

©2019

CHAITANYA SAMPAT

ALL RIGHTS RESERVED

PARALLEL SOLUTION TO MULTI-SCALE, MULTI-

DIMENSIONAL COUPLED DEM-PBM MODEL FOR

HIGH SHEAR GRANULATION USING HIGH

PERFORMANCE COMPUTING

By

CHAITANYA SAMPAT

A thesis submitted to the

School of Graduate Studies

Rutgers, the state university of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate program in Chemical and Biochemical Engineering

Written under the direction of

Rohit Ramachandran

And Approved by

New Brunswick, New Jersey

JANUARY, 2019

ii

ABSTRACT OF THE THESIS

PARALLEL SOLUTION TO MULTI-SCALE, MULTI-DIMENSIONAL HIGH SHEAR GRANULATION

COUPLED DEM-PBM MODEL USING HIGH PERFORMANCE COMPUTING

By CHAITANYA SAMPAT

Thesis Director:

Rohit Ramachandran

Particulate processes are prevalent in the pharmaceutical industry but, the physics underlying

these processes are complicated. The particle-level models used to describe these systems

require large amounts of computation to solve which makes simulations slow. Another

approach to model these systems is less accurate bulk model which does not capture all the

particle level data but is more efficient to simulate and requires lesser computational power.

A quicker and a more accurate way to model such systems is to use a multi-scale model i.e.

use the particle-scale data into a bulk model. Using a coupled model does not decrease the

time taken by each individual component of the simulation, thus there is also a need to

increase the speed of the separate simulations.

In this work, a unidirectional multi-scale model was used to model the high shear wet

granulation process. A multi-dimensional population balance model (PBM) was developed

with a mechanistic kernel, which obtained collision data from the discrete element modeling

(DEM) simulation. The PBM was run in parallel using MPI + OMP hybrid technique. The DEM

simulations were performed on LIGGGHTS, which runs in parallel using MPI. Speedup of about

14 times was obtained for the PBM simulations and around 12 for the DEM simulations. This

coupling was performed using the radical pilot for scaling studies from 1 to 128 cores for the

iii

PBM and up to 256 cores for the DEM. A further improvement to the PBM code was also done

by developing a code in CUDA C++ such that it could utilize up to 1024 cores on the NVIDIA

graphical processor units (GPU). Using this developed framework, the granulation process has

been modeled accurately much faster than existing approaches in literature.

iv

Acknowledgements

I would like to thank my advisor Dr. Rohit Ramachandran for giving me an opportunity to work

in their group and particularly on this project. I would like to thank him for mentoring me and

providing me support all through my graduate school journey. I would like to thank National

Science Foundation (NSF) for funding this project. I would also like thank Dr. Marianthi

Ierapetritou and Dr. Shantenu Jha, co-PIs on this NSF project. I would also like to acknowledge

The Research in Advanced Distributed Cyberinfrastructure and Applications

Laboratory (RADICAL) from the department of electrical and computer engineering, Rutgers

for providing the Radical Pilot software.

I would like to thank Yukteshwar Baranwal, Anik Chaturbedi, Subhodh Karkala and Franklin

Bettencourt for their help in development of various components of the project and providing

their valuable inputs to the project. Special thanks to the pharmaceutical the particulate

systems lab and team members.

Lastly, I would like to thank my parents, my family and my friends for supporting me through

each and every step of my life.

I would also like to thank the National Science Foundation (NSF) for funding this project

through the grant number: 1547171. Computational resources were provided by NSF XRAC

award TG-MCB090174.

v

Table of Contents
ABSTRACT OF THE THESIS .. ii

Acknowledgements ... iv

Table of Contents ... v

List of Tables .. vii

List of Illustrations ... viii

Chapter 1: Introduction ... 1

1.1 Particulate processes ... 1

1.2 Objective .. 4

Chapter 2: Background and literature review ... 5

2.1 Discrete Element Modeling (DEM) .. 6

2.2. Population Balance Model (PBM) ... 7

2.3. Coupled DEM-PBMs .. 8

2.4 Parallel computing and computer architecture ... 9

2.4.1 Computer Architecture ... 9

2.4.2. Parallel application programming interfaces ... 9

2.4.3 Graphics processing units (GPUs) ... 10

2.5 Previous works on parallel development and solution of PBM and DEM 12

2.6 Pilot abstraction and RADICAL-Pilot (RP) ... 13

Chapter 3: Methods and simulation setup .. 15

3.1 Discrete Element Method (DEM) ... 15

3.1.1 Geometry and Meshing .. 15

3.1.2 DEM input file setting ... 18

3.1.3 DEM data post processing .. 19

3.2 Population Balance Modeling .. 19

3.3 Discretization & parallelization of the PBM ... 23

3.3.1 Parallelizing using CPU cores .. 23

3.3.2 Parallelizing using the GPU ... 25

3.4 RADICAL-Pilot (RP) & coupled DEM and PBM communication 26

3.4.1 One-way DEM-PBM coupling .. 27

3.4.2 Two-way coupling and controller design .. 29

Chapter 4: Results and Discussion ... 32

4.1 Discrete Element Method .. 32

4.1.1 Spatial decomposition studies .. 32

4.1.2 DEM performance ... 34

4.2 Population Balance Model ... 38

vi

4.2.1 PBM validation .. 38

4.2.2 PBM performance ... 39

4.2.3 PBM GPU performance ... 42

4.3 Coupling of DEM and PBM ... 43

4.3.1 One way coupling .. 43

4.3.2 Two way coupling ... 45

Chapter 5: Conclusions and Future Directions .. 47

Appendix .. 48

References ... 49

vii

List of Tables

Table 3-1 : Physical Properties of the particle for the LIGGGHTS input script 18

Table 3-2: Parameters used in the PBM simulation .. 22

Table 4-1: Comparison of time taken for the DEM simulations using 128 and 256 core due to

different spatial decomposition configurations. ... 33

viii

 List of Illustrations

Figure 2-1: The parallel structure matrix inside the GPU ... 11

Figure 3-1: sometric view of the Lódige CoriMix CM5 continuous high shear granulator 16

Figure 3-2: isometric view of the impeller inside the Lódige CoriMix CM5 granulator 16

Figure 3-3 : Components of Lódige CoriMix CM5 continuous high shear granulator. 17

Figure 3-4: The distribution of the PBM calculations to utilize the MPI + OMP parallelization

technique on the CPUs of each node ... 25

Figure 3-5: Workflow of the GPU code indicating data transfers and execution timeline of

the code ... 26

Figure 3-6:Differences in between the coupling of the simulations manually and using RP. . 29

Figure 3-7: Schematic of the bi-directional approach used to model the granulator 31

Figure 4-1 DEM speed up results. .. 36

Figure 4-2: DEM speed improvement results by chagning particle diameter. 36

Figure 4-3: The distribution of time taken by each component of the DEM simulation. 37

Figure 4-4: Representation of the total number of particles inside all compartments after

100s of PBM simulation. .. 39

Figure 4-5: PBM simulation timing result .. 41

Figure 4-6: PBM speed up results .. 42

Figure 4-7: GPU speed up results ... 43

Figure 4-8 Median diameter of the system after uni-directional coupling. 45

Figure 4-9: Median diameter of the system after a bi-directional DEM-PBM coupling as a

function of time. .. 46

 1

Chapter 1: Introduction

1.1 Particulate processes

Nearly half of all industrial chemical production rely on processing of particulate systems to

obtain their final products(Seville, Tüzün and Clift, 2012). These processes account for about

70% of the products of industries like detergents, aerosols, fertilizers, and pharmaceuticals

(Litster, 2016). Particulate processes are widely popular as the manufactured products have

great advantages over liquid formulations such as better chemical and physical stability,

better handling and lower transportation costs. Despite the prevalence of these particulate

processes, the underlying physics of these processes is poorly understood (Rogers, Hashemi

and Ierapetritou, 2013). As a result industries that rely on these processes, especially

pharmaceuticals, have to use expensive heuristic studies and inefficient operational protocols

with high recycle ratios to meet strict regulatory standards (Ramachandran et al., 2009). This

can lead to increase in costs and delay in release of new products. What makes these

processes so challenging to design is that there are none or few governing equations to

accurately predict their behavior (Sen et al., 2012).

Particulate processes are dominated by chaotic micro-scale phenomena that are a result of

numerous particle-particle interactions within these systems. These small scale phenomenon

develop into complex bulk behavior of these processes. To successfully predict the bulk

behavior of these systems, a model needs to capture the particle-particle interactions and

emergent meso-scale phenomena. Recently, the Discrete Element Method (DEM) (Cundall

and Strack, 1979) simulations have been employed in pharmaceutical process modeling to

obtain particle-level data, which helps describe the bulk properties of the particulate system

accurately (Hancock and Ketterhagen, 2011). DEM uses Newton's equations of motion to

model the forces on each particle in the system and it's interactions with the system geometry

 2

and other particles. This enables DEM to model the small scale phenomena that determines

the bulk behavior of particulate system. Since DEM includes large amount of interactions and

force computations, it usually takes a large amount of time to run. Thus, there is a need for a

more efficient simulation technique for these particles. Another approach employed for such

systems is the population balance model (PBM), which is more computationally efficient but,

lacks the accuracy of the DEM.

PBM takes into account the changes in internal or spatial particle properties. This model lacks

sensitivity to design parameters such as equipment geometry. It is semi-mechanistic in nature,

meaning they use population averages and probability to capture bulk behavior but still seek

to capture some of the micro-phenomena of particle-particle interactions using correlations

or empirically developed kernels to approximate those interactions. Even though PBM is much

faster than DEM, a detailed PBM can still take a significant amount of time to solve which

prevents them from being used as widely as they could be in academia and industries

(Barrasso, Walia and Ramachandran, 2013). Though highly detailed PBMs take into account

populating, averaging and contain semi-mechanistic kernels, these PBMs still can have

difficulties in capturing the micro-scale phenomena that are crucial to predicting accurate

dynamics of particulate processes.

