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Clinical trials that compare one or more experimental treatments to a control treatment in
which event incidence (i.e. incidence of disease or an adverse event) is rare often assume
that comparative Poisson methodology is appropriate for modeling the number of events
that occur in each treatment group. Clinical studies of multiple Poisson parameters may
be conducted under one of two designs: (A) wait until a total number of events occur
among all treatment groups before stopping the study, or (B) wait until a specified
amount of time has passed before terminating the study. Exact tests under these
approaches are based on the multinomial distribution.

In this dissertation, we consider an alternative approach termed “Design C”,
which is to wait until the control group accumulates a pre-specified number of events
before stopping the study. The joint distribution of the number of events in the
experimental treatment groups at the time of study stoppage, conditional on the number
of events observed in the control group, follows a negative multinomial distribution
(NMD). The minimum (respectively, maximum) number of events among the

experimental treatment arms will be shown to be an appropriate test statistic for



determining whether one or more of the experimental treatments is superior (respectively,
inferior) to the control at a given one-sided overall Type | error; as such, we first
determine the distribution of the order statistics of the NMD. We subsequently provide
tables of trial design parameters for select values of one-sided overall Type I error and
pointwise power and assuming equal allocation of study subjects to the treatment groups.
These studies can be improved by applying curtailed stoppage rules; that is, follow-up of
the treatment arms can be discontinued prior to the control group reaching its planned
number of events once the ultimate decision is known for each arm. Curtailment has
substantial practical implications as reduced follow-up implies reduced study costs and
more rapid knowledge of the trial results. We provide simple algorithms to estimate the
expected amount of subject follow up (presented in terms of person years) that would be
needed until trial termination under both uncurtailed and curtailed stopping rules. Finally,
we combine the superiority and inferiority test procedures to provide a two-sided test and
briefly consider pairwise comparison of the experimental treatments to each other under

the Design C framework.
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SECTION 0: INTRODUCTION

Clinical studies that compare multiple experimental treatments to a single control
treatment (which may be either a placebo or a standard of care treatment) typically occur
early in the drug process. For example, during drug discovery, an agent may be modified
to produce several related drugs in the same drug class. It is then of interest to determine
which of the derivative drugs is most effective in preventing an illness or curing a disease
and which are ineffective or harmful. In phase 1 trials, various doses of a drug or vaccine
may be administered to study participants with the intent of determining the minimal
effective and maximum tolerable doses. In either case, a control treatment may be
administered for comparison. The landscape of clinical trials has historically been a
rapidly expanding one, and late-phase clinical trials which compare several experimental
treatments to a single control are now more commonplace. Parmar, Carpenter, and Sydes
(2014) report that approximately 20% of superiority randomized controlled trials
registered between January, 2010 and July, 2012 had three or more treatment arms.

Large-scale controlled clinical trials typically have two objectives: prove a new
treatment is superior in efficacy to the control and prove the new treatment is safe for
consumption. In some settings, the primary outcome of the trial is a rare binomial event,
such as prevention of HIV transmission, or a Poisson outcome, such as in vaccine trials.
In either case, the Poisson distribution may be used as the basis for statistical comparison
of the rates of events in the treatment groups; trials having the Poisson distribution as the
basis for statistical inference are referred to as comparative Poisson trials (Gail, 1974).

When there are only two treatments under study, two popular methods for

conducting comparative Poisson trials are described in Gail (1974). Under “Design A”,



the trial is conducted until a pre-specified total number of events among the two
treatment groups are observed, while under “Design B”, the trial is stopped after a pre-
specified amount of time. Testing the efficacy or safety of the treatments under these two
designs is based on the binomial distribution. In this dissertation, which extends
consideration to comparing multiple treatments to a single control, our primary interest is
in “Design C”, which, to our knowledge, was first proposed by Hsu (2010). Under
Design C, the study continues until a pre-specified number of events are observed in the
control group; when one treatment is compared to a control under Design C, testing is
conducted via a negative binomial distribution. When more than two treatment groups are
under study, Designs A and B naturally extend to testing based on the multinomial
distribution, while extension of Design C leads to tests based on the negative multinomial
distribution (NMD).

Comparative Poisson trials of multiple experimental treatments versus a single
control treatment conducted under Design C methodology will be our primary focus in
this dissertation. As such, properties of the negative multinomial distribution provide the
basis for hypothesis tests concerning the superiority or inferiority of experimental
treatments in relation to a control. Based on these objectives, the structure of this
dissertation is as follows: in Section 1, we provide the characterization and probability
mass function of the negative multinomial distribution and define “balanced” and
“unbalanced” NMDs. A historical overview of the NMD and examples of its practical
application are also provided. In Section 2, we discuss the comparative Poisson process
and its relationship to the NMD. This relationship is utilized in Section 3 to derive the

order statistics of the balanced NMD. Simulation is used to compute the order statistics of



unbalanced negative multinomial distributions. The preliminary results of Sections 1, 2,
and 3 are applied in Section 4, where Design C methodology is developed for clinical
trials in which one or more experimental treatments are investigated for superiority to a
control treatment under the assumption of equal allocation of study subjects to the trial
arms. We present the main hypotheses of interest, derive an appropriate test statistic,
provide tables of trial design parameters for specified combinations of overall one-sided
Type | error and power, compare our results to those obtained using the Bonferroni
procedure to control for multiple comparisons, and discuss the expected number of
person years of follow-up until trial termination under uncurtailed and curtailed stoppage
rules. In Section 5, we extend the methodology to accommodate trials which investigate
treatment inferiority, combine the superiority and inferiority results into a two-sided test,
and discuss pairwise comparisons of the experimental treatments to each other. Section 6

concludes with future directions implicated by the work in this dissertation.



SECTION 1: THE NEGATIVE MULTINOMIAL DISTRIBUTION

1.1: Characterization and Probability Mass Function of the Negative Multinomial
Distribution

It is well known that if X denotes the number of successes in m Bernoulli(p) trials, then
X has a binomial distribution with parameters m and p (i.e. X~Bin(m, p)), and the

probability mass function of X is given by
P(X = x) = (m) p*(1 —p)™ %, x =0,1,2, ..., m
X
Now, consider the random variable Y denoting the number of failures that occur before r
successes are obtained in a sequence of Bernoulli(p) trials. The random variable Y has a

negative binomial distribution with parameters r and p (i.e. Y~NB(r, p)), and the

probability mass function of Y is given by

r+y-—1

por=y=(">

)pr(l -p)Y,y=012,.. (1.1.1)

Both the binomial and negative binomial distributions are predicated upon the fact that in
a Bernoulli trial there are only two possible outcomes, generally referred to as “success”
and “failure”. Suppose instead that we conduct an experiment in which we observe m
independent trials for which there are n mutually exclusive and exhaustive possible
outcomes for each trial. Denote the probability of the it* possible outcome by p;,

0<p; <1fori=1,2,..,n, and let X; count the number of times that the i*" outcome
occurs in the m trials. The vector (X3, X5, ..., X;,) has a multinomial distribution with
parameters m and py, ps, ..., Py, (i.6. (X4, ..., X;,)~M(m, py, ..., p,,)) and has probability

mass function

n
p; m! X; m x:
P(X1 = x4, ... Xy, = x,) = m! L — 'zz( ) X
*y v n) XU xqtxp!leexy! P; X1, X2, ey Xp p;
: =1 i=1



where x; > 0fori=12,..,n,Y% p; =1, and Y7L x; = m.

Note that since Yi; p; = 1, in theory we need only specify n — 1 of the
probabilities p; as parameters to characterize the distribution. However, all n
probabilities are typically specified as parameters of the multinomial distribution
throughout the literature, and so we will maintain this standard notation when discussing
the multinomial distribution (Johnson, Kotz, and Balakrishnan, 1997, pages 31-33).

From the characterization of the multinomial distribution, it is clear that the
multinomial distribution is the multivariate analogue of the binomial distribution. That is,
the multinomial distribution extends the binomial distribution to n > 2 possible
outcomes for each trial. Thus, a natural question is whether there exists ann > 2
outcome multivariate analogue of the negative binomial distribution whose relationship
to the multinomial distribution mirrors the relationship between the negative binomial
and binomial distributions. Such a distribution, the negative multinomial distribution
(NMD), is characterized in Le Gall (2006) as follows: suppose (substituting h + 1 for n
to allow outcome 0 to be the “reference” outcome as will be described below) there are
n = h + 1 mutually exclusive and exhaustive outcomes denoted by E,, E, ..., Ej, which
occur with probabilities py, py, ..., Pn, respectively. If independent trials are conducted
until the “reference” outcome E,, occurs v times (v > 0), then the number of occurrences
Y., Y, ..., Y, of outcomes E;, E,, ..., Ey, respectively, during these trials will have a
negative multinomial distribution with parameters v and py, p1, 02, ---, Pn (i.€.

(Y, .., i )~NM (v, pg, P1, ---, Pr))- The probability mass function is given by

P(Yl,...,Yh)=F< Z )F(V)le = 012..,j=12.,h (112



where y; is an observed value of the random variable Y; for j = 1, ..., h, and Yhopi=1.

