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Clinical trials that compare one or more experimental treatments to a control treatment in 

which event incidence (i.e. incidence of disease or an adverse event) is rare often assume 

that comparative Poisson methodology is appropriate for modeling the number of events 

that occur in each treatment group. Clinical studies of multiple Poisson parameters may 

be conducted under one of two designs: (A) wait until a total number of events occur 

among all treatment groups before stopping the study, or (B) wait until a specified 

amount of time has passed before terminating the study. Exact tests under these 

approaches are based on the multinomial distribution. 

In this dissertation, we consider an alternative approach termed “Design C”, 

which is to wait until the control group accumulates a pre-specified number of events 

before stopping the study. The joint distribution of the number of events in the 

experimental treatment groups at the time of study stoppage, conditional on the number 

of events observed in the control group, follows a negative multinomial distribution 

(NMD). The minimum (respectively, maximum) number of events among the 

experimental treatment arms will be shown to be an appropriate test statistic for 
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determining whether one or more of the experimental treatments is superior (respectively, 

inferior) to the control at a given one-sided overall Type I error; as such, we first 

determine the distribution of the order statistics of the NMD. We subsequently provide 

tables of trial design parameters for select values of one-sided overall Type I error and 

pointwise power and assuming equal allocation of study subjects to the treatment groups. 

These studies can be improved by applying curtailed stoppage rules; that is, follow-up of 

the treatment arms can be discontinued prior to the control group reaching its planned 

number of events once the ultimate decision is known for each arm. Curtailment has 

substantial practical implications as reduced follow-up implies reduced study costs and 

more rapid knowledge of the trial results. We provide simple algorithms to estimate the 

expected amount of subject follow up (presented in terms of person years) that would be 

needed until trial termination under both uncurtailed and curtailed stopping rules. Finally, 

we combine the superiority and inferiority test procedures to provide a two-sided test and 

briefly consider pairwise comparison of the experimental treatments to each other under 

the Design C framework. 
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SECTION 0: INTRODUCTION 

 

Clinical studies that compare multiple experimental treatments to a single control 

treatment (which may be either a placebo or a standard of care treatment) typically occur 

early in the drug process. For example, during drug discovery, an agent may be modified 

to produce several related drugs in the same drug class. It is then of interest to determine 

which of the derivative drugs is most effective in preventing an illness or curing a disease 

and which are ineffective or harmful. In phase 1 trials, various doses of a drug or vaccine 

may be administered to study participants with the intent of determining the minimal 

effective and maximum tolerable doses. In either case, a control treatment may be 

administered for comparison. The landscape of clinical trials has historically been a 

rapidly expanding one, and late-phase clinical trials which compare several experimental 

treatments to a single control are now more commonplace. Parmar, Carpenter, and Sydes 

(2014) report that approximately 20% of superiority randomized controlled trials 

registered between January, 2010 and July, 2012 had three or more treatment arms.  

Large-scale controlled clinical trials typically have two objectives: prove a new 

treatment is superior in efficacy to the control and prove the new treatment is safe for 

consumption. In some settings, the primary outcome of the trial is a rare binomial event, 

such as prevention of HIV transmission, or a Poisson outcome, such as in vaccine trials. 

In either case, the Poisson distribution may be used as the basis for statistical comparison 

of the rates of events in the treatment groups; trials having the Poisson distribution as the 

basis for statistical inference are referred to as comparative Poisson trials (Gail, 1974). 

When there are only two treatments under study, two popular methods for 

conducting comparative Poisson trials are described in Gail (1974). Under “Design A”, 
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the trial is conducted until a pre-specified total number of events among the two 

treatment groups are observed, while under “Design B”, the trial is stopped after a pre-

specified amount of time. Testing the efficacy or safety of the treatments under these two 

designs is based on the binomial distribution. In this dissertation, which extends 

consideration to comparing multiple treatments to a single control, our primary interest is 

in “Design C”, which, to our knowledge, was first proposed by Hsu (2010). Under 

Design C, the study continues until a pre-specified number of events are observed in the 

control group; when one treatment is compared to a control under Design C, testing is 

conducted via a negative binomial distribution. When more than two treatment groups are 

under study, Designs A and B naturally extend to testing based on the multinomial 

distribution, while extension of Design C leads to tests based on the negative multinomial 

distribution (NMD). 

Comparative Poisson trials of multiple experimental treatments versus a single 

control treatment conducted under Design C methodology will be our primary focus in 

this dissertation. As such, properties of the negative multinomial distribution provide the 

basis for hypothesis tests concerning the superiority or inferiority of experimental 

treatments in relation to a control. Based on these objectives, the structure of this 

dissertation is as follows: in Section 1, we provide the characterization and probability 

mass function of the negative multinomial distribution and define “balanced” and 

“unbalanced” NMDs. A historical overview of the NMD and examples of its practical 

application are also provided. In Section 2, we discuss the comparative Poisson process 

and its relationship to the NMD. This relationship is utilized in Section 3 to derive the 

order statistics of the balanced NMD. Simulation is used to compute the order statistics of 
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unbalanced negative multinomial distributions. The preliminary results of Sections 1, 2, 

and 3 are applied in Section 4, where Design C methodology is developed for clinical 

trials in which one or more experimental treatments are investigated for superiority to a 

control treatment under the assumption of equal allocation of study subjects to the trial 

arms. We present the main hypotheses of interest, derive an appropriate test statistic, 

provide tables of trial design parameters for specified combinations of overall one-sided 

Type I error and power, compare our results to those obtained using the Bonferroni 

procedure to control for multiple comparisons, and discuss the expected number of 

person years of follow-up until trial termination under uncurtailed and curtailed stoppage 

rules. In Section 5, we extend the methodology to accommodate trials which investigate 

treatment inferiority, combine the superiority and inferiority results into a two-sided test, 

and discuss pairwise comparisons of the experimental treatments to each other. Section 6 

concludes with future directions implicated by the work in this dissertation. 
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SECTION 1: THE NEGATIVE MULTINOMIAL DISTRIBUTION 

 

1.1: Characterization and Probability Mass Function of the Negative Multinomial 

Distribution 

 

It is well known that if 𝑋 denotes the number of successes in 𝑚 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) trials, then 

𝑋 has a binomial distribution with parameters 𝑚 and 𝑝 (i.e. 𝑋~𝐵𝑖𝑛(𝑚, 𝑝)), and the 

probability mass function of 𝑋 is given by 

𝑃(𝑋 = 𝑥) = (
𝑚
𝑥
)𝑝𝑥(1 − 𝑝)𝑚−𝑥, 𝑥 = 0, 1, 2, … ,𝑚 

 

Now, consider the random variable 𝑌 denoting the number of failures that occur before 𝑟 

successes are obtained in a sequence of 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) trials. The random variable 𝑌 has a 

negative binomial distribution with parameters 𝑟 and 𝑝 (i.e. 𝑌~𝑁𝐵(𝑟, 𝑝)), and the 

probability mass function of 𝑌 is given by 

 
𝑃(𝑌 = 𝑦) = (

𝑟 + 𝑦 − 1
𝑦

) 𝑝𝑟(1 − 𝑝)𝑦, 𝑦 = 0,1,2, … (1.1.1) 

 

Both the binomial and negative binomial distributions are predicated upon the fact that in 

a Bernoulli trial there are only two possible outcomes, generally referred to as “success” 

and “failure”. Suppose instead that we conduct an experiment in which we observe m 

independent trials for which there are n mutually exclusive and exhaustive possible 

outcomes for each trial. Denote the probability of the 𝑖𝑡ℎ possible outcome by 𝑝𝑖, 

0 ≤ 𝑝𝑖 ≤ 1 for 𝑖 = 1,2, … , 𝑛, and let 𝑋𝑖 count the number of times that the 𝑖𝑡ℎ outcome 

occurs in the 𝑚 trials. The vector (𝑋1, 𝑋2, … , 𝑋𝑛) has a multinomial distribution with 

parameters 𝑚 and 𝑝1, 𝑝2, … , 𝑝𝑛 (i.e. (𝑋1, … , 𝑋𝑛)~𝑀(𝑚, 𝑝1, … , 𝑝𝑛)) and has probability 

mass function 

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) = 𝑚!∏
𝑝𝑖
𝑥𝑖

𝑥𝑖!

𝑛

𝑖=1

=
𝑚!

𝑥1! 𝑥2! ⋯𝑥𝑛!
∏𝑝𝑖

𝑥𝑖

𝑛

𝑖=1

= (
𝑚

𝑥1, 𝑥2, … , 𝑥𝑛
)∏𝑝𝑖

𝑥𝑖

𝑛

𝑖=1
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where 𝑥𝑖 ≥ 0 for 𝑖 = 1,2, … , 𝑛, ∑ 𝑝𝑖 = 1
𝑛
𝑖=1 , and ∑ 𝑥𝑖

𝑛
𝑖=1 = 𝑚. 

Note that since ∑ 𝑝𝑖 = 1
𝑛
𝑖=1 , in theory we need only specify 𝑛 − 1 of the 

probabilities 𝑝𝑖 as parameters to characterize the distribution. However, all 𝑛 

probabilities are typically specified as parameters of the multinomial distribution 

throughout the literature, and so we will maintain this standard notation when discussing 

the multinomial distribution (Johnson, Kotz, and Balakrishnan, 1997, pages 31-33). 

From the characterization of the multinomial distribution, it is clear that the 

multinomial distribution is the multivariate analogue of the binomial distribution. That is, 

the multinomial distribution extends the binomial distribution to 𝑛 > 2 possible 

outcomes for each trial. Thus, a natural question is whether there exists an 𝑛 > 2 

outcome multivariate analogue of the negative binomial distribution whose relationship 

to the multinomial distribution mirrors the relationship between the negative binomial 

and binomial distributions. Such a distribution, the negative multinomial distribution 

(NMD), is characterized in Le Gall (2006) as follows: suppose (substituting ℎ + 1 for 𝑛 

to allow outcome 0 to be the “reference” outcome as will be described below) there are 

𝑛 = ℎ + 1 mutually exclusive and exhaustive outcomes denoted by 𝐸0, 𝐸1, … , 𝐸ℎ, which 

occur with probabilities 𝑝0, 𝑝1, … , 𝑝ℎ, respectively. If independent trials are conducted 

until the “reference” outcome 𝐸0 occurs 𝜈 times (𝜈 > 0), then the number of occurrences 

𝑌1, 𝑌2, … , 𝑌ℎ of outcomes 𝐸1, 𝐸2, … , 𝐸ℎ, respectively, during these trials will have a 

negative multinomial distribution with parameters 𝜈 and 𝑝0, 𝑝1, 𝑝2, … , 𝑝ℎ (i.e. 

(𝑌1, … , 𝑌ℎ)~𝑁𝑀(𝜈, 𝑝0, 𝑝1, … , 𝑝ℎ)). The probability mass function is given by 

 

𝑃(𝑌1, … , 𝑌ℎ) = 𝛤 (𝜈 +∑𝑦𝑖

ℎ

𝑖=1

)
𝑝0
𝜈

𝛤(𝜈)
∏

𝑝𝑖
𝑦𝑖

𝑦𝑖!

ℎ

𝑖=1

, 𝑦𝑗 = 0,1,2… , 𝑗 = 1,2, … , ℎ (1.1.2) 
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where 𝑦𝑗 is an observed value of the random variable 𝑌𝑗 for 𝑗 = 1,… , ℎ, and ∑ 𝑝𝑖
ℎ
𝑖=0 = 1. 

When 𝜈 is a positive integer value, the distribution is sometimes referred to as the ℎ-

variate Pascal distribution, and the probability mass function can be written as 

𝑃(𝑌1, … , 𝑌ℎ) = (𝜈 − 1 +∑𝑦𝑖

ℎ

𝑖=1

) !
𝑝0
𝜈

(𝜈 − 1)!
∏

𝑝𝑖
𝑦𝑖

𝑦𝑖!

ℎ

𝑖=1

 

 

When there are only two possible outcomes, 𝐸0 and 𝐸1, and 𝜈 is a positive integer, the 

probability mass function is 

𝑃(𝑌1) = 𝛤(𝜈 + 𝑦1)
𝑝0
𝜈

𝛤(𝜈)

𝑝1
𝑦1

𝑦1!
=
(𝜈 + 𝑦1 − 1)!

(𝜈 − 1)! 𝑦1!
𝑝0
𝜈𝑝1
𝑦1 = (

𝜈 + 𝑦1 − 1
𝑦1

) 𝑝0
𝜈(1 − 𝑝0)

𝑦1 

 

which, by Equation 1.1.1, is the probability mass function of a 𝑁𝐵(𝜈, 𝑝0) distribution. 

Note that 𝑝0 need not be included as a parameter in specifying the NMD. Since 

the outcomes 𝐸0, … , 𝐸ℎ are exhaustive, we know that ∑ 𝑝𝑖
ℎ
𝑖=0 = 1, and so when the values 

of 𝑝1, … , 𝑝ℎ are known, the value of 𝑝0 is determined by 1 − ∑ 𝑝𝑖
ℎ
𝑖=1 . In this dissertation, 

however, we will specify 𝑝0 as a parameter when identifying the joint distribution of a set 

of random variables as negative multinomial. 

We next provide some important properties of the NMD. The marginal 

distribution of each 𝑌𝑖, 𝑖 = 1,2, … , ℎ, is negative binomial with parameters 𝜈 and 
𝑝0

𝑝0+𝑝𝑖
, 

i.e. 𝑌𝑖~𝑁𝐵 (𝜈,
𝑝0

𝑝0+𝑝𝑖
). The proof (given in terms of the marginal distribution of 𝑌1) is 

found in Steyn (1959) and is as follows: 

∑⋯∑
(𝜈 + 𝑦1 + ∑ 𝑦𝑖

ℎ
𝑖=2 − 1)!

(𝜈 − 1)! 𝑦1! 𝑦2! ⋯𝑦ℎ!
𝑝0
𝜈𝑝1
𝑦1𝑝2

𝑦2⋯𝑝ℎ
𝑦ℎ

𝑦ℎ𝑦2

 

 

=
(𝜈 + 𝑦1 − 1)!

(𝜈 − 1)! 𝑦1!
𝑝1
𝑦1∑⋯∑

(𝜈 + 𝑦1 +∑ 𝑦𝑖
ℎ
𝑖=2 − 1)!

(𝜈 + 𝑦1 − 1)! 𝑦2!⋯ 𝑦ℎ!
𝑝0
𝜈𝑝2
𝑦2⋯𝑝ℎ

𝑦ℎ

𝑦ℎ𝑦2
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=
(𝜈 + 𝑦1 − 1)!

(𝜈 − 1)! 𝑦1!
𝑝1
𝑦1𝑝0

𝜈 (1 −∑𝑝𝑖

ℎ

𝑖=2

)

−(𝜈+𝑦1)

=
(𝜈 + 𝑦1 − 1)!

(𝜈 − 1)! 𝑦1!
(

𝑝0
𝑝0 + 𝑝1

)
𝜈

(
𝑝1

𝑝0 + 𝑝1
)
𝑦1

 

 

= (
𝜈 + 𝑦1 − 1

𝑦1
) (

𝑝0
𝑝0 + 𝑝1

)
𝜈

(1 −
𝑝0

𝑝0 + 𝑝1
)
𝑦1

⇒ 𝑌1~𝑁𝐵 (𝜈,
𝑝0

𝑝0 + 𝑝1
) 

 

Similarly, the marginal distribution for the remaining 𝑌𝑖, 𝑖 = 2,… , ℎ, can be determined 

by replacing 𝑦1 with 𝑦𝑖 and adjusting the limits of the summations in the computations 

above to exclude either 𝑦𝑖 or 𝑝𝑖 as appropriate. These results imply that the marginal 

expected value of 𝑌𝑖 is 𝜈
𝑝𝑖

𝑝0
 and the marginal variance of 𝑌𝑖 is 𝜈

𝑝𝑖(𝑝0+𝑝𝑖)

𝑝0
2 . Furthermore, it 

was shown that the covariance of and correlation between 𝑌𝑖 and 𝑌𝑗 for 𝑖 ≠ 𝑗 is given by 

𝐶𝑜𝑣(𝑌𝑖, 𝑌𝑗) = 𝜈
𝑝𝑖𝑝𝑗

𝑝0
2  and 𝐶𝑜𝑟𝑟(𝑌𝑖 , 𝑌𝑗) = √

𝑝𝑖𝑝𝑗

(𝑝0+𝑝𝑖)(𝑝0+𝑝𝑗)
 (Steyn et al., 1989)

1
. 

1.2: Brief History of the Negative Multinomial Distribution 

 

According to Sibuya, Yoshimura, and Shimizu (1964), “the notion of the negative 

multinomial distribution was first introduced in the model of the inverse sampling
2
 in 

multiple Bernoulli trials…”, and the first systematic analysis of the NMD is attributed to 

Bates and Neyman (1952), who referred to the distribution as the multivariate negative 

binomial distribution
3
 and derived its probability mass function via the probability 

generating function. While studying the theory of accident proneness, Bates and Neyman 

derived the NMD by considering 𝑠 kinds of accidents, in which one type of accident is 

                                                           
1
 Note that the correlation between 𝑌𝑖 and 𝑌𝑗 is positive in a negative multinomial distribution, whereas the 

correlation between random variables in a multinomial distribution is negative. 
2
 Casella and Berger (2002) describe inverse sampling techniques as sampling until 𝑟 individuals with a 

certain characteristic are obtained from a population in which the proportion of individuals possessing the 

characteristic is 𝑝 (pages 96-97). 
3
 Though both the terms “negative multinomial” and “multivariate negative binomial” can be found in the 

literature, Johnson, Kotz, and Balakrishnan (1997, page 98) suggest that the term “negative multinomial” is 

a more accurately descriptive name for the distribution, and, as such, we will use this term exclusively 

throughout this dissertation following the historical overview in Section 1.2. 
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classified as a severe accident and the remaining 𝑠 − 1 are classified as different types of 

light predictor accidents. The random variables 𝑋1, 𝑋2, … , 𝑋𝑠 are used to represent the 

number of each type of aforementioned accident, and it is assumed that these random 

variables are mutually independent, each following a Poisson law with parameter 

𝑎𝑖𝜆, 𝑖 = 1,2, … , 𝑠, where to each individual of the population there is associated a positive 

number 𝜆 measuring his or her proneness to accidents. If 𝜆 follows a distribution Ʌ with 

density function 𝑝Ʌ(𝑥) =
𝛽𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥, then the joint distribution of 𝑋1, 𝑋2, … , 𝑋𝑠 is 

negative multinomial (or as Bates and Neyman termed it, an 𝑠-variate negative binomial 

distribution) with probability mass function of the form 

𝑃{(𝑋1 = 𝑛1)(𝑋2 = 𝑛2)⋯ (𝑋𝑠 = 𝑛𝑠)} = [1 +∑𝑏𝑖

𝑠

𝑖=1

]

−𝛼
𝛤(𝛼 + 𝑛)

𝛤(𝛼)
∏

𝑐𝑖
𝑛𝑖

𝑛𝑖!

𝑠

𝑖=1

 

 

where 𝑛 = ∑ 𝑛𝑖
𝑠
𝑖=1 , 𝑏𝑖 =

𝑎𝑖

𝛽
, and 𝑐𝑖 =

𝑏𝑖

1+∑ 𝑏𝑗
𝑠
𝑗=1

=
𝑎𝑖

𝛽+∑ 𝑎𝑗
𝑠
𝑗=1

 for 𝑖 = 1,2, … , 𝑠. 

Bates and Neyman note that when this model is applicable, the 𝑠-dimensional 

problem can be reduced to a two-dimensional problem by letting 𝑋 denote the number of 

severe accidents and 𝑌 denote the total number of light accidents (i.e. 𝑌 incorporates all 

𝑠 − 1 original types of light accidents). The authors subsequently discuss estimation of 

the parameters in the resulting bivariate negative binomial distribution. Bates and 

Neyman also prove the following properties: 

(i) The marginal joint distribution of a group of 𝑚 variables, say 𝑋1, 𝑋2, … , 𝑋𝑚, is an 

𝑚-variate negative binomial distribution 

(ii) The joint distribution of 𝑋1, 𝑋2, … , 𝑋𝑚 and the sum 𝜒 = 𝑋𝑚+1 +⋯+ 𝑋𝑠 is an 

(𝑚 + 1)-variate negative binomial distribution 
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(iii) The conditional joint distribution of 𝑋1, 𝑋2, … , 𝑋𝑚 given values for the remaining 

𝑠 − 𝑚 variables is an 𝑚-variate negative binomial distribution and depends only 

on the value 𝜒 = 𝑥𝑚+1 +⋯+ 𝑥𝑠 

Additional properties of the NMD have been given by many authors, including 

Sibuya, Yoshimura, and Shimizu (1964) and Nguyen et al. (2007), and a thorough 

treatment of the distribution can be found in Johnson, Kotz, and Balakrishnan (1997, 

pages 93-123). 

1.3: Definition of Balanced and Unbalanced Negative Multinomial Distributions 

 

In this dissertation, we will distinguish between “balanced” and “unbalanced” negative 

multinomial distributions. For an experiment in which there are ℎ + 1 possible outcomes 

that can be modeled by an NMD, we define a balanced negative multinomial distribution 

as one in which the probability that each of the ℎ + 1 outcomes occurs is equal (i.e. 

𝑝𝑖 =
1

ℎ+1
, 𝑖 = 0,1, … , ℎ). When the relationship 𝑝0 = 𝑝1 = ⋯ = 𝑝ℎ does not hold, the 

NMD will be referred to as an unbalanced negative multinomial distribution. A subset of 

the unbalanced distributions which may be of special interest is when 𝑝0 ≠ 𝑝1 = 𝑝2 =

⋯ = 𝑝ℎ, and we term these “partially balanced” negative multinomial distributions. We 

next provide examples of balanced, unbalanced, and partially balanced negative 

multinomial distributions. 

As an example of the balanced NMD, consider a fair six-sided die. If we roll the 

die until we observe ten 6’s, then the distribution of the number of 1’s, 2’s, 3’s, 4’s and 

5’s observed during the rolls (denoted by 𝑌1, … , 𝑌5, respectively) follows a balanced 

negative multinomial distribution with parameters 10 and 𝑝0 = 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 =

𝑝5 =
1

6
 and probability mass function 
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(10 − 1 +∑𝑦𝑖

5

𝑖=1

) !
(
1
6)
10

(10 − 1)!
∏

(
1
6)
𝑦𝑖

𝑦𝑖!

5

𝑖=1

= (9 +∑𝑦𝑖

5

𝑖=1

) !
(
1
6)
10+∑ 𝑦𝑖

5
𝑖=1

9!∏ 𝑦𝑖!
5
𝑖=1

 

 

Now, suppose that each time the die is rolled the probability that the 𝑖𝑡ℎ face is observed 

is proportional to the number on the face of the die (i.e. the probability that a 1, 2, 3, 4, 5, 

and 6 occurs is 
1

21
,
2

21
,
3

21
,
4

21
,
5

21
, and 

6

21
, respectively). Suppose we again roll the die until 

ten 6’s are observed. In this case, the NMD is unbalanced with probability mass function 

(10 − 1 +∑𝑦𝑖

5

𝑖=1

) !
(
6
21)

10

(10 − 1)!

(
1
21)

𝑦1

𝑦1!

(
2
21)

𝑦2

𝑦2!

(
3
21)

𝑦3

𝑦3!

(
4
21)

𝑦4

𝑦4!

(
5
21)

𝑦5

𝑦5!
 

 

= (9 +∑𝑦𝑖

5

𝑖=1

) !
(
6
21)

10

9!
∏

(
𝑖
21)

𝑦𝑖

𝑦𝑖!

5

𝑖=1

 

 

Finally, suppose a gambler carries a loaded die in which the probability a 6 is observed is 

9/10 and the probability a 1, 2, 3, 4, or 5 each occurs is 1/50. If the gambler rolls the die 

until ten 6’s are observed, then the NMD is partially balanced with mass function 

(10 − 1 +∑𝑦𝑖

5

𝑖=1

) !
(
9
10)

10

(10 − 1)!
∏

(
1
50
)
𝑦𝑖

𝑦𝑖!

5

𝑖=1

= (9 +∑𝑦𝑖

5

𝑖=1

) !
(
9
10)

10

(
1
50
)
∑ 𝑦𝑖
5
𝑖=1

9!∏ 𝑦𝑖!
5
𝑖=1

 

 

1.4: Applications of the Negative Multinomial Distribution 

 

Several applications of the negative multinomial distribution have been published in the 

literature since its introduction by Bates and Neyman. In this subsection, we will briefly 

discuss some of these examples
4
 and provide references for additional applications. 

                                                           
4
 We omit many of the details required to derive the NMD in these examples as the purpose of Section 1.4 

is solely to emphasize the usefulness of this distribution in real-world applications. Readers should consult 

the original cited articles for complete details. 
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 Sinoquet and Bonhomme (1991) use the NMD to analyze radiation interception in 

a two-species plant canopy; in particular, they consider the interception of radiation 

coming from a given direction and going across a homogenous vegetation layer of 

thickness 𝑍. Their approach consists of modeling the light relations that exist when two 

species of plants are planted in the same field, taking into account the geometrical 

structures in the vegetative canopies (i.e. the spatial distribution of the foliage elements of 

the two species). They define two components of leaf dispersion: within-species leaf 

dispersion (WSLD), which describes the rate of foliage overlap between leaves of plants 

of the same species, and between-species leaf dispersion (BSLD), which describes the 

rate of foliage overlap between leaves of different plant species. Leaf dispersion can be 

classified as regular (leaves avoid mutual shading), random, or clumped (leaves tend to 

overlap). Dividing the homogeneous layer 𝑍 into 𝑁 equal and independent sublayers of 

thickness 𝑧 (i.e. 𝑍 = 𝑁𝑧), Sinoquet and Bonhomme show that when the BSLD is regular, 

the probability of interception by species 𝑖 (𝑖 = 1,2) is given by 𝑝𝑖 = 1 − 𝑒
−𝑘𝑖, where 𝑘𝑖 

is a function of the leaf area density and a projection coefficient onto a horizontal plane 

of a unit of leaf area of species 𝑖. The interception probabilities are described by a 

bivariate multinomial distribution with parameters 𝑁, 𝑝1, and 𝑝2. For the entire layer 𝑍, 

the probability of no interception, 𝑃0, is given by 

𝑃0 = 𝑒𝑥𝑝 {
𝑍

𝑧
ln[𝑒𝑥𝑝(−𝑘1𝑧) + 𝑒𝑥𝑝(−𝑘2𝑧) − 1]} 

 

When the BSLD is clumped, the value of 𝑧 in the expression above is taken to be 

negative, and the authors argue that this is justified by the use of a negative multinomial 

distribution to characterize the interception probabilities. A bivariate NMD is 

subsequently used to model the number of interceptions in the two plant species. 
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 Patil and Boswell (1972) consider birth and death processes in which the 

corresponding rates factor into a function of time and a function of the size of the 

population components. If {𝑿(𝑡): 𝑡 ∈ ℝ+} denotes an 𝑟-dimensional pure birth process 

with birth rates 𝜆𝑘(𝒙, 𝑡), then the process is characterized by the differential equations 

𝜕

𝜕𝑡
𝑝(𝒙, 𝑡) = ∑𝜆𝑘(𝒙 − 𝑖𝑘, 𝑟)𝑝(𝒙 − 𝑖𝑘, 𝑡) −

𝑟

𝑘=1

𝜆(𝒙, 𝑡)𝑝(𝒙, 𝑡) 

 

where 𝑝(𝒙, 𝑡) = 𝑃[𝑿(𝑡) = 𝒙], 𝜆(𝒙, 𝑡) = ∑ 𝜆𝑘(𝒙, 𝑡)
𝑟
𝑘=1  and 𝑖𝑘 is a vector with a 1 in the 

𝑘𝑡ℎ position and zero for all other positions. Patil and Boswell prove that if {𝑿(𝑡): 𝑡 ∈

ℝ+} is a birth process with 𝑿(0) = 𝟎, 𝜆𝑘(𝒙, 𝑡) = 𝑎𝑘(𝛾 + 𝛿𝒙 ∙ 𝟏)ℎ(𝑡), ∑ 𝑎𝑘 = 1
𝑟
𝑘=1 , and 

𝛿 = 1, then 𝑿(𝑡) has the negative multinomial distribution with mass function 

𝑝(𝒙, 𝑡) = (
𝛾 + 𝒙 ∙ 𝟏 − 1

𝒙
)𝑝0

𝛾
(𝑡)∏{𝑎𝑘[1 − 𝑝0(𝑡)]}

𝑥𝑘

𝑟

𝑘=1

 

 

where 𝑝0(𝑡) = 𝑒
−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 . 

 Engel (1986) considers a model for count data in a split-plot design with two 

whole plot factors A and B (indexed by 𝑖 and 𝑗, respectively) and one sub-plot factor C 

(indexed by 𝑘) with an equal number of replicates per cell (indexed by 𝑙). Assuming 

whole plot error, interaction between sub-plot factor C and whole plot error, sub-plot 

error, and a Poisson distribution as the basis of the model for 𝑋𝑖𝑗𝑘𝑙 (the count response for 

replicate 𝑙 of sub-plot 𝑘 of whole plot (𝑖, 𝑗)), Engel posits the following model for 𝑋𝑖𝑗𝑘𝑙: 

(i) 𝑋𝑖𝑗𝑘𝑙~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑖𝑗𝑘𝑙) with 𝑚𝑖𝑗𝑘𝑙 an observed value of the positive random 

variable 𝑀𝑖𝑗𝑘𝑙 

(ii) 𝑀𝑖𝑗𝑘𝑙 = 𝐺𝑖𝑗𝑙(𝛼𝑖𝑗, 𝜃) ⋅ 𝐻𝑖𝑗𝑘𝑙(𝛽𝑖𝑗𝑘) where the random variables 𝐺 are independently 

Gamma distributed and 𝐻𝑖𝑗𝑘𝑙(𝛽𝑖𝑗𝑘) = 𝐺𝑖𝑗𝑘𝑙(𝛽𝑖𝑗𝑘, 𝜂)/∑ 𝐺𝑖𝑗𝑘𝑙(𝛽𝑖𝑗𝑘, 𝜂)𝑘  
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Omitting the subscripts 𝑖, 𝑗, and 𝑙 leads to a negative multinomial distribution for the 

vector (𝑋1, 𝑋2, … , 𝑋𝐾) given 𝐻𝑘 = ℎ𝑘 with probability mass function 

(
𝑥+ + 𝛼 − 1

𝑥1, … , 𝑥𝐾, 𝛼 − 1
) (

1

1 + 𝜃 ∑ ℎ𝑘𝑘
)
𝛼

∏(
𝜃ℎ𝑘

1 + 𝜃∑ ℎ𝑘𝑘
)
𝑥𝑘

𝑘

 

 

 Our next example of the NMD is an original application to the theory of quality 

control. Suppose that a certain machine used in manufacturing is subject to breakdown 

due to the failure of any one of ℎ + 1 components. The machine breaks down due to 

component 𝑖 with (unknown) probability 𝑝𝑖, 𝑖 = 0,1, … , ℎ. If we want to estimate the 

probability of breakdown due to each component, we may observe numerous machines 

until we observe 𝜈 breakdowns due to component 0 and then count the number of 

breakdowns that have occurred due to the ℎ remaining types of components, denoted by 

𝑌1, … , 𝑌ℎ. This experiment follows an NMD with parameters 𝜈, 𝑝0, 𝑝1, … , 𝑝ℎ. This model 

could be particularly important if the 0𝑡ℎ component is very expensive to repair or 

replace relative to the other ℎ components, and hence we may only be willing to allow a 

certain number of breakdowns due to failure of the 0𝑡ℎ component before terminating the 

experiment and estimating the probability of breakdown due to each component. 

 Derivation of the NMD from an urn model and from an inverse sampling scheme 

can be found in Sibuya, Yoshimura, and Shimizu (1964). The use of the NMD in inverse 

sampling schemes may be of particular importance in ecological capture-recapture 

experiments. In such situations, estimates with better sampling properties are obtained 

since it is guaranteed that a predetermined number of tagged individuals will be 

recaptured. This contrasts the use of direct sampling schemes which may result in a low 

number of recaptures, indicating the need for additional sampling (Ord, Patil, and Taillie, 
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1979, page 177). Other practical examples, with references, are listed on pages 95-96 of 

Johnson, Kotz, and Balakrishnan (1997). 

1.5: The Negative Multinomial as a Mixture Distribution 

  

Karlis and Xekalaki (2005) define a mixture distribution as follows: 

 

A probability distribution is said to be a mixture distribution if its distribution function 

𝐹(∙) can be written in the form 𝐹(∙) = ∫ 𝐹(
𝛩

∙ |𝜆)𝑑𝐺(𝜆), where  𝐹(⋅ |𝜆) denotes the 

distribution function of the component densities considered to be indexed by a 

parameter 𝜆 with distribution function 𝐺(𝜆), 𝜆 ∈ 𝛩. (page 35) 

 

This definition can also be presented in terms of probability density functions as 𝑓(𝑥) =

∫ 𝑓(𝑥|𝜆)𝑔𝜆(𝜆)𝑑𝜆𝛩
. In this representation, 𝑔(⋅) is referred to as the mixing density. When 

𝑋|𝜆~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) (i.e. 𝑓(𝑥|𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
), the random variable 𝑋 is said to follow a mixed 

Poisson distribution (Karlis and Xekalaki, 2005). 

Suppose 𝑋|𝜆~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), where 𝜆 follows a gamma distribution
5
 with 

parameters 𝛼 and 𝛽 (i.e. the mixing distribution 𝑔𝜆(𝜆) is a gamma distribution). Then, 

𝑃(𝑋 = 𝑥) = ∫ 𝑒−𝜆
𝜆𝑥

𝑥!

∞

0

1

𝛤(𝛼)𝛽𝛼
𝜆𝛼−1𝑒

−
𝜆
𝛽𝑑𝜆 =

1

𝛤(𝛼)𝛽𝛼
1

𝑥!
∫ 𝜆𝑥+𝛼−1𝑒

−𝜆/(
𝛽
𝛽+1

)
∞

0

𝑑𝜆 

 

=
1

𝛤(𝛼)𝛽𝛼
1

𝑥!
𝛤(𝑥 + 𝛼) (

𝛽

𝛽 + 1
)
𝑥+𝛼

=
(𝑥 + 𝛼 − 1)!

(𝛼 − 1)! 𝑥!
(
1

𝛽 + 1
)
𝛼

(
𝛽

𝛽 + 1
)

𝑥

 

 

= (
𝛼 + 𝑥 − 1

𝑥
) (

1

𝛽 + 1
)
𝛼

(1 −
1

𝛽 + 1
)
𝑥

 

 

Thus, the marginal distribution of 𝑋 is negative binomial with parameters 𝛼 and 
1

𝛽+1
. This 

result is attributed to Greenwood and Yule (1920) and can be found in Johnson, Kotz, 

and Kemp (1992, page 204) or Neyman (1965) who utilizes the probability generating 

function to obtain the result. 

                                                           
5
 The probability density function of a 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) random variable 𝑄 is 𝑓(𝑞) =

1

𝛤(𝛼)𝛽𝛼
𝑞𝛼−1𝑒−𝑞/𝛽. 
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 The definitions above define univariate mixed distributions. The definitions 

extend naturally to characterize multivariate mixed distributions, and here we will 

provide a specific case of multivariate mixed Poisson distributions as presented in 

Sibuya, Yoshimura, and Shimizu (1964). Suppose 𝑋1, 𝑋2, . . , 𝑋𝑟 are independent Poisson 

random variables with parameters 𝑚𝜆𝑖 , 𝑖 = 1,… , 𝑟, where 𝑚 is an observed value of a 

random variable 𝑀. The joint conditional distribution of 𝑋1, … , 𝑋𝑟 is then 

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑟 = 𝑥𝑟|𝑀 = 𝑚) =∏𝑒−𝑚𝜆𝑖
(𝑚𝜆𝑖)

𝑥𝑖

𝑥𝑖!

𝑟

𝑖=1

 

 

If the distribution of 𝑀, i.e. the mixing distribution, is taken to be a gamma distribution 

with parameters 𝑘 and 𝑎, then the joint distribution of 𝑋1, … , 𝑋𝑟 is negative multinomial 

as shown below: 

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑟 = 𝑥𝑟) = ∫ {∏𝑒−𝑚𝜆𝑖
(𝑚𝜆𝑖)

𝑥𝑖

𝑥𝑖!

𝑟

𝑖=1

}
∞

0

1

𝛤(𝑘)𝑎𝑘
𝑚𝑘−1𝑒−𝑚/𝑎𝑑𝑚 

 

=
1

𝛤(𝑘)𝑎𝑘
∏

𝜆𝑖
𝑥𝑖

𝑥𝑖!

𝑟

𝑖=1

∫ 𝑒−𝑚(
∑ 𝜆𝑖
𝑟
𝑖=1 +

1
𝑎
)𝑚𝑘+∑ 𝑥𝑖

𝑟
𝑖=1 −1

∞

0

𝑑𝑚 

 

=
1

𝛤(𝑘)𝑎𝑘
∏

𝜆𝑖
𝑥𝑖

𝑥𝑖!

𝑟

𝑖=1

∫ 𝑒

−𝑚

(
𝑎

1+𝑎∑ 𝜆𝑖
𝑟
𝑖=1

)
𝑚𝑘+∑ 𝑥𝑖

𝑟
𝑖=1 −1

∞

0

𝑑𝑚 

 

=

𝛤(𝑘 + ∑ 𝑥𝑖
𝑟
𝑖=1 ) (

𝑎
1 + 𝑎∑ 𝜆𝑖

𝑟
𝑖=1

)
𝑘+∑ 𝑥𝑖

𝑟
𝑖=1

𝛤(𝑘)𝑎𝑘
∏

𝜆𝑖
𝑥𝑖

𝑥𝑖!

