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Gantry refers to the system that moves the hoist by the machinery house along tracks 

on the floor level and transfers the material. As a critical asset, gantry has wide 

applications in many fields such as medical image area, infrastructure, and heavy 

industry. Mostly, gantry is reliable, however, the loss led by the gantry lockout is 

inestimable enormous. Moreover, there are limited previous gantry studies concentrate 

on the statistical quality control to detect the fault not to mention the research that 

focuses on the algorithms applied to the process status sequence to detect the fault. The 

categorical process status sequence is hard to obtain the features when dealing with 

fault identification. This thesis provides a novel method applying texture extraction in 

image processing to obtain the features of gantry process status sequence. Texture 

extraction techniques such as the histogram of oriented gradients (HOG) and local 

binary pattern are applied to the process status sequence. To demonstrate the 

effectiveness of image-based feature extraction, k-nearest neighbors, support vector 
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machine, linear discriminant analysis, and quadratic discriminant analysis are applied 

to the time-series gantry process status sequences provided by a leading automobile 

manufacturer. Result demonstrates that the sequence after the transformation of both 

texture extraction techniques have improved the accuracy. The process status sequence 

after HOG transformation has the best performance. Besides, the HOG technique also 

dramatically reduces the dimension of the process status sequence. This result can help 

the on-site expert prognosis the fault as well as prepare the corresponding 

troubleshooting guide to save time and resources.
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CHAPTER 1 

Introduction 

 

1.1 Overview 

Gantry refers to the system that moves the hoist by the machinery house along tracks 

on the floor level and transfers the material by loading, moving, rotating, and unloading. 

The whole gantry system consists of mechanical parts, structural parts, and electrical 

parts. In the structural scope, gantry crane is mainly composed of the mast structure, 

truck, carts operating agencies, electrical equipment, cabs and other components. In the 

electrical parts, modern gantry crane is combined with various modules so that different 

needs may meet. For illustration, gantry can be equipped with articulated arm robot 

module for high-speed automation. Such combination is called gantry robot system that 

is developed for storage and retrieval, machine loading, parts handling and automated 

assembly. Besides, gantry can be equipped with high-end computer operating system 

for the workers to improve the positioning performance of high-dynamic motion 

systems. This system increases the throughput by greatly reduces the effects of frame 

motion on the servo system. Figure 1.1 shows the adapted flow chart of one common 

gantry process from setting speed, move, rotate, load, to unload (Khan et al. 2011). 

When an instruction arrives at the gantry control system, the embedded logic control 

section determines under what condition the gantry should change its current speed, 

move to a new position, rotate to designated angle, load or unload the robotic arm at 

designated position. If the condition is true, the mechanical, structural, and the electrical 

part would function together to convey the specified requirement.  
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Figure 1.1 Flow Chart of Gantry Working Process Adapted from (Khan et al. 2011) 

 

As a critical asset, the gantry is widely used in many fields such as heavy industry and 

medical image area. In the field of heavy industry, the gantry crane is widely used for 

transferring bulk material from one place to another. The applications of gantry greatly 

relief the manual work and help the precision operations. Guo et al. (2017) developed 

a diagnostic system by extending the basic attributes control charts and helped saving 

unnecessary waiting time in the field. In the medical image area, the gantry is a frame 

facility includes radiation, collimators, and detectors in a CT machine and the 

corresponding mounted diagnostic can be applied through taking 3D radiographs, real-

time tumor tracking, thus predict disease (Berbeco et al. 2004, Oppelt 2011, Si et al. 

2013). 

 

Gantry is a critical asset along the single line for the upstream and downstream 

workstation, and the status of gantry dramatically influences the factory-wise 

operations. If the gantry is down, all processes relied on gantry will be delayed or 
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postponed. Not only labor intensity of loading and unloading workers will be increased. 

Moreover, the line throughput will be greatly decreased. From Figure 1.2, if Process E-

1 is down, the working line can still function well by transfer the material to Process E-

2. While if gantry is down, the whole working line would be dramatically affected.  

 

Figure 1.2 Example of the Gantry Movement Track 

 

In production, the time-series gantry process status sequence is usually in categorical 

type. For the categorical sequence, “blocked”, “cycling”, “down”, and “starved” are the 

most common statuses. Blockage occurs when the events must end because there is no 

location for placing the item just completed; machine starvation occurs when the 

activities must stop because there is no work. Machine blockage and starvation not only 

degrade the process flow, but also cause the production loss, money and energy waste. 

 

For better understanding, Figure 1.3 illustrates one case of the inefficient manufacturing 

planning on a single line led by starvation and blockage. Figure 1.4 shows the 

percentage of cycling in 10 minutes. The needed cycling time for machine 1, machine 



    4 
 

 

2, and machine 3 are 7 minutes, 10 minutes, and 6 minutes, respectively. Suppose each 

machine can only deal with one process at a time. If Machine 1 finishes its progress and 

passes the product to the machine 2, the machine 2 starts the work. In the first 8 minutes 

of the beginning, machine 2 cannot receive the second product of machine 1. At the 

same time, machine 3 has no work because the product hasn’t been passed to it. The 

bottleneck of machine 2 blocks the machine 1 and starves machine 3. To solve this 

situation, buffers can be added between activities to reduce the occurrence of starvation 

and blockage (Sople 2016). 

