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ABSTRACT OF THE DISSERTATION
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Underactuated Balance Robots

By KUO CHEN

Dissertation Director:

Jingang Yi

Underactuated robots are mechanical systems with fewer control inputs than their de-

grees of freedom (DOF). Inverted pendulums, bicycles and walking robots are a few

examples of such systems. Underactuated balance robots areunderactuated robots that

must perform the balancing and tracking tasks simultaneously. The balancing task re-

quires the robot to maintain its balance around possibly unstable equilibrium points,

while the tracking task requires it to track desired trajectories. For these competing

tasks, a common guideline to design controllers is to identify a low dimensional sub-

space of the state space, called a latent manifold, on which the balancing and tracking

tasks are consistent and compatible. The approach of latentmanifold identification is

called model reduction. Previous works apply model reduction to physical-principled

models with well understood dynamics structures. This dissertation proposes machine
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learning-based model reduction approaches for modeling high dimensional robots, ex-

tracting balancing skills from demonstration data and controlling robots with data-

driven models.

Several aspects of machine learning make it attractive for use in model reduction

and control applications for underactuated robots. First,the system dynamics learned

from collected data can be more accurate than analytical models derived from physical

laws. For high dimensional motion, it is also easier to buildlearning-based latent space

models than any physical models. Second, a latent manifold that encodes balancing

skill can be learned from the demonstrated trajectories. One application example is to

transfer human walking skills to humanoid robots by enforcing humanoid robots onto

the latent manifold identified from human trajectories. Finally, optimization-based

controllers such as model predictive control (MPC) and reinforcement learning can

be integrated with the learned model and applied to stabilize the learned open-loop

dynamics onto the desired latent manifolds.

In this dissertation, we introduce a framework that integrates the physical-based

robot model with the learning-based latent manifold model for high dimensional hu-

man limbs motion to achieve pose estimation of human robot interactions. Human-

bikebot interaction is used as an example to demonstrate theproposed approach. We

extend the physical latent manifold-based controller to achieve biped slip recovery. We

reveal the relationship between learning-based model reduction and physical-based

model reduction for high dimensional dynamics such as humanlegged locomotion.

One of our final goals is to design learning-based controllers to achieve biped walking

and slip recovery. The balancing while tracking problem hasbeen successfully solved

by designing physical model-based controllers to stabilize the system state onto the

balance equilibrium manifold (BEM). However, its application has been restricted to

systems with well understood dynamics structures. In the last part of this dissertation,

we adopt the BEM concept to design a learning model-based control framework. The
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system dynamics is identified without prior physical knowledge nor successful balanc-

ing demonstrations. The proposed framework achieves superior control performance

compared to the physical model-based approach, and provides analytical performance

guarantees. The works in this dissertation are demonstrated using multiple robotic

platforms such as an inverted pendulum, a bikebot and a bipedrobot.
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Chapter 1

Introduction

1.1 Background and motivations

Underactuated robots are systems with fewer control inputsthan their configuration

states. Underactuated balance robots are underactuated robots that perform the balanc-

ing and tracking tasks simultaneously. Because of the limited actuation and multiple

tasks, it is challenging to design feedback controllers forunderactuated balance robots.

For example, autonomous bicycle driving is an underactuated balance control problem

which requires the bicycle to both track desired output trajectory and maintain internal

states, i.e. bicycle roll angle, bounded around the unstable equilibrium points. Bipedal

walker is another example of high-dimensional underactuated balance robot. The con-

trol inputs not only actuate the robot joints to form desiredconfiguration trajectories

such as bending the knee and swinging the foot but also enforce the floating base or

equivalently the center of mass (COM) onto a periodical orbit to achieve periodical

walking.

Various approaches have been proposed to control such underactuated mechani-

cal systems. Energy-based method was applied to the swing-up control of inverted

pendulum [3] [4]. This approach has been extended to balancea stationary bicycle

in [5]. In [6], a reduction based controller has been proposed for general underactu-

ated systems. Through a closed form global coordinate transformation, the original

underactuated system model is transformed into a normal form. Underactuated sys-

tems with symmetry properties can be reduced to the normal forms that are structured
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cascade nonlinear systems. Controller for the reduced normal form is designed in [6].

Both energy-based and reduction-based control design require well structured analyt-

ical models of the robotic systems. Domain knowledge of the model structure and

physical insights of the control task are critical to the successful design of these con-

trollers.

Bipedal walking systems, as a special example of underactuated systems, have

drawn particular attention from the research community because of their great potential

applications in humanoid robots and human assistive devices. The difficulty of bipedal

walking control lies in the balancing while tracking control tasks under the limited

actuations. During walking, joint angles are controlled tofollow desired trajectories

so that the swinging leg moves forward to serve as the stance base for the next step.

In the meantime, the floating base or equivalently the trunk should be propelled by

the resultant ground reaction force (GRF) properly so that the robot does not fall for-

ward or backward. The joint torque actuations are responsible for not only joint angles

tracking but also the generation of GRF which propels the floating base. Optimization-

based control is a natural solution to this multi-task problem. In [7] [8] [9], humanoid

robot control is formulated as a quadratic programming problem where control inputs

are found to maximize the objective function that weights each key trajectory track-

ing performance indicator differently. The trajectory that prescribes the motion of the

floating base can be generated by assuming the robot is a simple linear inverted pendu-

lum [10] [9]. On the other branch of bipedal walking research, hybrid zero dynamics

(HZD) approach is proposed to provide a trade-off between joint angles tracking and

floating base propelling tasks [11]. Under the HZD controller, the desired joint angles

are not prescribed with respect to time but to a phase variable measuring the percentage

of completion of one step. When each joint of the robot follows the desired joint angle,

the system states travel only a low dimensional subspace of the state space. Within

this subspace, the floating base trajectory also achieves periodical orbit. Therefore, the
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balance and tracking tasks are consistent within the low dimensional subspace and the

only effort is to control the state onto this subspace.

Another example of the challenge of underactuated balance robots with limited

actuations is the output tracking problem of unstable systems. In the cart-pole sys-

tem example, the cart moves to maintain the balance of the pendulum while tracking

the desired output trajectory. For such systems, no analytical causal compensator can

achieve exact output tracking while maintaining the internal stability [12]. In [13], an

external/internal convertible (EIC) dynamic structure isexplored to separate the system

into an external subsystem for the trajectory tracking taskand an internal subsystem

for the balancing task. A causal controller design is proposed in [13] to achieve both

trajectory tracking and balancing tasks by enforcing the system state onto balance equi-

librium manifold (BEM). On the BEM, the tracking task and thebalancing task are no

longer competing but consistent.

This dissertation takes a unifying view of underactuated balance robots by using

latent manifold approach. The latent manifold is designed to encode the multiple con-

trol tasks for the robot so that these tasks can be achieved simultaneously once the state

is on the manifold. For example, in the biped walking problem, the latent manifold is

embodied as the virtual constraints which define how different joint angles coordinate

and synchronize with each other [11]. On these virtual constraints, not only does each

joint angle follow its desired trajectory, but the COM also follows periodical motion.

In the bicycle balancing while tracking problem, the latentmanifold is embodied as

the BEM which defines how the bicycle roll angle equilibrium point depends on the

desired bicycle position trajectory. Once the system stateis stabilized on the BEM, the

bicycle roll angle is stabilized around its equilibrium point while the bicycle position

tracks desired output trajectory [13].
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Despite the advantages of latent manifolds in underactuated balance system con-

trol, their applications have been limited to controller design for well structured ana-

lytical models. In many cases, learning models can predict the behavior of the system

with higher accuracy than analytical models while requiring limited domain knowl-

edge. This motivates the study on learning model-based controller design for latent

manifold stabilization. In other cases, the latent manifold is not clearly defined but col-

lected demonstration data indicates possible unknown latent manifold. This motivates

the study on identifying latent manifolds from data. The fact that the learning-based

dynamics reduction approach [14] and the analytical-baseddynamics reduction ap-

proach [11] both reduce the system dimensions and simplify the model motivates the

study on their relation and correspondence. For the modeling and control of high di-

mensional underactuated balance systems such as the human-bikebot interaction sys-

tem, neither a physical-based model nor a learning-based model alone achieves the

desired modeling and control performance. Learning-basedlatent manifold models

provide accurate prediction for high dimensional systems,while physical-principled

models provide physical interpretation. This motivates the study on integrating physi-

cal and learning models for human-robot interaction.

In the rest of this chapter, we first give an introduction to the latent manifold con-

cept and then present the dissertation outline and a summeryof the contributions.

1.2 Latent manifold concept

Mathematically, during certain motion, given the robot state x ∈ R
n, there exists a

coordinate transformatioñx = T (x) such that̃xi ≡ 0 constantly fori = m+ 1, ..., n,

wherem < n. Them-dimensional spacẽxi = Ti(x), i = 1, ..., m, is the latent

manifold while the(n−m)-dimensional equationTi(x) ≡ 0 for i = m+1, ..., n, forms

n − m constraints. Then-dimensional dynamics also reduce to them-dimensional



5

dynamics. The latent manifold encodes the coordination of state variables and serves as

a description of robot skill [15]. Therefore, identifying the latent manifold is a critical

step towards understanding and replicating certain motionskill. In this dissertation,

several approaches are discussed for constructing or identifying latent manifolds.

1.2.1 Virtual constraints

In the area of geometric control, control inputs are appliedto force the system state onto

the designed virtual constraints. Virtual constraints arenot consequences of physical

constraints but consequences of feedback control. For example, we want to control the

single-input single-ouput system
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to have desired outputy = 0. By differentiating the output once,

ẏ = αẋ1 + ẋ2 = 6x1 + (1 + α)x2 + u,

and designing the input asu = −6x1− (1+α)x2+ v, the output dynamics is forced to

be ẏ = v. The choice ofv = −y results in output dynamics converging to0. Here, the

steady statey = αx1 + x2 = 0 is the virtual constraint. Under this virtual constraint,

the original second order dynamics is reduced to first order dynamicsẋ1 = x2 =

−αx1, which is called zero dynamics. The coordinate transformation that transforms

the original coordinates into zero dynamics state variableand output variable is

x̃ = T x =






1 0

α 1




x. (1.2)
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Note that the choice of the zero dynamics state variable and thereforeT is not unique.

For example, we can choosẽx1 = −x1 + αx2 so that in the new coordinates̃x1 ⊥

x̃2. However, different coordinate systems are equivalent because they are connected

through diffeomorphic transformations.

The choice of the virtual constraints is critical to the stability of the zero dynamics.

The zero dynamicṡx1 = −αx1 is stable if and only ifα > 0, which is determined by

the design of virtual constraints. If the zero dynamics is unstable, the zero dynamics

state variable will go to infinity and the feedback control isinfeasible.

1.2.2 Learning-based reduction approach

For high-dimensional robot motion, it is difficult to identify the latent manifold from

physical-principled analysis. However, the robot state trajectory data can be easily

collected. The rationale of the learning-based latent manifold modeling approach is

that the motion dynamics is actually embedded in a low-dimensional subspace and this

low-dimensional latent space can be identified with machinelearning approaches.

Principal component analysis (PCA) is the most widely applied linear dimensional

reduction approach. The fundamental idea of PCA is to find an orthonormal linear

coordinate transformationT = {ui}, i = 1, ..., n, so that the new coordinates̃xi =

uT
i x has sampling varianceλi in decreasing order.̃xi = uT

i x with small variance

indicates that the values in the new coordinates are around zero. The firstm coordinates

are picked as the coordinates in latent manifold, while the lastn −m coordinates are

neglected.

PCA can be modified into nonlinear dimension reduction algorithms by using the

kernel concept. In [16], Gaussian process latent variable model is developed as a gener-

alization of PCA in the probabilistic frame with nonlinear kernel. Instead of obtaining

the explicit form of coordinate transformation, the algorithm outputs the correspond-

ing coordinates in the latent space and hyperparameters of the mapping from the latent
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space to the original space.

One interesting point of view is to apply PCA to learn the state trajectory of lin-

ear system (1.1) under the virtual constraint based control. Because the motion data

converges to the designed virtual constrainty = αx1 + x2 = 0, the motion data has

minimum variance in the direction of the virtual constraintand has maximum variance

in its perpendicular direction. In Chapter 4, we prove that PCA can identify the lin-

ear virtual constraints, and the nonlinear dimension reduction approach can identify

nonlinear virtual constraints.

Locally linear embedding (LLE) is a nonlinear dimension reduction approach that

preserves the reconstruction of one point by its neighbors [17]. ForN pointsyi ∈

R
D, i = 1, ..., N , the LLE finds thed-dimensional latent space coordinatesxi ∈ R

d,

d ≪ D, which preserves the same reconstruction relation in the original space. The

LLE consists of a single pass of three steps. First, the neighbors of each data point

yi are computed. Second, each point is reconstructed by its neighbors by minimizing

E(W ) = Σi|yi − ΣjWijyj|2 with respect toWij under the constraintsΣjWij = 1.

Third, the reconstruction relationsWij are preserved in the latent space. The latent

coordinates are solved by minimizingΦ(x) = Σi|xi − ΣjWijxj|2 with respect toxi.

Nonlinear dimension reduction methods have been successfully applied to model,

track and synthesize high-dimensional human motion. In [18], inverse kinematics so-

lution is searched on the constructed latent space of human motion. The latent space of

a particular human motion is trained from motion data. The algorithm outputs a human

pose that not only satisfies prescribed constraints but alsolies on the latent manifold.

This guarantees that the found pose satisfies the constraints and is human-like. In [14],

human walking joint angles are modeled by a latent space dynamics and a mapping

from the latent space to the joint angle space. The latent dynamics approach signifi-

cantly simplifies the model complexity without dramatically losing modeling accuracy.

The work in [19] further applies this model to human tracking. In [20] [21], the prior
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knowledge of the latent space topology is enforced so that the learned performance is

enhanced. For example, periodical walking motion should have closed circles as its

latent space. Other physical knowledge and assumptions canbe incorporated into the

learning of latent space as in [22]. In [23], the labels of latent coordinates are used to

further enhance the modeling accuracy. It is shown that incorporating prior knowledge

into the nonlinear dimension reduction approach can increase both the model accuracy

and its interpretability. In Chapter 2, a new dimension reduction algorithm is proposed

by taking advantage of the prior information about human-robot interactions. In Chap-

ter 4, we build a connection between the learning-based latent space model and the

physical-based zero dynamics approach.

1.3 Dissertation outline and contributions

This dissertation consists of six chapters. Chapter 1 is theintroduction. In Chapter

2, we integrate the physical-principled model with the learning-based model for high

dimensional human-robot interaction modeling and state estimation. Human-bikebot

interactions are taken as an example. In Chapter 3, physical-principled latent manifold

approach is applied to biped slip recovery control. In Chapter 4, the relationship be-

tween the physical-principled latent manifold approach and the learning-based latent

manifold approach is discussed with bipedal walking as an example. The ultimate goal

of Chapters 3 and 4 is to quantify walking and slip recovery skills with latent man-

ifolds and transfer skills between human and biped robots. In Chapter 5, a planning

and control framework is proposed for underactuated balance robots modeled by the

learning-based approach. Chapter 6 concludes the dissertation and discusses the future

research directions.
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The modeling and control of physical human-robot interactions (pHRI) is challeng-

ing because of the high dimensionality of the system and the various ways of interac-

tions. However, for many pHRI activities, high dimensionalhuman joint angles are

coordinated to achieve simple tasks. This promises an opportunity to model it in the

latent manifold. In Chapter 2, an integrated physical-learning modeling framework for

pHRI is proposed. A latent manifold-based learning model isapplied to the model-

ing of high-dimensional human joints, while the physical-principled model provides

a trustworthy and physically interpretable model for the robot and human trunk. The

learning-approach modeled subsystem is coupled with the physical-approach modeled

subsystem through system inputs and constraints. Existingdimension reduction ap-

proaches such as PCA and LLE do not endow physical meaning to the constructed

latent manifold. We present the axial linear embedding (ALE) algorithm to construct

latent variables with physical meaning. The proposed framework is applied to the

bikebot riding pose estimation problem. The contribution of this chapter lies in the

novel approach to integrate the physical-principled modelwith the leaning-based latent

manifold model through inputs and constraints. The proposed dimensional reduction

algorithm ALE is also a contribution.

The hybrid zero dynamics (HZD) approach has been proposed tocontrol biped

robot to achieve periodical walking. In Chapter 3, we propose an HZD based control

design for biped slip recovery. During the slip phase, the robot has more degrees

of freedom, i.e. the additional slipping displacement of the foot, making the system

even harder to control. However, through a sequence of gaitsunder different contact

property, the robot can be controlled back to periodical walking gait. Each gait is

described by virtual constraints that reduce the system state onto the zero dynamics

space. The recovery sequence consists of multiple gaits that are connected smoothly

in sequence. The system state is driven back to normal walking periodical orbit under

this recovery sequence. The contribution of this chapter isthe proposed criteria of
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designing virtual constraints for slip recovery.

Since both the learning-based and physical-based latent manifold models are ap-

plied to model high-dimensional systems, it is natural to reveal their relationship and

characteristics. In Chapter 4, we present the correspondence between the learning-

based latent space model and the analytical virtual constraints. It is shown that the

learned latent dynamics is equivalent to the zero dynamics.The mapping from the la-

tent manifold to the high dimensional state space is equivalent to the virtual constraints.

Human walking experiments are used to validate the findings.This discovery can be

applied to classifying gaits and potentially transferringhuman walking skill to bipedal

robots.

Despite the mathematical elegance of the latent manifold concept, identifying the

latent manifold and using it in controller design are only manageable for well under-

stood physical-principled models. In Chapter 5, we proposea learning model-based

control framework for underactuated balance robots. The system model is obtained

using Gaussian processes (GPs) model learned from experimental data. GPs provide a

way to quantify modeling uncertainty. Model predictive control (MPC) is adopted for

the trajectory tracking task to compute the latent manifold. A learned inverse dynamics

controller then stabilizes the system state onto the latentmanifold. The planning and

control framework takes advantage of the modeling uncertainty information to achieve

robust control performance. Hardware experiments on a rotary base inverted pendulum

show that without prior physical-principled knowledge of the system nor success bal-

ancing demonstration, the learning model-based control performance is superior to that

of the analytical model-based controller. The contribution of this chapter lies in three

aspects. First, the proposed control framework is based on Gaussian process learning

model instead of physical-principled models. The fact thatthis framework does not

depend on the understanding of the robot dynamics structurebroaden the application

of latent manifold concept. Second, the model learning is efficient and does not require
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successful balance demonstration. Finally, the proposed framework is robust to model-

ing error due to the novel way of exploiting model uncertainties provided by Gaussian

processes models.
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Chapter 2

Integrated Physical-Learning Model for Human-Robot
Interaction

2.1 Introduction

Human with trained motor skills can fluidly and flexibly interact with machines while

smart machines or robots can also provide motor assistance and enhancement to fa-

cilitate human’s motor skills learning [24]. Modeling of physical human-robot inter-

actions (pHRI) is important to understand the role of the human sensorimotor control

in the trained motor skills with machines or robots and to design human assistive and

rehabilitation systems. One of the main challenges for modeling pHRI is the high di-

mensionality and complexity of human motion and its interactions with machines [25].

The goal of this chapter is to present an integrated physical-learning pHRI model with

applications to the bikebot (i.e., bicycle-based robot) riding example.

The proposed pHRI modeling framework uses the physical principles to model the

dynamic motions of the robot and the human trunk while a machine-learning-based

method is employed to capture the human limb motion in a low-dimensional latent

space [26]. The physical model and the learning model are interconnected and inte-

grated to describe the pHRI. The rationales of using the integrated physical-learning

pHRI modeling approach are twofold. First, one main challenge of modeling and con-

trol of pHRI is the high-dimensional human motion and anatomical redundancy of

human body segments. Using physical principles for rigid body dynamics, such as
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Lagrangian or Newtonian mechanics, generates high-dimensional models that are dif-

ficult to be used for control systems and estimation design. For many human activities,

high-dimensional motions in physical joint space are highly coordinated and can thus

be represented by low-dimensional latent dynamics [27]. Second, the physical mod-

eling approach is commonly used to describe the robot dynamics. The physical inter-

actions between the human and the robot, such as forceful contacts and coordinated

movements, provide additional properties and constraintsfor both the human and the

robot dynamics. The two modeling methods are complementaryand the integration of

the physical model for the robot and the learning model for human motion naturally

provides a means to capture and incorporate the interactioncharacteristics.

Dimensional reduction and manifold learning methods are used to capture human

motion characteristics for applications such as humanoid robots control [28–30] and

human tracking and activity recognition [14, 21, 31, 32]. Low-dimensional manifolds

are learned and used to capture the high-dimensional human movements. In [15], mo-

tion planning is conducted on the learned skill manifolds without need to build the

analytical robotic models. Embedded skill manifolds are also presented in [33, 34]

to represent and encode human hand motion and compare the motion capability be-

tween the robotic hands with the human hands. Nonlinear dimensionality reduction

and Gaussian process latent variable models (GP-LVM) are used in [33, 34] to obtain

the skilled manifolds.

One potential drawback of using machine learning or data-driven modeling ap-

proach is that commonly used dimensionality reduction algorithms (e.g., principal

component analysis (PCA) or locally linear embedding (LLE)) do not preserve the

physical meaning for the obtained low-dimensional latent variables. It is difficult to in-

terpret these variables and build physical connections with joint angles. To overcome

this shortcoming, we present an axial linear embedding (ALE) algorithm to conduct the

dimensional reduction that preserves the physical interpretation of the latent variables.
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Besides the physical interpretation, the use of ALE also demonstrates superior perfor-

mance than other commonly used dimensional reduction approaches, such as PCA or

LLE [27].

In [14], a Gaussian process dynamic model (GPDM) is proposedto capture high-

dimensional time series data with application to human motion animation. In [23],

a GPBF-LEARN model is introduced to improve GPDM for robotics applications by

incorporating control input and initialization of latent coordinates. A predictive model

in the low-dimensional latent space and an observation model mapping from the latent

space to the high-dimensional data space are presented. Because of the non-convex

optimization in the learning problem, the learned model is subject to local optimum and

hence the initialization (labels) of the latent coordinates is critical for performance. The

GPBF-LEARN approach shows the advantage of labeling latentcoordinates with their

observed values. In this chapter, we adopt GPBF-LEARN’s structure and incorporate

the ALE method for dimensionality reduction to construct physically meaningful labels

for latent coordinates corresponding to the high-dimensional joint angles. Bikebot

riding experiments show that this method outperforms otheralgorithms such as PCA

and LLE for latent coordinates initialization.

The work in [35] try to use both the physical model and the learning model. The

model integration in [35] is different from what we present here in this chapter. In-

stead of establishing the dynamic relationship between theinputs and the outputs, the

learning model in [35] captures the difference between the experiments data and the

predictions by the physical model. Therefore, the learningmodel serves as a correction

to the physical model. Instead, we consider physical and learning modeling approaches

for different types of coupled physical systems (i.e., robot and human body segments,

respectively) and use the physical interactions and constraints to enhance the modeling

accuracy. Such treatment take advantages of both models’ attractive, complementary

properties, such as simple, low-dimensional representation of the latent models and the
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high-fidelity, physically interpretable dynamics models.

Bikebot riding is used as an example to test and validate our modeling method.

Bikebot is an actively controlled bicycle-based robot thatwas developed for studying

human balancing motor skills [5]. We use bicycle-like riding as the testbed primarily

for two reasons. First, riding the bicycle requires the coordinated control of multi-

limb and body movements and thus, offers an attractive platform for studying human

postural balance motor skills. Secondly, the interactionsbetween the rider and the

bikebot are through multiple forceful contacts, such as steering handlebar, seat and

pedaling etc. These interactions provide dynamic and geometric constraints between

the rider and the bikebot. In [36], a pose estimation scheme is presented to real-time

predict trunk and bicycle orientations from the inertial measurement units (IMU) and

seat force sensor measurements. Unlike the work in [36], themain advantage of using

the physical-learning model is that no IMU sensors are needed to attach to rider’s limb

segments.

The remainder of this chapter is organized as follows. The physical-learning mod-

eling approach is presented in Section 2.2. We present the modeling application to

the rider-bikebot system in Section 2.3. The extended Kalman filter (EKF)-based pose

estimation is discussed in Section 2.4 and experiments are presented in Section 2.5.

Finally, we conclude the chapter in Section 2.6.

2.2 Physical-learning modeling framework

2.2.1 Model overview

The integrated physical-learning model uses the physical principles to capture the dy-

namic motion of the robot and the human trunk and the machine learning-based model

to describe the limb dynamic motion. The human-robot interaction forces and geo-

metric constraints are used to integrate the physical and learning models. Figure 2.1
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illustrates the physical-learning pHRI modeling framework.
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Figure 2.1: Concept of the integrated physical-learning pHRI modeling framework.

The physical-learning pHRI model is written asΣpl = Σr×Σt×Σdu×Σdl, where

Σr denotes robot dynamics,Σt is human trunk dynamics andΣdu andΣdl are the upper-

and lower-limb dynamics in the low-dimensional latent space. Note thatΣr andΣt are

obtained through physical principles (e.g., Lagrangian mechanics) whileΣdu andΣdl

are obtained through dimensionality reduction and machinelearning techniques. Let

qr ∈ R
nr andqt ∈ R

nt denote the generalized coordinates (with dimensionsnr andnt)

for the robot and the human trunk motions, respectively. Letqrt = [qT
r qT

t ]
T ∈ R

nt+nr

and the robot-trunk dynamics are obtained as

M(qrt)q̈rt +C(qrt, q̇rt) +G(qrt) = ut , (2.1)

whereM(qrt), C(qrt, q̇rt), andG(qrt) are the inertia matrix, Coriolis and gravity

vectors, respectively, andut is the torque input for human trunk and the robot. In

Section 2.3, we will illustrate how to obtain (2.1) for the rider-bikebot system.

Our choice to use physical models to capture human trunk motion and learning

models for limb motion primarily lies in several considerations. The first consider-

ation is the dimensionality of the trunk and the limb motionsin human locomotions

and activities. For many human activities such as riding a bicycle (bikebot), the trunk
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movement can be captured as a rigid 3 degree-of-the-freedom(DOF) inverted pendu-

lum [36], while the motions of each limb have more than 5 DOFs.It is undesirable

to use physical models to capture the constrained high-DOF limb motions due to their

complexity. Another motivation to use learning models to capture the limb motion lies

in the fact of the coordinated motion pattern among limbs in many human activities,

such as bicycling, walking, running, etc. It is of advantages to use learning models

to capture these coordination characteristics on low-dimensional manifolds rather than

using any constrained physical models.

The dynamics of the bikebot-trunk given by (2.1) are used as the physical models

because the motions are resulted from forces and torques in the pHRI. Moreover, for

the pose estimation applications, we take advantages of thenon-drifting property of

the measured human-robot interactions forces/torques to reduce or eliminate the drifts

due to inertial sensor noises. Integration of the force and inertial measurements pro-

vides a robust means to completely eliminate the estimationdrifts due to inertial sensor

noises [36]. Therefore, using the bikebot-trunk dynamic constraints can improve the

accuracy of the pose estimation as shown in the experiments in Section 2.5. Although

the learning models presented in this work are built on conveniently obtained joint

angles, the physical-learning modeling framework is not restricted to the kinematics

information and the dynamics of limb motions can also be usedand integrated into the

learning models.

2.2.2 Learning model for human limb motion

We adopt machine-learning-based latent dynamic model to represent the limb motion.

The latent dynamic model consists of two parts: a predictivelatent state dynamics and

an observation model that maps low-dimensional latent variables to high-dimensional

joint angles. We denote the latent state variable asx ∈ R
d and the limb joint angles

asy ∈ R
D, whered andD (d ≪ D) are the dimensions of the latent space and
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the joint angels space, respectively. Figure 2.2 illustrates the latent dynamics model

structure. For presentation clarity, we use discrete-timerepresentation for the learning

model. To capture the physical human-robot interaction, a control inputuh ∈ R
nh and

a geometric constraintz ∈ R
nc are used in the latent dynamic model, wherenh and

nc are the dimensions of the control inputs and the constraints, respectively.

Latent
dynamics

Control inputs

and constraints
Observations

x(k − 1) x(k) x(k + 1)

y(k − 1) y(k) y(k + 1)

uh(k − 1) uh(k) uh(k + 1)

z(k − 1) z(k) z(k + 1)

Figure 2.2: A graphical model of the latent dynamics structure.

The latent dynamicsΣl for limb motion are formulated as

δx(k) = f (x(k − 1),uh(k − 1),α) +wp, (2.2a)

y(k) = g(x(k),β) +wo, (2.2b)

whereδx(k) := x(k) − x(k − 1), α andβ are system parameters,wp andwo model

the noises. For training data set{y(k)}N and control input set{uh(k)}N , we estimate

mapsf(·, ·, ·) andg(·, ·) in (2.2) by identifyingα andβ. DenotingX = {x(k)}N ,

Y = {y(k)}N andU = {uh(k)}N , the system identification problem is formulated as

maximizing a-posterior distributionP (X,α,β|Y ,U , X̂). HereX̂ = {x̂(k)}N (i.e.,

label ofX) is used to initializeX in the optimization process.

