
 
 

 

 

 

 

 

 

 

 

 

 

 

©2019 

CHAITANYA SAMPAT 

ALL RIGHTS RESERVED 



 
 

 

PARALLEL SOLUTION TO MULTI-SCALE, MULTI-

DIMENSIONAL COUPLED DEM-PBM MODEL FOR 

HIGH SHEAR GRANULATION USING HIGH 

PERFORMANCE COMPUTING 

By 

CHAITANYA SAMPAT 

 

A thesis submitted to the  

School of Graduate Studies 

Rutgers, the state university of New Jersey 

In partial fulfillment of the requirements  

For the degree of 

Master of Science  

Graduate program in Chemical and Biochemical Engineering 

Written under the direction of 

Rohit Ramachandran 

And Approved by 

_______________________________ 

_______________________________ 

_______________________________ 

 

New Brunswick, New Jersey 

JANUARY, 2019 

 



ii 
 

ABSTRACT OF THE THESIS 

PARALLEL SOLUTION TO MULTI-SCALE, MULTI-DIMENSIONAL HIGH SHEAR GRANULATION 

COUPLED DEM-PBM MODEL USING HIGH PERFORMANCE COMPUTING 

By CHAITANYA SAMPAT 

Thesis Director: 

Rohit Ramachandran  

 

Particulate processes are prevalent in the pharmaceutical industry but, the physics underlying 

these processes are complicated. The particle-level models used to describe these systems 

require large amounts of computation to solve which makes simulations slow. Another 

approach to model these systems is less accurate bulk model which does not capture all the 

particle level data but is more efficient to simulate and requires lesser computational power. 

A quicker and a more accurate way to model such systems is to use a multi-scale model i.e. 

use the particle-scale data into a bulk model. Using a coupled model does not decrease the 

time taken by each individual component of the simulation, thus there is also a need to 

increase the speed of the separate simulations. 

In this work, a unidirectional multi-scale model was used to model the high shear wet 

granulation process. A multi-dimensional population balance model (PBM) was developed 

with a mechanistic kernel, which obtained collision data from the discrete element modeling 

(DEM) simulation. The PBM was run in parallel using MPI + OMP hybrid technique. The DEM 

simulations were performed on LIGGGHTS, which runs in parallel using MPI. Speedup of about 

14 times was obtained for the PBM simulations and around 12 for the DEM simulations. This 

coupling was performed using the radical pilot for scaling studies from 1 to 128 cores for the 
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PBM and up to 256 cores for the DEM. A further improvement to the PBM code was also done 

by developing a code in CUDA C++ such that it could utilize up to 1024 cores on the NVIDIA 

graphical processor units (GPU). Using this developed framework, the granulation process has 

been modeled accurately much faster than existing approaches in literature. 
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Chapter 1: Introduction 

1.1 Particulate processes 

Nearly half of all industrial chemical production rely on processing of particulate systems to 

obtain their final products(Seville, Tüzün and Clift, 2012). These processes account for about 

70% of the products of industries like detergents, aerosols, fertilizers, and pharmaceuticals 

(Litster, 2016). Particulate processes are widely popular as the manufactured products have 

great advantages over liquid formulations such as better chemical and physical stability, 

better handling and lower transportation costs. Despite the prevalence of these particulate 

processes, the underlying physics of these processes is poorly understood (Rogers, Hashemi 

and Ierapetritou, 2013). As a result industries that rely on these processes, especially 

pharmaceuticals, have to use expensive heuristic studies and inefficient operational protocols 

with high recycle ratios to meet strict regulatory standards (Ramachandran et al., 2009).  This 

can lead to increase in costs and delay in release of new products. What makes these 

processes so challenging to design is that there are none or few governing equations to 

accurately predict their behavior (Sen et al., 2012).  

Particulate processes are dominated by chaotic micro-scale phenomena that are a result of 

numerous particle-particle interactions within these systems. These small scale phenomenon 

develop into complex bulk behavior of these processes. To successfully predict the bulk 

behavior of these systems,  a model needs to capture the particle-particle interactions and 

emergent meso-scale phenomena. Recently, the Discrete Element Method (DEM) (Cundall 

and Strack, 1979) simulations have been employed in pharmaceutical process modeling to 

obtain particle-level data, which helps describe the bulk properties of the particulate system 

accurately (Hancock and Ketterhagen, 2011). DEM uses Newton's equations of motion to 

model the forces on each particle in the system and it's interactions with the system geometry 
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and other particles. This enables DEM to model the small scale phenomena that determines 

the bulk behavior of particulate system. Since DEM includes large amount of interactions and 

force computations, it usually takes a large amount of time to run. Thus, there is a need for a 

more efficient simulation technique for these particles. Another approach employed for such 

systems is the population balance model (PBM), which is more computationally efficient but, 

lacks the accuracy of the DEM.  

PBM takes into account the changes in internal or spatial particle properties. This model lacks 

sensitivity to design parameters such as equipment geometry. It is semi-mechanistic in nature, 

meaning they use population averages and probability to capture bulk behavior but still seek 

to capture some of the micro-phenomena of particle-particle interactions using correlations 

or empirically developed kernels to approximate those interactions. Even though PBM is much 

faster than DEM, a detailed PBM can still take a significant amount of time to solve which 

prevents them from being used as widely as they could be in academia and industries 

(Barrasso, Walia and Ramachandran, 2013). Though highly detailed PBMs take into account 

populating, averaging and contain semi-mechanistic kernels, these PBMs still can have 

difficulties in capturing the micro-scale phenomena that are crucial to predicting accurate 

dynamics of particulate processes.  

Thus, to complement the limitations of each of these modeling techniques they are coupled 

to provide a more accurate model. The typical work-flow of such a PBM-DEM coupled model 

involves using a short DEM simulation to capture the particle-particle level interactions of the 

system and then this physics is fed into the PBM, so that the PBM can more accurately 

simulate bulk system behavior (Goldschmidt et al., 2003; Reinhold and Briesen, 2012; 

Barrasso, Walia and Ramachandran, 2013). This PBM-DEM method is more accurate than a 

PBM simulation alone but runs much faster than a complete DEM simulation. Despite the 

performance benefits of these coupled PBM-DEM models they still take too long to solve. In 
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the past parallel computing has been used to speed up computationally intensive problems 

such as Molecular Dynamics (MD), Computational Fluid Dynamics (CFD) and in recent years 

this technique has been applied to DEM and PBM simulations (Gunawan, Fusman and Braatz, 

2008; A. V Prakash et al., 2013; Bettencourt, Chaturbedi and Ramachandran, 2017).  

Parallel Computing is the standard procedure to solve large computational problems in many 

sciences. One of the methods, uses High Performance Computers (HPC) to solve over a large 

number of cores. A HPC consists of thousands of compute nodes connected via a high speed 

network. A typical compute node has multiple cores and several GBs or memory. The network 

that connects them, usually InfiniBand, reaches speeds of 56 Gbps. In addition, a high 

performance parallel filesystem accompanies the compute nodes, allowing users to read and 

write GBs of data efficiently. one of the challenges when implementing parallel applications is 

to make sure that data is written in a similar manner to serial programs. 

Another form of parallel computing is to use graphics processing unit. These GPUs contain 

thousands of compute cores that can be used run tasks in parallel. Thus, a desktop equipped 

with a GPU could compute the same results as a CPU code on supercomputers in similar or 

lower amount of time as seen in Section 4.2.3. With the launch of Compute Unified Device 

Architecture (CUDA), NVIDIA made it easier to use GPUs for general parallel programming in 

an approach usually termed as general purpose computing on GPUs (GPGPUs). To ensure 

correctness of the results, an appropriate data communication implementation is required. 

This one of the major considerations that need to be made while parallelization of code.   