Thus, to complement the limitations of each of these modeling techniques they are coupled

to provide a more accurate model. The typical work-flow of such a PBM-DEM coupled model

involves using a short DEM simulation to capture the particle-particle level interactions of the

system and then this physics is fed into the PBM, so that the PBM can more accurately

simulate bulk system behavior (Goldschmidt et al., 2003; Reinhold and Briesen, 2012;

Barrasso, Walia and Ramachandran, 2013). This PBM-DEM method is more accurate than a

PBM simulation alone but runs much faster than a complete DEM simulation. Despite the

performance benefits of these coupled PBM-DEM models they still take too long to solve. In

 3

the past parallel computing has been used to speed up computationally intensive problems

such as Molecular Dynamics (MD), Computational Fluid Dynamics (CFD) and in recent years

this technique has been applied to DEM and PBM simulations (Gunawan, Fusman and Braatz,

2008; A. V Prakash et al., 2013; Bettencourt, Chaturbedi and Ramachandran, 2017).

Parallel Computing is the standard procedure to solve large computational problems in many

sciences. One of the methods, uses High Performance Computers (HPC) to solve over a large

number of cores. A HPC consists of thousands of compute nodes connected via a high speed

network. A typical compute node has multiple cores and several GBs or memory. The network

that connects them, usually InfiniBand, reaches speeds of 56 Gbps. In addition, a high

performance parallel filesystem accompanies the compute nodes, allowing users to read and

write GBs of data efficiently. one of the challenges when implementing parallel applications is

to make sure that data is written in a similar manner to serial programs.

Another form of parallel computing is to use graphics processing unit. These GPUs contain

thousands of compute cores that can be used run tasks in parallel. Thus, a desktop equipped

with a GPU could compute the same results as a CPU code on supercomputers in similar or

lower amount of time as seen in Section 4.2.3. With the launch of Compute Unified Device

Architecture (CUDA), NVIDIA made it easier to use GPUs for general parallel programming in

an approach usually termed as general purpose computing on GPUs (GPGPUs). To ensure

correctness of the results, an appropriate data communication implementation is required.

This one of the major considerations that need to be made while parallelization of code.

Some of the benefits of using parallel computing in the pharmaceutical industry include high

accuracy for parameter estimation as detailed particle-scale simulations can be performed

quickly. Quick simulations can also help improve control of continuous pharmaceutical

processes. This work showcases the speed improvements that can be achieved using HPCs

and how they can help improve process design.

 4

1.2 Objective

The main objective of this work is to develop a DEM-PBM coupled model that run efficiently

in parallel so that it can take advantage of the computational capabilities of modern

computing clusters. The future prospect of this work pertains towards the control of

granulation processes but is not in scope of this study. In the course of development of the

model, the DEM simulation were performed on LAMMPS Improved for General Granular and

Granular Heat Transfer simulations (LIGGGHTS) (Kloss et al., 2012) to model the micro-

mechanics of the Lódige CoriMix CM5 high shear granulator. A 4-Dimensional, reduced order

DEM informed PBM was developed that is parallelized using hybrid techniques (Message

Parsing Interface (MPI) + Open Multi-Processing (OMP)) to model the bulk processes occurring

during the granulation process and is discussed in section 3.3. Section 3.4.1 describes

unidirectional coupling of DEM and PBM using Radical Pilot, a framework developed in

Python. Further bidirectional coupling of DEM –PBM is discussed in sections 3.4.2. An

extension of the PBM onto GPUs for computation has also been discussed in sections 3.3.2

and its results in Section 4.3.2. This provides task level parallelization, to help develop an

accurate model which can be run quickly on high performance computing systems. The speed

improvements obtained for the parallel code and further improvements that can be

implemented are discussed in Chapter 4.

 5

Chapter 2: Background and literature review

Particulate processes are ones in which a system of discrete species exist, such as granules or

catalyst pellets, that undergo changes in average composition, size, or other pertinent

properties. Granulation is one such particulate process which is commonly found in the

pharmaceutical industry. In this process, fine powders are converted to larger granules using

a liquid binder. The three rate processes governing granulation are wetting and nucleation,

consolidation and aggregation and attrition and breakage (Iveson et al., 2001; Cameron et al.,

2005). As the liquid is added to the fine powder, it forms a porous nuclei that can coalesce,

deform and break (Barrasso et al., 2015). As there is an alteration in the properties of these

nuclei, they can take up additional liquid or breakdown to a finer powder. To understand how

a granulation processes will behave with different design and operating parameter settings

and formulations, experimental studies are performed which is a method referred to as

Quality-by-Testing (QbT). This methodology is time consuming and expensive. Thus, newer

research is focused on the QbD concept i.e., developing a mathematical model to represent

the rate process.

The paradigm shift of the pharmaceutical industry for instance towards continuous

manufacturing, emphasizes the need for a more accurate model. This further helps to develop

better control strategies for the process. The modeling of particulate processes is more time

consuming and computationally expensive when compared to fluid systems since particles are

considered as individual entities rather than a continuum like fluid systems. The models

discussed ahead represent the particle-particle interaction at meso and micro-scale.

 6

2.1 Discrete Element Modeling (DEM)

Discrete Element Method is a simulation technique used to monitor the behavior of each

particle as a separate entity compared to other bulk continuum models. This method tracks

the movement of each particle within the space, records the collisions of each particle with

the geometry as well as with each other and it is also subject to other force fields like gravity

(Barrasso et al., 2015). This model is based on the Newton's laws of the motion as shown in

Equations 1 & 2:

mi

dvi

dt
= Fi,net

(1)

Fi,net = Fi,coll + Fi,ext (2)

Where, mi is the mass of the particle, vi represents the velocity of the particle, Fi,net represents

the net force on the particle, forces on the particle due to collisions and other external forces

are represented in Fi,coll and Fi,ext respectively.

Using this method, the distance between each particle is calculated at every time step and if

the distance between two particles is less than the sum of the radii (for spherical particles) a

collision between the two particles is recorded. The tolerance for overlap is low in the normal

as well as the tangential direction. Micro-scale DEM simulations are computationally

demanding and simulations may take up to several days to replicate a few seconds of real

time experiments. Many methods have been implemented to increase the speed of these

simulations, such as scaling by increasing the size of the particles. These approximations are

good in understanding the physics of the system but are not directly applicable to process-

level simulations.

 7

The particle-particle collisions are not always elastic, thus there is a need for models for the

contact forces. The earliest elastic model was developed by Hertz and was extended by

Mindlin by accounting for the tangential forces during the collisions (Adams and Nosonovsky,

2000). The Hertz-Mindlin contact model (Gantt et al., 2006; Hassanpour et al., 2013) has been

utilized in this work.

2.2. Population Balance Model (PBM)

Population balance models (PBM) predict how groups of discrete entities will behave on a

bulk scale due to certain effects acting on the population with respect to time (Ramkrishna

and Singh, 2014). In the context of process engineering and granulation, population balance

models are used to describe how the number densities, of different types of particles, in the

granulator change as rate processes such as aggregation and breakage reshape particles

(Barrasso, Walia and Ramachandran, 2013). A general form of population balance model is

shown in Equation 3.

∂

∂t
F(v, x, t) +

∂

∂v
[F(v, x, t) ⋅

dv

dt
(v, x, t)] +

∂

∂x
[F(v, x, t) ⋅

dx

dt
(v, x, t)]

= ℜformation(v, x, t) + ℜdepletion(v, x, t) + Fiṅ(v, x, t) − Fout
̇ (v, x, t)

(3)

In Equation (3), v is a vector of internal coordinates. For modeling a granulation process v is

commonly used to describe the solid, liquid, and gas content of each type of particle. The

vector x represents external coordinates, usually spatial variance. For a granulation process

this account for spatial variance in the particles as they flow along the granulator.

 8

2.3. Coupled DEM-PBMs

The use of multi-physics models has recently been adapted to understand the behavior of

particle systems. These models help understand the physics of the system at various scales

i.e. micro, meso and macro scale (Sen et al., 2014b). Particle process dynamics have been

inferred from coupling of various physics models viz. CFD, DEM and PBM. Earlier works from

Sen et al., 2014a; Barrasso et al., 2015 have successfully predicted process dynamics of the

granulation process using such multi-physics models.

Initially, Ingram and Cameron (2004) coupled PBM and DEM using two different multi-scale

frameworks which focused on methods of integration and information exchange required

between these two methods. Later efforts on coupling of PBM and DEM were unidirectional

in nature, where the collision data was obtained from the DEM and then used it in PBM. Gantt

et al. (2006) used the DEM data to build a mechanistic model for the PBM. Goldschmidt et al.

(2003) solved a PBM using DEM by replacing smaller particles as they successfully coalesce

with larger particles. (Reinhold and Briesen, 2012)replaced a mechanistic aggregation kernel

with an empirical kernel in order to prove that, in certain cases DEM simulations may not be

necessary for the development of kernels. A hybrid model for one-way coupling has been

reported for continuous mixing (Sen et al., 2012; Sen and Ramachandran, 2013) and is

discussed in Section 3.2.

In this work, a coupled DEM and PBM model has been implemented. In general, the PBM

provides meso-scale information while the DEM gives particle scale information. The

combination of these two methods helps describe the process dynamics with more accuracy.

However, calculations involved due to the number of particles involved in the DEM process as

well as PBM become computationally very heavy, hence the motivation and need for running

the simulations on HPCs and parallelization techniques.

 9

2.4 Parallel computing and computer architecture

2.4.1 Computer Architecture

Analogous to a conventional PC a High Performance Computing cluster node has one or more

CPUs and RAM. Commonly nodes are manufactured with two CPUs, each CPU is a multi-core

meaning it has multiple compute cores such that each can carry out calculations separately

from one another. On a node, memory is divided by CPU sockets, so each CPU has direct

access to memory that is local to its own socket, however accessing memory on another

socket is much slower (Jin et al., 2011). For this reason, data that is needed for computation

should be stored locally to the CPU that needs it.

There are two classes of computer architecture which can be classified by memory locality

features such as distributed memory systems or shared memory systems. These two classes

co-exist in a cluster, thus providing the benefits of each. All the nodes exchange memory using

explicit message passing while each has its own independent memory. The cores on each node

can access data from the shared memory without any explicit message passing statements

from the user. While designing a parallel program all these aspects need to be considered for

optimal performance of the code (Adhianto and Chapman, 2007).

