LEARNING-BASED MODEL REDUCTION AND
CONTROL OF UNDERACTUATED BALANCE
ROBOTS

by
KUO CHEN

A dissertation submitted to the
School of Graduate Studies
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of
Doctor of Philosophy

Graduate Program in Mechanical and Aerospace Engineering
Written under the direction of
Jingang Yi
And approved by

New Brunswick, New Jersey

JANUARY, 2019



© 2019
Kuo Chen
ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

Learning-based Model Reduction and Control of

Underactuated Balance Robots

By KUO CHEN
Dissertation Director:

Jingang Yi

Underactuated robots are mechanical systems with feweratamputs than their de-
grees of freedom (DOF). Inverted pendulums, bicycles an#imgrobots are a few
examples of such systems. Underactuated balance robate@eeactuated robots that
must perform the balancing and tracking tasks simultarigotike balancing task re-
quires the robot to maintain its balance around possiblyaloes equilibrium points,
while the tracking task requires it to track desired trajees. For these competing
tasks, a common guideline to design controllers is to ifgatiow dimensional sub-
space of the state space, called a latent manifold, on whebalancing and tracking
tasks are consistent and compatible. The approach of latanifold identification is
called model reduction. Previous works apply model reducto physical-principled

models with well understood dynamics structures. Thisadltation proposes machine



learning-based model reduction approaches for modelgiy diimensional robots, ex-
tracting balancing skills from demonstration data and dimg robots with data-
driven models.

Several aspects of machine learning make it attractive $erin model reduction
and control applications for underactuated robots. Ringt,system dynamics learned
from collected data can be more accurate than analyticaefeai@rived from physical
laws. For high dimensional motion, itis also easier to blaktning-based latent space
models than any physical models. Second, a latent manif@idencodes balancing
skill can be learned from the demonstrated trajectorie® &pplication example is to
transfer human walking skills to humanoid robots by enfagdiumanoid robots onto
the latent manifold identified from human trajectories. dHy) optimization-based
controllers such as model predictive control (MPC) andfoggement learning can
be integrated with the learned model and applied to stabthe learned open-loop
dynamics onto the desired latent manifolds.

In this dissertation, we introduce a framework that integgahe physical-based
robot model with the learning-based latent manifold modelifigh dimensional hu-
man limbs motion to achieve pose estimation of human roldetactions. Human-
bikebot interaction is used as an example to demonstratertpmsed approach. We
extend the physical latent manifold-based controller toexe biped slip recovery. We
reveal the relationship between learning-based modelcteniuand physical-based
model reduction for high dimensional dynamics such as hulegged locomotion.
One of our final goals is to design learning-based contmti@achieve biped walking
and slip recovery. The balancing while tracking problem ieesn successfully solved
by designing physical model-based controllers to stabilie system state onto the
balance equilibrium manifold (BEM). However, its applicet has been restricted to
systems with well understood dynamics structures. In thiedart of this dissertation,

we adopt the BEM concept to design a learning model-basenatdramework. The



system dynamics is identified without prior physical knadge nor successful balanc-
ing demonstrations. The proposed framework achieves supgemtrol performance
compared to the physical model-based approach, and psoartdytical performance
guarantees. The works in this dissertation are demondtregimg multiple robotic

platforms such as an inverted pendulum, a bikebot and a Ingiext.
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Chapter 1

Introduction

1.1 Background and motivations

Underactuated robots are systems with fewer control infhas their configuration
states. Underactuated balance robots are underactuatsd that perform the balanc-
ing and tracking tasks simultaneously. Because of the dindtctuation and multiple
tasks, it is challenging to design feedback controllersifateractuated balance robots.
For example, autonomous bicycle driving is an underactlLisééance control problem
which requires the bicycle to both track desired outpuetrgry and maintain internal
states, i.e. bicycle roll angle, bounded around the unstdplilibrium points. Bipedal
walker is another example of high-dimensional underaetibalance robot. The con-
trol inputs not only actuate the robot joints to form desiceafiguration trajectories
such as bending the knee and swinging the foot but also entbecfloating base or
equivalently the center of mass (COM) onto a periodical tabiachieve periodical
walking.