Some of the benefits of using parallel computing in the pharmaceutical industry include high 

accuracy for parameter estimation as detailed particle-scale simulations can be performed 

quickly. Quick simulations can also help improve control of continuous pharmaceutical 

processes. This work showcases the speed improvements that can be achieved using HPCs 

and how they can help improve process design.  
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1.2 Objective 

The main objective of this work is to develop a DEM-PBM coupled model that run efficiently 

in parallel so that it can take advantage of the computational capabilities of modern 

computing clusters. The future prospect of this work pertains towards the control of 

granulation processes but is not in scope of this study.  In the course of development of the 

model, the DEM simulation were performed on LAMMPS Improved for General Granular and 

Granular Heat Transfer simulations (LIGGGHTS) (Kloss et al., 2012) to model the micro-

mechanics of the Lódige CoriMix CM5 high shear granulator. A 4-Dimensional, reduced order 

DEM informed PBM was developed that is parallelized using hybrid techniques (Message 

Parsing Interface (MPI) + Open Multi-Processing (OMP)) to model the bulk processes occurring 

during the granulation process and is discussed in section 3.3. Section 3.4.1 describes 

unidirectional coupling of DEM and PBM using Radical Pilot,  a framework developed in 

Python. Further bidirectional coupling of DEM –PBM is discussed in sections 3.4.2. An 

extension of the PBM onto GPUs for computation has also been discussed in sections 3.3.2 

and its results in Section 4.3.2. This provides task level parallelization, to help develop an 

accurate model which can be run quickly on high performance computing systems. The speed 

improvements obtained for the parallel code and further improvements that can be 

implemented are discussed in Chapter 4. 
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Chapter 2: Background and literature review 

Particulate processes are ones in which a system of discrete species exist, such as granules or 

catalyst pellets, that undergo changes in average composition, size, or other pertinent 

properties. Granulation is one such particulate process which is commonly found in the 

pharmaceutical industry. In this process, fine powders are converted to larger granules using 

a liquid binder. The three rate processes governing granulation are wetting and nucleation, 

consolidation and aggregation and attrition and breakage (Iveson et al., 2001; Cameron et al., 

2005). As the liquid is added to the fine powder, it forms a porous nuclei that can coalesce, 

deform and break (Barrasso et al., 2015). As there is an alteration in the properties of these 

nuclei, they can take up additional liquid or breakdown to a finer powder. To understand how 

a granulation processes will behave with different design and operating parameter settings 

and formulations, experimental studies are performed which is a method referred to as 

Quality-by-Testing (QbT). This methodology is time consuming and expensive. Thus, newer 

research is focused on the QbD concept i.e., developing a mathematical model to represent 

the rate process. 

The paradigm shift of the pharmaceutical industry for instance towards continuous 

manufacturing,  emphasizes the need for a more accurate model. This further helps to develop 

better control strategies for the process. The modeling of particulate processes is more time 

consuming and computationally expensive when compared to fluid systems since particles are 

considered as individual entities rather than a continuum like fluid systems. The models 

discussed ahead represent the particle-particle interaction at meso and micro-scale. 
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2.1 Discrete Element Modeling (DEM) 

Discrete Element Method is a simulation technique used to monitor the behavior of each 

particle as a separate entity compared to other bulk continuum models. This method tracks 

the movement of each particle within the space, records the collisions of each particle with 

the geometry as well as with each other and it is also subject to other force fields like gravity 

(Barrasso et al., 2015). This model is based on the Newton's laws of the motion as shown in 

Equations 1 & 2: 

mi

dvi

dt
= Fi,net  

(1) 

Fi,net = Fi,coll + Fi,ext (2) 

 

Where, mi is the mass of the particle, vi represents the velocity of the particle, Fi,net represents 

the net force on the particle, forces on the particle due to collisions and other external forces 

are represented in Fi,coll and Fi,ext respectively. 

Using this method, the distance between each particle is calculated at every time step and if 

the distance between two particles is less than the sum of the radii (for spherical particles) a 

collision between the two particles is recorded. The tolerance for overlap is low in the normal 

as well as the tangential direction. Micro-scale DEM simulations are computationally 

demanding and simulations may take up to several days to replicate a few seconds of real 

time experiments. Many methods have been implemented to increase the speed of these 

simulations, such as scaling by increasing the size of the particles. These approximations are 

good in understanding the physics of the system but are not directly applicable to process-

level simulations.  
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The particle-particle collisions are not always elastic, thus there is a need for models for the 

contact forces. The earliest elastic model was developed by Hertz and was extended by 

Mindlin by accounting for the tangential forces during the collisions (Adams and Nosonovsky, 

2000). The Hertz-Mindlin contact model (Gantt et al., 2006; Hassanpour et al., 2013) has been 

utilized in this work. 

2.2. Population Balance Model (PBM) 

Population balance models (PBM) predict how groups of discrete entities will behave on a 

bulk scale due to certain effects acting on the population with respect to time (Ramkrishna 

and Singh, 2014). In the context of process engineering and granulation, population balance 

models are used to describe how the number densities, of different types of particles, in the 

granulator change as rate processes such as aggregation and breakage reshape particles 

(Barrasso, Walia and Ramachandran, 2013). A general form of population balance model is 

shown in Equation 3.  

∂

∂t
F(v, x, t) +

∂

∂v
[F(v, x, t) ⋅

dv

dt
(v, x, t)] +

∂

∂x
[F(v, x, t) ⋅

dx

dt
(v, x, t)] 

= ℜformation(v, x, t) + ℜdepletion(v, x, t) + Fiṅ(v, x, t) − Fout
̇ (v, x, t) 

 

(3) 

 

In Equation (3), v is a vector of internal coordinates. For modeling a granulation process v is 

commonly used to describe the solid, liquid, and gas content of each type of particle. The 

vector x represents external coordinates, usually spatial variance. For a granulation process 

this account for spatial variance in the particles as they flow along the granulator. 
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2.3. Coupled DEM-PBMs 

The use of multi-physics models has recently been adapted to understand the behavior of 

particle systems. These models help understand the physics of the system at various scales 

i.e. micro, meso and macro scale (Sen et al., 2014b). Particle process dynamics have been 

inferred from coupling of various physics models viz. CFD, DEM and PBM. Earlier works from 

Sen et al., 2014a; Barrasso et al., 2015 have successfully predicted process dynamics of the 

granulation process using such multi-physics models.  

Initially, Ingram and Cameron (2004)  coupled PBM and DEM using two different multi-scale 

frameworks which focused on methods of integration and information exchange required 

between these two methods. Later efforts on coupling of PBM and DEM were unidirectional 

in nature, where  the collision data was obtained from the DEM and then used it in PBM. Gantt 

et al. (2006) used the DEM data to build a mechanistic model for the PBM. Goldschmidt et al.           

(2003) solved a PBM using DEM by replacing smaller particles as they successfully coalesce 

with larger particles. (Reinhold and Briesen, 2012)replaced a mechanistic aggregation kernel 

with an empirical kernel in order to prove that, in certain cases DEM simulations may not be 

necessary for the development of kernels. A hybrid model for one-way coupling has been 

reported for continuous mixing (Sen et al., 2012; Sen and Ramachandran, 2013) and is 

discussed in Section 3.2. 

In this work, a coupled DEM and PBM model has been implemented. In general, the PBM 

provides meso-scale information while the DEM gives particle scale information. The 

combination of these two methods helps describe the process dynamics with more accuracy. 

However, calculations involved due to the number of particles involved in the DEM process as 

well as PBM become computationally very heavy, hence the motivation and need for running 

the simulations on HPCs and parallelization techniques.  
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2.4 Parallel computing and computer architecture 

2.4.1 Computer Architecture 

Analogous to a conventional PC a High Performance Computing cluster node has one or more 

CPUs and RAM. Commonly nodes are manufactured with two CPUs, each CPU is a multi-core 

meaning it has multiple compute cores such that each can carry out calculations separately 

from one another. On a node, memory is divided by CPU sockets, so each CPU has direct 

access to memory that is local to its own socket, however accessing memory on another 

socket is much slower (Jin et al., 2011). For this reason, data that is needed for computation 

should be stored locally to the CPU that needs it. 

There are two classes of computer architecture which can be classified by memory locality 

features such as distributed memory systems or shared memory systems. These two classes 

co-exist in a cluster, thus providing the benefits of each. All the nodes exchange memory using 

explicit message passing while each has its own independent memory. The cores on each node 

can access data from the shared memory without any explicit message passing statements 

from the user. While designing a parallel program all these aspects need to be considered for 

optimal performance of the code (Adhianto and Chapman, 2007). 

