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Personalized medicine strives to deliver the ‘right drug’ at the ‘right dose’ at the 

‘right time’ by considering the unique characteristics that define specialized populations of 

patients and contribute to inter-individual variability, a leading cause of therapeutic failure 

when not properly considered. Given the challenges of studying specialized patient 

subgroups in clinical trials as well as the high degree of control necessary to tease out 

differences across populations, physiologically based pharmacokinetic (PBPK) modeling 

emerged as a key tool to evaluate complex clinical phenotypes and to predict the potential 

distribution of patient responses. Unfortunately, the inherent variability of biological 

systems and knowledge gaps in physiological data often limit confidence in model 

predictions for special populations. Thus, a critical step in model development for special 

populations involves an in-depth analysis of estimated model input and evaluation of the 

underlying physiological mechanisms leading to variability in pharmacokinetics, both of 

which may be guided by global sensitivity analysis and advanced statistical techniques.  

The benefits of global sensitivity as a means to refine parameter estimates and to 

understand how model behavior depended on the input parameter space were demonstrated 

using GastroPlus™ model, a well-known commercially available platform. Global 
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sensitivity analysis was performed in two stages using the Morris Method to screen for 

significant factors followed by quantitative assessment of variability using Sobol’s 

sensitivity analysis. The 2-staged approach significantly reduced computational cost 

without sacrificing interpretation of model behavior, revealing nonlinearities and 

parameter interactions that would have been missed by local approaches. Furthermore, the 

utility of pharmacokinetic models to study the underlying and complex physiological 

mechanisms contributing to clinical differences across patient subgroups was revealed 

using Monte Carlo simulations by restricting model input to parameter combinations that 

described only biologically plausible model output. Through an integrated approach using 

a support vector machine, principal component analysis and global sensitivity analysis, 

specific combinations of parameters were shown to give rise to clinical phenotype, while 

individual parameters influenced the shape of the exposure profile. Augmenting analysis 

of the model input with global sensitivity analysis enabled an understanding of sexual 

dimorphism and inter-individual variability in pharmacokinetics. 

Finally, a dynamic semi-mechanstici model that considered pharmacokinetics and 

pharmacodynamics was used to demonstrate how patients benefit from careful timing of 

drug delivery. In this study, a mathematical model was developed to explore 

chronopharmacological dosing of synthetic glucocorticoids and its influence on the 

endogenous glucocorticoid secretion. Considering the central regulatory function of 

endogenous glucocorticoids for metabolic, anti-inflammatory, immunosuppressive and 

cognitive signaling, maintenance of normal physiological functions regulated by 

glucocorticoids is essential to host survival, while chronic disruption leads to severe 

systemic complications. Therefore, a key objective in glucocorticoid research is the 
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development of novel dosing regimens that minimize the disruption of endogenous 

activity, while maintaining the pharmacological benefits of long-term therapy. 

Physiologically based modeling showed how chronic daily dosing resulted in modification 

of endogenous glucocorticoid activity with the extent of said changes dependent on the 

administration time and dose. However, simulations also revealed that endogenous 

glucocorticoid activity was preserved with proper timing of administration dependent on 

the dosage form. Furthermore, amending the model to account for inter-sex and inter-

individual variability showed chronopharmacological dosing regimens can be further 

optimized by identifying the ‘right dose’ and ‘right time’ in the targeted patient populations 

by considering the underlying regulatory differences between males and females.  
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 Background and Motivation 

1.1 Introduction to personalized medicine 

Inter-person variability can lead to therapeutic failure and adverse effects in 

individuals or specialized subpopulations of patients during clinical practice [1]. 

Historically, clinicians were tasked with identifying factors driving differences in patient 

response by conducting ad hoc post-trial analyses [2]. Currently, researchers are looking 

to capture this patient variability upfront through personalized medicine, striving to deliver 

the ‘right drug’ at the ‘right dose’ by individualizing treatment [3] for the ‘right disease’ 

and at the ‘right time’ [4]. While ‘right drug’ emphasizes the need for therapies specifically 

designed for subpopulations of patients, ‘right dose’ highlights the need to maintain the 

drug plasma concentration within the therapeutic window to optimize patient benefit and 

minimize patient risk [3]. At the individual level, these differences are attributed to a 

person’s clinical phenotype, collectively defined by the individual’s metabolome, 

proteome, transcriptome, and genome [3]. While much of the discussion focuses on genetic 

or genomic based therapies, a broader interpretation for personalized medicine is “the use 

of combined knowledge (genetic or otherwise) about a person to predict disease 

susceptibility, disease prognosis, or treatment response and thereby improve that person’s 

health [5]”.  

Personalized medicine remains a very current challenge, despite a strong interest 

from researchers and physicians for decades. As knowledge in the field advances, the need 

for physiologically suited therapies is more apparent. Important physiological and 

pharmacokinetic differences exist between patients according to sex, age, ethnicity, disease 

state, and pregnancy. Personalized medicine has the potential to improve disease 
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prevention and treatment by tailoring therapies to the unique physiological and 

environmental factors that describe a subpopulation or an individual patient [6,7]. 

Therefore, identifying factors with the potential to impart the greatest effect on 

bioavailability and ultimately drug response is a critical step to explaining clinical 

observations, and understanding the usefulness of a particular treatment for maximized 

efficacy and minimized adverse effects across special populations or patient subgroups [8].  

 Inter-patient and inter-subpopulation variability can be difficult to represent in 

clinical studies without very large numbers of patients and can be further complicated by 

technical and ethical obstacles for certain subpopulations such as pediatrics or pregnant 

women. For these reasons, clinical studies often omit or include limited numbers of patients 

whose physiological backgrounds may lead to higher variations in data. These complexities 

hinder the progress of personalized medicine which prompts for an alternative approach to 

lessen the financial and ethical burden of experimental trials. A solution lies in modeling 

and statistical-based methodologies, which support the in silico exploration of 

pharmacokinetics and pharmacodynamics through virtual population studies. These 

models leverage the interplay between drug specific characteristics and human physiology, 

portrayed by the model input parameters, to emulate specific physiological or pathological 

conditions and can aid in the development of treatment options for the physiology of 

interest.  

1.2 Overview of physiologically based pharmacokinetic models 

Physiologically based pharmacokinetic (PBPK) modeling was first presented in 

1937 in Teorell’s “Kinetics of Distribution of Substances Administered to the Body” [9]. 



3 

 

However, the mathematical complexity of the model exceeded the knowledge and 

computational power at that time. Today, improvements in computing technology 

combined with the pressing need to study the pharmacokinetics of compounds quickly and 

efficiently enabled PBPK modeling to emerge as a powerful simulation tool. Beginning in 

the 1990s, the United States Food and Drug Administration (US FDA) encouraged the use 

of modeling and simulation to establish the best dosing strategy and characterize patient 

risk in a variety of complex clinical scenarios, minimizing the need for animal studies to 

predict human exposure [10] and enabling streamlined drug development and regulatory 

review [11,12]. Through model-based regulatory research and clinical trial simulations, 

traditional drug development and regulatory review is shifting from inefficient and 

empirical to quantitative and mechanistic, enabling a deeper understanding of the behavior 

of drugs within the body while offering an explanation for sources of variability in 

exposure and drug response [13]. From a broader context, PBPK models play an extensive 

role in the design of clinical pharmacology studies, identification of additional studies to 

address gaps or residual risks, as well as an understanding of risk-benefit relationships for 

new entities [6]. Physiologically based pharmacokinetic and pharmacodynamic models 

enable enhanced specificity of diagnostic and therapeutic technologies, differentiation of 

responders from non-responders, reduced inter-patient variability, and fewer adverse 

events [4].  

PBPK models mathematically describe human physiology through a series of organ 

and tissue compartments connected by a circuit of flowing blood, subdivided as arterial 

and venous blood pools. The properties of each compartment are described by a system of 

differential equations to explain time-dependent drug exposure. The level of scrutiny to 
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which ADME (absorption-distribution-metabolism-elimination) processes are described 

across bodily tissues depends on the desired, required or achievable level of detail, and by 

extension the complexity of the model structure. In the simplest form, pharmacokinetic 

models are empirical with the model structure determined from existing clinical data. In 

this manner, model development requires little knowledge of the system itself, only known 

input, such as the drug administered and patient body weight, as well as a measured output 

(drug concentration in blood, saliva, urine, etc.). The number of exponential terms (or 

compartments) needed to describe the resulting drug concentration profile is identified and 

the modeling framework is established as a basic compartment model [14,15]. The 

resulting model requires only a limited number of parameters to describe the bidirectional 

transport of drug between these compartments. Thus, the physicochemical properties of the 

drug, in vivo behavior, associated biological processes, and all other considerations 

affecting drug transport are ultimately lumped into these few parameters. Empirical model 

development follows a methodology referred to as top-down, where the model is strictly 

limited to the clinical data from which it was built with minimal predictive power in other 

clinical scenarios [16].  

As an extension of fitted compartment models, the model structure may incorporate 

some basic knowledge of drug behavior and human physiology to better describe the 

ADME processes. These physiologically based models draw data from in vitro experiments 

as well as in vivo preclinical and clinical data as opposed to traditional data-fitting and to 

bottom-up approaches which advocate modeling entirely on a virtual basis. Kostewicz et 

al. classified PBPK modeling as a “middle out” approach, where the model is built and 

refined during the drug development process in an iterative manner as more in vitro and/or 
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in vivo data become available [17]. PBPK models no longer consider only model input (i.e. 

body weight, dose) and output (i.e. plasma concentration profiles) to establish model 

structure, but attempt to describe drug transport and behavior in a physiologically 

meaningful way. Physiologically based models have a wide range of mechanistic detail, 

ranging from minimal PBPK in which major physiological features of the body are grouped 

together based on defining characteristics (blood flow, tissue/blood partitioning, volume, 

etc.) to whole body PBPK models which have the ability to describe drug partitioning in 

specific tissues or organs [18,19]. Equally complex models are those that account for 

saturable processes such as active transport and enzyme kinetics [20,21], while the simplest 

form of a PBPK model exists as a single-organ, described by the well-stirred tank model 

[22]. This richness in information is precisely what gives PBPK models tremendous 

potential for robust simulations and suitability for development of personalized treatments, 

from the discovery phase through regulatory review.  

Furthermore, PBPK models can combine deterministic and non-deterministic 

components to enable simulation of both individual pharmacokinetics and population 

variability. The deterministic component represents the biological and chemical systems 

of the body whereas the non-deterministic portion describes mathematically the uncertainty 

and variability for a given population [23]. The extent of model calibration depends on the 

objective of the model and rigor needed to capture individual and population dynamics.  

1.3 Sourcing model input 

Although PBPK modeling has come a long way due to the advancements in 

technology and computing power, the emergence of user-friendly software, and 
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improvements in in vitro methodologies, there is still a lengthy road before acceptance by 

pharmacologists and clinicians as a tool with the ability to replace clinical experiments. 

Much of the hesitancy towards physiologically based modeling originates from doubt 

regarding the degree of accuracy and reliability of its input. This skepticism is 

understandable since a PBPK model prediction is only as accurate as the quality of its input 

and the mechanisms described. Therefore, if the incorporated data contain errors, 

inconsistencies or miscalculations, the resulting simulations may not truly emulate in vivo 

conditions and performance. Inaccuracies in input arise from the high intrinsic variability 

of biological systems, imperfect experimental instrumentation, misinterpretation of 

collected data, knowledge gaps surrounding certain aspects of physiology and anatomy, or 

a fundamental misunderstanding of the drug compound [24,25]. Additionally, the severe 

lack of detailed databases for physiological parameters, requires input data to be drawn 

from several sources [26].  

Often times, the available physiological information describes a generic population 

or an average physiology that is not truly representative of individual subjects [27]. 

Therefore, sourcing sufficient information to generate appropriate parameter subspaces to 

reflect the desired physiologies can be resource intensive, especially for highly specialized 

physiologies [28]. Studies aiming to tease out the effects of patient covariates on 

pharmacokinetics and pharmacodynamics require carefully designed protocols, highly 

controlled patient recruitment, and large populations considering inter-individual 

variability. Therefore, modeling dedicated to address specific subpopulations is a critical 

interest within the US FDA’s Office of Clinical Pharmacology [29]. The literature contains 

several examples of pharmacokinetic models assessing clinical phenotype, sex, age, and 
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disease effects [17,26,30-35], paving the way towards reaching the ultimate goal of 

personalized or individualized medicine [36]. Yet, significant challenges remain for PBPK 

modeling for special populations due to limited experience to draw conclusions for the 

effects of pregnancy, ethnicity, geriatrics, obesity, and disease states on drug exposure 

[6,37,38].  

While empirical compartment models rely directly on clinical data to statistically 

determine the model structure and input parameters [7,39], physiologically based 

pharmacokinetic models leverage physiological data determined a priori and independent 

of clinical data [40]. Therefore, a critical step in the development of pharmacokinetic 

models, particularly those that are physiologically based, involves a thorough analysis of 

the model inputs [41]. Parameter sensitivity and uncertainty analyses inform model 

development by explaining mechanisms contributing to variability in patient responses, 

identifying potential clinical consequences, and verifying assumptions [42]. Such analyses 

are highly informative when PBPK predictions are extrapolated to different populations, 

when the PBPK model poorly predicts clinical data, or when its development is based on 

limited experimental data [41]. In these scenarios, conducting a sensitivity analysis to 

establish the influence of certain parameters on the predicted drug exposure can help to 

understand the strength of the model [43-46]. The selection of a sensitivity method depends 

on several factors: (1) computational cost; (2) the ability to account for interactions 

amongst parameter inputs; (3) the ability to explain nonlinearities and non-monotonicities; 

(4) the ability to appropriately explore model input space; and (5) the ability to understand 

and apply the sensitivity results for model development and refinement [47]. 
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1.4 Model parametrization for special populations 

The success of PBPK modeling in personalized medicine relies heavily on proper 

identification of patient-specific covariates that explain the observed pharmacokinetic 

parameters of individuals or subpopulations of individuals [48,49]. Models are 

parameterized to explain physiological differences related to specific patient factors, such 

as sex differences, given sufficient data to describe the population of interest (i.e. male and 

female physiology) or to assess a complex clinical scenario (i.e. pregnancy). Depending on 

the complexity and flexibility of the model, system-dependent parameters (gastric 

emptying rate, gastrointestinal fluid pH, intestinal transit and mobility, secretion and 

reabsorption, intestinal blood flow, bile secretion rate, intake of food and fluids, etc.) can 

be adjusted to describe virtually any physiology or clinical condition [32]. In addition to 

intrinsic patient factors such as organ dysfunction, age, and genetics, physiologically based 

predictions can also reflect extrinsic influences such as drug-drug interactions, 

environmental effects, and lifestyle choices on absorption and drug disposition [6,50]. The 

following sections highlight the impact of sex and biological rhythms on PBPK model 

development, although several additional covariates exist beyond those discussed. 

1.4.1 Sex 

For the same dosing regimen, women may respond differently to therapies than 

males, both in regards to the effectiveness of a particular treatment as well as in the extent 

of observed adverse effects [51,52]. The occurrence of adverse events is 50 to75% higher 

in females than males [53]. Sex differences in responses are not always consistently 

reported in clinical studies given the influence of sex hormones during development, the 

menstrual cycle and contraceptive use [54]. Fluctuating levels of hormones contribute to a 
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wider distribution in pharmacokinetic responses for females compared to males. Pregnancy 

further affects patient response [54]. As a result, females were typically excluded from 

Phase I and II clinical trials by the US FDA prior to 1993 because of the risk to unborn 

children and the influence of the menstrual cycle [55]. However, the inclusion of women 

into clinical studies has become a key consideration in the design of more recent studies 

given the high frequency of adverse events amongst female populations. The use of virtual 

or simulated clinical trials for proper dosage selection is especially favorable to sex-

dependent pharmacokinetics, as this approach enables the evaluation of patient risk and 

benefit without engaging actual patients. 

Females typically have reduced body weight relative to males. Thus, 

pharmacokinetic parameters (clearance, volume of distribution) and bioavailability are 

often normalized by body weight or body surface area to account for differences between 

male and female subjects. Many times sex-differences are minimized by this correction 

and deemed statistically insignificant [56]. However, corrections for anatomical 

differences are not always sufficient to eliminate sex differences completely in both animal 

and human studies [56-59]. Thus, physiological differences between sexes beyond body 

size drive these variations in the rates and extent of absorption and drug distribution, 

revealing sex-specific bioavailability patterns. Signaling pathways are believed to be 

structurally similar between males and females, but differentially expressed and regulated 

by sex hormones [55].  

There are several documented physiological differences between sexes, such as 

gastrointestinal pH, transit time, and volume, along the gastrointestinal tract that drive 

differences in the bioavailability of oral dosage forms [53-55,60-63]. In general, the 
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influence of sex hormones can be separated into three considerations: (1) passive diffusion 

which is dependent on gastrointestinal tract physiology, (2) active transport which is 

affected by expression and activity of intestinal drug transporters such as P-glycoprotein, 

and (3) gut metabolism which is driven by expression and activity of gastric enzymes and 

cytochrome P450 isoforms (CYPs) located in enterocytes lining the gastrointestinal lumen 

[64]. Ultimately, these physiological differences drive the rate and extent of absorption 

from the gastrointestinal tract. Further sex differences are observed in transport protein 

expression due to regulation by sex hormones [34,54,65]. For example, P-glycoprotein (P-

gp) is a plasma membrane-bound transporter, which is present in drug-eliminating organs, 

mainly the liver and to a lesser extent in the intestine [66,67]. Many drugs are substrates of 

P-gp and thus an important consideration for drug product development is understanding 

its influence on bioavailability [34,66,68]. This protein has higher expression in males 

[34,54,65]. Similarly, multidrug-resistant protein transporters (MRPs), organic anion 

transporters (OATs), and organic cation transporters (OCTs) exhibit sex-specific 

expression due to differential regulation by sex hormones [21,64]. Incorporation of enzyme 

and transporter activity into PBPK models is complex for general populations with even 

greater difficulty for sex-specific mechanisms where little to no data are available.  

Similarly, the extent of plasma protein binding is also affected by sex hormones, 

driving wider distributions in female patient responses during menses [54,55,61]. Women 

also have a greater proportion of adipose tissue than men. As such, lipophilic drugs may 

accumulate and have a longer duration of action in women, requiring smaller doses to 

achieve the same therapeutic effect [53]. Metabolism also leads to variability between male 

and female oral bioavailability due to differing expression levels of hepatic enzymes 
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[53,69]. The isoforms of the cytochrome P450 (CYPs) or Phase I enzymes in the liver and 

intestine have marked differences in expression and activity between sexes, further affected 

by the menstrual cycle, oral contraceptive use, and pregnancy as a result of regulation by 

sex hormones [51,54,61-63,66,70]. Many marketed drugs are substrates for CYP3A4, 

which is the primary isoform of cytochrome P450, making this enzyme a key contributor 

to sex-dependent metabolism and ultimately drug clearance. Excretion also plays a role in 

personalized medicine due to the high variability in renal clearance between males and 

females. In general, renal clearance is known to be higher in men compared to women [53], 

decrease with age [10,71], correlate with body weight [72], and can be strongly impaired 

by certain diseases [73].  

1.4.2 Circadian rhythms 

Daily biological or circadian rhythms are recognized as another key contributor to 

pharmacokinetic variability in clinical studies. These effects are minimized by controlling 

the time and frequency of administration. Circadian influences on efficacy have been 

demonstrated for anticancer, cardiovascular, respiratory, anti-ulcer, anti-inflammatory, 

immunosuppressive, and antiepileptic drugs [74-85]. To date, several therapies have been 

synchronized with biological rhythms to maximize patient benefit and minimize risk 

[74,86]. As an example, the synchronization of corticosteroid therapy with the circadian 

pattern of various cytokines and hormones influencing rheumatoid arthritis disease activity 

has been well documented [87,88]. In general, chronopharmacokinetics studies the inter-

dependent relationship between disease symptoms, risk factors, pharmacologic sensitivity, 

and ADME processes such that the action (or release) of the drug fluctuates with the 

circadian rhythm of the morbidity [86]. In addition to influencing the dose-exposure 
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relationship of a drug, circadian rhythms can affect the dose-response relationship and so 

time-of-day must be taken into consideration when modeling pharmacodynamics [89]. 

Circadian-driven variability is a result of fluctuations in several biochemical process 

controlling absorption and drug disposition, leading to changes in physiology. Gastric pH, 

acid secretion, motility, and gastric emptying demonstrate circadian rhythms which 

influence absorption from the gastrointestinal tract [74,90,91]. In practice, tablets 

administered at night time were shown to have longer gastric residence times and longer 

colonic residence times than tablets administered during the day time due to patterns of 

bowel movement [17]. Blood flow, peripheral resistances to drug transport, and protein 

levels and binding also demonstrate fluctuations that alter distribution. Activity and rest 

periods relative to drug administration can also influence the distribution of the drug 

throughout the body [74]. Metabolism and elimination are altered by biological rhythms 

due to changes in perfusion, glomerular filtration rate, urine excretion rate, urine pH, and 

electrolyte balances [74,90,91]. Furthermore, circadian rhythms may modulate carrier-

mediated transport activity significantly, leading to differences in absorption, intestinal 

metabolism, or even renal clearance [76,92,93].  

Synchronization of drug concentration to rhythms in disease or morbidity activity 

is usually achieved by carefully timing administration of formulated tablets or through 

special drug delivery systems with controlled release profiles [94,95]. For example, 

lipophilic drugs are likely to absorb faster following morning administration relative to 

evening. Similarly, pharmacokinetic exposure is influenced by the extent of plasma binding 

which fluctuates differently for acidic or basic drugs [74]. Biological rhythms are likely 

more important for controlled-release formulations that result in sustained, rapid or 
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pulsatile release depending on time of administration relative to biological cycles [96]. 

Controlled release for oral dosage forms is achieved through various drug delivery 

mechanisms including layered systems, enteric coatings, and press coated systems [86]. 

Drug release from such systems can be predicted through PBPK modeling, considering the 

physicochemical properties of the drug, the in vivo release profile, and physiological state 

of virtual patients. Thus, PBPK modeling is a critical tool in chronopharmacokinetics to 

determine the influence of circadian rhythms on dose-exposure-response relationships by 

treating model input variables with time-dependent values in accordance with 

physiological changes associated with internal biological rhythms or environmental 

influences (i.e. light). Peng et al. successfully demonstrated how PBPK modeling could be 

utilized to predict the plasma concentration of melatonin, a compound with strong circadian 

rhythms [97]. This goal was achieved by de-lumping tissues (salivary and pineal gland) 

into individual compartments on the basis of strong circadian effects due to light. The 

model demonstrated how delivery of exogenous melatonin as a controlled release 

formulation could mimic the endogenous rhythms [97].  

1.5 Outline of dissertation 

Personalized medicine strives to deliver the ‘right drug’ at the ‘right dose’ by 

considering inter-person variability, one of the causes for therapeutic failure in specialized 

populations of patients. PBPK modeling is a key tool in the advancement of personalized 

medicine to evaluate complex clinical scenarios, making use of physiological information 

as well as physicochemical data to simulate various physiological states to predict the 

distribution of pharmacokinetic responses. Chapter 2 demonstrates how global sensitivity 

analysis can reveal physiologically meaningful relationships between model input and 
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pharmacokinetic output, and how this behavior is highly dependent on the parameter space, 

highlighting the importance of proper model calibration for accurate predictions. A 2-

staged analysis will be applied to GastroPlus™, a commercially available physiologically 

based pharmacokinetic (PBPK) platform, using four different model compounds with 

unique physical chemical properties.  

Chapter 3 shows how the underlying physiological mechanisms driving differences 

in pharmacokinetics across populations can be revealed using Monte Carlo simulations 

even when model input for the desired physiological states are not known a priori. Several 

statistical techniques, including a support vector machine, principal component analysis, 

and global sensitivity analysis, will be applied to study the isolated parameter subspaces 

for a compartment model. Simulations reveal unique parameter combinations are 

associated with male and female phenotypes, while individual parameters contribute to 

variability within each population. Chapter 4 demonstrates the importance of considering 

pharmacokinetics and pharmacodynamics simultaneously to achieve personalized 

medicine using chronopharmacology to demonstrate this concept. Finally, Chapter 5 

extends these concepts by accounting for inter-sex and inter-individual variability to 

understand how the ‘right dose’ and ‘right time’ differs across individuals or patient 

subgroups.  