2.4.2. Parallel application programming interfaces

Message Passing Interface (MPI) is a common parallel computing application programming

interface standard. MPI is used for distributed memory parallel computing and this is because

the application programming interface will operate every MPI process as a discrete unit that

does not share memory with the other processes unless explicit message passing is used. Even

on shared a single node where the hardware supports shared memory computing, MPI will

still operate it in a distributed memory fashion (Jin et al., 2011). Operating all cores as distinct

units also means they each need their own copy of all variables used for computation which

 10

results in a large overall memory foot print compared to a similar system if it was operated in

shared memory.

Open Multi-Processing (OMP) is another application program interface stand for parallel

computing. OMP is used for shared memory and can take advantage of shared memory

systems which can result in much faster computation. Although, it does not work well on

distributed systems. This prevents it from being used to efficiently carry out computations

across multiple nodes of a cluster simultaneously (Jin et al., 2011). Since MPI is preferred for

distributed computing and OMP is better for shared computing many researchers have

studied the performance of MPI vs MPI+OMP methods. Many a times a tradeoff is made

between optimizing a program for performance and trying to make it flexible enough to run

on many different computer architectures. It was found that hybrid methods for PBMs allow

the code flexibility for different architectures while still maintaining good performance

(Bettencourt, Chaturbedi and Ramachandran, 2017). It was also reported that only the

external (spatial) coordinates of the PBM were parallelized. In this current work external and

internal (compositions) calculations are parallelized.

2.4.3 Graphics processing units (GPUs)

Graphic processing unit (GPU) were initially mainly used for vector calculations to support

graphics inside a computer system. But, lately GPU manufacturers have started to promote

them general computing as well. This form of computing has been gaining popularity among

scientists to accelerate simulations (Kandrot and Sanders, 2011). These GPUs dominantly have

a massively parallel architecture with hundreds to thousands of computational cores which

can thousands of active threads simultaneously (Keckler et al., 2011). Modern GPU computing

can be exploited using parallel programming languages such as OpenCL and CUDA.

CUDA is an application programming interface (API) developed by NVIDIA (NVIDIA

Corporation, 2012) that enables users to program parallel code for execution on the GPU. This

 11

is framework is an extension implemented on top of C/C++ or FORTRAN. Parallel code for the

GPU is written as kernels, which theoretically are similar to functions or methods in traditional

programming languages. Only few sections of the code can be written in terms of kernel while

the remaining has to be executed in serial on the CPU of the system. The NVCC compiler from

the CUDA toolkit prioritizes the compilation of these kernels before passing the serial section

of the code to the native C/C++ compiler inside the system. There are three main parallel

abstractions that exist in CUDA are grids, blocks and threads (Santos et al., 2013). Each CUDA

kernel is executed serially during the execution of the program unless specified, where the

kernels can be run in parallel using CUDA streams. Each kernel executes as a grid which in turn

consists of various blocks which are constituted by various threads. This thread-block-grid

hierarchy helps obtain fine grained data level and thread level parallelism. An illustration of

this hierarchy is observed in Figure 2-1.

Figure 2-1: The parallel structure matrix inside the GPU and the various memories associated with each structure

Another important aspect related to GPU parallelization is the data communication between

the threads. The GPU consists of various memory modules with different access limitations as

 12

shown in Figure 2-1. The threads inside each block can communicate with each other using

the shared memory. This memory is local to the block where these threads exist i.e. they are

not accessible by threads from other blocks. In addition to the shared memory each thread

has its own local memory where local/temporary variables for each kernel can be saved to

them. The threads from different communicate with each other using the global memory

which is visible to all blocks inside the GPU at the cost of higher communication times.

Accessing of data from the local memory is the fastest for a thread and it slows down as we

move towards shared block memory and the least for accessing data from the global GPU

memory.

2.5 Previous works on parallel development and solution of PBM and DEM

The idea of parallelization to reduce the computation time of the DEM and PBM simulations

have been employed by various researchers in the past. Gunawan, Fusman and Braatz (2008)

used high-resolution finite volumes solution methods for the parallelization of their PBM.

They performed load balancing effectively by decomposing the internal coordinates of their

PBM. They achieved speed improvements up to 100 cores on one system size, but was not

tested for models with more dimensions. Moreover, they mentioned that parallelization could

be improved using shared memory processing. Bettencourt, Chaturbedi and Ramachandran

(2017) took a hybrid approach towards the parallelization of the PBM using both MPI and

OMP. The hybrid parallelization helped achieve a speed improvement of about 98% using 128

cores over the serial code. Prakash (A. V. Prakash et al., 2013; A. V. Prakash, Chaudhury and

Ramachandran, 2013) used the inbuilt Parallel Computation Toolbox (PCT) in MATLAB

(MathWorks™ Documentation, 2017) to parallelize their PBM on lower number of cores, but

this faced the shortcomings of MATLAB's internal processing and could not achieve the speed

improvements of parallelization of a program if it were written in a native programming

language like C/C++ or FORTRAN.

 13

LIGGGHTS (Kloss et al., 2012), an open-source software used to perform DEM simulations has

native support for MPI for parallelizing the simulation by static decomposition which

partitions space such that the area of communication between the MPI processes is

minimized. Kačianauskas et al. (2010) used load balancing methods similar to a static

decomposition and observed that this works well for a mono-dispersed system but the

computational effort increases for simulations for poly-dispersed material. Gopalakrishnan

and Tafti (2013) also reported a speed increase and a parallel efficiency of about 81% in their

CFD-DEM simulation. LIGGGHTS could not take advantage of shared memory interfaces since

it did not support OMP. Berger et al. (2015) implemented hybrid parallelization methods for

the particle-particle interaction and the particle-wall interaction modules in LIGGGHTS and

also used the Zoltan library (Boman et al., 2012) developed by Sandia National Laboratories

for dynamic load balancing. They achieved a speed improvement of about 44% for simulations

performed on higher number of cores, but there was no significant speed improvement for

smaller core counts.

Algorithms to parallelize the PBM codes on GPU have been studied briefly by A. V Prakash,

Chaudhury and Ramachandran, 2013 using the inbuilt MATLAB's parallel computing toolbox

(PCT). This study was able to achieve good speed ups but could have been higher if the code

had been implemented in native programming languages such as C or FORTRAN. Other works

that have used GPU acceleration to improve computation times for their population balance

simulations include those from various other chemical engineering processes such as

crystallization (Szilágyi and Nagy, 2016), combustion (Shi et al., 2012), multiphase ow (Santos

et al., 2013), coagulation dynamics (Xu et al., 2015)

2.6 Pilot abstraction and RADICAL-Pilot (RP)

A primary challenge faced is the scalable execution of multiple (often two, but possibly more)

heterogeneous simulations that need to run independently but have a need to communicate

 14

and exchange information. Traditionally each simulation is submitted as an individual job, but

that invariably leads to a situation where each simulation gets through the batch-queue

systems independent of the other. So although the first-through-the-queue is ready to run, it

stalls fairly soon waiting for the other simulation to make it through the queue. On the other

hand MPI capabilities can be used to execute both simulations as part of a single multi-node

job. Thus whereas the former method suffers from unpredictable queue time for each job,

the latter is suitable to execute tasks that are homogeneous and have no dependencies.

The Pilot abstraction (Luckow et al., 2012) solves these issues: The Pilot abstraction (i) uses a

container-job as a placeholder to acquire resources, and (ii) decouples the initial resource

acquisition from task-to-resource assignment. Once the Pilot (container-job) has acquired the

resources, it can be populated with computational tasks. This functionality allows all tasks to

be executed directly on the resources, without being queued individually. Thus, this approach

supports the requirements of task-level parallelism and high-throughput as needed by science

drivers. RADICAL-Pilot is an implementation of the Pilot abstraction in Python, engineered to

support scalable and efficient launching of heterogeneous tasks across different platforms.

 15

Chapter 3: Methods and simulation setup

3.1 Discrete Element Method (DEM)

LAMMPS Improved for General Granular and Granular Heat Transfer simulations (LIGGGHTS)

v3.60 developed by DCS computing was used for all the DEM simulations performed in this

study. LIGGGHTS natively supports parallelization using MPI, which helps divide the geometry

into various smaller simulation boxes thus, making them run faster compared to a serial code.

Parts of the source code of LIGGGHTS was also edited to enable the code to capture particle-

particle and particle-wall collisions. This version of LIGGGHTS was compiled using the mvapich

(mvapich2 v2.1) and Intel (Intel v15.0.2) compilers with the -O3 optimization option as well as

an option to side load the process to the Xeon phi co-processors was added. The initial timing

studies were performed on Stampede supercomputer located at TACC, University of Texas,

Austin. The hardware configuration of each node consists of 2 8-core Intel Xeon E5-2680

processors based on the Sandy Bridge architecture, 32 GB of memory with QPI interconnects

at 8.0 GT/s PCI-e lanes.

3.1.1 Geometry and Meshing

In this work, the Lódige CoriMix CM5 continuous high shear granulator has been studied. Its

geometry was developed using the SolidWorks™ (Dassault Systemes). This granulator

consisted of a high speed rotating element enclosed within a horizontal cylindrical casing. The

casing (shown in Figure 3-1) consists of a cylinder with diameter of 120 mm at the inlet and

130 mm at the outlet and having a total length of 440 mm. A vertical inlet port is provided at

one end of the casing and an angled outlet port is provided at the larger end of the case.

 16

Figure 3-1: The isometric view of the Lódige CoriMix CM5 continuous high shear granulator casing

The impeller consists of a cylindrical shaft of length 370 mm and diameter 68 mm with four

flattened sides 15 mm wide running along the axis. The blades are placed on these flattened

sides as shown in Figure 3-2. There are three different blade elements on the shaft (Figure 3-

3).