We adopt the GPBF-LEARN structure to factorize the objective function as

P (X,α,β|Y ,U , X̂) ∝ P (Y |X,β)P (X|U ,α)P (X|X̂)P (α)P (β). (2.3)
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The first termP (Y |X,β) is factorized as the product ofD Gaussian process regres-

sion models with each one corresponding to the regression ofthe ith dimension of

y ∈ R
D. Denotingyi = {yi(k)}N , we have

P (Y |X,β) =
D∏

i=1

P (yi|X,βi) =
D∏

i=1

N (yi|0,Kyi + σ2
ni
I),

whereKyi is anN × N kernel matrix withKyi [p, q] = kyi(xp,xq). A squared ex-

ponential kernel is chosen askyi(xp,xq) = σ2
fi
e−

1

2
(xp−xq)TW i(xp−xq), whereW i is

diagonal matrix for weighting different inputs.βi = {σfi ,W i,σni
} is the hyper-

parameter set trained for theith dimension Gaussian process regression. To model

observation functiong in (2.2b),D-dim GPDM hyper-parameter setsβ = {βi}D are

learned and obtained.

To estimate the latent dynamics (2.2a), we use the Gaussian process model to learn

the regression relationship betweenδxi(k) = xi(k) − xi(k − 1) and s(k − 1) =

[xT (k − 1) uT
h (k − 1)]T , i = 1, 2, · · · , d. Therefore, the second term in (2.3) is

factorized as

P (X|U ,α) =
d∏

i=1

P (xi|U ,αi) =
d∏

i=1

N (δxi|0,Kxi
+ σ2

xni
I),

wherexi = {xi(k)}N , δxi = {δxi(k)}N andKxi
[p, q] = kxi

(sp, sq) is the ker-

nel function for theith dimension of the predictive function (2.2a) andkxi
(sp, sq) =

σ2
xfi
e−

1

2
(sp−sq)TW xi

(sp−sq). Termsαi = {σxfi
,W xi

, σxni
} are the hyper-parameters

learned for theith dimension of the predictive function mappingf . Up tod-dim GPDM

regression hyper-parameter setsα = {αi}d are learned.

The third term in (2.3) is expressed as an identically independent Gaussian distri-

bution with preset observation noise varianceσ2
x̂t
I, namely,

P (X|X̂) =
N∏

i=1

N (x(k)|x̂(k), σ2
x̂(k)I).

This term expresses the confidence of the label of the latent coordinates. With each

term in (2.3) specified, the learning algorithm takes the training dataY andU and
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initial valuesX̂, αini andβini to optimize (2.3) with respect toX, α, andβ. The

optimization process is implemented with a scale conjugategradient algorithm [23].

Constraintsz include the geometric and dynamics relationships and commonly

exist in the physical human-robot interactions. These constraints can be integrated

and incorporated during the stage to obtain the learning models such as the approach

discussed in [37]. In this work, we will use the EKF to fuse various sensing information

for the pose estimation application and the integration of constraintsz into the EKF

design will be presented and discussed in Section 2.4.

2.2.3 Learning model initialization

Because of the non-convexity of the above optimizing process, the initialization ofX

is critical to avoid the local minimums and obtain the correct results. We propose a

novel latent coordinates labeling approach, termed as axial linear embedding (ALE).

The construction of ALE reduction algorithm is inspired by observation that the limb

motion heavily depends on the trunk motion and the limb-robot interactions. This

observation comes from the fact that the two endpoints of each limb are connected to

the trunk (limb-shoulder connection) and the robot (hand- or foot-robot interaction).

For example, when riding a bicycle, two hands are always holding the handlebar and

two feet are always in contact with the pedals. Therefore, the limb segment poses are

mainly determined by the trunk and the bicycle motion.

The ALE algorithm is illustrated in Algorithm 2.1. We construct a set of motion

primitives in latent space. We define an equilibrium pointqe
rt at which the pHRI is at

either stable or comfortable locations. For example, for riding a bicycle,qe
rt is defined

when rider sits on the seat with two arms at comfortable, natural position on handlebars

and bicycle at vertical position and zero steering angle. Atqe
rt, the limb joint angles are

atye. To learn the model effectively, we subtract all the limbs joint angles byye so that

the center of the joint angles space is at zero. We abuse the notation slightly and still
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usey to denote the de-centered joint angles without causing any confusion. Then, we

perturb human’s motion aroundqe
rt by only moving alongjth coordinate direction of

q
j
rt, j = 1, 2, · · · , nrt, nrt = d is the dimension of the latent space, and record the limb

joint angles set{yl}qj
. We call the set of this perturbed motion as thetemplateof qrt,

denoted asTrt = span{qj
rt}. Using the PCA method, we factorize the first principal

component in latent space to obtain{xl}qj
= PCA1({yl}qj

). After nrt experiment runs,

{xl}qj
are obtained for thed-dimensional latent space. This process is shown in lines

1-3 in Algorithm 2.1.

For a training set{y(k)}N , ALE finds the latent labelx(k) for y(k) by first finding

M closest points aroundy(k) that are in the basic movements sets∪nrt
j {yl}qj

(line 4),

approximatingy(k) as a linear regression of theseM points (line 5), and then keeping

this approximation relation in latent space (line 6). This projecting approach is similar

to LLE, which preserves the reconstruction relation of a point relative to its neighbors

in high dimension into the latent space. However, our approach preserves the high

dimensional space reconstruction relation of a point relative to neighboring points on

the axes into the latent space.

Algorithm 2.1: Axial Linear Embedding (ALE)

for j = 1 to nrt do
1 q = qe

rt; y = ye;
2 Perturbq along thejth template ofTrt and obtain limb motion{yl}qj

;

3 {xl}qj
= PCA1({yl}qj

); {xl}qj
= 0; {xj

l }qj
= {xl}qj

;
end
for k = 1 toN do

4 FindM pointsyki s.t.‖yki − y(k)‖2 are theM smallest value for
yki
∈ ∪j=1,··· ,nrt{yl}qj

;

5 wki = argminwki
‖y(k)−∑M

i=1wkiyki‖22,
∑M

i=1wki = 1;
6 x̂(k) = ΣM

i=1wkixki, xki is the latent label ofyki;
end

Note that the equilibrium pointqe
rt of the templateTrt indeed corresponds to the

origin of the latent spacex by the above construction. The ALE constructs the latent
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space with the following properties: (1) origin0 ∈ R
d in the latent space maps to

the equilibriumye ∈ R
D in the limb joint angles space; (2) points in one latent space

axisxi, i = 1, · · · , d, map to the limb poses corresponding to one motion primitivein

templateTrt; and (3) any limb movements can be decomposed onto motion primitives

∪nrt
j {yl}qj

, namely, an arbitrary point in the limb joint angles space isapproximated

by a linear combination of motion primitives. By intentionally choosing motion prim-

itives, the latent axes preserves the physical meaning, namely, the coordinates along

motion primitive directions.

2.2.4 Mapping from the latent space to the physical space

Once the label̂X = {x̂i} is obtained from ALE, we apply GPDM to identify the latent

dynamics model (2.2a) as discussed in Section 2.2.2. High-dimensional joint angles

y(k) are estimated fromx(k). We denote the training data sets for prediction (2.2a) and

observation (2.2b) asT p = {{x(i− 1)}N , {δx(i)}N} andT o = {{x(i)}N , {y(i)}N},

respectively. The latent coordinates are given from the model as

P (δx(k)|s(k − 1),T p) ∝ N (δx(k)|GPµ(s(k − 1),T p), GPΣ(s(k − 1),T p)),

(2.4)

whereGPµ(s(k−1),T p) = kT
∗ (K+σ2

nI)
−1([δx(i)]),GPΣ(s(k−1),T p) = k(s(k−

1), s(k − 1)) − kT
∗ (K + σ2

nI)
−1k∗, and [δx(i)] denotes a column vector obtained

by stackingδx(i). K is implemented withK[p, q] = σ2
fe

− 1

2
(sp−sq)TW (sp−sq), wheresp

andsq are from training data sets.k∗ is realized withk∗[p] = σ2
fe

− 1

2
(s(k−1)−sq)TW (s∗−sp).

The mean value of this distribution is added byye to obtain the estimates of the joint

angles.

In the EKF design in Section 2.4, we need to calculate∂δx(k)
∂x(k−1)

to obtain the Jacobian

matrix of (2.2a). Noting that in (2.4) onlyk∗ in GPΣ(s(k − 1),T p)) is a function of
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x(k − 1), we obtain

∂δx(k)

∂x(k − 1)
=
∂GPµ(s(k − 1),Tp)

∂k∗

∂k∗

∂x(k − 1)
. (2.5)

Similarly, the joint angles are obtained from (2.2b) as

P (y(k)|x(k),T o) ∝N (y(k)|GPµ(x(k),T o), GPΣ(x(k),T o)), (2.6)

whereGPµ(x(k),T o) = kT
∗ (K + σ2

nI)
−1y andGPΣ(x(k),T o) = k(x(k),x(k)) −

kT
∗ (K + σ2

nI)
−1k∗. The Jacobian of (2.2b) is the obtained

∂y(k)

∂x(k)
=
∂GPµ(x(k),To)

∂k∗

∂k∗

∂x(k)
. (2.7)

2.3 Rider-bikebot systems

In this section, we use rider-bikebot interactions as an example to illustrate the physical-

learning modeling framework.

embed. sys. 
CompactRIO 

Camera 

Steering 

Bikebot 
IMU 

Wheel 

Driving 

Handle bar 
sensor 

encoder 

encoder 

Steering 
motor 

Pedal force 
sensor & encodermotor 

High−precision 
antenna 

Gyro−balancer sensor 
Seat force 

Figure 2.3: Bikebot systems configuration.

2.3.1 Bikebot system configuration

Figure 2.3 shows the bikebot system configuration. The bikebot is a modified bicycle

with augmented steering, pedaling and balancing actuationto understand and study hu-

man sensorimotor balancing skills through unstable rider-bicycle interactions [5]. The
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Figure 2.4: (a) Bikebot indoor riding experiment. (b) Bikebot trajectory in one test
riding. (c) Bikebot IMU and seat force sensor. (d) Locationsof the IMU and optical
markers mounted on rider trunk. (e) Bikebot outdoor riding experiment.

bikebot is equipped with various sensors, such as IMU and seat force sensor, as shown

in the figure. When the actuators are not powered, the bikebotfunctions the same as

a regular bicycle. Figure 2.4(a) shows the indoor riding experiments and Figure 2.4(e)

shows the outdoor riding experiments.

Figure 2.5 illustrates the kinematic schematic of the rider-bikebot interactions. The

rider’s upper-body is considered as an inverted pendulum inthree-dimensional (3D)

space with its length, mass, and mass mass moment of inertia denoted ashh, mh, and

Jh, respectively. A ground-fixed inertial frameI (X, Y, Z) is defined with theZ-axis

downwards. A moving frameR (x, y, z) is defined with thex-axis along wheel-ground
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contact pointsC1 andC2, thez-axis along theZ-axis, and the origin atC2. The bikebot

roll and yaw angles and steering angle are denoted asϕb, ψ, andγ, respectively. The

gyroscope on the bikebot frame is tilted by angleα with respect to thex-axis. LetIh
andIb denote the rider and bikebot gyroscope frames, respectively. The orientation

of the trunk is defined by three Euler angles with theX-Y -X ordered rotation from

framesR to Ih: roll angleϕh around thex-axis, angleθ around they-axis, and finally

self-spinning angleφ around thex-axis [36]. The zero-lateral velocity nonholonomic

constraint ofC2 is considered and the bikebot’s velocity is denoted asvrx.

G

H

Bikebot/trunk gyroscopes

XY Z

x

z

y

hs

α

ϕb

I

C1

C2

lu

lf

lb

hh

hbls

ψ

ϕh

θ

φ

γ

η

Figure 2.5: Schematic of the rider-bikebot interaction.

We mainly focus on and present the modeling results for the upper-limb motion

and the lower-limb motion can be similarly obtained. The rider’s upper-limb poses

are specified from the trunk orientation. We define the right and the left upper-arm

poses are given byY -Z-X rotation from the trunk frame (i.e., 3 degree-of-the-freedom

(3-DOF) shoulder joint) with joint angle sets(y1, y2, y3) (left) and(y6, y7, y8) (right),

respectively. The elbow joints are assumed as a 2-DOF joint and the right and the

left fore-arms are obtained byY -X rotations with joint angle pairs of(y4, y5) (left)

and(y9, y10) (right), respectively. The wrist joint is assumed fixed withthe handlebar.

Thus, the upper-limb is modeled as a 10-DOF multi-link. Similarly, the joint angles
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for the lower-limb are denoted asy11 to y20.

2.3.2 The physical-learning model

Physical model for the bikebot and the rider trunk

We define the generalized coordinate for the trunk asqt = [ϕh θ φ]T . Considering

vrx andψ as time-varying model parameters, the bikebot’s generalized coordinate is

qr = ϕb. The bikebot is considered as a rigid body with massmb and mass moment

of inertiaJb around theX-axis. The bicycle mass centerG and the seat position are

located at[lb 0 − hb]T and[ls 0 − hs]T , respectively, inR. The bicycle wheelbase is

denoted asl and the caster angle asη. From [38], the bikebot yaw rate is calculated as

ψ̇ =
vrx tan γ cη

l cϕb

=
vrx cη
l cϕb

us, (2.8)

whereus = tan γ is the steering control input and notationcx := cosx (sx := sin x)

is used for anglex in the above equation and throughout the rest of this chapter.

From (2.8), it is straightforward to approximate and obtainψ̈ ≈ vrx cξ
l
u̇s.

Following the similar development in [36, 39], we take a constrained Lagrange

equation to obtain the motion equation of the rider trunk andthe bikebot in (2.1) with

qrt = [ϕb ϕh θ]
T , where matricesM(qrt), G(qrt), andC(qrt, q̇rt) are given in (2.9)

with simplified trunk self-spinning dynamicṡφ = 0. The control inputut is

ut =

[

−τh τh τθ

]T

,

whereτh andτθ are the torques applied by the rider to the trunk in the roll and the pitch

directions, respectively.
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M(qrt) =





Jb +mbh
2
b +mhh

2
s mhhhhs cϕb−ϕh

sθ mhhhhs sθ−ϕb
cθ

mhhhhs cϕb−ϕh
sθ Jh +mhh

2
h s

2
θ mhh

2
h sθ cθ sθ−ϕh

mhhhhs sθ−ϕb
cθ mhh

2
h sθ cθ sθ−ϕh

Jh +mhh
2
h(1− s2θ s

2
θ−ϕh

)



 ,

C(qrt, q̇rt) =

































ψ̈ cϕb
(mbhblb +mhhsls +mhhhhs cθ) +mbhblbϕ̇bψ̇ sϕb

+

mhhshhϕ̇b(θ̇ cθ cθ−ϕb
+ϕ̇h sθ sϕb−ϕh

) +mbhbψ̇ cϕb
(vrx − hbψ̇ sϕb

)−
mhhsψ̇ cϕb

[ψ̇(hs sϕb
+hh sθ sϕh

)− vrx + hhθ̇ sθ cθ−ϕh
]+

mhhsϕ̇bψ̇ sϕb
(ls + hh cθ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mhhhψ̈ sθ cϕh
(ls/2 + hh cθ)−

mhhh sθ(ψ̇ cϕh
+θ̇ sθ−ϕh

)[ψ̇(hs sϕb
+hh sθ sϕh

)− vrx + hhθ̇ sθ cθ−ϕh
]+

mhh
2
hϕ̇hθ̇ sθ cθ cθ−ϕh

+mhhhhsϕ̇hϕ̇b sθ sϕh−ϕb
+

mhhhϕ̇hψ̇ sθ sϕh
(ls + hh cθ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ̈[mhhh(hs sϕb
+hh sθ sϕh

) sθ cθ−ϕh
+mhhh cθ sθ(ls + hh cθ)]−

mhhhv̇rx sθ cθ−ϕh
+mhhh(ψ̇ sθ−θ̇ c2θ−ϕ̇h cθ cϕh

)[ψ̇(ls + hh cθ)+

ϕ̇bhs cϕb
+θ̇hh cθ sθ +ϕ̇hhh cϕh

sθ]−
mhhh(θ̇ c2θ−ϕh

+ψ̇ sϕh
cθ)[ψ̇(hs sϕb

+hh sθ sϕh
)−

vrx + θ̇(hh s
2
θ sϕh

+hh cθ cϕh
sθ)]−

mhhh cθ(2θ̇ sθ +ϕ̇h sϕh
)(hsϕ̇b sϕb

−hhθ̇ c2θ +hhϕ̇h sθ sϕh
)

































,

G(qrt) = −





(mbhb +mhhs)g sϕb

mhghh sϕh

0



 . (2.9)

Learning model for the upper-limb movement

We capture the 10-DOF upper-limb motion in a low-dimensional latent space. The

rider’s upper-limb orientation and motion during bikebot riding are primarily influ-

enced by three motion templates of the bikebot-trunk system: trunk roll and pitch

motions and the bikebot steering angle motion and therefore, D = 10 andd = 3. For

the same reason, we build the three motion primitives by perturbing trunk roll (ϕh) and

pitch (θ) motions and bikebot steering (γ) motion. For the inputuh in (2.2), we have

uh =
[

γ(t) γ̇(t) ϕh(t) ϕ̇h(t) θ(t) θ̇(t) φ(t) φ̇(t)
]T

.

The interactions between the physical and learning model lie in two aspects. First, the

orientation angles of the rider trunk and the bikebot and their derivatives are taken as the
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input to the latent dynamics. The second interaction is fromthe geometric constraint

and the human anatomical properties that will be presented in the next section.

2.4 EKF-based rider-bikebot pose estimation

In this section, we present an application of the physical-learning model for rider-

bikebot pose estimation. Comparing with the previous studies in [1, 36], one main

advantage of using the physical-learning model is the no need of wearable sensors at-

tached to the limb segments. Both the bikebot and the rider trunk have one tri-axial

gyroscope installed and similar to [36], we obtain the kinematic equations of the gyro-

scope measurements respectively as

ϕ̇b =

[

cα 0 sα

]

ωr =: f1(qrt;ωr), (2.10a)








ϕ̇h

θ̇

φ̇









=









0
sφ
sθ

cφ
sθ

0 cφ − sφ

1 − cθ
sθ
sφ − cθ cφ

sθ









ωt +









sα cθ cϕh

cϕbsθ
0 − cα cθ cϕh

cϕb
sθ

sα sϕh

cϕb
0 − cα sϕh

cϕb

− sα cϕh

cϕb
sθ

0
cα cϕh

cϕb
sθ









ωr

=: f 2(qrt;ωr,ωt). (2.10b)

whereωt andωr are the trunk and bikebot gyroscope measurements, respectively.

Due to the noise in gyroscope measurements, it is notoriously known that directly

integration of (2.10a) and (2.10b) cannot produce acceptably accurate pose estimates.

We need to look for other constraints to reduce or eliminate the integration drifts.

The latent model (2.2a) is considered as predictive dynamics for pose estimation.

With estimated̂x, using prediction model (2.2b), the joint angle estimationis obtained.

We use the dynamic and geometric constraints to fuse the information to enhance the

estimation accuracy. An EKF design is used to fuse the measurements and the model.

Figure 2.6 illustrates the information flow of the EKF design.

The dynamic constraint is obtained by adding the first two equations in (2.1) and (2.9)
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Figure 2.6: The structural and information flow diagram of the physical-learning
model-based EKF design for pose estimation.

z1 = (Jb +mbh
2
b +mhh

2
s +mhhhhs cϕb−ϕh

sθ)ϕ̈b

+(mhhhhs cϕb−ϕh
sθ +Jh +mhh

2
h s

2
θ)ϕ̈h +

mhhh sθ−ϕb
(hs cθ +hh sθ cθ)θ̈ + [(mbhblb +mhhsls +mhhhhs cθ) cϕb

+

mhhh sθ cϕh
(ls/2 + hh cθ)]ψ̈ +mbhblb sϕb

ϕ̇bψ̇ +mhhshh cθ cθ−ϕb
ϕ̇bθ̇ +

(mbhb cϕb
+mhhs cϕb

+mhhh sθ cϕh
)ψ̇vrx − (mbh

2
b sϕb

cϕb
+mhh

2
s sϕb

cϕb
+

mhhshh cϕb
sθ sϕh

+mhhhhs sθ sϕb
cϕh

)ψ̇2 −mhhh sθ[hs cϕb
cθ−ϕh

+

sθ−ϕh
(hs sϕb

+hh sϕh
) + hh sθ cϕh

cθ−ϕh
]θ̇ψ̇ +mhhs sϕb

(ls + hh cθ)ϕ̇bψ̇ +

mhh
2
h sθ cθ cθ−ϕh

ϕ̇hθ̇ +mhhh sθ sϕh
(ls + hh cθ)ϕ̇hψ̇ − (mbhb +mhhs)g sϕb

−
mhghh sϕh

= 0. (2.11)

z2l = Rx(ϕh)Ry(θ)Rx(φ)





lsd
hsd
0



+Rx(ϕh)Ry(θ)Rx(φ)Ry(y1)Rz(y2)Rx(y3)





−lu
0
0





+Rx(ϕh)Ry(θ)Rx(φ)Ry(y1)Rz(y2)Rx(y3)Ry(y4)Rx(y5)





−lf
0
0





−rl(γ) = 0. (2.12)

to eliminateτh as shown in (2.11). In this constraint,ϕ̇h, ϕ̇b, ψ̇, θ̇ are obtained

from (2.10a) and (2.10b), and̈ϕh, ψ̈ θ̈ and ϕ̈b are approximated by numerically dif-

ferentiation with smoothing actions. Calculation of constraint z1 = 0 depends on
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variablesϕb, ϕh, andθ and we compute the output Jacobian matrix from (2.11).

The geometric constraints are from the human anatomical property and the rider-

bikebot interactions. When riding the bikebot, the rider’ship sits on the seat and the

hands always hold the handlebar. Therefore, the trunk, the upper-limb, and the bikebot

frame and steering mechanism form a closed linkage structure. With the known upper-

limb poses, we have one vector equation for the left upper-limb formulated as (2.12).

In (2.12),lsd, hsd, lu andlf are the shoulder width and height, upper-arm and forearm

lengths, respectively,rl(γ) is the position vector from bikebot seat to the left handlebar

position inR andRi(β) represents the 3D rotational matrix around thei-axis with

angleβ, i = x, y, z. We obtain the similar constraint for the right upper-limbz2r = 0

and thus, we have constraints

z2(ϕh, θ, φ,y) =






z2r

z2l




 = 0 ∈ R

6. (2.13)

With the state dynamics (2.10a), (2.10b) and (2.2a) and observations (2.11) and (2.13),

we define the state variableξ = [ϕb ϕh θ φ xT ]T ∈ R
7 and the EKF design is illus-

trated in Algorithm 2.2. In the algorithm, matricesQ(k) andR(k) are the covariances

of the prediction and observation errors at thekth step. Instead of using constant co-

variances, we follow the same treatment in [35] to updateQ(k) andR(k) by (2.4).

Particularly, since the lastd dimensions ofξ are given by the latent variables, only a

block matrix ofQ(k) is updated as shown in line 3 in the algorithm. Because the obser-

vation equations are functions ofy, as shown in line 7, a Gaussian process prediction

covarianceM(k) of y(k) is obtained to calculate the gainK(k). We implement a

Bayesian filter to obtain joint angle predictionŷ.

Remark 2.1. The pose estimation for the lower-limb segments is obtainedsimilar to

these of the upper-limb. To include the lower-limb pose estimation, we augment the

latent variablex ∈ R
6 with additional three elementsx4-x6 and output variabley ∈

R
20 with y11-y20. The input to the lower-limb latent dynamics is the pedal crank angle
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Algorithm 2.2: EKF implementation
Input: qrt(0|0), x(0|0), ωb andωh

Output: Estimatesqrt(k), x(k), andy(k)
1 Initialize variance matricesQ(0), R(0), Σ(0);

while k ≤ N do
2 Updateξ(k|k − 1) = [qT

rt x
T ]T by (2.10) and (2.2a);

3 Q(k)[5:7,5:7] = GPΣ(st−1,T p);
4 F = [fT f1 f

T
2 ]

T ; G(k) = ∂F
∂ξ

∣
∣
ξ(k−1)

with (2.5);

5 Σ(k|k − 1) = G(k)Σ(k − 1)GT (k) +Q(k);
6 Updateẑ(k) with ξ(k|k − 1), y(k − 1) by (2.11)-(2.13) ;
7 M(k) = GPΣ(x(k|k − 1),T o) ;
8 H(k) = ∂Z

∂ξ

∣
∣
ξ(k|k−1)

; N(k) = ∂Z
∂y

∣
∣
ξ(k|k−1)

;

9 K(k) = Σ(k|k − 1)HT (k)
[
H(k)Σ(k|k − 1)HT (k) +

N(k)M(k)NT (k) +R(k)
]−1

;
10 ξ(k) = ξ(k|k − 1) +K(k)(0− ẑ(k));

Σ(k) = (I −K(k)H(k))Σ(k|k − 1);
11 y(k)=BayesianFilter (ξ(k),Σ(k),ẑ(k));

end
function y=BayesianFilter (ξ,Σ,ẑ) ;

12 ŷ = W (ξ); Gw = ∂W
∂ξ

∣
∣
ξ

with (2.7);Qy = GPµ(x,T o);

13 Σ̂w = GwΣG
T
w +Qy; Hw = ∂z

∂y
; K = Σ̂wH

T
w(HwΣ̂wH

T
w +R)−1;

14 y = ŷ +K(0− ẑ);

and angular rate. The geometric constraint for the lower-limb is constructed as the

linkage formed by the lower-limb, the seat and the pedal [37]. We here omit the detailed

discussions.

2.5 Experiments

2.5.1 Experimental setup

Five healthy and experienced bicycle riders (four male and one female with ages: 27±

3 years old, heights: 176± 5 cm, and weights: 68± 10 kg) were recruited to conduct

both the indoor and outdoor experiments. The duration for each riding experiment run

was around 2 minutes. The subjects were first asked to get familiar with the bikebot
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riding before actual experimental data were taken. All subjects signed their informed

consent using a protocol approved by the Institutional Review Board (IRB) at Rutgers

University. Before experiments, all subjects’ biomechanic parameters and the wear-

able sensor locations are measured. In experiments, we usedthree load cells mounted

under the seat to roughly measure the trunk mass. The heightsof the center of the

mass position are assumed to be proportional to trunk lengthand their values are also

estimated through OpenSim, a musculoskeletal modeling anddynamic simulation soft-

ware package1. The model parameters (limb length, trunk mass, etc.) for each human

subject are used in his/her pose estimation designs.

For the bikebot system, steering angleγ and velocityvrx are measured by encoders.

One IMU (model 605 from Motion Sense Inc.) is mounted on bikebot and another one

on the human trunk. We only use the tri-axial gyroscope measurements from these

IMUs. A vision-based motion capture system (8 Bonita cameras from Vicon Inc.)

is used to provide ground truth in indoor experiments. For outdoor experiments, a

camera is mounted on the bikebot handlebar and a set of gyroscope/marker pairs are

mounted on the upper- and lower-limb to provide the ground truth through vision-

inertial fusion algorithms. A real-time embedded system (CompactRIO 9082 from

National Instruments Inc.) is use to sample and process all sensor measurements at

the frequency of 100 Hz. The gyro-balancer actuation is usedonly in the outdoor

experiments to generate perturbation torques to excite therider’s responses.

2.5.2 Experimental results

We conduct indoor bikebot riding experiments to demonstrate the performance of the

EKF-based pose estimation scheme. To construct isolated latent space coordinate axes

in the ALE algorithm, we used the human movement data sets collected by riding

1http://opensim.stanford.edu.
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a stationary bikebot and assume that the riders use the similar upper-limb and trunk

movements and strategies when riding the moving and stationary bikebots. We fixed

the bikebot roll angles at a set of values and the subjects were asked to perturb their

trunk motions in the roll and pitch directions and move theirsteering angles indepen-

dently in separate experiment runs. We collected the motiondata in these experiments

to construct the ALE reduction axes. By doing so, we avoid challenges to perturb the

subjects and excite the isolated body segment motions whileriding and balancing a

moving bikebot. The joint-angle prediction performance presented later in this section

confirms the feasibility to use this method to construct the ALE axes.

We collect camera-based ground truth measurements of two rounds of bikebot rid-

ing experiment to obtain the learning model and the physicalmodel parameters. The

training data set contains a total of 400 pairs of input and output points. For testing and

validation, we use the separate experiments to compute the EKF estimation and com-

pare them with the ground truth. Figure 2.7 shows a one-minute pose estimation of the

bikebot and the upper-limb. We chose a group of five joint angles (y1-y5) for the left

upper-limb as a representative group of all 20 limb joint angles. The right upper-limb

is similar and the lower-limb results are more regular than those of the upper-limbs due

to the periodic pedaling motion. The EKF estimates follow closely with the ground

truth for the bikebot and human body segments orientations.Figure 2.8 further shows

the estimation errors ofy1, y2 andy4 by the EKF scheme and by only the machine-

learning-based prediction model. Clearly, the use of the integrated physical-learning

model improves the estimation performance.

