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ABSTRACT OF THE THESIS

INERTIAL DETECTION OF UNUSUAL

DRIVING EVENTS FOR SELF-DRIVING

by HAIRONG WANG

Thesis Director: Marco Gruteser

While modern self-driving vehicles have shown their impressive capabilities to-

wards offering new mobility to millions of people, it still remains challenging to

build fully dependable and safe self-driving systems. To ensure the dependability

of automated driving, the self-driving system is not only required to understand

common road situations, but also widely different unusual events (e.g., objects on

the roadway, pedestrian crossing highway, deer standing next to the road, etc.),

which are very rare but more likely to cause unanticipated accidents.

To detect unusual events, existing approaches seek to collect them by driving

millions of miles with self-driving prototypes. But there still remains uncertainty

because of limited miles covered. In contrast, this thesis proposes automatic

unusual driving events identification algorithms, which can detect unusual cases

through inertial sensing from in-vehicle devices in human-driven vehicles. This

approach can be scaled to a much larger number of vehicles and thereby cover
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larger driving distances. The approach involves monitoring human driver reac-

tions based on inertial sensors (e.g., accelerometer and gyroscope) and demon-

strating that they are useful indicators of unusual driving events.

Our inertial detection approach includes three stages. At first, we apply a

potential emergency period (braking and swerving) detection to detect a sudden

driver reaction, which reflects situations that challenge human drivers. Then we

utilize three features to extract different properties from the detected periods.

Finally, we propose a feature fusion method to fuse the features in an accuracy-

driven way. Therefore, by extracting the features from the potential unusual

periods, we can detect hazardous events from a large data set automatically.

Besides, in order to improve the efficiency of processing a large scale of dataset,

we also provide an alternative approach to process data in parallel pipelines in

the cloud.

We evaluate whether the inertially identified driving events match events that

are manually labeled as unusual based on more than 120 hours of real world

driving data. The result shows the proposed fusion method outperforms the

baseline methods with an 82% accuracy improvement for braking events as well as

a 94% accuracy improvement for swerving events. To improve the dependability

of automated driving systems, such detected events could be used in simulation

tests to gradually refine self-driving software.
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Chapter 1

Introduction

Advances in autonomous vehicle technologies have recently helped bring self-

driving cars to the focus of public interest. More and more self-driving car models

have been released by different industries and organizations [1] [2] [3] [4]. While

modern self-driving vehicles have shown their impressive capabilities towards of-

fering new mobility to millions of people, the safety level that can be achieved

by current self-driving vehicles is still unclear. There have been several reports

about traffic accidents caused by self-driving or semi-automated cars [5] [6] [7],

which are typically caused by unusual situations that have not appeared in the

regular training and testing process. Therefore, it is still challenging to provide

truly safe and reliable self-driving systems in the near future.

To improve the reliability, the self-driving system is not only required to un-

derstand common road situations, but also those unusual events (e.g., objects on

the roadway, pedestrian crossing highway, deer standing next to the road, etc.)

which are very rare but more likely to cause unanticipated accidents. Therefore,

scaling the road dataset to billions of miles of driving and obtaining large amounts

of unusual events and corner cases is highly desirable to generate more reliable

algorithms.

Researchers have developed different methods for self-driving data collection.

Existing approaches seek to collect them by driving millions of miles with self-

driving prototypes. Since the miles self-driving cars accumulate are limited, it is
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challenging to collect a sufficiently large dataset in a short period with this ap-

proach. To overcome the challenge, this motivates collecting a catalog of unusual

driving events that represents unusual situations expected in billions of miles of

driving to accelerate the development of truly dependable self-driving systems.

We are also looking into an efficient way which can rely on low-cost in-vehicle de-

vices with scalability and flexibility. Such a comprehensive set of unusual events

and corner cases can be more easily obtained by scaling data collection to large

numbers of minimally instrumented (camera-equipped) human driven vehicles, as

previously advocated by BigRoad [8]. This, however, would still require identi-

fying the unusual events in such a vast data set to create test cases for proving

grounds or simulators.

To identify unusual events and corner cases, manual inspection seems a straight-

forward and possible approach. However, it requires plenty of extra effort, ampli-

fies privacy concerns, and increases storage and networking overhead for collecting

all data. Therefore, automatically identifying unusual driving events remains a

challenge.

Some of the driving data collected on the road rely on the cameras or radar [9,

10]. However, to automatically detect unusual events by processing those frames

or data captured by cameras/radars is very difficult. Also, the data from radars

are more likely to focus on the distances between objects rather than the emer-

gency of road situations. It is still challenging in finding the applicable indicators

to automatically detect those corner cases which automated driving technology

is interested in.

We propose automatic unusual driving events identification algorithms based

on inertial sensors, which can detect unusual situations through in-vehicle al-

gorithms and can be easily scaled for wide deployment. Our approach involves

monitoring human reaction from large human driving data based on the readings



3

Figure 1.1: System overview of unusual driving events identification

from embedded sensors (e.g., accelerometer and gyroscope), which are useful in-

dicators in sensing vehicle dynamics as well as driver reactions. In particular, it

detects sudden driver reactions (e.g., hard braking and swerving), since situations

that challenge human drivers are also likely to be interesting test cases for auto-

mated vehicles. In detail, a three stage inertial sensing approach is proposed to

detect unusual braking and swerving events.

In our three stage approach, we first apply a potential emergency period (brak-

ing and swerving) detection to identify candidates and then we use three different

features to extract the properties of candidates. At last, we propose a fusion

method to combine the advantage of those features. Therefore, by filtering the

features from the potential unusual periods, we can easily detect hazardous events

from a large data set automatically. By comparing the performance of our method

with a strawman solution, we can conclude that this represents an efficient and

practical approach to detect unusual events.