𝑟

𝑖=1

 

 

= 𝛤 (𝑘 +∑𝑥𝑖

𝑟

𝑖=1

)

(
1

1 + 𝑎∑ 𝜆𝑖
𝑟
𝑖=1

)
𝑘

𝛤(𝑘)
∏

(
𝑎𝜆𝑖

1 + 𝑎∑ 𝜆𝑖
𝑟
𝑖=1

)
𝑥𝑖

𝑥𝑖!

𝑟

𝑖=1

 

 

That the product of independent Poisson variates mixed with a gamma distribution 

follows an NMD is attributed to Bates and Neyman (1952) and can also be found in 
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Papageorgiou (1983), Joshi (1975), Ord, Patil, and Taillie (1979, pages 167-168), and 

Johnson, Kotz, and Balakrishnan (1997, pages 94-95) and is stated without proof in Zhou 

and Lange (2010). An explicit derivation of this fact will also be provided in Section 2.4 

where it will be obtained in the context of the comparative Poisson process. 

 The NMD can also be obtained via mixture of multiple Poisson variates and a 

multivariate gamma mixing distribution. This result, which is beyond the scope of this 

dissertation, can be found in Ferrari, Letac, and Tourneret (2004) or Chatelain, Lambert-

Lacroix, and Tourneret (2009). 
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SECTION 2: RELATIONSHIP BETWEEN THE COMPARATIVE POISSON 

PROCESS AND THE NEGATIVE MULTINOMIAL DISTRIBUTION 

 

2.1: The Comparative Poisson Process 

 

Lehmann and Romano (2005) write, 

 

A problem arising in many different contexts is the comparison of two treatments or of 

one treatment with a control situation in which no treatment is applied. If the 

observations consist of the number of successes in a sequence of trials for each 

treatment, for example the number of cures of a certain disease, the problem becomes 

that of testing the equality of two binomial probabilities. If the basic distributions are 

Poisson, for example in a comparison of the radioactivity of two substances, one will 

be testing the equality of two Poisson distributions. (page 124) 

 

This dissertation focuses on the latter setting, the comparative Poisson process; that is, 

the comparison of two (or more) populations in which the event count in each is 

independently Poisson distributed. Though we will be strictly concerned with the 

comparative Poisson process, the model can also be applied to the binomial setting when 

the number of trials is large and the probability of event occurrence is small (and hence 

the binomial distribution is closely approximated by the Poisson distribution). This is a 

well-known result and can be found, for example, on pages 66-67 and 93-94 in Casella 

and Berger (2002). Additionally, though Lehmann and Romano present the comparative 

Poisson process in terms of comparison of treatments to each other or a treatment to a 

control, and though this method is typically applied to clinical trials, the method can be 

applied to any comparison in which event counts follow or can be approximated by 

Poisson distributions. As such, in the remainder of Section 2, rather than use the terms 

“treatment” and “control” groups, we will use more general terminology to describe 

studies in which one or more “comparator” situations/groups are compared to one another 

or are compared to a “reference” situation/group. The specific application of comparative 
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Poisson methodology to clinical trials will be discussed at length in Sections 4 and 5 of 

this dissertation. 

Results concerning the construction of uniformly most powerful unbiased 

(UMPU) tests for the parameters in exponential families, originally derived by Lehmann 

and Scheffé (1955), can be used to show that for 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) independent of 

𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇), the UMPU test for the hypotheses 𝜇 ≤ 𝜆 (or 𝜇 = 𝜆) versus 𝜇 > 𝜆 and for 

𝜇 = 𝜆 versus 𝜇 ≠ 𝜆 is based on the conditional distribution of 𝑌 given 𝑇 = 𝑋 + 𝑌 (see 

also Lehmann and Romano (2005), pages 119-125). This conditional distribution is 

binomial as was first shown by Przyborowski and Wilenski (1940), and the derivation is 

reproduced below: 

𝑃(𝑌 = 𝑦|𝑋 + 𝑌 = 𝑡) =
𝑃(𝑌 = 𝑦, 𝑋 = 𝑡 − 𝑦)

𝑃(𝑋 + 𝑌 = 𝑡)
=

𝑒−𝜇𝜇𝑦

𝑦!
𝑒−𝜆𝜆𝑡−𝑦

(𝑡 − 𝑦)!

𝑒−(𝜇+𝜆)(𝜇 + 𝜆)𝑡

𝑡!

 

 

=
𝑡!

𝑦! (𝑡 − 𝑦)!
(
𝜇

𝜇 + 𝜆
)
𝑦

(
𝜆

𝜇 + 𝜆
)
𝑡−𝑦

= (
𝑡
𝑦) (

𝜇

𝜇 + 𝜆
)
𝑦

(1 −
𝜇

𝜇 + 𝜆
)
𝑡−𝑦

 

 

We next provide examples of the application of the comparative Poisson process. 

Birnbaum (1953) considers continuous inspection of manufactured materials (such as 

cloth, paper, or wire) for flaws. The number of faults 𝑥 observed over a length 𝑡 of 

material may follow a Poisson distribution with parameter 𝜆𝑡, where λ is the mean 

number of faults per unit length of material. Comparing the mean number of flaws per 

unit of two types of material is equivalent to comparing the parameters 𝜆1 and 𝜆2 of the 

two Poisson processes. Another example from Birnbaum (1953) is based on the use of a 

Geiger counter to observe the number of emissions 𝑥 from a radioactive substance over 

time 𝑡. We assume that the distribution of events during the time interval is Poisson with 
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parameter 𝜆𝑡, where λ represents the mean number of emissions per unit interval of time. 

If two radioactive substances are under study, then comparison of the parameters 𝜆1 and 

𝜆2 is equivalent to comparison of the emission rates of the two substances. 

Rather than compare two radioactive substances, we may want to evaluate the 

effectiveness of a shield designed to protect against radiation. To do so, we may 

introduce a steady source of radiation and record the number of emissions detected when 

the shield blocks the Geiger counter and again when the shield is removed. Comparing 

𝜆2, the intensity of radiation when the shield is utilized, to 𝜆1, the intensity when the 

shield is removed, is statistically equivalent to the examples above when the number of 

emissions follows a Poisson distribution under both shielding conditions (i.e. presence or 

absence of the shield) (Birnbaum, 1954). In this example, the absence of the shield may 

be considered the “reference” situation and the presence of the shield the “comparator” 

situation. 

Birnbaum’s final example in the 1953 paper is to consider the number of cases of 

a rare disease observed among two large groups of individuals during a certain time 

period. If the number of cases of disease is independently Poisson distributed among the 

two populations, then the comparative Poisson model can be implemented to compare the 

incidence rates of disease in the two populations. An example of this application to 

disease incidence may be found in Hill, Spicer, and Weatherall (1968)
6
 and is provided in 

Gail (1974). If the incidence of congenital malformations in a uranium mining town and 

in a control population follow Poisson distributions and 𝑖2 and 𝑖1 represent the incidence 

rates of malformations in the two populations, respectively, then the Poisson parameters 

                                                           
6
 See Gail (1974) for the reference to Hill, Spicer, and Weatherall (1968). 
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are 𝜆2 = 𝑖2𝑡 and 𝜆1 = 𝑖1𝑡, where 𝑡 is the duration of observation. Testing the hypotheses 

𝐻0: 𝜆2 = 𝜆1 versus 𝐻𝑎: 𝜆2 > 𝜆1 is equivalent to testing 𝐻0: 𝑖2 = 𝑖1 versus 𝐻𝑎: 𝑖2 > 𝑖1. 

2.2: Designs for Comparing Two Poisson Populations 

Gail (1974) proposes two designs, termed Design A and Design B, to conduct tests of 

two population parameters when the number of events in the two populations 

independently follow Poisson distributions with parameters 𝜆1 and 𝜆2, respectively. 

Specifically, Gail provides tests of  𝐻0: 𝜆2 = 𝜆1 versus 𝐻𝑎: 𝜆2 > 𝜆1 (or equivalently 

𝐻0: 𝜌 = 1 versus 𝐻𝑎: 𝜌 > 1 where 𝜌 = 𝜆2/𝜆1)
7
. Design A is to observe the two 

populations, denoted by 𝑖 (𝑖 = 1, 2), until a predetermined total number of events 

𝑇 = 𝑋1 + 𝑋2 has occurred, where 𝑋𝑖 is the number of events observed in population 𝑖. 

Design B is to observe the two populations for a predetermined length of time, 𝑡8
. The 

test under both designs is based on the conditional binomial distribution discussed in 

Section 2.1. The advantage of Design A is that an appropriate choice of 𝑇 will always 

yield a critical region of sufficient power, though the disadvantage is that a study 

termination date cannot be specified. Thus, it could take a significant amount of time for 

a study under Design A to terminate, which also implies significant expenses. Design B 

does have a specified termination date at time 𝑡, but if few events have occurred among 

the populations at this time, a critical region of insufficient power may result. 

 Some alternative tests for comparing two Poisson parameters can be found in 

Birnbaum (1954). Birnbaum provides a test in terms of 𝛾 = 𝜆1/𝜆2  based on the 𝐹 

                                                           
7
 Gail (1974) provides computations for Designs A and B under the assumption of equal population sizes. 

The designs were extended by Brown and Green (1982) to the case of unequal population sizes. 
8
 Note that the concept of time in Gail’s paper may be readily substituted to appropriately reflect the 

comparative Poisson process under study. For example, we previously considered continuous inspection of 

manufactured materials, and in this setting, 𝑡 would represent the length of material examined. In the case 

of a rare binomial event that is approximated by the Poisson distribution, such as a vaccine study with a 

rare adverse event as the primary outcome, 𝑡 would represent the number of subjects in the study. 
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distribution, which is particularly appealing when the Poisson processes are separated in 

space or time, and a test in terms of ∆= 𝜆1 − 𝜆2 based on ranking two exponential 

populations with respect to their means (see the original article for details and for 

additional testing approaches). 

 Here we consider “Design C”
9
 in which the study is terminated once 𝑑𝐶 events 

have been observed in population 1 (the “reference” population) and we record the 

number of events that have occurred in population 2 (the “comparator” population) by the 

time of stoppage. Since the waiting time for a single event in a Poisson process follows 

an Exponential distribution, the waiting time for 𝑑𝐶 events to occur is the sum of 

independent, identically distributed Exponential variables, which follows a Gamma 

distribution (see for example Gallager (1996), pages 33-36, for a formal proof). Hence, 

tests of the event incidence rates (or equivalently, the Poisson parameters) in the two 

populations can be derived from a mixture of a Poisson and Gamma distribution, which 

we have shown in Section 1.5 is a negative binomial distribution
10

. 

 Like Design A, a study conducted under Design C will always result in a critical 

region of sufficient power (given that an appropriate value of 𝑑𝐶 is chosen), but the 

duration of the study cannot be specified
11

. 

 

                                                           
9
 To our knowledge, Design C was first proposed by Hsu (2010, pages 86-87). 

10
 In Sections 4 and 5, we will show that when multiple comparator groups are compared to a reference 

group and the number of events that occur in each group independently follows a Poisson distribution 

conditional on the time elapsed in the reference group, a test of equivalency of the Poisson parameters 

between the comparator and reference groups can be conducted based on the negative multinomial 

distribution. This is based on the fact that the mixture of multiple independent Poisson variates with a 

gamma distribution follows an NMD, which was shown in Section 1.5. When only one comparator group is 

under study (i.e. one Poisson variate mixed with a gamma distribution), the NMD reduces to the negative 

binomial distribution as was shown in Section 1.1. 
11

 Note that Design C is equivalent to Design A when the following two conditions are satisfied: (1) there 

are a total of two groups under study (for example, one comparator group and one reference group) and (2) 

when curtailment is applied to the study (see Section 4.5 for a description of curtailment). 
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2.3: Comparison of Multiple Poisson Populations 

 

Thus far, we have discussed comparative Poisson designs in which only two populations 

are under study. Naturally, an extension of the comparative Poisson process to greater 

than two populations is of interest. Examples of studies comparing more than two 

populations in which events accrue according to Poisson processes are provided below. 

 Consider again the example of determining the effectiveness of a shield in 

protecting against radiation emitted by a substance. Suppose now that there are 𝐾 shields 

made from different types of material, and we are interested in comparing the 

effectiveness of these shields in relation to the reference situation (i.e. absence of a shield 

in front of the Geiger counter). Here, we are interested in comparing multiple shields (i.e. 

multiple comparators) to a single reference situation.  

Peng and Krishnamoorthy (2010) collect and present several examples of 

comparative Poisson processes with greater than two populations; they are as follows: 

Nelson, Wludyka, and Copeland (2005) suggests an example in which the arrival rates of 

patients to six urgent clinics run by a health maintenance organization are compared 

using samples of arrival counts from each clinic. Brown and Zhao (2002) describe a 

situation in which the average number of service request calls per day is compared among 

several call centers. Chiu and Wang (2009) consider comparison of the death rates of 

patients in four groups following heart valve replacement
12

. 

Two final examples come from Singh (1980), who suggests that 

…an air pollution research study might involve exposing the plant Tradescantia to 

several levels of polluted air samples and comparing counts of mutants from the 

polluted air samples with mutant counts from a control sample. In another application, 

                                                           
12

 See Peng and Krishnamoorthy (2010) for the references to Nelson, Wludyka, and Copeland (2005), 

Brown and Zhao (2002), and Chiu and Wang (2009). 
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a scientist may be interested in comparing the counts of surviving bacteria colonies in 

treated groups at several levels with those from the control. (page 1138) 

 

These examples indicate the need for comparative Poisson designs for several 

comparator groups (perhaps in relation to a single reference group). Researchers have 

proposed a variety of tests appropriate for this situation. Firstly, we consider the 

extension of Gail’s Designs A and B for testing directional hypotheses. It should be 

unsurprising that the multivariate test is based on the multivariate extension of the 

binomial distribution, that is, the multinomial distribution. Hsu (2010) provides a 

thorough treatment of these tests in the context of clinical trials which compare multiple 

treatment groups to a single control group. Alternatively, Suissa and Salmi (1989) 

provide test statistics based on unidirectional 𝑍 statistics for comparing several exposed 

groups to a single reference group and for comparing one exposed group to several 

reference groups. Finally, Singh (1980) implements a Bayesian framework to evaluate 

𝐻0: 𝜆0 = 𝜆1 = ⋯ = 𝜆𝑘 versus 𝐻0: 𝜆0 ≠ 𝜆𝑗 for at least one value of 𝑗, where 𝜆0 is the 

Poisson parameter of a control group and 𝜆1, … , 𝜆𝑘 are the Poisson parameters of 𝑘 

treatment groups. 

 If we wish to test the non-directional hypotheses 𝐻0: 𝜆1 = ⋯ = 𝜆𝑚 versus 

𝐻𝑎: 𝜆𝑖 ≠ 𝜆𝑗 for some 𝑖 ≠ 𝑗, then it can be shown that for 𝑌𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑖𝜆𝑖), the 

distribution of 𝑌1, … , 𝑌𝑚| ∑ 𝑌𝑖 = 𝑇
𝑚
𝑖=1  is multinomial with probability mass function 

𝑇!

𝑦1!⋯𝑦𝑚!
𝑝1
𝑦1⋯𝑝𝑚

𝑦𝑚 , where 𝑝𝑖 =
𝑛𝑖𝜆𝑖

∑ 𝑛𝑗𝜆𝑗
𝑚
𝑗=1

 (Peng and Krishnamoorthy, 2010). Thus, the 

exact conditional test of 𝐻0 versus 𝐻𝑎 can be conducted by calculating multinomial 

probabilities, and the test is UMPU (Suissa and Salmi, 1989). However, the most 

common test for comparing the underlying event rates among several Poisson 
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populations is based on the chi-squared distribution. Again using the notation of Peng and 

Krishnamoorthy, the test statistic 𝜒2 = ∑
𝑛𝑖(𝜆̂𝑖−𝜆̂)

2

𝜆̂

𝑚
𝑖=1  follows a chi-squared distribution 

with 𝑚 − 1 degrees of freedom as 𝑛𝑖 → ∞, where 𝜆̂𝑖 =
𝑌𝑖

𝑛𝑖
 and 𝜆̂ =

∑ 𝑌𝑖
𝑚
𝑖=1

∑ 𝑛𝑖
𝑚
𝑖=1

. Peng and 

Krishnamoorthy also propose a parametric bootstrap test and compare its results to both 

the exact conditional test based on the multinomial distribution and the approximate test 

based on the chi-squared distribution. Brown and Zhao (2002) have proposed a test based 

on Anscombe’s variance stabilizing transformation, though it is not applicable to the case 

of unequal sample sizes. 

Section 2.4: Multivariate Extension of Design C 

 

As described in Section 2.3, when we considered the multivariate extension of Designs A 

and B we obtained a test based on the multinomial distribution, the multivariate 

counterpart to the binomial distribution. Applying the same reasoning, we should expect 

that the multivariate extension of Design C should result in a test based on the negative 

multinomial distribution. Here we will explicitly derive the NMD from a comparative 

Poisson framework, as was alluded to in Section 1.5. To do so, we require the notation 

provided in Table 1 below and the preliminary results from Hsu (2010, pages 86-87) 

which follow. 
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Table 1: Notation 

𝐾 Number of comparator groups (does not include the reference group) 

𝑑𝐶 Number of events to observe in the reference group 

𝐷𝑘 Number of events in the 𝑘𝑡ℎ comparator group, 𝑘 = 1,2, … , 𝐾 

𝑁𝐶 , 𝑡 Number of person years in the reference group to reach 𝑑𝐶 events; 𝑡 is 

an observed value of 𝑁𝐶 

𝑁𝑇𝑘 Number of person years in the 𝑘𝑡ℎ comparator group when the study 

arm or entire study terminates, 𝑘 = 1,2, … , 𝐾 

𝑖𝐶 Incidence rate of events per person year in the reference group 

𝑖𝑘 Incidence rate of events per person year in the 𝑘𝑡ℎ comparator group, 

𝑘 = 1,2, … , 𝐾 

𝑟𝑘 = 𝑖𝑘/𝑖𝐶 Rate ratio of comparator group 𝑘 to the reference group, 𝑘 =
1,2, … , 𝐾 

𝜆𝐶 = 𝑖𝐶𝑁𝐶  Poisson intensity rate in the reference group for a given 𝑁𝐶 

𝜆𝑘 = 𝑖𝑘𝑁𝐶  Poisson intensity rate in the 𝑘𝑡ℎ comparator group for a given 𝑁𝐶 
Note: 𝑁𝑇𝑘 and 𝑟𝑘 will be introduced in Section 4. All other notation in Table 1 is introduced in Section 

2.4. 

 

Suppose there are 𝐾 comparator groups which we will compare to a single 

reference group. The incidence rate of events per person year
13

 for the 𝑘th
 comparator 

group is 𝑖𝑘, 𝑘 = 1,2, … , 𝐾, and the incidence rate of events per person year in the 

reference group is 𝑖𝐶. We will terminate the study once the number of events observed in 

the reference group reaches a pre-specified number 𝑑𝐶 and record the number of events 

that have occurred in each of the 𝐾 comparator groups by the time of study stoppage, 

denoted by 𝐷1, 𝐷2, … , 𝐷𝐾.  Event accrual in the reference group follows a Poisson 

distribution with parameter 𝜆𝐶 = 𝑖𝐶𝑁𝐶, where 𝑁𝐶 denotes the number of person years it 

takes the reference group to reach 𝑑𝐶 events. Since we do not know many person years it 

will take the reference group to accrue 𝑑𝐶 events (i.e. 𝑁𝐶 is a random variable), the 

duration of the study is unknown. However, we know that the distribution of 𝑁𝐶 is 

Gamma with parameters 𝑑𝐶 and 1/𝑖𝐶, conditional on the value of 𝑑𝐶 (i.e. 

                                                           
13

 Person years of follow-up is defined as the total amount of study-time contributed by all study 

participants. Here we have substituted the notion of “time to event occurrence” with that of “person years 

until event occurrence”, as person years represents a more natural measure of duration in the context of 

clinical trials, which will be our primary focus in Sections 4 and 5. 
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𝑁𝐶|𝑑𝐶~𝐺𝑎𝑚𝑚𝑎(𝑑𝐶 , 1/𝑖𝐶)). This can be understood by considering the number of person 

years until one event occurs in the reference group to have an Exponential distribution 

with parameter 1/𝑖𝐶 and applying the argument in Section 2.2 concerning the sum of 

Exponential random variables; a formal proof can be found in Appendix A
14

. Once the 

value of 𝑁𝐶 is known, the number of events that occur in each of the 𝐾 comparator 

groups follows a Poisson distribution with parameter 𝜆𝑘 = 𝑖𝑘𝑁𝐶 , 𝑘 = 1, … , 𝐾, and the 

distribution of 𝐷𝑘 no longer depends on 𝑑𝐶 for 𝑘 = 1,… , 𝐾 (i.e. 𝐷𝑘 only depends on the 

number of person years needed to obtain 𝑑𝐶 events in the reference group); as such, 

𝐷𝑘|𝑁𝐶~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑖𝑘𝑁𝐶) for 𝑘 = 1, … , 𝐾. So, we have 𝑃(𝐷𝑘 = 𝑑𝑘|𝑑𝐶 , 𝑁𝐶 = 𝑡) =

𝑃(𝐷𝑘 = 𝑑𝑘|𝑁𝐶 = 𝑡). Furthermore, conditional on 𝑁𝐶 = 𝑡, the 𝐷𝑘 are independent of one 

another. Hsu proves that the distribution of 𝐷1, … , 𝐷𝐾 conditional on 𝑑𝐶 is negative 

multinomial; the proof is reproduced below: 

𝑃(𝐷1 = 𝑑1, … , 𝐷𝐾 = 𝑑𝑘|𝑑𝐶) = ∫ 𝑃(𝐷1 = 𝑑1, … , 𝐷𝐾 = 𝑑𝑘, 𝑁𝐶 = 𝑡|𝑑𝐶)

∞

0

𝑑𝑡 

 

= ∫ 𝑃(𝐷1 = 𝑑1, … , 𝐷𝐾 = 𝑑𝑘|𝑑𝐶 , 𝑁𝐶 = 𝑡)𝑃(𝑁𝐶 = 𝑡|𝑑𝐶)

∞

0

𝑑𝑡 

 

= ∫ 𝑃(𝐷1 = 𝑑1, … , 𝐷𝐾 = 𝑑𝐾|𝑁𝐶 = 𝑡)𝑃(𝑁𝐶 = 𝑡|𝑑𝐶)𝑑𝑡

∞

0

 

 

= ∫ [∏𝑃(𝐷𝑘 = 𝑑𝑘|𝑁𝐶 = 𝑡)

𝐾

𝑘=1

]

∞

0

𝑃(𝑁𝐶 = 𝑡|𝑑𝐶)𝑑𝑡 

 

                                                           
14

 Note that the proof in Appendix A considers time intervals for event occurrence, but the notion of time in 

the proof may be readily substituted by that of person years in accordance with the terminology used 

throughout Section 2.4 and beyond in this dissertation. 
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= ∫ [∏
𝑒−𝑖𝑘𝑡(𝑖𝑘𝑡)

𝑑𝑘

𝑑𝑘!

𝐾

𝑘=1

]

∞

0

𝑖𝐶
𝑑𝐶

𝛤(𝑑𝐶)
𝑡𝑑𝐶−1𝑒−𝑖𝐶𝑡𝑑𝑡 

 

= ∫ [∏
𝑖𝑘
𝑑𝑘

𝑑𝑘!

𝐾

𝑘=1

]

∞

0

𝑒−𝑡(∑ 𝑖𝑘
𝐾
𝑘=1 )𝑡∑ 𝑑𝑘

𝐾
𝑘=1

𝑖𝐶
𝑑𝐶

𝛤(𝑑𝐶)
𝑡𝑑𝐶−1𝑒−𝑖𝐶𝑡𝑑𝑡 

 

= ∫ [∏
𝑖𝑘
𝑑𝑘

𝑑𝑘!

𝐾

𝑘=1

]

∞

0

𝑡𝑑𝐶+∑ 𝑑𝑘
𝐾
𝑘=1 −1𝑒−(𝑖𝐶+∑ 𝑖𝑘

𝐾
𝑘=1 )𝑡

𝑖𝐶
𝑑𝐶

𝛤(𝑑𝐶)
𝑑𝑡 

 

=
𝑖𝐶
𝑑𝐶

𝛤(𝑑𝐶)
[∏

𝑖𝑘
𝑑𝑘

𝑑𝑘!

𝐾

𝑘=1

]∫ 𝑡𝑑𝐶+∑ 𝑑𝑘
𝐾
𝑘=1 −1𝑒−(𝑖𝐶+∑ 𝑖𝑘

𝐾
𝑘=1 )𝑡𝑑𝑡

∞

0

 

 

=
𝑖𝐶
𝑑𝐶

𝛤(𝑑𝐶)
[∏

𝑖𝑘
𝑑𝑘

𝑑𝑘!

𝐾

𝑘=1

]
𝛤(𝑑𝐶 + ∑ 𝑑𝑘

𝐾
𝑘=1 )

(𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1 )𝑑𝐶+∑ 𝑑𝑘

𝐾
𝑘=1

 

 

= 𝛤 (𝑑𝐶 +∑𝑑𝑘

𝐾

𝑘=1

)

(
𝑖𝐶

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1

)
𝑑𝐶

𝛤(𝑑𝐶)
∏

(
𝑖𝑘

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1

)
𝑑𝑘

𝑑𝑘!

𝐾

𝑘=1

 

 

Thus, by Equation 1.1.2, we have 

 

𝐷1, 𝐷2, … , 𝐷𝐾|𝑑𝐶  ~  

𝑁𝑀(𝑑𝐶 ,
𝑖𝐶

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1

,
𝑖1

𝑖𝐶 +∑ 𝑖𝑘
𝐾
𝑘=1

,
𝑖2

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1

, … ,
𝑖𝐾

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1

) 
(2.4.1) 

 

In Section 2.2, we alluded to the fact that Design C may be preferred to Design B, 

as an appropriate choice of 𝑑𝐶 will always yield a critical region of sufficient power. 

There are also two primary reasons why Design C may be preferred to Design A. Firstly, 

the independence of the 𝐷𝑘 achieved by conditioning on 𝑁𝐶 greatly simplifies the 

necessary calculations for establishing testing procedures (see Sections 4 and 5); this 

contrasts the lack of independence under the multinomial testing paradigm when Design 

A is applied to studies of multiple populations. Secondly, when multiple comparator 

groups and a single reference group are evaluated under Design A, it is possible that one 
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of the comparator groups will be responsible for the majority of the total number of 

events observed (this may happen, for example, if the incidence rate of events in this 

comparator group is underestimated during study planning). Such a situation will limit 

the amount of information available for drawing conclusions about the remaining 

comparator groups in relation to the reference group. This limitation will not apply to the 

testing procedures under Design C which we propose in subsequent sections of this 

dissertation.  

In Sections 4 and 5, we will use the Design C framework and Equation 2.4.1 to 

design clinical trials in which multiple experimental treatments are compared to a single 

control treatment. The experimental treatment groups serve as the comparator groups 

discussed here in Section 2, and the control group similarly equates to the reference 

group. We will use the minimum and maximum of the 𝐷𝑘 to compare the experimental 

treatments to the control; as such, we next discuss the order statistics of the NMD in 

Section 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

 
 

SECTION 3: ORDER STATISTICS OF THE NEGATIVE MULTINOMIAL 

DISTRIBUTION 

 

3.1: Definition of the Order Statistics of the Negative Multinomial Distribution 

 

Consider a negative multinomial experiment in which there are 𝐾 + 1 possible outcomes 

denoted by 𝐸0, 𝐸1, … , 𝐸𝐾 which occur with probabilities 𝑝0, 𝑝1, … , 𝑝𝐾, respectively, and 

we conduct independent trials until outcome 𝐸0 (which we refer to as the “reference” 

outcome to distinguish it from the 𝐾 remaining “comparator” outcomes) occurs 𝑑𝐶 times. 

Let 𝑋𝑘 denote the number of trials that have resulted in outcome 𝐸𝑘, 𝑘 = 1,2, … , 𝐾, by the 

time the process terminates at 𝑑𝐶 occurrences of the reference outcome. Each 𝑋𝑘 takes a 

value in 0,1,2, …. If we arrange the 𝑋𝑘 in ascending order and relabel the ordered 

variables as 𝑋(1), 𝑋(2), … , 𝑋(𝐾), then we have defined the order statistics of the negative 

multinomial distribution
15

. For example, suppose we roll a fair die until we obtain five 

6’s (i.e. 𝑑𝐶 = 5), and during the course of these trials we observe eight 1’s, four 2’s, five 

3’s, ten 4’s, and seven 5’s. Then our order statistics would be 𝑋(1) = 4, 𝑋(2) = 5, 𝑋(3) =

7, 𝑋(4) = 8, and 𝑋(5) = 10. In the next two subsections, we will provide formulas to 

determine the distribution of the order statistics for a balanced negative multinomial 

distribution and consider the challenges in providing similar expressions for unbalanced 

negative multinomial distributions. 

3.2: Order Statistics of a Balanced Negative Multinomial Distribution 

 

To derive the distribution of the order statistics in a balanced NMD, we use the following 

theorem from Casella and Berger (2002, pages 227-228) concerning the order statistics of 

                                                           
15

 Notice that in our definition of the order statistics of the NMD we have excluded the fixed number of 

trials 𝑑𝐶  for which the reference outcome 𝐸0 is observed from consideration, and hence the number of order 

statistics in a 𝐾 + 1 outcome NMD is 𝐾. In Appendix B, we will extend the notion of the order statistics of 

the NMD to include the fixed value 𝑑𝐶 , and we will therefore consider a 𝐾 + 1 outcome NMD to have 

𝐾 + 1 order statistics. 
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discrete distributions: 

Theorem 1: Let 𝑋1, … , 𝑋𝑛 be a random sample from a discrete distribution with 𝑃(𝑋 =

𝑥𝑖) = 𝑝𝑖, where 𝑥1 < 𝑥2 < ⋯ are the possible values of 𝑋 in ascending order. Define 

𝑃0 = 0 

𝑃1 = 𝑝1 

𝑃2 = 𝑝1 + 𝑝2 

…
 

𝑃𝑖 = 𝑝1 + 𝑝2 +⋯+ 𝑝𝑖 = 𝑃(𝑋 ≤ 𝑥𝑖) 

…
 

Let 𝑋(1), … , 𝑋(𝑛) denote the order statistics from the sample. Then 

 

𝑃(𝑋(𝑗) ≤ 𝑥𝑖) =∑(
𝑛
𝑘
)

𝑛

𝑘=𝑗

𝑃𝑖
𝑘(1 − 𝑃𝑖)

𝑛−𝑘 

 

and 

 

𝑃(𝑋(𝑗) = 𝑥𝑖) =∑(
𝑛
𝑘
) [𝑃𝑖

𝑘(1 − 𝑃𝑖)
𝑛−𝑘 − 𝑃𝑖−1

𝑘 (1 − 𝑃𝑖−1)
𝑛−𝑘]

𝑛

𝑘=𝑗

 

 

We can apply this theorem in conjunction with the comparative Poisson formulation of 

the NMD presented in Section 2.4 to find the distribution of the order statistics of 

balanced negative multinomial distributions (i.e. when the parameters 𝑝0 = 𝑝1 = 𝑝2 =

⋯ = 𝑝𝐾 = 1/(𝐾 + 1) in a 𝐾 + 1 outcome NMD). The distribution must be balanced so 

that the random variables 𝑋1, … , 𝑋𝐾 denoting the number of trials that result in each of the 

𝐾 comparator outcomes are identically distributed in accordance with the random sample 

requirement in Theorem 1
16

. 

Suppose we wait to observe 𝑑𝐶 trials which result in the reference outcome in a 

𝐾 + 1 outcome NMD. Since 𝑋𝑘, 𝑘 = 1, … , 𝐾, takes a value in the set 0,1,2, …, per 

                                                           
16

 Independence of 𝑋1, … , 𝑋𝐾 follows from the fact that conditional on 𝑁𝐶 = 𝑡, the 𝑋𝑘 are independent of 

one another, a fact that will be utilized in subsequent calculations; this property was discussed in Section 

2.4. 
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Theorem 1 we have 𝑥1 = 0, 𝑥2 = 1,… , 𝑥𝑖 = 𝑖 − 1,…. From the comparative Poisson 

formulation of the NMD, we know that 𝑃(𝑋𝑘 ≤ 𝑥𝑘|𝑡) = ∑ 𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑥𝑘
𝑠=0  for 𝑘 =

1,2, … , 𝐾 (as conditional on 𝑁𝐶 = 𝑡, the number of trials resulting in each of the 𝐾 

comparator outcomes independently follows a Poisson distribution with parameter 

𝜆𝑘 = 𝑖𝑘𝑡 = 𝑖𝐶𝑡 in a balanced distribution). As 𝑃𝑖 = 𝑃(𝑋 ≤ 𝑥𝑖) for 𝑖 = 1,2, … in Theorem 

1, we thus have 𝑃𝑖 = ∑ 𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑥𝑖=𝑖−1
𝑠=0 . Hence, for the balanced negative multinomial 

distribution we may write 

𝑃(𝑋(𝑗) ≤ 𝑥𝑖|𝑡) =∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

𝑃𝑖
𝑙(1 − 𝑃𝑖)

𝐾−𝑙

=∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

[∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑖−1

𝑠=0

]

𝑙

[1 −∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑖−1

𝑠=0

]

𝐾−𝑙

 

 

⇒ 𝑃(𝑋(𝑗) ≤ 𝑥𝑖) = 

∫
(𝑖𝐶𝑡)

𝑑𝐶𝑡−1𝑒−𝑖𝐶𝑡

𝛤(𝑑𝐶)

∞

0

∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

[∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑖−1

𝑠=0

]

𝑙

[1 −∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑖−1

𝑠=0

]

𝐾−𝑙

𝑑𝑡 

 

where we have applied the fact that 𝑡~𝐺𝑎𝑚𝑚𝑎(𝑑𝐶 , 1/𝑖𝐶). We will now show that this 

integral is invariant with respect to the value of 𝑖𝐶, i.e. we will prove 

∫
(𝑖𝐶𝑡)

𝑑𝐶𝑡−1𝑒−𝑖𝐶𝑡

𝛤(𝑑𝐶)

∞

0

∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

[∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑖−1

𝑠=0

]

𝑙

[1 −∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑖−1

𝑠=0

]

𝐾−𝑙

𝑑𝑡 

 

= ∫
𝑥𝑑𝐶−1𝑒−𝑥

𝛤(𝑑𝐶)

∞

0

∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

[∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖−1

𝑠=0

]

𝑙

[1 −∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖−1

𝑠=0

]

𝐾−𝑙

𝑑𝑥 

 

To prove the equality, we make the following change of variables: 
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𝑥 = 𝑖𝐶𝑡 ⇒ 𝑡 =
𝑥

𝑖𝐶
 

 

𝑑𝑥 = 𝑖𝐶𝑑𝑡 ⇒ 𝑑𝑡 =
𝑑𝑥

𝑖𝐶
 

(3.2.1) 

 

Then, 

 

∫
(𝑖𝐶𝑡)

𝑑𝐶𝑡−1𝑒−𝑖𝐶𝑡

𝛤(𝑑𝐶)

∞

0

∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

[∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑖−1

𝑠=0

]

𝑙

[1 −∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑖−1

𝑠=0

]

𝐾−𝑙

𝑑𝑡 

 

= ∫
𝑥𝑑𝐶 (

𝑖𝐶
𝑥 ) 𝑒

−𝑥

𝛤(𝑑𝐶)

∞

0

∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

[∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖−1

𝑠=0

]

𝑙

[1 −∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖−1

𝑠=0

]

𝐾−𝑙

𝑑𝑥

𝑖𝐶
  

 

⇒ 𝑃(𝑋(𝑗) ≤ 𝑥𝑖 = 𝑖 − 1)

= ∫
𝑥𝑑𝐶−1𝑒−𝑥

𝛤(𝑑𝐶)

∞

0

∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

[∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖−1

𝑠=0

]

𝑙

[1 −∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖−1

𝑠=0

]

𝐾−𝑙

𝑑𝑥 
(3.2.2) 

 

Thus, the integral is invariant to the value of 𝑖𝐶. The formula for 𝑃(𝑋(𝑗) = 𝑥𝑖) follows 

directly as in Theorem 1 (i.e. by writing 𝑃(𝑋(𝑗) ≤ 𝑥𝑖) − 𝑃(𝑋(𝑗) ≤ 𝑥𝑖−1) and simplifying 

the resulting expression). 

We have written functions in R to compute 𝑃(𝑋(𝑗) ≤ 𝑖) and 𝑃(𝑋(𝑗) = 𝑖) for the 

balanced NMD. The function balanced_order_less takes the arguments 𝑑𝑐 (number of 

trials resulting in the reference outcome to be observed), 𝑗 (denotes the j
th

 order statistic), 

𝑖 (takes a value in 0,1,2, …), and 𝐾 (number of comparator outcomes in the experiment, 

i.e. not including the reference outcome). balanced_order_less returns 𝑃(𝑋(𝑗) ≤ 𝑖). The 

function balanced_order_equal takes the same arguments as balanced_order_less and 

returns 𝑃(𝑋(𝑗) = 𝑖). For example, suppose we have a balanced distribution with 𝐾 = 5 

comparator outcomes and we wait to observe 𝑑𝐶 = 10 reference outcomes (i.e. 𝐾 + 1 =
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6 total possible outcomes). Suppose we wish to determine the probability that the fourth 

order statistic (i.e. 𝑗 = 4) is less than or equal to 4. balanced_order_less(10,4,4,5) tells us 

that this probability is 0.01403157. The probability that 𝑋(4) = 4 is 0.01031401 

according to balanced_order_equal(10,4,4,5). Full code for balanced_order_less and 

balanced_order_equal can be found in Appendix E. 

3.3: Order Statistics of an Unbalanced Negative Multinomial Distribution 

 

When the NMD is unbalanced, we cannot apply Theorem 1 in a simple fashion to derive 

formulas for the order statistics of the distribution due to the lack of identical variables. 