To demonstrate the performance for all ten upper-limb jointangles, Table 2.1 il-

lustrates the estimation errors obtained by EKF scheme withthree model reduction

approaches, including ALE, PCA and LLE. Each element in the table is the mean

value with one standard deviation of the root mean square (RMS) errors obtained by 6

rounds of upper-limb motion over a 20-second period. The input data to the model are
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Figure 2.7: Experimental comparison results among the physical-learning model-based
EKF, learning predictive model, IMU direct integration andthe ground truth by Vicon
system. (a)ϕh. (b) θ. (c)φ. (d)ϕb. (e)y1. (f) y2. (g) y3. (h) y4. (i) y5.

obtained from vision-based motion capture measurements. For most of the upper-limb

joint angles (excepty3), the mean values of the RMS errors by the ALE are smaller

than the corresponding results by the PCA method. The sum of the RMS errors of

all the upper-limb joint angles (i.e.,y1-y10) by the ALE algorithm (sum RMS:36.6)

is also less than those of the other two approaches (sum RMS: PCA: 40.9 and LLE:

57.2). From the statistical significance viewpoint, the t-test of the mean value of the

RMS errors over the ten joint angles confirms significant smaller errors under the ALE

than those under the PCA predictions (p = 0.01) although the t-test of the standard



35

0 10 20 30 40 50 60
−10

−5

0

5

10

15

20

 

 

EKF

Predictive model

Time (s)

e
y
1

(d
eg

)

(a)

0 10 20 30 40 50 60
−15

−10

−5

0

5

10

 

 

EKF

Predictive model

Time (s)

e
y
2

(d
eg

)

(b)

0 10 20 30 40 50 60
−20

−10

0

10

20

30

 

 

EKF

Predictive model

Time (s)

e
y
4

(d
eg

)

(c)

Figure 2.8: Prediction errors for upper-limb poses. (a)y1. (b) y2. (c) y4.

deviation of the RMS errors does not show significantly different between these two

methods (p = 0.43). For comparison purpose, we also list the estimation performance

reported in [1] by using the wearable IMUs attached to each ofthe upper-limb segment

in the same experiment. The performance by the ALE-GPDM model-based prediction

is comparable to the results by using the wearable sensors. The performance of the

estimation results for outdoor is similar to these of the indoor experiments and we omit

the details.

Table 2.1: Root mean square (RMS) errors (in deg) of the EKF-based estimated trunk-
bikebot-trunk poses angles over a 20-second period (in-door experiments) and com-
parison with wearable IMU results from [1].

GPDM ϕh θ φ ϕb y1 y2 y3

ALE 5.0± 1.4 1.4± 0.5 5.1± 0.3 0.5± 0.1 2.2± 0.3 2.8± 0.1 4.9± 1.1

PCA 5.2± 1.9 1.5± 0.5 5.1± 0.6 0.5± 0.1 2.3± 0.4 2.9± 0.5 4.6± 0.5

LLE 5.4± 0.1 1.5± 0.3 5.8± 1.2 0.5± 0.2 3.3± 1.2 3.3± 0.8 6.1± 1.8

IMU 3.2 4.6 3.5 0.7 4.9 4.7 3.0

GPDM y4 y5 y6 y7 y8 y9 y10

ALE 4.5± 0.4 4.2± 0.8 1.9± 0.7 3.9± 0.3 4.1± 0.5 5.0± 1.2 3.1± 0.3

PCA 5.0± 0.2 5.3± 0.9 2.4± 0.8 4.5± 0.9 4.7± 0.5 5.1± 0.8 4.1± 0.4

LLE 9.1± 0.3 7.3± 0.5 2.8± 0.6 5.6± 2.5 8.5± 3.1 6.2± 1.3 5.0± 1.5

IMU 4.7 4.8 4.7 5.2 4.3 4.8 5.2

Figure 2.9 shows the latent dynamics trajectory in the latent space. We plot both the

latent dynamics for the upper-limb motion (Figure 2.9(a)) and the lower-limb motion
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Table 2.2: RMS errors (in deg) of the estimated upper-limb angles over a 25-second
perturbed period in the outdoor experiments.

ϕh θ φ ϕb y1 y2 y3

3.7± 1.1 2.6± 0.7 5.1± 1.4 0.3± 0.1 3.7± 1.6 4.5± 1.9 6.3± 1.1

y4 y5 y6 y7 y8 y9 y10

7.2± 2.0 4.5± 0.8 4.2± 1.2 4.9± 2.0 6.2± 2.1 6.0± 1.7 4.4± 1.0

(Figure 2.9(b)) during the indoor experiments. In these plots, we used a constant value

σx̂ = 0.1 for the preset observation noice variance. Because of the similar anatomical

structures, like the upper-limb, a three-dimensional (d = 3) latent space is chosen for

the lower-limb pedaling motion. Due to the periodic pedaling movement, the trajec-

tory of the latent dynamics (x4-x6) of the lower-limb is periodic, while the upper-limb

trajectory in the latent space (x1-x3) is non-periodic. Therefore, the pose estimation

scheme using the learning model can predict both the periodic and non-periodic hu-

man movements. The learning model such as GPDM has also been used and reported

to capture other non-periodic human motion such as dancing and playing golf, etc. [14].
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Figure 2.9: Trajectory of the latent dynamics for indoor riding experiments. (a) Upper-
limb motion. (b) Lower-limb motion.

The rider-bikebot interaction is through a set of geometricconstraints and these in-

teraction constraints are shared by different human subjects. Built on this observation,

we use the latent dynamic model built from one subject to estimate the joint angles
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of the other subjects during bikebot riding experiments. Tables 2.3 and 2.4 list the

mean and one-standard deviation of the RMS errors of the estimated joint angles for

the upper-limb (y1 to y10) and the lower-limb (y11 to y20), respectively, for five human

subjects in indoor and outdoor experiments. From these results, we clearly see that the

latent dynamic model captures the rider-bikebot interactions and predicts other riders’

riding motion although the model is built on one rider.

Table 2.3: RMS errors (in deg) of the estimated upper-limb angles over a 1-minute
period in the indoor and outdoor experiments.

ϕh θ φ ϕb y1 y2 y3

Indoor 6.4± 1.8 1.5± 0.2 7.6± 3.1 0.6± 0.2 2.6± 0.3 4.2± 0.9 5.9± 0.9

Outdoor 7.7± 1.0 2.0± 0.7 9.6± 0.4 0.8± 0.2 2.9± 0.3 4.9± 0.7 6.4± 0.9

y4 y5 y6 y7 y8 y9 y10

Indoor 5.3± 0.8 5.1± 0.7 2.8± 0.5 4.4± 1.2 3.9± 0.2 5.6± 0.1 3.0± 0.4

Outdoor 6.0± 2.0 5.2± 0.5 2.9± 0.4 4.7± 0.8 4.5± 1.3 6.3± 1.1 3.1± 0.5

Table 2.4: RMS errors (in deg) of the estimated lower-limb joint angles over a 1-minute
period in the indoor and outdoor experiments.

y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

Indoor 2.8± 0.1 4.4± 1.0 3.2± 0.2 2.8± 0.5 3.1± 1.8 2.4± 0.4 5.3± 0.7 3.8± 0.4 2.6± 0.7 2.8± 0.3

Outdoor 3.2± 0.8 4.8± 1.4 3.7± 1.0 3.2± 0.8 4.2± 2.5 3.6± 1.8 5.8± 0.9 4.6± 1.5 3.4± 1.0 3.1± 0.7

We further demonstrate the estimation performance for bikebot riding under per-

turbation. In experiments, the human rider was not informedwhen and how the per-

turbation torques would be generated and applied by the gyro-balancer. Under the

perturbed external torque, the rider apply recovering strategies (e.g., trunk movements

and steering) to keep the bikebot stable. Figure 2.10 shows the experimental results of

the applied perturbation torque and rider’s reactions. Theperturbation starts around 10

seconds and clearly the rider uses steering to react and keepbalancing the platform.

Figure 2.10(a) shows the perturbed external torque by the gyro-balancer and the rider’s
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reacted steering angle, Figure 2.10(b) shows the estimatedand actual bikebot roll an-

gles, while Figure 2.10(c) shows the estimated and actual rider’s trunk roll angles. The

estimated bikebot and human roll angles follow the true values closely. The RMS er-

rors of the estimated upper-limb joint angles are listed in Table 2.2 and the estimation

accuracy is similar to that in Table 2.3 obtained in normal riding experiments without

perturbation. These results confirm that the estimation scheme predicts pose estimation

under perturbed, dynamic riding experiments.
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Figure 2.10: The prediction results under the perturbed bikebot riding experiments. (a)
The generated perturbation torque and the steering angle. (b) Bikebot roll angles. (c)
Rider trunk roll angles.

Table 2.5: RMS errors (in deg) of the estimated upper-limb angles over a 1-minute pe-
riod (indoor experiments) by the GP model and the geometric and dynamic constraints
only.

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

GP 2.8± 1.4 3.9± 1.7 5.3± 1.7 6.8± 3.0 4.4± 1.6 2.9± 0.7 2.7± 1.0 4.7± 1.4 6.2± 3.2 3.2± 0.8

Constraint11.7± 2.5 6.3± 2.7 13.3± 1.6 10.0± 1.9 9.3± 1.4 12.9± 3.2 7.0± 1.6 12.9± 4.6 8.3± 3.3 6.9± 3.3

2.5.3 Discussions

From Figure 2.7, we notice that the upper-limb motion duringbikebot riding are re-

strictive within a range of 30 degrees. These restrictions are coming from the fact that

the human hands are fixed on the steering handlebar while the other ends of the upper-

limb are connected to the human trunk. With this observation, it might be possible



39

Table 2.6: RMS errors (in deg) of the estimated upper-limb angles by various models
for bicycle riding with elastic strings.

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

GPDM/ALE 11.1 ± 3.1 3.7± 0.3 14.3 ± 7.1 8.5 ± 2.3 4.7 ± 0.9 7.4± 0.7 4.3 ± 1.0 7.5 ± 1.4 9.5 ± 0.6 6.8± 1.4

GPDM/PCA15.2 ± 6.3 5.9± 1.5 17.8 ± 7.0 8.2 ± 1.5 3.1 ± 0.6 13.8 ± 1.4 6.7 ± 3.4 14.6± 2.3 11.7± 1.8 6.2± 0.5

GP 17.1 ± 5.6 8.2± 2.7 44.3 ± 32.0 33.3± 8.6 10.9± 3.7 22.0 ± 10.9 10.4 ± 2.9 11.5± 3.0 31.0± 6.9 24.3 ± 15.2

Constraint 12.8 ± 3.3 38.7 ± 2.0 22.6 ± 5.4 32.0± 1.6 8.1 ± 2.5 15.2 ± 2.5 13.5 ± 0.9 34.2± 7.3 34.9± 3.0 11.6 ± 2.3

to obtain the upper-limb poses through a simple Gaussian process (GP) model to map

from the trunk and steering angle data set, or even only usinggeometric constraints

z2 and dynamic constraintsz1. We compare the prediction results of the upper-limb

poses by using the GPDM and a simple GP model. Table 2.5 shows the comparison

results for the upper-limb joint angles estimation under the GP model and the only

constraint-based approach. Comparing with the similar indoor prediction results by

the GPDM shown in Table 2.3, it is clear that the GPDM and the GPapproaches result

in similar performance (sums of RMS errors are equally42.8.) Indeed, the t-test of

the mean value of the RMS errors over the ten joint angles shows no significant differ-

ence between the GPDM and the GP model predictions (p = 0.49). From Table 2.5,

we also observe that only with the geometric and dynamic constraints, it is difficult to

accurately obtain the pose estimation (i.e., large estimation errors) due to limb motion

redundancy.

We conduct additional experiments to further demonstrate the application of the

GPDM with comparison of the GP model to human motion with greater variance and

less constraints. Figures. 2.11(a) and 2.11(b) illustratethe new riding experiments

that were conducted to extend the upper-limb motion with large flexibility. In the

new experiments, instead firmly grasping the steering handlebar, the subject was asked

to ride and steer the bicycle with hands holding a pair of elastic strings fixed on the

handlebar; see Figure. 2.11(b). The subject moved his limb arbitrarily for multiple

riding experiments runs inside a laboratory; see Figure. 2.11(a).

With this setup, rider’s hands can flexibly move along thexx′ andzz′ directions
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during riding as shown in Figure. 2.11(b). This gives greater variances and less con-

straints than that in regular riding style. The less constrained hands positions can

be observed by the dynamically changing handlebar steeringangleγ and the actual

hand steering angleγ′ calculated by the marker positions on the human hands. Fig-

ure. 2.12(a) shows the differences betweenγ andγ′ and these differences generate the

large variance in upper-limb joint angles.

Elastic 
strings

(a)

x
x

x′
x′

z
z

z′z′

(b)

Figure 2.11: (a) Riding a bicycle with two hands on elastic strings tied on the steering
handlebar. (b) A close view of the hands on the elastic strings with flexibility along the
xx′ andzz′ directions.

We compare the prediction performance of the GPDM and the GP model trained

with data sets from the new experiments. Same as in the previously studies, we con-

structed all the GPDM and the GP models by using the bicycle steering angle and

human trunk angles as the inputs for the new experiments. Therelative positions of

human hands to the handlebar are not used to predict the jointangles. The geometry

constraints are assumed to be the same as in the previous experiments but with larger

constraint uncertainties.

Table 2.6 lists the comparison results of the joint angle predictions under these two

models for multiple runs. For the GPDM, we list two reductionmethods (i.e., ALE

and PCA). For comparison purposes, we also compute and list the prediction results by

only enforcing the geometric and dynamic constraints in Table 2.6. When we use the
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Figure 2.12: Upper-limb pose estimation comparison among various modeling ap-
proaches for new experiments. (a) Handlebar steering angleγ and human hands steer-
ing angleγ′. (b) y1. (c) y2. (d) y3. (e)y4. (f) y5.

geometric and dynamic constraints in the EKF design, we treat the joint angle predic-

tive models as constants with additive Gaussian noises. Theuse of the ALE reduction

in GPDM generates more accurate results in almost all joint angles than those under

the PCA reduction method (sums of RMS errors are77.8 and 103.2, respectively).

The t-test results of the mean value and standard deviation of the RMS errors over

the ten joint angles show significantly smaller under the GPDM-ALE than those under
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the GPDM-PCA predictions (p = 0.01 andp = 0.05, respectively). We also see the

significantly superior performance of the GPDM ALE approachthan those with the

GP model (sums of RMS errors are77.8 and213, respectively). The GP model and

the only constraint-based approach cannot accurately predict most of the upper-limb

joint angles. As one example, Figures. 2.12(b)-2.12(f) shows the joint angle estima-

tionsy1-y5 of one subject riding experiment under the GPDM-ALE, the GP model and

the only constraint-based approach. We clearly see that theGP model and the only

constraint-based scheme cannot capture the joint motion accurately in these experi-

ments, particularly for joint anglesy3-y5.
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Figure 2.13: Prediction error of the model trained with different latent space observa-
tion noise uncertainty levelsσx̂

During the latent variable initialization process, we chose the preset observation

noise valueσx̂ = 0.1 of the variance ofP (X|X̂) during training. To illustrate the

influence of the valueσx̂ on the estimation results, Figure 2.13 shows the RMS errors

of the ten predicted joint angles of the upper-limb poses (mean and one standard devia-

tion) using different values ofσx̂ during the training process. In the plot, the prediction

is calculated using five different runs of the upper-limb motion during bikebot riding.

From the results in Figure. 2.13, we clearly see that the prediction performance is al-

most kept at a constant level until theσx̂ values increase to100. Figure 2.14 further

illustrates the comparison of the trajectories of the latent space variables(x1, x2, x3)
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Figure 2.14: Trajectories of the latent space variables(x1, x2, x3) for the upper-limb
motion using different values ofσx̂. (a) Directly from the ALE algorithm. (b) With a
labeling uncertaintyσx̂ = 100.

for the upper-limb motion initially obtained ALE (Figure 2.14(a)) and with labeling

uncertainty atσx̂ = 0.1 (Figure 2.9(a)) andσx̂ = 100 (Figure 2.14(b)). These plots

clearly show that the larger values ofσx̂ result smoother latent variable trajectories.

The learning model with large values ofσx̂ tends to possibly generate worse prediction

results as shown in Figure 2.13 forσx̂ = 100. Noting that the values of the latent

space variables(x1, x2, x3) generated by the ALE algorithm are all within(−2, 2), we

therefore choseσx̂ = 0.1 in our implementation.

The EKF estimation convergence ofϕh andϕb partially comes from constraint

z1 = 0 in (2.11) obtained from the systems dynamics. To demonstrate the impact of

the dynamic and geometric constraints on the states estimation, we relax either of two

constraints and compare the estimation results with these under the full constraints.

Figure 2.15 shows the mean and standard deviation of the poseestimation with and

without constraints (2.11) or (2.13). We observe that the dynamic constraint (2.11)

mainly influences the accuracy ofϕb estimation and the geometric constraint (2.13)

mainly affects the estimation accuracy of the trunk and the upper-limb joint angles.

This observation can be explained by the sensitivity calculation of these constraints

with respect to each state variable. Moreover, the observability matrix of the EKF state

dynamics with the geometric constraint always has a full rank (we omit the calculation
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Figure 2.15: The pose estimation errors with and without constraints.

here) and therefore, the EKF design satisfies the necessary convergence condition.

To validate the bikebot-trunk dynamics, Figure 2.16(a) shows the comparison of

the values of torqueτh calculated by (2.9) with these measured by the seat force sensor

in a straight-line riding experiment. The measured torque values match the model pre-

dictions. One attractive property to use constraintz1 = 0 in (2.11) instead of dynamic

equations (2.9) is the no need to use force or torque measurements. To validate con-

straint (2.11), Figure 2.16(b) plots the means and one standard deviations of the values

of z1 over one-minute riding experiments by five human subjects. Clearly, the values

of z1 are around zero and the variations can be captured through the noise term in the

EKF design.

To understand the influence of the size of the training data set on the estimation

performance, Figure 2.17 shows the sum of root mean square ofthe estimation errors

of all ten upper-limb joints over the number of training datapoints. We notice that the

estimation performance is consistent after the numbers of the used training data points

are greater than a threshold (e.g., around 200 data points).Moreover, the proposed

EKF design is not sensitive to the choice of the initial valueof state variables. For

example, we use two different means to initialize the state variables: one is to use

average value for each variable to initialize each variableand the other is to use accurate
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Figure 2.16: (a) Rider upper-body torqueτh model comparison from a straight-line
riding experiment. (b) Dynamic constraintz1 = 0 variation (mean and one standard
deviation) over five-subject experiments.

measurements. The resulting EKF estimation performance (RMS errors) are listed in

Table 2.7 for a one-minute riding experiment. No significantperformance differences

are observed between these two cases.

Table 2.7: RMS errors (in deg) of each estimated angle over a 1-minute experiment run
with different initial values.

Init. val. ϕh θ φ ϕb y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Approx. 5.3 1.7 5.3 0.5 2.4 3.6 5.1 5.3 4.4 2.0 4.0 4.2 5.1 3.0

Measure 5.0 1.5 4.9 0.4 2.3 3.0 5.1 4.6 4.2 2.0 3.7 4.2 5.1 3.0
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Figure 2.17: The RMS of all estimated ten upper-limb joint angles vs. the training data
points.

2.6 Summary

We presented an integrated physical-machine learning modeling approach for physical

human-robot interactions. In this modeling framework, physical models were used to

capture the robot and human trunk dynamics while a machine-learning-based model

was used to describe the highly redundant, high-DOF limb motion on low-dimensional

latent space. Coupled interconnections and constraints were built between these two

models. For dimensionality reduction, we presented a novelaxial linear embedding

(ALE) method. The main advantage of the proposed modeling approach was to repre-

sent the pHRI on the low-dimensional manifold and to enable the use of the existing

estimation and control techniques effectively applied to complex pHRI. The new ALE

reduction algorithm also preserved the physical meaning ofthe latent variables of the

learning model. We illustrated and demonstrated the modeling framework through

bikebot riding experiments with application to estimate the human and bikebot poses.

We also compared the limb pose estimation performance of theproposed GPDM-ALE

and the simple GP model. The comparison results demonstrated that the GPDM-ALE

outperformed the GP model for physical human-bikebot interactions with large vari-

ance and less constraints. The attractive properties of using the proposed model is that
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even without attached any wearable sensors on the limb segments, the model-based

estimation scheme predicted the limb motion accurately.
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Chapter 3

Hybrid Zero Dynamics of Biped Walking with Foot Slip

3.1 Introduction

Foot slip is one of the major causes for human falls and injuries and these foot slip-

induced falls cause enormous economic and societal costs [40]. To develop effective

fall prevention technologies, it is critical to understandhuman locomotion and balance

recovery under foot slip. Modeling and control of human walking locomotion are

necessarily effective approaches to design new wearable assistive devices.

Several modeling approaches have been proposed in the past for human walking

locomotion with foot slip. Simulation-based dynamic modelis used in [41] to study

motion stability of slip and fall. Robotic bipedal models [11, 42] are recently used

to study human walking motion. For example, multi-link biped models are presented

in [43,44] to generate the human walking gaits with point foot-ground contact. In [44],

curved foot is considered with a robotic bipedal model to demonstrate a controlled

energy-efficient robotic walker. In these studies, the human bipedal model is given

in a hybrid dynamics framework where foot impact generates the discrete event while

single-stance or double-stance gait motions are in continuous time domain. The repet-

itive human walking gait is indeed captured by the hybrid zero dynamics (HZD) when

the gaits follow the desired profiles. Most existing bipedalmodels are built on an as-

sumption of no slip foot-ground contact and cannot be used for studying human gaits

with foot slip.
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In recent work [2], a multi-link robotic bipedal model is presented for human walk-

ing with foot slip. The model extends the bipedal framework in [11,43,44] by relaxing

the foot sticking to ground condition and also equipping with circular rolling foot. The

work in [2] however neither discusses in details about the resulting HZD under foot

slip nor presents how to use this model for slip recovery control design. On the other

hand, the work in [45] propose a slip recovery control designusing a two-mass linear

inverted pendulum (LIP) without considering whole-body dynamics.

For multi-link bipedal robotic walkers, the HZD-based control design has been

implemented on many platforms [44,46–49]. However, all of these work is built on the

assumption of no foot slip and the HZD includes only the dynamics of the progressing

variableθ and its derivative. When foot slips, the resulting HZD contains additional

state variable (i.e., slipping distance and velocity) and the dynamics are much more

complicated than non-slip case [2]. One of main goals of thischapter is to present this

HZD model and its properties. Moreover, we also use the HZD model to study the

stability condition and design for slip recovery process.

Several control methods are used to design the gait recoverystrategies under foot

slip. In [2], a feedback linearization controller is applied to the multi-link whole-body

robotic model to track the human gait profiles that are obtained from experiments.

The balance recovery strategy in [45] uses the LIP model to design controllers of the

center of pressure (COP) position for each gait phase to maintain the desired motion

for human center of mass (COM).

In this chapter, we mainly focus on the HZD for human walking gaits under foot

slip. The HZD is built on the multi-link robotic bipedal model for human walking

under foot slip in [2]. We explicitly calcuate and present the HZD that consists of

dynamics of the gait progression variable and the slipping distance. We then discuss

the HZD stability conditions and properties under a set of slip recovery gait process

that are obtained from human subject experiments. The main contribution of the work
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lies in the new HZD model and its application to human walkingunder foot slip. The

results in this chapter complements the existing literature on human bipedal models and

gait control. One interesting application of this chapter is to apply the HZD on highly

skilled human locomotion such as figure skating in which a stable, agile locomotion is

achieved by actively taking both the foot slipping and walking gaits.

The remainder of this chapter is organized as follows. In Section 3.2, we review

the robotic bipedal models for human walking without and with foot slip. Section 3.3

presents the HZD for human walking with foot slip and slip recovery process. We

present experimental results in Section 3.4. Finally, the concluding remark and future

work directions are discussed in Section 3.5.

3.2 Bipedal walking models and hybrid zero dynamics

3.2.1 System configuration

Figure. 3.1(a) shows the setup for the human bipedal model. The human gait is consid-

ered only in the sagittal plane. The human body is consideredas a 7-link rigid body.

The head, arm and torso (HAT) is considered as one link that isconnected to the left-

and right-thigh. Six active joints include two hip joints, two knee joints and two ankle

joints. Similar to [44], letqi, i = 2, . . . , 7, denote relative angles between links andq1

denote absolute angle of stance thigh with respect to the vertical direction.

The joitn angle vector is defined asqa = [q1 · · · q7]T . A circular foot is consider

with a rolling radiusR on the solid ground; see Figure. 4.1(b). To capture the foot slip

motion, we denote the position of the circle centerOr of the stance foot as[xo, yo]T .

The foot slip distance isqs = [xs, ys]
T = [xo + R(φ − φ0), yo − R]T , whereφ is the

absolute rolling angle of the stance foot andφ0 is the value ofφ at the initial time of

that stance.q̇s = [ẋo + Rφ̇, ẏo]
T is the slipping velocity. If the stance foot is purely

rolling on the ground,qs = 0. We define generalized coordinateqe = [qT
a , q

T
s ]

T and
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its velocityq̇e = [q̇T
a , q̇

T
s ]

T . Denoting the velocity of the lowest point on the swing foot

as ṗ2, thenṗ2 = [ẋo2 + Rφ̇2, ẏo2]
T , where[xo2 , yo2]

T is the center of the swing foot

circle andφ2 is the absolute angle between the swing foot and the verticaldirection.

x

y

q7

q1

−q2
−q3−q4

q5

q6

ClCt

H

(a)

Ankle joint

Or(xo, yo)

R

S T

C

φ

(b)

Figure 3.1: (a) Schematic of the 7-link human walking model with curved foot contact.
(b) Schematic of the foot-contact model.

One human walking cycle consists of a single-stance phase, adouble-stance phase

and a foot impact phase [11]. Since it contains majority of the stance duration, only

single-stance phase and foot impact dynamics are considered in this study. This sim-

plification also helps to highlight the hybrid zero dynamics(HZD) of slip recovery

process in later discussion. Figure. 3.2 captures the basiccharacteristics of the discrete-

continuous dynamics.

Slip
S.S.S.S.

NoSlip

Hr
s

Hn
n

Hs
n

Hs
s

Sn Ss

Figure 3.2: Finite state diagram of human walking gait with foot slip.
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3.2.2 Biped dynamics without foot slip

Dynamics model

The non-slip single-stance dynamics is described as [11]

Σn : Dn(qa)q̈a +Cn(qa, q̇a)q̇a +Gn(qa) = Bnu, (3.1)

whereDn(qa), Cn(qa, q̇a), Gn(qa) andBn are the inertia, Coriolis, gravity and input

mapping matrices, respectively. The system is underactuation and absolute joint angle

q1 is not controlled by any joint torque. Therefore we haveBn = [0N−1 IN−1]
T , where

0n = [0 · · · 0]T ∈ R
n is a zero column vector. A feedback linearization approach is

adopted to control the joint anglesqa to follow a desired trajectory that is specified by

a progression variableθ = cqa, wherec is a constant progression vector. The feedback

linearization controller enforces the virtual constraint

y = h(qa) = H0qa − hd(θ) = 0, (3.2)

whereH0 ∈ R
6×7 and functionhd : R 7→ R

6. At the end of single-stance phase, the

swinging foot impacts the ground and becomes the new stance leg in the next single-

stance phase.

The impact dynamics is obtained by integrating the double stance dynamics equa-

tion

Σe : De(qe)q̈e +Ce(qe, q̇e)q̇e +Ge(qe) = Beu+ET
2 (qe)δF 2, (3.3)

over the instantaneous impact time, whereE2(qe) =
∂ṗ2

∂q̇e
(qe) is the Jacobian matrix of

impacting foot contact point velocitẏp2 with respect tȯqe, δF 2 = [δF2x, δF2y]
T is the

force applied on the impacting foot.

In [11], the integration of the Coriolis, gravity and input torques terms are ne-

glected resulting in the impact dynamics as

De(q
−
e )q̇

+
e −De(q

−
e )q̇

−
e = ET

2 (q
−
e )F 2 (3.4)
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whereF 2 =
∫ t+

t−
δF 2(τ)dτ .

Even though this model is accurate for periodic normal walking gait, it is not valid

for the impact from slip gait to recover gait demonstrated inthe experimental data. For

a more general nonslip impact model, we do not neglect the integration of the input

torques and obtain

Hn
n : De(q

−
e )q̇

+
e −De(q

−
e )q̇

−
e = ET

2 (q
−
e )F 2 +M (3.5)

,whereM =
∫ t+

t−
Beu(τ)dτ is a constant determined from experimental data. If the

foot ground friction is big enough so that the impacting footsticks to the ground after

the impact, the velocity constraintE2(q
−
e )q̇

−
e = 0 satisfies. Combining these two

equations, the full nonslip impact dynamicsHn
n is

Hn
n :







De(q
−
e ) −ET

2

E2 02













q̇+
e

F 2






=







De(q
−
e )

02






q̇−
e +







M

02






. (3.6)

whereE2 =
∂ṗ2

∂q̇a
(qa) is the Jacobian matrix of impacting foot contact point velocity ṗ2

with respect toq̇a, F 2 = [F2x F2y]
T is the impulsive force applied on the impacting

foot. The matrix on the left-hand side of (3.6) is invertibleand after considering the

relabeling of stance foot, we have

q̇+
a = SIqa







De(q
−
e ) −ET

2

E2 02







−1 





De(q
−
e )

02






q̇−
e + SIqa







De(q
−
e ) −ET

2

E2 02







−1 





M

02







= ∆n(q
−
e )q̇

−
e + bn, (3.7)

whereS is the relabel matrix,Iqa
picks q̇+

a from [q̇+,T
e ,F T

2 ]
T . Because the new stance

foot sticks to the ground,̇q+
e = [(q̇+

a )
T 02]

T and if the previous step before impact is

nonslip, we also havėq−
e = [(q̇−

a )
T 02]

T . More detailed information about the dynamic

model can be find in [11,44].
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Zero dynamics

The non-slip swing phase zero dynamics is obtained by enforcing the states of (3.1)

onto the virtual constraint (3.2). Following a similar treatment in [44], we definexa =

[qT
a q̇T

a ]
T and re-write (3.1) into a first order equation

ẋa = f (xa) + g(xa)u, (3.8)

where

f(xa) =







q̇a

−D−1
n (Cnq̇a +Gn)






, g(xa) =







0

D−1
n Bn






.