Completion of this work enables an in-depth analysis of pharmacokinetic and 

pharmacodynamic models for the purpose of personalized medicine showing (1) how 

model behavior and variability in model output is highly dependent on the input parameter 

space, (2) how clinical phenotypes arises due to relationships in model input, (3) how drug 

exposure and response must be considered simultaneously to optimize patient safety, and 
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(4) how accounting for differences in underlying regulatory mechanisms across patient 

groups can further improve treatment options. Together, this work validates the 

understanding that personalized medicine can only be achieved when the interconnectivity 

between dose, drug exposure and response are recognized. The novelty of this work lies in 

how modeling and advanced statistical approaches are uniquely integrated to study the 

personalized medicine paradigm of delivering the ‘right drug’ at the ‘right dose’ at the 

‘right time’.  
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 A framework for 2-stage global sensitivity 

analysis of GastroPlus™ compartment models 

2.1 Introduction 

In recent years, there has been a growing interest by the United States Food and 

Drug Administration (US FDA) and the European Medicines Agency (EMA) to include 

parameter sensitivity and uncertainty analysis in regulatory submissions containing 

physiologically based pharmacokinetic (PBPK) models [42,98,99]. Both the US FDA and 

EMA draft guidance documents state the need for proper regulatory assessment of the 

intended use and appropriateness of the model through parameter sensitivity analysis 

[42,98,99], but leave room for interpretation on the extent and timing as best practices have 

yet to be defined [100]. The draft guidelines recommend focusing on “parameters of 

concern” including experimentally determined parameters, parameters with discrepancies 

between reported values, and parameters that are difficult to estimate [99,101].  

Sensitivity analyses for PBPK models often employ local One-At-a-Time (OAT) 

approaches in which sensitivity indices are reported as a change in the output relative to a 

small change in the input [23,43,102,103]. These local approaches are useful during model 

building and calibration to identify input factors which have the greatest influence on 

model predictions when simulated data do not match clinical observations [6,104], but are 

most effective when there is confidence in the model input [105,106]. In contrast, global 

methods place the sensitivity measures in the context of the multidimensional input space 

by accounting for the impact that other parameter values have on the resulting sensitivity 

measures and exploring model behavior through a scenario that better matches the 
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stochastic nature of pharmacokinetics and pharmacodynamics. Global sensitivity analysis 

can provide physiologically meaningful relationships between model input and variability 

in pharmacokinetic output, and are acceptable for use with models that have wide 

parameter ranges due to physiological variability [107]. Furthermore, local methods may 

not fully evaluate PBPK models as these approaches are not designed to explore nonlinear 

and complex behaviors [108,109], such as metabolism and the underlying physiology that 

leads to correlations between input parameters [43,110]. As such, global sensitivity 

methods are better matched to study PBPK models [111], especially as the complexity of 

the model increases throughout development [105]. These methods may reveal behaviors 

that are not obvious or intuitive, and would otherwise be missed by local methods [47]. 

Regulatory need for such an extensive analysis in submissions containing PBPK models 

remains undecided despite the additional insight provided by global analysis towards 

model behavior [100]. These methods have been successfully implemented in biomedical 

research [107,112-114] including several published PBPK models [43,115-117]. In 

general, the number of published models incorporating global sensitivity analysis has 

grown significantly over the last ten years [118]. 

Computational cost is often the limiting factor for the application of global 

methods, especially when the model contains hundreds of parameters [47]. Global 

sensitivity analyses, particularly decomposition of variance methods, are often not 

computationally feasible for large PBPK models. However, this challenge can be overcome 

by implementing a qualitative analysis to screen for unimportant factors before executing 

a computationally expensive methodology for variance decomposition [43,111,119-121]. 

Global screening methods are computationally advantageous compared to variance-based 
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approaches with fewer simulations required to evaluate parameter effects [122]. The 

Morris Method has been shown to be an effective screening design that enables both main 

and total effects to be studied, providing an overall indication of the presence of 

interactions, but not exact-order interactions [43,107,123,124]. Sobol’s sensitivity method 

is a commonly used variance-based method that offers the advantage of exploring all orders 

of effects (primary, pairwise or higher-order interactions and total effects) while also being 

amenable to sophisticated sampling strategies [122]. Both the Morris and Sobol Methods 

are independent of the model structure and assumptions related to linearity or monotonicity 

[107,125].  

Although the US FDA does not enforce the use of a commercial PBPK software 

[98], global sensitivity analysis will be applied to GastroPlus™, a well-established and 

widely accepted platform across academia and industry. GastroPlus thoroughly 

incorporates physiological understanding and first principles to predict drug exposure for 

several species (human, monkey, dog, etc.) in both the fasted and fed states. GastroPlus 

uses the Advanced Compartmental Absorption and Transport (ACAT) model to study the 

absorption of orally administered drugs, coupling this highly sophisticated mechanistic 

model to either a compartmental model (basic distribution model) or a whole-body PBPK 

model for in-depth analysis in individual tissues or organs [126]. The granularity by which 

gastrointestinal physiology and absorption processes are mathematically described in the 

ACAT model is a key advantage of using GastroPlus. Given the ability of this model to 

describe several processes in parallel, global sensitivity analysis is well-suited to study the 

behavior of GastroPlus. Currently, the software contains a built-in local parameter 

sensitivity tool [126], but to our knowledge, global sensitivity analysis has not been 
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performed for this platform. Consequently, the objective of the current study is to establish 

a framework for 2-stage global sensitivity analysis of GastroPlus using the Morris and 

Sobol Methods. The analysis will be demonstrated for four drugs (acetaminophen, 

risperidone, atenolol, and furosemide) to show how parameterization of physiochemical 

properties can influence the relationships between model input and output according to the 

Biopharmaceutical Classification System (BCS).  

2.2 Global sensitivity methods 

2.2.1 Morris method 

The Morris Method sensitivity measures are calculated from the elementary effects, 

which are obtained by taking a step in the input space and then determining the 

corresponding change in model output. The elementary effect (EEi) is calculated by 

Equation 1, where 𝑌(𝑥1, … , 𝑥𝑘) and 𝑌(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 + ∆𝑖, 𝑥𝑖+1, … , 𝑥𝑘) are the model 

outputs associated with the parameter sets before and after a step change in the 𝑥𝑖 

coordinate while all other parameters remain the same. As such, the Morris Method is a 

one-at-a-time approach to global sensitivity. The difference in model output is taken 

relative to the difference in parameter values (Δi) when scaled from 0 to 1, enabling the 

elementary effects to be compared across factors with different orders of magnitude. 

𝐸𝐸𝑖 =
𝑌(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 + ∆𝑖, 𝑥𝑖+1, … , 𝑥𝑘) − 𝑌(𝑥1, … , 𝑥𝑘)

∆𝑖
 Eq. 1 

The elementary effects are calculated for several starting points (or samples) within 

a defined input space. The average elementary effect for a set of r samples is referred to as 

μ, and is an indicator of the direct influence that an input factor has on the model output 
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(Equation 2). The effect of nonlinearities and interactions between input parameters is 

determined by calculating the variance (σ2) in elementary effects across samples (Equation 

3). When a model is non-monotonic due to the presence of parameter interactions or 

nonlinear behavior, using μ to rank parameters in order of significance may result in a Type 

II error; that is, the failure to capture a parameter that has a significant influence on the 

model output [127]. Thus, a third sensitivity measure, μ*, was proposed using the absolute 

values of the elementary effects (Equation 4). When μ and μ* are similar, the model output 

is monotonic with respect to that parameter, indicating the absence of nonlinearities and 

parameter interactions. When μ* is greater than μ, elementary effects have opposing signs 

across samples, indicating the presence of nonlinearities and/or interactions with respect to 

that parameter [119]. Therefore, the sensitivity measure μ* is an indicator of the total 

effects associated with each parameter, and may serve as a surrogate for the variance-based 

methods when computational efficiency is a concern [127]. 

𝜇𝑖 =
1

𝑟
∑ 𝐸𝐸𝑖

𝑗

𝑟

𝑗=1

 Eq. 2 

𝜎𝑖
2 =

1

𝑟
∑(𝐸𝐸𝑖

𝑗
− 𝜇𝑖)

2
𝑟

𝑗=1

 Eq. 3 

𝜇𝑖
∗ =

1

𝑟
∑|𝐸𝐸𝑖

𝑗
|

𝑟

𝑗=1

 Eq. 4 

The computational cost for the Morris Method is 𝑁𝑡 = 𝑟(𝑘 + 1) where Nt is the 

total number of simulations, r is the number of samples, and k is the number of studied 

parameters [124]. 
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2.2.2 Sobol sensitivity analysis 

The Sobol Method quantitatively relates the contribution of each parameter and 

interactions between parameters to the overall variability in model output [119,128,129]. 

The sensitivity coefficient for the first-order effect of parameter xi is given by Equation 5 

and describes the expected reduction in variance when xi is fixed relative to the total 

variance in model output, V(Y), given by Equation 6 [129]. The inner expectation operator 

corresponds to the mean scalar model output, Y, taken while all factors but xi are varied 

(denoted by X~i). The outer variance is then determined over all possible values of xi. The 

sensitivity measure calculated by Equation 5 indicates the contribution that varying xi has 

directly on output variability. 

𝑆𝑖 =
𝑉𝑥𝑖

(𝐸𝑿~𝒊
(𝑌|𝑥𝑖))

𝑉(𝑌)
≈

1
𝑁

∑ 𝑓(𝑩)𝑗 (𝑓(𝑨𝐵
(𝑖)

)
𝑗

− 𝑓(𝑨)𝑗)𝑁
𝑗=1

𝑉(𝑌)
 Eq. 5 

𝑉(𝑌) = 𝑉𝑥𝑖
(𝐸𝑿~𝒊

(𝑌|𝑥𝑖)) + 𝐸𝑥𝑖
(𝑉𝑿~𝒊

(𝑌|𝑥𝒊)) =
1

𝑁
∑ 𝑓(𝑨)𝑗

2 − (
1

𝑁
∑ 𝑓(𝑨)𝑗

𝑁

𝑗=1

)

2
𝑁

𝑗=1

 Eq. 6 

The sensitivity coefficient for the total effects of parameter xi is given by Equation 

7 and corresponds to the expected variance remaining if all factors but xi are fixed relative 

to the total variance in model output [129]. The mean variance in model output (Y) is 

determined when all factors but xi are fixed, over all possible values of X~i. These 

sensitivity coefficients represent the total contribution that xi has on the model output 

variability, that is its direct or first order influence (given by Si) and the additional 

contribution due to parameter interactions involving xi.  
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𝑆𝑇𝑖 =
𝐸𝑿~𝑖

(𝑉𝑥𝑖
(𝑌|𝑿~𝑖))

𝑉(𝑌)
≈

1
2𝑁

∑ (𝑓(𝑨)𝑗 − 𝑓(𝑨𝑩
(𝒊)

)
𝑗
)

2
𝑁
𝑗=1

𝑉(𝑌)
 

Eq. 7 

The sensitivity coefficient for the combined total effect of a parameter pair, xi and 

xj, is given by Equation 8 and describes the expected variance that would remain if all 

parameters but xi and xj were fixed relative to the total variance in model output [129]. The 

total effect for a parameter pair is used to determine the contribution of all parameter 

interactions involving xi and xj by removing the first order effects as shown in Equation 9. 

Since higher-order interactions are generally negligible, these coefficients are interpreted 

as describing the portion of variability attributed primarily to the second-order or pairwise 

interaction between xi and xj. For that reasoning, the values calculated by Equation 9 are 

referred to as the second-order sensitivity measures in this manuscript. 

𝑆𝑇𝑖𝑗 =
𝐸𝑋~𝑖𝑗

(𝑉𝑥𝑖𝑥𝑗
(𝑌|𝑋~𝑖𝑗))

 𝑉(𝑌)
≈

1
2𝑁

∑ (𝑓(𝐴𝐵
(𝑖)

)
𝑤

− 𝑓 (𝐴𝐵
(𝑗)

)
𝑤

)
2

𝑁
𝑤=1

𝑉(𝑌)
 Eq. 8 

𝑆𝑖𝑗 = 𝑆𝑇𝑖𝑗 − 𝑆𝑖 − 𝑆𝑗  Eq. 9 

In practice, the sensitivity coefficients are computed simultaneously from a single 

set of simulations using estimators of the variance operators and expectation operators that 

have been established as the most computationally efficient, requiring the fewest number 

of samples to uniformly explore the input domain [129]. Briefly, these estimators rely on 

the triplet matrices (A, B, 𝐀𝐁
(𝐢)

) as indicated by the approximations in Equations 5, 7, and 

8. First, a sampling space of (N x 2k) is created using Sobol’s quasi-random sampling 

algorithm to generate parameter values, where N is the number of samples and k is the 
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number of studied parameters. This sample space is then separated into two matrices each 

with dimensions of (N x k) where the left half corresponds to the base matrix (A) and the 

right half to the auxiliary matrix (B). Next, the resampling matrices [𝐀𝐁
(𝐢)

] are generated by 

replacing the ith column of Matrix A with the corresponding Column of Matrix B such that 

there are k resampling matrices. Because the uniformity of the samples within each column 

decreases as the number of sampled parameters increases, Matrix A is considered more 

uniformly distributed than Matrix B, and so the selected estimators rely on Matrices A, 

𝐀𝐁
(𝐢)

,and B rather than Matrices A , 𝐁𝐀
(𝐢)

,and B [129]. Each row in Matrices A, 𝐀𝐁
(𝐢)

, and B 

corresponds to a parameter set for which the model is evaluated, indicated by f(A), f(𝐀𝐁
(𝐢)

), 

and f(B). Readers are directed to [129] for additional details related to development of 

Equations 5-9. Computational cost for the Sobol Method is 𝑁𝑡 = 𝑁(𝑘 + 2) where Nt is 

the total number of simulations, N is the number of samples, and k is the number of 

evaluated parameters. 

2.3 Approach  

2.3.1 GastroPlus setup for selected drugs 

Four model compounds were selected based on the Biopharmaceutical 

Classification System (BCS) for orally administered drugs: acetaminophen (I - high 

solubility/high permeability), risperidone (II - low solubility/high permeability), atenolol 

(III - high solubility/low permeability), and furosemide (IV - low solubility/low 

permeability). Chosen drugs were not intended to describe the exact behavior of each drug 

class, but to show variability in model sensitivities for drugs with different 

physicochemical properties. All simulations were performed using GastroPlus™ Version 
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9.0. The ACAT model was set to “Human – Physiological – Fasted”, which described the 

fasted state physiology of the human gastrointestinal tract. The Absorption Scale Factor 

(ASF) model was set to the default option: “Opt logD Model SA/V 6.1”. Default ASF 

coefficients were used except for risperidone for which the ASF Coefficient C2 was 

adjusted until the calculated tmax matched clinical data. Drug-specific GastroPlus input is 

provided in the Supplementary Table 1. Unless noted, the physicochemical properties 

were predicted by the GastroPlus ADMET Predictor™. Default settings for particle size 

were assumed for all drugs.  

Pharmacokinetic compartmental model parameters were sourced from literature. 

Clinical data were extracted from their respective sources using the WebPlot Digitilizer 

online application (http://arohatgi.info/WebPlotDigitizer/). To ensure the baseline 

predictions sufficiently described clinical data, the GastroPlus models were calibrated 

based on the US FDA criteria for bioequivalence [130]. For acetaminophen, the parameters 

were used directly as reported in the clinical study [131], requiring no further calibration 

of the GastroPlus model. For risperidone, a 3-compartment model was determined using 

PKPlus™. The calculated clearance and central compartment volume were adjusted by the 

reported bioavailability of 70% [132]. First-pass extraction in the liver was also considered 

for risperidone (fitted using GastroPlus) to ensure the predicted bioavailability matched 

clinical data. For atenolol, a 2-compartment model was fitted to the clinical data. The 

reported clearance (CL/F = 15.2 L/h [133]) was adjusted using an estimated bioavailability 

of 72% given intravenous data from Mason et al. [134], and then used to determine the 

central compartment volume. For furosemide, an acceptable prediction was obtained using 

http://arohatgi.info/WebPlotDigitizer/
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the renal clearance for healthy subjects in the population study and the reported parameters 

for the 3 compartment model [135].  

2.3.2 Morris Method for GastroPlus 

The Morris Method was performed for all four drugs with 42 ACAT model 

parameters and 4 ASF model coefficients. Correlations between small intestine 

subcompartments were considered such that the jejunum 1 pH, total length of the small 

intestine, nominal radius of the small intestine, and the total transit time of the small 

intestine were sampled and then used to calculate the parameter values of the other small 

intestine subcompartments accordingly. All other parameters within the ACAT model were 

sampled independently. The number of pharmacokinetic compartment parameters included 

in the Morris Method varied slightly depending on the structure of the pharmacokinetic 

model sourced from the literature (2 or 3 distribution compartments) as well as the 

inclusion of any known drug behaviors (i.e. first-pass extraction or renal clearance). As 

such, the total number of parameters included in the Morris Method varied from k = 54 to 

57 parameters. For acetaminophen, the Morris Method was performed using r = 1, 2, 5, 10, 

20, 30, and 40 samples to understand how the sample space influenced the resulting 

sensitivity measures. Computational cost for acetaminophen (k = 55) varied from 56 to 

2,240 simulations depending on sample size. For all other drugs, twenty samples were used 

for the Morris Method with computational cost varying from 1,100 simulations (k = 54) to 

1,160 simulations (k = 57). Sampling bounds were set to ±20% of the baseline values and 

were not based on physiology for the preliminary exploration of the GastroPlus model. 

An advanced sampling strategy for global sensitivity analysis guaranteed the input 

space was thoroughly studied while minimizing the number of samples required to do so 
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[127]. Sobol’s quasi-random sampling algorithm was selected due to its ability to 

uniformly sample the unit hypercube by minimizing sample discrepancy and maximizing 

the distance between sampling points [136]. Thus, quasi-random sequences required fewer 

samples to fill the hypercube than random sampling methods for improved computational 

efficiency. Sampling was performed using MATLAB® R2017a with the commands 

‘sobolset’, ‘scramble’, and ‘net’ to generate and scramble the initial quasi-random Sobol 

unit hypercube before selecting r samples [137,138]. The Matousek-Affine-Owen 

algorithm was added to reduce the likelihood of correlations between samples through a 

random linear scramble and digital shift of the initial Sobol set [139,140]. The scrambler 

ensured independent parameter sets were obtained for replicate calculations of sensitivity 

measures to confirm whether the sampling conditions were appropriate to cover the input 

domain and to evaluate the robustness of the Morris Method. It should be noted that the 

sampling method did not account for the probability of certain parameter combinations 

occurring at higher frequencies [141]. 

The maximum concentration (Cmax), the time to maximum exposure (tmax), and the 

area-under-the-curve (AUC0-t) were used as model output to calculate sensitivity measures, 

consistent with sensitivity analyses for other PBPK models [142-144]. Sensitivity 

measures for the maximum concentration and AUC0-t provided an indication of the 

underlying physiology affecting maximum and cumulative drug exposure of orally 

administered drugs while tmax offered insight into which parameters affected the rate of 

appearance in systemic circulation. Factors with μ* greater than 10% of the maximum 

value for each model output were considered to have a significant effect on that output. 

Significance was based on * because this measure accounted for parameter interactions.  
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2.3.3 Sobol sensitivity analysis for GastroPlus 

Given the number of parameters included in the GastroPlus model, only the 

important factors determined by the Morris Method were explored further using the Sobol 

Method while all unimportant parameters were fixed at the baseline values. The Sobol 

sensitivity analysis utilized the same sampling method as described for the Morris Method, 

and considered the same model output for comparison between methods. For the Sobol 

Method, the sampling bounds were set to ±20% of the baseline values. Parameters were 

considered significant if sensitivity measures were greater than 0.05 [128], corresponding 

to at least 5% of the variability explained by a given parameter and/or its interactions. 

The number of samples (N) required for convergence of the Sobol sensitivity 

analysis depended on the model complexity and the number of parameters considered for 

analysis. Convergence was determined using confidence intervals for the sensitivity 

indices derived from the bootstrap method. Convergence was achieved when the 95% 

confidence interval represented less than 10% of the calculated sensitivity index for the 

most sensitive parameters, consistent with the methods reported by others [120,145,146]. 

Furthermore, the sensitivity results for GastroPlus met the following criteria for non-

additive models with interactions: (1) 𝑆𝑡𝑖  > 𝑆𝑖, (2) ∑ 𝑆𝑖 < 1, and (3) ∑ 𝑆𝑡𝑖 > 1 [119,120]. 

The first criterion held true due the fact that Sti is the sum of direct effects (Si) and non-zero 

interactions between parameters. The second criterion indicated that the variability in 

model output was not apportioned to only direct effects. The third criterion accounted for 

the fact that Sij and any non-zero higher-order interactions were accounted for in the total 

effects of multiple parameters. The number of samples varied from 3,000 to 5,000 

depending on the number of parameters and the drug evaluated by the Sobol Method. 
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2.3.4 Development of the automated GastroPlus framework 

Given the number of simulations required to perform global sensitivity analysis for 

GastroPlus, particularly for the Sobol Method, management of the GastroPlus input and 

output needed to calculate the sensitivity measures was not feasible manually. As such an 

integrated framework was developed to enable GastroPlus to interface with MATLAB. 

The framework for GastroPlus facilitated the efficient transfer of parameter values into the 

GastroPlus interface for thousands of simulations, and transfer of GastroPlus output back 

to MATLAB for rapid integration with downstream analysis of model predictions and 

calculation of sensitivity measures. AutoIt was used to automate GastroPlus by replicating 

the keystrokes, mouse movements, and window/tab manipulations needed to run 

simulations in the user interface. In this manner, GastroPlus was transformed into a callable 

function by MATLAB, enabling the commercial software to be incorporated into a broader 

modeling framework without any modification to the GastroPlus software. The integrated 

framework for global sensitivity analysis of the GastroPlus model is given in Figure 1. 

The framework was structurally the same for both stages of global sensitivity analysis, 

requiring the number of samples (r or N), parameters studied (k), and sensitivity 

calculations (μ, σ2 and μ* or Si, Sij and Sti) to be updated to reflect the use of the Morris or 

Sobol methods. 
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Figure 1: Automated GastroPlus framework for global sensitivity analysis. GastroPlus parameter sets were 

generated in MATLAB and then AutoIt was used to update the parameters in the GastroPlus interface 

according to the sample space, to run simulations for each parameter set, and to transfer GastroPlus 

predictions back to MATLAB for calculation of sensitivity measures.  

The automation framework was deployed using Intel® Xeon® E5-1620 v3 @ 

3.50GHz and Intel® Core™ i5-6600 @ 3.30GHz processors. On either computer, the total 

time per iteration was approximately 30 seconds, which encompassed the time to update 

the ACAT model file through transferring GastroPlus results back to MATLAB for each 

simulation. The time for each analysis is given in Supplementary Table 2. 

2.4 Results 

GastroPlus was calibrated against clinical data for acetaminophen, risperidone, 

atenolol, and furosemide prior to implementing global sensitivity for each of these drugs. 
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Baseline predictions are given in the Supplementary Figure 1, showing the GastroPlus 

models described the clinical data reasonably well. 

Global sensitivity was implemented in two stages using the Morris Method 

followed by the Sobol Method for each drug. As part of screening, the suitability of the 

Morris Method for GastroPlus was assessed by grouping model input according to 

Absorption-Distribution-Metabolism-Elimination (ADME) processes to understand 

whether the sensitivity analysis was broadly aligned with physiological understanding. 

Furthermore, the influence of the sampling space on the resulting sensitivity measures, and 

thus the interpretation of results, for the Morris Method was evaluated using different 

sampling bounds to understand how the input space could influence screening and the 

identified relationships between model input and output. 