However, it is simple to use simulation to calculate the desired probabilities. The R 

function unbalanced_order takes the arguments probs (vector of length 𝐾, where 𝐾 is the 

number of comparator outcomes in the NMD, containing the probabilities of a trial 

resulting in each comparator outcome, i.e. not including the reference outcome), 𝑑𝑐 

(number of trials resulting in the reference outcome to be observed), 𝑗 (denotes the j
th

 

order statistic), 𝑖 (takes a value in 0,1,2,…), and sims (number of simulations used to 

estimate the probability). unbalanced_order is based on the R package ‘MGLM’ written 

by Zhang and Zhou (2017) and returns an estimate of 𝑃(𝑋(𝑗) ≤ 𝑖) for an unbalanced 

negative multinomial distribution based on a user-selected number of simulations. For 

example, if we want to find the probability that the third order statistic is less than or 

equal to 4 when there are five comparator outcomes with underlying probabilities 0.1, 

0.1, 0.3, 0.2, 0.1 (so the probability the reference outcome is observed in a trial is 0.2), 

and we conduct trials until we observe 10 reference outcomes, then 

unbalanced_order(c(.1,.1,.3,.2,.1),10,3,4,1000000) returns a probability of 0.218617 

based on 1,000,000 simulations. To compute 𝑃(𝑋(𝑗) = 𝑖), simply compute 𝑃(𝑋(𝑗) ≤ 𝑖) −
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𝑃(𝑋(𝑗) ≤ 𝑖 − 1) via two applications of unbalanced_order. Full code for 

unbalanced_order can be found in Appendix E. 
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SECTION 4: APPLICATION OF THE NEGATIVE MULTINOMIAL 

DISTRIBUTION TO COMPARATIVE POISSON SUPERIORITY CLINICAL 

TRIALS OF MULTIPLE EXPERIMENTAL TREATMENTS VERSUS A SINGLE 

CONTROL TREATMENT 

 

4.1: Objectives 

 

Section 2 provided several examples in which comparison of multiple Poisson rates, 

perhaps in relation to that of a single reference group, was of interest. Hsu (2010) proved 

that under Design C, testing of the rates can be based on a negative multinomial 

distribution. In particular, if we let 𝐷1, … , 𝐷𝐾 represent the number of events observed in 

𝐾 comparator groups, and we wait until 𝑑𝐶 events have been observed in a chosen 

reference group to terminate the study, then the conditional distribution 𝐷1, 𝐷2, … , 𝐷𝐾|𝑑𝐶 

is negative multinomial with parameters 𝑑𝐶 ,
𝑖𝐶

𝑖𝐶+∑ 𝑖𝑘
𝐾
𝑘=1

,
𝑖1

𝑖𝐶+∑ 𝑖𝑘
𝐾
𝑘=1

,
𝑖2

𝑖𝐶+∑ 𝑖𝑘
𝐾
𝑘=1

, … ,
𝑖𝐾

𝑖𝐶+∑ 𝑖𝑘
𝐾
𝑘=1

 

when the event accrual in each comparator population is conditionally Poisson distributed 

with parameter 𝑖𝑘𝑁𝐶 and 𝑁𝐶, the number of person years to acquire 𝑑𝐶 events in the 

reference group, follows a Gamma distribution with parameters 𝑑𝐶 and 1/𝑖𝐶. In this 

section, we will consider the application of this result to clinical trials in which 𝐾 

experimental or new
17

 treatment groups (𝐾 ≥ 1) are compared to a single control 

treatment group. Hence, 𝐷1, … , 𝐷𝐾 and 𝑖1, … , 𝑖𝐾 will now represent the number of events 

(for example, the number of cases of disease) and the event incidence rates per person 

year in the 𝐾 experimental treatment groups, and 𝑑𝐶 and 𝑖𝐶 will represent the 

corresponding values for the control group. The investigation of several treatments 

typically occurs early in the drug process (i.e. during drug discovery or phase 1 trials) 

when several similar molecular compounds or varying doses of one experimental agent 

                                                           
17

 We will use the terms “experimental treatment” and “new treatment” interchangeably throughout this 

dissertation. 
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are compared for efficacy and/or safety; however, it may also occur during late-phase 

trials when, for example, several new approved treatments are compared to either no 

treatment or to a standard of care treatment for efficacy and/or safety. 

The structure of this section is as follows: Section 4.2 presents global hypotheses 

for testing the superiority of multiple experimental treatments in comparison to a single 

control treatment using Design C methodology, provides definitions of Type I error and 

power based on these hypotheses, and proposes an appropriate test procedure. Section 4.3 

illustrates the implementation of this test via application to a real-world study of 

influenza vaccines. Section 4.4 compares the design parameters obtained under the exact 

Design C approach to those resulting from using the Bonferroni method for multiple 

comparisons. Section 4.5 discusses the differences between an uncurtailed and curtailed 

trial in the context of Design C, and Section 4.6 concludes with estimation of the 

expected number of person years of follow-up until trial termination in an uncurtailed and 

curtailed trial. Many of these results will make use of the comparative Poisson 

formulation of the NMD and the minimum and maximum order statistics of the NMD, 

which were presented in Sections 2 and 3 of this dissertation, respectively. 

4.2: Global Hypotheses, Test Statistic, and Definitions of Power 

 

In large-scale controlled clinical trials there are usually two objectives: 

 

1. Efficacy: Prove the experimental treatment(s) is superior in efficacy to the control 

treatment 

2. Safety: Prove the experimental treatment(s) is safe for consumption (i.e. does not 

cause too many adverse events in comparison to the control treatment) 
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This section focuses on clinical trials in which the primary objective is proving the 

superior efficacy of one or more experimental treatments compared to a single control 

that may be either a placebo or a current standard of care treatment; testing for safety of 

experimental treatments will be addressed in Section 5. Our results will apply very 

naturally to the study of vaccines where the outcome of interest is the occurrence of 

disease or an adverse reaction and a large number of study participants are observed. 

Vaccines are traditionally referred to as interventions as opposed to treatments, but in this 

dissertation the term “treatment” will generally refer to any agent which improves the 

medical outcome under study, regardless of whether it is of pharmaceutical, biologic, or 

non-chemical origin. We will restrict our attention throughout to the case of equal 

allocation of study participants to the 𝐾 experimental treatment arms and control arm. 

That is, the allocation ratio of 𝑇𝑥1: 𝑇𝑥2: … : 𝑇𝑥𝐾: 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 will be 1: 1:… : 1: 1. 

Our objective will be to determine whether sufficient statistical evidence exists 

that at least one of the experimental treatments is superior to the control treatment. In a 

comparative Poisson trial designed to demonstrate superiority, the outcome observed is 

the number of events (e.g. cases of disease) that occur in each group under study. Hence, 

an experimental treatment will be found superior to the control treatment if the number of 

events that occur in the experimental treatment group is significantly less than the 

number of events observed in the control group. Based on these considerations, our 

global null and alternative hypotheses are 

 𝐻0: 𝑖1 = 𝑖2 = ⋯ = 𝑖𝐾 = 𝑖𝐶  𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝑖1 = 𝑟1𝑖𝐶 , 𝑖2 = 𝑟2𝑖𝐶 , … , 𝑖𝐾 = 𝑟𝐾𝑖𝐶 

where all 𝑟𝑘 ≤ 1 and at least one of the 𝑟𝑘 is strictly less than 1 
(4.2.1) 
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The values 𝑟1, … , 𝑟𝐾 will be referred to as the “rate ratios” of the experimental treatment 

groups to the control group and represent the amount by which each of the 𝐾 

experimental treatments reduces the event incidence relative to the control treatment. 

 We next present definitions of Type I error and power for our test of the 

hypotheses in Equation 4.2.1. A Type I error (rejecting the null hypothesis when the null 

hypothesis is true) occurs when we declare at least one experimental treatment to be 

statistically superior to the control, when in fact none of the experimental treatments are 

superior to the control. To illustrate, consider a study in which three experimental 

treatments, denoted by A, B, and C, are compared to a single control treatment. If none of 

A, B, and C are superior to the control, then the probability that at least one experimental 

treatment is falsely declared superior to the control is the probability that A and/or B 

and/or C is declared superior to the control. The global Type I error incurred for the 

hypotheses in Equation 4.2.1 will be termed “overall Type I error” and will be denoted by 

𝛼𝑜𝑣𝑟
18

. 

A Type II error (accepting the null hypothesis when the null hypothesis is false) 

corresponds to failing to declare any experimental treatment superior to the control, when 

                                                           
18

 Note that if one or more of the experimental treatments are truly superior to the control, then it is not 

possible to commit a global Type I error as defined above. However, consider again the example of 

treatments A, B, and C and suppose that A and B are truly superior to the control while C is not. If we 

reject the null hypothesis but falsely conclude that only treatment C is superior and thus is solely 

responsible for the rejection, then though a Type I error is not made (since A and B are truly superior to the 

control and thus the global null hypothesis should be rejected), we have incorrectly declared treatment C to 

be superior, and hence have made a Type I error if treatment C is considered on an individual basis (i.e. 

externally of the global testing framework). We have also made individual Type II errors on treatments A 

and B as we incorrectly failed to find them superior. This example illustrates that in testing the global 

hypotheses in Equation 4.2.1, both Type I and Type II errors can be made when the experimental 

treatments are considered individually. It may be of interest to define a Type I error when only a proper 

subset, say 𝛿 < 𝐾, of the experimental treatments are not superior to the control. We call this “sub-Type I 

error” and define it to be the probability that at least one of the 𝛿 truly non-superior experimental 

treatments are incorrectly declared superior to the control. It is clear that the probability of a sub-Type I 

error is less than the probability of an overall Type I error as there are fewer non-superior treatments which 

can be incorrectly declared superior to the control. 
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in fact one or more experimental treatments are statistically superior to the control. Power 

is the probability that the null hypothesis is rejected when it is in fact false, and hence 

power is equal to 1 − 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟). We will let 𝛽𝑇𝑘 represent making a Type II 

error on the 𝑘𝑡ℎ individual experimental treatment, 𝑘 = 1,2, … , 𝐾19. We define 

“pointwise power” to be the probability that an experimental treatment which has a given 

rate ratio 𝑟 will be found to be superior to the control. Again, consider a study in which 

three experimental treatments, A, B, and C, are compared to a single control. Pointwise 

power answers the following question: if A is truly superior to the control with a rate 

ratio of 𝑟 under the alternative hypothesis in Equation 4.2.1, then what is the probability 

that it will be found to be superior (and similarly for treatments B and C)? Pointwise 

power is related to the individual Type II errors via 

𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 1 − 𝑃(𝛽𝑇𝑘) 

 

To develop a test for the hypotheses in Equation 4.2.1 using the Design C 

framework, we need to consider the practical implications of the definitions of Type I and 

Type II error given above. In clinical trials where the primary objective is to establish 

superiority of one or more new treatments, the permissible Type I error is usually fixed 

by a regulatory agency, as a Type I error corresponds to consumers’ risk (since it 

corresponds to the probability that one or more experimental treatments are incorrectly 

declared superior to the control), and the trial is designed to satisfy a desired level of 

power as selected by the researcher. A Type II error corresponds to producer’s risk, as it 

corresponds to failing to find a superior experimental treatment when one or more are in 

                                                           
19

 𝛽𝑇𝑘
𝐶  will denote the complement of 𝛽𝑇𝑘. 



40 
 

 
 

fact superior to the control. Our test will, therefore, be designed to control for a specified 

one-sided overall Type I error and achieve a desired level of pointwise power. 

The minimum number of events among the 𝐾 experimental treatment groups is a 

natural test statistic for evaluating the hypotheses in Equation 4.2.1. That is, we will 

reject the null hypothesis of no difference in efficacy between any of the experimental 

treatments and the control treatment (in favor of the alternative hypothesis of at least one 

experimental treatment being superior to the control) if the minimum number of events 

that occur among the 𝐾 experimental treatment groups is adequately small. 

To determine the Type I error for our test, we need to determine the probability 

that we will reject the null hypothesis (i.e. find the minimum number of events among the 

experimental treatment groups to be sufficiently small, say less than or equal to a value 

𝑚) assuming that the null hypothesis in Equation 4.2.1 is in fact true
20

. Under the null 

hypothesis, we have a balanced negative multinomial distribution since the event 

incidence rate is equal to the common value 𝑖𝐶 in all of the groups under study
21

. Hence, 

to compute 𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) under the null hypothesis, we could utilize the 

formula for the order statistics of a balanced NMD provided by Equation 3.2.2 by setting 

the index 𝑗 equal to 1. However, knowing that conditional on 𝑁𝐶 = 𝑡, the number of 

person years it takes the control group to reach 𝑑𝐶 events, the 𝐷𝑘 are independent of one 

another and that the distribution of 𝑁𝐶 is 𝐺𝑎𝑚𝑚𝑎 (𝑑𝐶 ,
1

𝑖𝐶
), it is simple to calculate the 

result directly as follows: 

𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚|𝑡) = 1 − 𝑃(min(𝐷1, … , 𝐷𝐾) > 𝑚|𝑡) 

                                                           
20

 Appendix C provides a proof that our testing procedure is conservative with respect to Type I error when 

one or more of the experimental treatments are inferior to the control under the null hypothesis. 
21

 Substituting 𝑖𝐶  for 𝑖1, 𝑖2, … , 𝑖𝑘 in Equation 2.4.1 readily shows that the distribution is balanced under the 

null. 
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= 1 − [𝑃(𝐷1 > 𝑚|𝑡)⋯𝑃(𝐷𝐾 > 𝑚|𝑡)] 
 

= 1 − {[1 − 𝑃(𝐷1 ≤ 𝑚|𝑡)]⋯ [1 − 𝑃(𝐷𝐾 ≤ 𝑚|𝑡)]} 
 

= 1 − [1 − 𝑃(𝐷1 ≤ 𝑚|𝑡)]
𝐾 = 1 − [1 −∑𝑒−𝑖𝐶𝑡

(𝑖𝐶𝑡)
𝑠

𝑠!

𝑚

𝑠=0

]

𝐾

 

 

⇒ 𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) = ∫ 𝑓(𝑡)
∞

0

{1 − [1 −∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]

𝐾

}𝑑𝑡 

 

= ∫ 𝑓(𝑡)𝑑𝑡
∞

0

−∫ 𝑓(𝑡)
∞

0

[1 −∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]

𝐾

𝑑𝑡 

 

= 1 −∫
(𝑖𝐶𝑡)

𝑑𝐶𝑡−1𝑒−𝑖𝐶𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]

𝐾

𝑑𝑡 

 

Via the same change of variables as in Equation 3.2.1, it can be shown that the integral 

above is invariant to the value of 𝑖𝐶; in future computations, we will omit mention of this 

change of variables. Consequently, we have 

 

𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) = 1 − ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑡
𝑡𝑠

𝑠!

𝑚

𝑠=0

]

𝐾

𝑑𝑡 (4.2.2) 

 

Thus, to conduct a trial with a specified one-sided overall Type I error of 𝛼𝑜𝑣𝑟 given the 

value of 𝑑𝐶, we must find the critical value 𝑚 such that Equation 4.2.2 is as close to 𝛼𝑜𝑣𝑟 

as possible without exceeding this value
22

. Due to the discrete nature of the test statistic, 

it is usually not possible to exactly obtain the specified Type I error. Rather, the nominal 

Type I error will generally exceed the true Type I error achieved. 

                                                           
22

 This assumes that such a value of 𝑚 exists given the value of 𝑑𝐶 . For small values of 𝑑𝐶 , taking 𝑚 = 0 

may exceed the nominal Type I error, which also implies that values of 𝑚 greater than 0 will exceed the 

nominal Type I error as Equation 4.2.2 is clearly an increasing function in 𝑚. 
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To compute the pointwise power for our test, we must determine the probability 

that the number of events 𝐷𝑘 in a given experimental treatment group is small enough 

assuming that the incidence rate of events in the experimental treatment group is 𝑟𝑘 times 

as great as that in the control group. The computation is as follows: 

𝑃(𝐷𝑘 ≤ 𝑚|𝑡) =∑𝑒−𝑟𝑘𝑖𝐶𝑡
(𝑟𝑘𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

 

 

⇒ 𝑃(𝐷𝑘 ≤ 𝑚) = ∫ 𝑓(𝑡)
∞

0

[∑𝑒−𝑟𝑘𝑖𝐶𝑡
(𝑟𝑘𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡 

 

= ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[∑𝑒−𝑟𝑘𝑡
(𝑟𝑘𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡 (4.2.3) 

 

= ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[𝑒−𝑟𝑘𝑡
(𝑟𝑘𝑡)

0

0!
+ 𝑒−𝑟𝑘𝑡

(𝑟𝑘𝑡)
1

1!
+ 𝑒−𝑟𝑘𝑡

(𝑟𝑘𝑡)
2

2!
+ ⋯+ 𝑒−𝑟𝑘𝑡

(𝑟𝑘𝑡)
𝑚

𝑚!
] 𝑑𝑡 

 

= ∫
𝑟𝑘
0𝑡𝑑𝐶+0−1𝑒−𝑡(1+𝑟𝑘)

0! 𝛤(𝑑𝐶)

∞

0

𝑑𝑡 + ∫
𝑟𝑘
1𝑡𝑑𝐶+1−1𝑒−𝑡(1+𝑟𝑘)

1! 𝛤(𝑑𝐶)

∞

0

𝑑𝑡 + ⋯

+∫
𝑟𝑘
𝑚𝑡𝑑𝐶+𝑚−1𝑒−𝑡(1+𝑟𝑘)

𝑚!𝛤(𝑑𝐶)

∞

0

𝑑𝑡 

 

=∑
𝑟𝑘
𝑧

𝑧! 𝛤(𝑑𝐶)

𝑚

𝑧=0

∫ 𝑡𝑑𝑐+𝑧−1𝑒
−𝑡/(

1
1+𝑟𝑘

)
∞

0

𝑑𝑡 =∑
𝑟𝑘
𝑧

𝑧! 𝛤(𝑑𝐶)

𝑚

𝑧=0

𝛤(𝑑𝐶 + 𝑧) (
1

1 + 𝑟𝑘
)
𝑑𝑐+𝑧

 

 

=∑(
𝑑𝑐 + 𝑧 − 1

𝑧
)

𝑚

𝑧=0

(
1

1 + 𝑟𝑘
)
𝑑𝐶

(1 −
1

1 + 𝑟𝑘
)
𝑧

 (4.2.3*) 

 

Equation 4.2.3 coincides with our definition of pointwise power as it clearly calculates 

𝑃(𝛽𝑇𝑘
𝐶 ) = 1 − 𝑃(𝛽𝑇𝑘) for the 𝑘𝑡ℎ experimental treatment group

23
. Thus, we can use this 

                                                           
23

 As pointwise power equates to 𝑃(𝐷𝑘 ≤ 𝑚), we could have used the fact that the marginal distribution of 

the random variable 𝐷𝑘 is negative binomial with parameters 𝑑𝐶  and 
𝑝0

𝑝0+𝑝𝑘
=

1

1+𝑟𝑘
. Equation 4.2.3* is then 

immediate; however, the form of equation 4.2.3 is appealing as it is consistent with the form of additional 

equations to be derived in Sections 4 and 5. 
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formula to find the value of 𝑚 needed to achieve a desired pointwise power given the 

value of 𝑑𝐶24. We find the value of 𝑚 such that the resulting pointwise power is greater 

than or equal to the desired power. Once again, these values will generally not coincide 

due to the discreteness of the underlying distribution. 

We will now demonstrate how to design a clinical trial under Design C based on 

the above results. To design a trial in which both a specified one-sided overall Type I 

error 𝛼𝑜𝑣𝑟 and pointwise power are satisfied, we must find the smallest value of 𝑑𝑐 and 

corresponding critical value 𝑚 such that 𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) ≤ 𝛼𝑜𝑣𝑟 under the null 

hypothesis in Equation 4.2.1 and 𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) ≥ 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟 for a 

given value of the rate ratio 𝑟 (i.e. we must find the smallest values of 𝑑𝐶 and 𝑚 which 

simultaneously satisfy Equations 4.2.2 and 4.2.3 for given values of 𝛼𝑜𝑣𝑟 and pointwise 

power)
25

. To accomplish this objective, the function Des_Sup was written in R. Des_Sup 

takes the arguments 𝐾 (number of experimental treatment groups, i.e. not including the 

control group), alpha (nominal one-sided overall Type I error at which the test of 

hypothesis is to be conducted), r (estimate of the rate ratio of the experimental treatment 

group to the control group which we wish to detect), and 𝑝𝑤𝑟 (minimum desired 

pointwise power of the study). Des_Sup returns the number of events 𝑑𝐶 to be observed 

in the control group, the critical value 𝑚 for the hypothesis test, the true overall Type I 

error achieved, and the true pointwise power achieved (full code for Des_Sup can be 

                                                           
24

 Since Equation 4.2.3 is an increasing function in 𝑚, we can always find an appropriate value of 𝑚 to 

satisfy the desired pointwise power for a given value of 𝑑𝐶 . However, for a given value of 𝑑𝐶  it may not be 

possible to simultaneously satisfy a specified Type I error and pointwise power. We will illustrate how to 

calculate 𝑑𝐶  and 𝑚 to simultaneously satisfy a desired Type I error and pointwise power in the main text. 
25

 Though other combinations of 𝑑𝐶  and 𝑚 will also satisfy the desired Type I error and pointwise power, 

choosing the smallest such 𝑑𝐶  and associated 𝑚 results in the smallest expected number of person years of 

follow-up until trial termination. The expected number of person years until trial termination will be 

discussed in detail in Sections 4.5 and 4.6. 
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found in Appendix E). For example, suppose we have four new treatments to be 

compared to a single control with one-sided overall Type I error equal to 0.05 and with 

pointwise power 0.9, and we anticipate the event incidence in a given new treatment 

group to be 20% that of the event incidence in the control group. Then, 

Des_Sup(4,.05,.2,.9) returns 

The number of control group events dc is 18 

The critical value m is 6 

The true overall Type I error is 0.03944082 

The true pointwise power is 0.9088288 

 

Hence, the superiority trial will be designed to proceed until 18 events are observed in the 

control group, and the global null hypothesis will be rejected if the smallest number of 

events among the four experimental treatment groups is less than or equal to the critical 

value of 6. Due to the discrete nature of the underlying probability distribution, the true 

overall Type I error is 0.03944082, which is less than the nominal value of 0.05. Also, for 

the same reason, the true pointwise power achieved is 0.9088288, which is larger than the 

specified desired power of 0.9. 

The 𝑝-value (i.e. the smallest significance level for which the test statistic falls in 

the rejection region
26

) for the test of treatment superiority can be found using the R 

function Prob, which is called by the Des_Sup routine. Prob takes the arguments 𝑑𝐶 

(number of control group events to be observed), 𝑚 (an integral value), and 𝐾 (number of 

experimental treatment groups) and returns 𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) assuming that the 

null hypothesis is true. Returning to the above example in which the trial continues until 

18 events are observed in the control group and the critical value is 6, suppose that the 

actual minimum number of events observed among the four experimental treatment 

                                                           
26

 See page 63 of Lehmann and Romano (2005) for additional details regarding the 𝑝-value for a hypothesis 

test. 
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groups is 3. Then the 𝑝-value for the trial is 𝑃(min(𝐷1, … , 𝐷4) ≤ 3) under the null 

hypothesis, and Prob(18,3,4) yields the value 0.002885246. As the 𝑝-value is less than 

the specified nominal significance level of 0.05, we would reject the null hypothesis, 

which is, of course, the same decision that would be made using the critical value 

approach (i.e. rejecting the null hypothesis since the observed minimum of 3 events is 

less than or equal to the critical value of 𝑚 = 6). 

The number of control group events 𝑑𝐶, critical value 𝑚, true one-sided overall 

Type I error achieved, and true pointwise power achieved in a superiority trial conducted 

under Design C are presented in columns 2 and 3 of Table 2 below for each combination 

of nominal 𝛼𝑜𝑣𝑟 = 0.05, 0.025, 0.01, 0.001, nominal pointwise power = 0.9, 0.8, 

𝐾 = 1, 2, 3, 4, 5, and rate ratio 𝑟 = 0.1, 0.2, 0.5. 
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Table 2: Number of control group events 𝑑𝐶, critical value 𝑚, true one-sided overall 

Type I error, true pointwise power, and expected person years until trial termination in a 

superiority trial conducted under Design C for each combination of nominal 𝛼𝑜𝑣𝑟 =
0.05, 0.025, 0.01, 0.001, nominal pointwise power = 0.9, 0.8, 𝐾 = 1, 2, 3, 4, 5, and rate 

ratio 𝑟 = 0.1, 0.2, 0.5 

 

 

𝛼𝑜𝑣𝑟 = 0.05, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.9 
 

𝑟 = 0.1 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 9 

2 

0.03271484 

0.9288088 

5.89632 

(3.269624) 

17.53129 

(5.918257) 

17.53129 

(5.918257) 

18 

(6) 

9 

2 

0.03271484 

0.9288088 

2 10 

2 

0.03630554 

0.9112841 

9.817874 

(3.936484) 

22.34993 

(6.49316) 

29.35211 

(9.022392) 

30 

(9.4868) 

10 

2 

0.01928711 

0.9112841 

3 12 

3 

0.04708474 

0.9587652 

17.57756 

(5.000736) 

31.65715 

(7.405265) 

47.59235 

(13.39679) 

48 

(13.8564) 

13 

3 

0.01063538 

0.948863 

4 13 

3 

0.03753006 

0.948863 

22.0497 

(5.478836) 

37.54096 

(7.961629) 

64.15335 

(17.33056) 

65 

(18.0278) 

13 

3 

0.01063538 

0.948863 

5 13 

3 

0.04528845 

0.948863 

26.38609 

(5.885261) 

41.50735 

(8.185389) 

76.89814 

(20.55166) 

78 

(21.6333) 

14 

3 

0.006362915 

0.9377837 

 

 

 

 
𝑟 = 0.2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 13 

5 

0.04812622 

0.9347349 

11.83331 

(4.610837) 

25.50253 

(6.988482) 

25.50253 

(6.988482) 

26 

(7.2111) 

13 

5 

0.04812622 

0.9347349 

2 16 

6 

0.04850356 

0.9394989 

22.27046 

(5.82601) 

38.46302 

(8.201388) 

47.49208 

(11.47404) 

48 

(12) 

17 

6 

0.01734483 

0.9250825 

3 17 

6 

0.04615454 

0.9250825 

30.10172 

(6.512108) 

47.31761 

(8.87564) 

67.07225 

(15.59782) 

68 

(16.4924) 

18 

6 

0.01132792 

0.9088288 

4 18 

6 

0.03944082 

0.9088288 

37.71551 

(7.109988) 

56.12341 

(9.426021) 

88.3142 

(19.65142) 

90 

(21.2132) 

18 

6 

0.01132792 

0.9088288 

5 18 

6 

0.04744566 

0.9088288 

45.10579 

(7.625637) 

63.15559 

(9.825743) 

106.1196 

(23.45096) 

108 

(25.4558) 

20 

7 

0.009578645 

0.9322597 

 

 

 

 
𝑟 = 0.5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 47 

31 

0.04439121 

0.9053749 

63.61572 

(10.83905) 

92.91109 

(12.93874) 

92.91109 

(12.93874) 

94 

(13.7113) 

47 

31 

0.04439121 

0.9053749 

2 56 

36 

0.04321293 

0.9002963 

114.055 

(13.1486) 

147.6554 

(15.37539) 

166.6652 

(20.91647) 

168 

(22.4499) 

56 

36 

0.02350578 

0.9002963 

3 61 

39 

0.04598938 

0.9033769 

165.0625 

(14.98616) 

200.6055 

(17.3534) 

242.0524 

(29.04706) 

244 

(31.2410) 

63 

40 

0.01484111 

0.9001535 

4 63 

40 

0.04951939 

0.9001535 

211.3623 

(16.46559) 

247.5616 

(18.70317) 

312.4537 

(36.45178) 

315 

(39.6863) 

68 

43 

0.01114898 

0.9035303 

5 68 

43 

0.04544912 

0.9035303 

271.5625 

(18.35556) 

310.6529 

(20.55863) 

405.0154 

(45.42605) 

408 

(49.4773) 

70 

44 

0.009405374 

0.9006217 

 

 
 



47 
 

 
 

𝛼𝑜𝑣𝑟 = 0.05, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.8 
 

𝑟 = 0.1 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 7 

1 

0.03515625 

0.8397133 

3.893692 

(2.62485) 

12.96303 

(5.248598) 

12.96303 

(5.248598) 

14 

(5.2915) 

7 

1 

0.03515625 

0.8397133 

2 8 

1 

0.03687787 

0.8057855 

6.659308 

(3.247875) 

16.56288 

(5.830937) 

22.43389 

(7.665144) 

24 

(8.4853) 

8 

1 

0.01953125 

0.8057855 

3 11 

2 

0.03091334 

0.8921663 

13.39393 

(4.443275) 

27.12194 

(7.042164) 

42.73341 

(12.32624) 

44 

(13.2665) 

11 

2 

0.01123047 

0.8921663 

4 11 

2 

0.03969332 

0.8921663 

16.77876 

(4.820904) 

30.14127 

(7.215474) 

53.33771 

(15.1744) 

55 

(16.5831) 

11 

2 

0.01123047 

0.8921663 

5 11 

2 

0.04791161 

0.8921663 

20.04923 

(5.14312) 

33.1418 

(7.472) 

63.98474 

(18.19563) 

66 

(19.8997) 

12 

2 

0.006469727 

0.8716265 

 

 

 

 
𝑟 = 0.2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 10 

3 

0.04614258 

0.8419226 

7.851527 

(3.740763) 

18.87073 

(6.040165) 

18.87073 

(6.040165) 

20 

(6.3246) 

10 

3 

0.04614258 

0.8419226 

2 13 

4 

0.04556792 

0.8603581 

16.07705 

(4.976926) 

29.84454 

(7.272335) 

37.77602 

(9.867504) 

39 

(10.8167) 

13 

4 

0.02452087 

0.8603581 

3 14 

4 

0.04154506 

0.8317516 

21.7872 

(5.569165) 

36.54956 

(7.880927) 

53.84652 

(13.20749) 

56 

(14.9666) 

14 

4 

0.01544189 

0.8317516 

4 15 

4 

0.03398368 

0.8011018 

27.31122 

(6.102428) 

43.15971 

(8.438999) 

71.32572 

(16.46652) 

75 

(19.3649) 

15 

4 

0.009605408 

0.8011018 

5 15 

4 

0.04104036 

0.8011018 

32.67925 

(6.541158) 

48.12342 

(8.725658) 

85.3224 

(19.43408) 

90 

(23.2379) 

15 

4 

0.009605408 

0.8011018 

 

 

 

 
𝑟 = 0.5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 36 

22 

0.04347445 

0.8120462 

45.68418 

(9.153486) 

69.80581 

(10.92584) 

69.80581 

(10.92584) 

72 

(12) 

36 

22 

0.04347445 

0.8120462 

2 43 

26 

0.04880887 

0.8150543 

83.56242 

(11.21573) 

110.5964 

(13.0836) 

126.366 

(17.31243) 

129 

(19.6723) 

45 

27 

0.02218546 

0.810087 

3 47 

28 

0.04825873 

0.8053409 

120.2685 

(12.80759) 

149.3175 

(14.68967) 

184.0617 

(23.54779) 

188 

(27.4226) 

49 

29 

0.01539325 

0.8008007 

4 52 

31 

0.04631875 

0.8146608 

165.6697 

(14.61111) 

197.3862 

(16.53801) 

254.8906 

(30.93439) 

260 

(36.0555) 

54 

32 

0.0114913 

0.810509 

5 54 

32 

0.0468858 

0.810509 

204.5753 

(15.95763) 

237.2623 

(17.72838) 

317.4233 

(37.2762) 

324 

(44.0908) 

56 

33 

0.009593304 

0.8065126 
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𝛼𝑜𝑣𝑟 = 0.025, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.9 
 

𝑟 = 0.1 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 10 

2 

0.01928711 

0.9112841 

5.937091 

(3.339847) 

19.35887 

(6.264188) 

19.35887 

(6.264188) 

20 

(6.3246) 

10 

2 

0.01928711 

0.9112841 

2 13 

3 

0.02031856 

0.948863 

13.0325 

(4.585059) 

29.5666 

(7.389085) 

38.57321 

(10.45835) 

39 

(10.8167) 

13 

3 

0.01063538 

0.948863 

3 14 

3 

0.0178545 

0.9377837 

17.673 

(5.114218) 

35.44439 

(7.916469) 

55.21599 

(14.29124) 

56 

(14.9666) 

14 

3 

0.006362915 

0.9377837 

4 14 

3 

0.02310948 

0.9377837 

22.09674 

(5.537852) 

39.45998 

(8.196804) 

68.96947 

(17.84165) 

70 

(18.7083) 

15 

3 

0.003768921 

0.9255533 

5 15 

3 

0.01712671 

0.9255533 

26.48162 

(5.994596) 

45.28552 

(8.672161) 

88.24069 

(21.74098) 

90 

(23.2379) 

15 

3 

0.003768921 

0.9255533 

 

 

 

 
𝑟 = 0.2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 17 

6 

0.01734483 

0.9250825 

13.96884 

(5.178862) 

33.3187 

(7.988517) 

33.3187 

(7.988517) 

34 

(8.2462) 

17 

6 

0.01734483 

0.9250825 

2 18 

6 

0.0215252 

0.9088288 

22.37659 

(5.965809) 

42.16297 

(8.612329) 

53.13649 

(11.97718) 

54 

(12.7279) 

18 

6 

0.01132792 

0.9088288 

3 21 

7 

0.01747378 

0.9184688 

34.38046 

(7.083773) 

57.20752 

(9.755433) 

82.86377 

(17.2009) 

84 

(18.3303) 

21 

7 

0.006270476 

0.9184688 

4 21 

7 

0.02255745 

0.9184688 

42.97002 

(7.668128) 

65.2097 

(10.14515) 

103.4362 

(21.31522) 

105 

(22.9129) 

22 

7 

0.004065029 

0.9031455 

5 22 

7 

0.01819134 

0.9031455 

51.43399 

(8.252204) 

75.05559 

(10.74458) 

129.7626 

(25.8041) 

132 

(28.1425) 

22 

7 

0.004065029 

0.9031455 

 

 

 

 
𝑟 = 0.5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 56 

36 

0.02350578 

0.9002963 

73.80714 

(11.89665) 

110.7097 

(14.10119) 

110.7097 

(14.10119) 

112 

(14.9666) 

56 

36 

0.02350578 

0.9002963 

2 66 

42 

0.02475517 

0.9064897 

132.4124 

(14.31781) 

173.7528 

(16.71784) 

196.7781 

(22.83364) 

198 

(24.3721) 

68 

43 

0.01114898 

0.9035303 

3 73 

46 

0.02276763 

0.9068662 

193.7204 

(16.43456) 

238.5947 

(18.89399) 

289.9412 

(31.77569) 

292 

(34.176) 

75 

47 

0.007085245 

0.9041789 

4 75 

47 

0.02479985 

0.9041789 

247.1244 

(17.93168) 

292.5698 

(20.32476) 

372.2272 

(39.9049) 

375 

(43.3013) 

77 

48 

0.005979507 

0.9015333 

5 80 

50 

0.02297008 

0.9076484 

314.3978 

(19.91094) 

362.5874 

(22.17803) 

476.6547 

(49.45853) 

480 

(53.6656) 

82 

51 

0.004515245 

0.9051912 
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𝛼𝑜𝑣𝑟 = 0.025, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.8 
 

𝑟 = 0.1 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 8 

1 

0.01953125 

0.8057855 

3.934775 

(2.698487) 

14.56314 

(5.703372) 

14.56314 

(5.703372) 

16 

(5.6569) 

8 

1 

0.01953125 

0.8057855 

2 11 

2 

0.02147097 

0.8921663 

9.864372 

(3.999337) 

24.12886 

(6.818107) 

32.09112 

(9.387985) 

33 

(9.9499) 

11 

2 

0.01123047 

0.8921663 

3 12 

2 

0.01820289 

0.8716265 

13.43035 

(4.494951) 

28.86789 

(7.372949) 

46.3227 

(12.73393) 

48 

(13.8564) 

12 

2 

0.006469727 

0.8716265 

4 12 

2 

0.02358442 

0.8716265 

16.82667 

(4.877492) 

31.90467 

(7.526614) 

57.8168 

(15.64341) 

60 

(17.3205) 

13 

2 

0.003692627 

0.8498418 

5 13 

2 

0.01687877 

0.8498418 

20.14621 

(5.244107) 

36.60701 

(8.10451) 

74.53605 

(19.22603) 

78 

(21.6333) 

13 

2 

0.003692627 

0.8498418 

 

 

 

 
𝑟 = 0.2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 13 

4 

0.02452087 

0.8603581 

9.930947 

(4.32311) 

24.85771 

(6.937008) 

24.85771 

(6.937008) 

26 

(7.2111) 

13 

4 

0.02452087 

0.8603581 

2 15 

4 

0.0183677 

0.8011018 

16.18014 

(5.098958) 

33.12979 

(7.835328) 

42.9337 

(10.32012) 

45 

(11.619) 

15 

4 

0.009605408 

0.8011018 

3 17 

5 

0.02335044 

0.8530007 

26.02898 

(6.15599) 

44.61443 

(8.71682) 

65.93372 

(14.82153) 

68 

(16.4924) 

18 

5 

0.005311012 

0.8275601 

4 18 

5 

0.01933926 

0.8275601 

32.58649 

(6.708971) 

52.30302 

(9.293028) 

86.59155 

(18.4784) 

90 

(21.2132) 

18 

5 

0.005311012 

0.8275601 

5 18 

5 

0.02353171 

0.8275601 

38.9681 

(7.198045) 

58.2998 

(9.613744) 

103.821 

(21.95478) 

108 

(25.4558) 

19 

5 

0.003305376 

0.8004705 

 

 

