 error bin, while 3DLGR-Dt reaches 97.7% at
0.36.

Figure 2.13: A few samples from real sequences. The 3D facial blendshapes produced by 3DL-
GMR are visualized in the last column.

shown in Table 2.5.
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In these tests, 3DLGMR has the best results or only slightly below the best performers. Specif-

ically, 3DLGR-Dt has slightly smaller errors on sj01 and sj02. The fact that the tracked subjects

in these two videos have darker skin tones, which affect the visibility prediction, may explain the

lower performance of 3DLGMR as it maps the visibility features into shape parameters. Addi-

tionally, TSPM achieves lower average errors on ad01, jp01 and ro01 sequences, compared to

3DLGMR. This reflects the nature of the technique, because TSPM performs exhaustive search

across all possible poses, thus it performs well when it is able to localize the face position, albeit at

the cost of being considerably slower than 3DLGMR.

These errors were calculated from only successfully registered frames that do not account for

tracking loss, which would very likely happen in unconstrained settings. To better understand the

tracking performance, we measure additional Cumulative Error Histogram (CEH) metrics. CEH

quantizes tracking error into κ bins, where the κth bin counts the number of frames with the error

less than a threshold εk. The errors must be normalized over face size, which is specified as distance

between outer-eye and mouth corners in our work. CEH is shown in Fig. 2.12.

In smaller error bins, both 3DLGR and 3DLGR-Dt have a slight advantage over 3DLGMR,

but overall, 3DLGMR has the best histogram among all tested methods. This can be explained as

these small error bins consist of near-frontal frames with which 3DLGR has been demonstrated

to achieve really good performance. However, 3DLGR incurs larger errors in frames with large

poses. 3DLGR-Dt is better at handling these poses, but with additional cost of using z-buffer.

3DLGMR performs better than 3DLGR-Dt in some cases, whilst retaining the computational ad-

vantage of 3DLGR. Table 2.6 shows that 3DLGMR outperforms 3DLGR-Dt in majority of frames

with large head poses. All experiments on real RGBD videos demonstrate that 3DLGMR performs

consistently well across different pose variations.
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2.5.3 Implementation Details and Running Time

In the first frame when the tracker starts or restarts, the face is localized using the OpenCV face

detector [113]. The tracker is written in native C++, parallelized with Intel Thread Building Blocks

(TBB). We measure the running time of four tracker implementations driven by four versions of

our shape regressor (each shape regressor has five sub-stages), excluding the identity adaptation

process in (1.2) whose speed depends on the GPU (about 7ms on a Tesla K40c). Specifically,

tested on an Intel Core i7 quad-core 3.4GHz CPU, 3DLGSR and 3DLGMR can process one frame

in roughly 30ms, they are as fast as the original 3DLGR tracker. The baseline 3DLGR-Dt using

z-buffer is slower, since each regression sub-stage takes additional 4ms to perform depth test in our

implementation.

2.6 Related Work

Early work on articulated face tracking was based on classical Active Shape and Appearance

Models (ASM, AAM) [29, 28, 74] and Constrained Local Models (CLM) [101] that fit a paramet-

ric facial template to the image. A common extension of these traditional methods to multi-view

face tracking/alignment is to build multiple models for separate head poses, such as multi-view

AAM [30], multi-view Direct Appearance Models [67]. TSPM [135] uses local detectors simi-

lar to CLM, but learns sparse tree structures of parts for different views. Yu et al. [128] use sparse

TSPM to initialize CLM fitting. In practice, these parametric methods rely on the learned statistical

shape model and may not generalize well to real world data.

In recent years, non-parametric shape models have achieved better results due to greater flexi-

bility and efficiency. In one approach [33, 103, 132], individual landmarks are directly localized

by creating response map for landmark locations, and landmarks are finally chosen by a mode

seeking method. The second approach is shape regression, which maps visual features to landmark

coordinates [121, 22, 92]. Although these shape regression methods have achieved state-of-the-art
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performance, there is little effort in tackling multi-view face alignment. Recently, Xiong et al. [122]

propose to learn multiple descent maps on different subsets of data to implicitly generalize shape

models to different views.

Another popular approach is to use 3D deformable models, which are typically controlled by

a set of deformation units, as priors. Past works [16, 34, 57, 82] employed simple, coarse 3D

wireframe models, but they lack the presentation power to realistically model high-fidelity human

face. More sophisticated models and registration techniques have been developed to obtain state-

of-the-art 3D face reconstruction [10, 93, 94]. Zhu et al. [134] utilized these deformable models

in a 3D dense face alignment framework across large poses using Convolutional Neural Networks.

More interestingly, recent approaches use 3D facial blendshapes [20] for real-time high-fidelity

3D face tracking. Such techniques have gained more attention lately due to the proliferation of

affordable commodity depth sensing devices, such as the Kinect [76]. Several approaches [118,

13, 66, 109] based on blendshape DEM have demonstrated state-of-the-art tracking performance

on RGBD input, or only depth input [59]. However, incoming data is assumed to be of high quality,

thus they only work well in close range where fine details of the face are preserved. The RGB-based

approaches by Cao et al. [19, 18] learn 3D shape regressor as priors for robust DEM registration.

Although RGB-only methods are not affected by inaccurate depth measures, it is still challenging

to track with high fidelity at large object-camera distances. This is in part due to reduced reliability

of regression-based updates at lower image resolutions, when there is less data for overcoming

depth ambiguity. These methods [19, 18] are robust by using the trained regressors, however, the

shape regressors are unable to handle large angle poses, such as left/right profiles.
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2.7 Summary

In this chapter we presented a novel RGBD face tracking framework, 3DLGR, that uses 3D

facial blendshapes to simultaneously model head movements, as well as facial expressions in un-

constrained environment, in forms of parameters including global rotation and translation, facial

AU weights and identity weights. The tracker is driven by an efficient shape regressor, and in gen-

eral it is robust to different conditions such as distance, lighting and low-quality input in general.

We further proposed three variant of 3DLGR, namely 3DLGR-Dt, 3DLGSR and 3DLGMR, which

can handle large-posed, profile-to-profile tracking.

Moreover, through extensive experiments on synthetic and real RGBD videos, our trackers

performed consistently well in complex conditions and outperformed other contemporary state-

of-the-arts especially in complex videos. Being real-time and fully automatic, our tracker can be

readily deployed into various tasks in human machine interaction or virtual reality.
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Chapter 3

Learning Facial Performance from Speech

Speech conveys not only the verbal communication, but also emotions, manifested as facial

expressions of the speaker. In this chapter, we present deep learning frameworks that directly infer

facial expressions from just speech signals. The objective is similar to face tracking in the previous

chapter, but the task is more difficult, as the input is only speech audio lacking any visual features.

Specifically, we propose recurrent neural networks to realize the time-varying contextual non-linear

mapping between audio stream and micro facial movements to drive a 3D blendshape face model

in real-time.

Our models not only activate appropriate facial action units (AUs) at inference to depict differ-

ent utterance generating actions, in the form of lip movements, but also, without any assumption,

automatically estimate emotional intensity of the speaker and reproduces her ever-changing affec-

tive states by adjusting strength of related facial unit activations.

In the baseline model, conventional handcrafted acoustic features are utilized to predict facial

actions. Furthermore, we show that it is more advantageous to learn meaningful acoustic feature

representation from speech spectrograms with convolutional nets, which subsequently improves

the accuracy of facial action synthesis.

Experiments on diverse and challenging audiovisual corpora of different actors across a wide

range of facial actions and emotional states show promising results of our approaches. Being

independent of speaker and language, our generalized models are readily applicable to various

tasks in human-machine interaction and animation.
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This chapter contains materials from our published papers [81, 85].

3.1 Introduction

Human-machine interaction has been an active research area for decades, with the ultimate

goal to make interaction between human-machine transparent. Speech, as a natural form of com-

munication among various modes of interactions, is becoming more immersive, evidenced by the

increasing popularity of virtual voice assistants in our daily lives. Furthermore, the audio recording

carries not only the contextual sound units (phonemes), but also emotions of the speaker reflected

in speed or intensity of her speech. Hence, it is beneficial for the computer to comprehend emo-

tional states of the speaker, for instance, to make a joke when it perceives the user is happy, in an

imaginary mutual human-machine conversation.

Moreover, there are various applications of speech-driven facial expression synthesis such as

computer games, animated movies, teleconferencing, talking agents, among others. Traditional

facial capture approaches have gained tremendous successes, reconstructing high level of realism.

Yet, active face capture rigs utilizing motion sensors/markers are expensive and time-consuming

to use. Alternatively, passive techniques capturing facial transformations from cameras, although

less accurate, have achieved very impressive performance. There lies one problem with vision-

based facial capture approaches, however, where part of the face is occluded, e.g. when a person

is wearing a mixed reality visor, or in the extreme situation where the entire visual appearance is

non-existent. In such cases, other input modalities, such as audio, may be exploited to infer facial

actions. Indeed, research on speech-driven face synthesis has regained attention of the commu-

nity in recent time. Latest works [58, 105, 107] employ deep neural networks in order to model

the highly non-linear mapping from speech domain, either as audio or phonemes, to visual facial

features. Particularly, in the approach by Karras et al. [58], the reconstruction of facial emotion

is also taken into account to generate fully transformed 3D facial shapes. Their method explicitly
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specifies the emotional state as an additional input beside raw audio data. However, the task of

directly inferring facial actions and expressions from speech has not been addressed properly.

In this work, we aim to recreate a 3D virtual talking avatar that can make micro facial move-

ments to reflect the time-varying contextual information and emotional intensities of the speaker

carried in the input speech. Intuitively, this work is analogous to visual 3D face tracking [84, 83],

however, it is more challenging as we try to map acoustic information to visual space, instead of

conveniently relying on textural cues from input images. Moreover, speech-emanated facial move-

ments involve different activations of correlated regions on the geometric surface, thus it is difficult

to achieve realistic looking, emotion-aware facial deformation from speech sequence.

