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ABSTRACT OF THE DISSERTATION

DECAY MODEL FOR HANDLING MISSING

DATA DUE TO INTERCURRENT EVENTS IN

CLINICAL TRIALS

by Tao Sheng

Dissertation Director: Weichung Joe Shih, Ph.D

US Food and Drug Association (FDA) presented a draft guidance of E9(R1) Sta-

tistical Principles for Clinical Trials Addendum: Estimands and Sensitivity Analysis

in Clinical Trials in June 2017. This draft guidance has been widely referenced dur-

ing recent research discussions. The aim of the draft guidance was to clarify the

concept of estimand and to connect estimand with the concept of trial objective. An

emphasized discussion about the impact and handling methods of missing data was

also addressed. The draft guidance introduced the concept of ‘intercurrent event’

to describe all events that would cause either potential missing data or discontinua-

tion from initial randomized treatment assignment. Five intercurrent event handling

strategies were proposed with each strategy targeting a specific estimand which even-

tually represents a trial objective. Some of these strategies would result in missing

data problem that required additional assumptions regarding the missing mechanism.

In this dissertation, I will propose an alternative procedure in terms of connecting the
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intercurrent event handling strategy with estimand specification. The proposed pro-

cedure can be considered as an event-type driven strategy that selects the desirable

estimand based on not only primary trial objective but also potential intercurrent

event types. In this dissertation, I will also discuss the importance of sensitivity anal-

ysis and the relationship between sensitivity analysis missing mechanism assumptions

and primary analysis missing mechanism assumptions. Literature review will be fo-

cused on recent developments on the topic of sensitivity analysis methods, especially

the reference based imputation (RBI) method and the δ-adjustment tipping point

analysis method. The benefits and drawbacks of both methods will be discussed in

detail. This dissertation will contain a proposal of a modified Mixed Model Repeated

Measure (MMRM) model that targets the ‘De Facto’ estimand when rescue medica-

tion is offered in a randomized clinical trial. Primary estimator can be represented

as a linear combination of this modified MMRM model parameters. Delta approx-

imation method will be used to directly derive the inference of the estimator. The

result and performance will be compared with the result using multiple imputation

method. Secondly, I will propose an alternative sensitivity analysis method called

‘decay model tipping point analysis method’. The highlights of this method are as

follows, 1) It is capable of covering all possible sensitivity scenarios, including but not

limited to the ones studied using RBI method. 2) The adjusted missing data effect

is associated with dropout time. Patients who dropped out early will be adjusted

with a greater value comparing to those who dropped out later. The adjustment

decreases for time points that are further away from the patient dropout time point.

This is a more reasonable approach comparing to δ-adjustment tipping point method

which adjusts the effect at each time point with a same constant. 3) The range of

the adjustment can be set within the a clinical meaningful boundary. This will avoid

the over-adjustment problem in δ-adjustment tipping point method. 4) The decay

rate parameter serves as a unified sensitivity parameter. It can be compared between
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different studies as a measurement of robustness of primary analysis result in terms

of the missing mechanism assumption. 5) The tipping point can be solved directly

without iterative searching the total domain sensitivity parameter, therefore saving

computing resource and power. Simulation studies will be conducted to verify the

modified MMRM model. Inference derived based on delta approximation method will

be verified using empirical inference result from simulation. A simulated study will be

presented to verify the direct calculation for the tipping point and demonstrate the

features of decay model tipping point method. In addition, a case study of using the

decay model sensitivity analysis in a real world rare blood disease trial study will be

presented. The possibility of extending the decay model beyond continuous endpoint

will be briefly discussed and some technical issues occurred in the current research

will be included in future research plan.
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Chapter 1

Introduction and Overview

1.1 Missing data and estimand problem

In a randomized clinical trial, patients are randomly assigned to different treatment

arms. The difference of mean effects among treatment arms at the end of study period

is usually of interest. In an ideal world, all patients will take the initial randomized

assigned treatment following the protocol specifications. However, in a real world,

events that break the initial randomization are usually inevitable. These events in-

clude but not limited to patients discontinued treatment due to the cure of the disease,

patients discontinued treatment due to lack of efficacy, patients switched to rescue

medication due to adverse events or patients deceased due to study or non-study

related causes. In the E9 addendum Guidance [85] drafted by FDA in Jun 2017 (re-

ferred to as ‘the guidance’), the terminology of ‘intercurrent event’ was introduced to

describe these type of events. The existence of the intercurrent events would intro-

duce ambiguity to the measurement of treatment effect. One motivating example to

illustrate this problem is a diabetic drug trial sponsored by BMS and AstraZeneca[2].

The trial was designed to investigate the effect of studied drug (dapagliflozin) in terms

of the glycated haemoglobin (HbA1C) change from baseline at week 24 comparing to

reference arm. During the study, patients were allowed to take rescue medication if

HbA1C measurement exceeded pre-specified safety threshold. During the statistical

analysis step for this study, the measurements collected after patients discontinued

from initial assignment and switched to rescue medication were considered as missing
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and no longer included in the primary analysis. At the time of the study, the ‘last

observed value carried forward (LOCF)’ method was a standard approach to handle

missing data as sensitivity analysis. That is, the last measurement value before the

rescue medication being offered would be carried forward to the end of study at week

24 as the end-of-trial value. The FDA reviewer questioned the sponsor’s approach

and pointed out that instead of ignoring the measurements collected during rescue

medication period, a more preferred analysis would be to conduct the primary anal-

ysis using the observed value of patients who switched to rescue medication. FDA

and the sponsor targeted two different scientific questions of interests regarding the

treatment effect. From sponsor’s perspective, the targeted question was ‘What is the

treatment effect when no rescue medication is offered’. From FDA’s perspective, the

targeted question was ‘What is the treatment effect when rescue medication is allowed

and in fact used’. The two different targeted questions resulted in different practices

in terms of how to handle the measurements post intercurrent events. In order to

clarify this, the concept of ‘estimand’ was introduced to mathematically describe the

study scientific question of interest. Carpenter used the terms ‘De Jure’ estimand to

address the ‘what if no rescue medication offered’ question and ‘De Facto’ estimand

to address the ‘what if rescue medication is offered’ question which is the one that

FDA was more concerned about [8]. The guidance went one step further and clar-

ified the scientific questions of interest, the corresponding estimands as well as the

intercurrent event strategies to address each individual estimand. Five intercurrent

event strategies were introduced in the guidance and will be discussed in detail in this

dissertation.
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1.2 Sensitivity analysis

The intercurrent event strategies introduced in the guidance specified the post in-

tercurrent event measurement handling methods during the design stage. However,

theses strategies all depend on hypothetical assumptions regarding the mechanism of

missing measurements. For example, in the previously mentioned dapagliflozin study,

the primary analysis could have been conducted by including the switch to rescue

medication patient’s measurements and targeted the ‘De Facto’ estimand. However,

for those who dropped out of the study without taking rescue medication, missing

mechanism assumptions still needed to be made in order to include the dropout ef-

fect into account. If the primary analysis result was significant, one needed to bear

in mind that the result was only significant in terms of the assumptions. Therefore,

a sensitivity analysis should always be conducted regardless of the choice of primary

analysis estimand as long as there were missing data in the study and the primary

analysis result was significant. The purpose of the sensitivity analysis is to access

the robustness of the statistical significance of the primary analysis result. Note that

there are other assumptions besides the missing mechanism assumptions made dur-

ing the primary analysis, for example, the normality assumption or independent and

identically distributed assumption regarding the variable distribution. The sensitiv-

ity analysis which targets these assumptions is out of the scope of this dissertation.

Usually, assumptions that would decrease the significance of the primary analysis

will be made during sensitivity analysis. One well accepted sensitivity analysis ap-

proach is the ‘reference based imputation’ method, which borrows the reference arm

observed measurements information to impute active arm missing measurements. If

the primary scientific question of interest is the treatment effect difference between

two arms, by using reference arm information to impute active arm missing measure-

ments, one is making a relatively conservative assumption that there is no difference
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between active arm and reference arm dropout patient treatment effects. However,

the downside of this method is the limited number of discrete scenarios that can be

checked by using different reference arm information borrowing methods. In addition,

there is no continuous sensitivity parameter that unifies the scenarios in terms of the

level of deviation from primary assumption. Another widely implemented method

is ‘δ-adjustment’ tipping point sensitivity analysis method. A constant value of δ

is adjusted from the hypothetical measurement under primary assumption. The δ is

increased continuously until it reaches the point that the adjusted analysis result is no

longer statistically significant. The advantage of this method is that δ as a sensitivity

parameter covers a wide range of possible sensitivity assumptions. However, the mag-

nitude of δ depends on the scale of the measurement. Therefore, the interpretation

of δ is not clear by itself. One cannot determine the level of robustness of primary

analysis by only looking at the tipping point δ but needs to compare with measure-

ment scale. Another trade off is that one might be over adjusting the measurement

to a clinically unreasonable range. For example, during the dapagliflozin study, the

HbA1c measurement might be adjusted to negative, or to a value that is unrealis-

tically high and biologically impossible, in order to reach the statistical significance

tipping point.

1.3 Objective and dissertation outline

This dissertation has three main objectives. First is to clarify the concept of estimand

and to clarify the study question of interest that the estimand is aiming. The second

objective is to modify the existing ‘Mixed Model Repeated Measure’ (MMRM) model

to include rescue medication arm measurements if rescue medication is allowed in the

protocol. The third objective is to introduce a new sensitivity analysis method which

is inspired by the ‘δ-adjustment’ tipping point method. The remaining chapters are
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organized as follows. In chapter 2, I will review current literature within the topic

of missing data handling methods and the concept of estimand. In chapter 3, I

will introduce a modified MMRM modeling approach to derive the estimator for ‘De

Facto’ estimand when rescue medication is allowed in a clinical trial. The reference

based imputation sensitivity analysis estimators will also be represented as functions

of the modified MMRM parameters. In chapter 4, the delta approximation method

would be implemented to analytically derive the primary analysis point estimator as

well as the reference based imputation sensitivity analysis point estimators and their

inferences. Simulation study will be conducted to verify the derivation using delta

approximation method as well as to compare with the performance of conventional

multiple imputation approach. In chapter 5, a modified tipping point analysis which

uses an exponential decay model to represent the deviate effect from primary analysis

assumption will be explained in detail. I will also derive the representation of various

reference based imputation scenarios as functions of decay parameter. In chapter 5,

I will include a case study which uses the decay model sensitivity analysis method to

access the robustness of the significant primary analysis result in a rare blood disease

trial study. The dissertation will be summarized with a discussion and conclusion

section in chapter 6. Further research topics would also be briefly mentioned.
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Chapter 2

Literature review

2.1 Missing data classification

The missing data problem was first studied by Rubin in 1976 [64]. In his paper, Rubin

introduced the cornerstone for future missing data research which is the classification

of missing data by their missing mechanism. It has been widely recognized and

implemented since then. Use Yi,t to denote measurement for patient i at time point

t, use Yi,obs to denote observed measurements for patient i prior to time point t and

Mi,t as missing indicator, Mi,t = 1 to denote measurement missing for patient i at

time point t and Mi,t = 0 to denote measurement observed for patient i at time point

t. The three categories that Rubin used can be presented as follow,

• Missing completely at random (MCAR): The probability of data being missing

does not depend on the observed or unobserved data. P (Mi,t = 1|yi,obs, yi,t) =

P (Mi,t = 1). For example, the data is missing because of a typo during the

record input. Another example would be that a patient dropped out of the

study due to relocation.

• Missing at random (MAR): The probability of data being missing does not

depend on the unobserved data but condition on the previous observed data.

P (Mi,t = 1|yi,obs, yi,t) = P (Mi,t = 1|yi,obs). For example, a patient dropped out

of the study because of lack of efficacy based on previous measurements. This

assumption implies that the missing data can be predicted from the observed
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variables.

• Missing not at random (MNAR): The probability of data being missing de-

pends on unobserved as well as observed data. P (Mi,t = 1|yi,obs, yi,t) does not

simplify. For example, patients drops out of the study due to lack of efficacy.

The missing data is supposed to be worse than the observed measurements. In

this scenario, the value of the unobserved responses depends on information not

available for the analysis. Missing observations cannot be predicted without

further assumptions [92].

The missingness under MAR and MCAR are considered ignorable missing because

the ‘true’ underlying effect can be estimated without bias using observed data. The

missingness under MNAR is considered non-ignorable missing because it is not possi-

ble to derive an unbiased estimator under this scenario. The key point of the missing

data classification is that the underlying missing mechanism is essentially untestable.

Therefore, a conventional way is to use modeling approach to adjust for all possible co-

variates so that the adjusted response will be more likely to satisfy the MAR/MCAR

assumption and becomes ignorable.

2.2 Imputation Methods

One way to handle missing data is to impute the missing data with hypothetical

values. There are two types of imputation approaches, single imputation and multiple

imputation. Single imputation methods such as ‘Last Observation Carried Forward’

(LOCF), ‘Baseline Observation Carried Forward’ (BOCF) have long been the default

missing data handling methods. However, there is a potential disadvantage of single

imputation method which is that these methods do not take the variance caused

by missingness into account. Hence, the risk of underestimating the variance of
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treatment effect when using single imputation has been criticized and alternative

methods based on multiple imputation have been recommended. Multiple imputation

methods generate multiple copies of original data set by replacing missing values

based on appropriate imputation models. For each completed copy of data set, a

pre-specified analysis model is implemented to provide final parameter estimates.

Combine the different parameter estimates across the imputation copies to produce a

unique point estimate and standard error taking into account the uncertainty of the

imputation process. The three stages of multiple imputation are described in detail

as below:

• Step 1: Generate multiple imputed complete datasets: For a single incomplete

variable z, model z using the observed portion of dataset. Denote the estimated

model coefficients β̂ and residual variance V have their corresponding variance

covariance matrix. Draw a set of β̃ from the posterior distribution approxi-

mated by β̃ ∼ MVN(β̂,Σ). Impute z by generating z∗ based on β̃,V and

the appropriate probability distribution. This is referred to as the imputation

model.

• Step 2: Analyze imputed data sets: Each imputed complete dataset is ana-

lyzed separately using analysis model. The desirable parameters that address

the study objectives, denoted as θ̂j, are estimated from each imputed dataset,

together with their variance covariance matrices, Ŵj, for the jth imputed copy

of dataset.

• Step 3: Combine estimates from imputed datasets: Suppose total of m copies

of imputed datasets are generated. Estimates are combined into an overall

estimate and variance estimate using Rubin’s rules. The combined estimate θ̂

is the average of the individual estimates:

θ̂ =
1

m

m∑
j=1

θ̂j (2.1)
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The total variance of θ̂ is the sum of the within-imputation variance W =

1
m

∑m
j=1 Ŵj and the between-imputation variance B =

(
1

m−1

)∑m
j=1(θ̂j − θ̂)2;

var(θ̂) = W + (1 +
1

m
)B. (2.2)

2.3 Mixed model repeated measure

One recommended model for imputation and analysis is the ‘Mixed Model Repeated

Measure’ (MMRM) model introduced by Mallinckrodt [51]. The MMRM model is a

modified mixed effect model. The general form of the model is as follow

Y = baseline+ treatment+ time+ treatment× time+baseline× time+error (2.3)

where Y is the observed measurement, baseline is the collection of baseline covari-

ates, treatment is the initial treatment arm indicator, time is the indicator of the

time point that Y is observed. This model has the advantage of directly estimating

the treatment effect at each measurement time point adjusting for baseline covari-

ates. The model uses unstructured covariance matrix to model within-subject errors.

The model parameters are estimated using restricted maximum likelihood (ReML)

estimation method.

