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The continuous improvements in systems engineering and the unprecedented rate of 

technological advances not only take the quality and reliability engineering to the 

forefront, but also bring the large and complex engineered systems into practical use. 

On the one hand, the ever-rising expectations of the customers of the reliability of 

products and services have enhanced the design, operation and maintenance phases 

during their life cycles. Moreover, cascading effects, significant damages and 

interruptions of services caused by failures of large and complex systems, such as 

telecommunication networks, power grids, transportation systems, healthcare delivery 

systems, information systems, financial systems and supply chain systems, have 
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aroused researchers' attention.  

 

The last two decades have witnessed increasing reliance of these systems on computers, 

sensors, software and applications that have become targets of cyber attack and 

software failures with major consequences. Natural disasters and hazards such as floods, 

hurricanes and earthquakes particularly cause significant disruptions of the systems’ 

services. Restorations of their functionality under limited resources and time constraints 

have given rise to the assessment of such systems’ resilience. However, traditional 

reliability metrics are inadequate to assess the resilience characteristics in many 

applications and critical infrastructure sectors. Therefore, resilience as a new extension 

of reliability metrics has been gradually and widely used to evaluate the performance 

of large and complex systems. 

 

Ideally, system recovery is “optimized” when all failed (and degraded) units are 

recovered immediately after the hazard; which is unrealistic due to the limited recovery 

resources and repair times needed to restore the system to its operational levels. 

Therefore, to recover system performance to a desired level within the shortest period, 

it becomes important to determine the sequence in which failed and degraded units are 

repaired sequentially (or simultaneously when possible). Specifically, it is necessary to 

obtain the criticality of the failed and degraded units during the recovery process and 

allocate the repair resources to the most important units which have the highest impact 

on the system recovery by using an importance measure (IM). IM is also used for 
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identifying system design weakness and component (or subsystem) failures that are 

crucial to the system performance, and therefore determine the allocation of redundancy 

or repair resources to achieve system performance improvement. 

 

In this thesis, we provide a detailed overview of potential hazards and methods of their 

predictions and quantification; we present several definitions of resilience as well as 

methods of its assessment in different applications; we also present the development of 

importance measures and compare them in different scenarios; we review cascading 

failure occurring in systems and models of their assessment and prevention. We propose 

general resilience metrics for non-repairable and repairable systems and demonstrate 

their estimation through applications. We finally propose approaches to prioritize units 

of the system in order of their importance to the system functions and to optimize the 

maintenance resources in order to recover system performance to a desired level within 

the shortest period.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Motivation of Research 

 

System is defined as “a regularly interacting or interdependent group of items forming 

a unified whole” (Merriam-Webster dictionary 2018). Depending on specific 

compositions and structures of this group of items, every system realizes certain 

functions and objectives. In this thesis, we focus on engineering systems, especially 

large and complex systems. With the gradual improvements in systems engineering and 

the unprecedented rate of technological advances, systems which are becoming more 

interconnected from basic components to subsystems to the system of systems resulting 

in larger and more complex and complicated systems. Large and complex systems, such 

as telecommunication networks, power grids, transportation systems, healthcare 

delivery systems, information technology, financial systems and supply chain systems, 

are also increasingly being developed and utilized to achieve more functionality. 

Meanwhile, they are intrinsically difficult to be modeled not only due to a substantial 

number of subsystems and components but also the dependencies, relationships, or 

interactions among them under given a specific working environment.  

 

The recent decades have also witnessed rapid advances in large and complex systems 

with major consequences when failures occur. Failures of such systems may result in 
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cascading effects and significant damages and interruptions of their services. For 

example, a small-scale initial power outage cascaded into a complicated sequence of 

dependent outages on August 10th, 1996 (Venkatasubramanian (2003)). Within a few 

seconds, several dozen lines had opened across the interconnection, and more than a 

dozen generating units went offline, leaving Oregon disconnected from California and 

Northern California disconnected from Southern California. This blackout 

disconnected power to about 7.5 million customers in seven western U.S. states, two 

Canadian provinces (Kosterev et al. (1999)). A similar failure on August 14th, 2003, 

resulted in a blackout of about 50 million customers in the Northeastern United States 

and Canada (Force et al. (2004)). Large blackout not only has a strong effect on shaping 

the regulated power systems and the reputation of the power industry but also involves 

social disruption that can multiply the economic damage. Moreover, some extreme 

events may cause possible deaths, which underscores the engineer's responsibility to 

work to avoid the blackout. In addition to these normal failures of components or 

systems, the last two decades have witnessed increasing reliance of systems on 

computers, sensors, software and applications that have become targets of cyber attack 

and software failures with major consequences. Moreover, natural disasters such as 

floods, hurricanes and earthquakes might also cause significant disruptions of the 

systems’ services.  

 

The design stage of such system is especially important in order to minimize the 

negative impact of the hazard, minimize system performance loss, and minimize the 
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length of the deterioration period, i.e., maximize the robustness of the large and 

complex systems. Through a rigorous and optimized configuration, engineers can 

maximally maintain the normal operation of the systems as long as possible and make 

the systems resistant or adaptive to potentially unfavorable internal or external factors 

so that the system performance does not degrade at a high rate. In addition to the design 

stage, for repairable systems, engineers also need to consider the ability to recover the 

systems to achieve desired performance in a short time. Improving the recovery ability 

of the system means that the system can recover to a desired state under limited 

resources as soon as possible after failures or degradations. Therefore, for large and 

complex systems, using a quantified indicator to assess system robustness and the 

recovery ability enables the designers and engineers to design robust and effective 

systems. 

 

In engineering fields, reliability and its related metrics are most frequently used for 

system performance assessment for a specified period of time (design life) under the 

design operating conditions without failures (system normal failures), which are 

affected by its inherent characteristics such as system’s design and configurations, 

reliability of its components, the environmental factors and their interactions and 

manufacturing defects. However, when systems are subjected to external disruptive 

events such as natural or manmade hazards, conventional reliability metrics fail to take 

into account the severity of the system damage and the recovery ability which implies 

the time and resources needed for the system to achieve a specific performance level 
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after the failure. This has given rise to extend the reliability metrics to “resilience” of 

the system, which combines conventional reliability metrics with the system robustness 

(design stage) and system recovery (maintenance stage) during the post-hazard period. 

Moreover, under most circumstances in real life, natural and manmade hazards may 

either be induced by some common causes or interact with each other instead of 

occurring independently, which has prompted the need to investigate system resilience 

under multi hazard. 

 

In order to design highly reliable and repairable systems, it becomes necessary to 

identify how a component affects the performance of the system and to evaluate the 

relative importance of a component in contributing to system reliability and resilience. 

Specifically, importance measures (IMs) are quantitative measures of the importance 

of the component and are commonly defined as the rate at which system reliability 

improves as the component-reliability improves. These IMs enable the engineers to 

identify design weaknesses and determine which component merits additional research 

and development and take proper actions to improve system reliability at minimum cost 

or effort, such as adding redundancies or standbys (systems or components), cloud 

backup (data) and improving the reliability of some components. In repairable systems, 

when hazards occur, system performance does not ideally recover immediately to its 

pre-hazard level due to the limited recovery resources and recovery time needed to 

restore the failed or degraded components to their operational levels. IMs suggest the 

most efficient way to generate a repair checklist by prioritizing components in order of 
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their importance to the system functions and to optimize the maintenance resources in 

order to recover system performance to a desired level within the shortest period. 

 

1.2 Problem Statement 

 

Resilience means “leap back” and is used as a mechanical property of materials, namely 

modulus of resilience. For example, when a specimen of a ductile material is subjected 

to a tensile or compressive load, its stress-strain relationship shown in Figure 1 exhibits 

linear relationship until it reaches the elastic limit (point B). When the load is removed 

at this point, the specimen returns to its original condition without residual deformation. 

The area of the triangle ABC in Figure 1 is referred to as the modulus of resilience, 

which can be regarded as the ability of this specimen to absorb external energy and 

recover to its original condition upon the release of the load. Clearly, the specimen 

recovers to its original condition without repair. Therefore, the ability of a component 

(system) to absorb external load (stress, disruption, …) without causing damage might 

be defined as system resilience in terms of its design robustness. Meanwhile, when the 

systems need to be repaired, the recovery time, which depends on the severity of the 

damage and the repair resources, is another important indicator of resilience. 
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Figure 1 Stress-strain relationship under tensile load. 

 

In addition to resilience being a mechanical property of materials, substantial efforts 

have been made to improve the theories and applications of resilience of systems. 

However, most of the current definitions of resilience either ignore system performance 

recovery or system design robustness. In addition, most of the research addresses 

qualitative and semi-quantitative framework of resilience, which result in a limited 

number of quantitative methods. More limited is that most of the definitions can be only 

applied to specific scenarios and some even do not specify the scenarios where they can 

be applied, which further leads to a narrow application range. Therefore, we intend to 

propose a general quantified definition of resilience which considers the impact of 

hazards on system performance change (both magnitude and speed) during the hazard 

in non-repairable systems. Besides, the recovery process implemented to repairable 

system is a complicated process which depends on not only the system configuration 

and the quality and the reliability of its components but also the repair resources. In 
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order to more accurately define the resilience in repairable systems, we then propose 

another resilience quantification measure which considers the system design robustness 

as well as its recovery ability by incorporating the exact recovery process. Similar to 

reliability, the proposed definitions of resilience bound their values between 0 and 1. 

 

Similar to resilience, IMs have been extensively studied and are already mature and can 

be applied to different system configurations. However, there are still systems where 

IMs do not adequately and effectively distinguish the importance of components. 

Accordingly, we intend to compare representative IMs in non-repairable systems and 

modify them to be more effective and adaptable to these systems. Then we propose a 

new IM for repairable systems by introducing availability, which provides a better and 

more comprehensive guidance for the engineers to design and maintain systems. 

Moreover, we incorporate other features of a component in the IMs to reflect the 

criticality of the component in system design and repair.  

 

1.3 Thesis Organization 

 

This thesis is organized as follows. Chapter 2 provides a thorough review of literature 

on multi hazard, resilience definition and quantification, the commonly used IMs and 

review of the cascading failures. More specifically, we introduce the hazard 

classification, and prediction of its occurrence frequency and severity; we provide a 

comprehensive literature review on system resilience definitions and assessment, the 
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development of IMs and the impact of cascading failures on the overall systems 

performance. In chapter 3, we propose two general quantifications of system resilience 

for non-repairable and repairable systems, respectively. In repairable systems, we 

present the exact recovery process, which demonstrates the improvements of the system 

performance level (say availability) with time. Chapter 4 addresses IMs for non-

repairable and repairable systems by assigning different weights to systems components. 

Chapter 5 presents applications of the proposed resilience and IMs in non-repairable 

and repairable cyber networks. In Chapter 6 we provide summary and areas for future 

research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, we provide a detailed overview of multi hazards and related methods of 

their predictions and quantification. We also discuss the definitions and assessment and 

the development of resilience and the importance measures of the systems’ components. 

We begin this chapter with the classification and identification of the hazards and 

proposed measures to obtain the overall system’s failure rate in section 2.1. We then 

provide details of the natural hazard from the views of classifications, prediction of 

occurrence frequency and severity, system performance assessment, hazards mitigation, 

and system recovery in section 2.1.1. In section 2.1.2, manmade hazards are discussed 

especially physical manmade hazards and cyber attacks. Specifically, in section 2.1.2.2, 

we present the definitions of cyber attack and the prediction of its frequency and 

severity. Then the dependency between natural hazard and manmade hazard is 

considered in the system performance analysis in section 2.1.3. In section 2.2, we 

present several qualitative and semi-quantitative framework of resilience as well as 

methods of its assessment in different applications. We provide the development of the 

importance measures in section 2.3. We finally discuss the cascading failure in terms of 

its definition, prevention and models of their assessment in different scenarios to 

improve the system resilience in section 2.4. A thorough review of the literature shows 

that the methods to obtain the overall system’s failure rate from different type of hazards 

needs to be improved and most of the resilience definitions only have qualitative and 
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semi-quantitative frameworks, which promotes the investigation of a generalized and 

quantitative definition of resilience. Moreover, the applications of importance measures 

are limited to specific scenarios and cascading failures which are enough to cause major 

consequences are necessary to be taken into account when evaluating the system 

performance. 

 

2.1 Multi Hazard 

 

The failure rate of the system depends on its configuration, failure rates of its 

subsystems or components, external loads and environmental conditions. We refer to 

this failure rate as the normal failure rate (hazard rate). In general, the normal failure 

rate varies over the life cycle of the system as demonstrated by the bathtub-shaped 

failure curve. When the failures occur due to natural phenomena that have negative 

effects, namely natural hazards, such as earthquakes, volcanic eruption, hurricanes, 

tornados, floods, torrential rains, solar flares and others, we refer to the failure rate of 

these sources as a natural failure rate. By contrast, manmade hazards are hazards caused 

by human actions or inactions such as physical-attacks, manmade fires, cyber attacks 

and others. We refer to their corresponding failure rate as manmade failure rate. 

 

Therefore, the overall system’s failure rate should include all the three types of failure 

rates: normal, natural and manmade. Meanwhile, the frequency and severity of hazards 

need to be reflected as well. Moreover, under some circumstances, the hazards are 
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hierarchical and dependent on each other. Without loss of generality, we express the 

system’s failure rate in the additive form in Eq. (2.1): 
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where  

 system  is the overall system’s failure rate; 

 normal  is the system’s normal failure rate; 

natural
iI  is the index indicating the occurrence of the thi  natural hazard;  

 natural 1iI   if the hazard occurs and 0 otherwise; 

 manmade
jI  is the index indicating the occurrence of the thj  manmade hazard; 

manmade 1jI   if the hazard occurs and 0 otherwise; 

 natural
, 'i iI  is the index indicating the occurrence of the thi  and 'thi  natural hazards; 

 natural
, ' 1i iI   if both thi  and 'thi  hazards occur and 0 otherwise; 

 manmade
, 'j jI  is the index indicating the occurrence of the thj  and 'thj  manmade hazard; 

 manmade
, ' 1j jI   if both thj  and 'thj  hazards occur and 0 otherwise; 

 natural manmade
,i jI   is the index indicating the occurrence of the thi  natural hazard and thj  

manmade hazard;  natural manmade
, 1i jI    if both the thi  and thj  hazards occur and 

0 otherwise; 
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 natural
i  is the system’s failure rate due to the thi  natural hazard, which reflects the 

severity of the hazard; 

 manmade
j  is the system’s failure rate due to the thj  manmade hazard, which reflects 

the severity of the hazard; 

 natural
, 'i i   is the system’s failure rate due to the occurrence of thi   and 'thi   natural 

hazards;  natural
, 'i i  reflects the joint severity of the thi  and 'thi  hazards; 

 manmade
, 'j j  is the system’s failure rate due to the occurrence of thj  and 'thj  manmade 

hazards;  manmade
, 'j j  reflects the joint severity of the thj  and 'thj  hazards; 

 natural manmade
,i j   is the system’s failure rate due to the occurrence of the thi  natural hazard 

and the thj  manmade hazard;  natural manmade
,i j   reflects the joint severity of the 

thi  and thj  hazards; 

in  is the total number of natural hazards under consideration; 

jn  is the total number of manmade hazards under consideration. 

 

Generally, system’s normal failure rate is predominantly determined by the system 

design and configuration and can be obtained by failure rates of system’s components 

and engineering experience. The occurrence frequency of natural and manmade hazards 

are influenced by the geographical location, time (e.g., season), population density and 

others. Natural and manmade failure rates, depending on specific circumstances, are 

unstable and vary with time. Thus, it can be seen that hazards are complex and vary 

greatly in their frequency, severity, duration and the affected area. For example, 

earthquakes occur with low frequency while heavy rainfall is one of the most frequent 



  13 
 

 
 

and widespread weather hazard; earthquakes occur only in few seconds while heavy 

rainfall takes place over a period of weeks or longer; heavy rainfall has local impacts 

with little damage whereas earthquakes cause impacts over a large region with 

tremendous loss. Moreover, the speed of recovery varies in different areas: for example, 

the recent hurricane Harvey caused severe damage but the city of Houston began the 

recovery immediately whereas hurricane Maria “destroyed” the entire island of Puerto 

Rico which was unable to begin the recovery process for weeks. Therefore, occurrences 

of these hazards may result in a catastrophic damage to the system and degradation of 

its performance, which impact the design of system that can withstand such hazards 

with minimal interruptions to its functions and rapidly recover its performance to the 

desired level. Accurate predictions of occurrence frequency and severity of these types 

of hazards are critical in the estimation of the overall failure rate of a system. Besides, 

identifying the interdependency among hazards is necessary, i.e., the probability that 

one hazard triggers another and the system’s failure rate induced by the occurrence of 

two interdependent hazards. Currently, hazard identification is mainly based on 

experience, historical data, forecasting, subject matter expertise, and other available 

resources.  

 

2.1.1 Natural Hazards 

 

The natural hazards are classified by Department of Regional Development and 

Environment et al. (1990), Burton (1993) and Kusky (2003) and given as 
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1) geophysical such as avalanches, earthquake, coastal erosion, lahar, landslide, 

sinkholes, tsunamis and volcanic activity; 

2) hydrological such as floods; 

3) climatological such as extreme temperatures, drought and wildfires; 

4) meteorological such as blizzard, hailstorm, cyclones and storms/wave surges, 

tornado; 

5) biological disease such as epidemics and insect/animal plagues. 

 

More detailed classifications, descriptions, connections, damages, impacts, and 

responses are presented in references by White (1974), Alexander (1993), Godschalk et 

al. (1998), Lewis (2014), Islam and Ryan (2015), Willis et al. (2016), Krausmann et al. 

(2016), Montz et al. (2017), Montz et al. (2017), Haddow et al. (2017), Nigg and Mileti 

(1997) and Preston et al. (2016). 

 

The sudden occurrences of hazards interrupt the normal functioning of the systems, 

which urge the designers of such systems to provide safeguards that prevent these risks 

as much as possible. Accordingly, the catastrophic consequences of the natural hazards 

have motivated researchers to develop prediction models for the occurrence frequency 

and severity of the hazard. A contextual model is proposed by Mitchell et al. (1989) and 

shows that the frequency and severity of the natural hazard are strongly influenced by 

environmental, sociocultural, economic, and political contexts in which the hazard 

occurs. Coppola (2006) states that physical location is the primary factor dictating what 
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natural hazards a nation faces; while economic, industrial, and sociopolitical factors 

dictate manmade hazards origin. Bonaiuto et al. (2016) find that the attachment of 

individuals to a place plays a more significant role in natural hazard risk management 

and conclude that (1) strongly attached individuals perceive natural environmental risks 

but underestimate their potential effects; (2) strongly attached individuals are unwilling 

to relocate when facing natural environmental risks and are more likely to return to 

risky areas after a natural environmental disaster and (3) place attachment acts both as 

a mediating and moderating variable between risk perception and coping. Preston et al. 

(2016) propose that seasonal predictions of hurricane activity based on three basic 

methods: statistical methods, analog methods, and dynamical methods. Quantitatively, 

Di Mauro et al. (2006) assess multi-risks situations by using multi-risk maps and 

provide a consistent response to the emerging concern of public authorities and 

stakeholders involved in regional risk management.  

