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ABSTRACT OF THE DISSERTATION

Energy materials: modeling, design and applications of

electrowetting, thermoelectric and superconducting materials

By Hanxiong Wang

Dissertation Director: Liping Liu

Energy materials play a significant role in modern material science. To understand the

mechanism of functional materials, an energy functional formulation method can provide an

efficient way to systematically describe the behavior of energy materials. Energy formulation

method also has the advantage in dealing with the difficulties in the field formulation. In

this thesis, we mainly have three parts of work based on energy formulation method.

First, an interesting problem on the equilibrium shape of a bubble/droplet in an electric

field is investigated. This is important for electrowetting over dielectrics (EWOD), electro-

hydrodynamic enhancement for heat transfer, and electro-deformation of a single biological

cell among others. In this part of work, we develop a general variational formulation on

account of electro-mechanical couplings. In the context of electrohydrodynamics (EHD),

we identify the free energy functional and the associated energy minimization problem that

determines the equilibrium shape of a bubble in an electric field. Based on this varia-

tional formulation, we implement a fixed mesh level-set gradient method for computing the

equilibrium shapes. This numerical scheme is efficient and validated by comparing with

analytical solutions at the absence of electric field and experimental results at the presence

of electric field. We also present simulation results for zero gravity which will be useful for

space applications. The variational formulation and numerical scheme are anticipated to
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have broad applications in areas of EWOD, EHD, and electro-deformation in biomechanics.

Secondly, based on the continuum theory of thermoelectric materials developed by

Liu[71], we predict that the power factor of thermoelectric (TE) composites can be sig-

nificantly enhanced by simple laminate structures. This prediction is numerically verified

by the Finite Element Model (FEM) that is implemented to compute the local fields in

heterogeneous TE structures of general geometries and boundary conditions. Among many

other applications, the FEM enables to investigate the effects of small electrical contact on

power generation. For a cylindrical sandwich TE structure, we show that the power output

of the TE sandwich structure, though lowered by a small contact area, is still significantly

larger than that of the constituent TE semiconductor.

Thirdly, we study the type II superconducting materials. Many applications of high-

temperature superconductors(HTS) need a high critical current density Jc, especially under

a strong external magnetic field. An effective way to enhance Jc is to pin the vortex array to

avoid flux flow. Therefore, fluxing pinning plays an important role in the properties of HTS.

Here, based on Ginzburg-Landau theory and classic Landau theory of micromagnetics, we

formulate the total free energy of the system associated with superconducting materials

coupling with paramagnetic inhomogeneities. Consider thin film scenario, pinning force

which is related to the size of inhomogeneity, paramagnetic permeability and distance of

vortex to inhomogeneity interface is investigated with/without external transport current at

dilute limit. We develop a self-consistent model, leading to an estimation of paramagnetic

interface effect on pinning force in different structures of the thin film composite. The

theoretical results fit well with existing experiments in the literature qualitatively.
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Chapter 1

Introduction

Energy materials, e.g., thermoeletric materials and superconducting materials, are widely

used in modern manufacturing and aerospace industry, where it is applied to statisfy the

requirements such as energy conversion efficiency, critical electric current. In order to

better apply these energy materials on the real devices, it is necessary to establish the

self-consistent theories so that we can build reasonable models to describe and predict the

behaviour of the specified materials.

Based on the subject of classic electrostatics, magnetostatics and electicity, the state

variables of a continuum deformable body Ω ⊂ IR3 in static equilibrium shall necessarily

satisfy the Maxwell equations and mechanical balance laws:

∇×E = 0, ∇ ·D = ρe, D = ε0E + P + Pe,

∇×H = 0, ∇ ·B = 0, B = µ0(H + M + Me),

F = Gradχ, ∇ · σtot = f e, σtot = σTtot.

(1.1)

where E, D, H, B :V → IR3 are respectively electric field, electric displacement, magnetic

field and magnetic flux, M (resp. Me) : V → IR3 is intrinsic (resp. external) magnetization,

P (resp. Pe) : V → IR3 is intrinsic (resp. external) polarization, ε0 (resp. µ0) is electric

permittivity (resp. magnetic permeability) of vacumn, χ : V → IR3 is deformation, F

: V → IR3×3 is deformation gradient, f e : V → IR3 is external body force and σtot :

V → IR3×3 is the total stress. And theories for the continuum media are completed by

the constitutive relations such that the system is well-posed upon specifying boundary

conditions on ∂V :

C(χ,F; D,E,P,Pe,H,B,M,Me) = 0. (1.2)
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The main problem of the above procedure is that the constitutive relations for the con-

tinuum medium has to be inferred from benchmark experiments or a more fundamental

microscopic theory [25], instead of being derived within the framework of continuum the-

ory. And the constitutive laws have to be consistent with the fundamental laws, frame

independent and guarantee the symmetries of the medium. From the above arguments, an

energy formulation has the advantage to avoid these two issues and address the difficulties in

the field formulation [25]. After proposing an internal energy function, usually constitutive

relations can be obtained by expanding and truncating the internal energy function. In this

procedure, whether the constitutive laws conform to the fundamental laws can justify the

success of the proposed energy function. Many poineers developed the above enegy func-

tional formulation method. To the best knowledge of author’s knowledge, Toupin (1956)

firstly systematically began this theory associated with deriving the field equations and

showed the equivalence between the field energy and principle of virtual work.

Generally speaking, the principle of virtual work can be regarded as a weak form of

a variational principle. Therefore, it is naturally to think of a variational formulation for

a continuum body based on the physical free energy and some intuitation. If the goal is

to identify static equalibrium state of a body at a constant temperature, we shall assume

the body has constant entropy and the equalibrium state is determined by the principle of

minimum free energy(Gibbs, 1878, pg. 109). Moverover, the effects of general boundary

conditions associated with free energy need to be considered and added to the proposed

internal energy functional. The above two facts require us to determine the proper set

of thermodynamic variables that can completely describe the thermodynamic state of the

continuum body and the energy functional can interact with all the possible boundary

conditions so that we can employ the minimum free energy.

There are several more advantages in the variational energy formulation method besides

that the constitutive laws can be merged into the form of internal enegy function. First, the

proposed energy provides a clear thermodynamic interpretation in the framework of Gibbs.

Second, there is no need to artically seperate the local term and the nonlocal term, i.e.,

the Maxwell stress. This mechanism can be derived naturally from the first variation of

the total free energy. Also, even a well-posed boundary value problem may admit multiple
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solutions. It will be convenient to analyze the stability of these solutions to the system once

we have the general total free energy form. Last but not least, energy formulation method

can be applied to study many other physical phenomena, e.g., phase transitions. Once the

state variables are determined, it is quite convenient and natural to calculate the conjugate

driving forces and formulate the kinetic laws, which sometimes are the difficulties in the

field equations.

As discussed in Liu (2013) [72], the field equations in general may enjoy many different

variational energy formulation. However, the associated Euler-Lagrange equations (includ-

ing the constitutive laws) must be consistent with the field equations. In another words,

the state variables and energy functional could be different for some specified problem but

the equivalence of various forms of total free energy need to be guaranteed.

In this dissertation, we first propose a general variational method in account of electro-

mechanical couplings, dealing with the problem of determining the equilibrium shape of a

bubble/droplet in an electric field in chapter 2. For this kind of evolution problems, the

total free energy and the selection of possible variation of state variables are chosen based

on the physical gound. We notice that this judgement completely depends on the physical

meaning instead of mathematical form [72]. Later, in chapter 3, we study the thermoelectric

effect including Seebeck effects, Peltier effects and Thomson effect by a continuum theory

[71]. The effective properties of thermoelectric composite are also considered. In chapter 4,

concerning the phase transitions of type II superconducting materials, we propose an energy

formulation which is closely related with phenomenological Ginzburg-Landau theory and

Landau theory of micromagnetics.

This dissertation is organized as follows: in Chapter 2 we develop a general variational

formulation in account of electro-mechanical couplings, identify the free energy functional

and the associated energy minimization problem that determines the equilibrium shape of a

bubble in an electric field. A numerical simulation based on a level set method is employed,

comparing with previous experimental results, to verify the correctness of our theory and

algorithm. In Chapter 3 we review Liping Liu’s continuum theory of thermoelectric bod-

ies [71]. Starting from experimental observations and conservation laws, boundary value

problems are formulated for various applied boundary conditions. Local fields in TE bodies
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are solvable theoretically. Furthermore the effective properties of thermoelectric composites

are defined; explicit formula of effective TE properties of thermoelectric composites with

simple laminates structure are obtained. A TE composite system with a simple laminate

microstructure which enhances power factor significantly is discussed. Chapter 4 is a study

of magnetic vortex pinning by paramagnetic boundary in high temperature type II super-

conducting materials. The proposed free enenrgy is based on Ginzburg-Landau theory and

classic Landau theory of micromagnetics. Assuming temperature is constant, we propose

a general total free energy of the superconducting system. Then we derive the energy in

planar form in thin film and deduce the pinning force for a individual vortex in dilute

limit. Finally we study the impact of transport current on pinning effect in a thin film. In

Chapter 5 we introduce two ideal devices: A high Tc superconducting magnet excited by

thermoelectric composite; A thermoelectric cooler for superconducting transmission bulk.

We conclude in Chapter 6.
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Chapter 2

Energy description on a heterogeneous bubble in an electric

field

2.1 Introduction

Electro-mechanical coupling is of fundamental importance for many applications. For solid

and hard materials, electro-mechanical coupling manifests itself as piezoelectric or flexoelec-

tric effects [43]. For soft materials and fluids, electro-mechanical coupling is often addressed

by invoking the concept of Maxwell stress [28, 42]:

TMW = E⊗D− ε(x)

2
|E|2I, (2.1)

where E (D) is the local electric field (displacement), I is the identity tensor and ε(x)

is the local electric permittivity. Though widely used for many applications [44, 13], the

fundamental concept of Maxwell stress is not free of contention [37, 4]. In the literature,

the following quantity (see e.g. [30], ch. 3; [45])

T0 = E⊗D− ε0
2
|E|2I (2.2)

is also referred to as the Maxwell stress with ε0 being the vacuum permittivity. Moreover,

the physical interpretation of the Maxwell stress often relies on the formula that the electric

body force is given by f = divTMW which, by direct calculations, yields body force terms

called electrophoretic force, dielectrophoretic force, electrostrictive force, etc [16, 27]. It is

somewhat mysterious what are the distinctions and physical origins of the above different

formulas of Maxwell stress and various forces due to electro-mechanical interaction. This

conceptual difficulty is not new and has been discussed in length in the literature ([28],



6

pg. 132; [30], ch. 3; [46]). In addition, for static equilibrium problems we anticipate the

thermodynamic state of the system shall be such that the free energy of the system is

minimized. This motivates us to establish a free-energy based variational formulation for

continuum bodies that accounts for general electro-mechanical couplings [24, 25].

In this work we consider a particular class of electro-mechanical coupling problem: the

equilibrium shape of an immersible bubble in an electric field. The field equation for the

equilibrium interface is well-known, i.e., the generalized Young-Laplace equation with a

force term contributed by the Maxwell stress [47, 32]. One may wonder whether the field

equation admits a variational formulation, and if so, whether the formulation shall give a

precise explanation on the origin of the Maxwell stress.

We remark that the problem of equilibrium shape and evolution of a bubble arises from a

number of important applications including electrowetting over dielectrics (EWOD), electro-

hydrodynamic (EHD) enhancement for heat transfer [31, 39], and electro-deformation of a

single biological cell [17]. Similar problems also arise in the determination of the equilibrium

shape of a pore channel embedded in a soft elastomer matrix coupled with electrostatics

and diffusion [20, 23, 3]. To demonstrate our formulation, we focus on a single vapor bubble

model for EHD since it represents a simple yet relevant model of EHD-enhanced boiling

[19, 47, 32, 33, 34, 5, 22, 16, 48]. Experimental observations have confirmed that the electric

field can alter the bubble dynamics dramatically, for instance, resulting in elongated bubble

shape along the field direction, increased ebullition frequency and smaller departure volume

[6, 8, 11, 33, 26]. Meanwhile, a few theoretical and computational studies have been con-

ducted to understand the physical mechanisms for the effect of electric field on the behavior

of EHD bubble [38, 32, 48, 9, 10, 15, 49, 50]. However, to the author’s best knowledge,

the existing theoretical treatments and numerical implementations are based on the field

equations where the expression of Maxwell stress (2.1) is taken for granted. Moreover, the

stability criterion for bubbles remains elusive in the field equation formulation, demanding

a more systematic energetic analysis.

The energy-based approach in EHD has been employed by Cheng and Chaddock [7] to

analyze the deformation and stability of spheroidal homogeneous bubbles in an electric field

where the effect of the solid substrate is neglected. In the subsequent work [8], the authors
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obtained the shape profile of a bubble elongating in the electric field and determined the

departure size at different electric field strength. Cheng and Chaddock’s [7, 8] approach

was based on the assumption of ellipsoidal shapes and the closed-form solutions to the elec-

trostatic problem where the concept of Maxwell stress was not needed at all, and hence

cannot be directly used for numerical simulations. Our work extends the energy-based

approach to heterogeneous bubbles of general geometries and under general boundary con-

ditions. We remark that identifying the free energy of a continuum medium in an electric

field has proven to be quite subtle. Alternative, sometimes contradictory, expressions of the

total free energy (or internal energy) of the system (including or not including the effects

of boundary devices) have been proposed in the literature. This has generated quite some

confusions. The reader is referred to one of the Liu’s recent works [24, 25] and references

therein for the origins and relationship between different energy formulations pertaining to

electro-mechanical coupling. Here, for the EHD model of a single bubble on solid substrate

we identify the free energy of the system, carry out the derivation of electric contribution

to the mechanical balance of the bubble interface, and obtain the variational principle (a

minimization problem, as anticipated) that determines the equilibrium shape of a bubble

in an electric field. This variational principle also implies a robust numerical algorithm

for computing the equilibrium shape of a bubble. Following the framework of the level-set

method [35, 41, 36] and sensitivity analysis [2], we implement a gradient scheme for mini-

mizing the free energy of the system with a given volume and obtain the final equilibrium

shape of the bubble. This numerical scheme is further verified by comparing with analytical

results [7] at the absence of electric field and experimental results at the presence of electric

field.

As is well-known, a key difficulty of simulating the equilibrium shape of a bubble in

an electric field lies in computing the nonlocal Maxwell stress on the interface. A second

difficulty in a Lagrangian scheme arises from tracking the interface. The level-set based

gradient method is particularly convenient to address these issues. Roughly speaking, the

level-set function is defined on a fixed mesh to characterize the shape of the bubble; the

same mesh is used in the finite element model for solving the electrostatic problem. We
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can then determine the driving forces on the interfaces by a sensitivity analysis. By en-

forcing a kinetic law that relates the normal velocity of the interface and driving force, the

evolution of the level-set function follows a Hamilton-Jacobi equation and the total free

energy decreases monotonically with respect to (fictitious) time until the final equilibrium

shape is reached. We remark that our numerical scheme is particularly robust and suitable

for stability analysis of the bubble since it is based on a minimization problem. It is also

worthwhile to mention the work of Di Marco et al. [27] where the dynamic process of a

growing bubble in an electric field has been studied via a scheme that combines the volume

of fluid method, level-set method and ghost fluid approach.

This chapter is organized as follows. In Section 2.2 we begin with the field equation

formulation of the problem including the Maxwell equation for the electric field, the equi-

librium equations for the interfaces, and the associated boundary conditions. A variational

formulation of the problem is presented in Section 2.3. We also show the associated Euler-

Lagrange equations are equivalent to the field equations in Section 2.2 and derive the driving

forces on the interfaces that will be useful for our numerical scheme. In Section 2.4, following

[40, 1] we describe the level-set gradient method and the detailed algorithm for minimizing

our energy functional. Some numerical examples are given in Section 2.5 including compar-

ison with prior experimental data and analytical solutions. We conclude and summarize in

Section 2.6.

Notation. We employ direct notation for brevity if possible. Vectors are denoted

by bold symbols such as e,u, etc. When index notations are in use, the convention of

summation over repeated index is followed. The inner (or dot) product of two vectors

a,b ∈ IR3 is defined as a · b := (a)i(b)i and a ·Mb = aiMijbj for a matrix M ∈ IR3×3.

From the viewpoint of matrices, the ith row vector of the gradient of a vector field, e.g., ∇u,

is the gradient of the ith component of u whereas the “div” operates on the row vectors of a

matrix field. Therefore, div∇u = ∆u and div[(∇u)T ] = ∇(divu). For a scaling parameter

ε� 1, O(ε) implies the asymptotic behavior O(ε)/ε→ C 6= 0 as ε→ 0 whereas o(ε)/ε→ 0

as ε→ 0.
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Figure 2.1: A bubble in an applied electric field.

2.2 Problem statement

Consider a two-phase immiscible fluid as shown in Fig. 2.1 and denote by D ⊂ IR3 the

domain occupied by the two-phase fluid. Let Ω and Ωc = D\Ω denote the domain occupied

by the first phase fluid and the second phase fluid with the density and permittivity given

by

ρ(x) =


ρ1 x ∈ Ω,

ρ2 x ∈ D \ Ω,

ε(x) =


ε1 x ∈ Ω,

ε2 x ∈ D \ Ω,

respectively. We further assume that the domain Ω is regular, axisymmetric and open

bounded. The fluid phases are in contact with the solid container and, in particular, the

first fluid phase, the second fluid phase and the solid substrate meet at a line which we

denote by L12s. Denote by Γ12 the interface between the first and the second fluid phase,

and by Γ1s (Γ2s ) the interface between the first (second) fluid phase and the solid substrate.

Let γ12, γ1s, and γ2s be the surface tensions of the interfaces Γ12, Γ1s, and Γ2s, respectively.

The line tension in the junction line L12s is denoted by l12s.

We apply an external electric field on the two-phase fluid by maintaining a constant
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potential difference between two planar electrodes on the boundary of the domain D (see

Fig. 2.1). The bottom (resp. top) electrode occupying ΓD1 ⊂ ∂D (resp. ΓD2 ⊂ ∂D ) has the

electrostatic potential ϕ = V1 (resp. ϕ = V2). By the Maxwell equation, the electrostatic

potential ϕ : D → IR necessarily satisfies


div[ε(x)∇ϕ] = 0 in D,

ϕ = V1 on ΓD1, ϕ = V2 on ΓD2,

n̂ · ∇ϕ = 0 on ∂D \ (ΓD1 ∪ ΓD2).

(2.3)

Here, the last boundary condition follows from the assumption that the boundary ∂D \

(ΓD1 ∪ΓD2) is far away from the bubble and hence the fringe field is negligible. We remark

that the above boundary value problem uniquely determines the local electric field.

We seek to determine the equilibrium shape of the bubble Ω assuming that the inertial

and hydrodynamic forces are negligible. To this end, we first notice that the boundary of

Ω may in general consist of the interface between the two fluids Γ12, the interface between

the first phase fluid and the solid substrate Γ1s and the junction line L12s. The equilibrium

of any sub-interface Σ ⊂ Γ12 implies the classic Young-Laplace equation:

∫
∂Σ
γ12t̂ +

∫
Σ

(p1 − p2 + fe)n̂ = 0 ⇒ 2γ12H = p1 − p2 + fe on Γ12, (2.4)

where n̂ is the unit outward normal to the interface Γ12, t̂ is the unit tangent on Γ12 that

is perpendicular to and point away from ∂Σ, and H is the mean curvature of the interface

Γ12. To derive the second of (2.4) we have noticed that by the Stokes theorem (see, e.g.,

[29]), for any cotangent vector field v on Γ12,

∫
∂Σ

v · t̂ =

∫
Σ
∇s · v,

where ∇s denotes the surface gradient. Then for any constant unit vector k̂ ∈ IR3, the

above identity with v = k̂− n̂(k̂ · n̂) implies that

k̂ ·
∫
∂Σ

t̂ =

∫
Σ
∇s · [k̂− n̂(k̂ · n̂)] = −k̂ ·

∫
Σ

n̂∇s · n̂.
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Inserting the above equation into the first of (2.4), from the arbitrariness of the sub-interface

Σ, by the definition 2H = ∇s ·n̂, we obtain the differential form of the equilibrium equation,

i.e., the second of (2.4).

Further, we assume the two-phase fluid is in a uniform downward gravitational field

of strength g. Therefore, within a non-consequential additive constant, e.g., the actual

pressure at a point on the plane {y = 0} in the second phase, the pressure in the second

phase is given by

p2 = −ρ2gy in D \ Ω, (2.5)

whereas the pressure in the first phase is given by

p1 = −ρ1gy + p∗ in Ω. (2.6)

Here the unknown constant p∗ ∈ IR is the pressure difference inside and outside the bubble

Ω at y = 0 and depends on the volume of the bubble. Finally, the term fe is the normal

stress on Γ12 due to the electric interactions between the fluids and the applied electric field

and is given by

fe = n̂ · [[TMW]]n̂, TMW = E⊗D− ε(x)

2
|E|2I, (2.7)

where E = −∇ϕ is the local electric field. Here and subsequently we denote by [[ ∗ ]] =

(∗)|+− (∗)|− the jump across the interface with + (−) side being the exterior (interior) side

of ∂Ω.

Moreover, the equilibrium of any subinterval on the junction line L12s implies that

κl12s = γ2s + γ12 cos θC − γ1s on L12s, (2.8)

where θC is the contact angle between the first fluid phase and the solid phase and κ is the

curvature of the junction line L12s. The above equation may be regarded as the boundary

condition of the Young-Laplace equation (2.4). There are also situations, e.g., the first fluid
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is ejected into the second fluid from a pipette of radius r0. In this case it is the junction

line that is prescribed and we shall require L12s coincides with the wall of the pipette:

r(y)|y=0 = r0. (2.9)

For a given volume of the bubble Ω, we anticipate that equations (2.3), (2.4) and (2.8)

or (2.9) admit a solution that determines the equilibrium shape of Ω for some constant

p∗. At the absence of electric field and neglecting the line tension, the solutions to (2.3),

(2.4) and (2.8) can be obtained by solving an ordinary differential equation, see Cheng and

Chaddoock (1986) [7]. At the presence of electric field, the nonlocal Maxwell stress (2.7)

makes the analytical and numerical solutions to (2.3), (2.4) and (2.8) or (2.9) challenging

problems. Below we present an alternative formulation of the problem that justifies the

formula (2.7) of Maxwell stress and furnishes a convenient numerical scheme for computing

the equilibrium shapes.

2.3 An equivalent variational formulation

In this section we reformulate the problem of determining the equilibrium shape of the

bubble as an energy minimization problem. This approach clarifies the origin of the formula

(2.7) of Maxwell stress on the interface and gives rise to a convenient gradient method for

solving (2.3), (2.4) and (2.8) or (2.9).

