
MOLECULAR GEOMETRY OPTIMIZATION BY
ARTIFICIAL NEURAL NETWORKS

BY HE CHEN

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Ahmed Elgammal

and approved by

New Brunswick, New Jersey

January, 2019



ABSTRACT OF THE THESIS

Molecular Geometry Optimization by Artificial Neural

Networks

by He Chen

Thesis Director: Ahmed Elgammal

Artificial neural network is revolutionizing many areas in science and technology. We

applied artificial neural network to solve a non-linear optimization problem in compu-

tational chemistry, i.e. molecular geometry optimization, which aims to find an atomic

arrangement that corresponds to a stationary point on the potential energy surface.

The implemented ANN can use both function values and derivatives as the reference

data for training. The relative importance of function values and derivatives is studied

extensively. With the same amount data points, ANN trained with derivatives tend to

generalize better. With only derivatives as the reference data, the trained ANN can

predict function values accurately if a common offset is allowed.

We trained ANNs that can predict molecule energies and gradients fairly well.

Molecular geometry optimization is performed on testing data that are never seen dur-

ing the training process. About 5% of the testing structures converge with average

0.047 Å RMSD compared with equilibrium state, while others diverge. The divergence

is ascribed to poor gradient prediction near the equilibrium.
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Chapter 1

Introduction

1.1 Conventional Machine Learning

Machine learning (ML) refers to giving computers the ability to learn without being

explicitly programmed[3]. Nowadays, ML technology is increasingly present in many

aspects of modern society: from online web search, intelligent recommendation to data

security, financial trading, and healthcare. In principle, ML learns a function that maps

inputs to outputs. It’s typically classified into two broad categories, supervised learning

and unsupervised learning, depending on whether there is a “target” value available to

the learning system[4].

One simple example of a traditional machine learning algorithm is the linear least

squares regression, in which the input are linearly independent to each other and the

underlying nature of the model is assumed to be known. The input, also known as

features, are generally dervied from the original measured data by the domain experts.

This feature extraction step intends to facilitate the subsequent learning and general-

ization steps by precisely balancing a set of input features to produce an output. The

limitation of conventional ML systems lies in that it requires careful engineering and

considerable domain expertise to design a feature extractor that transforms the raw

data into a suitable internal representation or feature vector from which the learning

subsystem, often a classifier, could detect or classify patterns in the input[5].

1.2 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of machine learning algorithm inspired

by biological neural networks, used to approximate functions by translating a large
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number of inputs into output. ANNs are constructed from a series of layers, which

are based on a collection of connected nodes called artificial “neurons”. Each neuron

accepts the signals from the previous layer, processes them by maps the signal onto a

non-linear function. The power of ANNs lies in their ability to make multiple non-linear

transformations through many hidden layers of neurons. It allows computational models

that are composed of multiple processing layers to learn representations of data with

multiple levels of abstraction[5]. In this process, increasingly complex and abstract

features can be constructed, through the addition of more layers and/or increasing

the width of the layers. The “training” process of ANNs corresponds to tuning the

internal parameters, that are used to compute the representation in each layer from

the representation in the previous layer, to minimize a cost function by applying the

back–propagation algorithm[6, 7]. In principle, ANNs are able to approximate any

real–valued function with arbitrary accuracy[8, 9].

ANNs have turned out to be very good at discovering intricate structures in high

dimentional data and are revolutionizing many areas of science and technology, partic-

ularly in image recognition[10, 11, 12, 13], speech recognition[14, 15, 16], and natural

language understanding[17]. Areas like sentiment analysis, question answering[18] and

language translation[19, 20] are dominated by ANNs, which produce incredibly promis-

ing results. Adding a further point, ANNs outperformed conventional ML methods at

predicting the effects of mutations on gene expression and disease[21, 22], discorvering

potential drug molecules[23], and reconstructing brain circuits[24].

1.3 Computational Chemistry

Computational chemistry is a branch of chemistry that uses computer simulation to

assist in solving chemical problems. It applies methods of theoretical chemistry, incor-

porated into efficient computer programs, to calculate the structures and properties of

molecules and solids.

The classical methods, ab initio electronic structure methods, attempt to solve the
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electric Schrödinger equation given the positions of the nuclei and the number of elec-

trons in order to yield useful information such as electron densities, energies and other

properties of the system[25]. These kind of methods have the advantage that they can

be made to converge to the exact solution, when all approximations are sufficiently

small in magnitude and when the finite set of basis functions tends toward the limit of

a complete set. However, due to the extremely expensive computational cost, studies of

complex chemical systems are often limited. One of the most focused areas in computa-

tional chemistry nowadays is designing some approximations that are much faster than

the ab initio methods while maintaining required accuracy. For example, semi–empircal

methods[26, 27, 28, 29] make many approximations and obtain some parameters from

empirical data, which results in great speed up with substantially degraded accuracy

compared to ab initio methods.

Machine Learning (ML) methods have been used in various applications in compu-

tational chemstriy, such as computer–aided drug design[30], computational structural

biology[31], quantum chemistry[32], and computational material design[33]. It has been

used to infer properties, such as energies, of new molecules through interpolation in

chemical compound space[34, 32, 35, 36]. In this thesis, we aim to apply ANNs in

molecular geometry optimization, which is an area in computational chemistry lacking

investigations to the author’s knowledge.

1.4 Motivation and Organization

Molecular geometry optimization refers to the process seeking to find the geometry of a

particular arrangement of the atoms that represents a local or global energy minimum.

Essentially, it is non-linear optimization problem. It is of importance since the geometry

optimized structures usually have physical significance, which may correspond to a

substance as it is found in nature and the geometry of such a structure can be used in a

variety of experimental and theoretical investigations in the field of chemical structure,

thermodynamics, chemical kinetics, spectroscopy and others.

The traditional and accurate way, i.e. ab initio electronic structure methods, has
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extreme computational cost, and hence chemical studies are often limited to the use

of approximate methods which leads to a trade-off between accuracy and speed. This

thesis devotes to build a artificial neural network (ANN) model to predict molecular

energy accurately and further more to perform geometry optimization by computing

the analytic gradients of the ANN.

Chapter 2 describes theoretical background and related work of applying neural

network on computational chemistry problems.

Chapter 3 presents the mathematics of back propagation in neural network by either

using function values or gradients. It contains the implementation details of artificial

neural network.

Chapter 4 shows the results of the ANN applied on known numerical functions.

One and two dimensional functions are considered. The effect of relative importance of

function values and gradients during training is extensively studied.

Chapter 5 describes the data set generation for molecules, additional ANN training

details, and the final performance of ANN on energy and gradient predictions. Molecu-

lar geometry optimization is then conducted for molecules that are beyond the training

data set.

Chapter 6 concludes the thesis and suggest further directions.
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 Molecular Geometry Optimization

Within the Born–Oppenheimer approximation, which assumes the motion of atomic

nuclei and electrons in a molecule can be separated, the geometry of a molecule at zero

absolute temperature corresponds to the minimum of the total energy:

{xi, yi, zi}T=0 = argmin{xi,yi,zi}(〈Ψ|Ĥ|Ψ〉) (2.1)

where Ψ is the wave function describing the quantum state of the molecule under

consideration, Ĥ is the Hamiltonian operator which characterizes the total energy, T =

0 is the zero absolute temperature and {xi, yi, zi} stands for the Cartesian coordinates

of the molecule.

The energy of a molecule, which can be seen as a function of the Cartesian co-

ordinates, labeled as r, forms a potential energy surface (PES). Molecular geometry

optimization is the process finding an arrangement in space of a collection of atoms

where the net inter-atomic force on each atom is acceptably close to zero and the po-

sition on the PES is a stationary point (∂E∂r = 0) from an arbitrary starting state. An

example is shown in Figure 2.1, where the points with red cross correspond to optimized

structures.

Essentially, molecular geometry optimization is a non-linear optimization problem

and variations of Newton–Raphson method, which approximates the objective function

by a quadratic surface at each step, are currently the primary geometry optimization

algorithms in quantum chemical (QC) software packages. The forces, i.e. gradients,



6

Figure 2.1: An example of a non-linear surface of energy. The points with red cross are
possible geometry optimization structures.
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on the nuclei can be calculated from the wave function using the Hellmann-Feynman

theorem, which basically states

dEλ
dλ

= 〈ψλ|
dĤλ

dλ
|ψλ〉 (2.2)

where Ĥλ is a Hamiltonian operator depending upon a continuous parameter λ, |ψλ〉 is

an eigen-state of the Hamiltonian, depending implicitly upon λ, and Eλ is the energy of

the state |ψλ〉. As the forces point toward a (at least local) minimum in the energy, the

equations of motion for the nuclei will move the nuclei toward an equilibrium structure.

In principle, one can perform molecular geometry optimization if energy and gradi-

ents can be computed given the Cartesian coordinates of a molecular.

2.1.2 Molecular Dynamics

In addition to molecular geometry optimization, energy and gradients calculations have

also been used extensively in another important area in computational chemistry, i.e.

molecular dynamics (MD), which is a computer simulation method for studying the

physical movements of atoms and molecules. The atoms and molecules are allowed to

interact for a fixed period of time, giving a view of the dynamic evolution of the system.

