
AUTONOMOUS MOBILE ROBOT
NAVIGATION WITH GPU

ACCELERATION FOR UNMANNED
UV-C BASED DECONTAMINATION

APPLICATIONS

By

BIRJU JITENDRA VACHHANI

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Mechanical and Aerospace Engineering

Written under the direction of

Qingze Zou

And approved by

New Brunswick , New Jersey

[JANUARY 2019]

ABSTRACT OF THE THESIS

AUTONOMOUS MOBILE ROBOT NAVIGATION WITH GPU ACCELERATION

FOR UNMANNED UV-C BASED DECONTAMINATION APPLICATIONS

By BIRJU JITENDRA VACHHANI

Thesis Director :

Qingze Zou

Navigation is a complex robotic problem solving which makes the mobile robot intel-

ligent for decision making in dynamic environments. The objective of this thesis is

to achieve autonomous mapping and navigation of a 2D environment for unmanned

decontamination and sterilization of rooms in facilities such as hospitals and hotels,

where UV-based degermination system is carried by a four-wheeled robot during the

navigation. The challenge arises from the intensive online computation needed in the

navigation process, as a Light Detection and Ranging (LiDAR) system is employed for

Simultaneous Localization and Mapping (SLAM) and obstacle detection, and occu-

pancy grid is employed as the data structure to represent surrounding environments in

robotics. However, path planning on an occupancy grid is computationally intensive.

For example, path planning on a 25m x 25m grid can involve processing of 250,000

grid cells on a 0.05m resolution grid. In this project, we developed a parallel compu-

tation framework to substantially reduce the processing times, and thereby, achieve

dynamic obstacle avoidance and autonomous exploration. Specifically, a obstacle in-

flation module was created using parallel computing. Building on that, a graph based

path planner was also developed for autonomous as well as user instructed navigation.

The system was thoroughly tested in various static and dynamic indoor environments.

ii

ACKNOWLEDGEMENT

I would like to take this opportunity to thank all the people who made my stay at

Rutgers University as a graduate student very pleasurable.

Firstly , I would like to thank my Graduate Adviser Dr. Qingze Zou, for giving me

all the necessary support for completing this project smoothly and making the ex-

perience that of a great learning. I would also like to thank Dr. Xiaoli Bai and Dr.

Aaron Mazzeo for being in the thesis committee.

I would also like to thank all my friends who made the academic life at Rutgers

University very enjoyable. I am also thankful to Mr. Paul Pickard and Mr. John

Petrowski for teaching me the valuable machine shop skills and etiquettes.

Lastly, I would like to thank my parents and my sister for their mental support

to complete my education in the United States. No acknowledgement is complete

without thanking them for their support.

iii

Contents

ABSTRACT OF THE THESIS ii

ACKNOWLEDGEMENT iii

List Of Figures vii

List of Algorithms x

1 Introduction 1

1.1 Motivation . 1

1.1.1 UV-C Decontamination and Sterilization Application 1

1.1.2 Approach . 2

1.2 Literature Review . 3

1.2.1 Robot Mapping and Simulataneous Localization & Mapping

(SLAM) . 3

1.2.2 Obstacle Avoidance . 4

1.2.3 Path Planning . 4

1.2.4 Autonomous Exploration . 6

2 System Description 7

2.1 Mechanical Structure . 7

2.2 Electronic components . 8

iv

2.3 Embedded System . 10

2.4 Software . 10

2.4.1 Robot Operating System (ROS) 10

2.4.2 Compute Unified Device Architecture (CUDA) 11

2.5 Hector SLAM . 11

3 Navigation System 12

3.1 Light Detection and Ranging (LiDAR) Sensor 12

3.2 Occupancy Grid Maps . 13

3.3 Hector SLAM . 17

3.4 Obstacle Inflation (Costmap) . 18

3.5 Obstacle Detection & Integration . 19

3.5.1 Voxel Filter . 19

3.5.2 Selective Updating of the Occupancy Grid 20

3.6 Path Planning . 21

3.6.1 Planning Problem Formulation 21

3.6.2 Graph Edge Weight Calculations 22

3.6.3 Shortest-Path Algorithms . 24

3.7 Autonomous Exploration . 28

3.7.1 Sobel Edge Detection . 28

3.7.2 GPU Acceleration . 31

3.7.3 Frontier Detection . 31

3.8 Kinematics . 33

3.8.1 Robot Pose . 33

3.8.2 System Description . 34

3.9 Feedback Control . 36

3.9.1 Following a Point . 36

3.9.2 Following a trajectory . 38

v

4 Simulation & Experimental Results 40

4.1 Simulation Environment . 40

4.2 Obstacle Inflation . 40

4.2.1 Experimental . 41

4.2.2 Obstacle Detection . 41

4.3 Path Planning . 42

4.3.1 Dijkstra’s Algorithm . 43

4.3.2 A* Algorithm . 44

4.3.3 Run Time . 44

4.4 Autonomous Exploration . 46

4.4.1 Simulation Results . 46

4.4.2 Experimental Results . 46

4.4.3 Run Time . 46

4.5 Controller . 47

5 Conclusion & Future Work 51

A Mathematical Derivations 55

A.1 Hector Scan Matching . 55

A.1.1 Map Access . 55

A.1.2 Scan Matching . 56

A.2 Extended Kalman Filter . 57

A.2.1 Odometry Estimate . 57

A.2.2 Measurement Update . 59

vi

List of Figures

1.1 Current systems used for UVC degermination , (right) usage in hospital

environment . 2

2.1 Torch Robot . 8

2.2 Embedded System . 9

3.1 RpLIDAR Sensor . 13

3.2 LiDAR Output . 14

3.3 Simple Example of an Occupancy Grid , left figure is the Real world

with objects in it, right figure is the corresponding Occupancy Grid

Representation. 15

3.4 Occupancy Grid Output of the Room 16

3.5 Hector SLAM 2D subsystem [Image source : [2]] 17

3.6 Obstacle Inflation example, black solid lines is the map , shaded grey

part is the inflated region . 18

3.7 Point Cloud Comparision , left side figure is the normal point cloud

and right side is the filtered cloud . 20

3.8 Figure shows the effect of the angle modification according to the

Robot’s pose while building the graph 24

3.9 Example of Exploration Frontier . 29

3.10 Calculation of Sobel operator in different regions in map 30

vii

3.11 (top)original map, (bottom)Result of the sobel operator on the whole

map, gray areas shows transition into unknown area 31

3.12 GPU acceleration for froniter detection 32

3.13 Robot position description in Local and Global reference frame 35

3.14 Robot pose error for followring a point 36

4.1 Simulation Environment . 41

4.4 Obstacle in front of the Robot (not in LiDAR’s field of view) 41

4.2 Obstacle Inflation Result (White Spaces is the obstacle free space) . . 42

4.5 Obstacle Detected by the Camera added to the occupancy grid , (topleft)

Result without Camera (topright)Result with Camera, (bottom) Voxel

Filter imposed on the Occupancy Grid for visualization 42

4.3 Partial Map of the Rutgers University Engineering A-Wing Building

(Floor 2) as a result of the Hector SLAM and Obstacle Inflation module 43

4.6 Result of Dijkstra’s path planner (Black Circle is the start position &

Green circle is the goal position) . 44

4.7 The replanning process, the top right figure shows that the planner

detects an obstacle on the path and replans the path as seen in the

bottom left figure. The bottom right figure shows the result of search

of new goal position in the vicinity of the original goal for replanning 45

4.8 A* path planning , left figure shows the result with Euclidean distance

as heuristic and the right figure is for Manhattan Distance Heuristic . 45

4.9 Path planning to the Frontiers Detected by the Autonomous Explo-

ration Algorithm . 48

4.10 Path planning to the Frontiers Detected by the Autonomous Explo-

ration Algorithm in the Lab surrounding 49

4.11 Controller Performance , black for is the initial position, red curve is

the planned path & blue curve is the actual path 50

viii

5.2 Reference Square for testing . 53

5.1 Robot in Hallway . 53

A.1 Closest Integers from the point Pm 56

ix

List of Algorithms

1 Occupancy Grid Mapping . 16

2 Selective Obstacle Update . 20

3 Dijkstra’s Algorithm . 26

4 A* Algorithm . 27

5 Autonomous Exploration . 32

6 Trajectory following . 39

x

1

Chapter 1

Introduction

1.1 Motivation

1.1.1 UV-C Decontamination and Sterilization Application

It has been long established that UV-C light has application for decontamination in

settings like lab, hospitals and hotels to remove disease carrying airborne microbial

organisms. Currently, such systems , as shown in figure 1.1 , has a tower type struc-

ture containing the UV-C lights 1. These towers are human operated and monitored

continuously. For efficiency , they can be remote operated too. But with the current

progress in the robotic research , specially in indoor environments , this task can be

done in an autonomous manner. Automation of this task will assist the personnel

and the organization in achieving higher operational efficiency in large environments ,

specifically hotels. Upgrading the current systems to make them autonomous broadly

required completion of two tasks :

• To upgrade the current wall charged system to battery operated for unconstrained

navigation

• To make the UV-C degermination application completely autonomous which re-

1http://www.clordisys.com/torch.php

2

Figure 1.1: Current systems used for UVC degermination , (right) usage in hospital
environment

quires minimal human intervention.