Thus, we propose a regression framework based on recurrent neural network (RNN) to estimate

facial action unit parameters of a 3D blendshape face model from audio sequence, for real-time life-

like facial animation. To tackle the difficulty of avatar generation, we utilize the blendshape model

in the FaceWarehouse database (introduced in Section 1.3), which is purposefully designed with

enough constraints on facial action units to ensure that, the facial shape would always look realistic

given a specific set of blending coefficients. In addition, it can represent various emotional states,

e.g. sadness, happiness, etc., without explicitly specifying them. We propose a baseline neural net

model, in which engineered acoustic features are utilized as input to an RNN. Furthermore, in order

to overcome the limitation of using handcrafted features, which are inherently lossy and may cause

the loss of important information, we propose to learn meaningful feature representation from raw

spectrograms with convolutional neural net (CNN), which indeed leads to significant performance

gain. It also simplifies the data processing pipeline, and speeds up facial expression inference.

Experiments on different challenging audiovisual corpora demonstrate promising results of our

approach in real-time speech-driven 3D facial animation.



48

Figure 3.1: The general learning framework for speech-driven facial expression synthesis. At test
time, the model only accepts audio input. In the baseline model, a set of handcrafted features
are extracted. Whereas in the end-to-end model, feature representation is learned directly from
spectrogram.

3.2 Overview

Fig. 3.1 illustrates the general framework of our proposed speech-driven 3D facial expression

synthesis approach, which includes a training phase and an animation stage. In the training phase,

the speech-to-facial parameters mapping is learned by an RNN from a set of audiovisual corpora,

formulated as a regression problem. The input to our system can be any arbitrary speech of any

length X = {xt|t = 1..T} be an audio sequence, where T is the number of feature frames (each

frame is an acoustic feature vector in the baseline, or a spectrogram in the end-to-end model).

Denote E = {et|t = 1..T} as the corresponding output sequence of facial action unit intensities, e

is a 46-D vector of AU parameters, defined in (1.3) in Section 1.3. The mapping function F : X →

E, is realized as an RNN. In this work, we emphasize on real-time applications, hence we only

use unidirectional recurrent network. Moreover, in order to get a comprehensive understanding
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whether knowing future data is more advantageous, we also compare these unidirectional models

to their bidirectional counterparts. More details are discussed in Section 3.6.

In the animation phase, the trained recurrent model converts the input sequence of audio signal

to facial action parameters to drive a 3D blendshape face model. Note that our models only estimate

facial actions, independent of speaker identity. In our experiments, we reconstruct facial shapes of

a single generic identity to maintain the consistency of facial expression synthesis, and to facilitate

fair comparison between different models.

As we only use low-level acoustic features (or not at all, in the end-to-end model) to learn the

universal facial expression subspace from speech, our models are not tied to any particular lan-

guage, and it can be easily extended given more training samples. In the baseline model, acoustic

features are extracted using a combination of conventional pre-defined audio processing functions,

e.g. MFCC (cf. 3.3). The discriminative recurrent neural network simply maps these features to

facial action unit intensities. In practice, these engineered features have been proven to be able to

convey the speech content (i.e. talking - lip movements), and they have been used successfully to

produce photo-real lip-syncing syntheses [43, 105]. However, most of these features are originally

designed to diminish emotional states of the speaker carried in her speech, thus the ability to ac-

curately predict emotional facial actions of the deep model is more or less reduced. To circumvent

this limitation, we propose to learn more meaningful feature presentation pertaining to facial ex-

pressions directly with CNN (cf. 3.4). This approach indeed leads to significant performance gain

according to the experimental results.
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3.3 Facial Expression Estimation from Handcrafted Features

3.3.1 Feature Extraction

In the basline model, we extract Mel-scaled spectrogram, Mel frequency cepstral coefficients

(MFCCs) and chromagram from the audio sequence. Mel-scaled spetrogram and MFCCs are stan-

dard acoustic features proven to be very effective in presenting the contextual information, whereas

chromagram is necessary to determine the pitch in the speech, which reflects the affective states of

the speaker throughout the whole sequence.

We assume that every input audio sequence is synchronized to the corresponding video at 30

FPS and the audio sampling rate is at 44.1 kHz. Thus, for every video frame, there are 1,470

corresponding audio samples. We include additional samples from the previous video frame, such

that for each video frame there is enough audio data to extract three windows of 25ms each, with

hop length of 512 samples. In every audio window, values of 128 Mel bands, 13 Mel frequency

cepstral coefficients and their delta and delta-delta coeffcients, and 12 chroma bins, are extracted.

In summary, the input feature vector for every video frame has 537 dimensions, and each variable

is normalized to zero mean - unit variance. Fig. 3.2 illustrates different feature sequences extracted

from videos of the same actor speaking the same sentence in different emotional states.

3.3.2 Model Learning

The recurrent neural network in the baseline model consists of two hidden layers constructed

with LSTM cells, illustrated in Fig. 3.3 ,to model the highly non-linear mapping between acoustic

features and facial expression coefficients. In our experiments on standard audiovisual corpora, we

found that using more or less hidden layers leads to higher errors, thus only two-layered LSTM-

RNN is thoroughly evaluated in this paper. Its architecture and training details are presented in the

Appendix.
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Figure 3.2: Feature sequences extracted from videos of the same actor in RAVDESS speaking the
same sentence ”Kids are talking by the door” under different emotional states. From top row:
Neutral, Happy, Sad and Disgust, respectively.

Figure 3.3: The baseline model architecture consisting of two recurrent hidden layers.

As noted in Sec. 3.2, the speech-to-facial expression mapping is formulated as a standard non-

linear regression problem. Thus, parameters of the mapping functionF can be learn by minimizing

the following least-squares loss:

min
1

T

1

N

T∑
t=1

∥∥et − êt∥∥2
2
, (3.1)

in which êt is the vector of expected facial action parameters at time t extracted from training

video. We empirically found that applying this standard L2 loss on the baseline model is sufficient
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to make the optimization converge to a reasonably good solution. However, this is not the case

with the end-to-end model, which will be discussed shortly.

3.4 End-to-end Learning for Facial Expression Synthesis

3.4.1 Audio Processing

For each video frame t in the corpus, we extract a 96ms audio frame sampled at 44.1kHz,

including data of the current video frame and previous frames. Similar to the baseline, we do not

consider any delay to gather future data, as they are unknown in a live streaming scenario. Instead,

temporal transition will be modeled by the recurrent layer. We apply FFT with window size of

256 and hop length of 128, to recover a power spectrogram of 128 frequency bins across 32 time

frames.

3.4.2 Model Architecture

Figure 3.4: The end-to-end neural network. 1-D convolutions are applied throughout. The first five
conv. layers perform convolutions along the frequency axis, and the last three conv. layers carry
out convolutions along the time axis.

Our end-to-end deep neural net is illustrated in Fig. 3.4. The input to our model is raw time-

frequency spectrogram of audio signal. Specifically, each spectrogram is constructed as a 2D

(frequency-time) array suitable for CNN. We apply convolutions on frequency and time separately,

similar to [58, 97], as this practice has been empirically shown to reduce overfitting, furthermore,
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using smaller filters requires less computation, which consequently speeds up training and infer-

ence. In particular, the input spectrogram is first convolved on the frequency axis with down-

sampling factor of two. Then, two-strided convolution is applied on the time axis. In this work,

we report model performance where the recurrent layer is formulated as either LSTM or gated

recurrent unit (GRU) [26] cells.

3.4.3 Model Learning

The end-to-end model learns not only the temporal non-linear mapping between speech audio

and facial actions, but also the feature presentation specifically pertaining to expressions. We

observe that, when trained using the standard L2 loss in (3.1), the model eventually learns to focus

mostly on lip-related actions and discard other important information describing emotions, because

talking is the most prominent action in a speech video, all videos depict actors speaking but they

do not always show a particular expression. As a result, the learned features are relevant to lip

movements, but they may not be meaningful to describe other actions to depict some particular

emotions. For instance, given the same speech content, the speaker may also raise their eyebrows

when they feel happy, or frown to show that they are sad.

To overcome the aforementioned problems and learn correct features, we train the model by

minimizing the following objective function:

min
1

T

1

N

T∑
t=1

(
N∑
i=1

(
eti − êti
σi

)2

+ λ
∥∥et∥∥

1

)
, (3.2)

where êt is the expected output, σi is the standard deviation of the ith AU component extracted from

training data, and λ is the trade-off weight. Essentially, the first term is the L2 loss normalized

by variance to reduce the bias towards mouth-related action units. The second term encourages

parameter sparsity, as not all action units are activated simultaneously. We empirically choose

λ = 0.1. Note that when trained with this loss, the baseline model actually has worse performance
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than being trained with the standard L2 loss. Hence, we only report the baseline performance when

it is trained with (3.1).

3.5 Implementation Details

3.5.1 End-to-end Model Architecture

Configurations of eight convolutional layers are listed in Table 3.1. All convolutions are 1-D

with stride two, which helps reduce the number of weights overall. The first five layers perform

convolution along the frequency axis, and the other three layers convolve along the time axis. Each

convolutional layer is followed by Batch Normalization [55] and Leaky ReLU [73] nonlinearity.

The recurrent layer has 256 of either LSTM or GRU cells. In the static model, it is replaced by a

fully connected layer of 1,024 units. This layer is followed by a drop out layer of probability 0.2.

In bidirectional models, demonstrated in Fig. 3.5, there is one forward passing recurrent layer and

one backward passing layer. To keep the number of parameters roughly the same as unidirectional

models, in bidirectional models each recurrent layer consists of 128 cells. Finally, the output layer

has 46 units with sigmoid activation.

Table 3.1: List of convolutional layers in our proposed models.

Layers No. Filters Filter Size Stride Layer Size

Conv1 32 5x1 2x1 32x64x32
Conv2 64 3x1 2x1 64x32x32
Conv3 128 3x1 2x1 128x16x32
Conv4 256 3x1 2x1 256x8x32
Conv5 512 3x1 2x1 512x4x32
Conv6 512 1x3 1x2 512x4x16
Conv7 512 1x3 1x2 512x4x8
Conv8 512 1x3 1x2 512x4x4
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Figure 3.5: The bi-directional recurrent neural network architecture used in our experiments (C-
BiLSTM, C-BiGRU). There is one forward recurrent layer, and a backward passing recurrent layer.
This model passes the entire sequence at once, hence it is not suitable for real-time application.

3.5.2 Baseline Model Architecture

In our experiments, the baseline model is implemented as a two-layered LSTM-RNN, the first

layer has 600 cells while there are 200 cells in the second layer. Each layer is followed by a drop

out layer of probability 0.2. We found this network architecture achieves the highest performance

for the baseline using engineered features.