For the system of two immiscible fluids as shown in Fig. 2.2, we describe the thermo-

dynamic state of the system by the shape and size of the bubble Ω and the polarization

P : D → IR3 in both fluids. In terms of state variables (Ω, P), we identify the total free

energy of the system as

Etot[Ω,P] =

∫
Ω

(ρ1 − ρ2)gy +

∫
Γ12

γ12 +

∫
Γ1s

(γ1s − γ2s) +

∫
L12s

l12s + Eelect[Ω,P], (2.10)

where the first three terms arise from the gravity, surface tension of the interface between

two fluids, and surface tensions between two fluids and solid substrate, respectively. Also,

following Liu (2013, 2014) we write the electric part of free energy of the system Eelect[Ω,P]
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as

Eelect[Ω,P] =
ε0
2

∫
D
|∇ϕ|2 +

∫
∂D

ϕ[(−ε0∇ϕ+ P) · n̂] +

∫
D

|P|2

2(ε(x)− ε0)
, (2.11)

where the potential ϕ is determined by the boundary value problem (2.3). In the above

equation, the first term denotes the energy of the electric field, the second term is contributed

by the electric loading device, say, a battery used to maintain the potential difference, and

the last term arises from polarizing the molecules in the fluids. For a fixed volume Λ0 of

Ω, by the principle of minimum free energy the equilibrium shape of the bubble shall be

dictated by the minimization problem

min
{
Etot[Ω,P] : vol(Ω) = Λ0, P ∈ P

}
, (2.12)

where vol(Ω) denotes the volume of the domain Ω, P := {P :
∫
D |P|

2 < +∞} consists of all

square integrable polarizations and P satisfies


div[−ε0∇ϕ+ P] = 0 in D,

ϕ = V1 on ΓD1, ϕ = V2 on ΓD2,

n̂ · ∇ϕ = 0 on ∂D \ (ΓD1 ∪ ΓD2).

(2.13)

Since the mechanical part of free energy (i.e., the first three terms of (2.10)) is inde-

pendent of polarization P, it will be convenient to a priori solve the minimization problem

with respect to polarization P and introduce an effective electric energy that depends only

on Ω:

Eelect
∗ [Ω] := min

P∈P,vol(Ω)=Λ0

Eelect[Ω,P]. (2.14)

The Euler-Lagrange equations associated with the above minimization problem can be
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calculated by considering variations of polarization P → Pδ = P + δP1. Standard first-

variation calculation yields that the minimizing polarization necessarily satisfy

P = −(ε(x)− ε0)∇ϕ in D, (2.15)

as one would expect from the definition of permittivity and polarization: D = ε(x)E =

ε0E + P. Inserting the above equation into (2.11), by the divergence theorem we find the

minimum can be written as

Eelect
∗ [Ω] =

∫
D

ε0
2
|∇ϕ|2 +

∫
D

ε(x)− ε0
2

|∇ϕ|2 +

∫
∂D

ϕ[−ε(x)∇ϕ] · n̂ = −1

2

∫
D
ε(x)|∇ϕ|2.(2.16)

By (2.10), (2.14) and (2.16), we rewrite the total free energy of the system as a functional

of the bubble shape Ω:

Êtot[Ω] =

∫
Ω

(ρ1 − ρ2)gy +

∫
Γ12

γ12 +

∫
Γ1s

(γ1s − γ2s) +

∫
L12s

l12s −
1

2

∫
D
ε(x)|∇ϕ|2. (2.17)

We claim that equilibrium equation (2.4) for the interface Γ12 and (2.8) for the junction

line L12s can be regarded as the Euler-Lagrange equation of the variational principle (2.12).

To see this, without change of notation we denote by Ω a local minimizer of the energy

functional Êtot[Ω] in (2.17). We now consider small variations of the domain Ω such that

the boundary points of the new domain Ωδ consisting of y = x + δy1(x), where x ∈ ∂Ω,

y1 : ∂Ω→ IR3 can be interpreted as the velocity and δ as a small (fictitious) time interval.

Since Ω is a local minimizer, we infer that for any volume-conserving velocity y1 and any

number δ ∈ IR small enough,

Êtot[Ωδ]− Êtot[Ω] =: T1 + T2 + T3 + T4 + T5 ≥ 0. (2.18)
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In the above equation, for brevity we have defined the quantities Ti (i = 1, · · · , 5) as:

T1 =

∫
Ωδ

(ρ1 − ρ2)gy −
∫

Ω
(ρ1 − ρ2)gy, T2 =

∫
Γδ12

γ12 −
∫

Γ12

γ12,

T3 =

∫
Γδ1s

(γ1s − γ2s)−
∫

Γ1s

(γ1s − γ2s), T4 =

∫
Lδ12s

l12s −
∫
L12s

l12s,

T5 = −1

2

∫
D
εδ(x)|∇ϕδ|2 +

1

2

∫
D
ε(x)|∇ϕ|2,

where εδ(x) takes the value of ε1 if x ∈ Ωδ and ε2 if x ∈ D \ Ωδ, ϕδ is the solution to (2.3)

for this new dielectric function εδ(x), Γδ12 is the new interface between the first and second

fluids, Γδ1s is the new interface between the first fluid and the solid phase, and Lδ12s is the

new junction line between the first, second fluids and the solid substrate.

The implications of (2.18) depend on the choices of the velocity y1. First of all, to

conserve the volume of Ωδ the velocity y1 necessarily satisfies

∫
∂Ω

y1 · n̂ = 0. (2.19)

If the velocity y1 is supported on Γ12 (which implies the interfaces between the fluids and

the solid substrate remain unchanged if δ is small enough), without loss of generality we

can assume the velocity y1 is normal to the interface Γ12 and given by y1 = vn̂. Then it is

clear that T3 = T4 = 0,

T1 = δ

∫
Γ12

(ρ1 − ρ2)gyv + o(δ), (2.20)

and (see e.g. [21] )

T2 = δγ12

∫
Γ12

2Hv + o(δ). (2.21)

Moreover, we find that the change of the electrostatic energy Eelect
∗ with respect to a small

variations of the domain Ω is given by ( see Appendix 2.7 for details)

T5 = −δ
∫

Γ12

fev +O(δ2) = −δ
∫

Γ12

vfe + o(δ). (2.22)
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where the stress fe, defined in equation (2.7), is contributed by electrostatic interaction,

i.e., the Maxwell stress. From (2.22), the Maxwell stress on the interface between two fluids

can be regarded as a configurational force that determines the change of electric energy of

the system when the interface is perturbed.

We remark that the derivation of (2.22) is quite technical, involving variations of phase

boundary Γ12 or “inner variation” of the electrostatic potential ϕ, and henceforth postponed

to Appendix. For a history and applications of this technique, the interested reader is

referred to Eshelby (1970 [12]) in the context of elasticity for his celebrated energy-moment

tensor, Simon (1980 [18]) for a general concept of shape derivatives, and to recent works of

Grabovsky et al. (2011 [14]), Liu (2014 [25]) and references therein.

From (2.20), (2.21), (2.22) and taking into account the constraint (2.19) by a Lagrangian

multiplier −p∗
∫

Γ12
v, we obtain the Euler-Lagrange equation associated with the variational

principle (2.12):

2γ12H + (ρ1 − ρ2)gy − fe − p∗ = 0 on Γ12,

which can be identified with the Young-Laplace equation (2.4).

We now calculate the boundary conditions on the junction line L12s. To this end, we

shall consider variations with nonzero velocity on L12s. Without loss of generality, assume

that

y1 = vx(u1, u2)ex on Γ12,

where vx decays to zero away from the junction line, ex is unit vector in x direction. Let t̂

be the outward tangential unit vector on the boundary line of Γ12. Then

T1 = δ

∫
Γ12

(ρ1 − ρ2)gyvxex · n̂ + o(δ),

T2 = δ

∫
Γ12

2Hγ12vxex · n̂ + δ

∫
L12s

γ12vxex · t̂ + o(δ), (2.23)
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and

T3 = δ

∫
L12s

(γ1s − γ2s)vx + o(δ), T4 = δ

∫
L12s

l12sκvx + o(δ). (2.24)

In addition, by (2.22) we have

T5 = −δ
∫

Γ12

fevxex · n̂ + o(δ). (2.25)

For boundary conditions we shall assume the trial function vx decays so quickly away from

the boundary that all area integrals in (2.23)-(2.25) are negligible as compared with the line

integrals. Therefore, by (2.18) we obtain

l12sκ+ γ1s − γ2s − γ12 cos θC = 0 on L12s,

which can be identified with the equilibrium equation (2.8) for the junction line.

Based on the variational formulation (2.12), we now describe the gradient method for

computing the equilibrium shape Ω with a prescribed volume vol(Ω) = Λ0 satisfying equa-

tions (2.4) and (2.8) or (2.9). For an initial guess of the shape Ω0, we let the domain evolve

in the descent direction of the total energy and obtain the shape Ωt as a function of the

fictitious time t. As shown above, if Ωt is not in equilibrium, then for a small variation

∂Ωt 3 x→ y = x + δvn̂ ∈ ∂Ωt+δ, (2.26)

the change of total energy is given by

Êtot[Ωt+δ]− Êtot[Ωt] = −δ
∫

Γ12

vfd12 − δ
∫
L12s

vn̂ · exfd12s + o(δ), (2.27)

where

fd12 = −2γ12H − (ρ1 − ρ2)gy + fe, fd12s = −l12sκ− γ1s + γ2s + γ12 cos θC .

may be called the driving force on the boundary ∂Ωt and the junction line L12s, respectively.
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If we enforce a kinetic law

v = cfd12 on Γ12, v = cfd12sn̂ · ex on L12s, (2.28)

for some positive constant c > 0 and let the boundary evolves according to (2.26), by (2.27)

the change of total energy is given by

Êtot[Ωt+δ]− Êtot[Ωt] = −δ
∫

Γ12

c|fd12|2 − δ
∫
L12s

c|fd12s|2|n̂ · ex|2 + o(δ),

and is negative for small enough time step δ; the domain Ωt is anticipated to converge to

an equilibrium shape as t increases.

2.4 Numerical algorithm based on the level-set method

The above variational formulation implies a natural fixed mesh scheme to compute the

equilibrium shape of the bubble. Following Osher and Sethian (1988 [35]), we employ the

level-set method and use a scalar function ψ : D × [0,+∞)→ IR to characterize the shape

of the bubble Ωt: 
ψ(x, t) < 0 ⇐⇒ x ∈ Ωt,

ψ(x, t) = 0 ⇐⇒ x ∈ ∂Ωt,

ψ(x, t) > 0 ⇐⇒ x ∈ D \ Ω̄t.

In account of the axis-symmetry of Ωt, we denote by (r, y) a point in the xy-plane {(x, y, z) :

z = 0}, where r =
√
x2 + z2. Let n̂ = ∇ψ/|∇ψ| be the outward normal on the boundary of

the domain {(r, y) : ψ(r, y) ≤ const.}. Upon initiating the level-set function ψ(r, y, t), we

need to determine the velocity field v(r, y, t) by the kinetic law (2.28) and let the level-set

function accordingly evolve. Since a point (r(t), y(t)) on ∂Ωt satisfies ψ(r(t), y(t), t) = 0,

differentiating with respect to t we obtain

∂

∂t
ψ + v(r, y, t)|∇ψ| = 0, (2.29)
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where the velocity field v(r, y, t) is given by (2.28) when restricted to ∂Ωt.

Below we compute the velocity field contributed by various driving forces. In terms of

the level-set function ψ(r, y, t), the mean curvature is given by (cf., Eq. (5.33), page 58,

Sethian 1996 [40])

2H = ∇ · n̂ =
(ψyy + ψr

r )ψ2
r + ψ2

y(ψrr + ψr
r )− 2ψrψyψry

(ψ2
r + ψ2

y)
3/2

, n̂ =
(xψrr , ψy,

zψr
r )

(ψ2
r + ψ2

y)
1/2

, (2.30)

where ψr, ψy denote the derivatives of ψ with respect to r, y, respectively. By the kinetic

law (2.28) it contributes a velocity field

vH(r, y) = −2cγ12H(r, y) ∀ (r, y) ∈ D. (2.31)

A second velocity field is contributed by the density difference between the two fluids. By

(2.20) we have

vg(r, y) = −c(ρ1 − ρ2)gy ∀ (r, y) ∈ D. (2.32)

Thirdly, to compute the velocity field contributed by the Maxwell stress

ve(r, y) = cfe ∀ (r, y) ∈ D, (2.33)

we need to a priori solve the Maxwell equation (2.3) and obtain the electric field E(r, y) =

−(ϕr, ϕy). Then the Maxwell stress defined by (2.7) on the interface Γ12 is given by

fe = [[(n̂ ·E)(n̂ ·D)− ε(x)

2
|E|2]].

Since the interface Γ12 is implicit in our scheme, the above formula is replaced by

fe = sn̂ · ∇fMW, fMW := (n̂ ·E)(n̂ ·D)− ε(x)

2
|E|2

and applied to the entire domain D, where s is the grid size for computing the gradient in

the numerical scheme (c.f., step 1 in the subsequent description of the algorithm). Finally,
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to constrain the volume, the velocity field vp∗ contributed by the Lagrangian multiplier p∗

shall be such that

∫
∂Ω

(vp∗ + vH + vg + ve) = 0.

However, in our scheme it is inconvenient to compute integrals over the boundary ∂Ωt. We

shall simply define

vp∗(r, y) =


δ1 if Λt < Λ0

−δ1 if Λt > Λ0

∀ (r, y) ∈ D, (2.34)

where Λ0 be the prescribed volume of the first fluid, Λt is the volume of the domain Ωt :=

{(x, y, z) : ψ(r, y) ≤ 0}, and δ1 > 0 is a small positive number. Note that the above velocity

field vp∗ will induce small fluctuations of the volume of Ωt. Depending on the stage of

simulations, we can adaptively choose the number δ1 such that the fluctuation is within,

e.g., 0.1% of Λ0. The overall velocity field is given by

v(r, y) = vH(r, y) + vg(r, y) + ve(r, y) + vp∗(r, y) ∀ (r, y) ∈ D. (2.35)

Further, by the second of (2.28) the boundary condition (2.8) can be implemented by

introducing

v(r, y)
∣∣∣
y=0

= cfd12sn̂ · ex, (2.36)

whereas the boundary condition (2.8) is enforced by

v(r, y)
∣∣∣
y=0

= 0. (2.37)

We remark that a key advantage of fixed-mesh level-set method lies in that the interface

∂Ωt is implicit in the scheme. In other words, we simulate the evolution the level-set function

ψ instead of the interface itself. Therefore, the velocity field (2.31)-(2.37) are extended to all

grid points in the entire computation domain D instead of being restricted to the boundary
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∂Ω. The evolution of the level-set function ψ apparently depends on the extension, but

the evolution of the domain Ωt and the converged equilibrium shape is independent of the

particular extension.

Figure 2.2: The contour plot of the level set function in a typical simulation. The domain
D is a rectangle of ratio 1 : 2 with meshsize 100 × 200. The solid red line shows the zero
contour representing the interface of the bubble.

With the overall velocity field defined, we summarize our algorithm as follows:

1. Generating a uniform fixed mesh on the spatial domain D of interval size sr in r-

direction and sy in y-direction. In all subsequent simulations and shown in Fig. 2.2,

the domain D is a rectangle of ratio 1 : 2 with a regular mesh of size 100× 200, and

hence sr = sy =: s.

2. Initializing the level-set function ψ0 = ψ(r, y, t = 0). In practice, we always start

from a very small hemisphere and let it evolve according to the kinetic law (2.35) to

eliminate the potential dependence of the final equilibrium shape on the initialization.

3. For n ≥ 0, let ψnij = ψ(ri, yj , tn), and ri = isr, yj = jsy, tn = nt1. Here t1 � 1 is the

fictitious time step.
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(a) Finding the solution ϕn to the Maxwell equation (2.3) based on the finite element

method. Computing the overall velocity field vnij defined by (2.35)-(2.37). Here

we do not remesh to track the interface; the material properties of each element

are either of the first fluid or the second as determined by the level-set function.

(b) Computing the new level-set function ψn+1
ij = ψ(ri, yj , tn+1) by the Hamilton-

Jacobi equation (2.29). In particular we will use an explicit first-order upwind

scheme described in Sethian (1996, page 55, [40]):

ψn+1
ij − ψnij

t1
+ max(vij , 0)g+

ij + min(vij , 0)g−ij = 0,

where

g+
ij = [max(D−rij , 0)2 + min(D+r

ij , 0)2 + max(D−yij , 0)2 + min(D+y
ij , 0)2]1/2,

g−ij = [max(D+r
ij , 0)2 + min(D−rij , 0)2 + max(D+y

ij , 0)2 + min(D−yij , 0)2]1/2,

D+r
ij =

ψnij(ri+1, yj)− ψnij(ri, yj)
ri+1 − ri

, D−rij =
ψnij(ri, yj)− ψnij(ri−1, yj)

ri − ri−1
,

D+y
ij =

ψnij(ri, yj+1)− ψnij(ri, yj)
yj+1 − yj

, D−yij =
ψnij(ri, yj)− ψnij(ri, yj−1)

yj − yj−1
.

4. For stability we reinitialize the level-set function such that it is the signed distance

function:

ψn+1(r, y) = {sgn(ψn+1)dist((r, y), ∂Ωtn+1) : (r, y) ∈ D}.

This is an important step in practice since the level-set function may become too

steep, resulting in bad approximations to the unit normal n̂ and the mean curvature

H.

5. Iterating the above step 2 - step 4 until the total energy converges.

A few remarks are in order here regarding the present numerical scheme based on the

variational formulation. First, for the initialization described above our simulations always

yield the same final shapes for a prescribed final volume and electric field, though we

cannot rigorously prove the uniqueness of the final solution. Second, the Young-Laplace
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equation (2.4) coupled with the nonlocal Maxwell stress could be solved by a self-consistent

scheme. Roughly speaking, one could describe the interface ∂Ω by Lagrangian coordinates

and iterate the boundary ∂Ω until the Young-Laplace equation (2.4) is satisfied. This

self-consistent scheme is, to the best of our knowledge, not as efficient as compared with

present gradient method since (i) every iteration requires remeshing of the entire domain

for solutions of the Maxwell equation (2.3), (ii) the gradient or the “optimal” direction of

iteration is not known, and (iii) there is no physics-based criterion for convergence and for

topological changes of the domain in some more general problems, e.g., splitting or merging

of the bubble. Last, though not addressed in the present work, the variational formulation

can yield stability criterion for the equilibrium shape by computing the second variations

of the total free energy [14] and the numerical scheme can capture the onset of departure

of the bubble from the substrate.

Figure 2.3: Comparison of analytical and simulated equilibrium shapes of the bubble at the
absence of electric field: the solid line represents the equilibrium shapes implied by (2.38);
the dotted line represents the simulated equilibrium shapes. The volume of the bubble is
17.1mm3, 11.8mm3, 8.1mm3 and 5.3mm3 in (a), (b), (c) and (d), respectively.
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Figure 2.4: Aspect ratio α as a function of dimensionless electric field strength
ε0(Eey)

2reff/γ12. The solid line represents the analytical solutions implied by (2.40); the
diamond points represent the simulated results. The inset picture is the corresponding
simulated equilibrium shape of the bubble under different electric field 2.0 kV/mm, 4.0
kV/mm. 8.0 kV/mm, 12.0 kV/mm and 16.0 kV/mm, respectively.

2.5 Numerical examples and validation

2.5.1 Comparison with analytical results

We verify our scheme by comparing with analytical results of Cheng and Chaddock (1986)

[8] in two scenarios. First, at the absence of electric fields, Cheng and Chaddock (1986)

[8] have shown that the equilibrium shape y = y(r) satisfies the following dimensionless

nonlinear ordinary differential equation:

−
d2y
dr2

{1 + (dydr )2}3/2
+

dy
dr

r{1 + (dydr )2}1/2
= 2−Boy, (2.38)

where 1/R0 is the curvature at the apex of the bubble, r and y are the nondimensional

coordinate with respect to R0, ∆ρ = ρ1 − ρ2 is the density difference of two phases, γ12 is

the surface tension and Bo = ∆ρgR
2

γ12
is Bound number .
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We choose material properties as

ρ1 = 1.165 kg/m3, ρ2 = 849 kg/m3, γ12 = 0.044 N/m, (2.39)

and use the boundary condition (2.9) with r0 = 0.75mm. These particular material proper-

ties and boundary conditions are chosen to be consistent with the experiments described in

the next section. To compare our computational results with the analytical solutions in the

absence of electric field, we first solve (2.38) for appropriate y0, R0 such that the contact

area of the bubble with the substrate has a radius r0 = 0.75mm. We then compute the

volume Λ0 of the bubble and use the numerical algorithm described in the last section to

find the simulated equilibrium shapes. Figure 2.3 (a), (b), (c), and (d) show the analyt-

ical solutions and simulation results for Λ0 = 17.1mm3, 11.8mm3, 8.1mm3 and 5.1mm3,

respectively. The solid line represents the equilibrium shapes implied by (2.38); the dotted

line represents the simulated equilibrium shapes. From Fig. 2.3, we see that the simulated

and analytical equilibrium shapes are in excellent agreement which verifies our numerical

approach at the absence of electric field.

Second, in the presence of electric field and neglecting gravity, by assuming the shape

would remain as prolate spheroids Cheng and Chaddock (1986) [8] have shown that the

aspect ratio α := long-axislength/short-axislength of the spheroid in a uniform external

electric field Ē = Eeyey are determined by

∂

∂α
(α−2/3 + α1/3 sin−1e

e
)−

ε0(Eey)
2reff

3γ12

∂H

∂α
= 0, (2.40)

where reff is the initial radius of the spherical bubble at the absence of electric field, ε0 =

8.85× 10−12F/m is the vacuum permittivity, ε1 and ε2 are the electric permittivity of two

phases, e(α) = (1− 1/α2)1/2 is the eccentricity of the spheroid, n = 1−e2
2e3

(ln 1+e
1−e − 2e), and

H(α) =
(ε2 − ε1)ε1

(1− n(α))ε1 + n(α)ε2
.

Figure 2.4 shows the dependence of the aspect ratio α on the external electric field: the

solid line is obtained by (2.40); the diamond points are our simulation results. Also, the
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inset shows the simulated equilibrium shapes of the bubble in different external fields,

which shows that the equilibrium shapes indeed look much like spheroids and verifies the

assumption of Cheng and Chaddock (1986). Also, the aspect ratios’ dependence on the

external electric field from simulations agrees well with the prediction of (2.40).

In summary, from Fig. 2.3 and Fig. 2.4 we see that the simulated and analytical equilib-

rium shapes are in excellent agreement which verifies our numerical approach, both at the

absence of electric fields and in the presence of electric fields. In the next section, we will

compare our simulations with experimental results in the presence of an external electric

field and gravity.