In each time step, the energy and forces are calculated on–the–fly. Ab initio molecular

dynamics (MD) simulations have become a standard approach to study a variety of

chemical process. However, again, due to the demanding computation resources, the

ab initio MD is not an option for complex molecules.

2.1.3 Molecular Representation

In order to apply machine learning, the information encoded in the molecular three-

dimensional structure needs to be converted into an appropriate vector of numbers. This

vectorial representation of a molecule, also called ”descriptors”, is a data representation

that reflects prior knowledge of the underlying physics and it is crucial for the success

of the learning approach. Since the ANNs here are used to predict the energy of a

molecule, only if all information relevant for the energy is appropriately encoded in
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the vector will the machine learning algorithm be able to infer the relation between

molecules and energies correctly.

2.2 Related Work

Molecular Representation. Two-dimensional molecular ”descriptors” have been pro-

posed for a support vector machine (SVM) algorithm for similiarity searching[37].

However, two-dimentional molecular descriptors could fail to predict properties that

depend on the three-dimentional geometry. To address this, a variety of descriptors

to describe the 3D structure of a molecule have been applied in statistical models for

chemical and biology applications[38, 39]. Different system representations that include

internal coordinates, system-specific variables, and complex projections of local atom

densities have also been proposed in the context of potential-energy prediction[40, 34].

A simple Coulomb matrix representation was introduced by Rupp et. al.[32], where the

off-diagonal elements correspond to the Coulomb repulsion between two atoms, while

diagonal elements encode a polynomial fit of atomic energies to nuclear charge. Some

graphical representations have been developed[41]. Using those represeations, relatively

high accuracy has been achieved for inorganic or hybrid inorganic-organic crystals. An

alternative means of representation of crystal structures has also be proposed based on

Moron space-filling curves[42].

In this work, we adopted the data representation method introduced by Behler and

Parrinello[1] and extended by Smith et al.[2]. This approximate molecular represen-

tation, called symmetry functions, not only takes advantage of chemical locality but

also has some important properties that ensure energy conservation and be useful for

machine learning models. The details of symmetry functions are described in Section

5.2.2.

Potential Energy Surface. There has been increasing interests in neural network

potentails, i.e. using neural netwoks to represent a high-dimentional ab initio poten-

tial–energy surfaces (PES), over the last decades[43, 32, 1, 34, 2]. Those studies differ in

the neural network models and molecular representations. Manzhos et al.[43] developed
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a nested neural network technique in which one approximate neural network potential

is fit first and then another neural network to fit the difference of the true potential

and the approximate potential. Behler et al.[1] used a neural network topology by rep-

resenting the total energy E of the system as a sum of atomic contributions Ei. As a

result, there is one different neural network for each different atomic type[1]. Behler’s

approach has been proved to be successful in many cases[34, 44].

The analytic gradient of the energy hypersurface can be computed simply by dif-

ferentiating the neural network, assuming the activation functions are defferentiable.

This approach is superior to having the gradients appear in the output layer of the

NN because it greatly simplifies the required architecture of the network. Both the

energies and forces/gradients from electronic structure methods have been used in the

training of the ANNs[45, 46, 47]. One practical framework for fitting a function and its

derivatives is developed by Pukrittayakammee et al.[48] and it will be summarized in

the Section 3.5.

Those ANN potentials have been applied in molecular dynamics[49]. However, the

corresponding studies on molecular geometry optimization are very scarce.
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Chapter 3

Methodology

3.1 Overview

In this chapter, we will first describe the notations of our NNs, the standard back

propagation, analytic gradients of an ANN, fitting a function’s first derivatives, and

finally some implementation details.

3.2 Notations

We adopt the notations of neural network in [50] and let nl denote the number of layers

in our network and layer l is labeled as Ll. The parameters of our neural network are

represented as (wlij , b
l
i), where wlij denotes the weight associated with the connected

between unit j in layer l and unit i in layer l+ 1, and bli is the bias associated with unit

i in layer l + 1. We use sl to denote the number of nodes in layer l, without counting

the bias unit. Also we let zli denote the total weighted sum of inputs to unit i in layer l

and ali denotes the activation (i.e. output value) of unit i in layer l. Finally, we define

f l as the activation function in layer l.

It’s straightforward to extend the above notation to vector/matrix form. W l and

bl will represent the weights matrix and bias vector for layer l. They should have

dimensions [sl+1 × sl] and [sl+1 × 1], respectively. Suppose we have a fixed training

set {(x(1), t(1)), · · · , (x(M), t(M))} (size is M), where x(m) = (x
(m)
1 , · · · , x(m)

s1 ) and

t(m) = (t
(m)
1 , · · · , t(m)

snl
) are the vectors of input features and the target output for the

m-th training data point. We write zl,(m) and al,(m) to denote the corresponding

inputs and outputs in layer l for the m-th training data. And for the input layer, we

have a1,(m) = x(m). Furthermore, we let X denote the input features of all training
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data and Zl and Al denote the corresponding inputs and outputs in layer l. X, Zl,

and Al should have dimensions [s1 ×M ], [sl ×M ], and [sl ×M ], respectively.

We write the derivative of the underlying function, that maps x to t, with respect

to x(m) as ∂t(m)

∂x(m) . And the derivative of the network activation a
l,(m)
i with respect to

the input features of the m-th training data is written as ∂al,(m)

∂x(m) .

3.3 Forward and Back Propagation

Using the notations above, the forward propagation can be written as

A1 = X

Al+1 = f l+1(W lAl + bl)

(3.1)

Assuming the cost function is represented as J(W, b), where W and b denote all the

weights and bias of the network, then the back propagation[6, 7] of the error term can

be written as

δnl =
∂J(W, b)

∂Anl
• ˙fnl(Znl)

δl = ((W l)T δl+1) • ḟ l(Zl)

(3.2)

where ”•” represents element-wise product operator and δl+1 is the error term matrix

of all units in layer l + 1 for all training data. δl+1 should have dimension [sl+1 ×M ].

Simply speaking, the standard back propagation algorithm[6, 7] propagates the error

term and meanwhile computes the gradients of the cost function with respect to the

parameters on the fly. These gradients can be computed by

∂J(W, b)

∂W l
= δl+1(Al)T

∂J(W, b)

∂bl
= δl+1~1

(3.3)

where ~1 is a column vector of 1’s with length M . These computed gradients can then

be used in any gradient-based optimization algorithm to minimize the cost function.

3.4 Analytic Derivatives of Neural Networks

The analytic derivatives of a neural network with respect to arbitrary variables q can

be easily deducted through the chain rule. The goal is to obtain ∂anl,(m)

∂q , which can be
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computed through

∂anl,(m)

∂q
= ḟnl(znl,(m))

∂znl,(m)

∂q

∂znl,(m)

∂q
= Wnl−1∂a

nl−1,(m)

∂q

· · ·

∂z2,(m)

∂q
= W 1∂a

1,(m)

∂q

(3.4)

If we look at equation 3.4 from bottom to top, it becomes clear that it’s a forward

propagation with input as ∂a1,(m)

∂q and linear activation functions that are determined by

a forward propagation with x(m) as input. Therefore, to obtain the analytic derivatives

of a network with respect to arbitrary variables q, one can first propagate the input

features x and store ḟ l for each layer, then compute the derivatives of all input units

with respect to q and propagate these derivatives. Note that, since we treat the output

value of the bias units as constant (i.e. 1), the derivatives of the bias terms are 0, hence

they do not participate in this gradient propagation process. A simpler matrix form of

this process can be expressed as

∂Al

∂q
= (W l−1∂A

l−1

∂q
) • ḟ l(Zl) (3.5)

If we want to compute the derivatives of the network with respect to the input features,

i.e. q = x(m), we will have ∂a1,(m)

∂x(m) = I (identity matrix), since a1,(m) = x(m).

3.5 Fit the Function Derivative

In order to fit the derivatives of a function, we adopted the framework proposed by

Pukrittayakamee[48]. A summary of the calculations (slightly modified version) will be

provided as follows.

We use Jd(W, b) to denote the overall cost function with respect to the function

derivatives. The goal is to calculate ∂Jd(W,b)

∂wl
ij

and ∂Jd(W,b)

∂bli
, which can then used in

gradient-based algorithm. We let Jd(W, b;x
(m), t(m), q

(m)
r ) denote the cost arose from

the r-th derivative of the m-th data entry. Without confusion, this term is abbreviated

as J
(m)
dr . Note that different data entry may have different number of derivatives, which
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is the case for study in Chapter 5. We have

Jd(W, b) =
1

2N

M∑
m=1

R(m)∑
r=1

J
(m)
dr (3.6)

where M is the total number of training data, R(m) is the number of derivatives of the

m-th training data, and N is a normalization factor that equals
M∑
m=1

R(m)∑
r=1

1.