Here the autonomy means, that the robot should be able to map the surrounding

environment by itself and then prompt the user to input goal locations for UV-C

treatment and then navigate to those points autonomously while avoiding obstacles

on the way.

1.1.2 Approach

The navigation task can be broken down in four sub tasks : Mapping and Localization,

Autonomous Exploration, Obstacle Avoidance and Path Planning. The most basic

task is the represenation of the surroundings using SLAM , building on which the

other three modules were created. The decision for selecting specific methods for

each task is discussed in the next section.

3

1.2 Literature Review

1.2.1 Robot Mapping and Simulataneous Localization & Map-

ping (SLAM)

Robot Mapping research is broadly classified by two approaches : Metric and Topolog-

ical [9]. One of the metric approach is Occupancy grid mapping [10],[11],[12] , which

is a discrete representation of the map using finely spaced grid. The topological ap-

proach focuses on representing maps by connected objects with the connecting edges

giving the information on how to reach from one location to other [13],[14]. Majority

of the research in the robot mapping has been devoted to the probabilistic approach

[4], specifically in solving the problem of simultaneous localization and mapping . The

SLAM algorithms are broadly based on Extended Kalman Filter (EKF) SLAM[17],

Graph SLAM or Fast SLAM[16] (based on particle filter [3]). In EKF SLAM , the

map is stored as a vector containing either the occupancy probability values in Oc-

cupancy Grid methods or as landmark states in feature based SLAM. The map is

stochastic and is created by predicting (motion model) and updating (measurement

model) using EKF algorithm. All the variables are Gaussian variables (unimodel

distribution). Graph SLAM consists of creating pose-graph structures where nodes

of the graph are the poses and the connecting edges represent the sensor readings

which constraints the two nodes. The problem of Graph SLAM is to find the set

of node configurations which has the least error with respects to the measurements.

FastSLAM uses Rao-Blackwellized particle filter to estimate robot poses and each

particle uses EKF to maintain the state of observed landmark. Since each particle

maintains a set of map, the memory requirement is too high for such filters. Such

non-parametric filters have the advantage of not being constrained to unimodel distri-

bution for its variables and hence they are better at representing non-linear systems

compared to EKF. The advantage of EKF SLAM is that it is computationally faster

4

and for smaller environments the accuracy of EKF SLAM does not suffer as much

as for larger environments. Some other extensions also represent the maps using the

raw sensor measurements [15],[2]. For this work , EKF based SLAM called Hector

SLAM is used for creating maps.

1.2.2 Obstacle Avoidance

There are various online and offline obstacle avoidance algorithms in literature and

in practice. Algorithms like Bug algorithms[18], Virtual Potential Field methods

[19],[20], Vector Field Histogram method [21],[22],[23] & bubble band technique [24]

are some of the well known algorithms for real time obstacle avoidance. Bug Algo-

rithms are suggested when used with ultrasound sensor , however the path planned is

usually not optimal and prone to high sensor noise. Virtual Potential field methods

are easier to implement and are more intuitive but can prove to be very computa-

tionally intensive in narrow passages. Vector field histograms are more robust when

using with occupancy grids since they consider sensor noise and kinematics, but they

are computationally more intense. In this work , a combination of offline and online

obstacle avoidance method is proposed. The offline version inflates all the obstacles

in the map. This acts as the input to the path planner. The online version checks

for obstacles on the intended path of the robot using depth sensors. The proposed

method not only outputs optimal path, but it also has a wider field of view compared

to a single 2D Laser range sensor. Due to need of frequent re-planning of path in case

of detection of obstacles, this method demands use of computationally faster path

planning methods.

1.2.3 Path Planning

Path Planning methods are broadly based classified in to two types : Deterministic

(or Metric) & Probabilistic. The Metric planner are useful on Grid based map repre-

5

sentation , specially in 2D navigation problems. Some of the widely used algorithms

are Dijkstra’s Algorithm[25] , A* Algorithm [26] & Wavefront Planning [27]. Dijkstra

and A* algorithm are graph based methods. Dijkstra’s algorithm finds the shortest

distance from source to goal location. It picks the unvisited nodes with the minimum

distance, calculates the distance through it to each unvisited neighbor, and updates

the neighbor’s distance if smaller. A* algorithm is similar , however it uses heuric-

tic function values to pick the unvisited node with minimum distance. Wavefront

planner explores all the cell in the grid map and assigns the distance from the start

node as it visits them. Once the goal location is reached, it calculates the path by

back tracking through the adjacent cells. Other methods are probabilistic methods

like Rapidly-Exploring Random Trees (RRT) [28] & Probabilistic Roadmap (PRM)

[29]. RRT creates a tree by exploring in random direction from the start location

until the goal location is reached. In PRM , points are sampled randomly in the

free configuration space and they are connected to the nearest location in the graph

of nodes created so far until it reaches goal location. The probabilistic methods are

usually the only effective methods in higher configuration spaces but they take higher

computational time. Efficient Extensions for RRTs with lower computation times

have also been suggested [31],[30], but the computation time is still higher for 2D

spaces compared to the metric methods. Other methods are geometric methods for

path planning like Visibility Cell Decomposition , Maximum Clearence Roadmaps

and Shortest Path Roadmaps. In these methods the obstacles are approximated as

polygons. [5] discusses in details about these methods. This work uses the Dijk-

stra’s & A* search algorithm with orientation compensation with effort to reduce the

path planning distance and time. Chapter 4 discusses the computation time of these

algorithms which justifies their use for the real time path planning.

6

1.2.4 Autonomous Exploration

The research on exploring the indoor environment is quite rich. Various techniques

have been discussed for detecting unexplored areas using frontiers [1][6], bubble-based

exploration [32] or coverage maps [33]. Yamamuchi exploration technique proves to

be the most useful with occupancy grids since the other techniques often require a

change of the map representation for exploration. Yamamuchi exploration technique

relies on the edge detection techqniques used in the image processing. More details

on autonomous exploration are discussed in Section 3.7 of Chapter 3.

7

Chapter 2

System Description

This chapter dives in to a detailed description of the mechanical , embedded and

software components of the system. It is divided in to four sub sections :

1. Mechanical Structure

2. Electronic Components

3. Embedded System

4. Software

Some part of the software system also takes help of the open source software pack-

ages developed by the Robotics Community. A short summary of that package is also

described at the end of the chapter.

2.1 Mechanical Structure

The torch robot is a four wheeled skid steered drive robot with each wheel driven by

a motor. The motors are 12V DC brushed motors with PWM input for speed control.

Figure 2.1 shows the snapshot of the mechanical construction of the robot.

The steel shell of the robot houses the battery, electronics, torch ballasts and on

8

board computers.The combination of all the components including the steel shell

weighs around 30 pounds. The motors selected have a high Gear ratio (188.6:1) 1.

Hence, they are capable of moving the heavy robot at required speed of 0.5 ft/s

without consuming high current.The motors have 12 counts per revolution (CPR)

quadrature encoders which were used to provide estimate of the robot pose. With

the high gear ratio these encoders can provide an angular resolution of 0.1o. Chapter

5 discusses briefly about the use of encoders for EKF based robot localization as a

scope for improvement.

Figure 2.1: Torch Robot

2.2 Electronic components

The electronics of the robot consists of the power supply system, torch circuitry ,

LiDAR sensor and the motor control boards. The robot houses a 12V 50Ah battery

which provides power to the motors , embedded systems (which powers the LiDAR

sensor) and the torch. The torches are powered through a DC-AC converter. The

1Motor details : https:/www.servocity.com45-rpm-hd-premium-planetary-gear-motor-w-encoder

9

LiDAR sensor used is manufactured by RPLIDAR (by Slamtec 2). The LiDAR is

Omnidirectional with a 5.5Hz sample frequency and a range of 12 meters. This pro-

vides additional mobility to the robot to move in both forward and backward without

turning. The LiDAR data is used by the SLAM module which also provides an esti-

mate of the robot’s location.

For detecting obstacles, a depth sensing Intel Realsense camera is also used3. The

camera focuses on the nearby areas for any obstacles in its field of view and updates

the map temporarily for the path planner to avoid obstacles dynamically.