2.4 Concept of Estimand

Most of the recent literature have been focusing on estimating methods when there

are missing data involved, despite the fact that a more essential question should be re-

garding what to estimate. The guidance provided some valuable ideas in terms of how

to systematically process the clinical trial with the missing data problem considered

during the design stage. It proposed a framework of clinical study including design,

conduct, analysis and interpretation (Figure 2.1). According to this flow chart, a

suitable estimand corresponding to the key scientific question of interest should be
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Figure 2.1: Flow chart for clinical trial design proposed by FDA in E9(R1) Statistical
Principles for Clinical Trials Addendum

clearly defined at the beginning of a clinical trial. A main estimator targeting the

estimand could be then selected based on certain assumptions. A sensitivity analysis

should be conducted to investigate the main estimator robustness in terms of the

assumptions. The important concept was to process this sequentially and ‘not for the

choice of an estimator to determine the estimand’[85]. The guidance described four

attributes of an estimand including 1) The targeted population; 2) Patient variable

to address the research question; 3) Strategies for addressing intercurrent events and

4) Population-level summary for the variable of interest. Among the four attributes,

2 and 3 were the ones that needed detail specification in order to reflect different

scientific question of interest. For attribute 2, there had been a discussion whether

the variable needed to be specifically defined prior to conduct any statistical analy-

sis. However, in many cases, the specific variable that the estimand was targeting

would be determined only when the statistical model was determined. A recom-

mended practice was that the investigator identified the clinical issue that the study

planned to target and formulated the clinical question using statistical model. After
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the statistical estimand was clearly stated, the clinical question of interest of study

could be updated with a more accurate description. For attribute 3, five strategies

were introduced in detail by the guidance to address intercurrent events including

‘Treatment policy strategy’, ‘Composite strategy’, ‘Hypothetical strategy’, ‘Principal

stratum strategy’ and ‘While on treatment strategy’. Notice the intercurrent event

definition in the guidance was broader than the missing data concept. Measurements

after intercurrent events happened did not necessarily have to be missing. Thus the

process of constructing estimand should be exclusive from the concept of missing

data. The missing data problem should be considered during the step of developing

estimator.

2.5 ‘De Jure’ estimand and ‘De Facto’ estimand

Carpenter, Roger and Kenward introduced the concept of ’De Facto’ estimand and

’De Jure’ estimand in their paper [8]. The ’De Jure’ estimand was defined as ’What

would the expected treatment effect be in the target population of eligible patients

(as defined by the trial inclusion criteria) if the treatment and control were taken as

specified in the protocol’. The ’De Facto’ estimand is described as ’What would be

the effect seen in practice if this treatment were assigned to the target population of

eligible patients, as defined by the trial inclusion criteria’. For example, one might

want to conduct an efficacy trial which studies the drug effect in an ideal world that

all patients would follow initial randomization. This would be corresponding to the

‘De Jure’ estimand. On the other hand, an effectiveness trial also might be of interest

to study the drug effect in a real world clinical setting that patients might drop

from the study or switch to rescue medication. The effect is therefore a mixture of

initial assignment effect and rescue medication effect. This is referred to as the ‘De

Facto’ estimand. The estimands corresponding to the five strategies described in the
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guidance can be viewed as detailed specifications within the concept of ‘De Jure’ and

‘De Facto’.

2.6 Five strategies for addressing intercurrent events

• Principle stratum strategy Under this strategy, the scientific question of

interest is ‘What would the drug effect be if patients stay on treatments assigned

by initial randomization’. In order to fully implement this strategy, only those

patients who do not have intercurrent events would be included in the data

analysis. In other word, this strategy constrains the scientific question of interest

to be related with only a subset of the population who would be expected not

to experience an intercurrent event. Although this question is straightforward,

the identification of the subset population is almost impossible before starting

a randomized clinical trial. The estimand that this strategy addresses is a ‘De

Jure’ estimand since it is targeting a scenario that happens in an ideal world.

• While on treatment strategy The scientific question under such strategy is

that ‘What would the drug effect be if the last on treatment effect can be main-

tained to the end of study after the patient discontinues the treatment’. This

strategy is similar to the ‘Last observation carried forward (LOCF)’ approach.

The last measurement prior to the occurrence of intercurrent event is included

in the final data analysis. This estimand is a ‘De Jure’ estimand due to the fact

that it does not take the possible measurements that would have been collected

post intercurrent event into account.

• Treatment-policy strategy Under this strategy, the scientific question is that

‘What is the treatment effect regardless of the occurrence of intercurrent events’.

This is similar to the ‘ITT principle (Intent to treat)’. This estimand is generally

acceptable to support regulatory decision making. It can be viewed as a ‘De
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Facto’ estimand.

• Composite strategy The scientific question under such strategy is that ‘What

is the treatment effect if the intercurrent event is part of the endpoint itself’.

The occurrence of intercurrent event itself is more interested than the missing

measurements post event. In fact, consider the case that the intercurrent event

is death and the measurement is blood pressure, the measurements post event

is not missing but rather not exist at all. I am not going to include this strategy

in the discussion because this requires another set of analysis methods and is

beyond the scope of missing data problem.

• Hypothetical strategy This strategy is of most interest. The scientific ques-

tion of interest is ‘What would the treatment effect be if patients drop out from

the treatment group would switch to a specific hypothetical scenario’. The ‘spe-

cific hypothetical scenario’ has the flexibility of covering a wide range of different

possible hypothetical situations. One might assume the patients would be of-

fered another reference drug, i.e, an active control or rescue medication. Or one

might assume the patients would maintain the drug effect or the drug effect

would totally vanish. Depending on the different hypothesis, this strategy may

address either a ‘De Jure’ estimand or a ‘De Facto’ estimand.

2.7 Propose an alternative approach to determine the esti-

mand

The 11th Annual Conference on Statistical Issues in Clinical Trials was held at Uni-

versity of Pennsylvania in April 2018. During the meeting, experts from industry and

academia were invited to discuss the draft guidance. Major comments were that inves-

tigators considered the five strategies introduced in the guidance not detailed enough

to fit all possible situations in real world studies. The ambiguity of the concept of



14

‘Intercurrent event strategy’ was criticized by Daniel Scharfstein. He proposed the

alternative definition using ‘outcome’ instead of ‘intercurrent event strategy’ attribute

• ITT (‘De Facto’): outcome regardless of adherence to the treatment strategy

• Composite: defined to include the occurrence of key post-randomization event(s)

• Counterfactual (‘De Jure’): outcome under full adherence to the treatment

strategy

• While Adherent (While on treatment): outcome during adherence to the treat-

ment strategy

Taking the discussion during the annual conference into consideration, I propose an

alternative approach to understand and determine an appropriate intercurrent event

strategy. In Figure 2.2, a flow chart of detail steps of choosing estimand and cor-

responding intercurrent event handling methods is illustrated. The first decision to

be made in terms of intercurrent events is whether the post intercurrent event mea-

surements are indeed collectable or not. The post intercurrent event measurements

should only be considered as missing if they are actually observable. For example, a

patient’s biomarkers are observable if the patient is not deceased during study period.

Any post intercurrent event measurement is not observable if death is the event itself.

Assumptions for unobservable post intercurrent event measurements should not be

made. Instead, the event can be considered as a binary response and use time-to-

event model such as survival model to integrate the intercurrent event information

into the primary analysis. This is referred to as the ‘Composite estimand’. Another

approach is that use only the measurements collected on initial assignment period to

target the ‘While on treatment estimand’.

Suppose that the post intercurrent event measurements do exist. However, due to the

reasons that can not be controlled that cause the measurements on initial randomized
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assignment not observed. For example, patients might discontinue taking initial as-

signed treatment due to lack of efficacy or adverse event. Under these circumstances,

it is unethical to force patients to continue on initial assigned treatment. Alterna-

tively, rescue medication might be allowed. Efforts should be made to collect the

measurements on rescue medication period. If the investigator’s scientist question of

interest is to study the treatment effect based on initial randomized treatment only,

then regardless the rescue medication period measurements are collected or not, the

post intercurrent event measurements are considered as missing. This is referred to as

the ‘De Jure’ estimand. The primary analysis assumption for the ‘De Jure’ estimand

is to assume the missing mechanism is MAR. The sensitivity analysis should therefore

target the MAR assumption. If the investigator’s scientist question of interest is to

study the effect where rescue medication will either be offered as a substitution of

initial assigned treatment or as a combination with the initial assigned treatment,

the ‘De Facto estimand’ is preferred. Post intercurrent event measurements would be

included as-is during the primary analysis. If there are still patients measurements

missing, assumptions might be made that they would have been offered rescue med-

ication. Thus the primary analysis assumption for missing data under ‘De Facto’

estimand is that the dropout patients are MAR from the rescue medication arm.

Thus the sensitivity analysis should be conducted to target the MAR from rescue

medication assumption.

2.8 Reference based imputation (RBI)

Carpenter introduced a set of different sensitivity analysis scenarios which assumes

reference arm patients are MAR and borrows reference arm mean treatment effect

information to impute active arm missing values. I will demonstrate three borrowing
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methods in detail, namely the ‘Jump to reference’ (J2R) method, the ‘Copy incre-

ment in reference’ (CIR) method and the ‘Copy reference’ (CR) method through a

diabetic trial example. In all three methods, the reference arm missing patients are

imputed under MAR assumption.

Consider a randomized clinical trial with two arms, active arm and reference arm.

Suppose the repeated measurements y = (y1, ..., yt)
′ follow a multivariate normal dis-

tribution, y ∼MVN(µ,Σ) where Σ is the same variance covariance matrix for both

active and reference groups. Let µd = (µd1, µ
d
2, ..., µ

d
t ) and µp = (µp1, µ

p
2, ..., µ

p
t ) repre-

sent mean vectors for active arm and reference arm respectively. Use µp = [µp
o, µ

p
m]

to distinguish the observed portion and missing portion reference arm mean effect.

Use µd = [µd
o,µ

d
m] to distinguish the observed portion and missing portion active

arm mean effect. Figure 2.3 is a plot of two arm means HbA1c change values from

baseline (Week 0) to Week 24. Assume the observations from different time points

follow multivariate normal distribution. The dotted line represents the mean vec-

tor of the multivariate normal distribution. The solid triangles represent observed

HbA1c values for one specific patient at baseline (Week 0), Week 4 and Week 8.

The observations at Week 16 and Week 24 are missing. Use yo to denote observed

measurements and ym to denote post intercurrent event measurements. The ob-

served measurements together with missing measurements jointly follow multivariate

normal distribution

yo
ym

 ∼ N

(µp
o

µp
m

 ,Σ =

Σoo Σom

Σmo Σmm

) for reference arm pa-

tients;

yo
ym

 ∼ N

(µd
o

µd
m

 ,Σ =

Σoo Σom

Σmo Σmm

) for active arm patients. The open

triangles are the imputed HbA1c values drawn from conditional multivariate normal

distribution E(ym|yo,µ,Σ) = µd
m+ΣmoΣ

−1
oo (yo−µd

o). Suppose the primary analysis

is under MAR assumption, the mean vector is assumed to be the same as active arm

mean, that is, the dotted line overlaps with active arm mean curve. However, since
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the patient’s observed 3 measurements are lower than the population mean curve,

the missing data will be imputed from a normal distribution with a conditional mean

that is also lower than population mean.

• Jump to reference: Patient’s post deviation mean response distribution is same

as a reference group. This might be used as a worst-case scenario in terms of

reducing any treatment effect since withdrawn patients on active will lose the

effect of their period on treatment. Figure 2.4 indicates that missing values are

imputed with the reference arm means. The conditional multivariate normal

distribution mean is E(ym|yo,µ,Σ) = µp
m + ΣmoΣ

−1
oo (yo − µd

o).

• Copy increments in reference: Patient’s post deviation mean increments are the

same as those from the reference group. In Figure 2.5, the increment of refer-

ence arm mean effect between Week 16 and Week 8 as well as the increment

of reference arm mean effect between Week 24 and Week 16 are borrowed to

determine the active arm population mean at Week 16 and Week 24. There-

fore, the population mean curve segments post dropout time point are parallel

with the reference arm mean segments. The conditional multivariate normal

distribution mean is E(ym|yo,µ,Σ) = µp
m + (µd

j − µ
p
j) + ΣmoΣ

−1
oo (yo − µd

o).

• Copy reference: Patient’s measurement distributions for all time points, both

pre and post deviation, are assumed to be the same as the reference group.

Figure 2.6 demonstrated the idea of ‘Copy Reference’. The population mean

for the observed patient is assumed to be as the reference arm from baseline

to Week 24. Since the observed measurements are higher than reference arm

mean curve, the conditional mean for the missing time points are higher than

population mean. The conditional multivariate normal distribution mean is

E(ym|yo,µ, Σ̂) = µp
m + ΣmoΣ

−1
oo (µd

o − µp
o) + ΣmoΣ

−1
oo (yo − µd

o).
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Liu and Pang extended the idea in more detail. Using MMRM, assume the re-

peated measurements y = (y1, ..., yt)
′ follow a multivariate normal distribution, y ∼

MVN(µ,Σ) where Σ is the same for both active and reference groups. Let µd =

(µd1, µ
d
2, ..., µ

d
t ) and µp = (µp1, µ

p
2, ..., µ

p
t ) represent mean vectors for active and refer-

ence, then under MMRM the mean for the jth measurement of patient i is:

E(Yij) = µj =


Xiβj + θpj = µpj , for reference

Xiβj + θdj = µdj , for active
(2.4)

where xi is a collection of baseline covariates to be adjusted in the analysis model

and βj is a vector of corresponding coefficients for time point j. θpj and θdj are the

adjusted treatment effects for each arm at each measurement time point. All the

parameters can be estimated from a Bayesian method, i.e, Markov Chain Monte

Carlo (MCMC). Assume non-informative prior distribution for parameters βj, θpj , θdj

and an inverse Wishart prior for Σ, MCMC may sample parameters and the missing

data iteratively. For a specific patient who dropped out at time j + 1, the missing

data vector will be sampled from a conditional distribution:

ymis|yobs,X,µ,Σ ∼ N(µ+ ΣmoΣ
−1
oo (yobs − µo),Σmm − ΣmoΣ

−1
oo Σom) (2.5)

Under RBI analysis, the conditional mean is different. Using the PMM approach,

for the jth pattern, yobs = (y1, ..., yj)
′, the missing data for treatment group will be

specified by the RBI:

µdm =


µpm + µdj − µ

p
j for CIR

µpm for JR

µpm + ΣmoΣ
−1
oo (µdo − µpo) for CIR

(2.6)

where µdm is the mean vector used in imputation for missing data at time point j. The

overall treatment difference at the last time point under RBI is θRBI =
∑t

j=1 πjµ
d
tj−µ

p
t

where µdtj is the conditional mean at the last time point t under missing pattern j
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Figure 2.3: Multiple imputation model under primary analysis MAR assumption

and πj is the proportion of patients in the missing data pattern j for the drug group.

Based on (2.6), the difference can be written in the following format for different

imputation methods

θRBI =



∑t
j=1 πj(µ

d
j − µ

p
j) for CIR

πt(µ
d
t − µ

p
t ) for JR∑t

j=1 πj(µ
d
tj − µ

p
t ) for CIR

(2.7)
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Figure 2.4: Multiple imputation model under sensitivity analysis J2R assumption

Figure 2.5: Multiple imputation model under sensitivity analysis CIR assumption
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Figure 2.6: Multiple imputation model under sensitivity analysis CR assumption
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Chapter 3

MMRM model with rescue medication allowed

3.1 Prelimilary

In a modern well designed clinical trial, rescue medications are usually available for

patients who discontinued from initial assigned treatment. An effect difference of the

mixture of the initial assigned treatments and rescue medication at the end of study

period is often of interest. Suppose a clinical study is conducted with two arms and T

post baseline measurement time points. Rescue medication is allowed after the first

measurement time point t1. Patients might either choose to take the rescue medication

and stay in the study or drop out of the study completely. Assume the study question

of interest is the effect between a studied treatment and a reference arm account for

the effect when the rescue medication is offered, this can be considered as a ‘De Facto’

estimand. To statistically construct the ‘De Facto’ estimand, the following notation

is used for the data structure.