To make the following deduction simple, we first focus on a single training data and

one derivative variable, followed by a generalization to matrix form. We have

∂J
(m)
dr

∂wlij
=

snl∑
s=1

(
∂J

(m)
dr

∂ ∂a
nl,(m)
s

∂q
(m)
r

)× ∂

∂wlij
(
∂a

nl,(m)
s

∂q
(m)
r

)

=

snl∑
s=1

Ds(J
(m)
dr )× ∂

∂wlij
(
∂a

nl,(m)
s

∂q
(m)
r

)

(3.7)

where we have used Ds(J
(m)
dr ) to denote (

∂J
(m)
dr

∂
∂a

nl,(m)
s

∂q
(m)
r

). Note that, the second term in

equation 3.7 is a mixed second-order partial derivative of a
nl,(m)
s . Assume these second-

order partial derivatives exist and are continuous, then we have

∂

∂wlij
(
∂a

nl,(m)
s

∂q
(m)
r

) =
∂

∂q
(m)
r

(
∂a

nl,(m)
s

∂wlij
)

=
∂

∂q
(m)
r

(
∂a

nl,(m)
s

∂z
l+1,(m)
i

× al,(m)
j )

= a
l,(m)
j × ∂

∂q
(m)
r

(
∂a

nl,(m)
s

∂z
l+1,(m)
i

) +
∂a

l,(m)
j

∂q
(m)
r

∂a
nl,(m)
s

∂z
l+1,(m)
i

(3.8)

By further define the following two terms

v
l,(m)
i,r ≡

snl∑
s=1

Ds(J
(m)
dr )× ∂

∂q
(m)
r

(
∂a

nl,(m)
s

∂z
l,(m)
i

)

u
l,(m)
i,r ≡

snl∑
s=1

Ds(J
(m)
dr )× ∂a

nl,(m)
s

∂z
l,(m)
i

(3.9)

Equation 3.7 can be rewritten as

∂J
(m)
dr

∂wlij
= a

l,(m)
j v

l+1,(m)
i,r +

∂a
l,(m)
j

∂q
(m)
r

u
l+1,(m)
i,r (3.10)

The term
∂a

l,(m)
j

∂q
(m)
r

is updated through forward propagation described in Section 3.4.

What’s left is to show u
l,(m)
i,r and v

l,(m)
i,r can be computed through back propagation.
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Note that,

∂a
nl,(m)
s

∂z
l,(m)
i

=

sl+1∑
j=1

∂a
nl,(m)
s

∂z
l+1,(m)
j

∂z
l+1,(m)
j

∂z
l,(m)
i

=

sl+1∑
j=1

∂a
nl,(m)
s

∂z
l+1,(m)
j

× wlji × ḟ l(z
l,(m)
i )

(3.11)

Thus, for u
l,(m)
i,r , we have

u
l,(m)
i,r = ḟ l(z

l,(m)
i )

sl+1∑
j=1

wlji

snl∑
s=1

Ds(J
(m)
dr )× ∂a

nl,(m)
s

∂z
l+1,(m)
j

= ḟ l(z
l,(m)
i )

sl+1∑
j=1

wljiu
l+1,(m)
j,r

(3.12)

Equation 3.12 means that u
l,(m)
i,r can be computed from layer to layer through back

propagation with values initialized at the output layer as

u
nl,(m)
i,r = Di(J

(m)
dr )ḟnl(z

nl,(m)
i ), i ∈ [1, snl

] (3.13)

By applying equation 3.11 into v
(m)
i,r and some rearrangements, we get

v
l,(m)
i,r =

∂ḟ l(z
l,(m)
i )

∂q
(m)
r

sl+1∑
j=1

(wljiu
l+1,(m)
j,r ) + ḟ l(z

l,(m)
i )

sl+1∑
j=1

(wljiv
l+1,(m)
j,r ) (3.14)

where

∂ḟ l(z
l,(m)
i )

∂q
(m)
r

=
∂ḟ l(z

l,(m)
i )

∂a
l,(m)
i

∂a
l,(m)
i

∂q
(m)
r

(3.15)

Again, we have known how to compute the second term in Section 3.4. Assume we

can compute
∂ḟ l(z

l,(m)
i )

∂a
l,(m)
i

, e.g.
∂ḟ l(z

l,(m)
i )

∂a
l,(m)
i

= 1− 2a
l,(m)
i for sigmoid function, together with

equation 3.14, it is clear that v
l,(m)
i,r can be computed from layer to layer through back

propagation with values initialized at the output layer as

v
nl,(m)
i,r = Di(J

(m)
dr )×

∂ḟnl(z
nl,(m)
i )

∂q
(m)
r

(3.16)

Similar to the gradients with respect to wij
l, we can obtain

∂J
(m)
dr

∂bli
= v

l+1,(m)
i,r (3.17)
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It is straightforward to extend equations 3.10 and 3.17 into matrix forms as shown

below:

∂Jd(W, b)

∂W l
= V l+1(Al)T +U l+1(

∂Al

∂Q
)T

∂Jd(W, b)

∂bl
= V l+1~1

(3.18)

where Q, whose dimension is [1 × N ], is vector that contains all interested variables.

The dimensions of V l+1, U l+1, and ∂Al

∂Q are [sl+1 ×N ], [sl+1 ×N ], and [sl ×N ].

3.6 Fit the Function Value and the Function Derivative

In addition to fit the function derivative, it is possible to fit the function value and

function derivative simultaneously[48]. The cost function can be written as

J(W, b) = ρ1Jf (W, b) + ρ2Jd(W, b) (3.19)

where Jf (W, b) is the cost arose from function value and ρ1 and ρ2 are the scale factors

that determine the relative importance of Jf (W, b) and Jd(W, b). One may imagine

to modify ρ2 so as to tune the behavior of the cost function, while setting ρ1 = 1.

Moreover, one can set ρ1 = 0, hence the NN will be only trained using the function

derivatives.

As a concrete example, the root mean squared error cost function of both function

values and its derivatives can be written as

J(W, b) =
ρ1

2M × snl

M∑
m=1

snl∑
s=1

(anl,(m)
s − t(m)

s )2 +
ρ2

2N × snl

M∑
m=1

Rm∑
r=1

snl∑
s=1

(
∂a

nl,(m)
s

∂q
(m)
r

− ∂t
(m)
s

∂q
(m)
r

)2

(3.20)

The overall back propagation algorithm is summarized in Figure 3.1.

3.7 Implementation Details

We implemented fully connected ANNs in CUDA (Computed Unified Device Architec-

ture) C++. Since the computation contains extensive matrix and vector operations,

we utilized the CUBLAS library, which is an implementation of BLAS (Basic Linear
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1: Input: M supervised input features (x(m))1≤m≤M → X and the corresponding

derivatives (∂x
(m)

∂q(m) )1≤m≤M → ∂X
∂Q .

2: Forward propagation:

3: Initialization: A1 = X and ∂A1

∂Q = ∂X
∂Q .

4: for l = 1 to nl − 1 do
5: begin
6: Zl+1 = W lAl + bl

7: Al+1 = f l+1(Zl+1)

8: Compute ḟ l+1(Zl+1) and ∂ḟ l+1(Zl+1)

∂Al+1

9: ∂Al+1

∂Q = (W l ∂Al

∂Q ) • ḟ l+1(Zl+1)

10:
∂ḟ l+1(Zl+1)

∂Q = ∂ḟ l+1(Zl+1)

∂Al+1 • ∂Al+1

∂Q
11: end
12: Compute error terms:
13: Compute δnl , Unl , V nl based on equations 3.2, 3.13, and 3.16.
14: Back propagation:
15: for l = nl − 1 to 1 do
16: begin
17: δl = ((W l)T δl+1) • ḟ l(Zl)
18: U l = ((W l)TU l+1) • ḟ l(Zl)

19: V l = ((W l)TU l+1) • ∂ḟ
l+1(Zl+1)
∂Q + ((W l)TV l+1) • ḟ l(Zl)

20: end
21: Compute gradients w.r.t. weights and bias:
22: for l = nl − 1 to 1 do
23: begin
24:

∂J(W,b)

∂W l = ρ1δ
l+1(Al)T + ρ2(U

l+1(∂A
l

∂Q )T + V l+1(Al)T )

25:
∂J(W,b)

∂bl
= ρ1δ

l+1~1 + ρ2V
l+1~1

26: end

Figure 3.1: Back propagation algorithm for fitting both function values and function
derivatives.
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Algebra Subprograms) on the top of CUDA. In addition to the matrix-vector opera-

tions, there is another type of operation: element-wise arithmetic operations (e.g. apply

activation function on all the units), which can be parallelized by launching ”kernel”

functions.

We applied stochastic gradient descent and Adam algorithm to update the weights

and bias of the ANNs. The initial parameters of Adam method is chosen as recom-

mended by the original authors[51], i.e. α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8.

The max-norm regularization[52] was used with a maximum length of 3.0. We adopted

the strategy by Smith et al.[2], i.e. the training epochs are iterated until the validation

set stops improving in accuracy for 100 epochs and the optimization process is carried

out 6 times using an order of magnitude smaller α (learning rate) each time. More

technical details are covered in individual chapters.