 

Specific hazards such as volcanic hazards are investigated individually. For example, 

Marzocchi et al. (2004) estimate eruption probability of volcanic hazard in both long-

term and short-term via an event tree by using the Bayesian approach. Marzocchi and 

Zaccarelli (2006) analyze the statistical distribution of eruptive frequency and volume 

(both “open” and “close” conduit systems) and build a general probabilistic model to 

assess volcanic hazard and to constrain the physics of the eruptive process. Marzocchi 

and Woo (2007) propose a strategy to integrate a probabilistic scheme for volcanic 

eruption forecasting and cost-benefit analysis. Marzocchi et al. (2010) present a 
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Bayesian event tree to estimate volcanic hazard, which shows the intrinsic stochastic 

nature of volcanic eruptions and enables the calculation of the probability of any kind 

of long-term hazards. Marzocchi and Bebbington (2012) review probabilistic eruption 

forecasting which quantifies inherent uncertainties of volcanic systems for planning 

rational risk mitigation actions during a short-term (hours to weeks or months) and 

long-term (years to decades). Garcia-Aristizabal et al. (2013) propose a quantitative 

framework to calculate the probabilities of volcanic unrest by integrating the stochastic 

models of eruption occurrence into a Bayesian event tree scheme. Bebbington (2013) 

proposes a method to assess the quality of a suite of eruption forecasts by converting 

the forecast of the next eruption onset into a probability distribution for the elapsed time 

since the forecast is made. Moreover, for some other types of hazards. Temesgen et al. 

(2001) evaluate the occurrence rate of landslide and their statistical relationship with 

various event controlling parameters which are converted into risk susceptibility 

priority numbers (between 0 and 1) by using geographic information system (GIS) and 

remote sensing techniques. Poelhekke et al. (2016) develop a method to construct a 

probabilistic Bayesian Network to be used as part of an Early Warning System to 

predicate coastal hazards for sandy coasts. 

 

Once the inevitable natural hazards occur, system performance assessment, hazards 

mitigation, and system recovery become the main problems of concern. Therefore, it 

becomes critically important to design systems that can withstand such hazards with 

minimal interruptions to its functions and are capable to rapidly recover its performance 
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to the desired functioning level. Variety of measurements are adopted to describe 

system’s performance in different domains. For example, the number of normal 

working components (stations) is a measure the performance of an electric power 

system and the number of passengers delivered in airport terminals is a performance 

measure for an airport. Unesco (1972) first quantitatively defines risk as the possibility 

of a loss (including loss of life, loss of property, or loss of productive capacity, etc.), 

which consists of factors in Eq. (2.2) 

 

 Risk = (Value) (Vulnerability) (Hazard)    (2.2) 

 

where “Value” represents the number of human lives at stake, or capital value (land, 

buildings, etc.), or productive capacity (factories, power plants, agricultural land); 

“Vulnerability” is a measure of the proportion of the value, which is likely to be lost as 

a result of a given event; “Hazard” in the estimation of risk is the type of hazards, e.g. 

volcanic hazard, which is the probability of any particular area being affected by a 

destructive event within a given period of time. The impact of the natural hazard on 

system performance is modeled quantitatively and qualitatively by Bebbington et al. 

(2008) and McColl et al. (2012). Schmidt et al. (2011) develop a generic software 

framework for modeling risks from different natural hazards and for various elements 

at risk. Similarly, Bell and Glade (2011) develop a general methodology to analyze 

natural risk for multiple processes. Krausmann et al. (2016) provide a comprehensive 

introduction to qualitative and quantitative risk assessment of natural hazard. Clarke 
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and Obrien (2016) develop a reliability stress test framework for critical transport 

infrastructure to predict the response of transportation networks to natural hazard. 

Artioli et al. (2017) suggest that system performance can be improved in the design 

stage. Moreover, The natural hazard mitigation is discussed by Godschalk et al. (1998), 

followed by its validation in Gall et al. (2011) and Chang (2003).  

 

The quantification of risk assessment and management under natural hazard have 

gained importance in many disciplines. For example, Duenas-Osorio and Vemuru (2009) 

study the impact of cascading failures due to natural hazard on complex power 

infrastructure systems. Specifically, Billinton and Singh (2006) and Liu and Singh 

(2010a) analyze the weather-associated impact on power systems in terms of reliability, 

where it is assumed that no repair is conducted during the hazard. Liu and Singh (2010a) 

analyze the impact of hurricane on composite power system reliability using common 

cause failure; similar to Billinton and Kumar (1981). Additional research on the 

evaluation of power system reliability under weather-related hazard is conducted by 

Billinton and Bollinger (1968), Liu and Singh (2010b), Billinton et al. (2002), Billinton 

and Cheng (1986), Billinton and Acharya (2005) and Bhuiyan and Allan (1994). 

Moreover, Van Westen et al. (2006) conclude a number of new advances and challenges 

for quantifying landslide risk over larger areas. Steinberg et al. (2008) provide an 

overview of the state of the art in Natech risk assessment and management under natural 

hazard. National Research Council et al. (2011) and National Research Council et al. 

(2014) examine risk reduction strategies to address coastal storms (hurricanes, tropical 
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storms, and extratropical storms) and associated storm surges, including reducing the 

probability of flooding or wave impact and the number of people or structures in areas 

at risk or making them less vulnerable to coastal storms. In addition, there are other 

natural hazards studies such as dam and levee failures (National Research Council 

(2012)), volcanic hazard (National Academies of Sciences Engineering and Medicine 

(2017)) and the earthquake (National Research Council (2011)). More studies on multi-

risk assessment and management under natural hazard are presented in Temesgen et al. 

(2001), Pitilakis et al. (2014), Lee and Ellingwood (2017), Dindar et al. (2016), Gallina 

et al. (2016), Ran and Nedovic-Budic (2016), Eidsvig et al. (2017), Dindar et al. (2016), 

Thierry et al. (2008), Asprone et al. (2010), Perry and Lindell (2008), and Granger et 

al. (1999).  

 

Although mitigating the damage of the disaster is important, the recovery after the 

disaster is also critical, and they jointly make up the resilience of the system. Institute 

of Medicine (2015) focuses on the recovery process after the disaster. Hanfling et al. 

(2012) investigate the care that the state and local governments, the hospital and 

alternate care systems should provide after the disaster. Barben (2010) assumes a repair 

rate equal to the one during normal weather condition and Billinton and Singh (2006) 

assume that the repair rate is higher than that under normal weather condition. In many 

fields, researchers have spent significant effort to improve the system resilience. Cutter 

et al. (2008) provide a new framework, the disaster resilience of place (DROP) model, 

designed to improve comparative assessments of disaster resilience at the local or 
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community level. Cutter et al. (2013) discuss the natural hazard risk, the necessity and 

measures of resilience improvement in terms of policy and actions. Power infrastructure, 

in particular, Panteli and Mancarella (2015) assess the resilience of critical power 

infrastructure under severe weather events by introducing Sequential Monte Carlo 

based time series simulation model to quantify the random nature and impact of weather. 

Espinoza et al. (2016) first present a four-phase resilience assessment framework of 

critical infrastructures and estimate the windstorm and rainfall frequency and severity 

by taking the effect of time and location into consideration. Preston et al. (2016) analyze 

the risk and resilience of the U.S. electricity system and synthesize different natural and 

manmade hazards to the electricity system including information on known trends, 

predictability, and mitigation options to assess the risk to various system components 

and identify key opportunities and constraints for enhancing resilience. An introduction 

to the resilience of electricity systems under multi hazard and a framework of system 

resilience protection strategies are provided in Preston et al. (2016). 

 

In fact, many examples suggest that one natural hazard usually triggers or increases the 

probability that more other natural hazards and many hazards are related (Gill and 

Malamud (2014)). For example, submarine earthquakes can cause tsunamis, and 

hurricanes can lead to coastal flooding and erosion; heavy rainfall may induce both 

flood and mudslide in the same region; floods and wildfires can result from a 

combination of geological, hydrological, and climatic factors; and of course, there may 

also be interactions between natural hazards and anthropic processes. For example, 
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groundwater abstraction may trigger groundwater-related subsidence (Galloway et al. 

(1999)). Therefore, it is realistic and practical to consider multiple hazards and their 

interactions in risk estimation. Kappes et al. (2012) present an outline of the challenges 

each step of a multi-hazard (risk) analysis poses and present current studies and 

approaches that face these difficulties. Gill and Malamud (2014) present the importance 

of constraining hazard interactions and reinforce the importance of a holistic (or multi 

hazard) approach to natural hazard assessment by synthesizing and using accessible 

visualization techniques, large amounts of information drawn from many scientific 

disciplines to (1) identify ninety interactions among multiple natural hazards; (2) 

subdivide the interactions into three levels, based on secondary hazards, given 

information about the primary hazard; (3) determine the spatial overlap and temporal 

likelihood of the triggering relationships occurring; and (4) examine the relationship 

between primary and secondary hazard intensities for each identified hazard interaction 

and group these into five possible categories. Liu et al. (2016a) develop a systematic 

hazard interaction classification by dividing geophysical environmental factors in the 

hazard-forming environment into (1) factors that are relatively stable which construct 

the precondition for the occurrence of natural hazards and (2) trigger factors which 

determine the frequency and magnitude of hazards. This classification not only fills the 

gap in current multi hazard risk assessment methods which not only consider domino 

effects, but also can effectively calculate the probability and magnitude of multiple 

interacting natural hazards occurring together. Indeed, it is realistic and practical to 

consider multiple natural hazards and their interactions as some of them are induced by 
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common causes. More research on natural hazard modeling with interactions between 

multiple natural hazards are presented in Gill and Malamud (2017), Poursanidis and 

Chrysoulakis (2017), Marzocchi et al. (2009), Tarvainen et al. (2006), Marzocchi et al. 

(2012), Carpignano et al. (2009), Di Mauro et al. (2006), Frolova et al. (2012), Gill and 

Malamud (2014), Eshrati et al. (2015), and Flanagan (2001).  

 

2.1.2 Manmade Hazards 

 

In contrast to natural hazards, manmade hazards are the results of human actions (intent, 

negligence or error). For example, the physical infrastructure may be subjected to 

manmade hazard of terrorism (Stewart et al. (2006)) and the fossil energy chains are 

under the risk of energy interruption by human actions (Burgherr and Hirschberg 

(2008)). Specifically, manmade hazards can be classified as physical manmade hazards 

and cyber attacks. Similarly, the frequency and subsequent damage of these hazards are 

necessary to be analyzed.  

 

2.1.2.1 Physical Manmade Hazards 

 

Tansel (1995) presents that typical types of physically manmade hazards include fire, 

energy interruption, nuclear accidents and terrorism. For example, Buchanan and Abu 

(2017) consider the fire hazard in the design stage of structures and infrastructures. 

More specifically, the fire hazard in bridges is comprehensively reviewed in terms of 
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its frequency, its impact on bridge structure design, fire hazard preparedness, damage 

assessment and recovery and is presented by Kodur et al. (2010). The bridge structure 

is investigated under extreme events such as ship collision (Ghosn et al. (2003)). Bridge 

replacement under and after the emergency is also proposed by Bai et al. (2006). Bridge 

importance factor under fire hazard is analyzed to determine its critical parts and assess 

its vulnerability during the hazard (Kodur and Naser (2013)). More theoretical and 

numerical approaches for evaluating bridge performance and damage under fire hazard 

are presented in Aziz and Kodur (2013), Bennetts and Moinuddin (2009), Alos-Moya 

et al. (2014), Mendes et al. (2000) and Payá-Zaforteza and Garlock (2012).  

 

Since most of the network systems such as power grid, telecommunication, information 

technology, air traffic control systems, air defense systems and others are subject to 

manmade hazard; more specifically cyber attacks, we highlight this hazard in details 

below. 

 

2.1.2.2 Cyber Attack Hazard 

 

With the rapid development of technology, cyber is becoming increasingly important 

to human’s daily life and the national security. However, as attackers maliciously 

manipulate or attack the cyber to access information and destroy specific targets, cyber 

attacks start to attract researchers’ attention. The Joint Chiefs of Staff provide a military 

definition of cyber attack as “a hostile act using computer or related networks or 
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systems, and intended to disrupt and/or destroy an adversary’s critical cyber systems, 

assets, or functions” (Cartwright (2011)). Similarly, Hathaway et al. (2012) define that 

cyber attack mainly targets national and political security, i.e., cyber attack is “any 

action taken to undermine the functions of a computer network for a political or national 

security purpose”. Lin (2015) defines cyber attack as “any type of offensive maneuver 

employed by nation-states, individuals, groups, or organizations that targets computer 

information systems, infrastructures, computer networks, and/or personal computer 

devices by various means of malicious acts usually originating from an anonymous 

source that either steals, alters, or destroys a specified target by hacking into a 

susceptible system”. More definitions on cyber attacks are provided in Zhu et al. (2011), 

Li et al. (2012), Waxman (2011), Shackelford (2009), Mowbray (2013), Kovacevic and 

Nikolic (2014), Mezher et al. (2016), Pan et al. (2015), Gandhi et al. (2011), Kumar 

(1995), and Li et al. (2012).  

 

Statistical data reveals that cyber attack occurs with high-frequency and typically 

causes serious loss. The targets of cyber attack range from direct personal assaults, 

monetary theft and trade secrets from companies, to national infrastructures or political 

secrets. For example, approximately 77 million accounts in Sony’s PlayStation were 

hacked in 2011, resulting in that massive personal information theft and a loss of 

approximately 171 million dollars. The most famous cyber attack is that the joint U.S.-

Israel project, “Stuxnet”, in 2010, which is a destructive program that appears to have 

wiped out roughly a fifth of Iran’s nuclear centrifuges and helped delay, though not 
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destroy, Tehran’s ability to make its first nuclear arms (Times (2011)). In 2013, the 

Deseret News reported Utah’s secure government networks face as many as 20 million 

cyber attacks each day. Therefore, cyber security has become a matter of global interest 

and has become part of worldwide security issue. More than 50 countries such as 

Canada (Government of Canada (2010), USA (White House Office United States 

(2011)), UK (MOD (2011)), China (Dreyer (2015)) have outlined their official stances 

on cyber security (Klimburg (2012)). 

 

Cyber attack prediction is one of the critical factors in cyber security in order to avoid 

and prepare for cyber attacks. In the following, we introduce representative studies on 

cyber attack prediction in terms of frequency and severity. 

 

Passeri (2018) analyzes cyber attack statistically in 2017. A comprehensive comparison 

between the cyber attack (and cyber security) data in 2017 and 2016 is conducted from 

different aspects. Detailed comparisons presented in Figures 2.1 and Figure 2.2, show 

that prediction of cyber attack occurrence is critical to cyber security. Both recurrent 

and perceptron neural networks have been used to predict the cyber attack from 

historical data as presented in Debar et al. (1992) and Ghosh et al. (1999). Qin and Lee 

(2004) propose an approach to predict the potential attacks based on observed attack 

activities. Liu (2005) develops an automatic game-theory-based attack prediction 

method, which quantitatively predicts the likelihood of (sequences of) attack actions. 

Arora et al. (2006) empirically link the cyber attack frequency with vulnerability 
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disclosure and state that patched vulnerabilities attract more attacks than unpatched 

ones. Kim et al. (2008) propose a statistical method for prediction and modeling of 

cyber attack signal. Yang et al. (2009) introduce an information fusion approach to 

provide situation awareness and threat prediction from massive volumes of sensed data. 

Khalili et al. (2010) present methodologies for understanding the mission risks based 

on Information Technology (IT) infrastructure to predict the occurrence of cyber attacks 

and assess its impact. Knowing the vulnerability paths, Jajodia and Noel (2010) predict 

cyber attacks origin and impact. Kim and Hong (2011) use early warning model to 

predict politically motivated cyber attack before that attack happens with online and 

offline patterns. Wu et al. (2012) propose a cyber attack prediction model based on the 

Bayesian network. Kotenko and Chechulin (2013) suggest a framework for cyber attack 

modeling and impact assessment as well as predict cyber attack actions. Zhan et al. 

(2013) propose a statistical framework and use the gray-box prediction to predict the 

incoming cyber attack based on a stochastic process. As a generalization, Zhan et al. 

(2015) use extreme value theory for long-term cyber attack predictions (twenty-four 

hours ahead) and gray-box time series theory for short-term prediction (one hour ahead) 

with an accuracy of 86%–87.9%. Das et al. (2013) propose an i-HOPE framework to 

predict the likelihood of a cyber breach. Silva et al. (2014) propose One Point Analysis 

(OPA) for aggregating peaks of a burst-specifically for the brute force attack at a single 

point. Chen et al. (2016) describe a Proactive Cybersecurity System (PCS), using big 

data and processing tools to identify potential cyber attacks. 
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Figure 2.1 Monthly cyber attacks (2017 vs 2016) (Passeri (2018)). 

 

 

Figure 2.2 Motivations behind cyber attacks (2017 vs 2016) (Passeri (2018)). 

 

Besides frequency, the severity (impact) of cyber attack is also worthy of discussion to 

take effective measures and strategies to mitigate the cyber attack damage. Shaw (2003) 

presents perturbation analysis and develops a workflow model to predict the impact of 

cyber attacks on Battle Management/Command, Control, and Communications (BMC3) 

systems. Shen et al. (2007) compare different defense strategies to defend various types 
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of cyber attacks and assess its impact, utilizing a dynamic game theoretic data fusion 

framework. Argauer and Yang (2008) analyze correlated or grouped alerts induced by 

cyber attack and determine their “impact” on services which is modeled as “virtual 

terrain”. Stamp et al. (2009) analyze the development of a Cyber-to-Physical (C2P) 

bridge and addresses the issue of grid impacts of cyber attack. Masi et al. (2010) analyze 

the impact of cyber attacks and other events that affect telecommunications networks 

performances. Musman et al. (2010) develop techniques to estimate the mission impact 

of potential cyber attacks. Esfahani et al. (2010) develop a new framework and define 

a systematic methodology based on reachability to identify the impact that a cyber 

intrusion might have on the Automatic Generation Control Loop. Khalili et al. (2010) 

present methodologies for understanding the mission risks based on IT infrastructure to 

predict and model the impact of cyber attacks. Saini et al. (2012) provide the 

understanding of cyber crimes and its future impacts on society. Kotenko and Chechulin 

(2013) suggest a framework for cyber attack impact modeling and prediction. Cavelty 

(2013) explores the constitutive effects of different threat representations in the broader 

cybersecurity discourse. Hurst et al. (2015) present an approach for predicting the 

impact of a cyber attack on a critical infrastructure network, focusing on distributed 

denial-of-service attack (DDoS) attacks. 

 

2.1.3 Multi Hazard 

 

Some of the infrastructure systems, such as electricity power systems and 
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telecommunication systems are exposed to multi hazard (either natural or manmade 

hazard). Therefore, the natural and manmade hazard together are considered in the 

system performance analysis. Haddow et al. (2017) discuss a full range of natural and 

manmade hazards and illustrate these hazards by recent disaster events such as Boston 

Marathon Bombing, Hurricane Sandy, the Joplin Tornado, the Haiti Earthquake, and 

the Great East Japan Earthquake. Bullock et al. (2017) classify natural and manmade 

hazard, discuss cybersecurity and critical infrastructure protection under natural and 

manmade hazard; the desired response and mitigation strategies are provided. Ettouney 

and Alampalli (2016) investigate the civil infrastructure under multi hazard, resilience 

monitoring and acceptance and treatment under multi hazard is analyzed from different 

aspects. 

 

The U.S. Department of Energy (2014) and North American Electric Reliability 

Corporation (2010) identify a range of risks to the electricity power systems from 

natural and manmade hazard. Preston et al. (2016) summarize the frequency (number 

of events) and severity (number of people affected) of bulk power emergencies due to 

a host of natural and manmade hazard, and introduce commonly used approaches for 

hazard occurrence prediction. They also point out that the natural hazard could be the 

trigger factor of manmade hazards. Haddow et al. (2017) discuss the full range of both 

natural and manmade hazard and provide a brief description of each hazard as well as 

information on hazard detection and classification. Cutter et al. (2010) provide a set of 

resilience indicators for measuring baseline characteristics of communities under 
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natural and manmade hazard, pointing out that metropolitan areas have higher levels of 

resilience than rural counties. Similarly, Islam and Ryan (2015) identify and provide 

mitigation strategies for a variety type of natural and manmade hazard. Coppola (2006) 

states that physical location is the primary factor dictating what natural hazards a nation 

faces, while economic, industrial, and sociopolitical factors dictate manmade hazards 

origin.  