 

 

Figure 1.3 Single Line of Starved and Blocked Status 

 

 

Figure 1.4 Percentage of Cycling in 10 Minutes 
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Fault detection consists of data with sharp changes, and the methods solve this kind of 

problem vary from statistical quality control to algorithms (Jeong et al. 2018). 

Traditional gantry status monitoring focus on the statistical process control (SPC). The 

SPC is embedded in the supervisory control and data acquisition system based on 

Windows Operating System. Figure 1.3 shows the overview of the SCADA system. 

This logic control system receives all the information via bus connection remotely. 

Process status can be monitored by the signal change in switchgear and external 

electrical components. Though SPC can detect product quality change at its early stage, 

the SPC is sensitive to the time, and it only rejects the product out of pre-setting quality 

line but not telling the defective degree. Besides, the traditional measurements need the 

physical sensor information, which may cost a lot in purchasing sensors and waste time 

in estimating parameters for some SPC methods. Furthermore, conventional way can 

only alarm the fault and warning situation by the time it happens.  

 

 

Figure 1.5 SCADA System 

 

A vector could illustrate the general observed gantry process status sequence showed 

below.  
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1 2 3, , ,..., ,...,j px x x x x   x  

 

Where, vector x  consists the gantry process statuses in the p  time dimension. This 

time dimension could be in second, minute, hour, day or other units according to the 

study. For example, Sjx   means that the gantry is starved at the time j . 

 

1.2 Problem Statement and Motivations 

Modern industrial plants are gradually transforming according to the concept of 

Industry 4.0 that consists of the cyber-physical system, internet of things, cloud 

computing, and cognitive computing and are digitizing and intelligentizing the supply, 

manufacturer, sales to achieve rapid, effective, and personalized product supply 

(Jasperneite 2012, Kagermann et al. 2013, Lasi et al. 2014, Hermann et al. 2016). For 

the big data acquisition and monitoring, manufacturers are developing their own data 

architecture by open-source applications such as Apache Hadoop and MapReduce. The 

data architecture is composed of algorithms, models, and rules that determine the 

storage, acquisition, integration, and use of the data in the database.  

 

To achieve the goal of smart manufacturing in Industrial 4.0, “5Ps” is proposed in a set 

of core intelligence: predictability, producibility, productivity, pollution prevention, and 

performance, which means the fault can be predicted before its occurrence in the future. 

In this way, cloud technologies and big data are combined to assure the reliable 

manufacturing and lead the insight into algorithms analytics. Since the collection of 

gantry status data includes both the historical and the current, it’s easy to find and 

update the patterns hide behind the abnormal and normal status sequence. After the fault 

detection which contains a combination of pattern recognition and classification, the 
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remote monitor screen displays the alarm data image indicating a problem class with 

the corresponding troubleshooting guide (Markle and Weaver 2003).  

 

Though there are numerous applications of the gantry, the studies on gantry health 

monitoring and fault detection are limited. There are several challenges in proposing a 

new model in dealing with the gantry health monitoring and fault detection. First, 

there’s no existed model deals with the categorical process status sequence. Second, 

while collecting the sequences from the system database and building a new model, one 

may find there’s information overlap and difficult to study the incident timestamps. 

Third, some algorithms in fault classification may over stack flow due to the large 

computation.  

 

Machine learning usually uses feature extraction to reduce the computation complexity. 

Most of the researches of the fault detection feature extraction are limited to the numeric 

matrix. Principal component analysis (PCA) is widely used for the numeric matrix 

feature extraction while multiple correspondence analysis (MCA) is usually used in 

categorical matrix feature extraction to reduce the dimension and therefore save the 

time for the computation. However, PCA is not applicable to all scenarios. For example, 

in the semiconductor manufacturing, applying PCA would lead to the nonlinearity in 

most batch processes, multimodal batch trajectories caused by the product mix, and 

steps combined with process variable durations (He and Wang 2007). As for the MCA, 

the problematic aspects would be low percentages of variation on principal axes and 

the normalization chosen for purposes of the graphical display (Greenacre 1990).  

 

To solve the challenges presented above, we are motivated to develop a method that 
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deals with the process status sequence in gantry health monitoring and fault detection. 

We propose to apply the texture extraction analysis in the image processing field aiming 

to find new solutions to reduce the dimension, which provide new idea in processing 

categorical sequence and extend the scope of the study. By setting certain combination 

of pattern recognition and classification model, we could monitor the gantry and 

prognostic specific fault. Allocating workers and material kit prior the real problem can 

be achieved in the smart manufacturing. In our study, classification algorithms k 

Nearest Neighborhood (k-NN), Support Vector Machine (SVM), linear discriminant 

analysis (LDA), and quadratic discriminant analysis (QDA) are applied to classify 

status sequence according to its features and predict if there will be any abnormal event.  

 

1.3 Thesis Organization 

This thesis is organized as follows. Chapter 2 is the introduction towards classification 

and feature extraction based on texture extraction. Classification methods such as k-NN, 

SVM, LDA, and QDA are reviewed in this chapter for both fault detection as well as 

evaluating the performance of the texture extraction. The rest of Chapter 2 reviews 

texture extraction techniques such as the histogram of oriented gradients and local 

binary pattern. Chapter 3 proposes a novel matrix presentation for the categorical 

process status sequence, which makes taking use of the texture extraction in the image 

feature extraction area as feature extraction for categorical matrix into possible. Chapter 

4 provides a case study of a real gantry system in automobile manufacturing to validate 

the effectiveness of the proposed approach. The case study introduces data description, 

variable and fault selection, data pre-processing, and the result. Finally, Chapter 5 

concludes this work and outlines future work. 