We used dynamic feature in CUDA to generate kernel functions within kernel func-

tions. This feature is not supported by low level architectures, e.g. sm 20.
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Chapter 4

Numerical Functions Approximation Using Artificial

Neural Networks

4.1 Overview

In this chapter, we focus on numerical functions to study the relative importance of

function values and gradients as the training data. Two kinds of numerical functions

are considered: one-dimensional and two-dimensional functions. The considered one-

dimensional functions are:

y = ex (4.1)

y = sinx+ cosx (4.2)

y = 2x3 + 5x2 − 4x− 3 (4.3)

y = cos(4x) + x2/4 + 0.5x− 0.5 (4.4)

Eq. 4.4 has multiple minimas (Figure 4.1) and is used to investigate the implica-

tions of inclusion of function derivatives in the training process. The two-dimensional

function considered is a sinc function defined as:

R =
√
x2 + y2 + ε, ε = 10−10

z =
sin(R)

R

(4.5)

One of the benefits to work on numerical functions is that we know the exact forms

of the functions. Thus, we can test our ANNs with confidence. In addition, we wanted

to first see how the algorithms work on simple cases before moving on to the much more

complex problem, i.e. molecular geometry optimization.
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4.2 Dataset

The training set was generated by randomly sampling within the given domain, followed

by computing the corresponding function values. For example, we restrict the domain

of Eq. 4.4 to be x ∈ [−2, 2]. We randomly sample x and compute the corresponding

function values and derivatives. Different sizes of training set, 2n, n ∈ [4, · · · , 16], have

been generated.

The validation and testing set are fixed for different training and testing processes,

so that we could directly compare the performances. For example, the same 1000

validation data and 1000 testing data are used for all experiments of Eq. 4.4. They are

also generated randomly within the given domain.

4.3 Method and Notations

The basic back propagation algorithm is shown in Figure 3.1. In this chapter, we have

Q = X. Since training ANNs has some stochastic features because of the introduced

randomness, e.g. randomly generated initial weights and data are randomly shuffle

each epoch, we train five ANNs for the same data/settings and report the one with

lowest testing error. The cost function is the root mean squared error (RMSE) of

both function values and its derivatives (Eq. 3.20). The architecture of the ANNs is

represented as numbers separated by hyphen, e.g. 1-8-2-1 stands for an architecture

having one dimensional input layer, one dimensional output layer, and two hidden layers

with dimensions 8 and 2.

4.3.1 ANNf, ANNd, and ANNc

During the investigation of effect of relative magnitude of ρ1 and ρ2, we measure the

performance of the ANNs by tuning the values of ρ1 and ρ2. If ρ1 = 1, ρ2 = 0, the

ANNs are trained with only function values and defined as ANNf. With ρ1 = 0, ρ2 = 1,

the ANNs are trained with only function derivatives and defined as ANNd. With

ρ1 6= 0, ρ2 6= 0, the ANNs trained by combining both function values and derivatives

and defined as ANNc.
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4.3.2 Root Variance of Error

One may expect that if the ANNs are trained using only the function derivatives as

reference data, the predicted function values would be way off the true values. This is

true at first glance. However, we find that the predicted function values are close to the

true values after subtracting a common offset. The is because that although the original

function is not unique given the derivative function, they differ only by a constant. For

that reason, we compute the square root mean of the variance of testing errors (RVE)

to measure the error for function values. Another reason to do so is that our final goal

is to perform optimization, hence a common offset being subtracted would not matter.

To measure the error for function derivatives, we compute the root mean squared error

(RMSE).

Adding a further point, notice that fitting the RMSE of function values is identical

to fitting the RVE of function values if no derivative data are used, hence the use of

RVE measurement is only crucial for ANNd architectures.

4.4 Results and Discussion

4.4.1 One Dimensional Functions

We show our ANNs are able to predict the function values and derivatives sufficiently

well by fitting Eq. 4.4 with 1,024 training data points using an ANN architecture as

1-32-8-1 (Figure 4.1). The ANN is trained with only the function values as the reference

data (i.e. ANNf). The RVE for function values and RMSE for function derivatives are

0.0016 and 0.042, respectively. The results for all 1D functions are summarized in Table

4.1.

Performance of ANNf and ANNd

Besides showing results of ANNs trained with only function values (ANNf), Table 4.1

also presents the results of ANNs trained with only function derivatives (ANNd). It is

clear that for all 1D functions considered, ANNd produces almost one order of magni-

tude improvement for both function values and derivatives. What’s really interesting is
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Figure 4.1: ANNf (1-32-8-1) on 1D function y = cos(4x) + x2/4 + 0.5x − 0.5. Lines
are reference data. Spheres and stars are the predicted function values and derivatives,
respectively. Note that only 100 testing data points are selected to show.

Table 4.1: Performance of ANNs trained with 1D function values or derivatives for
different functions. For each function, 1024 training data, 1000 validation data, and
1000 testing data are randomly chosen within their domain, respectively. The ANN
architecture is 1-32-8-1. RVE is the root mean variance error of function values. RMSE
is the root mean square error of function derivatives.

Functions Domain
ANNf ANNd

RVE RMSE RVE RMSE

ex [-2,2] 0.0016 0.042 0.00015 0.0021
sinx+ cosx [-6,6] 0.0024 0.021 0.00063 0.0034

2x3 + 5x2 − 4x− 3 [-3,1] 0.0046 0.015 0.00042 0.0077
cos 4x+ x2/4 + 0.5x− 0.5 [-2,2] 0.0011 0.020 0.00035 0.0064
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that the statement holds true even for exponential function (Eq. 4.2), whose derivative

is the same with itself. In another words, we use the identical training data to fit the

function value or its derivative, the latter strategy has much better performance.

We can not provide a rigorous proof why fitting the function derivative is better in

these cases, but some intuition can be gained from Taylor’s Theorem, which states: if

f is a function continuous and n times differentiable in an interval [x, x+h], then there

exits some point in this interval, denoted by x+ λh for some λ ∈ [0, 1], such that

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + · · ·+ h(n−1)

(n− 1)!
f (n−1)(x) +

hn

n!
fn(x+ λh) (4.6)

Suppose h→ 0, then we may ignore the higher order terms and only consider the first

two. Hence, we have

f(x+ h) ≈ f(x) + hf ′(x)

f(x+ 2h) ≈ f(x+ h) + hf ′(x+ h) ≈ f(x) + hf ′(x) + hf ′(x+ h)

· · ·

(4.7)

Note that, the accuracy of predicted function derivatives is usually lower than the

accuracy of predicted function values, which is verified by Table 4.1. It means that

if ANNd can fit the function derivatives to a similar accuracy level compared with

ANNf fitting the function values, ANNd will have better accuracy in terms of function

derivative prediction. Eq. 4.7 indicates that more accurate function derivatives, the

more accurate function values will be predicted. Moving the argument along, if the

derivatives predicted by ANNd is more accurate than the derivatives predicted by ANNf,

we will also have better predictions for function values by ANNd if a common constant

offset is allowed. Since the functions considered here have relative similar derivative

forms with the function themselves, we may assume the ANN can fit them independently

to a similar accuracy level. Hence, ANNd is better than ANNf in this context.
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Table 4.2: Performance of ANNs of function y = cos 4x+x2/4+0.5x−0.5 with different
architectures. ANNf is trained with function values only, and ANNd is trained with
function derivatives only. RVE is the root mean variance error of function values.
RMSE is the root mean square error of function derivatives.

Architectures
ANNf ANNd

RVE RMSE RVE RMSE

1-4-2-1 0.0083 0.10 0.0029 0.037
1-8-2-1 0.0023 0.036 0.00059 0.011
1-16-4-1 0.0011 0.030 0.00049 0.0080
1-8-8-2-1 0.0048 0.095 0.00047 0.0079
1-32-8-1 0.0011 0.020 0.00035 0.0064
1-16-16-4-1 0.0013 0.028 0.00035 0.0058
1-64-8-1 0.0013 0.031 0.00027 0.0050

Different ANN Architectures

To investigate whether the argument above holds for different ANN architectures, we

choose the relatively more complex Eq. 4.4 and perform ANN training and testing with

different architectures (Table 4.2). Over all architectures considered, ANNd consistently

demonstrates much better performance for both function values and derivatives predic-

tions.

Relative Importance of Function Values and Derivatives

The ANNs can also be trained by combining the function values and derivatives (ANNc).

Here we investigate the effect of ρ1 and ρ2 (recall the cost function J = ρ1Jf + ρ2Jd)

for Eq. 4.4. Basically, we are tuning the relative importance of the function values

and derivatives by setting ρ1 = 1 and tuning ρ2. Specifically, we want to answer two

questions:

1. Is there an optimal ρ2 for a specific problem?

2. If the answer to the first question is yes, does the size of the data set change the

optimal ρ2?

The second question can be useful, since we may find the optimal ρ2 using much smaller

data set and apply it for the training process with much larger data set. Pukrit-

tayakamee et al. proposed that ρ2 should depend on the relative magnitude of the
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Figure 4.2: Root mean of variance of testing errors of function values with different
coefficient ρ. The black line/circle is the result from ANNf; the blue line/circle is
obtained from ANNd. The ANN has architecture as 1-32-8-1.

absolute values of function values and derivatives[48]. In the present work, we show

that given enough data, the inclusion of function derivatives during the ANN training

can significantly improve the performance with relatively large ρ2. Alternatively, using

only the function derivatives to train ANN can free us from searching ρ1 and ρ2 while

providing the results with accuracy to the same level.