The motor control boards have a PWM interface for motor control with a current

capacity in the normal motor operating range and hence do not restrict the torque

supplied by the motors. The PWM signal is provided by the GPIO pins on the Rasp-

berry pi. The Raspberry pi pins also read the encoder values. Figure 2.2 shows the

schematic of the electronic circuit.

Figure 2.2: Embedded System

2http://www.slamtec.com/en/lidar/a1
3https://realsense.intel.com/stereo/

10

2.3 Embedded System

The robot comprises of two onboard embedded systems, NVIDIA Jetson TX2 and

Raspberry Pi. However, Raspberry Pi is just for motor control and reading encoder

values. Cheaper alternatives exist but Raspberry Pi has robust communication with

other computers and it has better ROS (Robot operating System) support, making

it a favorable option. Jetson TX24 comes with a 6 cores CPU and 256 CUDA cores

GPU, providing enough resources to cater to the computation for mapping and motion

planning. Jetson TX2 also interfaces with the LiDAR sensor and the Raspberry Pi

for sending actuator signals.

2.4 Software

2.4.1 Robot Operating System (ROS)

The official definition of ROS5 is :

ROS is an open-source, meta-operating system for your robot. It provides the ser-

vices you would expect from an operating system, including hardware abstraction, low-

level device control, implementation of commonly-used functionality, message-passing

between processes, and package management. It also provides tools and libraries for

obtaining, building, writing, and running code across multiple computers.

While there are multiple software platforms available for Robotics development, ROS

is an open source and has a larger support community which makes it easier to de-

velop Robots. Due to its popularity in the robotics community, a wide variety of

software packages are available for sensors and actuators, which makes the hardware

4https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
5http://wiki.ros.org/ROS/Introduction

11

interfacing easier and makes the software independent of the embedded system. It

also supports a variety of programming languages for accomplishing specific tasks.

For the project , C++ and CUDA were used for developing the navigation module of

the torch robot.

2.4.2 Compute Unified Device Architecture (CUDA)

CUDA6 is parallel computing platform and application platform interface (API) de-

veloped by NVIDIA for its GPUs. It allows direct access to the parallel elements

of the Jetson TX2 board and it is syntactically quite similar to C language, making

parallel programming easier.

One of the primary reasons to use GPU for computation is to process a very high

number of map grid cells that can be processed at once for obstacle inflation and au-

tonomous exploration. Thus the ratio of computation to memory transfer is higher,

justifying the use of GPU. Chapter 3 discusses the usage of GPU in obstacle avoidance

and autonomous exploration module.

2.5 Hector SLAM

As discussed at the beginning of the chapter, an open source SLAM software package

was used for the development of this robot. This open source, called Hector SLAM [2]

was developed at TU Darmstadt in Germany for USAR (Urban Search and Rescue)

operations. The difference compared to other well known open source SLAM packages

like Gmapping[3] is that this package does not required the odometry of the vehicle

since it uses the high speed scan rate of the LiDAR. Chapter 3 dives into a brief

discussion about Simultaneous Localization & Mapping (SLAM).

6https://en.wikipedia.org/wiki/CUDA

12

Chapter 3

Navigation System

3.1 Light Detection and Ranging (LiDAR) Sensor

LiDAR is surverying method to represent the objects in the sensor’s range by mea-

suring the differences in the time and wavelength of the reflected laser pulse from

the object. The LiDAR sensor emits a low power laser (500-600nm wavelength) and

calculates the time of return of that pulse. The torch robot uses a RpLidar , which is

a 2D Laser range scanner. Being omnidirectional , it outputs the co-ordinates of all

the points within 12m range from the location of the robot. In ROS, the laser scan

readings are represented by a polar array of the ranges with indexes representing the

angles. This array is usually converted to a Point cloud to use it for SLAM. Point

cloud is a set of data points in cartesian space. In this case, it is obtained from

the LiDAR’s location. For a 2D laser range scanner, the data points will be the x-y

co-ordinates with LiDAR as the origin.

Figure 3.2 shows the LiDAR output in ROS visualization utility for a scene created

in Gazebo simulator.

13

Figure 3.1: RpLIDAR Sensor

3.2 Occupancy Grid Maps

Occupancy grid maps are the discretized representation of the real world. In this

representation the surrounding is represented by a grid of fixed sized cells and each

cell is either occupied, free or unknown. The occupancy is represented by probability

(0,1). For memory consideration, ROS represents occupancy grid maps with a occu-

pancy probability (0,100). In ROS , the occupancy grid data is a one dimensional

array of signed characters. The map info also consists of the resolution, width and

height of the map. If the map width is w , then the element (row num, col num) in

two dimensional grid structure would correspond to data index = col num∗w+row.

For each cell in map(m) the probability p(mi) is given as :

p(mi) =


100, occupied

0, free

−1, unknown

(3.1)

Figure 3.3 shows a simple representation of an Occupancy grid. Each grid cell in

14

Figure 3.2: LiDAR Output

the grid has a fixed size , which defines its resolution. For eg., the map of a room of

size 20m x 20m with each grid of 0.05m resolution, will have 160,000 grid cells. This

15

makes processing the grids for path planning and obstacle avoidance computationally

expensive and makes the map rigid , but it does not require any feature detection to

create maps. It simply maps the point cloud at the location of corresponding grid cells

and fills it with the occupancy probability. The process of constructing such maps

using various mapping algorithms is Occupancy Grid Mapping. Mathematically , it is

a Bayes filter with posterior probability given as the product over the individual cells :

p(m|z1:tx1:t) =
∏
i

p(mi|z1:tx1:t) (3.2)

where, z1:t is the sensor data, x1:t is the robot pose data. The Algorithm 1 [4] briefly

explains the process of constructing Occupancy Grids.

Hector Mapping, used in the torch robot is a SLAM algorithm used for generat-

ing Occupancy Grid Maps. Figure 3.4 shows the Occupancy Grid generated using a

LiDAR for a typical surrounding .

Figure 3.3: Simple Example of an Occupancy Grid , left figure is the Real world with
objects in it, right figure is the corresponding Occupancy Grid Representation.

16

Figure 3.4: Occupancy Grid Output of the Room

Algorithm 1 Occupancy Grid Mapping

procedure Occupancy Grid Mapping

Require: lt−1,i,xt,zt,Mi

1: for all cells mi in Mi do
2: if mi in the measurement range of zi then
3: lt,i = lt−1,i + inverse sensor model(mi, xt, zt)− l0
4: else

lt,i = lt−1,i

5: end if
6: end for
7: return {lt,i}

In Algorithm 1, the lt,i is the log odds ratio, which is given as :

lt,i = log
p(mi|z1:t, x1:t)

1− p(mi|z1:t, x1:t)
(3.3)

Also,

inverse sensor model(mi, xt, zt) = log
p(mi|zt, xt)

1− p(mi|zt, xt)
(3.4)

And,

l0 = log
p(mi)

1− p(mi)
(3.5)

The log odds value varry from [−∞,∞] and hence avoid loss of precision in proba-

17

bility representation when the probabilities value approach 1 or 0.

3.3 Hector SLAM

The torch robot uses the open source Hector SLAM package for simultaneous local-

ization and mapping. Hector SLAM uses the scan matching technique to align the

laser scans and provide the pose of the robot that leads to this change. Simply put, it

finds out the transformation between the two scans and assumes that the difference

is due to the movement of the robot. It does so by optimization of the alignment of

the beam endpoints with the map created so far using Gauss Newton Approach[2]

.Mathematical derivations of the Hector Scan Matching are duplicated in Appendix

A for reference. This approach proves to be accurate most of the time in an indoor

environment as long as the LiDAR scan rate is higher enough than the speed of the

robot or the range of LiDAR is high enough to capture multiple landmarks in its

surrounding.

A brief idea of the Hector SLAM 2D subsystem in presented below :

Figure 3.5: Hector SLAM 2D subsystem [Image source : [2]]

18

3.4 Obstacle Inflation (Costmap)

The Occupancy Map created by the SLAM system consists of grid cells with their

respective occupancy probability. Any consequent motion planning will involve ac-

cessing these grid cells to establish if that grid cell is safe for robot to be at the

location of grid cell. Even though the mapping might produce a grid cell which is

free, its distance from the nearest occupied space/grid cell might be less than the

robot’s physical size. If the path planner outputs a path which passes through such

point(s), the robot might collide with the obstacle. This demands a need to check if

the grid cell under consideration is safe or not. This can be accomplished by inflating

all the occupied grid cells as per the robot’s physical dimension. This can prove to

be a computationally intense task. While there are open source options 1 available

for obstacle inflation using the sensor data , they are optimized to work with static

maps. The present work uses the map learnt so far using the SLAM system to inflate

the obstacles using parallel programming. This makes the navigation module of the

robot more responsive to the map changes for robust path planning. Figure 3.6 shows

the idea for obstacle inflation.