2.4.1 Stage 1: Screening for significant parameters 

2.4.1.1 Selection of sample size for the Morris Method 

The ability of the Morris Method to rank parameters reproducibly and determine 

those with the greatest influence using different sampling sizes (r) was evaluated for 

acetaminophen. Sensitivity measures were determined for three independent sample sets 

at each r as shown in Figure 2 for Cmax and in Supplementary Figure 2 and 

Supplementary Figure 3 for tmax and AUC0-t, respectively. The number of samples used 

in the Morris Method had limited influence on the resulting sensitivity measures when 

sampling bounds were 20%, with * and  (standard deviation of * across triplicate 

analyses) stabilizing at 20 samples. These sampling conditions were also selected for use 

with the risperidone, atenolol, and furosemide GastroPlus models, which indicated similar 
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robustness to sample size (data not shown). Optimization of sample size guaranteed that 

the randomly selected samples from the Sobol quasi-random point set in MATLAB were 

sufficient to minimize the likelihood of Type I or II errors during screening. The use of r = 

20 in the Morris Method ensured all significant parameters were identified for further 

evaluation by the Sobol Method when the sampling bounds were 20%. 

 
Figure 2: Morris Method results for acetaminophen Cmax using r = 1 to 40 and sampling bounds of ±20%. 

The error bars represent the standard deviation in µ* from 3 independent analyses at each sample size. 

2.4.2 Identification of significant GastroPlus parameters by the Morris Method 

Representative Morris Method results for acetaminophen, risperidone, atenolol, 

and furosemide using sampling bounds of 20% and r = 20 are given in Figure 3 and 

Figure 4 for μ* values associated with Cmax. Morris Method results for tmax and AUC0-t are 

given in Supplementary Figure 4 to Supplementary Figure 7. These results 

demonstrated that sensitivity was apportioned to a subset of GastroPlus parameters which 

varied both in the number of sensitive parameters as well as the relative ranking of 

parameters across model outputs and for each drug.  
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Figure 3: Representative Morris Method results for acetaminophen and risperidone Cmax. The values of µ* 

were determined using r = 20 and sampling bounds of ±20%. The cutoff for significance (indicated by 

dotted red line), corresponded to 10% of the maximum µ* for Cmax associated with each drug. 
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Figure 4: Representative Morris Method results for atenolol and furosemide Cmax. The values of µ* were 

determined using r = 20 and sampling bounds of ±20%. The cutoff for significance (indicated by dotted red 

line), corresponded to 10% of the maximum µ* for Cmax associated with each drug. 

The significant parameters based on μ* for each drug are summarized in Table 1. 

Many significant parameters were common to all drugs, regardless of its physicochemical 

properties, such as the gastric emptying time, small intestine radius, and ASF C2, as well 

as compartmental model parameters. For poorly permeable drugs (atenolol and 

furosemide), additional ACAT model parameters related to the small intestine were also 

significant, while only the gastric emptying time and small intestine radius were significant 

for highly permeable drugs (acetaminophen and risperidone). Fasted fluid volume, length, 

and transit time were significant for both atenolol and furosemide, whereas pore radius and 

porosity per pore length were only important for atenolol, and gastrointestinal pH was 

significant for furosemide. Across all four drugs, the significant ACAT and ASF model 
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parameters were primarily associated with the stomach and small intestine compartments, 

corresponding to the fact that these formulations were modeled as immediate release and 

the primary site of absorption was the upper region of the gastrointestinal tract. Thus, 

parameters related to the caecum and colon were largely insignificant. Body weight, 

systemic clearance, central compartment volume, and transfer coefficients were significant 

for all drugs, while the significance of other pharmacokinetic parameters varied. The 

significance of transfer coefficients (k12, k21, k13, and k31) supported the need for at least 

one compartment to describe drug distribution to peripheral tissues. 
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Table 1: Significant parameters determined by the Morris Method for the GastroPlus models 

GastroPlus Parameters Acetaminophen Risperidone Atenolol Furosemide 

ACAT 

Model 

Gastric Emptying Time + + + + 

SI Radius 

SI Fasted Fluid Vol. 

SI Length 

SI Transit Time 

Duodenum Pore Radius 

Duodenum pH 

J1 Pore Radius 

J1 Porosity/Pore Length 

J1 pH 

J2 Pore Radius 

o, +, x 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

+ 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

o, +, x 

+ 

+ 

o, +, x 

+ 

[ ] 

o, +, x 

+ 

[ ] 

+ 

o, +, x 

+ 

+ 

o, +, x 

[ ] 

+ 

[ ] 

[ ] 

o 

[ ] 

Colon pH [ ] [ ] [ ] x 

ASF Model ASF C1 

ASF C2 

+ 

o, +, x 

[ ] 

+ 

+ 

o, +, x 

o, + 

o, +, x 

Compartment 

Model 

Body Weight 

Systemic Clearance 

Central Compartment Vol. 

Transfer Coefficient, k12 

Transfer Coefficient, k21 

Transfer Coefficient, k13 

Transfer Coefficient, k31 

Hepatic Blood Flow 

Whole Blood to Plasma Ratio 

Renal Clearance 

Liver First-pass Extraction 

o, +, x 

o, +, x 

o, +, x 

o, +, x 

+, x 

NA 

NA 

[ ] 

[ ] 

[ ] 

NA 

o, +, x 

+, x 

o, +, x 

[ ] 

[ ] 

+ 

+ 

+ 

+ 

NA 

o, x 

o, + 

o, +, x 

o, + 

+ 

[ ] 

NA 

NA 

[ ] 

[ ] 

NA 

NA 

o, +, x 

o, +, x 

o, + 

o 

[ ] 

o 

+ 

[ ] 

[ ] 

o, +, x 

NA 

Abbreviations: SI = Small intestine; J1 = Jejunum 1; J2 = Jejunum 2; Vol. = Volume 

Symbols: o = Cmax; + = tmax; x = AUC0-t; [ ] = No significant output; NA = Not Applicable 

 

2.4.3 Morris Method results in the context of ADME processes 

To validate the observed relationships between model input and output, the 

sensitivity measures determined by the Morris Method were organized according to ADME 

properties to evaluate how the GastroPlus model responded to parameterization of drug-
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specific physicochemical properties. Sensitivity measures were separated into three groups 

describing absorption, distribution, and excretion (including metabolism and elimination) 

to determine the pooled effect of each biological process on the model output as shown in 

Figure 5. GastroPlus parameters included in each group are given in Supplementary 

Table 3. Sensitivity measures were determined for each parameter individually (see 

previous section) and then pooled to determine the total significance as opposed to 

determining the grouped effects directly, which risked concealing the significance of 

parameters with opposing influences [119]. Distribution-related parameters had the 

greatest influence on Cmax for highly permeable drugs while both absorption and 

distribution parameters had similar significance for the Cmax of poorly permeable drugs. 

The tmax values for acetaminophen and furosemide were primarily driven by absorption-

related parameters, while the tmax values for risperidone and atenolol were affected by both 

absorption and distribution parameters. Interestingly, the Morris Method results revealed 

different physiological processes across Cmax and tmax, despite the relationship between 

these model outputs. Together Cmax and tmax provided an indicator of parameters 

influencing both the rate and/or extent of absorption. For highly permeable drugs 

formulated as immediate release, absorption was both rapid and complete, such that drug 

transport by way of the portal vein to the liver and finally systemic circulation would be 

the rate-limiting steps to maximum exposure. For poorly permeable drugs, gastrointestinal 

physiology would have a greater influence on the rate and extent of absorption. The 

relationship between input parameters and AUC0-t was less clear across the four drugs. For 

risperidone, systemic clearance and first-pass extraction in the liver were the primary 

indicators of AUC0-t. First-pass extraction was not considered for the other drugs included 
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in the study, which may have contributed to the differences observed with risperidone 

relative to acetaminophen, atenolol, and furosemide. For all four drugs, the time scale for 

elimination was far longer than absorption when treated as immediate release. Yet, the 

AUC0-t was significantly influenced by more than just elimination-related parameters, such 

as systemic clearance, and instead showed contributions across all ADME processes for 

drugs of very different physicochemical properties. These results reflected the complicated 

structure of the GastroPlus model and its ability to capture several physiological processes 

in parallel. 

 
Figure 5: Influences of ADME processes according to the Morris Method. The percent contributions in (a) 

were determined by the sum of μ* associated with parameters in each group relative to the sum of all μ* for 

all groups. These contributions were then used to identify the key process influencing each model output in 

(b). Parameters contained in each group are provided in Supplementary Table 3. 

2.4.4 Stage 2: Quantitative assessment of output variability 

Considering that sensitivity measures do not converge at the same number of 

samples for all model outputs and an algorithm to determine the number of samples needed 

for convergence a priori does not exist, the Sobol Method was performed only for those 

parameters that were significant for Cmax. The 2-stage approach to global sensitivity 
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analysis resulted in a reduction in computational cost by at least 86% for acetaminophen, 

92% for risperidone, 84% for atenolol and 78% for furosemide compared to studying over 

50 parameters directly by the variance-based method. 

2.4.5 Sobol Method for acetaminophen 

Six significant parameters for acetaminophen Cmax based on the Morris Method 

were further evaluated by Sobol sensitivity analysis using 4,000 samples, requiring a total 

of 32,000 simulations. Sensitivity measures are given in Figure 6. The calculated values 

met the criteria for convergence (see Methods section), indicating that 4,000 samples were 

sufficient to perform the analysis. Body weight was the most significant parameter for 

acetaminophen Cmax, followed closely by the central compartment volume. Together, body 

weight and the central compartment volume explained approximately 85% of the 

variability in Cmax with relatively low contributions from their interactions. While small 

intestine radius, ASF C2, k12, and systemic clearance had negligible first-order effects on 

Cmax (Si < 0.05), the small intestine radius and ASF C2 indicated significant interactions 

with other parameters and the most significant between these two parameters. Small 

intestine radius and ASF C2 influenced the rate and amount of drug absorbed and 

transferred to the central compartment, interacting with the compartmental model 

parameters to influence the calculated plasma concentration. All other interactions were 

negligible. 
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Figure 6: Sobol Method for acetaminophen Cmax. The sensitivity measures were determined using N=4,000 

for parameters identified by the Morris Method based on µ*. The first-order and total effects are given in 

(a). The second-order interactions are given in (b). 

2.4.6 Sobol Method for risperidone 

Significant parameters for risperidone Cmax identified by the Morris Method were 

assessed by the Sobol Method using 3,000 samples and a total of 15,000 simulations, which 

was sufficient for method convergence. Sensitivity measures are provided in Figure 7. 

Similar to the results for acetaminophen, body weight was the most significant parameter 

for risperidone Cmax, followed by the central compartment volume, with the strongest 

interaction between these parameters. Together, these parameters explained approximately 

90% of the variability in Cmax. While the fraction of first-pass extraction in the liver had 

negligible first-order effects (Si < 0.05), approximately 5% of the variability in Cmax (Sti  

0.05) was attributed to interactions with this parameter. First-pass extraction in the liver 

accounted for drug loss in the central compartment due to metabolism, interacting with 

both the central compartment volume and body weight to influence the calculated plasma 

concentration.  
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Figure 7: Sobol Method for risperidone Cmax. The sensitivity measures were determined using N=3,000 for 

parameters identified by the Morris Method based on µ*. The first-order and total effects are given in (a). 

The second-order interactions are given in (b). 

2.4.7 Sobol Method for atenolol 

Seven significant parameters for atenolol Cmax based on screening were 

investigated further by Sobol’s method, requiring 4,000 samples for method convergence 

with Nt = 36,000 simulations. Sensitivity measures are given in Figure 8. Central 

compartment volume was the most significant parameter for Cmax followed by body weight, 

accounting collectively for approximately 70% of the variability in Cmax. While the first-

order effects of other parameters were negligible (Si < 0.05), the small intestine radius and 

ASF C2 had significant interactions with all other parameters. The strongest pairwise 

interaction was between these parameters, echoing the behavior of GastroPlus for 

acetaminophen. Other physiological parameters and compartmental model parameters had 

negligible interactions. 
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Figure 8: Sobol Method for atenolol Cmax. The sensitivity measures were determined using N=4,000 for 

parameters identified by the Morris Method based on µ*. The first-order and total effects are given in (a). 

The second-order interactions are given in (b). 

2.4.8 Sobol Method for furosemide 

Sobol’s method was implemented with 5,000 samples (Nt = 65,000 simulations) for 

furosemide Cmax using the eleven significant parameters determined from the Morris 

Method. Sensitivity measures are shown in Figure 9. The most important parameter 

influencing furosemide Cmax directly was body weight, which had the highest first-order 

effect and moderately weak interactions with other parameters. Variability in Cmax was 

distributed as follows for furosemide: approximately 33% for body weight, 10% for central 

compartment volume, and 6% for renal clearance, while the remaining variability was 

attributed to parameter interactions. ASF C2, which indicated almost no direct influence 

on Cmax (Si ≈ 0.05), showed significant interactions with all other parameters. Similarly, 

the small intestine radius had strong interactions, but a negligible first-order effect. The 

strongest pairwise interaction was observed between the small intestine radius and ASF 

C2, consistent with the behavior of GastroPlus for acetaminophen and atenolol. 

Furosemide was the only studied drug without the majority of variability apportioned to 
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first order effects. This observation was likely due to the stronger influence that 

gastrointestinal physiology has on the rate and extent of absorption for a poorly soluble 

and permeable drug, reflecting the added complexity of developing an accurate PBPK 

model for a BCS IV drug.  

 
Figure 9: Sobol Method for furosemide Cmax. The sensitivity measures were determined using N=5,000 for 

parameters identified by the Morris Method based on µ*. The first-order and total effects are given in (a). 

The second-order interactions are given in (b). 

2.4.9 Parameter rankings by the Morris and Sobol methods were consistent  

A comparison of parameter ranking and significance determined by the Morris and 

Sobol Methods for parameters included in both stages is given in Table 2. The number 

of significant parameters for Cmax was overestimated by the Morris Method when a cutoff 

of 10% of the maximum * was used, leading to several of these parameters explaining 

less than 5% of the variability in model output according to the Sobol Method. 
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Table 2: Parameter ranking determined by the Morris and Sobol sensitivity methods for Cmax 

Parameter 
Acetaminophen Risperidone Atenolol Furosemide 

Sti µ* Sti µ* Sti µ* Sti µ* 

SI Radius 3* 3 NA NA 3* 3 3* 3 

SI Transit Time NA NA NA NA 5 5 11 11 

J1 pH NA NA NA NA NA NA 10 10 

J1 Pore Radius NA NA NA NA 7 7 NA NA 

ASF C1 NA NA NA NA NA NA 8 8 

ASF C2 4* 4 NA NA 4* 4 2* 2 

Body Weight 1* 1 1* 1 1* 1 1* 1 

Central Compartment Vol. 2* 2 2* 2 2* 2 4* 4 

Transfer Coefficient, k12 6 6 NA NA NA NA 9 9 

Transfer Coefficient, k13 NA NA NA NA NA NA 7 7 

Systemic Clearance 5 5 NA NA 6 6 6 6 

Renal Clearance NA NA NA NA NA NA 5* 5 

Liver First-pass Extraction NA NA 3* 3 NA NA NA NA 

Abbreviations: SI = Small intestine; J1 = Jejunum 1; J2 = Jejunum 2; Vol. = Volume; NA = Not Applicable 

(Parameter not included in Sobol Method for particular drug.) 

Note: Parameters with Sti < 0.05 were negligible. Parameters with Sti > 0.05 were considered significant 

(indicated by *). 

 

2.4.10 Quality of 2-stage global sensitivity analysis depends on screening with the 

Morris Method 

Global sensitivity analysis was performed by sampling from uniform distributions 

that did not account for physiological distributions or sampling bounds. To understand how 

the sampling bounds influenced the sensitivity measures and the established relationships 

between model input and output, sampling bounds were increased to 50% of the nominal 

values. Values of * (mean of elementary effects) and  (standard deviation of elementary 

effects) for triplicate analysis at sampling bounds of 20% and 50% with r = 20 are given 

in Figure 10a for acetaminophen Cmax. The ratio /* was considered to be an indicator 

of higher-order effects as originally proposed by Garcia-Sanchez et al. [125,147]. The 
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Morris Method revealed parameter sensitivities for sampling bounds of 20% fell within 

the monotonic and linear regions according to the boundaries defined by Garcia-Sanchez 

et al., largely failing to capture the presence of potential nonlinearities and/or parameter 

interactions as shown in Figure 10b. When the sampling bounds were widened to 50%, 

sensitivity analysis detected the presence of higher-order effects between GastroPlus input 

and output. The distribution of elementary effects for body weight, the most significant 

parameter for acetaminophen Cmax, given in Figure 10c showed large differences in 

variance between sampling bounds.  
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Figure 10: Relationships between model input and output for acetaminophen Cmax. The values of μ* and σ 

determined using r = 20 and the average ratio σ/μ* from triplicate analysis are plotted in (a) and (b), 

respectively, for sampling bounds of ±20% and ±50%. Error bars in (a) represent the standard deviation 

associated with µ* and σ for triplicate analyses. The distribution of elementary effects for each replicate 

analysis are given in (c) for body weight. 

The plasma concentration profiles from GastroPlus are provided in Figure 11 when 

body weight (significant parameter for all model outputs) and gastric pH (low significance 

for all model outputs) were set to the upper limit (+20% or +50%) and lower limit (-20% 

or -50%). This comparison showed how parameter significance according to the Morris 

Method corresponded to noticeable differences in model output. While the upper and lower 

sampling bounds produced similar changes in model output from the baseline at 20%, the 

elementary effects for the wider sampling bounds were not equal at the upper and lower 
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limits. This observation was likely due to a nonlinear relationship between body weight 

and plasma concentration that was not detected by the narrower sampling bounds. Thus, 

sampling failed to fully evaluate the relationship between model inputs and outputs if the 

sampling bounds were too narrow. However, the input space for global sensitivity can be 

amended according to the objective of the analysis, such as wider bounds for model 

understanding and preliminary studies or biologically relevant distributions/bounds for 

exploration of underlying physiological mechanisms.  

 
Figure 11: GastroPlus predictions for acetaminophen at the sampling bounds. The plasma concentration 

profiles predicted by GastroPlus when body weight and the gastric pH were set to the upper and lower 

limits are given in (a) and (b) for sampling bounds of ±20% and ±50%, respectively. 

2.5 Discussion 

The decision to integrate GastroPlus into a framework for global sensitivity was 

based on the advantages of utilizing an established model employed by industry, academia, 

and regulatory agencies. While the ACAT and ASF models of GastroPlus allowed for a 

comprehensive analysis of absorption-related parameters, the physical meaning and 

interpretation of the sensitivity results were limited using the basic compartmental models. 

Nevertheless, the current study was sufficient to demonstrate the capabilities of the 
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automation framework for managing thousands of simulations, and to validate the 

appropriateness of the 2-stage global sensitivity approach for use with GastroPlus models. 

The framework represented an attractive and immediate solution for the application of 

global sensitivity analysis to existing versions of GastroPlus, serving as a useful tool to 

generate further interest in such methods. AutoIt circumvented the issues of automating 

closed code, proprietary applications by instead utilizing graphical user interface 

automation. The greatest limitation for the existing framework was the added 

computational time associated with automation compared to a fully integrated script-based 

workflow within the GastroPlus interface. While the Morris Method was executed within 

hours, the Sobol Method took longer for completion despite limiting the number of 

evaluated parameters with the 2-stage approach. However, the behavior of AutoIt scripts 

was reliable across different computers. Therefore, both the Morris and Sobol Methods 

were amenable to parallel processing to ease implementation. Various tests were performed 

during development of the framework to validate its use and confirm that data was correctly 

transferred between MATLAB and GastroPlus. An advantage of the automation 

framework was the relative ease at which additional model parameters and other features 

of GastroPlus were incorporated as needed for each of the studied drugs.  

The Biopharmaceutical Classification System for oral dosage forms was used to 

identify model compounds belonging to each class for use with the Morris and Sobol 

Methods. These compounds were not intended to describe the true behavior of each drug 

class, but to guide the selection of drugs in this study. From these four representative 

compounds, one can appreciate how parameter significance might vary with 

physicochemical properties, such as permeability and solubility. Sensitivity results alluded 
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to underlying physiological mechanisms that influenced absorption and were grossly 

consistent with the challenges faced for each class, both in terms of PBPK model 

development [148,149] and formulation strategies [150,151]. Sensitivity results for 

furosemide provided an example, albeit high level, of how the Morris Method was used to 

determine the underlying physiology driving variability in pharmacokinetics. Renal 

clearance of furosemide was found to be significant for all model outputs, consistent with 

the population study which revealed differences in renal function were the key indicator of 

pharmacokinetic response, separating healthy subjects, and those with hepatic cirrhosis and 

congestive heart failure [135]. 

The Morris Method indicated ASF C2 was significant for acetaminophen, atenolol, 

and furosemide for all model outputs when the default ASF coefficients were used as the 

baseline. In the risperidone model, calibration of ASF C2 to 5-fold greater than the default 

value was needed to match the predicted tmax with clinical data and was found to be 

significant for only tmax during screening by the Morris Method. Since these coefficients 

do not have an exact physiological meaning, the interpretation of ASF sensitivities was 

limited to a lumped change in drug physicochemical properties influencing permeability in 

each of the gastrointestinal compartments. Further interpretation would require more 

knowledge of the drug properties and behavior in vivo. Nonetheless, the Morris Method 

results supported the common practice of using the ASF model to calibrate GastroPlus 

against clinical observations [152,153], considering its significant influence on model 

output. However, calibration of the ASF model coefficients may mask the importance of 

other gastrointestinal parameters on the absorption rate. The risperidone model, which was 

the only model that required calibration of an ASF coefficient, had fewer gastrointestinal 
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parameters with significance in comparison to furosemide, the other poorly soluble drug. 

It is unclear whether this behavior is true for all BCS II drugs or unique to risperidone due 

to model calibration.  

The 2-staged approach to global sensitivity analysis offered the key advantage of 

significantly reducing computational cost without sacrificing insight into model behavior, 

overcoming one of the major hurdles for implementing such an extensive analysis for a 

larger PBPK model. The 2-stage approach resulted in a reduction in computational cost by 

at least 75% for all drugs compared to using the Sobol Method to screen over 50 

parameters. Despite the relative improvement in computational efficiency, global 

sensitivity analysis continues to require far more simulations than a local method. 

However, the Morris and Sobol Methods revealed nonlinearities and parameter 

interactions, indicating that more complex relationships exist between model input and 

output than can be detected by the local method, requiring a global analysis to fully evaluate 

the GastroPlus model. Furthermore, the cutoff for parameter significance (10% of 

maximum μ* for each output) during screening led to several parameters which contributed 

insignificantly to output variability (less than 5%) according to Sobol’s analysis. 

Tightening the selection criteria during screening would reduce the computational cost of 

the Sobol Method by minimizing the number of parameters evaluated quantitatively, but 

at the risk of missing parameters that significantly contributed to variability in Cmax. 

Therefore, further work is needed to optimize the cutoff for parameter significance to 

balance the risk of Type I and Type II errors with computational cost. The actual need for 

the quantitative method following screening depends on the objective and intended use of 

the sensitivity analysis. Both methods converged to the same parameter rankings given a 



50 

 

sufficient number of samples. Therefore, μ* of the Morris Method may serve as a surrogate 

of the computationally expensive Sti from the Sobol Method when the objective is to rank 

parameters, consistent with the analysis of other models [154]. While the Morris Method 

would be appropriate for factor fixing or model simplification, the Sobol Method enables 

the modeler to determine which pairwise interactions drive model behavior and how 

variability in model output is apportioned to model input, the latter of which may be highly 

informative for drug development and explaining clinical observations. 

Global analysis places sensitivity measures in the context of the entire input space, 

accounting for the impact of other parameter values on the resulting sensitivity measures 

in contrast to local methods which evaluate sensitivity indices one-at-a-time using a fixed 

baseline. As such, global sensitivity results and their interpretation often depend on the 

sampled input space [155]. When model input changes, the corresponding output may 

change as well, influencing the calculated sensitivity measures accordingly. 

Supplementary Figure 8 and Supplementary Figure 9 show how different input spaces 

influence the total effects determined by the Morris Method when both physiological and 

uniform distributions are used for the GastroPlus model. Physiological distributions 

constrain the sampling space to biologically meaningful model input and output while 

wider distributions enable the model structure to be fully explored. The selection of the 

input space may be of particular interest to PBPK modeling for special populations (i.e. 

young vs. elderly, male vs. female, healthy vs. disease state, pregnant female vs. non-

pregnant female) due to the uncertainty associated with model input for these physiologies 

[106,156,157]. In this manner, global sensitivity analysis could thoroughly evaluate the 

most influential parameters using a physiologically relevant input space, providing 
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direction for future experimental studies, and improving confidence in PBPK predictions 

for special populations that may otherwise be limited by incomplete and inconsistent 

physiological data [148].  