Besides, in order to improve the efficiency in processing a large-scale dataset,

we also provide an alternative approach to design a parallel streaming data pro-

cessing pipeline and create a prototype implementation on the Cloud Dataflow
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Figure 1.2: Proposed system flow for unusual events identification

service. This reduces the running time and improves efficiency of our system.

Overall, we utilize inertial sensors and the parallel pipeline to achieve a scalable

and reliable implementation of unusual event detection for massive datasets. The

contribution of our work can be summarized as follows:

• Introducing a scalable unusual events collection approach for self driving

research and development, which employs human driven vehicles, instead of

highly-instrumented vehicles.

• Analyzing more than 120 hours of driving data to evaluate the accuracy

of unusual events identification and demonstrating the potential of these

detected events to improve the performance of self-driving algorithms.

• Introducing a fusion method which takes full advantage of different features,

improving accuracy and performance of detection over strawman solutions.

• Building parallel pipelines for processing large-scale datasets, which im-

proves efficiency greatly.

Thesis statement:

Our low-cost and scalable approach for sudden reaction detection is able to

automatically detect unusual driving events from inertial sensors both in batch

and streaming modes with high accuracy improvement compared with baseline

inertial algorithms.



5

The outline for subsequent chapters are discussed as follows:

Chapter 2 presents related work in detecting unusual events including camera-

based, OBD-based and IMU-based approaches. Current status of self-driving sys-

tems will also be discussed, conveying a concise view of self-driving development

background.

Chapter 3 describes the implementation of our detecting algorithms. Three

stages: potential emergency period detection, feature extraction and feature fu-

sion approach of our detection algorithm are illustrated in detail.

Chapter 4 discusses the mechanisms of cloud processing design for two dif-

ferent modes batch and streaming pipeline. The processing workflow will be

demonstrated, revealing the scalability and reliability that it brings.

Chapter 5 presents the evaluation for our sudden reaction detection including

the corner cases we have extracted and comparison between features and our

fusion method.

Chapter 6 gives the conclusion.
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Chapter 2

Related Work

Detecting unusual events is of great importance to driving assistant system devel-

opments. Most of the industries pay more attention to unusual events to evaluate

the safety performances of their self-driving algorithms. This thesis intends to

utilize inertial sensing readings as the indicators of unusual events detection. The

background of this will be clarified in three aspects: existing approaches in de-

tecting vehicle dynamics, current technology of self driving and the background

related to parallel computing.

2.1 Detecting Vehicle Dynamics

There has been active work on detecting vehicle dynamics while driving both in

the research field and in the commercial field [11, 12, 13]. The existing related

approaches can be divided into the following categories: camera-based, inertial

measurement unit (IMU) based, OBD-based and radar based approaches.

Camera-based approach

At present, some commercial applications have launched on the market such

as Mobileye [14] and iOnRoad [15]. Some stereo cameras or mono cameras can

provide longitudinal support to estimate the distances to the objects or pedes-

trians on the road and help drivers keep a safe distance to prevent collisions.

However, the performances of cameras are seriously limited when the visibility of

road is poor.

To overcome the limitations of objective conditions, some work focus on more
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sophisticated instrument. Michael et al. [9] proposed an infrared camera for night

view systems, to help drivers recognize dangerous situations, such as pedestrians,

animals or obstacles on the road, which performs well even in poor visibility.

Furthermore, both research and industry recently take efforts to develop driving

assistant applications on smartphones. In [10], the authors developed a mobile

phone application named CarSafe to detect drowsiness by observing the drivers’

eye movement to alert the drivers with the phone’s front camera. [16] and [17]

are able to utilize on-board cameras to capture unusual cases, but only cover

a subset of challenging situations such as abnormal pedestrian movements and

unclear drivable roads.

However, it is undeniable that the camera-based systems are at the cost of

high computational power. Additional efforts should be made such as image rec-

tification, disparity image calculation and complex stereo calibration algorithms.

Besides, all these camera-based methods require placement for built-in cameras.

OBD-based approach

On-board diagnostics (OBD) systems provide real-time data in addition to a

standardized series of diagnostic trouble codes, which help rapidly identify and

remedy malfunctions within the vehicle. An inexpensive OBD-II port adapter

can be used to obtain the speed of vehicle, which can be read in smartphones via

a Bluetooth connection [11].

Radar-based approach Despite of the OBD utilization, radar system is also

popular equipment which has been used for a long time. At present, radar systems

are applied widely in self-driving vehicles. Radar is computationally lighter than

a camera. It can work under various weather which utilized reflection to see

obstacles in the behind. The authors of [18] demonstrate that radar is often

identified as the best suited sensor for automated braking and pedestrian safety

functionality.

IMU-based approach
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Inertial measurement unit achieves comparable results to the methods above

in a much lower cost without influence of the visibility of road. The readings of

inertial sensors facilitate a broad array of different research directions to driving

safety [12, 19, 20, 21] and road monitoring [22]. For example, sensor readings,

i.e., gyroscope and accelerometer from smartphones or other devices can be used

to determine driver phone use, which can facilitate many driving safety appli-

cations [11]. In addition, there are studies on solving driving safety issues by

detecting dangerous steering wheel motions [23, 24].