2.4.2. Parallel application programming interfaces  

Message Passing Interface (MPI) is a common parallel computing application programming 

interface standard. MPI is used for distributed memory parallel computing and this is because 

the application programming interface will operate every MPI process as a discrete unit that 

does not share memory with the other processes unless explicit message passing is used. Even 

on shared a single node where the hardware supports shared memory computing, MPI will 

still operate it in a distributed memory fashion (Jin et al., 2011). Operating all cores as distinct 

units also means they each need their own copy of all variables used for computation which 
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results in a large overall memory foot print compared to a similar system if it was operated in 

shared memory. 

Open Multi-Processing (OMP) is another application program interface stand for parallel 

computing. OMP is used for shared memory and can take advantage of shared memory 

systems which can result in much faster computation. Although, it does not work well on 

distributed systems. This prevents it from being used to efficiently carry out computations 

across multiple nodes of a cluster simultaneously (Jin et al., 2011).  Since MPI is preferred for 

distributed computing and OMP is better for shared computing many researchers have 

studied the performance of MPI vs MPI+OMP methods. Many a times a tradeoff is made 

between optimizing a program for performance and trying to make it flexible enough to run 

on many different computer architectures. It was found that hybrid methods for PBMs allow 

the code flexibility for different architectures while still maintaining good performance 

(Bettencourt, Chaturbedi and Ramachandran, 2017). It was also reported that only the 

external (spatial) coordinates of the PBM were parallelized. In this current work external and 

internal (compositions) calculations are parallelized.  

2.4.3 Graphics processing units (GPUs) 

Graphic processing unit (GPU) were initially mainly used for vector calculations to support 

graphics inside a computer system. But, lately GPU manufacturers have started to promote 

them general computing as well. This form of computing has been gaining popularity among 

scientists to accelerate simulations (Kandrot and Sanders, 2011). These GPUs dominantly have 

a massively parallel architecture with hundreds to thousands of computational cores which 

can thousands of active threads simultaneously (Keckler et al., 2011). Modern GPU computing 

can be exploited using parallel programming languages such as OpenCL and CUDA.  

CUDA is an application programming interface (API) developed by NVIDIA (NVIDIA 

Corporation, 2012) that enables users to program parallel code for execution on the GPU. This 
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is framework is an extension implemented on top of C/C++ or FORTRAN. Parallel code for the 

GPU is written as kernels, which theoretically are similar to functions or methods in traditional 

programming languages. Only few sections of the code can be written in terms of kernel while 

the remaining has to be executed in serial on the CPU of the system. The NVCC compiler from 

the CUDA toolkit prioritizes the compilation of these kernels before passing the serial section 

of the code to the native C/C++ compiler inside the system. There are three main parallel 

abstractions that exist in CUDA are grids, blocks and threads (Santos et al., 2013). Each CUDA 

kernel is executed serially during the execution of the program unless specified, where the 

kernels can be run in parallel using CUDA streams. Each kernel executes as a grid which in turn 

consists of various blocks which are constituted by various threads. This thread-block-grid 

hierarchy helps obtain fine grained data level and thread level parallelism. An illustration of 

this hierarchy is observed in Figure 2-1. 

 

Figure 2-1: The parallel structure matrix inside the GPU and the various memories associated with each structure 

Another important aspect related to GPU parallelization is the data communication between 

the threads. The GPU consists of various memory modules with different access limitations as 
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shown in Figure 2-1. The threads inside each block can communicate with each other using 

the shared memory. This memory is local to the block where these threads exist i.e. they are 

not accessible by threads from other blocks. In addition to the shared memory each thread 

has its own local memory where local/temporary variables for each kernel can be saved to 

them. The threads from different communicate with each other using the global memory 

which is visible to all blocks inside the GPU at the cost of higher communication times. 

Accessing of data from the local memory is the fastest for a thread and it slows down as we 

move towards shared block memory and the least for accessing data from the global GPU 

memory. 

2.5 Previous works on parallel development and solution of PBM and DEM  

The idea of parallelization to reduce the computation time of the DEM and PBM simulations 

have been employed by various researchers in the past. Gunawan, Fusman and Braatz (2008) 

used high-resolution finite volumes solution methods for the parallelization of their PBM. 

They performed load balancing effectively by decomposing the internal coordinates of their 

PBM. They achieved speed improvements up to 100 cores on one system size, but was not 

tested for models with more dimensions. Moreover, they mentioned that parallelization could 

be improved using shared memory processing. Bettencourt, Chaturbedi and Ramachandran 

(2017) took a hybrid approach towards the parallelization of the PBM using both MPI and 

OMP. The hybrid parallelization helped achieve a speed improvement of about 98% using 128 

cores over the serial code. Prakash (A. V. Prakash et al., 2013; A. V. Prakash, Chaudhury and 

Ramachandran, 2013) used the inbuilt Parallel Computation Toolbox (PCT) in MATLAB 

(MathWorks™ Documentation, 2017) to parallelize their PBM on lower number of cores, but 

this faced the shortcomings of MATLAB's internal processing and could not achieve the speed 

improvements of parallelization of a program if it were written in a native programming 

language like C/C++ or FORTRAN.  
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LIGGGHTS (Kloss et al., 2012), an open-source software used to perform DEM simulations has 

native support for MPI for parallelizing the simulation by static decomposition which 

partitions space such that the area of communication between the MPI processes is 

minimized. Kačianauskas et al. (2010) used load balancing methods similar to a static 

decomposition and observed that this works well for a mono-dispersed system but the 

computational effort increases for simulations for poly-dispersed material. Gopalakrishnan 

and Tafti (2013) also reported a speed increase and a parallel efficiency of about 81% in their 

CFD-DEM simulation. LIGGGHTS could not take advantage of shared memory interfaces since 

it did not support OMP. Berger et al. (2015) implemented hybrid parallelization methods for 

the particle-particle interaction and the particle-wall interaction modules in LIGGGHTS and 

also used the Zoltan library (Boman et al., 2012) developed by Sandia National Laboratories 

for dynamic load balancing. They achieved a speed improvement of about 44% for simulations 

performed on higher number of cores, but there was no significant speed improvement for 

smaller core counts. 

Algorithms to parallelize the PBM codes on GPU have been studied briefly by A. V Prakash, 

Chaudhury and Ramachandran, 2013 using the inbuilt MATLAB's parallel computing toolbox 

(PCT). This study was able to achieve good speed ups but could have been higher if the code 

had been implemented in native programming languages such as C or FORTRAN. Other works 

that have used GPU acceleration to improve computation times for their population balance 

simulations include those from various other chemical engineering processes such as 

crystallization (Szilágyi and Nagy, 2016), combustion (Shi et al., 2012), multiphase ow (Santos 

et al., 2013), coagulation dynamics (Xu et al., 2015) 

2.6 Pilot abstraction and RADICAL-Pilot (RP) 

A primary challenge faced is the scalable execution of multiple (often two, but possibly more)  

heterogeneous simulations that need to run independently but have a need to communicate 
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and exchange information. Traditionally each simulation is submitted as an individual job, but 

that invariably leads to a situation where each simulation gets through the batch-queue 

systems independent of the other. So although the first-through-the-queue is ready to run, it 

stalls fairly soon waiting for the other simulation to make it through the queue. On the other 

hand MPI capabilities can be used to execute both simulations as part of a single multi-node 

job. Thus whereas the former method suffers from unpredictable queue time for each job, 

the latter is suitable to execute tasks that are homogeneous and have no dependencies.  

The Pilot abstraction (Luckow et al., 2012) solves these issues: The Pilot abstraction (i) uses a 

container-job as a placeholder to acquire resources, and (ii) decouples the initial resource 

acquisition from task-to-resource assignment. Once the Pilot (container-job) has acquired the 

resources, it can be populated with computational tasks. This functionality allows all tasks to 

be executed directly on the resources, without being queued individually. Thus, this approach 

supports the requirements of task-level parallelism and high-throughput as needed by science 

drivers. RADICAL-Pilot is an implementation of the Pilot abstraction in Python, engineered to 

support scalable and efficient launching of heterogeneous tasks across different platforms.  
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Chapter 3: Methods and simulation setup 

3.1 Discrete Element Method (DEM) 

LAMMPS Improved for General Granular and Granular Heat Transfer simulations (LIGGGHTS) 

v3.60 developed by DCS computing was used for all the DEM simulations performed in this 

study. LIGGGHTS  natively supports parallelization using MPI, which helps divide the geometry 

into various smaller simulation boxes thus, making them run faster compared to a serial code. 