3.5.3 Model Training

Facial action unit intensities are recovered using our 3DLGR face tracker presented in Chap-

ter 2, running in RGB mode. We implemented our neural network models using the CNTK deep

learning toolkit. Training hyperparameters are chosen as follows: minibatch size is 300, epoch size

is 50,000, momentum per batch is 0.9 and weight decay is 1e-4. Learning rates are tuned differently

for different models as follows.

• End-to-end recurrent model. Learning rate per sample is gradually decreased from 5e-3 in

the first epoch to 2.5e-3 in the next two, 1e-3 in the next four, 5e-4 in the next eight, 2.5e-4
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in the next 16, 1e-4 and 5e-5 each for 1,000 epochs respectively, and 2.5e-5 for the rest.

• End-to-end static model. Learning rate per sample is gradually decreased from 5e-3 in the

first epoch to 2.5e-3 in the next two, 1.25e-3 in the next five, and 1e-4 in remaining epochs.

• Baseline model. Learning rate is decreased from 0.003 for the first two epochs, to 0.0015 in

the next 12 epochs and 0.0003 for the rest.

Model parameters are learned by the ADAM optimizer [60] in 2,000 epochs.

3.6 Evaluation

3.6.1 Datasets

We use RAVDESS, VidTIMIT, SAVEE, GRID and GEMEP audiovisual corpora for training

and evaluation. There is no overlapping between the training set and test set, as indicated in Ta-

ble 3.2.

Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [71]. The database

consists of 24 professional actors (12 male and 12 female, respectively) speaking and singing with

various emotions. The speech set consists of eight general emotional expressions: neutral, calm,

happy, sad, angry, fearful, surprised, and disgusted, where each video sequence is associated with

one among eight affective states. Similarly, the song set, in which the actors sing short sentences,

consists of six general emotional expressions: neutral, calm, happy, sad, angry, and fearful. We

use sequences of the first 20 actors for training, data of four remaining actors for evaluation.

VidTIMIT [100]. The dataset is comprised of video and corresponding audio recordings of 43

people, reciting 10 short sentences, while keeping mostly neutral emotion throughout. Sequences

of the first 40 actors are used for training, and data of the other three is used in evaluation.

Surrey Audio-Visual Expressed Emotion (SAVEE) [49]. The database consists of recordings

from four male actors in six emotions and neutral. Sequences of three actors are included in



57

training, while data of the last actor is used for evaluation.

GRID [27]. The GRID audiovisual sentence corpus consists of recordings of 1,000 sentences

(more precisely, each sentence is a sequence of unrelated words) spoken by each of 34 talkers.

This database is similar to VidTIMIT, in which all actors keep neutral emotion while talking, hence

we do not include GRID for training since it does not improve the facial expression modeling

capability of our models. We use data of 100 randomly sampled sequences of the first 10 talkers

(s1-s10) for testing.

GEneva Multimodal Emotion Portrayals (GEMEP) [12]. GEMEP is a collection of recordings

featuring 10 actors speaking in French. We show that even though our models were trained on

only English corpora, they can generalize well to different language, which is French in this study,

thanks to the use or learning of low-level acoustic features.

Table 3.2: Data distribution for training and testing.

Training set Test set

# actors # sequences # actors # sequences

RAVDESS 20 2,048 4 432
VidTIMIT 40 400 3 30
SAVEE 3 360 1 120
GRID n/a n/a 10 1,000
GEMEP (Fr.) n/a n/a 10 140

3.6.2 Experimental Protocols

The baseline model that uses engineered features is denoted as mLSTM. Our proposed end-to-

end neural network is trained in two configurations: C-LSTM and C-GRU, in which the recurrent

layer uses LSTM and GRU cells, respectively. As a baseline, we replace the recurrent layer in our

proposed model with a fully connected layer and denote it as just CNN. This static model cannot

handle smooth temporal transition, it estimates facial parameters in a frame-by-frame basis. We
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Figure 3.6: Surface errors on a sample frame, with scale indicator.

Figure 3.7: A few samples from the RAVDESS corpus, in which green dots mark 3D landmarks
of the model projected to image plane. The blendshape rendered here is, however, a generic model
animated given parameters estimated by the tracker. We use inner landmarks extracted from this
generic model to calculate landmark RMSE.

also modify C-LSTM and C-GRU to create two bidirectional variants: C-BiLSTM and C-BiGRU,

in which the recurrent layers are split into two halves, one models forward pass and one model

backward pass, the total number of cells remains the same. Note that two bidirectional models do

not work in real-time, they pass the entire sequence at once. More details about bidirectional model

variants can be found in the Appendix.

We measure performance of these models on three metrics: in addition to RMSE of 3D land-

marks (lRMSE) and MSE of facial action parameters (pMSE) with respect to ground truths recov-

ered by the visual tracker [84], we also report temporal smoothness:

1

N

∥∥(et+1 − et
)
−
(
êt+1 − êt

)∥∥2
2
, (3.3)

which shows how smooth frame transition in output sequences is, compared to ground truths. Land-

mark errors are calculated as real-world distances in millimeter from inner landmarks (shown in
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Fig. 3.7) on the reconstructed 3D face shape, to those of the ground truth 3D shape (of a generic

identity, to avoid inaccuracy in identity recovery). Additionally, we also visualize surface recon-

struction error as the absolute difference between the ground truth surface depth map and one cre-

ated from output AU parameters. Sample error heat maps and scale indicator are shown in Fig. 3.6.

Nevertheless, these error metrics do not truly reflect performance of our deep models on 3D face

reconstruction quality, because facial expression may not always relate to speech. For example, the

speaker may open her mouth or raise eyebrows but does not utter a sound.

3.6.3 Evaluation Results

Table 3.3: Error metrics of all models on the test set. Best results are marked in bold.

mLSTM CNN C-LSTM C-GRU C-BiLSTM C-BiGRU

MSE on AU coefficients (× 1e-2)

RAVDESS 7.179 6.53 7.225 6.46 6.55 6.382
VidTIMIT 8.271 7.646 8.059 7.135 7.426 7.135
SAVEE 8.316 7.817 9.591 7.717 8.155 8.02
GRID 8.143 8.247 8.216 7.028 7.342 6.825
GEMEP 10.369 10.047 10.315 9.481 10.247 9.636

RMSE (unit: mm) on 3D landmarks

RAVDESS 1.067 1.038 1.049 1.022 1.024 1.013
VidTIMIT 0.974 0.993 0.983 0.948 0.969 0.963
SAVEE 1.2 1.228 1.263 1.2 1.222 1.24
GRID 1.045 1.076 1.08 1.015 1.033 1.011
GEMEP 1.265 1.219 1.225 1.201 1.231 1.21

Temporal smoothness (× 1e-2)

RAVDESS 0.284 1.94 0.333 0.328 0.325 0.323
VidTIMIT 0.575 2.888 0.631 0.63 0.637 0.64
SAVEE 0.759 2.223 0.788 0.787 0.81 0.804
GRID 0.552 2.243 0.592 0.58 0.592 0.597
GEMEP 0.606 2.549 0.658 0.642 0.661 0.67

We separate evaluation on RAVDESS, VidTIMIT, SAVEE from that of GRID and GEMEP

in this section. While RAVDESS-VidTIMIT-SAVEE test sequences were captured under the same



60

conditions with those in the training set, in which all actors speak a few sentences in different ways,

GRID sequences were captured from another group of actors under a different setting, including

a distinct set of sentences that are not used in other corpora. More challengingly, the language

recorded in GEMEP is totally different (French vs. English). This will help us ascertain whether

our proposed models are able to generalize beyond those limited observations they were originally

trained with.

RAVDESS-VidTIMIT-SAVEE Test Set

Table 3.3 shows the aforementioned error metrics of all models on the test set. Based on pa-

rameter MSE and landmark RMSE, both C-GRU and C-BiGRU outperform their LSTM-based

counterparts, as well as the static model and the baseline. Furthermore, C-BiGRU, which holds the

advantage of knowing all past and future events, only performs slightly better than the unidirec-

tional model C-GRU.

Specifically, on RAVDESS, C-BiGRU is slightly better than C-GRU with 1.2% lower pMSE

and 0.9% lower lRMSE. In terms of pMSE, C-GRU outperforms C-BiLSTM by 1.3%, C-LSTM by

10.6%, CNN by 1.1%, and mLSTM by 10%. C-GRU also achieves lower landmark errors com-

pared to other models, except C-BiGRU. However, it is observed that errors of CNN are compa-

rable or slightly higher than those of C-GRU and C-BiGRU across different emotion categories in

RAVDESS as demonstrated in Table 3.4 and 3.5. This can be explained by the inherent character-

istics of RAVDESS speech sequences. RAVDESS actors manifest spontaneous and varying facial

expressions while speaking, thus, the static model may have a slight edge in estimating those sud-

den expression changes, especially in the cases of Actor 23 and Actor 24. CNN scores marginally

lower errors for these two actors, while GRU-based models have better estimates for Actor 21 and

22.

On the other hand, C-GRU has similar performance to C-BiGRU, and outperforms CNN by



61

Ta
bl

e
3.

4:
M

SE
(×

1e
-2

)
of

ex
pr

es
si

on
bl

en
di

ng
w

ei
gh

ts
,o

rg
an

iz
ed

by
ca

te
go

ri
es

on
R

AV
D

E
SS

(a
ve

ra
ge

er
ro

rs
gr

ou
pe

d
by

em
ot

io
n

or
ac

to
r)

.B
es

tr
es

ul
ts

ar
e

m
ar

ke
d

in
bo

ld
.

N
eu

tr
al

C
al

m
H

ap
py

Sa
d

A
ng

ry
Fe

ar
.

D
is

gu
.

Su
rp

r.
A

ct
.2

1
A

ct
.2

2
A

ct
.2

3
A

ct
.2

4
m

L
ST

M
7.

00
1

7.
05

9
7.

37
8

7.
33

9
6.

73
8

6.
92

8
7.

96
5

7.
58

3
5.

04
9

6.
93

7.
10

5
9.

57
6

C
N

N
6.

50
5

6.
35

6
7.

02
6

6.
60

7
6.

16
9

6.
28

1
6.

73
4

6.
87

4.
45

7
6.

19
1

6.
3

9.
10

9
C

-L
ST

M
7.

04
5

7.
16

7.
87

6
7.