3.2 Data structure and notation

In Table 3.1, the data structure for the treatment arm is presented. Total of T sched-

uled visit measurements collected at time point t1, ..., tT . Denote the measurement

for the ith patient at tj as yi,j. Denote Gi the initial assignment indicator for patient

i. Gi = 1 if the patient is randomized to treatment arm and Gi = 0 if the patient is

randomized to reference arm. Denote Si the intercurrent event indicator for patient i.
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Si = 1 if the patient stayed on the initial assignment to the end of the study. Si = 2

if the patient discontinued initial assignment and switched to rescue medication prior

to the end of the study. Si = 3 if the patient discontinued initial assignment and

dropped out of the study with no follow up measurement. Ei is used to denote the

event happening time point. If Si = 1, then Ei = T indicates patient i stayed for

the whole study period. If Si = 2, Ei = j indicates patient i switched to rescue

medication at time point tj. If Si = 3, Ei = j indicates patient i dropped out from

the study at time point tj and measurements afterwards are missing. Assume that

for treatment arm, r patients remained on initial assignment, qj patients switched to

rescue medication at time point tj with a total of q =
∑T

j=2 qj patients switched to

rescue medication from treatment any time during the study. pj patients dropped

out of the study at time point tj and missed the following measurements with a total

of p =
∑T

j=2 pj patients dropped out any time during the study. For reference arm,

l patients remained on initial assignment, mj patients switched to rescue medication

at time point tj with a total of m =
∑T

j=2mj patients switched to rescue medication

from reference arm any time during the study. nj patients dropped out of the study

at time point tj and missed the following measurements with a total of n =
∑T

j=2 nj

patients dropped out any time during the study. The probability of an intercurrent

event happened is by random. Denote the probability of staying on initial assignment

for treatment arm patient as πO (ωO for reference arm. All notations in parentheses

indicate reference arm probabilities). Denote the probability of discontinuation from

initial assignment at tj as πSj (ωSj). Denote the overall probability of discontinued

from initial assignment as πS (ωS). Notice that πO+πS = 1 (ωO+ωS = 1). Condition

on the patient being discontinued at tj, denote the probability of dropout at tj as

πMj (ωMj).The marginal dropout probability at tj is πSjπMj (ωSjωMj). Denote the

overall probability of dropout as πM (ωM). The marginal dropout probability is πSπM

(ωSωM). The number of patients of each portion can thus be considered as following
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multinomial distribution. For treatment arm, [r, q2, ..., qT , p2, ..., pT ] ∼ MVN(N,π)

where π = [πO, (1 − πM2)πS2, ..., (1 − πMT )πST , πM2πS2, ..., πMTπST ]. For reference

arm:[l,m2, ...,mT , n2, ..., nT ] ∼ MVN(N,ω) where ω = [ωO, (1 − ωM2)ωS2, ..., (1 −

ωMT )ωST , ωM2ωS2, ..., ωMTωST ]

3.3 Construction of the statistical estimand

In order to specifically construct the statistical estimand that corresponding to the

scientific question of interest, which is the mean effect difference at the last time

point with the effect of switch to rescue medication taken into account, the well

accepted MMRM model is first used to analyze the data. It has the advantage

of directly estimating the treatment effect at each measurement time point. The

following MMRM model is used to fit the observed data,

Yi,j|Gi = g

= α0 + α1g + α2Ij=2 + ...+ αT Ij=T + αT+1gIj=2 + ...+ α2T−1gIj=T + εi,j

(3.1)

where [εi,1, ..., εi,T ]′ ∼ N(0T×1,Σε). g = 1 indicates treatment arm patients and g = 0

indicates reference arm patients.

To present the model in matrix format, denote Yi = [Yi,1, Yi,2, ..., Yi,T ]′ and U the

design matrix for patient i,

U =



1 g 0 ... 0 0 ... 0

1 g 1 ... 0 g ... 0

...
...

...
...

...
...

...
...

1 g 0 ... 1 0 ... g


α = [α0, α1, α2, α3, ..., αT+1, αT+2, ..., α2T−1]

′

Therefore, E(Yi|Gi = g) = Uα. The ‘De Facto’ estimand can be defined as

θ = α1 + α2T−1 (3.2)
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3.4 Conditional MMRM model

In the previous section, the MMRM is constructed regardless of the intercurrent event.

Nonetheless, the missing data would be ignored without further investigation. The

previous model is referred to as a marginal MMRM model. In order to investigate

the missing data effect, a conditional MMRM model can be introduced as,

Yi,j|Si, Ei, Gi

= β0 + β1Gi + β2Ij=2 + ...+ βT Ij=T + βT+1Ij=2Gi + ...+ β2T−1Ij=TGi

+ γ2,1Ij=2,Si=2,Ei=2,Gi=0 + γ2,2Ij=2,Si=2,Ei=2,Gi=1 + γ2,3Ij=2,Si=3,Ei=2,Gi=0

+ γ2,4Ij=2,Si=3,Ei=2,Gi=1

+ γ3,1Ij=3,Si=2,Ei=2,Gi=0 + γ3,2Ij=3,Si=2,Ei=3,Gi=0 + γ3,3Ij=3,Si=2,Ei=2,Gi=1

+ γ3,4Ij=3,Si=2,Ei=3,Gi=1

+ γ3,5Ij=3,Si=3,Ei=2,Gi=0 + γ3,6Ij=3,Si=3,Ei=3,Gi=0 + γ3,7Ij=3,Si=3,Ei=2,Gi=1

+ γ3,8Ij=3,Si=3,Ei=3,Gi=1

+ ...

+ γa,1Ij=a,Si=2,Ei=2,Gi=0 + ...+ γa,a−1Ij=a,Si=2,Ei=a,Gi=0

+ γa,aIj=a,Si=2,Ei=2,Gi=1 + ...+ γa,2a−2Ij=a,Si=2,Ei=a,Gi=1

+ γa,2a−1Ij=a,Si=3,Ei=2,Gi=0 + ...+ γa,3a−3Ij=a,Si=3,Ei=a,Gi=0

+ γa,3a−2Ij=a,Si=3,Ei=2,Gi=1 + ...+ γa,4a−4Ij=a,Si=3,Ei=a,Gi=1

+ ...

+ γT,1Ij=T,Si=2,Ei=2,Gi=0 + ...+ γT,T−1Ij=T,Si=2,Ei=T,Gi=0

+ γT,T Ij=T,Si=2,Ei=2,Gi=1 + ...+ γT,2T−2Ij=T,Si=2,Ei=T,Gi=1

+ γT,2T−1Ij=T,Si=3,Ei=2,Gi=0 + ...+ γT,3T−3Ij=T,Si=3,Ei=T,Gi=0

+ γT,3T−2Ij=T,Si=3,Ei=2,Gi=1 + ...+ γT,4T−4Ij=T,Si=3,Ei=T,Gi=1

+ εi,j

(3.3)
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where [εi,1, ..., εi,T ] ∼ N(0T×1,Σε). The model can be viewed as two parts. The β

part is the initial effect if no intercurrent event happened, that is, neither switch nor

dropout happened. If an intercurrent event happened, the event effect is considered

to be deviated from the initial effect, which is denoted as γ. The effect varies at

different measurement time points tj as well as the intercurrent happening time Ei.

For example, for time point t2, γ2 = [γ2,1, γ2,2, γ2,3, γ2,4] represents the different deviate

effect due to intercurrent event happened on t2. γ2,1 represents the deviate effect if

reference arm patients switched to rescue medication at t2, γ2,2 represents the deviate

effect if treatment arm patients switched to rescue medication at t2, γ2,3 represents

the deviate effect if reference arm patients dropped out at t2 and γ2,4 represents the

deviate effect if treatment arm patients dropped out at t2. For t2 measurements, only

events that happened before t2, which is at t1 will have an deviate effect on the t2

measurements. In general, only events that happened prior to the measurement time

point tj (Ei ≤ j) will have a deviate effect for measurements at time point tj. Notice

that γ2,3, γ2,4 are related to the dropout measurements that are unobserved. Thus

these two parameters are inestimable. The technique to handle this problem will be

discussed later in estimator construction section.

The conditional MMRM can as well be written in a matrix format.

Yi|Si = s, Ei = e,Gi = g = Uβ + δs,e,gγ + εi (3.4)

where U is the same design matrix as the marginal MMRM model for patient i, δs,e,g

is an indicator matrix denoting the deviate effects caused by the intercurrent event

for the patient with no intercurrent event (s = 1), switch to rescue medication (s = 2)

or dropout (s = 3) at time point e for group g. For no intercurrent event patients,

s = 1,

δ1,T,0 = δ1,T,1 = 0
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For patients with intercurrent event s > 1,

δs,e,g =



0 0 ... 0

d2,seg 0 ... 0

0 d3,seg ... 0
...

... . . . ...

0 0 ... dT,seg


(Note: 2 ≤ e ≤ j)

where

dj,2e0 = [0...1...0, 0...0...0, 0...0...0, 0...0...0]

dj,2e1 = [0...0...0, 0...1...0, 0...0...0, 0...0...0]

dj,3e0 = [0...0...0, 0...0...0, 0...1...0, 0...0...0]

dj,3e1 = [0...0...0, 0...0...0, 0...0...0, 0...1...0]

(3.5)

β = [β0, ..., β2T−1]
′

γ = [γ2, ...,γT ]′
(3.6)

where

γj = [γj,1, ..., γj,e−1, ...γj,j−1, γj,j, ..., γj,j−2+e, ..., γj,2j−2,

γj,2j−1, ..., γj,2j−3+e, ...γj,3j−3, γj,3j−2, ..., γj,3j−4+e, ...γj,4j−4]

(3.7)

3.5 Convert between marginal and conditional MMRM mod-

els

The ‘De Facto’ estimand defined from the marginal MMRM can also be represented

by the parameters from the conditional MMRM model. The conditional and marginal

MMRM model parameters can be connected through the mean of each time point.

From marginal MMRM model, the mean at each time point is E(Yi|Gi) = E(Uα+
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εi) = Uα. To write in detail,

E

(


yi,1

yi,2
...

yi,T


|Gi = 0

)
=



α0

α0 + α1

...

α0 + αT−1


(3.8)

E

(


yi,1

yi,2
...

yi,T


|Gi = 1

)
=



(α0 + α1)

(α0 + α1) + (α2 + αT+1)

...

(α0 + α1) + (αT + α2T−1)


(3.9)

The expectation can also be obtained from the weighted sum of conditional means,

that is

E(Yi|Gi = g) =
3∑
s=1

T∑
e=2

E(Yi|Si = s, Ei = e,Gi = g)pseg =
3∑
s=1

T∑
e=2

(Uβ + δsegγ)pseg

(3.10)

where pseg denotes the probability of event type Si = s and event time Ei = e for

arm Gi = g. To be more specific, for each arm,

E(Yi|Gi = 1) = E(Yi|Gi = 1, Si = 1, Ei = T )πO

+
T∑
e=2

E(Yi|Gi = 1, Si = 2, Ei = e)(1− πMe)πSe

+
T∑
e=2

E(Yi|Gi = 1, Si = 3, Ei = e)πMeπSe

(3.11)

E(Yi|Gi = 0) = E(Yi|Gi = 0, Si = 1, Ei = T )ωO

+
T∑
e=2

E(Yi|Gi = 0, Si = 2, Ei = e)(1− ωMe)ωSe

+
T∑
e=2

E(Yi|Gi = 0, Si = 3, Ei = e)ωMeωSe

(3.12)
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To expand into details, denote yi =

[
yi,1yi,2...yi,T

]′

E

(
yi|Gi = 1

)

= E

(
yi|Gi = 1, Si = 1, Ei = T

)
πO +

T∑
e=2

E

(
yi|Gi = 1, Si = 2, Ei = e

)
(1− πMe)πSe

+
T∑
e=2

E

(
yi|Gi = 1, Si = 3, Ei = e

)
πMeπSe

=



(β0 + β1)

(β0 + β1) + (β2 + βT+1)

...

(β0 + β1) + (βT + β2T−1)


πO

+



(β0 + β1)(1− πM)πS(
(β0 + β1) + (β2 + βT+1)

)
(1− πM)πS + (1− πM2)πS2γ2,2
...(

(β0 + β1) + (βT + β2T−1)
)
(1− πM)πS +

∑T
e=2(1− πMe)πSeγT,T−2+e



+



(β0 + β1)πMπS(
(β0 + β1) + (β2 + βT+1)

)
πMπS + πM2πS2γ2,4

...(
(β0 + β1) + (βT + β2T−1)

)
πMπS +

∑T
e=2 πMeπSeγT,3T−4+e



=



(β0 + β1)

(β0 + β1) + (β2 + βT+1) + (1− πM2)πS2γ2,2 + πM2πS2γ2,4
...

(β0 + β1) + (βT + β2T−1) +
∑T

e=2(1− πMe)πSeγT,T−2+e +
∑T

e=2 πMeπSeγT,3T−4+e


(3.13)
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E

(
yi|Gi = 0

)

= E

(
yi|Gi = 0, Si = 1, Ei = T

)
ωO +

T∑
e=2

E

(
yi|Gi = 0, Si = 2, Ei = e

)
(1− ωMe)ωSe

+
T∑
e=2

E

(
yi|Gi = 0, Si = 3, Ei = e

)
ωMeωSe

=



β0

β0 + β2
...

β0 + βT


ωO +



β0(1− ωM)ωS

(β0 + β2)(1− ωM)ωS + (1− ωM2)ωS2γ2,1
...

(β0 + βT )(1− ωM)ωS +
∑T

e=2(1− ωMe)ωSeγT,e−1



+



β0ωMωS

(β0 + β2)ωMωS + ωM2ωS2γ2,3
...

(β0 + βT )ωMωS +
∑T

e=2 ωMeωSeγT,2T−3+e



=



β0

β0 + β2 + (1− ωM2)ωS2γ2,1 + ωM2ωS2γ2,3
...

β0 + βT +
∑T

e=2(1− ωMe)ωSeγT,e−1 +
∑T

e=2 ωMeωSeγT,2T−3+e


(3.14)

From the two different modeling approaches, the following equation can be derived,

Uα =
3∑
s=1

T∑
e=2

(Uβ + δs,e,gγ)ps,e,g (3.15)
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First I investigate the reference arm marginal means Gi = 0

α0

α0 + α2

...

α0 + αT


=



β0

β0 + β2 + (1− ωM2)ωS2γ2,1 + ωM2ωS2γ2,3
...

β0 + βT +
∑T

e=2(1− ωMe)ωSeγT,e−1 +
∑T

e=2 ωMeωSeγT,2T−3+e


(3.16)

Next I investigate the treatment arm Gi = 1

(α0 + α1)

(α0 + α1) + (α2 + αT+1)

...

(α0 + α1) + (αT + α2T−1)


=

(β0 + β1)

(β0 + β1) + (β2 + βT+1) + (1− πM2)πS2γ2,2 + πM2πS2γ2,4
...

(β0 + β1) + (βT + β2T−1) +
∑T

e=2(1− πMe)πSeγT,T−2+e +
∑T

e=2 πMeπSeγT,3T−4+e


(3.17)

From previous two equations, the following equation can be derived

α1 = β1 (3.18)

α2T−1 = β2T−1 +
T∑
e=2

(
πSeγT,T−2+e − ωSeγT,e−1 + πMeπSe(γT,3T−4+e − γT,T−2+e)

− ωMeωSe(γT,2T−3+e − γT,e−1)
)

(3.19)

Thus the targeted ‘De Facto’ estimand can be written as

θ = β1 + β2T−1 +
T∑
e=2

(
πSeγT,T−2+e − ωSeγT,e−1 + πMeπSe(γT,3T−4+e − γT,T−2+e)

− ωMeωSe(γT,2T−3+e − γT,e−1)
)

(3.20)
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Chapter 4

Primary and sensitivity analysis point estimator and
inference

4.1 General form for ‘De Facto’ estimator and inference

Denote the estimator for the ‘De Facto’ estimand as

θ̂ = β̂1 + β̂2T−1 +
T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se(γ̂T,3T−4+e − γ̂T,T−2+e)

− ω̂Meω̂Se(γ̂T,2T−3+e − γ̂T,e−1)
)

(4.1)

which is a linear combination of parameters from the conditional MMRM model.

Regardless what method is used to obtain the parameter estimates, which will be

discussed in the later chapter, as I mentioned briefly before, some of the parameters

are inestimable. Those are the parameters related to the missing measurements after

dropout, namely γT,2T−1, ..., γT,4T−4. One way to handle these inestimable parameters

is to borrow information from estimable parameters based on intuitive assumptions.