Parts of the source code of LIGGGHTS was also edited to enable the code to capture particle-

particle and particle-wall collisions. This version of LIGGGHTS was compiled using the mvapich 

(mvapich2 v2.1) and Intel (Intel v15.0.2) compilers with the -O3 optimization option as well as 

an option to side load the process to the Xeon phi co-processors was added. The initial timing 

studies were performed on Stampede supercomputer located at TACC,  University of Texas, 

Austin. The hardware configuration of each node consists of 2 8-core Intel Xeon E5-2680 

processors based on the Sandy Bridge architecture, 32 GB of memory with QPI interconnects 

at 8.0 GT/s PCI-e lanes. 

3.1.1 Geometry and Meshing 

In this work, the Lódige CoriMix CM5 continuous high shear granulator has been studied. Its 

geometry was developed using the SolidWorks™ (Dassault Systemes). This granulator 

consisted of a high speed rotating element enclosed within a horizontal cylindrical casing. The 

casing (shown in Figure 3-1) consists of a cylinder with diameter of 120 mm at the inlet and 

130 mm at the outlet and having a total length of 440 mm. A vertical inlet port is provided at 

one end of the casing and an angled outlet port is provided at the larger end of the case.  
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Figure 3-1: The isometric view of the Lódige CoriMix CM5 continuous high shear granulator casing 

The impeller consists of a cylindrical shaft of length 370 mm and diameter 68 mm with four 

flattened sides 15 mm wide running along the axis. The blades are placed on these flattened 

sides as shown in Figure 3-2. There are three different blade elements on the shaft (Figure 3-

3).  

 

Figure 3-2: isometric view of the impeller inside the Lódige CoriMix CM5 continuous high shear granulator casing 
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(a) Feed Element (b) Exit Element (c) Shear Element 

Figure 3-3 : Components (a) and (b) help in the forward movement of the particles while (c) aids to direct the 
particles to the wall inside the Lódige CoriMix CM5 continuous high shear granulator. 

 

At the granulator inlet, there are 4 paddle shaped feed elements following which there are 20 

tear drop shaped shearing elements and finally 4 trapezoidal blades near the exit. All these 

elements are placed in a spiral configuration. Once the geometry was built in SolidWorks™ 

(Dassault Systèmes) the shell and impeller were exported as stereo lithography (STL) files. The 

coarsest output option was used to keep the STL files small and simple for faster computation 

times. The origin of the geometry was not preserved while saving the STL files since it needs 

to be aligned in LIGGGHTS as per the process conditions. This resulted in the impeller having 

2802 faces and 1281 points with approximately a file size of 775 kilobytes. The shell had 1948 

faces and 720 points and size was about 544 kilobytes. MeshLab was used to align the STL files 

for importing into LIGGGHTS. No mesh treatments were used on the STLs. The meshes were 

then imported into LIGGGHTS using the write command in serial. This resulted in 50 elements 

of the impeller file having highly skewed elements, which have more than 5 neighbors per 

surface or have an angle less than 0.0181185 radians, that according to LIGGGHTS would 

degrade parallel performance. The write exclusion list command in LIGGGHTS was used and 

this exclusion list file is then used in the simulation to skip the highly skewed elements during 

the simulation.    
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3.1.2 DEM input file setting 

The DEM simulation in LIGGGHTS are setup using an input script which defines the physical 

parameters of the particles, importing of the geometry, particle insertion commands, various 

physics models to be used during the simulation as well as various compute and dump 

commands to help print the data required for post-processing of the data. The particles were 

considered to be granular in nature. The Hertz-Mindlin model was used for non-adhesive 

elastic contact between the granular particles. The particles were inserted inside the 

granulator from the inlet at a constant mass flow rate of 15 kilograms per hour. The rotation 

speed of the impeller was kept throughout the study at 2000 rotations per minute. Such a 

high rotation speed was chosen since this would lead to high shear between the particles and 

the walls of the shell resulting in better size control of the granules. There were 2 sets of 

simulations that were performed, one with mono-sized particles and second consisting of a 

distribution of sizes. The particle radii chosen for mono-sized simulation varied 0.59mm - 

2mm, consecutive particles radii had volume twice of one before them. The radii range of the 

distributed size simulation was 1mm - 3mm. The difference in the mechanics of these two 

simulations is discussed in the Chapter 4. The physical constants used for the simulations are 

given in Table 3-1. 

Table 3-1 : Physical Properties of the particle for the LIGGGHTS input script 

Parameter Value Units 

Young’s modulus of particles 8 × 106 N ⋅ m−2 

Young’s modulus of geometry 1 × 108 N ⋅ m−2 

Poisson’s Ratio  0.2 -- 

Coefficient of restitution  0.4 -- 

Coefficient of static friction 0.5 -- 

Coefficient of static friction 0.2 -- 

Density of the granules 500 kg ⋅ m−3 
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The simulation data was collected after every 50,000 time steps (510�3 sec) for the 

visualization of the particles inside the shell, further post processing. The collisions between 

each of the particles and the collisions between the particle and the geometry was collected 

and used in the PBM.  

3.1.3 DEM data post processing 

The post processing of the data obtained from the DEM simulations was done using MATLAB. 

The first test run on the output data was to determine if the simulation had reached steady-

state. The mass inside the granulator was found out by averaging it over 5 time steps and then 

compared to mass inside the granulator after every 10000 time steps (about 510�4 sec) with 

a tolerance of about 10%. If the mass was found to be constant for most of the iterations, it 

was considered to be at steady state. Another test to determine steady state was to monitor 

the number of collision inside the granulator. The visualization of the simulation data was 

done by running the LIGGGHTS post processing (LPP) script over the dump files to convert 

them into STL files. These files were then loaded in to Paraview (Ayachit, 2017) for a graphical 

representation of the simulation. It can be seen that the number of collision start to oscillate 

around a mean value. The number of collisions were then plotted and steady state time was 

determined. A precautionary script was also run so as to determine that no particles were lost 

due to overlap of the geometry with the particles as well as from particle-particle overlap.  

3.2 Population Balance Modeling 

The population balance equation used in this work is expressed below:  

δ

δt
F(s1, s2, x, t) =  ℜagg(s1, s2, x, t) +  ℜbr(s1, s2, x, t) +  Ḟin(s1, s2, x, t)

− Ḟout(s1, s2, x, t) 

(4) 
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where, Ḟ(s1, s2, x) is the number of particles with an active pharmaceutical ingredients (API)  

volume of s1 and an excipient volume of s2 in the spatial compartment x. The rate of  change 

of number of particles with time in different size classes depend on the rate of aggregation, 

ℜagg(s1, s2, x) and the rate of breakage,ℜbr(s1, s2, x). Also, the rate of particles coming  into, 

Ḟin(s1, s2, x) and going out, Ḟout(s1, s2, x)  of the spatial compartment  due to particle transfer 

affect the number of particles in different size classes. 

The rate of change of liquid volume for a given time in each particle is calculated using the 

equation: 

d

dt
F(s1, s2, x)l(s1, s2, x, t)

=  ℜliq,agg(s1, s2, x) + ℜliq,break(s1, s2, x)

+ Ḟin(s1, s2, x)lin(s1, s2, x) − Ḟout(s1, s2, x)lout(s1, s2, x)

+ F(s1, s2, x) l ̇
add

(s1, s2, x)   

 

 

(5) 

where, l(s1, s2, x) is the amount of liquid volume in each particle with API volume of s1 and 

excipient volume of s2 in the spatial compartment x, ℜliq,agg(s1, s2, x) and ℜliq,break(s1, s2, x) 

are respectively the rates of liquid transferred between size classes due to aggregation and 

breakage. lin(s1, s2, x) and lout(s1, s2, x) are respectively the liquid volumes of the particles 

coming in and going out of the spatial compartment.  ladd(s1, s2, x) is the volume of liquid 

acquired by each particle in the compartment at every time step due to external liquid 

addition. The rate of change of gas volume for a given time is calculated in a similar manner. 