In [19], the authors propose a novel system, MIROAD, that uses Dynamic

Time Warping (DTW) and smartphone-based sensors to detect and recognize

drivers’ potentially-aggressive actions without external processing. Similarly with

MIROAD, Dai et al. [25] use an installed program on the mobile phone to collect

and compute accelerations obtained from its accelerometer and orientation sensors

to detect abnormal or dangerous driving maneuvers. V-Sense system, which is

proposed in [22], is a vehicle steering detection middleware to detect how a vehicle

is steered and then alarming drivers in real time. However, such algorithms could

only detect known aggressive driving patterns, while not diverse human driver

reactions which are naturally performed during emergency periods.

Compared with the research listed above, our research provides a new insight

in sensing vehicle dynamics, that uses inertial sensor readings to detect unusual

events from sudden human reactions which might cause dangerous accidents. Such

detected events could be used for the self-driving companies in simulation tests

to gradually refine self-driving software.

2.2 Current Self-Driving Technologies

Detecting unusual events is of great significance to automated driving system

developments, since the analysis of such corner cases will be helpful to improve
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(a) Carcraft (b) Fuzzing

Figure 2.1: Waymo’s simulation software and a fuzzing process to alter variables.

current algorithms [26, 27, 28, 29]. Taking a close look at how advanced self-

driving companies work on their models will give a better understanding of the

usability of unusual driving events.

In its safety report, Waymo revealed to the public details of the technology

for training their self-driving cars [30]. In total, their testing procedure includes

three steps: simulation testing, closed-course testing and public road testing. For

simulation testing, Waymo built a software called Carcraft which can simulate

the virtual scenarios while driving. Each day, 25,000 virtual self-driving vehicles

drive up to eight million miles in simulation, refining old skills and testing new

maneuvers that help them navigate the real world safely. Crucially, the virtual

miles focus on those interesting miles in which the self driving software might learn

something new. For now, those interesting miles refer to the most challenging

situations that their self driving cars encounter on public roads [31].

The simulation testing also includes thousands of variations on the traffic

through a process called fuzzing. By altering the simulated factors, the software

can be refined gradually and can more easily handle any complicated situations.

Then Waymo validates their new software by private track testing and public test-

ing. And then the cycle begins again. By testing and validating multiple times,

their software will have a more comprehensive understanding of those unusual

events.
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Therefore, such unusual situations play a significant role in automated driving

technologies, which are the most interesting parts that should be attached impor-

tance in training and testing process. Thus, our work is useful towards improving

safety and reliability of self-driving transportation.

2.3 Cloud Computing

As a result of the pursuit for scalable and secure networks benefits, cloud com-

puting has become the forefront of current technology trends [32]. An increasing

number of companies are getting involved into this field and obviously have bene-

fited significantly from it [33, 34]. Cloud computing has made it possible for even

a small business to afford such reliable and scalable processing capabilities, which

seems the preferred solution, on the other hand, for large companies extending

their infrastructure or launching new innovations.

Some companies like Netflix increasingly rely on cloud services for their online

operations, which allows them to concentrate on their core business ideas [35].

The companies working on social media also migrates their online services to

cloud providers, since the cloud infrastructure with a massive storage can eas-

ily hold and manage the messages and information. In addition, by providing

higher processing power and sophisticated tools, cloud computing enables data

scientists to tap into massive data to analyze it for patterns and insights, find

correlation, apply complicated algorithms, make predictions and analyze in data

backed decision making.

There are multiple kinds of big data tools, some focusing on batch processing

such as Hadoop [36] and some on real-time data processing including Kafka [37]

and Cassandra [38]. These platforms provide an alternative for processing and

managing massive organizational data. From our perspectives, the big data an-

alytics provided by the cloud will be an essential tool for processing sensor data
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when considering the goal of a large-scale collection. Streaming pipelines will help

when the real-time driving sensor data is continuously tapped in.

Most frameworks only have one specialty, while Google Cloud Dataflow ser-

vice, which is utilized in this thesis, is multifunctional. It integrates both of the

stream and batch modes, allowing users to build pipelines, monitor their exe-

cution and analyze data on the cloud. It reports that Dataflow has replaced

MapReduce gradually inside the Google with a fact that Dataflow shows a better

performance in handling multipetabyte datasets [39].

We believe that such powerful and hyper-scale infrastructure will allow effi-

cient processing of massive data , which simplifies the procedure in data manage-

ment and analyzing. Thus, the sensor data can be uploaded and processed on

the cloud automatically and large-scale unusual driving events will be identified

more easily.
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Chapter 3

Detection Algorithms

In this chapter, we mainly introduce our design and implementation of the au-

tomatic driving corner cases detection approach based on inertial sensors. Our

approaches: Sudden Reaction Detection uses three steps: candidate period

detection, feature extraction and feature fusion approach. We detail them below.

3.1 Overview

Since driving miles with self-driving prototypes are limited, we are looking forward

to a more scalable solution which can be applied on large numbers of vehicles

to detect the interesting miles. Our method starts from the identification of

human reaction, since the unusual situations that surprise a human driver are

more likely to challenge an automated driving system than those ”boring” driving

situations. Because of the deployment on conventional human-driven vehicles

that allows reaching the necessary scale much more quickly, the system can make

use of detailed measurements of the human driver’s sudden steering and braking

reactions to road events.

The unusual situations which trigger human driver’s reactions like hard brak-

ing and high speed swerving usually involve large accelerations and angular speed.

Such features could be captured by the accelerometer and gyroscope of an Inertial

Measurement Unit (IMU) available in many phones, cameras, and cars. The de-

tector is triggered when the feature score exceeds a threshold, which can be chosen

as a percentile of the feature value. Therefore, to identify such sudden reaction
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events, we propose a three-stage inertial sensing detection technique leveraging

the IMU potentially available within vehicles. The three-stage detection mech-

anism includes candidate period detection, feature extraction and feature fusion

approaches.