 

 
𝑟 = 0.5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx group 

meets the rate 

All Tx groups 

meet the rate 

1 45 

27 

0.02218546 

0.810087 

55.81427 

(10.33226) 

87.51736 

(12.2425) 

87.51736 

(12.2425) 

90 

(13.4164) 

45 

27 

0.02218546 

0.810087 

2 54 

32 

0.02164193 

0.810509 

102.0496 

(12.59352) 

138.275 

(14.60597) 

158.992 

(19.34488) 

162 

(22.0454) 

54 

32 

0.0114913 

0.810509 

3 58 

34 

0.0218178 

0.8026625 

144.9614 

(14.24042) 

183.0177 

(16.24331) 

227.4298 

(26.20047) 

232 

(30.4631) 

58 

34 

0.008010137 

0.8026625 

4 63 

37 

0.02129351 

0.8123113 

196.3737 

(16.08262) 

237.1587 

(18.05513) 

309.3609 

(33.92744) 

315 

(39.6863) 

63 

37 

0.006016488 

0.8123113 

5 65 

38 

0.02176037 

0.808855 

241.3663 

(17.44702) 

283.1128 

(19.37528) 

382.825 

(40.9684) 

390 

(48.3735) 

67 

39 

0.004208497 

0.8055078 
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𝛼𝑜𝑣𝑟 = 0.01, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.9 
 

𝑟 = 0.1 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 14 

3 

0.006362915 

0.9377837 

7.983658 

(3.957348) 

27.4407 

(7.423654) 

27.4407 

(7.423654) 

28 

(7.4833) 

14 

3 

0.006362915 

0.9377837 

2 15 

3 

0.007341652 

0.9255533 

13.07375 

(4.647963) 

33.29715 

(7.926042) 

44.26451 

(11.11567) 

45 

(11.619) 

15 

3 

0.003768921 

0.9255533 

3 16 

3 

0.006386439 

0.9122111 

17.7011 

(5.163905) 

39.12256 

(8.446407) 

62.70944 

(15.05438) 

64 

(16) 

16 

3 

0.002212524 

0.9122111 

4 16 

3 

0.008366001 

0.9122111 

22.13765 

(5.602838) 

43.15541 

(8.718219) 

78.32144 

(18.77424) 

80 

(20) 

16 

3 

0.002212524 

0.9122111 

5 19 

4 

0.006128998 

0.9477567 

32.81045 

(6.681102) 

57.4652 

(9.731368) 

112.6585 

(24.94089) 

114 

(26.1534) 

19 

4 

0.001299739 

0.9477567 

 

 

 

 
𝑟 = 0.2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 20 

7 

0.009578645 

0.9322597 

15.97569 

(5.587739) 

39.33843 

(8.695048) 

39.33843 

(8.695048) 

40 

(8.9443) 

20 

7 

0.009578645 

0.9322597 

2 22 

7 

0.007881296 

0.9031455 

25.53829 

(6.44582) 

51.02433 

(9.550633) 

64.97177 

(13.26258) 

66 

(14.0712) 

22 

7 

0.004065029 

0.9031455 

3 24 

8 

0.009924155 

0.9270981 

38.54554 

(7.505901) 

65.26044 

(10.46316) 

94.96867 

(18.59924) 

96 

(19.5959) 

25 

8 

0.002275692 

0.913969 

4 25 

8 

0.008517708 

0.913969 

48.21195 

(8.148895) 

76.12009 

(11.06351) 

123.2021 

(23.34782) 

125 

(25) 

25 

8 

0.002275692 

0.913969 

5 27 

9 

0.009062492 

0.9347919 

63.89735 

(9.17552) 

93.32036 

(11.94657) 

160.2432 

(29.40114) 

162 

(31.1769) 

27 

9 

0.001966587 

0.9347919 

 

 

 

 
𝑟 = 0.5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 70 

44 

0.009405374 

0.9006217 

89.90713 

(13.317) 

138.5446 

(15.75112) 

138.5446 

(15.75112) 

140 

(16.7332) 

70 

44 

0.009405374 

0.9006217 

2 82 

51 

0.008668925 

0.9051912 

159.9576 

(15.89635) 

214.5515 

(18.55711) 

244.4339 

(25.45675) 

246 

(27.1662) 

82 

51 

0.004515245 

0.9051912 

3 86 

53 

0.009024783 

0.9003806 

222.2454 

(17.73552) 

278.42 

(20.36564) 

341.5849 

(34.35155) 

344 

(37.0945) 

86 

53 

0.003217405 

0.9003806 

4 91 

56 

0.008938622 

0.9042405 

292.8606 

(19.74729) 

351.5549 

(22.21762) 

452.0749 

(43.87986) 

455 

(47.697) 

91 

56 

0.002435871 

0.9042405 

5* 93 

57 

0.009273603 

0.9020384 

357.0994 

(21.26332) 

416.4126 

(23.74615) 

554.0885 

(53.17317) 

558 

(57.8619) 

96 

59 

0.001846518 

0.9079486 

 

* Design parameters for this row were obtained by substituting 103 in the upper limit of the integral for the Type I error 

formula (see   Equation 4.2.2) in the Des_Sup code. 
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𝛼𝑜𝑣𝑟 = 0.01, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.8 
 

𝑟 = 0.1 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 12 

2 

0.006469727 

0.8716265 

5.972554 

(3.415234) 

22.86864 

(6.971402) 

22.86864 

(6.971402) 

24 

(6.9282) 

12 

2 

0.006469727 

0.8716265 

2 13 

2 

0.007205844 

0.8498418 

9.904237 

(4.071017) 

27.57616 

(7.522233) 

37.48196 

(10.06552) 

39 

(10.8167) 

13 

2 

0.003692627 

0.8498418 

3 14 

2 

0.00605492 

0.8269907 

13.46324 

(4.544315) 

32.23975 

(8.089376) 

53.35845 

(13.48169) 

56 

(14.9666) 

14 

2 

0.002090454 

0.8269907 

4 14 

2 

0.007943326 

0.8269907 

16.86934 

(4.947104) 

35.26515 

(8.233229) 

66.52979 

(16.4656) 

70 

(18.7083) 

14 

2 

0.002090454 

0.8269907 

5 14 

2 

0.009776692 

0.8269907 

20.17393 

(5.277526) 

38.27978 

(8.444078) 

79.68097 

(19.61434) 

84 

(22.4499) 

15 

2 

0.001174927 

0.8032494 

 

 

 

 
𝑟 = 0.2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 15 

4 

0.009605408 

0.8011018 

9.989406 

(4.418558) 

28.12291 

(7.539417) 

28.12291 

(7.539417) 

30 

(7.746) 

15 

4 

0.009605408 

0.8011018 

2 19 

5 

0.006437142 

0.8004705 

19.33 

(5.647747) 

41.90732 

(8.887193) 

54.71289 

(11.6677) 

57 

(13.0767) 

19 

5 

0.003305376 

0.8004705 

3 19 

5 

0.009420385 

0.8004705 

26.07857 

(6.223391) 

47.90327 

(9.21925) 

72.8121 

(15.18182) 

76 

(17.4356) 

19 

5 

0.003305376 

0.8004705 

4 22 

6 

0.007021959 

0.8265294 

37.84301 

(7.25511) 

63.0637 

(10.24375) 

106.0673 

(20.46976) 

110 

(23.4521) 

22 

6 

0.001859583 

0.8265294 

5 22 

6 

0.008628847 

0.8265294 

45.27057 

(7.77626) 

70.10261 

(10.6023) 

127.2598 

(24.35109) 

132 

(28.1425) 

22 

6 

0.001859583 

0.8265294 

 

 

 

 
𝑟 = 0.5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 56 

33 

0.009593304 

0.8065126 

67.90333 

(11.53641) 

109.189 

(13.70186) 

109.189 

(13.70186) 

112 

(14.9666) 

56 

33 

0.009593304 

0.8065126 

2 65 

38 

0.009650911 

0.808855 

120.417 

(13.79025) 

166.0279 

(16.04372) 

191.7011 

(21.28123) 

195 

(24.1868) 

67 

39 

0.004208497 

0.8055078 

3 69 

40 

0.009864824 

0.8022641 

169.4451 

(15.47111) 

216.7916 

(17.70869) 

271.0437 

(28.62121) 

276 

(33.2265) 

72 

42 

0.003175812 

0.8149469 

4 74 

43 

0.009747973 

0.811899 

226.9781 

(17.3317) 

276.9251 

(19.49638) 

363.7499 

(36.76967) 

370 

(43.0116) 

76 

44 

0.002227512 

0.8089351 

5 78 

45 

0.008464916 

0.8060517 

284.1117 

(19.03416) 

336.754 

(21.12187) 

459.8289 

(44.77405) 

468 

(52.9906) 

78 

45 

0.001865723 

0.8060517 
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𝛼𝑜𝑣𝑟 = 0.001, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.9 
 

𝑟 = 0.1 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 20 

4 

0.0007719398 

0.9387666 

10.01259 

(4.486877) 

39.3163 

(8.916792) 

39.3163 

(8.916792) 

40 

(8.9443) 

20 

4 

0.0007719398 

0.9387666 

2 21 

4 

0.0009022344 

0.9289592 

16.23864 

(5.210792) 

46.21353 

(9.422566) 

62.19268 

(13.23537) 

63 

(13.7477) 

21 

4 

0.0004552603 

0.9289592 

3 22 

4 

0.0007894748 

0.9183452 

21.94212 

(5.775473) 

53.05151 

(9.913869) 

86.58069 

(17.77686) 

88 

(18.7617) 

22 

4 

0.0002667606 

0.9183452 

4 23 

4 

0.0006121234 

0.9069417 

27.43945 

(6.259315) 

59.83917 

(10.42393) 

112.6579 

(22.4024) 

115 

(23.9792) 

23 

4 

0.0001553744 

0.9069417 

5 23 

4 

0.0007614876 

0.9069417 

32.82429 

(6.718149) 

64.87457 

(10.66539) 

135.1774 

(26.65575) 

138 

(28.775) 

23 

4 

0.0001553744 

0.9069417 

 

 

 

 
𝑟 = 0.2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 29 

9 

0.0008290263 

0.910977 

19.98139 

(6.337554) 

56.96278 

(10.50991) 

56.96278 

(10.50991) 

58 

(10.7703) 

29 

9 

0.0008290263 

0.910977 

2 32 

10 

0.0009300359 

0.9209501 

34.81423 

(7.557432) 

74.10418 

(11.53035) 

95.08178 

(16.17494) 

96 

(16.9706) 

32 

10 

0.000470337 

0.9209501 

3 33 

10 

0.0008929883 

0.9090848 

46.85543 

(8.344098) 

86.90367 

(12.12985) 

130.3752 

(21.47863) 

132 

(22.9783) 

33 

10 

0.0003030533 

0.9090848 

4 36 

11 

0.0006778802 

0.9192982 

63.66214 

(9.389679) 

107.0575 

(13.2046) 

178.178 

(28.22763) 

180 

(30) 

36 

11 

0.0001730006 

0.9192982 

5 36 

11 

0.00084194 

0.9192982 

76.25116 

(10.04934) 

119.0127 

(13.66441) 

213.5103 

(33.70583) 

216 

(36) 

36 

11 

0.0001730006 

0.9192982 

 

 

 

 
𝑟 = 0.5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected Person Years 

under specified alternatives 

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni True 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 107 

65 

0.0008453577 

0.9057528 

131.9781 

(16.24739) 

212.3058 

(19.56419) 

212.3058 

(19.56419) 

214 

(20.6882) 

107 

65 

0.0008453577 

0.9057528 

2 116 

70 

0.0009038727 

0.9059773 

217.723 

(18.63657) 

301.3838 

(22.08169) 

346.2156 

(30.31941) 

348 

(32.311) 

116 

70 

0.00045905 

0.9059773 

3 120 

72 

0.0009570337 

0.9025216 

299.3126 

(20.65349) 

384.1562 

(23.95707) 

477.2244 

(40.62486) 

480 

(43.8178) 

120 

72 

0.0003275152 

0.9025216 

4† 125 

75 

0.000965024 

0.9064813 

389.0955 

(22.80004) 

476.345 

(26.02728) 

621.8071 

(51.86213) 

625 

(55.9017) 

125 

75 

0.0002497132 

0.9064813 

5† 129 

77 

0.0008567777 

0.9032685 

478.6526 

(24.72241) 

568.2482 

(27.88293) 

769.119 

(62.66241) 

774 

(68.1469) 

129 

77 

0.0001781977 

0.9032685 

 

† Des_Sup did not converge for this row when the infinite upper limit was used in the integral for the Type I error formula; 

results in this row were obtained by substituting 103 in the upper limit in the Des_Sup code. 
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𝛼𝑜𝑣𝑟 = 0.001, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.8 
 

𝑟 = 0.1 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni True 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 18 

3 

0.0007448196 

0.8824026 

7.99608 

(3.996223) 

34.66714 

(8.632338) 

34.66714 

(8.632338) 

36 

(8.4853) 

18 

3 

0.0007448196 

0.8824026 

2 19 

3 

0.0008483746 

0.8660641 

13.08907 

(4.693224) 

40.43011 

(9.127256) 

55.31585 

(12.27038) 

57 

(13.0767) 

19 

3 

0.0004277229 

0.8660641 

3 20 

3 

0.0007235911 

0.8488657 

17.72216 

(5.206056) 

46.12221 

(9.667516) 

77.18071 

(16.32121) 

80 

(17.8885) 

20 

3 

0.0002441406 

0.8488657 

4 20 

3 

0.0009592052 

0.8488657 

22.16348 

(5.644948) 

50.15802 

(9.920079) 

96.30801 

(20.22392) 

100 

(22.3607) 

20 

3 

0.0002441406 

0.8488657 

5 21 

3 

0.0006808443 

0.8308855 

26.52995 

(6.0715) 

55.79915 

(10.38724) 

120.4843 

(24.09199) 

126 

(27.4955) 

21 

3 

0.0001385808 

0.8308855 

 

 

 

 
𝑟 = 0.2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni True 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 26 

7 

0.0006593636 

0.827317 

16.00201 

(5.670755) 

49.8514 

(10.05425) 

49.8514 

(10.05425) 

52 

(10.198) 

26 

7 

0.0006593636 

0.827317 

2 27 

7 

0.0008133551 

0.8050986 

25.56498 

(6.498393) 

59.49905 

(10.69933) 

78.26636 

(14.05928) 

81 

(15.5885) 

27 

7 

0.0004106977 

0.8050986 

3 30 

8 

0.0006973784 

0.8292057 

38.5919 

(7.573501) 

75.76505 

(11.64249) 

116.6459 

(19.55274) 

120 

(21.9089) 

30 

8 

0.0002359934 

0.8292057 

4 30 

8 

0.0009232272 

0.8292057 

48.23745 

(8.194891) 

84.79369 

(11.99818) 

145.5239 

(24.02359) 

150 

(27.3861) 

30 

8 

0.0002359934 

0.8292057 

5 31 

8 

0.0007183651 

0.8087628 

57.73726 

(8.786135) 

95.4132 

(12.5677) 

179.504 

(28.53651) 

186 

(33.4066) 

31 

8 

0.0001470384 

0.8087628 

 

 

 

 
𝑟 = 0.5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person years in 

an uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni True 

Type I error, true 

power 

One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 87 

50 

0.0009943432 

0.8101087 

101.9318 

(14.27662) 

170.5961 

(17.16654) 

170.5961 

(17.16654) 

174 

(18.6548) 

87 

50 

0.0009943432 

0.8101087 

2 95 

54 

0.0009681467 

0.800315 

169.1548 

(16.449) 

241.2223 

(19.34881) 

280.7337 

(25.64296) 

285 

(29.2404) 

95 

54 

0.0004916666 

0.800315 

3 102 

58 

0.0009205813 

0.8075131 

242.5233 

(18.6246) 

318.3173 

(21.52694) 

402.3742 

(34.92705) 

408 

(40.398) 

102 

58 

0.0003146735 

0.8075131 

4‡ 106 

60 

0.0008588862 

0.8032139 

313.1694 

(20.51871) 

391.154 

(23.34859) 

522.2004 

(44.01288) 

530 

(51.4782) 

106 

60 

0.000221663 

0.8032139 

5 108 

61 

0.0008950275 

0.8011291 

381.4415 

(22.09594) 

460.0734 

(24.77339) 

638.0635 

(52.60929) 

648 

(62.3538) 

108 

61 

0.0001860506 

0.8011291 

 

‡ The Bonferroni values for this row were obtained by substituting 103 for the upper limit in the integral for the Type I error 

formula in the Des_Sup code. 
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As the main interest of researchers is most likely in the probability that 

experimental treatments which have a given level of efficacy are found to be superior to 

the control, we chose to power our test using pointwise power. However, other options 

for power exist as described below. 

Another option for power is denoted “partial power” and is defined as the 

probability that at least one truly superior experimental treatment is discovered, assuming 

that the alternative hypothesis in Equation 4.2.1 is true. Returning to our example of three 

experimental treatments labeled A, B, and C, suppose that all of these experimental 

treatments are superior to the control. Partial power then corresponds to the probability 

that at least one of A, B, and C are declared statistically superior to the control. Partial 

power is expressed via the individual Type II errors as 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 = 1 − 𝑃(𝛽𝑇1 ∩ 𝛽𝑇2 ∩⋯∩ 𝛽𝑇𝐾) 
 

If only a subset of the 𝐾 experimental treatments is truly superior, then the number of 

elements in the expression above should be appropriately reduced; note that this is mainly 

of theoretical interest as we will not know how many experimental treatments are truly 

superior to the control in practice. As the number of truly superior experimental 

treatments increases, partial power increases.  

To calculate partial power, we compute 𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) under the 

alternative hypothesis in Equation 4.2.1 as follows: 

𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚|𝑡) = 1 − {[1 − 𝑃(𝐷1 ≤ 𝑚|𝑡)]⋯ [1 − 𝑃(𝐷𝐾 ≤ 𝑚|𝑡)]} 
 

= 1 − [1 −∑𝑒−𝑟1𝑖𝐶𝑡
(𝑟1𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] [1 −∑𝑒−𝑟2𝑖𝐶𝑡
(𝑟2𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑖𝐶𝑡
(𝑟𝐾𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 
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⇒ 𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) = 

∫ 𝑓(𝑡)
∞

0

{1 − [1 −∑𝑒−𝑟1𝑖𝐶𝑡
(𝑟1𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑖𝐶𝑡
(𝑟𝐾𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]} 𝑑𝑡 

 

= ∫ 𝑓(𝑡)𝑑𝑡
∞

0

−∫ 𝑓(𝑡) {[1 −∑𝑒−𝑟1𝑖𝐶𝑡
(𝑟1𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑖𝐶𝑡
(𝑟𝐾𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]}
∞

0

𝑑𝑡 

 

= 1 −∫
(𝑖𝐶𝑡)

𝑑𝐶𝑡−1𝑒−𝑖𝐶𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑟1𝑖𝐶𝑡
(𝑟1𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑖𝐶𝑡
(𝑟𝐾𝑖𝐶𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡 

 

= 1 −∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑡
(𝑟𝐾𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡 (4.2.4) 

 

Equation 4.2.4 coincides with the definition of partial power, as it clearly computes 

1 − 𝑃(𝛽𝑇1 ∩ 𝛽𝑇2 ∩⋯∩ 𝛽𝑇𝐾). 

Lastly, we define “full power” as the probability that all experimental treatments 

which are truly superior to the control are found to be superior, assuming that the 

alternative hypothesis in Equation 4.2.1 is true. For example, suppose treatments A and B 

are superior to the control, but C is not. Full power would then correspond to the 

probability that both A and B are found to be statistically superior to the control. Full 

power is related to the individual Type II errors via 

𝐹𝑢𝑙𝑙 𝑃𝑜𝑤𝑒𝑟 = 1 − 𝑃(𝛽𝑇1 ∪ 𝛽𝑇2 ∪⋯∪ 𝛽𝑇𝐾) 
 

As was the case for partial power, if only a subset of the 𝐾 experimental treatments is 

truly superior, then the number of elements in the expression for full power should be 

appropriately reduced. As the number of truly superior experimental treatments increases, 

full power decreases.  

To calculate full power, we compute the probability that the number of events in 

each new treatment group is less than or equal to the critical value (i.e. is adequately 
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small in all 𝐾 new treatment groups). This implies that the maximum number of events 

among the new treatment groups must be sufficiently small, and so we compute 

𝑃(max(𝐷1, … , 𝐷𝐾) ≤ 𝑚) under the alternative hypothesis in Equation 4.2.1 as follows: 

𝑃(max(𝐷1, … , 𝐷𝐾) ≤ 𝑚|𝑡) = 𝑃(𝐷1 ≤ 𝑚|𝑡)⋯𝑃(𝐷𝐾 ≤ 𝑚|𝑡) 
 

= [∑𝑒−𝑟1𝑖𝐶𝑡
𝑚

𝑠=0

(𝑟1𝑖𝐶𝑡)
𝑠

𝑠!
] [∑𝑒−𝑟2𝑖𝐶𝑡

𝑚

𝑠=0

(𝑟2𝑖𝐶𝑡)
𝑠

𝑠!
]⋯ [∑𝑒−𝑟𝐾𝑖𝐶𝑡

𝑚

𝑠=0

(𝑟𝐾𝑖𝐶𝑡)
𝑠

𝑠!
] 

 

⇒ 𝑃(max(𝐷1, … , 𝐷𝐾) ≤ 𝑚) = 

∫ 𝑓(𝑡) [∑𝑒−𝑟1𝑖𝐶𝑡
𝑚

𝑠=0

(𝑟1𝑖𝐶𝑡)
𝑠

𝑠!
]⋯ [∑𝑒−𝑟𝐾𝑖𝐶𝑡

𝑚

𝑠=0

(𝑟𝐾𝑖𝐶𝑡)
𝑠

𝑠!
] 𝑑𝑡

∞

0

 

 

= ∫
(𝑖𝐶𝑡)

𝑑𝐶𝑡−1𝑒−𝑖𝐶𝑡

𝛤(𝑑𝐶)
[∑𝑒−𝑟1𝑖𝐶𝑡
𝑚

𝑠=0

(𝑟1𝑖𝐶𝑡)
𝑠

𝑠!
]⋯ [∑𝑒−𝑟𝐾𝑖𝐶𝑡

𝑚

𝑠=0

(𝑟𝐾𝑖𝐶𝑡)
𝑠

𝑠!
] 𝑑𝑡

∞

0

 

 

= ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)
[∑𝑒−𝑟1𝑡
𝑚

𝑠=0

(𝑟1𝑡)
𝑠

𝑠!
] [∑𝑒−𝑟2𝑡

𝑚

𝑠=0

(𝑟2𝑡)
𝑠

𝑠!
]⋯ [∑𝑒−𝑟𝐾𝑡

𝑚

𝑠=0

(𝑟𝐾𝑡)
𝑠

𝑠!
] 𝑑𝑡

∞

0

 (4.2.5) 

 

This coincides with the definition of full power as it computes 𝑃(𝛽𝑇1
𝐶 ∩ 𝛽𝑇2

𝐶 ∩⋯∩

𝛽𝑇𝐾
𝐶 ) = 𝑃(𝛽𝑇1 ∪ 𝛽𝑇2 ∪⋯∪ 𝛽𝑇𝐾)

𝐶
= 1 − 𝑃(𝛽𝑇1 ∪ 𝛽𝑇2 ∪⋯∪ 𝛽𝑇𝐾). 

Table 3 below compares the pointwise, partial, and full power achieved for given 

values of 𝑑𝐶 and 𝑚. To generate this table, Des_Sup was used to determine 𝑑𝐶 and 𝑚 for 

a trial designed to satisfy a one-sided overall Type I error of 0.05 and a pointwise power 

of 0.9. The corresponding partial power and full power were then obtained by 

substituting the values of 𝑑𝐶 and 𝑚 into Equations 4.2.4 and 4.2.5, respectively. Values 

are reported for up to five truly superior experimental treatment groups and for rate ratios 

of 0.1, 0.2, and 0.5 (the indicated rate ratio is assumed to be the same for all experimental 

treatment groups under study). 
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Table 3: Comparison of the values of pointwise, partial, and full power for a test of 

superiority designed to satisfy a one-sided overall Type I error of 0.05 and a pointwise 

power of 0.9 

 
r = 0.1 

Number of Superior 

Experimental 

Treatments 

𝑑𝐶  and 𝑚 Pointwise Power Partial Power Full Power 

1 
9 

2 
0.9288088 0.9288088 0.9288088 

2 
10 

2 
0.9112841 0.9883564 0.8342119 

3 
12 

3 
0.9587652 0.9996792 0.8849313 

4 
13 

3 
0.948863 0.9999324 0.8194267 

5 
13 

3 
0.948863 0.9999808 0.7827826 

 
r = 0.2 

Number of Superior 

Experimental 

Treatments 
𝑑𝐶  and 𝑚 Pointwise Power Partial Power Full Power 

1 
13 

5 
0.9347349 0.9347349 0.9347349 

2 
16 

6 
0.9394989 0.9925503 0.8864476 

3 
17 

6 
0.9250825 0.9977752 0.8048559 

4 
18 

6 
0.9088288 0.9990017 0.7110355 

5 
18 

6 
0.9088288 0.9996498 0.6620089 

 
r = 0.5 

Number of Superior 

Experimental 

Treatments 

𝑑𝐶  and 𝑚 Pointwise Power Partial Power Full Power 

1 
47 

31 
0.9053749 0.9053749 0.9053749 

2 
56 

36 
0.9002963 0.9758391 0.8247536 

3 
61 

39 
0.9033769 0.9917413 0.770829 

4 
63 

40 
0.9001535 0.9999996 0.714471 

5 
68 

43 
0.9035303 ≈1 0.6810754 

Note: The indicated rate ratio applies to all experimental treatment groups under study 
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4.3: Example of Applying Design C to a Real-World Clinical Trial 

 

In this subsection, we will use data collected from a clinical trial in which multiple 

experimental influenza vaccines were compared to a single control vaccine to 

demonstrate the practical implementation of the Design C methodology. Influenza virus 

infections can lead to respiratory illness, morbidity, and death among both very young 

and very old persons, as well as among those presenting with comorbidities. Seasonal 

infection and pandemic influenza is largely controlled via prophylactic vaccination. Such 

vaccines are usually derived from viruses proliferated in hen eggs; however, the supply of 

eggs is limited, making production difficult when demand increases unexpectedly. To 

address this issue, mammalian cell lines have been suggested as alternative culture 

systems (Frey et al., 2010). 

Clinical trial NCT00630331, a randomized, placebo-controlled, observer-blind 

trial, investigated the efficacy of cell culture-derived influenza vaccine (CCIV) and egg-

derived trivalent inactivated vaccine (TIV) compared to a placebo (PBO) in preventing 

laboratory-confirmed influenza illness in healthy adults during the 2007-2008 influenza 

season. The study was designed to enroll 11,700 participants, who were equally 

randomized to the three treatment groups. This sample size was determined based upon 

individual comparison of each vaccine to the placebo. For a vaccine efficacy of 70%, a 

one-sided Type I error of 0.0125, and an estimated influenza attack rate of 3%, there was 

92% power to reject the null hypothesis that the vaccine efficacy was ≤40% for each 

vaccine. Among the efficacy per protocol population
27

 of 11,257 participants, a total of 

231 influenza cases occurred; 42 cases among 3,776 subjects in the CCIV group, 49 cases 

among 3,638 subjects in the TIV group, and 140 cases among 3,843 subjects in the PBO 

                                                           
27

 See Frey et al. (2010) for the definition of the efficacy per protocol population. 
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group. This corresponds to a CCIV efficacy of 69.5% and a TIV efficacy of 63.0%. The 

efficacy of each vaccine was highly significant in comparison to the placebo, and both 

exceeded the Center for Biologics Evaluation and Research vaccine efficacy criteria 

(Frey et al., 2010). 

 To conduct this trial using the methodology of Design C, we take the design 

parameters 𝐾 = 2, one-sided overall Type I error equal to 0.025 (since the individual 

Type I errors in the trial were constrained at 0.0125, we take our global Type I error to be 

2 × 0.0125 = 0.025), and pointwise power equal to 0.9. Since the trial was designed 

assuming a vaccine efficacy of 0.7, we take 𝑟 = 0.3. Des_Sup(2,.025,.3,.9) returns 

The number of control group events dc is 27 

The critical value m is 12 

The true overall Type I error is 0.02240684 

The true pointwise power is 0.9049494 

  

Hence, under Design C and using pointwise power, the trial would terminate once 27 

events are observed in the placebo group, and the null hypothesis of no difference in 

efficacy between the experimental vaccines and placebo would be rejected if the 

minimum number of events among the CCIV and TIV groups is less than or equal to 12. 

 Alternatively, anticipating that both the CCIV and TIV vaccines would be 

superior to the placebo, investigators may power the study to find both experimental 

vaccines superior to the placebo, and hence would use the full power formula 

𝑃(max(𝐷1, 𝐷2) ≤ 𝑚) = ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] [∑𝑒−𝑟2𝑡
(𝑟2𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡 

 

for power computations. The R code for Des_Sup can be easily modified to accommodate 

the definition of full power; taking 𝑟1 = 𝑟2 = 0.3, we find the following design 

parameters: 
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The number of control group events dc is 31 

The critical value m is 15 

The true overall Type I error is 0.02439077 

The true full power is 0.9096288  

  

For completeness, we also present the resulting design parameters when partial power is 

used, which corresponds to powering the study to detect at least one truly superior 

experimental vaccine. In this case, we use 

𝑃(min(𝐷1, 𝐷2) ≤ 𝑚) = 

1 − ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] [1 −∑𝑒−𝑟2𝑡
(𝑟2𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡 

 

for the power computations. After modification of the Des_Sup code to account for 

partial power and again taking 𝑟1 = 𝑟2 = 0.3, we find 

The number of control group events dc is 21 

The critical value m is 8 

The true overall Type I error is 0.02284066 

The true partial power is 0.933896 

 

4.4: Comparison of the Exact Design C Method to the Bonferroni Procedure 

 

Thus far we have considered global hypotheses, that is, we have used information from 

all study arms simultaneously to determine whether at least one experimental treatment is 

superior to the control treatment. It may be of interest, however, to compare each 

experimental treatment to the control individually to identify which treatments (if any) 

are superior to the control. If we were to individually conduct these 𝐾 tests, the 

familywise error rate (the probability of making at least one false rejection among the 

family of 𝐾 tests) would become inflated and exceed the specified overall Type I error 

rate 𝛼𝑜𝑣𝑟 (Lehmann and Romano, 2005, page 349). To maintain the familywise error rate 

at 𝛼𝑜𝑣𝑟 despite the multiple comparisons, the Bonferroni procedure can be used. The 

Bonferroni procedure conducts each individual test at significance level 𝛼𝑖𝑛𝑑 = 𝛼𝑜𝑣𝑟/𝐾 
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to conservatively control the familywise error rate (see Lehmann and Romano (2005), 

pages 348-350 for details). 

 We can use the function Des_Sup to evaluate the experimental treatments under 

the Bonferroni procedure. To do so, we set the number of treatment groups equal to one
28

 

and the Type I error equal to 𝛼𝑜𝑣𝑟/𝐾. For example, suppose there are three new 

treatments being compared to a control treatment and we wish to conduct the trial at 

significance level 𝛼𝑜𝑣𝑟 = 0.05, pointwise power = 0.8, and for a rate ratio in Equation 

4.2.3 of 𝑟 = 0.5. Using the exact Design C method of Section 4.2, we would use 

Des_Sup(3,.05,.5,.8) to find that the trial continues until 47 events are observed in the 

control group, and the critical value is 28, but, under the Bonferroni procedure, we would 

use Des_Sup(1,.05/3,.5,.8), which yields 49 events in the control group and a critical 

value of 29. The difference between the function calls is that for (3,.05,⋅  ,⋅ ) the 

calculation is for an overall Type I error of 0.05 when comparing three groups to a 

control, while for (1,.05/3, ⋅ , ⋅ ) the calculation is made for an individual Type I error of 

0.05/3, which, by the Bonferroni method, is conservative for an overall Type I error of 

0.05 for comparing three groups to one control. The cost in using the conservative 

Bonferroni approach in this example, which requires 49 events in the control group with 

rejection at ≤29 events in the new treatment group to obtain 0.8 power when 𝑟 = 0.5 for 

comparing one new treatment to a control at 𝛼𝑖𝑛𝑑 = 0.05/3, is an extra two events for 

the control group and one event for each new treatment arm compared to 47 events in the 

control group and rejection if ≤28 events occur in at least one new treatment group if the 

exact calculation is used to compare three new treatment groups to one control at 

                                                           
28

 Since the number of experimental treatment groups is set to one, Equation 2.4.1 reduces to a negative 

binomial distribution, which is used for testing under the Bonferroni procedure. 
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𝑎𝑜𝑣𝑟 = 0.05. Values of 𝑑𝐶, 𝑚, true individual Type I error, and true pointwise power 

obtained under the Bonferroni procedure are included in columns 8 and 9 of Table 2 for 

comparison with those in columns 2 and 3 which, as previously discussed, were obtained 

under the exact Design C methodology. 

 Notice in the example above that both the number of control events to be 

observed and the critical value is larger under the Bonferroni design; this highlights the 

fact that there are sometimes considerable savings in terms of the number of events to be 

observed when the exact method is used compared to the Bonferroni procedure. Thus, 

though the Bonferroni method may be simpler than the exact method, the disadvantage is 

that a greater number of control events and/or a greater number of events in the 

experimental treatment arms imply that it will take a greater number of person years of 

follow-up for the trial to terminate, which translates to increased study costs. However, 

for the scenarios presented in Table 2, the losses associated with using the Bonferroni 

method were not substantial, and, in our discrete setting, values from the Bonferroni and 

exact method mostly coincided. Regardless of the method used, researchers will be 

interested in the expected number of person years of follow-up it takes for a trial to 

terminate. This will be evaluated in the next two subsections. 

4.5: Curtailment in Design C 

 

To estimate the expected number of person years of follow-up until trial termination 

under Design C, we first need to determine the possible mechanisms for discontinuation 

of subject follow-up and trial termination. Accordingly, in this subsection we define and 

illustrate uncurtailed and curtailed clinical trials conducted under Design C methodology. 
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In an uncurtailed trial, recruitment into all treatment arms of the trial and follow-

up of all recruited subjects continues until a pre-specified termination point, which, under 

Design C, occurs when 𝑑𝐶 events are observed in the control group. In a curtailed design, 

recruitment into a given treatment arm (and perhaps follow-up of persons already 

recruited into that arm) can be discontinued as soon as the ultimate decision is known for 

the given treatment arm, and the entire trial can be terminated once the ultimate decision 

is known for all treatment arms. Under Design C, this means that recruitment into each 

experimental treatment arm can be discontinued once the number of events exceeds the 

critical value (i.e. once the number of events reaches 𝑚+ 1) as it will no longer be 

possible to reject the null hypothesis in Equation 4.2.1 based on this experimental 

treatment group, and the entire trial can be terminated once either (1) all experimental 

treatment arms reach 𝑚 + 1 events as it will then no longer be possible to reject the null 

hypothesis, even if we were to continue until all 𝑑𝐶 events are observed in the control 

group, or (2) the control group reaches 𝑑𝐶 events at which time the trial is stopped and all 

remaining active experimental treatment arms are declared superior to the control.  

In this dissertation, we will compare the duration of study follow-up under 

uncurtailed and “fully curtailed” designs. A fully curtailed trial indicates that recruitment 

is stopped into given treatment arms and these arms have no ongoing follow-up of 

previously enrolled subjects once they satisfy the conditions for curtailment
29

. We thus 

assume that either (1) follow-up of subjects in a treatment arm can be discontinued once 

                                                           
29

 Alternatively, it could be argued that follow-up of subjects already recruited into a study must continue 

for ethical reasons and to increase knowledge of the disease and treatments, perhaps even after 𝑑𝐶  events 

have occurred in the control group. Accordingly, there may be settings in which recruitment of new 

subjects is stopped, but follow-up of subjects already enrolled in the study (who may not have experienced 

the outcome of interest) continues, a phenomenon known as “overrunning” (for more information on 

overrunning, see for example Whitehead, John. “Overrunning and Underrunning in Sequential Clinical 

Trials.” Controlled Clinical Trials, vol. 13, no. 2, Apr. 1992, pp. 106-21). 
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recruitment into that arm has been terminated, because the outcome of the study for that 

arm is known, or (2) that the outcome is an immediate short-term binary event of low 

probability that can be approximated by a Poisson distribution. For the remainder of this 

dissertation, the term “curtailment” should be interpreted as full curtailment. 

Clearly, the expected person years of follow-up in a curtailed design is always 

less than an uncurtailed design, since there are nonzero probabilities that follow-up of 

treatment arms (or even the entire study) can be discontinued early, and thus a curtailed 

design is preferred on this basis. Note that a curtailed design does not change the 

rejection region for a specified hypothesis test, because curtailment does not alter the 

ultimate decision made in a trial. 

We illustrate the difference in the expected person years of follow-up between an 

uncurtailed and fully curtailed design via an example. Suppose that two new treatments 

are being compared to a control in a trial designed to satisfy a one-sided overall Type I 

error of 0.05, pointwise power = 0.9, and 𝑟 = 0.2. From Table 2, the critical value 𝑚 for 

the new treatments is 6, and the number of control group events to observe is 𝑑𝐶 = 16. In 

an uncurtailed design, it does not matter how quickly the new treatment groups reach 

𝑚 + 1 = 7 events. The entire trial will terminate only once the control group 

accumulates 16 events, at which time the number of person years of follow-up in each of 

the new treatment groups is equal to the number of person years it takes the control group 

to reach 16 events. If we let 𝑁𝑇1 and 𝑁𝑇2 represent the number of person years of follow-

up in the two new treatment arms and 𝑁𝐶 the number of person years of follow-up in the 
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control arm to reach 𝑑𝐶 events
30

, then the total number of person years of follow-up in 

this uncurtailed design is 𝑁𝑇1 + 𝑁𝑇2 + 𝑁𝐶 = 𝑁𝐶 +𝑁𝐶 + 𝑁𝐶 (see (A) in Figure 1 below). 