The rate of aggregation ℜagg(s1, s2, x) can be calculated as (Chaturbedi et al., 2017): 
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ℜagg(s1, s2, x) =
1

2
∫ ∫ β(s1

′ , s2
′ , s1 − s1

′ , s2 − s2
′ , x)F(s1

′ , s2
′ , x)F(s1 − s1

′ , s2

s2

0

s1

0

− s2
′ , x)ds1

′ ds2
′

− F(s1, s2, x) ∫ ∫ β(s1, s2, s1
′ , s2

′ )F(s1
′ , s2

′ , x)ds1
′ ds2

′
smax2−s2

0

smax1−s1

0

  

 

 

(7) 

where, the aggregation kernel,  β(s1, s2, s1
′ , s2

′ ) is expressed as a function of collision rate 

coefficient (C) and probability that collision results in agglomeration(ψ) (Ingram and Cameron, 

2005) and is shown below: 

β(s1, s2, s1
′ , s2

′ ) = β0C(s1, s2, s1
′ , s2

′ , x)ψ(s1, s2, s1
′ , s2

′ , x) (8) 

where, β0 is aggregation rate constant. 

Collision rate coefficient (C) is a function of particle sizes and is calculated by normalizing the 

number of collisions between groups of particles (Gantt et al., 2006) and is obtained from 

LIGGGHTS DEM simulation. A recent study shows that collision frequency depends on PSD as  

well (Sen et al., 2014a). Collision rate coefficient for every time step can be expressed as: 

C(s1, s2, s1
′ , s2

′ ) =
Ncoll(s1,s2,s1

′ ,s2
′ )

Np(s1,s2)Np(s1
′ , s2

′ )Δt
 

(9) 

 

In Equation 9, Ncoll is the number of collision between two particles in time interval Δt & Np is 

number of particle of particular size. The agglomeration (ψ) in Equation 8 can be expressed 

as:   

ψ(s1, s2, s1
′ , s2

′ ) = {
ψ0, LC(s1, s2) ≥ LCmin and LC(s1

′ , s2
′ ) ≥ LCmin

0, LC(s1, s2) < LCmin and LC(s1
′ , s2

′ ) < LCmin
 

(10) 
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In Equation 10, LC is the liquid content of particles and LCmin stands for minimum liquid content 

required for coalescence of particles. 

Particle transfer rate, Ḟout(s1, s2, x) in Equation 4 is calculated as: 

Ḟout(s1, s2, x) = Ḟ(s1, s2, x) (
vcompartment(x)dt

dcompartment
)   

(11) 

where, vcompartment(x) and dcompartment are respectively the average velocity of particles in 

compartment x and the distance between the mid-points of two adjacent compartment, 

which is the distance particles have to travel to move to the next spatial compartment. dt is 

the time-step. The process parameters and physical constants used in the PBM simulation are 

listed in Table 3-2.  

Table 3-2: Parameters used in the PBM simulation 

Parameter Symbol Value Units 

Initial time step δt 0.5 s 

Mixing time T 25 s 

Granulation time T 75 s 

Velocity in axial direction vaxial 1 m ⋅ s−1 

Velocity in radial direction vradial 1 m ⋅ s−1 

Aggregation constant β0 1 × 10−9 -- 

Initial particle diameter R 150 μm 

Diameter of the impeller D 0.114 m 

Impeller rotation speed  RPM 2000 -- 

Minimum granule porosity ϵmin 0.2 -- 

Consolidation rate C 0 -- 

Total starting particles in batch Finitial 1 × 106 -- 

Liquid to solid ratio in binder L/S 0.35 -- 

Number of compartments c 16 -- 

Number of first solid bins s 16 -- 

Number of second solid bins ss 16 -- 
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3.3 Discretization & parallelization of the PBM 

The PBM was discretized by converting each of its coordinates in to discrete bins. For the 

spatial coordinates a linear bin spacing was used. For the internal coordinates, solid, liquid 

and gas a non-linear discretization was used (Barrasso and Ramachandran, 2012). Once the 

PBM had been discretized, a finite differences method was used which created a system of 

ordinary differential equations (ODEs) (Barrasso and Ramachandran, 2015). The numerical 

integration technique used to evaluate the system of ODEs was first order Euler integration 

as it is commonly used to solve these types of systems and author found an improvement in 

speed while having minimal impact on accuracy (Barrasso, Walia and Ramachandran, 2013). 

In order to avoid numerical instability due to the explicit nature of the Euler integration, 

Courant-Friedrichs-Lewis (CFL) condition must be satisfied (Courant, Friedrichs and Lewy, 

1967). For our PBM model, time-step was calculated at each iteration such that, the number 

of particles leaving a particular bin at any time is less than the number of particles present at 

that time(Ramachandran and Barton, 2010). 

3.3.1 Parallelizing using CPU cores 

To obtain the most optimal parallel performance, when solving the PBM, workloads were 

distributed in a manner which took into account the shared and distributed memory aspects 

of the clusters, the PBM was being run on. To parallelize the model in a way which could take 

advantage of shared memory but still effectively run across a distributed system both MPI and 

OMP were implemented. One MPI process was used per CPU core and one OMP thread was 

used per CPU core, as Bettencourt et al. (2017) found it resulted in the best performance. MPI 

was used for message passing from one node to another while OMP was used for calculations 

on each node that could be efficiently solved using a shared memory system. An algorithm in 

the form of pseudo code is presented in the Appendix illustrating how the calculations are 
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distributed and carried out during the simulation. For each time step, the MPI processes are 

made responsible for a specific chunk of the spatial compartments. Then each OMP thread, 

inside of each MPI process, is allocated to one of the cores of multi-core CPU the MPI process 

is bound too. The OMP threads divide up and compute ℜagg. After ℜagg is calculated the MPI 

processes calculate the new PSD value for their chunk at that specific time step, Ft,c. The slave 

processes send their Ftc to the master processes which collects them into the complete Ft,all. 

The master process then broadcasts the Ft, all value to all slave processes. This decomposition 

of the data into different CPUs and further into various threads is illustrated in Figure 3-4. A 

crucial feature of the PBM is that the current PSD (Ft,all) value is used to compute a new time 

step size for the next iteration. This means all of the MPI processes need to have the same 

dynamic time step size at each iteration for the calculations to be properly carried out in 

parallel. Since the completely updated Ft, all value is shared before calculating a new time step 

each process will have the same Ft, all value. As a result each process calculates the same size 

for the new time step. Since the DEM informed PBM code required dynamic size increase for 

the data structure due to different number of particles being present in the DEM simulation, 

the PBM code developed used the Standard Template Library containers and their features 

available in C++ 11 and later. It requires intel v17.0.2 (GCC 5.3+) or later for compilation. Since 

this module was not present on the Stampede, the execution of the PBM was done on the 

newer Stampede2 supercomputer. Each of the compute node of the cluster consists of Intel 

Xeon Phi 7250 (“Knights Landing") which has 68 cores on a single socket clocked at 1.4 GHz, 

with 96 GB of DDR4 RAM. Each of the cores consists of 4 hardware threads. The simulations 

were then run by varying the number of MPI processes from 1 to 16 and the number of OMP 

threads from 1 to 8, thus, using a maximum of 128 cores. 
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Figure 3-4: The distribution of the PBM calculations to utilize the MPI + OMP parallelization technique on the 
CPUs of each node 

3.3.2 Parallelizing using the GPU 

NVIDIA’s CUDA toolkit extends the C language such that user defined functions called kernels 

can be created to be run on the GPU. These kernels can be executed N times in parallel using 

large number of threads. A thread is sequence if programmed instructions that can be 

managed by the computer’s scheduler. A kernel depending upon the dimensions of the data 

can execute instructions in 1-D, 2-D or 3-D thread blocks. The kernel can also launch multiple 

thread blocks at once, thus increasing the number of parallel process executions known as 

grid. Similar to a thread block, a grid can be up to 3-D depending upon the data under study. 

The code execution was split between the CPU (also called host) and GPU (also called device). 

Time sensitive calculations as well as mixed data calculations were handled on the CPU with 

a single core, while the more computationally intensive tasks were distributed on to the GPU 

using kernels. Like in the CPU parallelization, the geometry was split into multiple 
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compartments. These compartments in turn formed the number of blocks inside each GPU 

kernel. The number of solids used helped formed the threads in each of these blocks. The 

work flow of the execution can be found in Figure 3-5. The orange arrows in Figure 3-5 indicate 

the transfer of data from the CPU memory to the GPU memory and vice-versa whereas the 

blue arrows indicate the sections of the code that is sent to the GPU for parallel execution.  