To proceed, 13 different training sets have been generated with sizes as 2n, n ∈

[4, · · · , 16]. The same validation and testing data sets, with 1,000 data points each,

are used for all different cases. The ANN architecture is fixed as 1-32-8-1. The RVE

of function values and RMSE of function derivatives are shown in Figure 4.2 and 4.3,

respectively.

We first noticed that the shapes of the RVE and RMSE errors are very similar to each

other, which confirms the earlier argument that the more accurate function derivatives

the ANNs predict, the more accurate function values. In general, the inclusion of

derivative data in the training process generally significantly improve the performance



25

 2 4  2 6  2 8 210 212 214 216

Data set size

10 -4

10 -3

10 -2

10 -1

10 0

10 1

R
M

S
E

 o
f f

un
ct

io
n 

de
riv

at
iv

es

1=1, 2=0

1=1, 2=0.001

1=1, 2=0.01

1=1, 2=0.1

1=1, 2=1

1=1, 2=10

1=1, 2=100

1=1, 2=1000

1=0, 2=1

Figure 4.3: Root mean square errors of function derivatives with different ρ. The black
line/circle is the result from a ANNf; the blue line/circle is obtained from ANNd. The
ANN has architecture as 1-32-8-1.

the ANNs. For example, with ρ1 = 1 and ρ2 = 1, the ANNc with 28 training data

have similar performance compared with ANNf with 213, i.e. similar performance is

obtained with five orders of magnitude less training data. The better performance by

inclusion of derivative data means better generalization which indicates the derivative

data may help overcome over-fitting. Too small value of ρ2 may perform poorer than

larger value, e.g. ρ2 = 0.001 produces larger errors than ρ2 = 1 over all the data set

sizes.

The blue lines in Figure 4.2 and 4.3 are obtained from ANNd, which shows con-

sistently good performance for both function values and derivatives predictions. One

can think of ρ1 = 0, ρ2 = 1 to be identical to ρ1 = 1, ρ2 = ∞. Hence, larger ρ2 should

produce similar errors to ANNd, which is exactly what we observe here.

In summary, for one-dimensional functions, we have showed that ANNd performs

much better than ANNf with the same or much less amount of data. And, training with

derivative data may help to prevent over-fitting. Moreover, if we allow the predicted
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function values to have a common offset to the true function values, there is no need

to search a ρ2, since ANNd would not lose any accuracy. One more thing need to be

noticed is that the performance does not improve significantly even though the data

size increases dramatically after data size larger than 28.

4.4.2 Two Dimensional Sinc Function

We now test the 2D sinc function (Eq. 4.5). The derivatives of Eq. 4.5 are

∂z

∂x
= (

cosR

R
− sinR

R2
)× ∂R

∂x
∂z

∂y
= (

cosR

R
− sinR

R2
)× ∂R

∂y

(4.8)

It seems clear that the derivatives are in a more complex form than the original function.

We expect less improvement compared with the 1D functions. To see our neural net

works correctly, we first fit a significantly large data set. In specific, the training set

contains 2,000,000 data points and the validation set contains 200,000 data points.

These data points are randomly sampled from the domain x ∈ [−10, 10] and y ∈

[−10, 10]. The testing set (described in Section 4.2) has 10,000 data points and are

generated by sampling evenly from both x and y axis. The ANN architecture is 2-32-

8-1. The result is shown in Figure 4.4. It’s clear that our neural net is able to fit this

2D sinc function accurately. Note that the derivatives are of the same magnitude with

the function value.

Train with both Function Value and Derivative

Similar to the 1D function, we investigate the influence of coefficients ρ1 and ρ2 by

training the neural net with both function value and derivatives. Ten different training

sets have been generated with sizes as 2x, where x ∈ [8, · · · , 17]. The results for the

predictions of function value and derivatives are shown in Figure 4.5 and 4.6, respec-

tively.

With small data set size, e.g. 28, it turns out ANNf produces better results in

terms of function values but with worse function derivatives compared with ANNd. We

ascribe this observation to over-fitting caused by insufficient data points. With much
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Figure 4.4: Predicted function values and derivatives and the corresponding errors
of ANNs on two-dimensional sinc function. (A) The predicted function values; (B)
Testing errors of function values; (C) The predicted derivatives with respect to x; (D)
The testing errors of derivatives with respect to x; (E) The predicted derivatives with
respect to y; (F) The testing errors of derivatives with respect to y.
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Figure 4.5: Square root of variance of testing errors of function values with different
coefficients ρ1 and ρ2. The back line/cirle is the result from ANNf; the blue line/circle
is obtained from ANNd. The ANN has architecture 1-32-8-1.
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larger data set, the ANNc and ANNd outperform ANNf in most cases. For example,

with ρ1 = 1, ρ2 = 100, both RVE of function values and RMSE of function derivatives

are lower than 10−2, whereas the corresponding results for ANNf are more than 10−1,

which is an order of magnitude worse.

Besides, from Figure 4.5 and 4.6, the performance of ANNf improves only marginally

after the data set size larger than 215, whereas the ANNd and some of ANNc continually

achieve better and better results. This indicates a fundamental advantage of training

with function derivatives.

In terms of relative importance of ρ1 and ρ2, we observe that ANNc with ρ1 =

1, ρ2 = 100 has very similar performance compared with ANNd. This is also true for

one-dimensional functions (Figure 4.2 and 4.3).

4.5 Summary

In this chapter, we applied our ANNs on 1D and 2D numerical functions. The activation

function is chosen to be tanh, which is differentiable so that the analytic gradients of the

ANN can be readily computed according to Section 3.4. Different ANN architectures are

explored for the 1D functions. In addition, we also investigated the relative importance

of function values and derivatives during training process.

The results show that our ANNs can fit the considered functions to sufficiently high

accuracy. The usage of derivatives can significantly improve the performance of the

ANN in terms of predictions of both function values and derivatives. This conclusion

holds true for different ANN architectures.

In terms of the relative importance of function values and derivatives, i.e. magni-

tudes of ρ1 and ρ2, we found that ANNc with ρ1 = 1, ρ2 = 100 generally produces good

results. Moreover, if a common offset is allowed, artificial neural network with solely

function derivatives as the reference data (ANNd) predict accuracy function values and

derivatives. As a result, the selection of ρ1 and ρ2 may not be necessary in some cases.

In conclusion, the inclusion of function derivatives helps the ANN to achieve better

generalization. Experiments with inclusion of even higher order of derivatives may be
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pursued to further smooth the ANN.
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Chapter 5

Geometry Optimization of Hydrocarbon Molecules

5.1 Overview

To use machine learning techniques, e.g. artificial neural network, to predict molecular

energies, the key is to find a good molecular representation. ANNs for predicting molec-

ular energies are also referred to as neural network potentials (NNPs). As summarized

by Behler[44], there are several properties that such presentation should maintain to

make neural network potentials transferable. Those are:

1. Since the structure of a system and its energy remains unchanged upon these

operations, the molecular representation must be invariant with respect to trans-

lations and rotations of the system.

2. Any exchange of atoms of the same element, which is not at all restricted to

positions being equivalent by symmetry, must yield the same result.

3. It should provide a unique description of the atomic positions.

The molecular presentation approximated using symmetry functions, developed by

Behler and Parrinello, takes advantage of chemical locality and satisfies the above re-

quirements and has been applied to chemical studies[1]. A detailed description of a

modified version of symmetry functions by Smith et al.[2] is described in Section 5.2.2.

The computed molecular presentations are then fed into the neural network for training,

validation and testing.

In this chapter, we first introduce the concepts of symmetry functions and the

neural network architecture for potential energy. We then describes the generation

and representation of our data set. With a much smaller data set, we determined the
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optimal activation function. ANNs are then trained using energies or gradients. Finally,

the ANNs are combined with a optimization algorithm, e.g. Fletcher-Reeves conjugate

gradient, to perform molecular geometry optimization.

5.2 Theory

5.2.1 Neural Network Potential for Molecule

We applied Behler and Parrinello high-dimensional neural network potential model[1]

to represent the total energy ET of a molecule as a sum of atomic contributions Ei, an

approach that is typically used in empirical potentials.

ET =
∑
i

Ei (5.1)

Figure 5.1 shows the overall neural network potentials (NNP) for atomic energies

and molecular total energy. In short, an atomic environment vector (AEV), ~GXi =

{G1, G2, · · · , GM}, where ~GXi is for the i-th atom of a molecule with atomic number X,

is computed for each atom in a molecule based on symmetry functions (see below) to

describe the atomic environment of the interested atom. Those AEVs are then fed into

the corresponding networks according to their atomic number to predict the atomic

energies, whose summation is the prediction of the total energy.

5.2.2 Symmetry Functions

The symmetry function representation of each atom reflects the local environment that

determines its energy. It works as a molecule descriptor that describes the radial and

angular chemical environment of each individual atom. The formulas for the derivatives

of these symmetry functions are also dervied here.