For example, assumption can be made that patients who dropped out from the study

might be still on treatment arm if not missing. However, this is rarely the case in

the real world because patients are more often dropped out due to lack of efficacy or

safety issue. It will lead to a biased result if assume the dropout patients would have

same effect as those who remained on treatment. It is more likely that the patient

would be offered a rescue medication after discontinued from the initial assignment

and thus they would behave as those patients who switched to rescue and remained in
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the study. The estimator constructed based on this assumption would be the primary

estimator in this dissertation, denoted as θ̂RES. If the hypothesis testing result based

on the primary assumption is statistical significant, investigators might want to know

how robust the result is regarding this assumption Therefore one or more sensitivity

analysis is necessary. If the hypothesis testing result is not significant, there is no

need to conduct any sensitivity analysis. One might want to modify the estimand

to target other clinical relevant question of interest. In this chapter, I am going to

construct point estimator for primary analysis as well as different types of sensitivity

analysis methods. Regardless of the assumptions made to estimate the inestimable

parameters γT,2T−1, ..., γT,4T−4, delta approximation method can be used to derive the

variance for the point estimator θ̂ since it is a linear combination of MMRM model

parameters. Thus a general form of the variance estimator can be derived.

V (θ̂)

=V
(
E
(
θ̂|Ω
))

+ E
(
V
(
θ̂|Ω
))

=V

(
E
(
β̂1 + β̂2T−1 +

T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se(γ̂T,3T−4+e − γ̂T,T−2+e)

− ω̂Meω̂Se(γ̂T,2T−3+e − γ̂T,e−1)
)))

+ E

(
V
(
β̂1 + β̂2T−1 +

T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se(γ̂T,3T−4+e − γ̂T,T−2+e)

− ω̂Meω̂Se(γ̂T,2T−3+e − γ̂T,e−1)
)))

=V

(
β1 + β2T−1 +

T∑
e=2

(
π̂SeγT,T−2+e − ω̂SeγT,e−1 + π̂Meπ̂Se(γT,3T−4+e − γT,T−2+e)

− ω̂Meω̂Se(γT,2T−3+e − γT,e−1)
))

+ E

(
V
(
β̂1 + β̂2T−1 +

T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se(γ̂T,3T−4+e − γ̂T,T−2+e)

− ω̂Meω̂Se(γ̂T,2T−3+e − γ̂T,e−1)
)
|Ω
))

(4.2)
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where Ω = [q2, ..., qT , p2, ..., pT ,m2, ...,mT , n2, ..., nT ].

The first part of the variance can be written in the following matrix format

V

(
β1 + β2T−1 +

T∑
e=2

(
π̂SeγT,T−2+e − ω̂SeγT,e−1 + π̂Meπ̂Se(γT,3T−4+e − γT,T−2+e)

− ω̂Meω̂Se(γT,2T−3+e − γT,e−1)
))

= PΣPP
′ +OΣOO

′

(4.3)

where

P =

[
γT,3T−2 γT,3T−1 ... γT,4T−4 γT,T γT,T+1 ... γT,2T−2

]
O =

[
γT,1 γT,2 ... γT,2T−1

]

ΣP =

ΣP11 ΣP12

ΣP12 ΣP22


and

ΣP11 =



πM2πS2(1− πM2πS2) πM2πS2πM3πS3 ... πM2πS2πMTπST

πM2πS2πM3πS3 πM3πS3(1− πM3πS3) ... πM3πS3πMTπST
...

... . . . ...

πM2πS2πMTπST πM3πS3πMTπST ... πMTπST (1− πMTπST )



ΣP12 =



πM2πS2(1− πM2)πS2 πM2πS2(1− πM3)πS3 ... πM2πS2(1− πMT )πST

πM3πS3(1− πM2)πS2 πM3πS3(1− πM3)πS3 ... πM3πS3(1− πMT )πST
...

... . . . ...

πM2πS2(1− πMT )πST πM3πS3(1− πMT )πST ... πMTπST (1− πMT )πST



ΣP22 =



(1− (1− πM2)πS2)(1− πM2)πS2 (1− πM2)πS2(1− πM3)πS3 ... (1− πM2)πS2(1− πMT )πST

(1− πM2)πS2(1− πM3)πS3 (1− (1− πM3)πS3)(1− πM3)πS3 ... (1− πM3)πS3(1− πMT )πST
...

... . . . ...

(1− πM2)πS2(1− πMT )πST (1− πM3)πS3(1− πMT )πST ... (1− (1− πMT )πST )(1− πMT )πST



ΣO =

ΣO11 ΣO12

ΣO12 ΣO22
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where

ΣO11 =



ωM2ωS2(1− ωM2ωS2) ωM2ωS2ωM3ωS3 ... ωM2ωS2ωMTωST

ωM2ωS2ωM3ωS3 ωM3ωS3(1− ωM3ωS3) ... ωM3ωS3ωMTωST
...

... . . . ...

ωM2ωS2ωMTωST ωM3ωS3ωMTωST ... ωMTωST (1− ωMTωST )



ΣP12 =



ωM2ωS2(1− ωM2)ωS2 ωM2ωS2(1− ωM3)ωS3 ... ωM2ωS2(1− ωMT )ωST

ωM3ωS3(1− ωM2)ωS2 ωM3ωS3(1− ωM3)ωS3 ... ωM3ωS3(1− ωMT )ωST
...

... . . . ...

ωM2ωS2(1− ωMT )ωST ωM3ωS3(1− ωMT )ωST ... ωMTωST (1− ωMT )ωST



ΣP22 =



(1− (1− ωM2)ωS2)(1− ωM2)ωS2 (1− ωM2)ωS2(1− ωM3)ωS3 ... (1− ωM2)ωS2(1− ωMT )ωST

(1− ωM2)ωS2(1− ωM3)ωS3 (1− (1− ωM3)ωS3)(1− ωM3)ωS3 ... (1− ωM3)ωS3(1− ωMT )ωST
...

... . . . ...

(1− ωM2)ωS2(1− ωMT )ωST (1− ωM3)ωS3(1− ωMT )ωST ... (1− (1− ωMT )ωST )(1− ωMT )ωST


The second part of the variance can also been written in matrix format,

E

(
V
(
β̂1 + β̂2T−1 +

T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se(γ̂T,3T−4+e − γ̂T,T−2+e)

− ω̂Meω̂Se(γ̂T,2T−3+e − γ̂T,e−1)
)
|Ω
)

= BΣBB
′

(4.4)

where B =

[
Dβ Dγ

]
Dβ =

[
0 1 ...(2T-1 0’s)... 1

]
Dγ =

[
−(1− ω̂M2)ω̂S2 ... −(1− π̂MT )π̂ST (1− π̂M2)π̂S2 ... (1− π̂MT )π̂ST −ω̂M2ω̂S2 ... π̂MT π̂ST π̂M2π̂S2... π̂MT π̂ST

]

4.2 Primary estimator

The primary estimator is constructed based on the assumption that the dropout

patients would have behaved like the patients who switched to rescue medication,
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that is,

Ê(Yi,T |Si = 3, Ei = e,Gi = 0) = Ê(Yi,T |Si = 2, Ei = e,Gi = 0), e = 2, ..., T

Ê(Yi,T |Si = 3, Ei = e,Gi = 1) = Ê(Yi,T |Si = 2, Ei = e,Gi = 1), e = 2, ..., T

(4.5)

which leads to 

γ̂T,2T−1
...

γ̂T,2T−3+e
...

γ̂T,3T−3

γ̂T,3T−2
...

γ̂T,3T−4+e
...

γ̂T,4T−4



=



γ̂T,1
...

γ̂T,e−1
...

γ̂T,T−1

γ̂T,T
...

γ̂T,T−2+e
...

γ̂T,2T−2



(4.6)

The left matrix is the matrix of inestimable parameters and the right matrix is the

matrix of estimable parameters. The primary estimator can be written as

θ̂RES = β̂1 + β̂2T−1 +
T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se(γ̂T,T−2+e − γ̂T,T−2+e)

− ω̂Meω̂Se(γ̂T,e−1 − γ̂T,e−1)
)

= β̂1 + β̂2T−1 +
T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1

)
(4.7)

4.3 Sensitivity analysis estimator

The assumptions made in terms of the inestimable parameters are eventually untestable.

The purpose of the sensitivity analysis is to test the robustness of the result under

different assumptions, usually more extreme assumptions because the question of in-

terest is the difference between treatment and reference arms. Thus a more ‘extreme’
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assumption would be an assumption that shrinks the difference between two arms.

4.3.1 Jump to reference

The first sensitivity analysis estimator is constructed under the assumption that the

treatment arm dropout patients would behave like reference patients while reference

arm dropout patients still assumed to be as if switched to rescue medication. The

estimator is denoted as θ̂J2R where the ‘J2R’ indicates that the treatment effect is

assumed to ‘Jump to reference’. To be more specific, for the reference arm, the

assumption is the same as the primary analysis assumption,

γ̂T,2T−3+e = γ̂T,e−1 (4.8)

For the treatment arm,

Ê(Yi,T |Si = 3, Ei = e,Gi = 1) = Ê(Yi,T |Si = 1, Ei = e,Gi = 0), e = 2, ..., T

β̂0 + β̂1 + β̂T + β̂2T−1 + γ̂3T−4+e = β̂0 + β̂T

γ̂3T−4+e = −β̂1 − β̂2T−1

(4.9)

Thus the ‘J2R’ estimator can be written as

θ̂J2R = β̂1 + β̂2T−1 +
T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se(−β̂1 − β̂2T−1 − γ̂T,T−2+e)

)
(4.10)

4.3.2 Jump to zero measurement

An even more extreme sensitivity analysis assumption is that the treatment arm

dropout patients measurements would return to zero while reference arm dropout

patients still assumed to be as if switched to rescue medication. The estimator is

denoted as θ̂J2Z where the ‘J2Z’ indicates that the treatment effect is assumed to

‘Jump to Zero’. Therefore, for the treatment arm,



40

Ê(Yi,T |Si = 3, Ei = e,Gi = 1) = 0, e = 2, ..., T

β̂0 + β̂1 + β̂T + β̂2T−1 + γ̂3T−4+e = 0

γ̂3T−4+e = −(β̂0 + β̂1 + β̂T + β̂2T−1)

(4.11)

In another word, if the measured effect after dropout is assumed to become most

extreme, which is zero (think of measurements such as heart rate, blood pressure or a

score system which zero indicates the worst score), then the deviat effect is a constant

for patients who dropped out at any time point. The ‘J2Z’ estimator can be written

as

θ̂J2Z =β̂1 + β̂2T−1 +
T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se(γ̂T,3T−4+e − γ̂T,T−2+e)

)
=β̂1 + β̂2T−1 +

T∑
e=2

(
π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1

+ π̂Meπ̂Se(−(β̂0 + β̂1 + β̂T + β̂2T−1)− γ̂T,T−2+e)
)

=(1− π̂M π̂S)(β̂1 + β̂2T−1)− π̂M π̂S(β̂0 + β̂T )

+
T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1

)
(4.12)

4.4 Estimates from MMRM model

The point estimator is straight forward. The data will be fitted based on the modified

conditional MMRM model. Based on normality assumption, restricted maximum

likelihood (ReML) will be construct and ‘EM’ algorithm will be used to calculate

the estimate. The measurements are assumed to jointly follow a multivariate normal

distribution. Denote η̂ = [β̂, γ̂] = [β̂0, ..., β̂3T−1, γ̂2, ..., γ̂T ], Σ̂ε and the covariance

matrix for the parameter

Σ̂η =

 Σ̂1 Σ̂12

Σ̂12 Σ̂2
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as the ‘ReML’ estimators where Σ̂1 is the variance matrix for β̂, Σ̂2 is the variance

matrix for γ̂ and Σ̂12 is the covariance matrix for [β̂, γ̂] . The intercurrent event

probabilities are estimated using the observed proportion of patient in each pattern.

π̂O =
r

N

π̂Se =
qe + pe
N

π̂Me =
pe

qe + pe

π̂S =
q + p

N
where q =

T∑
e=2

qe, p =
T∑
e=2

pe

π̂M =
p

q + p

ω̂O =
l

N

ω̂Se =
me + ne
N

ω̂Me =
ne

me + ne

ω̂S =
m+ n

N
where m =

T∑
e=2

me, n =
T∑
e=2

ne

ω̂M =
n

m+ n

(4.13)

Note that r+ q+ p = l+m+n = N . The primary point estimator can be written as

θ̂RES = β̂1 + β̂2T−1 +
T∑
e=2

(qe + pe
N

γ̂T,T−2+e −
me + ne
N

γ̂T,e−1

)
(4.14)
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4.5 Approximate the inference for point estimator using delta

method

The inference for primary point estimator as well as the sensitivity analysis estimator

can be approximated by using delta method. For the primary point estimator,

V (θ̂RES) =V
(
E
(
θ̂RES|Ω

))
+ E

(
V
(
θ̂RES|Ω

))
=V

(
E
(
β̂1 + β̂2T−1 +

T∑
e=2

(qe + pe
N

γ̂T,T−2+e −
me + ne
N

γ̂T,e−1
)
|Ω
))

+ E

(
V
(
β̂1 + β̂2T−1 +

T∑
e=2

(qe + pe
N

γ̂T,T−2+e −
me + ne
N

γ̂T,e−1
)
|Ω
))

=V

(
β1 + β2T−1 +

T∑
e=2

(qe + pe
N

γT,T−2+e −
me + ne
N

γT,e−1
))

+ E

(
V
(
β̂1 + β̂2T−1 +

T∑
e=2

(qe + pe
N

γ̂T,T−2+e −
me + ne
N

γ̂T,e−1
)
|Ω
))
(4.15)

where Ω = [q2, ..., qT , p2, ..., pT ,m2, ...,mT , n2, ..., nT ]. The first term can be written

as

V

(
β1 + β2T−1 +

T∑
e=2

(qe + pe
N

γT,T−2+e −
me + ne
N

γT,e−1
))

=V

( T∑
e=2

(qe + pe
N

γT,T−2+e −
me + ne
N

γT,e−1
))

=
1

N2

(
V

( T∑
e=2

(
(qe + pe)γT,T−2+e

))
+ V

( T∑
e=2

(
(me + ne)γT,e−1

)))

=
1

N2

(
T∑
e=2

(
γ2T,T−2+eNπSe(1− πSe)

)
−

T∑
f 6=q=2

(
NγT,T−2+fγT,T−2+gπSfπSg

)

+
T∑
e=2

(
γ2T,e−1NωSe(1− ωSe)

)
−

T∑
f 6=q=2

(
NγT,f−1γT,g−1ωSfωSg

))

=
1

N

(
T∑
e=2

(
γ2T,T−2+eπSe(1− πSe) + γ2T,e−1ωSe(1− ωSe)

)

−
T∑

f 6=q=2

(
γT,T−2+fγT,T−2+gπSfπSg + γT,f−1γT,g−1ωSfωSg

))

(4.16)
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It can also be represented using matrix format.

Denote P1 = [γT,T , γT,T+1, ..., γT,2T−2], P2 = [γT,1, γT,2, ..., γT,T−1],

ΣP1 =



πS2(1− πS2) −πS2πS3 ... −πS2πST

−πS3πS2 πS3(1− πS3) ... −πS3πST
...

... . . . ...

−πSTπS2 −πSTπS3 ... πST (1− πST )



ΣP2 =



ωS2(1− ωS2) −ωS2ωS3 ... −ωS2ωST

−ωS3ωS2 ωS3(1− ωS3) ... −ωS3ωST
...

... . . . ...