Figure 3-2: isometric view of the impeller inside the Lódige CoriMix CM5 continuous high shear granulator casing

 17

(a) Feed Element (b) Exit Element (c) Shear Element

Figure 3-3 : Components (a) and (b) help in the forward movement of the particles while (c) aids to direct the
particles to the wall inside the Lódige CoriMix CM5 continuous high shear granulator.

At the granulator inlet, there are 4 paddle shaped feed elements following which there are 20

tear drop shaped shearing elements and finally 4 trapezoidal blades near the exit. All these

elements are placed in a spiral configuration. Once the geometry was built in SolidWorks™

(Dassault Systèmes) the shell and impeller were exported as stereo lithography (STL) files. The

coarsest output option was used to keep the STL files small and simple for faster computation

times. The origin of the geometry was not preserved while saving the STL files since it needs

to be aligned in LIGGGHTS as per the process conditions. This resulted in the impeller having

2802 faces and 1281 points with approximately a file size of 775 kilobytes. The shell had 1948

faces and 720 points and size was about 544 kilobytes. MeshLab was used to align the STL files

for importing into LIGGGHTS. No mesh treatments were used on the STLs. The meshes were

then imported into LIGGGHTS using the write command in serial. This resulted in 50 elements

of the impeller file having highly skewed elements, which have more than 5 neighbors per

surface or have an angle less than 0.0181185 radians, that according to LIGGGHTS would

degrade parallel performance. The write exclusion list command in LIGGGHTS was used and

this exclusion list file is then used in the simulation to skip the highly skewed elements during

the simulation.

 18

3.1.2 DEM input file setting

The DEM simulation in LIGGGHTS are setup using an input script which defines the physical

parameters of the particles, importing of the geometry, particle insertion commands, various

physics models to be used during the simulation as well as various compute and dump

commands to help print the data required for post-processing of the data. The particles were

considered to be granular in nature. The Hertz-Mindlin model was used for non-adhesive

elastic contact between the granular particles. The particles were inserted inside the

granulator from the inlet at a constant mass flow rate of 15 kilograms per hour. The rotation

speed of the impeller was kept throughout the study at 2000 rotations per minute. Such a

high rotation speed was chosen since this would lead to high shear between the particles and

the walls of the shell resulting in better size control of the granules. There were 2 sets of

simulations that were performed, one with mono-sized particles and second consisting of a

distribution of sizes. The particle radii chosen for mono-sized simulation varied 0.59mm -

2mm, consecutive particles radii had volume twice of one before them. The radii range of the

distributed size simulation was 1mm - 3mm. The difference in the mechanics of these two

simulations is discussed in the Chapter 4. The physical constants used for the simulations are

given in Table 3-1.

Table 3-1 : Physical Properties of the particle for the LIGGGHTS input script

Parameter Value Units

Young’s modulus of particles 8 × 106 N ⋅ m−2

Young’s modulus of geometry 1 × 108 N ⋅ m−2

Poisson’s Ratio 0.2 --

Coefficient of restitution 0.4 --

Coefficient of static friction 0.5 --

Coefficient of static friction 0.2 --

Density of the granules 500 kg ⋅ m−3

 19

The simulation data was collected after every 50,000 time steps (510�3 sec) for the

visualization of the particles inside the shell, further post processing. The collisions between

each of the particles and the collisions between the particle and the geometry was collected

and used in the PBM.

3.1.3 DEM data post processing

The post processing of the data obtained from the DEM simulations was done using MATLAB.

The first test run on the output data was to determine if the simulation had reached steady-

state. The mass inside the granulator was found out by averaging it over 5 time steps and then

compared to mass inside the granulator after every 10000 time steps (about 510�4 sec) with

a tolerance of about 10%. If the mass was found to be constant for most of the iterations, it

was considered to be at steady state. Another test to determine steady state was to monitor

the number of collision inside the granulator. The visualization of the simulation data was

done by running the LIGGGHTS post processing (LPP) script over the dump files to convert

them into STL files. These files were then loaded in to Paraview (Ayachit, 2017) for a graphical

representation of the simulation. It can be seen that the number of collision start to oscillate

around a mean value. The number of collisions were then plotted and steady state time was

determined. A precautionary script was also run so as to determine that no particles were lost

due to overlap of the geometry with the particles as well as from particle-particle overlap.

3.2 Population Balance Modeling

The population balance equation used in this work is expressed below:

δ

δt
F(s1, s2, x, t) = ℜagg(s1, s2, x, t) + ℜbr(s1, s2, x, t) + Ḟin(s1, s2, x, t)

− Ḟout(s1, s2, x, t)

(4)

 20

where, Ḟ(s1, s2, x) is the number of particles with an active pharmaceutical ingredients (API)

volume of s1 and an excipient volume of s2 in the spatial compartment x. The rate of change

of number of particles with time in different size classes depend on the rate of aggregation,

ℜagg(s1, s2, x) and the rate of breakage,ℜbr(s1, s2, x). Also, the rate of particles coming into,

Ḟin(s1, s2, x) and going out, Ḟout(s1, s2, x) of the spatial compartment due to particle transfer

affect the number of particles in different size classes.

The rate of change of liquid volume for a given time in each particle is calculated using the

equation:

d

dt
F(s1, s2, x)l(s1, s2, x, t)

= ℜliq,agg(s1, s2, x) + ℜliq,break(s1, s2, x)

+ Ḟin(s1, s2, x)lin(s1, s2, x) − Ḟout(s1, s2, x)lout(s1, s2, x)

+ F(s1, s2, x) l ̇
add

(s1, s2, x)

(5)

where, l(s1, s2, x) is the amount of liquid volume in each particle with API volume of s1 and

excipient volume of s2 in the spatial compartment x, ℜliq,agg(s1, s2, x) and ℜliq,break(s1, s2, x)

are respectively the rates of liquid transferred between size classes due to aggregation and

breakage. lin(s1, s2, x) and lout(s1, s2, x) are respectively the liquid volumes of the particles

coming in and going out of the spatial compartment. ladd(s1, s2, x) is the volume of liquid

acquired by each particle in the compartment at every time step due to external liquid

addition. The rate of change of gas volume for a given time is calculated in a similar manner.

The rate of aggregation ℜagg(s1, s2, x) can be calculated as (Chaturbedi et al., 2017):

 21

ℜagg(s1, s2, x) =
1

2
∫ ∫ β(s1

′ , s2
′ , s1 − s1

′ , s2 − s2
′ , x)F(s1

′ , s2
′ , x)F(s1 − s1

′ , s2

s2

0

s1

0

− s2
′ , x)ds1

′ ds2
′

− F(s1, s2, x) ∫ ∫ β(s1, s2, s1
′ , s2

′)F(s1
′ , s2

′ , x)ds1
′ ds2

′
smax2−s2

0

smax1−s1

0

(7)

where, the aggregation kernel, β(s1, s2, s1
′ , s2

′) is expressed as a function of collision rate

coefficient (C) and probability that collision results in agglomeration(ψ) (Ingram and Cameron,

2005) and is shown below:

β(s1, s2, s1
′ , s2

′) = β0C(s1, s2, s1
′ , s2

′ , x)ψ(s1, s2, s1
′ , s2

′ , x) (8)

where, β0 is aggregation rate constant.

Collision rate coefficient (C) is a function of particle sizes and is calculated by normalizing the

number of collisions between groups of particles (Gantt et al., 2006) and is obtained from

LIGGGHTS DEM simulation. A recent study shows that collision frequency depends on PSD as

well (Sen et al., 2014a). Collision rate coefficient for every time step can be expressed as:

C(s1, s2, s1
′ , s2

′) =
Ncoll(s1,s2,s1

′ ,s2
′)

Np(s1,s2)Np(s1
′ , s2

′)Δt

(9)

In Equation 9, Ncoll is the number of collision between two particles in time interval Δt & Np is

number of particle of particular size. The agglomeration (ψ) in Equation 8 can be expressed

as:

ψ(s1, s2, s1
′ , s2

′) = {
ψ0, LC(s1, s2) ≥ LCmin and LC(s1

′ , s2
′) ≥ LCmin

0, LC(s1, s2) < LCmin and LC(s1
′ , s2

′) < LCmin

(10)

 22

In Equation 10, LC is the liquid content of particles and LCmin stands for minimum liquid content

required for coalescence of particles.

Particle transfer rate, Ḟout(s1, s2, x) in Equation 4 is calculated as:

Ḟout(s1, s2, x) = Ḟ(s1, s2, x) (
vcompartment(x)dt

dcompartment
)

(11)

where, vcompartment(x) and dcompartment are respectively the average velocity of particles in

compartment x and the distance between the mid-points of two adjacent compartment,

which is the distance particles have to travel to move to the next spatial compartment. dt is

the time-step. The process parameters and physical constants used in the PBM simulation are

listed in Table 3-2.

Table 3-2: Parameters used in the PBM simulation

Parameter Symbol Value Units

Initial time step δt 0.5 s

Mixing time T 25 s

Granulation time T 75 s

Velocity in axial direction vaxial 1 m ⋅ s−1

Velocity in radial direction vradial 1 m ⋅ s−1

Aggregation constant β0 1 × 10−9 --

Initial particle diameter R 150 μm

Diameter of the impeller D 0.114 m

Impeller rotation speed RPM 2000 --

Minimum granule porosity ϵmin 0.2 --

Consolidation rate C 0 --

Total starting particles in batch Finitial 1 × 106 --

Liquid to solid ratio in binder L/S 0.35 --

Number of compartments c 16 --

Number of first solid bins s 16 --

Number of second solid bins ss 16 --

 23

3.3 Discretization & parallelization of the PBM

The PBM was discretized by converting each of its coordinates in to discrete bins. For the

spatial coordinates a linear bin spacing was used. For the internal coordinates, solid, liquid

and gas a non-linear discretization was used (Barrasso and Ramachandran, 2012). Once the

PBM had been discretized, a finite differences method was used which created a system of

ordinary differential equations (ODEs) (Barrasso and Ramachandran, 2015). The numerical

integration technique used to evaluate the system of ODEs was first order Euler integration

as it is commonly used to solve these types of systems and author found an improvement in

speed while having minimal impact on accuracy (Barrasso, Walia and Ramachandran, 2013).