To further filter out human driver’s unusual driving events, IMU’s reading

should be evaluated in terms of Amplitude and Urgency. Amplitude refers to

the peak values in the IMU’s reading, as the moments which have significant

acceleration and angular speed will be more likely considered as unusual. Ur-

gency quantify the time window in which there are one or multiple peaks, since

the movements like high speed swerving and hard braking usually peak readings

within in short time period.

In our three-stage detection, as unusual events (e.g., animals running across

the road and other vehicles sudden inserting) often involves sudden reactions of

drivers, such as hard braking or sudden steering, the system first detects these

candidate period based on the inertial sensor readings. In the second step, the

system extracts various features, trying to indicate the unusuality of detected

human reactions. Finally, a fused model is designed to combine the properties of

each feature in an accuracy-driven way.

3.2 Candidate Period Detection

Human drivers tend to perform emergency reaction like hard braking or swerving

to avoid accidents, when unusual situations happen. This motivates the first stage

of our detection mechanism to identify candidate periods in terms of braking

and swerving events which have relatively large readings on accelerometer and

gyroscope.

Without lose of generality, the pose of IMU within the vehicle should be as-

sumed unknown. Therefore, coordinates alignments will be performed to project
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Figure 3.2: The accelerometer and gyroscope readings on sample braking and
swerving event.

IMU’s reading from its own coordinates system to vehicle’s coordinates system.

As vehicle will only get gravity while stationary and will have dominate accel-

eration component in driving direction, vehicle’s coordinates system could be

determined by a period of acceleration [11].

Besides, we utilize a low pass filter to remove the noise from the raw IMU’s

reading caused by vehicle vibrations and bad road conditions. A example with

comparison between raw gyroscope data and smoothed data is shown in Fig-

ure 3.1.
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Braking Events Detection.

Generally speaking, when a driver braking, a large acceleration can be ob-

served in the opposite direction of the driving direction. Figure 3.2(a) shows

the acceleration reading trace of a braking event, in which a negative bump can

be observed due to the press of braking pedal. Thus, such bumps observed on

acceleration reading can be used to identify braking events.

In order to accurately capture the bumps that are actually caused by braking

events, a peak detection method is applied first to find all the negative peaks

of the accelerometer readings on the driving direction, whose value is defined

as δp to quantify the amplitude of braking event as shown in figure 3.2(a). A

threshold min braking is used to remove noisy peaks such as the ones caused

by road bump vibrations. The noisy peaks will be effectively filtered out other

confounding movements such as slight vibrations caused by road bumps.

After each effective peak of braking events is detected, the system searches

forward and backward to find two positions , which are the first point of which

the acceleration value is less than a threshold time thres. It is used to avoid

acceleration noise caused by vehicle fluctuations and improve the overall detection

accuracy. We define the the starting point and ending point of this event as ts

and te respectively, as illustrated in figure 3.2(a). Besides, the difference between

ts and te is defined as the duration (Tb) of a braking event.
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Algorithm 1 Braking Event Detection

Input: A (z axis Accelerometer readings), min braking, time thre

valleys = all the local minima δp where |A| > min braking for each valley do

(Searching backward) if |A| < time thre then

Record the start time ts

end

(Searching forward) if |A| < time thre then

Record the end time te

end

return braking with δp, ts, te

end

Swerving Events Detection.

During swerving events, a driver usually first turns the steering wheel to one

direction quickly and then turn back to the other direction. This action will re-

sult in two consecutive bumps in opposite directions of the gyroscope readings,

as shown in Figure 3.2(b). Therefore, we capture such characteristics by thresh-

olding peaks on gyroscope reading for peak detection, and then filter out effective

swerving based on the time interval between two opposite direction bumps. Sim-

ilar with the brake detection, δp, ts, te are defined as the amplitude of the first

peak, starting point and ending point of swerving events.

To detect swerving events and distinguish such events with two consecutive

turns, for each pair of consecutive bumps in opposite directions, we calculate the

time interval between the ending time of the front bump and the starting time

of the rear bump, as illustrated in Figure 3.2(b). If the interval is smaller than a

threshold, this pair of consecutive bumps can be quantified as a swerving event.

Also, the duration (Ts) of a swerving event is defined using the difference

between the start of the front bump and end of the rear bump.
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Algorithm 2 Swerving Event Detection

Input: G (x axis Gyroscope readings), min swerving, time thre,dura thre

positive bumps = all the positive bumps with δp, ts, te, where |δp| > min swerving

negative bumps = all the negative bumps with δp, ts, te, where |δp| >

min swerving for each positive bump do

for each negative bump do

if ts2 − te1 < dura thre then

return swerving with δp, ts1, te2

end

end

end

3.3 Feature Extraction

Based on the detected candidate periods, we first describe a Strawman solution

using amplitude of sensor readings as feature to detect unusual events:

Amplitudes. Due to the large accelerations or gyroscope readings while

unusual situations, using amplitudes of such reading as features seems to be an

intuitive solution. Specifically, the sudden braking events and swerving events

can be detected based on a threshold δp value. Ideally, the top 5 or 10 percentage

of the sorted candidate periods should have a high detection accuracy for unusual

events.