38
6

6.
70

2
6.

79
3

7.
36

7
7.

77
7

4.
75

5
6.

61
1

7.
39

9
10

.0
79

C
-G

R
U

6.
50

6
6.

42
7

7.
25

5
6.

35
7

5.
74

6
6.

24
2

6.
79

6.
76

3.
90

7
6.

17
1

6.
43

8
9.

26
2

C
-B

iL
ST

M
6.

84
2

6.
53

6
7.

29
3

6.
85

5.
63

1
6.

10
8

6.
82

3
6.

66
6

4.
28

9
5.

64
6

6.
64

3
9.

55
8

C
-B

iG
R

U
6.

48
2

6.
31

7
6.

90
9

6.
33

4
5.

83
6.

02
9

6.
87

6
6.

92
7

3.
90

9
5.

40
9

6.
66

2
9.

49
2

Ta
bl

e
3.

5:
R

M
SE

of
3D

la
nd

m
ar

ks
in

m
ill

im
et

er
on

R
AV

D
E

SS
,o

rg
an

iz
ed

by
ca

te
go

ri
es

.B
es

tr
es

ul
ts

ar
e

m
ar

ke
d

in
bo

ld
.

N
eu

tr
al

C
al

m
H

ap
py

Sa
d

A
ng

ry
Fe

ar
.

D
is

gu
.

Su
rp

r.
A

ct
.2

1
A

ct
.2

2
A

ct
.2

3
A

ct
.2

4
m

L
ST

M
1.

07
2

1.
05

2
1.

11
1

1.
04

7
1.

07
3

1.
04

2
1.

05
3

1.
1

1.
05

5
0.

99
7

1.
05

5
1.

15
3

C
N

N
1.

04
8

1.
02

2
1.

09
2

1.
01

4
1.

04
6

1.
01

5
1.

02
8

1.
04

6
1.

02
9

0.
99

1
0.

99
1.

13
4

C
-L

ST
M

1.
05

4
1.

04
1.

08
2

1.
03

3
1.

05
5

1.
01

9
1.

04
8

1.
07

8
1.

04
8

0.
94

2
1.

04
3

1.
14

9
C

-G
R

U
1.

02
9

1.
01

7
1.

07
8

0.
98

9
1.

01
6

1.
00

5
1.

01
9

1.
03

3
0.

98
0.

97
3

0.
98

6
1.

13
6

C
-B

iL
ST

M
1.

03
9

1.
02

1
1.

07
6

1.
00

1
1.

01
4

1.
00

7
1.

01
5

1.
01

4
1.

01
0.

95
2

1.
01

1
1.

11
3

C
-B

iG
R

U
1.

03
5

1.
00

6
1.

06
2

0.
98

1.
01

4
0.

98
5

1.
01

3
1.

02
8

0.
99

3
0.

92
8

1.
00

7
1.

11
2



62

6.7% on VidTIMIT. This is because in VIDTIMIT, each actor maintains almost uniform expression

throughout the sequence, mostly only the mouth region is deformed, i.e. speaking. The facial

deformation dynamics is smooth and stable, hence, recurrent models are able to estimate temporal

changes of facial action intensities effectively. It is also worth noticing that knowing future events

in C-BiLSTM improves from the performance of C-LSTM by 9%. Overall, our end-to-end models,

except C-LSTM, outperform the baseline that uses engineered features, signifying the advantage of

learning acoustic features directly within the mapping function F .

C-GRU outperforms all other models on SAVEE: lMSE is 3.8% lower than C-BiGRU, 1.3%

lower than CNN and 7.2% lower than mLSTM. However, in general test errors on SAVEE are higher

than those on RAVDESS and VidTIMIT. This may be caused by the slightly unnatural acting of the

test speaker, “KL”, unlike speakers in RAVDESS and VidTIMIT. Thus AU parameters estimated

from audio do not match ground truths recovered from video.

However, the static model CNN does not handle temporal smoothness, thus sequential transi-

tions in its generated animation are often jarring, unlike recurrent models. Indeed, this is demon-

strated through the smoothness metric in Table 3.3. Temporal smoothness measures of recurrent

models are roughly similar, and are an order of magnitude better than that of CNN. It means that all

recurrent models generate satiny animated sequences. Particularly, mLSTM has the best temporal

smoothness measures across all datasets, it means that this model estimates frame-by-frame facial

expression transition closest to ground truth, but it often under- or over-estimates frame-wise facial

actions, thus its pMSE is higher. These results show that our proposed C-GRU model achieves both

accuracy and temporal smoothness of predicted facial action sequences, despite being oblivious to

future events in both training and testing. It also significantly outperforms the baseline model using

engineered features, mLSTM.

Fig. 3.8 provides further insight on how each model estimates the most prominent facial action

parameters from speech. GRU-based models and CNN demonstrate superior performance across
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Figure 3.8: Plotting RAVDESS-VidTIMIT-SAVEE average MSE of individual action unit param-
eters. In general C-GRU, C-BiGRU and CNN have similar performance across different AUs in
terms of mean square error, each model achieves the smallest errors for some AUs. LSTM-based
models in general have higher errors than the GRU-based counterparts. End-to-end models outper-
form mLSTM in most cases, especially on major AUs: 8, 10, 13-18, 36 and 42.

different action units. Nonetheless, these error metrics are calculated from compressed informa-

tion (landmarks and parameters), they do not fully indicate the quality of shape reconstruction.

Fig. 3.9, 3.10 show errors when comparing reconstructed surfaces by all models to the shapes es-

timated by the visual tracker. It is observed that C-GRU and C-BiGRU often have better 3D face

reconstruction. In Fig. 3.9(a-f,h,i), and all speech-driven models reproduce reasonably precise fa-

cial expressions, indicated by low surface errors. In fact, in Fig. 3.9(e,f), speech-driven models,

especially C-GRU, can actually estimate better lip deformations than the visual tracker.

In Fig. 3.9g, the visual tracker predicts that AU20, “chin sticking out”, is activated. However,

speech-based models are unable to predict this facial action, thus errors in the chin region are a

little higher. Fig. 3.9(j-l) demonstrate error estimates on three frames of Actor 24. In her video,

this actor moves her head fast often with large poses, thus the visual tracker was unable to predict

her identity and facial expressions accurately and it recovered noisy estimates, demonstrated in

her ground truth 3D shapes in the top row. Interestingly, speech-based models can estimate her

facial actions rather well, especially C-GRU, C-BiLSTM and C-BiGRU, e.g. shown in Fig. 3.9(j,l).

Hence, even though their errors compared to the visual tracker are higher and skewed the average

error on the test set (shown quantitatively in the column of Actor 24 in Table 3.4 and 3.5), the

speech-driven models actually predict more accurate facial expressions in this case. It suggests the
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Figure 3.9: Reconstruction results from the RAVDESS corpus. Each sub-figure (a-l) demonstrates
the original facial texture (top-left), the shape reconstructed with AU parameters recovered by
the visual tracker (top-right), four shapes generated with parameters estimated by four models
(bottom-left) and their corresponding surface error maps (bottom-right). The identities of actors
in sub-figures are as follows: (a-c): Actor 21 “Happy”; (d-f): Actor 22 “Angry”; (g-i): Actor 23
“Disgusted”; (j-l): Actor 24 “Surprised”. Facial textures are frontalized, and frames with large
pose may contain artifacts in the frontalized patches (e.g: Actor 23). Notice that regions on the
heat maps marked with “red” pixels typically indicate a hole, e.g. a shape has mouth opening while
the other one does not. In (j-l), the “ground truth” estimates of Actor 24 are noisy, hence errors
when comparing output parameters to the ground truth are high.
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Figure 3.10: Reconstruction results for two sequences of two actors in the VidTIMIT test set. (a-c):
actor “mwbt0”; (d-f): actor “mtmr0”. It is observable that C-GRU has the best 3D shape recon-
struction among all models indicated by lower surface errors, supporting the lower error numbers
shown in Table 3.3.

potential of combining visual and acoustic information to improve face tracking in general, as the

audio signal can provide complementary cue when visual data is missing (i.e. face is occluded) or

noisy. Fig. 3.10 illustrates that C-GRU performs the most accurately on VidTIMIT, as it is reflected

by the testing errors in Table 3.3.

GRID Corpus

As shown in Table 3.3, pMSEs of C-GRU, C-BiLSTM and C-BiGRU on GRID are lower than

values of the same errors on VidTIMIT. These results are important, they show that our models can

generalize well to unseen speeches. Particularly, C-BiGRU achieves 2.9% lower error than C-GRU

as expected. C-GRU outperforms CNN and mLSTM by 14.6% and 13.7%, respectively. Table 3.6
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Figure 3.11: Synthetic facial expression dynamics of two sequences of two talkers, “s1” and “s7” in
GRID. Notice the dynamics of lip movements generated by all models: mLSTM and CNN always
activate mouth opening AUs, that is undesirable. C-LSTM tends to predict lip corner raiser. C-GRU
produces the most realistic facial action dynamics among six models.

Figure 3.12: Plotting GRID average MSE of individual action unit parameters. C-GRU and C-
BiGRU have superior performance on GRID, especially for AUs: 7, 8, 15, 20, 36 and 42. (AU36
controls talking action mostly).

presents pMSEs organized by talker. Errors on Talker 4, 8 and 9 are specifically higher than the

rest, while errors on other speakers are roughly similar to errors on RAVDESS in Table 3.4. Higher
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errors on three speakers may be caused by the mismatch between the visual expression and the

actual speech, in other words, unnatural acting. This table also shows that C-GRU and C-BiGRU

outperform other models in most cases, especially C-GRU achieves the best performance on Talker

2, 7 and 10. Table 3.7 also shares similar observations in landmark RMSE.

Fig. 3.12 illustrates individual AU errors, similar to what is presented in Fig. 3.8. C-GRU and

C-BiGRU have similar error numbers across different AUs. However, unlike the experiment on

RAVDESS-VidTIMIT-SAVEE, CNN performs much worse than those two models. mLSTM and

C-LSTM also have much higher errors than two GRU-based models. This may imply that models

using Gated Recurrent Unit learn more meaningful and relevant feature representation, thus they

can generalize better to unseen data. However, more thorough study is required in order to support

this hypothesis.