In comparison, consider a curtailed design for the same setting that is stopped 

early because both new treatment groups reach 𝑚 + 1 = 7 events prior to the control arm 

reaching 𝑑𝐶 = 16 events. In this scenario, we know that it will no longer be possible to 

reject the null hypothesis for either new treatment, even if we were to wait for the control 

group to reach 16 events, and hence it is futile to continue the study. The total number of 

person years of follow-up in the control group is then max(𝑁𝑇1 , 𝑁𝑇2), as follow-up in the 

control arm is curtailed at this time once the study is stopped for futility. The total follow-

up across all study arms is then 𝑁𝑇1 + 𝑁𝑇2 +max(𝑁𝑇1 , 𝑁𝑇2) (see (B1) in Figure 1). 

However, if only the first (but not the second) new treatment arm reaches 

𝑚 + 1 = 7 events before the control arm reaches 16 events, then the total follow up 

across all study arms is 𝑁𝑇1 +𝑁𝐶 + 𝑁𝐶, where 𝑁𝐶 is the number of person years needed 

to reach 16 events in the control arm; 𝑁𝐶 is also the follow-up for the second new 

treatment arm as this arm is discontinued as well as the control arm at 𝑁𝐶 person years 

(see (B2) in Figure 1).  Similarly, by symmetry, if only the second (but not the first) new 

treatment arm reaches 7 events before the control arm reaches 16 events, then the total 

follow-up across all study arms is 𝑁𝐶 + 𝑁𝑇2 + 𝑁𝐶. 

Of course, if the control arm reaches 16 events at 𝑁𝐶 person years of follow-up 

before either new treatment arm reaches 7 events in a curtailed trial, then the total amount 

                                                           
30

 Under a curtailed design, we may not reach 𝑑𝐶  events in the control group if the study is terminated early 

on account of all new treatment groups reaching 𝑚 + 1 events prior to the control group reaching 𝑑𝐶  

events, and in such cases 𝑁𝐶  should be interpreted as the amount of follow-up in the control group at the 

time of trial termination. It should be well understand by the reader that 𝑁𝐶  in an uncurtailed trial will 

always represent follow-up until 𝑑𝐶  events are observed, whereas follow-up may be stopped earlier in a 

curtailed trial; as such, we do not introduce additional notation to distinguish these interpretations.  
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of follow-up is 𝑁𝐶 + 𝑁𝐶 + 𝑁𝐶, as all treatment arms are followed for 𝑁𝐶 person years 

(see (B3) in Figure 1). 

In the next subsection, we will show how to estimate the expected total number of 

person years of follow-up for uncurtailed and fully curtailed clinical trials conducted 

under Design C. 
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Control group has reached 𝑑𝐶 = 16 events  
New treatment group has reached 𝑚+ 1 = 7 events  

Figure 1: Person years accrued in a superiority trial under an uncurtailed design (A) 

and for various scenarios under a fully curtailed design (B1-B3) with study parameters 

𝐾 = 2, 𝑑𝐶 = 16, and 𝑚 = 6 

Tx 1 

Tx 2 𝑁𝑇2
= 𝑁𝐶 

𝑁𝑇1 = 𝑁𝐶 
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Study stops here since the control 

arm has reached 𝑑𝐶 = 16 events 
Person Years 
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(A) Uncurtailed Trial 
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Study stops here since the control group 
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(B2) Fully Curtailed Trial 
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Tx 2 𝑁𝑇2 = 𝑁𝐶  

𝑁𝑇1
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reached 𝑑𝐶 = 16 events before all new 

treatment groups reached 𝑚 + 1 = 7 events 
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(B3) Fully Curtailed Trial 
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Tx 2 𝑁𝑇2 

𝑁𝑇1
 

𝑁𝐶 = 𝑁𝑇1   

Study stops here since all new treatment arms 

have reached 𝑚+ 1 = 7 events prior to the 

control group reaching 𝑑𝐶 = 16 events 

Person Years 

Control 

(B1) Fully Curtailed Trial 

= max(𝑁𝑇1 , 𝑁𝑇2) 
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4.6: Expected Person Years Under Design C 

 

Researchers and budget personnel will have interest in the expected number of person 

years of subject follow-up until trial termination, as the longer a study lasts or the larger 

the number of study participants that must be recruited, the greater the costs to conduct 

the trial and potentially the shorter the patent life of the agent under study. Thus, in this 

subsection we discuss formulas and algorithms for estimating the expected number and 

standard deviation of person years until trial termination under both uncurtailed and fully 

curtailed designs.  

Again, we are working under the assumptions of equal allocation of study 

subjects to the experimental treatment and control arms (i.e. a 1: 1: 1… : 1 allocation 

ratio) and, as appropriate, immediate discontinuation of follow-up in treatment arms for 

which the outcome of the study is known. Hence, at any point in time, all active study 

arms will accrue the same number of person years of follow-up. For example, suppose a 

trial is to be terminated once the control group reaches 𝑑𝐶 events and it takes 𝑁𝐶 person 

years for the control group to accumulate these events. Then all experimental treatment 

groups still under follow-up at that time will also have incurred 𝑁𝐶 person years of 

follow-up. 

The expected number of person years is simple to compute under an uncurtailed 

design. Under Design C, the trial terminates once the number of events in the control 

group reaches 𝑑𝐶. Hence, if there are 𝐾 experimental treatment groups under study, they 

will also be observed until the number of events in the control group reaches 𝑑𝐶. Thus, 

the expected number of person years in an uncurtailed design is given by  

(𝐾 + 1) × (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛 𝑦𝑒𝑎𝑟𝑠 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑑𝐶  𝑒𝑣𝑒𝑛𝑡𝑠) 
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= (𝐾 + 1) × 𝐸(𝑁𝐶|𝑑𝐶) 
 

We know the number of person years it takes to accumulate 𝑑𝐶 events in the control 

group follows a 𝐺𝑎𝑚𝑚𝑎 (𝑑𝐶 ,
1

𝑖𝐶
) distribution. Hence, the expected number of person 

years for the control arm to reach 𝑑𝐶 events is the expected value of this distribution, 
𝑑𝐶

𝑖𝐶
. 

So, the expected number of person years until study termination in an uncurtailed trial 

conducted under Design C is (𝐾 + 1) ×
𝑑𝐶

𝑖𝐶
. Furthermore, it follows that the variance of 

the number of person years until termination is given by (𝐾 + 1)2 ×
𝑑𝐶

𝑖𝐶
2. For simplicity 

and without loss of generality, we will take 𝑖𝐶 = 1 (and so the time it takes the control 

group to reach 𝑑𝐶 events will be assumed to follow a 𝐺𝑎𝑚𝑚𝑎(𝑑𝐶 , 1) distribution) 

throughout the remainder of this dissertation. 

We now turn our attention to the case of a fully curtailed trial. Suppose we are 

designing a superiority trial under Design C in which 𝐾 experimental treatment groups 

are compared to a single control group. Suppose further that for a given Type I error, 

power, and values 𝑟1, 𝑟2, … , 𝑟𝐾 for the rate ratios of event accrual for the experimental 

treatments, the maximum number of events to observe in the control group is 𝑑𝐶 and the 

critical value is 𝑚. A curtailed design makes use of the following rules: 

 Follow-up is stopped for any experimental treatment arm that reaches 𝑚 + 1 

events prior to the control arm reaching 𝑑𝐶 events and 𝐻0 is accepted for all such 

experimental treatment arms. 

 The entire study is stopped if the control arm reaches 𝑑𝐶 events (before all 

experimental treatment arms reach 𝑚 + 1 events) and 𝐻0 is rejected for all 

experimental treatment arms that have not yet reached 𝑚 + 1 events. 
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 If all experimental treatment arms reach 𝑚 + 1 events before the control arm 

reaches 𝑑𝐶 events, then the entire study is stopped as 𝐻0 is accepted for all 

experimental treatment arms. 

Let 𝑁𝑇1 , 𝑁𝑇2 , … , 𝑁𝑇𝐾 denote the number of person years for experimental treatment arm 

1, 2, … , 𝐾, respectively, to reach 𝑚 + 1 events, and let 𝑁𝐶 denote the number of person 

years it takes the control arm to reach 𝑑𝐶 events
31

. Follow-up for each experimental 

treatment arm will be terminated once the treatment arm reaches 𝑚 + 1 events, and the 

number of person years it takes to reach 𝑚+ 1 events in the 𝑘𝑡ℎ experimental treatment 

arm follows a 𝐺𝑎𝑚𝑚𝑎(𝑚 + 1, 1) or a 𝐺𝑎𝑚𝑚𝑎 (𝑚 + 1,
1

𝑟𝑘
) distribution (corresponding 

to the null and alternative hypothesis in Equation 4.2.1, respectively, with the value of 𝑖𝐶 

assumed to be 1). Similarly, follow-up in the control group is terminated once it reaches 

𝑑𝐶 events, and the number of person years it takes to do so follows a 𝐺𝑎𝑚𝑚𝑎(𝑑𝐶 , 1) 

distribution. 

There are two settings for which the trial will terminate. In the first, the control 

group reaches 𝑑𝐶 events (thus terminating the trial) before all experimental treatment 

arms reach 𝑚 + 1 events. In this case, all 𝑁𝑇𝑘 for experimental treatment groups which 

have not reached 𝑚 + 1 events are stopped at 𝑁𝐶 person years. In the second setting, all 

experimental treatment arms reach 𝑚 + 1 events prior to the control group reaching 𝑑𝐶 

events (thus terminating the trial), so follow-up in the control arm is curtailed at 

                                                           
31

 As was previously mentioned, in a curtailed trial the control group may not reach 𝑑𝐶  events if all 

experimental treatment arms have surpassed the critical value, causing the trial to terminate due to futility. 

In this case, 𝑁𝐶  is interpreted as the amount of follow-up in the control group at the time the trial stops. 

Similarly, the experimental treatment groups may not reach 𝑚 + 1 events prior to the control group 

reaching 𝑑𝐶  events, at which time the trial is terminated. In this case, 𝑁𝑇1 , 𝑁𝑇2 , … , 𝑁𝑇𝐾 are interpreted as the 

amount of follow-up in the experimental treatment arms at the time of trial stoppage. This is further 

explained in the main text and is graphically depicted in Figure 2. 
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max𝑘 𝑁𝑇𝑘 . In both settings, the sum 𝑁𝑇1 + 𝑁𝑇2 +⋯+𝑁𝑇𝐾 + 𝑁𝐶 represents the total 

number of person years until the trial terminates. These two settings
32

 are depicted 

graphically in Figure 2 below for a hypothetical study with three new treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
32

 In practice, a third setting could arise when 𝑑𝐶  events are obtained in the control group at the same time 

that 𝑚 + 1 events are observed in the final active experimental treatment group. This is possible when a 

trial has non-continuous follow-up of subjects for the outcome of interest. Clearly, this setting cannot be 

expressed via the continuous Gamma distributions which characterize subject follow-up. However, in this 

situation, 𝑁𝐶  coincides with max𝑘 𝑁𝑇𝑘, and so the total number of person years in the study would be 

identical to that of setting two. 
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Control group has reached 𝑑𝐶 events  
New treatment group has reached 𝑚+ 1 events  

Tx 1 

Tx 2 

Tx 3 𝑁𝑇3 

𝑁𝑇2 = 𝑁𝐶  

𝑁𝑇1 

𝑁𝐶  

Study stops here since the control 

arm has reached 𝑑𝐶 events prior to 

all new treatment arms reaching 

𝑚 + 1 events 

Person Years 

Control 

Setting 1 

Unobserved 

Figure 2: Person years accrued in a fully curtailed superiority trial under two settings: 

(1) Control arm reaches 𝑑𝐶 events prior to all new treatment arms reaching 𝑚 + 1 

events; (2) All new treatment arms reach 𝑚+ 1 events prior to the control arm 

reaching 𝑑𝐶 events 

𝑁𝐶 = 𝑁𝑇1 

Study stops here since all new 

treatment arms have reached 𝑚 + 1 

events prior to the control arm 

reaching 𝑑𝐶 events 

𝑁𝑇3 

𝑁𝑇1 

𝑁𝑇2 

Person Years 

Tx 1 

Tx 2 

Tx 3 

Control 

Setting 2 

Unobserved 
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To precisely calculate the expected number of person years until trial termination under a 

fully curtailed design would entail considering all possible ways in which the 

experimental treatment and control arms could accumulate events and cause the study to 

terminate, a calculation which is too difficult to explicitly formulate. Therefore, 

simulation was used to estimate the expected number and standard deviation of person 

years of follow-up for a fully curtailed design under the null and alternative hypotheses in 

Equation 4.2.1. The simulation algorithm under the null hypothesis is as follows: 

1. Generate 𝐾 random variables from a 𝐺𝑎𝑚𝑚𝑎(𝑚 + 1,1) distribution to represent 

the person years for the 𝐾 experimental treatment groups to exceed the critical 

value 𝑚. Let 𝑻𝒙 be a vector containing these 𝐾 values. 

2. Generate a random variable from a 𝐺𝑎𝑚𝑚𝑎(𝑑𝐶 , 1) distribution to represent the 

person years for the control group to reach 𝑑𝐶 events. Let this random variable be 

denoted by 𝐶. 

3. Create the vector 𝑻𝒙
∗  as follows: for each entry in 𝑻𝒙, if the entry is greater than or 

equal to 𝐶, the corresponding entry in 𝑻𝒙
∗  is set to 𝐶. Otherwise, the corresponding 

entry in 𝑻𝒙
∗  remains the same as the entry in 𝑻𝒙. 

4. Create the value 𝐶∗ as follows: If 𝐶 is greater than the maximum of the values in 

𝑻𝒙, set 𝐶∗ equal to the maximum of the values in 𝑻𝒙. Otherwise, set 𝐶∗ equal to 𝐶. 

5. Let 𝑆 equal the sum of all values in 𝑻𝒙
∗  and 𝐶∗. 

6. Repeat steps one through five 𝑛 times, denoting each calculated sum from step 

five as 𝑆1, … , 𝑆𝑛, and take the mean and standard deviation of the 𝑆𝑖 to estimate 

the expected number and standard deviation of person years until the trial 

terminates. 
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The R function Null_Time implements this algorithm and takes the arguments 𝐾 (number 

of experimental treatment groups, i.e. not including the control group), 𝑑𝑐 (number of 

control group events to be observed), crit (the critical value for the test of hypothesis, i.e. 

𝑚 for a superiority trial or 𝑤 for an inferiority trial
33

), test (either “Sup” or “Inf” to 

specify whether the trial is of treatment superiority or inferiority, respectively), and sims 

(the number of simulations used to estimate the person year values). Null_Time also 

produces a 95% empirical confidence interval for the expected number of person years. 

Full code for Null_Time is provided in Appendix E. 

The simulation algorithm to estimate the expected number and standard deviation 

of person years under the alternative hypothesis in Equation 4.2.1 is as follows: 

1. Generate a random variable from a 𝐺𝑎𝑚𝑚𝑎 (𝑚 + 1,
1

𝑟𝑘
 ) distribution to represent 

the person years for the 𝑘𝑡ℎ experimental treatment group to exceed the critical 

value 𝑚 for 𝑘 = 1, … , 𝐾. Let 𝑻𝒙 be a vector containing these 𝐾 values. 

Steps 2 through 6 follow exactly as in the algorithm presented above for estimation 

under the null hypothesis. 

The R function Alt_Time implements this algorithm and takes the arguments 𝑑𝑐 (number 

of control group events to be observed), crit (the critical value for the test of hypothesis, 

i.e. 𝑚 for a superiority trial or 𝑤 for an inferiority trial), vec (a vector of length equal to 

the number of experimental treatment groups with entries corresponding to the rate ratios 

of each experimental treatment group, i.e. a vector of the form 𝑐(𝑟1, 𝑟2, … , 𝑟𝐾)), test 

(either “Sup” or “Inf” to specify whether the trial is of treatment superiority or inferiority, 

respectively), and sims (the number of simulations used to estimate the person year 

                                                           
33

 Tests of treatment inferiority will be discussed in Section 5. 
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values). Alt_Time also produces a 95% empirical confidence interval for the expected 

number of person years. Full code for Alt_Time is provided in Appendix E. 

We next illustrate the use of these algorithms with an example. Suppose a clinical 

trial is investigating four experimental treatments and is designed to satisfy a one-sided 

overall Type I error of 0.01, a pointwise power of 0.9, and a hypothesized rate ratio of 

𝑟 = 0.2. From Table 2, we know that the critical value for rejecting 𝐻0 for any given 

experimental treatment arm in this study is 𝑚 = 8, with the stoppage number of events to 

observe in the control group being 𝑑𝐶 = 25. Null_Time(4,25,8,“Sup”,100000) provides 

an estimated time to termination of 48.21 person years under the null hypothesis in 

Equation 4.2.1 with an estimated standard deviation of 8.15 person years, based on 

100,000 simulations. The associated 95% empirical confidence interval is (35.52, 65.38). 

We can compare this to an asymptotic 95% confidence interval (based on the normal 

distribution) for the total number of person years this study will require when the global 

null hypothesis is true by computing 48.21±1.96×8.15 = (32.24, 64.18) person years. 

Alt_Time(25,8,c(.2,.2,.2,.2),“Sup”,100000) yields an estimated time to termination of 

123.20 person years and a standard deviation of  23.35 person years under the alternative 

hypothesis in Equation 4.2.1 when all treatment groups have a rate ratio of 0.2; the 95% 

empirical confidence interval is (80.98, 171.99). The corresponding asymptotic 95% 

confidence interval is (77.43, 168.97). If instead the values of the rate ratios are 0.2, 0.5, 

0.6, and 0.4 for the four experimental treatment groups, we would use 

Alt_Time(25,8,c(.2,.5,.6,.4),“Sup”,100000) to find an estimated number of person years 

to trial discontinuation of 101.20 with a standard deviation of 14.87, and a 95% empirical 
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confidence interval of (73.65, 131.82) compared to the asymptotic 95% confidence 

interval of (72.05, 130.35). 

Since the algorithms assume 𝑖𝐶 = 1, when using the Null_Time and Alt_Time 

codes to estimate the expected number and standard deviation of person years until trial 

termination in practice, the results will need to be multiplied by 
1

𝑖𝐶
. For example, in the 

hypothetical study of four experimental treatments presented above, the expected number 

of person years obtained from Null_Time was 48.21 with a standard deviation of 8.15. 

Suppose that the true incidence rate of events in the control arm is 1 event per 10 person 

years (equivalently, 0.1 events per person year). Then, the estimated expected number of 

person years until trial termination under the null hypothesis would be 48.21×(1/0.1) = 

482.1 person years, and the corresponding standard deviation would be 8.15×(1/0.1) = 

81.5 person years. 

The hypothetical study above illustrates that for a curtailed superiority trial, the 

expected number of person years until trial termination under the alternative hypothesis is 

always greater than under the null hypothesis. Under the null hypothesis, all new 

treatment groups tend to accumulate events at the same rate as the control group, whereas 

under the alternative hypothesis, events in the new treatment groups tend to accumulate at 

rates lower than that of the control group. Hence, it takes longer under the alternative 

hypothesis for the new treatment arms to reach 𝑚 + 1 events, the time at which follow-

up of these treatment arms can be terminated, than under the null hypothesis. 

Estimated values for the expected number and standard deviation of person years 

until trial termination for fully curtailed superiority studies under the null and alternative 
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hypotheses are provided in columns 4 through 6 in Table 2
34

. In Table 2, Alt_Time was 

computed under two settings: (1) one new treatment group has the rate ratio 𝑟 specified in 

the table, and the remaining 𝐾 − 1 new treatment groups have rate ratio equal to one (see 

column 5),  and (2) the indicated value of 𝑟 in the table holds for all experimental 

treatments under study (i.e. 𝑟1 = 𝑟2 = ⋯ = 𝑟𝐾 = 𝑟) (see column 6). Table 2 also contains 

the expected number and standard deviation of person years until trial discontinuation for 

an uncurtailed study (with 𝑖𝐶 = 1) in column 7. 

We demonstrate the degree to which full curtailment reduces the expected number 

of person years in comparison to uncurtailed designs via the graphs in Figure 3 below. 

The graphs display the expected person years of follow-up in superiority trials for all 

combinations of the design parameters 𝛼𝑜𝑣𝑟 = 0.05, 0.01, pointwise power = 0.9, 0.8, 

𝑟 = 0.1, 0.2, 0.5, and 𝐾 = 1, 2, 3, 4, 5. Each graph illustrates the expected number of 

person years in an uncurtailed study, under the null hypothesis under full curtailment, and 

under both settings of the alternative hypothesis under full curtailment used to generate 

columns 5 and 6 in Table 2 (these setting appear in the Figure 3 legend as “Curtailed-Alt 

(One)” and “Curtailed-Alt (All)”, respectively). Plotting the results for both settings of 

the alternative hypothesis shows that the number of person years under the alternative in 

a fully curtailed design will depend heavily on the values of the rate ratios of the 

experimental treatment groups. This is explored further in Figure 4 which illustrates how 

the expected number of person years under the alternative hypothesis varies with the 

value of the rate ratio 𝑟 for the experimental treatment groups. The values of 𝑑𝐶 and 𝑚 

used to determine the person years of follow-up in Figure 4 were found using design 

                                                           
34

 The person year values in columns 4 through 6 of Table 2 were estimated using Null_Time and Alt_Time 

with 100,000 simulations; note that these functions return results based on assuming 𝑖𝐶 = 1. 
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parameters 𝛼𝑜𝑣𝑟 = 0.05, pointwise power = 0.9, and 𝑟 = 0.1 in the Des_Sup routine, 

and the indicated value of 𝑟 in the legend applies to all experimental treatment groups 

under study. 

Figure 5 displays the ratio of curtailed to uncurtailed expected person years in a 

superiority trial for each combination of design parameters in Table 2; in particular, the 

ratios of the values in column 4 to column 7 (labeled “Curtailed-Null”), column 5 to 

column 7 (labeled “Curtailed-Alt (One)”), and column 6 to column 7 (labeled “Curtailed-

Alt (All)”) are plotted in Figure 5.  

Figures 3, 4, and 5 illustrate that the expected number of person years is reduced 

the most in a fully curtailed superiority trial when the null hypothesis is true. This implies 

that pharmaceutical companies can terminate trials most quickly (and thus achieve the 

greatest possible reduction in study costs) when none of the experimental treatments are 

superior to the control, and hence, when there is no profit to be made. 
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Figure 3: Expected number of person years in a superiority trial for combinations of 

𝛼𝑜𝑣𝑟 = 0.05, 0.01, pointwise power = 0.9, 0.8, 𝑟 = 0.1, 0.2, 0.5, and 𝐾 = 1, 2, 3, 4, 5 
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Figure 5: Ratio of fully curtailed to uncurtailed expected person years of 

follow-up for superiority trials with design parameters given in Table 2 
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SECTION 5: TESTS OF INFERIORITY, TWO-SIDED TESTS OF 

HYPOTHESES, AND PAIRWISE TESTS OF EXPERIMENTAL TREATMENTS 

 

5.1: Test of Inferiority 

 

In Section 4, we focused on tests of superiority to determine whether at least one 

experimental treatment is significantly more effective than the control treatment in terms 

of reducing the incidence of events. In other circumstances, for example early on in the 

research process, researchers may want to identify experimental treatments that are 

significantly less effective than the control (i.e. result in significantly more events 

occurring relative to the control) so that these experimental treatments can be removed 

from consideration and resources can be reallocated to those more promising agents. To 

derive a test of treatment inferiority
35

, we must define the appropriate counterpart to the 

alternative hypothesis in Equation 4.2.1; that is, we must define the alternative hypothesis 

corresponding to at least one experimental treatment being inferior to the control. The 

hypotheses for an inferiority trial are, therefore, as follows: 

 𝐻0: 𝑖1 = 𝑖2 = ⋯ = 𝑖𝐾 = 𝑖𝐶  𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝑖1 = 𝑟1𝑖𝐶 , 𝑖2 = 𝑟2𝑖𝐶 , … , 𝑖𝐾 = 𝑟𝐾𝑖𝐶 

where all 𝑟𝑘 ≥ 1 and at least one of the 𝑟𝑘 is strictly greater than 1 
(5.1.1) 

 

These hypotheses may be relevant during drug discovery when testing of the efficacy of 

several new agents is conducted. A researcher evaluating several options to improve upon 

an existing standard of care treatment may want to know if a new treatment being 

considered is already proven inferior to the standard of care so that further resources are 

not invested in the new agent or other compounds which have a similar mechanism of 

action. These hypotheses may also be useful in safety studies where the rare outcome is 

adverse events which occur during treatment. In this case, acceptance of the null 

                                                           
35

 As was the case for the test of treatment superiority in Section 4, we will assume an equal allocation of 

study subjects to the experimental and control treatment groups in the derivation of the test of treatment 

inferiority. 
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hypothesis indicates an acceptable safety profile of the experimental treatments (i.e. the 

experimental treatments are not significantly more harmful than the control treatment), 

and the alternative hypothesis indicates that at least one of the experimental treatments is 

harmful (i.e. causes too many adverse events in comparison to the control treatment).  

It should be noted that for Equation 5.1.1, Type II error corresponds to 

consumers’ risk (as it indicates that one or more experimental treatments are declared to 

be equally as effective as the control when they are in fact inferior), and Type I error 

corresponds to producer’s risk (as one or more experimental treatments are declared to be 

inferior when they are in fact equally as effective as the control)
36

. Attempts to manage 

overall Type I error that make it more difficult to reject the null hypothesis will increase 

the Type II error (i.e. consumers’ risk) and hence may not be desirable. Thus, in practice, 

investigators will control both Type I and Type II error for an inferiority trial by 

recruiting an appropriate number of subjects based on sample size calculations and/or by 

ensuring an adequate amount of subject follow-up. 

A natural test statistic for testing the hypotheses in Equation 5.1.1 is the 

maximum of the 𝐷𝑘, 𝑘 = 1,2, … , 𝐾. That is, we will reject the null hypothesis of no 

difference in efficacy between any of the experimental treatments compared to the 

control treatment (in favor of the alternative hypothesis of at least one experimental 

treatment being inferior to the control) if the maximum number of events among the 𝐾 

experimental treatment groups is too large, say greater than or equal to a value 𝑤 (i.e. we 

reject when too many events occur in at least one experimental treatment group in 

comparison to the control). 

                                                           
36

 Specifically for a safety study, a Type II error (consumers’ risk) occurs when one or more experimental 

treatments are declared to be safe when they are in fact harmful, and a Type I error (producer’s risk) occurs 

when one or more experimental treatments are declared to be harmful when they are in fact safe. 
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 To calculate the Type I error, we calculate 𝑃(max(𝐷1, … , 𝐷𝐾) ≥ 𝑤) under the 

null hypothesis in Equation 5.1.1 as follows: 

𝑃(max(𝐷1, … , 𝐷𝐾) ≥ 𝑤|𝑡) = 1 − 𝑃(max(𝐷1, … , 𝐷𝐾) < 𝑤|𝑡) 
 

= 1 − 𝑃(max(𝐷1, … , 𝐷𝐾) ≤ 𝑤 − 1|𝑡) 
 

By equation 4.2.5
37

, it follows that 

𝑃(max(𝐷1, … , 𝐷𝐾) ≥ 𝑤) = 1 − ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[∑ 𝑒−𝑡
𝑤−1

𝑠=0

𝑡𝑠

𝑠!
]

𝐾

𝑑𝑡 (5.1.2) 

 

Thus, to test the hypotheses in Equation 5.1.1 at a specified one-sided overall Type I error 

of 𝛼𝑜𝑣𝑟 and given the value of 𝑑𝐶, we must find the critical value 𝑤 such that Equation 

5.1.2 is as close to 𝛼𝑜𝑣𝑟 as possible without exceeding this value
38

. Again, due to 

discreteness, it is usually not possible to exactly obtain the nominal overall Type I error. 

Pointwise power (the probability of finding the 𝑘𝑡ℎ new treatment to be inferior to 

the control given that it has a rate ratio of 𝑟𝑘) follows readily from Equation 4.2.3 and is 

given by 

𝑃(𝐷𝑘 ≥ 𝑤) = 1 − ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)
[∑ 𝑒−𝑟𝑘𝑡
𝑤−1

𝑠=0

(𝑟𝑘𝑡)
𝑠

𝑠!
] 𝑑𝑡

∞

0

 

 

(5.1.3) 

or equivalently, by Equation 4.2.3*, 

 

𝑃(𝐷𝑘 ≥ 𝑤) = 1 − ∑ (
𝑑𝑐 + 𝑧 − 1

𝑧
)

𝑤−1

𝑧=0

(
1

1 + 𝑟𝑘
)
𝑑𝐶

(1 −
1

1 + 𝑟𝑘
)
𝑧

 (5.1.3*) 

 

                                                           
37

 Throughout Section 5.1, we will make use of several formulas related to the minimum and maximum of 

𝐷1, 𝐷2, … , 𝐷𝐾  which were derived in Section 4.2. In Section 4.2, the value of all rate ratios were assumed to 

be ≤ 1 as stated in Equation 4.2.1. However, when the results in Section 4.2 are applied here in Section 5.1, 

the rate ratios in the resulting formulas are assumed to have value ≥ 1 to reflect the assumptions of 

Equation 5.1.1. 
38

 Since Equation 5.1.2 is a decreasing function in 𝑤, we can always find a value of 𝑤 that satisfies the 

desired Type I error given the value of 𝑑𝐶 . However, this value may not satisfy a desired pointwise power 

(see Equation 5.1.3 for pointwise power in an inferiority study). We will show how to find values of 𝑑𝐶  and 

𝑤 that simultaneously achieve a desired Type I error and pointwise power in the main text. 
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We now show how to design a trial to test the hypotheses in Equation 5.1.1 at a specified 

one-sided overall Type I error 𝛼𝑜𝑣𝑟 and which achieves a desired pointwise power. We 

must find the smallest value 𝑑𝐶 and corresponding critical value 𝑤 such that 

𝑃(max(𝐷1, … , 𝐷𝐾) ≥ 𝑤) ≤ 𝛼𝑜𝑣𝑟 under the null hypothesis in Equation 5.1.1 and 

𝑃(max(𝐷1, … , 𝐷𝐾) ≥ 𝑤) ≥ 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟 for a given value of the rate ratio 𝑟 (i.e. 

we must find the smallest values of 𝑑𝐶 and 𝑤 that simultaneously satisfy Equations 5.1.2 

and 5.1.3 for given values of 𝛼𝑜𝑣𝑟 and pointwise power). To determine 𝑑𝐶 and 𝑤, the 

function Des_Inf was written in R. This function takes the same arguments as Des_Sup 

(i.e., 𝐾, 𝑎𝑙𝑝ℎ𝑎, 𝑟, 𝑝𝑤𝑟) and returns the number of events 𝑑𝐶 to be observed in the control 

group, the critical value 𝑤, the true overall Type I error achieved, and the true pointwise 

power achieved in an inferiority trial conducted under Design C methodology. For 

example, suppose there are four experimental treatments under study and researchers 

want to determine if any of them have an unacceptable safety profile, as indicated by 

causing significantly more adverse events than a control treatment. Researchers aim to 

detect experimental treatments that cause at least twice as many adverse events as the 

control group (i.e. 𝑟 = 2). To test the hypotheses in Equation 5.1.1 at a one-sided overall 

Type I error of 0.05 and to achieve a minimum pointwise power of 0.8, the function 

Des_Inf(4,.05,2,.8) returns the design parameters 

The number of control group events dc is 30 

The critical value w is 49 

The true overall Type I error is 0.04866245 

The true pointwise power is 0.8008007 

 

Hence, the study would continue until 30 events are observed in the control group, and 

the global null hypothesis will be rejected (indicating at least one of the experimental 

treatments is harmful) if 49 or more adverse events have occurred in any of the 
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experimental treatment arms. Those treatments that cause 49 or more adverse events 

would be removed from future consideration as research continues. Full code for the 

Des_Inf function is provided in Appendix E. 

 Columns 2 and 3 in Table 4 below provide the number of control group events 

𝑑𝐶, critical value 𝑤, true one-sided overall Type I error, and true pointwise power 

achieved in an inferiority trial conducted under Design C for each combination of 

nominal 𝛼𝑜𝑣𝑟 = 0.05, 0.025, 0.01, 0.001, nominal pointwise power = 0.9, 0.8, 𝐾 =

1, 2, 3, 4, 5, and rate ratio 𝑟 = 10, 5, 2. The corresponding values obtained under the 

Bonferroni procedure are provided for comparison in columns 8 and 9. 
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Table 4: Number of control group events 𝑑𝐶, critical value 𝑤, true one-sided overall 

Type I error, true pointwise power, and expected person years until trial termination in an 

inferiority trial conducted under Design C for each combination of nominal 𝛼𝑜𝑣𝑟 =
0.05, 0.025, 0.01, 0.001, nominal pointwise power = 0.9, 0.8, 𝐾 = 1, 2, 3, 4, 5, and rate 

ratio 𝑟 = 10, 5, 2 

 

𝛼𝑜𝑣𝑟 = 0.05, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.9 
 

𝑟 = 10 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 3 

9 

0.03271484 

0.9288088 

5.898793 

(3.276461) 

1.751874 

(0.5902905) 

1.751874 

(0.5902905) 

6 

(3.4641) 

3 

9 

0.03271484 

0.9288088 

2 3 

10 

0.03419927 

0.9112841 

8.923622 

(5.023876) 

6.903292 

(3.391291) 

3.06093 

(0.7516046) 

9 

(5.1962) 

3 

10 

0.01928711 

0.9112841 

3 3 

10 

0.04653185 

0.9112841 

11.94335 

(6.730296) 

9.927413 

(5.110737) 

4.113392 

(0.8706497) 

12 

(6.9282) 

4 

13 

0.01063538 

0.948863 

4 4 

13 

0.03319684 

0.948863 

19.91971 

(9.807395) 

17.21691 

(7.892682) 

6.755959 

(1.053144) 

20 

(10) 

4 

13 

0.01063538 

0.948863 

5 4 

13 

0.03904195 

0.948863 

23.92759 

(11.76612) 

21.22344 

(9.85241) 

8.089269 

(1.154536) 

24 

(12) 

4 

14 

0.006362915 

0.9377837 

 

 

 

 
𝑟 = 5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 6 

13 

0.04812622 

0.9347349 

11.83748 

(4.615357) 

5.100476 

(1.394228) 

5.100476 

(1.394228) 

12 

(4.899) 

6 

13 

0.04812622 

0.9347349 

2 7 

16 

0.04644442 

0.9394989 

20.8838 

(7.700184) 

17.05177 

(5.242304) 

9.87437 

(1.798618) 

21 

(7.9373) 

7 

17 

0.01734483 

0.9250825 

3 7 

17 

0.04282289 

0.9250825 

27.92929 

(10.3649) 

24.29017 

(7.921618) 

13.99833 

(2.109547) 

28 

(10.583) 

7 

18 

0.01132792 

0.9088288 

4 7 

18 

0.03569877 

0.9088288 

34.90644 

(12.9889) 

31.44871 

(10.55262) 

18.39816 

(2.495376) 

35 

(13.2288) 

7 

18 

0.01132792 

0.9088288 

5 7 

18 

0.04206158 

0.9088288 

41.94544 

(15.63896) 

38.47876 

(13.18809) 

22.02696 

(2.757675) 

42 

(15.8745) 

8 

20 

0.009578645 

0.9322597 

 

 

 

 
𝑟 = 2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 32 

47 

0.04439121 

0.9053749 

63.61826 

(10.84462) 

46.44982 

(6.453644) 

46.44982 

(6.453644) 

64 

(11.3137) 

32 

47 

0.04439121 

0.9053749 

2 36 

54 

0.04983791 

0.9039034 

107.6929 

(17.54011) 

98.4466 

(12.57864) 

81.98854 

(7.775) 

108 

(18) 

37 

56 

0.02350578 

0.9002963 

3 40 

61 

0.04437004 

0.9033769 

159.789 

(24.88359) 

150.0521 

(19.52604) 

123.7223 

(9.259815) 

160 

(25.2982) 

41 

63 

0.01484111 

0.9001535 

4 41 

63 

0.04722764 

0.9001535 

204.6567 

(31.45184) 

194.9315 

(25.97006) 

159.4957 

(10.45654) 

205 

(32.0156) 

44 

68 

0.01114898 

0.9035303 

5 44 

68 

0.04298241 

0.9035303 

263.6148 

(39.35477) 

253.3574 

(33.55302) 

206.2918 

(11.95103) 

264 

(39.7995) 

45 

70 

0.009405374 

0.9006217 
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𝛼𝑜𝑣𝑟 = 0.05, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.8 
 

𝑟 = 10 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 2 

7 

0.03515625 

0.8397133 

3.893 

(2.621769) 

1.295922 

(0.5237544) 

1.295922 

(0.5237544) 

4 

(2.8284) 

2 

7 

0.03515625 

0.8397133 

2 2 

8 

0.03442004 

0.8057855 

5.928759 

(4.081039) 

4.669951 

(2.800944) 

2.307309 

(0.7361318) 

6 

(4.2426) 

2 

8 

0.01953125 

0.8057855 

3 2 

8 

0.04663015 

0.8057855 

7.908185 

(5.411604) 

6.66084 

(4.154902) 

3.103153 

(0.8992955) 

8 

(5.6569) 

3 

11 

0.01123047 

0.8921663 

4 3 

11 

0.0346426 

0.8921663 

14.95992 

(8.455921) 

13.02681 

(6.841925) 

5.59241 

(1.0836) 

15 

(8.6603) 

3 

11 

0.01123047 

0.8921663 

5 3 

11 

0.04064392 

0.8921663 

17.94046 

(10.16118) 

16.01038 

(8.53627) 

6.694534 

(1.214613) 

18 

(10.3923) 