 

2.2 Resilience 

 

2.2.1 Resilience Definitions  

 

As stated earlier, natural and manmade hazards may cause significant damage to the 

system’s performance (either immediately dropping or gradually deteriorating to an 

unacceptable level). The system’s ability to minimize the negative impact of the hazard 

(e.g., system performance loss and the deterioration period) is generally understood as 

system robustness; and the ability of system to adapt to the degraded environment and 

still maintains (at least partial) its functionality can be interpreted as system’s adaptive 

ability. From these two perspectives, some studies consider system resilience as one or 

more of the following abilities. 

 

1) Accurately forecast the hazard; 

2) Defend against the hazard before adverse consequences occur;  

3) Absorb external stresses;  

4) Adapt to the environmental requirements; 
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5) Maintain the desired performance level.  

 

It is worth noting that these abilities are mainly considered and improved during system 

design stage. 

 

Chen et al. (2008) define resilience under natural hazards as “the capability of a 

community to survive following a disaster”. As an extension, Hollnagel et al. (2007) 

define resilience as “the ability to sense, recognize, adapt and absorb variations, 

changes, disturbances, disruptions and surprises”. The static resilience of an economic 

organization is defined as “the ability of an entity or system to maintain function (e.g., 

continue producing) when shocked” (Pant et al. (2014b)), which is applicable to 

engineering systems. Similarly, Pregenzer (2011) considers resilience as “a measure of 

a system’s ability to absorb continuous and unpredictable change and still maintain its 

vital functions”; while Klein et al. (2003) present a similar but more general concept of 

resilience under natural hazards. Comfort (2007) considers resilience as “the capacity 

to adapt existing resources and skills to new situations and operating conditions”, i.e., 

system’s adaptability. Overbye et al. (2012) propose that for a power grid, resilience is 

the ability to “maintain or gradually degrade its performance under hazards”. Similar 

definitions of resilience with ignorable consideration of system recovery ability are 

found in ecological and socio-ecological systems in Holling (1973), Walker et al. 

(2004), Easterby-Smith et al. (2012), and Gunderson (2000). Specifically, the resilience 

of passenger traffic in roadway networks is defined as “the network’s ability to resist 

and adapt to disruption” (Faturechi and Miller-Hooks (2014b)).  

 

A substantial number of studies on resilience of service-oriented network (such as 
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supply chain, transportation network systems) consider resilience as the ratio between 

the system performance level after and before the hazard ((Omer et al. (2009), Omer et 

al. (2014), Miller-Hooks et al. (2012), Fotouhi et al. (2017), and Jin et al. (2014)), 

where the system recovery ability after the hazard is not considered. Alternatively, 

resilience is simply considered as the system performance (Janić (2015a)).  

 

Though system’s robustness, vulnerability and adaptive ability are widely used as 

measures of resilience; they ignore the ability of the repairable system to recover to the 

desired performance level and therefore are not inclusive. For repairable systems, when 

its performance deteriorates to a predefined threshold, recovery action is performed 

until system performance is restored to a desirable level. Geis (2000) and Campanella 

(2006) use system’s recovery ability (i.e., the recovered system performance level and 

the recovery time) as resilience. Hollnagel et al. (2007) modify the resilience definition 

to “the ability that a system or an organization to react to and recover from disturbances 

at an early stage, with minimal effect on the dynamic stability”. Recovery ability is also 

interpreted as “the ability to ‘bounce back’ after suffering a damaging blow” 

(Wildavsky (1988) and Boin and McConnell (2007)). Logistic network considers the 

resilience as the ability to return to a stable or normal operating state after a strong 

perturbation or shutdown due to serious failure or outside attack (Wang and Ip (2009)).  

 

A substantial number of studies define system resilience by combining abilities 1) 

through 5) and recovery ability. As an example, Cabinet Office (2011) defines resilience 

as “the ability of assets, networks and systems to anticipate, absorb, adapt to and/or 

rapidly recover from a disruptive event”. The National Infrastructure Advisory Council 

(NIAC) provides a generic definition of resilience in terms of robustness, 
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resourcefulness, rapid recovery and adaptability when critical infrastructure (CI) is 

exposed to a host of natural hazards. Similar definitions of the resilience of CI under 

natural hazards are provided by (Tran et al. (2017), Berkeley III et al. (2010), Haimes 

(2009), and Keogh and Cody (2013)), where resilience is more general and 

distinguished from vulnerability, risk and preparedness.  

 

The seismic resilience is defined as “the ability of a system to reduce the chances of a 

shock, to absorb such a shock if it occurs (abrupt reduction of performance), and to 

recover quickly after a shock (reestablish normal performance)” (Bruneau et al. (2003)). 

This resilience definition has been generally adopted for a variety of systems under 

different scenarios. Similar definitions of resilience are also found in Chang and 

Shinozuka (2004), Ayyub (2014), Nan and Sansavini (2017) and Tilman and Downing 

(1994). Lu et al. (1996) classify the power system’s resilience into short-term and long-

term, where the latter one focuses on the adaptability of the system to the changing 

conditions and new threats in a long run. Generally, for an energy system, resilience is 

“the capacity of an energy system to tolerate disturbance and to continue to deliver 

affordable energy services to consumers, and speedily recover from shocks and can 

provide alternative means of satisfying energy service needs in the event of changed 

external circumstances” (Chaudry et al. (2011)).  

 

Conceptually, system resilience needs to consider the impact of hazards on system 

performance change (both magnitude and speed) during the hazard and recovery phase; 

therefore we demonstrate system recovery time in our proposed definition later.  

 

2.2.2 Qualitative and Semi-quantitative Framework of Resilience  
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Bruneau et al. (2003) describe resilience for both physical and social systems that 

should consist of robustness, redundancy, resourcefulness and rapidity; similar 

assessment of resilience is found in Keogh and Cody (2013), which is used for the 

resilience assessment of critical electrical power infrastructure under extreme weather 

events (Panteli and Mancarella (2015)). Sterbenz et al. (2011) measure system 

resilience using its ability in a time series as: defend, detect, diagnose, remediate, refine, 

and recovery; which is similar to the resilience assessment of cyber systems. A 

conceptual framework for system resilience is proposed by Kahan et al. (2009) as: 

threat and hazard assessment, robustness, consequence mitigation, adaptability, risk-

informed planning, risk-informed investment, harmonization of purposes, and 

comprehensiveness of the scope. The resilience of CI is classified into internal and 

external resilience; where the internal resilience refers to the inherent resilience of the 

CI, and external resilience refers to the resilience associated with external agents 

(Labaka et al. (2015)). A qualitative what-if analysis is performed on the resilience 

assessment of heterogeneous systems by Filippini and Silva (2014), assuming the entire 

system state is dependent on the states of the components in the system. 

 

In real-time sequence, system’s resilience can be qualitatively assessed in four stages: 

(i) threat characterization, (ii) vulnerability of system’s components, (iii) system 

reaction or operation and (iv) system’s restoration (Espinoza et al. (2016)); where the 

four stages can be alternatively interpreted as 1) prediction and preparedness, 2) 

vulnerability, 3) robustness and adaptability and 4) recovery. Similarly, the qualitative 

framework to assess resilience is suggested to be divided into five steps as: system 

description, potential disruptions analysis, recovery actions analysis, system 

performance measurement, and system resilience calculation. 
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Sterbenz et al. (2011) use a two-phase strategy “D2R2+DR” for cyber network 

resilience assessment. The first strategy phase D2R2 consists of a cycle of four steps 

(defend, detect, remediate, recover) which are performed in time sequence; based on 

the first strategy, the second strategy DR consists of diagnosis of faults and refinement 

of future behavior. For example, Gillani et al. (2015) propose to defend against attacks 

by proactively changing the footprint of critical resources in an unpredictable fashion 

to invalidate an adversary's knowledge and plan of attack against critical network 

resources. Singh and Silakari (2009) define cyber-attack detection as “the problem of 

identifying individuals who are using a computer system without authorization and 

those who have legitimate access to the system but are abusing their privileges” and 

suggest that cyber detection identifies attacks mainly based on three basic approaches: 

misuse detection, anomaly detection and specification-based detection. Mayer et al. 

(2012) develop a method to prioritize remediation actions when computer system is 

under cyber attacks; specifically, remediation action with the highest impact on the 

security value improvement is assigned the highest priority. Goldman et al. (2011) 

propose that it is unrealistic to completely defend against the cyber attack; instead, more 

efforts should be spent on ensuring and recovering mission success even in a degraded 

or contested environment. Recovery methods after the cyber attacks vary in different 

domains. Tran et al. (2016) present the implementation of dynamic cyber resilience 

recovery model (CRRM) to combat a zero-day outbreak within a closed network and 

minimize disruptions of cyber attacks to business operations. General actions for cyber 

resilience refinements in the long term are recommended in Choudhury et al. (2015). A 

Bayesian algorithm is proposed to enhance the resilience of Wide Area Monitoring 

System (WAMS) applications against cyber attacks (Khalid and Peng (2016)). 

Specifically, suggestions on refining resilience in different domains are provided such 
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as industrial control systems (Chaves et al. (2017)), critical infrastructures (Bologna et 

al. (2015)), power grid systems (Ashok et al. (2017)) and communication networks 

(Sterbenz et al. (2010)). 

 

In some studies, system reliability is considered as important factors in system 

resilience. For example, Vlacheas et al. (2013) propose that the most important factors 

in resilience are reliability, safety, availability, confidentiality, integrity, maintainability 

and performance; where both non-repairable and repairable systems are included. Wang 

and Ip (2009) propose that a logistic system with redundancy has a quick recovery (and 

therefore high resilience) when the system functionality is down. Similarly, Panteli and 

Mancarella (2015) suggest effective measures (such as accurate hazard prediction and 

comprehensive plans in advance, use of highly-reliable components, locating facilities 

to safe regions, and designing redundant transmission lines) to improve the resilience 

of critical electrical power infrastructure. More suggestions for improving electricity 

system resilience and reducing power outage by considering either redundancy or 

reliability are proposed by Campbell (2012), Northern PowerGrid (2013) and Energy 

Networks Association (2011).  

 

As stated earlier, systems are subjected to a host of natural and manmade hazards. 

Cutter et al. (2008) provide a disaster-resilience-of-place model to improve disaster 

resilience assessment accuracy at a local level. A host of natural hazards types are 

described and the performance of sanitation systems under these hazards are scored and 

weighted by experts for system resilience semi-quantitative analysis (Luh et al. (2017)); 

it is proposed that difficulty and challenge exist in accurately scoring the hazards. More 

semi-quantitative analysis on system resilience assessment is performed on supply 
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chain resilience (Pettit et al. (2010)) and industry system resilience (Shirali et al. 

(2013)). The contributions and advantages of qualitative analysis to resilience research 

are summarized in Ungar (2003). 

 

We use Table 2.1 to summarize system’s various abilities that are considered in the 

system’s resilience definition and qualitative assessment. 

 

Table 2.1 Abilities related to system’s resilience definition and assessment. 

 
Sense the 

hazard 

Adapt to the 

environment 

Absorb 

negative 

energy 

Maintain 

System’s 

functionality 

Recover 

quickly 

Resist 

the hazard 

Hollnagel et 

al. (2007) 
√ √ √  √  

Pant et al. 

(2014b) 
   √   

Pregenzer 

(2011) 
  √ √   

Klein et al. 

(2003) 
  √ √   

Comfort 

(2007) 
 √     

Overbye et al. 

(2012) 
   √   

Holling (1973)   √ √ √  

Walker et al. 

(2004) 
  √ √   

Gunderson 

(2000) 
    √  

Faturechi and 

Miller-Hooks 

(2014b) 

 √    √ 

Geis (2000)     √  

Campanella 

(2006) 
    √  

Wildavsky 

(1988) 
    √  
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Boin and 

McConnell 

(2007) 

    √  

Wang and Ip 

(2009) 
    √  

Cabinet Office 

(2011) 
√ √ √  √  

Bruneau et al. 

(2003) 
√  √ √ √  

Ayyub (2014) √  √  √  

Nan and 

Sansavini 

(2017) 

√  √  √  

Tilman and 

Downing 

(1994) 

√  √  √  

Chaudry et al. 

(2011) 
√  √ √ √  

Sterbenz et al. 

(2011) 
√    √  

Kahan et al. 

(2009) 
 √  √  √ 

Espinoza et al. 

(2016) 
√ √  √ √ √ 

Keogh and 

Cody (2013) 
√ √  √ √ √ 

Tran et al. 

(2017) 
√ √  √ √ √ 

Berkeley III et 

al. (2010) 
√ √  √ √ √ 

Haimes (2009) √ √  √ √ √ 

Omer et al. 

(2009) 
   √  √ 

Omer et al. 

(2014) 
   √  √ 

Miller-Hooks 

et al. (2012) 
   √  √ 

Fotouhi et al. 

(2017) 
   √  √ 

Jin et al. 

(2014) 
   √  √ 
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2.3 Importance Measure 

 

Importance measure (IM) is beneficial not only for the designer's insight into a system 

but also for system optimization. By now, various efforts have been made to improve 

the theories and applications of IMs, but in different domains, there are different 

methods for measuring the importance of components. 

 

Birnbaum (1968) first proposes the IM that deals with the effects of changes in the 

unreliability of a given component by taking the partial derivative of system 

unreliability with respect to components unreliability. In other words, a component 

whose variation of the unreliability results in the largest variation of the system 

unreliability has the most impact on system failure. 

 

As a seminal work, Birnbaum IM has been extensively studied and applied. For 

example, Papastavridis (1987) drives Birnbaum IM for components in consecutive-k-

out-of-n: F system (consisting of an ordered sequence of n  components such that the 

system fails if and only if k   or more consecutive components fail, such as 

telecommunication and pipeline systems) with i.i.d. components and concludes that the 

most important components are in the middle of the sequence. Xie and Shen (1989) 

propose a general IM whose system reliability depends on the reliability of the 

component to improve the Birnbaum IM. Leemis (1995) proposes an IM which 

considers system reliability instead of unreliability. Chadjiconstantinidis and Koutras 
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(1999) apply Birnbaum IM for Markov chain imbeddable systems. Chang et al. (1999) 

introduce some new techniques to explain some unproven results Birnbaum IM and 

extend the measure to the 2-out-of-m-out-of-n systems. Yao et al. (2011) propose five 

new Birnbaum IM based heuristics and their corresponding properties in Component 

Assignment Problem (CAP). Zhu et al. (2012) analyze certain patterns of the 

component Birnbaum IM for linear consecutive-k-out-of-n systems when all 

components have the same reliability. Wu and Coolen (2013) develop a cost-based 

extension of Birnbaum IM, which considers costs incurred by maintaining a system and 

its components within a finite time horizon. Liu et al. (2014) derive the expression of 

the Birnbaum IM under deterministic environmental conditions and utilize Birnbaum 

IM in components subjected to competing degradation modes under time-variant 

conditions. Zhu et al. (2017) present the Birnbaum IM based local search methods and 

the Birnbaum IM based genetic algorithms for addressing the multi-type component 

assignment problem (MCAP). Birnbaum IM is the most fundamental, and most of the 

alternative IMs are developed and extended based on it. 

 

The reliability importance of a component usually is insufficient to determine how 

components affect the system reliability, in particular, it gives very little information 

about how the dependent components’ reliabilities affect system performance jointly. 

Hong and Lie (1993) first propose joint reliability importance (JRI) defined as the rate 

at which the system reliability improves as the reliabilities of the two components 

improve to indicate how components interact in contributing to system reliability. 
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Armstrong (1995) further improves JRI by considering component states dependently. 

Wu (2005) extends the joint importance measure (JIM) from the binary systems to 

multi-state systems by considering the performance utility of the system with JRI and 

joint structural importance (JSI). Gao et al. (2007) extend the JRI from two components 

to multi components, and investigate the concept of Conditional Reliability Importance 

(CRI) while the working states of certain components are known. Furthermore, Si et al. 

(2012b) extend the JRI from multi-state systems to multi-state transition systems. 

Applications on JIM are also presented in Hong et al. (2000) on fault-tree, Hong et al. 

(2002) in k-out-of-n systems, Eryilmaz (2013) in linear m-consecutive-k-out-of-n: F 

systems and Pan and Nonaka (1995) in common cause failures. Borgonovo (2010) 

presents a unified framework for the utilization of JIM and DIM in both coherent and 

non-coherent systems, and develops a total order IM that synthesizes the Birnbaum IM, 

JIM and DIM of all orders in one unique indicator. 

 

Most IMs mentioned above rank components from reliability as a performance measure 

of the system, which not only considers the probability that a component functions 

properly during the mission time or at a fixed time point, but also considers system 

structure. However, some of IMs are evaluated only from the structure importance, 

which considers the relative importance of various components with respect to their 

positions in a system. Although the reliability IMs are generally superior to the 

structural ones and are of primary concern, their calculations might not be available in 

practice. For example, in large complex systems, the computations involved in 
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quantifying IM can become prohibitively extensive. Therefore, structural IMs can be 

used to provide a fair basis to compare the relative importance among system 

components. According to the Fussell-Vesely measure, the importance of a component 

depends on the number and on the order of the cut-sets in which it appears. Butler (1977) 

proposes a cut-importance ranking based on the minimal cut-sets of the system, Aven 

(1985) provides a computer program ERAC to calculate (un)reliability ((un)availability) 

and some IMs based on the minimal cut-sets, Boland et al. (1987) develop a procedure 

for optimally allocating components by introducing the notion of structural criticality 

of components. Page and Perry (1994) develop an IM to assess the relative importance 

of edges in a graph based on reliability polynomials. Later Meng (1994) and Meng 

(1995) characterize the criticality ordering from minimal cut-set (minimal path-set) 

introduced by Butler (1977) and Boland et al. (1987) and derive a relationship between 

the criticality ordering and Birnbaum IM of components. Meng (1996) and Meng (2000) 

compare the relative importance of system components ordered by their structural 

criticality instead of calculating their Birnbaum and Fussell-Vesely IM, and propose a 

new IM to improve Fussell-Vesley IM and a new method to compute Birnbaum IM.  

 

More comprehensive reviews concerning the topic of IMs for components in binary 

coherent systems whose components and/or the system performance only have two 

states, i.e., functioning/not-functioning are presented by Boland and El-Neweihi (1995), 

Aven and Nøkland (2010), Kuo and Zhu (2012), and Borgonovo et al. (2016).  
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Although binary systems have many practical applications, a model based on two states 

is often over-simplified and insufficient for describing many commonly encountered 

situations in real life. Accordingly, multi-state systems whose components and/or the 

system performance have more than two states are more realistic and frequently 

required. For example, multi-state systems appear in a gas transportation systems, 

which usually operate in intermediate states (the state of the system is defined as the 

rate of delivered gas (0%, 100%)), similar as in supply chain systems, communication 

networks, production systems, manufacturing systems, power generation, computer 

systems and so on. When applied to multi-state systems, the concept of unavailability 

is used as a function of the individual components’ performances as well as of the 

demand required of the system (system performance). Consequently, a component can 

be regarded as more important one if it improves system availability by achieving a 

required performance level and less important for another. Research efforts have been 

focused on generalizing frequently used binary importance measures to accommodate 

the multi-state behavior. Research on extending binary systems to multi-state systems 

with multi-state components (MSMC) and assessing their reliability (performance 

measures) are presented by Hirsch et al. (1968), Postelnicu (1970), El-Neweihi et al. 