• Amplitudes of acceleration Drivers tend to brake when facing unusual

events, which might reach a high deceleration. By filtering the accelerometer

readings on the direction of driving, calculating the amplitudes of accelera-

tion during a brake will be an intuitive way. The detected braking events

should be sorted descendingly based on their amplitude value of acceleration

referring to δp in Figure 3.2(a).
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• Amplitudes of angular velocity Similarly, a driver tends to perform a

hard swerving to avoid hitting unexpected obstacles lying on the road. By

processing gyroscope readings and finding the amplitudes of angular veloc-

ity, we might be able to find out unusual events from detected swerving

events. Similarly we should sort swerving events based on the amplitudes

of gyroscope (δp) and filter the corner cases in high-amplitude driving pe-

riod. The difference from amplitudes in braking is that there are two peaks

detected in a swerving event thus we will have two peaks’ amplitudes on op-

posite directions. In this case, we only utilize the first amplitude of the peak

to quantify the amplitudes of the swerving event, since the first reaction is

likely to be the case that we are more interested in.

However, this solution does not work well in practice because the majority

of braking events with large acceleration and swerving events with large angu-

lar velocity are usual events including normal braking when facing red traffic

lights and normal swerving like lane changes. Considering the urgency of unusual

events, we propose Derivative-based and Duration-based features to further

characterize detected events.

We now discuss intuition and methodology of how to extract the urgency

features for both braking events and swerving events:

Derivatives. Unusual events do not always come with high-amplitude brak-

ing. Estimating the urgency of a braking or swerving event is also important to

determine unusual events.

To this end, we calculate the derivatives of acceleration and gyroscope to

represent the urgency of a braking event and a swerving event.

• Derivatives on accelerometer readings Instead of considering the spe-

cific amplitudes of acceleration, determining how fast the driver brakes mat-

ters. It requires us to calculate the derivatives of acceleration to show how
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urgent a braking event might be. To calculate derivatives, we use the dif-

ference of amplitudes of every five sample points to divide the difference

of time. A derivative value at m can be calculated through Equation 3.1.

Here, A represents the readings on z-axis of accelerometer and t represents

the time.

db(m) =
A(m+ 5)− A(m)

tm+5 − tm
(3.1)

• Derivatives on gyroscope readings Calculating the derivatives on gy-

roscope readings during swerving events is also an efficient way to detect

sudden swerving events. Sometimes we pay more attention to how quickly

drivers react to unusual events which can be reflected via the derivatives.

The calculation is similar with the braking events. We also calculate the

derivatives for each sample point during the whole event, as shown in Equa-

tion 3.2. Here G is the x-axis readings of gyroscope.

ds(m) =
G(m+ 5)−G(m)

tm+5 − tm
(3.2)

Duration. As a sudden braking or swerving event often happens in a short

moment, we can also use duration to depict the urgency of unusual events. As

shown in Figure 3.2, the duration of a braking or swerving event are represented

by Tb or Ts correspondingly, which is equal to the interval between ts and te.

• Duration of a braking event As a sudden braking event often happens in

a moment, we can also use duration to depict the urgency of unusual events.

Duration of a braking event should be sorted ascendingly to allow focusing

on rapid braking, which is more likely to be an unanticipated event.

Tb(m) = te(m)− ts(m) (3.3)
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• Duration of a swerving event Apparently, a sudden swerving event takes

much shorter than a normal swerving event. So calculating the duration of a

swerving event referring to Ts in Figure 3.2(b) seems an intuitive approach

when considering an evaluation in terms of urgency. Since there are two

peaks in a detected swerving event, to calculate the duration, we use the

difference between the start time of the first bump and the end time of the

second bump.

Ts(m) = T2e(m)− T1s(m) (3.4)

3.4 Feature Fusion

Based on preliminary results, we find that the duration based and derivative based

approaches work better than the Strawman solutions that rely on the amplitude

of sensor readings. However, the detected unusual events from one approach tend

to have less shared events with other approaches. To effectively take advantage

of all three features, we propose a feature fusion mechanism to combine the three

extracted features (amplitude-based, duration-based and derivative-based) in or-

der to get better performance for filtering unusual events. We design a accuracy

driven weight assignment method to assign weights to different features based on

their detection accuracy. The principle underlying this method is illustrated in

Equation 3.5.

ffusion =
∑
i

wifi

wi =
nfi∑
i nfi

(3.5)

The fused feature value (ffusion) of a candidate period is equal to the sum

of each feature value (fi) multiplied by its weight (wi). The value of each fea-

ture is normalized to a Gaussian distribution with the same mean and variance.

The weight of each feature (wi) is calculated based on the detection accuracy.
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Figure 3.3: Accelerometer and gyroscope readings in the same video

Specifically, for each feature, we extract the top 5% potential unusual events and

determine the actual detected unusual events for each feature (nfi) based on the

manual review. We divide nfi by the sum of detected unusual events for all fea-

tures to calculate the corresponding weight (wi). With this method, the system

assigns a higher weight for features with better detection accuracy, while assigning

a lower weight to the one with worse detection accuracy.

3.5 Implementation

We implemented the algorithms to process inertial data from Gopro HERO5

cameras. The recorded videos contain the associated inertial data. We extracted

accelerometer, gyroscope and GPS readings using Go scripts. Based on the com-

parison between the events in videos and accelerometer/gyroscope readings, we

can determine the approximate inertial coordinates. By tracking the bumps in

accelerometer readings when the braking events and turns happen, those events

can be detected on each axis. As shown in Figure 3.3, the bumps on Z-axis are
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Figure 3.4: Inertial sensor coordinates of GoPro

related with braking, the bumps on Y-axis are related with the turns and the

acceleration on X-axis is usually fluctuating around −10m/s2 which implies the

direction is correspondent to the gravity. In terms of gyroscope coordinates, we

detect bumps on X-axis when turns occur. Thus, the approximate coordinates of

the inertial sensor in GoPro are determined.