−ωSTωS2 −ωSTωS3 ... ωST (1− ωST )


The first term can thus be written using matrix as

V

(
β1+β2T−1+

T∑
e=2

(qe + pe
N

γT,T−2+e−
me + ne
N

γT,e−1
))

=
1

N

(
P1ΣP1P1′+P2ΣP2P2′

)
(4.17)

For the second part, use the delta method to approximate the inference,

V
(
β̂1 + β̂2T−1 +

T∑
e=2

(qe + pe
N

γ̂T,T−2+e −
me + ne
N

γ̂T,e−1
)
|Ω
)

≈B̂Ση′B̂
′

(4.18)

where B̂ is the design vector B̂ = [1, 1,−m2+n2

N
, ...,−mT+nT

N
, q2+p2

N
, ..., qT+pT

N
] and Ση′

is the partitioned covariance matrix from the ‘ReML’ parameter estimator covariance

matrix. And

E

(
V
(
β̂1 + β̂2T−1 +

T∑
e=2

(qe + pe
N

γ̂T,T−2+e −
me + ne
N

γ̂T,e−1
)
|Ω
))

≈ E

(
B̂Ση′B̂

′
)

≈ BΣη′B′

(4.19)

where B = [1, 1,−ωS2, ...,−ωST , πS2, ..., πST ]. The variance of the primary analysis

estimator is therefore

V (θ̂RES) ≈ 1

N

(
P1ΣP1P1′ + P2ΣP2P2′

)
+ BΣη′B′ (4.20)
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Plug in the point estimator to construct the variance estimator. That is for the

primary analysis,

V̂ (θ̂RES) ≈ 1

N

(
P1Σ̂P1P1′ + P2Σ̂P2P2′

)
+ B̂Σ̂η′B̂

′
(4.21)

where Σ̂P1 =



(q2+p2)(N−q2−p2)
N2 − (q2+p2)(q3+p3)

N2 ... − (q2+p2)(qT+pT )
N2

− (q2+p2)(q3+p3)
N2

(q3+p3)(N−q3−p3)
N2 ... − (q3+p3)(qT+pT )

N2

...
... . . . ...

− (q2+p2)(qT+pT )
N2 − (q3+p3)(qT+pT )

N2 ... (qT+pT )(N−qT−pT )
N2



Σ̂P1 =



(m2+n2)(N−m2−n2)
N2 − (m2+n2)(m3+n3)

N2 ... − (m2+n2)(mT+nT )
N2

− (m2+n2)(m3+n3)
N2

(m3+n3)(N−m3−n3)
N2 ... − (m3+n3)(mT+nT )

N2

...
... . . . ...

− (m2+n2)(mT+nT )
N2 − (m3+n3)(mT+nT )

N2 ... (mT+nT )(N−mT−nT )
N2


B̂ = [1, 1,−m2+n2

N
, ...,−mT+nT

N
, q2+p2

N
, qT+pT

N
] and Σ̂η′ is from MMRM.

The point estimator and inference estimator can be derived for the RBI estimators

using the same approach above. For J2Z,

θ̂J2Z =(1− p

N
)(β̂1 + β̂2T−1)−

p

N
(β̂0 + β̂T ) +

T∑
e=2

( qe
N
γ̂T,T−2+e −

me + ne
N

γ̂T,e−1

)
(4.22)

V̂ (θ̂J2Z) ≈ 1

N

(
P1J2ZΣ̂J2Z

P1 P1J2Z
′
+ P2Σ̂P2P2

)
+ B̂

J2Z
Σ̂η′B̂

J2Z′

(4.23)
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where P1J2Z
′
=



−β̂1 − β̂2T−1 − β̂0 − β̂T

+γ̂T,T

+γ̂T,T+1

...

γ̂T,2T−2



Σ̂J2Z
P1 =



p(N−p)
N2 −pq2

N2 −pq3
N2 ... −pqT

N2

−pq2
N2

q2(N−q2)
N2 − q2q3

N2 ... − q2qT
N2

−pq3
N2 − q2q3

N2

q3(N−q3)
N2 ... − q3qT

N2

...
...

... . . . ...

−pqT
N2 − q2qT

N2 − q3qT
N2 ... qT (N−qT )

N2


B̂
J2Z′

= [− p
N
, 1− p

N
, ...(T 0’s)...,− p

N
, ...(T 0’s)..., 1− p

N
−m2+n2

N
, ...,−mT+nT

N
,− q2

N
, ...,− qT

N
]

For J2R,

θ̂J2R = β̂1 + β̂2T−1 +
T∑
e=2

(qe + pe
N

γ̂T,T−2+e −
me + ne
N

γ̂T,e−1 +
pe
N

(−β̂1 − β̂2T−1 − γ̂T,T−2+e)
)

(4.24)

V̂ (θ̂J2R) ≈ 1

N

(
P1J2RΣ̂J2R

P1 P1J2R
′
+ P2Σ̂P2P2

)
+ B̂

J2R
Σ̂η′B̂

J2R′

(4.25)

where P1J2R =

[
−β̂1 − β̂2T−1 −β̂1 − β̂2T−1 ... −β̂1 − β̂2T−1 γ̂T,T γ̂T,T+1 ... γ̂T,2T−2

]

Σ̂J2R
P1 =



p2(1−p2)
N2 −p2p3

N2 ... −p2pT
N2 −p2q2

N2 −p2q3
N2 ... −p2qT

N2

−p2p3
N2

p3(1−p3)
N2 ... −p3pT

N2 −p3q2
N2 −p3q3

N2 ... −p3qT
N2

...
... . . . ...

...
... . . . ...

−p2pT
N2 −p3pT

N2 ... pT (1−pT )
N2 −pT q2

N2 −pT q3
N2 ... −pT qT

N2

−p2q2
N2 −p2q3

N2 ... −p2qT
N2

q2(1−q2)
N2 − q2q3

N2 ... − q2qT
N2

−p3q2
N2 −p3q3

N2 ... −p3qT
N2

q2q2
N2 − q3(1−q3)

N2 ... − q2qT
N2

...
... . . . ...

...
... . . . ...

−pT q2
N2 −pT q3

N2 ... −pT qT
N2 − q2qT

N2 − q3qT
N2 ... qT (1−qT )

N2


B̂
J2R

= [0, 1−
∑
pe
N
, ...(2T 0’s)..., 1−

∑
pe
N
,−m2+n2

N
, ...,−mT+nT

N
, q2
N
, ..., qT

N
]
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4.6 Simulation study using parallel computing to verify delta

approximate method

In order to verify the validity of point estimator based on modified MMRM model and

delta approximation approach for the inference proposed in this chapter, 5000 simu-

lation studies were conducted with the setup borrowed from Liu and Pang [43]. For

the purpose of demonstration, primary analysis and sensitivity analysis with ‘Jump

to zero’ method and ‘Jump to reference’ were performed. ‘Jump to zero’ method is

studied under both null scenario and alternative scenario. ‘Jump to reference’ method

is studied only under alternative scenario because under null scenario, reference arm

has same effect as treatment arm.

4.6.1 Basic Setup

• Number of patients N=100 for each arm.

• Total 4 measurement points, t1, t2, t3, t4

• Reference arm effect mean: (1.3, 2.3, 3.2, 4)

• Treatment arm effect mean: (1.3, 2.3, 3.2, 4) (assumed to be the same as

reference arm under null hypothesis)

• Reference arm switch to rescue medication effect mean: (1.3, 1.15, 1.6, 2)

• Treatment arm switch to rescue medication effect mean: (1.3, 1.15, 1.6, 2)

(assumed to be the same as reference group under null hypothesis)

• Standard deviations identical among two groups: (1.8, 2.0, 2.1, 2.2)
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• Correlation matrix =



1 0.7 0.5 0.2

0.7 1 0.6 0.4

0.5 0.6 1 0.5

0.2 0.4 0.5 1



Denote ψs,g,k the kth parameter for event type s (s=2 represents observed patients

who switch to rescue medication; s=3 represents missing patients) and group g. The

probability of intercurrent event at tj for treatment arm patients (Gi = 1) is modeled

as

logit(πSj) = ψ2,1,0 + ψ2,1,1yi,j−1 + ψ2,1,2y
′
i,j (4.26)

and the probability of missing within these event patients is modeled as

logit(πMj) = ψ3,1,0 + ψ3,1,1yi,j−1 + ψ3,1,2yi,j (4.27)

Denote y′i,j = yi,j if the patient did not switch to rescue medication. Otherwise it

would be a hypothetical value that is not observable. The probability of intercurrent

event at tj for treatment arm patients (Gi = 0) is modeled as

logit(ωSj) = ψ2,0,0 + ψ2,0,1yi,j−1 + ψ2,0,2y
′
i,j (4.28)

and the probability of missing within these event patients is modeled as

logit(ωMj) = ψ3,0,0 + ψ3,0,1yi,j−1 + ψ3,0,2yi,j (4.29)

Notice that based on the definition of different missing mechanisms, if ψ2,1,1, ψ2,1,2,

ψ3,1,1, ψ3,1,2, ψ2,0,1, ψ2,0,2, ψ3,0,1, ψ3,0,2 all equal zero, then the missing mechanism is

MCAR. If ψ2,1,1, ψ3,1,1, ψ2,0,1, ψ3,0,1 not equal 0 and ψ2,1,2, ψ3,1,2, ψ2,0,2, ψ3,0,2 equal

zero, then the missing mechanism is MAR. If ψ2,1,1, ψ2,1,2, ψ3,1,1, ψ3,1,2, ψ2,0,1, ψ2,0,2,

ψ3,0,1, ψ3,0,2 all not equal zero, then the missing mechanism is MNAR.
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4.6.2 Switch and dropout scenarios

The null hypothesis is two arm mean are the same at t4, regardless of switching to

rescue medication. I will investigate following null and alternative scenarios:

1. Null scenario: Treatment and reference arm means are the same (µt = µp),

probability of switch to rescue medication are the same (πS4 = ωS4).

2. Alternative scenario: Treatment and reference arm means are different (µt 6=

µp), probability of switch to rescue medication are different (πS4 6= ωS4). And

the mixture means are also different (πS4µt 6= ωS4µp). Under this scenario, the

treatment arm mean effect is set as (1.0, 1.0, 1.0, 1.0) which indicates no effect

at all and the treatment arm switch to rescue medication effect mean is set as

(1.3, 1.1, 1.3, 1.5)

For simplicity purpose, patients who completed on initial treatment will be mentioned

as the ‘complete patients’, patients who switched to rescue medication but stayed in

the study will be mentioned as the ‘switch patients’ and patients who discontinued

from the initial treatment will be mentioned as the ‘dropout patients’, the switching

rate is controlled at 50% and missing rate for treatment arm patients at 20% vs.

missing rate for reference arm patients at 30%. Both MAR and MNAR scenarios are

considered. Within each missing mechanism scenario, both high or low correlation

between missing mechanism and the measurements will be investigated. The detail

settings are as below,
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Table 4.1: Parameter specification for different underlying dropout simulation sce-

narios under null hypothesis

Parameter 1. MAR 2. MAR 3. MNAR 4. MNAR

Reference

ψ2,0,0 -0.6 -0.6 -0.6 -0.6

ψ2,0,1 -0.4 -0.4 -0.4 -0.4

ψ2,0,2 0 0 0 0

ψ3,0,0 0.2 0.3 0.3 0.3

ψ3,0,1 0.4 0.2 0 0

ψ3,0,2 0 0 0.4 0.2

Treatment

ψ2,1,0 -0.6 -0.6 -0.6 -0.6

ψ2,1,1 -0.4 -0.4 -0.4 -0.4

ψ2,1,2 0 0 0 0

ψ3,1,0 -0.1 -0.2 -0.1 -0.2

ψ3,1,1 -0.4 -0.2 0 0

ψ3,1,2 0 0 -0.4 -0.2

Simulations are also conducted under the following alternative scenarios
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Table 4.2: Parameter specification for different underlying dropout simulation sce-

narios under alternative hypothesis

Parameter 1. MAR 2. MAR 3. MNAR 4. MNAR

Reference

ψ2,0,0 -1.0 -1.0 -1.0 -1.0

ψ2,0,1 -0.4 -0.4 -0.4 -0.4

ψ2,0,2 0 0 0 0

ψ3,0,0 0.3 0.4 0.3 0.2

ψ3,0,1 0.4 0.2 0 0

ψ3,0,2 0 0 0.4 0.2

Treatment

ψ2,1,0 -0.6 -0.6 -0.6 -0.6

ψ2,1,1 -0.4 -0.4 -0.4 -0.4

ψ2,1,2 0 0 0 0

ψ3,1,0 -0.1 -0.2 -0.1 -0.2

ψ3,1,1 -0.4 -0.2 0 0

ψ3,1,2 0 0 -0.4 -0.2
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4.6.3 Point estimators and corresponding inference fromMMRM

model

The model for this specific setup can be written as

Yi,j|Si, Ei, Gi

= β0 + β1Gi + β2Ij=2 + β3Ij=3 + β4Ij=4 + β5Ij=2Gi + β6Ij=3Gi + β7Ij=4Gi

+ γ2,1Ij=2,Si=2,Ei=2,Gi=0 + γ2,2Ij=2,Si=2,Ei=2,Gi=1

+ γ3,1Ij=3,Si=2,Ei=2,Gi=0 + γ3,2Ij=3,Si=2,Ei=3,Gi=0

+ γ3,3Ij=3,Si=2,Ei=2,Gi=1 + γ3,4Ij=3,Si=2,Ei=3,Gi=1

+ γ4,1Ij=4,Si=2,Ei=2,Gi=0 + γ4,2Ij=4,Si=2,Ei=3,Gi=0 + γ4,3Ij=4,Si=2,Ei=4,Gi=0

+ γ4,4Ij=4,Si=2,Ei=2,Gi=1 + γ4,5Ij=4,Si=2,Ei=3,Gi=1 + γ4,6Ij=4,Si=2,Ei=4,Gi=1

+ εi,j

(4.30)

The primary analysis point estimators and corresponding variance is

θ̂RES = β̂1 + β̂7 +
4∑
e=2

(qe + pe
N

γ̂4,2+e −
me + ne
N

γ̂4,e−1

)
(4.31)

V (θ̂RES)

≈ 1

N

(
4∑
e=2

(
γ24,2+eπSe(1− πSe) + γ24,e−1NωSe(1− ωSe)

)

−
4∑

f 6=q=2

(
γ4,2+fγ4,2+gπSfπSg + γ4,f−1γ4,g−1ωSfωSg

))
+ BΣη′B′

(4.32)

where B̂ = [1, 1,−m2+n2

N
,−m3+n3

N
,−m4+n4

N
, q2+p2

N
, q3+p3

N
, q4+p4

N
] and Ση′ is the covari-

ance matrix corresponding to the β̂1, β̂7, γ̂4,1, γ̂4,2, γ̂4,3, γ̂4,4, γ̂4,5, γ̂4,6

For J2R,

θ̂J2R = β̂1 + β̂7 +
4∑
e=2

(qe + pe
N

γ̂4,2+e −
me + ne
N

γ̂4,e−1 +
pe
N

(−β̂1 − β̂7 − γ̂4,2+e)
)

(4.33)

V̂ (θ̂J2R) ≈ 1

N

(
P1J2RΣ̂J2R

P1 P1J2R
′
+ P2Σ̂P2P2

)
+ B̂

J2R
Σ̂η′B̂

J2R′

(4.34)
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For J2Z,

θ̂J2Z =(1− p

N
)(β̂1 + β̂2T−1)−

p

N
(β̂0 + β̂T ) +

T∑
e=2

( qe
N
γ̂T,T−2+e −

me + ne
N

γ̂T,e−1

)
(4.35)

V̂ (θ̂J2Z) ≈ 1

N

(
P1J2ZΣ̂J2Z

P1 P1J2Z
′
+ P2Σ̂P2P2

)
+ B̂

J2Z
Σ̂η′B̂

J2Z′

(4.36)

4.7 The primary and RBI estimator using MI approach

MI approach can also be used to estimate the primary and RBI estimators. Suppose

there is

[Yi,e, Yi,e+1, ..., Yi,T |yi,1, ..., yi,e−1, Gi = 0, Si = 3, Ei = e] ∼MVN

(
µ̂,Σ

)
(4.37)

where µ̂ =



µ̂i,e,0

µ̂i,e+1,0

...

µ̂i,T,0


+ Σ̂e:T,1:e−1Σ̂

−1
1:e−1,1:e−1



yi,1 − µ̂i,1,0

yi,2 − µ̂i,2,0
...

yi,e−1 − µ̂i,e−1,0


Σ = Σ̂1:e−1,1:e−1−Σ̂′e:T,1:e−1Σ̂

−1
e:T,e:T Σ̂1:e−1,e:T . For reference arm, the conditional mean

estimators are

µ̂i,1,0 = β̂0

µ̂i,2,0 = β̂0 + β̂2

...