To capture the energetically local atomic environment, a piece-wise cutoff function

of the inter-atomic distance Rij will be employed. Basically, cutoff function diminishes

as Rij increases and becomes 0 after a threshold value Rc. This implies atoms further
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Figure 5.1: Neural network potentials for atomic energy and molecular total energy
by Behler and Parrinello[1]. ~q, the Cartesian coordinates of the molecule, is used
to generate ~GXi , i.e. the atomic environment vector for atom i with atomic number
X. Each type of neural network popential (NNP) exists for each atomic number, e.g.
NNP(O) for oxygen and NNP(H) for hydrogen. The atomic environment vectors are
fed into the corresponding NNP to predict the atomic energies, which are summed to
generate the predicted total energy. (Figure is reconstructed from ref.[2])
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Figure 5.2: Different symmetry functions. (A) Radial symmetry functions; (B) Radial
symmetry functions with cutoff Rc = 6 Å; (C) Angular symmetry functions.

away from the interested atom would have less impact.

fc(Rij) =


0.5× [cos (

πRij

Rc
) + 1], if Rij ≤ Rc

0, otherwise.

(5.2)

Radial Symmetry Functions. Radial symmetry functions, introduced by Behler and

Parrinello, are constructed as a sum of Gaussians, multiplied by the cutoff function

(Eq. 5.3). Sample plots are shown in Figure 5.2A and 5.2B for without and with cutoff

function, respectively.

GRm =
all∑
j 6=i

e−η(Rij−Rs)2fc(Rij) (5.3)

The radial symmetry function is over a set of η and Rs hyper parameters, where the

former changes the width of the Gaussian distribution and the later shifts the center

of the peak. The summation over all neighbors j ensures the independence of the

coordination number, i.e. the dimension of the AEV depends only on the set of η and

Rs.

The partial derivative of GRi with respect to variable ~q is 0 if Rij > Rc. With

Rij ≤ Rc, and assuming qix is the x axis of the ith atom, then
∂Rij

∂qix
=

qix−qjx
Rij

and

∂GRi
∂qix

=
all∑
j 6=i

e−η(Rij−Rs)2(f ′c(Rij)− 2η(Rij −Rs)fc(Rij))×
1

Rij
× (qix − qjx) (5.4)
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Details of the derivation are shown in Appendix A.1. Similar results can be obtained

for qiy and qiz.

Angular Symmetry Functions. A modified version of angular symmetry functions,

introduced by Smith et al.[2], are constructed for all triplets of atoms by summing the

product of a radial and an angular factor (Eq. 5.5).

GAm =21−ζ
all∑
j,k 6=i

(1 + cos(θijk − θs))ζ

× e−η(
Rij+Rik

2
−Rs)2fc(Rij)fc(Rik)

(5.5)

The angular symmetry function is over a set of ζ, θs, η, and Rs, where η and Rs have

similar effects as in Eq. 5.3. The choices of ζ alter the width of the peak values, while

a set of θs let it probe specific region in terms of angular environment. Figure 5.2C

shows plots of angular symmetry functions with different θs. Apparently, by increasing

the number of θs, one can increase the resolution of the angular environment with the

penalty of a larger vector size.

The partial derivatives of GAi with respect to variable ~q are in much more complex

forms. Details are provided in Appendix A.2. Together with the derivatives of GRi

w.r.t. ~q, they are used for neural network training against gradients.

As pointed out by Behler and Parrinello[1], the choice of symmetry functions and

their parameters is not unique, and many types of functions can be used, as long as

the set of function values is suitable for describing the environment of an atom. We

adopted this modified version by Smith et al.[2] simply because they have showed it

worked well for chemical molecule energy prediction.

5.3 Dataset

5.3.1 Dataset Selection

In this thesis, we limit the scope of the chemical space to hydro-carbon molecules, which

contains only two atom types: hydrogen (H) and carbon (C). Since our goal is to perform

geometry optimization, it’s crutial to have accurate energy and gradient predictions

near the equilibrium conformations while lower accuracy is acceptable for conformations
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away from the equilibriums. Hence, we designed our data generation method (see below)

to bias structures close to the equilibrium conformations. To obtain the reference data,

we performed QM calculations with ORCA[53]. Geometry optimizations were carried

out with BP86 functional[54, 55], which is known to yield more realistic structural

parameters than hybrid functionals[56]. The basis set is 6-31G(d). Tight convergence,

increased integration grids (Grid4 in ORCA convention) and an unrestricted Kohn–

Sham method were used. All calculations are performed with neural charge in the

singlet spin state.

The original structures of our molecules come from the GDB–11 database[57, 58],

which collects all molecules of up to 11 atoms of C, N, O, and F possible under con-

sideration of simple valency, chemical stability, and synthetic feasibility rules. We use

the RDKit software package to convert the molecules in GDB–11, which are stored

in SMILES format, to 3D structures. In this work, we generate data from a subset

of the GDB–11 database containing only H and C. In addition, considering the giant

database, only molecules up to 9 atoms of C are included, which currently gives us

8,299 distinct molecules in total. For final testing purpose, 100 molecules with 11 C

atoms are randomly chosen from the GDB-11 database.

5.3.2 Dataset Generation

From the 8,299 distinct molecules, we need to generate a data set in which the struc-

tures near the equilibrium structure are sufficiently sampled. Different sampling meth-

ods have been proposed, e.g. quantum mechanical molecular dynamics (QMMD)

simulation[59] and Normal Mode Sampling[2]. In this work, we applied a much simpler

stochastic approach to fulfill the needs.

Specifically, for each molecule obtained and converted from the GDB–11 database,

the following steps are applied:

1. Optimize the molecule structure using quantum chemical (QM) calculations.

2. Starting from the optimized structure, generate K structures for the molecule.

Each set of coordinates is generated by randomly sampling for each atom within
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Figure 5.3: Distributions of randomly generated data points. (A) Theoretical proba-
bility density of randomly generated points fall between ith and (i− 1)th spheres. (B)
Corresponding experimental probability (histogram) of the generated coordinates. The
ith sphere in A corresponds to a sphere with radius 0.0005× i Å in B with the atom’s
original position being the center.

a radius r. Currently, we set R = 0.15 Å and split it into K = 300 intervals

evenly, i.e. r ∈ [0.0005, 0.001, · · · , 0.15] Å. A new set of coordinates is generated

with each r. For example, with r = 0.001 Å, the new coordinate of O in H2O

would be a random point within 0.001 Å from the original position of O (the same

goes for the two H’s).

3. Calculate the energy and gradients for each of the generated structure.

The philosophy behind the described data set generation is that it allows more data

points near the optimal structures. To see this, we can compute the corresponding

theoretical probability density. Suppose the interval length is d, it’s easy to show that

p(Ei) = [i3 − (i− 1)3]× (
1

i3
+

1

(i+ 1)3
+ · · ·+ 1

K3
) (5.6)

where i indicates the ith interval, K is the total number of considered intervals (K =

300), and p(Ei) is the probability of Ei, which indicates an event that a randomly

generated point falls between two spheres with radius i × d and (i − 1) × d (with the

original position of the atom being the center). A plot of p(Ei) is shown in Figure 5.3A.
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Figure 5.4: Experimental probability (log scale) of the energy gaps of the generated
structures.

A corresponding histogram of our generated coordinates of molecules is shown in

Figure 5.3B. Clearly, the experimental probability closely reproduces the theoretical

prediction. By comparing the energies of the randomly generated structures with the

corresponding optimal structure, we obtain a plot describing the probability with re-

spect to energy differences (Figure 5.4A). In addition, the distribution of the Cartesian

gradient is shown in Figure 5.4B. As a result, more data points are generated closer to

the equilibrium. In this way, we expect the trained neural net to have better precision

in terms of prediction when it’s close to the optimal structures. When the structure is

away from the optimal structure, we are not so concerned about the precision of the

prediction as long as the predicted gradients point the structure to the right direction.

This approach generates 2,489,700 conformations in total. To train the ANNs using

the energy or gradient data, 80% of individual set of random conformations for each

molecule is used for training, while 10% for validation and the remaining 10% for testing.

5.4 Method

Detailed descriptions of the ANN implementation are shown in Chapter 3. Each model

for each training set is trained 5 times, the best of which is chosen. Here we summarize

the hyper parameters used in current work.
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Table 5.1: Hyper parameters for the symmetry functions.
Parameters Values Units

Radial
Rc 4.600 Å
η 98.88 –
Rs [r, 2r, · · · , NRr], r = 0.1438, NR = 32 Å

Angular

Rc 3.100 Å
ζ 31.03 –
θs [0, θ, 2θ, · · · , (NA − 1)θ], θ = 0.7854, NA = 8 rad
η 13.61 –
Rs [r, 2r, · · · , NAr], r = 0.3875, NA = 8 Å

Atomic environment vector. For symmetry functions (Table 5.1), the cutoff radii

for radial and angular symmetry functions are chosen to be 4.6 and 3.1 Å based on the

distribution of atomic distances[2]. Radial and angular Rs and θs are chosen such that

they are equally spaced with interval r = Rc
N (N = 32 for radial and 8 for angular), θ =

π
N (N = 8). We use Eq. 5.7 to determine the values of η and ζ. In our implementation,

we set h = 0.6, which indicates two adjacent functions intersect at height 0.6, hence

they overlap slightly.