2.5.2 Comparison with experiments

Figure 2.5: Comparison simulation result with experiment. The solid line represents the
shape of the simulation result and the dotted line represents the shape of the experiment
result. The volume is 1.56mm3, 6.20mm3, 1.10mm3 and 6.10mm3 from (a) to (d). Electric
field 2 kV/mm is applied on (a) and (b) and Electric field 3 kV/mm is applied on (c) and
(d). The inset pictures in (a), (b), (c) & (d) are reproduced from Chen et al. (2007 [6])
with Elsevier permission.
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In the presence of electric field, analytical solutions to the equilibrium shapes are not

available. We shall validate our numerical approach by the experimental results obtained

by Chen et al (2007 [6]). In the experiments, a single nitrogen bubble is injected into

transformer oil through an orifice of radius 0.75mm. A voltage is applied between the top

and bottom electrodes. The densities of two phases and surface tension are given by (2.39).

In addition, the electric permittivity of two phases are given by

ε1 = ε0, ε2 = 2.1ε0,

More details about the experimental setup can be found in Chen et al (2007 [6]).

Figure 2.6: Convergence of the total energy.

The volume of the nitrogen bubble in the transformer oil increases as nitrogen is being

injected. A high speed camera records the bubble formation and evolution in a DC electric

field. From the recorded images of the bubble (cf., the inset photos in Fig. 2.5), we can

find the contour of the bubble and the volume Λ0 of the bubble by Matlab. We then

compute the equilibrium shape of the bubble for the prescribed electric voltage and volume

Λ0 by the algorithm described in § 2.4. Figure 2.5 shows the experimental results and

simulated equilibrium shapes in an external electric field of 2 kV/mm (Fig. 2.5 (a) & (b))

and 3kV/mm (Fig. 2.5 (c) & (d)). The volumes of the bubbles are fixed by the experimental

images and given by 1.56mm3 (a), 6.20mm3 (b), 1.80mm3 (c), and 6.10mm3 (d). The solid
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Figure 2.7: Simulated equilibrium shapes at the absence of gravity. The fixed volume is
3.0mm3, 6.0mm3 and 10.0mm3 in (a), (b) and (c). Electric field from 0 kV/mm to 9 kV/mm
is applied on each case.

line represents the shape of the simulation results and the dotted line represents the shape

of the experimental results. From Fig. 2.5 (a), (b), (c), and (d), we see that the simulation

results agree well with the experiment which validates our numerical approach.

During the simulations, we also monitor the convergence of the total energy as shown

in Fig. 2.6 for Fig. 2.5 (b). For all simulations, the initial shape of the bubble is chosen as

a hemisphere of radius r0 = 0.75mm. For a final volume Λ0 >
2π
3 r

3
0, by (2.34) the volume

and total energy of the bubble increases at the beginning until reach Λ0. Then by (2.34)

the volume of the bubble fluctuate negligibly around Λ0 while the shape of the bubble is

driven to minimize the total free energy as shown in Fig. 2.6. For a typical case, the total

energy converges after a few hundreds of iterations. We remark that the convergence of the

total energy is also observed for all cases in Fig. 2.3, 2.5 and 2.7.

The numerical scheme developed here can be conveniently used for simulating equilib-

rium shapes of bubbles of different materials and at different environments. As an example,

we consider the injection of nitrogen bubble into transformer oil at zero gravity. This can

be achieved by simply setting g = 0 in our simulation. Figure 2.7 (a), (b) and (c) show

the simulated equilibrium shapes for a fixed contact radius of r0 = 0.75mm and differ-

ent volumes at 3.0mm3, 6.0mm3 and 10.0mm3. The electric fields vary from 0.0kV/mm,
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3.0kV/mm, 6.0kV/mm to 9.0kV/mm. From Fig. 2.7 we observe that the equilibrium shape

is elongated as the intensity of electric field increases. Based on these simulation results,

we can find the relationship between bubble volume, surface area and the applied electric

field. Among many other applications, these results can be further used to develop model

of EHD enhancement of boiling at zero gravity and predict rate of heat transfer.

2.6 Summary and discussion

We have developed a variational formulation for the equilibrium shape of heterogeneous

bubbles in an electric field and shown that it is equivalent to the classic field equation

approach based on the Young-Laplace equation and the concept of Maxwell stress. Based

on this energy formulation, we implement a fixed mesh level-set gradient method for sim-

ulating the equilibrium shapes of the bubble in an electric field. The numerical scheme is

validated by comparing with analytical solutions and experimental results in some differ-

ent scenarios. We anticipate that the variational formulation and numerical scheme will

find broad applications in areas of EWOD, EHD and electro-deformation of soft materials

among others.

2.7 Appendix: derivation of Maxwell stress

We now proceed to details of deriving (2.22). First, we extend the deformation y(x) such

that the deformation y(x) = x+δy1(x) is continuously differential on the entire domain D,

equal to x slightly away from ∂Ω (i.e., |y1| decays quickly to zero away from ∂Ω). Moreover,

we notice that the new potential ϕδ is defined by the Maxwell equation (2.3) with Ω replaced

by Ωδ. Let

Fδ = ∇y = F + δF1 + o(δ), F = ∇x = I, F1 = ∇y1,

Jδ = J [1 + δTr(F1))] + o(δ), Cδ = FT
δ Fδ = I + δFT

1 + δF1 + o(δ).

(2.41)
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Upon a change variables y→ x, we find the new electrostatic potential ϕδ is also determined

by


div(−ε(x)JδCδ∇ϕδ) = 0 in D,

ϕδ = V1 on ΓD1, ϕδ = V2 on ΓD2,

n̂ · ∇ϕδ = 0 on ∂D \ (ΓD1 ∪ ΓD2).

(2.42)

In addition, the electric energy (2.16) can be written as

Eelect
∗ [Ωδ] = −1

2

∫
D
ε(x)Jδ|F−Tδ ∇ϕδ|

2. (2.43)

To calculate the first variation of the electric energy Eelect
∗ [Ωδ], we assume the new electric

potential can be written as

ϕδ = ϕ+ δϕ1 + o(δ). (2.44)

Comparing (2.42) with (2.3), we find that the potential ϕ1 shall satisfy


div[−ε(x)∇ϕ1 − ε(x)Tr(F1)∇ϕ+ ε(x)(F1 + FT

1 )∇ϕ] = 0 in D,

ϕ1 = 0 on ΓD1, ϕ1 = 0 on ΓD2,

n̂ · ∇ϕ1 = 0 on ∂D \ (ΓD1 ∪ ΓD2).

(2.45)

Further, by (2.43) and (2.41) we find

Eelect
∗ [Ωδ] = Eelect

∗ [Ω] + δVar1 + o(δ), (2.46)

where

Var1 = −1

2

∫
D
ε(x)[Tr(F1)|∇ϕ|2 −∇ϕ · (F1 + FT

1 )∇ϕ+ 2∇ϕ · ∇ϕ1]. (2.47)



31

By (2.45) and the divergence theorem we obtain

∫
D
ε(x)∇ϕ · ∇ϕ1 =

∫
D

[div(ϕ1ε(x)∇ϕ)− ϕ1div(ε(x)∇ϕ)] = 0.

Therefore, (2.47) can be rewritten as

Var1 =

∫
D

F1 ·TMW, TMW = ∇ϕ⊗ (ε(x)∇ϕ)− ε(x)

2
|∇ϕ|2I, (2.48)

where TMW is precisely the “Maxwell stress” for a linear medium. From the Maxwell

equation (2.3), it is clear that

divTMW = 0 in D \ ∂Ω,

which means the Maxwell stress has body force contribution at an interior point in the two

fluids. However, for the interface Γ12, by the divergence theorem we have

Var1 = −
∫
∂Ω

y1 · [[TMW]]n̂ = −
∫
∂Ω
vn̂ · [[TMW]]n̂ = −

∫
∂Ω
vfe, (2.49)

which complete the proof of (2.7).



32

Chapter 3

Continuum theory for thermoelectric materials

3.1 Introduction

In recent years, there has been renewed interest in engineering thermoelectric (TE) materials

for energy and refrigeration applications [51, 52, 53, 54, 55, 56]. The energy conversion

efficiency of a TE material is characterized by the dimensionless figure of merit ZT . For

a thermoelectric device separating two heat reservoirs for power generation, the electrical

power output can be written as

Ẇelect = ηηcarnotQ̇, (3.1)

where ηcarnot = Th−Tc
Th

is the ideal Carnot efficiency, Th (Tc) is the temperature of the hot

(cold) reservoir, Q̇ is the rate of heat transfer, and η = (
√
ZT + 1 − 1)/(

√
ZT + 1 + 1) is

the relative efficiency. The figure of merit ZT of typical “good” TE semiconductors, e.g.,

Bi2Te3, is about 1−2, corresponding to a relative efficiency η = 10%−20%. Also, the ther-

mal conductivity of Bi2Te3 is about three orders of magnitude smaller than that of typical

metals, e.g., copper, meaning that the rate of heat transfer across TE semiconductors is sig-

nificantly less than conventional heat exchanger with copper separating two heat reservoirs.

In other words, for a target electrical power output Ẇelect, the TE generator costs significant

amount of TE materials that are much more expensive than copper. The low conversion

efficiency and high cost of TE materials have limited their large-scale applications in power

generation and refrigeration.

From (3.1), an important approach to improving electrical power output is to improve

the figure of merit ZT , i.e., the relative efficiency η. There have been a great deal of

efforts in enhancing ZT through ab initio material designs and nanostructured composites
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[57, 58, 59, 60, 61, 62, 62, 63] in the past decade. However, improving ZT has proven to

be extremely difficult; the latest progress [62, 64] has a ZT at around 2.4 (η = 30%). Also,

from a continuum viewpoint Bergman and Levy have shown that the figure of merit of a

two-phase composite cannot exceed the highest ZT of their constituent phases [65].

On the other hand, if the goal is to improve the electrical power output Ẇelect, by (3.1)

an alternative route is to improve the rate of heat transfer Q̇ between two heat reservoirs.

This corresponds to improve the power factor P of the TE material. From a cost viewpoint,

improving figure of merit ZT lowers the cost of heat resources, i.e., the cost of maintain-

ing the temperature difference between two heat reservoirs; improving power factor lowers

the amount of TE materials needed for a target power output (cf., (3.31)). Though the

conversion efficiency may be suboptimal for a high power factor TE material, the overall

cost of power generation can be significantly lowered if the heat resources themselves are

of low cost or even costless, e.g., the waste heat from a conventional nuclear/chemical fuel

power plant [66], geothermal resources, oceanic thermocline [67] among others. Therefore,

improving the power factor of TE materials can be as important, if not more, as improving

the the figure of merit for economically competitive applications.

Unlike the figure of merit ZT , it has been predicted that the power factor P can be

significantly enhanced by engineering nanostructures or even macroscopic composites [68,

69, 70, 71, 82]. Also, experimentally it has been shown that heterogeneous TE composites

can have a power factor larger than the power factor of constituent TE materials [73, 74,

75, 76, 77, 78].

In this chapter, we first review the continuum theory of thermoelectric bodies devel-

oped by Liu [71]. Under the conditions of small variations of electrochemical potential,

temperature and their gradients, the governing equations of thermoelectric bodies can be

reduced from a nonlinear system to a linear elliptic system. Therefore the local fields in

thermoelectric bodies can be determined by the specified boundary conditions.

Furthermore, from a macroscopic viewpoint, effective properties of thermoelectric com-

posites can be predicted, espeically by an explicit formula of effective properties for an

simple laminate structure. In particular, we show that the power factor of a good TE semi-

conductor, e.g., Bi2Te3, and a good conductor, e.g., copper, can be improved by two orders
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of magnitude at an optimal microstructure [71]. Later, we present a numerical verification

of this prediction by computing local fields in the TE structure. The numerical model can

be used to address TE structures of general geometries in real-world working conditions.

We study the effect of electrical contacts between the TE structure and external circuit,

and show that the power output of the TE structure, though lowered by a small electrical

contact area, is still significantly larger than that of the TE semiconductor of the same size

and boundary conditions.

3.2 A continuum theory of thermoelectric bodies

Consider a homogeneous thermoelectric body Ω ⊂ IR3, we postulate the thermodynamic

state of the system is described by electrochemical potential µ and absolute temperature

T . And we have the identities

q = T js, r = Tη, (3.2)

where q is heat flux, js is entropy flux, r is external heat supply inside the body and η is

the entropy supply. Suppose there is no external heat supply, i.e., r = 0; the only way to

exchange heat is through the boundary of Ω by conduction. And for a time-independent

boundary condition, the thermodynamic system will eventually evolve into a steady state.

Through the experimental observations, i.e., Ohm’s Law, Fourier’s Law, Seebeck effects

and Peltier effect, we could have the following phenomenological relation between fluxes

and driving-forces, i.e., gradients of electrochemical potential e = −(∇µ)T and gradients of

temperature g = −(∇T )T :

j1 = L1f1, j1 :=

je

js

 , f1 :=
1

T

e

g

 , L1 :=

Tσ Tσs

βσ κ+ βσs

 , (3.3)

where σ is electric conductivity tensor, β is Peltier coefficient matrix, κ is thermal con-

ductivity tensor, s is Seebeck coefficient matrix and je is electric flux. Remark that the

coefficient matrix L1 shall depend on temperature T but be independent of electrochemical

potential µ. Further, by Thomson or Kelvin relations, L1 is symmetic, i.e., L1 = LT1 .
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Denote by u the internal energy density, it can be written as

u = u0 + CvT + ρµ, (3.4)

where Cv is the volumetric specific heat and u0 a constant which is independent of T , µ.

Then denote by ρ the free charge density, the conservation of electric charges implies

∇ · je = −∂tρ on Ω (3.5)

And the conservation of internal energy u is

∇ · ju = js · ∇T + T∇ · js + js · ∇µ+ µ∇ · je = −∂tu on Ω. (3.6)

To derive a constitutive model for thermoelectric materials, we need first determine

the fluxes and driving-forces. From a simple dimension analysis in [71], there is no unique

choice for these two terms and the inner products of pairs of driving-forces and fluxes remain

invariant for the tranformation

(j1, f1)→ (j2, f2) = (Λj1,Λf1). (3.7)

Denote by γ the rate of entropy production per unit volume, it cannot depend on

the choice of fluxes and driving-forces according to the fundamental thermodynamics for

irreversible process and by definition, it has the following relation with the conjugate pair

of fluxes and driving-force (j, f)

γ = j · f . (3.8)

From [29], we have

γ = ∂tσ +∇ · js, (3.9)
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where σ is the entropy density. By the first law of thermodynamics we have

∂tu(x, t) = T∂tσ(x, t) + µ∂tρ(x, t). (3.10)

By conservation of electric charges (3.5) and conservation of energy (3.6), we have

T∇ · js = −∂tu− js · ∇T − je · ∇µ+ µ∂tρ. (3.11)

Therefore by the above equations (3.9), (3.10) and (3.11) we obtain

γ = (−je · ∇µ− js · ∇T )/T. (3.12)

The above equation illustrates that (je, js) and (−∇µ/T,−∇T/T ) are a conjugate pair of

fluxes and driving-forces. For steady state, electric flux and energy flux (je, ju) are better

choices to describe the thermoelectric body since they are divergence free by the conservation

laws. Notice that we identify energy flux ju as

ju = T js + µje, (3.13)

The conjugate driving-force and the coefficient matrix between the fluxes j and driving-

forces f can be written as

f :=

[∇(−µ/T )]T

[∇(1/T )]T

 , (3.14)

L(µ, T ) :=

 Tσ µTσ + T 2σs

µTσ + T 2σs µ2Tσ + µT 2(sTσ + σs) + T 2(κ+ T 2sTσs)

 (3.15)

Thus by the conservation laws, we have

∇ · [L(µ, T )f ] =

−∂tρ
−∂tu

 . (3.16)
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Especially for steady state, we have

∇ · [L(µ, T )f ] = 0. (3.17)

Just to be clear, if we choose u = (u1, u2) = (−µ/T, 1/T ) as the state variables, we

identitify that

F =

∇u1

∇u2

 , J =

jTe

jTu

 , J = C(u)F, (3.18)

where the associated fourth-order tensor C(u) ⊂ IR2×n×2×n is given by

(C)1i1j = T (σij), (C)1i2j = (C)2j1i = µT (σ)ij + T 2(σs)ij , (3.19)

(C)2i2j = [µ2Tσ + µT 2(sTσ + σs) + T 2(κ+ T sTσs)]. (3.20)

And the conservation law (3.16) can be rewritten as

∇ · [C(u)∇u] = 0 on Ω. (3.21)

For a heterogeneous thermoelectric body Ω, its material properties in general depends

on position x. Applying a time independent boundary conditions to the body, the system

will eventually envolve into a steady state. We suppose that the driving-forces to the

carriers and the variations of (µ,T ) are small in the body. Therefore, we assume that the

fourth-order thermoelectric tensor C(u(x),x) is given as

C(u(x),x) = C(u0,x) in Ω, (3.22)

where u0 = (−µ0/T0, 1/T0) and (µ0, T0) are electrochemical potential and temperature of

the body in the equilibrium state. Remark that (µ0, T0) are uniform and in practice we

can choose T0 as the average temperature of the body and µ0 = 0 since the electrochemical

potential µ has no physical consequence. A more detailed discussion can be found in [71].
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We then infer that in steady state, the boundary value problem shall satisfy


∇ · [C0(x)∇u] = 0 on Ω,

time independent boundary conditions on ∂Ω,

(3.23)

where

[C0(x)]1i1j = T0[σ(x)]ij , [C0(x)]1i2j = [C0(x)]2i1j = T 2
0 [σ(x)s(x)]ij ,

[C0(x)]2i2j = T 2
0 [κ(x) + T0s

Tσ(x)s(x)]ij . (3.24)

3.3 A Sandwich Structure Model

Figure 3.1: (a) A simple laminate of two TE materials. (b) The cross section of the cylinder
of the sandwich of Cu/p-Bi-Te/Cu. (c) & (d) Temperature distribution and electric current
in the cross section shown in (b) for 99.75% Cu-layers, 1% electrical contact area, δT = 20K,
T0 = 288K and µ0 = 1mV .

Our theoretical prediction and numerical model are based on the continuum theory for

TE materials as briefly introduced above [71]. Consider a heterogeneous TE body Ω ⊂ IR3

with electrical conductivity σ = σ(x), thermal conductivity κ = κ(x) and Seebeck coefficient
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Figure 3.2: Maximum power output versus volume fraction of Cu-layers in the sandwich
structure: solid line — analytical prediction by (5.1); ‘·’ — numerical results for 4% electrical
contact area.

s = s(x). Let T, µ : Ω → IR be the local temperature and electrochemical potential,

and (u1, u2) = (−µ/T, 1/T ). For TE materials with small variations of temperature and

electrochemical potential, the constitutive relation for TE materials can be written as [79,

80, 81]:


je = T0σ∇u1 + T 2

0 σs∇u2,

ju = T 2
0 σs∇u1 + T 2

0 [κ+ T0σs
2]∇u2,

(3.25)

where je, ju are the electric current density and energy flux, respectively, and T0 is the

average temperature of the body. Then for a steady-state, conservations of energy and

electric charges imply that

divje = 0, divju = 0 in Ω. (3.26)

Upon specifying appropriate boundary conditions, the above equations can be solved for

the local fields and determine the effective properties of TE composites.

As an example, we consider a simple laminate of two TE materials with TE properties

given by σr, κr and sr (r = 1, 2). As shown in Fig. 3.1(a), we denote by L the total thickness
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and specify the boundary temperature and electrochemical potential as


T = T2, µ = µ0, on top surface,

T = T1, µ = −µ0, on bottom surface,

(3.27)

Assuming small temperature difference (i.e., δT = T2 − T1 � T0) and upon linearization,

we can explicitly solve the boundary value problem formed by (5.3), (3.26) and (5.2). In

particular, by (3.26) we find that the electric current and energy fluxes along direction eY

shall be constant and given by

je = −σ
eµ0

L
− δTσese

L
,

ju = −2T0µ0σ
ese

L
− δT [κe + T0σ

e(se)2]

L
,

(3.28)

where the constants σe, κe, se can be regarded as the the effective electrical conductivity,

effective thermal conductivity and effective Seebeck coefficient of the overall laminate and

satisfy [71]:

 σe T0σ
ese

T0σ
ese T0[κe + T0σ

e(se)2]

 =

{
θ1

 σ1 T0σ1s1

T0σ1smt T0[κ1 + T0σ1(s1)2]

−1

+ θ2

 σ2 T0σ2s2

T0σ2s2 T0[κ2 + T0σ2(s2)2]

−1}−1

,

(3.29)

where θ1 (θ2) is the volume fraction of material 1(2).

Further, by (3.28) we find the electrical power generated per unit volume is given by

Ẇ :=
2µ0je
L

= − 2

L2
(2µ2

0σ
e + µ0δTσ

ese). (3.30)

For fixed temperature difference δT , upon maximizing the power output over µ0 we find
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Table 3.1: TE properties of Copper and p-type doped (Bi0.25Sb0.75)2 Te3 [63].

Material σ (Ωm) s (µV/K) κ (W/mK)

Cu 5.85 ×107 1.90 401
p-Bi-Te 0.33 ×105 245 0.559

the maximum power generated per unit volume is given by

Ẇmax =
P e

4
(
δT

L
)2, P e = σe(se)2, (3.31)

where the maximum is achieved at µ0 = − δTse

4 and P e can be interpreted as the effective

power factor of the laminate.

For a simple laminate of a metallic material with good electric and thermal conductivity

and a TE semiconductor with large Seebeck coefficient, we anticipate that electrochemical

potential and temperature drop mainly occurs across the semiconducting TE layer, and

hence the effective Seebeck coefficient se of the overall laminate remains roughly to be that

of the semiconductor. Therefore, the effective power factor can be roughly improved as

much as the effective electrical conductivity σe can be improved. By (5.1) and (3.31), we

plot the power output of cylindrical Cu/p-Bi-Te/Cu sandwich versus the volume fraction

of Cu-layers in Fig. 3.2 for δT = 20K, T0 = 288K, L = 1mm and base area π
4mm

2. The

TE properties of Cu and p-Bi-Te are listed in Table 1. From Fig. 3.2 we see that the power

output achieves its maximum at about 99.75% volume fraction of Cu-layers, which is about

two order of magnitude larger than that of the p-Bi-Te of the same geometry and boundary

condition (5.2).