(1978), Barlow and Wu (1978), Ross (1979), Natvig (1982b), Block and Savits (1982), 

Wood (1985), Garribba et al. (1985), Gandini (1990), Aven (1993), Levitin and 

Lisnianski (1999), Lisnianski and Levitin (2003), Levitin (2005) and Li et al. (2014). 

In particular, El-Neweihi et al. (1978) analyze the relationships between multi-state 

coherent system’s reliability behavior and multi-state component’s performance under 
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deterministic and stochastic scenarios, where this work is developed based on the 

structure function. Barlow and Wu (1978) extend binary coherent structures to the 

system state function for coherent systems with multi-state components, and investigate 

its properties which can be extended to an increasing but otherwise arbitrary state 

function. Lisnianski and Levitin (2003) address the details of multi-state system 

reliability analysis and optimization. 

 

Kim and Baxter (1987) extend the importance measures from discrete-state systems to 

continuous-state systems. Bueno (1988) uses decomposition to obtain an extension of 

the Barlow-Proschan IM in multistate monotone systems. Gandini (1990) develops a 

new IM by using the heuristically-based generalized perturbation theory (GPT) and 

compares it with Birnbaum IM and Barlow-Proschan IM. Armstrong (1997) extends 

importance measures to cover reliability models where the components have two 

failure-modes rather than the conventional one failure-mode. Levitin and Lisnianski 

(1999) propose importance and sensitivity measures for multi-state systems with binary 

capacitated components, which account for both the multi-state system performance 

caused by the capacitated components and stochastic system demand. Levitin et al. 

(2003) study the generalized IMs for multi-state components based on the restriction 

that component’s performance is only reachable to certain states. Zio and Podofillini 

(2003b) present multi-state extensions for risk achievement worth (RAW), risk 

reduction worth (RRW), Fussell-Vesley IM and Birnbaum for MSMC. Zio and 

Podofillini (2003a) generalize some of the most frequently used IMs to MSMC, which 
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characterize the importance of a component achieving a given level of performance 

with respect to the overall mean system unavailability and performance. Vaurio (2011) 

develops new IMs for repairable systems under multiple phases of the mission. Peng et 

al. (2012) and Liu et al. (2014) analyze IM for components subject to degradation, 

where the latter work considers the interdependency among components’ performance. 

 

Traditional IMs mainly concern the change of the system reliability (availability) 

caused by the change of the reliability (availability) of the component without 

considering the joint effect of the probability distributions, transition intensities of the 

object component states, and the system performance. In order to describe the reliability, 

structure and causality characteristics of components comprehensively, integrated IM 

(IIM) is first presented by Si et al. (2010) to evaluate the integrated effect of 

components on the MSMC under uncertainty, which introduces the probability 

distribution change of system under the conditions of different component states and 

the failure state distributions of the component. Further, Si et al. (2012c) study the IIM 

of component states in multi-state systems based on loss of system performance related 

to the expected number of component failures, and the effect of system structure, then 

evaluate IIM by using the UGF method. Si et al. (2012a) discuss the IIM of component 

states based on the system maintenance cost. Si et al. (2013) extend the IIM to estimate 

the effect of a component residing at certain states on the performance of the entire 

multi-state systems. Dui et al. (2014) apply IIM to multi-state system with renewal 

functions and later Dui et al. (2015) apply IIM to semi-Markov processes. 
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Obviously, most of IMs in MSMC focus on investigating how a particular component 

state or set of states affects multi-state system reliability instead of a specific component. 

It is not clear to prioritize system component importance for some systems whose the 

most critical component state may not correspond to the most critical system 

component. Accordingly, Ramirez-Marquez and Coit (2005) propose composite 

importance measures (CIM) with the aim of identifying how a specific component 

affects multi-state system reliability by considering all of its prospective states. 

Ramirez-Marquez et al. (2006) generalize the work in Ramirez-Marquez and Coit 

(2005) by discussing IMs for measuring the criticality of both “specific component” 

and “a specific state or sets of states of a component”. Ramirez-Marquez and Coit (2007) 

further evaluate and implement CIM for MSMC and develop a component allocation 

heuristic to maximize system reliability improvements. Peng et al. (2012) use CIM for 

components that are subjected to degradation under one-dimensional time-invariant 

environment. 

 

Besides reliability and availability, a variety of system performance measurements are 

adopted for component’s IM calculation such as resilience (Fang et al. (2016), Baroud 

et al. (2014) and Whitson and Ramirez-Marquez (2009)), vulnerability (Murray-Tuite 

and Mahmassani (2004) and Jenelius et al. (2006)) and survival signature (Feng et al. 

(2016)). 

 

Majority of the IMs mentioned above are strictly for coherent system (each component 
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is relevant, the structure function is increasing (non-decreasing), and the failure only 

caused by component failure event) analysis. Non-coherent systems (whose failure can 

be caused not only by component failure (coherent systems) event, but also by 

component repair event) can occur and accurate importance analysis is essential. 

Jackson (1983) first enables analysis of non-coherent systems by using extended 

Birnbaum IM and Andrews and Beeson (2003) improve its consistency. Beeson and 

Andrews (2003) extend four commonly used IMs, using the non-coherent extension of 

Birnbaum’s measure of component reliability importance. Andrews and Beeson (2003) 

propose an extension of Birnbaum IM for non-coherent importance analysis, which 

calculates the average number of system failures in a given interval more efficiently. 

Borgonovo (2010) builds a unified framework for the utilization of JIM and DIM in 

both coherent and non-coherent systems. Borgonovo et al. (2016) propose a new 

importance measure for time-independent reliability analysis, for both coherent and 

non-coherent systems and has an intuitive probabilistic and also geometric 

interpretation. Alternate extensions are recently offered by Vaurio (2016) and Aliee et 

al. (2017), as they introduce a Boolean expression in the non-coherent system. 

 

2.4 Cascading Failure 

 

The normal operation of a system shows that the system carries a flow of some certain 

resource, such as information, electricity, water, data packages and so on, where 

components individually share a load which does not exceed the capacity of that 
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component. In general, when the total flow of the system changes or components are 

added or removed, system will dynamically adjust the loads on the individual 

components to maintain the load below the capacity of the component. For example, 

when a component fails, the loads are recalculated and the components whose loads 

exceed their capacity are removed from the system. The process is repeated until loads 

of all remaining components are below their capacity. However, this dynamic 

adjustment of redistributing the loads causes the “removing” (referred to as “failure”) 

of the components, which results in the cascading failure.  

 

A cascading failure is a process in a system of interconnected subsystems in which the 

failure of one or few components can trigger the failure of other components. It is 

initiated when a component fails, and other components must compensate to share the 

load of the failed component. In turn, this redistribution may overload other 

components causing them to fail as well. Thus, the number of failed components 

increases, propagating throughout the system and causing additional components to fail 

one after the other. In particularly serious cases the entire network is affected. Therefore, 

it can be seen the failure of a single component is sufficient to cause the failure of the 

entire system if the component is among the ones with the largest load. 

 

Many systems can experience random and systematic failures of their components, and 

there are numerous examples showing that these local failures can lead to the global 

failure of the system and consequently the break down of the system. Large cascades 
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triggered by small initial failures are present in many types of systems, including power 

transmission, computer networking, finance, human body systems, bridges, epidemic 

infection, and production systems and others. The modern society is dependent on 

large-scale infrastructure systems to deliver resources to homes and businesses in an 

efficient manner (Ash and Newth (2007)). For example, cascading failures are common 

in most of the complex communication and/or transportation networks that are the basic 

components of our lives and industry (Dorogovtsev and Mendes (2002)).  

 

Cascading failures in power grids are also well documented. It is common when one of 

the components fails and shifts its load to nearby components. If those nearby 

components are overloaded, they will shift their load onto other components. This surge 

current can induce the already overloaded components into failure, setting off more 

overloads and thereby taking down the entire system in a very short time (a large 

number of transmission lines are overloaded and malfunction at the same time). For 

example, on November 9, 1965, a small variation of power originating from one of the 

generating plants in New York caused the relay to trip. Instantly, the power that was 

flowing on the tripped line transferred to the other lines, causing them to become 

overloaded. Their own protective relays, which are also designed to protect the line 

from overload, tripped. Within five minutes, the power distribution system in the 

Northeast was in chaos as the effects of overloads and the subsequent loss of generating 

capacity cascaded through the network, breaking the grid into "islands". Station after 

station experienced load imbalances and automatically shut down, affecting parts of 
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Ontario in Canada and Connecticut, Massachusetts, New Hampshire, New Jersey, New 

York, Rhode Island, Pennsylvania, and Vermont in the United States. Over 30 million 

people and 80,000 square miles were left without electricity for up to 13 hours (Vassell 

(1990)). On 10 August 1996, when a 1300-mw electrical line in southern Oregon 

sagged in the summer heat, initiating a chain reaction that cut power to more than four 

million people in eleven Western States (Sachtjen et al. (2000)). On 14 August 2003 

when an initial disturbance in Ohio triggered the largest blackout in the U.S.’s history 

in which millions of people remained without electricity for as long as 15 hours (Glanz 

et al. (2003)). 

 

Cyber networks are also such examples that should be protected against cascading 

failures (Mei et al. (2008), Ren and Dobson (2008), Jacobson (1988b) and Guimerà 

(2003)), which are caused by failing or disconnected hardware or software. Specifically, 

if a few important cables break down, the traffic should be rerouted either globally or 

locally towards the destination. When a line receives extra traffic, its total flow may 

exceed its threshold and cause congestion. As a result, an avalanche of overloads 

emerges on the network and cascading failure might occur (Mirzasoleiman et al. 

(2011)). For instance in October 1986, during the first documented Internet congestion 

collapse, the speed of the connection between the Lawrence Berkeley Laboratory and 

the University of California at Berkeley, two places separated only by 200 meters, 

dropped by a factor 100 (Jacobson (1988a) and Guimera et al. (2002)). In particular, a 

cyber network comprising small devices includes thousands of sensors, transmitters, 
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actuators, and monitors. Hence, connectivity is the most crucial factor to determine the 

service quality in a network; thus, network flows should be carefully distributed in 

terms of load balance among devices. However, a small fraction of overloaded nodes 

extremely accelerates the propagation of failures as discussed in Sun and Han (2005), 

Zhao et al. (2007) and Ash and Newth (2007). In a wireless sensor cyber network, a 

sensor node which must communicate with a large number of neighbors may be more 

likely to deplete its energy reserve and fail. Alternatively, a node directly connected to 

many other nodes may be also more likely to be attacked by an adversary seeking to 

break down the whole network. For example, virus and worms which originate at a 

small number of nodes can propagate themselves by infecting nearby cell phones and 

laptops via short-range communication, thereby potentially creating a “wireless 

epidemic” (Kleinberg (2007)).  

 

These severe incidents such as blackouts and internet congestion mentioned above have 

been investigated quite intensively (Boccaletti (2006)). Although most of studies are 

mainly focused on the cascading failures on a single or isolated system, many complex 

systems are interdependent and failures occurring in one system are likely to have 

impacts on others in real world. The operations of many modern cyber-physical systems 

are based on increasingly interdependent networks, and diverse infrastructures such as 

water supply, transportation, fuel and power stations are coupled together. Due to this 

coupling relationship, they are extremely sensitive to random hazards so that a failure 

of a small fraction of components from one system can produce an iterative cascade of 
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failures in several interdependent systems (Foster Jr et al. (2004) and Rinaldi et al. 

(2001)). For example, the September 28, 2003 blackout in Italy resulted in a widespread 

failure of the railway network, health care systems, and financial services and, in 

addition, severely influenced communication networks. The partial failure of the 

communication system in turn further impaired the power grid management system, 

thus producing a positive feedback on the power grid (Rosato et al. (2008)).  

 

In addition, the small-world and scale-free properties are ubiquitous in nature and 

human society (Albert (2002)), which operate with a high tolerance of random failures 

but are susceptible to cascading failures (Motter and Lai (2002)). Thus the impact of 

cascading failures and the robustness characteristic on independent and dependent 

systems have received significant attention in the past decade (Albert (2002), 

Dorogovtsev (2002), Newman (2003), Boccaletti (2006), and Gallos (2005)). From the 

viewpoint of system resilience, a key question is whether the system facing these 

dependent and correlated failures can retain its functionality in terms of maintaining 

some sense of global communication. Specifically, the network may be considered to 

be resilient if the size of the largest connected component of operational nodes (after 

the failures) is proportional to the size of the whole network (Kong and Yeh (2010)). 

For instance, if a power grid still collects electricity from a constant fraction of some 

nodes even after a substantial number of node and wire failures, then the power grid is 

resilient. On the other hand, after some node and wire failures, the power grid breaks 

down into isolated parts where even the most important node can receive only a 
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vanishingly small fraction of the electricity, then the power grid is not considered to be 

resilient. Several studies are devoted to the concept of controlling cascading failures 

(Adibi et al. (1987), Talukdar et al. (2003) and Kundur et al. (1994)). For example, 

islanding or separating the survivable parts of a grid has long been used to allow a 

transmission grid to continue its functionality, and building a system for allocating 

competing resources during an extended failure is another solution for controlling such 

failures (Talukdar et al. (2003)).  

 

Up to now, a large number of important impacts of cascading failures have been 

investigated, dynamical approaches are developed, and many system models are 

proposed and studied, such as the sandpile model (Bak (1987), Goh and Lee (2003) and 

Huang et al. (2006)), the global load-based cascading model (Motter and Lai (2002), 

Moreno (2003), Motter (2004), Zhao et al. (2004), and Zhao et al. (2005b), Crucitti et 

al. (2004a), Schäfer et al. (2006), Mirzasoleiman et al. (2011), Holme and Kim (2002), 

Moreno et al. (2003), Crucitti et al. (2004b), and Carreras et al. (2003)) and the fiber 

bundle model (Moreno et al. (2002), Kim (2004) and Kim et al. (2005)). In addition, 

the influence of the cascaded failure in the size of the largest connected component is 

investigated in a number of system models including preferential attachment scale-free 

(Zhao et al. (2004)), Watts-Strogatz small-world (Xia et al. (2010)), and modular 

networks (Babaei et al. (2011)). Based on these models, some protection strategies are 

proposed (Motter (2004), Moreira et al. (2009), Zhao et al. (2004), Zhao et al. (2005a), 

Zhao et al. (2005b), Schäfer et al. (2006) and Wang and Kim (2007)). Ash and Newth 
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(2007) and Simonsen et al. (2008) compare the different control and defense strategies. 

 

From the perspective of system resilience, Newth and Ash (2004) and Ash and Newth 

(2007) use an evolutionary algorithm to evolve complex networks that are resilient to 

such cascading failure and apply network statistics to identify topological structures 

that promote resilience to cascading failure. Kinney et al. (2005) model the power grid 

using its actual topology and plausible assumptions about the load and overload of 

transmission substations, and study the damage inflicted by the loss of single unit. They 

find three universal behaviors, suggesting that 40% of the transmission substations lead 

to cascading failures when disrupted. While the loss of a single unit can inflict 

substantial damage, subsequent removals have only incremental effects, in agreement 

with the topological resilience to less than 1% unit loss. Kong and Yeh (2010) analyze 

the problem of resilience to dependent unit (node) failures in large-scale networks 

modeled by random geometric graphs from a percolation-based perspective, and show 

that the cascading failure problem is equivalent to a degree-dependent percolation 

process. Zeng et al. (2013) construct a novel cascading failure model with tunable 

parameters and propose an evaluation method of node importance according to the 

features of symbiosis networks of eco-industrial parks. Based on the cascading model, 

an effective new method, the critical threshold, is put forward to quantitatively assess 

the resilience of symbiosis networks of eco-industrial parks. Moon and Jeon (2015) 

propose a load-dependent cascading failure model according to sandpile principle, 

which is effective in evaluating the overall aspect of resilience capacity in terms of 



  55 
 

 
 

connectivity efficiency against the spreading of large collapse. Chai et al. (2016) study 

the resilience and robustness of interdependent networks consisting of an electric power 

grid and a communication network against cascading failures 

 

From the viewpoint of weighted system, Wang and Chen (2008) propose a cascading 

model inducing the weight of a network edge ( )i jk k    with a local weighted flow 

redistribution rule (LWFRR) on weighted networks, which combines the cascading 

process and the weighted characteristics of the network. The weighted complex 

network reaches the highest robustness level when the weight parameter 1  , which 

indicates the significant roles of weights in complex networks for designing protection 

strategies against cascading failures. Moreover, Mirzasoleiman et al. (2011) investigate 

the profile of the robustness against cascading failures in weighted networks and three 

weighting strategies including the betweenness centrality of the edges, the product of 

the degrees of the end nodes, and the product of their betweenness centralities. They 

find that the load of the links is considered to be the product of the betweenness 

centrality of the end nodes is favored for the robustness of the network against 

cascading failures. 

 

In interdependent systems, Vespignani (2010) studies the failures in interconnected 

networks and highlights the vulnerability of tightly coupled infrastructures and shows 

the need to consider mutually dependent network properties in designing resilient 

systems. Parshani et al. (2010) propose a theoretical framework for studying the 
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impacts of coupling probability on interdependent networks. It is found that reducing 

the coupling leads to a change from a first order percolation phase transition to a second 

order percolation transition. Buldyrev et al. (2010) analyze the blackout in Italy and 

generalize a model to capture the phenomenon of cascading failures in interdependent 

networks. They present analytical solutions for the critical fraction of nodes and find 

that interdependent links make interdependent networks more vulnerable to random 

failures. Brummitt (2012) investigates the sandpile model on modular random graphs 

and power grids and find that some connectivity is beneficial but extensive 

interconnectivity becomes detrimental. Tan et al. (2013) investigate the effect of 

coupling preference on cascading failures in interconnected networks and found that 

assortative coupling is more helpful to resist the cascades. Chen et al. (2015) investigate 

cascading failures and the coupling preference on systems robustness in interdependent 

scale-free networks under targeted attacks and find that disassortative coupling is more 

robust for sparse coupling while assortative coupling performs better for dense coupling. 

More detail about interdependent networks can be found in Kivelä et al. (2014) and 

Gao et al. (2014). 

 

Since most of studies focusing different scenarios are based on the seminal model 

proposed by Motter and Lai (2002) and Crucitti et al. (2004a), we provide details of 

this model in the following. 

 

The model assumes that each node has certain capacity and initially the load at each 
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node is smaller than its capacity. The failure (removal) of a node changes the balance 

of flows and leads to a redistribution of loads over other nodes. If the capacity of these 

nodes cannot handle the extra load a cascade of overload failures is triggered and 

eventual network failure. The model follows: 

 

1) Overloaded nodes are not removed from the network; 

2) The damage caused by a cascade effect is quantified in terms of the decrease in the 

network efficiency (Latora and Marchiori (2001)). 

 

The average efficiency of the network ( )E G  can be expressed as in Eq. (2.3) 

 

 
1

( )
( 1) ij

i j

E
N N


 


 

G

G   (2.3) 

 

where N  is total number of nodes in network; G  is the network described by the 

N N   adjacency matrix  ije   in which ije   is a measure of the efficiency in the 

communication along the link: if there is a link between node i  and node j , the entry 

e ij  is a value in the range (0,1]; otherwise e 0ij  ; ij  represents the efficiency of the 

most efficient path between node i  and node j . The initial removal of a node starts 

the dynamics of redistribution of flows on the network, which changes the most 

efficient paths between nodes. ij   can be calculated by using the information 

contained in adjacency matrix  ije  which can be obtained by following iterative rule 

as shown in Eq. (2.4) 
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e L t C

L te t

e L t C

   
 

  (2.4) 

 

where j  extends to all the first neighbors of i ; ( )iL t  is the load on node i  at time 

t  ( the total number of the most efficient paths passing through node i  at time t ) and; 

iC  is the capacity of node i , which is proportional to its initial load. Therefore, if node 

i   is congested at time t  , the efficiency of all the links passing through it will be 

reduced so that eventually the flow will take the new most efficient paths. 