When v is a positive integer value, the distribution is sometimes referred to as the h-

variate Pascal distribution, and the probability mass function can be written as

h

v Yi
P(Yy, ..., Yh)—<v—1+z > 01)' p‘

When there are only two possible outcomes, E, and E;, and v is a positive integer, the

probability mass function is

P(Yp)) =rv+y)

Po £=(V+y1_1)! v Y1=(V+y1_1
rw) y,!  (v—=1ly,! 701 Y1

)pg (1= po)
which, by Equation 1.1.1, is the probability mass function of a NB (v, p,) distribution.
Note that p, need not be included as a parameter in specifying the NMD. Since
the outcomes E,, ..., Ej, are exhaustive, we know that ¥, p; = 1, and so when the values
of py, ..., pp, are known, the value of p, is determined by 1 — X', p;. In this dissertation,
however, we will specify p, as a parameter when identifying the joint distribution of a set

of random variables as negative multinomial.

We next provide some important properties of the NMD. The marginal

Po

PotD;

distribution of each Y;,i = 1,2, ..., h, is negative binomial with parameters v and

i.e.Y;~NB (v, ppT"p). The proof (given in terms of the marginal distribution of Y;) is
0 i

found in Steyn (1959) and is as follows:

(v+y + X,y — 1)
2 Z == pypy Dy pot
Y2

(v =Dy lyy!-yp!

(V+y1_1)| Y1Z Z(v+y1+2?=2yi_1)! VY2 . n\Yh
(V—l)'}" (v+y1—1)!y2]...yh!p0p2 Ph



h -(v+y1)
=(V+)’1_1)!py1pv 1_22} =(V+3’1_1)!( Po )v< P1 >y1
(v—Dlyt 7T S (v =Dy \po+pi/ \po +p1

_ v Y1
_ (v+y1 1)( Po ) (1_ Po ) = ¥,~NB (V’ Po )
Y1 Po + D1 Po + D1 Po + D1

Similarly, the marginal distribution for the remaining Y;,i = 2, ..., h, can be determined

by replacing y, with y; and adjusting the limits of the summations in the computations

above to exclude either y; or p; as appropriate. These results imply that the marginal

. : . . . ; +p; .
expected value of Y; is v % and the marginal variance of Y; is v %. Furthermore, it
0 0

was shown that the covariance of and correlation between Y; and Y; for i = j is given by

pipj
s

DiDj
(Po+pi)(Po+Pj)

Cov(Y,Y;) = v=Land Corr(Y¥,Y;) = (Steyn et al., 1989)".

1.2: Brief History of the Negative Multinomial Distribution

According to Sibuya, Yoshimura, and Shimizu (1964), “the notion of the negative
multinomial distribution was first introduced in the model of the inverse sampling? in
multiple Bernoulli trials...”, and the first systematic analysis of the NMD is attributed to
Bates and Neyman (1952), who referred to the distribution as the multivariate negative
binomial distribution® and derived its probability mass function via the probability
generating function. While studying the theory of accident proneness, Bates and Neyman

derived the NMD by considering s kinds of accidents, in which one type of accident is

! Note that the correlation between Y; and Y; is positive in a negative multinomial distribution, whereas the
correlation between random variables in a multinomial distribution is negative.

2 Casella and Berger (2002) describe inverse sampling techniques as sampling until r individuals with a
certain characteristic are obtained from a population in which the proportion of individuals possessing the
characteristic is p (pages 96-97).

¥ Though both the terms “negative multinomial” and “multivariate negative binomial” can be found in the
literature, Johnson, Kotz, and Balakrishnan (1997, page 98) suggest that the term “negative multinomial” is
a more accurately descriptive name for the distribution, and, as such, we will use this term exclusively
throughout this dissertation following the historical overview in Section 1.2.



classified as a severe accident and the remaining s — 1 are classified as different types of

light predictor accidents. The random variables X;, X,, ..., X, are used to represent the

number of each type of aforementioned accident, and it is assumed that these random

variables are mutually independent, each following a Poisson law with parameter

a;A,i=1,2,..,s, where to each individual of the population there is associated a positive

number A measuring his or her proneness to accidents. If A follows a distribution A with
pa

density function p,(x) = ra)x“‘le‘ﬂ", then the joint distribution of X;, X,, ..., X, is

negative multinomial (or as Bates and Neyman termed it, an s-variate negative binomial

distribution) with probability mass function of the form

N

1+Zbl-

=1

-a S n;
I'(a +n) ¢

P{(X; =n)Xy =ny) - (X5 =ng)} = I'(a) n:!
i=1

b; _ a;
14X52, b B+Ejoqaj

wheren = Y3_,n;, b; = %, and ¢; = fori =12, ..,s.

Bates and Neyman note that when this model is applicable, the s-dimensional
problem can be reduced to a two-dimensional problem by letting X denote the number of
severe accidents and Y denote the total number of light accidents (i.e. Y incorporates all
s — 1 original types of light accidents). The authors subsequently discuss estimation of
the parameters in the resulting bivariate negative binomial distribution. Bates and
Neyman also prove the following properties:

(i) The marginal joint distribution of a group of m variables, say X;, X,, ..., X;,, iS an
m-variate negative binomial distribution
(i1) The joint distribution of X;, X5, ..., X,, and the sum y = X,,;; + - + X isan

(m + 1)-variate negative binomial distribution



(iii) The conditional joint distribution of X;, X, ..., X,, given values for the remaining

s — m variables is an m-variate negative binomial distribution and depends only

onthevalue y = x;41 + -+ + X

Additional properties of the NMD have been given by many authors, including
Sibuya, Yoshimura, and Shimizu (1964) and Nguyen et al. (2007), and a thorough
treatment of the distribution can be found in Johnson, Kotz, and Balakrishnan (1997,
pages 93-123).
1.3: Definition of Balanced and Unbalanced Negative Multinomial Distributions
In this dissertation, we will distinguish between “balanced” and “unbalanced” negative
multinomial distributions. For an experiment in which there are h + 1 possible outcomes
that can be modeled by an NMD, we define a balanced negative multinomial distribution

as one in which the probability that each of the h + 1 outcomes occurs is equal (i.e.

1

pi =i = 0,1, ..., h). When the relationship p, = p, = -:- = p;, does not hold, the

NMD will be referred to as an unbalanced negative multinomial distribution. A subset of
the unbalanced distributions which may be of special interest is when p, # p; = p, =
-+ = py, and we term these “partially balanced” negative multinomial distributions. We
next provide examples of balanced, unbalanced, and partially balanced negative
multinomial distributions.

As an example of the balanced NMD, consider a fair six-sided die. If we roll the
die until we observe ten 6’s, then the distribution of the number of 1°s, 2’s, 3’s, 4’s and
5’s observed during the rolls (denoted by Y3, ..., Ys, respectively) follows a balanced

negative multinomial distribution with parameters 10 and py = p; = P, = P3 = P4 =

ps = % and probability mass function



10

10+37, vi

(10—”1251:”)!(1(0%2 1)!ﬁ(§?! | B <9+iyi)!(§')ﬂﬁ

i=1 i=1

Now, suppose that each time the die is rolled the probability that the i** face is observed

is proportional to the number on the face of the die (i.e. the probability thata 1, 2, 3, 4, 5,

1 2
and 6 occurs is 15151 Z and — respectlvely) Suppose we again roll the die until

ten 6’s are observed. In this case, the NMD is unbalanced with probability mass function

10 1

foere o) 0 G G G A

mEOLECUNEES IS CUE A

(o) B

i=1
Finally, suppose a gambler carries a loaded die in which the probability a 6 is observed is
9/10 and the probability a 1, 2, 3, 4, or 5 each occurs is 1/50. If the gambler rolls the die
until ten 6’s are observed, then the NMD is partially balanced with mass function

10 1

i 10 Y1 Vi
) o) > Y\ () (50)
(10—1+Z ) (10_1)|1_1[ 5}2! =<9+Z3’i>! 109'H15(1)y1

i=1

1.4: Applications of the Negative Multinomial Distribution
Several applications of the negative multinomial distribution have been published in the
literature since its introduction by Bates and Neyman. In this subsection, we will briefly

discuss some of these examples and provide references for additional applications.

* We omit many of the details required to derive the NMD in these examples as the purpose of Section 1.4
is solely to emphasize the usefulness of this distribution in real-world applications. Readers should consult
the original cited articles for complete details.
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Sinoquet and Bonhomme (1991) use the NMD to analyze radiation interception in
a two-species plant canopy; in particular, they consider the interception of radiation
coming from a given direction and going across a homogenous vegetation layer of
thickness Z. Their approach consists of modeling the light relations that exist when two
species of plants are planted in the same field, taking into account the geometrical
structures in the vegetative canopies (i.e. the spatial distribution of the foliage elements of
the two species). They define two components of leaf dispersion: within-species leaf
dispersion (WSLD), which describes the rate of foliage overlap between leaves of plants
of the same species, and between-species leaf dispersion (BSLD), which describes the
rate of foliage overlap between leaves of different plant species. Leaf dispersion can be
classified as regular (leaves avoid mutual shading), random, or clumped (leaves tend to
overlap). Dividing the homogeneous layer Z into N equal and independent sublayers of
thickness z (i.e. Z = Nz), Sinoguet and Bonhomme show that when the BSLD is regular,
the probability of interception by species i (i = 1,2) is given by p; = 1 — e, where k;
is a function of the leaf area density and a projection coefficient onto a horizontal plane
of a unit of leaf area of species i. The interception probabilities are described by a
bivariate multinomial distribution with parameters N, p,, and p,. For the entire layer Z,

the probability of no interception, P, is given by

Z
Py, = exp {;ln[exp(—klz) + exp(—k,z) — 1]}

When the BSLD is clumped, the value of z in the expression above is taken to be
negative, and the authors argue that this is justified by the use of a negative multinomial
distribution to characterize the interception probabilities. A bivariate NMD is

subsequently used to model the number of interceptions in the two plant species.
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Patil and Boswell (1972) consider birth and death processes in which the
corresponding rates factor into a function of time and a function of the size of the
population components. If {X(t):t € R*} denotes an r-dimensional pure birth process

with birth rates 4, (x, t), then the process is characterized by the differential equations

a s
ap(x, t) = ;Ak(x — i, T)p(x — i, t) — Alx, )p(x, t)

where p(x,t) = P[X(t) = x], A(x,t) = Y}=1 A(x, t) and iy, is a vector with a 1 in the
k" position and zero for all other positions. Patil and Boswell prove that if {X(t):t €
R*} is a birth process with X(0) = 0, 1, (x,t) = a;(y + 6x - 1)h(t), YXr=1ar = 1,and