    9 
 

 

CHAPTER 2 

Classification and Feature Extraction Based on Texture Extraction 

 

2.1 Literature of the Classification in Fault Detection 

Classification is the process that classifies particular class according to some common 

characteristics. The classification algorithm can determine which specific fault is 

presenting when applied in fault detection field.  

 

According to the type of the inputs, fault detection can be divided into three categories: 

waveform-based, vector-based, image-based. Waveforms like current, voltage and 

other circuit characteristic indicators are widely used in the traditional methods. The 

signal will be used directly or after necessary techniques such as spectral analysis, 

Fourier transform, Hilbert transform. The relevant application literature are presented 

in subsections 2.1.1, 2.1.2, and 2.1.3. Image-based fault detection is a method analyzing 

the information from the image and classify the fault according to the image features. 

Standard approaches for the image-based fault detection are focusing on the 

geometrical, statistical, and specific model (Tuceryan and Jain 1993). Nath et al. (2014) 

performed a survey of the techniques applied in image classification including different 

sensors information, the nature of training sample, parameter, the quality of pixel 

information, the number of outputs generated for each spatial data element, the quality 

of spatial information, and special classification techniques. To study the characteristic 

in the image, image texture analysis is widely used. 

 

Vector-based fault detection not only relies on the mathematical and statistical 
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approaches but also takes advantage of the algorithms that recognize the fault pattern 

(Liu 2012). Relevant studies based on different classification method are presented in 

subsections 2.1.1, 2.1.2, and 2.1.3. In the following subsections, we will present three 

most commonly used classification algorithms. 

 

2.1.1 k-Nearest Neighborhood 

Casimir et al. (2003) proposed the application of k-nearest neighborhood rule using the 

pattern vector extracted by the frequency dependent parameters to detect broken bars 

and stator unbalance in an induction motor. He and Wang (2007) developed a fault 

detection method taking advantages of the k-NN rule that deals with nonlinearity data, 

this rule can preprocess the data automatically which on the other hand proves the 

ability of online fault detection. Cheng et al. (2011) performed a supervised locally 

linear embedding-based method combined with the k-NN overcoming the correlation 

and high dimensionality in the time series multi-sensor signals for fault diagnosis. 

Fezari et al. (2014) conducted analysis detecting a specific fault of rotating machines 

by applying the Euclidean distance and k-NN method to the real-time machine status, 

and the average accuracy result reaches 94%. Tang and Xu (2016) proposed a novel 

multi-class classification method that combines the conventional kernel density 

estimation and k-NN techniques to identify multiple parametric faults in the analog 

circuit, and the result shows that the process has excellent performance in both accuracy 

and speed. Majd et al. (2017) introduced a new methodology based on the k-NN 

algorithm by finding the distance between each sample and its fifth nearest neighbor in 

a pre-default window to detect and classify the faulty phases and occurrence time in the 

power transmission system.  
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K-nearest neighborhood (k-NN) is a rule that object is classified by the majority vote 

of its nearest k neighbors’ class. Different distance measures for continuous variables 

and discrete variables are derived from this rule. Suppose in the space of 

1 1 2 2( , ),( , ),...( , )n nx y x y x y , y


 takes value from the class set. If randomly choosing a 

point 0x  and computing some norm || ||  on d  with its neighbors, then its class 

is determined by the class of its nearest neighbor. The number of neighbors k is usually 

taken value from 1 to 5. Common used distance measures are listed in the Table 2.1. 

Among these distance measures, we can transform Minkowski distance to the City 

Block distance, the Euclidean distance, and the Chebyshev distance by changing

1,  2,  and p p p   .  

 

Figure 2.1 shows examples of 1-NN, 3-NN, 5-NN for the class prediction. For 1-NN, 

the green dot calculates the distance with its nearest one observation and thus 

determines its class. For the 3-NN, the green dot calculates the distances with its nearest 

three observations. The class for the green dot is belong to the yellow group because 

there’re two yellow group observations in its majority voting pool. In the same way, the 

class label for the green dot in 5-NN is the yellow group. 

 

Figure 2.1 Examples of 1-NN, 3-NN, and 5-NN 
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Table 2.1 Common k-NN Distance Measures 

Distance Name Equation 

City Block (Manhattan) 

Distance 
𝑑 =෍|𝑥௜ − 𝑦௜|

௡

௜ୀଵ

 

Chebyshev Distance 
𝑑 = max

௜,௝
(|𝑥௜ − 𝑥௝|, |𝑦௜ − 𝑦௝|൰ 

Correlation 
𝜌௫,௬ = 𝑐𝑜𝑟𝑟(𝑥, 𝑦) =

cov(𝑥, 𝑦)

𝜎௫𝜎௬
=
𝐸[(𝑥 − 𝜇௫)(𝑦 − 𝜇௬)൧

𝜎௫𝜎௬
 

Cosine 
𝑑 = cos(𝜃) =

𝐱 ⋅ 𝐲

||𝐱||ଶ||𝐲||ଶ
=

∑ 𝑥௜𝑦௜
௡
௜ୀଵ

ට෌ 𝑥௜
ଶ௡

௜ୀଵ
෌ 𝑦௜

ଶ௡

௜ୀଵ

 