 

In addition, Elsayed (2012) presents a conditional reliability by using joint density 

function (jdf) to analyze the general systems whose components experience cascading 

failures which also can be considered as dependent failures of the components. This 

approach requires that the pdf of the failure-time distribution of each component in the 

system as well as the jdf’s of all components be known. For example, if two identical 

components are in parallel with constant failure rates of  s   when they operate 

singularly and  b  when both operate simultaneously. Let   be the time of the first 

failure and 1( )g   be the density function for the first failure as shown in Eq. (2.5); the 

time of the second failure is  (0 )t t    and its dependent function, 2 ( | )g t    as 

shown in Eq. (2.6). 

 

  2
1  ( ) 2            0 < b

bg e t       (2.5) 
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  (2.6) 

 

The pdf,  ( , )t  , can be expressed in Eq. (2.7) 

 

 1 2 ( , ) ( ) ( | )           0 <  <t g g t t       (2.7) 

 

The marginal density function, ( )f t , can be obtained in Eq. (2.8) 

 

 
0

( )  ( , ) 
t

f t d       (2.8) 

 

Therefore, the reliability of this system can be obtained as given in Eq. (2.9) 

 

 
0

( ) 1 ( ) 
t

R t f d      (2.9) 

 

2.5 Summary and Conclusions 

 

In this chapter, the literature of the multi hazard is reviewed in details. We propose an 

additive form to obtain the overall system’s failure rate by integrating the occurrence 

frequency and severity of the different types of hazards; where all the failure rates are 

assumed to be constant. However, under most circumstances, system normal failure rate 

is time-dependent (such as Weibull and Lognormal). Likewise, the factors that affect 

the natural and manmade hazards vary dynamically and randomly and the proposed 
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system failure rate needs to be modified accordingly. Through a comprehensive review 

of natural hazard, manmade hazard, and multi hazard that considers the dependency 

between hazards, the methods to predict and mitigate the damage of the hazards and 

the guide to restore from hazards are suggested. Although substantial studies have been 

conducted on simulation-based hazard assessment, little progress is achieved in 

understanding the inner pattern of the hazards. Moreover, lacking quantitative modeling 

of the interaction among different types of hazards and determining the occurrence 

sequence of hazards, appropriately incorporating the three types of failure rates into 

overall system’s failure rate becomes a challenge. We also examine the qualitative and 

semi-quantitative framework of resilience definitions and their characteristics in 

different scenarios and summarize various abilities that are considered in system’s 

resilience definitions and qualitative assessments in Table 2.1. Most researchers 

initially focus solely on system robustness, while ignoring the system recovery after the 

hazards, which is also an indispensable factor to assess the resilience of the system. We 

then present a thorough review of literature of the importance measure. Specifically, 

importance measures are developed from binary systems to multi-state systems, from 

discrete-state systems to continuous-state systems and from non-repairable systems to 

repairable systems. However, the applications of importance measures are limited to 

specific scenarios. Most of large complex systems include cascading failures may lead 

to the failure of the entire system due to a minor failure. Finally, we discuss the 

cascading failures in different type of systems and corresponding methods of their 

mitigation or avoidance in order to improve the system’s resilience.
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CHAPTER 3 

RESILIENCE 

 

In chapter 2, we review the qualitative and semi-quantitative resilience definitions. In 

this chapter, we provide a detailed review of the quantifications of the resilience 

followed by the proposed resilience quantification. We begin this chapter with general 

system’s resilience scenarios and conclude that most of the current studies on resilience 

quantification include some of the following factors: (1) system performance loss; (2) 

system performance recovery; (3) system performance level at arbitrary times after the 

hazard; (4) system performance loss throughout the hazard and recovery period or 

arbitrary time period; (5) system performance throughout the hazard and recovery 

period; (6) length of system recovery period and (7) length of the hazard period. In 

order to adapt the previous resilience quantifications to more general situations, we 

propose two resilience quantifications for non-repairable and repairable systems in 

section 3.2 and section 3.3, respectively.  

 

3.1 Resilience Quantification 

 

Figure 3.1 illustrates system’s resilience behavior, using ( )P t   as the system 

performance function at time t . Under normal failures, a system operates with steady 

system performance 0( )P t  (normalized performance level 0( ) 1P t  ), from time 0t  

until the occurrence of the hazard at time ht  (the system performance is ( )hP t , which 
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usually equals  0P t ); the hazard deteriorates system’s performance to level ( )dP t  

at time dt . Then, maintenance actions start restorations (if the system is repairable) 

until it reaches a desired level of performance ( )rP t  at time rt , where we assume 

without loss of generality that 0( ) ( )rP t P t .  

 

 

Figure 3.1 Schematic diagram of the system performance behavior. 

 

Most of the current studies on resilience quantification consider one or more of the 

following factors:  

 

1) System performance at a specific time point: ( )P t ; 

2) System performance loss due to the hazard:    0  dP t P t ; 

3) System performance recovery:    r dP t P t ; 

4) System performance loss throughout the hazard and recovery period or arbitrary 

time period [ ,  ]a bt t :   0 ( ) 
r

h

t

r h t
P t t t P t dt    or   0 ( ) 

b

a

t

b a t
P t t t P t dt   ; 

5) System performance throughout the hazard and recovery period or arbitrary time 

period [ ,  ]a bt t : ( ) 
r

h

t

t
P t dt  or ( ) 

b

a

t

t
P t dt ; 
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6) Length of system recovery period: r dt t ; 

7) Length of the hazard period: d ht t . 

 

The above factors are discussed in system resilience quantification as presented in Table 

3.1. 

 

Table 3.1 System’s resilience quantification with various factors. 

 

Performance 

at a specific 

time point 

Performance 

loss at a 

specific time 

point 

Performance 

recovery at a 

specific time 

point 

Performance 

loss over a 

period 

Performance 

over a 

period 

Length of 

recovery 

period 

Length of 

hazard 

period 

Henry and 

Ramirez-

Marquez 

(2012) 

 √ √     

Baroud et 

al. (2014) 
 √ √     

Hosseini 

and Barker 

(2016) 

 √ √     

Barker et al. 

(2013) 
 √ √     

Cutter et al. 

(2008) 
 √ √     

Nan and 

Sansavini 

(2017) 

 √ √     

Pant et al. 

(2014a) 
 √ √     

Luo and 

Yang (2002) 
     √ √ 

Wang et al. 

(2010) 
     √  

Cimellaro et 

al. (2010b) 
    √   

Bruneau et 

al. (2003) 
   √    
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Bruneau and 

Reinhorn 

(2007) 

   √    

Ouyang et 

al. (2012) 
    √   

Ouyang and 

Dueñas-

Osorio 

(2012) 

    √   

Ouyang and 

Dueñas-

Osorio 

(2014) 

    √   

Ouyang and 

Wang 

(2015) 

    √   

Cimellaro et 

al. (2010a) 
 √ √ √ √ √ √ 

Attoh-Okine 

et al. (2009) 
    √  √ 

O'Rourke 

(2007) 
    √   

Reed et al. 

(2009) 
    √   

Adams et al. 

(2012) 
 √ √  √ √  

Sahebjamnia 

et al. (2015) 
√       

Franchin 

and 

Cavalieri 

(2015) 

    √   

Vugrin et al. 

(2014) 
 √    √  

Zobel 

(2010) 
 √    √  

Zobel 

(2014) 
 √    √  

Nan and 

Sansavini 

(2017) 

√  √ √  √  

Tran et al. 

(2017) 
√ √ √     



  65 
 

 
 

Orwin and 

Wardle 

(2004) 

 √ √     

Faturechi 

and Miller-

Hooks 

(2014b) 

√  √     

Chen and 

Miller-

Hooks 

(2012) 

√  √     

Omer et al. 

(2014) 
√  √     

Miller-

Hooks et al. 

(2012) 

√  √     

Jin et al. 

(2014) 
√  √     

Sarre et al. 

(2014, Chen 

et al. (2017) 

√  √     

Janić 

(2015b) 
√  √     

Zhao et al. 

(2017) 
√  √     

Chen et al. 

(2017) 
√  √     

Faturechi et 

al. (2014) 
√  √     

Chang and 

Shinozuka 

(2004) 

  √   √  

Hashimoto 

et al. (1982) 
  √   √  

Li and 

Lence 

(2007) 

  √   √  

 

System resilience at recovery time rt ,  rt , is quantified in Eq. (3.1) as the ratio 

between system performance recovery and system performance loss (Henry and 
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Ramirez-Marquez (2012), Baroud et al. (2014), Hosseini and Barker (2016), Barker et 

al. (2013), Cutter et al. (2008), and Nan and Sansavini (2017)). Pant et al. (2014a) 

extend Eq. (3.1) to obtain system’s resilience-related metrics under stochastic 

conditions. 

 

      
   0

r d
r

d

P t P t
t

P t P t


 


  (3.1) 

 

Other studies take the effect of time into consideration; i.e., system performance change 

“rapidity”, where the “rapidity” could be either used to describe system performance 

loss or system performance recovery. For example, resilience is quantified as the sum 

of the time it takes the system to degrade and to recover, i.e.,  r r ht t t    (Luo and 

Yang (2002)); however, the magnitude of system performance recovery is not addressed. 

Wang et al. (2010) propose system resilience based on its maximum recovery ability, 

i.e., the ratio between system’s demand recovery time and actual recovery time.  

 

Combining the effect of time and magnitude of system performance change, Cimellaro 

et al. (2010b) quantify system resilience in terms of system performance level 

throughout the hazard and recovery period ( ( ) 
r

h

t

t
P t dt  ). Furthermore, system 

performance under its steady state is adopted in some studies: interpreting 

   0 r hP t t t   as system’s desired performance level throughout the hazard and 

recovery phases, resilience can be either considered as   0 ( ) 
r

h

t

r h t
P t t t P t dt    
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(Bruneau et al. (2003) and Bruneau and Reinhorn (2007)) or as 
   0

( ) 
r

h

t

t

r h

P t dt

P t t t


  

(Ouyang et al. (2012), Ouyang and Dueñas-Osorio (2012), Ouyang and Dueñas-Osorio 

(2014) and Ouyang and Wang (2015)). These quantifications are similar to Cimellaro 

et al. (2010a), Bocchini and Frangopol (2012) and Attoh-Okine et al. (2009).  

 

It is worth noting that in the above quantifications,  0P t  can be either normalized as 

1 (i.e., the system has the highest level of steady-state performance) or any value 

 0 <1P t . Besides, two generalizations can be made: 1) ( ) 
r

h

t

t
P t dt  could change to 

0
( ) 

T
P t dt , where the latter can be understood as the system performance over any time 

period of interest; 2)  P t   could follow a probabilistic process as stated earlier. 

O'Rourke (2007) defines system resilience at arbitrary time bt  as  
( ) 

b

a

t

t
b

b a

P t dt
t

t t
 




, 

where resilience is quantified as the average system performance during a period of 

time  , a bt t  ; this quantification is also adopted in Reed et al. (2009). As a 

simplification, system resilience is assessed by assuming that  P t   in the above 

resilience quantifications as a linearly decreasing function during the hazard period and 

a linearly increasing function during the recovery period as presented in Adams et al. 

(2012), Sahebjamnia et al. (2015), and Zobel and Khansa (2014). Applications and 

variations of resilience quantification are presented in Adams et al. (2012), Zobel (2011) 

and Sahebjamnia et al. (2015), and Mugume et al. (2015). 

 

Other resilience quantifications mainly emphasize system recovery phase. Franchin and 
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Cavalieri (2015) obtain resilience as the normalization of system recovery performance 

over the recovery phase, i.e., 
  0

( ) 
r

d

t

t

r d

P t dt

P t t t


. Vugrin et al. (2014) link resilience to the 

optimal recovery sequence of failed parts, where resilience mainly focuses on system 

recovery ability after the hazard occurrence. Specifically, some studies consider that the 

shape of a recovery curve provides an indication of a system’s recovery ability over 

time (Cimellaro et al. (2010a), Cimellaro et al. (2010b), Zobel (2010) and Zobel (2014)), 

where four types of recovery curves (linear, trigonometric, exponential and inverted 

exponential) are utilized.  

 

More generally, resilience could also be quantified using different measures during 

different stages starting from the hazard occurrence to the recovery at desired 

performance levels. For example, Nan and Sansavini (2017) use robustness, system 

rapidity, average performance loss, recovery ability (Eqs. (3.2)-(3.5)), to respectively 

characterize system resilience in the original steady phase, disruptive phase, recovery 

phase, and steady phase (post-recovery phase). Similarly, Tran et al. (2017) include 

system performance, absorption ability, recovery ability and volatility ability into 

system resilience calculation. 

 

 Robustness = Min { ( );  }h rP t t t t    (3.2) 

 

 
( ) ( )

Rapidity = h d

d h

P t P t

t t




  (3.3) 
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0( ( ) ( )) 

System Average Performance Loss = 

d

h

t

t

d h

P t P t dt

t t






  (3.4) 

 

 
( ) ( )

Recovery Ability = 
( ) ( )

r d

h d

P t P t

P t P t




  (3.5) 

 

Besides the above commonly adopted resilience quantification, factors 1) - 7) are taken 

into consideration in terms of other forms of mathematical expressions by Orwin and 

Wardle (2004), Enjalbert et al. (2011), Zobel (2011), Franchin and Cavalieri (2015), 

Chang and Shinozuka (2004), and Attoh-Okine et al. (2009). As a generalization, Zobel 

and Khansa (2014) extend system resilience quantification to multi overlapping hazards. 

Dessavre et al. (2016) quantify system resilience under multiple hazards as an additive 

form of the resilience under each type of hazard.  

 

As stated earlier, resilience of service-oriented network systems is typically quantified 

as the expected fraction of total pre-event demand that is met after the recovery action 

(Faturechi and Miller-Hooks (2014b)), i.e.,  
i

i

i
i

E f

t
D





 
 
  



; where if  and iD  are 

respectively the post-repair performance level and the desired performance level of the 

thi  component/subsystem in the network. Similarly, resilience is considered as the ratio 

of the delivery ability of the network after and before a hazard by Chen and Miller-

Hooks (2012), Omer et al. (2014), Janić (2015b), Jin et al. (2014), Miller-Hooks et al. 
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(2012), Fotouhi et al. (2017), Sarre et al. (2014), Faturechi et al. (2014), Chen et al. 

(2017) and Zhao et al. (2017). Moreover, Ouyang (2017) quantifies the resilience of 

interdependent network infrastructure as the amount of demand being satisfied at 

arbitrary time; which can be interpreted as ( )P t ; this quantification is similar to Janić 

(2015a). Following the qualitative what-if analysis mentioned in section 2.2.2, Filippini 

and Silva (2014) specifically calculate resilience as the sum of all components’ which 

may result in the overall system’s deadlock states. 

 

In addition to the above-stated factors, reliability-related performance measurements 

such as reliability function and redundancy are used to assess system resilience as 

introduced earlier. Youn et al. (2011) mathematically define resilience as the sum of 

normalized system reliability and recovery ability; Ayyub (2014) also presents a 

resilience assessment by prescribing both reliability and recovery duration strategies. 

Yodo et al. (2017) apply the dynamic Bayesian network approach to discuss the general 

framework of modeling and quantifying system resilience; where the work emphasizes 

that two basic attributes of resilience are reliability and restoration. 

 

Rose (2007) quantifies economic system resilience under deterministic and dynamic 

cases, where system’s maximum percentage loss under the hazard is taken into 

consideration. Specifically, system static resilience is quantified as the ratio of the 

avoided system performance loss and the maximum potential loss; while the dynamic 

resilience focuses on the speed of the system recovery from a severe shock to achieve 
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a desired state. These two resilience quantifications consider the worst system potential 

performance under the hazard.  

 

Game-theoretic approach is used to dynamically model and optimize the resilience of 

cyber control system in large complex systems (such as transportation systems, smart 

grid systems and healthcare systems) with multi-layer optimization objectives. 

Specifically, the profits and strategies of both resilience “defender” and attacker are 

taken into consideration. For example, He et al. (2013) assume both defenders and 

attackers aim to maximize their individual utility, where the system resilience is 

formulated as a power-form product of the survival probabilities of cyber and physical 

subsystems. A game theoretic solution is employed using a game formulation that 

identifies optimal defense strategy to minimize the maximum cyber risk (Musman and 

Turner (2017)). Similarly, considering the cascading failures, a game-theoretic 

approach is used to model the interactions between the cyber level policy maker and 

physical level robust control design in cyber physical systems (Zhu and Başar (2012)). 

 

Considering resilience as a probability, Chang and Shinozuka (2004) quantify resilience 

as the likelihood that the system performance loss is less than a given threshold, as well 

as the likelihood that the recovery time is shorter than a given threshold. Similarly, 

system resilience at t  is considered as the conditional probability that system recovers 

at t , given a system failure at 1t  ( 1t t ) (Hashimoto et al. (1982) and Li and Lence 

(2007)). Resilience assessments based on a simulation study are presented by 



  72 
 

 
 

Ouedraogo et al. (2013) and Adjetey-Bahun et al. (2014). Other review papers on 

resilience definition, qualitative and quantitative analysis in a variety of domains are 

given in Bhamra et al. (2011), Bhamra et al. (2011), Francis and Bekera (2014), 

Faturechi and Miller-Hooks (2014a), Haimes (2009), Madni and Jackson (2009), Yodo 

and Wang (2016) and Sarre et al. (2014).  

 

Resilience should evaluate systems robustness and its ability to recover to a desired 

performance level, but most of the current quantifications of resilience either ignore 

system performance recovery or system design robustness. Therefore, in non-repairable 

systems, we propose a general quantification of system resilience regarding system 

robustness; and in the repairable systems, we propose another quantification of 

resilience which considers system’s robustness as well as the recovery ability. 

 

3.2 Proposed Resilience Quantification for Non-repairable Systems 

 

Non-repairable Systems include satellite failures and one-shot units such as missiles 

and airbags. System robustness is an important indicator to assess the ability of the 

system to resist external disruptive events with no or minimum deterioration of its 

performance. We extend Chen and Elsayed (2017) resilience quantification. 

Specifically, system performance deterioration magnitude and rate are included in the 

resilience quantification as given in Eq. (3.6): 
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  ( ) ( ) ( )
2

d h
d h d

h

t t
t P t P t

t


     (3.6) 

 

It is without loss of generality to assume 0ht  , where ht  is the reference time point 

at which the hazard occurs. Eq. (3.6) considers the system performance (specifically, 

robustness) during the hazard period. Specifically, fixing ht   and  hP t  , system 

resilience is a decreasing function of its performance loss (    h dP t P t  ) and is an 

increasing function of its performance deteriorating period ( d ht t ). 

 

Reliability is the most important performance criterion of the non-repairable systems, 

which indicates that we may consider the reliability ( )R t  as the performance function

( )P t . Therefore, substituting reliability for system performance function, Eq. (3.6) can 

be written as Eq. (3.7)   

 

  ( ) ( ) ( )
2

d h
d h d

h

t t
t R t R t

t


     (3.7) 

 

3.3 Proposed Resilience Quantification for Repairable Systems 

 

Repairable systems include power distribution, water distribution, telecommunications 

systems and others. Catastrophic failures and damage severity of repairable systems 

may render such systems as non-repairable such as in the case of the triple meltdown 

at Fukushima Daiichi nuclear reactor in Japan in 2012 and Chernobyl nuclear power 
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plant in Ukraine in 1986. Availability is considered to be one of the most important 

reliability performance measures of maintained systems since it includes both the 

failure rates and repair rates of the components. It describes the proportion of time that 

a system functions properly during steady state. Availability is classified either 

according to (1) the time interval considered or (2) the type of downtime (repair and 

maintenance). The time-interval availability includes instantaneous (or point 

availability), average uptime, and steady-state availabilities. The availability 

classification according to downtime includes inherent, achieved, and operational 

availabilities (Lie et al. (1977)). Other classifications include mission-oriented 

availabilities. Therefore, it’s reasonable to consider instantaneous availability ( )A t  

(the probability that the system is operational at any random time t ) as the system 

performance function ( )P t  in repairable systems. 