As stated earlier, these error metrics may not fully reflect the face synthesis quality of our

models, hence we also visualize and inspect the animated sequences of subjects in GRID. Two

sequence of “s1” and “s7” are demonstrated in Fig. 3.11. In these samples, CNN and mLSTM often

generate incorrect lip deformations, e.g. the fourth and sixth columns of Fig. 3.12a, or the second

column in Fig. 3.11b. This may explain why error of these models on AU36 are high. Interestingly,

in the last column of Fig. 3.11b, speech-driven models predict correct mouth-opening action while

the face tracker failed at this frame, thus it further shows the usefulness of modeling facial actions

from speech audio, which can complement visual tracking. Overall, it seems that C-GRU generate

the most accurate lip motions among six models on GRID.

GEMEP Corpus

Testing on the GEMEP database really pushes our models beyond their limit, since all actors

speak French which has different speech patterns compared to English that all models were trained

upon. As expected, Table 3.3 shows that both pMSE and lRMSE of all models on GEMEP are
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Figure 3.13: Synthetic facial expression dynamics of two sequences of two actors, “Actor 1” and
“Actor 7” in GEMEP.

Figure 3.14: Plotting GEMEP average MSE of individual action unit parameters. Overall, all
individual AU errors are uniformly higher than corresponding errors on other datasets.

clearly higher than those errors on other English speech datasets. Another possible cause of high

error is that GEMEP actors tend to over-act, which makes it difficult to predict correct facial ex-

pressions from speech alone.



71

We also organize errors by actor in Table 3.8 and 3.9 in the same way as previous experiments.

Table 3.8 shows that pMSEs of Actor 6, 7, 9, 10 are significantly higher than errors on other

actors. In their videos, they display very strong expressions, which are not reflected in their speech

recordings. These individual errors cause the average GEMEP error values in Table 3.3 higher

than average errors of other datasets. This is further illustrated in Fig. 3.14, all individual AU

errors on GEMEP are higher than corresponding errors on other datasets. GRU-based models

often outperform other models in most cases, and in general C-GRU achieves the lowest pMSE as

well as the best landmark reconstruction.

Fig. 3.13 demonstrates two sequences of “Actor 1” and “Actor 7” in GEMEP. C-GRU recon-

structs the best facial expression dynamics, similar to ground truth 3D face shapes. mLSTM gener-

ates inaccurate lip motions, which probably indicate the limitation of handcrafted acoustic features

in generalizing to different languages and speech patterns. The static model also does not perform

as well as recurrent models, e.g. second column in Fig. 3.13a, third and fifth columns in Fig. 3.13b.

Perhaps learning feature in combination with modeling temporal speech context holds the advan-

tage in learning better feature representation that generalize well to different, unseen speeches.

Inference Speed

Testing on a laptop with a Quadro K1000M GPU, and measuring running time after data pre-

processing, we record that all models implemented using CNTK take approximately 5ms to process

one frame, They would run even faster on modern hardware. For the baseline model, data prepro-

cessing includes feature extraction which requires non-trivial amount of computation, whereas in

the end-to-end models, feature extraction is already a part of inference. Thus our proposed end-

to-end models only need minimal audio processing, and the data processing pipeline is favorably

simplified. Overall, they will perform faster, and better, than the baseline mLSTM.
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3.7 Related Work

3.7.1 Talking Head Synthesis

“Talking head”, is a research topic where an avatar is animated to imitate human talking.

Various approaches have been developed to synthesize a face model driven by either speech au-

dio [43, 120, 98] or transcripts [115, 31]. Essentially, every talking head animation technique

develops a mapping from an input speech to visual features, and can be formulated as a classifica-

tion or regression task. Classification approaches usually identify phonetic unit (phonemes) from

speech and map to visual units (visemes) based on specific rules, and animation is generated by

morphing these key images. On the other hand, regression approaches can directly generate visual

parameters and their trajectories from input features. Early research on talking head used Hidden

Markov Models (HMMs) with some successes [116, 117], despite certain limitations of HMM

framework such as oversmoothing trajectory.

In recent years, deep neural networks have been successfully applied to speech synthesis [89,

130] and facial animation [37, 131, 43] with superior performance. This is because deep neu-

ral networks (DNN) are able to learn the correlation of high-dimensional input data, and, in case

of recurrent neural network (RNN), long-term relation, as well as the highly non-linear mapping

between input and output features. Taylor et al. [107] propose a system using DNN to estimate

active appearance model (AAM) coefficients from input phonemes, which can be generalized well

to different speeches and languages, and face shapes can be retargeted to drive 3D face models.

Suwajanakorn et al. [105] use long short-term memory (LSTM) RNN [52] to predict 2D lip land-

marks from input acoustic features, which are used to synthesize lip movements. Fan et al. [43] use

both acoustic and text features to estimate active appearance model AAM coefficients of the mouth

area, which then be grafted onto an actual image to produce a photo-realistic talking head. Karras et

al. [58] propose a deep convolutional neural network (CNN) that jointly takes audio autocorrelation

coefficients and emotional state to output an entire 3D face shape.
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In terms of the underlying face model, these approaches can be categorized into image-based

[14, 31, 42, 116, 120, 43] and model-based [11, 9, 99, 119, 37, 23] approaches. Image-based

approaches compose photo-realistic output by concatenating short clips, or stitch different regions

from a sample database together. However, their performance and quality are limited by the amount

of samples in the database, thus it is difficult to generalize to a large corpus of speeches, which

would require a tremendous amount of image samples to cover all possible facial appearances.

In contrast, although lacking in photo-realism, model-based approaches enjoy the flexibility of

a deformable model, which is controlled by only a set of parameters, and more straightforward

modeling. In our earlier work. [81], we proposed a mapping from acoustic features to blending

weights of a blendshape model [20], in addition to head pose. This face model allows emotional

representation that can be inferred from speech, without explicitly defining the emotion as input,

or artificially adding emotion to the face model in postprocessing. Our approach also enjoys the

flexibility of blendshape model in 3D face reconstruction from speech. This work reuses the model

in [81], modified to target only facial expressions.

3.7.2 CNN-based Speech Modeling

Convolutional neural networks [63] have achieved great successes in many vision tasks e.g.

image classification or segmentation. Their efficient filter design allows deeper network, enables

learning features from data directly while being robust to noise and small shift, thus usually hav-

ing better performance than prior modeling techniques. In recent years, CNNs have been also

employed in speech recognition tasks, which directly model the raw waveforms by taking ad-

vantage of the locality and translation invariance in time [111, 79, 53] and frequency domain

[35, 2, 1, 95, 96, 97]. In this work, we also employ convolutions in the time-frequency domain, and

formulate an end-to-end deep neural network that directly maps input spectrogram to blendshape

weights.
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3.8 Summary

In this chapter we introduced a deep learning framework for real-time speech-driven 3D facial

animation from audio recording, which is realized by different recurrent neural network models.

Our proposed deep neural networks learn a mapping from audio signal to the temporally varying

context of the speech, as well as emotional states of the speaker represented implicitly via blending

weights of a 3D face model. Our baseline model utilizes handcrafted acoustic features to infer

the facial action parameters. However, these inherently lossy features may exclude important in-

formation pertaining to facial expressions carried within the speech. Hence, we propose to learn

more meaningful and relevant feature representation directly with convolutional net, which leads

to significant improvement in predicting facial actions.

Experiments on diverse and challenging datasets demonstrate that our models could estimate

lip movements together with emotional state intensities of the speaker reasonably well from just

her speech. Furthermore, our experiments show that our models can generalize to unseen speech

patterns and language in GRID and GEMEP audiovisual corpora, thanks to the learning of low-

level acoustic feature representation. Moreover, we observe that using Gate Recurrent Unit leads to

better performance and generalization for this task. Our end-to-end unidirectional model, C-GRU,

outperforms other models, and is comparable to the bidirectional variant, despite not knowing any

future events.
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Chapter 4

Learning Facial Performance Synthesis

In this chapter we present Generative Adversarial Talking Head (GATH), a novel deep genera-

tive neural network that enables fully automatic facial expression synthesis of an arbitrary portrait

with continuous action unit (AU) coefficients. Specifically, our model directly manipulates image

pixels to make the unseen subject in the still photo express various emotions controlled by values

of facial AU coefficients, while maintaining her personal characteristics, such as facial geometry,

skin color and hair style, as well as the original surrounding background.

In contrast to prior work, GATH is purely data-driven and it requires neither a statistical face

model nor image processing tricks to enact facial deformations. Additionally, our model is trained

from unpaired data, where the input image, with its auxiliary identity label taken from abundance of

still photos in the wild, and the target frame are from different persons. In order to effectively learn

such model, we propose a novel weakly supervised adversarial learning framework that consists of

a generator, a discriminator, a classifier and an action unit estimator.

Our work gives rise to template-and-target-free expression editing, where still faces can be

effortlessly animated with arbitrary AU coefficients provided by the user.

This chapter contains materials from our paper [87].
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4.1 Introduction

Human faces convey a large range of semantic meaning through facial expressions, which

reflect both actions e.g. talking, eye-blinking, and emotional states such as happy (smiling), sad

(frowning) or surprised (raising eyebrows). Over the years, much research has been dedicated to

the task of facial expression editing, in order to transfer the semantic expression from a target to a

source face, with impressive results [5, 108, 32, 44, 78]. In general, these state-of-the-art techniques

assume that a pair of source-target images is available, and there exists a pair of matching 2D or

3D facial meshes in both images for texture warping and rendering. Additionally, recent work by

Thies et al. [108] and Cao et al. [21] require a set of source images in order to learn a statistical

representation, that can be used to create a source instance at runtime. The above requirement limits

the application of these techniques to certain settings, where source data is abundant. In [5, 78,

126], the authors propose to directly transfer expressions from the target image to the source face,

forgoing the need of prior statistics of the source subject. However, there are situations in which

the target face to drive facial deformation of the source does not exist, instead, facial expression

can be inferred from other input modalities, such as speech [81, 86, 43], or explicitly specified by

user as vector of facial action unit (AU) intensities [38].