The inertial processing can be implemented directly in vehicles or in the cloud.

We focuses on the latter and describe this implementation next.
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Chapter 4

Cloud Processing Design

This chapter clarifies how we utilize the full-managed service: Google Cloud

Dataflow to transform and process large-scale data, simplifying the mechanics

of parallel data processing as well as improving efficiency and scalability. In this

chapter, general overview of cloud processing design will be presented at first and

this is followed by our implementation of the inertial algorithm in both batch and

streaming mode.

4.1 Background

Commonly, our unusual event identification algorithm can be easily implemented

and processed on the mobile end. Naive batch processing can require long time for

a large dataset. Now we also provide an alternative solution for cloud processing,

which allows a long-period data persistence with only one-time uploading. It will

further allow users to reprocess the data in the future with even more complicated

algorithms. The approach of cloud processing will accelerate processing duration

and optimize data management in terms of large quantity of dataset. For real-

time data processing, such a practical platform is also applicable in achieving

real-time unusual events detection which provides possibilities for different kinds

of user cases.

Cloud Dataflow is a unified programming model providing powerful service

in developing and executing wide varieties of parallel data processing patterns.

It enables developers to build up processing pipelines, transform and analyze
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their data both for batch mode and streaming analytic amongst its capabilities.

Dataflow allows users only concentrating on the logic composition of data execut-

ing job. With Google Cloud Pub/Sub, Dataflow can also take data in publish-

and-subscribe mode which enables real-time data processing and analyzing.

In our system, streaming and batch data modes are both achieved in pro-

cessing inertial sensor data for sudden reaction detection using Cloud Dataflow

in a straightforward way. For the streaming pipeline, we use Cloud Pub/Sub

to ingest IMU data from real-time driving events. For the batch pipeline, IMU

data is imported from Cloud Storage. Both of the input data will be processed

using Dataflow and results will be stored to Cloud Storage or Cloud BigQuery

in two pipeline modes as well. At last, unusual events will be easily filtered after

analyzing and will be stored in cloud.

Figure 4.1: Overview of cloud processing design

4.2 Batch Processing

Cloud Dataflow

Cloud Dataflow builds a pipeline which represents a data processing job. It

handles data of varying patterns and structure using a format called PCollection,
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a parallel extension of a Java collection whose elements can be spread over multi-

ple physical machines. Dataflow also includes a library of parallel transforms, or

PTransforms, which allow high-level programming of processing operations using

basic templates, including performing mathematical computations on data, con-

verting data from one format to another and etc.. In addition, it supports diverse

sources and sinks for pipeline I/O which provides read and write transforms for

a number of common data storage types. The service optimizes processing tasks

– for example, by reducing multiple tasks into single execution passes with equal

reliability and expressiveness.

To process different elements in parallel, Cloud Dataflow will automatically

partition data and distribute them to different compute engine instances. Then

the aggregation operation will combine the data across the dataset, including

data which may be spread across multiple workers. It will generate a workflow

graph based on the created PCollection and applied PTransforms with optimized

resource usage. Cloud Dataflow also include automatic tuning features, such as

autoscaling and dynamic work rebalancing, to optimize data distribution and

resource allocation.

Figure 4.2: A linear pipeline with three sequential transforms

Our dataset includes data from 1430 videos in total. The data from each video

involves its acceleration and gyroscope readings respectively, formatted in CSV

documents. We will show how we process the sensor readings using Dataflow to

achieve sudden reaction detection on those videos.

Pipeline Flow Design
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Figure 4.3 shows the mechanics of how we utilize PTransforms to ingest the

input, and how we transform the PCollection to the required results. Based on

the objective that we are trying to process the videos in parallel, our PCollection

should be a distributed dataset which holds a single trip as a single element.

This allows fully parallel processing, where the processing time for all the trips in

1430 videos could be the same as the time to process one trip. In practice Cloud

Dataflow chooses a lower degree of parallelism by default.

To achieve this, we divide our batch processing pipeline into two steps: dataset

organizing and parallel computing. Since the Dataflow TextIO.Read transform

returns a PCollection of Strings, each corresponding to one line of an input text

file, transforms must be done to turn it into the reasonable format. To alter the

lines of data to trips, we need to apply PTransforms to organize our dataset at

first. Then when the PCollection of trips is ready, we can continue to working on

the algorithms that process each element and write the results.

Figure 4.3: PCollection with transforms

• Dataset organizing

At first, we read IMU data from Google Cloud Storage using a transform
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called TextIO.Read, which reads the text file and returns a PCollection of

String. Each String in the resulting PCollection represents one line from

the text file. Then we use the WithKeys Transform to assign keys: tripID to

each element in PCollection, in order to prepare for combining the elements

from one trip file to a single element of PCollection. GroupByKey transform,

groups all the lines of data into a set based on the keys. Thus, we transform

a PCollection of lines into a PCollection of tripID/sets of data pairs. Each

element in the PCollection represents a single trip which allows us to parallel

process all the trips.

• Parellal computing

After organizing dataset, a ParDo transform is used to perform potential

emergency period detection and extract the features as the output. Finally,

TextIO.Write method allows users to write the results to Cloud Storage as

well.

The whole pipeline of our sudden reaction detection runs 12min 49s, which

reduces processing duration significantly comparing with sequential file-by-file

processing. Even with large scale dataset, our sudden reaction detection can be

executed and monitored under Dataflow with higher efficiency.
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Figure 4.4: Batch Pipeline Design

4.3 Streaming Processing

Cloud Pub/Sub

In order to build streaming pipeline, instead of ingesting data directly from

the batch storage, we have to alter to other solutions to read the input. Cloud

Pub/Sub is such a powerful tool when it comes to streaming processing.