& = 1, then X(t) has the negative multinomial distribution with mass function

peo = (" TPl o] [t -pon
k=1

t
where p,(t) = e~ Jo M4,

Engel (1986) considers a model for count data in a split-plot design with two
whole plot factors A and B (indexed by i and j, respectively) and one sub-plot factor C
(indexed by k) with an equal number of replicates per cell (indexed by [). Assuming
whole plot error, interaction between sub-plot factor C and whole plot error, sub-plot
error, and a Poisson distribution as the basis of the model for X; ;;, (the count response for
replicate [ of sub-plot k of whole plot (i, j)), Engel posits the following model for X; j;:
(i) Xij~Poisson(mjx;) with m;j,; an observed value of the positive random
variable M;j,

(ii) Mijiy = Giji(@ij, 0) - Hijii(Biji.) where the random variables G are independently

Gamma distributed and Hy i (Bijx) = Gijir(Biji 1)/ 2k Gijra (Bijiom)
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Omitting the subscripts i, j, and [ leads to a negative multinomial distribution for the
vector (X4, X5, ..., Xx) given H, = h;, with probability mass function

( xy+a—1 )( 1 )al_[< Ohy )
X1, X &€ — 1) \1+ 0 X, hy 1+6 Y, h

k

Xk

Our next example of the NMD is an original application to the theory of quality
control. Suppose that a certain machine used in manufacturing is subject to breakdown
due to the failure of any one of h + 1 components. The machine breaks down due to
component i with (unknown) probability p;,i = 0,1, ..., h. If we want to estimate the
probability of breakdown due to each component, we may observe numerous machines
until we observe v breakdowns due to component 0 and then count the number of
breakdowns that have occurred due to the h remaining types of components, denoted by
Y1, ..., Y. This experiment follows an NMD with parameters v, py, p1, ---, Pr- This model
could be particularly important if the 0t component is very expensive to repair or
replace relative to the other h components, and hence we may only be willing to allow a
certain number of breakdowns due to failure of the 0" component before terminating the
experiment and estimating the probability of breakdown due to each component.

Derivation of the NMD from an urn model and from an inverse sampling scheme
can be found in Sibuya, Yoshimura, and Shimizu (1964). The use of the NMD in inverse
sampling schemes may be of particular importance in ecological capture-recapture
experiments. In such situations, estimates with better sampling properties are obtained
since it is guaranteed that a predetermined number of tagged individuals will be
recaptured. This contrasts the use of direct sampling schemes which may result in a low

number of recaptures, indicating the need for additional sampling (Ord, Patil, and Taillie,
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1979, page 177). Other practical examples, with references, are listed on pages 95-96 of
Johnson, Kotz, and Balakrishnan (1997).

1.5: The Negative Multinomial as a Mixture Distribution

Karlis and Xekalaki (2005) define a mixture distribution as follows:

A probability distribution is said to be a mixture distribution if its distribution function
F () can be written in the form F(-) = f@F(- [1)dG (1), where F(-|A) denotes the
distribution function of the component densities considered to be indexed by a
parameter A with distribution function G(1),1 € 0. (page 35)

This definition can also be presented in terms of probability density functions as f(x) =

fgf(xlﬂ)gl(ﬂ)d)l. In this representation, g(+) is referred to as the mixing density. When

Ayx
z x'l ), the random variable X is said to follow a mixed

X|A~Poisson(A) (i.e. f(x|1) =
Poisson distribution (Karlis and Xekalaki, 2005).

Suppose X |A~Poisson(4), where 2 follows a gamma distribution® with
parameters a and S (i.e. the mixing distribution g, (1) is a gamma distribution). Then,

N | A 11 ~1/(555)
P(X =x) = —A— 297t Bda = —f Arasle TINB+L) dg
X'=x) fo ¢ MT@pe" ° I'(@)p®x! J, ¢

a

;%F(x +a) (r,%)x - (?;_al;! ,13' (ﬁ -1+ 1) (/3 i 1)

-3 (7

Thus, the marginal distribution of X is negative binomial with parameters a and ﬁ. This

X

result is attributed to Greenwood and Yule (1920) and can be found in Johnson, Kotz,
and Kemp (1992, page 204) or Neyman (1965) who utilizes the probability generating

function to obtain the result.

> The probability density function of a Gamma(a, ) random variable Q is f(q) = I"(le)ﬁ“ q* e /B,
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The definitions above define univariate mixed distributions. The definitions
extend naturally to characterize multivariate mixed distributions, and here we will
provide a specific case of multivariate mixed Poisson distributions as presented in
Sibuya, Yoshimura, and Shimizu (1964). Suppose X, X5, .., X, are independent Poisson
random variables with parameters mA;,i = 1, ..., r, where m is an observed value of a

random variable M. The joint conditional distribution of X4, ..., X,. is then

r

P(X1 = xl,...,Xr = erM = m) = 1_[6

i=1

-mi; (m/li)xi

x;!

If the distribution of M, i.e. the mixing distribution, is taken to be a gamma distribution
with parameters k and a, then the joint distribution of X, ..., X,- is negative multinomial
as shown below:

r
® oo ma)¥) 1 4
PG =2 X =) = J;) {ﬂe e xil! Toar™ e dm

i=1

l

1+aXl, A )kt Ein xi—1
I"(k)akl_[xl J S T dm

a k+2{=1xi
Ik +Xiqx;) (Ha—m) LY
= Zi
B I'(k)a* L x;!
=
( k aﬂ, Xi
1+ aZ ) (1 + aZ )
=TI <k + Z xl> '
T | ] o

That the product of independent Poisson variates mixed with a gamma distribution

follows an NMD is attributed to Bates and Neyman (1952) and can also be found in
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Papageorgiou (1983), Joshi (1975), Ord, Patil, and Taillie (1979, pages 167-168), and
Johnson, Kotz, and Balakrishnan (1997, pages 94-95) and is stated without proof in Zhou
and Lange (2010). An explicit derivation of this fact will also be provided in Section 2.4
where it will be obtained in the context of the comparative Poisson process.

The NMD can also be obtained via mixture of multiple Poisson variates and a
multivariate gamma mixing distribution. This result, which is beyond the scope of this
dissertation, can be found in Ferrari, Letac, and Tourneret (2004) or Chatelain, Lambert-

Lacroix, and Tourneret (2009).
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SECTION 2: RELATIONSHIP BETWEEN THE COMPARATIVE POISSON
PROCESS AND THE NEGATIVE MULTINOMIAL DISTRIBUTION

2.1: The Comparative Poisson Process
Lehmann and Romano (2005) write,
A problem arising in many different contexts is the comparison of two treatments or of
one treatment with a control situation in which no treatment is applied. If the
observations consist of the number of successes in a sequence of trials for each
treatment, for example the number of cures of a certain disease, the problem becomes
that of testing the equality of two binomial probabilities. If the basic distributions are
Poisson, for example in a comparison of the radioactivity of two substances, one will
be testing the equality of two Poisson distributions. (page 124)
This dissertation focuses on the latter setting, the comparative Poisson process; that is,
the comparison of two (or more) populations in which the event count in each is
independently Poisson distributed. Though we will be strictly concerned with the
comparative Poisson process, the model can also be applied to the binomial setting when
the number of trials is large and the probability of event occurrence is small (and hence
the binomial distribution is closely approximated by the Poisson distribution). This is a
well-known result and can be found, for example, on pages 66-67 and 93-94 in Casella
and Berger (2002). Additionally, though Lehmann and Romano present the comparative
Poisson process in terms of comparison of treatments to each other or a treatment to a
control, and though this method is typically applied to clinical trials, the method can be
applied to any comparison in which event counts follow or can be approximated by
Poisson distributions. As such, in the remainder of Section 2, rather than use the terms
“treatment” and “control” groups, we will use more general terminology to describe

studies in which one or more “comparator” situations/groups are compared to one another

or are compared to a “reference” situation/group. The specific application of comparative
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Poisson methodology to clinical trials will be discussed at length in Sections 4 and 5 of
this dissertation.

Results concerning the construction of uniformly most powerful unbiased
(UMPU) tests for the parameters in exponential families, originally derived by Lehmann
and Scheffé (1955), can be used to show that for X~Poisson(A) independent of
Y~Poisson(u), the UMPU test for the hypotheses u < A (or u = A) versus u > A and for
u = A versus u # A is based on the conditional distribution of Y given T = X + Y (see
also Lehmann and Romano (2005), pages 119-125). This conditional distribution is
binomial as was first shown by Przyborowski and Wilenski (1940), and the derivation is
reproduced below:

e Hu¥ e Aty
PY=yX=t—-y) yl (t—y)!