Figure 3.6: Obstacle Inflation example, black solid lines is the map , shaded grey part
is the inflated region

1http://wiki.ros.org/costmap 2d

19

The GPU operation can be interpreted as a stencil moving at each grid cells

location to look if there are any occupied cells in that stencil’s area.The size of that

stencil will be as per the robot’s physical dimension.

3.5 Obstacle Detection & Integration

The RpLiDAR discussed in section 3.1 is a single channel 2D LiDAR , meaning it

outputs scans only at the sensor’s height. A more reliable method would be to use

another sensor to compliment the map generated by the LiDAR. This section dives

into more detail in accomplishing this task using the 3D point cloud generated by a

depth sensing stereo camera to selectively update the occupancy grid in the vicinity

of robot. The obstacle data obtained using this method is projected to the plane of

the LiDAR sensor and is used to update the occupancy grid which is fed as input for

obstacle inflation.

The stereo camera Intel Realsense D435 was used for the experiments for selective

updating of the Occupancy grid. This camera operates at 30fps and every point cloud

output has upto 16,000 points with a resolution as low as 0.01m. Hence a voxel filter

is employed to downsample this point cloud with a resolution of 0.1m.

3.5.1 Voxel Filter

Voxel filter downsamples the point cloud data by calculating the centroid/spatial

average of the point in a subspace. It does so by finding the nearest neighbors in

the subspace and calculates the centroid of all the points. For eg. if we want to

downsample the point cloud to represent 0.1m radius spheres, all the the points in

that spherical subspace will will be replaced by a single point representing a 0.1m

sphere. Figure 3.7 shows an some example of this filter’s result.

20

Figure 3.7: Point Cloud Comparision , left side figure is the normal point cloud and
right side is the filtered cloud

Algorithm 2 Selective Obstacle Update

procedure ObstacleDetection

Require: pt cloud,dmax
1: obstacle indices = ∅
2: filtered grid = VoxelFilter(pt cloud)
3: for pi in filtered cloud do
4: if pi ≤ dmax and pi > zground then
5: p(mi) = map index(pi)
6: obstacle indices[i] = p(mi)
7: end if
8: end for
9: return obstacle indices

3.5.2 Selective Updating of the Occupancy Grid

Once the downsampling of the data is complete, all the points in the vicinity of the

robot are projected onto the LiDAR plane and are mapped to repsepctive grid cell in

the occupancy grid. This approach offers two advantages :

1. Due to downsampling, the update of the occupancy grid is computationally less

intense.

2. Due to increased field of view the path planning is more robust in avoiding static

and dynamic obstacles.

Algorithm 2 shows the brief idea of integrating obstacle detected from point cloud.

21

3.6 Path Planning

Path planning is the task of creating plans for the robot to manipulate it current

state to the desired state. As per [5] , the basic ingredients of planning are :

• State space - a list of all the feasible states the robot can occupy

• Time - the time over which all the actions are applied or the succession in which

the actions are applied.

•Actions - The set of input or controls, which manipulate the state of the robot.

• Initial and Goal states - The starting state and the state aimed to be reached

using the plan

•Criterion - The criteria which the plan must be accomplishing. It can be to make

the plan optimal w.r.t. time or energy consumed or distance travelled or it can simply

be to find out if the plan is feasible or not.

3.6.1 Planning Problem Formulation

Since we chose to represent the surrounding world as an Occupancy Grid, which is a

discrete representation, a planning problem formulation needs to be done for a dis-

crete space.

In terms of the torch robot, the planning problem is to seek a plan from the initial

robot state xI to goal state xG. Since the robot yaw angle at particular points in the

planned path is not a specific requirement, the initial state, the goal state and the

intermediate states are just position vectors :

xk = [x y]T (3.6)

Thus, the Configuration space C for planning purpose is 2D.

The state space , X is a list of all the feasible states. In the case of an Occupancy

22

Grid, X would be a list of all the grid cells which are not occupied at that instant.

The planning problem for the mobile torch robot can be formulated as :

• A set of non empty state space X

• A initial state xI and the goal state xG

• A control action U(x) for each xεX.

• A state transition function x
′
= f(x, u), which manipulates the state of the robot

to x
′

from x.

A convenient way of representing this problem is using Graphs. A Graph G is a

set of vertices (V) and edges (E) between the vertices. In terms of planning, the

vertices of the graph are the grid cells in the map. The edge between them denotes

that they are connected and the weight of the edges denotes the cost of the control

action to go from one node to the other (f(x, u)). A graph can be a directed graph

or an undirected graph. In Occupancy grids, it can be easily interpreted that a undi-

rected graph can be used since the grid cells can be travelled back and forth between

themselves.

3.6.2 Graph Edge Weight Calculations

Instead of considering the edge from current cell to adjacent grid cells to have same

cost, a robot pose based scheme was used to give edgeweights to the edge from current

to neighbouring cell/nodes in the graph.

The Wavefront Algorithm [27] assigns uniform cost to each of the neighouring

cells. But for this work, the weight of the edges is defined based on the start pose of

the robot and the distance from the start.

23

Given a grid cell under consideration xk and let xkadj be the adjacent cell of xk.

Let the distance from the robot initial location xI to xkadj be d. The angle(θ) of the

line joining xk and xkadj is a multiple of π/4 as shown in the fig 3.8. This angle is

modified according to the equation

θmod =


θ + φ d < dmax

θ d ≥ dmax

(3.7)

where, φ is the yaw angle of the robot and dmax is the maximum value for which the

angle has to be modified.

The reason for modifying the angle to shorten the time to travel . For a distance under

dmax , the angle of the line joining xk and xkadj is modified to align with the yaw angle

of the robot. This means that the path planner will output a path which prefers the

robot to travel straight initially compared to performing the turn operation, which

has higher time cost.

The edge cost can now be calculated as :

EdgeCost =


α θmod ε [0, π]

1.05α θmod ε [π
4
, 3π

4
, 5π

4
, 7π

4
]

(3.8)

where, α can be an arbitrary constant. The obvious selection would be the resolution

of the grid. However to save the memory , this value can be chosen to be 50 to avoid

creating floating point numbers for implementation purposes.

Once a Graph is created, shortest path algorithms can be applied to find out the path

from the initial state/node to the goal state/node. This work compares two of such

well known algorithms, which optimizes the sum of the edgeweights.

24

Figure 3.8: Figure shows the effect of the angle modification according to the Robot’s
pose while building the graph

3.6.3 Shortest-Path Algorithms

Shortest path algorithms find the shortest path between two vertices in the graph.

Dijkstra’s algorithm is the most well known algorithm. However it finds the shortest

path between source vertex to all vertex in the graph until goal vertex is reached.

It uniformly goes through all the vertex until the goal vertex is reached. The other

variant in A* search, which considers a heuristic function to choose the next vertex

while calculating the path. This work compares these two algorithms in terms of

Forward Search. Forward search means searching for goal node with initial node as

the root node.

These methods are deterministic methods compared to the sampling based methods

like RRT and PRM. The complexity of these methods, which will be explored later

is dependent on the number of the grid cells in the graph created from the initial

node to the goal node. These methods do not suffer from the local minima problem

faced while using greedy algorithms like Virtual field methods. The Graph based

planning methods do face a disadvantage when the maps are bigger or dimension of

the configuration space is higher since that leads to an increase in the number of the

nodes in the graph.

25

Dijkstra’s Algorithm

For a given starting node, Dijkstra’s Algorithm finds the optimal path to every node

in the graph. It optimizes the sum of the edges from the root node xI to any node

x in the graph. The complexity of the Dijkstra’s Algorithm is O(|V |log(|V |) + |E|)

[34], where V is the number of vertices in the graph and E is the number of edges in

the graph.

The step-by-step procedure for Dijkstra’s algorithm is :

1) Mark all the nodes in the graph as unvisited

2) Set the start node (xI) as the current node and assign an arbitrary high value to

all other nodes in the graph (infinity).

3) For all the neighbours of the current node, compute the cost-to-go from the current

node. Compare this tentative cost with the the current cost-to-go value assigned to

the node. If the tenative cost is lower, then replace the current cost with lower cost.

4) Mark this node as visited. If the goal node is visited, stop the algorithm.

5) Make the next unvisited node in the queue as the current node and repeat step 3.

Algorithm 3 gives the general idea of the Dijkstra’s Algorithm used for path plan-

ning on Occupancy grid.