η = −4 log (h)

r2

ζ =
log (h/2)

log (1+cos(θ/2)
2 )

(5.7)

We also adopted the approach proposed by Smith et al.[2] to differentiate between

atomic numbers in the AEV through supplying a radial part for each atomic num-

ber and an angular part for each atomic number pair in the local chemical environ-

ment. For example, for molecules with C and H, the AEV for C will be in the form of

{GR,CC, GR,CH, GA,CCC, GA,CCH, GA,CHH}, where GR,CC indicates the radial part con-

cerning only carbon and GA,CCH indicates the angular part concerning a carbon and

hydrogen pair. This approach leads to AEV with dimension O(N2), where N is the

number of atom types. The generation of AEVs is also powered by GPU.

ANN architecture. With NR = 32 and NA = 8, the input for the ANNs has

dimension 256. For both C and H, the ANN architectures are chosen to be 256-128-

128-64-1.

The cost function is the root mean squared error (RMSE) of both molecular energies

and gradients (J = ρ1Jf +ρ2Jd). The relative importance of the energies and gradients
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Figure 5.5: Performance of different activation functions on samples of butane. The
lines are validation errors along the training epochs and the circles on the right side are
the final testing errors.

are tuned by setting ρ1 and ρ2. There is one benefit of this cost function for gradients.

To see this, suppose the predicted Cartesian gradients for an atom is ĝp = (gxp, gyp, gzp)

with the true values being ĝt = (gxt, gyt, gzt), then the cost function for gradient part

is
√

(gxp − gxt)2 + (gyp − gyt)2 + (gzp − gzt)2. Note that ĝp − ĝt = (gxp − gxt, gyp −

gyt, gzp − gzt), so the effect of the cost function is equivalent to minimize the length of

a vector ĝp − ĝt instead of the 3 dimensional Cartesian gradients. This is considered to

be computationally efficient.

5.5 Results and Discussion

5.5.1 Selection of Activation Function

There are quite a few activation functions at our disposal, e.g. tanh, sigmoid, gaussian,

etc. We trained ANNs with various activation functions for 10,000 randomly generated

butane conformations (C4H10). The cost function is based on molecular energies only.

The result is shown in Figure 5.5. Sigmoid activation function tends to reduce the cost
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Figure 5.6: Plots of errors of the training, validation, testing, and 100 randomly GDB-11
(molecules with 11 heavy atoms) versus increasing data set size.

function very fast at the early stage but is beaten by tanh in the long run. Hence,

tanh is chosen for later experiments. Some activation functions, e.g. rectified linear

unit (RELU), are not differentiable, hence may introduce some complexity if used in

training with gradients as the reference data.

5.5.2 Performance of ANNf

We now train ANN using tanh as the activation function with only molecular energies

as the reference data, i.e. ANNf. Figure 5.6 shows how the RMSE of our ANN potential

to reference DFT energies decreases as the number of distinct molecules grows in the

training set. The performance improvement is significant when number of data points

is small. With about 2 million data points (training set contains molecules up to 9

carbon atoms), ANNf achieves RMSE 3.6 kcal/mol for GDB-11 test set.

In order to compare the predicted gradients (gANN) with the gradients from DFT
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Figure 5.7: Performance of gradient prediction versus training size. The y axis stands
for ratio of L2 norm of the differences between predicted and true gradients to L2 norm
of the sum of both gradients.

calculations (gDFT), we consider the relative error defined by the ratio of L2 norm of

the differences to that of the sum of both gradients:

rL2 =
‖gANN − gDFT‖
‖gANN + gDFT‖

(5.8)

Apparently, rL2 is close to 0 when gANN is close to gDFT, and rL2 becomes larger

when gANN is very different from gDFT. Figure 5.7 shows the rL2 versus training size.

Again, the largest training data set size gives the best result with rL2 ≈ 0.05.

5.5.3 Selection of ρ1 and ρ2

The data set size increases rapidly as the number of structures increases and ANNc/ANNd

training is much slower, hence we first investigate the relative importance of energy and

gradients, i.e. ρ1 and ρ2, with molecules up to 4 carbon atoms, which gives us about

4.8× 103 energy data points and 1.4× 105 gradient data points. The measure of RVE
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Figure 5.8: Performance in terms of energy and gradient predictions of ANNc with
different ρ2. ρ1 is set to be 1. The training data set contains 80% molecules up to 4
carbon atoms. The testing data set is another separated 10% data with up to 4 carbon
atoms.

(Section 4.3.2) may not be available for molecular energy predictions because multi-

ple NNPs are involved for different number of times. Hence, we simply use RMSE to

describe the error in terms of energy predictions. For gradient, we use rL2 (Eq. 5.8).

Figure 5.8 shows the results with ρ1 = 1 and various ρ2. With very small ρ2, both

energy and gradient predictions are not good. With very large ρ2, which means the

effect of gradients is significant, we obtain accurate gradient prediction while the energy

prediction starts getting worse. We choose ρ1 = 1, ρ2 = 100 as the setting for further

ANN training with larger data set, since it gives the lowest errors for both energy and

gradient predictions, 0.1 kcal/mol and 7.9 × 10−3, respectively. Note that, the testing

is not against the GDB-11 testing data.

For ANNd, i.e. ρ1 = 0, ρ2 = 1, the RMSE of energy is huge, whereas the rL2 ≈

8.7× 10−3, which is slightly higher than the corresponding ratio 7.9× 10−3 with ρ1 =
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Table 5.2: Performance of ANNc with ρ1 = 1, ρ2 = 100 on GDB-11 testing data. The
first three training set contains up to 4, 5, and 6 carbon atoms. The last training set
contains all energy data points of molecules up to 9 carbon atoms.

Training Set GDB-11 Testing

Energy data Gradient data RMSE of energy (kcal/mol) rL2

4.8× 103 1.4× 105 > 600 0.983
1.2× 104 4.2× 105 49.3 0.494
3.6× 104 1.5× 106 16.8 0.0954
2.0× 106 0 3.6 0.05

1, ρ2 = 100. Hence, ANNd models are no longer considered below.

Moving forward, train our ANNc with larger data set applying ρ1 = 0, ρ2 = 100

and test again the GDB-11 data to verify the generalization property of our ANN. The

results are shown in Table 5.2.

Clearly, as the size of the data set increase, better performance is achieved. What’s

surprising is that with data of molecules containing only up to 6 carbon atoms, the

ANNc reaches similar accuracy in terms of gradient prediction with ANNf trained with

all energy data of molecules containing up to 9 carbon atoms. This is remarkable,

since molecules with up to 6 carbon atoms cover much less conformation space. It

indicates that the inclusion of gradient as part of the reference data greatly improves

the generalization of the ANN. Most likely, the reason that ANNf performs better is it

covers significantly more conformation space.

Figure 5.9 shows a more comprehensive comparison in terms of gradient prediction.

One issue with current ANN models is that the gradient predictions have large variations

when the true gradient is small, i.e. near the equilibrium state.

5.5.4 Molecular Geometry Optimization by ANN

In this section, we perform molecular geometry optimization on 100 randomly generated

structures from GDB-11 data set. Those structures are generated according to the

method described in Section 5.3.2 with r = 0.15 and K = 1. The ANN is chosen to

be ANNf with all energy data obtained, since it outperforms other models. Fletcher-

Reeves conjugate gradient algorithm (implemented in GNU scientific library) is used for

the optimization process. The geometry optimization is performed with max iteration
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Figure 5.9: Performance in terms of gradient predictions of (A) ANNc with ρ1 = 1, ρ2 =
100 using energy and gradients data points of molecules up to 6 carbon atoms. (B)
ANNf with energy data points of molecules up to 9 carbon atoms. The x axis is the
magnitude of the true gradients. The y axis is rL2 .

200. The measurement of the performance is the root mean square deviation (RMSD)

between the optimized structure using DFT and the final structure using ANN. The

RMSD is computed based on Kabsch algorithm.

5 of the 100 structures converge within 200 iterations. The average RMSD is 0.047

Å. This result is expected, since the gradient predictions do not work very well (Figure

5.9). We did another testing by perform molecular geometry optimization on ran-

domly generated structures having 9 carbon atoms with r = 0.15 and K = 1. 20 of

100 structures converge within 200 iterations with mean RMSD around 0.038 Å. The

performance is better because the conformation space is more extensively explored for

molecules with 9 carbon atoms.

We closely studied the geometry optimization process of the GDB-11 testing data

set by investigating the changes of RMSD during the optimization processes (Figure

5.10).

One structure (row 2, column 1) diverges from the optimal structure from the very

beginning. This may be caused by insufficient sampling of the conformation space.

The RMSD of most other structures actually first reduce to a fairly low value (< 0.05

Å). However, instead of converging to the equilibrium structures, their RMSDs keeps

increasing after passing the lowest point. This is most likely caused by poor predictions
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Figure 5.10: 12 randomly chosen geometry optimization processes from the GDB-11
testing data. The y axis is RMSD Å compared with the optimal structures.
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near the equilibrium (Figure 5.9).

5.6 Summary

In this chapter, we described the theoretical background of NNP and symmetry func-

tions, data set generations, and details of ANN for chemical molecules. We applied

three kinds of ANNs, i.e. ANNf, ANNd, and ANNc, on molecules to predict energies

and gradients.

The inclusion of gradients greatly improves the performance of the ANNs, similar

to result in Chapter 4. With data points of molecules with up to 6 carbon atoms,

we have trained an ANNc model (ρ1 = 1, ρ2 = 100) that achieves closely accuracy

compared with an ANNf model trained with all energy data points of molecules with

up to 9 carbon atoms. The inclusion of gradients as the reference data boosts the

generalization of the ANN, which makes it more transferable.