Cloud Pub/Sub is a reliable and scalable tool for stream analytics and event-

driven computing systems. It ingests streams from events and delivers them

to Cloud Dataflow for processing. Cloud Pub/sub allows secure and durable

communication between different independent applications, that helps developers
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quickly integrate their workflows and data streaming.

To send messages using Pub/Sub, it relies on two key concepts: topic, which

is the entity that represents a feed of messages, and subscription, the entity that

represents an interest in receiving messages on a particular topic. In practice,a

publisher will create messages or data and publish them to a topic. A subscriber

will receive the messages on the subscription.

Pipeline Flow Design

The overall streaming pipeline flow is similar with the batch one. There are

two main differences between them. First, without using Cloud Storage, all the

streaming inertial sensor data must be uploaded to the cloud in a real time way.

Instead of using TextIO.Read, we use PubsubIO.Read to read data from a topic.

We also implement the function to automatically send the stream data to a topic

from the mobile end. Note that we don’t create subscriber function here since

Dataflow automatically creates and manages a subscription behind the scenes.

Thus, the PubsubIO.Read transform continuously reads from a Pub/Sub stream

and returns an unbounded PCollection of Strings that represent the data from

the stream. Additionally, each element in the resulting PCollection is encoded as

a UTF-8 string by default.

The other main difference is that we add an important transform called Win-

dow Transform on the data read by PubsubIO before any other parallel trans-

forms. By defining a window on the streams, Dataflow transforms that aggregate

multiple elements, such as GroupByKey and Combine, will work implicitly on

each defined window. In particular, they process each PCollection as a succession

of multiple finite windows, though the entire collection itself may be of unlimited

or infinite size. There is another related concept called Triggers which is used to

determine when to ”close” each finite window. Using a trigger can help to refine

the window transform, especially in dealing with late-arriving data or to provide

early results.
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After adding a Window transform with correlated triggers, it assigned the ele-

ments in an unbounded PCollection to one or more windows, and each individual

window contains a finite number of elements. Then, different with grouping data

in a same trip in batch processing, the streaming GroupByKey transform will

group the elements in a same window. Then ParDo function will process on a

per-window basis. In our system, we don’t actually test the streaming approach

on real world vehicles, but simulate the process with our batch dataset. It shows

the competitive performances compared with the processing on mobile end in

terms of detection accuracy.

Figure 4.5: Streaming Pipeline Design

4.4 Implementation

Manage Cloud Storage

Before parallel processing through Dataflow, we first need to upload inertial

sensor readings to Cloud Storage. Here we use the gsutil tool, a Python applica-

tion that allows users to access Cloud Storage from command line.

We first use gsutil to create buckets, which are the basic containers to hold

data. Then the gsutil cp command is used to upload an object to buckets. Here

we upload all the inertial sensor data including accelerometer and gyroscope data

to the bucket. Besides, the gsutil command-line tool also allows to download

objects from buckets and list the detailed information of objects or buckets.

Hence, the dataset has been stored in Cloud Storage which only takes a short

period to upload and can be processed anytime. For further grabbing the input,
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gsutil uses the prefix gs:// to indicate a resource in Cloud Storage. Specifically,

we use gs://[BUCKET NAME]/[OB-JECT NAME] to access any data we want.
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Chapter 5

Evaluation

Here comes the evaluation chapter. We will first discuss the dataset for our

batch processing and then present our detection accuracy of our fusion approach

and strawman solution. Then we will illustrate the detailed comparison results

between all the features.

5.1 Dataset Description

The sudden reaction detection is evaluated with a dataset including 120 hours

of videos collected in Los Angeles, CA, including 1430 videos in overall. In this

dataset, we use GoPros mounted at the bottom center under the windshield to

record the full driver’s front view videos with 1280× 720 resolution at 30Fps.

The dataset is collected by ten different drivers under different road situations,

including urban roads, highway roads in both daytime and nighttime as shown

in Figure 5.1. The driving ranges and routes are also shown in Figure 5.2. The

shape curved in 5.2(a) is the range in where the drivers collect urban road data.

5.2(b) shows the routes of highway driving data.

(a) Urban road (b) Highway road (c) Nighttime-view road

Figure 5.1: Different road situation samples
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(a) Urban Road Map

(b) Highway Map

Figure 5.2: Experiment driving route for the Los Angeles dataset.

Metadata Extraction

To extract inertial sensing data from embedded sensors in Gopros, we fol-

low the tutorials on its official website, in which case we are able to acquire

all the necessary sensor readings from the videos. The details of sensing data

which can be extracted are listed as follows: (a) 400 Hz 3-axis gyroscope read-

ings, (b) 200 Hz 3-axis accelerometer readings, (c) 18 Hz GPS position (lati-

tude/longitude/altitude/speed), (d) 1 Hz GPS timestamps, (e) 1 Hz GPS accu-

racy (cm) and fix (2d/3d), (f) 1 Hz temperature of camera.
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5.2 Unusual Event Detection Accuracy

Our system can achieve high unusual event detection accuracy for both sudden

reaction detection and unfamiliar view detection, as shown in Table 5.1. Setting

98 percentile of the fused feature value as the threshold, sudden reaction detec-

tion could achieve 53.16% and 63.16% accuracy for unusual braking events and

swerving events respectively.

Our evaluation shows the system can detect unusual events from a large

dataset only leveraging the accelerometer and gyroscope readings from the in-

vehicle motion sensor. The results also demonstrate that the proposed detection

method outperforms the Strawman detection approach and has a much higher

precision to extract unusual events.