Various approaches have been proposed to control suchagtdated mechani-
cal systems. Energy-based method was applied to the swairggitrol of inverted
pendulum [3] [4]. This approach has been extended to balarstationary bicycle
in [5]. In [6], a reduction based controller has been proddee general underactu-
ated systems. Through a closed form global coordinate foamation, the original
underactuated system model is transformed into a normal.fdWnderactuated sys-

tems with symmetry properties can be reduced to the normaisehat are structured



cascade nonlinear systems. Controller for the reducedaldorm is designed in [6].
Both energy-based and reduction-based control desigrireagell structured analyt-
ical models of the robotic systems. Domain knowledge of tlealeh structure and
physical insights of the control task are critical to thecmssful design of these con-
trollers.

Bipedal walking systems, as a special example of underattugystems, have
drawn particular attention from the research communityhee of their great potential
applications in humanoid robots and human assistive deviee difficulty of bipedal
walking control lies in the balancing while tracking corttasks under the limited
actuations. During walking, joint angles are controlleddtow desired trajectories
so that the swinging leg moves forward to serve as the stamee for the next step.
In the meantime, the floating base or equivalently the trdrdukd be propelled by
the resultant ground reaction force (GRF) properly so thatrobot does not fall for-
ward or backward. The joint torque actuations are resp&®bnot only joint angles
tracking but also the generation of GRF which propels theifigdbase. Optimization-
based control is a natural solution to this multi-task peofol In [7] [8] [9], humanoid
robot control is formulated as a quadratic programming lerobvhere control inputs
are found to maximize the objective function that weightshekey trajectory track-
ing performance indicator differently. The trajectoryttpeescribes the motion of the
floating base can be generated by assuming the robot is aeslimger inverted pendu-
lum [10] [9]. On the other branch of bipedal walking reseaftybrid zero dynamics
(HZD) approach is proposed to provide a trade-off betweent pngles tracking and
floating base propelling tasks [11]. Under the HZD contiollee desired joint angles
are not prescribed with respect to time but to a phase variabhasuring the percentage
of completion of one step. When each joint of the robot foldhe desired joint angle,
the system states travel only a low dimensional subspaceeo$tate space. Within

this subspace, the floating base trajectory also achievexlpml orbit. Therefore, the



balance and tracking tasks are consistent within the lovedsional subspace and the
only effort is to control the state onto this subspace.

Another example of the challenge of underactuated balapioets with limited
actuations is the output tracking problem of unstable systeln the cart-pole sys-
tem example, the cart moves to maintain the balance of theéuybem while tracking
the desired output trajectory. For such systems, no apalytausal compensator can
achieve exact output tracking while maintaining the inééstability [12]. In [13], an
external/internal convertible (EIC) dynamic structurexplored to separate the system
into an external subsystem for the trajectory tracking tasét an internal subsystem
for the balancing task. A causal controller design is pregdads [13] to achieve both
trajectory tracking and balancing tasks by enforcing ttetesy state onto balance equi-
librium manifold (BEM). On the BEM, the tracking task and theancing task are no
longer competing but consistent.

This dissertation takes a unifying view of underactuateldrze robots by using
latent manifold approach. The latent manifold is desigmeeitcode the multiple con-
trol tasks for the robot so that these tasks can be achienedtaneously once the state
is on the manifold. For example, in the biped walking prohléme latent manifold is
embodied as the virtual constraints which define how diffejaint angles coordinate
and synchronize with each other [11]. On these virtual cairgss, not only does each
joint angle follow its desired trajectory, but the COM alsdldws periodical motion.
In the bicycle balancing while tracking problem, the laterdnifold is embodied as
the BEM which defines how the bicycle roll angle equilibriumint depends on the
desired bicycle position trajectory. Once the system ssagtabilized on the BEM, the
bicycle roll angle is stabilized around its equilibrium pbwhile the bicycle position

tracks desired output trajectory [13].