3.4 Simulation

The above calculation has assumed that the electric current is uniform on the xz-plane. In

applications, for heat conduction and electrical connections the electrical contact is typically

a fraction of the surface area of the TE structure. It may be dubious that equations

(3.31) and (5.1) correctly characterize the power output of the TE structure in such a

working condition. To verify this result, we implement a Finite Element Model (FEM) that
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Figure 3.3: I-V curves for different electrical contact areas, 99.75 % Cu-layers, δT = 20K
and T0 = 288K.

numerically solves the partial differential equation formed by (5.3)-(3.26). As sketched in

Fig. 3.1(b) we consider a cylindrical Cu/p-Bi-Te/Cu sandwich structure of 1 mm diameter

and 1 mm height. While the temperature on the top and bottom surfaces remains the

same as (5.2) with δT = T2 − T1 = 20K and T0 = (T1 + T2)/2 = 288K, we only prescribe

the electrochemical potential on the electrical contact areas that locate at the center of

the top and bottom surfaces. We set the normal electric current equal to zero on the

rest of top and bottom surfaces, and the normal electric current and thermal flux equal to

zero on the side surface of the cylinder. Adjusting the electrical contact areas, prescribed

electrochemical potential and volume fraction of Cu-layers, we study their influence on the

thermal to electrical energy conversion by monitoring the normal electric current output

(from the electrical contacts).

Figure 3.1(c) shows the temperature on a cross-section whereas Fig. 3.1(d) shows the

electric currents for 99.75% Cu-layers, 1% electrical contact area, δT = 20K, T0 = 288K and

µ0 = 1mV . We observe that the temperature on the two Cu-layers are nearly constant. The

temperature across the p-Bi-Te layer changes abruptly. By (3.31), this large temperature

gradient implies a large electrical power output. On the other hand, the electric current is

far from uniform due to small electrical contact area. To see its effect on the overall power

output, in Fig. 3.3 we plot the I-V (Current vs. Voltage) curves for different electrical

contact area, 99.75 % Cu-layers, δT = 20K and T0 = 288K. It is clear that electrical

contact area does have a significant effect on the I-V curves and hence overall electrical
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Figure 3.4: I-V curves for 4% electrical contact areas, δT = 20K, T0 = 288K and different
volume fractions of Cu-layers. The solid line shows the analytical solution for fixing contact
area 100 %.

power output.

To verify our prediction of two order of magnitude improvement of power factor in a

working condition and the optimal volume fraction of Cu-layers, we numerically compute

the I-V curves for 4% electrical contact area, δT = 20K, T0 = 288K and a variety of volume

fraction of Cu-layers. From Fig. 3.4, we observe that the computed I-V curves are roughly

straight lines, implying that the maximum power output is roughly half of the area of the

triangle. The maximum power outputs for 4% electrical contact area versus volume fraction

of Cu-layers is also plotted in Fig. 3.2 by ‘·’. From Fig. 3.4 we see that the deviation of the

I-V curves from the theory (3.28) can be significant for optimal volume fraction (99.75%)

of Cu-layers. Nevertheless, from Fig. 3.2 we see that the power output of the TE sandwich

at the optimal volume fraction (99.75%) of Cu-layers is still about 75 times larger if the

Cu-layers are replaced by the p-Bi-Te.

3.5 Conclusion

In conclusion, we have shown that the power factor can be significantly improved by het-

erogeneous TE structures. For a simple laminate of Cu/p-Bi-Te, assuming uniform electric

current density and heat flux we show the effective power factor can be about 100 higher

than that of the p-Bi-Te. We implement a FEM to solve generic TE boundary value prob-

lems for general geometries, heterogeneities, and boundary conditions. In particular, to
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account for the effect of small electrical contacts, we numerically compute the local fields

and electrical power output of a cylindrical Cu/p-Bi-Te/Cu sandwich in a real-world work-

ing condition. The numerical results show that though small electrical contacts do have a

significant effect on electrical power output, the optimal power output of the TE sandwich

is still 75 times larger than that of the p-Bi-Te structure at the same size and boundary

conditions.
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Chapter 4

Ginzburg-Landau for superconductors

4.1 Introduction

Recent advances in microfabrication techniques arise from the study in the application

of high temperature superconductor-based wire, films and tapes. In order to seek su-

perconductor materials which are capable of carrying high current without loss of en-

ergy, a number of theoretical and experimental papers on flux pinning, which is a central

topic of research in type II superconductors, have suggested that by introducing ferro-

magnetic/nonferromagnetic particles, layers or other special structures in superconductor

materials like MgB2, Y BCO, etc, magnetic flux will be pinned and critical current can

be enhanced. This kind of improvement in flux pinning and consequently critical current

density Jc is a determining factor in the use of second genaration high-temperature super-

conductor (HTS).

Measurements of critical current density in pure superconductor materials grown on

different substrates are reported in many literatures [129, 130], etc. The magnetic field

dependence of superconducting critical current density Jc is measured from the magneti-

zation hysteresis loops at various temperatures. Also the angular dependences of Jc with

respect to the external field is reported. Eun-Mi et al [129] found deviations in angular

dependence for fields nearly parallel to the ab plane. Haage et al found another interesting

phenomena that anisotropic flux pinning and resistivity appears in the substrate of Y BCO

thin films grown on vicinal SrT iO3(001) with c axis oriented along the SrT iO3 [001] direc-

tion, which indicates that critical current density of HTS can be enhanced by growing thin

films on tailored substrate surface. People also investigated the dependence of the critical

current density Jc on temperature, magntic field, thin film thickness in some related papers

[128, 127]
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The magnetic and electric properties of HTS can be controlled by many other engineer-

ing methods during the fabrication procedure. As early as 2002, Dou [126] pointed out

the enhancement of the critical current density and flux pining of MgB2 superconductor by

nanoparticle SiC doping. The critical current Jc could be at most an order of magnitude

higher than the undoped one. Sudesh [125] reported similar results by adding FeC10H10 in

the MgB2 sample. It shows that current density Jc is enhanced in the entire magnetic field

region with affecting little transition temperature. The ferromagnetic inclusions provide ef-

ficient pinning centers to improve Jc behavior. Rare-earth compouds are also considered as

new additives in superconductor films or tapes due to their excellent chemical inertness to

and large lattice mismatches with Y BCO, which is one kind of traditional superconducting

materials. Sung [124, 123] reported that Y BCO +BY NO films exhibited no Tc reduction

as well as superior Jc performance and exhibited a strong Jc peak for H||c indicative of

strong c−axis correlated flux-pinning. Selvamanickam [122] made a series of work on engi-

neered defects by addition of dopants, and particularly examined the influence of rare-earth

content and type in (Gd, Y )Ba2Cu3O7 films with Zr addition. As mentioned above, stud-

ies introducing self-assembled pinning centers have been very active for improving the flux

pinning properties in magnetic fields parallel to the c-axis [121, 116, 120, 119, 143]

4.1.1 Nucleation of superconductivity in S/F hybrids

Due to a number of advanced nanotechnology, for instance, the development of material

deposition techniques and the lithographic methods, it is possible to fabricate the super-

conductor(S) and ferromagnetic(F)/paramagnetic subsystem in artificial heterostructure at

nanometer scales[132, 133, 134, 135]. This is a different method to control and enhance

the transport properties of HTS materials compared to the nanoparticle doping. Unlike

the coexistance of superconductivity of ferromagnetism superconductors, this subsystem

can be physically seperated. Several theoretical, experimental and numerical studies con-

cerning the thermodynamical and transport properties of such hybrid system which con-

sists of spatially separated superconductor and ferromagnets have been reported in the

literatures[136, 137, 138, 139], etc.

We restrict our disscussion that all superconducting and ferrormagnetic are electrically
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insulated and there is no proximity effect. This means the transport properties in the S/F

hydrid system is dominated by their electromagnetic interaction. Based on these assump-

tions, different behavior of such S/F system is anticipated for variation of temperature and

external field. We seperate our discussion into two senarios: ‘hard’ magnets and ‘soft’ mag-

nets. For ‘hard’ magnets, when the phase is rather close to the superconducting transition

line, the magnetization of ferromagnet is solely determined by its own magnetic history

and won’t be affected by the supercurrent generated in the superconductor. On the other

hand, the nonuniform magnetic field induced by the ferromagnet can strongly affect the nu-

cleation of superconductivity in S/F system, consequently the critical current density and

temperature. For ‘soft’ magnets, the magnetization of the ferromagnet is no longer fixed.

Instead, it can be influenced by the superconducting current. Thus, the superconductor

and ferromagnet have more complicated coupling relationship than ‘hard’ S/F structure.

What is more, both the ‘hard’ and ‘soft’ S/F system with pure electromagnetic coupling

can be described by Ginzburg-Landau theory, which is a famous phenomenological second

phase theory on superconducting area. We give some brief literature reviews on ‘hard’ S/F

system and ‘soft’ S/F system in following.

Starting from a toy model, Milosevic and Peeters [140, 115] considered formulation

of giant vortices of vortex and anti-vortex structure by a ferromagnetic disc with out-

of-plane magnetization embedded in a thin superconducting film using the full nonlinear

self-consistent Ginzburg-Landau theory. They concluded that antivortices are stabilized

in shells around a central core of vortices with magnetization-controlled “magic numbers.”

The transition between the different vortex phases occurs through the creation of a vortex-

antivortex pair under the magnetic disk edge. Moreover, they [112] discussed the influence

of the magnet geometry.

Besides the effect of a single magnetic dot, the effect of magnetic pinning arrarys are

also widely studied[114, 118, 117]. Milosevic and Peeters made a series of work on the effect

of superconductivity of superconducting thin film nanostructured by a lattice of magnetic

particles[114, 113, 110, 111, 109]. Dependence of vortice configuration on the size of the

magnetic dots, polarity and the properties of the superconductor are shown in the work[113].
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They investigated the superconducting thin film under a square array of rectangular ferro-

magnets with in-plane magnetization [109], and the results showed that vortex-antivortex

pairs coexistence exists with/without the presence of external magnetic field. Doria[141]

studied a rectangular array of magnetic moments embedding in a superconductor, and the

behavior of the vortex phase formulation was predicted in the work. Carneiro[142] analyzed

the interaction between vortices in planar superconducting films and magnetic dipole array

placed outside the film.

In the meantime, many experimental results enrich people’s knowledge[108, 107, 106,

105], etc. As early as 1997, Martin fabricated triangular arrays of submicrometer magnetic

dots, with typical spacing of 400-600 nm and diameters close to 200 nm by electron beam

lithography and studied the pinning effects on Nb thin films. The angular, current and

temperature dependencies of the resistivity imply synchronized pinning by the magnetic

array which is relevent at high vortex velocities, when the order in the vortex lattice in-

creases. Silhanek et al [108] investigated the nucleation of superconductivity in an Al film

deposited on top of an array of micromagnets with perpendicular anisotropy by dc transport

measurements. Through controlling the magnetic state of the ferromagnets, they explored

the superconductor-normal-metal phase boundary as a function of the magnetization of the

dots. And critical current for a given temperature could be further enhanced by properly

adjusting the size of the magnetic dots.

Multilayers is another special structure for S/F hybrid system, like bilayers or sandwich

structure. Earlier in 1991, Ledvij et al [104] investigated the superconducting nucleation

fields for ferromagnetic-superconducting-ferromagnetic triple layers when the magnetic field

was applied parallel to the S/M interfaces. Koorevaar [103] analyzed the interplay between

superconductivity and magnetism in various S/F multilayers. Zdravkov et al [132] studied

the reentrant superconductivity in superconductor/ferromagnetic-alloy bilayers.

In the above work, magnetic defects and superconductor in the composite have a strong

interaction with each other, resulting in strong flux-line pinning force because of the mag-

netic pinning mechanism. The enhancement of pinning force of vortices can stabilize the

vortex phase in type II superconductor. Furthermore, critical current as an important prop-

erty of superconducting material can be reached when driving force is balanced by pinning
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force due to inhomogeneities.

4.1.2 Superconductor/soft magnet hybrids

In the above discussion, we assume the magnetization of ferromagnet remains unaltered in

the S/F hybrids. Another topic is related to the soft ferromagentic materials or paramag-

netic materials with low coercive field. In this kind of hybrid, the magnetization can be

changed either by the external magnetic field or by the induced superconducting current.

The formation of vortices in the superconducting materials and magnetic domains in

the ferromagnetic materials with S/F bilayers with perpendicular magnetization can be

induced by the magnetostatic interaction between a vortex-free superconducting film and

a uniformly magnetic domains in the ferromagnet film at zero external field. Erdin et al

[102] pointed out that the ground state of the S/F system could be unstable with respect to

the formation of vortices in the superconducting materials. The reason is that formation of

vortices is energetically favorable once the total energy of a single vortex line influenced by

magnetostatic interaction between superconductor and ferromagnet is negative. However,

the energy will increase once the lateral size of the S/F system increases, due to the constant

magnetic field along z direction generated by the averaged vortex density. Thereforce,

the ferromagnetic film would split into domains with alternating magnetization in a finite

temperature range in order to let the vortex phase to survive. It is also interesting to

notice that for a thin film system consisting of a superconducting and a magnetic film, the

interaction between a single vortex in the superconducting domain and the nanomagnet

crosses over from attractive to repulsive at a short distance [101].

The interaction between vortices and a superparamagnetic particle with constant dipolar

moment was investigated by Carneiro [142, 99, 98, 100, 97]. In his work, he pointed out

the energy potential for the superconducting vortices differs significantly from that for a

permanent dipole due to the rotational degree of freedom. The vortex pinning by a magnetic

dipole is tunable by applying an in-plane external field. And the critical current could be

controllable in the same way.

In order to modify the superconducting properties of such soft hybrid system, an al-

ternative way is to utilize paramagnetic inhomogeneities, which are generally characterized
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by zero or very low remanent magnetization. The magnetization of paramagnetic material

completely depends on the external magnetic field and the magnetic permeability µ. Such

kind of superconductor-paramagnet hybrids were studied theoretically and numerically by

Geneko. In Genenko’s paper[96], the concept of magnetic shielding for the enhancement of

superconductor critical currents was discussed. Even in the Meissner State, the magneti-

cally shielded superconductors are able to carry without dissipation rather high transport

current comparable with the typical current values for a regime of strong flux pinning.

Moreover, it [95] was numerically shown that transport current distributions in a flux-free

superconductor strip located near a soft magnet wall of arbitrary thickness, the reduction of

the edge current peaks caused by magnetic shielding saturates rapidly with increasing thick-

ness of the magnet. The effect of magnetic shielding on the current and field distributions

in a thin, flat superconductor ring located between two coaxial cylindrical soft magnets of

high permeability was also studied Genenko et al [94]. Such a heterostructure keeps the

flux-free state of the ring with high magnetic fields and low electromagnetic losses in ac

applications, even in the presence of strong total supercurrents. The problem concerning

the transport current distribution in a superconducting filament aligned parallel to the flat

surface of a semi-infinite bulk magnet with the assumption that the superconductor is in

the Meissner State was considered by Yampolskii et al [93]. Genenko et al [92] studied a

similar problem that the distribution of magnetic field inside and outside a superconducting

filament sheathed by a magnetic layer, as well as the magnetization of such a structure in

the region of reversible magnetic behavior in the Meissner State. Moveover, a number of

literatures about the formation of the mixed state in various superconductor/paramagnet

structures in the presence of transport current, or an external magnetic field or the field of

hard-magnetic dipoles, in the framework of the London model, was analyzed by Genenko

et al [91], Genenko and Rauh [90], Yampolskii and Genenko [89], etc.

The implementation of paramagnetic and ferromagentic coatings in high-Tc supercon-

ducting materials raises lots of attention due to the improvement of the critical current and

reduction of the ac losses [143, 144]. While good critical currents can be achieved in the

absence of a magnetic field, there is still a challenge in reaching high critical currents in the

presence of a magnetic field.
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4.1.3 Enhancement of pinning effect and critical current

Flux pinning is one of the crucial problems in the development of high temperature su-

perconductors (HTS). The defects of the nano-scale could be introduced into HTS by nan-

otechnology in order to strongly pin the quantized vortices. Tremendous efforts have been

focusd on the enhancement on pinning effect and consequently critical current theoretically

and experimentally. Since the normal core of quantized vortex or the shielding current sur-

rounding the core locally interacts with the defects and impurities in the superconducting

materials, a spatial perturbation of free energy of the quantized vortices is caused. For this

reason, the flux pinning is generated. Generally speaking, the lorentz force FL acts on the

quantized vortices when the current exists under the magnetic field. The critical current

is determined by the balance between pinning force Fp and lorentz force FL. The global

pinning force Fp depends on the pinnng mechanics. Even the pinning phenomenon that

rules the critical current is complex, including the effect of pinning energy, elastic energy

between quantized vortices and the thermal energy, the most general method to generate

and increase the pinning force is to introduce the different kinds of artificial defects.

As early as 2000, Adamopoulos and Patapis [145] studied the role of interfaces with large

nonsuperconducting particles in vortex pinning. Based on the modified second London

equation, they showed that the spatial variation of the magnetic penetration depth can

lead to pinning of the vortices and increased critical current density under sharp interface.

Even the model is one-dimension, they give a qualitative information of the bulk pinning

force under a specified mircostructure. The interaction of a vortex in the vicinity of the

normal phase particle with the normal phase causes a reduction of the magnetic energy of

the vortex and creates a pinning site acting an attractive force to the vortex. And it is

shown that as the interface sharpness decreases, the pinning force is reduced. Kayali [146]

presented analytical study of a system consisting of a superconducting thin film pierced by

ferromagnetic columnar defects. It is shown that the interaction between magnetic field of

vortices and the magnetization outside the plane of the film leads to very strong pinning and

a spontaneous vortex phase will appear if the magnetization of the columnar defect exceeds

a critical value. Vortices in this system are pinned by pinning forces that increase linearly
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with the magnetization of the magnetic defects. They also show that vortex pinning is

strongly enhanced due to the contribution from the interaction between the magnetic field

of vortices and the magnetization of the ferromagnetic columnar defect outside the plane

of the superconductor and its close proximity. Blamire [147] reported that a magnetic

inclusion can also reduce the lorentz force on a vortex, resulting in a substantially enhanced

critical current density for given pinning force. They have shown that paramagnetic or

ferromagnetic pinning centers have the potential to create a significant enhancement of the

critical current density of a type II superconductor. They concluded that the enhancement

is likely to be limited to fields below 1T by the saturation magnetization of the magnetic

inclusions.

In the case of conventional superconductors, regular arrays of submicron holes substan-

tially increase the critical current Ic and critical temperature Tc. Silhanek et al [88] used

electric transport measurement to study the effect of placing an additional small antidot in

the unit cell of the array. This composite antidot lattice consists of two interpenetrating

antidot square arrays with a different antidot size and the same lattice period. The smaller

antidots are located at the centers of the cells of the large antidots array. They showed that

the composite antidot lattice can trap a higher number of flux quanta per unit cell inside

the antidots compared to a reference antidot film without the additional small antidots.

Moreover, the field range in which an enhanced critical current observed is considerably

expanded. Wu et al [87] fabricated a superconducting Nb thin film with triangular arrays

of pinning sites to investigate the commensurate vortex lattices. The interactions of vortices

in this pattern film make the observed anisotropy in the pinning properties. The transport

properties at near critical temperature show anisotropic pinning properties related to the

configuration of pinning centers. The critical current is depressed when the driving force

is applied along the short diagonal in the rhombic unit cell of pinning array, which implies

that the pinning potential along the short diagonal creates a moving channel of vortices in

triangular arrays of defects. The effect of different dimension of artificial pinning centers

on pinning the quantized vortices were studied by Matsumoto et al [86]. In their work,

critical current dentsities Jc of the HTS fillms are dramartically improved by the controlled

artifical pinning centers. The in-field current density Jc of the high-quality, epitaxial films
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was improved by one order of magnitude or more compared with the values of the past

experimantally. Gurevich [84] calculated the thickness dependence of the critical current

density Jc(d) in films due to the two-dimensional/three-dimensional pinning crossover at

low magnetic fields, taking into account the spatial correlation of pinning cernters, effect

of bulk and surface pinning and the effect of thermal fluctuations. Bezotosny et al [85]

observed the asymmetry in the magnetic field dependence of pinning force Fp for two op-

posite directions of the transport current. They found that the effect is less significant for

thin and thick films where single vortex pinning and pinning of internal vortices is relevent.

However, at the intermediate thickness, an asymmetry in the Fp depencence is obviously

due to the pinning mechanism caused by surface effects.

Generally speaking, the theoretical model of the system consisting of magnetic inho-

mogeneities and superconductor matrix is complicated, what is more, in the presence of

an applied magnetic field. So far, early work on this field give an invaluable qualita-

tive information[145, 146, 147]. Nethertheless, to author’s best knowledge, there is no

explicit explaination to the problem from the energy viewpoint. The superconductor nano-

composite can be described phenomenologically using Ginzburg-Landau formalism. Both

the microscopic level and the macroscopic level shall be considered, that is on the scale of

the flux line spacing and on the scale of bulk superconductor and its physical surroundings.

In the former case one is concerned with the details of the arrangement of flux vortices and

their interaction with an array of pinning centers. In the latter case one is interested in the

relation of the electrodynamics arrangement to a static or dynamic mixed state.

In this chapter, we begin with the interaction energy between a single vortex and a

magnetic non-superconducting boundary in the equilibrium mixed state. This shall be

considered firstly in order to obtain the interaction force caused by the inhomogeneities.

Moreover, we shall notice that pinning is caused by the local fluctuations in the properties

of the materials. The free energy of the system depends on the position of the vortices.

We try to find the free energy of the system as a function of the position of the vortices

with respect to the pinning center. The nature of the pinning force consists of the energy

associated with the condensation energy and the core energy. However in the London limit

(i.e. κ→∞), the core is reduced to a line discontinuity at the center of the current vortex
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and the problem reduces to one of classical hydrodynamics. This assumption is the one to

yield results in the range Hc1 ≤ H ≤ Hc2 even the physical model is a bit unrealistic. Thus,

we ignore the core energy here and focus on the magnetic energy and the supercurrents

outside the core. Furthermore, the results of the model are likely to remain valid for the

temperature other than near to critical temperature Tc. On account of these facts we give a

full treatment of the problem based on Ginzburg-landau theory and classic Landau theory

of micromagnetics to describe the total free energy for the two phases composite. The flux

line which varies along x direction as well as y direction is modeled. Moreover, we restrict

our study to the thin film so that the vortex line is expected to be straight and we ignore

the proximity effect by assuming an insulting buffer material between the interface.