The effectiveness of the automated framework for managing thousands of 

GastroPlus simulations were demonstrated specifically for global sensitivity analysis, but 

the potential use of such a framework extends beyond the scope of the current study. An 

application that has yet to be fully explored is large scale sampling for model re-

parameterization. Paralleling the sophisticated methods implemented for systems biology 

models [158], the framework can be used to explore the highly dimensional input spaces 

of GastroPlus to identify parameter sets that predict a target response profile or clinical 

output. Additionally, the existing framework can be expanded to perform global sensitivity 

analysis on a whole-body PBPK model, a scenario that will introduce many new 

parameters into the framework and benefit extensively from the 2-staged global sensitivity 

analysis. 
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 Exploration of sexual dimorphism and inter-

individual variability in multivariate parameter spaces for a 

pharmacokinetic compartment model 

3.1 Introduction 

The development of sex-specific PBPK models is dependent on proper calibration 

of the model to account for the intrinsic differences in physiology between male and female 

populations across all ADME processes. However, quantitative differences between 

genders are rarely discussed in the literature and instead are often presented as a relative 

comparison (males > females, males < females, males = females). Thus, identifying and 

estimating sex-specific parameters is at the liberty of the researcher. Monte Carlo 

simulations provide an alternative approach to generate combinations of parameters which 

can be restricted to only those parameter sets that adequately describe the target 

pharmacokinetic output to establish the biologically plausible parameter distributions when 

physiological data are not readily available [40,158,159]. A key advantage of this 

methodology is that precise physiological data for a particular population is not needed as 

a starting point, instead available information for a general population can be utilized to 

inform the sampling bounds whenever available, such that sampling is not completely 

random. Furthermore, parameter distributions obtained from sampling encompass 

variability in parameter values that cannot be attributed only to patient differences, and 

instead account for random variability and uncertainty [160]. Such methodologies also 

enable additional subjects to be simulated by re-sampling from the biologically plausible 

population distributions [27], creating larger virtual populations which may be analyzed by 
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various statistical techniques. Global sensitivity analysis further aids model development 

and guides future experimental studies for determination of model parameters 

[106,156,157], and has previously been implemented for pharmacokinetic models for 

special populations [148,161].  

Our approach utilizes a published pharmacokinetic compartmental model to 

demonstrate how sampling in conjunction with global sensitivity analysis can be used to 

differentiate model behavior and output between male and female phenotypes. These 

observations are well cited in the literature, indicating that physiological differences 

between sexes can translate to large differences in pharmacokinetic parameters and to 

further variability in pharmacodynamics [56-58,62,162]. Sex differences have yet to be 

consistently and reproducibly incorporated into clinical trials, considering the ethical 

concerns associated with testing during pregnancy and the increased variability in female 

populations due to influence of the menstrual cycle [31,55]. As such, sexual dimorphism 

has been selected to demonstrate the benefits of the model-based approach to establishing 

male and female parameter subspaces. This analysis is achieved using a stochastic 

approach to generate random combinations of several physiological parameter values in 

silico [163,164], leading to a wide distribution of model outputs from which predictions 

matching clinical data were selected for further analysis. Through global sensitivity 

analysis, the importance of differences can be studied to identify parameters that have the 

greatest influence of model output in relationship to parameter subspaces associated with 

male and female physiologies.  
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3.2 Approach 

3.2.1 Overview of model-based methodology 

The model-based methodology, summarized in Figure 12, was demonstrated for a 

compartmental model selected from the literature that described the pharmacokinetics of 

valproic acid following a single dose of a delayed release tablet [68]. The approach relied 

on stochastic sampling to generate thousands of potential parameter sets from initial 

parameter distributions that depicted a generic human population, and then isolating 

parameter sets that matched clinical data for male and female phenotypes. Physiological 

parameters are intrinsically correlated through underlying physiology and so resulting 

parameter combinations from random sampling may be unrealistic [110]. Biologically 

implausible parameter sets were discarded by enforcing selection criteria to isolate 

parameter sets that only produced the target model outputs. Parameter sensitivity analysis 

was implemented using the male and female parameter subspaces to understand how model 

behavior differed between phenotypes. 
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Figure 12: Schematic outlining the model-based approach for isolation of male and female model 

parameter subspaces using stochastic sampling and global sensitivity analysis. Random samples are drawn 

from each parameter distribution with mean (µ) and standard deviation (σ) for the mixed sex population. 

Parameter sets associated with model output within the acceptable male or female ranges are specified as 

male or female accordingly. The isolated male and female parameter subspaces are then used for the global 

sensitivity analysis to identify parameters with the greater influence on model output. Parameter sets 

associated with model output outside the acceptable ranges are considered biologically implausible and 

discarded. 

3.2.2 Overview of the selected model 

Purely predictive modeling as implemented in this study may be cross-validated by 

comparing the in silico results against data collected from real subjects [165]. For this 

reasoning, a published compartment model describing sexual dimorphism in valproic acid 

pharmacokinetics was selected to demonstrate how special populations may be studied in 

silico when physiological and clinical data are lacking for the population of interest. The 
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literature model described the pharmacokinetics of valproic acid using four compartments: 

gastrointestinal tract (GI), central (C), peripheral (P), and gallbladder (GB). The model 

parameters were lag time (tlag), apparent absorption rate constant (ka), distribution 

clearance (CLD), peripheral compartment volume (VP), central compartment volume (VC), 

elimination clearance (CL), reabsorbed fraction (FE), time of reabsorption (TEHC), and 

reabsorption rate constant (kEHC). The system of differential equations that comprises the 

model and describes the mass (or amount, A) of valproic acid in each of the four 

compartments are given in Equations 10-13 prior to the onset of enterohepatic 

recirculation (t < TEHC), and in the central and gallbladder compartments after the onset of 

reabsorption (t > TEHC) in Equations 14-15 [29]. The plasma concentration was calculated 

by 𝐶𝑝 = 𝐴𝐶/𝑉𝐶. 

3.2.2.1 Before Reabsorption (t < TEHC)  

Gastrointestinal Tract: 𝑑𝐴𝐺𝐼

𝑑𝑡
= −𝑘𝑎 ∙ 𝐴𝐺𝐼 Eq. 10 

Central Compartment: 𝑑𝐴𝐶

𝑑𝑡
= 𝑘𝑎 ∙ 𝐴𝐺𝐼 −

𝐶𝐿

𝑉𝐶
∙ 𝐴𝐶 +

𝐶𝐿𝐷

𝑉𝑃
∙ 𝐴𝑃 −

𝐶𝐿𝐷

𝑉𝐶
∙ 𝐴𝐶  Eq. 11 

Peripheral Compartment: 𝑑𝐴𝑃

𝑑𝑡
=

𝐶𝐿𝐷

𝑉𝐶
∙ 𝐴𝐶 −

𝐶𝐿𝐷

𝑉𝑃
∙ 𝐴𝑃 Eq. 12 

Gallbladder Compartment: 𝑑𝐴𝐺𝐵

𝑑𝑡
= 𝐹𝐸 ∙

𝐶𝐿

𝑉𝐶
∙ 𝐴𝐶  Eq. 13 
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3.2.2.2 After Reabsorption (t > TEHC) 

Central Compartment: 𝑑𝐴𝐶

𝑑𝑡
= 𝑘𝑎 ∙ 𝐴𝐺𝐼 −

𝐶𝐿

𝑉𝐶
∙ 𝐴𝐶 +

𝐶𝐿𝐷

𝑉𝑃
∙ 𝐴𝑃 −

𝐶𝐿𝐷

𝑉𝐶
∙ 𝐴𝐶

+ 𝑘𝐸𝐻𝐶 ∙ 𝐴𝐺𝐵  

Eq. 14 

Gallbladder Compartment: 𝑑𝐴𝐺𝐵

𝑑𝑡
= −𝑘𝐸𝐻𝐶 ∙ 𝐴𝐺𝐵  Eq. 15 

3.2.3 Identification of initial parameter estimates for a generic population 

In the original population study, the model structure was identical for males and 

females with sex differences reflected only in model parameterization [68]. The parameter 

estimates for the compartment model were adapted to represent a mixed sex or general 

human population to demonstrate the model-based approach shown in Figure 12 because 

sex-specific parameter estimates are often unavailable, especially for more complex 

physiologically based models. The mean parameter values and sampling bounds describing 

the generic population are given in Supplementary Table 4. The Wilcoxon rank sum test, 

a nonparametric method for comparison of population medians, was used to compare 

model input for the simulated male and female populations when the assumption of 

normality was not accurate for one or both populations. The two-sided Smirnov-

Kolmogorov test, a nonparametric method for comparison of population distributions, was 

also used to evaluate sexual dimorphism in model input. The Wilcoxon rank sum test was 

used to determine whether median parameter values obtained from sampling matched the 

corresponding values determined in the original population study. 
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3.2.4 Identification and analysis of male and female parameter subspaces 

Random samples were drawn from the normal distributions generated in 

MATLAB® using the mean (µ) and standard deviation (σ) for the generic population and 

sampling bounds of ±3𝜎. Parameters were treated independently during sampling to 

maximize the variability in predicted pharmacokinetic outputs [166]. The compartment 

model was run for each parameter set and the model output was used to identify whether 

the parameter set could be classified as male, female or discarded when biologically 

implausible. The selection criteria for inclusion of a parameter set were based on the non-

compartmental analysis determined from the 14 subjects [68], where acceptable parameter 

sets were associated with model output that was within 1 standard deviation of the mean 

values reported for Cmax and area-under-the-curve (AUC), and within the observed 

minimum and maximum reported values for tmax and tlag. Parameter sets associated with 

model output within the acceptable range for females or males were included in the male 

or female population accordingly. Parameter sets with some or all model output outside the 

acceptable range were discarded and not used for further analysis. The male and female 

model outputs from the clinical study are given below in Table 3 with statistically 

significant sex differences for Cmax and AUC0-48. The data for all 7 female subjects was 

used, including the two subjects using contraceptive therapy. The Wilcoxon rank sum test 

was used to compare the model outputs identified for the simulated male and female 

populations against those reported by the clinical study.  
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Table 3: Target male and female pharmacokinetic model output for selection of parameter sets from 

stochastic sampling 

 Cmax (mg/L) a Tmax (hr) b AUC0-48 (mg h/L) a 

Clinical Male Subjects 35.6 (5.2) 3-5 496.6 (55.2) 

Clinical Female Subjects 55.3 (9.4) 3-6 809.4 (148.4) 

Sex Differences c p-value<0.001 NS p-value<0.01 

a
 The mean and standard deviation (values in parentheses) were reported directly by the original clinical study 

and determined using a noncompartmental analysis. 

b The minimum and maximum values for tmax were determined using the plasma concentration profiles given 

in the original clinical study. These values considered the time from administration until maximum drug 

exposure, including the initial lag time. 

c
 Sex differences were reported by the original clinical study, where NS corresponds to a non-significant 

difference between male and female model output. 

3.2.5 Support vector machine for binary classification 

A support vector machine (SVM) was used to determine the equation of the 

hyperplane that defined the separation between the simulated male and female multivariate 

parameter spaces. The separating hyperplane was defined by Equation 16, where x 

corresponds to the matrix of input parameters, β represents the matrix of the best-fit 

hyperplane coefficients, and b is the bias determined while fitting the optimal separating 

hyperplane for the training data set. 

𝑓(𝑥) = 𝒙′ ∙ 𝜷 + 𝑏 = 0 Eq. 16 

The classifier was trained using a subset of parameter sets, selected by random 

sampling from the simulated populations for 1,000 virtual male subjects and 1,000 virtual 

female subjects. The function ‘fitcsvm’ was used in MATLAB® to determine the equation 

of the separating hyperplane for the 9 model parameters. Data were preprocessed by 

calculating the z-scores for each observation (i.e. the difference between the mean and 

individual parameter values divided by the standard deviation). Bootstrapping was 
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implemented to understand the sensitivity of the hyperplane parameters to the selected 

subset of parameter sets using 1,000 replicates.  

3.2.6 Principal component analysis 

A principal component analysis (PCA) was used to identify the existence of any 

parameter dependencies associated with the biologically plausible model output, revealing 

trends in parameter combinations that contribute to observed phenotype. PCA was 

implemented in MATLAB® using z-scored data for 1,000 bootstrapped samples of 1,000 

virtual female subjects and 1,000 virtual male subjects randomly selected from the original 

simulated populations. PCA condensed the multi-dimensional data set into fewer principal 

components, thereby representing the original data as linear combinations of the parameter 

values for each virtual subject. The PCA was performed using the same number of 

observations for males and females such that the PC scores were not skewed by the number 

of samples contained in each population. Bootstrapping was used to ensure the resulting 

principal components for the selected subset of virtual subjects were representative of the 

simulated populations. Following transformation of data into its principal components, a 

support vector machine was trained using the principal component scores.  

3.2.7 Sobol sensitivity analysis 

The Sobol sensitivity method was implemented using the sex-specific parameter 

distributions identified from stochastic sampling for all model parameters (k = 9). The 

Sobol method is described in more detail in Chapter 2 as well as Scherholz et al. [161]. 

Briefly, the Sobol sensitivity analysis relies on random sampling to generate parameter sets 

(N = 6,000) from the male and female parameter spaces for calculation of the sensitivity 

measures. Although physiologically representative normal distributions were considered 
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for individual parameters, the sampling method did not account for the probability that 

certain parameter combinations occur at higher frequencies [141]. For each sex, the 

analysis was repeated ten times. The total computational cost for each analysis was 𝑁𝑡 =

𝑁(𝑘 + 2) or 66,000 simulations. The sensitivity measures for direct effects (Si) were 

determined for all parameters included in the model using the maximum concentration 

(Cmax), the time to maximum exposure (tmax), and AUC0-48 as the model output. Sensitivity 

measures for the maximum concentration and AUC0-48 indicated which factors affected 

maximum and cumulative drug exposure whereas sensitivity measures for tmax showed 

which parameters affected the rate of appearance in systemic circulation. Parameters were 

deemed significant if sensitivity measures were greater than 0.05 [128], such that at least 

5% of the total model output variability was explained directly by each parameter. 

3.3 Results 

3.3.1 Identification of simulated male and female populations 

From the 200,000 parameter combinations generated by stochastic sampling, 3,905 

sets were consistent with male clinical data and 27,492 for female clinical data. The 

remaining parameter sets resulted in model output that was neither male or female and were 

discarded. The density distributions of all 9 model parameters associated with the simulated 

male and female populations as well as the initial sampled population are given in Figure 

13. Sex differences were statistically significant (p-value < 0.05) except for the 

reabsorption rate constant (kEHC) based on the two-sided Kolmogorov-Smirnov tests for 

comparison of population distributions and the Wilcoxon rank sum test for comparison of 

population medians. The greatest sex differences between the simulated populations were 

observed for the univariate parameter distributions of the central compartment volume (VC) 
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and elimination clearance (CL). Furthermore, the median parameter values obtained by 

sampling were statistically similar to the values determined in the original population study 

for both males and females. The results of the statistical analyses are given in the 

Supplementary Table 5 to Supplementary Table 7. 

 
Figure 13: Probability density distributions of model input parameters for the simulated male and female 

populations. The probability density distributions are given for the simulated male and female populations 

isolated from sampling (blue and red lines, respectively) and the original mixed sex population used as the 

starting point for sampling (black line). The p-values are reported for the comparison of population 

distributions according to the Kolmogorov-Smirnov (KS) test and the comparison of population medians 

according to the Wilcoxon Rank Sum (WRS) test. Sex differences that were not statistically significant 

were indicated by NS (not significant). 

The model output for the simulated male and female populations are given in 

Figure 14 with statistically significant sex differences for all model outputs (Cmax, tmax, and 
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AUC0-48). Differences between the simulated population and the corresponding clinical 

population were not statistically significant for either male or female subjects based on a 

comparison of the population medians (p-values < 0.05 for the Wilcoxon rank sum test). 

The results of the statistical analysis are given in Supplementary Table 8. Furthermore, 

the plasma concentration profiles associated with the male and female parameter sets were 

in qualitative agreement with the experimentally observed plasma concentration profiles 

as shown in Figure 15. Thus, the simulated populations were considered to be 

representative of the original clinical subjects.  

 
Figure 14: Probability density distributions of model output for the simulated male and female populations. 

The probability density distributions are given for the simulated male and female populations isolated from 

sampling (blue and red solid lines, respectively) and the original clinical populations (blue and red dotted 

lines). The p-values are reported for the comparison of the population medians according to the Wilcoxon 

Rank Sum (WRS) test. Sex differences that were not statistically significant were indicated by NS (not 

significant). 
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Figure 15: Plasma concentration profiles for the simulated and clinical populations. The mean plasma 

concentration profiles for the male and female populations are given in subplots (A) and (B), respectively. 

The light shaded area represents the experimentally observed standard deviation whereas the darker shaded 

area represents the standard deviation associated with model predictions corresponding to the isolated male 

and female parameter sets.  

3.3.2 Separation of model input into male and female parameter subspaces 

A support vector machine was used to establish the equation of the separating 

hyperplane for identification of the model input that dictated whether a parameter set was 

identified as male or female. The hyperplane coefficients are given in Figure 16 for 1,000 

bootstrapped samples, where each β corresponded to an input parameter. Elimination 

clearance (CL) and the central compartment volume (VC) were the most important 
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parameters for separation of male and female model input, whereas the reabsorption rate 

constant or initial lag time were not significant indicators of phenotype.  

 
Figure 16: Separating hyperplane coefficients using model input as support vector machine (SVM) 

predictors. A binary classifier was developed using a randomly selected subset of 1,000 male and 1,000 

female parameter sets for 1,000 bootstrapped samples to identify which parameters separated model output 

into the two phenotypes. The distributions of hyperplane coefficients for the bootstrapped samples are 

given in subplots (A) through (I) with the mean values of hyperplane coefficients reported in subplot (J).  

When the separating hyperplane was approximated by the top two predictors of sex, 

a clear boundary was observed between male and female parameter combinations for 

elimination clearance (β5) and the central compartment volume (β2), whereas significant 

overlap was observed when the parameters with the lowest β values were used (Figure 17).  
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Figure 17: Approximation of the separating hyperplane between male and female model input using two 

predictors. The hyperplane using the most significant predictors (highest βi values) and the least significant 

predictors (lowest βi values) are given in subplots (A) and (B), respectively. The black line in (A) 

corresponds to the mean hyperplane for the 1,000 bootstrapped samples. The shaded area represents the 

potential location of the boundary between males and females when the separating hyperplane parameters 

were within 1 standard deviation of the mean values. The scatter plot shows the z-scores for the given 

parameters associated with male subjects (blue) and female subjects (red) from one representative 

bootstrapped sample.  

3.3.3 Identification of parameter correlations in model input 

The model input for the simulated populations were transformed into its principal 

components to understand how correlations between parameters differentiated male and 

female phenotypes. The resulting scores plot for the first three principal components is 

given in Figure 18a, showing clustering of the simulated male and female populations into 

two distinct regions. A principal component score of zero corresponded to the mean score 

of all observations (both male and female populations), whereas a positive score indicated 

a value above the overall mean and a negative score indicated a value below the overall 

mean. On average, the first component captured 26% of the total variability in parameters 

with the second and third components each describing 12%. The separating hyperplane 
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parameters that defined the boundary between male and female principal component scores 

are given in Figure 18b for the 1,000 bootstrapped samples. Only the first principal 

component was important for separation of male and female parameter subspaces. The PC 

loadings are given in Figure 18c for the first component, where the magnitude indicated 

the relative contribution of a model parameter towards the component score and the sign 

indicated how parameters were related. Elimination clearance (CL), central compartment 

volume (VC) and the initial lag phase (tlag) had the highest loadings for the first principal 

component. When considered independently, tlag was not a key identifier of phenotype 

based on the support vector machine in the untransformed data. Conversely, clearance and 

the central compartment volume were important for both the untransformed and 

transformed data. Simulated females had negative scores for the first component, 

corresponding to longer initial lag times, and reduced values for the central compartment 

volume and elimination clearance than the simulated males, consistent with the results 

observed clinically [29]. The loadings for the second and third component show greater 

variability between bootstrapped samples than observed for the first principal component 

(data not shown).  
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Figure 18: Separating hyperplane between male and female populations using principal components. The 

3D scores plot in (A) shows the separating hyperplane using the first three principal components. The 

percentage of variability explained by each principal component is indicated in the axis labels. The black 

surface corresponds to the mean boundary of the 1,000 bootstrapped samples. The pink surface corresponds 

to the boundary when the separating hyperplane are +1σ of the mean values. The green surface corresponds 

to the boundary when the separating hyperplane are -1σ of the mean values. The scatter plot shows the 

principal component scores for the male subjects (blue) and female subjects (red) from one representative 

sample. The mean separating hyperplane parameters for the support vector machine (SVM) are given in (B) 

where the error bars represent the standard deviation of the 1,000 bootstrapped samples. The mean loadings 

for the first principal component are given in subplot (C) with error bars that represent the standard 

deviation for the 1,000 samples. 

3.3.4 Identification of model input driving inter-individual variability within each 

population 

The Sobol sensitivity analysis was performed by randomly sampling the normal 

distributions established in Section 3.1 with sampling bounds set to 3σ and N=6,000, 

requiring a total of 66,000 simulations to calculate sensitivity indices in each analysis. The 

mean first order effects for Cmax, tmax, and AUC0-48 determined by the Sobol sensitivity 

analysis are given for the simulated male and female populations in Figure 19. For the 

simulated male population, variability in Cmax was attributed to the central compartment 

volume (77%) followed by the absorption rate constant (19%). Similarly, variability in 

Cmax in the simulated female population was explained by the central compartment volume 
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(78%) and the absorption rate constant (15%). For tmax values in males, the absorption rate 

constant accounted for 64% of the total variability and the initial lag time for 24%, whereas 

17% and 78% of total variability in females were explained by ka and tlag, respectively. 

Interestingly, the first order sensitivity measures differed appreciably between the 

simulated populations considering AUC0-48 as the model output. In the simulated male 

population, the elimination clearance primarily explained variability in the AUC0-48 (61%), 

followed by the fraction reabsorbed (22%), central compartment volume (6.2%), peripheral 

compartment volume (5.9%), and time of reabsorption event (5.3%). Variability in AUC0-

48 associated with the simulated female population was largely apportioned to the 

elimination clearance (77%) and to a lesser extent by the fraction reabsorbed (9.8%) and 

the peripheral compartment volume (6.3%). In summary, the sensitivity analysis indicated 

that variability in pharmacokinetics was primarily apportioned to the subset of parameters 

that captured the key features of pharmacokinetic profile: onset and rate of absorption (tlag 

and ka), disappearance of the drug from systemic circulation (kE = CL/VC), and the 

reabsorption event (FE and TEHC). Second order and higher interactions did not contribute 

significantly towards variability in model output (data not shown) such that variability in 

model output was almost entirely explained by the first order effects of these parameters.  
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Figure 19: Sobol sensitivity analysis for male and female parameter subspaces. The first order sensitivity 

measures for male and female parameter subspaces are given in subplots (A) and (B), respectively using 

Cmax, tmax, and AUC0-t as the model output. A higher value corresponds to a parameter which explains a 

greater proportion of the variability in model output.  