In this work, we are interested in mid-level facial expression manipulation by directly animating

a human portrait given only AU coefficients, thereby enabling a whole new level of flexibility to the

facial expression editing task. Particularly, our proposed GATH model is able to modify a frontal

face portrait of arbitrary identity and expression at pixel level, hallucinating a novel facial image

whose expressiveness mimics that of a real face that has similar AU attributes. In other words, our

model learns to extract identity features to preserve individual characteristic of the portrait, facial

enactment to animate the portrait according to values of AU coefficients and texture mapping, all

in an end-to-end deep neural network.
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(a) source and target are of the same subject

(b) source and target are from different persons

Figure 4.1: Some samples generated by our proposed GATH model Each triplet consists of the
source, the target and the synthesis. Note that our model only knows the source image and a vector
of action unit coefficients that resemble the target. Could the reader tell apart which image is the
source, target and synthesis? Hint: start with (b) first.

Learning identity features requires a large number of training images from thousands of sub-

jects, which are readily available in various public datasets. On the other hand, the amount of
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publicly available emotional videos such as [71], from which we could collect a wide range of

AU coefficients, is rather limited. A deep net trained on such a small number of subjects would

not generalize well to unseen identity. GANimation [88] was proposed recently to learn facial ex-

pression transformation in an unsupervised framework. However, because the target expression is

randomly sampled in their work, it may turn out to be unnatural. To address these shortcomings,

we propose to train the deep net with separate source and target sets, i.e. the animated facial image

of subject A in the source set does not have an exact matching target image, but there exists an

image of subject B in the target set that has similar expression to the synthesized image of A, and

their expressiveness similarity is measured by an auxiliary function. Inspired by recent advances

in image synthesis with adversarial learning [48, 90], we jointly train the deep face generator with

a discriminator in a minimax game, in which the generator gradually improves the quality of its

synthesis to try to fool the discriminator in believing that its output is from the real facial image

distribution. Furthermore, taking advantage of the availability of subject class labels in the source

set, we jointly train a classifier to recognize the subject label of the generated output, therefore

encouraging the generator to correctly learn identity features, and producing better synthesis of the

input subject.

Our main contributions are as follows:

• Generative Adversarial Talking Head, a deep model that can generate realistic expressive

facial animation from arbitrary portraits and AU coefficients. The model is effectively trained

in an adversarial learning framework including a generator, a discriminator and a classifier,

where the discriminator and the classifier supervise the quality of synthesized images, while

the generator learns facial deformations from separate source and target image sets, and is

able to disentangle latent identity and expression code from the source image.

• An action unit estimator (AUE) network, whose hidden features are used as an expressiveness

similarity measure between the synthetic output and its unpaired target facial image in order
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to guide the generator to synthesize images with correct expression.

• Extensive evaluations and applications to demonstrate the effectiveness and flexibility of our

proposed model in animating various human portraits from video-driven and user-defined

AU coefficients.

4.2 Overview

Figure 4.2: The proposed GATH learning framework. Except for the AU Estimator that is pre-
trained, other networks including the generator, the discriminator and the classifier are jointly
trained. The discriminator and the classifier share hidden layer weights. The generator only knows
AU coefficients etgt extracted from target frame ytgt. The generator G learns to produce output
xtgt from input image xsrc, such that the synthesized face has similar facial expression as the target
frame ytgt. x and y are different subjects.

We first denote the following notations that will be used throughout the paper: G = generator;

fG en = encoder subnetwork of G; fG de: decoder subnetwork of G; D = discriminator; C =
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classifier; E = AU Estimator; fau = a function that maps image to a latent facial expression space;

xsrc = source portrait to be transformed; xtgt = image synthesized by the generator; xre = real

image used to train D and C; c = the class label associated with xre; ytgt = target image; etgt =

continuous AU coefficient vector corresponding to ytgt. xsrc and xre are sampled from the same

training source set, and are not necessarily the same. ytgt is sampled from the training target set.

etgt is a 46-D vector in which each component varies freely in [0,1], following the convention of

the FaceWarehouse database [20], defined in (1.3) in Section 1.3.

Our general GATH framework is illustrated in Fig. 4.2. The generator G synthesizes xtgt from

the input xsrc given AU coefficients etgt: xtgt = G(xsrc, etgt) = fG de(fG en(xsrc), etgt). Since

xsrc may contain arbitrary expression, the generator specifically disentangles the latent identity

code from expression features in the source image with the encoder, effectively making the trans-

formation of the source face independent of the expression manifested in the input image.

Unlike previous work [78, 126], our source and target sets are disjoint1. In other words, an

exact correspondence y0tgt of xtgt does not exist, hence we are unable to use the conventional pixel-

wise reconstruction loss to learn facial deformation. However, there exists a frame ytgt that shares

similar values of AU intensities to xtgt. One might naively minimize the difference ‖xtgt − ytgt‖,

but using this loss has major drawbacks: Firstly, there is not necessarily pixel-wise correspondence

between xtgt and ytgt, hence a local facial deformation at a specific coordinate in the target does

not mean that the same visual change would also happen at the exact same coordinate in the source.

Secondly, directly minimizing the difference between the source and the target frame would make

the model learn to hallucinate the identity of the target into the source, which violates the identity

preserving aspect of our model. Furthermore, what we want to compare is the expressiveness

similarity of the source and target, not their entire appearances. Inspired by recent work in artistic

style transfer [46], we wish to compare the source and target in a latent expressiveness space with

1In training, we actually mix a small amount of image samples of subjects in the target set into the source set, which
accounts for 2.7% of its size, to increase its diversity.
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a projecting function fau. Thus, we propose to train a deep Action Unit Estimator network, and

measure the similarity of source and target in the hidden feature space of AUE.

One core objective of our work is to learn a generator G that can generate realistic looking face

synthesis indistinguishable from a real image, especially in our case where the exact correspond-

ing target does not exist. To this end, we integrate the adversarial loss proposed by Goodfellow

et al. [48] into our framework, by jointly training a discriminator D that can tell the difference

between real and fake images, that eventually guides G to generate ”fine enough” samples via a

minimax game.

A straightforward approach to learn identity disentanglement is to minimize the intra-subject

reconstruction loss ‖xtgt − xsrc‖, as they are largely similar except sparse local deformation parts.

However, we can utilize the available auxiliary class labels of the source set to provide additional

feedback to make the generator learn the disentanglement more effectively. We propose to jointly

train a classifier C that share all hidden layer weights with the discriminator. The advantages of this

approach are two-fold. First, jointly learning the classifier C and discriminator D helps discover

relevant facial hidden features better, and D can tell apart the real image from the fake more easily.

In return, these players provide stronger feedback to the generator, encouraging G to generate finer

synthesis and better preserve the identity of the source.

4.3 Action Unit Estimator

We propose a CNN model E based on VGG-9 architecture [102] to predict AU coefficients

from a facial image: E : x → e. The network architecture is shown in Fig. 4.3c. E is learned by

minimizing the squared loss:

min
E
‖egt − E (x)‖22 , (4.1)
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where egt is a ground truth AU vector. In essence, AUE learns hidden features tailored to facial

expression and independent of identity, as well as invariant to position and scale of the face in the

image. We take the last convolutional layer of AUE as the latent space mapping function fau to

measure the expressiveness similarity of images. First, this layer retains high-level features with

rich details to represent the facial expression. Furthermore, the convolutional layer still preserves

the spatial 2D structure layout, hence it can pinpoint where in the source image that the local

deformation should happen.

4.4 GATH Learning

The models in our framework are jointly trained by optimizing the following composite loss:

Lau + λrecLrec + λadvLadv + λclsLcls + λtvLtv. (4.2)

The first term is the AU loss, to make G learn to expressively transform the source image to

manifest the target emotion. It enforces that expressiveness features of the synthetic image are

similar to those of the target example frame.

Lau = min
G
‖fau (ytgt)− fau (G (xsrc, etgt))‖22 . (4.3)

The intra-subject reconstruction loss, Lrec, minimizes the pixel-wise difference between the

source and the synthetic image, because except some small parts on the face are deformed at one

time to manifest spontaneous expression, such as eye blinking or mouth opening, the rest of the

face should remain the same. In other words, this term is to preserve the subject identity as well as

the background.

Lrec = min
G
‖xsrc −G (xsrc, etgt)‖1. (4.4)
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The third term is the adversarial loss. In this work, we replace the vanilla Jensen-Shannon

divergence GAN loss [48] with the least square loss proposed in CycleGAN [133], as we found

that this objective makes optimization more stable.

Ladv = max
G

min
D

(1−D (xre))
2 + (D (G (xsrc, etgt)))

2. (4.5)

The classifier loss, Lcls, consists of two cross-entropy loss terms. Minimizing the first term up-

dates the weights of the classifier, while the second term updates the weights of G. Intuitively, the

classifier updates its parameters from real image samples xre, and provides feedback to the genera-

tor, such that G learns to generate better samples to lower the classification loss, and consequently

preserve the source identity better.

Lcls = min
C
−
∑
i

ci log Ci (xre) + min
G
−
∑
i

ci log Ci (G (xsrc, etgt)) . (4.6)

The last term is total variation loss to maintain spatial smoothness of the synthetic image:

Ltv =
1

HW

∑
i,j

(
xi,j+1
tgt − xi,jtgt

)2
+
(
xi+1,j
tgt − xi,jtgt

)2
. (4.7)

In the adversarial learning framework, the generator and discriminator are alternatively and

iteratively updated. In GATH, there are also two players, the generator and the joint discriminator-

classifier network. Essentially, the joint discriminator-classifier network is updated by minimizing

this loss:

min
D,C

λadv

[
(1−D (xre))

2 + (D (G (xsrc, etgt)))
2
]

−λcls
∑
i

ci log Ci (xre) ,
(4.8)

whereas minimizing the following composite loss updates the generator:
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min
G
Lau + λrecLrec + λtvLtv − λadv(D (G (xsrc, etgt)))

2

−λcls
∑
i

ci log Ci (G (xsrc, etgt)) .
(4.9)

As we can see, minimizing the loss in (4.8) encourages the discriminator and classifier to rec-

ognize images from the real distribution correctly, and penalizes the discriminator if it wrongly

predicts that the synthetic sample is real. On the other hand, the loss in (4.9) makes the generator

learn to produce realistic looking output to fool the discriminator while having the desired facial

expression and preserve personal characteristics of the portrait.

4.5 Implementation Details

4.5.1 Network Architecture

Architectures of three networks in our GATH framework are illustrated in Fig. 4.3. These networks

are designed such that all of them can reside in the GPU memory of a Tesla K40 at the same time.