PX+Y=t) e W+t
t!

| t—y -
Ry (tt|— ! (u i A)y (u i ,1) - (;) (#)y (1 N ;ﬁ)t y

We next provide examples of the application of the comparative Poisson process.

PY =ylX+Y =t) =

Birnbaum (1953) considers continuous inspection of manufactured materials (such as
cloth, paper, or wire) for flaws. The number of faults x observed over a length ¢ of
material may follow a Poisson distribution with parameter At, where A is the mean
number of faults per unit length of material. Comparing the mean number of flaws per
unit of two types of material is equivalent to comparing the parameters 1, and A, of the
two Poisson processes. Another example from Birnbaum (1953) is based on the use of a
Geiger counter to observe the number of emissions x from a radioactive substance over

time t. We assume that the distribution of events during the time interval is Poisson with
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parameter At, where A represents the mean number of emissions per unit interval of time.
If two radioactive substances are under study, then comparison of the parameters 4, and
A, 1s equivalent to comparison of the emission rates of the two substances.

Rather than compare two radioactive substances, we may want to evaluate the
effectiveness of a shield designed to protect against radiation. To do so, we may
introduce a steady source of radiation and record the number of emissions detected when
the shield blocks the Geiger counter and again when the shield is removed. Comparing
A5, the intensity of radiation when the shield is utilized, to 1,, the intensity when the
shield is removed, is statistically equivalent to the examples above when the number of
emissions follows a Poisson distribution under both shielding conditions (i.e. presence or
absence of the shield) (Birnbaum, 1954). In this example, the absence of the shield may
be considered the “reference” situation and the presence of the shield the “comparator”
situation.

Birnbaum’s final example in the 1953 paper is to consider the number of cases of
a rare disease observed among two large groups of individuals during a certain time
period. If the number of cases of disease is independently Poisson distributed among the
two populations, then the comparative Poisson model can be implemented to compare the
incidence rates of disease in the two populations. An example of this application to
disease incidence may be found in Hill, Spicer, and Weatherall (1968)° and is provided in
Gail (1974). If the incidence of congenital malformations in a uranium mining town and
in a control population follow Poisson distributions and i, and i, represent the incidence

rates of malformations in the two populations, respectively, then the Poisson parameters

® See Gail (1974) for the reference to Hill, Spicer, and Weatherall (1968).



20

are A, = iyt and A; = iy t, where t is the duration of observation. Testing the hypotheses
Hy: A, = A, versus H,: A, > A is equivalent to testing Hy: i, = i; versus H,:i, > i;.
2.2: Designs for Comparing Two Poisson Populations
Gail (1974) proposes two designs, termed Design A and Design B, to conduct tests of
two population parameters when the number of events in the two populations
independently follow Poisson distributions with parameters A, and 4,, respectively.
Specifically, Gail provides tests of Hy: A, = A, versus H,: A, > A, (or equivalently
Hy:p = 1 versus Hy: p > 1 where p = 1,/1,)". Design A is to observe the two
populations, denoted by i (i = 1, 2), until a predetermined total number of events
T = X, + X, has occurred, where X; is the number of events observed in population i.
Design B is to observe the two populations for a predetermined length of time, t. The
test under both designs is based on the conditional binomial distribution discussed in
Section 2.1. The advantage of Design A is that an appropriate choice of T will always
yield a critical region of sufficient power, though the disadvantage is that a study
termination date cannot be specified. Thus, it could take a significant amount of time for
a study under Design A to terminate, which also implies significant expenses. Design B
does have a specified termination date at time t, but if few events have occurred among
the populations at this time, a critical region of insufficient power may result.

Some alternative tests for comparing two Poisson parameters can be found in

Birnbaum (1954). Birnbaum provides a test in terms of y = 4, /1, based on the F

" Gail (1974) provides computations for Designs A and B under the assumption of equal population sizes.
The designs were extended by Brown and Green (1982) to the case of unequal population sizes.

® Note that the concept of time in Gail’s paper may be readily substituted to appropriately reflect the
comparative Poisson process under study. For example, we previously considered continuous inspection of
manufactured materials, and in this setting, t would represent the length of material examined. In the case
of a rare binomial event that is approximated by the Poisson distribution, such as a vaccine study with a
rare adverse event as the primary outcome, t would represent the number of subjects in the study.
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distribution, which is particularly appealing when the Poisson processes are separated in
space or time, and a test in terms of A= A, — A, based on ranking two exponential
populations with respect to their means (see the original article for details and for
additional testing approaches).

Here we consider “Design C° in which the study is terminated once d events
have been observed in population 1 (the “reference” population) and we record the
number of events that have occurred in population 2 (the “comparator” population) by the
time of stoppage. Since the waiting time for a single event in a Poisson process follows
an Exponential distribution, the waiting time for d. events to occur is the sum of
independent, identically distributed Exponential variables, which follows a Gamma
distribution (see for example Gallager (1996), pages 33-36, for a formal proof). Hence,
tests of the event incidence rates (or equivalently, the Poisson parameters) in the two
populations can be derived from a mixture of a Poisson and Gamma distribution, which
we have shown in Section 1.5 is a negative binomial distribution®®.

Like Design A, a study conducted under Design C will always result in a critical
region of sufficient power (given that an appropriate value of d is chosen), but the

duration of the study cannot be specified™".

° To our knowledge, Design C was first proposed by Hsu (2010, pages 86-87).

1%1n Sections 4 and 5, we will show that when multiple comparator groups are compared to a reference
group and the number of events that occur in each group independently follows a Poisson distribution
conditional on the time elapsed in the reference group, a test of equivalency of the Poisson parameters
between the comparator and reference groups can be conducted based on the negative multinomial
distribution. This is based on the fact that the mixture of multiple independent Poisson variates with a
gamma distribution follows an NMD, which was shown in Section 1.5. When only one comparator group is
under study (i.e. one Poisson variate mixed with a gamma distribution), the NMD reduces to the negative
binomial distribution as was shown in Section 1.1.

1 Note that Design C is equivalent to Design A when the following two conditions are satisfied: (1) there
are a total of two groups under study (for example, one comparator group and one reference group) and (2)
when curtailment is applied to the study (see Section 4.5 for a description of curtailment).
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2.3: Comparison of Multiple Poisson Populations

Thus far, we have discussed comparative Poisson designs in which only two populations
are under study. Naturally, an extension of the comparative Poisson process to greater
than two populations is of interest. Examples of studies comparing more than two
populations in which events accrue according to Poisson processes are provided below.

Consider again the example of determining the effectiveness of a shield in
protecting against radiation emitted by a substance. Suppose now that there are K shields
made from different types of material, and we are interested in comparing the
effectiveness of these shields in relation to the reference situation (i.e. absence of a shield
in front of the Geiger counter). Here, we are interested in comparing multiple shields (i.e.
multiple comparators) to a single reference situation.

Peng and Krishnamoorthy (2010) collect and present several examples of
comparative Poisson processes with greater than two populations; they are as follows:
Nelson, Wludyka, and Copeland (2005) suggests an example in which the arrival rates of
patients to six urgent clinics run by a health maintenance organization are compared
using samples of arrival counts from each clinic. Brown and Zhao (2002) describe a
situation in which the average number of service request calls per day is compared among
several call centers. Chiu and Wang (2009) consider comparison of the death rates of
patients in four groups following heart valve replacement™.

Two final examples come from Singh (1980), who suggests that

...an air pollution research study might involve exposing the plant Tradescantia to

several levels of polluted air samples and comparing counts of mutants from the
polluted air samples with mutant counts from a control sample. In another application,

12 See Peng and Krishnamoorthy (2010) for the references to Nelson, Wludyka, and Copeland (2005),
Brown and Zhao (2002), and Chiu and Wang (2009).
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a scientist may be interested in comparing the counts of surviving bacteria colonies in
treated groups at several levels with those from the control. (page 1138)

These examples indicate the need for comparative Poisson designs for several
comparator groups (perhaps in relation to a single reference group). Researchers have
proposed a variety of tests appropriate for this situation. Firstly, we consider the
extension of Gail’s Designs A and B for testing directional hypotheses. It should be
unsurprising that the multivariate test is based on the multivariate extension of the
binomial distribution, that is, the multinomial distribution. Hsu (2010) provides a
thorough treatment of these tests in the context of clinical trials which compare multiple
treatment groups to a single control group. Alternatively, Suissa and Salmi (1989)
provide test statistics based on unidirectional Z statistics for comparing several exposed
groups to a single reference group and for comparing one exposed group to several
reference groups. Finally, Singh (1980) implements a Bayesian framework to evaluate
Hy: Ao = A1 =+ = Ay versus Hy: Ay # A; for at least one value of j, where 4, is the
Poisson parameter of a control group and 44, ..., A, are the Poisson parameters of k
treatment groups.