Euclidean Distance 

𝑑 = ඩ෍(𝑥௜ − 𝑦௜)
ଶ

௡

௜ୀଵ

 

Hamming Distance The number of difference in the same position of two 

same length vectors 

Jaccard 
𝑑 =

|𝑥 ∩ 𝑦|

|𝑥 ∪ 𝑦|
 

Minkowski 
𝑑 = ൭෍|𝑥௜

௡

௜ୀଵ

− 𝑦௜|
௣൱

ଵ ௣⁄

 

 

2.1.2 Support Vector Machine 

Shin et al. (2005) present one-class support vector machines for machine fault detection 

and classification in electro-mechanical machinery and evaluate the performance by 

comparing it with that of a multilayer perceptron. Shahid et al. (2012) propose one-

class quarter-sphere support vector machine to increase accuracy and decrease 

computational complexity for fault detection in unsupervised online power 
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transmission lines. Ray and Mishra (2016) investigate the distance estimation scheme 

by using post-fault single cycle current waveform and wavelet packet transform and the 

fault type by using support vector machine whose parameters are tuned by particle 

swarm optimization in a long transmission line. Al-Obaidy et al. (2017) propose the 

integrated circuit fault detection based on multilayer perceptron, support vector 

machine, and adaptive neuro-fuzzy inference system using the thermal image that 

captured by the finite element method of a printed circuit board model.  

 

Support Vector Machine (SVM) is derived from the perceptron concept and aims to 

maximize the margin between the hyperplane between the different groups by different 

kernels. SVM can deal with both liner case and non-linear case which SVM projects 

the data into high dimensional space though the kernel functions. The most commonly 

used four kernel functions are the linear kernel, polynomial kernel, sigmoid kernel, and 

the radial-based kernel, which are listed in Table 2.2.  

 

Table 2.2 Common Kernels of SVM 

Kernel Type Function 

Linear ( , )i j i jK x x  x x  

Polynomial ( , ) ( )d
i j i jK x x C    x x   

Sigmoid ( , ) tanh( , )i j i jK x x C   x x   

Gaussian Radial Basis 2( , ) exp( | | )i j i jK x x    x x   

 

2.1.3 Linear and Quadratic Discriminant Analysis  

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) are 



    14 
 

 

two conventional classification algorithms. These two classifiers have a linear and 

quadratic decision boundary respectively as their names suggest. Yoshida et al. (2008) 

used a combination of linear discriminant analysis (LDA) and boundary-based 

discriminative subspace identification method to address the identification problem of 

the causal variables for the system anomaly. da Silva Soares and Galvão (2010) 

proposed successive projections algorithm employed with LDA classifiers to 

discriminate between normal operating conditions and faults. Haddad and Strangas 

(2016) applied LDA as a classification method with respect to the accuracy to detect 

the status of permanent magnet synchronous machines whether it is healthy or faulted 

as well as determine the type of that fault.  

 

Both LDA and QDA work by specifying the prior probability given by the training set, 

the class mean and the covariance matrices. Bayes’ theorem is then used to calculate 

posterior probability as Eq. (2.1). 

 

 
( | ) ( | ) ( )

( | )
( ) ( | ) ( )

t

P X y k P X y k P y k
P y k X

P X P X y l P y l

  
  

  
  (2.1) 

 

2.2 Texture Extraction 

Texture extraction refers to the pattern matrices extracted from the image (Forsyth and 

Ponce 2011). The minimum unit of the image is called the cell or pixel. Each cell can 

store numeric number and reflect the information in the pixel. An image can be stored 

in binary values as raster dataset, or integer values as the heat map. The obtained matrix 

sets can provide the information of color, density, regularity, smoothness and so on. In 

the thesis, only the histogram of oriented gradients and local binary pattern are 
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presented as the techniques in the feature extraction. 

 

2.2.1 Histogram of Oriented Gradients (HOG) 

This algorithm quantifies the object appeared on the image as the intensity gradients or 

edge directions distribution and yield good performance even under severe 

circumstances (Alorf and Abbott 2017). Zhu et al. (2006) performed the HOG and the 

cascade-of-rejectors approach, the result shows the similar accuracy level to the 

existing methods. Kopaczka et al. (2016) used LBP, HOG for feature extraction, then 

applied random forest and SVM to test the classification performance of the feature 

descriptors in the strip defects in the circularly knitted fabric. Tsai et al. (2017) 

performed three cases in implementing the HOG to the convolutional neuron network 

and achieved similar accuracy compared to existing approaches but more effective.  

 

Histogram of oriented gradients (HOG) records the gradient orientation occurrences in 

some portion of the image. This technique is widely used to detect an object in the 

computer vision and image processing field. To obtain the HOG features for an image, 

following steps are given: 

(1) Transform the image into grayscale;  

(2) Normalize the gray-scaled image by gamma compression showed in Eq. (2.2);  

 

 
1

( , ) ( , )G x y F x y    (2.2) 

 

(3) Obtain the horizontal and vertical gradient for each cell in the block by Eq. (2.3);  

 



    16 
 

 

 
( , ) ( 1, ) ( 1, )

( , ) ( , 1) ( , 1)
x

y

G x y G x y G x y

G x y G x y G x y

   
    

  (2.3) 

 

(4) Calculate the magnitude and the gradient direction for each cell in Eq. (2.4);  

 

 

2 2

1

( , ) ( , ) ( , )

( , )
( , ) tan

( , )

x y

y

x

G x y G x y G x y

G x y
x y

G x y
 

  






  (2.4) 

 

(5) Use L2-norm expressed in Eq. (2.5) to normalize the contrast. Where    is 

considered as the RGB vector, and   is the noise;  

 

 
2 2
2|| ||



 
  (2.5) 

 

(6) Combine the HOG features. 