----------------

 

Figure 3-5:  Workflow of the GPU code indicating data transfers and execution timeline of the code 

These simulations were performed on a desktop computer with an Intel i7-7700k processor 

with 32 GB of RAM and the GPU used was a NVIDA Quadro p4000 GPU with 16 GB of GPU 

memory, with 1792 CUDA cores and a maximum memory bandwidth of 243 GBps. All the 

parameters were kept the same.  

3.4 RADICAL-Pilot (RP) & coupled DEM and PBM communication 

RADICAL-Pilot defines a number of abstractions to describe resources, and computational 

tasks. The Pilot Description is the abstraction that describes resources by defining the number 

of cores that will be used, the used HPC resource and the total time that the resources are 
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needed,  and the queue that will be used. The abstraction that defines the execution of a 

computational task is the Compute Unit (CU). A CU defines the executable, the necessary 

environment that is needed during execution, execution arguments, and any file 

dependencies the executable may have. RP also defines two managing components, the Pilot 

Manager, and Unit Manager. The Pilot Manager is responsible to submit a Pilot to the selected 

resources. The Unit Manager is responsible to place CUs to active Pilots. As soon as a unit is 

placed in a pilot it starts executing on the acquired resources.  

RADICAL-Pilot was utilized to execute and monitor DEM and PBM simulations. Initially, a pilot 

description is created to use several cores of a resource and submitted to the pilot manager. 

A CU description is created for the DEM simulation and submitted to the Unit Manager. As 

soon as the pilot is active the DEM simulation start executing. When finished a CU that 

describes a PBM simulation is submitted at the Unit Manager and start executing. Any data 

dependency is satisfied by doing the necessary file linking through the CU description.  

3.4.1 One-way DEM-PBM coupling 

The DEM simulation was used to determine the time taken to reach steady state while the 

DEM data was also used to understand the steady state micro-mechanics of the powder 

mixture inside the high shear granulator. These simulations were also checked for particle loss 

as mentioned in Section 3.2.1. Physical quantities obtained from the DEM simulation like 

velocity, collisions were then used in the PBM simulation to give it a more mechanistic nature. 

Figure 3-6a represents the flow of data in the coupling process, where each of the DEM and 

PBM job was submitted manually to the supercomputer. 

As soon as the pilot is active, the DEM simulation starts executing. When it is finished the DEM 

output is linked to the new CU describing the PBM simulation. The PBM is submitted by the 

Unit Manager and starts executing. Any data dependency is satisfied by performing the 
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necessary file linking through the CU description. A pictorial representation of the data flow 

using RP can be found in Figure 3-6b. 

 

(a) Workflow without RP 
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(b) Workflow with RP 

Figure 3-6: Flow charts representing differences in between the coupling of the DEM and PBM simulations 
manually and using RP respectively. 

3.4.2 Two-way coupling and controller design 

Figure 3-7 represents the workflow that was used to model the two way coupling DEM PBM 

for the high shear granulator. These simulations were monitored using python scripts to 

switch  in between the two simulations. The controller scripts to monitor the DEM and PBM 
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simulations were written in python. Each of these  scripts were executed along with its 

respective simulation. The DEM controller script monitored the  collision and velocity data 

being dumped by the DEM simulation. The data was first stored and the  average of the 

velocities for each type of particles and the total number of collisions and impacts  were 

determined. If there was a change in either of these properties of more  than 15%, an exit  

status was sent which led to killing the execution of the DEM and indicated to start the PBM  

simulation. The DEM controller script also printed out various data files required for the PBM 

execution as well as for the restart of the DEM simulation if needed. In the case, the properties 

did not show a variation of more than 15% over the span of 5s of DEM simulation time, it was  

considered to be in steady state and that all the simulations were halted. The PBM controller 

read the d50 and number of particle files which were printed by the PBM after a  constant 

time interval. The change in each of these properties in each compartment was monitored  

and an exit signal was sent if they varied by more than 15%. The halting of the PBM was 

accompanied  by the printing of files required to restart DEM with new diameters and data 

for restarting the PBM  if needed after the DEM simulation. 
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Figure 3-7: Schematic of the bi-directional approach used to model the granulator 
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Chapter 4: Results and Discussion 

4.1 Discrete Element Method  

4.1.1 Spatial decomposition studies 

LIGGGHTS as discussed previously, statically decomposes the work space and each section is 

sent to a MPI process for calculations. Thus, the division of the space becomes an important 

criteria for the simulation for efficient load balancing. The initial studies were undertaken for 

a mono-sized particle of size 1 mm and the simulation was carried out for 0.5 second of 

granulation time. The initial timing studies for the decomposition were performed using 64 

cores. The effect of the decomposition on the simulation time can be seen in Table 3. This 

indicates that dividing the x-direction in more number of compartments help increase the 

speed of the simulation. This is easy to comprehend since the granulator has its length parallel 

to the x-axis. These results also show that if the geometry is divided into more than 2 

compartments in the y-axis or the z-axis the simulation time increases. This can be accounted 

to the increased communication required to transfer the rotating impeller mesh from one 

compartment in the y-axis or the z-axis to the another compartment for each time step. Since 

MPI is limited by communication in between the nodes, a speed decrease is observed due to 

increased partitioning in these directions.  

When MPI is used for parallelization of a task, load balancing becomes an important 

parameter that needs to be considered. When the geometry is divided, the amount of 

computation done by one core should be in a similar to other processors. This helps in better 

utilization of the resources as well as make the simulations run faster. Following the results 

from the initial timing studies, the y and the z-axes were not divided in more than 2 

compartments for 128 and 256 core simulation as well. This meant that the x-axis was divided 

into 32 and 64 compartments respectively. In order to avoid the expensive communication 

between the processes, LIGGGHTS tries to insert the particles towards the centre of the 
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compartment such that the number of ghost atoms are minimized. But,  slicing in the x-axis 

reduced the space available for the insertion of the particles thus, many of the particles were 

inserted incorrectly. Another abnormal behaviour observed during these simulation was the 

particles halted at certain compartment and no particle travelled beyond this compartment 

in the x-direction. Thus, another set of timing studies were performed for the 128 and 256 

core simulations. The comparison of simulation times have been shown in Table 4-1. 

Table 4-1: Comparison of time taken for the DEM simulations using 128 and 256 core due to different spatial 
decomposition configurations. 

Number of 

cores used 

Slices in x-

direction 

Slices in y-

direction 

Slices in z-

direction 

Time taken for a 10 

second simulation 

128 16 2 4 264.67 

128 16 4 2 247.2 

256 16 2 8 271.5 

256 16 8 2 252 

256 16 4 4 265.32 

 

The simulation times illustrated in Table 3 show that incorrectly slicing the geometry also 

affect the performance of the system. It can be noted that slicing along y-axis is more 

favourable than slicing along the z-direction. The insertion of particles is hindered when the 

geometry is cut along the z-axis as the inlet is perpendicular to it. LIGGGHTS thus provisions 

lesser space for the insertion of these particles, thus increasing the time of the simulation. 

Thus, just slicing the geometry into 2 sections along the z-axis is preferred. So, the chosen 

configurations for the final simulations consisted of the geometry having only 2 sections in the 

z-direction and more slices along the y-axis. 
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4.1.2 DEM performance 

A test case was run for mono-sized particle of 2mm diameter for timing comparison studies. 

The times are plotted in Figure 4-1 indicate that using lower number of cores is not feasible 

for long simulations since the time taken while using 1 core is about 11x times slower. Thus, 

the simulations were carried out in core configurations of 64, 128 and 256 cores. The studies 

undertaken had 5 mono-sized population of particles of diameter 0.63, 1, 1.26, 1.59 and 2 mm 

simulations and one simulation consisted of particle size distribution. Figure 4-2 shows that 

the amount of CPU time required for a 10 second simulation of the granulator. The post 

processing MATLAB script was run on the dump files obtained from the simulation and it was 

observed that the system reached a steady state about 3-5 seconds of the simulation time. 

Particles with larger diameter reached steady state at a faster rate with an average hold-up of 

particles of about 6500. Pure timing studies are not really a good measure to represent the 

parallel performance of a program. Speedup of a parallel program indicates the speed 

increase of the program when it is run on more compute cores compared to the wall clock 

time when it is run in serial. It is the most common way to represent the parallel performance. 