In order to avoid numerical instability due to the explicit nature of the Euler integration,

Courant-Friedrichs-Lewis (CFL) condition must be satisfied (Courant, Friedrichs and Lewy,

1967). For our PBM model, time-step was calculated at each iteration such that, the number

of particles leaving a particular bin at any time is less than the number of particles present at

that time(Ramachandran and Barton, 2010).

3.3.1 Parallelizing using CPU cores

To obtain the most optimal parallel performance, when solving the PBM, workloads were

distributed in a manner which took into account the shared and distributed memory aspects

of the clusters, the PBM was being run on. To parallelize the model in a way which could take

advantage of shared memory but still effectively run across a distributed system both MPI and

OMP were implemented. One MPI process was used per CPU core and one OMP thread was

used per CPU core, as Bettencourt et al. (2017) found it resulted in the best performance. MPI

was used for message passing from one node to another while OMP was used for calculations

on each node that could be efficiently solved using a shared memory system. An algorithm in

the form of pseudo code is presented in the Appendix illustrating how the calculations are

 24

distributed and carried out during the simulation. For each time step, the MPI processes are

made responsible for a specific chunk of the spatial compartments. Then each OMP thread,

inside of each MPI process, is allocated to one of the cores of multi-core CPU the MPI process

is bound too. The OMP threads divide up and compute ℜagg. After ℜagg is calculated the MPI

processes calculate the new PSD value for their chunk at that specific time step, Ft,c. The slave

processes send their Ftc to the master processes which collects them into the complete Ft,all.

The master process then broadcasts the Ft, all value to all slave processes. This decomposition

of the data into different CPUs and further into various threads is illustrated in Figure 3-4. A

crucial feature of the PBM is that the current PSD (Ft,all) value is used to compute a new time

step size for the next iteration. This means all of the MPI processes need to have the same

dynamic time step size at each iteration for the calculations to be properly carried out in

parallel. Since the completely updated Ft, all value is shared before calculating a new time step

each process will have the same Ft, all value. As a result each process calculates the same size

for the new time step. Since the DEM informed PBM code required dynamic size increase for

the data structure due to different number of particles being present in the DEM simulation,

the PBM code developed used the Standard Template Library containers and their features

available in C++ 11 and later. It requires intel v17.0.2 (GCC 5.3+) or later for compilation. Since

this module was not present on the Stampede, the execution of the PBM was done on the

newer Stampede2 supercomputer. Each of the compute node of the cluster consists of Intel

Xeon Phi 7250 (“Knights Landing") which has 68 cores on a single socket clocked at 1.4 GHz,

with 96 GB of DDR4 RAM. Each of the cores consists of 4 hardware threads. The simulations

were then run by varying the number of MPI processes from 1 to 16 and the number of OMP

threads from 1 to 8, thus, using a maximum of 128 cores.

 25

Figure 3-4: The distribution of the PBM calculations to utilize the MPI + OMP parallelization technique on the
CPUs of each node

3.3.2 Parallelizing using the GPU

NVIDIA’s CUDA toolkit extends the C language such that user defined functions called kernels

can be created to be run on the GPU. These kernels can be executed N times in parallel using

large number of threads. A thread is sequence if programmed instructions that can be

managed by the computer’s scheduler. A kernel depending upon the dimensions of the data

can execute instructions in 1-D, 2-D or 3-D thread blocks. The kernel can also launch multiple

thread blocks at once, thus increasing the number of parallel process executions known as

grid. Similar to a thread block, a grid can be up to 3-D depending upon the data under study.

The code execution was split between the CPU (also called host) and GPU (also called device).

Time sensitive calculations as well as mixed data calculations were handled on the CPU with

a single core, while the more computationally intensive tasks were distributed on to the GPU

using kernels. Like in the CPU parallelization, the geometry was split into multiple

 26

compartments. These compartments in turn formed the number of blocks inside each GPU

kernel. The number of solids used helped formed the threads in each of these blocks. The

work flow of the execution can be found in Figure 3-5. The orange arrows in Figure 3-5 indicate

the transfer of data from the CPU memory to the GPU memory and vice-versa whereas the

blue arrows indicate the sections of the code that is sent to the GPU for parallel execution.

Figure 3-5: Workflow of the GPU code indicating data transfers and execution timeline of the code

These simulations were performed on a desktop computer with an Intel i7-7700k processor

with 32 GB of RAM and the GPU used was a NVIDA Quadro p4000 GPU with 16 GB of GPU

memory, with 1792 CUDA cores and a maximum memory bandwidth of 243 GBps. All the

parameters were kept the same.

3.4 RADICAL-Pilot (RP) & coupled DEM and PBM communication

RADICAL-Pilot defines a number of abstractions to describe resources, and computational

tasks. The Pilot Description is the abstraction that describes resources by defining the number

of cores that will be used, the used HPC resource and the total time that the resources are

 27

needed, and the queue that will be used. The abstraction that defines the execution of a

computational task is the Compute Unit (CU). A CU defines the executable, the necessary

environment that is needed during execution, execution arguments, and any file

dependencies the executable may have. RP also defines two managing components, the Pilot

Manager, and Unit Manager. The Pilot Manager is responsible to submit a Pilot to the selected

resources. The Unit Manager is responsible to place CUs to active Pilots. As soon as a unit is

placed in a pilot it starts executing on the acquired resources.

RADICAL-Pilot was utilized to execute and monitor DEM and PBM simulations. Initially, a pilot

description is created to use several cores of a resource and submitted to the pilot manager.

A CU description is created for the DEM simulation and submitted to the Unit Manager. As

soon as the pilot is active the DEM simulation start executing. When finished a CU that

describes a PBM simulation is submitted at the Unit Manager and start executing. Any data

dependency is satisfied by doing the necessary file linking through the CU description.

3.4.1 One-way DEM-PBM coupling

The DEM simulation was used to determine the time taken to reach steady state while the

DEM data was also used to understand the steady state micro-mechanics of the powder

mixture inside the high shear granulator. These simulations were also checked for particle loss

as mentioned in Section 3.2.1. Physical quantities obtained from the DEM simulation like

velocity, collisions were then used in the PBM simulation to give it a more mechanistic nature.

Figure 3-6a represents the flow of data in the coupling process, where each of the DEM and

PBM job was submitted manually to the supercomputer.

As soon as the pilot is active, the DEM simulation starts executing. When it is finished the DEM

output is linked to the new CU describing the PBM simulation. The PBM is submitted by the

Unit Manager and starts executing. Any data dependency is satisfied by performing the

 28

necessary file linking through the CU description. A pictorial representation of the data flow

using RP can be found in Figure 3-6b.

(a) Workflow without RP

 29

(b) Workflow with RP

Figure 3-6: Flow charts representing differences in between the coupling of the DEM and PBM simulations
manually and using RP respectively.

3.4.2 Two-way coupling and controller design

Figure 3-7 represents the workflow that was used to model the two way coupling DEM PBM

for the high shear granulator. These simulations were monitored using python scripts to

switch in between the two simulations. The controller scripts to monitor the DEM and PBM

 30

simulations were written in python. Each of these scripts were executed along with its

respective simulation. The DEM controller script monitored the collision and velocity data

being dumped by the DEM simulation. The data was first stored and the average of the

velocities for each type of particles and the total number of collisions and impacts were

determined. If there was a change in either of these properties of more than 15%, an exit

status was sent which led to killing the execution of the DEM and indicated to start the PBM

simulation. The DEM controller script also printed out various data files required for the PBM

execution as well as for the restart of the DEM simulation if needed. In the case, the properties

did not show a variation of more than 15% over the span of 5s of DEM simulation time, it was

considered to be in steady state and that all the simulations were halted. The PBM controller

read the d50 and number of particle files which were printed by the PBM after a constant

time interval. The change in each of these properties in each compartment was monitored

and an exit signal was sent if they varied by more than 15%. The halting of the PBM was

accompanied by the printing of files required to restart DEM with new diameters and data

for restarting the PBM if needed after the DEM simulation.

 31

Figure 3-7: Schematic of the bi-directional approach used to model the granulator

 32

Chapter 4: Results and Discussion

4.1 Discrete Element Method

4.1.1 Spatial decomposition studies

LIGGGHTS as discussed previously, statically decomposes the work space and each section is

sent to a MPI process for calculations. Thus, the division of the space becomes an important

criteria for the simulation for efficient load balancing. The initial studies were undertaken for

a mono-sized particle of size 1 mm and the simulation was carried out for 0.5 second of

granulation time. The initial timing studies for the decomposition were performed using 64

cores. The effect of the decomposition on the simulation time can be seen in Table 3. This

indicates that dividing the x-direction in more number of compartments help increase the

speed of the simulation. This is easy to comprehend since the granulator has its length parallel

to the x-axis. These results also show that if the geometry is divided into more than 2

compartments in the y-axis or the z-axis the simulation time increases. This can be accounted

to the increased communication required to transfer the rotating impeller mesh from one

compartment in the y-axis or the z-axis to the another compartment for each time step. Since

MPI is limited by communication in between the nodes, a speed decrease is observed due to

increased partitioning in these directions.

When MPI is used for parallelization of a task, load balancing becomes an important

parameter that needs to be considered. When the geometry is divided, the amount of

computation done by one core should be in a similar to other processors. This helps in better

utilization of the resources as well as make the simulations run faster. Following the results

from the initial timing studies, the y and the z-axes were not divided in more than 2

compartments for 128 and 256 core simulation as well. This meant that the x-axis was divided

into 32 and 64 compartments respectively. In order to avoid the expensive communication

between the processes, LIGGGHTS tries to insert the particles towards the centre of the

 33

compartment such that the number of ghost atoms are minimized. But, slicing in the x-axis

reduced the space available for the insertion of the particles thus, many of the particles were

inserted incorrectly. Another abnormal behaviour observed during these simulation was the

particles halted at certain compartment and no particle travelled beyond this compartment

in the x-direction. Thus, another set of timing studies were performed for the 128 and 256

core simulations. The comparison of simulation times have been shown in Table 4-1.