3 

12 

0.006469727 

0.8716265 

 

 

 

 
𝑟 = 5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 4 

10 

0.04614258 

0.8419226 

7.856246 

(3.751093) 

3.773724 

(1.20563) 

3.773724 

(1.20563) 

8 

(4) 

4 

10 

0.04614258 

0.8419226 

2 5 

13 

0.04336439 

0.8603581 

14.89835 

(6.498715) 

12.39962 

(4.509587) 

7.802649 

(1.686832) 

15 

(6.7082) 

5 

13 

0.02452087 

0.8603581 

3 5 

14 

0.03815039 

0.8317516 

19.94745 

(8.730277) 

17.61619 

(6.778049) 

11.13858 

(2.12693) 

20 

(8.9443) 

5 

14 

0.01544189 

0.8317516 

4 5 

14 

0.04720239 

0.8317516 

24.9392 

(10.96543) 

22.61022 

(8.998929) 

13.90014 

(2.473376) 

25 

(11.1803) 

5 

15 

0.009605408 

0.8011018 

5 5 

15 

0.03580065 

0.8011018 

29.89399 

(13.19443) 

27.72576 

(11.25984) 

17.57759 

(3.115025) 

30 

(13.4164) 

5 

15 

0.009605408 

0.8011018 

 

 

 

 
𝑟 = 2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 23 

36 

0.04347445 

0.8120462 

45.6915 

(9.167689) 

34.90525 

(5.466055) 

34.90525 

(5.466055) 

46 

(9.5917) 

23 

36 

0.04347445 

0.8120462 

2 27 

43 

0.04762805 

0.8150543 

80.79932 

(15.18776) 

74.73955 

(11.22864) 

64.26006 

(7.016001) 

81 

(15.5885) 

28 

45 

0.02218546 

0.810087 

3 29 

47 

0.04630678 

0.8053409 

115.7432 

(21.02785) 

109.6676 

(16.89242) 

93.71933 

(8.617734) 

116 

(21.5407) 

30 

49 

0.01539325 

0.8008007 

4 30 

49 

0.04866245 

0.8008007 

149.8836 

(27.05042) 

143.749 

(22.7615) 

121.8773 

(10.18055) 

150 

(27.3861) 

33 

54 

0.0114913 

0.810509 

5 33 

54 

0.04400853 

0.810509 

197.7139 

(34.09813) 

191.0972 

(29.49175) 

161.2836 

(11.9323) 

198 

(34.4674) 

34 

56 

0.009593304 

0.8065126 
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𝛼𝑜𝑣𝑟 = 0.025, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.9 
 

𝑟 = 10 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 3 

10 

0.01928711 

0.9112841 

5.937082 

(3.341794) 

1.934689 

(0.6246614) 

1.934689 

(0.6246614) 

6 

(3.4641) 

3 

10 

0.01928711 

0.9112841 

2 4 

13 

0.0192862 

0.948863 

11.96407 

(5.908739) 

9.24741 

(3.971093) 

4.027862 

(0.8320869) 

12 

(6) 

4 

13 

0.01063538 

0.948863 

3 4 

14 

0.01634412 

0.9377837 

15.96754 

(7.887217) 

13.34916 

(5.969545) 

5.790758 

(0.9999513) 

16 

(8) 

4 

14 

0.006362915 

0.9377837 

4 4 

14 

0.02050249 

0.9377837 

19.9567 

(9.902123) 

17.33867 

(7.976523) 

7.231522 

(1.123349) 

20 

(10) 

4 

15 

0.003768921 

0.9255533 

5 4 

14 

0.02428145 

0.9377837 

23.92454 

(11.83856) 

21.31323 

(9.918273) 

8.656039 

(1.241889) 

24 

(12) 

4 

15 

0.003768921 

0.9255533 

 

 

 

 
𝑟 = 5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 7 

17 

0.01734483 

0.9250825 

13.96953 

(5.179042) 

6.664143 

(1.594557) 

6.664143 

(1.594557) 

14 

(5.2915) 

7 

17 

0.01734483 

0.9250825 

2 7 

18 

0.02062968 

0.9088288 

20.94186 

(7.819463) 

17.46969 

(5.377859) 

10.98579 

(1.935409) 

21 

(7.9373) 

7 

18 

0.01132792 

0.9088288 

3 8 

20 

0.024463 

0.9322597 

31.99767 

(11.1586) 

27.93848 

(8.511046) 

16.46303 

(2.273721) 

32 

(11.3137) 

8 

21 

0.006270475 

0.9184688 

4 8 

21 

0.02055981 

0.9184688 

39.96106 

(13.99153) 

36.09587 

(11.35407) 

21.49082 

(2.656032) 

40 

(14.1421) 

8 

22 

0.004065028 

0.9031455 

5 8 

21 

0.02443801 

0.9184688 

48.06447 

(16.88735) 

44.18032 

(14.22741) 

25.7329 

(2.934329) 

48 

(16.9706) 

8 

22 

0.004065028 

0.9031455 

 

 

 

 
𝑟 = 2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 37 

56 

0.02350578 

0.9002963 

73.80503 

(11.89769) 

55.34858 

(7.038925) 

55.34858 

(7.038925) 

74 

(12.1655) 

37 

56 

0.02350578 

0.9002963 

2 43 

66 

0.02426523 

0.9064897 

128.7276 

(19.42252) 

118.4836 

(13.94251) 

100.1501 

(8.622093) 

129 

(19.6723) 

44 

68 

0.01114898 

0.9035303 

3 45 

70 

0.02454158 

0.9006217 

179.8053 

(26.67894) 

169.511 

(20.91968) 

141.7709 

(9.934298) 

180 

(26.8328) 

48 

75 

0.007085245 

0.9041789 

4 48 

75 

0.02372738 

0.9041789 

239.9857 

(34.41193) 

229.1444 

(28.37823) 

189.7654 

(11.40086) 

240 

(34.641) 

49 

77 

0.005979507 

0.9015333 

5 49 

77 

0.0241933 

0.9015333 

293.9446 

(41.84614) 

283.1032 

(35.66927) 

233.3704 

(12.68077) 

294 

(42) 

52 

82 

0.004515245 

0.9051912 
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𝛼𝑜𝑣𝑟 = 0.025, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.8 
 

𝑟 = 10 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 2 

8 

0.01953125 

0.8057855 

3.933693 

(2.694395) 

1.455974 

(0.5693162) 

1.455974 

(0.5693162) 

4 

(2.8284) 

2 

8 

0.01953125 

0.8057855 

2 3 

11 

0.02026146 

0.8921663 

8.946299 

(5.088623) 

7.013559 

(3.452993) 

3.332454 

(0.8056968) 

9 

(5.1962) 

3 

11 

0.01123047 

0.8921663 

3 3 

12 

0.01650792 

0.8716265 

11.99713 

(6.867643) 

10.14216 

(5.237033) 

4.831156 

(1.026541) 

12 

(6.9282) 

3 

12 

0.006469727 

0.8716265 

4 3 

12 

0.0206614 

0.8716265 

14.96859 

(8.501186) 

13.11979 

(6.888807) 

6.036235 

(1.184813) 

15 

(8.6603) 

3 

13 

0.003692627 

0.8498418 

5 3 

12 

0.02442433 

0.8716265 

17.94604 

(10.21003) 

16.10086 

(8.589686) 

7.223628 

(1.344081) 

18 

(10.3923) 

3 

13 

0.003692627 

0.8498418 

 

 

 

 
𝑟 = 5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 5 

13 

0.02452087 

0.8603581 

9.934442 

(4.328975) 

4.971259 

(1.382582) 

4.971259 

(1.382582) 

10 

(4.4721) 

5 

13 

0.02452087 

0.8603581 

2 5 

15 

0.01751206 

0.8011018 

14.96774 

(6.608705) 

12.78643 

(4.676108) 

8.783331 

(1.906312) 

15 

(6.7082) 

5 

15 

0.009605408 

0.8011018 

3 5 

15 

0.02432663 

0.8011018 

19.98037 

(8.796471) 

17.8014 

(6.86718) 

11.77901 

(2.297437) 

20 

(8.9443) 

6 

18 

0.005311012 

0.8275601 

4 6 

18 

0.01745989 

0.8275601 

29.9498 

(12.12675) 

27.38701 

(9.965438) 

17.84703 

(2.8659) 

30 

(12.2474) 

6 

18 

0.005311012 

0.8275601 

5 6 

18 

0.02076794 

0.8275601 

36.00566 

(14.59913) 

33.43266 

(12.42531) 

21.36612 

(3.261003) 

36 

(14.6969) 

6 

19 

0.003305376 

0.8004705 

 

 

 

 
𝑟 = 2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years 

under null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control group 

events, 

critical value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 28 

45 

0.02218546 

0.810087 

55.81946 

(10.34512) 

43.76322 

(6.122978) 

43.76322 

(6.122978) 

56 

(10.583) 

28 

45 

0.02218546 

0.810087 

2 33 

54 

0.02116312 

0.810509 

98.86306 

(17.01375) 

92.22471 

(12.62668) 

80.66971 

(7.902318) 

99 

(17.2337) 

33 

54 

0.0114913 

0.810509 

3 34 

56 

0.02494717 

0.8065126 

135.8102 

(23.03135) 

129.1732 

(18.49798) 

111.7126 

(9.405326) 

136 

(23.3238) 

35 

58 

0.008010137 

0.8026625 

4 37 

61 

0.02400184 

0.8158823 

184.8859 

(30.19847) 

177.7495 

(25.3255) 

152.2413 

(11.18461) 

185 

(30.4138) 

38 

63 

0.006016488 

0.8123113 

5 38 

63 

0.02424881 

0.8123113 

227.6398 

(36.6618) 

220.49 

(31.70998) 

188.3215 

(12.92202) 

228 

(36.9865) 

40 

67 

0.004208497 

0.8055078 
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𝛼𝑜𝑣𝑟 = 0.01, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.9 
 

𝑟 = 10 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 4 

14 

0.006362915 

0.9377837 

7.983576 

(3.957578) 

2.744378 

(0.740786) 

2.744378 

(0.740786) 

8 

(4) 

4 

14 

0.006362915 

0.9377837 

2 4 

15 

0.007005218 

0.9255533 

11.98091 

(5.946372) 

9.452362 

(4.023498) 

4.597527 

(0.9153506) 

12 

(6) 

4 

15 

0.003768921 

0.9255533 

3 4 

15 

0.009878778 

0.9255533 

16.00131 

(7.936204) 

13.46671 

(6.015303) 

6.166522 

(1.056736) 

16 

(8) 

4 

16 

0.002212524 

0.9122111 

4 4 

16 

0.007504341 

0.9122111 

19.97944 

(9.981487) 

17.54007 

(8.05994) 

8.161965 

(1.279322) 

20 

(10) 

4 

16 

0.002212524 

0.9122111 

5 4 

16 

0.008991286 

0.9122111 

23.95095 

(11.92227) 

21.51719 

(10.00686) 

9.770237 

(1.434854) 

24 

(12) 

5 

19 

0.001299739 

0.9477567 

 

 

 

 
𝑟 = 5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 8 

20 

0.009578645 

0.9322597 

15.97783 

(5.59112) 

7.869714 

(1.738256) 

7.869714 

(1.738256) 

16 

(5.6569) 

8 

20 

0.009578645 

0.9322597 

2 8 

22 

0.007596185 

0.9031455 

23.97032 

(8.440379) 

20.27702 

(5.833577) 

13.37436 

(2.146999) 

24 

(8.4853) 

8 

22 

0.004065028 

0.9031455 

3* 9 

24 

0.009325584 

0.9270981 

35.97744 

(11.93535) 

31.71103 

(9.116911) 

19.6775 

(2.510748) 

36 

(12) 

9 

25 

0.002275692 

0.913969 

4 9 

25 

0.007849683 

0.913969 

45.05927 

(14.96858) 

40.95815 

(12.15911) 

25.49438 

(2.929551) 

45 

(15) 

9 

25 

0.002275692 

0.913969 

5 9 

25 

0.009439885 

0.913969 

54.0328 

(18.0266) 

49.93701 

(15.19805) 

30.5355 

(3.246268) 

54 

(18) 

10 

27 

0.001966587 

0.9347919 

 

 

 

 
𝑟 = 2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 45 

70 

0.009405374 

0.9006217 

89.91218 

(13.32989) 

69.27616 

(7.873896) 

69.27616 

(7.873896) 

90 

(13.4164) 

45 

70 

0.009405374 

0.9006217 

2 52 

82 

0.008521284 

0.9051912 

155.9199 

(21.58629) 

144.5928 

(15.53184) 

124.2503 

(9.572744) 

156 

(21.6333) 

52 

82 

0.004515245 

0.9051912 

3 54 

86 

0.008763323 

0.9003806 

215.9388 

(29.28457) 

204.572 

(22.97742) 

173.9552 

(10.99487) 

216 

(29.3939) 

54 

86 

0.003217405 

0.9003806 

4 57 

91 

0.008601433 

0.9042405 

284.9611 

(37.62912) 

273.077 

(31.05191) 

230.017 

(12.56655) 

285 

(37.7492) 

57 

91 

0.002435871 

0.9042405 

5 58 

93 

0.008852303 

0.9020384 

348.1368 

(45.76978) 

336.224 

(39.01762) 

281.6142 

(13.96219) 

348 

(45.6946) 

60 

96 

0.001846518 

0.9079486 

 

*  Design parameters for this row were obtained by substituting 103 in the upper limit of the integral for the Type I 

error formula (see Equation 5.1.2) in the Des_Inf code. 

 

 

 

 

 

 

 

 



96 
 

 
 

𝛼𝑜𝑣𝑟 = 0.01, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.8 
 

𝑟 = 10 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, 

critical value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 3 

12 

0.006469727 

0.8716265 

5.972426 

(3.416178) 

2.285659 

(0.6955404) 

2.285659 

(0.6955404) 

6 

(3.4641) 

3 

12 

0.006469727 

0.8716265 

2 3 

13 

0.00684373 

0.8498418 

8.975906 

(5.158271) 

7.211382 

(3.541614) 

3.853152 

(0.9260471) 

9 

(5.1962) 

3 

13 

0.003692627 

0.8498418 

3 3 

13 

0.009630278 

0.8498418 

11.99483 

(6.87807) 

10.22492 

(5.262187) 

5.175775 

(1.115422) 

12 

(6.9282) 

3 

14 

0.002090454 

0.8269907 

4 3 

14 

0.007054364 

0.8269907 

14.99365 

(8.588582) 

13.30582 

(6.991712) 

6.876503 

(1.424767) 

15 

(8.6603) 

3 

14 

0.002090454 

0.8269907 

5 3 

14 

0.008443001 

0.8269907 

17.99235 

(10.35406) 

16.3051 

(8.744416) 

8.231803 

(1.645541) 

18 

(10.3923) 

3 

15 

0.001174927 

0.8032494 

 

 

 

 
𝑟 = 5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 5 

15 

0.009605408 

0.8011018 

9.990324 

(4.421643) 

5.622902 

(1.502533) 

5.622902 

(1.502533) 

10 

(4.4721) 

5 

15 

0.009605408 

0.8011018 

2 6 

18 

0.009842686 

0.8275601 

17.96538 

(7.295522) 

15.40048 

(5.141215) 

10.66882 

(2.058423) 

18 

(7.3485) 

6 

19 

0.003305376 

0.8004705 

3 6 

19 

0.008766978 

0.8004705 

23.99511 

(9.752058) 

21.58674 

(7.628331) 

14.93234 

(2.624493) 

24 

(9.798) 

6 

19 

0.003305376 

0.8004705 

4 7 

22 

0.006432686 

0.8265294 

34.98367 

(13.16383) 

32.19442 

(10.82797) 

21.82139 

(3.197795) 

35 

(13.2288) 

7 

22 

0.001859583 

0.8265294 

5 7 

22 

0.007741562 

0.8265294 

42.14228 

(15.88123) 

39.32981 

(13.52096) 

26.13677 

(3.631462) 

42 

(15.8745) 

7 

22 

0.001859583 

0.8265294 

 

 

 

 
𝑟 = 2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

true Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx groups 

meet the rate 

1 34 

56 

0.009593304 

0.8065126 

67.90258 

(11.54017) 

54.58797 

(6.841786) 

54.58797 

(6.841786) 

68 

(11.6619) 

34 

56 

0.009593304 

0.8065126 

2 39 

65 

0.009462751 

0.808855 

116.7911 

(18.62893) 

109.6118 

(13.86542) 

97.10712 

(8.704557) 

117 

(18.735) 

40 

67 

0.004208497 

0.8055078 

3 41 

69 

0.009540422 

0.8022641 

163.8427 

(25.56137) 

156.5856 

(20.56941) 

137.5359 

(10.54688) 

164 

(25.6125) 

43 

72 

0.003175812 

0.8149469 

4 44 

74 

0.009333973 

0.811899 

219.9841 

(33.07177) 

212.2223 

(27.77891) 

184.6081 

(12.41654) 

220 

(33.1662) 

45 

76 

0.002227512 

0.8089351 

5 45 

76 

0.009522206 

0.8089351 

269.9505 

(40.11444) 

262.1602 

(34.72178) 

227.129 

(14.2406) 

270 

(40.2492) 

46 

78 

0.001865723 

0.8060517 
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𝛼𝑜𝑣𝑟 = 0.001, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.9 
 

𝑟 = 10 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 5 

20 

0.0007719398 

0.9387666 

10.0123 

(4.485938) 

3.9329 

(0.8907877) 

3.9329 

(0.8907877) 

10 

(4.4721) 

5 

20 

0.0007719398 

0.9387666 

2 5 

21 

0.0008743739 

0.9289592 

15.01158 

(6.712832) 

12.06768 

(4.55437) 

6.415964 

(1.085284) 

15 

(6.7082) 

5 

21 

0.0004552603 

0.9289592 

3 5 

22 

0.0007487147 

0.9183452 

20.02216 

(8.963022) 

17.16854 

(6.807211) 

8.975901 

(1.307772) 

20 

(8.9443) 

5 

22 

0.0002667606 

0.9183452 

4 5 

22 

0.0009706419 

0.9183452 

24.98507 

(11.14538) 

22.14079 

(9.000686) 

11.20995 

(1.496245) 

25 

(11.1803) 

5 

23 

0.0001553744 

0.9069417 

5 5 

23 

0.000698678 

0.9069417 

30.07172 

(13.47475) 

27.30345 

(11.32346) 

13.97195 

(1.77373) 

30 

(13.4164) 

5 

23 

0.0001553744 

0.9069417 

 

 

 

 
𝑟 = 5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni true 

Type I error, 

true power 

One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 10 

29 

0.0008290263 

0.910977 

19.98268 

(6.341044) 

11.39437 

(2.099073) 

11.39437 

(2.099073) 

20 

(6.3246) 

10 

29 

0.0008290263 

0.910977 

2† 11 

32 

0.0009081847 

0.9209501 

32.97134 

(9.96132) 

28.28809 

(6.872559) 

19.50176 

(2.562185) 

33 

(9.9499) 

11 

32 

0.000470337 

0.9209501 

3† 11 

33 

0.0008571444 

0.9090848 

44.00483 

(13.25985) 

39.49741 

(10.18349) 

26.837 

(3.018996) 

44 

(13.2665) 

11 

33 

0.000303053 

0.9090848 

4 12 

35 

0.0009886811 

0.9296741 

59.92714 

(17.282) 

54.85737 

(14.01526) 

35.72402 

(3.378549) 

60 

(17.3205) 

12 

36 

0.0001730006 

0.9192982 

5 12 

36 

0.000789422 

0.9192982 

72.04075 

(20.83322) 

67.13102 

(17.5646) 

43.89268 

(3.880026) 

72 

(20.7846) 

12 

36 

0.0001730006 

0.9192982 

 

 

 

 
𝑟 = 2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected Person Years 

under specified alternatives 

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

True Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 66 

107 

0.0008453577 

0.9057528 

131.9755 

(16.2538) 

106.1604 

(9.778866) 

106.1604 

(9.778866) 

132 

(16.2481) 

66 

107 

0.0008453577 

0.9057528 

2 69 

113 

0.0009906176 

0.9001822 

207.0493 

(24.9882) 

194.0932 

(18.03552) 

170.8481 

(11.23494) 

207 

(24.9199) 

71 

116 

0.00045905 

0.9059773 

3 73 

120 

0.0009389094 

0.9025216 

291.8217 

(34.19647) 

278.4314 

(26.84334) 

242.3819 

(13.03819) 

292 

(34.176) 

73 

120 

0.0003275152 

0.9025216 

4 76 

125 

0.000940831 

0.9064813 

379.9758 

(43.43582) 

366.0709 

(35.84505) 

315.5337 

(14.68223) 

380 

(43.589) 

76 

125 

0.0002497132 

0.9064813 

5 77 

127 

0.000980573 

0.9048674 

462.3637 

(52.70097) 

448.3553 

(44.90322) 

384.1871 

(16.23976) 

462 

(52.6498) 

78 

129 

0.0001781977 

0.9032685 

 

† Bonferroni values for this row were obtained by substituting 103 in the upper limit of the integral for the Type I error 

formula in the Des_Inf code.  
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𝛼𝑜𝑣𝑟 = 0.001, 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 0.8 
 

𝑟 = 10 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

True Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 4 

18 

0.000744819 

0.8824026 

7.995816 

(3.995293) 

3.467864 

(0.8617723) 

3.467864 

(0.8617723) 

8 

(4) 

4 

18 

0.000744819 

0.8824026 

2 4 

19 

0.0008204864 

0.8660641 

11.99013 

(5.988192) 

9.817389 

(4.118107) 

5.674194 

(1.12055) 

12 

(6) 

4 

19 

0.0004277229 

0.8660641 

3 4 

20 

0.0006840587 

0.8488657 

16.00544 

(8.001619) 

13.91007 

(6.139492) 

7.946991 

(1.431762) 

16 

(8) 

4 

20 

0.0002441406 

0.8488657 

4 4 

20 

0.0008862584 

0.8488657 

19.97916 

(9.97136) 

17.88923 

(8.113325) 

9.921867 

(1.689673) 

20 

(10) 

4 

20 

0.0002441406 

0.8488657 

5 4 

21 

0.0006217585 

0.8308855 

24.0397 

(12.04926) 

22.02267 

(10.19584) 

12.37588 

(2.08553) 

24 

(12) 

4 

21 

0.0001385808 

0.8308855 

 

 

 

 
𝑟 = 5 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

True Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 8 

26 

0.0006593636 

0.827317 

16.00334 

(5.674045) 

9.971721 

(2.007542) 

9.971721 

(2.007542) 

16 

(5.6569) 

8 

26 

0.0006593636 

0.827317 

2 8 

27 

0.0007923881 

0.8050986 

23.98932 

(8.492664) 

21.14072 

(6.069242) 

15.9089 

(2.614148) 

24 

(8.4853) 

8 

27 

0.0004106977 

0.8050986 

3 9 

30 

0.0006685265 

0.8292057 

35.96352 

(11.98107) 

32.75027 

(9.356992) 

23.85317 

(3.243882) 

36 

(12) 

9 

30 

0.0002359934 

0.8292057 

4 9 

30 

0.000869796 

0.8292057 

45.06092 

(15.00252) 

41.82748 

(12.35957) 

29.80425 

(3.772347) 

45 

(15) 

9 

30 

0.0002359934 

0.8292057 

5 9 

31 

0.0006700265 

0.8087628 

54.06693 

(18.1057) 

50.99137 

(15.4765) 

36.63959 

(4.590356) 

54 

(18) 

9 

31 

0.0001470384 

0.8087628 

 

 

 

 
𝑟 = 2 

Number of 

experimental 

treatment 

groups 

Number of 

control group 

events, critical 

value 

True Type I 

error, true 

pointwise 

power 

Expected 

person 

years under 

null 

(std dev) 

Expected person years under 

specified alternatives  

(std dev) 

Expected 

person 

years in an 

uncurtailed 

study 

(std dev) 

Bonferroni 

control 

group 

events, 

critical 

value 

Bonferroni 

True Type I 

error, true 

power One Tx 

group meets 

the rate 

All Tx 

groups meet 

the rate 

1 51 

87 

0.0009943432 

0.8101087 

101.9314 

(14.28051) 

85.28772 

(8.573397) 

85.28772 

(8.573397) 

102 

(14.2829) 

51 

87 

0.0009943432 

0.8101087 

2 55 

95 

0.000956185 

0.800315 

164.9128 

(22.24269) 

156.5008 

(16.64607) 

141.8629 

(10.54808) 

165 

(22.2486) 

55 

95 

0.0004916666 

0.800315 

3 59 

102 

0.0009015878 

0.8075131 

236.0527 

(30.75402) 

227.0928 

(24.70533) 

203.6122 

(12.73727) 

236 

(30.7246) 

59 

102 

0.0003146735 

0.8075131 

4 60 

104 

0.0009923353 

0.8053415 

299.9331 

(38.7307) 

290.972 

(32.62529) 

259.2723 

(14.93282) 

300 

(38.7298) 

61 

106 

0.0002216631 

0.8032139 

5 62 

108 

0.0008655343 

0.8011291 

371.8901 

(47.327) 

362.8875 

(41.04687) 

322.5611 

(17.22202) 

372 

(47.244) 

62 

108 

0.0001860506 

0.8011291 
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 We next provide the formulas for partial power and full power in the context of 

testing for treatment inferiority. Partial power denotes the probability that at least one 

truly inferior experimental treatment is found to be inferior to the control, assuming that 

the alternative hypothesis in Equation 5.1.1 is true. To calculate partial power, we 

compute 𝑃(max(𝐷1, … , 𝐷𝐾) ≥ 𝑤) under the alternative hypothesis in Equation 5.1.1. The 

result again follows from Equation 4.2.5 and is given by 

𝑃(max(𝐷1, … , 𝐷𝐾) ≥ 𝑤) = 

1 − ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)
[∑ 𝑒−𝑟1𝑡
𝑤−1

𝑠=0

(𝑟1𝑡)
𝑠

𝑠!
] [∑ 𝑒−𝑟2𝑡
𝑤−1

𝑠=0

(𝑟2𝑡)
𝑠

𝑠!
]⋯ [∑ 𝑒−𝑟𝐾𝑡

𝑤−1

𝑠=0

(𝑟𝐾𝑡)
𝑠

𝑠!
] 𝑑𝑡

∞

0

 
(5.1.4) 

 

Full power corresponds to the probability that all truly inferior experimental treatments 

are found to be inferior to the control, assuming that the alternative hypothesis in 

Equation 5.1.1 is true. In this case, the number of events in all truly inferior experimental 

treatment groups must be sufficiently large. Hence, we must find 𝑃(min(𝐷1, … , 𝐷𝐾) ≥

𝑤) under the alternative hypothesis in Equation 5.1.1 and we proceed as follows: 

𝑃(min(𝐷1, … , 𝐷𝐾) ≥ 𝑤|𝑡) = 1 − 𝑃(min(𝐷1, … , 𝐷𝐾) < 𝑤|𝑡) 
 

= 1 − 𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑤 − 1|𝑡) 
 

Therefore, by Equation 4.2.4, we have 

 

𝑃(min (𝐷1, … , 𝐷𝐾) ≥ 𝑤) = 

∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 − ∑ 𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑤−1

𝑠=0

]⋯ [1 − ∑ 𝑒−𝑟𝐾𝑡
(𝑟𝐾𝑡)

𝑠

𝑠!

𝑤−1

𝑠=0

] 𝑑𝑡 
(5.1.5) 

 

As was noted in Section 4, the number of elements in Equations 5.1.4 and 5.1.5 should, in 

theory, be appropriately reduced to the number of truly inferior experimental treatments, 

though this value will not be known in practice. 
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 Recall that an important consideration for investigators is the expected number of 

person years of follow-up until trial termination, as the longer a study lasts or the larger 

the number of subjects which need to be enrolled, the greater the expenses. We therefore 

turn our attention to calculating the expected number of person years until trial 

termination in an inferiority study. We will consider trials conducted under both 

uncurtailed and fully curtailed stoppage. 

In an uncurtailed design, the trial will stop only when the control group reaches 

𝑑𝐶 events, so the formulas for the expected number and variance of person years are 

given by (𝐾 + 1) ×
𝑑𝐶

𝑖𝐶
 and (𝐾 + 1)2 ×

𝑑𝐶

𝑖𝐶
2, respectively (the same as in an uncurtailed 

superiority trial). We will, as in Section 4.6, assume that 𝑖𝐶 = 1 for the following 

derivations concerning subject follow-up in inferiority trials, keeping in mind that, in 

practice, multiplication by 
1

𝑖𝐶
 will need to be performed when reporting the expected 

amount and standard deviation of follow-up. 

 In a fully curtailed inferiority trial, the stopping rules are as follows: 

 Follow-up is stopped for any experimental treatment arm that reaches 𝑤 events 

prior to the control arm reaching 𝑑𝐶 events and 𝐻0 is rejected for all such 

experimental treatment arms. 

 The entire study is stopped if the control arm reaches 𝑑𝐶 events (before all 

experimental treatment arms reach 𝑤 events), and 𝐻0 is accepted for all 

experimental treatment arms which have not yet reached 𝑤 events. 

 If all experimental treatment arms reach 𝑤 events before the control arm reaches 

𝑑𝐶 events, then the entire study is stopped and 𝐻0 is rejected for all experimental 

treatment arms. 
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The algorithms to calculate the expected number and standard deviation of person years 

of follow-up until trial termination in a fully curtailed inferiority study are identical to 

those presented in Section 4.6 for superiority trials, with one modification. In Section 4.6, 

follow-up of an experimental treatment arm was discontinued once it reached 𝑚 + 1 

events. In the inferiority setting, follow-up of an experimental treatment arm will 

terminate once it reaches 𝑤 events. Hence, replacing 𝑚 + 1 with 𝑤 in the algorithms in 

Section 4.6 will yield the desired results for inferiority studies. Estimates of the expected 

number and standard deviation of person years of follow-up until study termination for 

inferiority trials are included in Table 4 for the specified parameter combinations
39

. 

Values are computed under the null hypothesis (see column 4) and under two specific 

alternative hypotheses: (1) one new treatment group has the rate ratio 𝑟 specified in the 

table, and the remaining 𝐾 − 1 new treatment groups have rate ratio equal to one (see 

column 5), and (2) the indicated value of 𝑟 in the table holds for all new treatments under 

study (i.e. 𝑟1 = 𝑟2 = ⋯ = 𝑟𝐾 = 𝑟) (see column 6). Table 4 also contains the expected 

number and standard deviation of person years until trial discontinuation for an 

uncurtailed study (with 𝑖𝐶 = 1) in column 7. 

Figure 6 displays the ratio of curtailed to uncurtailed expected person years in an 

inferiority trial for each combination of design parameters in Table 4; in particular, the 

ratios of the values in column 4 to column 7 (labeled “Curtailed-Null”), column 5 to 

column 7 (labeled “Curtailed-Alt (One)”), and column 6 to column 7 (labeled “Curtailed-

Alt (All)”) in Table 4 are plotted in Figure 6. Figure 6 illustrates that the expected 

number of person years is reduced the most in a fully curtailed inferiority trial when the 

                                                           
39

 The person year values in columns 4 through 6 of Table 4 were estimated using Null_Time and Alt_Time 

with 100,000 simulations; note that these functions return results based on assuming 𝑖𝐶 = 1. 
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alternative hypothesis is true. This is because events tend to accumulate more quickly in 

the experimental treatment arms under the alternative hypothesis than the null hypothesis, 

and hence reach 𝑤 events (the time at which follow-up of the experimental treatment 

arms can be terminated) more quickly. 
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Figure 6: Ratio of fully curtailed to uncurtailed expected person years of follow-up 

for inferiority trials with design parameters given in Table 4 
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5.2: Two-sided Test Combining One-sided Superiority and Inferiority Boundaries 

 

We now present a two-sided test which combines the information obtained from the test 

of the hypotheses in Equation 4.2.1 corresponding to demonstrating treatment superiority 

and the test of the hypotheses in Equation 5.1.1 corresponding to demonstrating treatment 

inferiority. The proposed two-sided test will allow researchers to determine whether 

rejection of the null hypothesis for an individual experimental treatment group is due to 

superiority of the experimental treatment in comparison to the control (i.e. a sufficiently 

small number of events occur in the experimental treatment group compared to the 

control) or is due to inferiority of the experimental treatment in comparison to the control 

(i.e. too many events occur in the experimental treatment group compared to the 

control)
40

. 

 Based on these considerations, the two sided hypotheses are as follows: 

 𝐻0: 𝑖1 = 𝑖2 = ⋯ = 𝑖𝐾 = 𝑖𝐶  𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎: 𝑖1 = 𝑟1𝑖𝐶 , 𝑖2 = 𝑟2𝑖𝐶 , … , 𝑖𝐾 = 𝑟𝐾𝑖𝐶 

where at least one of the 𝑟𝑘 ≠ 1 
(5.2.1) 

 

We will reject the null hypothesis that all experimental treatments are statistically 

equivalent to the control in terms of efficacy in favor of the alternative hypothesis when 

either few enough or too many events occur in at least one of the experimental treatment 

groups. 

                                                           
40

 Throughout Section 5.2, when a sufficiently small number of events are observed in a new treatment 

group we declare the new treatment to be superior to the control, as we have implicitly taken “events” to 

mean number of disease cases. This may be an appropriate assumption in the context of most clinical trials, 

but in other, perhaps non-clinical, settings, rejection due to too few or too many events may both be 

indicative of an undesirable comparator. Consider the following example: suppose there are several new 

radiation-detection devices which need to be calibrated. Each will be exposed to the same number of 

radioactive particles, as controlled by study investigators, and compared to a control device which is known 

to detect the amount of radiation with sufficient accuracy. If a new device reads too few or too many 

particles, it will be declared inadequately calibrated. In either case, misreading the amount of radiation 

could have significant practical consequences, and, as such, rejection in either direction is indicative of an 

inadequate comparator. 
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 We can construct a conservative two-sided test with a two-sided overall Type I 

error of 𝛼𝑜𝑣𝑟 for the hypotheses in Equation 5.2.1 by combining the one-sided tests for 

superiority (see Section 4.2) and inferiority (see Section 5.1) using the Bonferroni 

approach. We define a “balanced two-sided test” to be one in which the two-sided overall 

Type I error is equally allocated to the one-sided superiority and inferiority tests; that is, 

the parameters for the balanced two-sided test are derived from the one-sided superiority and 

inferiority tests each at significance level 𝛼𝑜𝑣𝑟/2. By the Bonferroni method, the two-sided 

overall Type I error of the balanced two-sided test is ≤ 𝛼𝑜𝑣𝑟/2 + 𝛼𝑜𝑣𝑟/2 = 𝛼𝑜𝑣𝑟. When in 

addition the superiority test is powered using rate ratio 𝑟 and the inferiority test is powered using 

rate ratio 1/𝑟 (power is taken to be pointwise for both of the one-sided tests), the test will be 

referred to as a “completely balanced two-sided test”. In contrast, the term “unbalanced two-sided 

test” will denote tests for which the level of significance allocated to the one-sided superiority 

and inferiority tests are 𝛼1 and 𝛼2, respectively, where 𝛼1 + 𝛼2 = 𝛼𝑜𝑣𝑟 and 𝛼1 ≠ 𝛼2. 

 To construct the two-sided test at overall significance level 𝛼1 + 𝛼2 = 𝛼𝑜𝑣𝑟, we 

need to find the following parameters: 

1. The number of events to observe in the control group 𝑑𝐶 when testing for 

superiority at significance level 𝛼1. For the remainder of this subsection, we will 

refer to this value as 𝑑𝐶𝑆, the subscript S identifying that the value is obtained 

from a superiority trial. 

2. The critical value 𝑚 from the test of superiority at significance level 𝛼1. 

3. The number of events to observe in the control group 𝑑𝐶 when testing for 

inferiority at significance level 𝛼2. For the remainder of this subsection, we will 

refer to this value as 𝑑𝐶𝐼, the subscript I identifying that the value is obtained from 

an inferiority trial. 
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4. The critical value 𝑤 from the test of inferiority at significance level 𝛼2. 

Hence, there are four values (𝑑𝐶𝑆, 𝑚, 𝑑𝐶𝐼 , and 𝑤) needed to construct the two-sided test. 

There are six possible arrangements
41

 for these values, each of which is displayed on a 

number line in Figure 7 below, where the x-axis is discrete and enumerates number of 

events. 

For a balanced two-sided test we require that 𝛼1 = 𝛼2 = 𝛼𝑜𝑣𝑟/2, and for a 

completely balanced two-sided test we impose the additional restriction that the 

parameters 𝑑𝐶𝑆 and 𝑚 are determined from a superiority trial powered using rate ratio 𝑟 

and the parameters 𝑑𝐶𝐼 and 𝑤 are determined from an inferiority trial powered using rate 

ratio 1/𝑟.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
41

 For the sake of brevity, in Figure 7 we do not present cases in which the parameter values coincide. 