 

The size of the moving window is usually multiple of the blocks. The window captures 

the equal-sized blocks given the requirement of the starting position and moving 

direction as shown in Figure 2.2. 
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Figure 2.2 Illustration of Image, Windows, Block, and Cell for HOG Method 

 

The HOG features for one image are concatenated by all the HOG features extracted 

by all the blocks. The number of blocks can be obtained by below equation.  

 

 
_ _

( 1)*( 1)
_ _

   
 

window width block width window width block width

block stride block stride
   

 

Table 2.3 shows an example of the number of the HOG features with block-stride = 8. 

If we assume a cell of size 8 8  comprises 9 HOG features, then the block of size 

16 16  it located in is then comprises 36 features. If we extend this concept to the 

image of size 64 64 , we can conclude that this image has 1764 features. 
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Table 2.3 Example of HOG Feature Extraction with Block-stride = 8 

 Size Number of HOG Features 

Cell 8 8   9   

Block 16 16   4 9 36    

Image 64 64   7 7 36 1764     

 

2.2.2 Local Binary Pattern (LBP) 

Local binary pattern (LBP) extracts local binary pattern features from the grayscale 

image. When LBP is combined with the HOG technique, the detection performance 

will improve considerably on some datasets (Wang et al. 2009). Li et al. (2015) 

implemented LBP to reduce the computation complexity and obtain the fault features 

which later on are applied to the learning vector quantization (LQV) neural network in 

the fault problem in analog circuit field. Omidi et al. (2017) formed the feature vector 

by the LBP and applied it to the conventional neural networks; the result showed that 

approximately 91% of the F-measure has higher performance in defecting the faulty 

situation. 

 

LBP is a technique that focuses on the binary image pattern. It has the advantages of 

rotation invariance and gray-scale invariance. This technique is applicable to 

categorical matrices but has limitation to numerical matrices because useful 

information would have a higher chance to be overlooked. Dividing the image into cells 

and compare the central pixel gray level among its adjacent cells to obtain the LBP 

information. An example showing the matrix after LBP transformation is presented 

below in Figure 2.3. 
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Figure 2.3 Example of Matrix after LBP Transformation 

 

After the transformation from the regular matrix into the binary matrix, the binary 

numbers can be extracted and converted into decimal numeral following the pre-set 

direction. In the case showed in Figure 2.3, the center number is 2 and we need to 

compare the size within its range by marking 1 as greater or equal to and 0 as less than. 

By pre-defining the direction as zig-zag, a set of binary number 10101111 can be 

obtained and transformed into decimal number 175. This 175 then can be taken as the 

feature in this 3 3  matrix. After collecting all the features in the moving window, it 

then will be concatenated as the LBP features for this image.   
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CHAPTER 3 

Matrix Representation for Categorical Process Status Sequence 

 

In this chapter, we will propose our method of matrix representation. This matrix 

representation helps to transform the time series gantry process status sequence into 

binary matrix without losing any information. Besides than that, this matrix 

representation makes feature extraction from categorical matrix possible. Other than 

that, we bring about a new idea of texture extraction in image processing area to the 

binary matrix feature extraction, which extend the study scope of feature extraction.  

 

To represent the time series gantry categorical process status sequence into the binary 

matrix, we first need to acquire the data. The data acquisition process defers from the 

scope of studies. Though the SCADA system we discussed in chapter 1 stores numerous 

signal and information, there’s no advanced embedded module that just extracts and 

monitors the gantry process status sequence. Therefore, we propose the below scheme 

in gantry process status sequence acquisition: 

(1) Locate the starting and ending time of one certain fault; 

(2) Extract the process status sequence within same time length before the fault start 

time and the same length sequence after the fault end time. 

 

While extracting the sequence followed by step 2, one may encounter the information 

overlap. The information overlap is led by the paralleled raw incident sequences 

between the statuses and the faults. It’s difficult to obtain the time intervals for each 

process status sequence before and after the fault observation if there is overlapping 
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among the status time interval with the fault. Figure 3.1 displays four overlapping 

scenarios.  

 

 

Figure 3.1 Gantry Process Status Sequence Overlapping 

 

After proper gantry process status sequence extraction for each fault, we will get the 

sequences of categorical process status. Such categorical sequence is hard to extract 

features when the data becomes huge. The size of the massive data is one of the biggest 

obstacles in machine computation. Other than that, common feature extraction cannot 

be deployed to the categorical sequence.  To deploy HOG and LBP as stated in the 

Chapter 1 as a novel idea in binary process matrix, we provide the following sequence 

transformation to binary matrix that considered as gray-scaled matrix in the image 

processing area. This binary process matrix is different from the atomic unit of data in 

computer system, but the philosophy of embedding information with binary numbers 

is pretty much same.  

 

Consider a sequence consists of “blocked”, “cycling”, “down”, “starved” in t time 

interval showed below.  

 

[ ,..., ,... ]BBBC CCSS CDDD  
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Where “B”, “C”, “D”, “S” stands for “blocked”, “cycling”, “down”, and “starved, 

respectively. The sequence then can be transformed to a matrix of size 4-by-t based on 

the process status appearance in the minimum unit. This matrix can present a better 

view of the process status change as Table 3.1. 