Table 4-1: Comparison of time taken for the DEM simulations using 128 and 256 core due to different spatial
decomposition configurations.

Number of

cores used

Slices in x-

direction

Slices in y-

direction

Slices in z-

direction

Time taken for a 10

second simulation

128 16 2 4 264.67

128 16 4 2 247.2

256 16 2 8 271.5

256 16 8 2 252

256 16 4 4 265.32

The simulation times illustrated in Table 3 show that incorrectly slicing the geometry also

affect the performance of the system. It can be noted that slicing along y-axis is more

favourable than slicing along the z-direction. The insertion of particles is hindered when the

geometry is cut along the z-axis as the inlet is perpendicular to it. LIGGGHTS thus provisions

lesser space for the insertion of these particles, thus increasing the time of the simulation.

Thus, just slicing the geometry into 2 sections along the z-axis is preferred. So, the chosen

configurations for the final simulations consisted of the geometry having only 2 sections in the

z-direction and more slices along the y-axis.

 34

4.1.2 DEM performance

A test case was run for mono-sized particle of 2mm diameter for timing comparison studies.

The times are plotted in Figure 4-1 indicate that using lower number of cores is not feasible

for long simulations since the time taken while using 1 core is about 11x times slower. Thus,

the simulations were carried out in core configurations of 64, 128 and 256 cores. The studies

undertaken had 5 mono-sized population of particles of diameter 0.63, 1, 1.26, 1.59 and 2 mm

simulations and one simulation consisted of particle size distribution. Figure 4-2 shows that

the amount of CPU time required for a 10 second simulation of the granulator. The post

processing MATLAB script was run on the dump files obtained from the simulation and it was

observed that the system reached a steady state about 3-5 seconds of the simulation time.

Particles with larger diameter reached steady state at a faster rate with an average hold-up of

particles of about 6500. Pure timing studies are not really a good measure to represent the

parallel performance of a program. Speedup of a parallel program indicates the speed

increase of the program when it is run on more compute cores compared to the wall clock

time when it is run in serial. It is the most common way to represent the parallel performance.

Speedup is the ratio of the time taken to run the program in serial to the time taken by the

program to run in parallel as shown in Equation 14. For an ideally parallelized program, the

speedup is 'n' times, where n is the number of cores used.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑒𝑟𝑖𝑎𝑙 𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒

(14)

 Speedup does not take into account number of processors used in the simulation, thus

another metric that is used to determine the parallel performance is parallel efficiency. This

metric is nothing by speedup divided by the number of cores used. Thus, parallel efficiency

 35

normalizes speedup and gives a fractional value of the ideal speedup a program achieves with

the increase in the number of cores.

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑒𝑟𝑖𝑎𝑙 𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 ⋅ 𝑛𝑐𝑜𝑟𝑒𝑠

(15)

The speedup of the DEM simulations using only MPI cores is shown in Figure 4-1(b). There is

a linear speed increase in the speedup up to 16 cores, after which the performance plateaus.

Figure 4-1(b) indicates that there is not a significant amount of speed improvement for the

simulation when 256 cores are used for the simulation over 128 cores. This speed decrease

can be accounted to the communication time between the MPI processes. When the particles

move from one section to another of the space, they are transferred as ghost particles from

one process to another process. Thus, there is large amount of communication which is

required. One of the issues of using a cluster with shared memory within the nodes but none

in between nodes is that it has to rely on the networking infrastructure of the cluster which

bottlenecks the communications thus leading to higher communication times. There are more

sections present when 256 cores are used for the simulation, thus there is more

communication in this system when compared to 128 core simulation. This excess

communication makes the simulation slower though there is more processing power and it

requires lesser time for other calculations. Another observation that can be made from Figure

4-2 is that the particle size distribution simulation takes more time compared to the

simulations with mono-sized particles of 1.59mm and 2mm, though the mean size of particles

in the distribution is 2mm. The default profile provided by LIGGGHTS indicates that the time

spent in calculating the particle-particle interaction forces was higher than the mono-sized

simulations. The different diameters make the interaction forces more tedious thus, making

it computationally more expensive.

 36

(a) (b)
Figure 4-1 (a) The variation in the amount of time taken for the DEM simulation of 2 mm particles as a function of

number of cores. The improvements in the speed of the simulation was higher when the cores were increased
from 1 to 16 when compared to speed improvements obtained with a core count greater than 16.(b) The

speedup achieved in the DEM simulations of 2 mm particles. There was a linear increase up to 16 cores while the
speedup seems to plateau when more number of cores are used due to larger amount of communications.

Figure 4-2: Time taken for a 10 second DEM simulation for radii ranging from 0.63 mm to 2 mm and a particle size
distribution ranging from 1mm - 3mm. The speed improvements for the smaller particles was higher as the core

count increased when compared to the larger particles. The larger number of smaller particles require more
computational power thus benefit more as the number of cores are increased.

 37

The communication time in LIGGGHTS is indicated by the Modify time, which is the sum of the

times required to transfer the rotating mesh from one process to the other. From Figure 4-3,

it can be seen that the main portion of the simulation time is taken up by the modify time.

This is expected since the impeller is rotating at a very high speed of 2000 rpm. So, if the

number of processes are increased the amount of time spent in transferring the mesh also

increases. In the studies, the modify time as a percentage of the simulation increased from

82% to about 90%, when the core count was increased from the 64 cores to 256 cores. But,

the using the higher number of cores reduces time taken to calculate particle-particle

interaction as well as in neighbour calculation. Thus, a better implementation for meshing as

well as decomposition of the geometry for faster simulations with higher core counts.

Figure 4-3: The distribution of time taken by each component of the DEM simulation with varying number of
cores for the 2 mm particles. It can be observed that the percentage of time required to modify the geometry

(indicated by the modify time), i.e. rotating the impeller at high speeds, was the highest.

 38

4.2 Population Balance Model

4.2.1 PBM validation

The population balance model implemented was considered to have an inlet ow of particles

in the first compartment at a constant mass ow rate of 15 kilograms per hour. The particles

were assumed to have a log normal distribution with minimum diameter of the particles being

about 12 _m and the maximum of 2.1 mm with a mean of 0.453 mm and a standard deviation

of about 0.62 mm.

The PBM used in this study employs an aggregation kernel that takes into account the

formation of a larger particle from only two smaller particles. The ratio of the rate of formation

and the rate of depletion due to aggregation helps us monitor whether the PBM satisfies the

conservation of mass. Since this PBM takes into account the aggregation of only 2 particles at

once, the ratio of the particles is expected to have a value of 0.5 during the aggregation

process. This ratio was reported by the PBM to be 0.5 throughout the simulation, validating

the accuracy of the PBM used.

Figure 4-4 shows four different particle size distribution plots at four different time instants.

Figure 4-4 (a) shows the distribution of the particles at 30 seconds, where we expect to have

the highest number of the smaller particles. Since the degree of aggregation that has occurred

is very low, there is a jump in the number of particles of the smaller size. The particle size

distributions at 2 intermediate times of 50 seconds and 75 seconds are plotted in Figures 4-4

(b) & 124-4c) respectively. These illustrate that there is an increase in the number of larger

particles and a subsequent decrease in the number of smaller particles. Figure 4-4 (d) shows

the distribution of the particle size at the end of the granulation process. It can be seen that

the number of particles in the higher diameter bins have increased.

 39

Figure 4-4: Representation of the total number of particles inside all compartments with diameters less than 0.2
mm in mm after (a) 30s (b) 50s (c) 75s and (d) 100s of PBM simulation (Mixing takes place for the first 25

seconds).

4.2.2 PBM performance

The PBM was run for the results obtained from each of the aforementioned DEM simulations.

Since the PBM has been parallelized using hybrid techniques, a combination of MPI and OMP

cores were used to perform the simulations. Figure 4-5 shows the average time taken by a

PBM simulation for a total of 100 seconds of the granulation process, which includes 25

seconds of the mixing time and 75 seconds of granulation time. The time taken for simulating

all DEM scenarios by a single set of core configuration of in less than 10% of each other, thus,

an average time for a single core configuration was used to illustrate the performance. These

simulations were run in a varied configuration of cores ranging from 1 to 128. The cores were

 40

initially increased to 16 by increasing only the number of MPI processes. To increase the

number of cores used, 8 OMP threads were employed for a configuration of 32(4 MPI and 8

OMP), 64(8 MPI and 8 OMP) and 128 cores (16 MPI and 8 OMP). Figure 4-5 shows that the

program scales well to about 32 cores but then, the improvement in the performance is

negligible. The scaling with the only MPI cores shows substantial increase in performance.

Figure 4-6(a) depicts the speed up achieved by the hybrid parallel PBM code. It can be seen

when the MPI cores used are increased from 1 to 16 cores the speed up achieved is almost

linear. This speed can be accounted to the way MPI has been implemented inside the code.

Each compartment of the granulator is offloaded on one MPI process, thus making 16 MPI

processes the ideal since the granulator has been divided into 16 compartments. When less

than 16 cores are used, more than 1 compartment is sent to a single MPI process, which leads

to a decrease in performance. The implementation of OMP on top of the MPI parallelization

helps improve the performance by the about 10%. The calculations inside the OMP parallel

section of the code consists of large number of nested loop which have been known to be

difficult to parallelize (He, Chen and Tang, 2016) using the native C++'s OMP libraries. The

amount of communication time spent in between these threads is much higher than the speed

increase achieved by using higher number of cores. One thread waits for another thread to

complete processing the outer loops thus lower performance increase is achieved by using

the OMP implementation.

 41

Figure 4-5: Average time taken to run the PBM simulation which consisted of 25 seconds of mixing time and 75
seconds of granulation time at different core configurations. There was a steady decrease as the number of MPI

processes were increased, but the improvements on increasing the OMP threads were not that significant.

A similar behaviour as in Figure 4-6(b) where the parallel efficiency of the program has been

plotted against the number of the cores used. This efficiency decreases as the number of cores

used increase. The decrease in efficiency initially up till 8 cores is steep as the communication

time in between the MPI process decreases the efficiency, deviating its value from the ideal

of 1 to about 0.4. With the increase in the MPI processes to 16 and then the implementation

of OMP the efficiency decreases as there is no major increase in the performance when

compared to the increase in the number of cores used. The efficiency falls to as low as 11%

when 128 cores are used. Thus, there is scope for improvement in the parallel implementation

of the program using OMP, especially in section of the code where nested loops are present.