By feedback linearization, we consider a coordinate transformation

η1 = h(qa),η2 = Lfh(qa), ξ1 = θ(qa), ξ2 = Da(qa)q̇a, (3.9)

whereLfh(qa) is the Lie derivative ofh(qa) alongf , andDa(q) ∈ R
1×7 is formed

by the row ofDn(q) that corresponds to the unactuated joint angleq1. If we choose

u = (LgLfh)
−1(−L2

fh+ v) andv is chosen to regulateη1 = η2 = 0 exponentially,

then output dynamics becomes

η̇1 = η2, η̇2 = v. (3.10)

The zero dynamics is given as

Σn
ZD :







ξ̇1 =
∂θ
∂qa

q̇a =: k1(ξ1)ξ2,

ξ̇2 = q̇T
a
∂DT

a

∂qa
q̇a −Caq̇a −Ga =: k2(ξ1, ξ2).

(3.11)

The transformation of output statesη := [ηT
1 ηT

2 ]
T and internal statesξ := [ξ1 ξ2]

T

to joint angle statesxa is obtained as






η1

ξ1






=







h(qa)

θ(qa)






=: Φ(qa),







η2

ξ2






=







∂h(qa)
∂qa

Da(qa)






q̇a (3.12)
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and the inverse transformation is

qa = Φ−1













η1

ξ1












, q̇a =







∂h(qa)
∂qa

Da(qa)







−1 





η2

ξ2






. (3.13)

Whenη = 0,xa is a function of onlyξ and the right-hand side of (3.11) can be written

as function ofξ.

Stable HZD of periodic walking

Getting onto the swing phase virtual constraint does not guarantee the stable periodic

walking gait. To guarantee the stable periodic walking, Thepre-impact swing phase

states should be mapped to swing phase zero dynamics space again under the impact

mapping (3.7). Mathematically, it is expressed as [11]

∆n(S ∩ Zαn) ⊂ Zαn , (3.14)

whereS is the configuration space where both feet are contacting theground andZαn

is the swing phase zero dynamics space. Assuming the pre-impact zero dynamics state

is ξ−, the pre-impact full state isx−
a by applying (3.13) withη = 0. The post-impact

state is obtainedx+
a by (3.7). The hybrid invariant set across impact reqires that the

after-impact state is still on the zero dynamic space, namely,

η1 = h(q+
a ) = 0, η2 =

∂h

∂qa

(q+
a )q̇

+
a = 0.

3.2.3 Biped dynamics with foot slip

The equations of motion for biped with foot slip is obtained as [2]

Dsq̈e +Csq̇e +Gs =







Bsu

F s






, (3.15)
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whereDs, Cs, Gs andBs are the inertia, Coriolis, gravity and input mapping ma-

trices, respectively, andF s = [Fx Fn]
T is the foot contact force. With several con-

straints [2], (3.15) is simplified by definingqes = [qT
a xs]

T

Σs : Ds
sq̈es +Cs

sq̇es +Gs
s = Bs

su, (3.16)

whereDs
s, C

s
s, G

s
s andBs

s are detailed in [2].

System (3.16) is underactuated and indeed the absolute joint angleq1 and the slip-

ping distancexs are two underactuated variables. We will discuss the HZD for(3.16)

in the next section. The impact model under foot slip is obtained from the extension

of non-slip case. Assuming that at the instant after the impact the touching point slips

with ṗ+
2 = [ẋ+s 0]T , from ṗ2 = E2q̇e, we obtain

Hs
n :







De(q
−
e ) −ET

2

E2 0













q̇+
e

F T
2






=











De(q
−
e )q̇

−
e

ẋ+s

0











. (3.17)

Compared with (3.6), one more unknownẋ+s is introduced. We here use the friction

coefficient to relate impulsesF2x = −µF2y because of the friction model and the

integration over instantaneous impact time. Considering relabeling, we have

q̇+
e =











q̇+
a

ẋ+s

0











= ∆s(q
−
e )q̇

−
e , (3.18)

where∆s denotes the foot-slip impact mapping matrix.

3.3 Hybrid zero dynamics of slip recovery

In this section, we first present the hybrid zero dynamics forbipedal walking with foot

slip. Then, we discuss a set of slip recovery phases to regainthe walking balance. The
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recovery phase sequence is observed in human experiment. Finally, we introduce the

stability of slip recovery sequence.

3.3.1 Zero dynamics of slip swing phase

The slip swing phase dynamics (3.16) has two degrees of underactuation, i.e., the ab-

solute joint angleq1 and the slip distancexs. The6-dimension virtual constraint for

slip swing phase is

y = hs(qa) = 0. (3.19)

Similar to the non-slip case, definingxes = [qT
es, q̇

T
es]

T , (3.16) can be written as

ẋes = f s(xes) + gs(xes)u (3.20)

where

f s(xes) =







q̇es

−(Ds
s)

−1(Cs
sq̇s +Gs

s)






, gs(xes) =







0

(Ds
s)

−1Bs
s






.

Defining the state transformationηs = [ηT1s, η
T
2s]

T = [hs(qa), Lfs
hs]

T , we use the

feedback linearization to obtain the output dynamicsη̇1s = η2s, η̇2s = v, wherev is

the new control input to driveηs to zero exponentially. We define the zero dynamics

states as

ξ1s = θs(qa), ξ2s = Ds
sq(qa)q̇es, x1s = xs, x2s = Ds

sx(qa)q̇es (3.21)

whereDs
sq(qa) andDs

sx(qa) are the rows inDs
s(qa) that correspond to the unactuated

angleq1 and slip distancexs respectively. Note thatDs
s(qa) does not depend onxs.
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Similar to (3.12), we obtain the coordinate transformationbetween the new coor-

dinatesηs, ξs, andxs = [x1s x2s]
T with the original statesxes as











η1s

ξ1s

x1s











=







Φs(qa)

xs






,











η2s

ξ2s

x2s











=











∂hs

∂qa
0

Ds
eq(qa)

Ds
ex(qa)











︸ ︷︷ ︸

λ(qa)

q̇es = λ(qa)q̇es,

whereΦs(qa) = [hs θs]
T and the inverse transformation is

qes =







qa

xs






=











Φ−1
s













η1s

ξ1s













x1s











, q̇es = λ−1(qa)











η2s

ξ2s

x2s











. (3.22)

The zero dynamics is given as

ξ̇1s =
∂θs
∂qa

q̇a, ẋ1s = ẋs, (3.23)

ξ̇2s = q̇T
es

∂(Ds
eq)

T

∂qes

q̇es −Cs
eqq̇s −Gs

eq (3.24)

ẋ2s = q̇T
es

∂(Ds
ex)

T

∂qs

q̇s −Cs
exq̇s −Gs

ex. (3.25)

From the property of robot motion equation (3.15), we obtain

Cs
ex = q̇Ts

∂(Ds
es,us)

T

∂qs
. (3.26)

We simplify the zero dynamics by substituting (3.26) into (3.25) with (3.22) andηs =

0, and obtain







ξ̇1s

ẋ1s






=







∂θs
∂qa

0

0T
N 1






λ−1(qa)











0N−1

ξ2s

x2s











=: k1s(ξ1s)







ξ2s

x2s







ξ̇2s = q̇T
es

∂(Ds
eq)

T

∂qes

q̇es −Cs
eqq̇es −Gs

eq =: k2s(ξ1s, ξ2s, x2s)

ẋ2s = −Gs
ex =: k3s(ξ1s). (3.27)
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3.3.2 Multi-step slip recovery process and stability

A slip recovery process can be considered a series of gaits. As we will describe in Sec-

tion 3.4, we here use a recovery gait sequence as an example toillustrate the principles

and stability of the recovery process. The results describing in the following can be

extended to any other gait sequences.

As shown in Figure. 3.2, for normal walking, the dynamics is described by non-slip

continuous dynamicsSn and transition through non-slip foot impactHn
n. The normal

gait profile (virtual constraints) is denoted byαn. When slip happens, normal walking

swing phaseSn with gait αn transits through the slip impactHs
n to slip swing phase

Ss. In Ss, human tries to touch down the swing foot as soon as possible to find the

new support. This slip gait isαs. Once the swing foot touches down, the slip phase

Ss transits back to the non-slip walking phaseSn through stick impactHn
s . A recovery

gait profileαr is adopted during this phase. Finally, the gait is successfully recovered

back to the normal walking phaseSn with gait profileαn. In the above description, the

slip recovery process can be summarized as

Sn(αn)
Hs

n−−→ Ss(αs)
Hn

s−−→ Sn(αr)
Hn

n−−→ Sn(αn). (3.28)

Note from Figure. 3.2 that a stable cyclic gait could exist for single-stance slip

phaseSs with gait profileαs through impactHs
s. This gait does not happen usually

in human walking locomotion because it requires skills to regulate highly dynamic

motion under foot slip. One example for such gaits is used in figure skating skills in

which both stepping and foot slipping co-exist for stable gaits. Understanding of those

motor skills is out of scope of this chapter.

The nonslip or slip swing phase zero dynamics controllers only drive the system

states onto its own zero dynamics space. To build a zero dynamics space covering the

whole slip recovery process, it is necessary to guarantee that the whole zero dynamics

space is invariant under slip (Hs
n) and recovery impacts (Hn

s ). Similar to (3.14), the
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following conditions should be satisfied for the recovery sequence (3.28)

∆s(S ∩Zαn) ⊂ Zαs ,∆n(S ∩Zαs) ⊂ Zαr , (3.29)

∆n(S ∩Zαr) ⊂ Zαn , (3.30)

whereZαn , Zαs andZαr are the normal walking, slipping, recover step zero dynamics

space respectively.

Assuming pre-impact zero dynamics state of a normal walkinggaitαn is given as

ξ− ∈ S ∩ Zαn , the pre-impact full state is thenxa(ξ
−) by applying (3.13) with η =

0. After the slip impact (3.18), the initial full state of slipswing phase isxes
+(ξ−).

Condition (3.29) requests that

η1s(xes
+) = hαs(q

+
es) = 0,η2s(xes

+) =
∂hαs

∂qa

(q+
es)q̇

+
es = 0. (3.31)

Meanwhile, in the HZD space, after the impact the state[ξ+1,s, ξ
+
2,s, x

+
1,s, x

+
2,s]

T ∈ Zαs

is related to the pre-impact stateξ− ∈ S ∩Zαn as














ξ+1,s

ξ+2,s

x+1,s

x+2,s















=















θs(q
+
a )

Ds
sq(q

+
a )q̇

+
es

x+s

Ds
sx(q

+
a )q̇

+
es















=















θs(Sq−
a )

Ds
sq(Sq

−
a )∆sq̇

−
a

0

Ds
sx(Sq−

a )∆sq̇
−
a















=















θs(Sqa(ξ
−
1 ))

Ds
sq(Sqa(ξ

−
1 ))∆sq̇a(ξ

−
2 )

0

Ds
sx(Sqa(ξ

−
1 ))∆sq̇a(ξ

−
2 )















= δs
n(ξ

−) (3.32)

where the first second and third equality signs are obtained by applying (3.21),(3.18)

and (3.13) respectively.

To compute the ending state in the slip swing phase, we integrate (3.27)with respect

to time, until eitherξ1s = ξ+1s (start of the step) orξ1s = ξ−1s (ending of the step) which
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means either not being able to complete this step and return to the initial configuration

of this phase or a complete step is achieved. We denote the ending state as






ξ−2,s

x−
s






= Φs(ξ

+,x+
s ). (3.33)

At the end of slip swing phase, the swing foot impacts on the ground and the slipping

foot lifts immediately. The pre-impact zero dynamic state is [ξ−s ,x
−
s ]

T ∈ S∩Zαs . The

full state isxes(ξ
−
s ,x

−
s ) according to (3.22) under the condition thatηs = 0. After the

stick impact the initial state of recover step isx+
a from impact model (3.7). Condition

(3.29) requests that

η1,αr
= hαr(q

+
a ) = 0, η2,αr

=
∂hαr

∂qa

(q+
a )q̇

+
a = 0 (3.34)

In the HZD space, the initial zero dynamics state of the recover step swing phase

ξ+ ∈ Zαr is related to the pre-impact state[ξ−s ,x
−
s ]

T ∈ S ∩Zαs as






ξ+1

ξ+2






=







θ(q+
a )

Da(q
+
a )q̇

+
a






=







θ(Sq−
a )

Da(Sq
−
a )(∆nq̇

−
e + bn)







=







θ(Sqa(ξ
−
1s))

Da(Sqa(ξ
−
1s))(∆nq̇a(ξ

−
s , x

−
s ) + bn)






= δn

s (ξ
−
s ,x

−
s ). (3.35)

where the first second and third equality sign are obtained byapplying (3.9) (3.7) and

(3.22) respectively.

The continuous recovery zero dynamics is described by (3.11). We solve (3.11)

with respect to time until eitherξ1 = ξ+1 or ξ1 = ξ−1 which indicates either not being

able to complete this recover step and returning to the initial configuration of this phase

or a complete recover step is achieved. We denote the ending state as

ξ−2 = Φαr(ξ
+). (3.36)
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At the end of recover step swing phase, the zero dynamic stateisξ− ∈ S∩Zαr and

the full state isxa(ξ
−). After the impact the initial state isx+

a from (3.7). Condition

(3.30) requests that

η1,αn
= hαn(q

+
a ) = 0,η2,αn

=
∂hαn

∂qa

(q+
a )q̇

+
a = 0.

Meanwhile, in the HZD space, the initial zero dynamics stateof the normal walking

swing phaseξ+ ∈ Zαn is related to pre-impact stateξ− ∈ S ∩ Zαr as






ξ+1

ξ+2






=







θ(q+
a )

Da(q
+
a )q̇

+
a






=







θ(Sq−
a )

Da(Sq
−
a )(∆nq̇

−
e + bn)







=







θ(Sqa(ξ
−
1 ))

Da(Sqa(ξ
−
1 ))(∆nq̇a(ξ

−) + bn)






= δn

n(ξ
−). (3.37)

where the first second and third equality sign are obtained byapplying (3.9) (3.7) and

(3.22) respectively.

Finally, we integrate (3.11) with respect to time until either ξ1 = ξ+1 to ξ1 = ξ−1

which means either not being able to complete a step and returning to the initial con-

figuration of this step or a complete step is achieved. We denote the final state as

ξ−2 = Φαn(ξ
+). (3.38)

The whole slip recovery process can be represented by state transiting in hybrid

zero dynamics space. Starting from the moment right before the slip impact, the initial

zero dynamics stateξ− ∈ S ∩ Zαn is mapped byδs
n, Φs, δ

n
s , Φαr , δ

n
n andΦαn suc-

cessively. The returned value ofξ2 after the whole slip recovery process is expressed

as

ξ2 = Φαn ◦ δn
n ◦Φαr ◦ δn

s ◦Φs ◦ δs
n(ξ

−
2 ) =: ρs(ξ

−
2 ) (3.39)
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For stable periodic normal walking gait, choosing Poincar´e section asξ− ∈ S ∩

Zαn , from [11], the Poincaré first return map has stable fixed point ξ−2 i.e.

ξ−2 = Φαn ◦ δnn(ξ−2 ) = ρ(ξ−2 ), (3.40)

and

∂ρ

∂ξ2
(ξ−2 ) < 1. (3.41)

These properties guarantee that there exists a regionξ−2 ∈ R ∈ S ∩ Zαn so that for

everyξ2 ∈ R

|ρ(ξ2)− ξ−2 | ≤ |ξ2 − ξ−2 |. (3.42)

In the HZD space, the success slip recover to normal gait is equivalent to

ξ2 = ρs(ξ
−
2 ) ∈ R. (3.43)

3.4 Experimental results

Figure. 3.3 shows the experimental configuration. We followthe same experiments

description in [2, 50] and we briefly review the experimentaldescription. We conduict

the indoor walking experiments on a wooden platform. A portion of the platform

is painted by soap film to create slip and recovery gaits when the subject steps on

the slippery surface. The subject was asked to first practicewalking on the platform

before slipping tests. The low-friction portion is not noticeable to the subject such that

the normal gait is used before slip happens. The human motionis obtained by the

optical motion capture system (8 Bonita cameras from Vicon Inc.) Two 6-DOF force

sensors (model SS-1 from INSENCO Co., Ltd) are used inside the shoe to measure

the three dimensional ground reaction forces and torques (Figure. 3.3). Wireless data

transmission is setup between the force sensors and the hostcomputer. All sensors and

the motion capture system are synchronized for data collection.
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Figure 3.3: The slip and fall experimental setup with various sensor suites.

We first take the same experiment in [2] to demonstrate the HZDmodel prediction

of a slip recovery process. Figure. 3.4(a) shows a video snapshot of a human slip

recovery process. The subject starts the normal single-stance gait (Ss with gait profile

αn). At t = 0.32 s, the (left) swing leg touches down on the slippery ground and

then starts slipping. Thus, the human gait enters the slip phase (Ss with gait profile

αs) 1. Until t = 0.96 s when the (right) swing foot touches down, the (left) stance

foot leaves the ground and the gait becomes a recovered single-stance phase without

slipping (Sn with gait profileαr). Finally, a few more recovery single-stance steps

brings the normal gait (gait profileαn). The entire recovery follows the process given

in (3.28). Figure. 3.4(b) shows the skeleton snapshots in experiments and Figure. 3.4(c)

demonstrates the skeleton snapshots predicted by the HZD model.

Figure. 3.5 shows the phase portraits of the zero dynamics for the recovery pro-

cess. Figure. 3.5(a) illustrates the phase portrait in theξ1-ξ2-x1s coordinates and Fig-

ure. 3.5(b) shows the phase portrait in theξ1-ξ2 plane. Comparing with the normal

walking gait, it is clearly shown in these figures that the walking with foot slip gen-

erates much richer zero dynamics characteristics. The sliprecovery process is a high-

dimensional manifold and consists multiple portions of thephase portraits in 3D space

1We here neglect a short-duration double-stance phase
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(a)

t=0.00s t=0.09s t=0.22s t=0.31s t=0.40s t=0.49s t=0.58s t=0.76s t=0.85s t=0.98s

(b)

t=0.00s t=0.05s t=0.16s t=0.28s t=0.40s t=0.52s t=0.77s t=1.22s t=1.44s t=1.56s

(c)

t=0.00s t=0.05s t=0.16s t=0.28s t=0.40s t=0.55s t=0.92s t=1.35s

(d)

Figure 3.4: A snapshot of a human slip recovery process. (a) Video snapshot of the
gaits. (b) Skeleton snapshops. (c) Skeleton prediction by the HZD model for a success-
ful recovery. (d) Skeleton prediction by the HZD model for anunsuccessful recovery.
In (b)-(d), the red-triangle markers indicate the slip initation locations and the green-
diamond markers indicate the foot touchdown locations.

as shown in Figure. 3.5(a). As shown in the figures, the HZD model predictions for

the normal walkingSn (gait profileαn, i.e., solid blue curves) and foot-slip gaitSs
(impactHs

n and gait profileαs, i.e., solid red curve) match with the experiments, that

is, solid blue and empty red circular markers, respectively. Moreover, as shown in Fig-

ure. 3.5(b), after the single-stance slip phaseSs, the subject tries to recover from the

slip by taking slip impact (blue dash-dot line) and then slip-to-normal recoveryHn
s with

gait profileαr (black dot curve for model prediction and square dots for experiments.)

The entire recovery process can be re-generated by the HZD model.

Figure. 3.6 further shows the HZD model prediction with experiments for the joint
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Figure 3.5: (a) 3D phase portrait (ξ1-ξ2-xs) during the slip recovery process. (b) 2D
phase portrait inξ1-ξ2 plane. In both plots, the empty circles are experimental data
during the phaseHs

n with gait profileαs
n. The solid circles are experimental data during

normal walking phaseSn with gait profileαn.

angles and slipping distance. Figure. 3.6(a)-3.6(g) showsthe joint angle comparison

results of the model prediction and experiments and Figure.3.6(h) shows the slipping

distance comparison. The gait comparisons are shown in Figures. 3.4(b) and 3.4(c).

These results clearly demonstrate that the HZD model predictions match the experi-

ments during the slip recovery process. Note that the HZD model prediction results

have slightly different phase timings due to the different parameters used in the simu-

lation comparing with the experiments.
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Figure 3.6: (a)-(g): Joint angle (q1 to q7) comparisons between the HZD model predic-
tion and the experiments during slip recovery gait. (h) Slipping distancexs of the (left)
stance leg during the slip recovery experiment.

Figure. 3.7(a) shows a collection of the phase portraits of the normal walking gait,

slip recovery gait and skating gaits in theξ1-ξ2-x1s space. The steady skating gait is

generated by considering both slipping and walking gaits asthe skilled human motor

locomotion. It is clear that the zero dynamics of the normal walking gait are located

in the ξ1-ξ2 plane while the skating gait is in the 3D space with motion in thex1s di-

rection. The slip recovery gait consists of a series of transient motion that deviates

from and then returns to the normal walking gaits. Figure. 3.7(b) further illustrates the

slip recovery gaits in which both successful, stable recovery (blue and black curves)

and unsuccessful, unstable recovery (dash and solid red curves) gaits are plotted. Both

sets of recovery gaits are obtained by enforcing the same virtual constraints. The only
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Figure 3.7: (a) Phase portraits of normal walking gait, sliprecovery gait, and skating
gaits in 3D space. (b) Phase portraint of the successful and unsuccessful slip recovery
gaits in theξ1-ξ2 plane.

difference for these difference trajectories is the value of bn in (3.7) of the impact from

slip gait to recover gait. The difference ofbn in (3.7) gives different initialξ2 values

for the recover gait which imply the angular moments of falling. Onceξ2 passes0

and even be positive, the progression variableξ1 = θ changes direction and becomes

decreasing which means cannot complete the recover step. Figures. 3.4(c) and 3.4(d)

demonstrate the gait profiles for a successful and an unsuccessful (falling) slip recov-

ery, respectively.
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3.5 Summary

We presented hybrid zero dynamics (HZD) for human walking gaits with foot slip. The

HZD is an extension of the existing dynamics for normal walking locomotion. We ex-

plicitly derived and presented the HZD for human walking with foot slip that contains

two additional zero dynamics state. It is interesting to show that the HZD under foot

slip present rich human motor skills, including the normal walking, slip recovery gaits

and highly skilled skating motion. We presented stability condition for slip recovery

gait and also successfully demonstrated the HZD-based recovery simulation. Human

experiments were used to validate and compare the HZD model prediction and the

results have demonstrated the effectiveness of the model and the analysis.
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Chapter 4

Learning Latent Space Dynamics of Biped Locomotion

4.1 Introduction

Modeling human walking locomotion is important for studying human biomechanics

and for designing assistive and rehabilitation devices androbotics. Physical principle-

based and data-driven learning models are among the most commonly used methods

to capture the bipedal dynamics. Human musculoskeletal systems can be modeled as

a multi-link structure and then physical principals for rigid bodies provide dynamic

models for human walking [11]. For example, two-, five-, and eight-DOF bipedal

models are used and discussed to design robotic controllersin [46,47,51], respectively.

Using the hybrid zero dynamics (HZD) concept [46], a low-dimensional cyclic model

is obtained to achieve periodic gaits [11]. Extension of thebipedal robotic models

to human locomotion are reported in [52] and [44]. In recent work [2], the bipedal

models in [44,52] are extended to study human slip-and-fallwalking gaits.

Data-driven modeling approaches, such as learning from demonstration, can cap-

ture human motion and motor skills in lower-dimensional space. For example, in [14],

a Gaussian process dynamic model (GPDM) is presented to capture the low-dimensional

latent dynamics for human motion such as walking etc. In [21], a manifold learning

method is used for human motion tracking with visual observations.

Integration of the physical models with the learning modelsare also used in various

applications. In [53, 54], a perturbed dynamic approach is presented to synthesize the

responsive motion by combining learned latent dynamic models with physics-based
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motion perturbations. In [37, 55], a hybrid dynamic model isused to study human-

bicycle interactions and pose estimation applications.

The above-mentioned physical principle-based and data-driven machine learning-

based dynamic models are two different methods to capture human movement and

locomotion. The goal of this work is to present the connection between these two

modeling approaches for human bipedal walking. We reveal that the zero dynamics of

physical model indeed maximizes the posterior probabilityof the learning problem in

learned latent dynamic model.

The remaining of this chapter is organized as follows. We first introduce the two

modeling methods and the problem statement in Section 4.2. Section 4.3 presents

the main results about the relationships between these two models. We present the

experimental results in Section 4.4. Finally, we conclude this chapter and discuss future

work directions in Section 4.5.

4.2 Two bipedal models and problem statement

Figure. 4.1 illustrates the setup of the coordinates for human walking bipedal in the

sagittal plane. The human body is considered as a seven-linkrigid body with the HAT

(head, arms and trunk) as one link that is connected to the left- and right-thigh. The

human has two active hip joints, two active knee joints and two active ankle joints. We

denote the relative angles at joints asqi, i = 2, . . . , 7, and the absolute angle of the

leading stance leg orientation with respect to the verticaldirection asq1 [2,55].

We defineq = [q1 · · · q7]T as the gait configuration. The foot-floor contact is

considered as a circular disk rolling on the solid ground. A human walking cycle

consists of a single-stance phase (i.e., only the stance foot rolls on the ground) and the

double-stance phase (i.e., both feet roll on the ground). Due to the heel touch-down

and impact, the bipedal walking has a hybrid dynamics property [11]. To simplify our
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Figure 4.1: Schematic of the 7-link human walking model withcurved foot contact [2].

discussion and presentation, we mainly focus on the single-stance bipedal dynamics

and the results can be readily extended to the double-stancephase.

4.2.1 Physical model

The seven-link biped in the single-stance phase is underactuated [11] and the equations

of motion are given as

D(q)q̈ +C(q, q̇)q̇ +G(q) = Bu, (4.1)

whereu ∈ R
6 is the joint torque vector, matricesD(q), C(q, q̇) andG are obtained

from Lagrange’s equations [2]. An output (virtual constraint) gaity ∈ R
6 is given by

y = h(q) = H0q − hd(θ), (4.2)

whereH0 ∈ R
6×7, θ = cq, c ∈ R

1×7 is the mapping vector, and functionhd : R 7→

R
6. The control task is to drive the configurationq onto the sub-manifold defined by

y = h(q) = 0. To achieve this control task, we apply a coordinate transformation

η1 = h(q), η2 = η̇1 = Hθq̇, ξ1 = θ(q), ξ2 = Da(q)q̇,
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whereHθ = H0 − ∂hd

∂θ
c ∈ R

6×7, Da(q) ∈ R
1×7 is formed by the row ofD(q) that

corresponds to the unactuated joint angleq1. The inverse transformation is

q = H−1
C







η1 + hd(ξ1)

ξ1






, q̇ = H−1

D







η2

ξ2






, (4.3)

where

HC =







H0

c






, HD =







Hθ

Da(q)






.

If u is properly chosen to driveη1 = η2 = 0, the zero dynamicsΣZD is

ΣZD :







ξ̇1 = cq̇ = cH−1
D







0

ξ2






=: g1(ξ1)ξ2,

ξ̇2 = Ḋa(q)q̇ −Caq̇ −Ga =: g2(ξ1, ξ2),

(4.4)

where (4.3) is used to express(q, q̇) into ξ = [ξ1 ξ2]
T (with η1 = η2 = 0). Note that

g1(ξ1) = c
(
H−1

D

)

7
is only a function ofq and thus ofξ1, where

(
H−1

D

)

7
is the 7th

column vector ofH−1
D .

4.2.2 Learning model

The learning model is built on the pose measurements. We denote the joint angle data

set asY = {q}M ∈ R
7×M , whereM is the number of the data points. We also denote

the latent state variable asx ∈ R
2 since the system is one-dimensional underactuated.

The latent dynamicsΣl is formulated as [14,55]

Σl :







ẋ = f(x,α) +wp,

q = g(x,β) +wo,

(4.5)

whereα andβ are hyperparameters,wp andwo are Gaussian noises with zero mean.

FromY , we estimate mapsf andg in (4.5) by identifyingα andβ through learning
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algorithms. DenotingX = {x}M ∈ R
2×M , the estimation problem is formulated as

maximizing a-posterior probability distributionp(X,α,β|Y ).

With the above defined dynamicsΣZD andΣl, our goalof this work is to find the

quantitative relationships and connections betweenΣZD andΣl.

4.3 Relationship between bipedal walking dynamicsΣZD andΣl

We first present the results for the linear reduction latent dynamics and then for the

general nonlinear learning model.

4.3.1 Local property of the two models

Walking gaits follow the virtual constraint (4.2) and therefore, data setY satisfies this

constraint. For any given data pointqD ∈ Y , yD := h(qD) = H0qD − hd(cqD) =

0. For q0 satisfies the virtual constraint in the neighborhood ofqD, we havey0 :=

h(q0) = H0q0 − hd(cq0) = 0. Therefore, we obtain

H0(qD − q0)− (hd(cqD)− hd(cq0)) = 0.

Defining∆q = qD − q0, from the above equation, we obtain the approximation

Hθ∆q = 0. (4.6)

Denoting the null space unit vectorb ∈ null(Hθ) and‖b‖ = 1, the solution of (4.6) is

then written as

qD = q0 + bxd, (4.7)

wherexd ∈ R.

When a linear reduction method such as principal component analysis (PCA) is

applied toY , it essentially estimatesb in (4.7). Variablexd is then the latent space

variable. We formally present this result in the following lemma and the proof is given

in Appendix B.1.
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Lemma 4.1. GivenY and locally approximation relationship in (4.7), the first princi-

ple axis of the PCA reduction ofY is b.