3.3.5 Relating sexual dimorphism and inter-individual variability 

The parameters for the separating hyperplane and the loadings for the principal 

components provided an indication of which parameters were critical for separation of the 

model input into distinct phenotypes while the Sobol sensitivity measures explained which 

parameters contributed to variability in model output within each population. The 

importance of parameters for the support vector machine and the principal component 

analysis were largely similar with the exception of the initial lag time (Table 4). The 

difference between methods can be attributed to the fact that the support vector machine in 

the untransformed parameter space ranked parameters purely on the ability to separate male 

and female phenotypes based on univariate parameter distributions while the principal 

component analysis considered parameter dependencies. Generally, parameters that were 

important for separating male and female phenotypes were also significant for at least one 

model output whereas parameters that significantly influenced model output, such as the 

absorption rate constant or the initial lag time, did not necessarily distinguish phenotype.  
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Table 4: Summary of Parameter Rankings for Support Vector Machine, Principal Component loadings, and 

Sobol sensitivity analysis 

Model Input Parameters 
SVM 

Ranking 

PC1 

Loading 

Sobol Sensitivity 

Male Parameter Space 

Sobol Sensitivity 

Female Parameter Space 

Cmax tmax AUC0-48 Cmax tmax AUC0-48 

Elimination Clearance, CL 1 1 4 4 1* 3 4 1* 

Central Compartment Vol., VC 2 2 1* 3 4* 1* 3 4 

Reabsorption Fraction, FE 3 4 7 7 2* 9 7 2* 

Peripheral Compartment Vol., VP 4 6 5 8 3* 5 9 3* 

Absorption Rate Constant, ka 5 5 2* 1* 7 2* 2* 7 

Onset of Reabsorption, TEHC 6 7 6 6 5* 8 8 5 

Distribution Clearance, CLD 7 8 3 5 9 4 5 8 

Reabsorption Rate Constant, kEHC 8 9 9 9 8 7 6 9 

Initial Lag Time, tlag 9 3 8 2* 6 6 1* 6 

Abbreviations: Vol. = Volume 

Symbols: * = Significant parameter (greater than 5% contribution to variability in model output) 

3.4 Discussion  

As researchers and clinicians strive for personalized medicine, pharmacokinetic 

modeling is an important tool to identify exposure risks for individuals and patient 

subgroups. To support this goal, the concept of a pharmacokinetic model that represents an 

average individual or a generic population is replaced by models adapted to the physiology 

or clinical scenario of interest with an understanding that patient covariates, such as sex, 

can significantly affect the pharmacokinetic response. Today, there remains a high level of 

uncertainty and missing information associated with special populations that hinders the 

usefulness and predictive power of such models [106,148]. Unfortunately, generating this 

knowledge may be both time and cost prohibitive and so, several initial assumptions are 

often needed to generate preliminary pharmacokinetic predictions for specialized 

physiological states. However, the analytical framework herein has the potential to explore 

the underlying physiology leading to clinically observed responses using limited data and 
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minimal assumptions. The insight gained from the support vector machine, principal 

component analysis, and global sensitivity analysis guides future in vitro studies to improve 

confidence in estimates for the critical model parameters, enabling the model input to be 

amended accordingly.  

Our approach draws from concepts in both top-down and bottom-up approaches to 

identify the parameter subspaces associated with the male and female phenotypes for the 

selected pharmacokinetic model. Drawing from bottom-up methodologies, existing 

knowledge of physiology, or in this case model input for a mixed sex population, was used 

as the starting point for sampling. Paralleling top-down methodologies, the current study 

used the observed clinical behavior to identify parameter combinations that predicted 

plasma concentration profiles associated with the male and female phenotypes. Rather than 

obtaining the best-fit parameter values for the individual profiles, the collection of 

parameter sets that produced plasma concentration profiles within an acceptable range of 

the mean male and female profiles were identified. Despite limiting the plasma 

concentration profiles to a relatively narrow range, male and female phenotypes were 

associated with wide variability in both individual parameter values and combinations of 

parameters. That is, the parameter sets within a sex-specific region qualitatively produced 

similar model output, yet, large quantitative differences between model input were 

observed. As such, the isolated parameter subspaces revealed inter-individual variability 

within each sex as well as population differences.  

The acceptance criteria for the simulated parameter combinations could be further 

refined such that the likelihood of a particular model output is considered to better match 

the population distributions to the clinical study rather than accepting parameter sets that 
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generate outcomes within an acceptable range with equal probability. The general 

conclusions drawn from the sampling-based approach regarding sexual dimorphism in 

pharmacokinetics paralleled the findings from the published population study, thus 

validating the methodology outlined herein against the well-accepted methodologies of 

population pharmacokinetics. Although the original study identified male and female 

parameterization for the statistical model, this information is largely not available for more 

complex physiologically based models [27]. As such, the starting point for the sampling-

based methodology was a generic population that represented a mix of both sexes to 

demonstrate that the parameter values, as well as the multivariate parameter combinations, 

associated with male and female phenotypes can successfully be isolated from the mixed 

population given prototypical model output for the subpopulations of interest. The 

sampling-based approach parallels the techniques used to implement virtual clinical trials 

where a large number of subjects were generated from limited data [167-169]. In contrast 

to these virtual trials in which parameter dependencies were known a priori, the 

relationships between model input may not be previously established for special 

populations. The approach enables these potential underlying mechanisms to be identified 

as a preliminary step in virtual clinical trials when not available from existing in vitro data. 

While the combination of parameters that gave rise to the male or female 

phenotypes were unique to either population, univariate distributions revealed overlapping 

values between male and females. Such overlap is unsurprising considering that 

physiological data are usually associated with a relatively narrow range of plausible values 

[27]. Thus, phenotype was not dictated by an individual parameter, but instead, by unique 

combinations across populations. Together, the elimination clearance, central compartment 
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volume, and the initial lag phase constituted the main differences between males and 

females. These findings were consistent with the fact that several physiological 

mechanisms contribute to observed phenotype such as differences in the gastrointestinal 

physiologies reflected in the initial lag time and absorption rate constant or differences in 

drug disposition and excretion reflected in the elimination clearance and central 

compartment volume for this compartment model. Augmenting analysis of the model input 

with global sensitivity analysis enabled an understanding of both sexual dimorphism and 

inter-individual variability in pharmacokinetics. The approach revealed that specific 

combinations of parameters gave rise to a certain phenotype, while individual parameters 

(negligible higher order effects) influenced the plasma concentration profile within the 

population. Furthermore, the sensitivity analysis revealed differences in significant 

parameters as a function of parameter subspace, particularly for AUC0-48, which captured 

the influence of model parameters on the cumulative drug exposure. This finding 

highlighted the dependency of the sensitivity measures on the sampled input space and the 

need to explore model behavior using appropriate model input, consistent with previous 

implementations of global sensitivity analysis [155,161]. 

The interpretation of the underlying physiological differences between males and 

females was limited by the use of the compartment model as the model input were highly 

lumped terms describing several physiological processes through a limited number of 

parameters. However, the use of a simple model enabled the methodology to be validated 

before applying this technique to a more complex physiologically based pharmacokinetic 

model where there may be very limited or incomplete physiological and clinical data that 

serves as model input for the physiologies of interest. Given a more detailed 
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physiologically based model, the sampling-based approach can be used to gain insight into 

the underlying physiological mechanisms responsible for the observed sex differences. 

While the current model input was separated based on sex, similar differences for other 

patient factors, such as age, disease state, etc., would also be expected and could be 

evaluated by the described methodology.  
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 Modeling the influence of 

chronopharmacological administration using an integrated 

semi-mechanistic PKPD model 

4.1 Introduction 

Natural glucocorticoids (GC) are a class of cholesterol-derived hormones secreted 

from the zona fasciculata of the adrenal glands [170]. These hormones mediate a wide array 

of physiological functions with potent modulatory effects on metabolic, anti-inflammatory, 

immunosuppressive and cognitive signaling [170,171]. The synthesis of natural 

glucocorticoids, primarily cortisol in humans, is regulated by the hypothalamic-pituitary-

adrenal (HPA) axis, which along with the sympathetic nervous system constitutes the 

primary physiological stress response mechanism. HPA axis activity is mediated through 

a signaling cascade involving the sequential release of corticotrophin-releasing hormone 

(CRH), adrenocorticotropic hormone (ACTH) and cortisol (CORT). Cortisol transduces its 

physiological functions by binding to glucocorticoid receptors [172]. Upon cortisol 

binding, the glucocorticoid receptor complex translocates to the nucleus where it can 

regulate gene expression by binding to glucocorticoid response elements that subsequently 

activate or repress gene transcription [173]. Importantly, the basal activity of the HPA axis 

hormones exhibits pronounced circadian variation, with a peak in glucocorticoid secretion 

during the early morning hours in humans [172]. Cortisol is critically involved in the 

appropriate synchronization of peripheral circadian clock genes, which further coordinate 

the functions of their residing tissues and promote homeostasis [174]. Therefore, the 
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maintenance of homeostatic cortisol circadian rhythms is critical to overall host survival 

[175]. 

Since the discovery of the immunosuppressive and anti-inflammatory properties of 

cortisone (a closely related natural analog of cortisol) by Hench and Kendall in 1948 [176], 

synthetic GCs have been extensively used in the treatment of chronic inflammatory 

conditions including asthma, skin infections, and rheumatoid arthritis as well as for their 

immunosuppressive effects in patients undergoing organ transplantation [177-179]. 

Synthetic glucocorticoids have complex genomic action, similar to cortisol, with anti-

inflammatory effects largely mediated by transrepression of regulatory genes involved in 

human immunology [180,181]. Although structurally similar to natural GCs, synthetic GCs 

can significantly differ in their potency and metabolic clearance to their endogenous 

analogs [181,182]. Despite the vast pharmacological benefits of synthetic GC 

administration, chronic use is associated with serious systemic adverse effects, especially 

during high-dose administration [183-186]. Adverse effects are attributed to the 

transactivation of pathways involved in diabetes and glaucoma, as well as the 

transrepression of the HPA axis [180,181,187]. Consistent with clinical manifestations due 

to cortisol exposure outside the normal physiological range, patients receiving synthetic 

GCs are at an increased risk of developing psychiatric disorders like depression, drug-

induced hyperglycemia, long-term diabetes mellitus, osteoporosis, gastritis and 

cardiovascular disease [185,188-191]. Considering the diverse and complex effects of 

synthetic GCs, the relationship between pharmacological dosing and the biochemical, 

physiological and behavioral processes influenced by chronic administration of synthetic 

glucocorticoids has yet to be fully elucidated [173,192].  
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Given the central regulatory function of the endogenous glucocorticoids, chronic 

disruption of cortisol rhythmicity is thought to result in the subsequent misalignment of 

peripheral circadian clocks, thus leading to the development of systemic complications 

[174,193]. Therefore, there is a great deal of interest in the development of novel dosing 

regimens that can minimize the disruption of homeostatic circadian activity of cortisol and 

still maintain the pharmacological benefits of long-term synthetic GC therapy [194]. While 

significant progress has been made in the development of selective glucocorticoid receptor 

agonists that minimize transactivating properties to avoid adverse effects [181], a number 

of studies have investigated the influence of administration time of exogenous GCs on the 

endogenous cortisol rhythm with the aim of identifying chronopharmacological dosing 

regimens that minimize the disruption of the endogenous cortisol rhythm and the incidence 

of adrenal suppression. For example, healthy subjects administered synthetic GCs in the 

morning were found to exhibit the least suppression of the endogenous cortisol rhythm, 

while evening administration, resulted in maximal suppression of cortisol secretion and 

thus, found to be less physiologically compatible [87,179,184,195]. Additional studies 

aimed to replicate the endogenous cortisol activity for patients suffering from adrenal 

insufficiency [196]. While these studies showed that the administration time could likely 

be tailored to minimize disruption or to replicate the endogenous GC rhythm in the short-

term, comprehensive studies on the longer-term influences of chronic dosing of synthetic 

GCs on the rhythmic characteristics of endogenous HPA axis activity are currently lacking.  

Along with time-of-dosing, the influence of dose strength and different 

administration routes on endogenous HPA axis activity in the context of chronic exposure 

to synthetic GCs has yet to be elucidated. Adequately accounting for such factors in 
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exploratory experimental studies can be exceedingly expensive as clinical designs grow in 

complexity and size. In such cases, a model-based approach can be a particularly useful 

tool for efficiently generating and evaluating experimentally-verifiable hypotheses related 

to the dose-exposure-response relationship for synthetic GCs. Through mathematical 

modeling, the impact of pharmacokinetics (dose, administration time, route of 

administration, duration of treatment, etc.) in accordance with internal circadian rhythms 

and external environmental influences, such as light and feeding, can be thoroughly 

investigated [81,83,106,197]. For example, physiologically based modeling was 

previously implemented to understand how endogenous melatonin, a compound with 

strong circadian dependence, was influenced by the administration of exogenous melatonin 

and to elucidate the chronopharmacokinetics of exogenous melatonin for replication of the 

endogenous rhythm of melatonin [97]. 

In this study, a mathematical model was developed to explore the influence of 

exogenous GC dosing on the endogenous cortisol rhythm for a generic synthetic GC, 

considering both an intra-venous bolus and once-daily oral dosing. For these administration 

routes, the HPA axis activity was compared as indicated by changes in the cortisol rhythm 

due to a bolus of drug in systemic circulation with the pharmacological response following 

slower appearance rates in systemic circulation considering absorption after oral dosing. 

Furthermore, differences in the response to short term and chronic treatment were 

determined. As such, the goal of this study was to elucidate how long-term 

chronopharmacological dosing regimens influenced the basal cortisol activity using a 

model-based approach. Within the context of personalized medicine, this study emphasized 
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how delivering the ‘right dose’ at the ‘right time’ minimized the impact to normal 

biological functioning using a dynamic, semi-mechanistic PKPD model.  

4.2 Approach 

4.2.1 Description of the HPA axis model  

A schematic of the model is depicted in Figure 20. The underlying form of the 

oscillator was originally developed by Goodwin [198], and has since been modified to 

include the Michaelis-Menten type degradation kinetics, which obviates the need to use 

unrealistically large Hill coefficients [199]. Given an appropriate choice of parameters, the 

model equations are able to produce circadian (24-hour periodic) oscillations [77,83,200].  

The primary mediators of the HPA axis, CRH, ACTH and cortisol (CORT) are 

represented by nonlinear ordinary differential equations (ODEs). CRH induces the release 

of ACTH from the pituitary gland, which subsequently induces the release of CORT from 

the adrenal glands (Equation 23-25). The synthesis of CRH in the hypothalamus is 

described by zero-order kinetics, while ACTH and CORT synthesis is described by first-

order kinetics. Moreover, the model accounts for the binding of CORT to the 

glucocorticoid receptor (GR) [77] as well as the pharmacodynamics of the cortisol-bound 

receptor complex (Equation 26-29).  
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Figure 20: Model Schematic: A schematic of the model depicting the primary interactions in the 

hypothalamus-pituitary-adrenal (HPA) axis. The synthetic glucocorticoids (GC) competitively bind to the 

glucocorticoid receptor and contribute to the negative feedback arm of the HPA axis. Synthetic GCs are 

administered by either a bolus injection directly into systemic circulation or by oral administration. 

Appearance in systemic circulation following oral administration is indicated by the orange line. 

Briefly, the model accounts for the transcription of GR mRNA (𝐺𝑅𝑚𝑅𝑁𝐴), (Equation 

26) and the subsequent translation of GR protein (𝐺𝑅) (Equation 27). CORT forms a 

complex with cytoplasmic GR, (𝐺𝑅𝑏𝑜𝑢𝑛𝑑). A fraction of this complex translocates to the 

nucleus, 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁). Upon translocation, the hormone-receptor complex, (𝐺𝑅𝑏𝑜𝑢𝑛𝑑) is 

known to negatively regulate the expression of (𝐺𝑅𝑚𝑅𝑁𝐴), which is accounted for in Equation 

26. Finally, Equations 23-24 account for inhibitor influence of the nucleated CORT-bound 

receptor complex, 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁), on the release of CORT and ACTH.  

Furthermore, the entraining influence of light on the HPA axis via the 

suprachiasmatic nucleus (SCN) was considered. Light is assumed to have an inductive 
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influence on CRH in diurnal animals by inhibiting its degradation [201]. A symmetric light 

schedule (12-hour light/12-hour dark) was used to entrain the HPA axis model. Such a light 

schedule has been used previously in mathematical modeling studies to investigate the 

influence of light entrainment on the behavior of the endogenous circadian clock and the 

HPA axis hormones [81,83,202,203]. While a simple 12-hour light/12-hour dark schedule 

was used in the present study, more complex light schedules could be considered to 

investigate the influence of factors such as seasonality on the pharmacodynamic response 

of synthetic GCs. The model considers a 1 to 2-hour delay between the start of light 

exposure and the onset of the photo-induced effects in the HPA axis, denoted by the term 

𝑙𝑖𝑔ℎ𝑡𝑒𝑓𝑓𝑒𝑐𝑡 [204]. This delay in the photo-inductive effect on the HPA axis was modeled 

using a series of transit compartments. Finally, a step function is used to model the light 

profile, while a Hill function is used to describe the dynamics of the phototransduction 

pathways (Equation 17-22). All simulations were implemented in MATLAB 2017b. 

Model equations were integrated using MATLAB’s built-in ode45 routine. 

4.2.1.1 HPA Axis Mediators 

𝑙𝑖𝑔ℎ𝑡 = {
1       6: 00 ≤ 𝑡 ≤ 18: 00
0       18: 00 < 𝑡 < 6: 00

 Eq. 17 

𝑑𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑠𝑦𝑛𝑡ℎ1

𝑑𝑡
= 𝑘𝑡(𝑙𝑖𝑔ℎ𝑡 − 𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑠𝑦𝑛𝑡ℎ1) Eq. 18 

𝑑𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑠𝑦𝑛𝑡ℎ1 𝑖

𝑑𝑡
= 𝑘𝑡(𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑠𝑦𝑛𝑡ℎ 𝑖−1 − 𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑠𝑦𝑛𝑡ℎ 𝑖), 𝑖 =  {1,2,3} Eq. 19 
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𝑑𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑑𝑒𝑔1

𝑑𝑡
= 𝑘𝑡(𝑙𝑖𝑔ℎ𝑡𝑑𝑒𝑔 − 𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑑𝑒𝑔1) Eq. 20 

𝑑𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑑𝑒𝑔 𝑖

𝑑𝑡
= 𝑘𝑡(𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑑𝑒𝑔 𝑖−1 − 𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑑𝑒𝑔 𝑖); 𝑖 = {1,2,3} Eq. 21 

𝑑𝑙𝑖𝑔ℎ𝑡𝑒𝑓𝑓𝑒𝑐𝑡

𝑑𝑡
= 𝑘𝑢𝑠

𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑠𝑦𝑛𝑡ℎ 𝑖
𝑛

𝐾𝑀,𝑢𝑠
𝑛 + 𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑠𝑦𝑛𝑡ℎ 𝑖

𝑛 − 𝑘𝑑𝑒𝑔,𝑢𝑠𝑙𝑖𝑔ℎ𝑡𝑒𝑓𝑓𝑒𝑐𝑡(1

+ 𝑘𝑒𝑓𝑓𝑙𝑖𝑔ℎ𝑡𝑇𝐶𝑑𝑒𝑔 𝑖) 

Eq. 22 

𝑑𝐶𝑅𝐻

𝑑𝑡
=

𝑘𝑝1. 𝐾𝑝1

𝐾𝑝1 + 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁)
− 𝑉𝑑1.

𝐶𝑅𝐻 ∙ (1 −
𝑙𝑖𝑔ℎ𝑡𝑒𝑓𝑓𝑒𝑐𝑡

1 + 𝑙𝑖𝑔ℎ𝑡𝑒𝑓𝑓𝑒𝑐𝑡
)

𝐾𝑑1 + 𝐶𝑅𝐻
 Eq. 23 

𝑑𝐴𝐶𝑇𝐻

𝑑𝑡
=

𝑘𝑝2. 𝐾𝑝2𝐶𝑅𝐻

𝐾𝑝2 + 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁)
− 𝑉𝑑2.

𝐴𝐶𝑇𝐻

𝐾𝑑2 + 𝐴𝐶𝑇𝐻
 Eq. 24 

𝑑𝐶𝑂𝑅𝑇

𝑑𝑡
= 𝑘𝑝3. 𝐴𝐶𝑇𝐻 − 𝑉𝑑3.

𝐶𝑂𝑅𝑇

𝐾𝑑3 + 𝐶𝑂𝑅𝑇
 Eq. 25 

4.2.1.2 Glucocorticoid Receptor Pharmacodynamics 

𝑑𝐺𝑅𝑚𝑅𝑁𝐴

𝑑𝑡
= 𝑘𝑠𝑦𝑛𝐺𝑅𝑚

. (1 −
𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁)

𝐼𝐶50𝐺𝑅𝑚
+ 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁)

) − 𝑘𝑑𝑒𝑔. 𝐺𝑅𝑚𝑅𝑁𝐴 
Eq. 26 

 

𝑑𝐺𝑅

𝑑𝑡
= 𝑘𝑠𝑦𝑛,𝐺𝑅 . 𝐺𝑅𝑚𝑅𝑁𝐴 + 𝑟𝑓 . 𝑘𝑟𝑒 . 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁) − 𝑘𝑜𝑛. (𝐶𝑂𝑅𝑇). 𝐺𝑅

− 𝑘𝑑𝑒𝑔,𝐺𝑅 . 𝐺𝑅 

Eq. 27 

𝑑𝐺𝑅𝑏𝑜𝑢𝑛𝑑

𝑑𝑡
= 𝑘𝑜𝑛. (𝐶𝑂𝑅𝑇). 𝐺𝑅 − 𝑘𝑇 . 𝐺𝑅𝑏𝑜𝑢𝑛𝑑 Eq. 28 
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𝑑𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁)

𝑑𝑡
= 𝑘𝑇 . 𝐷𝑅 − 𝑟𝑓 . 𝑘𝑟𝑒 . 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁) Eq. 29 

4.2.2 Description of pharmacokinetic models for synthetic GC administration 

Once-daily dosing is described using pharmacokinetic models that qualitatively 

captured the experimentally observed features of the drug exposure profile, such as the 

absorption rate and half-life, for a generic synthetic GC. While some synthetic GCs 

demonstrate complex pharmacokinetics due to competitive binding of the corticosteroid 

binding globulin (CBG) and interconversion between pharmacologically active and 

inactive forms by 11β-hydroxysteroid dehydrogenase type1/2 [182,184,205], linear 

pharmacokinetics are assumed for the model drug. Disruption of endogenous cortisol 

circadian rhythmicity following dosing may be evaluated under the assumption of linear 

pharmacokinetics to understand qualitative changes in the dose-exposure-response 

relationship.  

To assess how the endogenous cortisol rhythm is influenced by the rate of 

appearance of drug into the system, pharmacokinetic models describing an intra-venous 

(IV) and oral dosing are used assuming absorption and elimination follow first-order rate 

processes. Disposition of synthetic GCs was previously described by 1 or 2 compartment 

models depending on the drug, administration route and dose [182]. For this preliminary 

dosing study, a 1-compartment model is assumed to describe drug distribution within the 

body. The rate of disappearance of drug from systemic circulation following an injection 

is described by Equation 30. Disappearance from the gastrointestinal tract (GIT) after oral 

administration is described by Equation 31 and the amount of drug in systemic circulation 

is given by Equation 32. These equations are simplified from those developed by Xu et al. 
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for IV and oral dosing of prednisolone using a 1-compartment model [205], neglecting first 

pass extraction and interconversion between prednisolone and prednisone for the arbitrary 

synthetic GC. Since the displacement of cortisol from plasma protein, metabolic enzymes, 

and GR binding sites due to competition with synthetic GCs is not considered, the loss of 

endogenous cortisol and drug from the system are independent in this model.  

The 1-compartment model (Equation 32) was amended to simulate extended 

release of an oral dose using a series of five transit compartments (TC) as shown in 

Equations 33-35. The use of transit compartments has previously been implemented to 

delay the absorption rate in pharmacokinetic models [206,207]. In this study, the number 

of transit compartments and absorption rate constants for the slow-acting synthetic GC 

were selected to delay the absorption rate by approximately 3-fold while maintaining the 

same elimination rate constant as the fast-acting GC, and ensure drug was cleared from the 

body within 24 hours. The pharmacokinetics of synthetic GCs as described by Equations 

33-35 will herein be referred to as slow-acting synthetic GCs whereas the behavior 

described by Equation 32 will be referred to as the fast-acting synthetic GCs.  