A* Algorithm

A* algorithm combines the benefit of the informed search like Best first search [37]

and Dijkstra’s algorithm in searching the path. The cost-to-go value while exploring

the nodes is the combination of the cost from the current node to the next node

and the heuristic function value for that node. This algorithm does not guarantee

optimality since the result depends on the type of heuristic function. The general

idea of the algorithm is given as :

26

Algorithm 3 Dijkstra’s Algorithm

procedure Dijkstra’s Algorithm

Require: map,source node,goal node
1: visited nodes=∅,queue=source node
2: for all GridCell in map do
3: dist[GridCell] = INF
4: predecessor[GridCell] = UNKNOWN
5: end for
6: dist[source node] = 0
7: while goal node not in visited nodes AND !queue.empty() do
8: current node = minDistance(queue)
9: for each neighbour i of current node do

10: if map[i] not occupied then
11: CostToGo = dist[current node] + EdgeCost
12: if CostToGo < dist[i] then
13: dist[i] = CostToGo
14: predecessor[i] = current node
15: end if
16: end if
17: end for
18: visited[current node] = true
19: end while
20: return predecessor[]

end procedure

1) Mark all the nodes as unvisited

2) Mark the start node as current node

3) Expore all the neighbouring nodes and assign them cost-to-go value from the

current node plus the heuristic function value

4) Mark the current node as visited

5) If the goal node is marked as visited, stop the algorithm or else

6) Choose the best node to explore based on the value calculated above and make

that node as current node and repeat from step 3 . Algorithm 4 describes the A*

algorithm.

27

Algorithm 4 A* Algorithm

procedure A* Algorithm

Require: map,source node,goal node
1: visited nodes=∅,queue=source node
2: for all GridCell in map do
3: dist[GridCell] = INF
4: predecessor[GridCell] = UNKNOWN
5: end for
6: dist[source node] = 0
7: while goal node not in visited nodes AND !queue.empty() do
8: current node = minDistance(queue)
9: for each neighbour i of current node do

10: if map[i] not occupied then
11: CostToGo = dist[current node] + EdgeCost + heuristic-

Value(current node)
12: if CostToGo < dist[i] then
13: dist[i] = CostToGo
14: predecessor[i] = current node
15: end if
16: end if
17: end for
18: visited[current node] = true
19: end while
20: return predecessor[]

end procedure

28

3.7 Autonomous Exploration

Autonomous exploration is the problem of searching for areas in the map, which are

yet to be explored. In Occupancy grids , the unknown grid cells are assigned values

of -1. For exploration purpose, the aim is to find such unknown area which will help

in completing the map of the surrounding. For example, for a indoor robot, the aim

of the autonomous exploration is to create a complete map of the room. [6] demon-

strates the use of Yamamuchi frontiers for autonomous exploration. Yamamuchi [1]

demonstrated the use of edge detection techniques used in image processing for au-

tonomous exploration. For this work , we use the sobel edge detection [7] method

using parallel processing for autonomous exploration.

3.7.1 Sobel Edge Detection

In case of maps, edges are the location when a change occurs. For occupancy grids

this happens at the boundary where on one side the cells are either free (p(mi) = 0)

and other side they are unknown (p(mi) = −1). Figure 3.9 shows this situation.

The gradient of these values will give an idea about the edge between free space and

unknown space.

In case of the occupancy grid, the derivative will be like finite differences along both

the axes as shown below :

mapix = f(x+ 1)− f(x) (3.9)

mapiy = f(y + 1)− f(y) (3.10)

where, mapi is the grid cell under consideration.

29

Figure 3.9: Example of Exploration Frontier

Better approximation of the derivative would be :

mix = 2f(x+1, y)+f(x+1, y+1)+f(x+1, y−1)−2f(x−1, y)−f(x−1, y+1)−f(x−1, y−1)

(3.11)

miy = 2f(x, y+1)+f(x−1, y+1)+f(x+1, y+1)−2f(x, y−1)−f(x−1, y−1)−f(x+1, y−1)

(3.12)

The equations can be written as 9x9 matrix type operator , called kernel.

sx =


1 0 −1

2 0 −2

1 0 −1

 (3.13)

sy =


1 2 1

0 0 0

−1 −2 −1

 (3.14)

Kernel 3.13 & 3.14 are called the sobel operators. When we do a convolution

of an occupancy grid matrix using this kernel, we effectively calculate the gradients

30

of the values of the grid in both directions. Each gridcell in the convoluted map will

have the value as per the equation:

M =
√
s2
x + s2

y (3.15)

Figure 3.10 shows some examples of the value of M for various cases in the Occupancy

Grid. These calculations gives an idea about the numerical value of M which indicates

an unknown frontier. Figure 3.11 shows the result of convolution of the whole map.

Calculation of different scenarios in a map, shows that the frontier between a free

area and an unknown area would lie in the range M ε[1, 6].

Using this information , an algorithm to find out the unexplored regions in the map

was devised. Algorithm 5 explains this idea.

Figure 3.10: Calculation of Sobel operator in different regions in map

31

Figure 3.11: (top)original map, (bottom)Result of the sobel operator on the whole
map, gray areas shows transition into unknown area

3.7.2 GPU Acceleration

Convolution of the map using a sobel operator makes a good case to apply data par-

allelism. Performing the convolution computation on the GPU can lead to decreased

runtime for finding frontiers in the map. Figure 3.12 shows the GPU accelerated

model for performing sobel operator.

3.7.3 Frontier Detection

Once the sobel operation on the map is completed, an array of possible frontiers is

made. For each frontier , the path planner determines whether a path exists to that

point in the map. This operation is continued until a feasible path is obtained.

The frontier arrays obtained from the Algorithm 5 will be the input for the path

planner. Path planner will operation will stop once it can successfully run on any

point in the frontier array and outputs the resulting path.

32

Figure 3.12: GPU acceleration for froniter detection

Algorithm 5 Autonomous Exploration

procedure Autonomous Exploration

Require: map, nearFrontierArray = ∅, farFrontierArray = ∅
1: for each GridCell u in map do
2: dist[u] = INF
3: end for
4: for each Gridcell u in map do
5: M = sobelOperation(Gridcell)
6: if M ε [1,6] then
7: dist[u] = euclideanDistance(robotPosition,u)
8: end if
9: end for

10: for each point k in dist[] do
11: if dist[k] < nearFrontierDistance then
12: nearFrontierArray.add(k) dist[k] > nearFrontierDistance & dist[k] < farFron-

tierDistance
13: farFrontierArray.add(k)
14: end if
15: end for
16: return farFrontierArray,nearFronitierArray

end procedure

33

3.8 Kinematics

Understanding the kinematics is vital to understand behaviour of the robot under

various types of input and also to create a controller for the robot to achieve a

speicifc motion. For mobile robots, the understanding of kinematics is also important

for position estimation of the robot [4],[8]. This section develops the kinematic model

of the robot for creating a controller to follow the path created by the path planner.

3.8.1 Robot Pose

The torch robot is a four wheel skid steered drive robot and hence the pose of the

robot will be a 3 dimensional vector.

ξI = [x y θ]T (3.16)

Figure 3.13 shows the description of robot pose w.r.t. local and global reference frame.

Here, [XG, YG] is the global inertial reference frame and [XR, YR] is the robot’s local

frame. The robot local reference frame is defined by two axes with the origin at point

P on the chassis of the robot. The position of this local reference frame is defined by

the co-ordinates x and y. The orientation between them is defined by the angle θ.

The rotation matrix for a robot pose ξR in local frame to ξG in the global frame is

given as :

R(θ) =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (3.17)

Hence , the transform between the poses ξR to ξG is given as :

ξI = R(θ)ξR (3.18)

34

Since the robot is a four wheeled drive and the speed of the front and the rear

wheel on each side would be the same the robot motion would be like a skid steer.

The kinematics would be similar to a 2 wheel differential drive robot but not excatly

the same due to violation of sliding constraints.

Let the robot position be P. If the left wheel rotation speed is φ̇1 and the right wheel

rotation is φ̇2, then the robot position in its local frame will be given as :

˙ξR =


dφ̇2
2

+
dφ̇2
2

0

dφ̇2
2l

+
−dφ̇2

2l

 (3.19)

Here,

d = diameter of the wheel

l = wheelbase of the robot (distance between the right and left wheels)

The robot pose in the global frame would be given by :

ξ̇I = R(θ)


dφ̇2
2

+
dφ̇2
2

0

dφ̇2
2l

+
−dφ̇2

2l

 (3.20)

3.8.2 System Description

The state transition equation for the four wheeled torch robot (skid steer geometry)

is given as : 
ẋ

ẏ

θ̇

 =


cos(θ) 0

sin(θ) 0

0 1


v
ω

 (3.21)

35

Figure 3.13: Robot position description in Local and Global reference frame

Equation [3.21] can be alternatively represented by a driftless control affine system

ẋ = f(x)v + g(x)ω (3.22)

The control system for the robot to follow a certain trajectory will be studied in the

next section w.r.t. the above equation with linear and angular velocities as input.