This chapter is organized as follows. A general total free energy of the superconductor

composite system is proposed in section 4.2. Then we derive the planar energy form in the

thin film case with zero transport current and deduce the pinning force for a single vortex

in dilute limit in section 4.3. In section 4.4, driving force on a single force in pure supercon-

ducting film, which is usually so-called lorentz force is derived. Then the interaction with

paramagnetic inhomogeneity under the external transport current is discussed in section

4.5. Section 4.6 is summary.

4.2 Free energy of superconductors with magnetic inhomogeneities

4.2.1 Free energy of the system

Consider a superconductor body with magnetic inhomogeneities in the vacuum. Denote

by Ω (resp. Ωs, Ωm, Ωv) the regime occupied by the overall body (resp. superconductor,

magnetic inhomogeneities, vacuum). We postulate that the thermodynamic state of the

system is described by the order parameter ψ : Ωs → C for the superconductor, the

magnetization M : Ωm → IR3 for the magnetic inhomogeneities, and the magnetic vector

potential A : IR3 → IR3 (B = ∇ × A, where B is the magnetic field). At a constant

temperature T close to the critical temperature Tc and under the application of an external
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constant magnetic field He, we identify the total free energy of the system as

G[ψ,A,M; He] =

∫
Ωs

[
fn0 +

β

2
(|ψ|2 +

α

β
)2 +

1

2m∗
|(~
i
∇− e∗

c
A)ψ|2

]
+

∫
Ωm

[
aex

2
|∇M|2 + φ(M)−He ·M]

+
1

8π

∫
IR3
|∇ ×A−He − 4πMχΩm |2,

(4.1)

where ~ (resp. e∗,m∗, c) are the Planck constant, effective charge, effective mass of Cooper

pairs and speed of light, fn0 is the free energy density in the normal state in the absence of

external magnetic field, α = − e∗2

m∗c2H
2
c (T )λ2

eff(T ), β = 4πe∗4

m∗2c4
H2
c (T )λ4

eff(T ) are phenomeno-

logical constants as in the classic Ginzburg-Landau theory (Tinkham, 1975), aex > 0 is the

exchange constant in the theory of micromagnetics (Landau, 1933; Landau and Lifshitz,

1995), and φ : IR3 → IR describes the internal energy density associated with magneti-

zation in the magnetic inhomogeneities. To be consistent, the state variables (ψ,A,M)

should satisfy the following conditions:

∫
Ωs

|∇ψ|2 < +∞, |∇ ×A−He| → 0 as |x| → +∞,
∫

Ωm

|M|2 < +∞. (4.2)

We expect the free energy (4.1) reasonably describes the interactions between superconduc-

tors and magnetic inhomogeneities based on the following observations: (i) At the absence

of magnetic inhomogeneities (i.e., Ωm = ∅), equation (4.1) precisely degenerates into the

Ginzburg-Landau theory for a pristine superconductor (Tinkham, 1975). (ii) At the ab-

sence of superconductor (i.e., Ωs = ∅), equation (4.1) is precisely the Landau theory of

micromagnetics (Landau and Lifshitz, 1995).

In this work, we employ Gauss unit system such that

B = H in Ωs ∪ Ωv, B = H + 4πM in Ωm, (4.3)

and the Maxwell equation is written as

∇ ·B = 0 and ∇×H =
4π

c
J in IR3, (4.4)
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where J is the current density.

Figure 4.1: Schematic diagram

By the principle of free energy we claim the equilibrium state of the system is determined

by the variational principle:

min{G[ψ,A,M; He] : (ψ,A,M) ∈ S}, (4.5)

where the admissible space for (ψ,A,M) is defined as

S = {(ψ,A,M) : Ωs × IR3 × Ωm → C × IR3 × IR3 satisfy (4.2)}.
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The Euler-Lagrange equations associated with the principle of free energy (4.5) neces-

sarily satisfies (see Appendix 4.7.1 for details)


αψ + β|ψ|2ψ + 1

2m∗ (
~
i∇−

e∗

c A)2ψ = 0 in Ωs,

∇× (∇×A− 4πMχΩm) = 4π
c JsχΩs in IR3,

−∇×A + 4πM +DMφ(M)− aex∆M = 0 in Ωm,

(4.6)

where

Js = [
~e∗

2m∗i
(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
ψψ∗A] in Ωs. (4.7)

is the supercurrent. When linear paramagnetic material is applied, the associated boundary

conditions derived from the variational calculus are

[
(~i∇−

e∗

c A)ψ
]
·N = 0 on ∂Ωs,

[[∇×A−M]]
∣∣
Γsinh

×N = 0 on Γsinh,

[[∇×A−M]]
∣∣
Γvinh

×N = 0 on Γvinh,

(∇M)N = 0 on ∂Ωm,

(4.8)

where we denote by Γsinh(Γvinh) the interface between the supreconductor(vacuum) and

magnetic inhomogeneity. N is the unit outward normal on the boundary.

The Ginzburg-Landau energy (4.1) is Gauge-invariant in the sense that for any scalar

potential θ′ : IR3 → IR,

G[ψ′,A′,M; He] = G[ψ,A,M; He] if A→ A′ = A +∇θ′, ψ → ψ′ = ψeie
∗θ′/c~.

It is sometimes convenient to rewrite the Ginzburg-Landau energy (4.1) directly in terms

of Gauge-invariant quantities, i.e., Cooper pair density |ψ|2, supercurrent density Js (cf.

(4.7)) and magnetic field B = ∇ × A. To this end, we rewrite the wave function ψ as

ψ = u exp(iθ) with u2 being the density of Cooper pairs and θ the phase. For brevity, we
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introduce notation:

θ̃ =
c~
e∗
θ, Ã = A− c~

e∗
∇θ. (4.9)

From quantum mechanics, we identify m∗v = ~∇θ − e∗A/c as the momentum of Cooper

pairs, and hence

Js = e∗u2v, v =
~
m∗

(∇θ − e∗

c~
A) = − e∗

m∗c
Ã, (4.10)

which is consistent with (4.7). We can identify Ã as the vector potential in London’s

gauge (Bardeen, 1950). Let Ae be the magnetic vector potential associated with external

magnetic field such that ∇ × Ae = He on IR3, and Asf = A − Ae be the self magnetic

vector potential induced by the supercurrent and magnetization. By the Maxwell equation

(4.6)2 and boundary condition (4.2)2, we can separate the contributions of supercurrent

and magnetization:

Asf = Asf
s + Asf

m, (4.11)

where ∇×Asf
s,m is the self magnetic field associated with the supper current Js and mag-

netization M, and are respectively determined by


∇×∇×Asf

s = 4π
c JsχΩs = 1

λ2 [−Asf
s −Asf

m −Ae +∇θ̃]χΩs in IR3,

∇×Asf
s → 0 as |x| → +∞,

(4.12)

and 
∇× (∇×Asf

m − 4πMχΩm) = 0 in IR3,

∇×Asf
m → 0 as |x| → +∞.

(4.13)

From the classic theory of electromagnetism (Jackson, 1995), the magnetic field determined
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by (4.13) can be written as Bsf
m := ∇×Asf

m = −∇ζm + 4πMχΩm , and


∇ · (∇ζm + 4πMχΩm) = 0 in IR3,

∇ζm → 0 as |x| → +∞.
(4.14)

In addition, the external magnetic field can also be written as

He = −∇ζe in IR3.

We remark that the self magnetic fields Bsf
s,m := ∇ ×Asf

s,m are completely determined

by independent real-valued variables (u, Ã,M). By the divergence theorem, the nonlocal

energy in associated with magnetic field (i.e. the last term in (4.1)) can be written as

1

8π

∫
IR3
|∇ ×Asf − 4πMχΩm |2 =

1

8π

∫
IR3
|∇ ×Asf

s −∇ζm|2 = F s + Fm, (4.15)

where

F s[u, Ã,M; Ae] =
1

8π

∫
IR3
|∇ ×Asf

s |2, Fm[M; Ae] =
1

8π

∫
IR3
|∇ζm|2.

In addition, by direct calculation we find that the kinetic energy satisfies

1

2m∗
|(~
i
∇− e∗

c
A)ψ|2 − ~2

2m∗
|∇u|2 =

(e∗u)2

2m∗c2
|∇θ̃ −A|2 =

1

8πλ2
|Ã|2

=
m∗

2(e∗u)2
|Js|2 = − 1

2c
Js · Ã.

Therefore, in terms of (u, Ã,M) the free energy (4.1) can be equivalently expressed as

G[u, Ã,M; Ae] = Gs[u, Ã,M; Ae] +Gm[M; Ae], (4.16)

where Gs (Gm ) represents the free energy associated with the superconductor Ωs (resp.
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magnetizable medium Ωm), and is given by

Gs[u, Ã,M; Ae] =

∫
Ωs

[ ~2

2m∗
|∇u|2 +

β

2
(u2 +

α

β
)2 +

1

8πλ2
|Ã|2

]
+ F s[u, Ã,M; Ae],

Gm[M; Ae] =

∫
Ωm

[
aex

2
|∇M|2 + φ(M) + 8π|M|2 −He ·M] + Fm[M; Ae].

(4.17)

In addition, the variational problem (4.5) is equivalent to

min{G[u, Ã,M; Ae] : (u, Ã,M)}. (4.18)

By the standard calculus of variations or directly taking the real part and imaginary part

of (4.6)1, we rewrite the Euler-Lagrange equations (4.6) for (u,M, Ã) as



− ~2

2m∗
∆u+ αu+ βu3 +

u

8πλ̂2
|Ã|2] = 0 in Ωs,

∇× (∇× Ã− 4πMχΩm) = −u
2

λ2
ÃχΩs in IR3,

−∇× Ã + 4πM +DMφ(M)− aex∆M = 0 in Ωm,

(4.19)

which, combined with the boundary and interfacial conditions (4.2) and (5.2), are presum-

ably sufficient for determining the equilibrium state of the system.

Ĝ = G/
2α2

β
, û = u/u∞, Â = Ã/

√
α2/β,

u∞ =

√
−α
β
, λ =

√
m∗c2

4π(e∗u∞)2
, ξ =

√
− ~2

2m∗α
.

(4.20)

We remark that λ and ξ is the London’s penetration depth and superconducting coherence

length. We can rewrite the free energy in a dimensionless form:

Ĝs[u, Â, M̂; Ae] =

∫
Ωs

[
ξ2|∇û|2 +

1

2
(û2 − 1)2 +

û2

8πλ2
|Â|2

]
+

1

8π

∫
IR3
|∇ × Âsf

s |2,
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4.2.2 Some classic solutions at the absence of magnetic inhomogeneities

At the absence of magnetic inhomogeneities (i.e. Ωm = ∅), equations (4.6)-(5.2) can be

rewritten as


ξ2∆û+ û− û3 − û

8πλ2
|Â|2 = 0 in Ωs,

∇×∇× Â = − û
2

λ2
ÂχΩs in IR3.

(4.21)

with boundary conditions:


∇û ·N = 0 on ∂Ωs,

∇× Â→ Ĥe as |x| → +∞.
(4.22)

Enforcing the GL equations (4.21), the free energy can be significantly simplified. In par-

ticular, by (4.21)1 and the divergence theorem we have

∫
Ωs

[
− ξ2|∇û|2 + û2 − û4 − û2

8πλ2
|Â|2

]
= 0

Thus,

Ĝs[u, Â; Ae] =

∫
Ωs

1

2
(1− û4) +

1

8π

∫
IR3
|∇ × Âsf

s |2. (4.23)

The Ginzburg-Landau boundary value problems (4.21)-(4.22) associated with variational

principle (4.5) admits a few classic solutions. Below we briefly outline these solutions which

will be the basis for our study of the heterogeneous system.

1. Normal solution/state: (u,∇× Ã)=(0,He).

Ĝs =
1

2
|Ωs|.

2. Messiner solution/state. If α < 0, one can verify that

(û,∇× Â) = (1,B0), (4.24)
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where B0 = 0 in Ωs and B0

∣∣∣
IR3\Ωs

is the unique solution to the following boundary

value problem:


∆B0 = 0 in IR3 \ Ωs,

B0 ·N = 0 on ∂Ωs,

B0 → Ĥe as |x| → +∞.

(4.25)

Strictly speaking, the Messiner solution described by (4.24)-(4.25) does not fully sat-

isfy the Ginzburg-Landau boundary value problems (4.21)-(4.22).

Ĝs = |Ωs|
1

8π
|Ĥe|2(1 + d)

3. Mixed state with a planar interface.

We seek a solution of the form

û = û(x), Â = Ây(x)ey,

and

(u,A′y)→


(u∞, 0) as x→ +∞,

(0, He) as x→ −∞.

Then (4.21) can be written as


ξ2 d

2

dx2
û+ û− û3 +

ûÂ2
y

8πλ̂2
= 0 ∀ x ∈ IR,

λ2 d
2

dx2
Ây = û2Ây ∀ x ∈ IR,

We focus on the type II superconductor with λ� ξ.
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4. No-vortex solution with transport supercurrent and at the absence of external mag-

netic field. There are two configurations of interest. The first is that the supercon-

ductor is a film of thickness t with transport current in ey direction. In this case, we

assume Ωs = (0, t)× IR2 and seek a solution satisfying

û = û(x), Â = Ây(x)ey,
1

t

∫ t

0
Ây(x) = J0.

Then (4.21) can be written as


ξ2 d

2

dx2
û+ û− û3 +

ûÂ2
y

8πλ2
= 0 ∀ x ∈ IR,

λ2 d
2

dx2
Ây = û2Ây ∀ x ∈ IR.

5. Single-vortex solution with no transport supercurrent.

We seek a solution of the form

u = u(r), Ã = Aθ(r)eθ,

and

(u, (rAθ)
′/r)→


(u∞, 0) as r → +∞,

(0, He) as x→ 0.

Then (4.21) can be written as


− ~2

2m∗
d

rdr
r
d

dr
u+ αu+ βu3 +

uA2
θ

8πλ̂2
= 0 ∀ x ∈ IR,

d

rdr
r
d

dr
Aθ −

Aθ
r2

=
u2

λ̂2
Aθ ∀ x ∈ IR.

4.3 Interaction with paramagnetic inhomogeneity: no transport current

In this section we consider pinning interaction of a magnetic flux line to the interface

of paramagnetic inhomogeneity without transport current. In the section 4.5, external

transport current will be introduced to fulfill the picture of mechanism of interaction force.
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The system of the pinning center considered shall be at dilute limit, which means that the

system of pinning center (e.g., the inhomogeneity) is widely spaced so that the distortion

of the vortex current due to any pinning center is at a low level comparing to its maximum

value.

A heterogeneous superconducting thin film in the xy-plane is pieced by a columnar

linear paramagentic inhomogeneities whose radius is R as shown in Fig. 4.1. The film

consists of rectangle arrays with each unit includes one paramagnetic inhomogeneity. The

thickness of film is t and lateral sizes of the film are Lx, Ly (Lx, Ly � t). For simplicity,

neglecting the fringe effects we assume that order parameter ψ, magnetic field B = Bzez

and magnetization M = Mzez inside the inhomogeneity are independent of ez within the

film.

If the size of unit cell is large comparing to the size of inhomogeneity and the distance

between magnetic vortex and inhomogeneity, the periodic boundary condition shall degen-

erate into dilute limit. When there is no transport current appears in the thin film, we

rewrite the total free energy in a unit cell as follows:

G[ψ,A,M; He] =t

∫
Ω̃s

[
fn0 + α|ψ|2 +

β

2
|ψ|4 +

1

2m∗
|(~
i
∇̃ − e∗

c
A)ψ|2

]
+

t

8π

∫
Ω̃
|∇ ×A−He − 4πMχΩ̃m

|2

+ t

∫
Ω̃m

[
aex

2
|∇̃M|2 + φ(M)−He ·M],

(4.26)

where ∇̃ is planar vector differential operator, Ω̃s denotes the planar superconductor

region, Ω̃m denotes the planar paramagnetic inhomogeneities, Ω̃ is the union of Ω̃s and Ω̃m,

which represents the planar thin film composite.

Remark that there is no transport current and external electric field in the vacuum.

Therefore, we can exclude ∇×Bsf in equation (4.26) due to Maxwell equations

∇×B = ∇× (He + Bsf) = ∇×Bsf =
4π

c
J +

1

c

∂E

∂t
= 0 in [Ω̃× (0, t)]c. (4.27)

Also the cross product term Asf × Bsf is perpendicular to normal direction n on top and
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bottom film surface, we have

1

8π

∫
∂[Ω̃×(0,t)]c

n · (Asf ×Bsf) = 0. (4.28)

We employ a planar model derived from total free energy of the unit cell in equation

(4.26) by variational method, which implies the boundary value problem:


αψ + β|ψ|2ψ + 1

2m∗ (
~
i ∇̃ −

e∗

c A)2ψ = 0 in Ω̃s,

∇̃ × (∇̃ ×A− 4πMχΩ̃inh
) = 4π

c JsχΩ̃s
in IR2,

µ
µ−14πM = ∇̃ ×A in Ω̃m,

(4.29)

subject to the boundary conditions



[
(~i ∇̃ −

e∗

c A)ψ
]
·N = 0 on ∂Ω̃s,

[[∇̃ ×A−M]]
∣∣
Γsinh

×N = 0 on Γsinh,

|∇̃ ×A−He| → 0 as |x| → ∞,

|∇̃ × ∇̃ ×A| → 0 as |x| → ∞χΩs .

(4.30)

where supercurrent Js is

Js = [
~e∗

2m∗i
(ψ∗∇̃ψ − ψ∇̃ψ∗)− e∗2

m∗c
ψψ∗A] in Ω̃s. (4.31)

Notice that the equation (4.30)4 is given because no transport current passing through the

thin film.

The equations (4.29) associated with boundary conditions (4.30) are well-posed bound-

ary value problem. The free energy of the composite system can be obtained by multiplying

the thickness of the thin film t over the planar energy. With an abuse of notation, by equa-

tion (4.16) we also rewrite the total free energy of the system in a form of planar model

G[u, θ,M; Ae] = G̃s[u, θ; Ae] + G̃m[M; Ae] + G̃int[u, θ,M; Ae] +Gsf [u, θ,M; Ae]. (4.32)
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where

G̃s[u, θ; Ae] = t

∫
Ω̃s

[ ~2

2m∗
|∇u|2 +

β

2
(u2 +

α

β
)2 +

u2

8πλ2
| −Ae −Asf +

c~
e∗
∇θ|2

]
,

G̃m[M; Ae] = t

∫
Ω̃m

[
aex

2
|∇M|2 + φ(M) + 8π|M|2 −He ·M],

G̃int[u, θ,M; Ae] = −t
∫

Ω̃m

M · (∇×Asf),

Gsf [u, θ,M; Ae] =
1

8π

∫
IR3
|∇ ×Asf |2.

The self field energy term Gsf can be rewritten by Divergence Theorem as

Gsf =
1

8π

∫
IR3
|∇ ×Asf |2

=
t

8π

∫
Ω̃
|∇ ×Asf |2 +

1

8π

∫
∂[Ω̃×(0,t)]c

n · (Asf ×Bsf) +
1

8π

∫
[Ω̃×(0,t)]c

(∇×Bsf) ·Asf .
(4.33)

In this case there is no transport current and electric field in the vacuum. This allows

us to exclude the last term in equation (4.33) due to Maxwell equations

∇×B = ∇× (He + Bsf) = ∇×Bsf =
4π

c
J +

1

c

∂E

∂t
= 0 in [Ω̃× (0, t)]c. (4.34)

For the second term in the equation (4.33), the cross product term Asf×Bsf is perpendicular

to normal direction n on top and bottom film surface. Hence, the self field energy term is

written as

Gsf [u, θ,M; Ae] = G̃sf [u, θ,M; Ae] =
t

8π

∫
Ω̃
|∇ ×Asf |2. (4.35)

4.3.1 A single vortex at the vicinity of an inhomogeneity at dilute limit

In this section, our interest is to investigate the interaction force of individual flux line to

the interface of a single paramagnetic inhomogeneity at dilute system and thermal equa-

bilium state at low magnetic fields, which is close to the lower critical field Hc1 for type

II superconductor. One linear paramagnetic columnar inhomogeneity embedded by the

superconductor matrix is modeled. The schematic diagram is shown in Fig. 4.3.1.
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Figure 4.2: Schematic diagram

Depending on the governing equations (4.29) associated with the boundary conditions

(4.30), our strategy to compute the vortex pinning force due to the existance of paramagnetic

inhomogeneity is as follows:

1. Using a standard free-boundary trial solution of individual magnetic vortex to derive

well-posed near-field governing equations of vector potential. Show that the magneti-

zation of the inhomogeneity is uniform by Coulomb gauge under our assumption.

2. Obtain an approximated solution of magnetic field B in terms of unknown uniform

magnetization M.

3. Rewrite the total free energy of the system in terms of the position vector of the

vortex.

4. In principle of minimum free energy in the equilibrium state, find the unknown mag-

netization M and then determine the effective total free energy of the system.

5. Differentiate the total free energy with respect to the position vector of vortex to

derive the pinning force.

In particular, for thin film, the absolute value of order parameter ψ, or say the density of

superconducting electrons, has the same value everywhere inside the superconducting phase

region. This is because the variation of |ψ| would occur in a thin thickness so that the term

in the free energy proportional to (∇|ψ|)2 would provide an excessively large contribution

if any substantial variations occurred. In dilute limit, a single vortex will appear in the

superconductor region when the external field He reaches the critical field Hc1 = Φ0
4πλ2 ,
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where Φ0 is single fluxoid and λ =
√

m∗c2β
4πe∗2(−α)

is the penetration depth. For simplicity, we

consider trial solution to a single vortex in the superconducting phase at r0 with the order

parameter given by

ψ = |ψ0|f(r− r0)eiθc in Ω̃s, (4.36)

where |ψ0| is a constant value, function f(r) ≈ tanh |r|ξ will decay to one exponentially by

the coherence length ξ away from the vortex center (Tinkham, 1975). This solution is axial

symmetric. And based on the fact that the phase of ψ varies by 2π in making a complete

circuit, corresponding to the existence of a single flux quantum associated with the vortex,

equation (4.29) 2 can be simplified as

∇̃ × (∇̃ ×A− 4πMχΩ̃m
) = [

4π~e∗

m∗c
f2(r− r0)|ψ0|2∇̃θc −

1

λ2
A]χΩ̃s

in IR2 \ Ω̃co,(4.37)

where Ω̃co is planar normal core region.

The vector potential A shall be determined by the governing equations (4.29)


∇̃ × (∇̃ ×A− 4πMχΩ̃m

) = [4π~e∗
m∗c f

2(r− r0)|ψ0|2∇̃θc − 1
λ2 A]χΩ̃s

in Ω̃ \ Ω̃co,

µ
µ−14πM = ∇̃ ×A in Ω̃m

(4.38)

subject to boundary conditions


[[∇̃ ×A−M]]

∣∣
Γsinh

×N = 0 on Γsinh,

|∇̃ × ∇̃ ×A| → 0 as |x| → ∞χΩs .