4.2.2.1 IV administration 

𝑑𝐺𝐶

𝑑𝑡
= −𝑘𝐸 ∙ 𝐺𝐶 Eq. 30 

4.2.2.2 Oral administration 

𝑑𝐺𝐶𝐺𝐼𝑇

𝑑𝑡
= −𝑘𝑎 ∙ 𝐺𝐶𝐺𝐼𝑇 Eq. 31 
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𝑑𝐺𝐶

𝑑𝑡
= 𝑘𝑎 ∙ 𝐺𝐶𝐺𝐼𝑇 − 𝑘𝐸 ∙ 𝐺𝐶 Eq. 32 

𝑑𝐺𝐶𝑇𝐶1 = 𝑘𝑎𝑡,1 ∙ (𝐺𝐶𝐺𝐼𝑇 − 𝐺𝐶𝑇𝐶1) Eq. 33 

𝑑𝐺𝐶𝑇𝐶,𝑖 = 𝑘𝑎𝑡,𝑖 ∙ (𝐺𝐶𝑇𝐶,𝑖−1 − 𝐺𝐶𝑇𝐶,𝑖), 𝑖 = 2,3,4,5} Eq. 34 

𝑑𝐺𝐶

𝑑𝑡
= 𝑘𝑎 ∙ 𝐺𝐶𝑇𝐶5 − 𝑘𝐸 ∙ 𝐺𝐶 Eq. 35 

4.2.2.3 Glucocorticoid receptor pharmacodynamics after GC dosing 

Upon dosing synthetic GCs, the equations describing the glucocorticoid receptor 

dynamics are modified to consider binding of the synthetic GC, as well as cortisol, to the 

glucocorticoid receptor, resulting in increased negative feedback to the HPA axis 

precursors, CRH and ACTH. GR is assumed to have the same affinity for endogenous and 

synthetic GCs. 

𝑑𝐺𝑅

𝑑𝑡
= 𝑘𝑠𝑦𝑛,𝐺𝑅 . 𝐺𝑅𝑚𝑅𝑁𝐴 + 𝑟𝑓 . 𝑘𝑟𝑒 . 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁) − 𝑘𝑜𝑛. (𝐶𝑂𝑅𝑇 + 𝐺𝐶). 𝐺𝑅

− 𝑘𝑑𝑒𝑔,𝐺𝑅 . 𝐺𝑅 

Eq. 36 

𝑑𝐷𝑅

𝑑𝑡
= 𝑘𝑜𝑛. (𝐶𝑂𝑅𝑇 + 𝐺𝐶). 𝐺𝑅 − 𝑘𝑇 . 𝐺𝑅𝑏𝑜𝑢𝑛𝑑 

Eq. 37 

4.2.2.4 Parameterization of the model 

The model is calibrated to qualitatively match the early morning peak in the 

endogenous cortisol circadian rhythm in healthy human subjects [172] in order to 

understand how the endogenous cortisol rhythm is modified by drug administration in the 
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absence of chronic inflammation. The model input parameters are given in Supplementary 

Table 9.  

4.2.3 Dosing experiments 

Several chronopharmacological dosing regimens are simulated to understand how 

administration time, dosing strength, administration route, and duration of treatment of 

synthetic GCs disrupted HPA axis activity. The once-a-day administration time of the IV 

bolus or oral dose of synthetic GCs is varied by 1-hour intervals throughout the simulated 

day. Different doses of synthetic GCs are modeled to evaluate how the strength of negative 

feedback via the glucocorticoid receptor dynamics influence the endogenous cortisol 

rhythm. Doses varied from the nominal amount of 1x are classified as low (less than 1x), 

intermediate (2x to 10x), and high (above 10x). For both administration routes, the 

pharmacological effects of short term and chronic treatments are simulated using a single 

dose and multiple doses with a dosing interval of 24 hours for once-a-day administration. 

Changes in amplitude, acrophase, and area-under-the-curve (AUC) of the 

endogenous cortisol rhythm are used as metrics to quantify disruption of the HPA axis 

activity relative to the baseline activity. Amplitude and acrophase are determined when the 

cortisol rhythm reached a new stable oscillatory state after chronic once-daily dosing. The 

relative change in amplitude is calculated by Equation 38. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (%)

=
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑥100% 

Eq. 38 
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The AUC of the endogenous cortisol profile is determined for the 24-hour period 

following the first dose and after multiple doses when the cortisol rhythm reaches the new 

stable state. The change in 24-hour AUC for short and long term pharmacological effects 

is calculated by Equation 39. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑈𝐶 (%)

=
𝐴𝑈𝐶[𝑡𝑑𝑜𝑠𝑒 → 𝑡𝑑𝑜𝑠𝑒+24ℎ𝑟]

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
− 𝐴𝑈𝐶[𝑡𝑑𝑜𝑠𝑒 → 𝑡𝑑𝑜𝑠𝑒+24ℎ𝑟]

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐴𝑈𝐶[𝑡𝑑𝑜𝑠𝑒 → 𝑡𝑑𝑜𝑠𝑒+24ℎ𝑟]
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑥100% 
Eq. 39 

Simulations are compared against various clinical studies that evaluated disruption 

of the endogenous cortisol rhythm following intra-venous and oral administration of 

synthetic glucocorticoids [87,178,184,208]. 

4.3 Results 

4.3.1 Pharmacokinetic profiles for the synthetic glucocorticoid 

The pharmacokinetic profiles for the representative synthetic glucocorticoid 

administered by IV and oral administration routes are given in Figure 21 for the nominal 

dose of 1x. The faster-acting oral dose resulted in a Cmax ≈ 40% of the initial dose, tmax = 

2.75 hours, and 100% bioavailability (𝐴𝑈𝐶𝐼𝑉 = 𝐴𝑈𝐶𝑜𝑟𝑎𝑙). The slow-acting oral GC had a 

Cmax ≈ 30% of the initial dose, tmax = 8.4 hours, and 99% bioavailability. 
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Figure 21: Pharmacokinetic profiles for a bolus injection, a fast-acting oral dose, and a slow-acting oral 

dose of synthetic GCs. Representative profiles are shown for a nominal dose of 1x. Plasma concentration is 

given in arbitrary units (a.u.). 

4.3.2 Influence of once-daily chronopharmacological dosing of synthetic GCs on the 

cortisol circadian rhythm 

Once-a-day administration of synthetic GCs caused endogenous cortisol activity to 

evolve to a new stable, regular circadian rhythm (Figure 22). Upon termination of 

treatment, the cortisol rhythm returned to the basal activity observed prior to dosing 

(Supplementary Figure 8).  
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Figure 22: Modified cortisol profiles after dosing of synthetic glucocorticoids (GC) by bolus injection at the 

nominal amount (1x). The modified cortisol rhythm is indicated by the blue line. The black line 

corresponds to the nominal cortisol profile based on endogenous HPA axis activity. The pharmacokinetic 

profiles for the bolus injection are indicated by the dotted green line. The grey shaded areas represent the 

time at which the system is not exposed to light. Cortisol concentration is given in arbitrary units (a.u.). 

The amplitude and acrophase of this new stable cortisol rhythm depended on the 

time at which the drug was administered as shown in Figure 23. Amplitude generally 

decreased when the daily dosing of synthetic GCs by bolus injection was initiated during 

the declining phase of the nominal cortisol rhythm (Figure 23a). The endogenous cortisol 

rhythm following once-a-day administration of the fast-acting and slow-acting oral doses 

qualitatively showed similar changes in amplitude as the bolus injection, but with an 

advance in dosing times by about 2 hours and 6 hours to produce the same effect on the 

cortisol rhythm. The shifts roughly correlated with the time needed to reach the maximum 

pharmacological effect following oral administration due to the absorption rates (tmax = 

2.75 hours and tmax = 8.4 hours). Maximal suppression occurred when synthetic GCs were 

administered daily at 3:00 PM by bolus injection, 1:00 PM for the faster-acting oral dose, 

and 9:00 AM for the slow-acting oral dose. For all administration routes, certain once-daily 
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chronopharmacological dosing regimens resulted in HPA axis induction, corresponding to 

an increase in amplitude of the endogenous cortisol rhythm. Maximal induction of the 

endogenous cortisol amplitude largely occurred when synthetic GCs were administered 

during the simulated night.  

 
Figure 23: Amplitude and phase of the modified cortisol rhythm after once-daily chronopharmacological 

dosing of synthetic glucocorticoids. The relative amplitude and difference in the acrophase of the modified 

cortisol rhythm after a repeated once-a-day administration of a bolus injection, fast-acting oral dose, or 

slow-acting oral dose are shown in A and B, respectively. The nominal cortisol rhythm (indicated by the 

black line) is given for reference to show how dosing times align with the baseline circadian rhythm. The 

shaded areas represent the simulated night, that is the time at which the system is not exposed to light. The 

change in amplitude is calculated by Relative Amplitude (%) = [(Amptreatment - Ampbaseline)/Ampbaseline] x 

100%. A negative value for phase difference indicates an advance in the acrophase (i.e. peaks earlier in the 

simulated day relative to the nominal cortisol rhythm) while a positive value indicates a delay in the 

acrophase (i.e. peaks later in the simulated day). Cortisol concentration is given in arbitrary units (a.u.). 

A once-daily bolus injection introduced near the nadir or during the rising phase of 

the nominal cortisol rhythm predicted an advance in the acrophase of the cortisol rhythm, 

whereas initiating dosing near the peak or descending phase of the cortisol rhythm resulted 

in a delay of the acrophase (Figure 23b). For both administration routes, the change in 

acrophase was most sensitive when synthetic GCs were administered at dosing times 
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associated with greatest amplitude suppression for all routes of administration. 

Furthermore, while the change in acrophase for the bolus injection and fast-acting oral 

doses exhibited a discontinuity (termed Type 0 [209]), the acrophase response varied more 

smoothly (continuous, termed Type 1 [209]) for the slow-acting oral dose, which had a 

lower maximal plasma concentration. The relationship between amplitude and phase are 

shown Figure 24 for the bolus injection and the slow-acting oral dose. The fast-acting oral 

dose revealed similar behavior to the bolus injection (data not shown). Depending on the 

time of synthetic GC administration, the acrophase of the new stable rhythm was found to 

adopt two different values for a given change in its amplitude with the difference between 

acrophases increasing with greater amplitude suppression as observed for the bolus 

injection (Figure 24a). Similar behavior was observed for the slow-acting GC, but to a 

lesser extent (Figure 24b). 
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Figure 24: Relationship between the relative amplitude and phase difference of the modified cortisol 

rhythm after long-term once-daily chronopharmacological dosing of synthetic glucocorticoids. Amplitude 

and phase for the modified cortisol rhythms after chronic administration of a daily bolus injection and the 

slow-acting oral dose are shown in A and B, respectively. Marker labels correspond to the time of 

administration. Marker color indicates the administration time relative to the nominal cortisol rhythm 

where blue circles correspond to dosing times from 8:00 PM to 6:00 AM (ascending phase of baseline 

rhythm), red squares correspond to dosing times from 7:00 AM to 8:00 AM (near peak of baseline rhythm), 

green diamonds correspond to dosing times from 9:00 AM to 5:00 PM (descending phase of baseline 

rhythm), and yellow triangles correspond to dosing times from 6:00 PM to 7:00 PM (near nadir of baseline 

rhythm). 

Importantly, simulations indicated that specific chronopharmacological regimens 

of synthetic GC administration can minimize the disruption of the nominal GC rhythm. For 

example, daily administration of a nominal dose of synthetic GCs by bolus injection around 

9:00 AM (Supplementary Figure 8), resulted in a minimal change to the amplitude and 

acrophase of the cortisol rhythm relative to the basal activity, whereas a fast-acting oral 

dose at 6:00 AM or a slow-acting oral dose at midnight resulted in minimal change. 

Moreover, the amplitude change after a single dose was not indicative of the amplitude 

change after repeated administration (Figure 25) considering that several days to weeks of 

once-a-day dosing was needed before the endogenous cortisol stabilized to the new rhythm. 
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Simulations predicted similar behavior following oral administration (Supplementary 

Figure 9).  

 
 Figure 25: Amplitude of the modified cortisol rhythm after single and repeated once-daily 

chronopharmacological dosing of synthetic glucocorticoids by bolus injection at the nominal dose. The 

relative amplitude associated with the modified cortisol rhythm after a single injection and after long-term 

once-daily IV dosing are shown. The relative change in amplitude is calculated by Relative Amplitude (%) 

= [(Amptreatment - Ampbaseline)/Ampbaseline] x 100%. Cortisol concentration is given in arbitrary units (a.u.). 

4.3.2.1 Influence of dosing on total cortisol exposure 

The induction of the cortisol amplitude in response to once-daily 

chronopharmacological dosing of synthetic GCs does not necessarily imply an increase in 

the total cortisol secreted by the adrenal glands in the 24-hour period following dosing, 

herein referred to as the total cortisol exposure. While the amplitude of the endogenous 

cortisol rhythm quantified the difference between the altered minima and maxima 

following once-a-day administration of synthetic GCs, the change in 24-hour AUC 

indicated how total cortisol exposure differed relative to the basal HPA axis activity. The 

relationship between amplitude and 24-hour AUC after repeated administration of a once-
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daily injection are shown in Figure 26a. Long-term dosing during the night between 10:00 

PM and 5:00 AM indicated induction of the HPA axis by both the amplitude and 24-hour 

AUC, while chronic dosing during the day between 9:00 AM and 7:00 PM were associated 

with HPA axis suppression as shown by the reduced amplitude and 24-hour AUC. 

Interestingly, simulations showed that dosing between 6:00 to 8:00 AM and 8:00 to 9:00 

PM resulted in increased amplitude, but reduced total cortisol exposure (24-hour AUC) 

relative to the basal cortisol activity without synthetic GCs. 

 
Figure 26: Influence of chronic once-daily chronopharmacological dosing on the total cortisol exposure. 

The relationship between the 24-hour AUC and amplitude change after long-term dosing of a daily bolus 

injection at the nominal dose (1x) is shown in A. The modified cortisol profiles after dosing and for the 

baseline conditions are given in B for selected dosing times. The grey shaded areas represent the simulated 

night, that is the time at which the system is not exposed to light. Cortisol concentration is given in 

arbitrary units (a.u.). 

Endogenous cortisol profiles are given in Figure 26b for selected dosing times. The 

cortisol rhythm associated with maximum induction (dosing at 1:00 AM) showed increased 

daily cortisol maxima and reduced daily cortisol minima, in which the shift in maxima was 

sufficient to increase the total cortisol exposure despite the reduction in minima. In 



96 

 

contrast, the predicted cortisol profile associated with maximum HPA axis suppression 

(dosing at 3:00 PM) revealed a decrease in daily maxima and an increase in daily minima, 

leading to an overall reduction in 24-hour exposure. Cortisol profiles that fell within 

quadrant II of Figure 26a showed a decreased daily cortisol nadir and an increased daily 

cortisol maximum, which was insufficient to overcome the decreased minima, leading to 

an overall decline in the total cortisol exposure (data not shown). Two additional cortisol 

profiles are provided in Figure 26b characterized by a negligible change in 24-hour AUC 

following repeated dosing at 10:00 PM (nearest the boundary between quadrants I and II), 

and negligible amplitude change after repeated dosing at 9:00 AM (nearest the boundary 

between quadrants II and III). The former scenario showed the increase in daily cortisol 

was balanced by a reduction in the cortisol nadir such that the 24-hour AUC was 

maintained, while the latter case revealed the cortisol maxima and nadir were both reduced 

such that no net change was observed in the peak to trough height relative to the baseline 

amplitude. Similar behavior was predicted for oral administration (Supplementary Figure 

10), although no profiles were observed in Quadrant I for the slow-acting oral GC.  

4.3.2.2 Influence of dosing strength on the activity of the HPA axis 

The amplitude of the cortisol rhythm associated with once-daily 

chronopharmacological dosing of a bolus injection that predicted the greatest suppressive 

and inductive effects on the HPA axis activity are given in Figure 27 for several dosing 

strengths, where 1x corresponded to the nominal amount.  
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Figure 27: Influence of dosing strength on the relative amplitude after chronic once-daily 

chronopharmacological dosing of a bolus injection. The relative amplitude for the modified cortisol 

rhythms are given for the once-daily chronopharmacological dosing regimens that resulted in the greatest 

inductive and suppressive effects at each strength of the IV dose. The administration times corresponding 

to these changes in amplitude are indicated in the figure. 

The amplitude changes associated with all chronopharmacological injections are 

given in Supplementary Figure 11a. Higher doses led to maximum suppression and 

induction earlier in the simulated day than low or intermediate doses. As the dose increased 

beyond the nominal, once-daily dosing during the simulated night led to increased 

inductive effects while dosing in the simulated day showed reduced suppressive effects up 

to 6x. Beyond 6x, the inductive effects were reduced and suppression increased until only 

suppression was observed at all dosing times at 40x. Furthermore, the model predicted that 

the acrophase of the endogenous cortisol rhythms was also sensitive to the dosing strength 

as shown in Supplementary Figure 11b where low doses of the bolus injection were 

associated with continuous Type 1 phase response curves, and intermediate and high doses 

of the bolus injection were associated with discontinuous Type 0 phase response curves. 

Below the nominal dose, the maximal phase resetting and greatest suppression of the 
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amplitude were predicted to occur at the same dosing time whereas the maximal phase 

resetting occurred at dosing times well after maximal suppression of the amplitude was 

observed for intermediate and high doses.  

The dose-response relationship following oral administration of fast and slow-

acting synthetic GCs are provided in Supplementary Figure 12. The amplitude change 

associated with all chronopharmacological dosing regimens are given in Supplementary 

Figure 13a and Supplementary Figure 14a, respectively. For the nominal and low doses, 

the bolus injection showed greatest amplitude suppression after chronic once-daily 

pharmacological dosing compared to the equivalent oral doses of the fast or slow acting 

GCs. Beyond the nominal amount, greater suppression of the amplitude was predicted for 

the slow-acting oral dose, while the fast-acting oral dose showed an intermediate effect at 

all dosing strengths. Differences between administration routes were attributed to the 

duration at which the synthetic GCs was maintained above a minimum pharmacologically 

active amount and the maximal concentration achieved at an equivalent dose. Interestingly, 

the bolus injection resulted in greater induction of HPA axis activity for all dose strengths, 

which may result due to the very high initial concentrations immediately following the 

bolus injection. Furthermore, administration of the fast-acting oral GCs resulted in a phase-

response relationship that was qualitatively similar to that obtained during IV 

administration. For the slow-acting oral GCs, discontinuous Type 0 phase response curves 

were associated with intermediate and high doses with the discontinuity occurring at dosing 

times during the simulated day, except at very high doses when the phase discontinuity was 

observed near the start of the simulated night. The phase change associated with all 

chronopharmacological dosing regimens are given in Supplementary Figure 13b and 
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Supplementary Figure 14b. Moreover, the relationship between 24-hour AUC and 

amplitude following repeated administration of synthetic GCs by all administration routes 

are provided in Supplementary Figure 15 to Supplementary Figure 17 for several 

dosing strengths. 

4.4 Discussion 

Recognizing the functional importance of the circadian regulation underlying the 

signaling dynamics of complex physiological systems, such as the HPA axis, has led to 

great interest in the incorporation of chronobiological principles for the development of 

safer and more efficacious therapies [95,210]. A major concern associated with long-term 

therapeutic use of GCs is the suppression of endogenous HPA axis activity [174]. However, 

chronopharmacological delivery of synthetic GCs is a promising approach to minimize the 

disruption of the endogenous cortisol circadian rhythmicity. In the present work, a semi-

mechanistic mathematical model of the HPA axis was used to study the influence of 

chronic chronopharmacological intervention on endogenous HPA axis activity.  

The model predicted that for all simulated dose strengths and routes of 

administration considered, the endogenous circadian activity of the HPA axis adapted to 

the repeated daily exposure to synthetic GCs by adopting a new stable circadian rhythm. 

Moreover, all three routes of administration of synthetic GCs resulted in qualitatively 

similar alterations of the cortisol circadian rhythm. However, due to differences in the 

duration for which synthetic GCs were maintained above a minimum pharmacologically 

active amount, both the oral administration routes considered resulted in a greater 

suppression of HPA axis activity in comparison to IV administration. For a given dosing 
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strength, oral administration resulted in a comparable change in the rhythmic 

characteristics of the cortisol rhythm at earlier dosing times. This shift in response to earlier 

dosing times was most prominent for slow-acting oral administration, for which the 

maximal plasma drug concentrations were delayed the longest. Therefore, results 

suggested that the exposure profile of synthetic GCs might be systematically manipulated 

in order to optimize the dosing time as well as the pharmacodynamic effect on the cortisol 

rhythm. An improved characterization of the chronopharmacological influence of synthetic 

GCs on HPA axis activity can lead to the development of novel dosage forms in order to 

improve patient compliance and limiting the incidence of adverse effects while maintaining 

treatment efficacy [211]. Indeed, modified-release (MR) prednisolone tablets that delay the 

release of drug up to 4 hours after administration have been developed to 

chronopharmacologically target the late-night (2:00 to 4:00 AM) circadian rise in 

proinflammatory cytokines in rheumatoid arthritis (RA) patients by enabling the dose to 

be administered at 10:00 PM, conveniently before the patients slept [178]. The use of MR 

prednisolone was shown to result in an improvement in clinical symptoms while also 

preventing the suppression of endogenous cortisol rhythmicity. Furthermore, once-daily 

dosing of extended release formulations have proven effective for improved pain relief in 

patients with osteoarthritis of the knee [212] and in studies aiming to replicate endogenous 

cortisol rhythmicity in patients suffering from adrenal insufficiency [213,214], thereby 

replacing therapies requiring multiple doses per day. Together, these studies highlight the 

benefits of novel formulations with systematically manipulated exposure profiles to aide 

in the development of improved treatment options. 
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The maintenance of homeostatic circadian rhythms in the HPA axis is dependent 

on an intricate balance between the temporally-varying feedforward and feedback 

processes within the HPA network. Given this variation in regulatory dynamics of the HPA 

axis, chronopharmacological dosing can reduce the disruption of the endogenous cortisol 

rhythm. Indeed, simulations suggest that once-daily administration of synthetic GCs 

shortly after the start of the active phase (around 6:00 AM for fast-acting oral GCs or 9:00 

AM for a bolus injection) can minimize the suppression of the endogenous cortisol rhythm, 

by largely preserving its amplitude and acrophase. Moreover, the simulated suppression of 

the cortisol rhythm after the first dose is in qualitative agreement with experimental 

findings exploring the short-term influence of the synthetic GC administration of 

endogenous cortisol rhythmicity. A number of studies have found that administration of a 

single dose of synthetic GCs by infusion in the morning results in minimal disruption of 

the endogenous cortisol rhythm, while evening administration is associated with a 

substantial suppressive effect [87]. Long-term daily administration of synthetic GCs by 

bolus injection or a fast-acting oral dose in the latter half of the active phase (late afternoon 

in humans) is predicted to result in maximal suppression of the cortisol rhythm.  

In addition to the changes in amplitude, there were substantial alterations in the 

acrophase of the cortisol rhythm upon long-term once-daily administration of synthetic 

GCs. The acrophase of the circadian rhythm of critical signaling hormones, such as 

cortisol, is tightly regulated and is thought to enable the host to optimally separate 

physiologically incompatible processes to different times of the day [215,216]. Disruptions 

in the appropriate circadian activity of cortisol are associated with a number of health 
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problems [217]. Therefore, understanding the influence of dosing on the acrophase of the 

endogenous cortisol rhythm is particularly important. 

Interestingly, model simulations predicted that the time of dosing could be varied 

such that the acrophase of the cortisol rhythm adopted two different values for roughly the 

same change in amplitude. The acrophase of the rhythm was most sensitive for chronic 

dosing regimens that resulted in high plasma concentrations of synthetic GCs towards the 

end of active phase (late afternoon). The acrophase response exhibited a sharp discontinuity 

at high doses. Such an acrophase response has been well documented in the study of phase 

response curves (PRC) for other circadian oscillators, with transition from continuous 

PRCs (Type 1) to discontinuous PRCs occurring upon exposure of the circadian systems 

to large perturbations [209]. Moreover, dosing times resulting in maximal amplitude 

suppression were also associated with the greatest resetting in the acrophase of the rhythm. 

These observations agree with experimental studies on the phase-resetting behavior, in 

response to a light pulse, of the mammalian circadian clock in individual fibroblasts 

[218,219]. Therefore, daily dosing of the bolus injection or fast-acting synthetic GCs near 

the beginning of the subjective night and at high doses is predicted to be least favorable 

due to the maximal disruption of the endogenous cortisol rhythm.  