Based on the parameter values in Tables 2 and 4, of the 120 completely balanced two-sided tests we 

observed 12 cases where 𝑚 = 𝑑𝐶𝐼 , 94 cases where 𝑤 = 𝑑𝐶𝑆, and 14 cases where there was no overlap of 

parameter values. No test had more than two coinciding parameter values. Also for the completely balanced 

two-sided tests constructed from the values in Tables 2 and 4, we observed only configurations (1), (2), and 

(3) in Figure 7. However, we suspect that it may be possible to obtain the remaining configurations in the 

case of the more general unbalanced two-sided test. 
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Figure 7: Possible arrangements of 𝑑𝐶𝑆, 𝑚, 𝑑𝐶𝐼 , and 𝑤 in a two-sided test 

𝑑𝐶𝑆 0 m 𝑑𝐶𝐼 w 

(1) 

𝑑𝐶𝑆 0 m 𝑑𝐶𝐼 w 

(2) 

𝑑𝐶𝑆 0 m 𝑑𝐶𝐼 w 

(3) 

𝑑𝐶𝑆 0 m 𝑑𝐶𝐼 w 

(4) 

𝑑𝐶𝑆 0 m 𝑑𝐶𝐼 w 

(5) 

𝑑𝐶𝑆 0 m 𝑑𝐶𝐼 w 

(6) 

 
Indicates superiority trial parameters 

Indicates inferiority trial parameters 
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Note that it is impractical to conduct an uncurtailed trial in the two-sided test 

setting. This is because if the study were to continue until the control group reaches 

max(𝑑𝐶𝑆, 𝑑𝐶𝐼), then some of the new treatment groups would have needless (and hence 

uneconomical) follow-up depending on the configuration of the study parameters, or the 

decision made at min(𝑑𝐶𝑆, 𝑑𝐶𝐼) for each new treatment group could be contradicted at 

max(𝑑𝐶𝑆, 𝑑𝐶𝐼). Consider configurations (1) through (4) in Figure 7; in these 

configurations, max(𝑑𝐶𝑆, 𝑑𝐶𝐼) = 𝑑𝐶𝑆 and 𝑚 < 𝑤. These configurations imply that the 

control group reaches 𝑑𝐶𝐼 events before 𝑑𝐶𝑆 events, at which time the new treatments 

would be evaluated for inferiority. If any of the new treatments have reached 𝑤 events at 

this time, they would be declared inferior to the control, and hence it would not make 

statistical nor economic sense to continue follow-up in these arms and subsequently 

evaluate them for superiority once the control group reaches 𝑑𝐶𝑆 events, as they have also 

already exceeded 𝑚 events (since 𝑤 > 𝑚). Now, consider configuration (5) in Figure 7 

in which the control group reaches 𝑑𝐶𝑆 events prior to 𝑑𝐶𝐼 events. Suppose a given new 

treatment group has not reached  𝑚 + 1 events by the time the control group reaches 𝑑𝐶𝑆 

events. The new treatment will then be declared to be superior to the control. If the trial is 

uncurtailed, the new treatment group will continue to be followed until the control group 

reaches 𝑑𝐶𝐼 events. As the trial continues, if the new treatment group accumulates 𝑤 

events prior to the control group reaching 𝑑𝐶𝐼 events, it would indicate that the new 

treatment is inferior to the control, thus contradicting the decision made when superiority 

was evaluated at the time the control group reached 𝑑𝐶𝑆 events. Similar rationale applies 

to configuration (6). These examples illustrate that it is not sensible to conduct an 

uncurtailed trial in the two-sided test setting. 
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 A fully curtailed trial is possible for the two-sided setting, and the rules of 

stoppage for each treatment arm are as follows: 

 If a given new treatment arm reaches 𝑤 events prior to the control group reaching 

𝑑𝐶𝐼 events, then discontinue follow-up in the new treatment arm and declare the 

new treatment to be inferior to the control. 

 If at the time the control group reaches 𝑑𝐶𝐼 events a given new treatment arm has 

accrued [𝑚 + 1,𝑤 − 1] events, discontinue follow-up in the new treatment arm 

and declare the new treatment to be neither inferior nor superior to the control. 

 While the number of events observed in the control group is in [𝑑𝐶𝐼 + 1, 𝑑𝐶𝑆], if a 

given new treatment arm reaches 𝑚+ 1 events, discontinue follow-up in the new 

treatment arm and declare the new treatment to be neither inferior nor superior to 

the control. 

 If a given new treatment arm has accrued less than 𝑚 + 1 events at the time the 

control group reaches 𝑑𝐶𝑆 events, then discontinue follow-up in the new treatment 

arm and declare the new treatment to be superior to the control. 

 Follow-up of the control arm is terminated at the earliest of (1) a decision is made 

for all new treatment arms (i.e. there are no longer any active new treatment arms 

because each new treatment has been declared inferior, superior, or neither 

inferior nor superior to the control) and (2) the control arm reaches max(𝑑𝐶𝑆, 𝑑𝐶𝐼) 

events. 

Though the rules above apply, in theory, to configurations (5) and (6), their practical 

application to these configurations is questionable. This is because in configuration (5), 

the superiority boundaries occur prior to the inferiority boundaries, and vice versa for 



111 
 

 
 

configuration (6). In configuration (5), follow-up of all new treatment arms which have 

≤ 𝑚 events when the control arm reaches 𝑑𝐶𝑆 events will be terminated and the new 

treatments declared superior to the control, while all new treatment arms with ≥ 𝑚 + 1 

events are followed until the control arm reaches 𝑑𝐶𝐼 events, at which time these 

treatments are evaluated for inferiority. These rules indicate that the new treatment arms 

that are declared superior to the control at the time the control reaches 𝑑𝐶𝑆 events are not 

evaluated for inferiority. It could be argued that if these treatment arms were followed 

until the control arm reaches 𝑑𝐶𝐼 events, they may accumulate 𝑤 events, leading to a 

seemingly contradictory classification of the treatments as inferior. Take for example a 

trial with parameters 𝑚 = 3, 𝑑𝐶𝑆 = 9, 𝑑𝐶𝐼 = 12, and 𝑤 = 17, and suppose that one of the 

new treatments is declared superior to the control as the treatment group has accrued ≤ 3 

events by the time the control arm reaches 𝑑𝐶𝑆 = 9 events. Rather than terminate follow-

up in this new treatment arm per the curtailment rules, suppose instead that follow-up of 

this new treatment arm were continued until the control arm reaches 𝑑𝐶𝐼 events. If at this 

time the number of events in the new treatment arm is ≥ 17, then the treatment would be 

declared inferior to the control as it has reached the value of 𝑤. Researchers may 

therefore be concerned that configuration (5) could lead to an improper designation of 

treatment superiority as not all new treatments are evaluated for both superiority and 

inferiority. Similar reasoning also applies to configuration (6). However, such a reversal 

is unlikely to happen (i.e. by chance alone), unless a time-mediated change in the rate of 

events is observed. 

We next provide an example of the completely balanced two-sided test. Suppose 

there are five experimental treatments under study and we wish to determine whether any 
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are statistically significantly different from the control at a two-sided overall Type I error 

𝛼𝑜𝑣𝑟 = 0.05, power equal to 0.8, and for a rate ratio of 𝑟 = 0.2 when an experimental 

treatment is superior to the control and a rate ratio of 1/𝑟 = 1/0.2 = 5 when the 

experimental treatment is inferior to the control. We use Des_Sup(5,0.025,0.2,0.9) and 

Des_Inf(5,0.025,5,0.9) to find the trial design parameters (i.e. we find the design 

parameters using the one-sided trial parameters at level of significance 
𝑎𝑜𝑣𝑟

2
= 0.025 and 

at pointwise power √. 8 ≈ 0.9)
42

. Using these functions (or extracting their values from 

Tables 2 and 4), we find the design parameters 𝑑𝐶𝑆 = 22, 𝑚 = 7, 𝑑𝐶𝐼 = 8, and 𝑤 = 21. 

These parameters are consistent with configuration (3) in Figure 7. 

5.3: Two-sided Test Based on the Chi-squared Distribution for Detection of a 

Cumulative Signal 

 

The hypotheses in Equation 5.2.1 can also be tested using a test-statistic which follows a 

chi-squared distribution under the null hypothesis. This test will reject based on the 

cumulative difference of the experimental treatment groups from the control; that is, the 

probability of rejection increases when an experimental treatment is either superior or 

inferior to the control treatment.  

Steyn (1955) proved that for 𝑋1, 𝑋2, … , 𝑋𝑛~𝑁𝑀(𝜈, 𝑝0, 𝑝1, … , 𝑝𝑛), the statistic 

𝜒2 =∑
(𝑥𝑖 − 𝜈

𝑝𝑖
𝑝0
)
2

𝜈
𝑝𝑖
𝑝0

𝑛

𝑖=1

−
(𝜈 + ∑ 𝑥𝑖

𝑛
𝑖=1 −

𝜈
𝑝0
)
2

𝜈
𝑝0

 

 

asymptotically follows a chi-squared distribution with 𝑛 degrees of freedom. Since 

𝐷1, 𝐷2, … , 𝐷𝐾|𝑑𝐶  ~ 𝑁𝑀 (𝑑𝐶 ,
𝑖𝐶

𝑖𝐶+∑ 𝑖𝑘
𝐾
𝑘=1

,
𝑖1

𝑖𝐶+∑ 𝑖𝑘
𝐾
𝑘=1

,
𝑖2

𝑖𝐶+∑ 𝑖𝑘
𝐾
𝑘=1

, … ,
𝑖𝐾

𝑖𝐶+∑ 𝑖𝑘
𝐾
𝑘=1

) under Design 

C, we know that 

                                                           
42

 See Section 6 for a discussion of the power of the two-sided test. 



113 
 

 
 

𝜒2 =∑(

 𝑑𝑗 − 𝑑𝐶

𝑖𝑗
𝑖𝐶 + ∑ 𝑖𝑘

𝐾
𝑘=1
𝑖𝐶

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1 )

 

2

𝑑𝐶

𝑖𝑗
𝑖𝐶 + ∑ 𝑖𝑘

𝐾
𝑘=1
𝑖𝐶

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1

𝐾

𝑗=1

−

(𝑑𝐶 + ∑ 𝑑𝑗
𝐾
𝑗=1 −

𝑑𝐶
𝑖𝐶

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1

)

2

𝑑𝐶
𝑖𝐶

𝑖𝐶 + ∑ 𝑖𝑘
𝐾
𝑘=1

 

 

asymptotically follows a chi-squared distribution with 𝐾 degrees of freedom, where 𝑑𝑗 is 

an observed value of the random variable 𝐷𝑗  for 𝑗 = 1,2, … , 𝐾. Under the null hypothesis 

in Equation 5.2.1, the negative multinomial distribution is balanced, and so 𝑖1 = 𝑖2 =

⋯ = 𝑖𝐾 = 𝑖𝐶. Thus, under the null hypothesis, the chi-squared test statistic is 

𝜒𝑛𝑢𝑙𝑙
2 =∑

(𝑑𝑗 − 𝑑𝐶)
2

𝑑𝐶

𝐾

𝑗=1

−

(𝑑𝐶 + ∑ 𝑑𝑗
𝐾
𝑗=1 −

𝑑𝐶
1

𝐾 + 1

)

2

𝑑𝐶
1

𝐾 + 1

 

 

=∑
(𝑑𝑗 − 𝑑𝐶)

2

𝑑𝐶

𝐾

𝑗=1

−
(∑ 𝑑𝑗

𝐾
𝑗=1 − 𝑑𝐶𝐾)

2

𝑑𝐶(𝐾 + 1)
 

 

Thus, we will reject the null hypothesis in Equation 5.2.1 in favor of the alternative at 

level of significance 𝛼 when 𝜒𝑛𝑢𝑙𝑙
2  exceeds the critical value 𝜒𝛼,𝐾

2 , where 𝑃(𝜒𝐾
2 >

𝜒𝛼,𝐾
2 ) = 𝛼. 

To illustrate this test, consider an agricultural experiment in which five plants of 

the same species are each exposed to a different agent, four being experimental pesticides 

and one being a control treatment (no exposure to pesticides). The outcome variable in 

this experiment is the number of holes in each plant due to insect activity. Assuming 

holes appear in the leaves over time according to a Poisson process, the NMD 

characterization is appropriate for this study given that we stop the experiment once a 
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pre-specified number of holes appear in the control plant. We will use the chi-squared 

test to determine if the ability of any of the pesticides in repelling insects is different from 

that of the control treatment. Suppose we wait until 𝑑𝐶 = 20 holes are found in the leaves 

of the control plant, and, at that time, the number of holes found in the four remaining 

plants are 𝑑1 = 16, 𝑑2 = 13, 𝑑3 = 23, and 𝑑4 = 18. Then, our test statistic is  

𝜒𝑛𝑢𝑙𝑙
2 =∑

(𝑑𝑗 − 20)
2

20

4

𝑗=1

−
(70 − (20 ∗ 4))2

(20 ∗ 5)
= 0.8 + 2.45 + 0.45 + 0.2 − 1 = 2.9 

 

If we conduct the test at significance level 0.05, the critical values is 𝜒0.05,4
2 ≈ 9.488. 

Hence, since our test statistic does not exceed the critical value at 5% significance, we do 

not have enough evidence to conclude that the efficacy of any of the experimental 

pesticides in protecting the plant species from insect damage is different from that of the 

control treatment. 

 As a final example of the application of the chi-squared test, suppose a 

manufacturer is evaluating five potential suppliers to provide a machine component. The 

manufacturer wants to know if any of the potential suppliers produce the component with 

a different rate of breakdown than the current supplier, so that the manufacturer can 

evaluate prospective business partners (we assume the number of breakdowns over time 

follows a Poisson distribution so that the chi-squared test is applicable). As such, the 

manufacturer orders one component from each of the potential suppliers and records the 

number of times each one breaks down. The experiment is terminated when the current 

supplier’s component reaches 12 breakdowns. Suppose that the number of breakdowns at 

this time among the five potential suppliers’ machine components is 𝑑1 = 7, 𝑑2 =

5, 𝑑3 = 16, 𝑑4 = 3, and 𝑑5 = 3. The test statistic is thus 
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𝜒𝑛𝑢𝑙𝑙
2 =∑

(𝑑𝑗 − 12)
2

12

5

𝑗=1

−
(34 − (12 ∗ 5))

2

(12 ∗ 6)
=
25

12
+
49

12
+
4

3
+
27

4
+
27

4
−
169

18
≈ 11.611 

The critical value at 5% significance is approximately 11.071. Thus, at 5% significance, 

the null hypothesis is rejected and the manufacturer can conclude that at least one 

potential supplier provides a machine component with a different rate of breakdown than 

the component of their current supplier. One limitation to this test, however, is that it 

does not identify which supplier(s) are different, albeit the most extreme deviations could 

perhaps be identified qualitatively. The manufacturer would want to subsequently 

identify which supplier(s) can provide a component less prone to failures and may also 

want to know which supplier(s) produce machine components which are prone to high 

rates of failure so that they can avoid using these suppliers in the future. 

This lack of identification of which new condition(s) is different from the control 

is an important difference between the chi-squared test and the two-sided test combining 

the one-sided superiority and inferiority boundaries discussed in Section 5.2. In the 

context of clinical studies, the two-sided test based on the chi-squared distribution rejects 

based on the cumulative difference of the experimental treatment groups from the 

control. That is, the value of the test statistic increases when a treatment is either superior 

or inferior to the control. However, if the null hypothesis in Equation 5.2.1 is rejected, the 

chi-squared test does not indicate which of the experimental treatment groups are 

responsible for the rejection (i.e. it does not indicate which experimental treatments are 

superior or inferior to the control). This information is often desired by researchers, 

making the usefulness of the chi-squared test limited. In contrast, the two-sided test 

which combines the one-sided superiority and inferiority boundaries does identify which 
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individual experimental treatments are superior or inferior to the control and responsible 

for rejection of the null hypothesis in Equation 5.2.1. 

5.4: Pairwise Tests of Experimental Treatments 

 

Thus far, all evaluations of the superiority or inferiority of experimental treatments have 

been conducted in comparison to a control treatment. Another interest may be in 

comparing the efficacy of the experimental treatments to each other, even if the study is 

being conducted as a negative multinomial process with stoppage at a specified number 

of events in the control group. Consider if multiple experimental treatments are declared 

superior to the control, then investigators will likely want to further know which 

experimental treatment is the most effective so that resources can be invested into this 

treatment. This is important as the expenses associated with development of a drug 

increase as the drug advances through the necessary clinical trials for approval. 

 Dose ranging studies provide a natural setting for comparing experimental 

treatments to each other. Though such studies may include a control group, the primary 

objective is to compare varying doses of a drug to determine the minimal effective and 

maximum tolerable doses so that an optimal dosing strategy can be determined for 

subsequent clinical trials. 

 In this dissertation, comparison of the experimental treatments to each other will 

depend upon the fact that if 𝑋1, 𝑋2, … , 𝑋𝑛~𝑁𝑀(𝜈, 𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑛), then conditional on 

the sum 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛, the distribution of 𝑋1, 𝑋2, … , 𝑋𝑛 is multinomial with 

parameters ∑ 𝑥𝑖
𝑛
𝑖=1  and  

𝑝𝑗

∑ 𝑝𝑖
𝑛
𝑖=1

, 𝑗 = 1,… , 𝑛. The proof is as follows
43

: 

                                                           
43

 The desired result is stated (without a formal proof) in Lemma 1 in Tsui (1986, pages 47-48). Lemma 1 

also states that the distribution of ∑ 𝑋𝑖
𝑛
𝑖=1  is negative binomial with parameters 𝜈 and 1 − ∑ 𝑝𝑖

𝑛
𝑖=1 , a fact 

that is used in our proof. 
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𝑃 (𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛|∑𝑋𝑖

𝑛

𝑖=1

= 𝑧) =
𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛)

𝑃(∑ 𝑋𝑖
𝑛
𝑖=1 = 𝑧)

 

 

=

𝛤(𝜈 + ∑ 𝑥𝑖
𝑛
𝑖=1 )

𝛤(𝜈)∏ 𝑥𝑖!
𝑛
𝑖=1

(1 − ∑ 𝑝𝑖
𝑛
𝑖=1 )𝜈∏ 𝑝𝑖

𝑥𝑖𝑛
𝑖=1

𝛤(𝜈 + ∑ 𝑥𝑖
𝑛
𝑖=1 )

𝛤(𝜈)(∑ 𝑥𝑖
𝑛
𝑖=1 )!

(1 − ∑ 𝑝𝑖
𝑛
𝑖=1 )𝜈(∑ 𝑝𝑖

𝑛
𝑖=1 )∑ 𝑥𝑖

𝑛
𝑖=1

=
(∑ 𝑥𝑖

𝑛
𝑖=1 )!

∏ 𝑥𝑖!
𝑛
𝑖=1

∏ 𝑝𝑖
𝑥𝑖𝑛

𝑖=1

(∑ 𝑝𝑖
𝑛
𝑖=1 )𝑥1+𝑥2+⋯+𝑥𝑛

 

 

= (
∑𝑥𝑖

𝑛

𝑖=1
𝑥1, 𝑥2, … , 𝑥𝑛

)(
𝑝1

∑ 𝑝𝑖
𝑛
𝑖=1

)

𝑥1

(
𝑝2

∑ 𝑝𝑖
𝑛
𝑖=1

)

𝑥2

⋯(
𝑝𝑛

∑ 𝑝𝑖
𝑛
𝑖=1

)

𝑥𝑛

 

 

~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (∑𝑥𝑖

𝑛

𝑖=1

,
𝑝1

∑ 𝑝𝑖
𝑛
𝑖=1

,
𝑝2

∑ 𝑝𝑖
𝑛
𝑖=1

, … ,
𝑝𝑛

∑ 𝑝𝑖
𝑛
𝑖=1

) 

 

So, pairwise comparisons of experimental treatment groups can be conducted using the 

multinomial distribution. Under Design C, by Equation 2.4.1 we know that the 

parameters in our multinomial distribution are ∑ 𝑑𝑘
𝐾
𝑘=1  and 𝑖𝑗/∑ 𝑖𝑘

𝐾
𝑘=1  for 𝑗 = 1,2, … , 𝐾. 

An exact multiple comparisons test for the multinomial distribution was 

developed by Shaffer (1971). For a multinomial distribution with 𝑘 outcome categories, 

Shaffer’s exact test simultaneously tests the 𝑘(𝑘 − 1) hypotheses of the form 𝐻0: 𝑝𝑖 ≤

𝑝𝑗  𝑣𝑠 𝐻𝑎: 𝑝𝑖 > 𝑝𝑗 and 𝐻0: 𝑝𝑖 ≥ 𝑝𝑗  𝑣𝑠 𝐻𝑎: 𝑝𝑖 < 𝑝𝑗 for all 𝑖 ≠ 𝑗. For example, for a 

trinomial distribution there are six hypotheses as listed below: 

𝐻0
1: 𝑝1 ≤ 𝑝2 𝑣𝑠 𝐻𝑎

1: 𝑝1 > 𝑝2 
 

𝐻0
2: 𝑝1 ≥ 𝑝2 𝑣𝑠 𝐻𝑎

2: 𝑝1 < 𝑝2 

 

𝐻0
3: 𝑝1 ≤ 𝑝3 𝑣𝑠 𝐻𝑎

3: 𝑝1 > 𝑝3 
 

𝐻0
4: 𝑝1 ≥ 𝑝3 𝑣𝑠 𝐻𝑎

4: 𝑝1 < 𝑝3 
 

𝐻0
5: 𝑝2 ≤ 𝑝3 𝑣𝑠 𝐻𝑎

5: 𝑝2 > 𝑝3 

 

𝐻0
6: 𝑝2 ≥ 𝑝3 𝑣𝑠 𝐻𝑎

6: 𝑝2 < 𝑝3 
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For the comparison of experimental treatment groups under Design C, the hypotheses 

equate to tests of 𝐻0: 𝑖𝑒 ≤ 𝑖𝑓 𝑣𝑠 𝐻𝑎: 𝑖𝑒 > 𝑖𝑓 and 𝐻0: 𝑖𝑒 ≥ 𝑖𝑓 𝑣𝑠 𝐻𝑎: 𝑖𝑒 < 𝑖𝑓 for all 

𝑒, 𝑓 ∈ {1,2, … , 𝐾} and 𝑒 ≠ 𝑓. As Shaffer’s work is quite technical, condensing the results 

here would be insufficient. As a result, we instruct readers to consult the original 

publication, which contains full details of the testing procedure as well as examples of its 

implementation. It is then simple to understand its potential for application to the 

pairwise comparison of experimental treatments in a trial conducted under Design C 

methodology. 
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SECTION 6: FUTURE DIRECTIONS 

 

The landscape of clinical trials has rapidly expanded, and trials evaluating the efficacy 

and/or safety of three or more treatments are now relatively common (Parmar, Carpenter, 

and Sydes, 2014). As such, a number of clinical trials aim to compare multiple 

experimental treatments to a single control. In this dissertation, we have provided an 

approach to conducting studies of this nature based upon waiting for a fixed number of 

events to occur in the control arm, leading to tests based on the negative multinomial 

distribution. This methodology represents an alternative approach to the multivariate 

extensions of Gail’s Designs A and B (wait until a total number of events have occurred 

among the study arms or wait until a predetermined amount of time has elapsed, 

respectively), which are based on the multinomial distribution. We have provided 

methods for conducting one-sided global tests of treatment superiority and inferiority and 

combined these results to construct a two-sided test. Finally, we explored the possibility 

of comparing experimental treatments to each other using the work of Shaffer (1971). 

However, several open questions are implicated by the work in this dissertation and are 

discussed below. 

Order Statistics of the Negative Multinomial Distribution 

 

In Section 3, equations representing the distribution of discrete order statistics provided 

in Theorem 1 from Casella and Berger (2002), in conjunction with the comparative 

Poisson formulation of the negative multinomial distribution, were used to compute 

probabilities related to the order statistics of a balanced NMD. As one of the 

requirements of Theorem 1 is a sample of i.i.d. random variables, the theorem cannot be 

directly applied in the case of an unbalanced NMD, as the random variables are no longer 
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identically distributed. As a result, estimates of probabilities concerning order statistics of 

an unbalanced NMD were obtained via simulation. Though simulating a very large 

number of counts from an NMD provides sufficient accuracy for practical purposes, it 

remains of theoretical interest as to whether the comparative Poisson representation of the 

NMD can be used to provide a formula for the order statistics of an unbalanced NMD. In 

undertaking such work, it may be simplest to start by finding a representation for partially 

balanced NMDs, which constitute a subset of the unbalanced distributions. 

One-sided Tests of Superiority and Inferiority 

 

In Section 4, we presented the methodology for comparing multiple experimental 

treatments to a single control to determine if at least one experimental treatment had 

superior efficacy relative to the control. In Section 5, the corresponding test for treatment 

inferiority was presented. It is important to remember that the formulas for these tests of 

hypotheses were derived under the assumption of equal allocation of person years among 

the experimental and control treatment groups. However, to augment the utility of the 

tests, derivation of the formulas and updates to the Des_Sup and Des_Inf codes 

accommodating unequal allocation ratios is of interest.  

 Incorporating unequal allocation ratios is important for several reasons. Firstly, it 

is not always feasible to satisfy a 1: 1:… : 1 allocation ratio, even if such was intended, 

due to difficulties in recruiting certain patient populations. Secondly, depending on the 

specified alternative hypothesis, unequal allocation can reduce the total number of person 

years of follow-up or total number of subjects required for the trial (see Fleiss (1986), 

page 96). Finally, there may be a gain in statistical power in allocating a larger portion of 

study subjects to the control arm while keeping the portions allocated to each 



121 
 

 
 

experimental treatment arm equal. Equivalently, in some settings it has been shown that 

variance of the treatment effect estimate is minimized by allocating more person years of 

follow-up or subjects to the control arm, and such may be the case here (Dunnett, 1955 

and Hoover and Blackwelder, 2001). This interest in unequal allocation ratios leads quite 

naturally to the subsequent objective of optimizing the allocation ratio to minimize the 

expected number of person years of follow-up until trial termination. Optimization of the 

allocation ratio will depend on whether the null or specified alternative hypothesis is 

assumed to be true. 

The R functions Des_Sup and Des_Inf return the necessary parameters for 

designing a superiority or inferiority trial, respectively, under Design C. For a specified 

one-sided overall Type I error, a desired minimum level of pointwise power, and a given 

value of the rate ratio, these functions provide the number of control events which must 

be observed in the trial and the critical value for the test of hypothesis. Rather than 

determine the parameters needed to satisfy a required minimum power, researchers may 

be interested in determining the range of values of the rate ratio 𝑟 under the alternative 

hypothesis which can be distinguished between the experimental treatment arms and the 

control arm at a given level of power. This question is of practical interest as the results 

of preclinical and early-phase studies are often used to inform researchers of appropriate 

parameter values for use in the design of large-scale trials. 

Expected Person Years of Follow-up in Curtailed Design C Studies 

Following the development of the methodology for conducting a test of superiority or 

inferiority, we considered the expected number of person years of follow-up until trial 

termination. As operating a trial under curtailed stopping rules can lead to a considerable 
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reduction in the total amount of person years and resources required for the study, 

algorithms were presented to estimate the expected number and standard deviation of 

person years until trial termination. The exact distribution for the number of person years 

was not provided as deriving this distribution may require enumeration of all possible 

ways the experimental treatment groups and the control group can acquire events leading 

to study stoppage. Though the simulated values are sufficiently accurate for practical use, 

obtaining the exact distribution for the number of person years in curtailed trials remains 

an open problem. 

Stoppage at Interim Analysis Due to Futility 

Another idea of interest is trial stoppage due to futility evaluated at one or more interim 

analyses. At an interim analysis, the conditional probability of rejecting the null 

hypothesis given the current collected data and assuming that the specified alternative 

hypothesis is true is computed (Snapinn et al., 2006). If this probability is high enough 

(based on a predetermined threshold), then the trial will continue. Otherwise, the trial is 

terminated early, again to “cut one’s losses” and obtain a reduction in expenses. This 

differs from early termination due to curtailment, because under curtailment the trial is 

stopped early only once the ultimate decision is known (which is why the rejection 

regions under an uncurtailed and curtailed design coincide). Under futility stoppage, the 

decision made at the end of the trial is projected at an interim analysis using conditional 

probabilities, meaning that there is a non-zero probability that the decision to terminate 

the trial early at an interim analysis could be proven incorrect if the trial were to be 

continued to completion. As an example of futility under Design C, consider a clinical 

trial for superiority in which 𝐾 = 3, 𝑑𝐶  =  30, and 𝑚 =  18. Suppose that one interim 
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analysis is conducted when the control group reaches 15 events, and at this time, the 

number of events observed in the three experimental treatment groups is 𝑋1 = 8, 𝑋2 =

10, and 𝑋3 = 7. This example is illustrated below in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose further that we will only proceed with the trial if there is greater than a 90% 

chance that the null hypothesis in Equation 4.2.1 will be rejected once the control group 

reaches 30 events based on the data collected at the interim analysis and assuming that 

the alternative hypothesis in Equation 4.2.1 is true; otherwise, we will terminate the trial 

at the interim analysis. To decide whether the trial will continue, we must calculate 

𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑇𝑥 𝑔𝑟𝑜𝑢𝑝 ℎ𝑎𝑠 ≤ 18 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 30 𝑒𝑣𝑒𝑛𝑡𝑠 
|𝑋1 = 8, 𝑋2 = 10, 𝑋3 = 7 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 15 𝑒𝑣𝑒𝑛𝑡𝑠) 

 

If this probability is greater than 90%, then the trial will proceed until the control group 

reaches 30 events (i.e. the trial will proceed to completion). Otherwise, the trial will be 

Figure 8: Example of a superiority trial under Design C with study 

parameters 𝐾 = 3, 𝑑𝐶  =  30, and 𝑚 =  18 and one interim analysis 

conducted when the control group reaches 15 events 

Control 

Tx 3 

Tx 2 

Tx 1 

5 10 15 20 25 30 

Interim analysis conducted 

when the control group 

reaches 15 events 

Number of Events 

𝑚 = 18 𝑑𝐶  = 30 
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terminated early at the interim analysis as there is too great a chance that the trial will fail 

to reach significance at the end of the study. Computing the aforementioned conditional 

probabilities is a potential area of future research. Note that thus far, futility has been 

discussed in terms of terminating the entire trial if acceptance of the specified alternative 

hypothesis at the end of the study appears unlikely at interim analysis; we may also want 

to make decisions for individual treatment arms. For example, if at interim analysis in a 

superiority trial one or more treatment arms are projected to have too large a probability 

of reaching 𝑚+ 1 events by the time the control group reaches 𝑑𝐶 events , then follow-

up in those individual arms would be terminated at the interim analysis. Returning to the 

example depicted in Figure 8, to make an individual decision for treatment 1 we would 

need to compute 

𝑃(𝑋1 ≤ 18 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 30 𝑒𝑣𝑒𝑛𝑡𝑠 
|𝑋1 = 8 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 15 𝑒𝑣𝑒𝑛𝑡𝑠) 

 

The event in the expression above is clearly characterized by a negative binomial process, 

and, using the marginal distribution of 𝑋1, the probability may be calculated as 𝑃(𝑋1 ≤

18 − 8 = 10) where 𝑋1~𝑁𝐵 (30 − 15 = 15,
1

1+𝑟1
). If this probability is sufficiently 

large, follow-up in treatment group 1 would continue until the control group reaches 30 

events; otherwise, follow-up of treatment group 1 is terminated at the interim analysis as 

there is too great a chance that the treatment group will reach 𝑚 + 1 = 19 events and the 

treatment found non-superior to the control at the time of stoppage at 𝑑𝐶 = 30 events in 

the control group. Similar calculations would guide individual decisions for treatment 

groups 2 and 3. 

As a final note on trial designs which incorporate futility analysis, futility can be 

combined with curtailment, and determining the futility bounds in this formulation would 
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also require additional work. An easily implemented closed-form solution for the 

expected number of person years of follow-up under a design which implements both 

curtailment and one or more interim analyses for assessment of futility may be difficult to 

achieve, but it may be possible to use simulation to estimate this value. 

Power of Two-sided Hypothesis Tests 

 

In Section 5, the one-sided tests of superiority and inferiority were combined to create a 

conservative two-sided hypothesis test. We did not discuss the overall power of the two-

sided test due to difficulties in specifying appropriate definitions of power and deriving 

the corresponding power formulas; thus, power was selected individually for each 

direction (i.e. direction of treatment superiority and treatment inferiority). Defining and 

deriving the overall power of the two-sided test therefore remains an area of future work. 

A two-sided test based on the chi-squared distribution, first introduced by Stein (1955), 

was also described in Section 5. The power of this test was not found in the literature and 

was not addressed in this dissertation but may be of interest to other researchers. 

Back-Up Approaches Under Failure to Reach 𝑑𝐶 Events in a Trial Conducted Under 

Design C 

 

Throughout this dissertation, it has been assumed that a clinical trial conducted under 

Design C will terminate once the control group reaches 𝑑𝐶 events (unless curtailment is 

used in which case the trial may stop earlier once all experimental treatment groups have 

reached 𝑚 + 1 or 𝑤 events in a superiority or inferiority trial, respectively). However, in 

practice, investigators may need to stop a clinical trial prior to the control arm 

accumulating 𝑑𝐶 events due to time or financial restrictions. This may occur if the true 

incidence rate of events for the control treatment is overestimated during study planning, 

resulting in events accumulating more slowly than anticipated during the trial; in such a 
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situation, we refer to the control group as being biased downwards. In this case, 

investigators will need to select a strategy to compare the experimental treatments to the 

control despite failure to reach 𝑑𝐶 events in the control group. We propose two possible 

approaches: 

1. Assume that conditional on the total number of events among all treatment groups 

(i.e. among all experimental treatment groups and the control group) at the time of 

stoppage, the distribution of 𝜏, 𝐷1, 𝐷2, … , 𝐷𝐾 is multinomial, where 𝜏 < 𝑑𝐶  is the 

number of events in the control group at the time of stoppage, and apply the 

multivariate version of Gail’s Design A (see Section 2 and Hsu (2010) for a 

discussion of this test). Of course, the true distribution is not multinomial since 

the number of events in each experimental treatment group is dependent upon the 

rate at which the control group accumulates events (for example, if the control 

group accumulates events at a slower rate than anticipated, then under the global 

null hypothesis we would also expect the rate of event accrual in each 

experimental treatment group to be lower than anticipated). 

2. Suppose that when the trial is stopped, 𝜏 < 𝑑𝐶 events have occurred in the control 

arm, and let ∆= 𝑑𝐶 − 𝜏. Add ∆ events to all experimental treatment arms and to 

the control arm, and conduct the test of hypothesis as if the control arm had 

actually reached 𝑑𝐶 events. 

We believe that both of the suggested ad-hoc approaches are conservative, meaning that 

the Type I error incurred will be no greater than the nominal error rate under which 

Design C was originally implemented, due to the discrete nature of the distributions 

involved. If a formal proof cannot be achieved, simulation may either refute this belief or 
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otherwise allow researchers to proceed under the assumption that the overall Type I error 

will be maintained when the above approaches are applied. 
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Appendix A: Proof that the Time to Obtain 𝒅𝑪 Events in the Reference Group is 

Distributed 𝑮𝒂𝒎𝒎𝒂(𝒅𝑪,
𝟏

𝒊𝑪
) 

 

The proof that the time to obtain 𝑑𝐶 events in the reference group follows a Gamma 

distribution is well known
44

 and is as follows: suppose that events accumulate in the 

reference group according to a Poisson process with parameter 𝑖𝐶. Let 𝑋 denote the 

number of events that occur in the time interval [0, 𝑡] and 𝑁𝐶 the time until the 𝑑𝐶
th

 event 

is observed. Then, 

𝐹𝑁𝐶(𝑡) = 𝑃(𝑁𝐶 ≤ 𝑡) = 𝑃(𝑋 ≥ 𝑑𝐶) = 1 − 𝑃(𝑋 < 𝑑𝐶) = 1 − 𝑃(𝑋 ≤ 𝑑𝐶 − 1) 

 

⇒ 𝐹𝑁𝐶(𝑡) = 1 − ∑ 𝑒−𝑖𝐶𝑡
(𝑖𝐶𝑡)

𝑥

𝑥!

𝑑𝐶−1

𝑥=0

 

 

⇒ 𝑓𝑁𝐶(𝑡) =
𝑑

𝑑𝑡
𝐹𝑁𝐶(𝑡) = − [∑ 𝑒−𝑖𝐶𝑡

𝑥𝑖𝐶(𝑖𝐶𝑡)
𝑥−1

𝑥!

𝑑𝐶−1

𝑥=0

+ ∑ 𝑒−𝑖𝐶𝑡
−𝑖𝐶(𝑖𝐶𝑡)

𝑥

𝑥!

𝑑𝐶−1

𝑥=0

] 

 

= 𝑖𝐶𝑒
−𝑖𝐶𝑡 [∑

(𝑖𝐶𝑡)
𝑥

𝑥!

𝑑𝐶−1

𝑥=0

− ∑
𝑥(𝑖𝐶𝑡)

𝑥−1

𝑥!

𝑑𝐶−1

𝑥=0

] 

 

= 𝑖𝐶𝑒
−𝑖𝐶𝑡 [∑

(𝑖𝐶𝑡)
𝑥

𝑥!

𝑑𝐶−1

𝑥=0

− ∑
(𝑖𝐶𝑡)

𝑥−1

(𝑥 − 1)!

𝑑𝐶−1

𝑥=1

] = 𝑖𝐶𝑒
−𝑖𝐶𝑡 [∑

(𝑖𝐶𝑡)
𝑥

𝑥!

𝑑𝐶−1

𝑥=0

− ∑
(𝑖𝐶𝑡)

𝑦

𝑦!

𝑑𝐶−2

𝑦=0

] 

 

= 𝑖𝐶𝑒
−𝑖𝐶𝑡 [

(𝑖𝐶𝑡)
𝑑𝑐−1

(𝑑𝐶 − 1)!
] =

𝑖𝐶
𝑑𝐶𝑡𝑑𝐶−1𝑒−𝑖𝐶𝑡

𝛤(𝑑𝐶)
=

1

𝛤(𝑑𝐶) (
1
𝑖𝐶
)
𝑑𝐶
𝑡𝑑𝐶−1𝑒

−𝑡

(
1
𝑖𝐶
)
 

 

Hence, 𝑁𝐶 is distributed 𝐺𝑎𝑚𝑚𝑎 (𝑑𝐶 ,
1

𝑖𝐶
). This proof is also applied in Section 4.6 where 

it is used to show that the number of person years to reach 𝑚 + 1 events in the 𝑘th
 

experimental treatment group is 𝐺𝑎𝑚𝑚𝑎 (𝑚 + 1,
1

𝑖𝐶
 ) or 𝐺𝑎𝑚𝑚𝑎 (𝑚 + 1,

1

𝑟𝑘𝑖𝐶
) 

                                                           
44

 See for example Casella, George, and Roger L. Berger. Statistical Inference. 1 ed., Duxbury Press, 1990. 
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corresponding to the null and alternative hypotheses in Equation 4.2.1, respectively. 