µ̂i,e−1,0 = β̂0 + β̂e−1

µ̂i,e,0 = β̂0 + β̂e + γ̂e,e−1

...

µ̂i,T,0 = β̂0 + β̂T + γ̂T,T−1

(4.38)
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For active treatment arm patients, for primary estimator the conditional mean esti-

mators are

µ̂i,1,1 = β̂0 + β̂1

µ̂i,2,1 = β̂0 + β̂1 + β̂2 + β̂T+1

...

µ̂i,e−1,1 = β̂0 + β̂1 + β̂e−1 + β̂T+e−2

µ̂i,e,1 = β̂0 + β̂e + β̂T+e−1 + γ̂e,2e−2

...

µ̂i,T,1 = β̂0 + β̂1 + β̂T + β̂2T−1 + γ̂T,2T−2

(4.39)

The following conditional mean estimators are used for active arm under ‘Jump to

zero’ method.

µ̂i,1,1 = β̂0 + β̂1

µ̂i,2,1 = β̂0 + β̂1 + β̂2 + β̂T+1

...

µ̂i,e−1,1 = β̂0 + β̂1 + β̂e−1 + β̂T+e−2

µ̂i,e,1 = 0

...

µ̂i,T,1 = 0

(4.40)
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The following conditional mean estimators are used for active arm under ‘Jump to

reference’ method.

µ̂i,1,1 = β̂0 + β̂1

µ̂i,2,1 = β̂0 + β̂1 + β̂2 + β̂T+1

...

µ̂i,e−1,1 = β̂0 + β̂1 + β̂e−1 + β̂T+e−2

µ̂i,e,1 = β̂0 + β̂e + γ̂e,e−1

...

µ̂i,T,1 = β̂0 + β̂T + γ̂T,T−1

(4.41)

Use the MMRM covariance estimate Σ̂y as the variance covariance matrix. Thus, the

detail steps for MI based on joint multivariate modeling approach are

1. Fit the imputation conditional MMRM model using observed data.

2. Impute missing data based on the conditional multivariate normal model con-

structed using adjusted decay sensitivity analysis conditional mean.

3. Fit the analysis MMRM model using the imputed complete dataset.

4. Record the decay estimator and corresponding inference as Q̂(w), V̂ (w) for the

wth imputation.

5. Repeat step 1-4 for W times. W is suggested to be around 10 times.

6. Combine the W estimates using Rubin’s combining rule.

Q̄ = W−1
∑

Q̂(w)

T = (1 +W−1)(W − 1)−1
∑

(Q̂(w) − Q̄)2 + V̄

(4.42)



55

4.7.1 Result summary based on 5000 simulations

Table 4.3 and Table 4.4 are the summaries of the 5000 simulated study results under

null hypothesis and alternative hypothesis respectively. For the reported parameter

statistics, mean(θ̂) is the mean of the sample of 5000 simulated study point estima-

tors. s.e is the empirical standard error of mean(θ̂) derived from the 5000 simulation

point estimators. mean se(θ̂) is the mean of the analytic estimated standard error for

θ̂ from the simulations. s.e and mean se(θ̂) should agree with each other. coverage is

the proportion of the confidence intervals from each simulation that covers the ‘true’

underlying treatment difference which is equal to 0 under null hypothesis. Type 1

error is the proportion of the simulations that falsely reject the null hypothesis when

they are simulated under null hypothesis. Power is the proportion of the simulations

that correctly reject the null hypothesis when it is simulated under alternative hy-

pothesis. The simulation results suggest that both methods return the identical point

estimator as expected. Under the null scenario with missing at random (#1 MAR),

the point estimators estimate the effect difference correctly. This verifies the modi-

fied MMRM model point estimator construction. The inference estimator provided

by the delta approximation method agrees with the true underlying value. This is the

proof that delta approximate estimates the standard error correctly. However, the

multiple imputation over estimates the standard error while using the ‘J2Z’ as the

sensitivity analysis estimator. This problem is well known as the uncongenial problem

mentioned by Xiao-Li Meng [53], Kaifeng Lu [45] and Liu and Pang [43]. Under the

null scenario with missing not at random (#1 MNAR), the point estimator is biased

because the primary (RES) estimator is based on the wrong assumption that patients

who dropped out would have the same mean effect as those who switched to rescue

medication. Under MNAR, the mean effects are actually different. The standard

errors are still correctly estimated using the delta approximate method.
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Table 4.3: Summary result based on 5000 simulation studies under null hypothesis

Scenario Parameter
θ̂RES θ̂J2Z

Approx MI Approx MI

#1 MAR

High

mean(θ̂) -0.02 -0.03 -1.43 -1.43

s.e. 0.44 0.44 0.53 0.54

mean se(θ̂) 0.42 0.45 0.51 0.57

coverage 94% 95% 21% 28%

Type I error 2.20% 2.00% 0.00% 0.00%

#2 MAR

Low

mean(θ̂) 0.02 0.02 -1.37 -1.37

s.e. 0.43 0.44 0.52 0.52

mean se(θ̂) 0.42 0.44 0.50 0.56

coverage 94% 95% 22% 30%

Type I error 3.50% 3.00% 0.00% 0.00%

#3 MNAR

High

mean(θ̂) 0.24 0.23 -1.19 -1.19

s.e. 0.45 0.46 0.54 0.55

mean se(θ̂) 0.43 0.45 0.51 0.57

coverage 91% 92% 37% 46%

Type I error 8.80% 6.80% 0.00% 0.00%

#4 MNAR

Low

mean(θ̂) 0.13 0.14 -1.25 -1.25

s.e. 0.43 0.43 0.51 0.51

mean se(θ̂) 0.42 0.44 0.50 0.56

coverage 95% 95% 31% 39%

Type I error 4.60% 4.20% 0.00% 0.00%
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Table 4.4: Summary result based on 5000 simulation studies under alternative hy-

pothesis

Scenario Parameter
θ̂RES θ̂J2R θ̂J2Z

Approx MI Approx MI Approx MI

#1 MAR

High

mean(θ̂) 1.72 1.72 1.62 1.62 0.30 0.30

s.e. 0.39 0.40 0.31 0.33 0.49 0.50

mean se(θ̂) 0.41 0.42 0.41 0.43 0.50 0.55

coverage 96% 95% 98% 98% 17% 15%

Power 99% 99% 99% 99% 9.6% 7.3%

#2 MAR

Low

mean(θ̂) 1.75 1.75 1.64 1.64 0.36 0.36

s.e. 0.41 0.42 0.34 0.34 0.52 0.53

mean se(θ̂) 0.41 0.42 0.41 0.43 0.49 0.55

coverage 95% 95% 98% 98% 25% 30%

Power 99% 99% 99% 99% 13.1% 10.4%

#3 MNAR

High

mean(θ̂) 2.04 2.04 1.84 1.84 0.63 0.63

s.e. 0.41 0.42 0.34 0.35 0.50 0.51

mean se(θ̂) 0.41 0.42 0.41 0.43 0.50 0.55

coverage 88% 89% 97% 98% 41% 49%

Power 100% 100% 100% 100% 24.4% 20.2%

#4 MNAR

Low

mean(θ̂) 1.88 1.87 1.72 1.72 0.41 0.42

s.e. 0.41 0.41 0.32 0.34 0.49 0.49

mean se(θ̂) 0.40 0.42 0.41 0.42 0.49 0.55

coverage 93% 95% 99% 99% 22% 31%

Power 100% 100% 100% 100% 12.8% 9.8%
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Chapter 5

Decay model tipping point sensitivity analysis

5.1 Decay model: a flexible sensitivity analysis estimator

In a real world study, the investigators might consider the primary analysis assump-

tion under MAR to be too optimistic while the ‘Jump to zero’ assumption to be

too conservative. Furthermore, the limited scenarios of RBI might not be sufficient

enough to investigate the robustness of the primary analysis assumption. The choice

of a sensitivity analysis with an option of a continuously adjustable sensitivity pa-

rameters is narrowed down to only one available method, which is the δ-adjustment

tipping point analysis. However, as briefly mentioned in the introduction chapter,

there are several drawbacks of this method. To name a few, a constant adjustment is

implemented at the dropout time point regardless of the dropout time point. There is

no distinction between a patient who dropped out in the early stage of the study ver-

sus a patient who dropped out close to the end of the study. There is also no unified

magnitude for the δ because it depends on the magnitude of the measurement itself.

Therefore, a tipping point δ can not be directly used to determine the robustness of

the assumption. It needs further investigation case by case. Because of the ambiguity

of the magnitude of the δ, one might accidentally over adjust the effect to a unrealistic

range and comes up with a tipping point with clinically impossible value. In order to

address the problems addressed above, I introduce a method that uses an exponential

function exp
(
− φ ·∆t

)
to model the decay effect from the patient’s dropout time

point to the end of study period. The φ here serves as a sensitivity parameter that
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represents the decay rate between two measurement time points. Denote ∆te as the

time period from event time point e to endpoint T , ∆te = T − e + 1. The deviate

effect for the last time point γ̂T,3T−2, ..., γ̂T,3T−4+e, ..., γ̂T,4T−4 can be written as

Ê(Yi,T |Si = 3, Ei = e,Gi = 1) =
(
Ê(Yi,T |Si = 2, Ei = e,Gi = 1)

)
exp (−φ ·∆te)

β̂0 + β̂1 + β̂T + β̂2T−1 + γ̂3T−4+e =
(
β̂0 + β̂1 + β̂T + β̂2T−1 + γ̂T,T−2+e

)
exp (−φ ·∆te)

γ̂3T−4+e =
(
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp (−φ ·∆te)− 1

)
+

γ̂T,T−2+e exp (−φ ·∆te)

(5.1)

where e = 2, ..., T . Comparing to the δ-adjustment tipping point method, by using

the decay model, the adjustment from the primary analysis assumption changes with

dropout time. Patients who dropped out in the early stage of the study will have a

larger decay from the primary analysis assumption comparing to those who dropped

out at the later stage of the study. Although the absolute value of the decay effect

is different among different dropout time point patients, the rate of the decay is

assumed to be the same φ. It can be interpreted as a proportion of the effect under

primary assumption and not affected by the magnitude of the measurement. The

decay sensitivity analysis parameter has a unified scale and thus can be compared

among different studies and the sense of robustness would be more straight forward.

5.2 Relationship between decay model tipping point and var-

ious RBI scenarios

Another practical feature of decay model tipping point method is that all of the

assumption scenarios including primary analysis, jump to reference scenario and jump

to zero scenario can all be represented by decay model with corresponding φ’s. To

show in detail, denote the decay model sensitivity analysis estimator (abbreviated as
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decay estimator) as θ̂DCY .

θ̂DCY =β̂1 + β̂2T−1 +
T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1

+ π̂Meπ̂Se

((
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp (−φ ·∆te)− 1

)
+ γ̂T,T−2+e exp (−φ ·∆te)

)) (5.2)

When φ = +∞,

γ̂T,3T−4+e =
(
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp

(
−∞ ·∆te

)
− 1
)

+ γ̂T,T−2+e exp
(
−∞ ·∆te

)
=−

(
β̂0 + β̂1 + β̂T + β̂2T−1

)
(5.3)

which is equivalent to the ‘J2Z’ scenario.

When φ = 0,

γ̂T,3T−4+e =
(
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp

(
− 0 ·∆te

)
− 1
)

+ γ̂T,T−2+e exp
(
− 0 ·∆te

)
= γ̂T,T−2+e

(5.4)

which is equivalent to the primary analysis scenario. For ‘J2R’ scenario, the relation-

ship is not straight forward. To find the φ that returns an equivalent result as the

‘J2R’ scenario, that is to set θ̂J2R = θ̂DCY , the following equation is used

T∑
e=2

(
π̂Seγ̂T,T−2+e + π̂Meπ̂Se(−β̂1 − β̂2T−1 − γ̂T,T−2+e)

)
=

T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e + π̂Meπ̂Se

((
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp

(
− φ ·∆te

)
− 1
)

+ γ̂T,T−2+e exp
(
− φ ·∆te

)))
(5.5)

The decay parameter φ can be solved using numerical method such as Newton-

Raphson algorithm. Figure 5.1 is used as a brief demonstration of the idea of the
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Figure 5.1: Demonstration of the decay model tipping point sensitivity analysis
method and its relationship to RBI sensitivity analysis method
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decay model and how it covers various of RBI method scenarios. Suppose the blue

line represents the active treatment arm mean effect and the red line represents the

reference arm mean effect. The dotted blue and red curves represent the mean effect

for patients who switched to rescue medication after discontinued at time point 2

and time point 3 from original assignment, treatment arm and reference arm respec-

tively. Under the primary analysis assumption, patients who dropped out from the

study would be assumed to have the same effect as the switch to rescue medication

patients, which are the dotted lines in the plot. Since the hypothesis testing is aiming

on the difference between two arms, investigators would want to conduct a sensitivity

analysis to be more conservative towards null assumption. Assume the reference arm

dropout patients still behave as switch to rescue medication patients, but the active

treatment arm dropout patients will have worse effects. The black line represents the

hypothetical mean effect under the decay model in terms of different choice of decay

parameter φ. In general, patients who dropped out at time 2 has a larger decay at

the end of study time point 4 comparing to the patients who dropped out at time

4. By adjusting φ, the decay effect at the last time point continuously change from

the most optimistic scenario, which is primary analysis scenario, to the most extreme

case, which is ‘J2Z’. The ‘J2R’ is one discrete scenario among the all possibles cases

which will otherwise not be investigated using RBI method.
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5.3 Decay model point estimator and reference using delta

approximation method

Using the general format of estimator fromMMRMmodel derived in previous chapter,

the point estimator for decay estimator can be represented as follow,

θ̂DCY =β̂1 + β̂2T−1 +
T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se×((

β̂0 + β̂1 + β̂T + β̂2T−1
)(

exp (−φ ·∆te)− 1
)

+ γ̂T,T−2+e exp (−φ ·∆te)
))
(5.6)

The same delta approximation method as what was used in primary and RBI sensi-

tivity analysis can be performed for the decay estimator

V (θ̂DCY )

=V

(
β̂1 + β̂2T−1 +

T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se×

((
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp (−φ ·∆te)− 1

)
+ γ̂T,T−2+e exp (−φ ·∆te)

)))

=V

(
E

(
β̂1 + β̂2T−1 +

T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se×

((
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp (−φ ·∆te)− 1

)
+ γ̂T,T−2+e exp (−φ ·∆te)

))
|Ω
))

+

E

(
V

(
β̂1 + β̂2T−1 +

T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se×

((
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp (−φ ·∆te)− 1

)
+ γ̂T,T−2+e exp (−φ ·∆te)

))
|Ω
))
(5.7)
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First part

V

(
E

(
β̂1 + β̂2T−1 +

T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se×

((
β̂0 + β̂1 + β̂T + β̂2T−1

)(
exp (−φ ·∆te)− 1

)
+ γ̂T,T−2+e exp (−φ ·∆te)

))
|Ω
))

=V

(
β1 + β2T−1 +

T∑
e=2

(
qe
N
γT,T−2+e −

me + ne
N

γT,e−1+

pe
N

((
β0 + β1 + βT + β2T−1

)(
exp (−φ ·∆te)− 1

)
+ γT,T−2+e exp (−φ ·∆te)

)))

=
1

N2
V

(
T∑
e=2

(
qeγT,T−2+e + pe

((
β0 + β1 + βT + β2T−1

)(
exp (−φ ·∆te)− 1

)
+

γT,T−2+e exp (−φ ·∆te)
))

+
T∑
e=2

(me + ne)γT,e−1

)
(5.8)

Denote
(
β0 + β1 + βT + β2T−1

)(
exp (−φ ·∆te) − 1

)
+ γT,T−2+e exp (−φ ·∆te) as τe,

the first part becomes

1

N2
V

( T∑
e=2

(
qeγT,T−2+e + peτe

)
+

T∑
e=2

(me + ne)γT,e−1

)

=
1

N

(
T∑
e=2

γ2T,T−2+e(1− πMe)πSe(1− (1− πMe)πSe) +
T∑
e=2

τ 2e πMeπSe(1− πMeπSe)−

T∑
f 6=g=2

γT,T−2+fγT,T−2+g(1− πMg)πSg(1− πMf )πSf −
T∑

f 6=g=2

τfτgπMgπSgπMfπSf−

T∑
f,g=2

γT,T−2+fτg(1− πMf )πSfπMgπSg+

T∑
e=2

γ2T,e−1ωSe(1− ωSe)−
T∑

f 6=q=2

γT,f−1γT,g−1ωSfωSg

)
(5.9)
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For the second part, first derive the inner conditional variance part

V

(
β̂1 + β̂2T−1 +

T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se×((

β̂0 + β̂1 + β̂T + β̂2T−1
)(

exp (−φ ·∆te)− 1
)

+ γT,T−2+e exp (−φ ·∆te)
))
|Ω
)

=V

(
β̂1 + β̂2T−1 +

T∑
e=2

(
(1− π̂Me)π̂Seγ̂T,T−2+e − ω̂Seγ̂T,e−1 + π̂Meπ̂Se×

(
exp (−φ ·∆te)− 1

)
(β̂0 + β̂1 + β̂T + β̂2T−1) + exp (−φ ·∆te)γ̂T,T−2+e

)
|Ω
)

≈B̂Ση′B̂
′

(5.10)

where

B̂
′
=



∑T
e=2

(
pe
N

(
exp (−φ ·∆te)− 1

))
∑T

e=2

(
pe
N

(
exp (−φ ·∆te)− 1

))
+ 1∑T

e=2

(
pe
N

(
exp (−φ ·∆te)− 1

))
∑T

e=2

(
pe
N

(
exp (−φ ·∆te)− 1

))
+ 1

−n2+m2

N

−n3+m3

N

...