 42

(a) (b)
Figure 4-6: (a) The speedup achieved by the hybrid parallel implementation of the PBM program. It can be seen

the initial speedup up to 16 cores as expected as from an ideal parallel program where as it becomes almost
constant from 32 cores to 128 cores (b) The parallel efficiency for the hybrid parallelized PBM code. The

efficiency of the code decreased as the number of cores are increased. The higher number of cores have very low
efficiency of about 11% which depicted that there is large time being spent in communication in between the

cores.

4.2.3 PBM GPU performance

The GPU parallel code timings were not compared directly to the CPU version since it would

have been unfair since the hardware configurations used were completely different. There

are several non-code related latencies and delays that could affect the performance of the

code. Thus, no comparison was performed between the 2 code versions.

A soft scaling was performed for the GPU code. This refers to change of the size of the problem

is in direct correlation with the computational power required for its execution. In this study,

the sections of geometry were varied from 2 to 16 compartments, while the number of solids

from 1 to 16 for both the solids. Using this configuration, the maximum number of threads

required would be 4096 while the minimum would be 2 threads. Figure 4-7 shows timing

comparison between the studies. It can be seen that as the size of the problem increases there

is a small increase in the time of the simulation which can directly be linked to increase in the

number of calculations as well problem initiation times would be higher. A larger time is

required for problems which require threads greater than the number of CUDA cores present

 43

on the GPU (here 1792), since the extra blocks would need to wait for the earlier blocks to

complete their simulations before they can be executed.

Figure 4-7: The benefit of using a GPU over a CPU is that chagning the size / complexity of the problem does not
affect the performance significantly. Only when the threads need to wait in a GPU, a increase in computational

time is observed

4.3 Coupling of DEM and PBM

4.3.1 One way coupling

The micro-scale simulations provide an insight about the physics of the system usually by

tracking each particle. This micro-scale simulation data is useful for the development of

macroscale mechanistic models which take into account the dynamics of bulk of the particles

and not individual particles. A similar approach has been implemented in this work, where a

mechanistic aggregation kernel was developed from the DEM particle-particle collisions. Thus,

the aim of this section is to illustrate that the physics of the system does not change to a great

extent with the change in the size of the particles or the distribution of the particles.

Two simulations from the current scenario will be compared, the DEM + PBM simulation of

the 2mm mono-sized particle and the second being the simulation where the inserted

0

5

10

15

20

25

30

35

40

45

0 512 1024 1536 2048 2560 3072 3584 4096

Ti
m

e
ta

ke
n

 f
o

r
1

0
0

s
si

m
u

la
ti

o
n

Number of threads used

 44

particles were in a size distribution. The ratio of rate of formation to the rate of depletion,

both due to aggregation observed during these simulations was 0.5 which indicated that the

PBM is stable. This meant that the mono-sized and the PSD simulation were stable.

One of the metrics to determine the physics of the system after a PBM simulation is to check

the median diameter (D50) plots of the system after the granulation process. D50 indicates

the maximum diameter of particles that constitute 50% of the total mass. These diameters

vary along the length of the granulator since the granulated particles take time to pass through

the granulator and that there is not enough liquid content in the later sections of the

granulator to encourage the formation of granules. Thus, the D50 for compartments in the

latter section of the granulator is low. Figures 4-8(a) & 4-8(b) show the D50 plots of the mono-

sized and PSD respectively. It can be seen that both these plots have a similar behaviour when

it comes to the nature of the increase of the D50 during the granulation process. There is a

difference of about 20% in the final diameter of the particles predicted, which at micrometre

scale does not affect the final product quality. This slight deviation is observed due to the

sudden jump in the rate of the aggregation which increases when particles from one

compartment with higher D50 get transferred to the next compartment with a lower D50. The

advantage of running the mono-sized simulation compared to the PSD simulation is the time

taken to simulate the DEM. It can be seen from Figure 4-4 that the 2mm mono-sized particle

took about 1.6 times less than the PSD simulation time for the DEM. Since the physics of both

the systems are not different, using the mono-sized simulations for the DEM help save time

on the overall simulations.

 45

(a) (b)

Figure 4-8 (a) D50 of the particles obtained after 100 s of granulation time (25 s of mixing and 75 s of liquid
addition) for the 2 mm mono-sized particle DEM simulation. (b) D50 of the particles obtained after 100 s of

granulation time (25 s of mixing and 75 s of liquid addition) for the distributed particle size DEM simulation. The
trend observed was similar to the trend found in Figure 4-8a.

4.3.2 Two way coupling

This coupled DEM-PBM simulation were tested on the Stampede2 supercomputer with the

Knights Landing configuration. Each of the compute node of the cluster consists of Intel Xeon

Phi 7250 “Knights Landing” which has 68 cores on a single socket clocked at 1.4 GHz, with 96

GB of DDR4 RAM. Each of the cores consists of 4 hardware threads. Simulations were run on

various configuration of the cores used for each of the component of the system. The number

of cores used for the DEM simulation were 64, while the PBM used 4 MPI processes. The DEM

and PBM controller scripts used 1 process each for their respective executions.

The coupled system took 10 DEM and 9 PBM simulations to reach steady state. Total

simulation time of DEM execution was 3.575 seconds and PBM was 60 seconds.

4.3.2.1 Improved system dynamics

The advantage of using a multiscale model in parallel is that the physical properties of the

particles can be updated to the new values while moving among the simulations. This not only

helps achieve better results but also reduces the time required for simulating the system.

Granulation is used to control the size of the granules of a powder mixture. The median

diameter of this powder mixture is usually used to characterise the behaviour of the system.

 46

For better control, median diameter of this system should increase gradually such that the

time of granulation can be capped.

Figure 4-9 shows the evolution of median diameter of the simulated wet granulation process

inside a high shear granulator with time. A slow but steady increase initially in the diameter is

observed which is followed by breakage of granules into smaller ones due to the high amounts

of shear present as the impeller rotates at high RPMs. This method of prediction utilized

dynamic data from the DEM simulations making the PBM simulations more real-time. The

observed trend is better than previous works which only took into account only a serial

coupling i.e. using the DEM collision information into the PBM for a single iteration.

Figure 4-9: Median diameter of the system after a bi-directional DEM-PBM coupling as a function of time.

60

65

70

75

80

85

90

95

100

105

110

0 20 40 60 80 100

M
ed

ia
n

 D
ia

m
et

er
 (

µ
m

)

Time (s)

C1

C2

C3

C4

 47

Chapter 5: Conclusions and Future Directions

This study presents various scenarios which can aid the modelling of a high shear granulator.

In order to control the high shear granulation process, a model needs to be build that is not

only accurate but also fast and efficient at predicting the outcomes. Various approaches

undertaken in this study have been aimed towards achieving a fast, accurate and efficient

model. The parallelisation of DEM using LIGGGHTS provided a quick, accurate solution to a

rather computationally heavy problem within a manageable timespan. The mechanistic

nature of the PBM also makes it more precise in prediction of process results and help detect

anomalies in a better manner. Using the CPU or the GPU version of the code is dependent on

the user as well as the hardware available. It can also been from chapter 4 that the median

results for the bi-directional and the unidirectional only differ by about 5-10% depending upon

the compartment which is fairly acceptable. Thus, the more efficient way would be use one

way forward simulation results to increase the speed of the simulations.

One of the major drawbacks of this study is that the obtained values were not cross-checked

with experimental values. A high importance should also be given to management of historical

data since it would also aid decision making. A potential area of study could be statistical

analysis of experimental data which can be fed into the model to obtain feasible ranges of

operation. Further using this data regime maps could be developed to help understand the

granulation dynamics in a better manner. This would all eventually increase the product

quality and lead to the better manufacturing practices. This would also help reduce the

number as well as the cost of expensive experimental studies that need to be undertaken.

Thus, this study serves as a precursor to various developments that would eventually lead to

an accurate model that could predict the granulation process in a faster and more accurate

manner.

 48

Appendix
The PBM CPU parallelization described in section 3.3.1 is depicted in an algorithmic manner

below:

 49

References

MathWorks™ Documentation (2017) ‘Parallel Computing Toolbox - MATLAB®

Adams, G. G. and Nosonovsky, M. (2000) ‘Contact modeling—forces’, Tribology
International. Elsevier, 33(5), pp. 431–442.

Adhianto, L. and Chapman, B. (2007) ‘Performance modeling of communication and
computation in hybrid {MPI} and {OpenMP} applications’, Simulation Modelling Practice and
Theory. Elsevier, 15(4), pp. 481–491.

Barrasso, D., Eppinger, T., Pereira, F. E., Aglave, R., Debus, K., Bermingham, S. K. and
Ramachandran, R. (2015) ‘A multi-scale, mechanistic model of a wet granulation process
using a novel bi-directional PBM–DEM coupling algorithm’, Chemical Engineering Science,
123, pp. 500–513. doi: 10.1016/j.ces.2014.11.011.

Barrasso, D. and Ramachandran, R. (2012) ‘A comparison of model order reduction
techniques for a four-dimensional population balance model describing multi-component
wet granulation processes’, Chemical engineering science. Elsevier, 80, pp. 380–392.

Barrasso, D. and Ramachandran, R. (2015) ‘Multi-scale modeling of granulation processes:
bi-directional coupling of {PBM} with {DEM} via collision frequencies’, Chemical Engineering
Research and Design. Elsevier, 93, pp. 304–317.

Barrasso, D., Walia, S. and Ramachandran, R. (2013) ‘Multi-component population balance
modeling of continuous granulation processes: a parametric study and comparison with
experimental trends’, Powder technology. Elsevier, 241, pp. 85–97.

Berger, R., Kloss, C., Kohlmeyer, A. and Pirker, S. (2015) ‘Hybrid parallelization of the
{LIGGGHTS} open-source {DEM} code’, Powder Technology. Elsevier, 278, pp. 234–247.