Assuming 𝑖𝐶 = 1 yields 𝐺𝑎𝑚𝑚𝑎(𝑚 + 1,1 ) and 𝐺𝑎𝑚𝑚𝑎 (𝑚 + 1,
1

𝑟𝑘
) distributions, 

which were used in the simulation algorithms of Section 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 
 

 
 

Appendix B: Order Statistics of the Negative Multinomial Distribution when the 

Reference Outcome is Included 

 

In Section 3, we considered the order statistics of the negative multinomial distribution. 

We derived formulas which provide exact probabilities when the distribution is balanced 

and provided R code to estimate the probabilities for unbalanced distributions. Here, we 

extend the definition of the order statistics of the NMD to include the reference outcome. 

 Again, consider rolling a die until we obtain five 6’s (the reference outcome), and 

during the course of these trials we observe eight 1’s, four 2’s, five 3’s, ten 4’s, and seven 

5’s. Our definition of the order statistics in Section 3 indicated that 𝑋(1) = 4, 𝑋(2) =

5, 𝑋(3) = 7, 𝑋(4) = 8, and 𝑋(5) = 10. Now, consider inclusion of the reference outcome 

(which is observed on a fixed number, 𝑑𝐶 = 5, of trials) in the order statistics. In this 

case, we have 𝑋(1) = 4, 𝑋(2) = 5, 𝑋(3) = 5, 𝑋(4) = 7, 𝑋(5) = 8, and 𝑋(6) = 10. 

 It is clear from this example that when the reference outcome is included in the 

order statistics, it only disrupts the indexing of the original order statistics (the order 

statistics when the reference outcome is excluded) with value greater than 𝑑𝐶, increasing 

the index of each of these order statistics by one. This rule is predicated upon retaining 

the index of any original order statistic with value equal to 𝑑𝐶. For example, in the die 

experiment, the original second order statistic 𝑋(2) had value 5, which coincided with the 

value of 𝑑𝐶, and hence we retained the index “(2)” for this order statistic when 

considered in conjunction with the reference outcome, while the index of the original 

order statistics 𝑋(3), 𝑋(4), and 𝑋(5) (which each took on a value greater than 𝑑𝐶) each 

increased by one. 
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 To calculate the probabilities of the order statistics when the reference outcome is 

included, we will use the following notation: let 𝑝𝑗𝑖 = 𝑃(𝑋(𝑗) = 𝑖) when the reference 

outcome is excluded and let 𝑟𝑗𝑖 = 𝑃(𝑋(𝑗) = 𝑖) when the reference outcome is included. 

As in Section 3, 𝐾 is the number of comparator outcomes and 𝑑𝐶 is the number of times 

the reference outcome is to be observed during the trials. From Equation 3.2.2., we know 

that for a balanced distribution 

𝑃(𝑋(𝑗) ≤ 𝑖) = ∫
𝑥𝑑𝐶−1𝑒−𝑥

𝛤(𝑑𝐶)

∞

0

∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

[∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖

𝑠=0

]

𝑙

[1 −∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖

𝑠=0

]

𝐾−𝑙

𝑑𝑥 

 

which implies that 

 

𝑝𝑗𝑖 = 𝑃(𝑋(𝑗) = 𝑖) = 𝑃(𝑋(𝑗) ≤ 𝑖) − 𝑃(𝑋(𝑗) ≤ 𝑖 − 1) 

 

= ∫
𝑥𝑑𝐶−1𝑒−𝑥

𝛤(𝑑𝐶)

∞

0

∑(
𝐾
𝑙
)

𝐾

𝑙=𝑗

{[∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖

𝑠=0

]

𝑙

[1 −∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖

𝑠=0

]

𝐾−𝑙

− [∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖−1

𝑠=0

]

𝑙

[1 −∑𝑒−𝑥
𝑥𝑠

𝑠!

𝑖−1

𝑠=0

]

𝐾−𝑙

}𝑑𝑥 

 

When the distribution is unbalanced, the R function unbalanced_order can be used to 

estimate 𝑝𝑗𝑖.  

We now show how to compute 𝑟𝑗𝑖 from 𝑝𝑗𝑖, making use of the fact that the 

number of trials resulting in the reference outcome is equal to the fixed value 𝑑𝐶.  

For the minimum (i.e. 𝑗 = 1), we have 

𝑟10 = 𝑝10 
𝑟11 = 𝑝11 
⋮ 
𝑟1,𝑑𝐶−1 = 𝑝1,𝑑𝐶−1 

𝑟1,𝑑𝐶 = 1 − (𝑝10 + 𝑝11 +⋯+ 𝑝1,𝑑𝐶−1) 

𝑟1,𝑑𝐶+1 = 𝑟1,𝑑𝐶+2 = 𝑟1,𝑑𝐶+3 = ⋯ = 0 
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 For the maximum (i.e. 𝑗 = 𝐾 + 1), we have 

 

𝑟𝐾+1,0 = 𝑟𝐾+1,1 = ⋯ = 𝑟𝐾+1,𝑑𝐶−1 = 0 

𝑟𝐾+1,𝑑𝐶 = 𝑝𝐾0 + 𝑝𝐾1 +⋯+ 𝑝𝐾,𝑑𝐶−1 + 𝑝𝐾,𝑑𝐶 = 1 − (𝑝𝐾,𝑑𝑐+1 + 𝑝𝐾,𝑑𝑐+2 + 𝑝𝐾,𝑑𝑐+3 +⋯) 

𝑟𝐾+1,𝑑𝐶+1 = 𝑝𝐾,𝑑𝑐+1 

𝑟𝐾+1,𝑑𝐶+2 = 𝑝𝐾,𝑑𝑐+2 

𝑟𝐾+1,𝑑𝐶+3 = 𝑝𝐾,𝑑𝑐+3 

⋮ 
 

Finally, for the remaining order statistics 𝑗 = 2, 3, … , 𝐾, we have 

 

𝑟𝑗0 = 𝑝𝑗0 

𝑟𝑗1 = 𝑝𝑗1 

⋮ 
𝑟𝑗,𝑑𝐶−1 = 𝑝𝑗,𝑑𝐶−1 

𝑟𝑗,𝑑𝐶 = 1 − (𝑝𝑗0 + 𝑝𝑗1 +⋯+ 𝑝𝑗,𝑑𝐶−1 + 𝑝𝑗−1,𝑑𝐶+1 + 𝑝𝑗−1,𝑑𝐶+2 + 𝑝𝑗−1,𝑑𝐶+3 +⋯) 

𝑟𝑗,𝑑𝐶+1 = 𝑝𝑗−1,𝑑𝐶+1 

𝑟𝑗,𝑑𝐶+2 = 𝑝𝑗−1,𝑑𝐶+2 

𝑟𝑗,𝑑𝐶+3 = 𝑝𝑗−1,𝑑𝐶+3 

⋮ 
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Appendix C: Conservativeness of the Test of Superiority when One or More 

Experimental Treatments are Inferior to the Control 

 

In Equation 4.2.1, we assumed that 𝑖1 = 𝑖2 = ⋯ = 𝑖𝐾 = 𝑖𝐶 under the null hypothesis. 

Suppose that one or more of the experimental treatments are in fact inferior to the control. 

This can be represented by instead assuming that 𝑖1 = 𝑟1𝑖𝐶 , 𝑖2 = 𝑟2𝑖𝐶 , … , 𝑖𝐾 = 𝑟𝐾𝑖𝐶 where 

𝑟𝑘 ≥ 1 for 𝑘 = 1,2, … , 𝐾 and 𝑟𝑘 > 1 for at least one of the 𝑟𝑘 under the null hypothesis. 

We will show that in this case, the test of treatment superiority presented in Section 4.2 is 

conservative with respect to the overall Type I error; that is, we will show that the overall 

Type I error when one or more experimental treatments are inferior to the control does 

not exceed the overall Type I error when it is assumed that 𝑖1 = 𝑖2 = ⋯ = 𝑖𝐾 = 𝑖𝐶 under 

the null hypothesis. When one or more experimental treatments are inferior to the control, 

it is clear that the Type I error is given by  

1 − ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑡
(𝑟𝐾𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡 

 

Hence, we must prove that 

  

1 − ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑡
(𝑟𝐾𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡

≤ 1 − ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑡
𝑡𝑠

𝑠!

𝑚

𝑠=0

]

𝐾

𝑑𝑡 

(C1) 

 

⇔∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑡
(𝑟𝐾𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] 𝑑𝑡

≥ ∫
𝑡𝑑𝐶−1𝑒−𝑡

𝛤(𝑑𝐶)

∞

0

[1 −∑𝑒−𝑡
𝑡𝑠

𝑠!

𝑚

𝑠=0

]

𝐾

𝑑𝑡 

 

From properties of the integral, we know that if 𝑓(𝑥) ≥ 𝑔(𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏, then 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≥ ∫ 𝑔(𝑥)

𝑏

𝑎
𝑑𝑥. Hence, we need to show 
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[1 −∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

]⋯ [1 −∑𝑒−𝑟𝐾𝑡
(𝑟𝐾𝑡)

𝑠

𝑠!

𝑚

𝑠=0

] ≥ [1 −∑𝑒−𝑡
𝑡𝑠

𝑠!

𝑚

𝑠=0

]

𝐾

 (C2) 

 

for 0 ≤ 𝑡 < ∞. Suppose without loss of generality that 𝑟1 > 1; we will show that 

 

1 −∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

≥ 1 −∑𝑒−𝑡
𝑡𝑠

𝑠!

𝑚

𝑠=0

 

 

⇔∑𝑒−𝑟1𝑡
(𝑟1𝑡)

𝑠

𝑠!

𝑚

𝑠=0

≤∑𝑒−𝑡
𝑡𝑠

𝑠!

𝑚

𝑠=0

 

 

We know that ∑ 𝑒−𝑥
𝑥𝑠

𝑠!

𝑚
𝑠=0 = ∫

𝑧𝑚𝑒−𝑧

𝛤(𝑚+1)
𝑑𝑧

∞

𝑥
 (see Casella and Berger (2002), page 130). 

Therefore, we must show that 

∫
𝑧𝑚𝑒−𝑧

𝛤(𝑚 + 1)

∞

𝑟1𝑡

𝑑𝑧 ≤ ∫
𝑧𝑚𝑒−𝑧

𝛤(𝑚 + 1)
𝑑𝑧

∞

𝑡

 (C3) 

 

Since 𝑟1𝑡 ≥ 0 and 𝑡 ≥ 0 (since 0 ≤ 𝑡 < ∞ for the integrals in (C1) and 𝑟𝑘 ≥ 1 for all 𝑘) 

and 𝑚 ≥ 0, we know that the integrands in (C3) are positive. Thus, since 𝑟1𝑡 > 𝑡 (since 

𝑟1 > 1 by assumption), we know that  

∫
𝑧𝑚𝑒−𝑧

𝛤(𝑚 + 1)

∞

𝑟1𝑡

𝑑𝑧 < ∫
𝑧𝑚𝑒−𝑧

𝛤(𝑚 + 1)
𝑑𝑧

∞

𝑡

 

This obviously implies that (C3) holds. It should be clear that if any number of the 

experimental treatments are inferior to the control (i.e. if any subset of the 𝑟𝑘 are strictly 

greater than one), then the inequality in (C2) will hold. This completes the proof of the 

relationship specified in (C1). 

Similar computations will show that the inferiority test presented in Section 5.1 is 

conservative with respect to overall Type I error when one or more experimental 

treatments are superior to the control under the null hypothesis. Finally, as the two-sided 

test presented in Section 5.2 is based on the rejection boundaries obtained from the one-
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sided tests of superiority and inferiority, the two-sided test is conservative since the one-

sided tests are conservative. 
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Appendix D: Alternate Formulas for the Minimum and Maximum Number of 

Events in a Negative Multinomial Distribution 

 

In Section 3, we considered the order statistics of the negative multinomial distribution, 

providing an explicit formula in the case of balanced distributions, and in Section 4 we 

derived simple expressions for the minimum and maximum. Here we draw attention to 

some relevant formulas derived by Olkin and Sobel (1965) and Joshi (1972). Olkin and 

Sobel consider a negative multinomial design in which there are 𝑘 + 2 mutually 

exclusive cells denoted by 𝐶1, … , 𝐶𝑘+2 and observations are recorded until cell 𝐶𝑘+1 

contains 𝑠 observations. They consider the events 𝐸1 and 𝐸2 described below: 

𝐸1: 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔, 𝑋𝑗 ≥ 𝑠𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1,… , 𝑘 

𝐸2: 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔, 𝑋𝑗 ≤ 𝑠𝑗 − 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1,… , 𝑘 

 

where the 𝑠𝑗 are non-negative integers and 𝑋𝑗 denotes the number of observations in cell 

𝐶𝑗 at the time of stopping for 𝑗 = 1,… , 𝑘. Letting 𝑥0 = ∑ 𝑥𝑖
𝑘
𝑖=1 , the corresponding 

formula for 𝑃{𝐸1} is 

𝑃{𝐸1} = ∑ ∑ ⋯ ∑
𝛤(𝛼)(∏ 𝑝𝑖

𝑥𝑖𝑘
𝑖=1 )𝑝𝑘+1

𝑠 𝑝𝑘+2
𝛼−𝑠−𝑥0

𝛤(𝑠)𝛤(𝛼 − 𝑠 − 𝑥0 + 1)(∏ 𝑥𝑖!
𝑘
𝑖=1 )

∞

𝑥𝑘=𝑠𝑘

∞

𝑥1=𝑠1

∞

𝛼=𝑠

 

 

where 𝑝𝑖 is the probability of observing cell 𝐶𝑖, 𝑖 = 1,… , 𝑘 + 2. Clearly, if the 𝑠𝑗 are all 

equal to a common value, then 𝐸1 corresponds to the minimum and 𝐸2 corresponds to the 

maximum of (𝑋1, … , 𝑋𝑘). The authors provide additional equivalent formulas for 𝑃{𝐸1} 

throughout the paper, but the formulas are unwieldy, particularly for the purposes of this 

dissertation. Joshi improves upon Olkin and Sobel’s results by utilizing the comparative 

Poisson representation of the NMD to determine 𝑃𝑋(𝒙) = 𝑃(𝑋𝑖 ≤ 𝑥𝑖 , 𝑖 = 1,2, … , 𝑠) as 

follows: 
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𝑃𝑋(𝒙) = ∫ ∏∑
𝑒−𝜆𝑖𝜃(𝜆𝑖𝜃)

𝑟𝑖𝜃𝑘−1𝑒−𝜃

𝑟𝑖! 𝛤(𝑘)
𝑑𝜃

𝑥𝑖

𝑟𝑖=0

𝑠

𝑖=1

∞

0

 

 

= ∫ ∏∫
𝑒−𝑧𝑖𝑧𝑖

𝑥𝑖

𝑥𝑖!
𝑑𝑧𝑖

𝑒−𝜃𝜃𝑘−1

𝛤(𝑘)
𝑑𝜃 = 𝑃 (

𝑍𝑖
𝛩
> 𝜆𝑖, 𝑖 = 1,2, … , 𝑠)

∞

𝜆𝑖𝜃

𝑠

𝑖=1

∞

0

 

 

where 𝑍1, 𝑍2, … , 𝑍𝑠, 𝛩 are mutually independent gamma random variables with density 

functions 𝑓𝑍𝑖(𝑧) =
𝑧𝑥𝑖𝑒−𝑧

𝑥𝑖!
 and 𝑓𝛩(𝜃) =

𝜃𝑘−1𝑒−𝜃

𝛤(𝑘)
. Similar methods can be employed to find 

𝑄𝑋(𝒙) = 𝑃(𝑋𝑖 > 𝑥𝑖, 𝑖 = 1,2, … , 𝑠). When the 𝑥𝑖 are all equal (say 𝑥𝑖 = 𝑎 for all 𝑖), 

Joshi’s results can be applied to determine 𝑃(min(X1, … , 𝑋𝑠) ≤ 𝑎) and 

𝑃(max(X1, … , 𝑋𝑠) ≤ 𝑎), though Joshi does not provide the explicit results for the 

minimum and maximum as we have in Equations 4.2.4 and 4.2.5, respectively. 
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Appendix E: R Functions Used in this Dissertation
45

 

 

1. balanced_order_less(dc,j,i,K) and balanced_order_equal(dc,j,i,K): 

balanced_order_less takes the arguments 𝑑𝐶 (number of trials resulting in the reference 

outcome to be observed), 𝑗 (denotes the 𝑗𝑡ℎ order statistic), 𝑖 (takes a value in 0,1,2,…), 

and 𝐾 (number of comparator outcomes in the experiment, i.e. not including the reference 

outcome). For a balanced negative multinomial distribution, balanced_order_less returns 

𝑃(𝑋(𝑗) ≤ 𝑖) when there are 𝐾 comparator outcomes and trials are conducted until 𝑑𝐶 

reference outcomes are observed. The function balanced_order_equal takes the same 

arguments as balanced_order_less and returns 𝑃(𝑋(𝑗) = 𝑖). 

 

balanced_order_less Code: 

 

balanced_order_less<-function(dc,j,i,K){ 

if(dc<=0|dc%%1!=0|j<=0|j%%1!=0|j>K|i<0|i%%1!=0|K<=0|K%%1!=0){ 

cat("Error. Valid values of arguments are as follows:\n") 

cat("dc must be a positive integer\n") 

cat("j must be an integer from 1 to",K,"inclusive\n") 

cat("i must be an integer value greater than or equal to 0\n") 

cat("K must be a positive integer\n") 

} 

else{ 

empty<-c() 

for(l in j:K){ 

terms<-function(x){dgamma(x,dc)*choose(K,l)*((ppois(i,x))^l)*((1-ppois(i,x))^(K-l))} 

int_val<-integrate(terms,0,Inf)$value 

empty<-c(empty,int_val) 

} 

prob_val<-sum(empty) 

return(prob_val) 

} 

} 

 

balanced_order_equal Code: 

 

balanced_order_equal<-function(dc,j,i,K){ 

if(dc<=0|dc%%1!=0|j<=0|j%%1!=0|j>K|i<0|i%%1!=0|K<=0|K%%1!=0){ 

cat("Error. Valid values of arguments are as follows:\n") 

cat("dc must be a positive integer\n") 

cat("j must be an integer from 1 to",K,"inclusive\n") 

cat("i must be an integer value greater than or equal to 0\n") 

cat("K must be a positive integer\n") 

} 

                                                           
45

 All results in this dissertation from functions which depend upon simulation were generated using seed 

value 1234567 in R version 3.2.0 and using 100,000 simulations, unless otherwise indicated. 
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else{ 

p_equal<-balanced_order_less(dc,j,i,K)-balanced_order_less(dc,j,i-1,K) 

return(p_equal) 

} 

} 

 

Examples: 

 

(1) For a balanced negative multinomial distribution in which there are 5 comparator 

outcomes and the number of trials resulting in the reference outcome to be observed is 

10, the probability that the fourth order statistic is less than or equal to 4 is given by: 

 

balanced_order_less(10,4,4,5) 

0.01403157 

 

(2) Under the settings in example (1), the probability that the fourth order statistic is 

equal to 4 is given by: 

 

balanced_order_equal(10,4,4,5) 

0.01031401 

 

2. unbalanced_order(probs,dc,j,i,sims): unbalanced_order takes the arguments probs 

(vector of length 𝐾, where 𝐾 is the number of comparator outcomes in the NMD, 

containing the probabilities of a trial resulting in each comparator outcome, i.e. not 

including the reference outcome), 𝑑𝐶 (number of trials resulting in the reference outcome 

to be observed), 𝑗 (denotes the 𝑗𝑡ℎ order statistic), 𝑖 (takes a value in 0,1,2,…), and sims 

(number of simulations used to estimate the probability). unbalanced_order returns an 

estimate of 𝑃(𝑋(𝑗) ≤ 𝑖) for unbalanced negative multinomial distributions. This function 

can also be used to find the probability that the 𝑗𝑡ℎ order statistic is equal to 𝑖 by 

computing 𝑃(𝑋(𝑗) ≤ 𝑖) − 𝑃(𝑋(𝑗) ≤ 𝑖 − 1) (see example (2) below for an illustration). 

 

unbalanced_order Code: 

 

library(MGLM) 

unbalanced_order<-function(probs,dc,j,i,sims){ 

if(any(probs<=0)){ 

cat("Error: All entries in probs vector must be greater than 0\n") 

} 

else if(sum(probs)>=1){ 

cat("Error: Sum of probabilities in probs vector may not be greater than or equal to 1\n") 

cat("probs vector should contain the probabilities of an outcome in each comparator 

group\n") 

cat("(i.e. not including the probability of an outcome in the reference group)\n") 

} 
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else 

if(dc<=0|dc%%1!=0|j<=0|j%%1!=0|j>length(probs)|i<0|i%%1!=0|sims<=0|sims%%1!=0)

{ 

cat("Error. Valid values of arguments are as follows:\n") 

cat("dc must be a positive integer\n") 

cat("j must be an integer from 1 to",length(probs),"inclusive, based on the vector of 

probabilities entered\n") 

cat("i must be an integer value greater than or equal to 0\n") 

cat("sims must be a positive integer\n") 

} 

else{ 

vec<-rnegmn(sims,probs,dc) 

new<-t(apply(vec,1,sort)) 

column<-new[,j] 

emp<-c() 

for(val in column){ 

if(val<=i){ 

emp<-c(emp,1) 

} 

} 

final<-sum(emp)/sims 

return(final) 

} 

} 

 

Examples: 

 

(1) For an unbalanced negative multinomial distribution in which there are 5 comparator 

outcomes with probabilities 0.1, 0.1, 0.3, 0.2, and 0.1 (so the probability the reference 

outcome is observed in a trial is 0.2) and the number of reference outcomes to be 

observed is 10, the probability that the third order statistic is less than or equal to 4 using 

1,000,000 simulations and a seed value of 1234567 is estimated to be: 

 

unbalanced_order(c(.1,.1,.3,.2,.1),10,3,4,1000000) 

0.218617 

 

(2) Under the settings in example (1), the estimated probability that the third order 

statistic is equal to 4 using 1,000,000 simulations and a seed value of 1234567 is 

estimated to be: 

 

unbalanced_order(c(.1,.1,.3,.2,.1),10,3,4,1000000)-

unbalanced_order(c(.1,.1,.3,.2,.1),10,3,3,1000000) 

0.119906 

 

3. Des_Sup(K,alpha,r,pwr): Des_Sup takes the arguments 𝐾 (number of experimental 

treatment groups, i.e. not including the control group), alpha (nominal one-sided overall 
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Type I error at which the test of hypothesis is to be conducted), r (estimate of the rate 

ratio of the experimental treatment group to the control group which we wish to detect), 

and 𝑝𝑤𝑟 (minimum desired pointwise power of the study). Des_Sup returns the number 

of events 𝑑𝐶 to be observed in the control group, the critical value 𝑚 for the hypothesis 

test, the true overall Type I error achieved, and the true pointwise power achieved in a 

superiority trial conducted under Design C methodology. Des_Sup can also be used to 

generate the corresponding results under the Bonferroni method by setting the number of 

experimental treatment groups equal to one and replacing the nominal overall Type I 

error with 𝛼𝑜𝑣𝑟/𝐾 (see example (2) below for an illustration). 

 

Des_Sup calls several functions to compute the results. Among these is the function 

Prob, which takes the arguments 𝑑𝐶 (number of events to observe in the control group), 

𝑚 (an integral value), and K (number of experimental treatment groups) and returns 

𝑃(min(𝐷1, … , 𝐷𝐾) ≤ 𝑚) under the null hypothesis in Equation 4.2.1. This function can 

be used to find the p-value for a test of treatment superiority by substituting the observed 

minimum number of events among the experimental treatment groups for 𝑚 (see 

example (3) below for an illustration). 

 

Des_Sup Code: 

 

Prob<-function(dc,m,K){ 

new_function<-function(x){dgamma(x,dc)*((1-ppois(m,x))^K)} 

result<-1-integrate(new_function,0,Inf)$value 

return(result) 

} 

 

Control_ind<-function(K,alpha){ 

counter<-1 

while(Prob(counter,0,K)>alpha){ 

counter<-counter+1 

} 

control_start<-counter 

return(control_start) 

} 

 

CritVal<-function(dc,K,alpha){ 

ind<-0 

while((Prob(dc,ind,K)<alpha)&(Prob(dc,ind+1,K)<=alpha)){ 

ind<-ind+1 

} 

x<-ind 

return(x) 

} 

 

PointPwr<-function(dc,K,alpha,r){ 

s_comp<-c() 
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for(term in 0:(CritVal(dc,K,alpha))){ 

component<-(choose(dc+term-1,term)*(r^term))/((1+r)^(dc+term)) 

s_comp<-c(s_comp,component) 

} 

power<-sum(s_comp) 

return(power) 

} 

 

Des_Sup<-function(K,alpha,r,pwr){ 

if(K<=0|K%%1!=0|alpha<=0|alpha>=1|r<=0|r>1|pwr<=0|pwr>=1){ 

cat("Error. Valid values of arguments are as follows:\n") 

cat("K must be a positive integer\n") 

cat("0<alpha<1\n") 

cat("0<r<=1\n") 

cat("0<pwr<1\n") 

} 

else{ 

start<-Control_ind(K,alpha) 

while(PointPwr(start,K,alpha,r)<pwr){ 

start<-start+1 

} 

cat("The number of control group events dc is",start) 

cat("\nThe critical value m is",CritVal(start,K,alpha)) 

cat("\nThe true overall Type I error is",Prob(start,CritVal(start,K,alpha),K)) 

cat("\nThe true pointwise power is",PointPwr(start,K,alpha,r),"\n") 

} 

} 

 

Examples:  

 

(1) The design parameters for a superiority trial in which four experimental treatment 

groups are compared to a control group at nominal one-sided overall Type I error of 0.05, 

desired pointwise power equal to 0.9, and a rate ratio 𝑟 of 0.2 are: 

 

Des_Sup(4,.05,.2,.9) 

The number of control group events dc is 18 

The critical value m is 6 

The true overall Type I error is 0.03944082 

The true pointwise power is 0.9088288 

 

(2) The Bonferroni design parameters for the superiority trial described in example (1) 

are: 

 

Des_Sup(1,.05/4,.2,.9) 

The number of control group events dc is 18 

The critical value m is 6 
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The true overall Type I error is 0.01132792 

The true pointwise power is 0.9088288 

 

(3) The p-value for the superiority test corresponding to the trial described in example (1) 

when the minimum number of events observed among the experimental treatment groups 

is 3 is: 

 

Prob(18,3,4) 

0.002885246 

 

4. Des_Inf(K,alpha,r,pwr): Des_Inf takes the arguments 𝐾 (number of experimental 

treatment groups, i.e. not including the control group), alpha (nominal one-sided overall 

Type I error at which the test of hypothesis is to be conducted), r (estimate of the rate 

ratio of the experimental treatment group to the control group which we wish to detect), 

and 𝑝𝑤𝑟 (minimum desired pointwise power of the study). Des_Inf returns the number of 

events 𝑑𝐶 to be observed in the control group, the critical value 𝑤 for the hypothesis test, 

the true overall Type I error achieved, and the true pointwise power achieved in an 

inferiority trial conducted under Design C methodology. Values under the Bonferroni 

approach and the p-value for the test of hypothesis can be found in the same manner as 

was explained for the Des_Sup routine above. 

 

Des_Inf Code: 

 

Prob<-function(dc,w,K){ 

new_function<-function(x){dgamma(x,dc)*((ppois(w-1,x))^K)} 

result<-1-integrate(new_function,0,Inf)$value 

return(result) 

} 

 

PointPwr<-function(dc,w,r){ 

s_comp<-c() 

for(term in 0:w-1){ 

component<-(choose(dc+term-1,term)*(r^term))/((1+r)^(dc+term)) 

s_comp<-c(s_comp,component) 

} 

power<-1-sum(s_comp) 

return(power) 

} 

 

Des_Inf<-function(K,alpha,r,pwr){ 

if(K<=0|K%%1!=0|alpha<=0|alpha>=1|r<1|pwr<=0|pwr>=1){ 

cat("Error. Valid values of arguments are as follows:\n") 

cat("K must be a positive integer\n") 

cat("0<alpha<1\n") 

cat("r>=1\n") 

cat("0<pwr<1\n") 
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} 

else{ 

start<-1 

ind<-0 

while(start>0){ 

while(Prob(start,ind,K)>alpha){ 

ind<-ind+1 

} 

if(PointPwr(start,ind,r)>=pwr){ 

cat("The number of control group events dc is",start) 

cat("\nThe critical value w is",ind) 

cat("\nThe true overall Type I error is",Prob(start,ind,K)) 

cat("\nThe true pointwise power is",PointPwr(start,ind,r)) 

cat("\n") 

start<-0 

} 

else{ 

start<-start+1 

} 

} 

} 

} 

 

Examples: 

 

(1) The design parameters for an inferiority trial in which four experimental treatment 

groups are compared to a control group at nominal one-sided overall Type I error equal to 

0.05, desired pointwise power of 0.8, and rate ratio 𝑟 equal to 2 are: 

 

Des_Inf(4,.05,2,.8)  

The number of control group events dc is 30 

The critical value w is 49 

The true overall Type I error is 0.04866245 

The true pointwise power is 0.8008007 

 

5. Null_Time(K,dc,crit,test,sims): Null_Time takes the arguments 𝐾 (number of 

experimental treatment groups, i.e. not including the control group), 𝑑𝑐 (number of 

events to be observed in the control group), crit (the critical value for the test of 

hypothesis, i.e. 𝑚 for a superiority trial or 𝑤 for an inferiority trial), test (either “Sup” or 

“Inf” to specify whether the trial is of treatment superiority or inferiority, respectively), 

and sims (number of simulations used to estimate the person year values). Null_Time 

returns the estimated expected number, standard deviation, and 95% empirical confidence 

interval of person years of follow-up until trial termination (assuming 𝑖𝐶 = 1) for either a 

fully curtailed superiority trial or a fully curtailed inferiority trial under the null 

hypothesis in Equation 4.2.1 or Equation 5.1.1, respectively. 
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Null_Time Code: 

 

ExpTime<-function(K,dc,crit,test){ 

if(toString(test)=="Sup"){ 

Txs<-rgamma(K,crit+1,1) 

} 

else if(toString(test)=="Inf"){ 

Txs<-rgamma(K,crit,1) 

} 

Cont<-rgamma(1,dc,1) 

Txstar<-Txs 

Txstar[Txstar>=Cont]<-Cont 

ntkstar<-Txstar 

Contstar<-Cont 

ifelse(Cont>max(Txs),Contstar<-max(Txs),Contstar<-Cont) 

sumall<-sum(ntkstar,Contstar) 

return(sumall) 

} 

 

Null_Time<-function(K,dc,crit,test,sims){ 

v<-c("Sup","Inf") 

if(dc<=0|dc%%1!=0|crit<0|crit%%1!=0|sims<0|sims%%1!=0|K<=0|K%%1!=0){ 

cat("Error. Valid values of arguments are as follows:\n") 

cat("K must be a positive integer\n") 

cat("dc must be a positive integer\n") 

cat("crit must be an integer value greater than or equal to 0\n") 

cat("sims must be a positive integer\n") 

} 

else if(is.element(toString(test),v)==FALSE){ 

cat("Error: Must specify 'Sup' or 'Inf' as an argument\n") 

} 

else{ 

Times<-vector() 

for(i in 1:sims){ 

newval<-ExpTime(K,dc,crit,test) 

Times<-c(Times,newval) 

} 

estimateTime<-mean(Times) 

estimatestd<-sd(Times) 

Sorted<-sort(Times) 

TwoFive<-Sorted[.025*sims] 

NineSeven<-Sorted[.975*sims] 

cat("The estimated time is",estimateTime,"\n") 

cat("The estimated standard deviation is",estimatestd,"\n") 

cat("Interval based on 2.5 and 97.5 percentiles is (",TwoFive,",",NineSeven,")\n",sep="") 

} 



146 
 

 
 

} 

 

Examples: 

 

(1) The estimated mean, standard deviation, and 95% empirical confidence interval of 

person years of follow-up until trial termination for a fully curtailed superiority trial 

under the null hypothesis in Equation 4.2.1 when there are four experimental treatment 

groups, the number of events to observe in the control group is 𝑑𝐶 = 25, and the critical 

value is 𝑚 = 8 using 100,000 simulations and seed value 1234567 are: 

 

Null_Time(4,25,8,"Sup",100000) 

The estimated time is 48.21195  

The estimated standard deviation is 8.148895  

Interval based on 2.5 and 97.5 percentiles is (33.51516,65.38062) 

 

(1) The estimated mean, standard deviation, and 95% empirical confidence interval of 

person years of follow-up until trial termination for a fully curtailed inferiority trial under 

the null hypothesis in Equation 5.1.1 when there are four experimental treatment groups, 

the number of events to observe in the control group is 𝑑𝐶 = 30, and the critical value is 

𝑤 = 49 using 100,000 simulations and seed value 1234567 are: 

 

Null_Time(4,30,49,"Inf",100000) 

The estimated time is 149.8836  

The estimated standard deviation is 27.05042  

Interval based on 2.5 and 97.5 percentiles is (100.9101,206.8324) 

 

6. Alt_Time(dc,crit,vec,test,sims): Alt_Time takes the arguments 𝑑𝑐 (number of events to 

be observed in the control group), crit (the critical value for the test of hypothesis, i.e. 𝑚 

for a superiority trial or 𝑤 for an inferiority trial), vec (a vector of length equal to the 

number of experimental treatment groups with entries corresponding to the rate ratios of 

each experimental treatment group to the control group, i.e. a vector of the form 

𝑐(𝑟1, 𝑟2, … , 𝑟𝐾)), test (either “Sup” or “Inf” to specify whether the trial is of treatment 

superiority or inferiority, respectively), and sims (number of simulations used to estimate 

the person year values). Alt_Time returns the estimated expected number, standard 

deviation, and 95% empirical confidence interval of person years of follow-up until trial 

termination (assuming 𝑖𝐶 = 1) for either a fully curtailed superiority trial or a fully 

curtailed inferiority trial under the alternative hypothesis in Equation 4.2.1 or 5.1.1, 

respectively. 

 

Alt_Time Code: 

 

ExpTime_Alt<-function(dc,crit,vec,test){ 

empty<-c() 

if(toString(test)=="Sup"){ 

for(i in vec){ 

randv<-rgamma(1,crit+1,i) 
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empty<-c(empty,randv) 

} 

} 

else if(toString(test)=="Inf"){ 

for(i in vec){ 

randv<-rgamma(1,crit,i) 

empty<-c(empty,randv) 

} 

} 

Cont<-rgamma(1,dc,1) 

Txstar<-empty 

Txstar[Txstar>=Cont]<-Cont 

ntkstar<-Txstar 

Contstar<-Cont 

ifelse(Cont>max(empty),Contstar<-max(empty),Contstar<-Cont) 

sumall<-sum(ntkstar,Contstar) 

return(sumall) 

} 

 

Alt_Time<-function(dc,crit,vec,test,sims){ 

v<-c("Sup","Inf") 

if(dc<=0|dc%%1!=0|crit<0|crit%%1!=0|sims<0|sims%%1!=0){ 

cat("Error. Valid values of arguments are as follows:\n") 

cat("dc must be a positive integer\n") 

cat("crit must be an integer value greater than or equal to 0\n") 

cat("sims must be a positive integer\n") 

} 

else if(any(vec<=0)){ 

cat("Error. All entries in vec must be greater than 0\n") 

} 

else if(is.element(toString(test),v)==FALSE){ 

cat("Error: Must specify 'Sup' or 'Inf' as an argument\n") 

} 

else{ 

Alt_Times<-vector() 

for(i in 1:sims){ 

newval<-ExpTime_Alt(dc,crit,vec,test) 

Alt_Times<-c(Alt_Times,newval) 

} 

estimateTime<-mean(Alt_Times) 

estimatestd<-sd(Alt_Times) 

Sorted<-sort(Alt_Times) 

TwoFive<-Sorted[.025*sims] 

NineSeven<-Sorted[.975*sims] 

cat("The estimated time is",estimateTime,"\n") 

cat("The estimated standard deviation is",estimatestd,"\n") 
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cat("Interval based on 2.5 and 97.5 percentiles is (",TwoFive,",",NineSeven,")\n",sep="") 

} 

} 

 

Examples: 

 

(1) The estimated mean, standard deviation, and 95% empirical confidence interval of 

person years of follow-up until trial termination for a fully curtailed superiority trial 

under the alternative hypothesis in Equation 4.2.1 when there are four experimental 

treatment groups, the number of events to observe in the control group is 𝑑𝐶 = 25, the 

critical value is 𝑚 = 8, and the anticipated rate ratios in the four experimental treatment 

groups are 0.2, 0.5, 0.6, and 0.4 using 100,000 simulations and seed value 1234567 are: 

 

Alt_Time(25,8,c(.2,.5,.6,.4),"Sup",100000) 

The estimated time is 101.201  

The estimated standard deviation is 14.86817  

Interval based on 2.5 and 97.5 percentiles is (73.64713,131.8204) 

 

(2) The estimated mean, standard deviation, and 95% empirical confidence interval of 

person years of follow-up until trial termination for a fully curtailed inferiority trial under 

the alternative hypothesis in Equation 5.1.1 when there are four experimental treatment 

groups, the number of events to observe in the control group is 𝑑𝐶 = 30, the critical 

value is 𝑤 = 49, and the anticipated rate ratios in the four experimental treatment groups 

are 5, 2, 10, and 2 using 100,000 simulations and seed value 1234567 are: 

 

Alt_Time(30,49,c(5,2,10,2),"Inf",100000) 

The estimated time is 87.72808  

The estimated standard deviation is 7.712449  

Interval based on 2.5 and 97.5 percentiles is (72.58614,102.9377) 
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