−nT+mT

N

q2
N

+ p2
N

exp
(
− φ(T − 1)

)
q2
N

+ p2
N

exp
(
− φ(T − 2)

)
...

qT
N

+ pT
N

exp
(
− φ
)


and Ση′ is the partition of Ση corresponding to

[β̂0, β̂1, β̂T , β̂2T−1, γ̂T,1, γ̂T,2, ..., γ̂T,T−1, γ̂T,T , γ̂T,T+1, ..., γ̂T,2T−2]
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The expectation of the conditional variance is BΣη′B′ where

B′ =



∑T
e=2

(
πMeπSe

(
exp (−φ ·∆te)− 1

))
∑T

e=2

(
πMeπSe

(
exp (−φ ·∆te)− 1

))
+ 1∑T

e=2

(
πMeπSe

(
exp (−φ ·∆te)− 1

))
∑T

e=2

(
πMeπSe

(
exp (−φ ·∆te)− 1

))
+ 1

−ωS2

−ωS3
...

−ωST

(1− πM2)πS2 + πM2 exp
(
− φ(T − 1)

)
(1− πM3)πS3 + πM3 exp

(
− φ(T − 2)

)
...

(1− πMT )πST + πMT exp
(
− φ
)



V̂ (θ̂DCY )

≈ 1

N

(
T∑
e=2

γ̂2T,T−2+e
qe(N − qe)

N2
+

T∑
e=2

τ̂ 2e pe(N − pe)N2

−
T∑

f 6=g=2

γ̂T,T−2+f γ̂T,T−2+g
qgqf
N2
−

T∑
f 6=g=2

τ̂f τ̂g
pgpf
N2

−
T∑

f,g=2

γ̂T,T−2+f τ̂g
qfpg
N

+
T∑
e=2

γ̂2T,e−1
(me + ne)(N −me − ne)

N2

−
T∑

f 6=q=2

γ̂T,f−1γ̂T,g−1ωSfωSg
(mf + nf )(mg + ng)

N2

)

+ B̂Σ̂η′B̂
′

(5.11)

where

τ̂e =
(
β̂0+β̂1+β̂T +β̂2T−1

)
(exp

(
− φ(T − e+ 1)

)
−1)+γ̂T,T−2+e exp

(
− φ(T − e+ 1)

)
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5.4 The decay estimator using MI approach

MI approach to estimate the decay estimator can also be used

[Yi,e, Yi,e+1, ..., Yi,T |yi,1, ..., yi,e−1, Gi = g, Si = 3, Ei = e] ∼MVN

(
µ̂,Σ

)
(5.12)

where µ̂ =



µ̂i,e,g

µ̂i,e+1,g

...

µ̂i,T,g


+ Σ̂e:T,1:e−1Σ̂

−1
1:e−1,1:e−1



yi,1 − µ̂i,1,g

yi,2 − µ̂i,2,g
...

yi,e−1 − µ̂i,e−1,g


Σ = Σ̂1:e−1,1:e−1−Σ̂′e:T,1:e−1Σ̂

−1
e:T,e:T Σ̂1:e−1,e:T . For reference arm, the conditional mean

estimators are

µ̂i,1,0 = β̂0

µ̂i,2,0 = β̂0 + β̂2

...

µ̂i,e−1,0 = β̂0 + β̂e−1

µ̂i,e,0 = β̂0 + β̂e + γ̂e,e−1

...

µ̂i,T,0 = β̂0 + β̂T + γ̂T,T−1

(5.13)
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For active treatment arm patients using decay estimator, the conditional mean esti-

mators are

µ̂i,1,1 = β̂0 + β̂1

µ̂i,2,1 = β̂0 + β̂1 + β̂2 + β̂T+1

...

µ̂i,e−1,1 = β̂0 + β̂1 + β̂e−1 + β̂T+e−2

µ̂i,e,1 =
(
β̂0 + β̂1 + β̂e + β̂T+e−1 + γ̂e,2e−2

)
exp (−φ)

...

µ̂i,T,1 =
(
β̂0 + β̂1 + β̂T + β̂2T−1 + γ̂T,2T−2

)
exp

(
− φ(T − e+ 1)

)

(5.14)

Use the MMRM covariance estimate Σ̂y as the variance covariance matrix. Thus, the

detail steps for MI based on joint multivariate modeling approach are

1. Fit the imputation conditional MMRM model using observed data.

2. Impute missing data based on the conditional multivariate normal model con-

structed using adjusted decay sensitivity analysis conditional mean.

3. Fit the analysis MMRM model using the imputed complete dataset.

4. Record the decay estimator and corresponding inference as Q̂(w), V̂ (w) for the

wth imputation.

5. Repeat step 1-4 for W times. W is suggested to be around 10 times.

6. Combine the W estimates using Rubin’s combining rule.

Q̄ = W−1
∑

Q̂(w)

T = (1 +W−1)(W − 1)−1
∑

(Q̂(w) − Q̄)2 + V̄

(5.15)
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5.5 Derive the tipping point based on decay model

Based on the analytically derived point estimate and its inference for decay estimator

from previous chapter, the tipping point that turns a statistical significant result to

insignificant can be accessed directly without iterative search. Suppose the following

hypothesis test is performed

H0 : θ = 0

HA : θ > 0

using the test statistic

T =
θ̂

s.e(θ̂)
∼ tdf=2N (5.16)

To find the tipping point, suppose the null hypothesis at level α = 5% is being tested,

consider the test statistic as a function of φ and set T (φ) = t0.975,2N and solve for

φTIP . That is,

t0.975,2N =
θ̂(φ)

s.e(θ̂(φ))
(5.17)

where

θ̂(φ) = β̂1 + β̂2T−1 +
T∑
e=2

(
qe
N
γ̂T,T−2+e −

me + ne
N

γ̂T,e−1

+
pe
N

((
β̂0 + β̂T

)(
exp (−φ ·∆te)− 1

)
+ γ̂T,T−2+e exp (−φ ·∆te)

)) (5.18)
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s.e(θ̂(φ)) =(
B̂Ση′B̂

′
+

1

N

(
T∑
e=2

γ2T,T−2+e(1− πMe)πSe(1− (1− πMe)πSe)

+
T∑
e=2

τ 2e πMeπSe(1− πMeπSe)−
T∑

f 6=g=2

γT,T−2+fγT,T−2+g(1− πMg)πSg(1− πMf )πSf

−
T∑

f 6=g=2

τfτgπMgπSgπMfπSf −
T∑

f,g=2

γT,T−2+fτg(1− πMf )πSfπMgπSg

+
T∑
e=2

γ2T,e−1ωSe(1− ωSe)−
T∑

f 6=q=2

γT,f−1γT,g−1ωSfωSg

)) 1
2

(5.19)

Note that unfortunately the nonlinear equation does not have a close analytic form.

Numerical methods such as Newton-Raphson algorithm can be performed to find the

solution for this nonlinear equation.

5.6 Single simulation to demonstrate the usage and verify the

inference of decay model tipping point sensitivity analysis

In order to demonstrate the usage of decay model tipping point sensitivity analysis

method, a single simulated study under the same setup as the previous chapter is

investigated. The summary of the simulated study is as follow,

Table 5.1: Summary table for single simulated study for the purpose of demonstrating
the usage of decay model

Arm t1 t2 t3 t4
Mean Miss Mean Miss Mean Miss Mean Miss

Treatment 7.16 0% 8.16 15% 8.67 20% 10.58 22%
Reference 7.26 0% 8.68 27% 9.12 32% 9.49 35%

Figure 5.2 is a plot of the estimate vs the decay rate. The red curve is derived based

on the delta approximate method. The black curve is derived based on MI method.
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The dot is calculated based on Newton-Raphson method solving the equation based

on the delta approximation method. The plot indicates that the Newton-Raphson

method correctly solves the delta approximation method based equation and finds the

tipping point that switches a significant result study to become insignificant. For this

specific simulated case, the tipping point is φTIP = 0.13. Thus the conclusion can be

made that under the primary analysis assumption which is that the dropout patients

would behave the same as those who switched to rescue medication if they were not

missing, the two arm effect difference is significantly greater than zero. This test re-

sult significance would hold unless the treatment arm dropout patients do not behave

the same as those who switched to rescue medication and the effect after dropout gets

worse with time at certain exponential rate. The tipping point is at φ = 0.13 which

means the post intercurrent event effect is exp (−0.13∆t) times rescue medication ef-

fect. For patients who dropped out at t2, the remaining post intercurrent event effect

at t4 is exp
(
− 0.13× (4− 1)

)
= 67.7% of the rescue medication effect. For patients

who dropped out at t3, the remaining effect is exp
(
− 0.13× (4− 2)

)
= 77.1% of the

rescue medication effect. For patients who dropped out at t4, the remaining effect is

exp
(
− 0.13× (4− 3)

)
= 87.8% of the rescue medication effect. From the plot, the

tipping point is on the left edge of the φ envelop. Minor deviation from the MAR

assumption would switch the significant result to insignificant, which indicates the

MAR assumption is not robust. However, if investigators performed only ‘J2R’ RBI

sensitivity analysis, the result would still be significant and therefore conclude the

primary analysis result was robust. The decay model shows its advantage by identi-

fying the level of the robustness of primary analysis result in this simulation scenario.
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Figure 5.2: Simulated study to show the usage of decay model and compare with MI
method
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Chapter 6

Case study: A rare blood disease clinical trial study
using decay model

6.1 Study background

In this chapter, I will use a real world ongoing clinical trial study to demonstrate

the usefulness of decay model as sensitivity analysis. This study is conducted to

investigate the effect of a new treatment for a rare slow progression blood disease.

This trial is a randomized balanced two arm clinical trial. The active arm patients are

treated using the studied drug. The reference arm patients are provided the standard

of care. No rescue medication is allowed in this study. There are 127 patients in

each arm. Total number of patients is 254. The standard of care for this disease

has a rapid treatment effect. However, it also has a potential safety effect that will

cause patients intolerable to the drug and cause high dropout rate. The studied

drug is expected to cause less safety issue and more acceptable to patients. It takes

longer period of time for the studied drug to reach equivalent treatment effect as

the standard of care. However, the studied drug is expected to shows a continuous

improvement of effect without a increase rate of dropout. The total study period is

24 months. It is divided into two stages. The first stage is from enrollment to Month

12. The second stage is from Month 12 to Month 24. There are three biomarkers

that are the main determinants for disease diagnose. For the purpose of not revealing

sensitive information of this ongoing study, the three biomarkers are referred to as

H, W and P. The primary endpoint is the biomarker measurement difference between
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active treatment arm and reference arm at Month 24. Additional endpoint is the

proportion of events between two arms where the event is defined by the combination

of H<45, W<10 and P < 400.

6.2 Data analysis

First I will investigate the data collected on biomarker H. Figure 6.1 is the longitudinal

plot for biomarker H. Each line is a sequence of measurement for one individual

patient. Red curve represents active arm and blue curve represents reference arm.

Mean curves by groups are also plotted (thick lines). After Month 12, the plot visually

shows less dense of the lines. This is a clear pattern showing that majority of patients

missed measurement from Month 12. During the first stage, active arm mean effect

started lower than the reference arm mean effect at Month 3. As the study goes on,

the difference between active arm and reference arm decreases. During the second

stage, the reference arm treatment effect diminished. The mean of biomarker H at the

end of study at Month 24 for reference arm is worse than Month 3. For active arm,

the treatment effect continued improvement until Month 18 and maintained until the

end of study of Month 24.

Next, I will study the performance of biomarker W. Figure 6.2 is the longitudinal plot

for biomarker B. The mean effect for active arm and reference arm almost overlap

with each other during the first stage. During the second stage, active arm treatment

effect keeps increase while reference arm effect stops improving and gets worse. Note

that active arm patient measurements are more sparse than reference arm.

Figure 6.3 is the longitudinal plot for biomarker P. Active arm shows better mean

effect at the end of the first stage and the effect is retained for the second stage while

reference arm measurement becomes worse during the second stage.

Besides the mean effect, another major issue to be taken into consideration is the
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Figure 6.1: Longitudinal plot for biomarker H from baseline to Month 24

difference of dropout rate between two arms. Table 6.1 is the summary table for

active arm and reference arm dropout rate during the first stage. The dropout rate

is comparable between two arms. There is slightly higher dropout for active arm

patients at Month 12. Since the measurements are taken every 3 months, use T4

to denote Month 12. Table 6.2 is the summary table for active arm and reference

arm dropout rate during the second stage. Reference arm has much higher dropout

rate comparing to active arm. Note that the dropout is not monotone. The greatest

missing rate for active arm is at T6. The greatest missing rate for reference arm is at

T5. One possible cause is the re-enrollment process after the end of first stage might

cause some patients to miss measurements at T5 and T6.
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Figure 6.2: Longitudinal plot for biomarker B from baseline to Month 24

Table 6.1: Dropout probability table for first stage

Arm First Stage
Month 3
(T1)

Month 6
(T2)

Month 9
(T3)

Month 12
(T4)

Active 0.79% 4.76% 9.52% 14.29%
Reference 0.81% 4.89% 8.13% 9.76%

Table 6.2: Dropout probability table for second stage

Arm Second Stage
Month 15

(T5)
Month 18

(T6)
Month 21

(T7)
Month 24

(T8)
Active 38.89% 42.06% 32.54% 30.16%

Reference 82.93% 70.73% 63.41% 57.52%
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Figure 6.3: Longitudinal plot for biomarker P from baseline to Month 24
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6.3 MMRM model and primary estimator for biomarker H

Biomarker H is studied as an example. Since there is no rescue medication allowed

in the study, the MMRM model can be simplified as below,

Yi,j|Gi = β0 + β1Gi

+ β2Ij=2 + β3Ij=3 + β4Ij=4 + β5Ij=5 + β6Ij=6 + β7Ij=7 + β8Ij=8

+ β9Ij=2Gi + β10Ij=3Gi + β11Ij=4Gi + β12Ij=5Gi

+ β13Ij=6Gi + β14Ij=7Gi + β15Ij=8Gi

(6.1)

where Yi,j is the measurement of H at time point Tj for patient i. Gi is arm indicator.

Gi = 0 represents reference arm and Gi = 1 represents active arm. The non-monotone

part of the missing data is assumed to be missing at random. The primary estimator

is under MAR assumption. The point estimate can be written as a linear combination

of MMRM parameter estimates. θ̂ = β̂1 + β̂15.

6.4 Decay model implementation

In the blood disease study, the lower value of biomarker H indicates a better result.