The skid steered geometry of the has close similarities to differential drive robot

w.r.t the inputs. However , the lateral slip constraint is violated since all the wheels

do not share the same horizaontal axis. This makes the estimation of the robot

location using wheel encoder very difficult leading to more reliance on localization

using exteroceptive sensors like LiDAR or visual odometry. But skid steered geometry

36

Figure 3.14: Robot pose error for followring a point

has certain advatages due to added torque of additional motors which makes the motor

selection easier.

3.9 Feedback Control

Controlling the motors of the robot to follow the trajectory can simply be broken down

in to following points on the trajectory. As seen in the previous sections, two control

inputs to the mobile robot system are linear velocity(v) and angular velocity(ω).

Therefore, a controller to follow a point is developed using methods from [8].

3.9.1 Following a Point

The error modelling for the robot is more intuitive in terms of polar co-ordinates as

shown in the figure 3.14.

Here ,

d =
√

∆x2 + ∆y2 =
√

(x− 0)2 + (y − 0)2 =
√
x2 + y2 (3.23)

37

is the distance from the robot position to the goal position , which is the origin. Also

the angle difference between the robot orientation and the line joining the current

robot position and the goal point can be expressed as :

α = −θ + atan2(∆y,∆x) = −θ + atan2(y, x) (3.24)

β = −θ − α (3.25)

The goal of the controller is to provide input to the system to reach the goal point

and hence making the error terms tend to zero. The relation between these error

terms and the robot velocity vector is :


ḋ

α̇

β̇

 =


−cosα 0

sinα
d

−1

− sinα
d

0


v
ω

 (3.26)

β is the desired orientation of the robot. If the goal is just to reach the desired points

irrespective of any pose, the error formulation to reach a point is :

ρ̇
α̇

 =

−cosα 0

sinα
ρ

−1


v
ω

 (3.27)

Let the Control law be :

v = kρρ (3.28)

ω = kαα (3.29)

Substituting these input in the equation 3.27 , we get the resulting closed loop system

as : ρ̇
α̇

 =

 −kρρcosα

kρsinα− kαα

 (3.30)

38

The equilibrium of the closed loop system is (ρ, α) = (0, 0). The system can be

linearized at equilibrium position using sin(α) = α and cos(α) = 1.

ρ̇
α̇

 =

−kρ 0

0 kρ − kα


ρ
α

 (3.31)

The characteristic polynomial of the system is :

λ2 + λkρ + k2
ρ − kαkρ = 0 (3.32)

For the eigenvalues (λ) to be negative for system stability the following conditions

should be satisfied :

kρ > 0 & kα > kρ (3.33)

3.9.2 Following a trajectory

The trajectory generated by a path planner is a list of points. So the idea of the

controller to follow a point can be extended to follow the trajectory. An idea of the

algorithm for following the trajectory is given in Algorithm 6

Distance emin on line 1 is the allowable error in reaching the end point of the

trajectory.

The dnear distance in the algorithm above is for selecting the point to follow in the

trajectory. The nearestPoint function finds out the point in the trajectory which is

at least dnear distance from the current robot position and discards the points that

are at a lower distance than that point.

Line 5-9 performs the angle modifications, which allows the robot to travel in both

directions. It adds or subtracts π
2

so that the angle error stays in the range [−π
2
, π

2
].

It updates the direction , which is the input in the velocity equation on line 12.

39

Algorithm 6 Trajectory following

procedure Trajectory following

Require: dnear,kρ,kα, path,current pose
1: while distance(robotPose,path.back()) < emin do
2: point = nearestPoint(path,dnear)
3: distance2goal = euclidDistance(robotPose,path.back())
4: α = −θ + atan2(∆y,∆x)
5: if α > π

2
then

6: α = α− π
2

7: direction = -1
8: else if α < −π

2
then

9: α = α + π
2

10: direction = -1
11: end if
12: v = kρ(distance2goal) × direction
13: ω = kαα
14: end while

end procedure

40

Chapter 4

Simulation & Experimental Results

4.1 Simulation Environment

A robotic simulator is used to simulate the physical robot and its behaviour without

the use of the hardware and sensors. In mobile robots, various simulators are available

which are used to build different scenarios in which the robot will operate. In the

present work , Gazebo simulator was used. It is developed by Open Source Robotics

Foundation 1. Gazebo simulator provides a very strong and convenient integration

with the ROS middleware and hence proves to be a very good testing environment

before deploying the whole system on the physical hardware.

For reliable results a robot similar to the torch robot was built in the simulation and

it was tested under a environment similar to its intended use. Figure 4.1 shows the

simulation environment.

4.2 Obstacle Inflation

The obstacle inflation operation is done on the GPU for higher speed. The run time

on CPU and GPU is also discussed at the end of the section. The CPU used for

1https://www.openrobotics.org/

41

Figure 4.1: Simulation Environment

comparison was the computer equipped with 8th generation Intel i5 processor.

4.2.1 Experimental

The experiments were carried out in the indoor lab environment. The smallest room

size in which the experiments were performed was 10m x 8m. The experimental

results for the obstacle inflation module are shown in Figure 4.2. The run time

for the obstacle inflation module on the NVIDIA Jetson GPU is on average 48ms

comapared to 400ms on a Intel i5 CPU.

4.2.2 Obstacle Detection

The results shown in the figures 4.4 & 4.5 demonstrate the effect of using the camera

to detect obstacles not in LiDAR’s field of view.

Figure 4.4: Obstacle in front of the Robot (not in LiDAR’s field of view)

42

Figure 4.2: Obstacle Inflation Result (White Spaces is the obstacle free space)

Figure 4.5: Obstacle Detected by the Camera added to the occupancy grid , (topleft)
Result without Camera (topright)Result with Camera, (bottom) Voxel Filter imposed
on the Occupancy Grid for visualization

4.3 Path Planning

The input to the path planner are the cartesian co-ordinates of the goal provided by

the user. For the purpose of testing, the Rviz utility was used which provides click

43

Figure 4.3: Partial Map of the Rutgers University Engineering A-Wing Building
(Floor 2) as a result of the Hector SLAM and Obstacle Inflation module

interaction on the map. The user clicked location is subscribed by the path planner

as global cartesian co-ordinates.

4.3.1 Dijkstra’s Algorithm

The results obstained by Dijkstra’s Algorithm are shown in Fig 4.6. Since the path

planner is dynamic, it replans the path if there are newly found obstacles on the way.

Due to this , the input to the path planner can be from a partially built map or a

point from unexplored area of the map. This way a much more robust path planner

is obtained. If the robot finds that there are obstacles at the goal co-ordinate then it

searches for free space in the vicinity of the goal co-ordinates and replans again. If that

is not possible, the path planner terminates. Fig 4.7 shows the autonomous replanning

of the path. The controller loop sends the signal to the planner for replanning which

44

is run at a frequency of 300Hz.

Figure 4.6: Result of Dijkstra’s path planner (Black Circle is the start position &
Green circle is the goal position)

4.3.2 A* Algorithm

The A* algorithm was implemented with two heuritic distances, Euclidean and Man-

hattan Heuristic. The results of both in shown in Figure 4.8.

4.3.3 Run Time

The two plots below shows the runtime of the Dijkstra’s & A* algorithm w.r.t. to

the length of the path. It can be seen that the max run time is close to 16ms for

Dijsktra and 4ms for A* algorithm, which makes the path planner well suited for the

real time application. As per the aymptotic analysis, Dijkstra’s algorithm scales as

per the notation O(V logV + E) with the use of priority queues [34].

45

Figure 4.7: The replanning process, the top right figure shows that the planner detects
an obstacle on the path and replans the path as seen in the bottom left figure. The
bottom right figure shows the result of search of new goal position in the vicinity of
the original goal for replanning

Figure 4.8: A* path planning , left figure shows the result with Euclidean distance as
heuristic and the right figure is for Manhattan Distance Heuristic

46

2 4 6 8
5

10

15

20

Path length(m)

R
u
n

ti
m

e
(m

s)

Run time of the Dijkstra planner

Dijsktra’s Algorithm

5 10
1

3

6

Path length(m)

R
u
n

ti
m

e
(m

s)

Run time of the A* planner

A* Algorithm

4.4 Autonomous Exploration

4.4.1 Simulation Results

Figures 4.9 shows the result of the Autonomous Exploration Algorithm. The algo-

rithm stops when path planning is no longer possible. The figures starting the top left

figure show the chronological order of the path created by the autonomous exploration

module

4.4.2 Experimental Results

Figure 4.10 shows the chronological sequence of the path created by the autonomous

exploration algorithm in the lab environment. The last figure is the complete map of

the room created at the end of the algorithm.