If we wish to test the non-directional hypotheses Hy: 1; = +-- = A,,, Versus
Hy: A; # A; for some i # j, then it can be shown that for Y;~Poisson(n;4;), the

distribution of Y3, ..., Y, | 12, ¥; = T is multinomial with probability mass function

T! V1 Ym nidi
—p)t . p2™ where p; = ol
ity P17 Pm Pi iLinjd

(Peng and Krishnamoorthy, 2010). Thus, the
exact conditional test of H, versus H, can be conducted by calculating multinomial
probabilities, and the test is UMPU (Suissa and Salmi, 1989). However, the most

common test for comparing the underlying event rates among several Poisson
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populations is based on the chi-squared distribution. Again using the notation of Peng and

~ 2
Krishnamoorthy, the test statistic y? = Z?Q@ follows a chi-squared distribution

with m — 1 degrees of freedom as n; — oo, where 1; = %and 1= % Peng and

i=1 T
Krishnamoorthy also propose a parametric bootstrap test and compare its results to both
the exact conditional test based on the multinomial distribution and the approximate test
based on the chi-squared distribution. Brown and Zhao (2002) have proposed a test based
on Anscombe’s variance stabilizing transformation, though it is not applicable to the case
of unequal sample sizes.
Section 2.4: Multivariate Extension of Design C
As described in Section 2.3, when we considered the multivariate extension of Designs A
and B we obtained a test based on the multinomial distribution, the multivariate
counterpart to the binomial distribution. Applying the same reasoning, we should expect
that the multivariate extension of Design C should result in a test based on the negative
multinomial distribution. Here we will explicitly derive the NMD from a comparative
Poisson framework, as was alluded to in Section 1.5. To do so, we require the notation
provided in Table 1 below and the preliminary results from Hsu (2010, pages 86-87)

which follow.
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Table 1: Notation

K Number of comparator groups (does not include the reference group)
dc Number of events to observe in the reference group
Dy, Number of events in the k" comparator group, k = 1,2, ..., K

Ne, t Number of person years in the reference group to reach d. events; t is

an observed value of N,

Nr, Number of person years in the k" comparator group when the study
arm or entire study terminates, k = 1,2, ..., K
ic Incidence rate of events per person year in the reference group
ir Incidence rate of events per person year in the k" comparator group,
k=12..K
1, = i /ic | Rate ratio of comparator group k to the reference group, k =
1,2,..,K

Ac = icN. | Poisson intensity rate in the reference group for a given N,

A = i, No | Poisson intensity rate in the k" comparator group for a given N,

Note: Ny, and 7 will be introduced in Section 4. All other notation in Table 1 is introduced in Section
2.4.

Suppose there are K comparator groups which we will compare to a single
reference group. The incidence rate of events per person year®® for the k™ comparator
group is iy, k = 1,2, ..., K, and the incidence rate of events per person year in the
reference group is i.. We will terminate the study once the number of events observed in
the reference group reaches a pre-specified number d. and record the number of events
that have occurred in each of the K comparator groups by the time of study stoppage,
denoted by D,, D,, ..., Dg. Event accrual in the reference group follows a Poisson
distribution with parameter A, = i-N., where N denotes the number of person years it
takes the reference group to reach d. events. Since we do not know many person years it
will take the reference group to accrue d. events (i.e. N is a random variable), the
duration of the study is unknown. However, we know that the distribution of N is

Gamma with parameters d. and 1/i., conditional on the value of d (i.e.

13 person years of follow-up is defined as the total amount of study-time contributed by all study
participants. Here we have substituted the notion of “time to event occurrence” with that of “person years
until event occurrence”, as person years represents a more natural measure of duration in the context of
clinical trials, which will be our primary focus in Sections 4 and 5.
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N¢ldo~Gamma(d,, 1/i;)). This can be understood by considering the number of person
years until one event occurs in the reference group to have an Exponential distribution
with parameter 1/i. and applying the argument in Section 2.2 concerning the sum of
Exponential random variables; a formal proof can be found in Appendix A*. Once the
value of N is known, the number of events that occur in each of the K comparator
groups follows a Poisson distribution with parameter 1, = iy N, k = 1, ..., K, and the
distribution of D, no longer depends on d for k = 1, ..., K (i.e. D; only depends on the
number of person years needed to obtain d. events in the reference group); as such,

Dy |No~Poisson(i,N¢) fork =1, ...,K. So, we have P(D, = dy|d¢,Nc =t) =

P(D;, = d|N. = t). Furthermore, conditional on N, = t, the D, are independent of one
another. Hsu proves that the distribution of D, ..., D, conditional on d is negative

multinomial; the proof is reproduced below:

P(Dl = dl' "'!DK = dkldC) = f P(Dl = dl' "'IDK = dkFNC = tldc) dt
0
= f P(Dl = dl’ "'!DK = dkldCINC = t)P(NC = tldc) dt
0
= j P(Dl = dl’ "'JDK = dKlNC = t)P(NC = tldc)dt
0

!

=

| [p@i = duwve = o [P = t1dae

k=1

! Note that the proof in Appendix A considers time intervals for event occurrence, but the notion of time in
the proof may be readily substituted by that of person years in accordance with the terminology used
throughout Section 2.4 and beyond in this dissertation.
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Thus, by Equation 1.1.2, we have

Dl!DZI lDKldC ~

NM <dC: . ic _ 51 _ iy - ix . ) (2.4.2)
ic+ Xkoq b le + Xhaq b le + Do’ e + D= ik

In Section 2.2, we alluded to the fact that Design C may be preferred to Design B,
as an appropriate choice of d. will always yield a critical region of sufficient power.
There are also two primary reasons why Design C may be preferred to Design A. Firstly,
the independence of the D, achieved by conditioning on N, greatly simplifies the
necessary calculations for establishing testing procedures (see Sections 4 and 5); this
contrasts the lack of independence under the multinomial testing paradigm when Design

A is applied to studies of multiple populations. Secondly, when multiple comparator

groups and a single reference group are evaluated under Design A, it is possible that one
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of the comparator groups will be responsible for the majority of the total number of
events observed (this may happen, for example, if the incidence rate of events in this
comparator group is underestimated during study planning). Such a situation will limit
the amount of information available for drawing conclusions about the remaining
comparator groups in relation to the reference group. This limitation will not apply to the
testing procedures under Design C which we propose in subsequent sections of this
dissertation.

In Sections 4 and 5, we will use the Design C framework and Equation 2.4.1 to
design clinical trials in which multiple experimental treatments are compared to a single
control treatment. The experimental treatment groups serve as the comparator groups
discussed here in Section 2, and the control group similarly equates to the reference
group. We will use the minimum and maximum of the D, to compare the experimental
treatments to the control; as such, we next discuss the order statistics of the NMD in

Section 3.
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SECTION 3: ORDER STATISTICS OF THE NEGATIVE MULTINOMIAL
DISTRIBUTION

3.1: Definition of the Order Statistics of the Negative Multinomial Distribution
Consider a negative multinomial experiment in which there are K + 1 possible outcomes
denoted by Ey, E;, ..., Ex which occur with probabilities py, p4, ..., Pk, respectively, and
we conduct independent trials until outcome E, (which we refer to as the “reference”
outcome to distinguish it from the K remaining “comparator” outcomes) occurs d. times.
Let X, denote the number of trials that have resulted in outcome Ey, k = 1,2, ..., K, by the
time the process terminates at d. occurrences of the reference outcome. Each X, takes a
value in 0,1,2, .... If we arrange the X, in ascending order and relabel the ordered
variables as X(q), X(2), ---, Xk, then we have defined the order statistics of the negative
multinomial distribution™. For example, suppose we roll a fair die until we obtain five
6’s (i.e. dc = 5), and during the course of these trials we observe eight 1’s, four 2’s, five
3’s, ten 4’s, and seven 5’s. Then our order statistics would be X1y = 4, X(5) = 5,X(3) =
7,X 4 = 8,and X5y = 10. In the next two subsections, we will provide formulas to
determine the distribution of the order statistics for a balanced negative multinomial
distribution and consider the challenges in providing similar expressions for unbalanced
negative multinomial distributions.

3.2: Order Statistics of a Balanced Negative Multinomial Distribution

To derive the distribution of the order statistics in a balanced NMD, we use the following

theorem from Casella and Berger (2002, pages 227-228) concerning the order statistics of

1> Notice that in our definition of the order statistics of the NMD we have excluded the fixed number of
trials d for which the reference outcome E, is observed from consideration, and hence the number of order
statistics in a K + 1 outcome NMD is K. In Appendix B, we will extend the notion of the order statistics of
the NMD to include the fixed value d., and we will therefore consider a K + 1 outcome NMD to have

K + 1 order statistics.
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discrete distributions:
Theorem 1: Let X, ..., X,, be a random sample from a discrete distribution with P(X =

x;) = p;, Where x; < x, < --- are the possible values of X in ascending order. Define

Py=0
P, =p;

P, =p,+p;
Po=p,+py+-+p,=PX<x;)

Let X (1), ..., X(n) denote the order statistics from the sample. Then

n
P(Xp) <x;) = Z (Z) Pf(1—P)"*
k=1

and
P(Xj =x) = z (Z) [PE(L—PO" ™ = PE (1= P_g)™ ]
k=j

We can apply this theorem in conjunction with the comparative Poisson formulation of
the NMD presented in Section 2.4 to find the distribution of the order statistics of
balanced negative multinomial distributions (i.e. when the parameters p, = p; = p, =
- =pg =1/(K + 1) inaK + 1 outcome NMD). The distribution must be balanced so
that the random variables X, ..., Xx denoting the number of trials that result in each of the
K comparator outcomes are identically distributed in accordance with the random sample
requirement in Theorem 1.