Therefore, instead of setting the worst case as 0 in the genereal model in previous

chapter, the greatest observed baseline measurements among all patients is used as

the worst possible value, denote as Max. The decay effect for active arm can be

represented as

E(Yi,8|Gi = 1, Ei = e) = Max− (Max−E(Yi,8|Gi = 1)) exp
(
− φ(8− e+ 1)

)
(6.2)

For example, for active patients who dropped out at Month 15 (T5) the expected

mean effect can be written as,

E(Yi,8|Gi = 1, Ei = 5)

= Max− (Max− E(Yi,8|Gi = 1)) exp
(
− φ(8− 5 + 1)

)
= Max− (Max− (β0 + β1 + β8 + β15)) exp (−4φ)

(6.3)
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The decay sensitivity analysis estimator can be written as,

θ̂DCY = π̂5
(
Max− (Max− (β̂0 + β̂1 + β̂8 + β̂15)) exp (−4φ)

)
+ π̂6

(
Max− (Max− (β̂0 + β̂1 + β̂8 + β̂15)) exp (−3φ)

)
+ π̂7

(
Max− (Max− (β̂0 + β̂1 + β̂8 + β̂15)) exp (−2φ)

)
+ π̂8

(
Max− (Max− (β̂0 + β̂1 + β̂8 + β̂15)) exp (−φ)

)
+ π̂obs

(
β̂0 + β̂1 + β̂8 + β̂15

)
(6.4)

where π̂5, π̂6, π̂7 and π̂8 are the dropout proportions at T5, T4, T3 and T2 respectively.

π̂obs is the proportion of active arm patients that have measurement at T8.

The variance of the decay estimator can be approximated using delta method, V̂ (θ̂DCY ) =

P̂ T Σ̂πP̂ + B̂T Σ̂βB̂ where

P̂ =



Max− (Max− (β̂0 + β̂1 + β̂8 + β̂15)) exp (−4φ)

Max− (Max− (β̂0 + β̂1 + β̂8 + β̂15)) exp (−3φ)

Max− (Max− (β̂0 + β̂1 + β̂8 + β̂15)) exp (−2φ)

Max− (Max− (β̂0 + β̂1 + β̂8 + β̂15)) exp (−φ)

β̂0 + β̂1 + β̂8 + β̂15



B̂ =



π̂5 exp (−4φ) + π̂6 exp (−3φ) + π̂7 exp (−2φ) + π̂8 exp (−φ) + π̂obs − 1

π̂5 exp (−4φ) + π̂6 exp (−3φ) + π̂7 exp (−2φ) + π̂8 exp (−φ) + π̂obs

π̂5 exp (−4φ) + π̂6 exp (−3φ) + π̂7 exp (−2φ) + π̂8 exp (−φ) + π̂obs − 1

π̂5 exp (−4φ) + π̂6 exp (−3φ) + π̂7 exp (−2φ) + π̂8 exp (−φ) + π̂obs


Σ̂π is the variance covariance matrix for π̂′s where the diagonal terms are π̂i(1− π̂i)/N

and off diagonal terms are −π̂iπ̂j/N .

Σ̂β is the variance covariance matrix for β̂0, β̂1, β̂8 and β̂15 from MMRM model;
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6.5 Decay model tipping point sensitivity analysis result

Figure 6.4 shows the result of primary as well as sensitivity analysis result for biomarker

H. The red solid smooth curve is the mean curve for decay parameter φ versus the

corresponding estimator θ̂. The red dotted smooth curves are the upper and lower

95% confidence interval derived using delta approximate method. The black dotted

lines are the result from multiple imputation to verify the derived method. θ̂(MAR) is

the primary analysis result under MAR. The 95% CI does not cover 0 which means

active arm measurement is significantly lower than reference arm. θ̂(J2Z) is the sen-

sitivity analysis result under most extreme case which makes the assumption that

at month 24, all dropped out patients would have an effect equal to the worst mea-

surement at baseline. The reason to set φ = 1 for ‘J2Z’ is that when φ = 1, the

remaining effect is exp (−1 ∗ 4) = 1.8% of the original measurement for those who

dropped out at time point T5, exp (−1 ∗ 3) = 5.0% of the original measurement for

those who dropped out at time point T6, exp (−1 ∗ 2) = 13.5% of the original mea-

surement for those who dropped out at time point T7 and exp (−1) = 36.8% of the

original measurement for those who dropped out at time point T8. Considering the

fact that most of the patients dropped out from T5, and a relatively flat increasing

trend of the θ̂ around φ = 1, a 1− 1.8% = 98.2% decay of effect can be considered as

‘J2Z’ scenario. The tipping point decay parameter θ̂(TIP ) is calculated directly using

Newton-Ralphson method. The plot indicates that the corresponding upper bound

of 95% CI touches 0 which verifies the Newton-Raphson result. The decay rate pa-

rameter is φ = 0.10 which indicates that when the active treatment effect is decayed

by 1 − exp (−0.10) = 9.5% between every two measurement time points (every 3

months) will change the primary analysis result from significant to non-significant.

Similar approaches are implemented for biomarker W and P (Figure 6.5 and Figure

6.6 respectively).
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Figure 6.4: Blood disease study biomarker H compare delta approximation method
versus MI method for primary and decay sensitivity analysis
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Figure 6.5: Blood disease study biomarker W compare delta approximation method
versus MI method for primary and decay sensitivity analysis
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Figure 6.6: Blood disease study biomarker P compare delta approximation method
versus MI method for primary and decay sensitivity analysis
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6.6 Primary and sensitivity analysis result summary for biomarker

H, W and P

The primary and sensitivity analysis result for all 3 biomarker H, W and P is summa-

rized in Table 6.6. The remaining effect listed in the table is when patients dropped

out at Month 15. Under MAR, all 3 biomarkers show significant better reduction for

active treatment when comparing with standard of care at the end of second stage.

For W and P, the sensitivity analysis under extreme case (J2Z) changes the result

direction. Standard of care becomes significantly better than active treatment. This

sets an alert for the investigator to be extra cautious when making decision based

on the collected measurement because the missing data assumption might alter the

conclusion to a totally different direction. This example shows one of the advantage

of decay model which is although three biomarkers are on different scales, the derived

tipping point are close to each other. The three decay rate parameters can be com-

pared and the conclusion can be drawn that the statistical significance for biomarker

H is most robust in terms of the primary MAR assumption. Even for the most

extreme case, the active arm treatment effect will not be significantly worse than ref-

erence arm. The statistical significance for biomarker P is least robust in terms of the

primary MAR assumption. For a decay rate of 21% at Month 24 if patient dropped

out at Month 15, the active arm treatment effect is no longer significantly different

from reference arm. For a decay rate of 81.4% at Month 24 if patient dropped out at

Month 15, which is a relatively extreme assumption, the active arm treatment effect

becomes significantly worse than reference arm.
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Table 6.3: Primary and sensitivity analysis result summary for blood disease study
biomarker H, W and P

Endpoint Estimator θ̂ Decay Parameter φ
Primary
MAR

(θ̂MAR)

Sensitivity
J2Z

(θ̂J2Z)

Tipping
Lower
φL

Remain
Effect 1

Tipping
Upper
φU

Remain
Effect 2

H -2.60
(-3.90, -1.31)

1.3
(-0.66, 3.28) 0.10 33.0% NA NA

W -2.00
(-2.93, -1.08)

2.16
(0.29, 4.02) 0.072 25.0% 0.57 90.0%

P -85.15
(-127.83, -42.46)

114.72
(25.83, 203.60) 0.059 21.0% 0.42 81.4%

1 Remain effect for lower tipping point: 1− exp (−4φL)
2 Remain effect for upper tipping point: 1− exp (−4φU )

6.7 Discussion: An extension to binary endpoint (Unsolved

problem)

Recall that previously mentioned the disease diagnose is based on the comparison of

Biomarker H, W and P with their corresponding thresholds, denote as cutH , cutW and

cutP . Denote eventH = 1 if H < cutH , eventH = 0 otherwise. Denote eventW = 1

if W < cutW , eventW = 0 otherwise. Denote eventP = 1 if P < cutP , eventP = 0

otherwise. The binary estimator can be derived from sample estimated mean and

variance together with normal assumption for the distribution of biomarkers. For

reference arm, assume measurements at Month 24 (T8) follow a normal distribution

Yi,8 N(µr, σ2). For active arm, assume measurements at Month 24 (T8) follow a

mixture of normal distributions with different means due to the decay effect. Yi,8 ∼

π5N(µa5, σ
2) + π6N(µa6, σ

2) + π7N(µa7, σ
2) + π8N(µa8, σ

2) + πobsN(µa, σ2) µ̂r = β̂0 + β̂8

where µ̂a = β̂0 + β̂1 + β̂8 + β̂15, µ̂ae = Max − (Max − µ̂a) exp
(
− φ(8− e+ 1)

)
for

e = 5, 6, 7, 8 and π̂e is the proportion of the patients who dropout at Te. Observed

reference and active arm pooled sample variance is used as the variance estimator σ̂2.

Consider biomarker H first. The event probability estimator is written as follow. For

reference arm, denote p̂r = p̂(Yi,8 < cutH |Gi = 0) = Φ( cutH−µ̂
r

σ̂
) where Φ is the CDF of
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Figure 6.7: Biomarker H as binary endpoint compare delta approximation method
versus MI method for primary and decay sensitivity analysis

Normal(0, 1). For active arm, denote p̂a = p̂(Yi,8 < cutH |Gi = 1) = π̂5Φ(
cutH−µ̂a5

σ̂
) +

π̂6Φ(
cutH−µ̂a6

σ̂
) + π̂7Φ(

cut−µ̂a7
σ̂

) + π̂8Φ(
cutH−µ̂a8

σ̂
) + π̂obsΦ( cutH−µ̂

a

σ̂
). The variance of the two

estimators does not have close form and need to be solved numerically. Denote the

inference estimators as V̂ (p̂a) and V̂ (p̂r). Z test is used to test the difference between

two proportions. The test statistic is Z = p̂a−p̂r√
V̂ (p̂a)+V̂ (p̂r)

.

The primary and sensitivity analysis results are presented in Figure 6.7, Figure 6.8 and

Figure 6.9. Notice that there is a minor disagreement between delta approximation

method and MI method. The exact reason is still under investigation. One possible

explanation is that the normal assumption for the missing portion of the data is not

valid. I suspect there might be data truncation presented.
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Figure 6.8: Biomarker W as binary endpoint compare delta approximation method
versus MI method for primary and decay sensitivity analysis
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Figure 6.9: Biomarker P as binary endpoint compare delta approximation method
versus MI method for primary and decay sensitivity analysis
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Chapter 7

Conclusion and Discussion

7.1 Summary

FDA issued a draft guidance of E9 addendum focusing on the concept of estimand

and sensitivity analysis in clinical trials. A framework regarding the process of con-

structing an appropriate estimand to target clinical objective was proposed. Estimand

construction contains four attributes, which are a) targeted population, b) endpoint

variable, c) intercurrent event strategy and d) population-level summary statistic.

The terminology called ‘intercurrent event’ is a new concept introduced in the draft

guidance to describe the events that cause discontinuation from initial randomized

treatment. Five intercurrent event strategies were recommended in the draft guidance.

The aim of the strategies is to identify potential intercurrent event and predetermine

the handling methods during trial design stage. The strategies should be linked with

the clinical objective, that is, the scientific question of interest that the study wants

to answer. A lot of feedback has been given after the proposal of the draft version.

Researchers raised the concern that five strategies might not be able to cover all

intercurrent event scenarios. Also some strategy definitions, such as the ‘treatment

strategy’ was not clearly explained. The concept of intercurrent event strategies and

the estimand determination mingled together without a clear outline of the relation-

ship. Thus I combined the literature discussion and the draft guidance and proposed

an interuccernt event type oriented flowchart to help determine appropriate estimand.

In this dissertation, I focused on the ‘De Facto’ estimand which includes the patient
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who discontinued initial assigned treatment and switched to rescue medication mea-

surements in the primary analysis.

After I conceptually clarified the relationship between estimand and intercurrent event

and determined the focus point on the ‘De Facto’ estimand, new methodologies were

developed to construct the primary point estimator and inference. First, the primary

estimator for ‘De Facto’ estimand when rescue medication is allowed in a clinical

trial was represented by a linear combination of modified MMRM model parame-

ters. Next, instead of using multiple imputation and Rubin’s Rule to estimate the

inference for the point estimator, I proposed to use delta approximation method to

derive the inference. The advantage of doing so was to decrease computing time that

the MI would use. Another advantage was that a close form of the inference could

be derived and it would be useful later on when deriving the tipping point in the

sensitivity analysis. Simulations under different missing mechanisms under both null

and alternative hypothesis were conducted to verify the modified MMRM model and

delta approximation method.

The third part of the dissertation focused on sensitivity analysis regarding primary

analysis estimator. An exponential function was used to model the deviation effect

from primary analysis missing mechanism assumptions. A decay rate parameter in-

tegrated in the exponential function was used as a sensitivity parameter to cover all

possible scenarios including the ones studied using RBI methods. The main purpose

of the decay model effect was to study the robustness of primary assumption by com-

pletely exploring all possible sensitivity analysis scenarios. The delta approximation

method that had been verified in previous chapters was implemented in decay model

method to derive inference directly. Since the whole domain of possible decay rate

is searched continuously, the avoidance of MI process saved tremendous amount of

computing power and time. Nonetheless, using the close form of point estimator

and corresponding inference, a tipping point that would change the primary analysis
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from statistical significant to not significant was calculated directly without an iter-

ative search. A single simulated study was used to show the implementation of the

method.

This dissertation also demonstrated the implementation of the proposed methods

through a case study using a real world rare blood disease clinical trial. The studied

drug as active arm was compared to the standard of care treatment as an reference

arm. The studied drug showed slower but continuous improvement of treatment ef-

fect with better tolerance comparing to a rapid effect standard of care which was

hard to tolerant for patients and caused higher dropout rate. Sensitivity analysis

was especially meaningful in this study due to the fact that most patients dropped

out due to adverse events, which was clearly non-ignorable missing. Decay model

sensitivity analysis found the tipping point and showed that a 33% reduction would

cause the endpoint biomarker H to be insignificant, a 25% would cause the endpoint

biomarker W to be insignificant and a 21% would cause the endpoint biomarker P

to be insignificant. Thus among three endpoints, biomarker P is most sensitive to

primary missing mechanism assumption. The decay model method also discovered

that with an extreme case of reduction, which is 90.0% for biomarker W or 81.4% for

biomarker P, the result would be reversed, which means under extreme assumption

that if the drug effects decay rapidly, the active arm treatment effect might even

become significantly worse than reference arm, which suggested investigators to be

extra cautious when presenting the primary analysis result.

7.2 Discussion

There are some limitation regarding the methods proposed in the dissertation. Com-

paring the delta approximation method with the MI method, the delta approximation

method requires extra derivation for each individual estimator. The MI method is
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more general in terms of the extra modification needs to be done for different estima-

tors. This is a trade off for the lesser computing source and time.

Note that the decay model sensitivity analysis method can choose different start-

ing and ending values for the decay parameter. The starting value depends on the

choice of estimand. In the dissertation, the single simulation study presented the case

when the ‘De Facto’ estimand was considered. Thus the decay model started with

the assumption that dropout patients would have behaved as if switched to rescue

medication. In the case study, where the rescue medication is not of an option, the

decay model started with the ‘De Jure’ estimand which assumed the dropout patients

would have behaved as if still on initial randomized arm. Therefore, the left edge of

the decay sensitivity plot depends on the choice of primary estimator assumption. In

the dissertation, I picked φ = 1 as the ending plot point for decay rate because the

majority of patients dropped out 4 time points prior to the study endpoint. Thus

φ = 1 means more than 98% reduction which is a very extreme case. Estimate with

greater φ can be plotted but the change will be minor. However, when comparing

decay rate among different studies, a clarification of start and end point of decay rate

search should be specified.

An attempt was made to extend the usage of delta approximation for decay model

from continuous endpoint to binary endpoint. Technical issues were found as the

missing might violate some of the distribution normality assumptions required dur-

ing the derivation. Therefore only the MI result is presented. In addition, the three

biomarker endpoints in the case studies are correlated. Imputation on correlated end-

points has yet been studied in literature. This is out of the scope of this dissertation

but worth to be considered in future research.
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