4.4.3 Run Time

The runtime for the autonomous exploration for finding frontiers , which includes

applying sobel operator on the occupancy grid and the finding for the frontiers in

the list created by the module , is on average 50ms. The highest computation time

observed during the experiments was about 145ms.

47

4.5 Controller

The experimental results in the lab environment for the control algorithm (Algorithm

6) is shown in Figure 4.11. Due to similarities with differential drive robot, any path

can be very closed followed with very little error by seperating linear and angular

velocity command. However that is time consuming and hence the combining linear

and angular velocity commands is more preferred. A threshold to angular error is

introduced. When the angular error is above a threhold , only angular velocity com-

mands are published instead of combined linear and angular velocity command. The

maximum controller error observed during the experiments with angle thresholding

of π
6

was 0.05m. This error was added in the obstacle inflation module to avoid any

collision with the obstacle due to controller error.

48

Figure 4.9: Path planning to the Frontiers Detected by the Autonomous Exploration
Algorithm

49

Figure 4.10: Path planning to the Frontiers Detected by the Autonomous Exploration
Algorithm in the Lab surrounding

50

Figure 4.11: Controller Performance , black for is the initial position, red curve is the
planned path & blue curve is the actual path

51

Chapter 5

Conclusion & Future Work

Occupancy Mapping and SLAM

As seen in the results, for relatively smaller areas, Occupancy grid mapping approach

is one of the most reliable techniques. However occupancy grid maps can be repre-

sented in sparser domains and hence recontructed using Compressed Sensing methods

[36]. The idea of compressed sensing is to create the map with smaller number of

measurements compared to SLAM modules.

y = Hx (5.1)

where y ε Rm , x ε Rn and n > m ,

y = measurment vector(/signal)

x = vector(/signal) to be contructed from measurments

H = reconstruction matrix

The compressed sensing methods can potentially offer two advantages, compressed

representation of large maps for lower memory consumption and map creation using

lesser measurments compared to the current SLAM methods.

52

Obstacle Avoidance

As seen in the section 4.1.1, the obstacle avoidance module is able to integrate the

obstacle well in to the occupancy grid and hence allows the path planner to dynami-

cally avoid the obstacle. This increases the field of view of the robot at reduced cost

when compared to a 3D LiDAR and is more robust compared to a Sonar. The area

of improvement for this module is the computation time. On NVIDIA Jetson TX2

system , the run time of the obstacle detection and integration is on average 1 sec

with two cameras. This can be improved further to avoid objects moving faster and

closer to the robot. With multiple cameras the use of GPU acceleration is justified for

Voxel grid creation. Hence a computationally faster Voxelized grid is being explored

as an improvement to obstacle avoidance.

Localization

The robot pose which is the output of SLAM gives good results when there are cer-

tain geometric features available in the perceptive range of the LiDAR. For eg. if

the LiDAR perceptive range has objects like boxes, water filters etc, the robot pose

is generated with lower covariances and the motion accrues fewer errors over time.

Experiments carried out in the lab by traversing the robot along a known square as

shown in Figure 5.2 showed that the robot error stayed within 0.01m for position and

0.1o for orientation. However, the error increases considerably in hallways. Figure

5.1 shows such situation in which the the LiDAR’s perceptive range is just parallel

walls and hence the successive range scans had to localize by comparing only straight

lines. The current application of the robot is in relatively smaller rooms, but future

application may demand the robot autonomously travel between various rooms and

consequently the hallways. This requires the robot to have a robust localization mod-

ule. One potential solution is to use high frequency LiDAR (40Hz) 1 comapred to

1https://www.robotshop.com/en/hokuyo-utm-30lx-ew-laser-rangefinder.html

53

Figure 5.2: Reference Square for testing

current 6Hz sensor. However that is an expensive solution. Another alternative is

to use Extended Kalman Filter to fuse the encoder estimated pose with SLAM pose.

Due to its accurate kinematic modelling, the torch robot needs to be converted to

a differential drive robot to implement EKF based localization. Preliminary exper-

iments were carried out which gave promising result. Mathematical Derivation of

EKF for differential drive robot is given in Appendix A.

Figure 5.1: Robot in Hallway

54

Path Planning

The graph based path planning satisfies the realtime path planning requirement for

dynamic obstacle avoidance. But a good improvement to this path planner would

be post processing for controller error reduction and robust obstacle avoidance. The

brief idea for post processing is :

• Sample points from the current path at fixed equally spaced intervals(d)

• Starting from the first point, perform a controller simultation and calculate the

point at distance d from the current location

• Perform obstacle check

• If it is obstacle free, replace the sampled point from the planner output with the

simulated output

• Repeat the process until the last point in the trajectory

Such post processing is expected to reduce the controller error.

Controller

Another interesting application for GPU acceleration is in using Model Predictive

Control (MPC). The optimization for calculating the controller output using MPC

can be calculated using GPU. The requirements for this is accurate modelling of the

robot dynamics. This has been identified as a potential improvement for the future.

55

Appendix A

Mathematical Derivations

A.1 Hector Scan Matching

A.1.1 Map Access

For accessing the occupancy value and calculating the gardients, Hector SLAM uses

a bilinear filtering based interpolation scheme for higher accuracy. Let Pm be a

map co-ordinate. The occupancy value is given as M(Pm) as well as the gradient

∇M(Pm) = ((∂M
∂x

)(Pm), (∂M)
∂y

(Pm)) can be approximated by using linear interpolation

with closest interger co-ordinates P00, P01, P01, P11 (figure A.1) as :

M(Pm) ≈ y − y0

y1 − y0

(
x− x0

x1 − x0

M(P11) +
x1 − x
x1 − x0

M(P01)) +
y1 − y0

y1 − y0

(
x− x0

x1 − x0

M(P10)+

x1 − x
x1 − x0

M(P00)) (A.1)

The gradient of the above equation is given as :

∂M(Pm)

∂x
≈ y − y0

y1 − y0

(M(P11) +M(P01)) +
y1 − y
y1 − y0

(M(P11) +M(P01) (A.2)

56

Figure A.1: Closest Integers from the point Pm

∂M(Pm)

∂y
≈ x− x0

x1 − x0

(M(P11) +M(P01)) +
x1 − x
x1 − x0

(M(P11) +M(P01) (A.3)

A.1.2 Scan Matching

Scan matching is based on the optimization of the alignment of beam endpoint with

map obtained so far. Let the current pose of the robot be given by ξ = (px, py, ψ)T .

Si(ξ) is the location of the point obtained from the laser range scanner. It is given as

:

Si(ξ) =

cos(ψ) −sin(ψ)

sin(ψ cos(ψ)


si,x
si,y

+

px
py

 (A.4)

M(Si(ξ)) is the occupancy value for the laser beam endpoint. Scan mathcing aims

to minimize the error of this occupancy value. Since Si(ψ) is the distance the beam

travelled after reflected from the obstacle. This means that the location of this point

on the map must have the occupancy value 1.

ξ∗ = argmin
ξ

n∑
i=1

[1−M(Si(ξ))]
2 (A.5)

57

Let ∆ξ be the transformation between the scans which optimizes the equation A.5

according to :
n∑
i=1

[1−M(Si(ξ + ∆ξ))]2 −→ 0 (A.6)

The taylor expansion of the above equation can be written as :

n∑
i=1

[2−M(Si(ξ))−∇M(Si(ξ))
∂Si(ξ)

∂ξ
∆ξ]2 −→ 0 (A.7)

Setting the partial derivative of the above equation to zero and solving for ∆ξ ,

we get:

ξ = H−1

n∑
i=1

[∇M(Si(ξ))
∂Si(ξ)

∂ξ
]T [1−M(Si(ξ))] (A.8)

where,

H = [∇M(Si(ξ))
∂Si(ξ)

∂ξ
]T [∇M(Si(ξ))

∂Si(ξ)

∂ξ
] (A.9)

A.2 Extended Kalman Filter

A.2.1 Odometry Estimate

The current pose of the robot is :

ξ =

[
xk yk θk

]T
(A.10)

Let ∆sr and ∆sl be the distance travelled by the left and the right wheel as per

the odometer output. The updated robot pose will be as per equation A.11 .

58

ξn = ξ +


∆sr+∆sl

2
cos(θ + ∆sr−∆sl

2b
)

∆sr+∆sl
2

sin(θ + ∆sr−∆sl
2b

)

∆sr−∆sl
2b

 (A.11)

Here, b is the distance between the right and the left wheels.

Next step is to establish the co-variance matrix which represents the uncertainty

in the pose estimated by the odometers. The encoder error increase in proportional

to the distance travelled by the robot. If the wheels rotate faster , then the encoder

output will have higher uncertainty. [35] considers various odometry error models and

gives a guideline to model systematic and non-systematic errors related to odometry.