(4.39)

Now we write the above boundary value problem in terms of magnetic field B. This is

because inside the composite thin film, magntic field B only has one component and it is

convenient for us to obtain an approximate solution under our planar assumption.
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The first equation in (4.38) can be manipulated by take curl operation on both sides as

∇̃ × ∇̃ × (∇̃ ×A− 4πMχΩ̃m
) = [∇× 4π~e∗

m∗c
f2(r− r0)|ψ0|2∇̃θc

− 1

λ2
∇×A]χΩ̃s

in IR2 \ Ω̃co,

(4.40)

We use a two-dimensional delta function δ at the location of the core to replace the first

term in the right hand side in the above equation as an approximate form. This kinds of

approximation let the equation degenerate into London equation and core structure would

be ignored and the equation shall be expressed as

∇̃2B + 4π∇̃ × ∇̃ ×MχΩ̃m
= [−Φ0δ2(r− r0)ez

λ2
+

1

λ2
B]χΩ̃s

in IR2 \ ∂Ω̃co. (4.41)

Another point is that magnetic field in the inhomogeneity is uniform based on Coulomb

gauge under our planar model. Vector potential A will only has nonzero components Ax

and Ay for the reason that magnetic field B is independent of z within the film and has

only nonzero component along ez direction. Therefore, we can prescribe vector potential A

has only ex and ey component, A = (Ax(x, y), Ay(x, y), 0).

Without loss of generality, we choose Coulomb gauge for the vector potential A:

∇̃ ·A = 0. (4.42)

We introduce a scalar function φ(x, y) that satisfies the Coulomb gauge to replace the vector

potential A by

Ax = φ,y, Ay = −φ,x. (4.43)

Notice that magnetic field B = ∇̃ × A = Bzez = ∆̃φez, since there is no current in the

inhomogeneity, according to Maxwell equation, we can show that

∇×B = ∇̃ × (∆̃φez) = (∆̃φ),xex + (∆̃φ),yey = 0 in Ω̃m. (4.44)

which implies that ∆̃φ in the inhomogeneity is a constant, or say magnetic field B in
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the inhomogeneity is uniform. To seek the solution of magnetic field B, we prescribe a

uniform magnetization M = Mez within the paramagnetic inhomogeneity Ω̃m. Now that

the uniform magnetic field B in the paramagentic inhomogeneity can be expressed in terms

of magnetization M as

B =
µ

µ− 1
4πM in Ω̃m. (4.45)

Applying the boundary condition (4.38)3 on the interface Γsinh, we find the magnetic field

on the interface on the side of superconductor region shall satisfy

B
∣∣
Γsinh+

=
1

µ− 1
4πM on Γsinh+, (4.46)

where Γsinh+ is the interface between the superconductor and paramagentic inhomogeneity

on superconductor side.

We anticipate magnetic field governed by (4.38) shall decay exponentially away from the

inhomogeneity Ω̃m and vortex at r0. Neglecting the fringe effect, in London limit κ → ∞,

the magnetic field B in the superconductor region Ω̃m can be safely approximated by the

solution to the following boundary value problem:


− 1
λ2 B + ∇̃2B = −Φ0δ2(r−r0)ez

λ2 in IR2 \ Ω̃inh,

B = 1
µ−14πM on Γsinh+,

(4.47)

subject to the boundary condition

B→ 0 at∞χΩ̃s
. (4.48)

Notice that for dilute system, far away from the vortex in the superconductor region, the

magnetic field B is screened. This is represented in equation (4.48). In addition, equation

(4.47)1 is usually called the modified London equation.

The single vortex is represented by a source term using δ function. Because of the
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existence of the paramagnetic inhomogeneity, supercurrent is distorted. It is not easy to

get the accurate analytic solution for the boundary value problem (4.47) in a closed form.

However, we can obtain an approximate solution in the cylindrical coordinate system (r,θ,z)

as follows (see Appendix 4.7.2 for details)

B =



4πMp

µ−1

K0(| r
λ
|)

K0(R
λ

)
ez + Φ0

2πλ2K0(|r−r0
λ |)ez +

[
1

K0(R
λ

)
1
π

∫ π
0 Q(θ)dθ

]
K0(| rλ |)ez+[

1
K1(R

λ
)

2
π

∫ π
0 Q(θ)cosθdθ

]
K1(| rλ |)cosθez in Ω̃s,

µ
µ−14πMpez in Ω̃m.

(4.49)

where

Q(θ) = − Φ0

2πλ2
K0(|

√
R2 + |r0|2 − 2R|r0|cosθ

λ
|), r0 = r0(R+ d, 0, 0). (4.50)

K0(K1) is the zeroth(first)-order of modified Bessel function of the second kind. Remark

that the solution of magnetic field B is not accurate near the core region, we need a cut-off

to make an approximation. The core energy is almost independent of the position of vortex

under our assumption, it does not play an important role in the magnetic energy associated

with paramagnetic boundary.

4.3.2 Vortex energy associated with magnetic field and pinning force to

paramagnetic boundary in the dilute limit

To determine the total free enengy in the dilute limit, the magnetization M shall be solved

by the minimum principle of free energy. Then the profile of the magnetic field can be

obtained. Moreover, we can calculate the pinning force of the single vortex due to distortion

of supercurrent changed by the effect of inhomogeneity.

Applying Divergence Theorem, the total free energy can be decomposed as follows:

G = T1 + T2 + T3 + T4 + T5 + T6, (4.51)
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where Ti (i = 1, ..., 6) are integrals given by

T1 = t

∫
Ω̃s

[
fn0 +

β

2
(u2 +

α

β
)2 − (

α

β
)2
]
,

T2 =
t

8π

∫
Ω̃s

|B|Φ0δ2(r− r0)dS,

T3 = t

∮
∂Ω̃sinh

λ2

8π
B× (∇×B) · ds,

T4 = t

∫
Ω̃m

(
2π

µ− 1
+ 8π)(

µ− 1

4πµ
B)2 −M ·He,

T5 = −t
∫

Ω̃m

M · (B−He),

T6 =
t

8π

∫
Ω̃m

|B−He|2.

The first three terms T1 + T2 + T3 is superconducting free energy including the kinetic

energy in the superconducting domain. We shall notice that T1 is an unchanged with

fixed location of magnetic vortex r0 under the thermal equilibrium condition. T2 is the

estimation of the core energy and it is independent of the location of the vortex r0. T3

is the free energy with integral on the interface of paramagnetic inhomogeneity derived

by Divergence theorem. T4 represents the free energy induced by magnetization in the

inhomogeneity. T5 indicates the interaction energy between magnetization and magnetic

self field. And T6 is the self field energy in the paramagnetic inhomogeneity.

Through the above argument, we can ignore Ti(i=1,2) in equation (4.51) in the cal-

culation of the pinning force because these two terms are independent of the position of

vortex. Keeping the terms Ti(i=3,4,5,6), we treat them as the effective total free energy of

the system

Geff(r0) = T3 + T4 + T5 + T6. (4.52)

To determine the total free enengy in terms of the magnetic field in dilute limit, the

magnetization M can be solved by the minimum principle of free energy. In the principle

of minimum energy for the equilibrium state of the system, we can minimize Geff against
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the magnetization M so that M could be solved by

∂Geff(M)

∂M
= 0. (4.53)

Once the magnetization M is obtained, the profile of the magnetic field B and the

effective total free energy Geff are determined and only depend on the external field He, the

permeability of the paramagnetic inhomogeneity µ and the radius of the inhomogeneity R.

The pinning force F associated with the position vector r0(R+ d, 0, 0) is given by

F (r0) = −∂G
eff

∂d
er, (4.54)

Figure 4.3: Dimensionless magnetization M̂ in the paramagnetic domain versus the posi-
tion of vortex d̂. The radius of the inhomogeneity R̂ = 0.2, the magnetic permeability of
the paramagnetic inclusion µ = 100 and the external magnetic field strength Ĥe = 1.

To simplify the calculation, we nondimensionalize the parameters in the following table

4.1 so that we can avoid to consider the penetration length of superducting materials
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Table 4.1: Dimensionless variables I

Dimensionless Variable R̂ r̂0 d̂ M̂ Ĥe Ĝeff

Variable R/λ r0/λ d/λ M/( Φ0
2πλ2 ) He/( Φ0

2πλ2 ) Geff/
Φ2

0
16π2λ2

Figure 4.4: Dimensionless effective total free energy Ĝeff versus the position of vortex d̂.
The radius of the inhomogeneity R̂ = 0.2. The magnetic permeability of the paramagnetic
inclusion µ = 100. And the external magnetic field strength Ĥe = 1.

4.3.3 Results

Figure. 4.3 shows the magnetization M depends on the distance of the vortex to the inter-

face. We can see that the uniform magnetization M is enhanced as the vortex approaches

the interface. The enhanced magnetization M results in two effects on the total free energy

of system. Firstly, the Zeeman energy of the paramagnetic inhomogeneity will reduce. Sec-

ondly, the line energy of the vortex decreases due to the change of the profile of magnetic

field B in equation (4.49).

The effective total free energy of the system versus the distance between the magnetic

vortex to the interface of inhomogeneity is shown in the Fig. 4.5. Energy decreases when

vortex is close to the interface. This trendency will cause an attractive force between
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Figure 4.5: Dimensionless pinning force F̂ versus the position of vortex log10 d̂. The radius
of the inhomogeneity R̂ = 0.2. The magnetic permeability of the paramagnetic inclusion
µ = 100. And the external magnetic field strength Ĥe = 1.

magnetic vortex and interface of inhomogeneity.

In Fig. 4.6, Fig. 4.7 and Fig. 4.8, we can see the pinning force of vortex depends on the size

of inhomogeneity R̂, external magnetic field Ĥe and magnetic permeability of paramagnetic

inhomogeneity µ. In Fig. 4.6, pinning force shows attraction to the interface and is enhanced

with large radius R̂ of the inhomogeneity. The magnitude of the pinning force will decay

to a zero when the distance d̂ is away from the interface. Another conclusion that can

be drawn is the dependence of the pinning force on the external magnetic field Ĥe and

magnetic permeability µ. The higher external magnetic field and magnetic permeability,

the stronger is the pinning force. More details will be discussed in section 4.5.
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Figure 4.6: Dimensionless pinning force versus the position of vortex depends on the radius
of the inclusion R̂. The magnetic permeability of the paramagnetic inclusion µ = 1, the
external magnetic field strength Ĥe = 1.

4.4 Driving force on a single vortex with transport current: derivation

of Lorentz force in thin film

When external transport currents pass through the superconducting thin film, velocity of

electrons varies along the thickness direction and an in-plane magnetic field will be gener-

ated. Therefore, a planar model (4.32) does not work anymore. In this section, we study a

simple scenario: interaction force on a single vortex in an infinit pure superconducting thin

film when a uniform external transport current exists at infinity.

4.4.1 Current density near vortex core area

Consider an external uniform transport current with density j0ey far away from the vortex

core area. Transport current cannot penetrate into vortex core and only has tangential

component on the vortex interface. Transport current density Jt : Ωs → C shall satisfy the
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Figure 4.7: Dimensionless interaction force versus the position of vortex depends on the ex-
ternal magnetic field strength Ĥe. The magnetic permeability of the paramagnetic inclusion
µ = 100, the radius of the columnar inhomogeneity R̂ = 0.2.

following boundary value problem based on the GL equation:

λ2∆Jt − Jt = 0 in Ω̃s × (0, t), (4.55)

subjects to the boundary conditions


Jt · n = 0 on ∂Ωco,∫
−endJt = j0ey at∞.

(4.56)

In the above three-dimensional problem, we infer that the solution to the boundary value

problem satisfies

Jt = jp(z)(−
ξ2

r2
sin 2θ, 1 +

ξ2

r2
cos 2θ, 0), (4.57)

where jp(z) = C
ez/λ + e−z/λ

2
, (4.58)
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Figure 4.8: Dimensionless interaction force versus the position of vortex depends on the
magnetic permeability of the paramagnetic inclusion µ. The external magnetic field strength
Ĥe = 1, the radius of the columnar inhomogeneity R̂ = 1.

where coherence length ξ is characteristic length of vortex core, C is a constant determined

by j0 and film thickness t (see Appendix 4.7.3 for details). We can easily observe that

transport current density is hypobolic tangent distributed in thickness direction away from

the vortex.

4.4.2 Free energy and Lorentz force

Denote by vector potential At induced by the transport supercurrent Jt : Ωs → C and

vector potential Av induced by a single vortex at location r0. The total magnetic vector

potential Atot consists of the above two terms:

Atot = At + Av. (4.59)
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From the prior discussion, we see that At and Av satisfy that 1

∇×∇×At =
4π

c
JtχΩs in IR3, (4.60)

and 
∇×∇×Av = [4π~e∗

m∗c f
2(r− r0)|ψ0|2∇θc − 1

λ2 Av]χΩs in IR3\Ωco,

∇×Av → 0 as |x| → +∞,
(4.61)

respectively. In addition, according to the total free energy (4.1) deduced from section 4.2,

the total free energy can be written as

G = Gnc +Gco, (4.62)

where Gnc is the free energy outside vortex core and Gco is the free energy associated with

vortex core, which we are not interested in and treat it as a constant value.

The free energy Gnc is given by

Gnc =

∫
Ωs\Ωco

[
fn0 + α|ψ|2 +

β

2
|ψ|4 +

1

8π
(
4π

c
)2λ2J2

]
+

1

8π

∫
IR3\Ωco

|∇ ×Asf |2, (4.63)

Remark that we assume the variation of density of superconducting electrons |ψ|2 is con-

stant.

The last term in equation (4.63) represents the free energy associated with self field and

1(At),y → 0 as |y| → +∞ and |∇At| → 0 as |x|+ |z| → +∞.
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it can be manipulated as

∫
IR3\Ωco

|∇ ×Asf |2 =

∫
IR3\Ωco

|∇ ×At +∇×Av −∇×Ae|2

=

∫
IR3\Ωco

|∇ ×At|2 + |∇ ×Av|2 + |∇ ×Ae|2

+ 2

∫
∂Ωs

n · [[(Av × (∇×At))]]

+ 2

∫
Ωs\Ωco

(∇× (∇×At)) ·Av

=

∫
IR3\Ωco

|∇ ×At|2 + |∇ ×Av|2 + |∇ ×Ae|2

+ 2

∫
∂Ωs

n · [[(Av × (∇×At))]] + 2

∫
Ωs\Ωco

4π

c
Jt ·Av.

(4.64)

Therefore, the free energy Gnc is

Gnc = Gs +Gm +Gb +
1

c

∫
Ωs\Ωco

Jt ·Av, (4.65)

where

Gs =

∫
Ωs

[
fn0 + α|ψ|2 +

β

2
|ψ|4

]
+

1

8π
(
4π

c
)2

∫
Ωs

λ2J2, (4.66)

Gm =
1

8π

∫
IR3\Ωco

|∇ ×At|2 + |∇ ×Av|2 + |∇ ×Ae|2, (4.67)

Gb =
1

4π

∫
∂Ωs

n · [[(Av × (∇×At))]]. (4.68)

Gs is the superconducting energy associated with kinetic part, Gm is the magnetic field

energy associated with transport current, vortex current and external field and Gb is the

free energy associated with the interface. They are all independent of position of vortex r0.

Taking the gradient of free energy with respect to r0, the interaction force F is

F = −∇r0G = −1

c

∫
Ωs\Ωco

∇r0(Jt ·Av)dr. (4.69)

Notice that transport current Jt and vector potential Av are the functions of |r − r0|,

resulting in ∇r0 = −∇r.
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Applying Divergence Theorem, equation (4.69) can be rewritten as

F =
1

c

∫
Ωs\Ωco

∇r(Jt ·Av)dr,

=
1

c

∫
∂(Ωs\Ωco)

n(Jt ·Av)dr.

(4.70)

Since vector potential Av decays to zero exponentially, it results in the line integral over the

exterior boundary is zero. Therefore, we only need calculate the interior boundary intergral.

By the solution of governing equation (4.61) using the similar technique in section 4.3,

vector potential Av has an approximate expression

Av = (Avx,Avy), (4.71)

where

Avx =
Φ0

8π2λ2

∫ ∫
− 1

|r− r0|
∂

∂y0
|r0

λ
|dr0, Avy =

Φ0

8π2λ2

∫ ∫
1

|r− r0|
∂

∂x0
|r0

λ
|dr0. (4.72)

The interaction force is

F = (Fx, Fy) (4.73)

where Fx = 1
c

∫ t
0

∫
∂(Ω̃s\Ω̃co) Jy(−Avxny + Avynx)dSdz and Fy = 1

c

∫ t
0

∫
∂(Ω̃s\Ω̃co) Jx(Avxny −

Avynx)dSdz.

According to the solution of current density given in the equation (4.96), the component

of interaction force Fy along ey direction can be written as

Fy =
1

c

∫ t

0
jp(z)

∫
∂(Ω̃s\Ω̃co)

ξ2

r2

∣∣
r=ξ

cos 2θ(Avxny −Avynx)dSdz

=
1

c

∫ t

0
jp(z)

∫
∂(Ω̃s\Ω̃co)

Φ0 cos 2θ

8π2λ2
[

∫ ∫
− 1

|x− x0|
∂

∂|x0|
(K0|

x0

λ
|) 1

2|x0|
1
2

dx0]
∣∣
|x|=ξdSdz

= 0.

(4.74)
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Similary, the component of interaction force Fx along ex direction is

Fx = [
1

c

∫ t

0
jp(z)

∫
∂(Ω̃s\Ω̃co)

(−Axny +Aynx)dSdz]

+
1

c

∫ t

0
jp(z)

∫
∂(Ω̃s\Ω̃co)

ξ2

r2

∣∣
r=ξ

sin 2θ(−Avxny +Avynx)exdSdz

= [
1

c

∫ t

0
jp(z)

∫
∂(Ω̃s\Ω̃co)

(A · dl)]

=
1

c
j0Φ0.

(4.75)

Thus the interaction force, or the so-called Lorentz Force in thin film is written as

F =
1

c
j0ey × Φ0ez. (4.76)

Generally speaking, for transport current density J passing through an individual vortex

in a thin film, the interaction force is given by 1
cJ×Φ0, which is shown in most literature

as Lorentz Force. Moreover, the force is actually not uniform along the vortex line column.

It concentrates on the surfaces and is weaker in the middle of the vortex line.

4.5 Interaction with paramagnetic inhomogeneity: nonzero transport cur-

rent

With the appearance of transport current, there is variation of velocity of supercurrent

electrons along ez direction. For this reason, we can not employ planar model to deal with

nonzero transport current scenario. Applying an in-plane external transport current Jt as

described in equation (4.55), total supercurrent Jtot satisfies

∫
−

end
Jtot = j0ey at∞χΩs . (4.77)

To investigate the problem, we consider the same geometric model in section 4.3: an

individual vortex with a paramagentic inhomogeneity in a superconducting composite thin

film under an external magnetic field He and periodic boundary conditions. We first clarify

the total free energy of the system and decompose it based on the supercurrent induced by
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different kinds of mechanisms.

4.5.1 A decomposition on supercurrent-based free energy

To determine the interaction force between a single magnetic vortex and interface of para-

magnetic inhomogeneity, we formulate the free energy, decompose it based on the super-

currents induced by different kinds of mechanims.

The total supercurrent Jtot : Ωs → C consists of four parts: supercurrent Jv : Ωs → C

induced by a single vortex, external transport current Jt : Ωs → C which shall satisfy

the boundary value problem described in section 4.4, the perturbated supercurrent Jp :

Ωs → C due to the geometic configuration without considering magnetic permeability µ

and supercurrent Jm : Ωs → C generated by paramagnetic effect. Therefore, we have

Jtot = Jv + Jt + Jp + Jm on Ωs\Ωco. (4.78)

The corresponding total magnetic vector potential Atot : IR3 → IR3 can be written as

Atot = Asf + Ae

= Av + At + Ap + Am in IR3,

(4.79)

where vector potential Av(resp. At,Ap,Ainh): IR3 → IR3 is associated with the single

magnetic vortex (resp. transport current Jt, perturbated current Jp and supercurrent Jm).

And vector potential Ae (resp. Asf): IR3 → IR3 is associated with the external magnetic

field He(resp. self field Hsf).

Consider the local density of superconducting electrons |ψ|2 as constant, the kinetic part

of superconducting energy in equation (4.1) can be written as

∫
Ωs

1

2m∗
|(~
i
∇− e∗

c
Atot)ψ|2 =

∫
Ωs

1

2m∗
[~(∇|ψ|)2 + (~∇θ − e∗Atot

c
)2|ψ|2]

=

∫
Ωs

1

8π
λ2|∇ ×∇×Atot|2.

(4.80)
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The total free energy in equation (4.1) becomes

G[ψ,Atot,M; He] =

∫
Ωs

[
fn0 + α|ψ|2 +

β

2
|ψ|4 +

1

8π
λ2|∇ ×∇×Atot|2

]
+

1

8π

∫
IR3
|∇ ×Atot −He − 4πMχΩm |2

+

∫
Ωm

[
aex

2
|∇M|2 + φ(M)−He ·M].

(4.81)

Ignoring the exchange energy term aex
2 |∇M|2 and assuming a linear paramagnetic in-

homogeneity, we define an effective free energy associated with the relative distance of a

single magnetic vortex to the interface of paramagnetic inhomogeneity.

The total free energy can be decomposed into

Geff [Asf ,M; Ae] = Geff
s [Asf ; Ae] +Geff

m [M; Ae] +Geff
sf [Asf ,M; Ae] +Geff

int[A
sf ,M; Ae],(4.82)

where

Geff
s [Asf ; Ae] =

∫
Ωs

[ 1

8π
λ2|∇ ×∇× (Ae + Asf)|2

]
,

Geff
m [M; Ae] =

∫
Ωm

[
2π

µ− 1
M2 + 8πM2 −He ·M],

Geff
sf [Asf ,M; Ae] =

1

8π

∫
IR3
|∇ ×Asf |2,

Geff
int[A

sf ,M; Ae] = −
∫

Ωm

M · (∇×Asf).

Here Geff
s indicates the superconducting kinetic energy, Geff

m indicates the energy induced

by magnetization, Geff
sf is the self field energy and Geff

int is the interaction energy between

magnetization and self field. On another hand, It can also be rewritten based on the

decompostion of supercurrent (4.78) as

Geff [Atot,M; He] = Geff
v [A; He] +Geff

t [A; He] +Geff
p [A; He] +Geff

m∗[A,M; He], (4.83)
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where

Geff
v [A; He] =

1

8π
(
4π

c
)2

∫
Ωs\Ωco

λ2(Jv + Jpv)
2 +

1

8π

∫
IR3\Ωco

|∇ × (Av + Apv −Ae)|2,

Geff
t [A; He] =

1

8π
(
4π

c
)2

∫
Ωs\Ωco

λ2(Jt + Jpt)
2 +

1

8π

∫
IR3\Ωco

|∇ × (At + Apt −Ae)|2,

Geff
p [A; He] =

1

8π
(
4π

c
)2

∫
Ωs\Ωco

2λ2(Jv + Jpv) · (Jt + Jpt)

+
1

8π

∫
IR3\Ωco

2[∇× (Av + Apv)] · [∇× (At + Apt)]− 2|∇ ×Ae|2,

Geff
m∗[A,M; He] =

1

8π
(
4π

c
)2

∫
Ωs\Ωco

λ2[J2
m + 2Jm · (Jv + Jpv + Jt + Jpt)]

+

∫
Ωm

(
2π

µ− 1
+ 8π)M2 −∇× (Av + At + Ap + Am) ·M

+
1

8π

∫
IR3\Ωco

|∇ ×Am|2 + 2∇×Am · [∇× (Av + Apv + At + Apt −Ae)].