Speedup is the ratio of the time taken to run the program in serial to the time taken by the 

program to run in parallel as shown in Equation 14. For an ideally parallelized program, the 

speedup is 'n' times, where n is the number of cores used.   

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑒𝑟𝑖𝑎𝑙 𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒
 

(14) 

 

 Speedup does not take into account number of processors used in the simulation, thus 

another metric that is used to determine the parallel performance is parallel efficiency. This 

metric is nothing by speedup divided by the number of cores used. Thus, parallel efficiency 
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normalizes speedup and gives a fractional value of the ideal speedup a program achieves with 

the increase in the number of cores. 

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑒𝑟𝑖𝑎𝑙 𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 ⋅ 𝑛𝑐𝑜𝑟𝑒𝑠
  

(15) 

The speedup of the DEM simulations using only MPI cores is shown in Figure 4-1(b). There is 

a linear speed increase in the speedup up to 16 cores, after which the performance plateaus. 

Figure 4-1(b) indicates that there is not a significant amount of speed improvement for the 

simulation when 256 cores are used for the simulation over 128 cores. This speed decrease 

can be accounted to the communication time between the MPI processes. When the particles 

move from one section to another of the space, they are transferred as ghost particles from 

one process to another process. Thus, there is large amount of communication which is 

required. One of the issues of using a cluster with shared memory within the nodes but none 

in between nodes is that it has to rely on the networking infrastructure of the cluster which 

bottlenecks the communications thus leading to higher communication times. There are more 

sections present when 256 cores are used for the simulation, thus there is more 

communication in this system when compared to 128 core simulation. This excess 

communication makes the simulation slower though there is more processing power and it 

requires lesser time for other calculations. Another observation that can be made from Figure 

4-2 is that the particle size distribution simulation takes more time compared to the 

simulations with mono-sized particles of 1.59mm and 2mm, though the mean size of particles 

in the distribution is 2mm. The default profile provided by LIGGGHTS indicates that the time 

spent in calculating the particle-particle interaction forces was higher than the mono-sized 

simulations. The different diameters make the interaction forces more tedious thus, making 

it computationally more expensive.  
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(a)  (b)  
Figure 4-1 (a) The variation in the amount of time taken for the DEM simulation of 2 mm particles as a function of 

number of cores. The improvements in the speed of the simulation was higher when the cores were increased 
from 1 to 16 when compared to speed improvements obtained with a core count greater than 16.(b) The 

speedup achieved in the DEM simulations of 2 mm particles. There was a linear increase up to 16 cores while the 
speedup seems to plateau when more number of cores are used due to larger amount of communications. 

 

 

Figure 4-2: Time taken for a 10 second DEM simulation for radii ranging from 0.63 mm to 2 mm and a particle size 
distribution ranging from 1mm - 3mm. The speed improvements for the smaller particles was higher as the core 

count increased when compared to the larger particles. The larger number of smaller particles require more 
computational power thus benefit more as the number of cores are increased. 
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The communication time in LIGGGHTS is indicated by the Modify time, which is the sum of the 

times required to transfer the rotating mesh from one process to the other. From Figure 4-3, 

it can be seen that the main portion of the simulation time is taken up by the modify time. 

This is expected since the impeller is rotating at a very high speed of 2000 rpm. So, if the 

number of processes are increased the amount of time spent in transferring the mesh also 

increases. In the studies, the modify time as a percentage of the simulation increased from 

82% to about 90%, when the core count was increased from the 64 cores to 256 cores. But, 

the using the higher number of cores reduces time taken to calculate particle-particle 

interaction as well as in neighbour calculation. Thus, a better implementation for meshing as 

well as decomposition of the geometry for faster simulations with higher core counts.  

 

Figure 4-3: The distribution of time taken by each component of the DEM simulation with varying number of 
cores for the 2 mm particles. It can be observed that the percentage of time required to modify the geometry 

(indicated by the modify time), i.e. rotating the impeller at high speeds, was the highest. 
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4.2 Population Balance Model 

4.2.1 PBM validation 

The population balance model implemented was considered to have an inlet ow of particles 

in the first compartment at a constant mass ow rate of 15 kilograms per hour. The particles 

were assumed to have a log normal distribution with minimum diameter of the particles being 

about 12 _m and the maximum of 2.1 mm with a mean of 0.453 mm and a standard deviation 

of about 0.62 mm.  

The PBM used in this study employs an aggregation kernel that takes into account the 

formation of a larger particle from only two smaller particles. The ratio of the rate of formation 

and the rate of depletion due to aggregation helps us monitor whether the PBM satisfies the 

conservation of mass. Since this PBM takes into account the aggregation of only 2 particles at 

once, the ratio of the particles is expected to have a value of 0.5 during the aggregation 

process. This ratio was reported by the PBM to be 0.5 throughout the simulation, validating 

the accuracy of the PBM used. 

Figure 4-4 shows four different particle size distribution plots at four different time instants. 

Figure 4-4 (a) shows the distribution of the particles at 30 seconds, where we expect to have 

the highest number of the smaller particles. Since the degree of aggregation that has occurred 

is very low, there is a jump in the number of particles of the smaller size. The particle size 

distributions at 2 intermediate times of 50 seconds and 75 seconds are plotted in Figures 4-4 

(b) & 124-4c) respectively. These illustrate that there is an increase in the number of larger 

particles and a subsequent decrease in the number of smaller particles. Figure 4-4 (d) shows 

the distribution of the particle size at the end of the granulation process. It can be seen that 

the number of particles in the higher diameter bins have increased. 
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Figure 4-4: Representation of the total number of particles inside all compartments with diameters less than 0.2 
mm in mm after (a) 30s (b) 50s (c) 75s and (d) 100s of PBM simulation (Mixing takes place for the first 25 

seconds). 

 

4.2.2 PBM performance 

The PBM was run for the results obtained from each of the aforementioned DEM simulations. 

Since the PBM has been parallelized using hybrid techniques, a combination of MPI and OMP 

cores were used to perform the simulations. Figure 4-5 shows the average time taken by a 

PBM simulation for a total of 100 seconds of the granulation process, which includes 25 

seconds of the mixing time and 75 seconds of granulation time. The time taken for simulating 

all DEM scenarios by a single set of core configuration of in less than 10% of each other, thus, 

an average time for a single core configuration was used to illustrate the performance. These 

simulations were run in a varied configuration of cores ranging from 1 to 128. The cores were 
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initially increased to 16 by increasing only the number of MPI processes. To increase the 

number of cores used, 8 OMP threads were employed for a configuration of 32(4 MPI and 8 

OMP), 64(8 MPI and 8 OMP) and 128 cores (16 MPI and 8 OMP). Figure 4-5 shows that the 

program scales well to about 32 cores but then, the improvement in the performance is 

negligible. The scaling with the only MPI cores shows substantial increase in performance. 

Figure 4-6(a) depicts the speed up achieved by the hybrid parallel PBM code. It can be seen 

when the MPI cores used are increased from 1 to 16 cores the speed up achieved is almost 

linear. This speed can be accounted to the way MPI has been implemented inside the code. 

Each compartment of the granulator is offloaded on one MPI process, thus making 16 MPI 

processes the ideal since the granulator has been divided into 16 compartments. When less 

than 16 cores are used, more than 1 compartment is sent to a single MPI process, which leads 

to a decrease in performance. The implementation of OMP on top of the MPI parallelization 

helps improve the performance by the about 10%. The calculations inside the OMP parallel 

section of the code consists of large number of nested loop which have been known to be 

difficult to parallelize (He, Chen and Tang, 2016) using the native C++'s OMP libraries. The 

amount of communication time spent in between these threads is much higher than the speed 

increase achieved by using higher number of cores. One thread waits for another thread to 

complete processing the outer loops thus lower performance increase is achieved by using 

the OMP implementation. 
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Figure 4-5: Average time taken to run the PBM simulation which consisted of 25 seconds of mixing time and 75 
seconds of granulation time at different core configurations. There was a steady decrease as the number of MPI 

processes were increased, but the improvements on increasing the OMP threads were not that significant. 