Considering the uncertainty to be proportional to the distance travelled by the wheels

the error matrix will be :

εq =

kr|∆sr| 0

0 kl|∆sl|

 (A.12)

The state space equation for the robot are :

x
′

k+1 = f(xk, uk) =


xk + ∆scos(θ + ∆ θ

2
)

yk + ∆ssin(θ + ∆ θ
2
)

∆θ

 (A.13)

Here , ∆θ =
∆sr−∆sl

2b
and ∆s =

∆sl+∆sr
2

The Jacobian of the state-transition function can be evaluated as :

Fk =
∂f

∂x(xk−1,uk−1)

=

[
∂f
∂x

∂f
∂y

∂f
∂θ

]
(A.14)

59

The co-variance matrix (Q) will be :

Q = FεqF
T (A.15)

The predicted covariance estimate matrix will be :

Pk = FkPk−1F
T
k +Q (A.16)

The initial estimate P0 can be an identity matrix.

A.2.2 Measurement Update

The measurment update for the EKF will be the robot pose estimated by Scan match-

ing. The measurement model is :

zk = h(xk) =

[
xk yk θk

]T
(A.17)

The observation matrix (H) will be the jacobian of the measurment model :

H =

[
∂h
∂xk

∂h
∂yk

∂h
∂θk

]
=


1 0 0

0 1 0

0 0 1

 (A.18)

The update equations for the Extended Kalman filter are :

Residual Covariance

Sk = HkPkH
T
k +Rk (A.19)

Here, Rk is the co-variance matrix for the pose measured from scan matching. As per

[2] , it can be estimated as :

Rk = σ2H−1
t (A.20)

60

Ht is evaluated as per equation A.9. σ is a scaling factor.

Kalman Gain

Kk = Pk−1H
T
k S

−1
k (A.21)

Updated State Estimate

xk = x
′

k +Kk(zk − h(x
′

k)) (A.22)

Updated Covariance Estimate

Pk = (I −KkHk)Pk (A.23)

61

Bibliography

[1] Brian Yamamuchi, A Frontier-Based Approach for Autonomous Exploration, Navy

Center for Applied Research in Artificial Intelligence , Computational Intelligence

in Robotics and Automation, 1997. CIRA’97

[2] S. Kohlbrecher and J. Meyer and O. von Stryk and U. Klingauf, Proc. IEEE

International Symposium on Safety, Security and Rescue Robotics (SSRR), A

Flexible and Scalable SLAM System with Full 3D Motion Estimation, November

2011

[3] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard, Improving Grid-based

SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selec-

tive Resampling, In Proc. of the IEEE International Conference on Robotics and

Automation (ICRA), 2005

[4] Sebastian Thrun, Wolfram Burgard, Dieter Fox, Probabilisitic Robotics, The MIT

Press, Cambridge Massachussets

[5] Steven LaValle, Planning Algorithms, Cambridge University Press, 2006

[6] Kohlbrecher S., Meyer J., Graber T., Petersen K., Klingauf U., von Stryk O.

(2014) Hector Open Source Modules for Autonomous Mapping and Navigation with

Rescue Robots. In: Behnke S., Veloso M., Visser A., Xiong R. (eds) RoboCup 2013:

Robot World Cup XVII. RoboCup 2013. Lecture Notes in Computer Science, vol

8371. Springer, Berlin, Heidelberg

62

[7] I. Sobel, An isotropic 33 gradient operator, in Machine Vision for Three-

Dimensional Scenes, H. Freeman, Ed., pp. 376–379, Academic Press, New York,

NY, USA, 1990.

[8] Roland Seigward, Illah Nourbaksh, Introduction to Autonomous Mobile Robots

The MIT Press, Cambridge, Massachussets, 2004

[9] Sebastian Thrun,Robot Mapping:A Survey, CMU-CS-02-111, February 2002

[10] A. Elfes. Sonar-based real-world mapping and navigation.IEEE Journal of

Robotics and Automation, RA-3(3):249–265,June 1987.

[11] A. Elfes.Occupancy Grids: A Probabilistic Framework for Robot Perception and

Navigation. PhD thesis, Department of Electrical and Computer Engineering,

Carnegie Mellon University, 1989.

[12] H. P. Moravec. Sensor fusion in certainty grids for mobile robots.AI Magazine,

9(2):61–74, 1988

[13] M. J. Mataric. A distributed model for mobile robot environment-learning and

navigation. Master’s thesis, MIT, Cambridge, MA, January 1990. also available

as MIT AI Lab Tech Report AITR-1228.

[14] B. Kuipers and Y.-T. Byun. A robot exploration and mapping strategy based

on a semantic hierarchy of spatial representations. Journal of Robotics and Au-

tonomous Systems , 8:47–63, 1991.

[15] F. Lu and E. Milios. Globally consistent range scan alignment for environment

mapping.Autonomous Robots, 4:333–349,1997

[16] Michael Montemerlo, Sebastian Thrun, Daphne Koller Ben Wegbreit, Fast-

SLAM:A Factored Solution to the Simultaneous Localization and Mapping Prob-

lem

63

[17] J.A. Castellanos and J.D. Tard os.M obile Robot Localization and Map Building:

A Multisensor Fusion Approach. Kluwer Academic Publishers, Boston, MA, 2000.

[18] Lumelsky, V., Skewis, T., Incorporating Range Sensing in the Robot Navigation

Function. IEEE Transactions on Systems, Man, and Cybernetics , 20:1990, pp.

1058–1068..

[19] Khatib, O., 1985, Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots. 1985 IEEE International Conference on Robotics and Automation , March

25-28, St. Louis, pp: 500-505.

[20] Koren, Y., Borenstein, J., High-Speed Obstacl Avoidance for Mobile Robotics, in

Proceedings of the IEEE Symposium on Intelligent Control,Arlington, VA, August

1988, pp: 382-384.

[21] Borenstein, J., Koren, Y., The Vector Field Histogram – Fast Obstacle Avoidance

for Mobile Robots. IEEE Journal of Robotics and Automation , 7, pp: 278–288,

1991.

[22] Ulrich, I., Borenstein, J., VFH+: Reliable Obstacle Avoidance for Fast Mobile

Robots, in Proceedings of the International Conference on Robotics and Automa-

tion (ICRA’98) , Leuven, Belgium, May 1998

[23] Ulrich, I., Borenstein, J., VFH*: Local Obstacle Avoidance with Look-Ahead

Verification, in Proceedings of the IEEE International Conference on Robotics

and Automation, San Francisco, May 24–28, 2000

[24] Khatib, O., Quinlan, S., Elastic Bands: Connecting, Path Planning and Control,

in Proceedings of IEEE International Conference on Robotics and Automation ,

Atlanta, GA, May 1993

64

[25] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-

merische Mathematik. 1: 269–271.

[26] Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science

and Cybernetics SSC4. 4 (2): 100–107.

[27] Don Murray, Cullen Jennings(1996), Stereo vision based mapping and naviga-

tion for mobile robots, Department of Computer Science, University of British

Columbia, Vancouver, ICRA.

[28] Lavelle, Kuffner, Rapidly-Exploring Random Trees: A New Tool for Path Plan-

ning

[29] N.M. Amato , Y. Wu, A randomized roadmap method for path & manipulation

planning, IEEE International Conf., Robotics & Automation, pg. 113-120 (1996)

[30] Jonathan D. Gammell, Siddhartha S. Srinivasa, Timothy D. Barfoot, Informed

RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of

an Admissible Ellipsoidal Heuristic, 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2014), pp. 2997-3004

[31] . J. Kuffner and S. M. LaValle. An efficient approach to path planning using

balanced bidirectional RRT search. Technical Report CMU-RI-TR-05-34, Robotics

Institute, Carnegie Mellon University, Pittsburgh, PA, August 2005

[32] Thomas Edlinger, Ewald Von Puttkamer, Exploration of an Indoor-Environment

by an Autonomous Mobile Robot, IROS 1994

[33] Cyril Stachniss, Wolfram Burgard, Exploring Unknown Environments with Mo-

bile Robots using Coverage Maps

65

[34] Fredman, Michael Lawrence; Tarjan, Robert E. (1984). Fibonacci heaps and

their uses in improved network optimization algorithms. 25th Annual Sym-

posium on Foundations of Computer Science. IEEE. pp. 338ndash, 346.

doi:10.1109/SFCS.1984.715934.

[35] Borenstein, J., Everett, H.R., Feng, L., Where Am I? Sensors and Methods for

Mobile Robot Positioning. Ann Arbor, University of Michigan

[36] Real Time SLAM Using Compressed Occupancy Grids For a Low Cost Au-

tonomous Underwater Vehicle, Christopher Cain, PhD Dissertation, Virginia In-

stitute of Technology ,2014

[37] Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, 1984. p. 48.