Because of the claim in Lemma 4.1, we abuse the notation by using b to denote

the PCA reduction result fromY in the following discussions. To calculatexd for any

givenq, we use (4.7) and obtain

x1 = xd =
aT (q − q0)

aTb
, (4.8)

wherea ∈ R
7 is a constant column vector andaTb 6= 0. Lettingx2 = ẋ1 =

aT q̇

aT b
, then

q̇ = bẋ1 = bx2. (4.9)

To find the relationship betweenx = [x1 x2]
T andξ, plugging (4.3) into (4.8) and (4.9),

we obtain diffeomorphic coordinate transformation

x1 =
1

aTb
aTH−1

C







hd(ξ1)

ξ1






, (4.10)

x2 =
1

aTb
aTH−1

D







0

ξ2







(4.11)

and the dynamics ofx are

ẋ1 = x2, ẋ2 = f1(x). (4.12)

wheref1(x) is obtained by transforming the zero dynamics inξ coordinate intox

coordinate.

4.3.2 Model relationship with nonlinear reduction

In this section, we focus on the relation between GPDM [14] and zero dynamics. Un-

like parametric models, modelΣl marginalizes the parameters and optimizes them with
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respect to the latent variablex and hyperparametersα andβ. The objective function

of Σl is the posterior probability of latent statesX and parameters givenY as

p(X,α,β|Y ) ∝ p(Y |X,β)p(X|α)p(α)p(β). (4.13)

From (4.3), we re-writeq by ξ of (4.4) as

q = H−1
C







hd(ξ1)

ξ1






+ nob, (4.14)

wherenob ∼ N (0, σ2
yI) is the model noise. Assuming thatY are generated from

the zero dynamics (4.4) and an observation from (4.14), we apply theΣl model toY .

Let us consider a case where the mappingξ1 = cq is known. For eachqi ∈ Y we

computexi1 = cqi as the latent states and only optimize (4.13) with respect toα andβ.

SinceX is no longer an optimized variable,max p(X,α,β|Y ) in (4.13) is achieved

by separately maximizingp(Y |X,β)p(β) with respect toβ andp(X|α)p(α) with

respect toα.

We defineΞ = {ξ}M ∈ R
2×M as the collection ofM-point dataξ andX1 ∈

R
1×M andΞ1 ∈ R

1×M are the first rows ofX andΞ, respectively. Before we present

the results to maximize the posterior probability discussed above, we first present the

following results with proof given in Appendix B.2.

Lemma 4.2. WithY andΞ, the solution of the Gaussian process regression problem

min
β
− log p(Y |Ξ1,β) (4.15)

with respect toβ reconstructs the analytic mapping in (4.14).

With Lemma 4.2, we further obtain the following results.

Lemma 4.3. WithΞ sampled from zero dynamics (4.4), the solution of the Gaussian

process regression problem

min
α
− log p(ξ̈1|ξ1, ξ̇1,α) (4.16)
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with respect toα reconstructs the zero dynamics (4.4).

Proof. Applying a diffeomorphic coordinate transformation

Tξζ :







ζ1 = ξ1,

ζ2 = g1(ξ1)ξ2

(4.17)

to zero dynamicsΣZD in (4.4), we obtain

Σ′
ZD :







ζ̇1 = ζ2,

ζ̇2 = g1(ζ1)g2(ζ1,
ζ2

g1(ζ1)
) +

ζ22
g1(ζ1)

∂g1(ζ1)
∂ζ1

.

(4.18)

Because only the trajectory ofξ1 = ζ1 (i.e.,Ξ1) is accessible, we introduce and define

the vector fieldζ2(t) = ξ̇1 to access the input and output datax = ζ = [ζ1 ζ2]
T , y =

ζ̇2 = ξ̈1 generated by (4.18). Following the proof of Lemma 4.2, if we minimize (4.16)

to obtain the hyperparameterα, the mean value of the posterior predictive distribution

should converge to the second equation of (4.18).

Lemma 4.2 implies that the solution of problem (4.15) generates the relationship

as (4.14), while the result in Lemma 4.3 implies that the solution of the regression

problem (4.16) generates the relationship as (4.18). Usingthe results in Lemmas 4.2

and 4.3, we are now ready to present the results for the latentstate dynamics in (4.5).

Theorem 4.1.For the optimization problem

min
X,β,α

− log p(Y |X1,β)− log p(X|α) + 1

2σ2
‖X1 − cY ‖2, (4.19)

p(X|α) = p(ẍ1|x1, ẋ1,α), the solution is achieved when the parameters satisfy the

following:

1. X1 = Ξ1;

2. The mean value of the posterior predictive distribution of the learned latent dy-

namics (determined byα) is given byζ̇2 in (4.18); and
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3. The mean value of the posterior predictive distribution of the learned mapping

function is given by (4.14).

Proof. The third term of (4.19) is minimized byX1 = Ξ1 and the problem then degen-

erates tominβ− log p(Y |Ξ1,β) andminα− log p(Ξ|α) simultaneously. As shown in

Lemma 4.2, the former is minimized byβ that corresponds to a posterior predictive

distribution with the mean function as expression (4.14). The latter is then minimized

by α that corresponds to a posterior predictive distribution with the mean function

as (4.18). This completes the proof.

The results in Theorem 4.1 implies that the latent dynamics is indeed the same as

zero dynamics (4.18) in the new coordinate(ζ1, ζ2) with x1 = ζ1 = ξ1. The vector field

(x1, ẋ1) is given by (4.18). The relationships among the analytical model (4.1), zero

dynamicsΣZD in (4.4) and latent dynamicsΣl in (4.5) are illustrated in Figure. 4.2.

It is clear that the relationship betweenΣZD andΣl are the coordinate transformation

Tξζ .

Analytical Model Learning Data

algorithms

Learning &
reduction

Virtual
constraint
& feedback 
linearization

Zero Dynamics Latent Dynamics

y = h(q) (α,β)

Tξζ

(q, q̇) Y = {q}M

ΣlΣZD

Figure 4.2: Schematic diagram of the relationship between the analytical and learning
models.

Remark 4.1. In practice, onlyY is measured and obtained and vectorc is not readily

available for the data-driven modeling approach. In the physical model design, the

choice ofc is manually determined and tuned to satisfy thatθ = cq is monotonically

increasing function during the swing phase and matrixHC is invertible [11]. To use
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the learning algorithms (4.19), we modify the objective function as

min
X,β,α,ĉ

− log p(Y |X1,β)− log p(X|α) + 1

2σ2
‖X1 − ĉY ‖2. (4.20)

In the above modification, vectorĉ is introduced as an optimized variable and similar

to (4.19), the third term can be interpreted as− log p(X|ĉ,Y ), wherep(X|ĉ,Y ) =

N (ĉY , σ2I). The mean valuêcY can also be interpreted as a label of latent vari-

able [23,56].

4.3.3 Application example:learning virtual constraints

We briefly describe an application of Theorem 4.1 for obtaining the virtual constraint (4.2)

through the learning approach. No explicit virtual constraint is given for the learning

model and instead the observation mapping in (4.5) implicitly determines a constraint

for q. Because the learning algorithm in Theorem 4.1 enforcesx1 = cq, the constraint

being enforced isq = g(ĉq,β) + wo. This constraint is parameterized byβ and ĉ.

We therefore propose an approach to quantify different gaits in latent space and the

metrics. Indeed, we express the virtual constraints for different gaits with the same

shared parameterβ and consider to use parameterĉ to capture and characteristics of

human gaits. We will demonstrate such application examplesin the next section.

4.4 Experiments

With the collected human walking joint angles, we identify the analytical model pa-

rameters and optimize the gait profile parameters to fit the experiments [2]. We also

build the PCA model (4.12) as well as the latent dynamics model (4.18). When build-

ing the latent dynamics by (4.19), we use the value ofc for the analytical model (e.g.,

zero dynamics).

With the optimized model parameters for both zero dynamicsΣZD (4.4) and latent
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Figure 4.3: (a) The phase portraits of the zero dynamics and latent dynamics in co-
ordinate(x1, x2). (b) The phase portraits of the zero dynamics and latent dynamics
in coordinate(ξ1, ξ2). (c) The phase portrait of the PCA-based reduction model in
coordinate(x1, x2). The arrows in the figures show the flow direction (positive time
evolution.)

dynamicsΣl (4.5), Figure. 4.3(a) shows the phase portraits of the two dynamic sys-

tems in coordinates(x1, x2) during one-single stance motion. For zero dynamicsΣZD,

coordinate transformationTξζ (4.17) is used to convert into(ζ1, ζ2), namely,(x1, x2).

The plots in Figure. 4.3(a) clearly show that both dynamics generate the same phase

portraits. Since most existing work present the zero dynamics in(ξ1, ξ2) (e.g., [52]), we

also transfer the dynamics from(x1, x2) and plot its phase portrait in(ξ1, ξ2) as shown

in Figure. 4.3(b). For comparison purpose, Figure. 4.3(c) shows the phase portrait of

the PCA-based dynamics (4.12) in(x1, x2).

While Figure. 4.3 demonstrates the comparison of the state dynamics, Figure. 4.4

presents the comparison results of the output mappings. In Figure. 4.4, the joint angle

predictionsq are plotted over the state variablex1. For latent dynamics, the mean value

of the posterior predictive distribution of the observation mapping is plotted with the

red circle lines and the upper and lower bounds (one standarddeviation) are plotted as

the red dotted lines. For zero dynamicsΣZD, we again transfer its states(ξ1, ξ2) into

(ζ1, ζ2) (i.e., (x1, x2)). These plots confirm that the output mappings of two dynamics

behave similar and generate close predictions of walking gaits. The results shown

in Figures. 4.3 and 4.4 demonstrate that the latent dynamicsindeed capture the same

properties of the zero dynamics.
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Figure 4.4: (a)-(g): Joint angles (q1 to q7) predictions (vs. state variablex1) by the
zero dynamics and the latent dynamics. The latent dynamic model prediction results
are also marked with the upper and lower bounds of 2 standard deviations as the dotted
lines in each figure.

The above results are obtained by using the known gait profileparameterc same as

the zero dynamics. We here present the application example to instead use optimiza-

tion (4.20) to estimate the valuêc. Moreover, the value of̂c can be used to characterize

and quantify the gait profile. To demonstrate this application, we collect joint angles of

three different gaits: gaitY 1 is obtained from data set in [44], gaitY 2 is generated by

a perturbed virtual constraint profile fromY 1, and gaitY 3 is collected by the human

walking experiments. Figure. 4.5 shows the joint angles profiles for all seven joints.

Obviously, the three gaits have different profiles butY 1 andY 2 have similar trends.

We use (4.20) to obtain the latent dynamics and gait profile parameterĉ while



82

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

30

 

 

Gait 1
Gait 2
Gait 3

S

q 1
(d

eg
)

(a)

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

40

60

 

 

Gait 1
Gait 2
Gait 3

S

q 2
(d

eg
)

(b)

0 0.2 0.4 0.6 0.8 1
−25

−20

−15

−10

−5

0

 

 

Gait 1
Gait 2
Gait 3

S

q 3
(d

eg
)

(c)

0 0.2 0.4 0.6 0.8 1
−80

−70

−60

−50

−40

−30

−20

−10

0

 

 

Gait 1
Gait 2
Gait 3

S

q 4
(d

eg
)

(d)

0 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

85

90

 

 

Gait 1
Gait 2
Gait 3

S

q 5
(d

eg
)

(e)

0 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

85

90

95

 

 

Gait 1
Gait 2
Gait 3

S

q 6
(d

eg
)

(f)

0 0.2 0.4 0.6 0.8 1
140

150

160

170

180

190

200

210

 

 

Gait 1
Gait 2
Gait 3

S

q 7
(d

eg
)

(g)

Figure 4.5: (a)-(g): Joint angles (q1 to q7) comparison among three gaits. For ease of
comparison, the time is scaled to 1. Gait 1 takes 0.72 sec per step. Gait 2 takes 0.71
sec per step. Gait 3 takes 0.61 sec per step.

keeping parameterβ as the same shared value (still as an optimized variable). We

denote the optimized parameterĉi, i = 1, 2, 3, for gaitsY i, respectively. The values

of parameterŝci are listed in Table 4.1. To demonstrate the correlations of the latent

dynamics for these three gaits, we introduce the distance metrics

d2ij := ‖ĉi − ĉj‖2 and d∞ij := ‖ĉi − ĉj‖∞, i, j = 1, 2, 3.

We calculate and list these metrics in Table 4.1. From these metrics, we clearly observe

thatd212 ≪ d213 andd212 ≪ d223 and this implies that gaitsY 1 andY 2 are similar and

they are different from gaitY 3. Similarly, the values ofd∞12, d
∞
13 andd∞23 show the same

trends. Figure. 4.6 further shows the the corresponding phase portraits of the latent
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dynamics. The difference among them is demonstrated consistently.

Table 4.1: Gait profile comparison using vectorc

Gaits Gait profile parameter̂ci d2ij d∞ij
Y1 [−0.4 1.4 − 0.8 0.4 − 1.0 0.3 0.8] d212 = 0.26 d∞12 = 0.2

Y2 [−0.6 1.4 − 0.7 0.5 − 1.1 0.3 0.7] d223 = 1.37 d∞23 = 0.9

Y3 [−0.6 1.4 − 0.9 0.2 − 0.2 − 0.6 0.5] d213 = 1.31 d∞13 = 0.9
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Figure 4.6: The phase portrait comparison of latent dynamics for three different gaits.

4.5 Summary

We presented relationship between the physical principle-based dynamic model and

the data-driven latent dynamics for human walking locomotion. We analyzed and

demonstrated that the equivalence of the zero dynamics (from the physical model) and

the latent dynamics (from the manifold learning model) for the underactuated human

walking gaits. The mapping functions between these two models were derived and

their correspondence were explicitly presented and discussed. Human experiments

were also conducted to validate and demonstrate the findings. Finally, we presented

the application examples to use the new findings.
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Chapter 5

Gaussian Processes based Balance Robot Control

5.1 Introduction

This chapter studies the learning-based modeling and control of underactuated bal-

ance robots [13]. The cart-pole system, Furuta pendulum andautonomous bicycles

are examples of underactuated balance systems and the control goal of those systems

is to balance the pendulum/bicycle while keeping the bases to follow the desired tra-

jectories. Bipedal walkers are also a class of underactuated balance robots because

the actuated joint angles are commanded to follow desired trajectories to form certain

gaits, while the unactuated floating base should be kept stable across different steps.

The control goal of underactuated balance robots is to achieve both external (actuated)

subsystem trajectory tracking and internal (unactuated) subsystem balancing around

unstable equilibrium point with limited control authority. The balancing and tracking

tasks are often intertwined and sometimes competing each other for controlled perfor-

mance. For example, control of an autonomous motorcycle requires the path-following

task while balancing the platform [38]. It is common that thepath-following and the

platform balancing are two competing tasks as shown in [57].Moreover, the intrinsic

unstable internal or zero dynamics add additional challenges in control systems design.

For a nonlinear non-minimum phase system, no analytical causal controller can

achieve exactly output tracking while maintaining the internal stability [12]. An in-

novative control design of underactuated balance robots isto take advantages of the

interaction between the external and internal subsystems.In [13], an external/internal
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convertible (EIC) dynamic structure is explored to partition the underactuated balance

systems into an external subsystem for path-following taskand an internal subsystem

for balance task. An elegant causal control design is proposed in [13] to guarantee the

exponential convergence of the actual output to a tube containing the desired output

and the internal state to a balance equilibrium manifold (BEM). The BEM concept

plays a central role in the EIC-based control design and recently is used to capture and

quantify the human rider riding skills [57].

Despite of the mathematical elegance of the BEM concept, itsapplicability needs

the rigid EIC form of the dynamics model structure. Recently, machine learning-based

controller design has shown potential to save effort of understanding individual system,

handle un-modeled dynamic effects and achieve superior performance than first princi-

ple model-based controller design. Gaussian processes (GPs) machine learning [58] is

widely applied to robot modeling and control. When they are applied to learn mechani-

cal dynamical systems, GPs take the current robot states andcontrol inputs as the learn-

ing inputs and the derivatives of robot states as the outputs. Gaussian processes predict

differentiable and closed-form mean value and covariance of output distribution, and

this property makes it easily integrated with optimization-based controller design such

as model predictive control (MPC) and reinforcement learning [59–64]. Compared to

other model learning approaches such as Artificial Neural Network (ANN) and Sup-

port Vector Machine (SVM), GPs provide predictive covariance which can be used as a

quantitative evaluation of model uncertainty for robot controller design [59,61,63,64].

MPC has been widely applied to preview-based online trajectory tracking [65]. At

each control step, the controller online solves the optimalinput sequence that mini-

mizes the objective function and uses the first element of theoptimal input sequence as

the actuation. However, computational cost is the bottleneck preventing applying MPC

to high-dimensional state space dynamics. In this chapter,we adopt singular pertur-

bation technique to reduce the dimension of state space thatthe MPC has to consider
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about. By transforming the underactuated robot dynamics into the EIC form, the in-

ternal dynamics is feedback linearized and its convergent rate is assigned to be much

faster than that of external dynamics. The internal states can be treated as control input

to directly control the external state. Taking the cart-pole system as an intuitive ex-

ample, this implies that through feedback linearization the pendulum angle is directly

controlled and the cart position is controlled with the pendulum angle as input. We

adopt MPC as an online feedback planner to design the internal state trajectory and an

inverse dynamics controller to stabilize the designed trajectory. Since the robot model

is learned from experiment data with GPs model, the proposedplanning and control

framework takes advantage of the predicted Gaussian distribution. The MPC trajectory

planner takes the model uncertainty of the inverse dynamicsmodel into consideration

to avoid planning trajectories that the inverse dynamics isunable to stabilize.

The contribution of this work lies in three aspects. First, we extend the EIC form

and the inversion based BEM solver proposed in [13] to an MPC based trajectory plan-

ner and an inverse dynamics trajectory stabilizer. The proposed planning and control

framework takes advantage of MPC’s numerical computation and save the effort of

offline symbolic computation of function inversion. Therefore, this framework can

be easily applied to models obtained from non-parametric machine learning approach

such as GPs whose inverse function is difficult to obtain. Second, the proposed learning

model-based controller is data efficient. Facing the difficult problem of stabilizing a

non-minimum phase unstable system to achieve both internalsubsystem balanced and

external subsystem tracking desired trajectory, most existing approaches rely on either

prior knowledge of the physical model or successful demonstration data from human

or other baseline controllers. The proposed approach can take random excitation data

for model learning and then achieve successful balancing while tracking task. The sys-

tem only needs to be excited enough to reveal the open-loop system dynamics. The

model is learned without any prior knowledge or successful demonstration. Finally,
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our planning and control framework explicitly incorporates the GPs predicted model

uncertainty to enhance control robustness, that is, the MPCplanner takes the inverse

dynamics modeling uncertainty into consideration to generate the planned trajectory.

We demonstrate the proposed planning and control frameworkby experiments on a

Furuta pendulum.

5.2 Related works

Getz [13] proposed to partition the underactuated balance system into external and in-

ternal subsystems. The control goal of the external subsystem is to track the desired

trajectory while that of the internal subsystem is to maintain stable around an unstable

equilibrium point. The EIC form of the original dynamic model was used to describe

the coupling effect of the external and internal subsystems. The fact that the external

tracking trajectory determines the internal subsystem equilibrium point gives rise to

the concept of BEM. Dynamic inversion technique is used in [13] to compute the BEM

in order to design the integrated controllers. The proposedcontroller is proven to be

asymptotically stable to a tube around the desired trajectory. The work in [66] formu-

lates the EIC form in the multi-time-scale structure based on the singular perturbation

theory. It also extends the result in [13] to output feedbackwith extended high-gain ob-

servers. The work in [67] extends the BEM approach to learning model-based control.

GPs are adopted to identify the system dynamics. However, because the flexibility of

GPs, the actual plant dynamics structure cannot be successfully captured even though

the prediction error is small. To increase the data efficiency to learn the actual dynamic

structure, the robot manipulator-based model form with symmetric inertia matrix is

enforced in [67] as prior knowledge. The BEM approach with learned model demon-

strates worse tracking performance than that with physical-principle model though the

former results in smaller prediction error. We speculate that the BEM is not accurately
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captured by the learning model approach due to the flexible structure of GPs. The fact

that dynamic inversion of the learning model does not accurately identify the BEM

motivates the MPC approach proposed in this chapter.

Learning inverse dynamics has been demonstrated in robot control applications.

The works in [68] and [69] adopt inverse dynamics controllerusing the global and

local GPs regression models, respectively. The learned model predicts control inputs

using the robot current states and the desired derivative ofrobot states. Even though

the GPs provide predictive distribution of the control input, only the mean value of the

Gaussian distribution is used and taken as the control input. The work in [70] pro-

poses a GPs-based inverse dynamics control law with the feedback gain incorporating

the variance of the predictive distribution, i.e., using low gain if the learned model

is considered with high-confidence and otherwise high gain.Both [70] and [71] give

theoretical guarantee of stability of GPs-based inverse dynamics controller. In [72],

the authors applied deep neural network (DNN) to learn inverse dynamics to achieve

impromptu trajectory tracking. The inverse dynamics controller however cannot be di-

rectly applied to underactuated non-minimum phase robot control due to the unstable

internal dynamics. The work in [73] achieved non-minimum phase robot impromptu

trajectory tracking for cart-pole system and quadrotor system by learning a stable, ap-

proximated inverse of a non-minimum phase baseline system from its input-state data.

The algorithm first runs a baseline controller, usually a linear controller, to achieve the

stabilization task and collect input-state data for DNN training. In the training phase,

the inverse model of the stabilized baseline system is learned. In the testing phase,

given the desired trajectory, the learned DNN model computes a reference trajectory

for the baseline system. Under this learning-based inversion controller, the tracking

performance is enhanced compared to the baseline system.

Optimization-based controllers such as MPC and reinforcement learning have been

widely applied in controlling underactuated robot system such as cart-pole system,
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blimps and helicopters. In [60], the learning model captures the difference between the

collected acceleration data of the blimp and the predictionfrom the physical-principle

model so that the learning approach does not have to build theblimp model from

scratch. In [74], the helicopter model is learned with maneuvers and trajectories that

have been successfully demonstrated by human expert in order to avoid learning a

model for the whole state space. By either adding prior knowledge of the robot model

or learning from expert demonstration, collected data can be efficiently trained. The

work in [61] however does not assume task-specific prior knowledge but takes advan-

tage of the probabilistic nature of Gaussian process to achieve efficient learning. A lot

of GP-based controller designs have explicitly taken advantage of the predicted Gaus-

sian distribution to achieve robust control. In [59] [61] [64], the objective function is

the expected tracking error over the prediction horizon with the consideration of the

variance of the predictive distribution. In [63], the predictive variance is used to shrink

the feasible region for the predictive mean value of the trajectory.

5.3 Notations

Vectorsα are denoted with bold lower-case characters. MatricesA are denoted with

bold capital characters. Identity matrix is denoted asIn with its dimensionn as sub-

script. Approximately estimated values are denoted with tilde asα̃. Natural number is

denoted asN. Real number is denoted asR. Positive real value is denoted asR+. n di-

mensional real valued vector space is denoted asR
n. The sign “:=” represents the defi-

nition equality.min(·, ·) andmax(·, ·) denotes the functions that take the minimum and

maximum value of the arguments in the parenthesis, respectively. The smallest eigen-

value of matrixA is denoted byλmin(A) and the largest byλmax(A). The matrix norm

is defined as||A|| = [λmax(A
TA)]

1

2 . The vector norm is defined as||α|| =
√
αTα.

The matrixP induced vector norm is denoted as||α||2P = αTPα. tr(A) is the trace
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of matrixA. det(A) denotes the determinant of matrixA. The expressiony = O(xn)

means that there exist constantszi > 0, i = 0, 1, ..., n such that|y| ≤ |∑n
i=0 zix

i|.

The expressionx ∼ N (µ,Σ) represents thatx is a random variable satisfying

Gaussian distribution with mean valueµ and covarianceΣ. The expressioṅx ∼

f (x,u) means thaṫx is a random variable satisfying a distribution either becausex

andu are random variables or becausef is a Gaussian process modeled random func-

tion or both. The expectation operator is denoted asE. Π denotes a probabilistic event

and its probability is written asPr{Π}.

In the discrete MPC presentation,k ∈ N is used to denote the current time step.

k+ i with i ∈ N is used to denote thei-step forward time moment. A variableα0 with

a “0” superscript denotes the optimal value of the design parameterα.

5.4 Balance system control background

5.4.1 Underactuated system and BEM

We consider controlling an underactuated mechanical system modeled by Lagrangian

dynamical model:

D(q)q̈ +H(q, q̇) = B(q)u. (5.1)

In (5.1), q ∈ R
m+n is the configuration state of the system.u ∈ R

m is the control

input. D(q) is the inertial matrix andH(q, q̇) typically contains the centripetal term

the Coriolis term and the gravitational term.B(q) is the input mapping matrix. The

configuration spaceq can be decomposed into actuated subspaceθ1 ∈ R
m and unac-

tuated subspaceα1 ∈ R
n, i.e. q = [θT

1 ,α
T
1 ]

T . Here it is assumed thatm ≥ n. We

also define actuated generalized velocityθ2 := θ̇1 and unactuated generalized velocity

α2 := α̇1 so thatq̇ = [θT
2 ,α

T
2 ]

T . Equation (5.1) is then partitioned into actuated and
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unactuated subsystems:






D11(q) D12(q)

D21(q) D22(q)













θ̇2

α̇2






+







H1(q, q̇)

H2(q, q̇)






=







B1(q)

0n×m






u, (5.2)

whereB1(q) ∈ R
m×m is full rank. By inverting the mass matrixD(q) in (5.2), we

obtain 





θ̇2

α̇2






=







D11(q) D12(q)

D21(q) D22(q)







−1 





B1(q)u−H1(q, q̇)

−H2(q, q̇)






. (5.3)

In this work, we are interested in identifying the unknown physical model for control

application. Therefore, a general version of (5.3) is formulated as:






θ̇1 = θ2

θ̇2 = f θ(θ,α,u)

α̇1 = α2

α̇2 = fα(θ,α,u),

(5.4)

whereθ = [θT
1 , θ

T
2 ]

T andα = [αT
1 ,α

T
2 ]

T . The control goal of underactuated balance

system is to force the subsystemθ to track desired trajectoryθd = [θT
d1, θ

T
d2]

T with

θd2 = θ̇d1, while the subsystemα to be balanced around unstable equilibrium point.

For this reason,θ subsystem is referred as the external subsystem andα subsystem the

internal subsystem.

In (5.4), the external and internal subsystems are coupled in both directions. Getz

[13] proposes the EIC form in order to simplify this couplingeffect in only one direc-

tion. Let

v = fα(θ,α,u) (5.5)

and then the internal subsystem is feedback linearized asα̇2 = v. Becausev ∈ R
n

andu ∈ R
m with n ≤ m, only a subspace ofu is obtained by inverting (5.5). Letting
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u = [uT
d ,u

T
f ]

T with ud ∈ R
n anduf ∈ R

m−n, ud is the subspace that depends on the

internal subsystem according to the inverse dynamics model

ud = f−1
α (θ,α, v,uf ), (5.6)

whileuf can be freely designed. Therefore

u(v,uf) = [ud(v,uf)
T ,uT

f ]
T . (5.7)

The dynamics (5.4) under the inverse dynamics controller (5.7) is rewritten as






θ̇1 = θ2

θ̇2 = f θ[θ,α,u(v,uf)]

α̇1 = α2

α̇2 = v.

(5.8)

In (5.8), internal subsystem has been feedback linearized and therefore is directly con-

trolled byv and not affected by external subsystem. External subsystemis affected by

both inputsuf andv.

Sinceα dynamics is feedback linearizable, we design a proportional-differential

(PD) controller to forceα to converge to any desired trajectoryαd = [αT
d1,α

T
d2]

T ,

whereαd2 = α̇d1, namely,

v = α̇d2 −
kd
ǫ
(α2 −αd2)−

kp
ǫ2
(α1 −αd1). (5.9)

The controller (5.9) temporarily ignores the tracking taskfor the external subsystemθ.

Hereǫ ∈ R
+ is the singular perturbation parameter.kp, kd ∈ R

+ are constant control

gains. To enforce the external subsystem trajectory tracking task, an intuitive idea is

to design the desired internal trajectoryαd(θd, θ) to be dependent on(θd, θ) so that

the external subsystem converges to desired outputθd. BEM is introduced by [13] to

identify such dependency. BEM is found by solvingαd0(θd, θ) = [αT
d1(θd, θ),α

T
d2 =



93

0T ]T from

f θ(θ,αd0(θd, θ), 0
T ) = θ̇d2 − kd(θ2 − θd2)− kp(θ1 − θd1) (5.10)

with the function inversion technique. By using BEM design,the internal subsystem

α converges toαd0(θd, θ), meanwhile the external subsystemθ converges to a tube

containingθd.

It is shown in [67] that the result of inverting (5.10) is not accurate whenf θ is

represented by learning model. In this chapter, we apply MPCto obtain the desired

internal trajectoryαd(θd, θ). Note that we cannot directly apply MPC to system (5.8)

to solve for inputv because in that case the internal subsystem may not be stable.

5.4.2 Model reduction through singular perturbation

Rather than directly applying MPC to system (5.4) or (5.8), we first apply the PD

controller (5.9) to (5.8) and the closed loop dynamics are






θ̇1 = θ2

θ̇2 = f θ[θ,α,u(α̇d2 − kd
ǫ
(α2 −αd2)− kp

ǫ2
(α1 −αd1),uf )]

α̇1 = α2

α̇2 = α̇d2 − kd
ǫ
(α2 −αd2)− kp

ǫ2
(α1 −αd1).