Despite the advantages of latent manifolds in underaduzdéance system con-
trol, their applications have been limited to controllesige for well structured ana-
lytical models. In many cases, learning models can preldébehavior of the system
with higher accuracy than analytical models while reqgjrimited domain knowl-
edge. This motivates the study on learning model-basedaltertdesign for latent
manifold stabilization. In other cases, the latent madifeinot clearly defined but col-
lected demonstration data indicates possible unknowntlatenifold. This motivates
the study on identifying latent manifolds from data. Thet fdat the learning-based
dynamics reduction approach [14] and the analytical-balsgtmics reduction ap-
proach [11] both reduce the system dimensions and simpldyntodel motivates the
study on their relation and correspondence. For the maglelnd control of high di-
mensional underactuated balance systems such as the Hoikeaiot interaction sys-
tem, neither a physical-based model nor a learning-baseateihaone achieves the
desired modeling and control performance. Learning-béatetht manifold models
provide accurate prediction for high dimensional systewts|e physical-principled
models provide physical interpretation. This motivatesgtudy on integrating physi-
cal and learning models for human-robot interaction.

In the rest of this chapter, we first give an introduction te ldtent manifold con-

cept and then present the dissertation outline and a sunohérg contributions.

1.2 Latent manifold concept

Mathematically, during certain motion, given the robotista € R", there exists a
coordinate transformatiah = 7 («) such thate; = 0 constantly fori = m + 1, ..., n,
wherem < n. Them-dimensional spac&; = 7;(x), i = 1,...,m, is the latent
manifold while the(n —m)-dimensional equatiof;(x) = 0 fori = m+1, ..., n, forms

n — m constraints. The-dimensional dynamics also reduce to thedimensional



dynamics. The latent manifold encodes the coordinatiotedé variables and serves as
a description of robot skill [15]. Therefore, identifyinige latent manifold is a critical
step towards understanding and replicating certain matkalh In this dissertation,

several approaches are discussed for constructing oifidagtlatent manifolds.

1.2.1 Virtual constraints

In the area of geometric control, control inputs are apgliddrce the system state onto
the designed virtual constraints. Virtual constraintsraeconsequences of physical
constraints but consequences of feedback control. Forgeame want to control the

single-input single-ouput system

.i’l 01 T 0
= + U
.j?g 6 1 i) 1
- (1.1)
1 |2y
y=la 1
| :L'2

to have desired outpyt= 0. By differentiating the output once,
y = iy + a9 = 621 + (1 + a)xs +u,

and designing the input as= —6x; — (1 + )z, + v, the output dynamics is forced to
bey = v. The choice o) = —y results in output dynamics convergingitoHere, the
steady statg = ax; + o = 0 is the virtual constraint. Under this virtual constraint,
the original second order dynamics is reduced to first orgeanchicsi; = =, =
—axy, Which is called zero dynamics. The coordinate transfoionahat transforms

the original coordinates into zero dynamics state variahtoutput variable is

i=Tx= . (1.2)



Note that the choice of the zero dynamics state variablelz@fiore7 is not unique.
For example, we can choosge = —x; + axs SO that in the new coordinates |
Z5. However, different coordinate systems are equivalenabee they are connected
through diffeomorphic transformations.

The choice of the virtual constraints is critical to the digbof the zero dynamics.
The zero dynamics; = —aur; is stable if and only it > 0, which is determined by
the design of virtual constraints. If the zero dynamics istahle, the zero dynamics

state variable will go to infinity and the feedback contrahigeasible.

1.2.2 Learning-based reduction approach

For high-dimensional robot motion, it is difficult to idefytithe latent manifold from
physical-principled analysis. However, the robot stasgetitory data can be easily
collected. The rationale of the learning-based latent folthimodeling approach is
that the motion dynamics is actually embedded in a low-dsreeral subspace and this
low-dimensional latent space can be identified with macl@aeing approaches.