 

Table 3.1 Example of Matrix after Transformation 

t 1 2 3 4 … 66 67 68 69 … t-3 t-2 t-1 t 

B 1 1 1 0 … 0 0 0 0 … 0 0 0 0 

C 0 0 0 1 … 1 1 0 0 … 1 0 0 0 

D 0 0 0 0 … 0 0 0 0 … 0 1 1 1 

S 0 0 0 0 … 0 0 1 1 … 0 0 0 0 

 

As stated earlier in sections 2.2.1 and 2.2.2, we now can apply the HOG and LBP 

accordingly. We will use a case study of a real gantry system from automobile 

manufacturing to demonstrate the effectiveness of the proposed method.  
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CHAPTER 4 

Case Study: Gantry System in Automotive Manufacturing 

 

4.1 Data Description 

The case study investigates the process status log of the gantry status sequence, which 

is a sample dataset constructed based on automobile manufacturing in real world. The 

dataset consists of the gantry timestamp sequence which refers to the specific time 

records of the system’s status which may include process status, fault signals, and 

warnings. Raw file information such as date, number of entries, size are summarized in 

Table 4.1. Each entry represents one incident and its corresponding records are also 

included. 

 

Table 4.1 File Information 

Date Number of Entries File Size (MB) 

2014-04-07 to 2016-04-05 4985651 900 

2016-04-06 to 2016-04-29 84407 14.4 

2016-05-01 to 2016-05-31 145852 25 

2016-06-01 to 2016-08-06 320508 55 

 

The data is extracted from assets datasets during April 4th 2014 to August 6th 2016 of 

size 5536418 13  , which includes diverse information such as “Asset Name”, 

“Description”, “Start Time”, “End Time”, “Duration”, “Machine Faults” (133), 

“Warnings” (9), and “Machine States Incidents” (18). “Machine Faults” refer to the 

faults that lead to machine down saved in the database for management. “Warnings” 
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indicate the possible danger of specific situations. Tables 4.2 shows the sample dataset 

with the most typical information.  

 

Table 4.2 Sample Dataset 

Category Description Start Time End Time Duration 

Machine Faults Undefined 

Machine Fault 

2014/4/7 

6:24:53 

2014/4/7 

6:32:17 

444 

Warnings Tool Life Nearly 

Expired 

2014/4/17 

16:04:04 

2014/4/17 

19:32:14 

12490 

Machine States 

Incidents 

Cycling 2014/5/2 

5:07:50 

2014/5/2 

5:07:56 

6 

 

“Description” shows the detail of the “Machine Faults”, “Warnings”, and “Machine 

States Incidents”. The common types of gantry statuses are: setup, cycling, starved, 

loading, blocked, unloading, shut down, manual emergency stop, waiting for attention, 

down, repair. “Start Time” records the start point of each time a fault or warning signal 

shows and the start point before the duration of asset operation status. “End Time” 

records the end of each time a fault or warning signal ends and the endpoint of the 

duration of asset operating status. “Duration” is the time difference between one event 

start time and end time. 

 

4.2 Variable and Fault Selection 

Since we only focus on the gantry property, the row dimension can be reduced to 

3405064 by selecting gantry in the “Asset Name” section. By choosing necessary 
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information, the variables can be shorted to “Category”, “Description”, “Start Time”, 

and “End Time”. Selecting a subset of the data will speed up the processing and increase 

accuracy (Wilcox et al. 2014). In other words, the dimension of the new data set 

becomes 3405064 4  and hence reduces the study scope and dimension. Gantry 

transfers bulk from one place to another, and during this process, statuses and fault 

information are recorded by the system. This case study will focus on the most 

informative gantry status: blocked, cycling, down, and starved.  

 

As for the fault information, Table 4.3 shows the occurrences and accumulated duration 

of each fault. Different types of faults are coded as “F1”, “F2”, etc. 

 

Table 4.3 Fault Occurrence and Duration 

Fault 

Type 

Fault 

Occurrence 

Fault 

Duration 

Fault 

Type 

Fault 

Occurrence 

Fault 

Duration 

Fault 

Type 

Fault 

Occurrence 

Fault 

Duration 

F1 302 26.8386 F13 14 88.7525 F25 2 0.02806 

F2 109 8.93528 F14 14 7.36528 F26 2 0.02361 

F3 25 3.86667 F15 10 0.26611 F27 1 0.01972 

F4 23 3.11194 F16 9 5.37472 F28 1 0.27222 

F5 23 1.99139 F17 8 0.93139 F29 1 0.00306 

F6 23 2.0075 F18 7 0.21583 F30 1 2.53028 

F7 18 2.76972 F19 5 0.33472 F31 1 69.9178 

F8 16 1.12083 F20 4 26.9322 F32 1 1.11472 

F9 16 1.41639 F21 3 0.35556 F33 1 34.1647 

F10 15 0.90667 F22 3 1.93 F34 1 0.04611 

F11 14 0.85194 F23 3 0.02472 F35 1 10.9172 

F12 14 7.49833 F24 3 0.02778 F36 1 0.00167 

 

In this table, fault duration time includes the total time from waiting for attention, repair 

duration, setup, restart to function well. To start study the fault pattern, we choose the 
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most frequent fault F1 as the first step. The study scheme in F1 can be extended to the 

rest faults.   