(5.11)

Here, (5.7) has been used to replaceu in (5.8). By performing coordinate transforma-

tion eα = α−αd or equivalentlyeα = [eT
α1 e

T
α2]

T with






eα1 = α1 −αd1

eα2 = α2 −αd2

(5.12)
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to the closed-loop system, we obtain






θ̇1 = θ2

θ̇2 = f θ[θ,αd + eα,u(α̇d2 − kp
ǫ2
eα1 − kd

ǫ
eα2,uf )]

ėα1 = eα2

ėα2 = −kp
ǫ2
eα1 − kd

ǫ
eα2.

(5.13)

In (5.13), it is possible to solveeα analytically and substitute it intoθ dynamics.

As ǫ goes to0, eα1 andeα2 converge to0 with the rate ofexp(−1
ǫ
), which is faster than

any polynomial order ofǫ. Theθ dynamics is referred as the slow dynamics, while

theeα dynamics is referred as the fast dynamics. The singular perturbation theory [75]

states that||θ(t, ǫ) − θ̂(t)|| = O(ǫ) or equivalently||θ(t, ǫ) − θ̂(t)|| ≤ k|ǫ| for some

k ∈ R
+, whereθ̂(t) = [θ̂1(t)

T , θ̂2(t)
T ]T is the solution of







˙̂
θ1 = θ̂2

˙̂
θ2 = f θ[θ̂,αd,u(α̇d2,uf)].

(5.14)

Since predictinĝθ trajectory with reduced system (5.14) takes less computational effort

than predictingθ trajectory with system (5.13) and yet guarantees thatθ̂ is a close

approximation ofθ, we solve an MPC problem to force the reduced system (5.14) to

follow desired trajectoryθd. In the MPC formulation, the implicit constraint ofαd1,

αd2 andα̇d2 in (5.14) should be expanded explicitly as the dynamic constraint






˙̂
θ1 = θ̂2

˙̂
θ2 = f θ[θ̂, α̂,u(ŵ,uf)]

˙̂α1 = α̂2

˙̂α2 = ŵ

(5.15)

with the definitionα̂1 := αd1, α̂2 := αd2, ŵ := α̇d2.

The design variable of the MPC optimization problem is the input trajectoryŵ,

uf and the initial valueŝα1(0) and α̂2(0). Note that although the form of (5.15)
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is the same as (5.8),[α̂T
1 (0), α̂

T
2 (0)]

T in (5.15) are design variables that need to be

optimized in MPC formulation, while[αT
1 (0),α

T
2 (0)]

T in (5.8) are measured robot

states. Suppose we obtain the optimization solution{ŵ,uf , α̂1(0), α̂2(0)} for the

MPC problem, the controller is then calculated according to(5.9) and (5.7), that is,






v(0) = ŵ(0)− kd
ǫ
(α2 − α̂2(0))− kp

ǫ2
(α1 − α̂1(0))

u(v(0),uf(0)) = [ud(v(0),uf(0))
T ,uT

f (0)]
T .

(5.16)

The MPC problem is solved in every control sampling period and only the first step

input in the MPC input trajectory is actually implemented onthe system.

5.5 GP-based planning and control

Built on physical principles, underactuated robot dynamics (5.4) might not be precise

due to unmodeled dynamics and obtaining the model requires alot domain knowledge.

In this chapter, Gaussian processes regression is adopted to learn the unknown dynam-

ics based on the collected input-state data. According to the derivation in the previous

section, the controller requires the information of modelf θ to compute prediction and

modelf−1
α to conduct inverse dynamics control. However, it turns out that directly

learningf−1
α cannot stabilize theα dynamics when the learned function is used to pre-

dict the states that are far away from the training data set. Actually, if the testing input

is far away from the training input, the GPs model produces the predictive distribu-

tion which is a zero-mean Gaussian distribution. This is certainly not desirable for the

inverse dynamics model. We rewrite the model (5.4) as:






θ̇1 = θ2

θ̇2 = f θ(θ,α,ud,uf )

α̇1 = α2

α̇2 + κα(θ,α, α̇2,uf ) = ud,

(5.17)
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wheref θ andκα are unknown functions that need to be identified later. One benefit

of reshaping to (5.17) is that the inverse dynamics model nowbecomesud = v +

κα(θ,α, v,uf) with v specified in (5.9). If the testing input is far away from the

training input, this inverse dynamics model degenerates toud = v, which stabilizesα

dynamics by choosing high feedback gain in (5.9).

In theα subdynamics of (5.17),ud is expressed as function ofuf and α̇2, and

therefore,f θ(θ,α,ud,uf) can be written asf θ[θ,α,ud(α̇2,uf ),uf ]. The learning

model is formulated according to (5.17), namely,






θ̇1 = θ2

θ̇2 ∼ gpθ(θ,α, α̇2,uf)

α̇1 = α2

ud − α̇2 ∼ gpα(θ,α, α̇2,uf),

(5.18)

wheregpθ andgpα are the predictive distributions given by Gaussian processes models

aiming to recover the unknown functionsf θ andκα, respectively. To train the Gaussian

process regression modelsgpθ andgpα, the inputs are tuples{θ,α, α̇2,uf} and the

outputs arėθ2 and(ud − α̇2), respectively. For each output dimension, an individual

Gaussian process regression model is built. Gaussian process regression models for

different outputs are assumed independent from each other.The input and output data

are collected experimentally.

5.5.1 GP-based inverse dynamics control for trajectory stabiliza-

tion

The inverse dynamics mapping from the planned internal trajectory to the control input

is learned with the GPs models. In the training phase, the inputs are{θ,α, α̇2,uf}

and the output isud − α̇2. In the testing phase, the learned GPs are used to predict the
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control inputud in real time, that is,

ud ∼ v + gpα(θ,α, v,uf), (5.19)

wherev is the designeḋα2 value

v = ŵ − kd
ǫ
(α2 − α̂2(0))−

kp
ǫ2
(α1 − α̂1(0)) + r(t), (5.20)

{ŵ, α̂1(0), α̂2(0)} are solution from the MPC design andr(t) is the added auxiliary

control that will be determined later.

gpα(θ,α, v,uf) ∼ N (µα(θ,α, v,uf ),Σα(θ,α, v,uf))

is the predictive Gaussian distribution, whereµα(θ,α, v,uf) andΣα(θ,α, v,uf) are

input dependent and computed from (A.5) in Appendix A. By (5.19),

ud ∼ N (µd(θ,α, v,uf),Σd(θ,α, v,uf ))

is the Gaussian distribution with






µd(θ,α, v,uf) = v + µα(θ,α, v,uf)

Σd(θ,α, v,uf) = Σα(θ,α, v,uf).

(5.21)

The mean valueµd is used for control input.

Under the inverse dynamics controllers (5.19) and (5.20), we now show that the

α subdynamics is stabilized tôα. Plugging the controllerµd(θ,α, v,uf ) = v +

µα(θ,α, v,uf) into (5.17), the closed-loop dynamics of theα subsystem is obtained

as







α̇1 = α2

α̇2 = v + µα(θ,α, v,uf )− κα(θ,α, α̇2,uf ).

(5.22)

As defined in (5.12),eα1 = α1−αd1 = α1− α̂1 andeα2 = α1−αd2 = α2− α̂2.

The closed-loop error dynamics foreα is obtained as

ėα = Aeα +B[r(t) + µα(θ,α, v,uf )− κα(θ,α, α̇2,uf )], (5.23)
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where

A =







0 In

−kp
ǫ2
In −kd

ǫ
In






,B =







0

In






. (5.24)

Note thatA is Hurwitz as long askp > 0 andkd > 0. In order to show thateα is

stable, it is required that the unknownn dimensional disturbanceµα(θ,α, v,uf) −

κα(θ,α, α̇2,uf) is bounded.

From the learning theory given by the Lemma A.3 in Appendix A,we have that for

any0 < δ < 1,

Pr{||µα(θ,α, v,uf)− κα(θ,α, v,uf)|| ≤ ||βT
αΣ

1

2
α(θ,α, v,uf)||} ≥ (1− δ)n,

(5.25)

whereβα is n-dimensional vector with itsith element

βα,i =

√

2‖κα,i‖2k + 300γα,i ln
3(
N + 1

δ
).

The details of the notations are included in Appendix A.

In (5.23), the disturbance termµα(θ,α, v,uf) − κα(θ,α, α̇2,uf ) does not have

the exactly same input toµα andκα. Its bound is given by the following lemma.

Lemma 5.1. For anyδ ∈ (0, 1), then-dimensional unknown disturbance term

µα(θ,α, v,uf)−κα(θ,α, α̇2,uf) is bounded with probability greater than(1− δ)n,

that is,

Pr{||µα(θ,α, v,uf)− κα(θ,α, α̇2,uf)|| ≤ ρ(eα, θ,α, v,uf)} ≥ (1− δ)n,
(5.26)

where

ρ(eα, θ,α, v,uf) := λ−1
min(I +

∂κα

∂v
)(

2∑

i=0

ci||eα||i + ||βT
αΣ

1

2
α(θ,α, v,uf)||),

(5.27)

with c0, c1, andc2 positive constants.
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The proof of Lemma 5.1 is included in Appendix C.1. For representation brevity,

we denoteρ(eα, θ) := ρ(eα, θ,α, v,uf ) in the following derivation.

Lemma 5.2. Supposingk2d > 4kp > 0 so that the Hurwitz matrixA in (5.24) has real

eigenvalues.A is diagonalizable withA = MΛM−1 whereΛ is the diagonalized

matrix andM is an invertible coordinate transformation. With the positive definite

matrixQ := M−TM−1, P is the solution of the Lyapunov equationATP + PA =

−Q. The auxiliary controlr(t) is designed as

r(t) =







−ρ(eα, θ)
BTPeα

||BTPeα||
; if ||BTPeα|| > ξ

−ρ(eα,θ)
ξ

BTPeα; if ||BTPeα|| ≤ ξ

(5.28)

with the designed parameterξ > 0. Under this controller, the error‖eα(t)‖ satisfies

Pr
{

‖eα(t)‖ ≤ d1‖eα(0)‖e
λ1
4ǫ

t + d2

}

≥ (1− δ)n, (5.29)

whereλ1 =
−kd+
√

k2d−4kp

2
, d1 =

√
λmax(P )
λmin(P )

, d2 =
√

− 2ǫc3
λ1λmin(P )

and positive constant

c3 is defined in (C.12).

The proof of Lemma 5.2 is shown in Appendix C.2. Note that since λ1 < 0, as

the singular perturbation parameterǫ approaches to0, e
λ1
4ǫ

t converges to0 with the rate

faster than any polynomial function ofǫ.

The GP-based inverse dynamics controller derived above only uses the mean value

µd of the predictive distribution (5.19). However, from Lemma 5.1, the covariance of

the predictive distributionΣd = Σα determines the modeling error boundρ(eα, θ).

From Lemma 5.2,ρ(eα, θ) determines the control performance ofeα. We will show

how to incorporateΣd information into the trajectory planning phase in order to en-

hance the control performance ofeα in later section.
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5.5.2 MPC for internal subsystem trajectory planning

Applying the inverse dynamics controllers (5.19) and (5.20) on the unknown robot

dynamics model (5.17), the closed-loop dynamics becomes






θ̇1 = θ2

θ̇2 = f θ(θ, α̂+ eα,ud(ŵ + ėα2
,uf),uf)

ėα = Aeα +B[r(t) + µα(θ,α, v,uf )− κα(θ,α, α̇2,uf )].

(5.30)

Here, we have usedα = α̂ + eα to replaceα andα̇2 = ŵ + ėα2 to replaceα̇2 in

f θ. In the previous subsection, we have proven the convergenceof eα. This subsection

inspects how to use MPC to find desired internal subsystem trajectoriesuf , ŵ and

α̂(0) upon which (5.19) and (5.20) are built.

In order to formulate an MPC problem, a prediction model should be proposed.

We substitute the unknown functionf θ in (5.30) with the learned GP modelgpθ and

obtain






θ̇1 = θ2

θ̇2 ∼ gpθ(θ, α̂+ eα, ŵ + ėα2,uf )

ėα = Aeα +B[r(t) + µα(θ,α, v,uf )− κα(θ,α, α̇2,uf )].

(5.31)

Assumingeα converges to zero rapidly, we obtain the reduced system in discretized

form, 





θ̂1(k + 1) = θ̂1(k) + θ̂2(k)∆t

θ̂2(k + 1) ∼ θ̂2(k) + gpθ[θ̂(k), α̂(k), ŵ(k),uf(k)]∆t

α̂1(k + 1) = α̂1(k) + α̂2(k)∆t

α̂2(k + 1) = α̂2(k) + ŵ(k)∆t,

(5.32)

where∆t is the sampling period.

At thekth step, state trajectory is predicted for the control decision. We usêθ(k +

i|k), i = 0, ..., H + 1, to denote the predicted state at the(k + i)th-step given the
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observationθ(k) with the initial conditionθ̂(k|k) = θ(k), andH is the prediction

horizon. The prediction model is from (5.32) and specifically,

θ̂(k + i+ 1|k) ∼ F θ̂(k + i|k) +Ggpθ(k + i), (5.33)

where

F =







Im ∆tIm

0m Im






,G =







0m

∆tIm






. (5.34)

We here use simple notationgpθ(k+i) = gpθ[θ̂(k+i|k), α̂(k+i|k), ŵ(k+i),uf(k+

i)] for presentation brevity.̂θ(k + i + 1|k) is predicted from Gaussian processgpθ in

(5.33) and generally it does not satisfy Gaussian distribution even when̂θ(k + i|k) is

Gaussian. To make the prediction manageable, we adopt an approximation method in

[61], i.e., linearization of the posterior GP mean functionµgpθ
. By this approximation,

θ̂(k + i+ 1|k) is a Gaussian distribution with the following mean and covariance:

µθ̂(k + i+ 1|k) = Fµθ̂(k + i|k) +Gµgpθ
(k + i) (5.35a)

Σθ̂(k + i+ 1|k) = FΣθ̂(k + i|k)F T +G(
∂µgpθ

∂θ
Σθ̂(k + i)

∂µgpθ

∂θ

T

+Σgpθ)G
T ,

(5.35b)

whereµgpθ
and Σgpθ are the mean value function and covariance function of the

Gaussian processgpθ, respectively. Note thatΣgpθ = Σgpθ(µθ̂(k + i|k), α̂(k +

i|k), ŵ(k + i),uf (k + i)) is input dependent. By Lemma A.1,||Σgpθ || ≤ σ2
f max :=

maxmj=1(σ
2
fθj

+σ2
j ), wherej is the index of the dimension off θ, σfθj andσj are hyper-

parameters for the kernel function corresponding tof θj
. The following lemma is given

to bound the state covarianceΣθ̂(k + i|k).

Lemma 5.3. Assume the learned mean value functionµgpθ
is with bounded gradient

with respect toθ, i.e. ||∂µgpθ

∂θ
|| ≤ L1. With small sampling period∆t, we have

‖Σθ̂(k + i|k)‖ ≤ i(∆t)2‖Σgpθ‖ ≤ i(∆t)2σ2
f max. (5.36)
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The proof of Lemma 5.3 is shown in Appendix C.3.

For the reduced system (5.32) to follow a desired trajectoryθd, an MPC problem

should be solved at each control sampling period with the objective function:

J̄k
θ̂,ŴH

=

H∑

i=0

ls(k + i) + ‖α̂(k)‖2Q2
+ lf(k +H + 1)

=
H∑

i=0

[

E‖eθ̂(k + i)‖2Q1
+ ‖ŵ(k + i)‖2R + ‖uf(k + i)‖2R

]

+ ‖α̂(k)‖2Q2

+ E‖eθ̂(k +H + 1)‖2Q3
,

(5.37)

whereeθ̂(k+ i) = θ̂(k+ i|k)−θd(k+ i). MatricesQi, i = 1, 2, 3, andR are positive

definite. Thekth-step MPC input variable is

ŴH(k) = {α̂(k), ŵ(k + i),uf (k + i), i = 0, . . . , H}. (5.38)

The expectation operator in (5.37) is used to approximateθ(k+i) with the probabilistic

variableθ̂(k + i|k) from (5.35). Noticing that for Gaussian distributionθ̂(k + i|k) ∼

N (µθ̂(k+i|k),Σθ̂(k+i|k)), we haveE‖eθ̂(k+i)‖2Q1
= ‖eµ

θ̂
(k+i)‖2Q1

+tr(Q1Σθ̂(k+

i|k)), whereeµ
θ̂
(k + i) = µθ̂(k + i|k)− θd(k + i).

In (5.37), the stage costls(k + i) is defined as

ls(k + i) = E[‖eθ̂(k + i)‖2Q1
] + ‖ŵ(k + i)‖2R + ‖uf(k + i)‖2R

= ‖eµ
θ̂
(k + i)‖2Q1

+ tr(Q1Σθ̂(k + i|k)) + ‖ŵ(k + i)‖2R + ‖uf(k + i)‖2R. (5.39)

Similarly, the terminal costlf (k +H + 1) is defined as

lf(k+H+1) = E ‖eθ̂(k+H+1)‖2Q3
= ‖eµ

θ̂
(k+H+1)‖2Q3

+tr(Q3Σθ̂(k+H+1|k)).

(5.40)

The reduced dynamics (5.35) is used to predict the future trajectory and this fact brings

computational benefit. However, the objective function (5.37) neglects theα subsys-

tem dynamics. In fact, the convergent rate and the domain of attraction ofeα affect
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θ tracking performance as shown in (5.30). To incorporate theinternal subsystem tra-

jectory tracking performance into the MPC problem, we modify the objective function

as

Jk
θ̂,ŴH

= J̄k
θ̂,ŴH

+ ν‖Σd(ŴH(k))‖, (5.41)

whereΣd(ŴH(k)) is the covariance of the predictive distribution (5.19) at the kth

step andν > 0 is a weighting factor. The rationale to includeΣd in the cost function

is to incorporate the inverse dynamics model uncertainty inthe MPC planning phase.

As shown in Lemmas 5.1 and 5.2, the converging property ofeα depends onΣd. By

encouraging smallΣd, MPC picks the planned trajectory that can be stabilized by the

inverse dynamics controller with high confidence. The significance of adding this term

into the objective function is demonstrated in the control performance analysis and the

result sections.

The optimal control input by the MPC design is denoted as

Ŵ
0

H(k) = argminŴH(k) J
k
θ̂,ŴH

. (5.42)

The optimization is formulated as an unconstrained MPC and solved with gradient

decent approach. The optimal control inputŴ
0

H(k) is used in the inverse dynamics

controller (5.20).

Two items need to be clarified before the MPC solution (5.42) can guarantee the

convergence of actual state variableθ to the desiredθd. First, the approximated

model (5.35) is used instead of the unaccessible actual model (5.30) for computing

the state prediction. The impact of using this model approximation on tracking stabil-

ity is discussed in Section 5.6. Second, even though the predictionµθ̂ from (5.35) is an

accurate approximation ofθ from (5.30), the convergence ofµθ̂ to the desiredθd under

the controller (5.42) needs to be proven. The rest of this subsection is devoted to ad-

dress the second item above. It should be noted that since theprediction model (5.35a)

for µθ̂ is exact, no difference exists betweenµθ̂(k + i|k) andµθ̂(k + i|k + j), j ≤ i,
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in the discussion of the convergence ofµθ̂ to θd. The input (5.42) does not automat-

ically guarantee the convergence ofµθ̂ to θd because of the finite prediction horizon.

The stability can be instead ensured with the appropriate choice of the terminal cost

lf(k +H + 1) and the terminal constraint as shown in [76]. We here briefly describe

the terminal cost design process to ensure this convergence.

Suppose that for the desired trajectoryθd, there exists the corresponding desired

inputs{αd,wd,uf,d} satisfying the mean propagation dynamics (5.35a), that is,

θd(k + i+ 1) = Fθd(k + i) +Gµgpθ
(θd,αd,wd,uf,d). (5.43)

To show the stability of tracking erroreµ
θ̂
= µθ̂ − θd under the controller (5.42), we

assess theeµ
θ̂

dynamics by taking the difference between (5.43) and (5.35a), namely,

eµ
θ̂
(k + i+ 1) = Feµ

θ̂
(k + i) +G[µgpθ

(µθ̂, α̂, ŵ,uf )− µgpθ
(θd,αd,wd,uf,d)].

(5.44)

Defining inputue = [α̂T −αT
d ŵT −wT

d uT
f −uT

f,d]
T , (5.44) is then linearized around

its equilibrium point at the origin and we obtain

eµθ̂
(k + i+ 1) = Aeeµθ̂

(k + i) +Beue(k + i) (5.45)

with Ae = F +G
∂µgpθ

∂θd
andBe = G

[

(
∂µgpθ

∂αd
)T (

∂µgpθ

∂wd
)T (

∂µgpθ

∂uf,d
)T
]T

.

By [76], stability of the error dynamics (5.44) is guaranteed by the solutionŴ
∗0

H (k)

of the following MPC problem

Ŵ
∗0

H (k) = argminŴH (k) J
k∗
θ̂,ŴH

, (5.46)

whereJk∗
θ̂,ŴH

=
∑H

i=0 l
∗
s(k + i) + l∗f(k +H + 1), with

l∗s(k + i) = ‖eµ
θ̂
(k + i)‖2Q∗

1
+ ‖eα̂(k + i)‖2Q∗

2
+ ‖∆ŵ(k + i)‖2R∗ + ‖∆ud‖2R∗ ,

(5.47a)

l∗f (k +H + 1) = ‖eµ
θ̂
(k +H + 1)‖2Q∗

3
, (5.47b)
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eα̂(k + i) = α̂(k + i) − αd(k + i), ∆ŵ(k + i) = ŵ(k + i) − wd(k + i), and

∆ud = uf (k + i) − uf,d(k + i). Positive definite matricesQ∗
i , i = 1, 2, 3, andR∗

are chosen for design specification. [76] proposed a systematical approach to design

the terminal cost matrixQ∗
3 and the corresponding terminal regionΩe. Within Ωe, a

linear state feedback controller is designed for the linearized system (5.45) to ensure

the stability of the original dynamics (5.44) with the decreasing terminal cost, that is,

if eµθ̂
(k +H + 1) ∈ Ωe, controllerue = −Keeµθ̂

guaranteeseµθ̂
(k +H + 2) ∈ Ωe

with l∗f(k +H + 2) ≤ l∗f(k +H + 1)− l∗s(k +H + 1) for (5.44).

Taking the MPC objective function (5.46) under the optimal input as the Lyapunov

function, we have

J
(k+1)∗

θ̂0,Ŵ ∗0
H

− Jk∗
θ̂0,Ŵ ∗0

H
= −l∗s(k) + l∗f (k +H + 2)− l∗f(k +H + 1) + l∗s(k +H + 1)

≤ −l∗s(k).

From the monotonicity ofJk∗
θ̂0,Ŵ ∗0

H

, namely,‖eµ
θ̂
(k)‖2Q∗

1
≤ Jk∗

θ̂0,Ŵ ∗0
H

≤ ‖eµ
θ̂
(k)‖2Q∗

3
, we

have

J
(k+1)∗

θ̂0,Ŵ ∗0
H

≤ (1− λmin(Q
∗
1)

λmax(Q
∗
3)
)Jk∗

θ̂0,Ŵ ∗0
H
.

Comparing our proposed MPC problems (5.42) with (5.46), we notice two main

differences. The first difference is that the former one includes the model uncertainty

through the covariance terms. The second difference is thatthe former does not need

the desired input trajectoriesαd, wd anduf,d, which are difficult to obtain. The MPC

problem (5.41) only assumes that the desired trajectories exist but unknown. This is

one of the attractive properties of the proposed control design.

To apply the stability result of (5.46) to show the stabilityof the MPC design

in (5.41), the following lemmas are needed.

Lemma 5.4. For the terminal costl∗f (k + H + 1) and the stage costl∗s(k + i) de-

fined in (5.47), let matricesQ1 andR in (5.39) andQ3 in (5.40) satisfyQ1 = Q∗
1,
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λmax(R) < λmin(R
∗) andQ3 = Q∗

3, then

lf (k +H + 2) ≤ lf(k +H + 1) + tr(Q3Σθ̂(k +H + 2))

−ls(k +H + 1) + tr(Q1Σθ̂(k +H + 1))

if the following conditions are satisfied

‖ŵ(k +H + 1)‖ ≥ λR‖wd(k +H + 1)‖, (5.48a)

‖uf(k +H + 1)‖ ≥ λR‖uf,d(k +H + 1)‖, (5.48b)

whereλR = 2λmin(R
∗)

λmin(R
∗)−λmax(R)

.

The proof of this lemma is included in Appendix C.4. With the result in Lemma 5.4

on the terminal cost, we obtain the bound of tracking erroreµ
θ̂
(k+ i) := µθ̂(k+ i|k)−

θd(k + i) for i = 0, . . . , H + 1 by the following lemma.

Lemma 5.5. Using the objective functionJk
θ̂0,Ŵ 0

H

under the optimal input (5.42) as the

Lyapunov function, the tracking error satisfies‖eµθ̂
(k + i)‖ ≤ a4(i)‖eθ(k)‖ + a5(i),

wherea4(i) = d
i
2

3

√
λmax(Q3)
λmin(Q1)

anda5(i) =

√

di
3
(α2

max+νσ2
κmax)+d4

1−di
3

1−d3

λmin(Q1)
. Here0 < d3 = 1−

λmin(Q1)
λmax(Q3)

< 1 and d4 = (1 + λmin(Q1)
λmax(Q3)

)(νσ2
κmax + α2

max) +mλm(H + 2)(∆t)2σ2
f max

whereλm = λmax(Q1) + λmax(Q3).

The proof of Lemma 5.5 is included in Appendix C.5. Because0 < d3 < 1,

a4(i) converges to0 anda5(i) converges to
√

d4
(1−d3)λmin(Q1)

exponentially asi goes to

infinity. SinceJk
θ̂0,Ŵ 0

H

is positive definite, this lemma shows that if we chooseJk
θ̂0,Ŵ 0

H

as

Lyapunov function, then values ofJk
θ̂0,Ŵ 0

H

decrease along the trajectory predicted from

model (5.35) as long as (5.48) holds. The result in Lemma 5.5 implies that by solving

the MPC problem (5.42), the mean value variableµθ̂ predicted by (5.35) is stabilized

to θd exponentially.
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5.5.3 Summary of GP-based planning and control

The framework of GPs based planning and control is shown in Figure 5.1. In each

control sampling period, the trajectory planner solves theMPC problem (5.42) with the

model (5.35) and gives the planned internal trajectoryŴ
0

H as output. The MPC also

takes the predicted varianceΣd from the inverse dynamics model into consideration.

The inverse dynamics controller then takes the designed internal trajectoryŴ
0

H and

uses (5.19) and (5.20) to predict the control inputµd and implement on the actuator.

Figure 5.1: GP-based planning and control framework

The fact that GPs provide prediction uncertainty is attractive for robust control.

In our proposed framework, the prediction uncertainty is used in both the MPC based

trajectory planning and the inverse dynamics stabilization. We adopt the approach used

in [64] and [61] that incorporates the GPs uncertainty into prediction horizon to plan

internal trajectory. The uncertaintyΣd of the inverse dynamics model provided by GPs

in (5.19) also affects the trajectory planning phase.
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5.6 Control performance analysis

In this section, we show stability analysis of the proposed control framework and

present the impact of modeling error to controller performance.

For the unknown robot dynamics model (5.17), under the learning based inverse

dynamics controller (5.19) and (5.20), we have the closed loop dynamics (5.30). We

assume that both models (5.17) and (5.30) are deterministicwith unknown functions

f θ andκα. For (5.30), we propose Lyapunov candidate function

V (k) = Vθ(k) + ζVα(k), (5.49)

where constantζ > 0, Vα(k) = eT
α(k)Peα(k), P is defined in Lemma 5.2, andVθ(k)

is similar to the MPC cost function in (5.37) without expectation operator used in̄Jk
θ̂,ŴH

and under the optimal control̂W
0

H(k), namely,Vθ(k) = J̄k
θ,Ŵ 0

H

,

J̄k
θ,Ŵ 0

H
=

H∑

i=0

[
‖eθ(k + i)‖2Q1

+ ‖ŵ0(k + i)‖2R + ‖u0
f(k + i)‖2R

]

+‖α̂0(k)‖2Q2
+ ‖eθ(k +H + 1)‖2Q3

. (5.50)

Hereeθ(k + i) = θ(k + i) − θd(k + i). Note thatJ̄k
θ,Ŵ 0

H

is a quadratic function

of the actual stateθ(k + i) following the unknown deterministic model (5.30) under

the optimal controlŴ
0

H given by (5.42). At thekth step, it is impossible to directly

evaluateJ̄k
θ,Ŵ 0

H

because unaccessible future states and the unknown model (5.30), and

instead, its value is approximated bȳJk
θ̂0,Ŵ 0

H

in (5.37).