We have performed molecular geometry optimization using the trained ANN. How-

ever, only 5% of the GDB-11 testing structures converge. This is mainly caused by the

poor prediction of gradients around the equilibrium, since the square error cost function

leads to a situation where data with larger magnitude produces larger cost. Further

investigation may consider a different cost function in terms of gradients such that the

cost increases as the gradients become smaller. Moreover, the accuracy of the ANN

depends heavily on the data used during training. Thus, new molecules will improve

the transfer-ability of the ANN.
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Chapter 6

Concluding Remarks and Future Directions

In this thesis, molecular energy and gradient predictions are studied extensively. Molec-

ular geometry optimization by artificial neural network is realized.

A detailed description of back propagation with either function values and deriva-

tives is summarized in Chapter 3. ANN has been implemented in CUDA C++ from

scratch, accelerated by CUBLAS library. Both function values and derivatives can be

treated as reference data points. We tested our ANNs on known 1D and 2D numerical

functions. The considered functions are predicted with sufficiently high accuracy. As

for the relative importance of function values and derivatives, we found that function

values are not required for those simple function forms if one is only interested in ob-

taining accurate accuracy. The predicted function values by ANN trained with only

function derivatives differ from the true values by a constant offset.

To train an ANN for molecular energy prediction, we have adopted a modified

version of symmetry functions proposed by Smith et al.[2] as the molecular descriptor.

On one hand, the inclusion of molecular gradients greatly improve the performance

of the ANN. On the other hand, ANN trained with significantly more energy data

points outperforms other models and hence is used for molecular geometry optimization.

Experiments with inclusion of even higher order of derivatives may be pursued to further

smooth the ANN.

Our ANN is able to converge a small portion of the GDB-11 testing structures,

which are beyond the training data set. However, the gradient prediction near the

equilibrium is not sufficiently accurate. As a result, a large percentage of the GDB-11

testing structures passed the equilibrium but eventually diverge from the optimal points

during geometry optimization.



49

Further experiments would focus on providing new molecules for the training pro-

cess. Another focus may be put on the cost function in terms of gradients. A cost

function whose values increase as the molecular gradients get smaller may help train

ANN to achieve better accuracy near equilibrium and hence make it easier to converge.

Current optimization algorithm (Fletcher-Reeves conjugate gradient) does not utilize

the molecular energies to assist the optimization process. More sophisticated optimiza-

tion should be tested and compared. Alternatively, one can combine the ANN with an

existed QM package, such as ORCA. One could even train an ANN to directly mimic

the geometry optimization performed by QM packages. There are many things to be

done and can be done. The present work should be able to provide a good starting

point.
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Appendix A

Derivatives of Symmetry Functions

Here we derive the formulas for the derivatives of symmetry functions (equation 5.3

and 5.5) with respect to qix, which is the Cartesian coordinate of the ith atom along

the x axis. Similar results also apply to qiy and qiz, where i denotes the ith atom of

a molecule and x, y, z denote the Cartesian coordinates. For the readers reference, we

restate the radial and angular symmetry functions here

GRm =
all∑
j 6=i

e(−η(Rij−Rs)2fc(Rij)

GAm = 21−ζ
all∑
j,k 6=i

(1 + cos(θijk − θs))ζ

× e−η(
Rij+Rik

2
−Rs)2fc(Rij)fc(Rik)

(A.1)

A.1 Derivatives of Radial Symmetry Function

We have Rij =
√

(qix − qjx)2 + (qiy − qjy)2 + (qiz − qjz)2, therefore
∂Rij

∂qix
=

qix−qjx
Rij

. As

for the derivative of GRi with respect to qix, we have

∂GRi
∂qix

=
all∑
j 6=i

e−η(Rij−Rs)2(f ′c(Rij)− 2η(Rij −Rs)fc(Rij))×
∂Rij
∂qix

=
all∑
j 6=i

e−η(Rij−Rs)2(f ′c(Rij)− 2η(Rij −Rs)fc(Rij))×
qix − qjx
Rij

=
all∑
j 6=i

g(Rij)× (qix − qjx)

(A.2)

where we define

g(Rij) = e−η(Rij−Rs)2(f ′c(Rij)− 2η(Rij −Rs)fc(Rij))×
1

Rij
(A.3)
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The partial derivative of GRj , where j 6= i, with respect to qix is

∂GRj
∂qix

= g(Rij)× (qix − qjx) (A.4)

We can readily see that

∂GRi
∂qix

=
all∑
j 6=i

∂GRj
∂qix

(A.5)

A.2 Derivatives of Angular Symmetry Function

First, we have θijk = arccos (
R2

ij+R
2
ik−R

2
jk

2RijRik
), which gives us

θijk
∂qix

=
−1√

1− (cos θijk)2
(
Rij

∂Rij

∂qix
+Rik

∂Rik
∂qix

RijRik
−
R2
ij +R2

ik −R2
jk

2(RijRik)2
(Rik

∂Rij
∂qix

+Rij
∂Rik
∂qix

))

=
−1√

1− (cos θijk)2
((

1

RijRik
−

cos θijk
R2
ij

)× (qix − qjx) + (
1

RijRik
−

cos θijk
R2
ik

)× (qix − qkx))

(A.6)

We define A(θijk) = 1 + cos (θijk − θs) and A(Rijk) = e−η(
Rij+Rik

2
−Rs)2fc(Rij)fc(Rik),

and the partial derivatives of A(θijk) and A(Rijk) with respect to qix are

∂A(θijk)

∂qix
= − sin (θijk − θs)×

∂θijk
∂qix

∂A(Rijk)

∂Rij
= fc(Rik)[f

′
c(Rij)− η(

Rij +Rik
2

−Rs)fc(Rij))e−η(
Rij+Rik

2
−Rs)2 ]

∂A(Rijk)

∂Rik
= fc(Rij)[f

′
c(Rik)− η(

Rij +Rik
2

−Rs)fc(Rik))e−η(
Rij+Rik

2
−Rs)2 ]

∂A(Rijk)

∂qix
=
∂A(Rijk)

∂Rij
× qix − qjx

Rij
+
∂A(Rijk)

∂Rik
× qix − qkx

Rik

(A.7)

And finally we have

∂GAi
∂qix

= 21−ζ
all∑
j,k 6=i

ζAζ−1(θijk)A(Rijk)×
∂A(θijk)

∂qix
+Aζ(θijk)×

A(Rijk)

∂qix

=

all∑
j,k 6=i

A1(Rijk)× (qix − qjx) +A2(Rijk)× (qix − qkx)

(A.8)
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where

A1(Rijk) = 21−ζ [ζAζ−1(θijk)A(Rijk)
sin(θijk − θs)√
1− (cos θijk)2

(
1

RijRik
−

cos θijk
R2
ij

)

+Aζ(θijk)
∂A(Rijk)

∂Rij
× 1

Rij
]

A2(Rijk) = 21−ζ [ζAζ−1(θijk)A(Rijk)
sin(θijk − θs)√
1− (cos θijk)2

(
1

RijRik
−

cos θijk
R2
ik

)

+Aζ(θijk)
∂A(Rijk)

∂Rik
× 1

Rik
]

(A.9)

Now consider the partial derivative of GAj , where j 6= i. It’s straightforward to obtain

∂GAj
∂qix

= 21−ζ
all∑

k 6=i,j
ζAζ−1(θjik)A(Rjik)×

∂A(θjik)

∂qix
+Aζ(θjik)×

∂A(Rjik)

∂qix

=
all∑

k 6=i,j
A1(Rjik)× (qix − qjx) +A2(Rjik)× (qix − qkx)

(A.10)

where

θjik = arccos (
R2
ji +R2

jk −R2
ik

2RjiRjk
)

A(θjik) = 1 + cos (θjik − θs)

A(Rjik) = e−η(
Rji+Rjk

2
−Rs)2fc(Rji)fc(Rjk)

(A.11)

The corresponding derivatives are

∂A(θjik)

∂qix
=

sin(θjik − θs)√
1− (cos θjik)2

((
1

RjiRjk
−

cos θjik
R2
ji

)× (qix − qjx)− 1

RjiRjk
× (qix − qkx))

∂A(Rjik)

∂qix
=
∂A(Rjik)

∂Rji
× ∂Rji
∂qix

= fc(Rjk)[f
′
c(Rji)− η(

Rji +Rjk
2

−Rs)fc(Rji)e−η(
Rji+Rjk

2
−Rs)2 ]× qix − qjx

Rji

(A.12)

And A1(Rjik) and A2(Rjik) can be obtained as

A1(Rjik) = 21−ζ [ζAζ−1(θjik)A(Rjik)
sin(θjik − θs)√
1− (cos θjik)2

(
1

RjiRjk
−

cos θjik
R2
ji

)

+Aζ(θjik)
∂A(Rjik)

∂Rji
× 1

Rji
]

A2(Rjik) = −21−ζζAζ−1(θjik)A(Rjik)
sin(θjik − θs)√
1− (cos θjik)2

1

RjiRjk

(A.13)
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