Despite synthetic GCs having an apparent inhibitory influence in the short-term, 

certain chronopharmacological dosing regimens can result in the induction of HPA axis 

activity after chronic use. Put another way, the activity of the HPA axis following the first 

dose was not predictive of the HPA axis in response to long-term treatment. At the nominal 

(1x) dose strength, model simulations predicted that a once-daily bolus injection of 

synthetic GCs at 3:00 AM, a fast-acting daily oral dose at 12:00 AM, or a slow-acting daily 



103 

 

oral dose at 7:00 PM, during the simulated night, resulted in an induction of HPA axis 

activity. Moreover, results suggested that the observed induction in HPA axis activity is 

linked to a regulatory change associated with the repeated administration of the synthetic 

GCs at only low to moderate doses, since administration at high dose strengths leads to 

suppression in HPA axis activity regardless of dosing time. Interestingly, such a time-of-

day dependent increase in amplitude is in agreement with observations from the study by 

Kirwan et al., where the daily administration of low dose (5mg) MR-prednisolone such 

that it was released at 2:00 AM, during the rising phase of the cortisol rhythm, resulted in 

an increase in the circadian maxima and a decrease in circadian minima of the cortisol 

rhythm in RA patients after a 2-week dosing period [178,208]. However, an increase in the 

cortisol amplitude does not necessarily imply an increase in the total endogenous cortisol 

exposure (as measured by the 24-hour AUC). Once-daily IV administration of a nominal 

(1x) dose of synthetic GCs near the start of the active phase resulted in a suppression of 

the total endogenous cortisol exposure, but either increased the amplitude (for dosing 

between 6:00 to 8:00 AM) or preserved the amplitude of the endogenous cortisol rhythm 

(for dosing around 9:00 AM). Despite the increased amplitude, the decrease in the 24-hour 

AUC might still be indicative of an overall suppression of HPA axis activity. On the other 

hand, the enhanced circadian rhythmicity might also suggest that the chronic 

chronopharmacological intervention enables the system to more efficiently restrict the high 

cortisol levels to a given time of the day, and thereby, separate conflicting downstream 

GC-responsive physiological processes [215].  

While previous models have successfully studied the time-dependence of cortisol 

suppression after a single dose [184], simulations can also explore the adaptability and 
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responsiveness of the HPA axis following repeated administration. By accounting for a 

more physiologically relevant representation of the interactions between feedforward and 

feedback processes in the HPA network, the model predicts that synthetic GCs can have a 

complex non-trivial influence on HPA axis activity that might not be captured by simpler 

mathematical representations, which do not account for endogenous circadian rhythmicity. 

In doing so, the importance of using multiple metrics (circadian amplitude, acrophase, 

AUC and responsiveness) to comprehensively understand the alterations in HPA axis 

activity in response to chronopharmacological intervention was emphasized. The current 

model may be augmented with a physiologically based pharmacokinetic model that 

accounts for the nonlinear dynamics associated with some synthetic GCs. These 

complexities arise from competitive binding to the corticosteroid binding globulin (CBG) 

and to interconversion between pharmacologically active and inactive forms by 11β-

hydroxysteroid dehydrogenase type1/2 for both endogenous and synthetic GCs 

[182,184,205]. Furthermore, these proteins exhibit their own circadian rhythmicity 

[220,221], which can complicate the chronopharmacological relationship between dose, 

drug exposure, and response. The feedback mechanisms underlying dysregulation of the 

HPA axis are thought to be a result of the imbalance between GR and mineralocorticoid 

receptors [222]. As such, the disruption of the HPA axis following administration of 

synthetic GCs can be studied more thoroughly considering the activity of both receptors.  
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 Modeling sexual dimorphism and inter-

individual variability in response to chronopharmacological 

administration of synthetic glucocorticoids 

5.1 Introduction 

Physiological factors, such as chronotype, sex, age, race or disease state, contribute 

to substantial variability in pharmacokinetics as well as variation in the underlying 

regulatory mechanisms and responsiveness of the HPA axis [106,188,223-226]. Clinical 

studies have shown that the duration and extent of cortisol suppression is highly variable 

across patient subgroups [179,227,228]. Sexual dimorphism in susceptibility to 

autoimmune and chronic inflammatory disorders has, in part, been attributed to differences 

in the underlying regulatory mechanisms of the HPA axis across sexes, such as greater 

adrenal sensitivity and weaker negative feedback in females [200]. Given differential 

regulatory mechanisms in basal activity of the HPA axis, one would expect differences in 

the response and activity of the HPA axis following drug administration. One study 

reported a greater potency of methylprednisolone in female subjects. However, the 

increased sensitivity to glucocorticoids was balanced by higher methylprednisolone 

clearance in females such that same overall therapeutic effect was observed across sexes 

[182]. Another study reported sex differences in prednisolone pharmacokinetics following 

a single oral dose, which interestingly resulted in similar half-life in women and men [229]. 

While sex differences were observed for pharmacokinetics but not the pharmacodynamics 

of prednisolone, the opposite was true when race was treated as the covariate. This 
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observation suggests that different patient subgroups may be more susceptible to adverse 

effects due to differences in drug exposure and sensitivity [229]. 

Accounting for such differences in drug exposure and response due to inter-

individual differences provides another opportunity to tailor glucocorticoid therapies to 

improve patient safety [230]. Yet, efforts to establish the relationship between dose and 

HPA axis suppression has been hindered by this inherent variability in regulatory 

mechanisms and the complexity of glucocorticoid activity due to the crosstalk between the 

neuroendocrine and immune systems [231]. Mechanistic modeling provides an opportunity 

to explore the behavior of this dynamic network and to help identify the potential 

mechanisms leading to marked differences in clinical responses across individuals or 

patient subgroups.  

In this study, the model developed in Chapter 4 was modified to account for the 

underlying differences in the HPA axis activity across individuals and between sexes. The 

model was adapted to nocturnal species to evaluate the dose-response relationship for 

synthetic glucocorticoids in rats, extending the previous modeling work by Rao et al. which 

established the parameter sub-spaces for male and female rat populations [200]. The goal 

of the current study was to elucidate how long-term chronopharmacological dosing of 

synthetic glucocorticoid influences endogenous glucocorticoid activity and how the dose-

response relationship is linked to the traits of individuals in the male and female rat 

populations. For these simulations, inter-individual and inter-sex differences in 

pharmacokinetics were not considered, choosing instead to focus on differences in the 

regulatory mechanisms of the HPA axis to study the spectrum of the pharmacodynamic 

responses. 
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5.2 Approach 

5.2.1 Adaptation of the HPA Axis model to nocturnal species 

The model used in Chapter 4, which described the HPA axis in a representative 

healthy human, was re-parameterized to reflect basal differences in the underlying 

regulatory mechanisms of the HPA axis in previously established male and female rat 

populations. While cortisol is the primary glucocorticoid in humans secreted by the adrenal 

glands, corticosterone is the main glucocorticoid in rats. The structure of the model was 

largely similar to that presented in Chapter 4 Section 4.2 with the following modifications 

to reflect the behavior of the HPA axis in nocturnal species.  

First, the light schedule differed between the human and rat studies. Rats were 

entrained to a 14-hour light/10-hour dark lighting schedule, to stay consistent with the 

original animal study from which corticosterone data were taken, and so Equation 17 was 

modified accordingly to Equation 40 [200]. 

𝑙𝑖𝑔ℎ𝑡 = {
1     7: 00 ≤ 𝑡 ≤ 21: 00
0    21: 00 < 𝑡 < 7: 00

 Eq. 40 

Second, the influence of light differed between diurnal and nocturnal species. Light 

is considered to stimulate the hypothalamic suprachiasmatic nuclei (SCN), which induces 

vasopressin and subsequently influences the HPA axis. Vasopressin is a hormone 

synthesized in the hypothalamus and serves as an output signal of the SCN with secretion 

following a circadian rhythm [201]. Vasopressin induces HPA axis activity in diurnal 

species and inhibits activity in nocturnal species [232]. Thus, the CRH equation for humans 

(Equation 23) was modified so light had a negative effect on the HPA axis activity of 
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nocturnal species by increasing elimination when light was on as shown in Equation 41. 

All other equations were consistent with those described in Chapter 4 Section 4.2. 

𝑑𝐶𝑅𝐻

𝑑𝑡
=

𝑘𝑝1. 𝐾𝑝1

𝐾𝑝1 + 𝐺𝑅𝑏𝑜𝑢𝑛𝑑(𝑁)
− 𝑉𝑑1.

𝐶𝑅𝐻 ∙ (1 +
𝑙𝑖𝑔ℎ𝑡𝑒𝑓𝑓𝑒𝑐𝑡

1 + 𝑙𝑖𝑔ℎ𝑡𝑒𝑓𝑓𝑒𝑐𝑡
)

𝐾𝑑1 + 𝐶𝑅𝐻
 Eq. 41 

5.2.2 Parametrization of the Model 

The nocturnal rat model was previously calibrated by Rao et al. to qualitatively 

match the endogenous corticosterone rhythmicity in a population of male and female rats 

[200]. Briefly, the male and female parameter sub-spaces were identified by Sobol 

sampling. Parameter sets were accepted when the simulated corticosterone profiles 

matched experimental data within ±1 standard deviation of the scaled experimental cosinor 

parameters obtained by the original animal study. Three parameters were necessary to 

describe the male and female corticosterone rhythms: adrenal sensitivity of corticosterone 

to ACTH (𝑘𝑝3), the glucocorticoid receptor-mediated negative feedback to the 

hypothalamus (𝐾𝑝1), and the glucocorticoid receptor-mediated negative feedback to the 

pituitary gland (𝐾𝑝2). All other HPA axis parameters were common to both male and 

female rats. The model input parameters are given in Supplementary Table 10. The 

pharmacokinetic compartment models and corresponding parameters described in Chapter 

4 Section 4.2.2 for a bolus injection, fast-releasing oral formulation, and slow-releasing 

oral formulation were used in the animal dosing experiments and were not parameterized 

specifically for rats. 
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5.3 Dosing Experiments 

The chronopharmacology of a daily dose of synthetic glucocorticoid was simulated 

by varying the administration time, dosing strength, and administration route. 

Administration time was varied by 4-hour intervals (12:00 AM, 4:00 AM, 8:00 AM, etc.) 

throughout the simulated day using a dosing interval of 24 hours for once-a-day 

administration. Doses of 0.1x, 1x, and 10x were evaluated to understand how the strength 

of negative feedback via the glucocorticoid receptor dynamics influenced 

pharmacodynamic differences between individuals and sexes. Changes in the amplitude 

(Equation 38) and acrophase of the endogenous glucocorticoid rhythm were used to 

quantify the degree of disruption of HPA axis activity relative to the baseline conditions 

without treatment. 

5.4 Results 

5.4.1 Male and female rat subpopulations used in dosing experiments 

For the dosing experiments, 100 male and 100 female rats were randomly selected 

from the larger populations established in Rao et al. [200]. The selected rats are shown in 

Figure 28 and are well distributed across the male and female parameter subspaces 

previously identified for the sex-dependent parameters. 
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Figure 28: Male and female parameter subspaces for sex-specific parameters used in dosing experiments. 

The subset of 100 male rats and 100 female rats were selected from the original populations established by 

Rao et al. [200]. 

5.4.2 Influence of once-daily chronopharmacological dosing on corticosterone 

rhythmicity in male and female rats 

Basal differences in the circadian rhythmicity of endogenous corticosterone are 

shown in Figure 29, showing that sex-dependent parameterization of the HPA axis model 

led to unique male and female phenotypes. Following once-a-day administration of 

synthetic glucocorticoids, the rhythmicity of endogenous corticosterone evolved to new 

stable oscillations as shown in Figure 30. The amplitude and acrophase of the modified 

rhythm depended on the time at which the drug was administered and the dosage form as 

shown in Figure 31 for male and female rats. Similar to the results observed in the human 

model, the different dosage forms produced qualitatively similar effects on the 

corticosterone rhythm with an advance in dosing times needed to produce the same effect 

corresponding to the time for absorption of oral glucocorticoids. However, male rats had a 

remarkably greater time-of-day dependence than female rats, showing larger differences in 

the suppressive and inductive effects of synthetic glucocorticoids across dosing times.  
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Figure 29: Differences in basal HPA activity between male and female rat populations. The corticosterone 

profiles for the subpopulations of the male and female rats used in the dosing experiments are given in (A) 

and (B), respectively. The grey shaded areas represent the time at which the system is not exposed to light. 

Corticosterone concentration is given in arbitrary units (a.u.). 

 
Figure 30: Modified corticosterone profiles after dosing of synthetic glucocorticoids (GC) by bolus 

injection at the nominal amount (1x). The corticosterone rhythms with and without dosing are given in (A) 

for male rats and (B) for female rats. The solid line corresponds to the nominal corticosterone profile based 

on endogenous HPA axis activity. The modified corticosterone rhythm is indicated by the dotted line. The 

pharmacokinetic profiles for the bolus injection are indicated by the black line. The grey shaded areas 

represent the time at which the system is not exposed to light. Corticosterone concentration is given in 

arbitrary units (a.u.). 
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Figure 31: Population mean amplitude and phase of the modified corticosterone rhythm after once-daily 

chronopharmacological dosing of synthetic glucocorticoids in male rats and female rats. The relative 

amplitude and difference in the acrophase of the modified corticosterone rhythms after a repeated once-a-

day administration of a bolus injection, fast-releasing oral dose, or slow-releasing oral dose are shown in 

(A) and (C) for male rats and in (B) and (D) for female rats, respectively. The colored shaded areas 

represent ±1 standard deviation of the population mean for amplitude and phase changes. The gray shaded 

areas represent the simulated night. A negative value for phase difference indicates an advance in the 

acrophase (i.e. peaks earlier in the simulated day) while a positive value indicates a delay in the acrophase 

(i.e. peaks later in the simulated day). 

Once-daily dosing near the normal daily minima of corticosterone levels (~8:00 

AM) produced similar modifications to endogenous activity across sexes whereas greater 

sex differences in response to treatment were observed when dosing near the normal daily 

maxima (~9:00 PM). In the male rat population, maximal suppression occurred when drug 

was administered daily at 4:00 AM by bolus injection, 12:00 AM for the fast-releasing oral 

dose, and 8:00 PM for the slow-releasing oral dose. In the female rat population, maximal 

suppression occurred at administration times of 4:00 AM for the bolus injection and fast-
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release oral dose, and 12:00 AM for the slow-releasing oral dose. Conversely, induction of 

the endogenous corticosterone secretion was observed at select dosing times, which largely 

occurred when drug was administered during the simulated day, or the inactive phase of 

the rats. Furthermore, endogenous corticosterone activity would likely be preserved when 

synthetic glucocorticoids were administered sometime near the end of the simulated night 

or near the start of the simulated daytime in both male and female rats, although additional 

dosing times would be needed to confirm the exact timing. While the time-of-day 

dependence was qualitatively similar across sexes for the mean phase of the modified 

rhythms, the male rat population showed greater inter-individual variability when dosing 

during the simulated night for all three dosage forms. The female rat population revealed 

the inter-individual variability to be more dependent on the dosage form. The 

pharmacokinetic profiles for the three dosage forms evaluated in the nocturnal model were 

given in Figure 21.  

The circadian characteristics of the modified corticosterone rhythm relative to the 

individual’s sex-dependent regulatory parameters are shown in Figure 32 following a 

once-daily injection at 4:00 AM, the dosing time associated with maximal suppression, and 

4:00 PM, the dosing time associated with maximal induction. While stronger receptor-

mediated feedback to the pituitary gland (𝐾𝑝2) and increased adrenal sensitivity (𝑘𝑝3) in 

male rats tended to result in greater disruption of the HPA axis following a 4:00 AM 

injection, stronger negative feedback to the pituitary gland and increased adrenal sensitivity 

in female rats had the opposite effect. Furthermore, female rats showed an inverse 

relationship between the strength of receptor-mediated feedback to the hypothalamus and 

the extent of HPA axis disruption. Despite noticeable sex differences in HPA axis 
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disruption with 4:00 AM injections, similar behavior was observed in both populations 

following 4:00 PM injections, where stronger negative feedback to the pituitary gland and 

greater adrenal sensitivity led to higher amplitudes for the modified corticosterone 

rhythms. The variability in the regulatory mechanisms underlying HPA axis activity 

produced opposing trends for 4:00 AM injections, but qualitatively behavior after 4:00 PM 

injections, although larger modifications were observed for the male rat population at both 

administration times. 

 
Figure 32: Amplitude and phase of the modified corticosterone rhythm after once-daily injection at 4:00 

AM and 4:00 PM in male and female rats. The relative amplitude and phase difference for the modified 

corticosterone rhythms are given for each individual defined by three sex-dependent parameters. 

5.4.3 Influence of dosing strength on the corticosterone activity in male and female 

rats 

The amplitude of the modified corticosterone rhythm associated with the once-daily 

bolus injection that resulted in the greatest suppressive and inductive effects on the HPA 
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axis are given in Figure 33 for dosing strengths of 0.1x, 1x, and 10x. The dose-response 

relationship showed significant differences between the male and female populations, 

suggesting that female rats were tolerant of higher doses of synthetic glucocorticoids and 

male rats were more sensitive to HPA axis disruption when differences in 

pharmacokinetics were not considered.  

 
Figure 33: Influence of dosing strength on the amplitude of the modified corticosterone rhythm following 

chronic once-daily dosing of a bolus injection in male and female rats. The amplitude is given for the 

dosing times which resulted in the greatest inductive and suppressive effects at each strength in male rats 

(A) and female rats (B). The error bars represent ±1 standard deviation of the population mean for 

amplitude and phase changes. 

5.5 Discussion 

Given a semi-mechanistic representation of the stimulatory and negative feedback 

processes of the HPA axis, the responsiveness and adaptability of individuals to chronic 

chronopharmacological glucocorticoid treatment was studied in a population of male and 

female rats. This approach enabled an understanding of population differences that 

explained in part, the susceptibility of some individuals to adverse effects which arise from 

disruption of endogenous glucocorticoid activity. While the circadian characteristics of the 

modified rhythms after dosing showed similar time-dependent trends across the rat 
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population, the magnitude of the observed changes were dependent on the regulatory traits 

that collectively defined an individual’s basal HPA axis activity. Interestingly, the greatest 

inter-individual variability was observed when the HPA axis was most susceptible to 

disruption with fewer differences across the population when the HPA axis was more 

robust to disruption. Furthermore, the range of administration times in which the 

endogenous activity would be conserved was consistent across the male and female rat 

populations in these simulations, suggesting that the optimal time of dosing may not require 

adjustment for sex.  

Owing to differences in the regulatory mechanisms underlying the HPA axis, 

female rats tolerated a higher dose than male rats. That is, a higher dose would be needed 

in female rats to produce the same suppressive or inductive effects as male rats when only 

sex differences in pharmacodynamics were considered. An extension of this study would 

also consider variability in pharmacokinetic parameters driving differences in drug 

exposure, a scenario that better reflects clinical behavior. Body weight and body surface 

area, which differ between sexes, have already been recognized as important determinants 

of clearance and are routinely accounted for in glucocorticoid replacement therapy [233]. 

By accounting for inter-individual and inter-sex differences in both pharmacokinetics and 

pharmacodynamics, the putative mechanisms contributing to variability in the dose-

response relationship would enable the separation of individuals based on sensitivity or 

resistance to glucocorticoid treatment, and further support the design of dosing regimens 

that result in minimal disruption of endogenous corticosterone activity based on individuals 

or patient subgroups. As emphasized in Chapter 4, the goal of glucocorticoid treatment is 

often to leverage the anti-inflammatory and immunosuppressive properties of synthetic 
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glucocorticoids without interrupting HPA axis activity. Conversely, glucocorticoid 

treatment may be used to correct abnormal glucocorticoid activity. The population 

simulations provided insight into how administration time and dose can be selected to 

induce or suppress the HPA axis as needed for successful hormone replacement or other 

disease states which result in HPA axis dysfunction. Future studies utilizing the in silico 

approach outlined herein has great potential for further minimizing patient risks within the 

context of the ‘right dose-right time’ paradigm. 

Glucocorticoid activity in peripheral tissues can also contribute to inter-individual 

differences due to variability in the negative feedback, 11-HSD activity, CBG levels, and 

active transporters, such as P-glycoprotein, which regulate local glucocorticoid 

concentrations [234]. Genetic variation in glucocorticoid pathway regulation and activity 

is a significant factor in inter-individual differences in glucocorticoid treatment [235,236]. 

For example, polymorphisms in genes involved in glucocorticoid transport and metabolism 

contribute significantly to inter-individual variability in the efficacy and toxicity of patients 

suffering from Crohn’s disease and ulcerative colitis [237]. Some patients with 

inflammatory bowel disease (IBD) require chronic therapy to stay in remission whereas 

others require intermittent treatment during flare-ups [238]. While intrinsic glucocorticoid 

resistance leads to drug resistance at pharmacological doses [239], glucocorticoids 

hypersensitivity can actually aid treatment. For example, lower disease activity of IBD, 

marked by less gut inflammation and improved mucosal healing, was observed in patients 

with higher glucocorticoid sensitivity and drug-induced adrenal insufficiency, although 

other side effects, such as osteoporosis and infections, persisted [240]. Successful treatment 

is likely due to the favorable increase in glucocorticoid activity in the gut, with epithelium 



118 

 

integrity, cell-cell adhesion, and mucus hypersecretion modulated by local receptor activity 

[241]. Likewise, polymorphisms in the glucocorticoid receptor gene are sometimes 

accompanied by cardiovascular risks such as irregular blood pressure, low glucose, or low 

total cholesterol, which may partially explain why some patients are at a greater risk for 

such adverse effects while receiving treatment [242]. Inter-individual differences in clock 

phase may also be clinically relevant and the success of chronopharmacological dosing 

relies on proper timing of drug exposure with specific physiological functions [243]. 

Interestingly, the same individual can show significant variability in the magnitude and 

specificity of action across tissues and even across phases of the cell cycle, requiring a 

deeper understanding of the signal transduction pathways involved in both therapeutic and 

adverse effects [244].  

Furthermore, cortisol levels tend to reflect long-term individual traits, whereas the 

responsiveness of the HPA axis to synthetic glucocorticoids appears to be more closely 

tied to clinical state [227]. For example, patients suffering from post-traumatic stress 

disorder (PTSD) at the time of the study exhibited greater cortisol suppression following 

administration of dexamethasone compared to patients without PTSD regardless of 

whether these patients were previously exposed to trauma [227]. As such, the influence of 

dosing may also be evaluated under chronically stressed conditions, supporting a more 

thorough evaluation of the therapeutic and adverse effects of glucocorticoids in yet another 

patient subgroup. 
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 Conclusions 

Physiologically based pharmacokinetic modeling is a key tool in the advancement 

of personalized medicine to evaluate complex clinical scenarios, making use of 

physiological information as well as physicochemical data to simulate various 

physiological states, to predict the distribution of pharmacokinetic responses and to explore 

the underlying physiological mechanisms contributing to differences across special 

populations. In Chapter 2, the benefits of global sensitivity analysis for understanding 

model behavior were demonstrated for four compartment models using GastroPlus™. 

Global sensitivity analysis, facilitated by the automated framework, revealed insight into 

the complex relationships that exist between physiological input and pharmacokinetic 

output that would otherwise be missed by a local method. Global sensitivity analysis 

provided insight into the model structure, showed how model parameterization strongly 

influences sensitivity analysis, and demonstrated how relationships between model input 

and output inform the underlying physiology contributing to the distribution of 

pharmacokinetic responses. Furthermore, the 2-stage approach significantly reduced 

computational cost, overcoming the major challenge for implementing global sensitivity 

analysis for physiologically based pharmacokinetic models. 

In Chapter 3, Monte Carlo simulations for a published pharmacokinetic 

compartment model were used to demonstrate how model input associated with desired 

clinical phenotypes can be isolated from a generic multivariate parameter space. Such an 

approach enabled the generation of parameter values by stochastic sampling that were 

subsequently restricted to the combinations that describe biologically plausible or target 

model output. Despite limiting the model output to relatively narrow ranges, male and 
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female phenotypes were associated with wide variability in both individual parameter 

values and combinations of parameters. Through an integrated approach using a support 

vector machine, principal component analysis and global sensitivity analysis, our approach 

revealed that specific combinations of parameters gave rise to a certain clinical phenotype, 

while individual parameters influenced the shape of plasma concentration profile. 

Augmenting analysis of the model input with global sensitivity analysis enabled an 

understanding of both sexual dimorphism and inter-individual variability in 

pharmacokinetics. While the current study revealed how model input could be separated 

by sex for a simple compartment model, the approach could be extended to other patient 

factors, such as age or disease, and to a more complex physiologically based model that 

describes absorption and drug disposition in detail. 