We assess the decreasing property of the proposed Lyapunov candidate function as

∆V (k) = [V (k + 1)− Jk+1

θ̂0,Ŵ 0
H

]− [V (k)− Jk
θ̂0,Ŵ 0

H
] + Jk+1

θ̂0,Ŵ 0
H

− Jk
θ̂0,Ŵ 0

H

= [J̄k+1

θ,Ŵ 0
H

+ ζVα(k + 1)− J̄k+1

θ̂0,Ŵ 0
H

− ν‖Σd(Ŵ
0
H(k + 1))‖]

−[J̄k
θ,Ŵ 0

H
+ ζVα(k)− J̄k

θ̂0,Ŵ 0
H
− ν‖Σd(Ŵ

0
H(k))‖] + Jk+1

θ̂0,Ŵ 0
H

− Jk
θ̂0,Ŵ 0

H

= (J̄k+1

θ,Ŵ 0
H

− J̄k+1

θ̂0,Ŵ 0
H

)− (J̄k
θ,Ŵ 0

H
− J̄k

θ̂0,Ŵ 0
H
) + ζ [Vα(k + 1)− Vα(k)]

+(Jk+1

θ̂0,Ŵ 0
H

− Jk
θ̂0,Ŵ 0

H
)− ν[‖Σd(Ŵ

0
H(k + 1))‖ − ‖Σd(Ŵ

0
H(k))‖]. (5.51)
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In above equation, term̄Jk
θ,Ŵ 0

H

− J̄k
θ̂0,Ŵ 0

H

quantifies the difference between the approx-

imated reduced system cost-to-go and the actual cost-to-goat thekth step. At thekth

step, we useθ(k+ i|k) for i ≥ 0 to denote the model predicted value ofθ(k+ i) given

the measured stateθ(k) with the initial conditionθ(k|k) = θ(k). Similar to (5.33), the

evolution ofθ(k + i|k) follows discretized form of (5.18), namely,

θ(k + i+ 1|k) ∼ Fθ(k + i|k) +Ggpθ(k + i) (5.52)

with the mean valueµθ(k+ i+1|k) and varianceΣθ(k+ i+1|k) calculations similar

to (5.35). The difference between model (5.52) and model (5.33) is that the former

depends on the actual internal stateα(k+ i), while the latter uses the designed internal

stateα̂(k + i|k) by the singular purturbed model. Model (5.33) is actually used forθ

trajectory prediction through the MPC formulation. Figure5.2 further illustrates the

relationship among the three differentθ-prediction models (5.17), (5.52) and (5.33).

Figure 5.2: Flow chart of the state estimation by three predictive models.

We now quantify the difference between̂θ(k + i|k) andθ(k + i|k). At i = 0,

θ̂(k|k) = θ(k|k) = θ(k). The difference between̂θ(k + i|k) andθ(k + i|k) comes

from the difference between the reduced model (5.33) and full model (5.52).
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Lemma 5.6. Assuming the mean value of the predictive distribution1 µgpθ
(µθ,α) is

Lipshitz inµθ andα, namely,

‖µgpθ
(·,α)− µgpθ

(·, α̂)‖ ≤ L2‖eα‖,

‖µgpθ
(µθ, ·)− µgpθ

(µθ̂, ·)‖ ≤ L3‖µθ − µθ̂‖

with constantsL2, L3 > 0, µ̃θ(k+i) := µθ(k+i|k)−µθ̂(k+i|k) satisfies‖µ̃θ(k+i)‖ ≤

̺θ̂(i)‖eα(k)‖+ ̺2(i), where

̺θ̂(i) = d1L2∆t

[(
1− ai1
1− a1

− i
)(

1− L3∆t

1− a1

)

+ i

]

,

a1 = e
λ1
4ǫ

∆t and̺2(i) = d2L2∆t[i+
1
2
L3∆t(i−1)i]. d1, d2, λ1 are defined in Lemma 5.2

and∆t is the sampling period.

The proof of this lemma is included in Appendix C.6. We then inspect the differ-

ence betweenθ(k+ i|k) andθ(k+ i). The difference betweenθ(k+ i|k) andθ(k+ i)

comes from the difference between the learning model (5.52)and the unknown actual

model (5.17). From Lemma A.3, we obtain the GP learned prediction guaranteed to be

closed to them-dimensional modelf θ with probability2, i.e.,

Pr{‖µgpθ
(θ,α)− f θ‖ ≤ ‖βT

θ Σ
1

2
gpθ‖} ≥ (1− δ)m, (5.53)

whereβθ is am-dimensional vector with itsjth element

βθ,j =

√

2||fθ,j||2k + 300γθ,j ln
3(
N + 1

δ
).

γθ,j is the maximum information gain forfθ,j. For i > 0, the following lemma gives

the difference upper-bound ofθµ(k + i) := µθ(k + i|k)− θ(k + i).

Lemma 5.7. Defining the probabilistic eventsΠθ
µθ
(k+ i) =

{
‖θµ(k+ i)‖ ≤ ̺µθ

}
for

i = 1, . . . , H+1, where̺µθ
= ∆t

∑i−1
j=0 ‖βT

θ Σ
1

2
gpθ(k+j|k)‖. Then,Pr

{
⋂i

j=0Π
θ
µθ
(k+

j)
}

≥ (1− δ)mi.

1For presentation convenience, we drop the third and four arguments and use notationµgpθ
(µθ,α)

to representµgpθ
(µθ,α, α̇2,uf ).

2We here drop all arguments(θ,α, α̇2,uf ) of functionsf θ andΣgpθ
for presentation brevity.
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The proof of this lemma is included in Appendix C.7. Lemmas 5.6 and 5.7 give

the error bounds oñµθ(k + i) = µθ(k + i|k)− µθ̂(k + i|k) andθµ(k + 1) = µθ(k +

i|k) − θ(k + i), respectively. Combining these results, we have the following lemma

on the error bound of̃θµ(k + i) := µθ̂(k + i|k)− θ(k + i).

Lemma 5.8. Defining the probabilistic events

Πθ
µ
θ̂
(k + i) =

{

‖θ̃µ(k + i)‖ ≤ ̺θ̂(i)‖eα(k)‖+ a2(i)
}

for i = 1, . . . , H + 1, wherea2(i) = ̺2(i) + ̺µθ
, then

Pr
{ i⋂

j=0

Πθ
µ
θ̂
(k + j)

}

≥ (1− δ)mi+n(i−1).

With the result of Lemma 5.8, we estimate the difference ofJ̄k
θ,Ŵ 0

H

− J̄k
θ̂0,Ŵ 0

H

in the

following lemma.

Lemma 5.9. Defining the probabilistic event

ΠJ
J̄(k) =

{

|J̄k
θ̂0,Ŵ 0

H
− J̄k

θ,Ŵ 0
H
| ≤ ρJ(eα, eθ)

}

,

where

ρJ(eα, eθ) = λmax(Q3)

H+1∑

i=0

{

ξ̄1(i)‖eα(k)‖2 + ξ̄2(i)‖eα(k)‖‖eθ(k)‖

+ξ̄3(i)‖eα(k)‖+ ξ̄4(i)‖eθ(k)‖+ ξ̄5(i)
}

, (5.54)

ξ̄1(i) = ̺2
θ̂
(i), ξ̄2(i) = 2̺θ̂(i)a4(i), ξ̄3(i) = 2̺θ̂(i)[a2(i) + a5(i)], ξ̄4(i) = 2a2(i)a4(i),

and ξ̄5(i) = a2(i)(a2(i) + 2a5(i)) + mi(∆t)2σ2
f max. ̺θ̂(i) and a2(i) are defined in

Lemmas 5.6 and 5.8, respectively.a4(i) anda5(i) are defined in Lemma 5.5, then

Pr{ΠJ
J̄(k)} ≥ (1− δ)m(H+1)+nH . (5.55)

The proof of this lemma is included in Appendix C.8.

The results in Lemma 5.9 are used to apply for the first two pairs of terms of∆V (k)

in (5.51). Lettinge(k) = [eT
θ (k) e

T
α(k)]

T denote the error vector, it is straightforward
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to obtain that the Lyapunov function candidateV (k) in (5.49) satisfiesλ‖e(k)‖2 ≤

V (k) ≤ λ‖e(k)‖2, whereλ = min(λmin(Q1), ζλmin(Q)) andλ = max(λmax(Q3),

ζλmax(Q)), where matricesQ andQ1 are defined in Lemma 5.2 and (5.37), respec-

tively. We are now ready to give the following result for the overall controller perfor-

mance.

Theorem 5.1. For the parameters̄ξj(i), i = 0, 1, . . . , H + 2, j = 1, . . . , 5, given in

Lemma 5.9, defineξj = λ̄
[

ξ̄j(0) + 2
∑H+1

i=1 ξ̄j(i) + ξ̄j(H + 2)
]

, γ1 =
√
η, γ2 = ξ3

2γ1
,

γ3 =
√

λmin(Q1), γ4 = ξ4
γ3

, andγ5 =
ξ2
4

γ2
3

+
ξ2
3

4γ2
1

+ ξ5 + α̂2
max + νσ2

κmax + ζc3∆t +

mλm(H+2)(∆t)2σ2
f max, where constantλm = λmax(Q1)+λmax(Q3). The following

fact is then held

Pr{V (k + 1) ≤ (1− γ23
4λ

)V (k) + γ5} ≥

Pr
{
ΠJ

J̄(k + 1) ∩ΠJ
J̄(k)

}
≥ (1− δ)(m+n)H+2m+n

if

η =
1

4
ζλmin(Q)∆t− ξ1 −

ξ22
2λmin(Q1)

− λmin(Q1)

4
> 0. (5.56)

The proof of Theorem 5.1 is shown in Appendix C.9. IfV (k+1) ≤ (1− γ2
3

4λ
)V (k)+

γ5 holds fori consecutive steps, we have

V (k + i) ≤ (1− γ23
4λ

)iV (k) + γ5
4λ(1− (1− γ2

3

4λ
)i)

γ23
. (5.57)

Defining Vss = limi→∞ V (k + i) and‖e‖ss = limi→∞ ‖e(k + i)‖ for any fixedk,

thenVss ≤ 4λ
γ2
3

γ5 and‖e‖ss ≤
√

4λ
γ2
3
λ
γ5. Modeling errors are important factors for the

steady-state error bound. The terma2(i) defined in Lemma 5.8 quantifies the modeling

error for eθ dynamics. As the value ofa2(i) increases, termsξ3, ξ4 andξ5 increase

and consequentlyγ5 increases. The termρ(eα, θ) defined in Lemma 5.1 quantifies the

modeling error foreα dynamics. As the value ofρ(eα, θ) increases,γ5 also increases.
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θα

Figure 5.3: Rotary Inverted Pendulum:θ is the actuated DOF;α is the unactuated
DOF.

5.7 Experimental results

We demonstrate the algorithm on the rotary inverted pendulum platform as shown in

Figure 5.3. The hardware system is provided by Quanser Consulting Inc. In this sys-

tem, the acutauted joint is the rotary base angleθ and the unactuated joint is the pendu-

lum angleα. The pendulum angleα is defined to be0 when it is vertically upright. The

rotary base is controlled by a motor. The voltageVm applied to the motor is the control

input to the system. The control goal is to balance the pendulum around upright while

the rotary base angle should track a desired trajectoryθd.

To obtain the learned model of the system, we need to perturb the system and

collect the motion data. We implement an open loop actuator input

Vm =







v1 sin(f1t) + v2 sin(f2t) , |α| ≤ π
3

0 , |α| > π
3
,

(5.58)

where the unit is voltage. Herev1 andv2 are designed to satisfy the voltage limit|Vm| ≤
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5. f1 andf2 are designed to excite the system in both low and high frequency. In our

experiment, we choosev1 = 3, v2 = 1.5, f1 = 8 rad/sec andf2 = 40 rad/sec. Under

this input, we swing up the pendulum manually by giving the pendulum a velocity

when the angle|α| ≥ π
2
. This open-loop controller cannot stabilize the pendulum to

stay around the upright position. For each swing, the pendulum angleα might stay in

the range of|α| ≤ π
3

for less than one second and then fall. We swing up the pendulum

repeatedly to get enough data for training the model. Control input Vm and motion

data[θ, α, θ̇, α̇, θ̈, α̈] are recorded when|α| ≤ π
3
. The joint angles[θ, α] are measured

with encoders. Their velocities[θ̇, α̇] and accelerations[θ̈, α̈] are obtained by once and

twice numerical differentiation of the joint angles with low pass filters. The open-loop

controller is executed at the rate of 100Hz. The data is also collected at the sampling

frequency of 100 Hz. In Figure 5.4, an example trial of collectedθ andα angles under

the open-loop input is shown. It can be seen from theα angle in Figure 5.4 that the

pendulum cannot achieve balance and multiple trials of manual swing is applied on the

pendulum in order to collect enough data satisfying|α| ≤ π
3
.

We adopt the Gaussian processes regression method to train machine learning mod-

els. The chosen inputs and outputs are described in Section 5.5. The only assumed

knowledge about the physical system is that the learned model is not a function of

the rotary base angleθ. Therefore,θ is not an input to the model. The prior Gaus-

sian processes are assumed to have zero-mean function and squared exponential kernel

functions. The hyper-parameters of the kernel function aredetermined through maxi-

mizing the log likelihood [58].

The controller implementation of the rotary inverted pendulum system is through

Matlab Simulink. Within each control sampling period, the MPC trajectory planner

and inverse dynamics controller give updated output. The MPC previews the desired

trajectory from current time to 0.56 sec later. The previewed trajectory is sampled with

a period of 0.02 sec, that is,∆t = 0.02 in equation (5.32) andH = 27 in (5.37).
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Figure 5.4: Collected training data under the open loop input excitation.

The weight matrices in objective (5.37) in implementation areQ1 = diag([100, 100]),

Q2 = diag([100, 100]), Q3 = diag([1000, 1000]), R = 10 andν = 1 in (5.41).

Figure 5.5 shows the control performance under the proposeddesign. A set of

800 training data points are collected as the training data set. In this experiment, the

desired external trajectory was designedθd = 0.6 sin(t)+0.4 sin(4t) rad. Figure 5.5(a)

shows the tracking performance of external subsystem angleθ and Figure 5.5(b) for

internal subsystem angleα. For comparison purpose, we also include the physical

model-based EIC control performance given in [13]. Figures5.5(c) and 5.5(d) further

compare the tracking errorseθ andeα under these two controllers. It is clear from these

results that the learning-based control design effectively captures the underactuated

balance robotic dynamics and both the external tracking andinternal balancing tasks

are satisfactory. The performance under the learning-based design outperforms that

with the physical model-based controller.
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Figure 5.5: Control performance comparison between the proposed learned model-
based design and the EIC-based controller. (a) External angle θ tracking profiles. (b)
Internal angleα tracking profiles. (c) External angle tracking errorseθ. (d) Internal
angle tracking errorseα.

To understand the influence of training data sizes on the control performance, we

vary the number of the training data set from200 to 800 points to obtain different

learned models. These models are used to track the same trajectory θd(t) rad as men-

tioned above. Figure 5.6 shows the error distribution contours under different numbers

of training data set for learning control and the EIC-based control design. For each

learned model, the plot includes the tracking errors of a 90-sec motion duration. The

results clearly imply that with only 200 training data, the controller barely achieves the

balancing and tracking tasks with large errors. With the increasing training data sets,

the magnitudes of both the balancing and tracking errors decrease. With a set of 800
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Figure 5.6: Impact of training data number to the tracking and balancing performance

training data points, the learned model-based controller achieves superior performance

than that under the analytical model-based controller.

The trade-off between the tracking and balancing performance is tuned by the

choice ofν value in the MPC objective function (5.41). Experiments areconducted

to show the performance with the same learned model (obtained by using 200 train-

ing data points) under different values ofν. Figure 5.7 shows the performance of the

tracking and balancing errors with differentν values. We intentionally chose an in-

accurate learned model and therefore, the value of‖Σd‖ in (5.41) is relatively large.

Whenν = 0, the balancing performance is not robust due to the poor inverse dynamics

model. Withν = 10, the system achieves a good trade-off between balancing and

tracking tasks. With a further increasedν value (i.e.,ν = 40, 60), the tracking perfor-

mance becomes worse, and whenν > 80 the controller fails to balance the pendulum.
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Figure 5.7: Control performance with differentν values

The averages of the variance of the inverse dynamics model for 60-second trials are

0.255, 0.174, 0.108 and0.108 for ν = 0, 10, 40, 60, respectively. The results clearly

show that with increasedν values, the magnitude ofΣd decreases. This confirms that

the use of the integrated‖Σd‖ in the objective function helps the control performance

improvements.

5.8 Summary

This chapter proposed a learning model based planning and control framework for un-

deractuated balance robot. The characteristic of the underactuated balance robot is that

the equilibrium point varies according to the desired output trajectory rather than be-

ing a constant point. We proposed a trajectory planning and stabilization framework.

The trajectory planner used an MPC design to find the desired internal trajectory. The
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inverse dynamics controller stabilized the system state onto the planned internal trajec-

tory.

The GPs learning model adopted in this work provided predictive distribution with

the mean value and the variance. The proposed planning and control framework explic-

itly preferred trajectories with small prediction variance through online optimization.

This property resulted in improved performance robustnessas shown in the experi-

ments. Furthermore, the learned model can be obtained by exciting the system dynam-

ics without prior knowledge about the system or successful balancing demonstration.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

This dissertation studied the learning-based modeling andcontrol approaches of under-

actuated balance robots. The most significant property of underactuated balance robots

is that the unactuated subsystem is not directly controlledby inputs but indirectly af-

fected by the actuated subsystem. This property determinesthat the robot state can

only travel a latent manifold, not any arbitrary trajectoryof the entire state space. Many

control approaches of underactuated balance robots are motivated by identifying the la-

tent manifold and designing feedback control laws to stabilize the robot state onto the

latent manifold [11] [13]. However, the physical-principle-based latent manifold iden-

tification and stabilization approaches rely on in-depth knowledge of the robot system,

which limits their applications. This dissertation takes amachine learning viewpoint

and approach to identify the latent manifold and design the stabilization controllers for

underactuated balance robot.

In Chapter 2, the learned latent manifold was used in modeling high dimensional

human-robot interaction. In many human-robot interactionexamples, the high dimen-

sional human limbs motion can be captured by latent manifoldmodel. A new dimen-

sional reduction approach was developed to construct learning-based latent manifold

with physical interpretation. The learning-based model for human limbs subsystem

was coupled with the physical model for human trunk and robotsubsystem through in-

puts and constraints. The integrated model was applied on human-bikebot interaction
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pose estimation in the extended Kalman filter framework. Theproposed learning-based

approach gave accurate pose estimation for human-bikebot interaction compared to the

direct measurements from IMUs.

In Chapter 3, the physical-principled latent manifold design was extended to study

biped slip recovery control. Slipping dynamics was obtained by removing the con-

straint of stance foot sticking to ground from the normal walking dynamics. A se-

quence of recovery gaits, i.e., the virtual constraints, were designed so that it would

bring the robot from slipping back to periodic walking. In the hybrid zero dynamics

space, periodical walking corresponded to a periodic orbit; while slip recovery could

be viewed as a trajectory that initially was perturbed away from the periodical orbit

and finally converged back to the walking periodic orbit. Theextended biped model is

validated by experiments.

Chapters 2 and 3 showed that both the learning-based and the physical-principled

latent manifold approaches can be applied to model high dimensional robot dynamics.

In Chapter 4, the relation between these two approaches werediscussed with the ap-

plication to biped walking. It was shown that the learning-based latent manifold model

can reconstruct the physical-principled virtual constraints and the zero dynamics. This

implied that the balancing skill could be identified by learning-based latent manifold

approach from demonstration.

In Chapter 5, a learning-model based control framework was proposed to achieve

underactuated balance robot tracking while balancing task. The latent manifold was

online identified by the MPC approach to design feasible trajectories for tracking while

balancing task. The robot state was stabilized onto the latent manifold by an inverse dy-

namics controller. The learned models provided confidence level measurement that was

considered in the optimization based trajectory planning in order to improve the con-

trol robustness. The controller outperformed the physical-principled controller without
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any prior knowledge of the model or successful balancing demonstration. The pro-

posed control framework was demonstrated on a rotary inverted pendulum and was

readily applicable to a broad class of underactuated balance robots such as autonomous

bicycles.

6.2 Future works

There are a few research directions that follow this dissertation’s work. Chapter 5 has

proposed a learning-model based controller design that does not require prior knowl-

edge of the system or successful demonstration data, and yetachieves competitive per-

formance as analytical model based control design. It is expected that such controller

design could be extended to high degrees of freedom systems such as autonomous

bicycle and biped robot. Even though the autonomous bicyclemodeling and control

problems have been studied in [5] [77], several open problems still need to be solved

to achieve fully autonomous bicycle goal. It is more challenging to balance bicycle in

low speed than in high speed. At low speed riding, the contribution of steering and

acceleration to the bicycle balancing is different from that during high speed riding.

Learning-based modeling approach could be applied to identify the bicycle dynamics

in both low and high speeds. It is also a challenging task to achieve autonomous bi-

cycle driving on rough terrain such as uneven or slippery ground. Under these ground

conditions, the nonholonomic wheel contact constraint is no longer satisfied. Machine

learning approach could be applied to build a dynamic model for the bicycle platform

that takes the tires-ground friction and dragging force into consideration. With this

precise tires-ground interaction model, new control framework could be proposed to

achieve robust and agile maneuvers on rough terrains.

In Chapter 3, the design criteria of the slip recovery gait sequence was proposed.

Human demonstrated slip recovery gaits were modified to satisfy the criteria. However,
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human might not demonstrate the optimal slip recovery policy. A formal approach

would be formulated to construct an optimization problem with the criteria in Chapter

3 and other physical inspired objective function, such as energy cost.

Besides the optimization approach to obtain the latent manifold for balancing skill,

Chapter 4 gave an example of learning the latent manifold from demonstration. This

idea can be extended to learning from demonstration [74] by learning the demonstrated

latent manifold and applying to a new robot. Due to the possible structure difference

between the teaching and the apprentice robots, the latent manifold cannot be directly

copied but be customized on the apprentice robot. All of these research topics can be

the future works of this dissertation.
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Appendix A

Gaussian Process

Gaussian process (GP) is a flexible non-parametric machine learning model. The word

“non-parametric” means that the number of model parametersis changing with the

number of training data. Besides its flexibility, a significant advantage of GP is that it

predicts both the mean value and covariance of the output which makes it compatible

with probabilistic state estimation and control. For the input space with more training

data, GP predicts output with lower uncertainty. In this section, we briefly introduce

the derivation of GP. Detailed introduction of GP is referred to [58].

A.1 Regression

A Gaussian process is a collection of random variables, any finite number of which

have a joint Gaussian distribution. A real value processf(x) : Rd → R
1 is determined

by its mean value functionµ(x) and covariance functionk(x,x′) as

µ(x) = E[f(x)],

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]. (A.1)

The mean value function and covariance functions are determined through model se-

lection and hyperparameters learning which will be described in the next section.

Suppose the training data set containsN input output data pairsD = {xi, yi}Ni=1.

The observed outputyi is a noisy observation of the underlying function value with

zero mean Gaussian noiseω, i.e.,yi = f(xi) + ω with ω ∼ N (0, σ2). The observa-

tion vector is denoted asy = [y1, ..., yN ]T and the input design matrix is denoted as
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X = [x1, ...,xN ]T . At a testing pointx∗ ∈ R
d, we would like to predict its corre-

sponding function valuef ∗ = f(x∗) according to the observed training dataD. The

joint distribution of the training outputsy and the testing outputf ∗ is






y

f ∗






∼ N






0,







K(X,X) + σ2IN k(X,x∗)

k(X,x∗)T k(x∗,x∗)












, (A.2)

whereK(X,X) is theN×N kernel matrix whose element isK i,j(X,X) = k(xi,xj).

IN is theN ×N identity matrix.k(X,x∗) is anN × 1 column vector whose element

is ki(X,x∗) = k(xi,x∗).

The probabilistic prediction off ∗ is given by the conditional distribution

f ∗|x∗,D ∼ N (µ(x∗),Σ(x∗)), (A.3)

whereµ(x∗) is the posterior mean function andΣ(x∗) is the posterior covariance func-

tion given by

µ(x∗) = k(X,x∗)T [K(X ,X) + σ2IN ]
−1y,

Σ(x∗) = k(x∗,x∗)− k(X ,x∗)T [K(X,X) + σ2IN ]
−1k(X,x∗).

(A.4)

GPs can also be applied to learnn-dimensional vector-valued functionf(x) :

R
d → R

n. In such cases, GPs are adopted to learn each functionfi(x), i = 1, ..., n,

asf ∗
i |x∗,D ∼ N (µi(x

∗),Σi(x
∗)) independently. The predictive distribution can be

written as

f ∗|x∗,D ∼ N (µ(x∗),Σ(x∗)),

µ(x∗) = [µ1(x
∗), ..., µn(x

∗)]T ,Σ(x∗) = diag[Σ1(x
∗), ...,Σn(x

∗)].

(A.5)

Because each dimension is assumed to be independent from each other, the covariance

matrixΣ is diagonal.
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A.2 Model selection and hyperparameter learning

As mentioned in the previous section, the Gaussian process is determined by the covari-

ance function (also called kernel function) in (A.1). A covariance function corresponds

to a set of basis feature functions in regression problem. Inmodel selection, we choose

the function form of covariance function: how the covariance function depends on the

input data and how the covariance function depends on the hyperparameters. The most

frequently used covariance function is the squared exponential (SE) function defined

as

k(xi,xj) = σ2
f exp(−

1

2
(xi − xj)TM(xi − xj)) + σ2δij , (A.6)

whereθ = {M , σ2
f , σ

2} is the hyperparameter set.δij = 1 if xi = xj , otherwise

δij = 0. The SE covariance function is static because it only depends on the dis-

tance between two points and ignores the exact location of any point. The fact that

SE function value decreases as the distance between two points increases implies that

the modeled function tends to have similar function value for close input points. The

hyperparameterM determines the speed and direction of this decreasing. Throughout

this dissertation, we focus on the SE kernel. The following lemma is given on the upper

bound of covariance of SE kernel.

Lemma A.1. For any testing pointx∗ ∈ R
d, the posterior covarianceΣ(x∗) of SE

kernel is bounded by

Σ(x∗) ≤ σ2
f + σ2, (A.7)

whereσf andσ are the hyperparameters in the kernel function (A.6). Forn-dimensional

vector Gaussian processesf (·) defined as (A.5),

||Σ(x∗)|| ≤ n
max
i=1

(σ2
fi
+ σ2

i ),

whereσfi andσi are hyperparameters for the kernel function correspondingto fi(·),

theith element off (·).
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Proof. From (A.4) and the positive definiteness ofK(X,X)+σ2IN and the definition

of SE kernel (A.6), we have

Σ(x∗) ≤ k(x∗,x∗) ≤ σ2
f + σ2.

SinceΣ(x∗) = diag[Σ1(x
∗), ...,Σn(x

∗)], by the definition of matrix norm

||Σ(x∗)|| = λmax(Σ(x∗)) =
n

max
i=1

Σi(x
∗) ≤ n

max
i=1

(σ2
fi
+ σ2

i ).

This proofs the lemma.

For hyperparameter learning, the log likelihood of the observed data is optimized

with respect to the hyperparameters.

log(y|X) = −1
2
yT (K + σ2IN )

−1y − 1

2
log |K + σ2IN | −

N

2
log(2π) (A.8)

To avoid overfit, regulation terms that penalizing large value of hyperparameters are

added to the optimization objectives.

A.3 Boundedness of learning error

Suppose we would like to learn a scalar functiony = f(x) with inputx ∈ D ⊆ R
d,

whereD is a compact set and outputy ∈ R
1. The unknown functionf(x) is in the re-

producing kernel Hilbert space (RKHS), denoted asf ∈ Hk(D), with bounded RKHS

norm ||f ||k with respect to the covariance functionk(x,x′). The output observation

is with noiseω ∼ N (0, σ2). The training data set containsN observations of input

output pairs{xi, yi}Ni=1. For a testing pointx, the predictive distribution conditioned

onN observations isN (µ(x),Σ(x)). The following lemma gives the learning error

bound.

Lemma A.2. Theorem 6 of [78]. Letδ ∈ (0, 1), then

Pr{|µ(x)− f(x)| ≤ βΣ
1

2 (x)} ≥ 1− δ (A.9)



129

with β =
√

2||f ||2k + 300γ ln3(N+1
δ

). γ ∈ R is the maximum information gain defined

as

γ = max
x1,...,xN+1∈D

I(y1, ..., yN+1; f). (A.10)

Lettingy := {y1, ..., yN+1} denote theN + 1 observations of functionf , and the

information gain is defined as

I(y; f) = H(y)−H(y|f) (A.11)

to quantify the reduction in uncertainty aboutf by revealingy, whereH(·) is the en-

tropy. In GP context, from the prior distributiony ∼ N (0,K+σ2IN+1) and the condi-

tional distributiony|f ∼ N (0, σ2IN+1), the entropies areH(y) = 1
2
log{det[2πe(K+

σ2IN+1)]} andH(y|f) = 1
2
log(2πeσ2). Therefore, the information gain isI(y; f) =

1
2
log det(IN+1 + σ−2K). In GP context, (A.10) can be specifically written as

γ = max
x1,...,xN+1∈D

1

2
log det(IN+1 + σ−2K). (A.12)

The maximum information gainγ is obtained by taking optimization with respect

tox1, ...,xN+1 ∈ D , and therefore,γ is not dependent on particular chosen ofxi. The

details and proof of this lemma is referred to [78].

Forn-dimensional vector functionf (x), where each dimension is independent of

each other, Lemma A.2 can be extended to the following lemma:

Lemma A.3. Lemma 1 of [70].

Pr{||µ(x)− f(x)|| ≤ ||βTΣ
1

2 (x)||} ≥ (1− δ)n, (A.13)

whereµ(·) andΣ(·) are defined in (A.5).β is ann × 1 vector with itsith element

βi =
√

2||fi||2k + 300γi ln
3(N+1

δ
). γi is the maximum information gain forfi.
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Proof. Define the probabilistic events

Πi = {x ∈ D, |µi(x)− fi(x)| ≤ βiΣ
1

2

i (x)} (A.14)

for i = 1, ..., n. From Lemma A.2, for any0 < δ < 1, we havePr{Πi} ≥ 1− δ. Since

Πi are independent from each other,Pr{∩ni=1Πi} ≥ (1−δ)n. Defining the probabilistic

event

Π = {x ∈ D, ‖µ(x)− f (x)‖ ≤ ‖βTΣ
1

2 (x)‖}, (A.15)

we have{∩ni=1Πi} ⊆ Π. ThereforePr{Π} ≥ Pr{∩ni=1Πi} ≥ (1− δ)n.