Principal component analysis (PCA) is the most widely agplinear dimensional
reduction approach. The fundamental idea of PCA is to find rdmooormal linear
coordinate transformatiof = {u;},7 = 1,...,n, so that the new coordinatas =
ulx has sampling varianck; in decreasing orderz; = u! z with small variance
indicates that the values in the new coordinates are arcenod Zhe firstn coordinates
are picked as the coordinates in latent manifold, while &s¢71 — m coordinates are
neglected.

PCA can be modified into nonlinear dimension reduction allgors by using the
kernel concept. In [16], Gaussian process latent variabléealis developed as a gener-
alization of PCA in the probabilistic frame with nonlinearkel. Instead of obtaining
the explicit form of coordinate transformation, the algjom outputs the correspond-

ing coordinates in the latent space and hyperparameteng ofidpping from the latent



space to the original space.

One interesting point of view is to apply PCA to learn the estagjectory of lin-
ear system (1.1) under the virtual constraint based conBetause the motion data
converges to the designed virtual constraint az; + =, = 0, the motion data has
minimum variance in the direction of the virtual constraantl has maximum variance
in its perpendicular direction. In Chapter 4, we prove thadRcan identify the lin-
ear virtual constraints, and the nonlinear dimension reédn@pproach can identify
nonlinear virtual constraints.

Locally linear embedding (LLE) is a nonlinear dimensionuetion approach that
preserves the reconstruction of one point by its neighbbr [For NV pointsy, €
RP,i =1,...,N, the LLE finds thed-dimensional latent space coordinatgsc R?,

d < D, which preserves the same reconstruction relation in tlggnat space. The
LLE consists of a single pass of three steps. First, the heighof each data point
y, are computed. Second, each point is reconstructed by gfibeis by minimizing
EW) = Xily, — X;Wi;y,|* with respect tolV;; under the constraints;W;; = 1.
Third, the reconstruction relatiori§’;; are preserved in the latent space. The latent
coordinates are solved by minimizidgz) = 3;|x; — X;W;;x;|* with respect tar;.

Nonlinear dimension reduction methods have been sucdlgsafplied to model,
track and synthesize high-dimensional human motion. I, [b8erse kinematics so-
lution is searched on the constructed latent space of hunoéinom The latent space of
a particular human motion is trained from motion data. Tigeathm outputs a human
pose that not only satisfies prescribed constraints butli@s@n the latent manifold.
This guarantees that the found pose satisfies the consteaidtis human-like. In [14],
human walking joint angles are modeled by a latent spacerdipsaand a mapping
from the latent space to the joint angle space. The lateramjos approach signifi-
cantly simplifies the model complexity without dramatigdising modeling accuracy.

The work in [19] further applies this model to human trackihg [20] [21], the prior



knowledge of the latent space topology is enforced so tleaketwned performance is
enhanced. For example, periodical walking motion shoulgeldosed circles as its
latent space. Other physical knowledge and assumptionbecarcorporated into the
learning of latent space as in [22]. In [23], the labels oéidtcoordinates are used to
further enhance the modeling accuracy. It is shown thatrparating prior knowledge
into the nonlinear dimension reduction approach can irseréath the model accuracy
and its interpretability. In Chapter 2, a new dimension i algorithm is proposed
by taking advantage of the prior information about humamtaenteractions. In Chap-
ter 4, we build a connection between the learning-basedtlafgace model and the

physical-based zero dynamics approach.

1.3 Dissertation outline and contributions

This dissertation consists of six chapters. Chapter 1 isrttteduction. In Chapter
2, we integrate the physical-principled model with the heag-based model for high
dimensional human-robot interaction modeling and stafienation. Human-bikebot
interactions are taken as an example. In Chapter 3, physicadipled latent manifold
approach is applied to biped slip recovery control. In Caagt the relationship be-
tween the physical-principled latent manifold approact #re learning-based latent
manifold approach is discussed with bipedal walking as amgte. The ultimate goal
of Chapters 3 and 4 is to quantify walking and slip recovenjlskith latent man-
ifolds and transfer skills between human and biped robatsCHapter 5, a planning
and control framework is proposed for underactuated balaolbots modeled by the
learning-based approach. Chapter 6 co