 

In non-repairable system, resilience is usually determined by system structural design 

(explicit and implicit redundancies) and the quality and the reliability of its components. 

However, resilience in repairable system is not only affected by above factors but also 

requires the implementation of an effective maintenance and inspection program to 

maintain the steady-state availability or improve the point availability of the system.  

 

3.3.1 Changes of System Availability in Repairable Systems 

 

We assume system availability is a three-stages piece-wise function of time: (1) before 
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hazards ( ht t ) (normal failure and repair), system has steady-state availability ( )hA t  

(usually ( ) 1hA t  ); (2) during random multi hazards ( h dt t t  ) (no repair or minimal 

if any), system has decreasing availability; during recovery ( dt t  ), system has 

increasing availability corresponding to the repair function (no failure or minor failures). 

Specifically, when system has time-dependent failure rate and constant repair rate in 

stage (2), system availability can be obtained by a semi-Markov model or alternating 

renewal process. In stage (3), the repair function can be described by a stochastic 

process, which can be modeled as Brownian motion or Gamma process. 

 

In general, each component has a varying degree of degradation and maintenance 

resources after the hazards and follows its own repair function such as Brownian motion 

or Gamma process, which shows the amount of the recovery with time. Hence during 

the repair, we assume that the repair rate of the overall system is the integration of all 

different repair functions of its components. The details of the Brownian motion and 

Gamma process are illustrated as follows. 

 

3.3.1.1 Brownian Motion 

 

The Brownian motion, sometimes called the Wiener process, is a continuous-time 

stochastic process and one of the most useful stochastic processes in pure and applied 

mathematics, economics, quantitative finance, and physics. A stochastic process 

 { ,  0}X t t   is said to be a Brownian motion if (Ross (2014)): 
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1) (0) 0X  ; 

2)  { ,  0}X t t   has stationary and independent increments; and 

3) ( )X t  is normally distributed with mean 0 and variance 2t . 

 

When 2 1   , the process is referred as standard Brownian motion (  { ,  0}B t t   ) 

which can be easily accomplished for any process. Geometric Brownian motion is the 

most applicable to actual recovery process, which shows the amount of the recovery of 

the overall system (or component) availability and is an exponentiated version of the 

standard Brownian motion as shown in Eq. (3.8) 

 

 
21

( )
2

0( )  
B t t

Y t Y e
     

    (3.8) 

 

Where    is the repair rate of the system (or component),    is the diffusion 

coefficients and 0(0) 0Y Y   is the initial value. Specifically, due to the volatility of 

the geometric Brownian motion, the recovery time that the system (or component) 

achieves to a targeted availability is usually defined in a range. Therefore, we can 

consider the “mean time” rt  as the alternative recovery time as shown in Figure 3.2. 
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Figure 3.2 Repair functions of system (or component). 

 

3.3.1.2 Gamma Process 

 

The Brownian Motion is suitable for non-monotone recovery processes. However, this 

may not be a realistic assumption and it may not be suitable to use in a recovery process 

that has strictly positive increments. The gamma process can be applied for monotone 

recovery. Gamma processes play a crucial part in inspection and maintenance of 

complex systems such as dikes, beaches, steel coatings, berm breakwaters, steel 

pressure vessels, underground trains, and high-speed railway tracks. Gamma processes 

are also satisfactorily fitted to real-life data on creep of concrete, fatigue crack growth, 

corrosion of steel protected by coatings, corrosion-induced thinning, chloride ingress 

into concrete, and longitudinal leveling of railway tracks (Van Noortwijk (2009)). In 

the following, we first introduce the gamma distribution and its properties then present 

the gamma process. 
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The gamma distribution is characterized by two parameters: shape parameter   and 

scale parameter  . The probability density function of a gamma distribution is given 

by Eq. (3.9) 

 

 
1  

( )
 ( )

tt
f t e




 






  (3.9) 

 

The cumulative distribution function, ( ) ,F t  can be expressed as in Eq. (3.10) 

 

 
1  

0
( )

 ( )

t b
F t e d

 
 






   (3.10) 

 

Substituting c  , we obtain 
 

1

0

1
( ) ct

F t c e dc
 


 

   or  ( ) ,F t I t  , where 

 ,I t   is known as the incomplete gamma function. The expectation and variance of 

the gamma distribution are respectively: [ ]E t



  and 
2

[ ]Var t



 . 

 

We utilize the gamma distribution properties to explain the recovery process since it is 

a stochastic process with independent, non-negative increments where each increment 

follows the gamma distribution with the same scale parameter 0   , and shape 

parameter   0t   , which can be expressed as   ; , .t     The random variable 

( ) ( )X t X s   for 0 s t    follows gamma distribution  ( ( ),  )t s     and is 

expressed in Eq. (3.11) 
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where   ~ ( ( ),  )X t t s     is the recovery at time t   follows the gamma 

distribution with time dependent shape parameter. The mean and variance of the gamma 

process are 



 ( ) [ ] tE x   and




2

( ) [ ] tVar x   , respectively, which implies that the 

mean and variance increase linearly with time.  

 

However, the gamma process introduces intrinsic randomness as shown in Figure 3.3 

(Cheng et al. (2018)), where the red scatter plot shows a recovery process with higher 

rate than the blue scatter plot. Using initial recovery time data one can obtain the 

expected time to reach a specified performance level of the system. The recovery time 

PT   to achieve performance level P   is obtained by finding the value of PT   that 

satisfies Eq. (3.12) 
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( ( ) ) ( ( ) ) 1

( )
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t t x
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   (3.12) 

 

Therefore, initial recovery data can be used to estimate the parameters of the recovery 

process using the Gamma process and obtain the expected recovery time to reach a 

specified performance level. 
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Figure 3.3 Gamma processes with different mean and variance (Cheng et al. (2018)). 

 

3.3.2 Proposed Resilience Quantification 

 

In repairable systems, we propose a resilience quantification that focuses on system 

performance robustness (performance deterioration magnitude and rate) as well as its 

recovery ability (performance recovery magnitude and rate) after the hazards as given 

in Eq. (3.13) 
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where the term d h

r h

t t

t t




  in Eq. (3.13) is interpreted as the system steady-state 

availability. Moreover, the system recovery time ( r ht t ) is taken into consideration. 



  81 
 

 
 

This general definition is independent of the shape of the degradation and recovery 

functions as it only includes the time that it takes the system to reach an unacceptable 

level of system performance as well as the system recovery time to achieve a desired 

performance level. Substitute the availability for system performance function in Eq. 

(3.13) to obtain Eq. (3.14) 
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  (3.14) 

 

As the resilience of repairable systems depends on its recovery ability, its requires 

efficient approaches to recover system performance to the desired level in a relatively 

short time by identifying the repair priorities of the system’s components. In chapter 4, 

we present a detailed discussion on importance measures of the system’s components 

and their role in repair priorities. 

 

3.4 Summary and Conclusions 

 

In this chapter, we provide a detailed literature review of resilience quantification and 

summarize system’s resilience quantification with various factors. Then we conclude 

that most of the current quantifications of resilience either ignore system performance 

recovery or system design robustness. Therefore, in non-repairable systems, we propose 

a general quantification of system resilience regarding system robustness, which takes 
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the reference point ht  when hazard occurs into consideration in order to effectively 

demonstrate the system's “resistance” to hazards. In repairable systems, by assuming 

system availability is a three-stages piece-wise function of time, the system availability 

at any time point can be obtained. We then propose a quantification of resilience that 

considers both the recovery ability as well as system robustness in repairable systems. 

It is noted that the two proposed resilience quantifications are applicable when the 

system is subjected to multi hazard, where the challenge exists in obtaining system’s 

performance indicator under multi hazard based on the system configuration and the 

type of hazards. For example, the system’s performance deterioration under the 

interactions of multi hazard is not the sum of its performance deterioration induced by 

every single hazard independently. Likewise, system’s performance restoration process 

under multi hazard is also challenging; for example, one hazard may occur when 

restoration of previous hazard(s) has not ended; under such circumstance, the overall 

system restoration process is affected.   

 

Indeed, acceptance and unification of the resilience definition and quantification across 

disciplines require interdisciplinary interactions and research collaborations. For 

example, in the proposed resilience quantifications, the knowledge in both reliability 

engineering and civil engineering are required to appropriately utilize system reliability 

metrics as effective system performance indicator. Similarly, statistical models are 

utilized when incorporating the multi hazard in the overall system’s failure rate to 

reflect the effect of the multi hazard on system’s resilience. 
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CHAPTER 4 

IMPORTANCE MEASURES 

 

In this chapter, we present a comprehensive review of the quantifications of the 

Importance Measures (IMs) of the systems’ components for non-repairable and 

repairable systems. We begin this chapter with the IMs of non-repairable systems 

followed by the proposed weighted IM for non-repairable systems in section 4.2, which 

alleviates the concerns of inability of the current IMs in distinguishing the importance 

of components in some reliability configurations. We then present a review of IMs for 

repairable systems in section 4.3. In section 4.4, we present the weighted IM for 

repairable systems.  

 

4.1 IMs for Non-repairable Systems 

 

In the design stage, engineers may use IMs to determine the components that merit 

additional research and development to improve overall system robustness at minimum 

cost or effort. 

 

The IM is first proposed by Birnbaum (1968) as BIM, using the structure function to 

calculate the probability that a specific component is critical to the system performance; 

specifically, at time t  , the thi   component’s importance is calculated by taking the 

partial derivative of system unreliability function with respect to the unreliability of the 
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thi  component. It is expressed as shown in Eq. (4.1) 

 

          ( ( ))
1 , 0 ,i

B i i
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G q t
I t G q t G q t
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  (4.1) 

 

where ( )iq t   is the unreliability function of the component i  ; ( ( ))G q t   is the 

unreliability function of the system;   1 ,iG q t  is the unavailability of the system 

when component i   is not working and   0 ,iG q t   is the unavailability of the 

system when component i   is working (BIM assumes that components are 

independent and have binary-states, where 1i  means 1iq   and 0 i  means 0iq  ).  

 

Other commonly and widely used IMs include the following. Fussell-Vesley IM is 

proposed by Vesely (1970) and used by Fussell (1975), which is the probability that the 

system’s life coincides with the failure of a cut-set containing component. It can be 

expressed as shown in Eq. (4.2) 
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i i
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G q t
I t
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   (4.2) 

 

where ( ( ))iG q t   is the probability of component i   contributing to a cut-set of the 

system. There are two notable risk IMs proposed by Vesely and Davis (1985) to 

evaluate a component’s importance in further reducing the risk and its importance in 

maintaining the present risk level. The first is the risk achievement worth (RAW) and 
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is given in Eq. (4.3) 
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It is the ratio between the conditional system unreliability given that component i  has 

failed and the system unreliability. It represents the importance of maintaining the 

current level of reliability with respect to the failure of the component. The second is 

the risk reduction worth (RRW) importance measure and is given in Eq. (4.4) 
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It is the ratio between the system unreliability and the system conditional unreliability 

given that component i  is working. It shows that the risk of maximum decrease of the 

system performance can be avoided by the improvement of the component, which is 

particularly useful for identifying improvements to the reliability of components which 

can most reduce risk. Comprehensive and extensive extensions and improvements are 

presented in Cheok et al. (1998), Vasseur and Llory (1999), Van der Borst and 

Schoonakker (2001), Borgonovo and Apostolakis (2001), and Borgonovo and Smith 

(2012). Furthermore, Borgonovo and Apostolakis (2001) introduce an additive IM, the 

differential importance measure (DIM). Later, two interaction order and multiple 

interaction order for the criticality of combinations of components are presented by Zio 
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and Podofillini (2006) and Do Van et al. (2010), respectively. 

 

Barlow and Proschan (1975) propose a time-independent modification of the BIM 

corresponding to the conditional probability that component causes the system to fail 

in the time interval ( ,  )h Ft t , given that the system has failed in the same period, which 

leads to the well-known Barlow-Proschan IM and is expressed as given in Eq. (4.5) 
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  (4.5) 

 

where n  is the total number of components in the system. Based on Barlow-Proschan 

IM, Lambert (1975a) introduces the enabler IM as another time-independent IM. Xie 

(1987) and Xie and Bergman (1991) generalize Barlow-Proschan IM using the system 

yield function and develop a time-independent lifetime IM when all components are 

independent. Iyer (1992) extends Barlow–Proschan IM to the case of dependent 

components. Recently, Natvig and Gåsemyr (2006) consider both system failure and 

survival as two extensions of Barlow–Proschan IM. 

 

Lambert (1975b) proposes the upgrading function IM for non-repairable systems as the 

fractional reduction in the probability of the system failure when component failure rate 

i  is reduced fractionally. It is expressed as given in Eq. (4.6) 
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Later Lambert and Yadigaroglu (1977) apply this IM to the problem of determining the 

optimal choice of system upgrade. 

 

A further notable time-independent IM is proposed by Natvig (1979) and is defined 

mathematically as given in Eq. (4.7) 
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  (4.7) 

 

where  iE Z  is the expected reduction of system’s residual life due to the thi  unit’s 

failure. It suggests that importance of the thi  component to the system is reflected in 

terms of the impact of its failure on the reduction of system’s residual life. Through 

continuous improvement, Natvig (1982a) obtains at the distribution of reduction in 

remaining system lifetime and develops another IM for the case where components 

have proportional hazards without repair.  

 

Gandini (1990) provides criticality IM, which corresponds to the conditional 

probability that the system is in a state at time t  such that component i  is critical and 

has failed, given that the system has failed by the same time. It is expressed as given in 

Eq. (4.8) 
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4.2 Proposed IM for Non-repairable System 

 

Although BIM and its extensions have been widely used for non-repairable systems, 

they do not adequately and effectively distinguish the importance of components in 

some scenarios. For example, in parallel configuration, some of the IMs rank all the 

components equally important in terms of their impact on the overall reliability of the 

system, such as Fussell-Vesely IM and criticality IM. This is a shortcoming of the 

measures since in parallel configuration, the most reliable component has the most 

impact on the system reliability. Furthermore, other IMs such as BIM can overcome the 

sensitivity of the parallel configuration, however, BIM fails to distinguish the 

importance when the components have the same failure rates but may have other 

information relevant to their importance. Therefore, in order to consider the importance 

of components in the system before applying current IMs, we assign additional weights 

to components regarding their importance, availability, and integrity of data, specific 

system structure and other special features.  

 

Specifically, we apply the weighted IM by incorporating the weight of component i  

in the thi   IM for non-repairable systems. For illustration, we modify the BIM and 

incorporate the weights of the components as shown in Eq. (4.9)  
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  (4.9) 

 

where iw  is the weight of component i . In order to show the effectiveness of 

weighted IM, we compare the results of non-weighted and weighted BIM for non-

repairable cyber network in Chapter 5.  

 

4.3 IMs for Repairable Systems 

 

As presented above, the resilience of repairable systems depends on its ability to 

recover after the hazard occurrence. This requires methodologies that recover system 

performance to the desired level in a relatively short time. Identifying the repair 

priorities of the system’s components becomes necessary. This can be achieved by 

estimating IMs of the system’s components and their impact on the system’s recovery 

level.  

 

Unlike non-repairable systems, IM of components in repairable systems needs to 

consider components’ repair and system availability. Natvig (1985) extends Eq. (4.7) to 

Eq. (4.10) and shows that the thi  component’s importance is determined by the 

expected increase in system lifetime if the thi  component is repaired to have the same 

distribution of residual life as original (  iE U ). 
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Natvig and Gåsemyr (2009) extend Barlow–Proschan IM and the Natvig IM to 

stationary states in repairable systems by introducing dual term. Natvig et al. (2009) 

apply the extended version of Natvig IM to repairable systems, showing that a 

component is important if both by failing it strongly reduces the expected system 

uptime and by repairing it strongly reduces the expected system downtime. Natvig 

(2011) and Natvig et al. (2011) generalize previous results to multistate coherent 

systems. 

 

In addition to Eq. (4.10), there exists other IMs for repairable components and systems. 

Hajian-Hoseinabadi and Golshan (2012) investigate component’s IM in terms of the 

effects of component’s repair on system availability improvement. Similarly, Barabady 

and Kumar (2007) determine the component’s IM as the partial derivative of the system 

availability with respect to the component’s availability, failure rate, and repair rate. 

Der Kiureghian et al. (2007) identify system’s importance of components by providing 

closed-form expressions for the change rate of the probabilistic system performance 

with respect to the mean failure rate and mean repair of the component. Cassady et al. 

(2004) use a set of IMs to show that focusing on reducing the occurrence of system 

failures provides greater benefit than increasing the repair rate. Probabilistically, 

Miman and Pohl (2006) provide a variance importance measure, where the 
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component’s criticality is dependent on the improvement in the system availability 

estimated variance due to the reduction of component’s availability estimated variance. 

More studies on IMs regarding repairable systems are presented in Barabady (2005), 

Zheng et al. (2015), Gravette and Barker (2015), and Qarahasanlou et al. (2017). 

 

In MSMC, the generalization of IMs for systems with multi-state components is 

investigated by El-Neweihi et al. (1978) to analyze the relationships between multi-

state coherent system’s reliability behavior and multi-state component’s performance 

under deterministic and stochastic scenarios. Barlow and Wu (1978) obtain the IM for 

coherent multi-state systems, where the criticality of component i  to the system at 

state j  is probabilistically measured as the likelihood that when component i  in 

state j , the system is in state j  and when component i  is not in state j , the 

system is not in state j . Levitin et al. (2003) study the generalized IMs for multi-state 

components based on the restriction that component’s performance is only reachable to 

certain states. 

 

In particular, Griffith (1980) proposes Griffith Importance Measure (GIM), which 

formalizes the concept of system performance through expected utility and studies the 

effect of component improvement on system performance by introducing the reliability 

importance vector for each system component. Through this concept, a generalization 

of the binary BIM is extended to the multi-state case. It is expressed as given in Eq. 

(4.11) 
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             (4.11) 

 

where j   is the system performance at thj   level;   iP j m   and 

   1
i

P j m    are respectively the probability that the system is in state j  when 

the thi  component is in state m  and state 1m . Therefore, GIM can be interpreted 

as the decrement of the system performance when a component i  deteriorates from 

m  state to 1m   state, which can be regarded as the importance of component i  in 

state m . Later Wu and Chan (2003) propose a new utility importance for a certain 

component state in multi-state systems to measure which component affects it the most, 

or which state of a certain component contributes the most to the system’s reliability. 

Liu et al. (2016b) introduce the generalized GIM (GGIM) which considers the time 

accumulation impact on the changing of system performance by introducing an 

additional parameter, transition probability. It is expressed as given in Eq. (4.12) 
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m j
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               (4.12) 

 

where ( )iP m   is the probability of component i   is in state m  ; ( | )iP l m   is the 

transition probability of component i  from state m  to state l  (the state space of 

component is {0,..., ,..., ,... }m l M  , here 0 means component functions is the ideal 

functioning state and M   means component failed; assume that system and the 

component can only transit from state l   to a better state m   in the maintenance 

process;   iP j m   and   iP j l   are respectively the probability that system is 
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in state j  when the thi  component is in state m  and state l . Therefore, GGIM can 

be interpreted as the incremental improvement of the system performance caused by 

repairing component i . 