This lemma is first proposed and proven in [70].
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Appendix B

Proofs for Results in Chapter 4

B.1 Proof of Lemma 4.1

Using (4.7), we haveY = bXd, whereXd ∈ R
1×M is the row vector that contains

the variables innull(Hθ) corresponding to each data point. Because of dimension of

scalar variablexd, the first eigenvector (i.e., the first and only principal component) by

PCA is given as [79]

w1 = arg‖w‖=1max{wTY Y Tw} = arg‖w‖=1max{‖bTw‖2} = b,

where we use‖b‖ = 1 in the last step. Therefore, the PCA results in estimate ofb

exactly and this proves Lemma 4.1.

B.2 Proof of Lemma 4.2

Without loss of generality, we assume that the regression isconducted for each indi-

vidual dimension. We denote thaty ∈ R
M×1 be the transpose of one row ofY . Since

the right hand side of (4.14) is a spline function, we can write an elementy of y as

y = y(ξ1) =
∑N

j wjφj(ξ1) + n = φT (ξ1)w + n, wheren ∼ N (0, σ2) andN is the

dimension of the feature space. Then forM data points, we have

y = ΦTw + ǫ, (B.1)
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whereǫ ∼ N (0, σ2I), Φ =

[

φ(ξ1(1)) · · · φ(ξ1(M))

]

can be written as

Φ =















φ1(ξ1(1)) · · · φ1(ξ1(M))

φ2(ξ1(1)) · · · φ2(ξ1(M))

· · · · · · · · ·

φN(ξ1(1)) · · · φN(ξ1(M))















N×M

andφ(ξ1(j)) = [φi(ξ1(j)) · · · φi(ξ1(j))]
T , j = 1, · · · ,M .

We now apply the minimization to the collected data to obtainparameterβ =

[β1 β2 β3] as

min
β
p(β) := − logP (y|Ξ1,β) =

1

2
yTK−1

y y +
1

2
log |Ky|+

M

2
log(2π), (B.2)

whereK i,j = k(ξ1(i), ξ1(j)) and

Ky = K + β3IM×M (B.3)

If we choose the Gaussian kernel, we havek(ξ1(i), ξ1(j)) = β1 exp{−β2

2
‖ξ1(i) −

ξ1(j)‖2}. At the minimization point, the derivative with respect toKy should be zero,

namely,

∂p(β)

∂Ky
=

1

2

(
−K−1

y yyTK−T
y +K−1

y

)
= 0. (B.4)

Thus, we haveKy = yyT . However,yyT is not invertible. To deal with this problem,

let’s assume that the minimization algorithm findsKy = E[yyT ] as the solution. From

(B.1), we haveKy = E[yyT ] = ΦTwwTΦ + σ2IM×M . Comparing with (B.3) we

have thatk(ξ1(i), ξ1(j)) = φT (ξ1(i))wwTφ(ξ1(j)). Once the kernel is determined,

the predictive posterior distribution for a new inputξ∗ is given byp(f |ξ∗,y,Ξ1) =

N (µg,Σg) with

µg(ξ∗) = kT
∗ (Ky)

−1y, Σg(ξ∗) = k∗∗ − kT
∗ (Ky)

−1k∗,
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wherek∗ = [k(ξ1(1), ξ∗), · · · , k(ξ1(M), ξ∗)]
T andk∗∗ = k(ξ∗, ξ∗). Therefore, we have

k∗ = ΦTwwTφ(ξ∗). Multiplying both sides of the mean value prediction function by

yT , we obtainµg(ξ∗)y
T = kT

∗ (Ky)
−1yyT . With equation (B.4), it can be reformed

asµg(ξ∗)y
T = kT

∗ = φT (ξ∗)wwTΦ. We combine this relation with (B.1) and have

(µg(ξ∗)− φT (ξ∗)w)yT = −φT (ξ∗)wǫT . BecauseyT is nonzero, whenǫ is small, we

haveµg(ξ∗) = φT (ξ∗)w. This implies that by minimizing (B.2), the mean value of

the posterior predictive distribution recovers the nominal generating model (B.1). We

apply (B.2) to each row ofY to recover each dimension of the equation (4.14). This

completes the proof.
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Appendix C

Proofs for Results in Chapter 5

C.1 Proof of Lemma 5.1

For the brevity of the derivation, we omit the inputθ,α,uf in functionµα andκα.

µα(θ,α, v,uf )− κα(θ,α, α̇2,uf )

=µα(v)− κα(v) + κα(v)− κα(α̇2)

=µα(v)− κα(v)−
∂κα

∂v
(α̇2 − v) +O(||α̇2 − v||2)

=µα(v)− κα(v)−
∂κα

∂v
[µα(v)− κα(α̇2)] +O(||α̇2 − v||2).

(C.1)

The second equality sign comes from Taylor expansion ofκα(v) − κα(α̇2). We have

O(||α̇2 − v||2) ≤ c2||eα||2 + c1||eα||+ c0, with constantsc0, c1, c2 ∈ R
+. It should be

noted that if (5.17) is in the form of robot manipulator dynamics,κα(θ,α, α̇2,uf ) is

exactly linear function ofα̇2 andO(||α̇2 − v||2) = 0. The third equality sign comes

from (5.22).

Let Aκ := I + ∂κα

∂v
be the linearization of the left hand side ofα2 subdynamics

in (5.17) with respect tȯα2. It serves as the inertia matrix ofα2 subdynamics in the

robot manipulator dynamics. Therefore,Aκ is non-singular and positive definite. From

(C.1), we have

µα(v)− κα(α̇2) = A−1
κ [O(||α̇2 − v||2) + µα(v)− κα(v)]. (C.2)

Taking the norm and applying Lemma A.3 toµα(v)− κα(v), we have
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||µα(v)− κα(α̇2)|| ≤ λ−1
min(Aκ)(

2∑

i=0

ci||eα||i + ||βT
αΣ

1

2
α(θ,α, v,uf)||) (C.3)

with the probability(1 − δ)n, whereλmin(Aκ) > 0 is the smallest eigenvalue ofAκ.

Lettingρ(eα, θ,α, v,uf ) denote the right hand side of the less or equal sign, i.e.,

ρ(eα, θ,α, v,uf ) := λ−1
min(Aκ)(

2∑

i=0

ci||eα||i + ||βT
αΣ

1

2
α(θ,α, v,uf)||), (C.4)

we havePr{||µα(v)− κα(α̇2)|| ≤ ρ(eα, θ,α, v,uf)} ≤ (1− δ)n.

C.2 Proof of Lemma 5.2

With kp, kd > 0 and singular perturbation parameterǫ > 0, A is Hurwitz.A is with n-

eigenvalues atλ1

ǫ
and the other n-eigenvalues atλ2

ǫ
, whereλ1 = 1

2
(−kd +

√

k2d − 4kp)

andλ2 = 1
2
(−kd −

√

k2d − 4kp). We further assume thatk2d − 4kp > 0 so thatλ2 <

λ1 < 0. There is an invertible coordinate transformation

M =







ǫIn ǫIn

λ1In λ2In






,M−1 =

1

ǫ(λ2 − λ1)







λ2In −ǫIn

−λ1In ǫIn







(C.5)

such thatA = MΛM−1, whereΛ is the diagonalized matrix:

Λ = M−1AM =







λ1

ǫ
In 0

0 λ2

ǫ
In






. (C.6)

In order to assess the converging property ofeα, a coordinate transformation is

performed toeα. Let eα = Meα′ , the eα dynamics (5.23) can be written ineα′

coordinates:

ėα′ = Λeα′ +M−1B[r(t) + µα(θ,α, v,uf )− κα(θ,α, α̇2,uf )]. (C.7)
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SinceΛ is Hurwitz, there exists a positive definite matrixP α′

P α′ =







− ǫ
2λ1

In 0

0 − ǫ
2λ2

In







(C.8)

such thatΛTP α′+P α′Λ = −I2n. We choose the Lyapunov functionVα′ = eT
α′P α′eα′

for eα′ dynamics (C.7). Note that

− ǫ

2λ2
||eα′ ||2 ≤ Vα′ ≤ − ǫ

2λ1
||eα′ ||2, (C.9)

then

V̇α′ = −eT
α′eα′ + 2(BTM−TP α′eα′)T [r + µα(θ,α, v,uf)− κα(θ,α, α̇2,uf )].

(C.10)

r(t) is designed to be

r(t) =







−ρ(eα, θ)
BTM−TPα′eα′

||BTM−TPα′eα′ ||
; if ||BTM−TP α′eα′ || > ξ

−ρ(eα,θ)
ξ

BTM−TP α′eα′ ; if ||BTM−TP α′eα′ || ≤ ξ,

(C.11)

whereξ > 0 is designed asξ = λmin(Aκ)
c2‖M‖2

. When||µα(v)−κα(α̇2)|| ≤ ρ(eα, θ,α, v,uf),

according to [80] (Chapter 8.4.1 Theorem 1), we have

V̇α′ ≤ −‖eα′‖2 + ξρ(eα, θ)

2
= −1

2
‖eα′‖2 + c1

2c2‖M‖
‖eα′‖+ c0

2c2‖M‖2
+
‖βT

αΣ
1/2
α ‖

2c2‖M‖2

= −1
4
‖eα′‖2 − 1

4

(

‖eα′‖ − c1
c2‖M‖

)2

+ c3 ≤ −
1

4
‖eα′‖2 + c3,

(C.12)

where positive constantc3 = 1
4

c2
1

c2
2
‖M‖2

+ 1
2

c0
c2‖M‖2

+ 1
2
‖βT

αΣ
1/2
α ‖

2c2‖M‖2
> 0. By combining

(C.9) with (C.12), we have

V̇α′ ≤ λ1
2ǫ
Vα′ + c3 ⇒ Vα′(t) ≤ Vα′(0)e

λ1
2ǫ

t − 2ǫ

λ1
c3. (C.13)

We define Lyapuov function candidateVα(t) = eα(t)
TPeα(t), whereP = M−TP α′M−1

is positive definite because of positive definiteP α′ . It is straightforward to check
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that Vα(t) = eα′(t)TMTPMeα′(t) = eα′(t)TP α′eα′(t) = Vα′(t). DefiningQ =

M−TM−1,P is the solution of Lyapunov equationATP+PA = −Q. Using (C.12),

we obtain

V̇α ≤ −
1

4
eT
αQeα + c3. (C.14)

UsingP andeα, we write the control inputr(t) as in (5.28).

Using the fact thatλmin(P )‖eα‖2 ≤ Vα(t) ≤ λmax(P )‖eα‖2, from (C.13), we

have

‖eα(t)‖ ≤
√

λmax(P )

λmin(P )
‖eα(0)‖e

λ1
4ǫ

t +

√

− 2ǫc3
λ1λmin(P )

= d1‖eα(0)‖e
λ1
4ǫ

t + d2

with d1 andd2 are given in the lemma. Then, considering the learning modelerror

bound inc3 and applying the results in Lemma 5.1, we prove (5.29).

C.3 Proof of Lemma 5.3

The iterative relation of the covariance is given in (5.35).Taking norm on both sides

and applying the upper bound of the gradient||∂µgpθ

∂θ
|| ≤ L1,

||Σθ̂(k + i+ 1|k)|| ≤ (||F ||2 + ||G||2L2
1)||Σθ̂(k + i|k)||+ ||G||2||Σgpθ ||

≤ (||F ||2 + ||G||2L2
1)||Σθ̂(k + i|k)||+ ||G||2σ2

f max. (C.15)

Applying (C.15) iteratively with the initial conditionΣθ̂(k|k) = 0, we obtain

||Σθ̂(k + i|k)|| ≤ 1− (||F ||2 + ||G||2L2
1)

i

1− (||F ||2 + ||G||2L2
1)
||G||2σ2

f max. (C.16)

The norms ofF andG are calculated as

‖F ‖ =
√

1 +
∆t

2

(

∆t+
√

(∆t)2 + 4
)

, ‖G‖ = ∆t.

For∆t≪ 1, taking approximation‖F ‖ ≈ 1 and(1 + x)n ≈ 1 + nx with |x| ≪ 1, we

obtain the upper-bound as shown in the lemma.
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C.4 Proof of Lemma 5.4

It is straightforward to obtain

lf(k +H + 2) = l∗f (k +H + 2) + tr(Q3Σθ̂(k +H + 2))

≤ l∗f (k +H + 1)− l∗s(k +H + 1) + tr(Q3Σθ̂(k +H + 2))

≤ lf (k +H + 1)− l∗s(k +H + 1) + tr(Q3Σθ̂(k +H + 2)).

Under (5.48), we obtainls(k +H + 1) ≤ l∗s(k +H + 1) + tr(Q1Σθ̂(k +H + 1)) and

combining with the above inequality, the proof is completed.

C.5 Proof of Lemma 5.5

We first show the decreasing property of the proposed Lyapunov function candidate

Jk
θ̂0,Ŵ 0

H

. To do that, we take the technique to construct an intermediary policyŴ
e

H(k+

1) (defined below) extended from̂W
0

H(k) as shown in [65]. From the definition of

Ŵ
0

H(k) = {α̂0(k), ŵ0(k + i),u0
f(k + i), i = 0, . . . , H}, we introduce an extended

control input at the(k + 1)th step as

Ŵ
e

H(k + 1) = {α̂e(k + 1), ŵe(k + i+ 1),ue
f(k + i+ 1), i = 0, . . . , H},

whereα̂e
1(k+1) = α̂0

1(k)+α̂0
2(k)∆t, α̂

e
2(k+1) = α̂0

2(k)+ŵ0(k)∆t, andŵe(k+i) =

ŵ0(k+i),ue
f (k+i) = u0

f (k+i) for i = 1, ..., H, andŵe(k+H+1) andue
f (k+H+1)

satisfy (5.48). The choice of such design guarantees that inputs{α̂e(k + i),ŵe(k +

i),ue
f(k + i)} of Ŵ

e

H(k + 1) are the same as{α̂0(k + i),ŵ0(k + i),u0
f(k + i)} of

Ŵ
0

H(k) for i = 1, . . . , H. Consequently, the predicted statesµe
θ̂
(k + i), Σe

θ̂
(k + i)

by (5.35) underŴ
e

H(k+1) are the same as those under controlŴ
0

H(k) at those steps.

Let les(k+i) (lef (k+i)) andl0s(k+i) (l0f(k+i)) denote the stage and terminal costs under

controlsŴ
e

H(k+1) andŴ
0

H(k), respectively. It is then straightforward to obtain that
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les(k+ i) = l0s(k+ i) for i = 1, . . . , H andlef(k+H +1) = l0f (k+H + 1). Therefore,

Jk+1

θ̂e,Ŵ e
H

− Jk
θ̂0,Ŵ 0

H
= les(k +H + 1) + lef (k +H + 2)

− l0s(k)− lef (k +H + 1) + ν∆Σe0
dk +∆α̂0

Q2k
,

where∆Σe0
dk = ‖Σd(Ŵ

e
H(k + 1))‖ − ‖Σd(Ŵ

0
H(k))‖ and∆α̂0

Q2k
= ‖α̂e(k + 1)‖2Q2

−

‖α̂0(k)‖2Q2
. Noticing thatŵe(k + H + 1) andue

f(k + H + 1) satisfy (5.48), by

Lemma 5.4, we have

Jk+1

θ̂e,Ŵ e
H

− Jk
θ̂0,Ŵ 0

H
≤ −l0s(k) + ν∆Σe0

dk +∆α̂0
Q2k

+ tr(Q1Σθ̂(k +H + 1)) + tr(Q3Σθ̂(k +H + 2)).

From the optimality ofJk+1

θ̂0,Ŵ 0
H

, we haveJk+1

θ̂0,Ŵ 0
H

≤ Jk+1

θ̂e,Ŵ e
H

and then

Jk+1

θ̂0,Ŵ 0
H

− Jk
θ̂0,Ŵ 0

H
≤ −λmin(Q1)‖eθ(k)‖2 + ν∆Σe0

dk

+ ∆α̂0
Q2k

+ tr(Q1Σθ̂(k +H + 1)) + tr(Q3Σθ̂(k +H + 2)). (C.17)

From Lemma 5.3,Σθ̂(k+H +1) ≤ (H +1)(∆t)2σ2
f max. From Lemma A.1,∆Σe0

dk ≤

‖Σd(Ŵ
e
H(k + 1))‖ ≤ max1≤i≤n(σ

2
αi

+ σ2
i ) := σ2

κmax. Letting‖α(k + 1)‖2Q2
≤ α2

max

as the constant upper-bound, we have∆α̂0
Q2k
≤ ‖α̂e(k + 1)‖2Q2

≤ α2
max and

Jk+1

θ̂0,Ŵ 0
H

− Jk
θ̂0,Ŵ 0

H
≤ −λmin(Q1)‖eθ(k)‖2 + νσ2

κmax

+ α2
max +m[λmax(Q1) + λmax(Q3)](H + 2)(∆t)2σ2

f max. (C.18)

By the monotonicity of the value function (Lemma 2.15 in [65]), we have

Jk
θ̂0,Ŵ 0

H
≤ lf(k) + ‖α̂0(k)‖2Q2

+ ν‖ΣŴ 0

d (k))‖

≤ λmax(Q3)‖eθ(k)‖2 + α2
max + νσ2

κmax.

Substituting the above inequalities into (C.18) to cancel‖eθ(k)‖2 on the right hand

side of the inequality sign, we then obtainJk+1

θ̂0,Ŵ 0
H

≤ d3J
k
θ̂0,Ŵ 0

H

+ d4 with d3 = 1 −
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λmin(Q1)
λmax(Q3)

< 1 andd4 = (1 + λmin(Q1)
λmax(Q3)

)(νσ2
κmax + α2

max) +m(λm)(H + 2)(∆t)2σ2
f max

whereλm = λmax(Q1) + λmax(Q3). Therefore,

Jk+i

θ̂0,Ŵ 0
H

≤ di3J
k
θ̂0,Ŵ 0

H
+ d4

1− di3
1− d3

, (C.19)

and consequently,‖eµ
θ̂
(k + i)‖ ≤ a4(i)‖eθ(k)‖ + a5(i) wherea4(i) = d

i
2

3

√
λmax(Q3)
λmin(Q1)

anda5(i) =

√

di
3
(α2

max+νσ2
κmax)+d4

1−di
3

1−d3

λmin(Q1)
.

C.6 Proof of Lemma 5.6

Plugging the iterative relation (5.35) forµθ̂(k + i|k) and counterpart forµθ(k + i|k)

into µ̃θ(k + i), the difference is then

µ̃θ(k + i) = ‖F ‖‖µ̃θ(k + i− 1)‖+ ‖G‖‖µgpθ
(µθ(k + i− 1),α(k + i− 1))

−µgpθ
(µθ̂(k + i− 1|k), α̂(k + i− 1|k))‖

≤ ‖F ‖‖µ̃θ(k + i− 1)‖+ ‖G‖(L3‖µ̃θ(k + i− 1)‖+ L2‖eα(k + i− 1)‖)

= (‖F ‖+ L3‖G‖)‖µ̃θ(k + i− 1)‖+ L2‖G‖‖eα(k + i− 1)‖.

In the above derivations, we use the Lipshitz assumption. For small sampling period

∆t≪ 1, ‖F ‖ ≈ 1 and‖G‖ = ∆t, wheni = 1, with the fact thatµθ(k|k) = µθ̂(k|k),

we haveµ̃θ(k+1) ≤ L2∆t‖eα(k)‖. Fori ≥ 2, applying the above process iteratively,

we obtain

µ̃θ(k + i) ≤
i−1∑

j=0

(‖F ‖+ L3‖G‖)i−j−1L2‖G‖
[

d1e
λ1
4ǫ

j∆t‖eα(k)‖+ d2

]

,

where the results in Lemma 5.2 are used to obtain‖eα(k+j)‖ ≤ d1e
λ1
4ǫ

j∆t‖eα(k)‖+d2.

Using approximation(1 + L3∆t)
i−j−1 ≈ 1 + (i − j − 1)L3∆t for smallL3∆t ≪ 1,

we obtain the upper-bound as shown in the lemma.
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C.7 Proof of Lemma 5.7

Substituting the iterative model similar to (5.35) for bothµθ(k+ i|k) andθ(k+ i), the

error calculation is reduced to

θµ(k + i) = Fθµ(k + i− 1) +G[µgpθ
(k + i− 1|k)− f θ(θ(k + i− 1))].

Taking the norm on both sides of the above equation, using approximation‖F ‖ ≈ 1

and‖G‖ = ∆t, and applying the results in Lemma A.3 on‖µgpθ
− f θ‖, we obtain the

iterative relationship of the error bound

Pr{‖θµ(k + i)‖ ≤ ‖θµ(k + i− 1)‖+∆t‖βT
θ Σ

1

2
gpθ(k + i− 1|k)‖} ≥ (1− δ)m.

With the initial conditionµθ(k|k) = θ(k), by applying the above iterationi times and

noting the independence of each eventΠθ
µθ
(k + i), we then obtain the results in the

lemma.

C.8 Proof of Lemma 5.9

To assess̄Jk
θ̂0,Ŵ 0

H

− J̄k
θ,Ŵ 0

H

, we substitute the definition (5.37) and (5.50) and use calcu-

lations (5.39) and (5.40)

J̄k
θ̂0,Ŵ 0

H
− J̄k

θ,Ŵ 0
H

=

H∑

i=0

{E[‖eθ̂(k + i|k)‖2Q1
]− ‖eθ(k + i)‖2Q1

}+ E[‖eθ̂(k +H + 1)‖2Q3
]

−‖eθ(k +H + 1)‖2Q3

=
H∑

i=0

{‖eµ
θ̂
(k + i)‖2Q1

+ tr(Q1Σθ̂(k + i))− ‖eθ(k + i)‖2Q1
}

+‖eµ
θ̂
(k +H + 1)‖2Q3

+ tr(Q3Σθ̂(k +H + 1))− ‖eθ(k +H + 1)‖2Q3

=
H∑

i=0

{−‖θ̃µ(k + i)‖2Q1
+ tr(Q1Σθ̂(k + i)) + 2θ̃

T

µ (k + i)Q1eµ
θ̂
(k + i)}

−‖θ̃µ(k +H + 1)‖2Q3
+ tr(Q3Σθ̂(k +H + 1))

+2θ̃
T

µ (k +H + 1)Q3eµ
θ̂
(k +H + 1). (C.20)
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The above last equality comes from the observation:

‖eµ
θ̂
‖2Q1
− ‖eθ‖2Q1

= ‖eµ
θ̂
‖2Q1
− ‖eµ

θ̂
− θ̃µ‖2Q1

= ‖eµ
θ̂
‖2Q1
− ‖eµ

θ̂
‖2Q1
− ‖θ̃µ‖2Q1

+ 2θ̃
T

µQ1eµ
θ̂
= −‖θ̃µ‖2Q1

+ 2θ̃
T

µQ1eµ
θ̂

with eµ
θ̂
= µθ̂ − θd, θ̃µ = µθ̂ − θ andeθ = θ − θd. The reason for using the above

manipulation is to put a bound on̄Jk
θ̂0,Ŵ 0

H

− Jk
θ,Ŵ 0

H

by terms‖θ̃µ‖ and‖eµ
θ̂
‖, which are

discussed in Lemmas 5.8 and 5.5, respectively.

Sinceλmax(Q1) < λmax(Q3), from (C.20), we have

|J̄k
θ̂0,Ŵ 0

H
− J̄k

θ,Ŵ 0
H
| ≤ λmax(Q3)

H+1∑

i=0

{‖θ̃µ(k + i)‖2 + tr(Σθ̂(k + i))

+ 2‖eµ
θ̂
(k + i)‖‖θ̃µ(k + i)‖}.

(C.21)

It is clear that the right-hand side of (C.21) is a function of(H + 2) probabilistic

variables̃θµ and the joint distribution of these variables is given by Lemma 5.8, that is,

events∩H+1
j=0 Π

θ
µ
θ̂
(k + j). By the definition ofΠθ

µ
θ̂
(k + i), if Πθ

µ
θ̂
(k + i) is true, then

‖θ̃µ(k+i)‖ ≤ ̺θ̂(i)‖eα(k)‖+a2(i). From Lemma 5.5,‖eµ
θ̂
(k+i)‖ ≤ a4(i)‖eθ(k)‖+

a5(i). From Lemma 5.3,‖Σθ̂(k+ i)‖ ≤ i(∆t)2σ2
f max. Noting that matrixΣθ̂(k+ i) ∈

R
m×m is diagonal, we obtaintr(Σθ̂(k+i)) ≤ m‖Σθ̂(k+i)‖ ≤ im(∆t)2σ2

f max. Adding

all of the above upper bounds for each term in the right-hand side of (C.21), we obtain

that|J̄k
θ̂0,Ŵ 0

− J̄k
θ,Ŵ 0
| ≤ ρJ(eα, eθ) given by (5.54). Therefore, events∩H+1

j=0 Π
θ
µ
θ̂
(k+ j)

implies eventΠJ
J̄ , and then we obtain

Pr{ΠJ
J̄} ≥ Pr{∩H+1

j=0 Π
θ
µ
θ̂
(k + j)} ≥ (1− δ)m(H+1)+nH .

This completes the proof.

C.9 Proof of Theorem 5.1

First, it is straightforward to obtain the lower-bound ofV (k) by the fact thatV (k) ≥

λmin(Q1)‖eθ(k)‖2 + ζλmin(Q)‖eα(k)‖2 ≥ λ‖e(k)‖2 and similarly for upper-bound
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V (k) ≤ λ‖e(k)‖2. Therefore, we have

λ‖e(k)‖2 ≤ V (k) ≤ λ‖e(k)‖2. (C.22)

From (5.51), we have

∆V (k) ≤ |J̄k+1

θ̂0,Ŵ 0
H

− J̄k+1

θ,Ŵ 0
H

|+ |J̄k
θ̂0,Ŵ 0

H
− J̄k

θ,Ŵ 0
H
|+ ζ [Vα(k + 1)− Vα(k)]

+ ν
[
‖Σd(Ŵ

0
H(k))‖ − ‖Σd(Ŵ

0
H(k + 1))‖

]
+
(

Jk+1

θ̂0,Ŵ 0
H

− Jk
θ̂0,Ŵ 0

H

)

.(C.23)

Assuming that probabilistic eventsΠJ
J̄(k+1) andΠJ

J̄(k) are independent, we therefore

apply the results in Lemma 5.9 to the first two terms in the above equation. For the

third difference term, from Lemma 5.2, we take into the discrete-time case for (C.14)

and obtain

Vα(k + 1) − Vα(k) ≤ −
1

4
∆teT

α(k)Qeα(k) + c3∆t

≤ −1
4
∆tλmin(Q)‖eα(k)‖2 + c3∆t.

For the last two difference terms in (C.23), by (C.17), we have

Jk+1

θ̂0,Ŵ 0
H

− Jk
θ̂0,Ŵ 0

H
+ ν

[

‖Σd(Ŵ
0
H(k))‖ − ‖Σd(Ŵ

0
H(k + 1))‖

]

≤ −λmin(Q1)‖eθ(k)‖2 +∆α̂0
Q2k

+ ν
[
‖Σd(Ŵ

e
H(k + 1))‖ − ‖Σd(Ŵ

0
H(k + 1))‖

]

+ tr(Q1Σθ̂(k +H + 1)) + tr(Q3Σθ̂(k +H + 2))

≤ −λmin(Q1)‖eθ(k)‖2 + ‖α̂0(k + 1)‖2Q2
+ ν‖Σd(Ŵ

e
H(k + 1))‖+

tr(Q1Σθ̂(k +H + 1)) + tr(Q3Σθ̂(k +H + 2))

≤ −λmin(Q1)‖eθ(k)‖2 + α̂2
max + νσ2

κmax +mλm(H + 2)(∆t)2σ2
f max.

In the above last inequality, we use the facts thatl0(k) ≥ λmin(Q1)‖eθ(k)‖2, ‖α̂0(k +

1)‖2Q2
≤ α̂2

max, and‖Σd(Ŵ
e
H(k + 1))‖ ≤ σ2

κmax.
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Substituting the above derivations into (C.23), we obtain

∆V (k) ≤ ξ1‖eα(k)‖2 + ξ2‖eα(k)‖‖eθ(k)‖+ ξ3‖eα(k)‖+ ξ4‖eθ(k)‖+ ξ5

−ζ
4
∆tλmin(Q)‖eα(k)‖2 + ζc3∆t− λmin(Q1)‖eθ(k)‖2 + α̂2

max + νσ2
κmax

+mλm(H + 2)(∆t)2σ2
f max

= −1
2

(

γ3‖eθ(k)‖ −
ξ2
γ3
‖eα(k)‖

)2

− γ23
4
‖e(k)‖2 − (γ1‖eα(k)‖ − γ2)2

−
(γ3
2
‖eθ(k)‖ − γ4

)2

+ γ5 (C.24)

if (5.56) is held. Considering (C.24) and (C.22), we have

V (k + 1) ≤ (1− γ23
4λ

)V (k) + γ5 (C.25)

Defining eventΠe = {V (k + 1) ≤ (1 − γ2
3

4λ
)V (k) + γ5}, then from (C.23), it is

straightforward to obtainΠJ
Ĵ
(k + 1) ∩ΠJ

Ĵ
(k + 1) inducesΠe and, therefore, for0 <

δ < 1, Pr {Πe} ≥ Pr
{
ΠJ

J̄(k + 1) ∩ΠJ
J̄(k)

}
≥ (1− δ)(m+n)H+2m+n.
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