Suppose we wait to observe d trials which result in the reference outcome in a

K + 1 outcome NMD. Since X, k = 1, ..., K, takes a value in the set 0,1,2, ..., per

¢ Independence of X;, ..., X follows from the fact that conditional on N, = t, the X;, are independent of
one another, a fact that will be utilized in subsequent calculations; this property was discussed in Section
2.4.
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Theorem 1 we have x; = 0,x, = 1, ...,x; =i — 1, .... From the comparative Poisson

formulation of the NMD, we know that P(X;, < xx|t) = Zfﬁo e‘ict(ics—?s fork =

1,2, ..., K (as conditional on N, = t, the number of trials resulting in each of the K
comparator outcomes independently follows a Poisson distribution with parameter

A = ixt = it in abalanced distribution). As P, = P(X < x;) fori = 1,2, ... in Theorem
1, we thus have P; = Y.5 Ol teict ) (lct) . Hence, for the balanced negative multinomial

distribution we may write

K
P(X(j) < xilt) = Z P}(1 - p)K-t
l=j

K-l
i—1

_lct(c )‘ l Z et

Mw

l

]

= P(Xgy < %) =
K-l

o K i-1 _ ! i-1 ,
(ict)%t e lctz (Il() Z o-ict (lcf)s 1— Z o-ict (lcf)s gt
0 F(dc) = = S. prs S

where we have applied the fact that t~Gamma(d, 1/i.). We will now show that this

integral is invariant with respect to the value of i, i.e. we will prove

l , K-l

- i-1
(ict)% et te et K g (ct)? i (ct)?
f I'(do) Z(l) Ze S 1_29 R dt
l=j s=0 s=0

. l . K-l
K -1 -1
_ ijdc_le_x (K) lz: e—xx_s 1— lz:e—xx_s dx
B [ ! !
0 F(dC) l=j s=0 s s=0 §

To prove the equality, we make the following change of variables:
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i X
x=lct$t=_—

lc
p (3.2.1)
X
dx = icdt = dt = —
lc
Then,
) l . K-l
i V) K i-1 i i-1 i
fw(lct)dCt ‘e ‘sz(x) ze_ict D’ ) N pmiee G
| |
0 rde) = ! = S. prd S!
) K-1
jooxdc (I:’g _le(: 21: i—1 B xs dx
= e _ -—
0 r(dc) l=. 5=0 =0 S! lc

=>P(Xj<x=i—-1)

l .
_fwxdc—le—x K (K) Z _xxs ) i _xxS p (322)
~ ), TT@o LA\ ¢ ¢ x

Thus, the integral is invariant to the value of i... The formula for P(X(;, = x;) follows
directly as in Theorem 1 (i.e. by writing P(X(j) < xl-) — P(X(j) < x;—1) and simplifying
the resulting expression).

We have written functions in R to compute P(X(;, < i) and P(X(;) = i) for the
balanced NMD. The function balanced_order_less takes the arguments dc (number of
trials resulting in the reference outcome to be observed), j (denotes the j™ order statistic),
i (takes avalue in 0,1,2, ...), and K (number of comparator outcomes in the experiment,
I.e. not including the reference outcome). balanced_order_less returns P(X(;) < i). The
function balanced_order_equal takes the same arguments as balanced_order_less and
returns P(X(;y = i). For example, suppose we have a balanced distribution with K = 5

comparator outcomes and we wait to observe d. = 10 reference outcomes (i.e. K + 1 =
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6 total possible outcomes). Suppose we wish to determine the probability that the fourth
order statistic (i.e. j = 4) is less than or equal to 4. balanced_order_less(10,4,4,5) tells us
that this probability is 0.01403157. The probability that X, = 4 is 0.01031401
according to balanced_order_equal(10,4,4,5). Full code for balanced_order_less and
balanced_order_equal can be found in Appendix E.

3.3: Order Statistics of an Unbalanced Negative Multinomial Distribution

When the NMD is unbalanced, we cannot apply Theorem 1 in a simple fashion to derive
formulas for the order statistics of the distribution due to the lack of identical variables.
However, it is simple to use simulation to calculate the desired probabilities. The R
function unbalanced_order takes the arguments probs (vector of length K, where K is the
number of comparator outcomes in the NMD, containing the probabilities of a trial
resulting in each comparator outcome, i.e. not including the reference outcome), dc
(number of trials resulting in the reference outcome to be observed), j (denotes the j"
order statistic), i (takes a value in 0,1,2, ...), and sims (number of simulations used to
estimate the probability). unbalanced_order is based on the R package ‘MGLM’ written
by Zhang and Zhou (2017) and returns an estimate of P(X(;) < i) for an unbalanced
negative multinomial distribution based on a user-selected number of simulations. For
example, if we want to find the probability that the third order statistic is less than or
equal to 4 when there are five comparator outcomes with underlying probabilities 0.1,
0.1, 0.3, 0.2, 0.1 (so the probability the reference outcome is observed in a trial is 0.2),
and we conduct trials until we observe 10 reference outcomes, then
unbalanced_order(c(.1,.1,.3,.2,.1),10,3,4,1000000) returns a probability of 0.218617

based on 1,000,000 simulations. To compute P (X, = i), simply compute P(X(; < i) —



P(X(j < i — 1) via two applications of unbalanced_order. Full code for

unbalanced_order can be found in Appendix E.
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SECTION 4: APPLICATION OF THE NEGATIVE MULTINOMIAL
DISTRIBUTION TO COMPARATIVE POISSON SUPERIORITY CLINICAL
TRIALS OF MULTIPLE EXPERIMENTAL TREATMENTS VERSUS A SINGLE
CONTROL TREATMENT

4.1: Objectives

Section 2 provided several examples in which comparison of multiple Poisson rates,
perhaps in relation to that of a single reference group, was of interest. Hsu (2010) proved
that under Design C, testing of the rates can be based on a negative multinomial
distribution. In particular, if we let Dy, ..., Dy represent the number of events observed in

K comparator groups, and we wait until d. events have been observed in a chosen

reference group to terminate the study, then the conditional distribution D,, D,, ..., Dx|d.

is negative multinomial with parameters dC’iC+le,f< ik’iC"'z;% ik’ic+ZL’i‘ ik""’ic+Zlg -
=1 =1 =1 =1

when the event accrual in each comparator population is conditionally Poisson distributed
with parameter i, N- and N, the number of person years to acquire d. events in the
reference group, follows a Gamma distribution with parameters d. and 1/i.. In this
section, we will consider the application of this result to clinical trials in which K
experimental or new'’ treatment groups (K > 1) are compared to a single control
treatment group. Hence, Dy, ..., Dg and iy, ..., ix Will now represent the number of events
(for example, the number of cases of disease) and the event incidence rates per person
year in the K experimental treatment groups, and d. and i will represent the
corresponding values for the control group. The investigation of several treatments
typically occurs early in the drug process (i.e. during drug discovery or phase 1 trials)

when several similar molecular compounds or varying doses of one experimental agent

" We will use the terms “experimental treatment” and “new treatment” interchangeably throughout this
dissertation.
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are compared for efficacy and/or safety; however, it may also occur during late-phase
trials when, for example, several new approved treatments are compared to either no
treatment or to a standard of care treatment for efficacy and/or safety.

The structure of this section is as follows: Section 4.2 presents global hypotheses
for testing the superiority of multiple experimental treatments in comparison to a single
control treatment using Design C methodology, provides definitions of Type | error and
power based on these hypotheses, and proposes an appropriate test procedure. Section 4.3
illustrates the implementation of this test via application to a real-world study of
influenza vaccines. Section 4.4 compares the design parameters obtained under the exact
Design C approach to those resulting from using the Bonferroni method for multiple
comparisons. Section 4.5 discusses the differences between an uncurtailed and curtailed
trial in the context of Design C, and Section 4.6 concludes with estimation of the
expected number of person years of follow-up until trial termination in an uncurtailed and
curtailed trial. Many of these results will make use of the comparative Poisson
formulation of the NMD and the minimum and maximum order statistics of the NMD,
which were presented in Sections 2 and 3 of this dissertation, respectively.

4.2: Global Hypotheses, Test Statistic, and Definitions of Power
In large-scale controlled clinical trials there are usually two objectives:
1. Efficacy: Prove the experimental treatment(s) is superior in efficacy to the control
treatment
2. Safety: Prove the experimental treatment(s) is safe for consumption (i.e. does not

cause too many adverse events in comparison to the control treatment)
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This section focuses on clinical trials in which the primary objective is proving the
superior efficacy of one or more experimental treatments compared to a single control
that may be either a placebo or a current standard of care treatment; testing for safety of
experimental treatments will be addressed in Section 5. Our results will apply very
naturally to the study of vaccines where the outcome of interest is the occurrence of
disease or an adverse reaction and a large number of study participants are observed.
Vaccines are traditionally referred to as interventions as opposed to treatments, but in this
dissertation the term “treatment” will generally refer to any agent which improves the
medical outcome under study, regardless of whether it is of pharmaceutical, biologic, or
non-chemical origin. We will restrict our attention throughout to the case of equal
allocation of study participants to the K experimental treatment arms and control arm.
That is, the allocation ratio of Tx;: Tx,: ...: Txg: Control will be 1:1: ...: 1: 1.