 

4.4 Proposed IM for Repairable System 

 

As stated earlier in section 3.3, the most common and important reliability metrics for 

repairable systems is availability since it includes both failure rates and repair rates of 

the systems, and is defined as the probability that the system is operating properly (or 

available for use) when it is requested. Therefore, similar to the proposed weighted IM 

for non-repairable systems, we propose a novel weighted IM for repairable systems by 

applying availability to the components and systems. It is expressed as given in Eq. 

(4.13) 

 

       ( ) 1 , 0 ,i i i iI t w A a t A a t     (4.13) 

 

where ( )ia t   is the unavailability function of the component i  ; ( ( ))A a t   is the 

unavailability function of the system;   1 ,iA a t  is the unavailability of the system 

when component i  is not working and   0 ,iA a t  is the unavailability of the system 

when component i   is working (assuming that components are independent and 

binary-state, here 1i  means 1ia   and 0i  means 0ia  ).  

4.5 Summary and Conclusions 
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IM is of great benefit not only for the designer's insight into a system but also for system 

maintenance. In this chapter, we present an overview of the quantifications of IM for 

non-repairable systems and repairable systems. In non-repairable systems, BIM and its 

extended IMs are studied and widely applied. However, some of these IMs do not 

adequately and effectively distinguish the importance of components in some scenarios. 

For example, in parallel configuration, some of IMs rank all the components equally in 

terms of their impact on the overall reliability of the system, such as Fussell-Vesely IM 

and criticality IM. Furthermore, although other IMs such as BIM can overcome the 

sensitivity to the parallel configuration, once the components contain different 

importance of the content (data) but same failure rates, BIM also fails to distinguish 

them. Therefore, in order to consider the importance of components in the system 

before applying current IMs, we assign additional weights to components regarding 

their importance, availability, and integrity of data, specific system structure, and 

special features. Unlike non-repairable systems, IMs of components for repairable 

systems need to consider components’ repair ability and system availability. We 

propose a weighted IM for repairable systems which provides more realistic ranking of 

the components’ importance. 
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CHAPTER 5 

RESILIENCE AND IM APPLICATION IN CYBER NETWORK 

 

In chapters 3 and 4, we present a variety of quantifications of the resilience and IM, 

followed by our proposed quantification methods for non-repairable and repairable 

systems. With the rapid development of technology, cyber is becoming important to 

our daily life and the national security. Cyber resilience is attracting increasing interests 

and is becoming a primary cyber network objective. In this chapter, we apply our 

proposed methods of resilience quantification and IM in a cyber network in order to 

demonstrate their effectiveness and adequacy. We begin this chapter with cyber 

resilience, which consists of cyber robustness and cyber recovery in section 5.1.1 and 

5.1.2, respectively. We then apply the proposed resilience and IM methods for non-

repairable small cyber network including cascading failures in section 5.2. We also 

discuss the sources of compromise of cyber networks in order to estimate importance 

weights for each node in the cyber network. In section 5.3, we demonstrate our 

proposed resilience quantification and IM methods for repairable cyber networks 

including cascading failures. 

 

5.1 Cyber Resilience 

 

Cyber resilience is attracting increasing interests and is becoming a primary system 

objective because it is unrealistic to completely defend against cyber attacks; instead, 
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it is more realistic to ensure network operation even in a degraded or contested 

environment (Goldman et al. (2011)). Specifically, cyber resilience can be viewed and 

understood from two aspects: cyber robustness (the ability that a network can withstand 

and minimize the consequence of a cyber attack) and cyber recovery (the ability that a 

network can quickly recover from the disruptive state). In the following, we discuss 

cyber resilience in terms of its robustness and recovery ability, during and after the 

cyber attack.  

 

5.1.1 Cyber Robustness 

 

The ability that a network system detects, defends and absorbs the impact of the cyber 

attack is an indicator of system’s robustness. Cyber attack detection has been defined 

as “the problem of identifying individuals who are using a computer system without 

authorization (crackers) and those who have legitimate access to the system but are 

abusing their privileges (insider threat)” (Singh and Silakari (2009)). Modern cyber 

attack detection systems monitor either host computers or network links to assess cyber 

attack data (Karthikeyan and Indra (2010)). Host intrusion detection refers to the class 

of intrusion detection systems that reside on and monitor an individual host machine. 

In addition, a cyber attack detection system monitors the packets that traverse a given 

network link. Currently, a cyber attack detection system has three basic approaches to 

identify cyber attacks: misuse detection, anomaly detection and specification based 

detection (Singh and Silakari (2009)). These detection methods are applied in cyber-
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physical systems (CPS) such as large-scale industrial applications, critical 

infrastructures, industrial automation systems (Kim and Kumar (2012) and Ahmed et 

al. (2013)). Corradini and Cristofaro (2017) propose a design technique to address the 

problem of detection and reconstruction of a linear cyber-physical system after the 

cyber attacks. Chhetri et al. (2016) present a novel attack detection method to detect 

zero-day kinetic cyber attacks on additive manufacturing, by identifying anomalous 

analog emissions which arise as an outcome of the attack. Bezemskij et al. (2016) 

develop a detection mechanism, which monitors real-time data from a large number of 

sources onboard a vehicle, including its sensors, networks and processing. Pasqualetti 

et al. (2013) propose a mathematical framework for cyber-physical systems under 

attacks, monitor and characterize fundamental monitoring limitations from system-

theoretic and graph-theoretic perspectives, and design centralized and distributed attack 

detection and identification monitors. Sun et al. (2016) detect coordinated cyber attacks 

on power systems by identifying the relations among detected events. Canepa and 

Claudel (2013) consider the problem of detecting spoofing cyber attacks in probe-based 

traffic flow information systems as mixed integer linear feasibility problem, the 

proposed framework can be used to detect spoofing attacks in real-time, or to evaluate 

the worst-case effects of an attack offline. 

 

Cyber defense uses digital tools to defend computer systems and networks from cyber 

attacks. There are two common ways to defend against cyber attacks: active cyber 

defense (ACD) and passive cyber defense (PCD). 
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ACD can be considered as an approach to achieve cybersecurity upon the deployment 

of measures to detect, analyze, identify and mitigate threats as well as the malicious 

actors (Dewar (2017)). ACD not only identifies and stops cyber incidents as they are 

occurring but also takes offensive measures to minimize attackers’ capabilities. 

Numerous techniques and technical measures can be categorized as ACD. Dewar 

(2017) compares four most common techniques of ACD: white worms; hack-back; 

address hopping and honeypots. White worms are computer viruses deliberately 

deployed by a defender in its own network to identify, analyze, locate, or destroy 

“black” software (malware) which is deployed by attackers (Lu et al. (2013)). Hack-

back analyzes an intrusion to identify perpetrators and technology sources responsible 

for a cyber attack and hacking them in return to neutralize their efforts (Heckman et al. 

(2013)). Address hopping is a defensive technique adapted from the practice of 

regularly changing radio frequencies in military communications. Honeypots are 

decoys deliberately placed in a defender’s network. These decoys simulate genuine 

software or data in order to provide artificial targets (Spitzner (2003) and Repik (2008)).  

 

PCD, however, is used as a “catch-all” to describe any form of cyber defense without 

an offensive node, including the installation of firewalls, information-sharing and the 

development of resilient networks. PCD aims to promote good workplace practices 

such as secure passwords and encryption, partnerships between actors and agencies and 

greater situational awareness. Two specific approaches: Fortified Cyber Defense (FCD) 

and Resilient Cyber Defense (RCD), are defined by Farwell and Rohozinski (2012). 
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FCD includes firewalls and antivirus software to set up defensive digital perimeters 

around key assets or potential targets (Dewar (2014)). With the development of cyber 

attacks, FCD requires constant maintenance and updating to ensure it can withstand the 

up-to-date attacks. RCD includes restorative resilience and adaptive resilience to ensure 

the performance and serviceability of critical infrastructures, which rely on digital 

networks to continue to function in the event of a cyber attack. Restorative resilience 

means halting a malicious intrusion and repairing its effects so that the system returns 

to the state before the incident took place; adaptive resilience aims to ensure that the 

victim system can change its status to reflect the new situation following an intrusion 

(Dewar (2017)). RCD not only anticipates the occurrence of cyber attacks and ensures 

the functional continuity of systems, but also identifies system potential weaknesses to 

guide maintenance during the design stage. Specifically, one of the simplest and most 

cost-effective methods is to take regular backups or copies of data and software so that 

systems can be restored in the event of an incident with minimal loss of data. Similarly, 

installation of redundant systems to set up a secondary network improves cyber 

resilience since once the primary network is attacked, the secondary system can be 

brought into operation. 

 

5.1.2 Cyber Recovery 

 

When systems fail to defend the cyber attacks, recovery becomes a critical task. RCD 

prevents the system from being further damaged and repairs the attacked part. A threat 
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model is adopted for cyber resiliency assessment by Bodeau and Graubart (2011). 

Brand et al. (2011) conceptually present a threat to cyber resilience which can be used 

in a variety of scenarios. Vugrin and Turgeon (2014) describe a hybrid infrastructure 

resilience assessment approach that combines qualitative analysis techniques with 

performance-based metrics. Choudhury et al. (2015) recommend general actions for 

cyber resilience improvements. Moyer et al. (2016) analyze data provenance, which is 

a critical technology in building resilient systems that allow systems to recover from 

attackers that manage to overcome the “hard-shell” defenses. Recovery methods in 

different domains vary. Nationally, Linkov et al. (2013) develop and organize effective 

resilience metrics for cyber systems, which link national policy goals to specific system 

measures, e.g., resource allocation decisions can be translated into actionable 

interventions and investments. In the commercial field, Khan and Estay (2015) identify 

whether current models can incorporate the dimension of cyber-risk and cyber 

resilience in supply chain and create a research agenda for supply chain cyber 

resilience. Similarly, Urciuoli (2015) provides strategies to improve the cyber resilience 

of supply chains. Jensen (2015) examines the specific characteristics of the maritime 

industry in relation to cyber resilience. Tran et al. (2016) present the implementation of 

dynamic Cyber Resilience Recovery Model (CRRM) to combat a zero-day outbreak 

within a closed network and minimize disruptions of cyber attacks to business 

operations. In infrastructure systems, Choudhury et al. (2015) present a unifying graph-

based model to represent the infrastructure, behavior and missions of an enterprise to 

simulate resilient cyber systems. Arghandeh et al. (2016) not only generalize cyber-
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physical resilience concepts to power systems vocabulary but also propose a new way 

of thinking about grid operation with unexpected extreme disturbances, hazards and 

leveraging distributed energy resources. Khalid and Peng (2016) propose a Bayesian 

algorithm to enhance the resilience of wide area measurement system (WAMS) 

applications against cyber attacks.  

 

Specifically, suggestions on improving the resilience of industrial control systems 

(Chaves et al. (2017)), critical infrastructures (Bologna et al. (2015)), power grid 

systems (Ashok et al. (2017)) and communication networks (Sterbenz et al. (2010)) are 

provided. More studies on design and improvement of system resilience under cyber 

attack are discussed in Moyer et al. (2016), Musman (2016), Choras et al. (2015), Smith 

et al. (2011), Krotofil and Cárdenas (2013), Collier and Linkov (2014), Carvalho et al. 

(2013) and Liu et al. (2016c). 

 

5.2 Proposed Resilience and IM Application in Non-repairable Cyber Network 

 

Cyber networks are a common place in many areas such as telecommunication 

networks, power grids, transportation systems, healthcare delivery systems, 

information technology, financial systems and supply chain systems. The failure 

process may cascade through the nodes of the system like a ripple on a pond and 

continues until substantially all of the nodes in the system are compromised and the 

system interrupted becomes functionally disconnected from the source of its load. The 
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increasing reliance on cyber infrastructure has promoted cyber resilience to the 

forefront of consideration by network designers and users. 

 

For example, an increasing demand for reliable energy and numerous technological 

advancements have motivated the development of the smart electric grid and 

increasingly conveyed to power systems considerable economic benefits and reliability 

improvements (Mamo et al. (2009)). Smart grid initiatives are becoming achievable 

through the use of information infrastructures that feature peer-to-peer communication, 

monitoring, protection and automated control (McGranaghan et al. (2008)). Smart grid 

expands the current capabilities of the grid’s generation, transmission, and distribution 

systems to provide an infrastructure capable of handling future requirements for 

distributed generation, renewable energy sources, electric vehicles, and the demand-

side management of electricity (Sridhar et al. (2012)). Moreover, from the economic 

viewpoint, the smart grid technologies enable the grid to operate with lower marginal 

limits and utilize the resources more efficiently because more precise and trustful data 

on the state of the power system is achievable (Kirschen and Bouffard (2009)). Most 

significantly, from the reliability perspective is the capability of self-healing, which can 

recognize and isolate the faulted domain, reenergize the nonfaulty part automatically, 

and reduce the outage time (Tram (2008)). Figure 5.1 presents an overview of a typical 

smart grid, which includes power plants, power transmission grid, power distribution 

grid, control center, and power consumers (Li et al. (2012)). 
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Figure 5.1 An overall view of the typical smart grid (Li et al. (2012)). 

 

However, an increasing and sophisticated implementation of cyber units in the smart 

grid is introducing a higher risk of failure. For example, a cyber attack caused a severe 

blackout in Ukraine through a computer malware called BlackEnergy, as the result, 

80,000 customers were deprived of power for more than six hours (Case (2016)). Both 

manmade hazards such as the Ukraine outage and natural hazards mentioned in chapter 

1 and Chapter 2 lead to major failures of the smart grid, which presents unique 

challenges in the modeling of more resilient cyber networks. Moreover, failures of 

cyber units are more difficult to trace than those in electrical power units. Certain types 

of failures in cyber units are hidden and appear only when a mal-operation occurs in 

the cyber power system (Falahati et al. (2012)). Therefore, new requirements are 

imposed on the design of such networks. For example, the U.S. Department of Energy 

has identified seven properties required for the smart grid to meet future demands, 

which include attack resistance, self-healing, consumer motivation, power quality, 
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generation and storage accommodation, enabling markets, and asset optimization 

(National Energy Technology Laboratory (2007)). Moreover, Gupta et al. (2014) 

propose a probabilistic framework of smart grid power network with statistical decision 

theory to evaluate system performance in steady state as well as under dynamical case 

and identify the probable critical links which can cause cascading failure. Next 

generation smart grid demands real-time multiple contingency analysis with self-

healing and robust technology, which leads to various open research areas in the field 

of smart grid resilience of cascade failure.  

 

The proposed quantifications can effectively assess the resilience of a smart grid 

including cascading failures and help improve its resilience. They are applicable to 

other networks. In this chapter, we present a simplified smart grid network shown in 

Figure 5.2 (simplified version of Figure 5.1) to demonstrate the proposed 

quantifications. We assume that there are three subnetworks (a), (b) and (c) within this 

smart grid network, which has a total of thirteen nodes experiencing dependent failures, 

such as power plants, control center, power distribution grid, transmission grid and 

consumers. They have binary states (working or failed), and the power flow (or 

information flow) of each subnetwork is shown by the arrows in Figure 5.2. In the 

following section, we use “ si  ” to represent the subnetwork i   in smart grid cyber 

network.  
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Figure 5.2 Three subnetworks in simplified smart grid cyber network. 

 

5.2.1 Nodes’ Weights in Cyber Network 

 

Cyber networks achieve certain specified functions by software and hardware working 

together through a specific logic or structure, which leads to the diversity of sources of 

compromise of the cyber network and the differences of compromise rates. In general, 

the sources of compromise of cyber network are (1) network structure; (2) hardware of 

the nodes and links in the network; (3) operating system (OS) of the network nodes; (4) 

the application being used in the node and; (5) data integrity stored at the nodes. 

Network structure usually shows the configuration and links between the network 

nodes; hardware is the physical unit such as computers and accessories as well as the 

physical links between nodes; OS is the operating system of the hardware associated 

with the node such as Microsoft Windows, macOS and Linux; the application (app) is 

a computer program designed to perform a group of coordinated functions, tasks, or 

activities associated with node; data refers to the information stored by the user or 

devices. 

 



  106 
 

 
 

Therefore, for a more comprehensive consideration of the importance of nodes, we 

assign weights to the nodes in Eq. (5.1) from two sources: (a) network structure which 

is a function of the number of links associated with the node and (b) the integrity, 

availability and importance of the data in the nodes. The total weight is 

 

 A D w w w     (5.1) 

 

where w is the weight vector of the nodes , which consists of 1( ,..., )nw w , iw  is the 

final weight of node i  , n  is the total number of nodes; Aw   (where A   means 

adjacency matrix of the cyber network) is the vector normalizing the number of links 

to each node, which consists of 1( ,..., )A Anw w , 
1

1


 n

Aii
w . It is based on the adjacency 

matrix ( A ) of the network. For example, the adjacency matrix saA  of the subnetwork 

(a) is obtained in Eq. (5.2) 

 

 

0 1 1 1 0 0

1 0 0 0 1 0

0 0 0 1 0 1

0 0 1 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0

saA

 
 
 
 

  
 
 
  
 

  (5.2) 

 

Therefore, Aw   of subnetwork (a) can be calculated from saA   and normalized as 

given in Eq. (5.3) 
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3 2 2 2 1

0
10 10 10 10 10

sa
A

   
 

w   (5.3) 

 

Dw  is the weight vector corresponding to the data integrity and availability (obtained 

from the engineers’ experience), which consists of 1( ,..., )D Dnw w , 
1

1
n

Dii
w


 ; 

 

Similar to component failure rate, we assume hardware compromise rate of node i  is 

 Hi ; OS compromise rate of node i  is  OSi ; application compromise rate of node i  

is  Appi  . The overall compromise rate of node i   can be obtained from other three 

sources and may be expressed as given in Eq. (5.4) 

 

    i Hi OSi Appi        (5.4) 

 

5.2.2 Application of the Proposed Resilience Quantification and Assessment 

 

As stated earlier in section 3.2, we consider the reliability ( )R t   of non-repairable 

cyber network as the performance function ( )P t . The subnetworks of smart grid 

network and their nodes can be in either of two states, working or failed as denoted by 

1 or 0, respectively. The state of the subnetwork depends only on the state of its nodes. 

We use the tie-set approach to determine the reliability of the subnetwork. For example, 

the minimum tie-sets of the subnetwork (a) are 
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1 1 2 5 6saT      

2 1 4 6saT     

3 1 3 6saT     

 

Subnetwork (a) can be considered that there are three subnetworks 1
saT , 2

saT  and 3
saT  

in parallel and subnetwork (a) functions properly when no more than two of them fail. 

Therefore, there are six cases (failure sequences) may cause the failure of subnetwork 

(a): 

 

(i) 1 2 3
sa sa saT T T    

(ii) 1 3 2
sa sa saT T T    

(iii) 2 1 3
sa sa saT T T    

(iv) 2 3 1
sa sa saT T T    

(v) 3 1 2
sa sa saT T T    

(vi) 3 2 1
sa sa saT T T    

 

The overall reliability of subnetwork (a) can be obtained in Eq. (5.5). 

 

 

vi v vi iv v vi

i i i i i i

iii iv v vi

1 i i i

v vi

i i

(i ii iii iv v vi)

      =

        

        

sa sa

i i j i j k
sa sa sa sa sa sai i j i i j i k j

i j k l
sa sa sa sai j i k j l k

i j k l m
sa sa sa sa sak j l k m l

R R

R R R R R R

R R R R

R R R R R

        

      

    

     

 





     
   

 ii iii iv

1 i i

i ii iii iv v vi        

i j i

sa sa sa sa sa saR R R R R R

   



  

  (5.5) 
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where   is the OR Boolean. Since all failure sequences have same input node 1 and 

output node 6, we can simplify the three subnetworks based on minimum tie-sets of 

subnetwork (a) as shown in Figure 5.3. 