Bettencourt, F. E., Chaturbedi, A. and Ramachandran, R. (2017) ‘Parallelization methods for
efficient simulation of high dimensional population balance models of granulation’,
Computers & Chemical Engineering. Elsevier, 107(Supplement C), pp. 158–170.

Boman, E. G., Çatalyürek, Ü. V, Chevalier, C. and Devine, K. D. (2012) ‘The {Zoltan} and
{Isorropia} parallel toolkits for combinatorial scientific computing: Partitioning, ordering and
coloring’, Scientific Programming. IOS Press, 20(2), pp. 129–150.

Cameron, I. T., Wang, F. Y., Immanuel, C. D. and Stepanek, F. (2005) ‘Process systems
modelling and applications in granulation: A review’, Chemical Engineering Science. Elsevier,
60(14), pp. 3723–3750.

Chaturbedi, A., Bandi, C. K., Reddy, D., Pandey, P., Narang, A., Bindra, D., Tao, L., Zhao, J., Li,
J., Hussain, M. and Ramachandran, R. (2017) ‘Compartment based population balance model
development of a high shear wet granulation process via dry and wet binder addition’,
Chemical Engineering Research and Design. Elsevier, 123, pp. 187–200.

Courant, R., Friedrichs, K. and Lewy, H. (1967) ‘On the partial difference equations of
mathematical physics’, {IBM} journal of Research and Development. IBM, 11(2), pp. 215–
234.

Cundall, P. A. and Strack, O. D. L. (1979) ‘A discrete numerical model for granular
assemblies’, geotechnique, 29(1), pp. 47–65.

Gantt, J. A., Cameron, I. T., Litster, J. D. and Gatzke, E. P. (2006) ‘Determination of

 50

coalescence kernels for high-shear granulation using {DEM} simulations’, Powder
Technology. Elsevier, 170(2), pp. 53–63.

Goldschmidt, M. J. V, Weijers, G. G. C., Boerefijn, R. and Kuipers, J. A. M. (2003) ‘Discrete
element modelling of fluidised bed spray granulation’, Powder Technology. Elsevier, 138(1),
pp. 39–45.

Gopalakrishnan, P. and Tafti, D. (2013) ‘Development of parallel {DEM} for the open source
code {MFIX}’, Powder technology. Elsevier, 235, pp. 33–41.

Gunawan, R., Fusman, I. and Braatz, R. D. (2008) ‘Parallel high-resolution finite volume
simulation of particulate processes’, AIChE Journal. Wiley Subscription Services, Inc., A Wiley
Company, 54(6), pp. 1449–1458. doi: 10.1002/aic.11484.

Hancock, B. C. and Ketterhagen, W. R. (2011) ‘Discrete element method ({DEM}) simulations
of stratified sampling during solid dosage form manufacturing’, International journal of
pharmaceutics. Elsevier, 418(2), pp. 265–272.

Hassanpour, A., Pasha, M., Susana, L., Rahmanian, N., Santomaso, A. C. and Ghadiri, M.
(2013) ‘Analysis of seeded granulation in high shear granulators by discrete element
method’, Powder technology. Elsevier, 238, pp. 50–55.

He, J., Chen, W. and Tang, Z. (2016) ‘{NestedMP}: Enabling cache-aware thread mapping for
nested parallel shared memory applications’, Parallel Computing. Elsevier, 51, pp. 56–66.

Ingram, G. D. and Cameron, I. T. (2004) ‘Challenges in multiscale modelling and its
application to granulation systems’, Asia-Pacific Journal of Chemical Engineering. Wiley
Online Library, 12(3–4), pp. 293–308.

Ingram, G. D. and Cameron, I. T. (2005) ‘Formulation and comparison of alternative
multiscale models for drum granulation’, Computer Aided Chemical Engineering. Elsevier,
20, pp. 481–486.

Iveson, S. M., Litster, J. D., Hapgood, K. and Ennis, B. J. (2001) ‘Nucleation, growth and
breakage phenomena in agitated wet granulation processes: a review’, Powder technology.
Elsevier, 117(1), pp. 3–39.

Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L. and Chapman, B. (2011) ‘High
performance computing using {MPI} and {OpenMP} on multi-core parallel systems’, Parallel
Computing. Elsevier, 37(9), pp. 562–575.

Kačianauskas, R., Maknickas, A., Kačeniauskas, A., Markauskas, D. and Balevičius, R. (2010)
‘Parallel discrete element simulation of poly-dispersed granular material’, Advances in
Engineering Software. Elsevier, 41(1), pp. 52–63.

Kandrot, E. and Sanders, J. (2011) Cuda By Example: An Introduction To General-Purpose
Gpu Programming. Addison-Wesley Professional. Available at:
https://books.google.com/books?id=6mwanQAACAAJ.

Keckler, S. W., Dally, W. J., Khailany, B., Garland, M. and Glasco, D. (2011) ‘GPUs and the
future of parallel computing’, IEEE Micro. IEEE, 31(5), pp. 7–17.

Kloss, C., Goniva, C., Hager, A., Amberger, S. and Pirker, S. (2012) ‘Models, algorithms and
validation for opensource {DEM} and {CFD--DEM}’, Progress in Computational Fluid
Dynamics, an International Journal. Inderscience Publishers, 12(2–3), pp. 140–152.

Litster, J. (2016) Design and Processing of Particulate Products. Cambridge University Press.

 51

Luckow, A., Santcroos, M., Merzky, A., Weidner, O., Mantha, P. and Jha, S. (2012) ‘P*: A
model of pilot-abstractions’, in E-science, 2012 IEEE 8th International Conference on, pp. 1–
10.

NVIDIA~Corporation (2012) ‘NVIDIA CUDA C Programming Guide’. NVIDIA Corporation, 2701
San Tomas Expressway, Santa Clara, CA 95050. Available at:
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Prog
ramming_Guide.pdf.

Prakash, A. V., Chaudhury, A., Barrasso, D. and Ramachandran, R. (2013) ‘Simulation of
population balance model-based particulate processes via parallel and distributed
computing’, Chemical Engineering Research and Design. Institution of Chemical Engineers,
91(7), pp. 1259–1271. doi: 10.1016/j.cherd.2013.01.017.

Prakash, A. V., Chaudhury, A. and Ramachandran, R. (2013) ‘Parallel simulation of population
balance model-based particulate processes using multicore CPUs and GPUs’, Modelling and
Simulation in Engineering, 2013. doi: 10.1155/2013/475478.

Prakash, A. V, Chaudhury, A., Barrasso, D. and Ramachandran, R. (2013) ‘Simulation of
population balance model-based particulate processes via parallel and distributed
computing’, Chemical Engineering Research and Design. Elsevier, 91(7), pp. 1259–1271.

Prakash, A. V, Chaudhury, A. and Ramachandran, R. (2013) ‘Parallel simulation of population
balance model-based particulate processes using multicore {CPUs} and {GPUs}’, Modelling
and Simulation in Engineering. Hindawi Publishing Corp., 2013, p. 2.

Ramachandran, R. and Barton, P. I. (2010) ‘Effective parameter estimation within a multi-
dimensional population balance model framework’, Chemical Engineering Science. Elsevier,
65(16), pp. 4884–4893.

Ramachandran, R., Immanuel, C. D., Stepanek, F., Litster, J. D. and Doyle, F. J. (2009) ‘A
mechanistic model for breakage in population balances of granulation: Theoretical kernel
development and experimental validation’, Chemical Engineering Research and Design.
Elsevier, 87(4), pp. 598–614.

Ramkrishna, D. and Singh, M. R. (2014) ‘Population balance modeling: current status and
future prospects’, Annual review of chemical and biomolecular engineering. Annual Reviews,
5, pp. 123–146.

Reinhold, A. and Briesen, H. (2012) ‘Numerical behavior of a multiscale aggregation model--
coupling population balances and discrete element models’, Chemical engineering science.
Elsevier, 70, pp. 165–175.

Rogers, A. J., Hashemi, A. and Ierapetritou, M. G. (2013) ‘Modeling of particulate processes
for the continuous manufacture of solid-based pharmaceutical dosage forms’, Processes.
Multidisciplinary Digital Publishing Institute, 1(2), pp. 67–127.

Sen, M., Barrasso, D., Singh, R. and Ramachandran, R. (2014a) ‘A multi-scale hybrid CFD-
DEM-PBM description of a fluid-bed granulation process’, Processes. Multidisciplinary Digital
Publishing Institute, 2(1), pp. 89–111.

Sen, M., Barrasso, D., Singh, R. and Ramachandran, R. (2014b) ‘A Multi-Scale Hybrid CFD-
DEM-PBM Description of a Fluid-Bed Granulation Process’, Processes. Multidisciplinary
Digital Publishing Institute, 2(1), pp. 89–111. doi: 10.3390/pr2010089.

Sen, M., Dubey, A., Singh, R. and Ramachandran, R. (2012) ‘Mathematical development and
comparison of a hybrid {PBM-DEM} description of a continuous powder mixing process’,

 52

Journal of Powder Technology. Hindawi Publishing Corporation, 2013.

Sen, M. and Ramachandran, R. (2013) ‘A multi-dimensional population balance model
approach to continuous powder mixing processes’, Advanced Powder Technology. Elsevier,
24(1), pp. 51–59.

Seville, J., Tüzün, U. and Clift, R. (2012) Processing of particulate solids. Springer Science &
Business Media.

Shi, Y., Green, W. H., Wong, H. W. and Oluwole, O. O. (2012) ‘Accelerating multi-dimensional
combustion simulations using GPU and hybrid explicit/implicit ODE integration’, Combustion
and Flame. The Combustion Institute., 159(7), pp. 2388–2397. doi:
10.1016/j.combustflame.2012.02.016.

Szilágyi, B. and Nagy, Z. K. (2016) ‘Graphical processing unit (GPU) acceleration for numerical
solution of population balance models using high resolution finite volume algorithm’,
Computers & Chemical Engineering. Elsevier Ltd, 91, pp. 167–181. doi:
10.1016/j.compchemeng.2016.03.023.