 

4.3 Data Pre-processing 

The fault pattern recognition algorithm requires the abnormal status sequence before a 

certain fault and the compare set of normal status sequence. In this study, we start by 

selecting all the sequences 1 hour prior to the F1 as the abnormal status sequence. The 

normal status sequences are chosen as the status sequences after the F1 within 1-hour 

time range without any interventions with other faults, and the independence of the 

incident status hence guaranteed. This section is divided as follow: matrix build-up 

based on abnormal and normal status sequence, matrix representation, HOG and LBP 

feature extraction.  

 

4.3.1 Matrix Build-up  

As stated earlier, the normal and abnormal status dataset are formed separately. The 

matrix can be expressed by the Eq. (4.1), where i  stands for the observation and j  

stands for the  1
th

p j   point prior to a certain incident.  

 

 , { , , , }i jX B C D S   (4.1) 

 

Table 4.4 shows the gantry status matrix 302 3600X   1 hour before the F1 and Table 4.5 

shows the gantry status matrix 254 3600X   1 hour after the F1. 
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Table 4.4 Status Matrix of Gantry in the One Hour before F1 

T 1 2 3 4 … 3597 3598 3599 3600 Y 

1 S S S S … S S S S 1 

2 C B B B … B B B B 1 

3 S S S S … S S S S 1 

… … … … … … … … … … 1 

301 C C C C … C C C C 1 

302 S S S S … S S S S 1 

 

Table 4.5 Status Matrix of Gantry in the One Hour after F1 

T 1 2 3 4 … 3597 3598 3599 3600 Y 

1 D D D D … D D D D 0 

2 D D D D … D D D D 0 

3 D D D D … D D D C 0 

… … … … … … … … … … 0 

254 D D D D … D D C C 0 

 

4.3.2 Matrix Representation  

According to vector-based matrix formulation, the 4 types of status of one observation 

can be re-written into the matrix showed below 1, 2, 3, 4,, ,X X X X  are corresponding to 

the status “B”, “C”, “D”, “S”. p  represents the time length which in this case is 3600 . 
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1,1 1,2 1, 1, 1 1,

2,1 2,2 2, 2, 1 2,

new
3,1 3,2 3, 3, 1 3,

4,1 3,2 4, 4, 1 4,

... ...

... ...

... ...

... ...

j p p

j p p

j p p

j p p

X X X X X

X X X X X
X

X X X X X

X X X X X









 
 
 
 
 
  

 

 

For all observations, we transfer each observation of size 1 3600   into 4 3600

because of the number of the statuses. Examples of the transformed status matrix of 

observation 1 of each case are shown at Table 4.6 and Table 4.7. 

 

Table 4.6 Temporal Status Matrix of Observation 1 in X1 in the One Hour before F1  

T 1 2 3 4 … 3597 3598 3599 3600 Y 

B 0 0 0 0 … 0 0 0 0 1 

C 0 0 0 0 … 0 0 0 0 1 

D 0 0 0 0 … 0 0 0 0 1 

S 1 1 1 1 … 1 1 1 1 1 

 

Table 4.7 Temporal Status Matrix of Observation 1 in X1 in the One Hour after F1 

T 1 2 3 4 … 3597 3598 3599 3600 Y 

B 0 0 0 0 … 0 0 0 0 0 

C 0 0 0 0 … 0 0 0 0 0 

D 1 1 1 1 … 1 1 1 1 0 

S 0 0 0 0 … 0 0 0 0 0 

 

4.4 Results 

In order to testify the effectiveness of the image-based feature extraction, we use k-NN, 
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SVM, LDA, and QDA as the fault detection and classification tools. In this section, the 

non-transformed matrix, the matrix after the HOG transformation, and the matrix after 

the LBP transformation are all evaluated by accuracy.  

 

To get rid of the influence of the sample size, we partition the data by increasing the 

training set and decreasing the testing set gradually. Figure 4.1, 4.2, and 4.3 show the 

relationship between the test set size and the accuracy. On average, the accuracy would 

decrease when decreasing the training set and increasing the testing set.  

 

The results for the original data show SVM with radial basis function kernel with 0.4 

proportion test size has the highest accuracy of 0.7. The performance of 5-NN, quadratic 

discriminant analysis and the SVM with radial basis function kernel are not sensitive 

towards the training and testing set size.  

 

 

Figure 4.1 Classification Accuracy versus Test Size for Original Features 

 

The results for data after HOG texture extraction show that both linear discriminant 
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analysis and the quadratic discriminant analysis have a better performance over the rest 

algorithms. But the linear discriminant analysis has the best overall performance over 

the quadratic discriminant analysis, the previous one has the accuracy of 0.91 when the 

test size is of 0.1 proportion. The accuracy for quadratic discriminant analysis drops 

drastically when changing the test size of 0.8 proportion or higher. The rest algorithms 

almost have the same performance and the trend change.  

 

 

Figure 4.2 Classification Accuracy versus Test Size for HOG Transformed Features  

 

The results for data after LBP texture extraction show that the performance of linear 

discriminant analysis, SVM with linear kernel, and the SVM with polynomial kernel 

are better than the rest algorithms. However, the linear discriminant analysis has a better 

performance of 0.89 over the other two when the test size is of 0.1 proportion. The rest 

algorithms are of the same performance as well as the trend change according to the 

test size. The quadratic discriminant analysis and the 3-NN are not sensitive to the test 

size.  
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Figure 4.3 Classification Accuracy versus Test Size for LBP Transformed Features  

 

In this case study of the gantry system from automobile manufacturing, matrix after 

texture extraction has a better performance than the original data in accuracy. Overall, 

test size with 0.1 portion of the original dataset has a better performance over the others. 