Our objective will be to determine whether sufficient statistical evidence exists
that at least one of the experimental treatments is superior to the control treatment. In a
comparative Poisson trial designed to demonstrate superiority, the outcome observed is
the number of events (e.g. cases of disease) that occur in each group under study. Hence,
an experimental treatment will be found superior to the control treatment if the number of
events that occur in the experimental treatment group is significantly less than the
number of events observed in the control group. Based on these considerations, our
global null and alternative hypotheses are

HO: il = iz = = iK = iC versus Ha: il = rlic, iz = Tzic, ""iK = TKiC (4 2 1)
where all r,, < 1 and at least one of the ry, is strictly less than 1 o
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The values r, ..., rx Will be referred to as the “rate ratios” of the experimental treatment
groups to the control group and represent the amount by which each of the K
experimental treatments reduces the event incidence relative to the control treatment.
We next present definitions of Type | error and power for our test of the
hypotheses in Equation 4.2.1. A Type | error (rejecting the null hypothesis when the null
hypothesis is true) occurs when we declare at least one experimental treatment to be
statistically superior to the control, when in fact none of the experimental treatments are
superior to the control. To illustrate, consider a study in which three experimental
treatments, denoted by A, B, and C, are compared to a single control treatment. If none of
A, B, and C are superior to the control, then the probability that at least one experimental
treatment is falsely declared superior to the control is the probability that A and/or B
and/or C is declared superior to the control. The global Type I error incurred for the

hypotheses in Equation 4.2.1 will be termed “overall Type I error” and will be denoted by

18
Qovr

A Type Il error (accepting the null hypothesis when the null hypothesis is false)

corresponds to failing to declare any experimental treatment superior to the control, when

'8 Note that if one or more of the experimental treatments are truly superior to the control, then it is not
possible to commit a global Type | error as defined above. However, consider again the example of
treatments A, B, and C and suppose that A and B are truly superior to the control while C is not. If we
reject the null hypothesis but falsely conclude that only treatment C is superior and thus is solely
responsible for the rejection, then though a Type I error is not made (since A and B are truly superior to the
control and thus the global null hypothesis should be rejected), we have incorrectly declared treatment C to
be superior, and hence have made a Type | error if treatment C is considered on an individual basis (i.e.
externally of the global testing framework). We have also made individual Type Il errors on treatments A
and B as we incorrectly failed to find them superior. This example illustrates that in testing the global
hypotheses in Equation 4.2.1, both Type | and Type Il errors can be made when the experimental
treatments are considered individually. It may be of interest to define a Type | error when only a proper
subset, say § < K, of the experimental treatments are not superior to the control. We call this “sub-Type |
error” and define it to be the probability that at least one of the & truly non-superior experimental
treatments are incorrectly declared superior to the control. It is clear that the probability of a sub-Type |
error is less than the probability of an overall Type | error as there are fewer non-superior treatments which
can be incorrectly declared superior to the control.
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in fact one or more experimental treatments are statistically superior to the control. Power
is the probability that the null hypothesis is rejected when it is in fact false, and hence

power is equal to 1 — P(Type Il error). We will let B, represent making a Type |1

error on the k" individual experimental treatment, k = 1,2, ..., K19. We define
“pointwise power” to be the probability that an experimental treatment which has a given
rate ratio » will be found to be superior to the control. Again, consider a study in which
three experimental treatments, A, B, and C, are compared to a single control. Pointwise
power answers the following question: if A is truly superior to the control with a rate
ratio of  under the alternative hypothesis in Equation 4.2.1, then what is the probability
that it will be found to be superior (and similarly for treatments B and C)? Pointwise
power is related to the individual Type Il errors via

Pointwise Power = 1 — P(ﬁTk)

To develop a test for the hypotheses in Equation 4.2.1 using the Design C
framework, we need to consider the practical implications of the definitions of Type | and
Type 1l error given above. In clinical trials where the primary objective is to establish
superiority of one or more new treatments, the permissible Type I error is usually fixed
by a regulatory agency, as a Type I error corresponds to consumers’ risk (since it
corresponds to the probability that one or more experimental treatments are incorrectly
declared superior to the control), and the trial is designed to satisfy a desired level of
power as selected by the researcher. A Type II error corresponds to producer’s risk, as it

corresponds to failing to find a superior experimental treatment when one or more are in

* B¢, will denote the complement of 7, .
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fact superior to the control. Our test will, therefore, be designed to control for a specified
one-sided overall Type I error and achieve a desired level of pointwise power.

The minimum number of events among the K experimental treatment groups is a
natural test statistic for evaluating the hypotheses in Equation 4.2.1. That is, we will
reject the null hypothesis of no difference in efficacy between any of the experimental
treatments and the control treatment (in favor of the alternative hypothesis of at least one
experimental treatment being superior to the control) if the minimum number of events
that occur among the K experimental treatment groups is adequately small.

To determine the Type | error for our test, we need to determine the probability
that we will reject the null hypothesis (i.e. find the minimum number of events among the
experimental treatment groups to be sufficiently small, say less than or equal to a value
m) assuming that the null hypothesis in Equation 4.2.1 is in fact true”®. Under the null
hypothesis, we have a balanced negative multinomial distribution since the event
incidence rate is equal to the common value i, in all of the groups under study®. Hence,
to compute P(min(Dy, ..., Dg) < m) under the null hypothesis, we could utilize the
formula for the order statistics of a balanced NMD provided by Equation 3.2.2 by setting
the index j equal to 1. However, knowing that conditional on N, = t, the number of

person years it takes the control group to reach d. events, the D, are independent of one
another and that the distribution of N, is Gamma (dcli) it is simple to calculate the
C

result directly as follows:

P(min(Dy, ..., Dg) < m|t) =1 — P(min(Dy, ..., Dg) > m|t)

2 Appendix C provides a proof that our testing procedure is conservative with respect to Type | error when
one or more of the experimental treatments are inferior to the control under the null hypothesis.

2 Substituting i, for iy, iy, ..., i, in Equation 2.4.1 readily shows that the distribution is balanced under the
null.
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=1—[P(D; > m]t) - P(Dg > ml|t)]

=1—{[1-P(D; < m|)]-[1 - P(Dg <m|O)]}

=1-[1-P(D, <m|t)]¥ =1— [1 = Z e-ict_(ics?sl
. _ ® S —ict (iCt)S ‘
= P(min(Dy, ...,Dg) <m) = fo fts1- [1 — SZOe T] dt

oo oo m o as1E
= fo f(©)dt - fo f(t)[l—;e—ict(‘cs—?] "

© (jot)det—1leict " G|
=1- 1-— E e~lct——| dt
4 s!
S=

0 rddc)
Via the same change of variables as in Equation 3.2.1, it can be shown that the integral
above is invariant to the value of i.; in future computations, we will omit mention of this

change of variables. Consequently, we have

oo tdc—le—t m tS K
P(min(Dy, ...,Dg) <m) =1 — — |1 - e t—| dt (4.2.2)
o I'(do) Z s!
s=0

Thus, to conduct a trial with a specified one-sided overall Type I error of «,,, given the
value of d ., we must find the critical value m such that Equation 4.2.2 is as close to .,
as possible without exceeding this value?’. Due to the discrete nature of the test statistic,
it is usually not possible to exactly obtain the specified Type | error. Rather, the nominal

Type | error will generally exceed the true Type | error achieved.

%2 This assumes that such a value of m exists given the value of d.. For small values of d, takingm = 0
may exceed the nominal Type | error, which also implies that values of m greater than 0 will exceed the
nominal Type | error as Equation 4.2.2 is clearly an increasing function in m.
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To compute the pointwise power for our test, we must determine the probability
that the number of events Dy, in a given experimental treatment group is small enough
assuming that the incidence rate of events in the experimental treatment group is 7, times

as great as that in the control group. The computation is as follows:

m
- (reict)s
P(Dk < mlt) = Z e_rlet@
s=0 S
m
o) . " s
= P(D, <m) = f F(®) Z e—T‘klctw dt
0 s=0 S
o dc-1p-t | m (re)®
) o) | 4.2.3
fo I'(dc) Zoe 5T 023
LS =
®pdc—1-t [ (rkt)O (Tkt)l (Tkt)z (e )m
= |kt~ —rpt S K77 —rit 3 e ™
]o Fdo) | o te e T b

3 ]OOrI?tdc+0—1e—t(1+Tk) it + JOO T]éltdc+1_1e_t(1+rk) it +
o, 0T o 1T
joo lentd(;+m—1e—t(1+rk) it
o Mo

0o Z

= rZ (_1 ) = 1y 1
N _ ™ de+z-1,~ /357 _Z ( )
Zoz!l“wc) , e A=) gy e Y O\,

zZ=

de+z

Z

N d +z—1 1 \% 1
_ - _ 423
Z <1+Tk> (1 1+Tk> ( 3 )

Equation 4.2.3 coincides with our definition of pointwise power as it clearly calculates

P(B5,) = 1 — P(Br,) for the k" experimental treatment group®. Thus, we can use this

2 As pointwise power equates to P(D,, < m), we could have used the fact that the marginal distribution of

the random variable D,, is negative binomial with parameters d. and p+°p = T Equation 4.2.3* is then
k

immediate; however, the form of equation 4.2.3 is appealing as it is con5|stent with the form of additional
equations to be derived in Sections 4 and 5.




43

formula to find the value of m needed to achieve a desired pointwise power given the

value of d-24. We find the value of m such that the resulting pointwise power is greater
than or equal to the desired power. Once again, these values will generally not coincide
due to the discreteness of the underlying distribution.