The input to each network is a standard 100x100px RGB image, with pixel values normalized

to [-1,1]. The generator G includes two subnetworks: encoder and decoder. The encoder consists

of four blocks, each one starts with a convolutional layer, followed by a batch normalization layer

and Leaky ReLU activation with slope factor of 0.1. The AU vector is concatenated to the output

of the forth block by spatially 2D broadcasting. The decoder starts with a convolutional block,

followed by six ResNet [51] blocks, two convolutional transpose blocks and a final convolutional

output layer. Particularly, there is a residual connection from the output of the encoder to the end

of the bottle neck to help G learn the identity code more effectively.

Fig. 4.3b shows the weight sharing discriminator-classifier network. D and C share all hidden

layer parameters, but have separate output layers.
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(a) The fully convolutional generator network

(b) The discriminator-classifier network

(c) The AU Estimator network

Figure 4.3: (best viewed in color) Architectures of deep neural networks in our GATH framework.
The last convolutional layer of the AUE, ’conv3 2’, is used to extract expressive hidden features to
calculate LAU .

4.5.2 Training and Post-processing

Training. We organize the source set as a combination of the following still photo datasets: Cross-

age Celebrity dataset (CACD) [24], FaceWareHouse [20], GTAV [106], consisting of 2,168 iden-

tities. We also mix in a small set of frames from 20 actors in RAVDESS [71] and 40 actors in

VIDTIMIT [100] dataset, making a total of 2,228 identities in the source set.

The target set consists of a large number of frames extracted from RAVDESS and VIDTIMIT,
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two popular audiovisual datasets, in which actors display a wide range of facial actions and emo-

tions. We extract AU coefficients from these two datasets using our proposed face tracker in Chap-

ter 2 [84, 83], running in RGB-tracking mode. The AUE is trained on the target set.

Furthermore, since these datasets include many face images at large pose, we use the face

frontalization technique proposed by Hassner et al. [50] to roughly convert original images into

portraits in both source and target sets and crop them to 100x100px. The alignment is not per-

fect, however, our AUE is invariant to translation and scale, hence our generator can learn facial

deformation reliably.

The models in our GATH framework, G, D and C, are trained end-to-end with the ADAM

minibatch optimizer [60]. We set minibatch size = 64, initial learning rate = 1e−4 and momentum

= 0.9. Other hyperparameters in (4.2) are empirically chosen as follows: λrec = λtv = 1.0,

λadv = λcls = 0.05. The whole framework is implemented in Python based on the deep learning

toolkit CNTK.

Post-processing. A side effect of using the composite loss in (4.2) to train our weakly supervised

model and pixel scaling to and from the [-1,1] range is that the synthesis loses the dynamic range of

the original input. In order to partially restore the original contrast, we apply the adaptive histogram

equalization algorithm CLAHE [136] to synthesized images. Parts of evaluation where CLAHE is

applied will be clearly indicated. Furthermore, for visualization purpose, we clear the noise in the

output with non-local means denoising [15], followed by unsharp masking. Fig. 4.4b demonstrates

the visual effects of these two enhancements on the syntheses.

4.6 Evaluation

Due to the lack of a publicly available implementation of the face editing methods (mentioned

in Section 4.7), we simplify our GATH framework to create two baselines. GATH-DC (GATH

minus DC): GATH without the joint discriminator-classier network; GATH-C: GATH without the
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(a) (b) syntheses (c) original outputs (d) after CLAHE

Figure 4.4: (a) Source and target images of the same tester. (b) From left to right: syntheses created
by two baselines and GATH; top to bottom: raw outputs, histogram-equalized (CLAHE) outputs
and sharpened outputs, respectively. (c,d) The pixel-wise error heat maps of one sample in two
cases: the raw output and CLAHE-applied output. In each figure, from left to right: output error
of GATH-DC, GATH-C and GATH, respectively; from top to bottom: error heat maps on three
channels B, G and R, respectively.

classifier.

For quantitative evaluation, we record facial expression synthesizing performance on a hold

out test set of four actors from RAVDESS and three actors in VIDTIMIT, which are not included

in training. Specifically, we choose two source frames from each actor. In one frame, the actor

displays neutral (or close to neutral) expression. In the other one, the actor shows at least one

expression (mouth opening). Each source image is paired with all video sequences (94 in total),

resulting in 188 intra-class (same subject) pairs and 1032 inter-class pairs, where the source actor

is different from the target actor.

We quantify the synthesis performance of our model with a set of metrics: for intra-class ex-

periments, we measure the pixel-wise Mean Absolute Error (MAE) and Root Mean Square Error

(RMSE), as well as the AU error (RMSE of intensity values), with respect to ground truth frame.

We use the OpenFace toolkit [6] to extract intensities of 17 AUs (which are different from our set

of 46 AUs), each value varies within the range of [0,5] (note that our input AU coefficients vary in

[0,1]). For inter-class experiments, we only measure the AU error.

We also provide qualitative experiments on a random set of actors from the two popular face
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datasets: CelebA [68] and Labeled Face in the Wild (LFW) [54].

Lastly, we present an application of template-and-target-free expression editing, where user-

defined AU coefficients are used to transform arbitrary sources. Mainly within the scope of this

paper, we perform expression suppression (i.e. neutralization). However, our model is flexible

enough to transform a source facial image with any arbitrary AU values.

4.6.1 Intra-class Synthesis

Table 4.1 shows pixel-wise MAE and RMSE when comparing the synthesized output with the

ground truth image of the same subject (i.e. xtgt and ytgt are of the same person, manifesting the

same expression and they should look the very similar). The errors are organized by dataset, and

gathered from four different settings: whether taking the background error into account or not (by

using a mask to localize the face region), and whether using CLAHE to increase the contrast of the

outputs. It is observed that training only the generator, without feedback from the discriminator

and classifier, actually makes the model produce better pixel-wise color reconstruction without

using histogram equalization, although the difference in error is rather small. After apply CLAHE,

the generated outputs of GATH have smallest errors. It is also observed from Table 4.1 that the

reconstructed background pixels actually incur higher error than the face region. In addition, the

error heat map in Fig. 4.4 indicates that errors on the face region are almost uniform, indicating a

constant shift in the color space.

However, color reproduction is only one criterion to measure the quality of expression synthe-

sis. Our main objective in this paper is to synthesize animation driven by AU coefficients. The AU

estimation errors with respect to the ground truth frame are shown in Table 4.2. It proves that the

output of GATH has higher fidelity than the two baselines, as better images will help OpenFace

estimate AU intensities more accurately. It is also unsurprising that GATH-C, trained jointly with

a discriminator, performs better than GATH-DC. These results prove the benefit of our proposed
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Table 4.1: Pixel-wise MAE and RMSE of intra-class synthesis.

MAE RMSE

RAVDESS VIDTIMIT All RAVDESS VIDTIMIT All

full image, without CLAHE

GATH-DC 141.53 112.78 127.16 182.31 162.47 172.68
GATH-C 144.8 119.13 131.97 184.66 167.34 176.21
GATH 146.46 118.53 132.5 185.8 167.02 176.66

full image, with CLAHE

GATH-DC 94.49 58.66 76.58 138.62 94.26 118.53
GATH-C 92.31 59.35 75.83 136.86 95.23 117.89
GATH 91.65 59.66 75.66 136.21 95.89 117.79

mask, without CLAHE

GATH-DC 128.48 122.36 125.42 174 170.94 172.47
GATH-C 134.78 128.53 131.66 178.44 175.48 176.97
GATH 136.14 130.16 133.15 179.48 176.78 178.13

mask, with CLAHE

GATH-DC 56.47 55.42 55.94 93.42 85.49 89.54
GATH-C 57.37 55.28 56.32 94.84 85.26 90.18
GATH 55.88 54.97 55.43 92.63 84.47 88.64

Table 4.2: RMSE of Action Unit Itensity in intra-class synthesis.

RAVDESS VIDTIMIT All

GATH-DC 0.592 0.35 0.486
GATH-C 0.591 0.336 0.481
GATH 0.585 0.334 0.477

GATH model in synthesizing facial expressions.

Fig.s 4.5, 4.6 demonstrate the synthetic results of GATH. The generated texture has been en-

hanced visually with the aforementioned post-processing procedure. Notice that in Fig. 4.5b,c,d, it

is shown that our model is able to hallucinate eye-blinking motions.
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Figure 4.5: Samples from four sequences in paired evaluation. For each sequence, the top left is
the still source image xsrc, and it is post-processed. xsrc is at neutral expression. In each vertical
pair, the top image is the hallucinated frame xtgt, while the corresponding target frame ytgt is at the
bottom. In the 4th sequence, the source image and the target video were captured at two different
occasions.

4.6.2 Inter-class Synthesis

Table 4.3: RMSE of Action Unit intensity in inter-class synthesis.

GATH-DC GATH-C GATH

0.587 0.583 0.579

In this evaluation, we compare the AU estimation scores returned by OpenFace on the ground

truth of a subject, and scores on the corresponding syntheses. The results are shown in Table 4.3.
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Figure 4.6: Samples from three sequences, starting with non-neutral expression source images.
The model learned to synthesize the ”closed lip” expression when target is neutral.

Once again, the full GATH model outperforms the two baselines.

4.6.3 Qualitative Assessments on In-The-Wild Images

Fig. 4.7 and 4.8 show animated sequences by GATH, in which the source images are sampled

from the CelebA and LFW datasets, respectively, with diversity across genders, skin colors, styles

etc. Interestingly in Fig. 4.7c, the model even synthesizes eyes beyond the shades.

4.6.4 Template-and-target-free Expression Editing

In this experiment, we perform expression suppression, transforming a face with arbitrary ex-

pression back to the neutral pose. Source images are sampled from the CelebA dataset. The

qualitative results are illustrated in Fig. 4.9,4.10. We transform the source to neutral expression

simply by providing GATH with a zero AU vector. It proves that via our learning framework, the
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Figure 4.7: Samples from six animated sequences, with the source images taken randomly from
CelebA dataset, with different genders, skin colors, hair styles, etc.

Figure 4.8: Samples from four animated sequences, in which the source images were taken ran-
domly from LFW dataset.

generator has learned to disentangle the identity code from expression. Thus, giving GATH zero

AU coefficients equals generating a neutral face of the source actor.
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Figure 4.9: Samples from expression suppression editing with our model on the CelebA dataset.
In each pair of images, the source is on the left, the suppressed synthesis is shown on the right.