From Table 4.8, we can see that LDA after HOG transformation has the best 

performance of 0.9107. These results show that it is feasible to monitor and detect fault 

based on gantry time series categorical process status sequence. By selecting the most 

representative statuses and time length, we get rid of the information overlap situation. 

Our proposed technique in matrix representation makes categorical matrix feature 

extraction possible. We also illustrate that texture extraction in the image field can also 

be used in the transformed categorical matrix. The classification results of the 

transformed features have a better performance over the original features.  

 

On the other hand, the case study results reveal that critical asset time series categorical 

process statuses can be used in health monitoring and fault detection. We can predict 

certain fault by the error pattern, which is a big step in the Industry 4.0.  
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Table 4.8 Classification Accuracy Comparison at Test Size = 0.1 

  
k-NN 

LDA QDA 

SVM- 

Linear 

SVM- 

Poly 

SVM- 

Rbf 

k=3 k=4 k=5 
C=0.1, 

50, 0.1 
C=1, p=2  

Original 

Features 
0.5357 0.5179 0.5357 0.5893 0.5357 0.6071 0.5714 

0.6786 

(C=50,  

γ=0.001) 

HOG 

Features 
0.6428 0.5893 0.6607 0.9107 0.8036 0.6964 0.5179 

0.6607 

(C=200, 

γ=.001) 

LBP 

Features 
0.5357 0.5714 0.5714 0.8929 0.5 0.8036 0.8036 

0.5179 

(C=0.1, 

γ=0.001) 

 

 



    33 
 

 

CHAPTER 5 

Conclusion and Future Work 

 

5.1 Conclusion 

This thesis aims to study the health monitoring and fault detection of one of the most critical 

assets in the industrial field – Gantry. Gantry is prevalently used as the bulk transfer 

machine in heavy industry, healthcare, and port field. Though gantry is usually considered 

as a reliable asset, the loss caused by the gantry function failure is hard to value. In this 

way, we are motivated to study and monitor the time series gantry process sequence. In the 

study scope, we are also promoted to prognosis the fault by analyzing the process sequence 

data in order to achieve the “5P” proposed by the “Industrial 4.0”. Vector of categorical 

statuses are commonly used to describe the time series categorical gantry process sequence. 

Process statuses such as cycling, blocked, starved, and down are the most identical statuses 

to present the gantry operation. Such categorical sequences are hard to extract features 

when dealing with a great amount of the sequences. We hence propose to represent the 

process vector into matrix and then extract the features. While representing the categorical 

vector into binary matrix, we are inspired to take advantage of the texture extraction 

techniques such as HOG and LBP in the image area rather than using the common feature 

extraction techniques PCA.  

 

In Chapter 2, we present some researches based on three classification algorithms and two 

texture extraction techniques. The classification algorithms help to identify the fault based 

on the gantry process status sequence. The three classification algorithms cover k-NN, 
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SVM, and discriminant analysis. We present literatures that use these classification 

algorithms as the fault detection method in different area. Principle introduction and 

application literatures are all presented for the two texture extraction techniques HOG and 

LBP.  

 

In Chapter 3, we propose our new technique in matrix representation. We give the scheme 

of the vector to matrix transformation as well as examples. On one hand, the transformed 

matrix provides a new idea when dealing with the categorical. On the other hand, this 

matrix representation helps to transfer the categorical vector into binary matrix, which is 

beneficial to both texture extraction and the field computation.  

 

In Chapter 4, we utilize the time series gantry process status sequence from automobile 

manufacturing for the case study. We extract the necessary data from the massive dataset, 

and then sort the fault by its frequency. The most frequent fault is chosen as an example to 

build the fault detection model. We extract same time length’s process status sequences 

before and after the most frequent fault. To compare the effectiveness of our proposed 

matrix representation and application of texture extraction. We first divide data into 

training and testing dataset of different proportion. Matrix with categorical vector, vector 

after matrix and HOG transformation, vector after matrix and LBP transformation are 

compared under the same evaluate criteria. From the result, training and testing size of 

proportion 0.9 and 0.1 overall has the best performance because we assign more data into 

model building. Gantry process status sequence after matrix and HOG as well as LBP 

transformation all have a better performance over the raw vector. LDA after HOG 
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transformation has the best performance. The result in the case study successfully show 

that we can take advantage of the texture extraction techniques over our proposed matrix 

representation of the time series categorical process sequences. By applying the 

classification algorithms, we can predict certain fault before its occurrence. This would 

greatly affect the resource allocation when a certain fault arises. Preparing the required 

manpower and repair material would expedite the repair process and make the 

manufacturing more efficient. 

 

5.2 Future Work 

The proposed matrix representation has some limitations and further study is needed. First, 

we fail to test over more classification algorithms and texture extraction techniques, which 

makes this thesis less robust to other solutions. Second, we could add more process statuses 

into consideration, which could add more information toward the gantry health monitoring. 

Third, we haven’t tested this pattern over other faults. In this way, we dare not to say this 

gantry health monitoring and fault detection pattern is compatible with other faults. 
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