Geff
v is the effective interaction energy with zero external transport current associated with

a single magnetic vortex and an inhomogeneity, which magnetic permeability µ = 1. Alter-

natively speaking, the inhomgeneity is nonmagnetic material. Geff
t is the additional effective

free energy corresponding to external transport current Jt. And Geff
p represents the inter-

action energy among the vortex supercurrent Jv + Jpv, transport current Jt + Jpt and their

related magnetic field. When inhomogeneity is paramagnetic material, Geff
m∗ is the addi-

tional energy including the coupling term of the interactions associated with inhomogeneity

and its magnetization M.

For a specific case, if there is no inhomogeneity, perturbated currents Jpt and Jpv will

be zero, only the term 1
8π

∫
IR3\Ωco

2(∇×Av) · (∇×At) in Geff
p contributes the driving force

1
cJ×Φ0, which is the lorentz force on a single vortex by the transport current as described

in section 4.4.

In summary, we could have the following five scenarios:

1. No inhomogeneity in the composite, transport current Jt 6= 0. The effective free

energy is

Geff = Geff
p . (4.84)
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Remark that the pertubated currents Jpv = 0 and Jpt = 0, Geff
v is unchanged with

the location of vortex so that it will not contribute the effective energy, which is used

to calculate the interaction force.

2. One inhomogeneity with magnetic permeability µ = 1 in the composite, transport

current Jt = 0. The effective free energy is

Geff = Geff
v +Geff

p . (4.85)

3. One inhomogeneity with magnetic permeability µ = 1 in the composite, transport

current Jt 6= 0. The effective free energy is

Geff = Geff
v +Geff

t +Geff
p . (4.86)

4. One inhomogeneity with magnetic permeability µ 6= 1 in the composite, transport

current Jt = 0. The effective free energy is

Geff = Geff
v +Geff

p +Geff
m∗. (4.87)

5. One inhomogeneity with magnetic permeability µ 6= 1 in the composite, transport

current Jt 6= 0. The effective free energy is

Geff = Geff
v +Geff

t +Geff
p +Geff

m∗. (4.88)

4.5.2 Euler-Lagrange equations associated with boundary conditions

In the principle of free energy, Euler-Lagrange equations (4.81) necessarily satisfies


∇× (∇×Atot − 4πMχΩm) = −λ2∇×∇×∇×∇×AtotχΩs in IR3,

−∇×Atot + 4πM +DMφ(M) = 0 in Ωm,

(4.89)
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By Maxwell equations, we can also rewrite the equation (4.89)1 as

λ2∆Jtot − Jtot = 0 in Ωs/Ωco. (4.90)

If a single magnetic vortex exists in the superconducting domain, the above equation

shall be modified as

λ2∆Jtot − Jtot = −∇×∇× Φ0δ2(r− r0)ez
λ2

in Ωs/Ωco. (4.91)

Upon the above discussion, we determine the complete boundary value problem as:


λ2∆Jtot − Jtot = −∇×∇× Φ0δ2(r−r0)ez

λ2 in Ωs/Ωco,

−∇×A + 4πM +DMφ(M) = 0 in Ωm,

(4.92)

associated with the boundary conditions that shall satisfy the reasonable physical behaviors:



|∇ ×Atot −He| → 0 as |x| → +∞,∫
−endJtot = j0ey at∞χΩs ,

Jtot · n = 0 on ∂Ωm,

Jtot · n = 0 on ∂Ωco.

(4.93)

The first boundary condition indicates that magnetic field is close to the applied external

field He away from the composite in the vacuum. The second boudary condition is derived

from the prescribed external transport current. And the last two boundary conditions shows

that supercurrent cannot penerate into the normal phase or paramagentic inhomgeneity.

The above boundary value problem is linear. By the property of linearity, we could

solve the partial differential equations through the decomposition of supercurrent Jtot in

equation (4.78) and magnetic vector potential Atot in equation (4.79). We now illustrate

the detail calculation as follows.

The supercurrent Jv is generated by a single magnetic vortex. We assume that the
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vortex is straight and is independent of direction ez. The magnetic field Bv generated

by the vortex can be expressed approximately in terms of zeroth-order of modified Bessel

function of the second kind as

Bv =
Φ0

2πλ2
K0(|r− r0

λ
|)ez in Ωs\Ωco, (4.94)

and the related supercurrent Jv is determined by magnetic field Bv according to Maxwell

equation as

Jv =
c

4π
∇×Bv in Ωs\Ωco. (4.95)

For the external transport current Jt calculated in section 4.4, it has the form of

Jt = C
ez/λ + e−z/λ

2
(−ξ

2

r2
sin 2θ, 1 +

ξ2

r2
cos 2θ, 0) in Ωs\Ωco (4.96)

where C is a constant determined by boundary condition (4.93)2.

Due to the change of geometic configuration by the existence of inhomogeneity, there

must be a perturbed current density Jp so that the total current Jtot can satisfy the bound-

ary condition (4.93)3,4, where no supercurrent is allowed to penetrate into normal phase or

paramagnetic inhomgeneity. We have the following governing equation

λ2∆Jp − Jp = 0 in Ωs\Ωco, (4.97)

(4.98)

subject to the boudary conditions


Jp · n = 0 on ∂Ωco,

Jp = 0 at∞Ωs .

(4.99)

Remark that we assume magnetic permeability µ = 1.

Due to the linearity of govening equation, perturbed current Jp could be considered

as the sum of perturbed current Jpt corresponding to transport current Jt and perturbed
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current Jpv corresponding to supercurrent Jv

Jp = Jpt + Jpv. (4.100)

Hence we can decompose the boundary value problem as follows:



λ2∆Jpi − Jpi = 0 in Ωs\Ωco,

(Jpi + Ji) · n = 0 on ∂Ωm,

Jpi · n = 0 on ∂Ωco,

Jpi = 0 at∞Ωs ,

where i = t, v. (4.101)

The magnetic field Bt(Bp) associated with current Jt(Jp) in the superconducting region

Ωs could be obtained according to Maxwell equations

∇×Bi = ∇×∇×Ai =
4π

c
JiχΩs\Ωco

in IR3 i = t, p. (4.102)

In the inhomogeneity domain, the magnetic vector potential Av, At and Ap satisfy the

following boundary value problem


∇×∇× ΣAi = 0 in Ωm

[[ΣAi]] = 0 on ∂Ωm

[[∇× ΣAi]] · t = 0 on ∂Ωm

i = v, t, p. (4.103)

Since the inhomogeneity is paramagnetic material, it will generate magnetization M in

the inhomogeneity. The magnetization M and current Jtot are coupled with each other, it

is more convenicent to investigate the problem from the viewpoint of vector potential Am.

The governing equations followed by equation (4.89) are


λ2∇×∇×Am + Am = 0 in Ωs \ Ωco

∇× (∇×Am − 4πM) = 0 in Ωm

(4.104)
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By constitutive law (4.6), we have

∇×Atot =
µ

µ− 1
4πM in Ωm. (4.105)

The curl of Am in the inhomogeneity Ωm can be expressed

∇×Am =
µ

µ− 1
4πM−∇× (Av + At + Ap) in Ωm (4.106)

Therefore equation (4.104)1, (4.106) will form a boundary value problem for Am:


λ2∇×∇×Am + Am = 0 in Ωs \ Ωco,

∇×Am = µ
µ−14πM−∇× (Av + At + Ap) in Ωm.

(4.107)

subject to boundary conditions



[[Am]] = 0 on ∂Ωm&∂Ωco,

[[∇×Am]] · t = 0 on ∂Ωco,

[∇×Am] · t
∣∣
∂Ωm+

= [ 1
µ∇×Am + ( 1

µ − 1)∇× (Av + At + Ap)] · t
∣∣
∂Ωm−

,

∇×Am = 0 at∞χΩs .

(4.108)

Supercurrent Jm can be easily determined as

Jm =
c

4π
∇×∇×Am in Ωs\Ωco. (4.109)

4.5.3 An approximate analytical solution with small inhomogeneity

In this section, we continue the calculation based on the governing equations derived in the

last section and estimate the pinning force of a single vortex under the prescribed length

scale (excludes Lorenze Force). To clarify the problem, we again claim some important

assumptions:

1. High temperature type II superconductors are considered. Alternatively, London
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Figure 4.9: Schematic diagram for composite
film with transport current Jt (a)

Figure 4.10: Schematic diagram for composite
film with transport current Jt (b)

limit, which is the ratio of the penetration length λ and coherence length ξ, is in-

finity: κ = λ
ξ →∞.

2. The distance between magnetic vortex and the interface of inhomogeneity d is com-

parable to penetration length λ: d ∼ λ. Under this length scale, the magnetic field

and supercurrent around the vortex core area is independent of the existance of inho-

mogeneity.

3. We suppose that the radius of the inhomgeneity R is much smaller then penetration

length λ: R � λ. Therefore, for simplicity’s sake, we do not consider the perturbed

current Jp and its related perturbed field Bp.

4. We asssume magnetic field Bm induced by inhomogeneity and magnetization M only

have a uniform ez component.

5. The origion point O is set at the center of the inhomogeneity, external magnetic field

Be is along ez direction and transport current Jt is along ey direction as shown in

Fig. 4.9 and Fig. 4.10.

Upon the above assumptions, both of the total supercurrent Jtot and magnetic field Btot

in superconducting region Ωs consist of three parts

Jtot = Jv + Jt + Jm in Ωs\Ωco. (4.110)

Btot = Bv + Bt + Bm in Ωs\Ωco. (4.111)
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The magnetic field Bv induced by single magnetic vortex outside the core area satisfies

the equation


− 1
λ2 Bv +∇2Bv = −Φ0δ2(r−r0)ez

λ2 in Ωs \ Ωco,

Bv → 0 at∞χΩs
.

(4.112)

The solution to the above equation is

Bv =
Φ0

2πλ2
K0(|r− r0

λ
|)ez =

Φ0

2πλ2
K0(

√
r2

0 + r2 − 2rr0 cos θ

λ
)ez in Ωs\Ωco, (4.113)

where r0 = R + d. This is the standard solution for a single vortex in the infinite pure

superconducting region we used in the previous sections.

And the supercurrent Jv induced by Bv is determined by Maxwell equation

Jv =
c

4π
∇×Bv = − c

4π

Φ0

2πλ2

∂

∂r
(K0(

√
r2

0 + r2 − 2rr0 cos θ

λ
))eθ in Ωs\Ωco. (4.114)

In addition, transport current Jt is prescribed. According to the previous analysis, it

has the form

Jt = C1
ez/λ + e−z/λ

2
ey in Ωs\Ωco. (4.115)

where C1 is the prescribed constant determined by strength of the transport current. Re-

mark that the boundary condition on the vortex core area does not count here and Lorenze

Force is excluded in the calculation of pinning force.

Magnetic field Bt will not have ez component. By symmetry and continuity of potential

At, the magnetic field Bt is

Bt = Bt(z)ex =
4π

c
λC1

ez/λ − e−z/λ

2
exχΩs\Ωco

. (4.116)

The partial differential equations (4.104) for Bm and its boundary conditions can be

solved as a function of magnetization M. Based on the assumption that Bm and M only

have a uniform ez compoment, we assume M = Mez in the inhomogeneity Ωm. And the
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Figure 4.11: Magnetic field Bt induced by transport current.

magnetic field Bm is determined by the governing equations


Bm = ( µ

µ−14πM − (Bv + Bt) · ez)ez in Ωm,

− 1
λ2 Bm +∇2Bm = 0 in Ωs,

(4.117)

subject to the boudary conditions


Bm

∣∣
∂Ωm+

= ( 1
µ−14πM − (Bv + Bt) · ez)ez

∣∣
∂Ωm−,

Bm = 0 at∞.
(4.118)

Using the method of separation of variables, which is similar as the one in section 4.3,

the magnetic field Bm in the superconducting domain is

Bm = Bm1 + Bm2 in Ωs\Ωco, (4.119)

where

Bm1 =
K0( |r|λ )

K0( |R|λ )

4πM

µ− 1
ez in Ωs\Ωco, (4.120)
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Bm2 =
K0( |r|λ )

K0( |R|λ )

1

2π

∫ π

−π
Q2dθ

+
K1( |r|λ )

K1( |R|λ )

cos θ

π

∫ π

−π
Q2 cos θdθ +

K1( |r|λ )

K1( |R|λ )

sin θ

π

∫ π

−π
Q2 sin θdθez in Ωs\Ωco.

(4.121)

And the inhomogeneous current Jm is

Jm =
c

4π
∇×Bm =

c

4π
(
∂Bm2

r∂θ
er + (−∂Bm1

∂r
− ∂Bm2

∂r
)eθ). (4.122)

Substitute the above solutions of Btot and Jtot back into the effective total free energy

in equation (4.82), we have

Geff =
1

8π

∫
Ωs\Ωco

Φ0δ(r− r0) +
1

8π

∮
Ωs\Ωco

λ2B× (∇×B)

− 1

8π

∫
Ωs\Ωco

2(Bv + Bt + Bm) ·He

+

∫
Ωm

[
2π

µ− 1
M2 − (Bv + Bt + Bm) ·M + 8π|M|2] +

1

8π

∫
Ωm

(
4πµ

µ− 1
M−He)2

+
1

8π

∫
∂Ωtop

−2Amy(x, y)Bt(t0/2).

(4.123)

In order to find the pinning force, we employ the same strategy in section 4.3. In the

principle of minimum energy, we first minimize the total free energy (4.82) against M .

The magnetization will be determined by distance d, radius of inhomogeneity R, magnetic

permeability µ, transport current j0 and external magnetic field He

∂G

∂M
= 0 ⇒ M = M(d, µ, j0, R,H

e). (4.124)

Finally, taking the derivative of Geff with respect to d, we obtain the pinning force of

vortex to the interface of inhomogeneity

F pin = −∂G
eff

∂d
= F pin(d, µ, j0, R,H

e). (4.125)

Remark that this pinning force does not count the Lorentz Force that we have derived in

section 4.4. It only indicates the interface effect of inhomogeneity on a single magnetic
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vortex.

For simplicity’s sake, we can nondimensionalize the parameters in the same way in table

4.1 with additional term C1 and Jt as shown in table 4.2

Table 4.2: Dimensionless variables II

Dimensionless Variable Ĉ1 Ĵt

Variable C1/(
Φ0c

8π2λ4 (ed̂ − e−d̂)) Jt/(
Φ0c

8π2λ4 (ed̂ − e−d̂))

Figure 4.12: Dimensionless effective energy versus the position of vortex with/without
transport current density ĵ. The magnetic permeability of the paramagnetic inhomogene-
ity µ = 100, the external magnetic field strength Ĥe = 1, the radius of the columnar
inhomogeneity R̂ = 0.2 and the thichness t̂ = 1.

4.5.4 Results and discussion

After considering external transport currents, now we can have a reliable picture on the

pinning force of vortex. Figure. 4.12 and Figure. 4.13 show the effective total free energy

and pinning force as a funtion of distance d̂ with/without external transport current. We

can see that the existance of paramagnetic inhomogeneity results in an attractive force of the
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Figure 4.13: Dimensionless pinning force versus the position of vortex with/without trans-
port current density ĵ. The magnetic permeability of the paramagnetic inhomogeneity
µ = 100, the external magnetic field strength Ĥe = 1, the radius of the columnar inhomo-
geneity R̂ = 0.2 and the thichness t̂ = 1.

magnentic vortex to the interface of inhomogeneity, which is in agreement with our previous

result in section 4.3. On the other hand, we observe that external transport current could

weaken the magnitude of attractive pinning force slightly by increasing the free energy. And

the magnitude of the pinning force will decay to zero when the distance d reaches several

λs.

To illustrate the dependence of all the variables (external magnetic field, magnetic per-

meability, size of inhomogeneity, thichness of film and transport current) on the pinning

force, we define the maximum pinning force happens at distance d̂ = 0.5. We monitor the

variation of the defined maximum pinning force with the above mentioned variables. In

Fig. 4.15, Fig. 4.18 and Fig. 4.14, we observe that external field Ĥe and thickness t̂ can

enchance the pinning force linearly and transport current will weaken the pinning force. In

Figure. 4.16, we see that pinning force can be enhanced by the magnetic permeability µ,

but it will be satuation with large µ. And in Fig. 4.17, the enhancement of pinning force
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Figure 4.14: Dimensionless pinning force transport current density ĵ. Magnetic perme-
ability of the paramagnetic inhomogeneity µ = 100, the external magnetic field strength
Ĥe = 1, the radius of the columnar inhomogeneity R̂ = 0.2 and the thichness t̂ = 1.

due to the radius of paramagnetic inhomogenetiy is slightly lower then linearity.

According to the above observation, we see that the dimensionless pinning force F̂ pin

has the following relationship with distance of magnetic vortex d̂, magnetic permeability

µ, extenal magnetic field Ĥe, thickness t̂, radius of inhomogneity R̂ and transport current

density ĵ as follows:

F̂ pin ∝ −c1(µ, Ĥe, t̂, R̂, ĵ)e−c2(µ,Ĥe,t̂,R̂,ĵ)d̂

F̂ pin ∝ c3(d̂, Ĥe, t̂, R̂, ĵ)− c4(d̂, Ĥe, t̂, R̂, ĵ)e−c5(d̂,Ĥe,t̂,R̂,ĵ)µ̂

F̂ pin ∝ −c6(d̂, µ, t̂, R̂, ĵ)Ĥe (4.126)

F̂ pin ∝ −c7(d̂, µ, Ĥe, R̂, ĵ)t̂

F̂ pin ∝ c8(d̂, µ, Ĥe, t̂, ĵ)R̂c9(d̂,µ,Ĥ,t̂,ĵ)

F̂ pin ∝ −c10(d̂, µ, Ĥ, t̂, R̂)ĵ
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Figure 4.15: Dimensionless pinning force versus the position of vortex depends on external
magnetic field Ĥe with/without transport current density ĵ. Magnetic permeability of the
paramagnetic inhomogeneity µ = 100, the radius of the columnar inhomogeneity R̂ = 0.2
and the thichness t̂ = 1

where the parameters ci(i = 1, ..., 10) are determined by material properties, geometric

configuration and state variables.

Based on our calculation for Lorantz Force in section 4.4, the driving force on a single

vortex also increases with higher transport current. Since we investigate the mechanism of

pinning force which is caused by paramagnetic inhomogeneity, we can estimate the amount

of increasing critical current enhanced by the pinning force due to the inhomogeneity. It

happens when vortex is pinned at some location so that the increasing Lorantz Force is

balanced with attractive pinning force of the inhomogeneity. In dilute limit, we provide

a naive defination on the increasing critical current: the increasing value of Lorantz Force

equals to the magnitude of maximum attractive pinning force, see Fig. 4.19. In this state,

the enhanced critical current is obtained.

We observe the dependence of increasing critical current on variation of size of inhomo-

geneity R̂ and variation of magnetic permeability µ. In Fig. 4.20, there is a optimum point
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Figure 4.16: Dimensionless pinning force versus magnetic permeability of paramagnetic
inhomogeneity µ with/without transport current density ĵ. External magnetic field Ĥe = 1,
the radius of the columnar inhomogeneity R̂ = 0.2 and the thichness t̂ = 1.

for R̂ to generate the maximum increasing critical current. In another hand, in Fig. 4.22,

increaing critical current is enchanced with larger magnetic permeability µ and approaches

to satuation finally.

Theoretically speaking, pinning force is caused by two mechanisms: the core interaction

and the magnetic interaction. In this dilute limit case, only magnetic interaction exists.

The total free energy of the system is determined by two characteristic geometric length:

the coherence lenth ξ and the penetration depth λ. Wave function changes dramatically

over ξ while magnetic field and supercurrent decays over λ. In high temperature supercon-

ductors, λ is much larger than ξ. Thus, the interface between superconducting matrix and

paramagnetic inclusion is determined by the length scale λ. Moreover, with larger radius

R and permeability µ, more magnetic fluxes will transfer from the superconductor into the

inhomogeneity. This could make the total free energy of the system increase and result in

the enhancement of pinning force.
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Figure 4.17: Dimensionless pinning force versus the radius of the columnar inhomogeneity
R̂ with/without transport current density ĵ. Magnetic permeability of the paramagnetic
inhomogeneity µ = 100, the external magnetic field Ĥe = 1 and the thichness t̂ = 1.

Significant contribution to the overall flux pinning strength due to an interface or addi-

tives has been reported by recent experiments[124]. Higher current density Jc with self-field

and in-field by a factor of 1.5-7 is achieved by adding Ba2RENbO6 paramagnetic material

into high-temperature superconducting YBCO film compared to un-doped one. With higher

volume fraction of BYNO from 0.3 to 5.1%, critical current density is enhanced. In these

volume fraction senarios, they can be considered at the dilute limit. Thus, the result is in

agreement with our calculation on the pinning force effected by the size of inhomogeneity

qualitatively as shown in Fig. 4.22. Moreover for BYNO-doped sample, a stronger peak of

Jc is observed when the external field is perpendicular to the film plane.

4.6 Summary

In conclusion, we have proposed a general form of total free energy system for a super-

conducting composite with paramagnetic inhomogeneities, and derived the Euler-Lagrange
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Figure 4.18: Dimensionless pinning force versus thichness of thin film t̂ with/without
transport current density ĵ. Magnetic permeability of the paramagnetic inhomogeneity
µ = 100, the external magnetic field Ĥe = 1 and the radius of the columnar inhomogeneity
R̂ = 0.2.

equations associated with boundary conditions in the principle of free energy. Specifically,

we degenarate the energy into two-dimensional planar model for zero external transport

current scenario. We then consider the dilute limit case for a single magnetic vortex with-

out core interaction and with magnetic interaction. We solve the magnetic field, obtain an

approximate solution and calculate the pinning force for different configurations of inho-

mogeneity and external magnetic field. It is shown that as the size of inhomogeneity, the

magnetic permeability and external magnetic field increases, the pinning force is enchanced.

Then a three-dimensional model with external transport current is considered in dilute limit

from the viewpoint of supercurrent. The problem is decomposed into several parts by the

linearity of the approximated governing equations. The attractive pinning force of a single

vortex to the interface of the inhomogeneity is calculated. Based on a naive definition on

increasing critical current, we find the critical current will be optimized by the size of in-

homogeneity in some range and approach to saturation with higher magnetic permeability.
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Figure 4.19: A naive definition on the amount of enhanced critical current as the absolute
value of pinning force equals to the absolute value of lorentz force

And some experimental results agree with our analysis qualitatively.