In Chapter 4, an integrated PKPD model was used to demonstrate how 

chronopharmacological dosing can improve patient safety and maintain pharmacological 

benefits of long-term synthetic glucocorticoid therapy. These simulations revealed how the 

circadian features of the endogenous cortisol rhythm, which is critical to host survival and 

normal physiological function, can be preserved by careful timing of administration and 

how the pharmacological exposure profile can be manipulated to induce the optimal 

therapeutic effect. Furthermore, the study highlighted how modeling can be used to study 

differences in drug response following a single dose or after chronic treatment, and to 

demonstrate the benefits of using a dynamic semi-mechanistic model to study the 

dependence of the dose-exposure-response relationship on administration time. Finally, in 

Chapter 5, the model was re-parameterized to reflect basal differences in endogenous 

glucocorticoid activity in male and female populations, promoting any understanding of 
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how chronic synthetic glucocorticoid treatment must be adapted for patient subgroups and 

inter-individual variability. Extending the model to consider any of the aforementioned 

population differences continues the transformation towards a more physiologically 

meaningful and mechanistic representation of the underlying regulatory mechanisms of the 

HPA axis affecting endogenous glucocorticoid secretion and patient response to chronic 

treatment. Future work would successfully incorporate such differences for further 

optimization of chronopharmacological dosing regimens to comprehensively access 

patient risk under the ‘right drug-right dose-right time’ paradigm within an integrated in 

silico framework. 
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 Appendix 

6.1 Supplementary Figures 

 
Supplementary Figure 1: Baseline plasma concentration profiles for (a) acetaminophen, (b) risperidone, (c) 

atenolol, and (d) furosemide predicted by the calibrated GastroPlus models 

 

  

(a) (b) 

(c) (d) 
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Supplementary Figure 2: Morris Method results for acetaminophen tmax using r = 1 to 40 and sampling 

bounds of ±20%. The error bars represent the standard deviation in µ* from 3 independent analyses at each 

r. 

 
Supplementary Figure 3. Morris Method results for acetaminophen AUC0-t using r = 1 to 40 and sampling 

bounds of ±20%. The error bars represent the standard deviation in µ* from 3 independent analyses at each 

r. 
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Supplementary Figure 4: Representative Morris Method results for acetaminophen Cmax, tmax, and AUC0-t. 

The values of µ* were determined using r = 20 and sampling bounds of ±20%. The cutoff for significance 

(indicated by dotted red line), corresponded to 10% of the maximum µ* associated with each output. 
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Supplementary Figure 5: Representative Morris Method results for risperidone Cmax, tmax, and AUC0-t. The 

values of µ* were determined using r = 20 and sampling bounds of ±20%. The cutoff for significance 

(indicated by dotted red line), corresponded to 10% of the maximum µ* associated with each output. 
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Supplementary Figure 6: Representative Morris Method results for atenolol Cmax, tmax, and AUC0-t. The 

values of µ* were determined using r = 20 and sampling bounds of ±20%. The cutoff for significance 

(indicated by dotted red line), corresponded to 10% of the maximum µ* associated with each output. 
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Supplementary Figure 7: Representative Morris Method results for furosemide Cmax, tmax, and AUC0-t. The 

values of µ* were determined using r = 20 and sampling bounds of ±20%. The cutoff for significance 

(indicated by dotted red line), corresponded to 10% of the maximum µ* associated with each output. 
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Supplementary Figure 8:Top - Modified cortisol profile after dosing of synthetic glucocorticoids by bolus 

injection at the nominal amount (1x) returns to baseline when dosing ceases. Bottom – Modified cortisol 

profile with minimal disruption of the circadian rhythm after once-daily administration of synthetic GCs.  
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Supplementary Figure 9: Amplitude change associated with chronopharmacological dosing regimens of 

fast-acting and slow-acting oral glucocorticoids 
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Supplementary Figure 10: Influence of chronic once-daily chronopharmacological dosing on the total 

cortisol exposure for fast-acting (A,C), and slow-acting (B,D) oral synthetic glucocorticoids 
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Supplementary Figure 11: Amplitude and phase of the modified cortisol rhythm after once-daily 

chronopharmacological dosing of synthetic glucocorticoids by bolus injection for several dosing strengths 
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Supplementary Figure 12: Influence of dosing strength on the relative amplitude after chronic once-daily 

chronopharmacological dosing of fast-acting and slow-acting oral synthetic GCs 
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Supplementary Figure 13: Amplitude and phase of the modified cortisol rhythm after once-daily 

chronopharmacological dosing of a fast-acting synthetic glucocorticoids for several dosing strengths 
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Supplementary Figure 14: Amplitude and phase of the modified cortisol rhythm after once-daily 

chronopharmacological dosing of a slow-acting synthetic glucocorticoids for several dosing strengths 
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Supplementary Figure 15: Influence of chronic once-daily chronopharmacological dosing on the total 

cortisol exposure following bolus injection of synthetic GCs at several dosing strengths 

 
Supplementary Figure 16: Influence of chronic once-daily chronopharmacological dosing on the total 

cortisol exposure for fast-acting synthetic GCs at several dosing strengths 
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Supplementary Figure 17: Influence of chronic once-daily chronopharmacological dosing on the total 

cortisol exposure for slow-acting synthetic GCs at several dosing strengths. 
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6.2 Supplementary Tables 

Supplementary Table 1: GastroPlus input for acetaminophen, risperidone, atenolol, and furosemide 

Parameter 
Acetaminoph

en 
Risperidone Atenolol Furosemide 

Biopharmaceutical Classification I II III IV 

Dosage Form IR: Tablet IR: Tablet IR: Tablet IR: Tablet 

Single Dose (mg) 1000 [131] 2 [132] 100 [133] 80 [135] 

Dose Volume (mL) 250 240 [132] 250 240 [135] 

Reference log D 
0.47 at pH 7.4 

[245] 

2.5 @ pH -1 

[246] 
0.45 @ pH -1 

-0.69 at pH 

7.4 [247] 

Reference Solubility (mg/mL) 
23.7 at pH 7 

[248] 

3.375 at pH 6; 

0.458 at pH 

7.4; 0.131 at 

pH 8; 0.043 at 

pH 9; 0.028 at 

pH 10.4 [249] 

17.07 at pH 

11.22 

21.9 at pH 8 

[247] 

Precipitation Time (s) 900 900 [250] 900 900 

Diffusion Coefficient (cm2/s) 
1.143 x 10-5 

[248] 

0.64 x 10-5 

[250] 
0.76 x 10-5 0.878 x 10-5 

Drug Particle Density (g/mL) 1.29 [251] 1.2 [250] 1.2 1.2 

Human Effective Permeability (cm/s) 
0.86 x 10-4 

(Rat) [248] 

1.95 x 10-4 

[250] 
0.78 x 10-4

 
0.643 x 10-4 

[252] 

pKa 
9.5 (Acid) 

[248] 
8.547 (Base) 9.64 (Base) 

-0.59 (Base); 

3.88 (Acid); 

9.37 (Acid) 

Solubility Factor 13 [253] 126.1 11.66 367 

Body Weight (kg) 60 [131] 63.2 [132] 88.4 [133] 73.3 [135] 

Systemic Clearance, CL (L/h) 19.7 [131] 12.919 10.944 2.02 [135] 

Renal Clearance, CLR (L/h/kg) 0.010 [131] 0 0 0.0637 [135] 

Central Compartment Volume, VC (L/kg) 0.990 [131] 1.470 0.967 0.0814 [135] 

Transfer Coefficient, k12 (h-1) 0.291 [131] 0.0577 0.0469 0.184 [135] 

Transfer Coefficient, k21 (h-1) 0.641 [131] 0.1429 0.1436 0.061 [135] 

Transfer Coefficient, k13 (h-1) 0 0.0289 0 0.427 [135] 

Transfer Coefficient, k31 (h-1) 0 0.0150 0 0.847 [135] 

Reference for Clinical Data 
Singh et al. 

[131] 

Liu et al. 

[132] 

Sowinski et al. 

[133] 

Van Wart et 

al. [135] 

Blood to Plasma Concentration Ratio, Rbp 1.59 [254] 0.67 [250] 1.07 [255] 1 

Unbound Plasma Protein, Fup (%) 82 [254] 10 [132] 97 [256] 2.3 [257] 

Liver First-pass Extraction (%) 0 23.61 0 0 

Gut First-pass Extraction (%) 0 0 0 0 
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Supplementary Table 2: Computational time for GastroPlus global sensitivity analysis 

Analysis 
Drug Number of 

Samples 

Number of 

Parameters, k 

Computational 

Cost, Nt 

Simulation 

Time 

Morris Acetaminophen r=1 55 56 28 min 

r=2 55 112 56 min 

r=5 55 280 2.3 hr 

r=10 55 560 4.7 hr 

r=20 55 1120 9.3 hr 

r=30 55 1680 14.0 hr 

r=40 55 2240 18.7 hr 

Risperidone r=20 57 1160 9.7 hr 

Atenolol r=20 54 1100 9.2 hr 

Furosemide r=20 57 1160 9.7 hr 

Sobol Acetaminophen N=4000 6 32,000 11.1 days 

Risperidone N=3000 3 15,000 5.2 days 

Atenolol N=4000 7 36,000 12.5 days 

Furosemide N=5000 11 65,000 22.6 days 
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Supplementary Table 3: GastroPlus Physiological Parameters evaluated by Global Sensitivity Analysis 

Category Parameter 

Absorption Gastric pH; Gastric Volume; Gastric Pore Radius; Gastric Porosity/Pore Length; Gastric Transit 

Time 

Fasted Fluid Volume (FFV) in Small Intestine; Small Intestine Length; Small Intestine Radius; Small 

Intestine Transit Time 

Duodenum pH; Duodenum Bile Salt Concentration; Duodenum Pore Radius; Duodenum 

Porosity/Pore Length 

Jejunum 1 pH; Jejunum 1 Bile Salt Concentration; Jejunum 1 Pore Radius; Jejunum 1 Porosity/Pore 

Length 

Jejunum 2 Bile Salt Concentration; Jejunum 2 Pore Radius; Jejunum 2 Porosity/Pore Length 

Ileum 1 Bile Salt Concentration; Ileum 1 Pore Radius; Ileum 1 Porosity/Pore Length 

Ileum 2 Bile Salt Concentration; Ileum 2 Pore Radius; Ileum 2 Porosity/Pore Length 

Ileum 3 Bile Salt Concentration; Ileum 3 Pore Radius; Ileum 3 Porosity/Pore Length 

Caecum pH; Caecum Length; Caecum Radius; Caecum Pore Radius; Caecum Porosity/Pore Length; 

Caecum Transit Time 

Colon pH; Colon Length; Colon Radius; Colon Pore Radius; Colon Porosity/Pore Length; Colon 

Transit Time; Fasted Fluid Volume (FFV) in Colon 

Absorption Scaling Factor Model Coefficient 1 (ASF C1); Absorption Scaling Factor Model 

Coefficient 2 (ASF C2); Absorption Scaling Factor Model Coefficient 3 (ASF C3); Absorption 

Scaling Factor Model Coefficient 4 (ASF C4) 

Distribution Hepatic Blood Flow (QH) 

Body Weight (BW) 

Whole Blood to Plasma Concentration Ratio (Rbp) 

Fraction of Unbound Plasma Protein (Fup) 

Central Compartment Volume (VC) 

Transfer Coefficient from Central to Peripheral Compartment (k12) 

Transfer Coefficient from Peripheral to Central Compartment (k21) 

Transfer Coefficient from Central to Peripheral Compartment (k13) 

Transfer Coefficient from Peripheral to Central Compartment (k31) 

Excretion Systemic Clearance (CL) 

Renal Clearance (CLR) 

Liver First-pass Extraction (FPE) 
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Supplementary Table 4: Model Parameters for the Mixed Population 

Model Parameters Mean (μ) Std. Dev. (σ) Lower Bound Upper Bound 

Absorption rate constant, ka 1.62 0.40 0.435 2.81 

Central compartment volume, VC 9.47 2.01 3.45 15.5 

Peripheral compartment volume, VP 4.95 1.18 1.40 8.50 

Distribution Clearance, CLD 0.559 0.089 0.291 0.827 

Onset of enterohepatic recirculation, TEHC 8.27 1.56 3.58 13.0 

Rate constant for enterohepatic recirculation, kEHC 1.2 0.46 0 2.59 

Elimination clearance, CL 0.741 0.157 0.2695 1.2115 

Fraction reabsorbed, FE 0.340 0.140 0 0.7592 

Initial lag time, tlag 2.11 0.794 0 4.4858 

Note: For parameters that were dependent on body weight (ka and VC), the mean body weight of the mixed 

population (70 kg) was used to the determine the mean values of these parameters using the point estimates 

for 𝜃𝑖  . For parameters common to both sexes (VP, CLD, TEHC, kEHC), the point estimates for 𝜃𝑖 were used as 

the mean parameter values. For sexual dimorphic parameters (CL, FE, and tlag), the average of the male and 

female parameter values was used. Sampling bounds were set to ±3σ. The minimum sampling bounds for 

kEHC and tlag were set to zero since these parameters cannot have a negative value. The minimum and 

maximum feasible sampling bounds for FE were 0 and 1, respectively. 

Supplementary Table 5: Comparison of model parameters for the simulated male and female populations 

Parameters 
Comparison of Distributions 

Kolmogorov-Smirnov p-value 

Comparison of Medians 

Wilcoxon Rank Sum p-value 

Absorption, Rate Constant ka (hr-1) 3.3e-96 3.6e-140 

Central Compartment Volume, VC (L) 0 0 

Peripheral Compartment Volume, VP (L) 5.1e-43 1.7e-61 

Distribution Clearance, CLD (L/hr) 2.1e-03 1.6e-03 

Elimination Clearance, CL (L/hr) 0 0 

Reabsorption Fraction, FE 1.1e-176 2.5e-248 

Initial Lag Time, tlag (hr) 0 0 

Onset of Reabsorption Event, TEHC (hr) 5.4e-54 2.6e-63 

Reabsorption Rate Constant, kEHC (hr-1) 0.8988 0.8309 

NS = Not significant (Parameter values for males and females were not statistically different.) 
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Supplementary Table 6: Parameter estimates for clinical and simulated female populations 

Parameters 
Clinical Females Simulated Females 

WRS 

p-value 
Mean Sigma Mean Sigma 

Absorption, Rate Constant ka (hr-1) 1.82 0.45 1.66 0.37 0.91 

Central Compartment Vol., VC (L) 9.49 2.01 7.55 0.87 0.14 

Peripheral Compartment Vol., VP (L) 4.95 1.18 4.87 1.15 0.76 

Distribution Clearance, CLD (L/hr) 0.559 0.09 0.55 0.09 0.97 

Elimination Clearance, CL (L/hr) 0.581 0.123 0.65 0.10 0.33 

Reabsorption Fraction, FE 0.462 0.190 0.36 0.13 0.54 

Initial Lag Time, tlag (hr) 2.21 0.833 2.32 0.60 0.08 

Onset of Reabsorption, TEHC (hr) 8.27 1.56 8.38 1.52 0.74 

Reabsorption Rate Constant, kEHC (hr-1) 1.2 0.46 1.20 0.45 0.99 

NS = Not Significant (Parameters for the simulated and clinical populations were not statistically different.) 

Supplementary Table 7: Parameter estimates for the clinical and simulated male populations 

Parameters 
Clinical Males Simulated Males 

WRS 

p-value 
Mean Sigma Mean Sigma 

Absorption, Rate Constant ka (hr-1) 1.46 0.36 1.50 0.35 0.54 

Central Compartment Vol., VC (L) 9.45 2.00 11.05 1.20 0.08 

Peripheral Compartment Vol., VP (L) 4.95 1.18 5.21 1.15 0.92 

Distribution Clearance, CLD (L/hr) 0.559 0.09 0.56 0.09 0.93 

Elimination Clearance, CL (L/hr) 0.900 0.191 0.97 0.08 0.39 

Reabsorption Fraction, FE 0.218 0.090 0.28 0.13 0.35 

Initial Lag Time, tlag (hr) 2.00 0.754 1.66 0.23 0.90 

Onset of Reabsorption, TEHC (hr) 8.27 1.56 7.94 1.53 0.92 

Reabsorption Rate Constant, kEHC (hr-1) 1.2 0.46 1.21 0.45 1.00 

NS = Not Significant (Parameters for the simulated and clinical populations were not statistically different.) 

Supplementary Table 8: Comparison of model output for the clinical and simulated populations 

 
Cmax (mg/L) Tmax (hr) AUC0-48 (mg h/L) 

Clinical Men 35.6 (5.2) 3.9 (0.7) 496.6 (55.2) 

Clinical Women 55.3 (9.4) 4.3 (1.1) 809.4 (148.4) 

Sex Differences p-value<0.05 NS p-value<0.05 

Simulated Men 35.6 (2.9) 3.5 (0.34) 518.5 (25.4) 

Simulated Women 52.0 (4.7) 4.0 (0.61) 764.4 (73.3) 

Sex Differences p-value=0 p-value=0 p-value=0 

 



164 

 

Supplementary Table 9: Dirunal HPA Axis Model Parameters 

Parameter Value Description 

𝑘𝑝1 0.28643 µMh-1 Estimated, zero order synthesis rate constant of CRH 

𝐾𝑝1 
1.4911 µM 

Estimated, Michaelis-Menten constant for glucocorticoid-

induced CRH inhibition 

𝑉𝑑1 0.3492 µMh-1 Estimated, first order rate constant for CRH degradation 

𝐾𝑑1 4.3875 µM Estimated, Michaelis-Menten constant for CRH degradation 

𝑘𝑝2 0.4333 µMh-1 Estimated, first order rate constant for synthesis of ACTH 

𝐾𝑝2 
4.7662 µM 

Estimated, Michaelis-Menten constant for glucocorticoid-

induced ACTH inhibition 

𝑉𝑑2 1.0015 µMh-1 Estimated, first order rate constant for degradation of ACTH  

𝐾𝑑2 0.8488 µM Estimated, Michaelis-Menten constant for ACTH degradation 

𝑘𝑝3 0.557 µMh-1 Estimated, first order rate constant for synthesis of cortisol 

𝑉𝑑3 0.7245 µMh-1 Estimated, first order rate constant for CORT degradation 

𝐾𝑑3 0.1807 µM Estimated, Michaelis-Menten constant for CORT degradation 

𝐺𝑅(0) 540.7 nmol L−1 mg protein−1 Initial GR content, [77] 

𝐺𝑅𝑚𝑅𝑁𝐴(0) 25.8 fmolg−1 Initial GR mRNA content, [77] 

𝑘𝑠𝑦𝑛𝐺𝑅𝑚
 2.9 fmolg−1 h−1 Zero order rate constant for synthesis of GR mRNA, [77] 

𝑟𝑓 0.49 GR recycle fraction from nucleus to cytoplasm, [77] 

𝑘𝑟𝑒 0.57 h-1 Rate of GR recycling from nucleus to cytoplasm, [77] 

𝑘𝑜𝑛 0.00329 L nmol−1 h−1 Second-order rate constant for CORT-GR binding, [77] 

𝑘𝑑𝑒𝑔,𝐺𝑅𝑚 𝑘𝑠𝑦𝑛𝐺𝑅𝑚
/𝐺𝑅𝑚𝑅𝑁𝐴(0) First-order rate constant for degradation of GR mRNA, [77] 

𝑘𝑑𝑒𝑔,𝐺𝑅 0.0572 h-1 First order rate constant for degradation of GR, [77] 

𝑘𝑠𝑦𝑛,𝐺𝑅 𝐺𝑅(0). 𝑘𝑑𝑒𝑔,𝐺𝑅/ 𝐺𝑅𝑚𝑅𝑁𝐴(0) First order rate constant for synthesis of GR, [77] 

𝑘𝑇 0.63 h-1 Rate of GR translocation from cytoplasm to nucleus, [77] 

𝑘𝑖𝑚𝑝 0.5 Strength of ACTH impulse 

𝑘𝑠𝑡𝑟𝑒𝑠𝑠.𝑜𝑢𝑡 6.79 h-1 Rate constant for clearance of stressor 

𝑘𝑠 40 Strength of induction of CRH production by stressor 

𝑘𝑎 0.42 hr-1 First-order absorption rate constant for PNL [205] 

𝑘𝑒  0.33 hr-1 First-order elimination rate constant for PNL [205] 

𝑘𝑡1,𝑘𝑡2,𝑘𝑡3,𝑘𝑡4,𝑘𝑡5 1 hr-1 Rate constants for transfer between transit compartments 

Abbreviations: a.u. - arbitrary units; mRNA – messenger RNA 
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Supplementary Table 10: Nocturnal HPA Axis Model Parameters Common to Both Sexes 

Parameter Value Description 

𝑘𝑝1 0.3819 µMh-1 Estimated, zero order synthesis rate constant of CRH 

𝑉𝑑1 0.3492 µMh-1 Estimated, first order rate constant for CRH degradation 

𝐾𝑑1 4.3875 µM Estimated, Michaelis-Menten constant for CRH degradation 

𝑘𝑝2 0.4561 µMh-1 Estimated, first order rate constant for synthesis of ACTH 

𝑉𝑑2 1.0015 µMh-1 Estimated, first order rate constant for degradation of ACTH  

𝐾𝑑2 0.8488 µM Estimated, Michaelis-Menten constant for ACTH degradation 

𝑉𝑑3 0.7245 µMh-1 Estimated, first order rate constant for CORT degradation 

𝐾𝑑3 0.1807 µM Estimated, Michaelis-Menten constant for CORT degradation 

𝐺𝑅(0) 540.7 nmol L−1 mg protein−1 Initial GR content, [258] 

𝐺𝑅𝑚𝑅𝑁𝐴(0) 25.8 fmolg−1 Initial GR mRNA content, [258] 

𝑘𝑠𝑦𝑛𝐺𝑅𝑚
 2.9 fmolg−1 h−1 Zero order rate constant for synthesis of GR mRNA, [258]  

𝑟𝑓 0.49 GR recycle fraction from nucleus to cytoplasm, [258] 

𝑘𝑟𝑒 0.57 h-1 Rate of GR recycling from nucleus to cytoplasm, [258] 

𝑘𝑜𝑛 0.00329 L nmol−1 h−1 Second-order rate constant for CORT-GR binding, [258] 

𝑘𝑑𝑒𝑔,𝐺𝑅𝑚 𝑘𝑠𝑦𝑛𝐺𝑅𝑚
/𝐺𝑅𝑚𝑅𝑁𝐴(0) First-order rate constant for degradation of GR mRNA, [258] 

𝑘𝑑𝑒𝑔,𝐺𝑅 0.0572 h-1 First order rate constant for degradation of GR, [258] 

𝑘𝑠𝑦𝑛,𝐺𝑅 𝐺𝑅(0). 𝑘𝑑𝑒𝑔,𝐺𝑅/ 𝐺𝑅𝑚𝑅𝑁𝐴(0) First order rate constant for synthesis of GR, [258] 

𝑘𝑇 0.63 h-1 Rate of GR translocation from cytoplasm to nucleus, [258] 

𝑘𝑖𝑚𝑝 0.5 Strength of ACTH impulse 

𝑘𝑠𝑡𝑟𝑒𝑠𝑠.𝑜𝑢𝑡 6.79 h-1 Rate constant for clearance of stressor 

𝑘𝑠 40 a.u. Strength of induction of CRH production by stressor 

𝑘𝑡 0.92 a.u. Estimated, rate constant for light transduction 

𝑘𝑢𝑠 1 a.u. Estimated, rate constant for production of light effect 

𝑛 2 a.u. Estimated, Hill coefficient for light effect 

𝑘𝑑𝑒𝑔,𝑢𝑠 0.92 a.u. Estimated, rate constant for degradation for light effect 

𝑘𝑒𝑓𝑓 24 a.u. Estimated, strength of induction of light-effect degradation 

𝑘𝑎 0.42 hr-1 First-order absorption rate constant for PNL [205] 

𝑘𝑒  0.33 hr-1 First-order elimination rate constant for PNL [205] 

𝑘𝑡1,𝑘𝑡2,𝑘𝑡3,𝑘𝑡4,𝑘𝑡5 1 hr-1 Rate constants for transfer between transit compartments 

Abbreviations: a.u. - arbitrary units; mRNA – messenger RNA 

 