Methods Accuracy (%) Strawman (%)

Sudden Reaction Detection
for Braking Events

53.16 29.11

Sudden Reaction Detection
for Swerving Events

63.16 31.58

Table 5.1: Unusual event detection accuracy versus strawman solution accuracy
for two methods.

To demonstrate the performance of the sudden reaction detection method, we

compare the proposed feature fusion detection method with the Strawman solu-

tion as well as the approaches which filter unusual events based on the deriva-

tive and duration feature individually. Specifically, detected potential emergency

periods are sorted in terms of the amplitude of accelerations, derivative of ac-

celerations, duration of braking events, and the fused value of all the features

respectively for braking event.

We evaluate all the extracted features among which only the duration of brak-

ing events is ranked descendingly and the other three are ascendingly.

Different from other features, we use 5-fold cross validation to evaluate the
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performance of the feature fusion method by generating weights from four subsets

and estimate feature fusion value of the other subset.

The whole dataset is randomly partitioned to five subsets. Four subsets are

assigned as training set to generate weights for each features, and the remaining

subset uses the weights to calculate the feature fusion value. We repeat this subset

assignment five times to use each subset as test set once, thus all braking events

will have a feature fusion result.

Then, unusual braking events are identified by thresholding the four metrics

values with a threshold from top 95 percentile to 99 percentile. Same process also

applied for swerving detection based on gyroscope reading.

We find 3987 braking events and 981 swerving events in total over the 120

hours driving data. Thresholding the 95th percentile of braking and swerving

feature values will filter out 199 braking events and 98 swerving events respec-

tively, The number of unusual events among them are shown in Figure 5.3(a) and

the corresponding percentage is shown in Figure 5.3(b). The unusual events are

manually labeled in terms of whether the driver was surprised to perform sudden

reactions, and sample unusual events are showed in Figure 5.4. Those samples

include: (1) the driver avoids a black plastic bag flying across the front view so

the driver takes a hard lane change, (2) the driver turns the steer wheel quickly

since another vehicle interrupts to his lane emergently, (3) the driver takes a hard

brake since he was disturbed by the strong sunlight and does not see the front

vehicle clearly.

Among 199 detected braking events, feature fusion approach extracts 71 un-

usual braking events, which surpasses the amplitude (36 detected), duration (44

detected) and derivative (61 detected) based approaches. Similarly, 27 sudden

swerving events are detected out of 98 chosen swerving events with the feature

fusion approach, which is better than other approaches (13, 24 and 19 sudden

swerving events detected correspondingly). Since the length of unusual events
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Figure 5.3: Evaluation results of sudden reaction detection.

captured by feature fusion is 0.25 hours out of 120 hours driving, our sudden

reaction detection can largely save the bandwidth by only uploading detected

unusual situations.

(a) Swerving to avoid s tire

segment

(b) Braking due to a cut-in

vehicle

(c) Braking due to strong

sunlight

Figure 5.4: Examples of detected unusual events
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To further explore the relationship between sudden reaction detection accu-

racy and percentile of threshold value for each method, we plot the accuracy

for braking events detection in Figure 5.3(c) and swerving events detection in

Figure 5.3(d).

As shown in Figure 5.3(c), while the detection percentage of all four features

increases, the feature fusion approach has the fastest increasing speed. The detec-

tion precision of unusual events of the fused approach reaches 60% when setting

99% percentile of threshold. In the swerving case, the fused feature shows similar

performance with the duration feature, while it is still significantly better than

the amplitude and derivative approaches. By selecting a different partition of

overall braking and swerving events, we show that most of the unusual events are

centralized on the top part after ranking them based on the features.

Besides the precision improvement, our system also achieves a high estimated

recall compared to the baseline approaches. Due to the large amount of man-

ual effort needed to label the large video dataset with ground truth, we limited

labeling to 40% of events with at least one high feature value (a total of 1878

labeled events) and calculate recall over this dataset as an estimate for overall

recall. Figure 5.5 shows the ROC curve of our braking events detection and sud-

den swerving events detection methods correspondingly. We can observe that the

feature fusion approach achieves the highest area under the curve (AUC) value,

which indicates the performance improvement compared to baseline approaches.

In conclusion, we can observe that as the percentile of threshold increasing, the

detection accuracy all of the four methods are rising. Among the four approaches,

our proposed fusion method performs better than the other three methods.
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Figure 5.5: ROC curve of proposed method for sudden reaction fetection.
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Chapter 6

Conclusion

Our system aims to automatically identify unusual driving events to allow scaling

the collection of driving data and corner cases to a much larger fleet of human-

driven vehicles without requiring upload or human review of all data. The pro-

posed system is able to capture various unusual circumstances, including haz-

ardous event like sudden braking and swerving events through a three-stage pro-

cess involving inertial sensing. The evaluation is based on more than 120 hours of

real road driving data and shows that it outperforms baseline methods on unusual

event with an 82% accuracy improvement over baseline for braking events and

a 94% accuracy improvement for swerving events on sudden reaction detection.

The event identification process requires only inertial measurements and front

view driving videos, allowing collection of data from smartphones or dashcams.

All the detection algorithms can be processed parallel on the cloud, achieving a

scalable and reliable implementation relying on Google Cloud Dataflow service.

Thus, the light-weight design and minimal infrastructure requirement of this ap-

proach will allow large-scale unusual driving events identification. We hope that

an extensive dataset of driving corner cases collected with this approach would

provide a better understanding of potential limitations of current systems and

accelerate the development of robust automated driving technology.
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