 

 

Figure 5.3 Simplified subnetwork (a). 

 

We further assume that the overall compromise rate of node i   ( 2,  3,  4,  5i  ) of 

subnetwork (a) depends on following 

 

1)  3i  when all subnetworks of subnetwork (a) are working properly; 

2)  2i  when two subnetworks of subnetwork (a) are working properly and 

3)  1i  when only one subnetwork of subnetwork (a) is working properly. 

 

Then we use “jdf” mentioned in section 2.4 to obtain the conditional reliability of this 

subnetwork (a). For case (i) (in addition to node 1 and node 6), let 1t  be the time of 

first failure and 1 1( )g t  be the density function for the first failure. The time of the 

second failure is 2t  and its dependent density function, 2 2 1( | )g t t , holds for 1 2t t . 

Then the third failure which causes the failure of subnetwork (a) occurs at time t  and 
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its dependent density function is 3 2( | )g t t  1 2( )t t t  . 

 

In other words, we can expressed each density function in Eqs. (5.6)-(5.8) 

 

 32 35 1( )
1 1 32 35( ) ( ) tg t e          (5.6) 

 

 24 2 1( )
2 2 1 24( | ) t tg t t e       (5.7) 

 

 13 2( )
3 2 13( | ) t tg t t e       (5.8) 

 

The pdf 1 2 ( ,  ,  )t t t  can be expressed in Eq. (5.9). 

 

 1 2 1 1 2 2 1 3 2 ( ,  ,  ) ( ) ( | ) ( | )t t t g t g t t g t t      (5.9) 

 

The marginal density function of the third failure, ( )f t , can be obtained in Eq. (5.10) 

 

 
1

1 10 2 2( ,  ,( )   )
t

t t tf t dt dt
 

     (5.10) 

 

The reliability of subnetwork (a) in case (i) is governed by the marginal density function 

( )f t , reliability of node 1 and reliability of node 6, which is obtained as given in Eq. 

(5.11) 
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 1 6 0
( ) ( ) ( ) (1 ( ) )

ti
sa sa saR t R t R t f d        (5.11) 

 

where 1
1( ) t

saR t e   is the reliability of node 1 and 1  is the overall compromise rate 

of node 1; 6
6 ( ) t

saR t e   is the reliability of node 6 and 6  is the overall compromise 

rate of node 6. 

 

Specifically, we assume that 1 0.05  , 6 0.07  , and the overall compromise rates 

of nodes (2, 3, 4, 5) in subnetwork (a) as shown in Table 5.1. 

 

Table 5.1 Overall compromise rates of the nodes (2, 3, 4, 5) in subnetwork (a). 

Node 2 3 4 5 

3i  0.0009 0.0007 0.0008 0.0005 

2i  0.0019 0.0017 0.0018 0.0015 

1i  0.0039 0.0037 0.0038 0.0035 

 

Using Eq. (5.11), the reliability of subnetwork (a) in case (i) can be obtained in Eq. 

(5.12). 

 

 
1

1

6i
1 1 2 2 1 3 2 2 100

0.1237 0.12

( ) (1 ( ) ( | ) ( | ) )

          = 0.5767 0.4233

 
ttt

sa

t t

t
R t e e g t g t t g t t d

e e

dt dt 








     



    (5.12) 

 

Similarly, we can apply above procedure to obtain the reliability of subsystems (a) in 
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other cases at a given time, then obtain the overall reliability of subsystems (a) by using 

Eq. (5.5). In order to illustrate the proposed resilience quantification, we compare the 

reliability and resilience of two subnetworks ((a) and (b)) with different nodes’ 

compromise rates. Specifically, we assume that the overall compromise rates of nodes 

in subnetwork (b) as shown in Table 5.2. 

 

Table 5.2 Overall compromise rate of the nodes in subnetwork (b). 

Node 7 8 

 bi  0.1 0.2 

 si  0.4 0.6 

 

where  bi   is the compromise rate of node i   when both nodes operate 

simultaneously; and  si   is the compromise rate of node i   when they operate 

singularly. Assuming that the hazard occurs at 10ht  , we obtain the reliability and 

resilience using Eq. (5.13) for the two subnetworks as shown in Figures 5.4 and 5.5 and 

Table 5.3.  

 

    ( ) ( 10)
( ) ( ) ( ) (10) ( )

2 2
d h d

d h d d
d d

t t t
t P t P t R R t

t t

 
       (5.13) 
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Figure 5.4 Reliability of the two subnetworks over time. 

 

 

Figure 5.5 Resilience of the two subnetworks over time. 
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Table 5.3 Resilience and reliability of the two subnetworks over time. 

Time Reliability (a) Resilience (a) Reliability (b) Resilience (b) 
0 1.0000  - 1.0000  - 
5 1.0000  - 1.0000  - 

10 1.0000  - 1.0000  - 
15 0.9903  0.3317  0.8028  0.3005  
20 0.8717  0.4679  0.7650  0.4412  
25 0.6385  0.4916  0.7606  0.5282  
30 0.4091  0.4697  0.7601  0.5867  
35 0.2423  0.4437  0.7600  0.6286  
40 0.1373  0.4265  0.7600  0.6600  
45 0.0760  0.4184  0.7600  0.6844  
50 0.0415  0.4166  0.7600  0.7040  

 

5.2.3 Applications of the Proposed IM in Subnetwork (a) 

 

As stated in section 4.2, we compare the results of non-weighted and weighted BIM in 

subnetwork (a) to show that the weighted IM is more effective. In cyber networks, we 

obtain the weight of data from the engineers’ experience and the weight of network 

structure from adjacency matrix. Therefore, referring to the weights derived from 

network structure in Eq. (5.3), we assume the final weights of the six nodes in 

subnetwork (a) in Eq. (5.14) as: 

 

 (0.4 0.25 0.3 0.4 0.2 0.45)saw   (5.14) 

 

BIM defines the importance of node i  is the difference of the unavailability of the 

system when component i  is not working and the unavailability of the system when 

component i  is working. Therefore, for weighted BIM, we apply Eq. (4.9) and Eq. 
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(5.14) to obtain the importance of each node in subnetwork (a). Similarly, we obtain the 

importance of each node by using BIM in Eq. (4.1). Considering the time period 

(10,100) , the variation trends of the importance values of each node compared by the 

two different importance measures are shown in Figure 5.6. We extract the following 

time points to illustrate the details as shown in Table 5.4 and Table 5.5. 

 

 

Figure 5.6 Importance of nodes by weighted BIM and BIM in subnetwork (a) over 

time. 

 

Table 5.4 Importance of nodes by weighted BIM in subnetwork (a) over time. 

Time 1 2 3 4 5 6 
10 0.400000  0.000000  0.000000  0.000000  0.000000  0.450000  
20 0.574881  0.000169  0.108011  0.144015  0.000135  0.789931  
30 0.444868  0.000368  0.070782  0.094376  0.000294  0.746623  
40 0.246196  0.000227  0.025030  0.033374  0.000182  0.504673  
50 0.122750  0.000098  0.007542  0.010056  0.000079  0.307333  
60 0.059360  0.000037  0.002169  0.002892  0.000030  0.181526  
70 0.028451  0.000013  0.000615  0.000819  0.000011  0.106269  
80 0.013602  0.000005  0.000173  0.000231  0.000004  0.062051  
90 0.006497  0.000002  0.000049  0.000065  0.000001  0.036204  
100 0.003103  0.000001  0.000014  0.000018  0.000000  0.021118  
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Table 5.5 Importance of nodes by BIM in subnetwork (a) over time. 

Time 1 2 3 4 5 6 
10 1.000000  0.000000  0.000000  0.000000  0.000000  1.000000 
20 1.437201  0.000675  0.360037  0.360037  0.000675  1.755402 
30 1.112170  0.001471  0.235939  0.235939  0.001471  1.659163 
40 0.615490  0.000908  0.083434  0.083434  0.000908  1.121495 
50 0.306875  0.000393  0.025140  0.025140  0.000393  0.682963 
60 0.148399  0.000149  0.007230  0.007230  0.000149  0.403390 
70 0.071128  0.000053  0.002049  0.002049  0.000053  0.236154 
80 0.034004  0.000018  0.000577  0.000577  0.000018  0.137892 
90 0.016243  0.000006  0.000162  0.000162  0.000006  0.080453 
100 0.007757  0.000002  0.000045  0.000045  0.000002  0.046929 

 

5.3 Proposed Resilience and IM for Repairable Cyber Network 

 

Without loss of generality, we may consider repairable cyber network instantaneous 

availability ( )A t  as the performance function ( )P t . As stated earlier in section 3.3, 

the system availability is a three-stages piece-wise function of time in repairable system. 

In stage (1), we assume that repairable smart grid cyber network maintains the steady-

state availability 0( ) 1A t    until the occurrence of hazard at time ht  ; In stage (2), 

assuming that the all nodes experience same dependent failures as in section 5.2; Stage 

(3) starts when the availabilities of two subnetworks deteriorate to the unacceptable 

levels. Assuming the repair-time distribution of each node follows a geometric 

Brownian motion and two subnetworks have “mean repair rate” i   and “mean 

diffusion coefficients” i  of subnetwork i  as shown in Table 5.6. 
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Table 5.6 Mean repair rates and mean diffusion coefficients of two subnetworks. 

Subnetwork (a) (b) 

i  0.005 0.007 

i  0.01 0.02 

 

The resilience of the subnetwork is obtained using Eq. (5.15). Figure 5.7, Figure 5.8 

and Table 5.7 show the availability and resilience of two subnetworks when the hazard 

occurs at time 10ht   until deteriorating their availabilities to the unacceptable level 

0.63 and 0.76 at time 25dt  , then repair starts. The resilience is assessed at different 

values of rt .  

 

 
( ) ( ) ( ) (25) (25 10)

( )
( ) ( ) (10) (25) ( 10)

r d d h r
r

h d r h r

P t P t t t A t A
t

P t P t t t A A t

   
    

   
  (5.15) 

 

 

Figure 5.7 Availability of the two subnetworks over time. 
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Figure 5.8 Resilience of the two subnetworks over time. 

 

Table 5.7 Availability and resilience of the two subnetworks over time. 

Time Availability (a) Resilience (a) Availability (b) Resilience (b) 
0 1.00000 - 1.00000 - 
25 0.63854 - 0.76062 - 
30 0.65412 0.03232 0.78660 0.08139 
35 0.66909 0.05071 0.81464 0.13539 
40 0.69618 0.07973 0.85699 0.20128 
45 0.69994 0.07280 0.88542 0.22342 
50 0.71341 0.07767 0.89404 0.20900 
55 0.72999 0.08434 0.88292 0.17030 
60 0.73762 0.08223 0.89065 0.16295 
65 0.76028 0.09185 0.96787 0.23612 
70 0.78648 0.10232 0.98287 0.23211 
75 0.79149 0.09765 0.99787 0.22872 

 

5.3.1 Application of the Proposed IM in Subnetwork (a) 

 

Similar to section 5.2.3, we apply Eq. (4.13) to obtain the importance of each node in 

repairable smart grid cyber network. The importance of the six nodes in subnetwork (a) 
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from 10t   to 75t   are plotted in Figure 5.9 and presented in Table 5.8. 

 

 

Figure 5.9 Importance of the nodes in subnetwork (a) over time. 

 

Table 5.8 Importance of the nodes in subnetwork (a) over time. 

Time 1 2 3 4 5 6 
0 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  

10 0.400000  0.000000  0.000000  0.000000  0.000000  0.450000  
15 0.508641  0.000018  0.058169  0.077559  0.000014  0.632402  
20 0.574881  0.000169  0.108011  0.144015  0.000135  0.789931  
25 0.540716  0.000332  0.100580  0.134107  0.000266  0.821126  
30 0.533857  0.059838  0.030229  0.041109  0.047870  0.811614  
35 0.529720  0.102895  0.023023  0.026349  0.082316  0.779497  
40 0.522041  0.136367  0.056279  0.069306  0.109093  0.784610  
45 0.523495  0.153810  0.075325  0.095616  0.123048  0.793224  
50 0.525715  0.157110  0.089145  0.116801  0.125688  0.709168  
55 0.509196  0.168232  0.098138  0.133932  0.134585  0.711907  
60 0.510947  0.173509  0.103965  0.148847  0.138807  0.778491  
65 0.513981  0.178155  0.112268  0.153979  0.142524  0.759140  
70 0.504038  0.188416  0.121506  0.142995  0.150733  0.683279  
75 0.466947  0.191066  0.128325  0.159930  0.152853  0.636277  

 

5.4 Summary and Conclusions 
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Cyber networks are common place in many areas such as telecommunication networks, 

power grids, transportation systems, healthcare delivery systems, information 

technology, financial systems and supply chain systems. The failures of such systems 

may result in cascading effects and significant damages and interruptions of its services. 

The increasing reliance on cyber infrastructure has promoted cyber resilience to the 

forefront of consideration by network designers and users. In this chapter, we present a 

detailed overview of the cyber resilience, specifically, cyber robustness and cyber 

recovery. We then illustrate the assessment of the resilience and the use of proposed 

importance measures. Moreover, due to the different sources of compromising to cyber 

networks, we assign additional weights to the nodes for each possible compromised 

source in order to determine the importance of the nodes. In non-repairable smart grid 

cyber network, we consider reliability ( )R t  as the performance function ( )P t  and 

obtain the resilience of the network; by comparing the non-weighted BIM and weighted 

BIM, we show that the latter can effectively distinguish the importance of nodes with 

time. For repairable smart grid cyber network, we consider availability ( )A t  as the 

performance function ( )P t . By assuming system availability is a three-stages piece-

wise function of time, the change of availability of the network can be obtained 

separately using different methods, where stage (1) provides steady-state availability; 

stage (2) shows decreasing availability by inducing dependent failures among all nodes; 

stage (3) increases the availability by considering the recovery as geometric Brownian 

motion repair process. Finally, the importance of each node in the network is obtained 

during each stage. 
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CHAPTER 6 

SUMMARY AND FUTURE RESEARCH 

 

6.1 Summary 

 

The continuous improvements in systems engineering and the unprecedented rate of 

technological advances, systems have become larger and more complex. During the 

recent decades, there has been significant development of complex engineered systems 

such as telecommunication networks, power grids, transportation systems, healthcare 

delivery systems, information technology, financial systems and supply chain systems. 

Such systems are intrinsically difficult to be modeled not only due to its substantial 

number of subsystems and components but also the dependencies, relationships, or 

interactions among them under given working environment. Therefore, failures of such 

systems may result in significant cascading effects and more significant damages and 

interruptions of its services with longer times. Full or partial restorations of its functions 

under limited resources and time constraints is a challenging engineering task, which 

has given rise to the assessment of such systems’ resilience.  

 

In chapter 2, we present the overall system’s failure rate in an additive form by 

integrating the occurrence frequency and severity of the different types of hazards; 

where all the failure rates are assumed to be constant. We then review current studies 

on natural and manmade hazard prediction and assessment, as well as the studies on 
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system performance modeling, improvement and other related topics. Moreover, the 

natural and manmade hazard induce severe damage under some circumstance, and the 

traditional reliability (availability) metrics are limited in measuring the severity of 

system damage upon failure and system ability to recover (the rate of repair) to a 

specific performance level. Therefore, we extend the system reliability metrics to 

system resilience. We introduce the basic concept of resilience as a mechanical property 

of materials and review current literature on resilience definitions. Since the resilience 

of repairable systems is a function of its recovery ability after the hazard occurrence, 

methodologies are required to recover the system to the desired performance level in a 

relatively short time. Specifically, only partial recovery can be achieved at a time when 

the repair resources and time are limited, and identifying the repair priorities of the 

system’s components becomes critical. Furthermore, the optimal repair sequence of the 

components can be achieved by estimating importance measure (IM) of the components 

in terms of their impact on the system’s recovery level. We then present a thorough 

review of literature of the importance measures. Specifically, importance measures are 

developed from binary systems to multi-state systems, from discrete-state systems to 

continuous-state systems and from non-repairable systems to repairable systems. 

However, the applications of importance measures are limited to specific scenarios. 

Most of large complex systems include cascading failures may lead to the failure of the 

entire system due to a minor failure. Finally, we discuss the cascading failures in 

different type of systems and corresponding methods of their mitigation or avoidance 

in order to improve the system’s resilience. 
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In chapter 3, we provide a detailed literature review of resilience quantifications and 

conclude that most of the current quantifications of resilience either fails to accurately 

assess system recovery ability or system design robustness. Therefore, in non-

repairable systems and repairable systems, we separately recommend a general 

quantification of system resilience, taking the system robustness and system recovery 

ability into consideration. Two proposed resilience quantifications are applicable when 

the system is subjected to multi hazard, but acceptance and unification of the resilience 

definition and quantification across disciplines require interdisciplinary interactions 

and research collaborations. There are many system performance indicators, reliability 

and availability are only two of them. 

 

In chapter 4, we present a detailed overview of the quantifications of IM for non-

repairable systems and repairable systems. In non-repairable systems, BIM and its 

extended IMs have been studied and widely applied. However, some of these IMs still 

do not adequately and effectively distinguish the importance of components in some 

scenarios. Therefore, in order to more comprehensively consider the importance of 

components in the system before applying the current IMs, we assign additional weights 

to components regarding their importance, availability, and integrity of data, specific 

system structure, and special scenario. Unlike non-repairable systems, IMs of 

components for repairable systems need to consider components’ repair ability and 

system availability. To adapt to the more general situation, the weighted IM applying 

availability to the components and systems for repairable systems is proposed.  
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In chapter 5, we describe the importance of the cyber networks and review current 

studies on cyber resilience, specifically, cyber robustness and cyber recovery. In 

addition, we take a smart grid cyber network as an example of large and complex 

systems to validate the effectiveness of proposed resilience quantifications and IMs. 

Furthermore, we assign additional weights to the nodes regarding network structure and 

data integrity stored at the nodes, to help be more comprehensive and effective in 

determining the importance of nodes. The results show that the proposed methods are 

valid in non-repairable and repairable smart grid cyber network, which can help 

improve the resilience of the systems. 

 

6.2 Future Research 

 

The proposed methods have some limitations which require further investigation. In 

chapter 2, we propose an additive form of the multi hazard by taking the occurrence 

frequency and severity of all potential types of hazards into consideration to obtain the 

overall system’s failure rate; where all the failure rates are assumed to be constant. 

However, under most circumstances, system normal failure rate is time-dependent 

(such as Weibull and Lognormal). Likewise, the factors that affect the natural and 

manmade hazards vary dynamically and randomly and the proposed system failure rate 

needs to be modified accordingly. 

 

Furthermore, the proposed resilience quantifications are limited in assessing the single 
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system (subsystem). In general, we can obtain the reliability of the overall system by 

multiplying the reliability of its subsystems. We intend to seek similar conclusions for 

system resilience. Moreover, system and its subsystems or components usually have 

multiple degradation states, which are necessary to be investigated. 

 

In chapter 4, the proposed IMs to determine the importance of nodes are limited in 

determining the importance of the nodes in the minimal tie-sets of the system. For 

example, we can obtain the minimum tie-sets of the following network as shown in 

Figure 6: 

 

1 1 3 5 9T      

2 1 3 7 8 9T       

3 1 4 7 8 9T       

 

By applying the proposed IM to this network, we cannot distinguish the importance of 

node 2 and node 6 among others. The importance values of node 2 and node 6 are zero 

at all the times since they are not in the minimal tie-sets. However, node 2 and node 6 

also have a certain degree of importance to this network in real life, which causes some 

obstacles to comprehensively assess and rank the nodes. In the future work, we 

investigate these shortcomings and modify and optimize these measures.  
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Figure 6 Network example. 
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