4.6.5 Limitations

Our GATH model has proved to be able to synthesize novel face from arbitrary source. How-

ever, there still exists some issues remaining:

• The synthesized image loses its texture dynamic range.

• There is still color noise and distortions in the reconstructed face, especially around the face

contour and strong edges.

We will investigate these issues thoroughly to make GATH more robust and generate higher
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Figure 4.10: More samples from expression suppression editing with our model on the CelebA
dataset.
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quality face synthesis in future work.

4.7 Related Work

Generative Adversarial Nets (GAN). Proposed by Goodfellow et al. [48], GAN learns the

generative model in a minimax game, in which the generator and discriminator gradually improve

themselves. Eventually the generator learns to create realistic data able to fool the discriminator.

GAN has been widely used in image synthesis with various successes [36, 64, 90, 91, 56, 25].

Moreover, recent works also introduce additional constraints for topic-driven synthesis [75], or

use class labels in semi-supervised GAN training [104, 77, 110, 65]. In our approach, a classifier

is jointly trained with the discriminator to predict synthesized images intoC classes. Consequently,

not only the generator learns to generate realistic images, but the synthesis also preserves the iden-

tity presented in the source image.

Facial image editing. Facial editing techniques in literature are mostly model-based, us-

ing a 3DMM [11, 114], and follow a common approach, in which a 3DMM is fitted to both

source and target images, and the target expression is transferred to the source frame by manip-

ulating the model coefficients to calculate a new 3D facial shape, followed by texture remapping

[9, 108, 44, 32, 124, 123]. Averbuch-Elor et al. [5] only use 2D face alignment with clever texture

warping and detail transfer [69]. Instead of using graphics-based texture warping, Orszewski et

al. [78] utilize supervised GAN to synthesize a new albedo in the UV texture space, given match-

ing source and target images. In a different approach, Liu et al. [70] uses conditional GAN to syn-

thesize expression coefficients of a 3DMM given discrete AU labels, followed by standard shape

calculation and texture remapping. Based on variational autoencoder (VAE) [61], Yet et al. [126]

train an expression flow VAE from matching source-target pairs, and edit the latent code to manip-

ulate facial expression. GANimation [88] learns to transform the image in an unsupervised fashion

similar to StarGAN [25], but the expression code has been changed from discreet to continuous.
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Deepfakes [4], which has gone viral on the internet recently, uses coupled autoencoders and texture

mapping to be able to swap identities of two actors. In contrast to model-based approaches, our

model directly generates the facial image from source portrait and target AU coefficients without

using a statistical face model or a target video for transferring, forgoing manual texture warping

and blending as these tasks are automatically carried out by the deep net. Different from recent

GAN-based synthesis models, our method trains the generator from totally unmatched source-

target pairs. Unlike GANimation in which AU intensities are randomly sampled during training,

in our work target expression parameters are well defined, taken from the natural facial expression

manifold. Furthermore, GATH specifically disentangles the identity code from expression in the

source portrait, thus it can freely change the intensity of facial expression while keeping the identity

invariant. For example our model can perform expression suppression and continuously increase

and decrease the expression intensity at ease.

Representation disentangling. It is still an open question of how to design proper objectives

that can effectively learn good latent representation from data. Kulkarni et al. [62], Yang et al. [125]

propose models that can explicitly separate different codes (object type, pose, lighting) from input

images. Those codes can be manipulated to generate a different looking image, e.g. by changing

the pose code. Peng et al. [80] propose a recurrent encoder-decoder network for face alignment,

that also learns to separate identity and expression codes through a combination of auxiliary net-

works and objectives. Tran et al. [110] employ semi-supervised GAN to learn disentangled face

identity/pose for face frontalization. GATH is similar in spirit to [110], in which the encoder sub-

network of the generator learns the latent identity code independently from the arbitrary expression

in the source image, and the decoder takes in the combined identity and AU code to generate an

animated image from the source portrait.
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4.8 Summary

In this chapter, we introduced Generative Adversarial Talking Head, a generative neural net

that is capable of synthesizing novel expressive faces from any source portrait, given a vector of

action unit coefficients. In our GATH framework, we jointly train a generator with a adversarial

discriminator and a classifier, while being supervised by an AU estimator to make the generator

learn correct expression deformations, as well as simultaneously disentangle identity features from

expressions. Our model directly manipulates image pixels to hallucinate a novel facial expression,

while preserving the individual characteristics of the source face, without using a statistical face

template or texture rendering.

Extensive experiments on different challenging datasets showed GATH can extract identity

code from any given portrait regardless of the facial expression displayed in the image. It was also

demonstrated that jointly learning the discriminator and classifier improves synthesis performance

of the generator. Furthermore, GATH works directly on AU parameters without the need of a target

facial image. Hence, GATH can perform both facial expression enactment and suppression at will

as desired by the user, completely template-and-target-free.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Facial expression not only is a natural means of communication between humans, but also,

in the coming age of artificial intelligence and virtual persona, it has become an inherent part

of human-machine interaction, in which the agent is able to perceive human emotion as well as

express its own “feeling” in this mutual communication. Understanding emotion through facial ex-

pression is important because it is a partially determining factor in any conversation, be it between

humans or especially human-machine, where the agent cannot recognize or create facial expres-

sions on its own. In other words, the intelligent agent needs to be equipped with the capabilities to

analyze and synthesize facial expressions. For decades there has been tremendous research effort,

this work included, to enable these capabilities algorithmically for the machine.

In this work, we introduced machine learning approaches for facial expression analysis from

either video or audio, and facial expression synthesis, including: a real-time 3D face tracking

framework for RGBD video, a family of recurrent neural networks for real-time speech-driven fa-

cial expression analysis, and finally, a generative deep neural network for arbitrary facial expression

synthesis from any given portrait.

First, we proposed a real-time, robust 3D face tracking framework from RGBD video that can

simultaneously capture head movements, facial expressions and adapt expression blendshapes to

match identity of the tracked subject in unconstrained environments. Our tracker is driven by a
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highly efficient person-agnostic 3D shape regressor based on random forest and linear regression

and trained on standard image data. The subsequent joint 2D+3D optimization intelligently reg-

isters the 3D face shape to both color and depth data more accurately. This combination in our

approach addresses several issues that commonly exist in other face trackers. Learning 3D regres-

sion makes the tracker robust to lower-quality input and not rely on depth data, which is noisy

at large distance. On the other hand, registering 3D shape to depth data resolves the inherent

depth ambiguity in 3D alignment, thus our method can register and reconstruct more accurate,

better 3D face blendshape, improve the tracking performance in general. We further extend our

3D shape regressor to support profile-to-profile face alignment, making it robust to extreme head

poses. Experimental results on real and synthetic datasets showed that our proposed face tracker

is comparable to or outperforms state-of-the-art face tracking methods in alignment accuracy and

tracking reliability.

Next, we proposed different recurrent neural network models for real-time facial expression

analysis from speech. Specifically, our models estimate facial action unit intensities of a speaker

which is carried in the audio signal. These facial action unit intensities not only depict the sound-

uttering actions via lip deformations, but also implicitly present the affective states of the speaker,

such as raising eyebrows when being amused, or smiling when she is happy. In the proposed base-

line model, handcrafted acoustic features are used to predict facial actions. We also show that it

is more advantageous to learn acoustic feature representation from audio input directly in our end-

to-end models, which indeed improved the quality of facial action estimation. Quantitative and

qualitative experiments on diverse and challenging audiovisual corpora of different actors across a

wide range of facial expressions, voices and languages showed that our proposed models can pre-

dict facial action from speech reasonably well, and they can generalize to unseen speech patterns,

thanks to the use of low-level features.

Finally, we proposed a novel deep generative neural network, GATH, that can synthesize any
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desired facial expression specified by action unit weights on any given arbitrary portrait. In particu-

lar, our model directly manipulates image pixels, making the subject in the portrait express various,

continuous facial expressions controlled by AU parameters, while maintaining her personal char-

acteristics. This is because our model can learn to disentangle identity code from expressiveness

features, so that it can generate novel facial expressions regardless of the expression that the subject

portrays in the photo. Furthermore, our model is trained from unpaired data, where the source and

target images are of different persons, and the desired expressive image of the source subject does

not exist. In order to effectively learn such model, we propose a novel weakly supervised adver-

sarial learning framework that consists of a generator, a discriminator, a classifier and an action

unit estimator. Not relying on any face template and target image, our synthesis model enables

extremely flexible, template-and-target-free facial expression editing. As demonstrated in our ex-

periments on in-the-wild datasets, our model can perform both facial expression enactment and

suppression on arbitrary portrait of any subject, while preserving her identity.

5.2 Future Work

Although our proposed approaches for facial expression analysis and synthesis have performed

well for their intended purposes, there still exists some limitations. We suggest the following

potential improvements as a guideline:

• Our proposed tracker only models 3D facial shape and completely ignores textures, hence

the reconstructed blendshape only present geometric surface details. If a fully textured face

model is required, we have to perform an additional texture mapping step. Hence, it suggests

that we can also incorporate parametric facial texture into our framework. Furthermore, using

dense pixel color information from texture may improve the accuracy of 3D face alignment.

• The 3D shape regressor in our proposed tracker takes features encoded in leaves of the ran-

dom forest as input to regression. However, if we want to model more complex, “deeper”
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features, we would have to increase the depth of the forest, consequently growing exponen-

tially the number of leaves, or in other words, the dimension of feature vector. It would make

the size of the regression matrix too big, even though the amount of calculation remains the

same and the whole regressor is still efficient. It suggests that replacing our proposed 3D

regressor with a deeper neural net may improve face alignment accuracy, at the cost of re-

quiring more computational power.

• Our speech-driven recurrent neural networks were able to predict lip deformations rather

well as shown in our experiments. However, eyebrows-related actions are still not estimated

as effectively. We will experiment with other network architectures and objective losses to

overcome this problem.

• Our synthesis model, GATH, can produce rather accurate facial expressions specified by

action unit parameters when compared to the expression in the target image, as shown in our

experiments. However, GATH still created color artifacts in the output image. A possible

solution is to make the AU Estimator purer, by designing a deeper network.

• Currently, GATH can only work with frontal faces. In the future, we will incorporate head

pose into the model, so that GATH can generate a novel face with any expression and pose.

We will also modify the generator into a Variational Autoencoder, such that GATH can gen-

erate any random yet realistic identity.
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