4.7 Appendix

4.7.1 Calculus of variational method to Euler-Lagrange equations of total

free energy

To find the change of total free energy to the leading order, we assume that

ψδ = ψ + δψ1, Mδ = M + δM1, Aδ = A + δA1, (4.127)

For variation of order parameter ψ, the minimum energy shall satisfy

d

dδ
G[ψδ,A,M : He]

∣∣∣∣
δ=0

= 0 ∀ ψ1. (4.128)
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Figure 4.20: Increase of critical current jcrit versus radius of inhomogeneity R̂

After manipulating the equation, we have

d

dδ
G[ψδ,A,M; He]

∣∣∣∣
δ=0

=

∫
Ωs

[αψ + β|ψ|2ψ +
1

2m∗
(
~
i
∇− e∗

c
A)2ψ]ψ∗1

+

∫
Ωs

[αψ∗ + β|ψ|2ψ∗ +
1

2m∗
(
~
i
∇+

e∗

c
A)2ψ∗]ψ1

−
∫
∂Ωs

1

2m∗
[(
~
i
)2∇ψ ·N− ~e∗

ic
ψA ·N]ψ∗1

−
∫
∂Ωs

1

2m∗
[(
~
i
)2∇ψ∗ ·N +

~e∗

ic
ψ∗A ·N]ψ1 = 0 ∀ ψ1, ψ

∗
1.

(4.129)

where N is the unit outward normal on the boundary ∂Ωs.

Therefore, the Euler-Lagrange equation associated with ψ is

αψ + β|ψ|2ψ +
1

2m∗
(
~
i
∇− e∗

c
A)2ψ = 0 in Ωs. (4.130)

And the boundary condition on the interface is

[(
~
i
∇− e∗

c
A)ψ] ·N = 0 on ∂Ωs. (4.131)
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Figure 4.21: Increase of critical current jcrit versus magnetic permeability µ

For variation of magnetic vector potential A, the minimum energy shall satisfy

d

dδ
G[ψ,Aδ,M; He]

∣∣∣∣
δ=0

= 0 ∀ ψ1. (4.132)
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Figure 4.22: Incerase of critical current jcrit versus external magnetic field He. Experiment
data are reproduced from Wee et al. [124]

From (4.132), we have

d

dδ
G[ψ,Aδ,M; He] =

∫
Ωs

1

2m∗
[−~e∗

ic
(ψ∗∇ψ − ψ∇ψ∗) + 2(

e∗

c
)2ψψ∗A] ·A1

+
1

4π

∫
Ωs

[∇× (∇×A−He)] ·A1 +
1

4π

∫
∂Ωs

[A1 × (∇×A−He)] ·N

+
1

4π

∫
Ωm

[∇× (∇×A−He − 4πM)] ·A1

− 1

4π

∫
∂Ωm

[A1 × (∇×A−He − 4πM)] ·N

= 0 ∀ A1.
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The Euler-Lagrange equation associated with A is

∇× (∇×A− 4πMχΩm) =
4π

c
JsχΩs in IR3, (4.133)

where

Js =
~e∗

2m∗i
(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
ψψ∗A in Ωs.

is the supercurrent.

The boundary on the interface Γsinh and Γvinh is also given by (4.132),


[[∇×A−M]]

∣∣
Γsinh

×N = 0 on Γsinh,

[[∇×A−M]]
∣∣
Γvinh

×N = 0 on Γvinh.

(4.134)

For variation of magnetization M, the minimum energy shall satisfy

d

dδ
G[ψ,A,Mδ : He]

∣∣∣∣
δ=0

= 0 ∀ ψ1. (4.135)

It is easy to obtain the Euler-Lagrange equation associated with M

−∇×A + 4πM +DMφ(M)− aex∆M = 0 in Ωm, (4.136)

and the associated boundary condition

(∇M)N = 0 on ∂Ωm. (4.137)

4.7.2 Approximation solution of magnetic field in single vortex state

Due to the linearity of equation (4.47), in order to obtain an approximate solution, we

suppose B = B1 + B2 + B3. The meaning of Bi(i = 1, 2, 3) is as follows:

The magnetic field B1 represents the magnetic field in the superconductor domain when
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there is no single vortex appears. The boundary value problem is

− 1

λ2
B1 +∇2B1 = 0 in Ωs, (4.138)

subject to


B1 = 1

µH
eez on Γ+,

B1 = 0 at∞χΩs
.

(4.139)

This modified helmholtz equation (4.138)1 with the boundary conditions (4.139) are solv-

able:

B1 =
He

µ

K0(| rλ |)
K0(Rλ )

ez. (4.140)

The magnetic field B2 repersents the magnetic field when there is no inhomogeneity in

the domain. The equations are as follows


− 1
λ2 B2 +∇2B2 = −Φ0δ2(r−r0)

λ2 ez in Ωs,

B2 = 0 at∞χΩs
.

(4.141)

This is a free boundary problem and the solution is

B2 =
Φ0

2πλ2
K0(|r− r0

λ
|)ez. (4.142)

Finally, we introduce the magnetic field B3 to compensate the effect of magnetic field B2

on the interface of inhomogeneity. The boundary value problem for B3 is

− 1

λ2
B3 +∇2B3 = 0 in Ωs, (4.143)
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Subject to


B3 = −B2

∣∣
Γ+

on Γ+,

B3 = 0 at∞χΩs
.

(4.144)

By separation of variables and symmetry of the model, we have

B3 = Σ∞n=0anKn(| r
λ
|)cos(nθ)ez. (4.145)

By boundary condition (4.143)2, we have

Σ∞n=0anKn(
R

λ
)cos(nθ)ez = Q(θ)ez = − Φ0

2πλ2
K0(|

√
R2 + |r0|2 − 2R|r0|cosθ

λ
|)ez. (4.146)

We expand the right hand side by Fourier Series and compare it to the left hand side,

therefore we can obtain the coefficient of the first two leading order terms

a0 =
1

K0(Rλ )

1

π

∫ π

0
Q(θ)dθ, a1 =

1

K1(Rλ )

2

π

∫ π

0
Q(θ)cosθdθ. (4.147)

In the end, the approximation of magnetic field B is

B =
He

µ

K0(| rλ |)
K0(Rλ )

ez +
Φ0

2πλ2
K0(|r− r0

λ
|)ez +

[ 1

K0(Rλ )

1

π

∫ π

0
Q(θ)dθ

]
K0(| r

λ
|)+

[ 1

K1(Rλ )

2

π

∫ π

0
Q(θ)cosθdθ

]
K1(| r

λ
|)cosθ.

(4.148)

4.7.3 Derivation for current distribution in the thin film passing with a

columnar inhomogeneity

Consider a infinite plane xy with thickness t in ez direction, one columnar inhomogeneity

with radius R is located in the center of the plane. Decompose the transport current density

Jt into planar current density J0(z) without a columnar inhomogeneity and perturbated

current density J1(x, y, z) considering the existence of inhomogeneity

Jt = J0(z) + J1(x, y, z). (4.149)
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The boundary condition of Jt can be written as

λ2∆Jt − Jt = 0 in Ω̃× (0, d) (4.150)

subject to


Jt · n = 0 on ∂Ω̃m∫
−endJt = j0ey.

(4.151)

Because of the linearity of (4.149), the above equation is decomposed into two parts. For

the planar current density J0(z), we have


λ2∆J0(z)− J0(z) = 0 in Ω̃× (0, d)∫
−J0(z) · n = j0 on ∂Ω̃

(4.152)

For the perturbation current density J1(x, y, z), we have


λ2∆J1(x, y, z)− ~J1(x, y, z) = 0 in Ω̃× (0, d)

(J0(z) + J1(x, y, z)) · n = 0 on ∂Ω̃m

J1(x, y, z) = 0 at∞

(4.153)

We shall notice that J0(z) only have ey component J0(z) = (0, J0y(z), 0) and J1(x, y, z)

only have ex and ey component J1 = (J1x(x, y, z), J1y(x, y, z), 0).

By symmetry, component J0y(z) can be easily solved as

J0y(z) = C
ez/λ + e−z/λ

2
, (4.154)

where C is determined by the average current density j0.

Since J1 is treated as a perturbated term, for convenience, we make the following trans-

formation

J1(x, y, z) = J0y(z)(Ĵx(x, y), Ĵy(x, y), 0) = J0y(z)Ĵ1(x, y). (4.155)
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Substitute (4.155) into (4.153), we obtain a two dimensional planar Laplace equation

which only has ex, ey components and only depends on x and y.


∆̃Ĵ1(x, y) = 0 on Ω̃

(ey + Ĵ1(x, y)) · n = 0 on ∂Ω̃m

Ĵ1(x, y) = 0 at∞

(4.156)

We now consider the problem in cylindrical coordinate (r, θ, z). The fundamental solu-

tion for a general Laplace equation using separation of variable is given

S(r, θ) = A ln r +B + Σ∞n=1r
n(An sinnθ +Bn cosnθ) + Σ−1

n=−∞r
n(Cn sinnθ +Dn cosnθ)(4.157)

Both of ex and ey components of Ĵ1 can be expressed in the above form. Meanwhile,

Ĵx and Ĵy have the following symmetric properties

Ĵx(r, θ) = Ĵx(r,−θ) Ĵx(r, θ) = −Ĵx(r, π − θ)

Ĵy(r, θ) = Ĵy(r,−θ) Ĵy(r, θ) = Ĵy(r, π − θ)

(4.158)

Thus, Ĵx and Ĵy shall satisfy the following general solutions

Ĵx = Σ∞n=1

Cn
rn

sinnθ,

Ĵy = Σ∞n=1

Dn

rn
cosnθ. (4.159)

Then the boundary condition (4.153)2 can be rewritten as

[Σ∞n=1

Cn
Rn

sinnθ] cos θ + [Σ∞n=1

Dn

Rn
cosnθ + 1] sin θ = 0 (4.160)
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Using the identities of trigonometric functions

cosα sinβ =
sin(α+ β)− sin(α− β)

2
,

sinα cosβ =
sin(α+ β) + sin(α− β)

2
. (4.161)

The boundary condition can be manipulated as

Σ∞n=1

Cn
Rn

sin (n+ 1)θ + sin (n− 1)θ

2
+ Σ∞n=1

Dn

Rn

sin (n+ 1)θ − sin (n− 1)θ

2
= −2 sin θ,(4.162)

We can obtain the coefficient Ci and Di as follows

Ci =


−R2 i = 2,

0 otherwise

Di =


R2 i = 2,

0 otherwise

(4.163)

And the solution of Ĵx and Ĵy are

Ĵx = −R
2

r2
sin 2θ,

Ĵy =
R2

r2
cos 2θ. (4.164)

Thus, the total current density can be written as

Jt = C
ez/λ + e−z/λ

2
(−R

2

r2
sin 2θ, 1 +

R2

r2
cos 2θ, 0). (4.165)
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Chapter 5

Applications

5.1 High Tc Superconducting Magnet Excited by Composite Thermoelec-

tric Element

High temperature superconductors have advantages in their working temperature, low enegy

loss and high magnetic field over low temperture superconductors. Combined with thermo-

electric composites, we design a High Temperature Superconducting (HTS) magnet which

is excited by thermoelectric element. Instead of requiring an external power source for con-

verntional HTS, the proposed HTS magnet requires no external power source through being

excited by a thermo-electromotive force of a thermoelectic composite. This could make the

magnet system compact and lightweight so that it is more suitable for applications in the

place where the space and weight are limited.

The proposed HTS magnet system consists of a thermoelectric composite element, HTS

coils and a pair of HTS leads to connenct the coils and element as shown in Fig. 5.1. The

thermoelectic compsite element is used in place of an external power source, provides an elec-

tromotive force by transfering heat energy into electrical energy. The working temperature

of the thermoelectric composite element has limitation due to the usage of superconductor.

Both of temperature of cold junction and hot junction must below the critical temperature

of the supercoducting material. The system is under cryogenic temperature and heater is

attached one side of the junctions of the element to generate and control the temperature

difference on the thermoelectric difference.

Consider the thermoelectric composite with a sandwich structure of two TE materials as

a plate with thickness L. The TE properties are given by σr, κr and sr (r=1,2). Recall that

by the continuum theory for thermoelectric materials in chapter 3, the effective electrical
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Figure 5.1: Superconductor magnet

conductivity, effective thermal conductivity and effective Seebeck coefficient of the overall

composite can be written as

 σe T0σ
ese

T0σ
ese T0[κe + T0σ

e(se)2]

 =

{
θ1

 σ1 T0σ1s1

T0σ1smt T0[κ1 + T0σ1(s1)2]

−1

+θ2

 σ2 T0σ2s2

T0σ2s2 T0[κ2 + T0σ2(s2)2]

−1}−1

,

(5.1)

where θ1(θ2) is the volume fraction of materials1(2).

The boundary temperature and electrochemical potential are maintained as


T = T2, µ = µ0, on top surface,

T = T1, µ = −µ0, on bottom surface,

(5.2)

Assuming temperature difference (i.e., δT = T2−T1 � T0) across the composite is small



114

, and upon linearization we can explicitly give the electric and energy fluxes genarated by

the TE element as

je = −T0µ0[
1

T2L
+

1

T1L
]σ + T 2

0 [
1

T2L
− 1

T1L
]σs, (5.3)

ju = −T 2
0 µ0[

1

T2L
+

1

T1L
]sσ + T 2

0 [
1

T2L
− 1

T1L
](κ+ T0σs

2). (5.4)

Without the electric potential µ0, they can be written as

je = T 2
0 [

1

T2L
− 1

T1L
]σs, (5.5)

ju = T 2
0 [

1

T2L
− 1

T1L
](κ+ T0σs

2). (5.6)

The heat density flux jq is

jq = ju − µje = ju. (5.7)

For traditional HTS magnet system, HTS coils are used to connect the external power

source in order to minimize the heat leakage to a cryogenic temperature from the ambient

temperature. The amount of heat leakage of HTS coil per unit current (Q/I) is an important

index to evaluate the performance of superconducting magnet. In this proposed magnet

system, the heat leakage is determined by

Q/I = jq/je =
k

σs
+ T0s. (5.8)

To be more precise, if there is a adjusted electric resistence radj for the whole magnet

system, electric potential µ is no longer zero, instead it is determined by

radjjeS = 2µ. (5.9)

Combine with the solution of electric density flux (5.3)1, we can express electric density
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flux je and electric potential µ in terms of the adjusted electric resistence as

µ0 =
T 2

0 σs
T1−T2
T1T2L

2
radjS

+ T1+T2
T1T2

T0σ
L

(5.10)

je =
T 2

0 σs
T1−T2
T1T2L

2 + radjS
T1+T2
T1T2

T0σ
L

(5.11)

Neglecting the adjusted electric resistence due to the HTS coil and the HTS leads, for the

composite material consisting of Cu and pBiTe, we give the figure for the power factor

pf , heat leakage Q/I and the electric density flux je versus the volumn fraction of Cu at

temperature T = 77K in Fig. 5.2:

Figure 5.2: Power factor pf , heat leakage Q/I and the electric density flux je versus the
volumn fraction of Cu

In the conventional magnet system, the minimized heat leakage is about 0.09W/A. Now

comparing to our proposed magnet system, the maximum electric flux density reaches at a

pretty low volume fraction of TE materials in the composite while the heat leakage at that

point is less then 0.15 W/A, which is acceptable. To increase the transport current, it can

be obtained by fabricating a larger cross-section area of thermoelectric composite to get rid

of rising the temperature applied on the hot junction.

5.2 Cooler for Superconducting Transmission Bulk

A high temperature superconductor (HTS) transmission bulk for carrying electric currents

could be widely used because of its zero energy loss dissipation. However, the amount

of transport current has its limitation on the geometric design, external magnetic field,
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materials properties and working termperature. Especially for achieving a stable working

temperature, a cooling system which is thermally coupled by a high electrical conductivity

material to the plurality of HTS transmission bulk shall be applied. In this proposed cooling

application design, the self-motivated thermoelectric (TE) composite coolers are arranged

in series along the electric current transporting direction. Then TE cooler would cool

superconducting bulk and generate compensation currents.

TE composite used as cooler to stabilize the superconducting current transportation is

shown in Fig. 5.3. Each TE cooler is attached on the top surface of the superconducting bulk.

The thermal and electrical contacts between superconductor bulk and TE composite are

perfect. We assume the ambient temperature is Tc, the effective thermoelectric properties

of TE material are s, σ and κ and the temperature Tsc inside the superconductor is uniform.

Figure 5.3: Cooler

Once temperature flactuation happens, i.e., temperature Tsc is higher than ambient

temperature Tc, TE cooler can lower the temperature Tsc by transferring heat energy into

electric energy through generated heat flux.

The TE composite cooler is designed as a plate. Also, we ignore the temperature on
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the fringe. According to the continuum theory in Chapter 3, the electric flux density and

energy flux density are in the form of

je = −T0µ0[
1

T2L
+

1

T1L
]σ + T 2

0 [
1

T2L
− 1

T1L
]σs, (5.12)

ju = −T 2
0 µ0[

1

T2L
+

1

T1L
]sσ + T 2

0 [
1

T2L
− 1

T1L
](κ+ T0σs

2). (5.13)

In the continuum theory, we have the assumption that the temperature difference is small

T1 ≈ T2 ≈ T0. (5.14)

If we add a large electric resistence radj in the circuit, as calculated in the last section, we

have

µ0 =
T 2

0 σs
T1−T2
T1T2L

2
radjS

+ T1+T2
T1T2

T0σ
L

=
(T1 − T2)σsradjS

2L+ 2radjSσ
,

je =
T 2

0 σs
T1−T2
T1T2L

2 + radjS
T1+T2
T1T2

T0σ
L

=
(T1 − T2)σs

2L+ 2σradjS
.

(5.15)

Where S is the cross-section of the TE cooler. Notice that this electric density je flux can

be regarded as compensation for the loss of current when critical current decreases with a

higher temperature.

The energy density flux is

ju = −T 2
0 µ0[

1

T2L
+

1

T1L
]sσ + T 2

0 [
1

T2L
− 1

T1L
](κ+ T0σs

2)

= −2T0sσ

L

(T1 − T2)σsradjS

2L+ 2radjSσ
+
T1 − T2

L
(κ+ T0σs

2)

= (
κ+ T0σs

2

L
− 2T0sσ

L

σsradjS

2L+ 2radjSσ
)(T1 − T2).

(5.16)
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Therefore the heat density flux is determined by

jq = ju − µ0je

= (
κ+ T0σs

2

L
− 2T0sσ

L

σsradjS

2L+ 2radjSσ
)(T1 − T2)

− [
σs

2L+ 2radjSσ
]2radjS(T1 − T2)2

= A(T1 − T2)−B(T1 − T2)2,

(5.17)

where A = κ+T0σs2

L − 2T0sσ
L

σsradjS
2L+2radjSσ

and B = [ σs
2L+2radjSσ

]2radjS. Remark that if radj →∞,

the electric density flux je → 0 and the electric potential is

µ0 →
(T1 − T2)s

2
. (5.18)

The energy density ju is given

ju = −T 2
0 µ0[

1

T2L
+

1

T1L
]sσ + T 2

0 [
1

T2L
− 1

T1L
](κ+ T0σs

2)

= −s
2σ

L
T0(T1 − T2) +

κ+ T0σs
2

L
(T1 − T2)

=
κ

L
(T1 − T2),

(5.19)

which degenerates to Fourier’s law.

We can also calculate the characteristic time of the system to recover the temperature.

Given the heat capacity Cv for each superconductor, it is determined by


jqS = A(Tc − Tsc)−B(Tc − Tsc)2 = Cv

dTsc
dt ,

Tsc(0) = Th.

(5.20)

The solution for the above boundary value problem is

Tsc − Tc
Th − Tc

· A−B(Th − Tc)
A−B(Tsc − Tc)

= e−
A
c
t. (5.21)
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Chapter 6

Conclusions

In this thesis, we have investigated three kinds of physical coupling problems using vari-

antional energy formulation method. Firstly, to deal with the problem that determing the

equilibrium shape of a bubble in an electric field, we proposed a general variational method

in account of electro-mechanical couplings. Our analysis shows that this variational for-

mulation is equivalent to the classic field equation approach based on the Young-Laplace

equation and the concept of Maxwell stress. And a fixed mesh level-set gradient method

for simulating the equalibrium shape of the bubble is then developed based on the energy

formulation. The numerical scheme is validated by comparing with analytical solutions [8]

and experimental results [6].

Secondly, we reviewed Liping Liu’s continuum theory for the thermoelectric bodies.

Boundary value problems are formulated and explicit formula of effective TE properties of

thermoeletric composites with simple laminates structure can be obtained by the continuum

theory. We have shown that power factor can be significantly improved by heterogeneous

TE structures. We implement a FEM simulation to solve generic TE boundary value

problems for general geometries, heterogeneities and boundary conditions. In particular, to

account for the effect of small electrical contacts, we numerically compute the local fields

and electrical power output of simple laminates in real-world working condition. The results

demonstrated that the optimal power output of the TE sandwich is still 75 times larger then

pure TE structure at the same size and boundary conditions even small electrical contacts

do have a significant effect on power output.

Thirdly, we studied the phase transitions of superconducting materials and proposed the

free energy system which is combined with phenomenological Ginzburg-Landau theory and

Landau theory of micromagnetics. In particular, we analyze the magnetic vortex pinning by
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paramagnetic boundary in high temperature type II superconducting materials. With the

help of framework we developed, we conclude that (i) Euler-Lagrange equations associated

with boundary conditions is derived in the principle of free energy. (ii) In two-dimensional

planar model for zero external transport current scenario, we calculate the pinning force on

a single magnetic vortex for different configurations of inhomogeneity and external magnetic

field in the dilute limit case. (iii) Consider three-dimensional model with external transport

current, a decomposition on supercurrent-based total free energy system is investigated. We

give explanation on the mechanisms for each energy terms in the system. Also the attractive

pinning force of a single vortex to the interface of the inhomogenity is calculated associated

with the size of inhomogeneity, magnetic permeability, thickness of film, strength of external

transport current and external magnetic field. (iv) Based on a naive definition on the critical

current, we find the critical current shall be optimized by a larger size of inhomogeneity in

some range and critical current approaches to saturation with higher magnetic permeability

of inhomgeneity which agrees with some experimental results quanlitatively.

Finally, we proposed two potential applications: (i) A high temperature superconducting

magnet excited by thermoelectric element. (ii) A cooler for superconducting transmission

bulk. The proposed magnetic can reach the maximum electric flux density at a pretty low

volume fraction of pure TE materials in the composite while the heat leakage at that point

is less then 0.15 W/A. And the proposed TE composite cooler can not only stabilize the

superconducting transportation bulk but also provide a compensation of transport currents.

The characteristic time for the system to recover the temperature is given in equation 5.21.
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[111] Milošević, M. V. and Peeters, F. M. Vortex-antivortex nucleation in magnetically
nanotextured superconductors: Magnetic-field-driven and thermal scenarios Physics
Review Letters, 94(227001), 2005
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