 

A similar behaviour as in Figure 4-6(b) where the parallel efficiency of the program has been 

plotted against the number of the cores used. This efficiency decreases as the number of cores 

used increase. The decrease in efficiency initially up till 8 cores is steep as the communication 

time in between the MPI process decreases the efficiency, deviating its value from the ideal 

of 1 to about 0.4. With the increase in the MPI processes to 16 and then the implementation 

of OMP the efficiency decreases as there is no major increase in the performance when 

compared to the increase in the number of cores used. The efficiency falls to as low as 11% 

when 128 cores are used. Thus, there is scope for improvement in the parallel implementation 

of the program using OMP, especially in section of the code where nested loops are present.  
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(a)  (b)  
Figure 4-6: (a) The speedup achieved by the hybrid parallel implementation of the PBM program. It can be seen 

the initial speedup up to 16 cores as expected as from an ideal parallel program where as it becomes almost 
constant from 32 cores to 128 cores (b) The parallel efficiency for the hybrid parallelized PBM code. The 

efficiency of the code decreased as the number of cores are increased. The higher number of cores have very low 
efficiency of about 11% which depicted that there is large time being spent in communication in between the 

cores. 

 

4.2.3 PBM GPU performance 

The GPU parallel code timings were not compared directly to the CPU version since it would 

have been unfair since the hardware configurations used were completely different. There 

are several non-code related latencies and delays that could affect the performance of the 

code. Thus, no comparison was performed between the 2 code versions.  

A soft scaling was performed for the GPU code. This refers to change of the size of the problem 

is in direct correlation with the computational power required for its execution. In this study, 

the sections of geometry were varied from 2 to 16 compartments, while the number of solids 

from 1 to 16 for both the solids. Using this configuration, the maximum number of threads 

required would be 4096 while the minimum would be 2 threads. Figure 4-7 shows timing 

comparison between the studies. It can be seen that as the size of the problem increases there 

is a small increase in the time of the simulation which can directly be linked to increase in the 

number of calculations as well problem initiation times would be higher. A larger time is 

required for problems which require threads greater than the number of CUDA cores present 
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on the GPU (here 1792), since the extra blocks would need to wait for the earlier blocks to 

complete their simulations before they can be executed. 

 

Figure 4-7: The benefit of using a GPU over a CPU is that chagning the size / complexity of the problem does not 
affect the performance significantly. Only when the threads need to wait in a GPU, a increase in computational 

time is observed 

4.3 Coupling of DEM and PBM 

4.3.1 One way coupling 

The micro-scale simulations provide an insight about the physics of the system usually by 

tracking each particle. This micro-scale simulation data is useful for the development of 

macroscale mechanistic models which take into account the dynamics of bulk of the particles 

and not individual particles. A similar approach has been implemented in this work, where a 

mechanistic aggregation kernel was developed from the DEM particle-particle collisions. Thus, 

the aim of this section is to illustrate that the physics of the system does not change to a great 

extent with the change in the size of the particles or the distribution of the particles.  

Two simulations from the current scenario will be compared, the DEM + PBM simulation of 

the 2mm mono-sized particle and the second being the simulation where the inserted 
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particles were in a size distribution. The ratio of rate of formation to the rate of depletion, 

both due to aggregation observed during these simulations was 0.5 which indicated that the 

PBM is stable. This meant that the mono-sized and the PSD simulation were stable.  

One of the metrics to determine the physics of the system after a PBM simulation is to check 

the median diameter (D50) plots of the system after the granulation process. D50 indicates 

the maximum diameter of particles that constitute 50% of the total mass. These diameters 

vary along the length of the granulator since the granulated particles take time to pass through 

the granulator and that there is not enough liquid content in the later sections of the 

granulator to encourage the formation of granules. Thus, the D50 for compartments in the 

latter section of the granulator is low. Figures 4-8(a) & 4-8(b) show the D50 plots of the mono-

sized and PSD respectively. It can be seen that both these plots have a similar behaviour when 

it comes to the nature of the increase of the D50 during the granulation process. There is a 

difference of about 20% in the final diameter of the particles predicted, which at micrometre 

scale does not affect the final product quality. This slight deviation is observed due to the 

sudden jump in the rate of the aggregation which increases when particles from one 

compartment with higher D50 get transferred to the next compartment with a lower D50. The 

advantage of running the mono-sized simulation compared to the PSD simulation is the time 

taken to simulate the DEM. It can be seen from Figure 4-4 that the 2mm mono-sized particle 

took about 1.6 times less than the PSD simulation time for the DEM. Since the physics of both 

the systems are not different, using the mono-sized simulations for the DEM help save time 

on the overall simulations. 
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(a)  (b)  

Figure 4-8 (a) D50 of the particles obtained after 100 s of granulation time (25 s of mixing and 75 s of liquid 
addition) for the 2 mm mono-sized particle DEM simulation. (b) D50 of the particles obtained after 100 s of 

granulation time (25 s of mixing and 75 s of liquid addition) for the distributed particle size DEM simulation. The 
trend observed was similar to the trend found in Figure 4-8a. 

 

4.3.2 Two way coupling 

This coupled DEM-PBM simulation were tested on the Stampede2 supercomputer with the 

Knights Landing  configuration. Each of the compute node of the cluster consists of Intel Xeon 

Phi 7250  “Knights Landing” which has 68 cores on a single socket  clocked at 1.4 GHz, with 96 

GB of DDR4 RAM. Each of the cores consists of 4 hardware threads. Simulations were run on 

various configuration of the cores used for each of the  component of the system. The number 

of cores used for the DEM simulation were 64,  while the PBM used 4 MPI processes. The DEM 

and PBM controller scripts used 1 process each for  their respective executions. 

The coupled system took 10 DEM and 9 PBM simulations to reach steady state. Total 

simulation time of DEM execution was 3.575 seconds and PBM was 60 seconds. 

4.3.2.1 Improved system dynamics 

The advantage of using a multiscale model in parallel is that the physical properties of the 

particles can be updated to the new values while moving among the simulations. This not only 

helps achieve better results but also reduces the time required for simulating the system. 

Granulation is used to control the size of the granules of a powder mixture. The median 

diameter of this powder mixture is usually used to characterise the behaviour of the system. 



 46 

 
 

For better control, median diameter of this system should increase gradually such that the 

time of granulation can be capped.  

Figure 4-9 shows the evolution of median diameter of the simulated wet granulation process 

inside a high shear granulator with time. A slow but steady increase initially in the diameter is 

observed which is followed by breakage of granules into smaller ones due to the high amounts 

of shear present as the impeller rotates at high RPMs. This method of prediction utilized 

dynamic data from the DEM simulations making the PBM simulations more real-time. The 

observed trend is better than previous works which only took into account only a serial 

coupling i.e. using the DEM collision information into the PBM for a single iteration.  

 

Figure 4-9: Median diameter of the system after a bi-directional DEM-PBM coupling as a function of time.  
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Chapter 5: Conclusions and Future Directions 
 

This study presents various scenarios which can aid the modelling of a high shear granulator. 

In order to control the high shear granulation process, a model needs to be build that is not 

only accurate but also fast and efficient at predicting the outcomes. Various approaches 

undertaken in this study have been aimed towards achieving a fast, accurate and efficient 

model. The parallelisation of DEM using LIGGGHTS provided a quick, accurate solution to a 

rather computationally heavy problem within a manageable timespan. The mechanistic 

nature of the PBM also makes it more precise in prediction of process results and help detect 

anomalies in a better manner. Using the CPU or the GPU version of the code is dependent on 

the user as well as the hardware available. It can also been from chapter 4 that the median 

results for the bi-directional and the unidirectional only differ by about 5-10% depending upon 

the compartment which is fairly acceptable. Thus, the more efficient way would be use one 

way forward simulation results to increase the speed of the simulations.  

One of the major drawbacks of this study is that the obtained values were not cross-checked 

with experimental values. A high importance should also be given to management of historical 

data since it would also aid decision making. A potential area of study could be statistical 

analysis of experimental data which can be fed into the model to obtain feasible ranges of 

operation. Further using this data regime maps could be developed to help understand the 

granulation dynamics in a better manner. This would all eventually increase the product 

quality and lead to the better manufacturing practices. This would also help reduce the 

number as well as the cost of expensive experimental studies that need to be undertaken. 

Thus, this study serves as a precursor to various developments that would eventually lead to 

an accurate model that could predict the granulation process in a faster and more accurate 

manner.  
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Appendix 
The PBM CPU parallelization described in section 3.3.1 is depicted in an algorithmic manner 

below:  
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