We will now demonstrate how to design a clinical trial under Design C based on
the above results. To design a trial in which both a specified one-sided overall Type I
error a,,,,- and pointwise power are satisfied, we must find the smallest value of d. and
corresponding critical value m such that P(min(Dy, ..., Dg) < m) < a,,, under the null
hypothesis in Equation 4.2.1 and P(min(Dy, ..., Dg) < m) > pointwise power for a
given value of the rate ratio r (i.e. we must find the smallest values of d. and m which
simultaneously satisfy Equations 4.2.2 and 4.2.3 for given values of «,,,- and pointwise
power)®. To accomplish this objective, the function Des_Sup was written in R. Des_Sup
takes the arguments K (number of experimental treatment groups, i.e. not including the
control group), alpha (nominal one-sided overall Type I error at which the test of
hypothesis is to be conducted), r (estimate of the rate ratio of the experimental treatment
group to the control group which we wish to detect), and pwr (minimum desired
pointwise power of the study). Des_Sup returns the number of events d to be observed
in the control group, the critical value m for the hypothesis test, the true overall Type |

error achieved, and the true pointwise power achieved (full code for Des_Sup can be

% Since Equation 4.2.3 is an increasing function in m, we can always find an appropriate value of m to
satisfy the desired pointwise power for a given value of d.. However, for a given value of d it may not be
possible to simultaneously satisfy a specified Type I error and pointwise power. We will illustrate how to
calculate d. and m to simultaneously satisfy a desired Type | error and pointwise power in the main text.
% Though other combinations of d. and m will also satisfy the desired Type | error and pointwise power,
choosing the smallest such d. and associated m results in the smallest expected number of person years of
follow-up until trial termination. The expected humber of person years until trial termination will be
discussed in detail in Sections 4.5 and 4.6.
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found in Appendix E). For example, suppose we have four new treatments to be
compared to a single control with one-sided overall Type | error equal to 0.05 and with
pointwise power 0.9, and we anticipate the event incidence in a given new treatment
group to be 20% that of the event incidence in the control group. Then,
Des_Sup(4,.05,.2,.9) returns
The number of control group events dc is 18
The critical value m is 6
The true overall Type I error is 0.03944082
The true pointwise power is 0.9088288
Hence, the superiority trial will be designed to proceed until 18 events are observed in the
control group, and the global null hypothesis will be rejected if the smallest number of
events among the four experimental treatment groups is less than or equal to the critical
value of 6. Due to the discrete nature of the underlying probability distribution, the true
overall Type I error is 0.03944082, which is less than the nominal value of 0.05. Also, for
the same reason, the true pointwise power achieved is 0.9088288, which is larger than the
specified desired power of 0.9.

The p-value (i.e. the smallest significance level for which the test statistic falls in
the rejection region?®) for the test of treatment superiority can be found using the R
function Prob, which is called by the Des_Sup routine. Prob takes the arguments d
(number of control group events to be observed), m (an integral value), and K (number of
experimental treatment groups) and returns P(min(Dy, ..., Dg) < m) assuming that the
null hypothesis is true. Returning to the above example in which the trial continues until

18 events are observed in the control group and the critical value is 6, suppose that the

actual minimum number of events observed among the four experimental treatment

% See page 63 of Lehmann and Romano (2005) for additional details regarding the p-value for a hypothesis
test.
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groups is 3. Then the p-value for the trial is P(min(Dy, ..., D,) < 3) under the null
hypothesis, and Prob(18,3,4) yields the value 0.002885246. As the p-value is less than
the specified nominal significance level of 0.05, we would reject the null hypothesis,
which is, of course, the same decision that would be made using the critical value
approach (i.e. rejecting the null hypothesis since the observed minimum of 3 events is
less than or equal to the critical value of m = 6).

The number of control group events d, critical value m, true one-sided overall
Type | error achieved, and true pointwise power achieved in a superiority trial conducted
under Design C are presented in columns 2 and 3 of Table 2 below for each combination
of nominal «,,,, = 0.05,0.025,0.01, 0.001, nominal pointwise power = 0.9, 0.8,

K =1,2,3,4,5, and rate ratior = 0.1, 0.2, 0.5.
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Table 2: Number of control group events d, critical value m, true one-sided overall
Type | error, true pointwise power, and expected person years until trial termination in a
superiority trial conducted under Design C for each combination of nominal «a,,, =
0.05,0.025,0.01,0.001, nominal pointwise power = 0.9,0.8, K = 1, 2, 3,4, 5, and rate
ratior = 0.1,0.2,0.5

Ao = 0.05, Pointwise Power = 0.9

r=0.1
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value power null One Txgroup | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 9 0.03271484 5.89632 17.53129 17.53129 18 9 0.03271484
2 0.9288088 (3.269624) (5.918257) (5.918257) (6) 2 0.9288088
2 10 0.03630554 9.817874 22.34993 29.35211 30 10 0.01928711
2 0.9112841 (3.936484) (6.49316) (9.022392) (9.4868) 2 0.9112841
3 12 0.04708474 17.57756 31.65715 47.59235 48 13 0.01063538
3 0.9587652 (5.000736) (7.405265) (13.39679) (13.8564) 3 0.948863
4 13 0.03753006 22.0497 37.54096 64.15335 65 13 0.01063538
3 0.948863 (5.478836) (7.961629) (17.33056) (18.0278) 3 0.948863
5 13 0.04528845 26.38609 41.50735 76.89814 78 14 0.006362915
3 0.948863 (5.885261) (8.185389) (20.55166) (21.6333) 3 0.9377837
r=0.2
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value power null One Txgroup | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 13 0.04812622 11.83331 25.50253 25.50253 26 13 0.04812622
5 0.9347349 (4.610837) (6.988482) (6.988482) (7.2111) 5 0.9347349
2 16 0.04850356 22.27046 38.46302 47.49208 48 17 0.01734483
6 0.9394989 (5.82601) (8.201388) (11.47404) (12) 6 0.9250825
3 17 0.04615454 30.10172 47.31761 67.07225 68 18 0.01132792
6 0.9250825 (6.512108) (8.87564) (15.59782) (16.4924) 6 0.9088288
4 18 0.03944082 37.71551 56.12341 88.3142 90 18 0.01132792
6 0.9088288 (7.109988) (9.426021) (19.65142) (21.2132) 6 0.9088288
5 18 0.04744566 45.10579 63.15559 106.1196 108 20 0.009578645
6 0.9088288 (7.625637) (9.825743) (23.45096) (25.4558) 7 0.9322597
r=05
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value | power null One Txgroup | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 47 0.04439121 63.61572 92.91109 92.91109 94 47 0.04439121
31 0.9053749 (10.83905) (12.93874) (12.93874) (13.7113) 31 0.9053749
2 56 0.04321293 114.055 147.6554 166.6652 168 56 0.02350578
36 0.9002963 (13.1486) (15.37539) (20.91647) (22.4499) 36 0.9002963
3 61 0.04598938 165.0625 200.6055 242.0524 244 63 0.01484111
39 0.9033769 (14.98616) (17.3534) (29.04706) (31.2410) 40 0.9001535
4 63 0.04951939 211.3623 247.5616 312.4537 315 68 0.01114898
40 0.9001535 (16.46559) (18.70317) (36.45178) (39.6863) 43 0.9035303
5 68 0.04544912 271.5625 310.6529 405.0154 408 70 0.009405374
43 0.9035303 (18.35556) (20.55863) (45.42605) (49.4773) 44 0.9006217




Aopr = 0.05, Pointwise Power = 0.8

r=0.1
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value | power null One Txgroup | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 7 0.03515625 3.893692 12.96303 12.96303 14 7 0.03515625
1 0.8397133 (2.62485) (5.248598) (5.248598) (5.2915) 1 0.8397133
2 8 0.03687787 6.659308 16.56288 22.43389 24 8 0.01953125
1 0.8057855 (3.247875) (5.830937) (7.665144) (8.4853) 1 0.8057855
3 11 0.03091334 13.39393 27.12194 42.73341 44 11 0.01123047
2 0.8921663 (4.443275) (7.042164) (12.32624) (13.2665) 2 0.8921663
4 1 0.03969332 16.77876 30.14127 53.33771 55 11 0.01123047
2 0.8921663 (4.820904) (7.215474) (15.1744) (16.5831) 2 0.8921663
5 11 0.04791161 20.04923 33.1418 63.98474 66 12 0.006469727
2 0.8921663 (5.14312) (7.472) (18.19563) (19.8997) 2 0.8716265
r=02
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value power null One Tx group All Tx groups study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 10 0.04614258 7.851527 18.87073 18.87073 20 10 0.04614258
3 0.8419226 (3.740763) (6.040165) (6.040165) (6.3246) 3 0.8419226
2 13 0.04556792 16.07705 29.84454 37.77602 39 13 0.02452087
4 0.8603581 (4.976926) (7.272335) (9.867504) (10.8167) 4 0.8603581
3 14 0.04154506 21.7872 36.54956 53.84652 56 14 0.01544189
4 0.8317516 (5.569165) (7.880927) (13.20749) (14.9666) 4 0.8317516
4 15 0.03398368 27.31122 43.15971 71.32572 75 15 0.009605408
4 0.8011018 (6.102428) (8.438999) (16.46652) (19.3649) 4 0.8011018
5 15 0.04104036 32.67925 48.12342 85.3224 90 15 0.009605408
4 0.8011018 (6.541158) (8.725658) (19.43408) (23.2379) 4 0.8011018
r=05
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value power null One Tx group | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 36 0.04347445 45.68418 69.80581 69.80581 72 36 0.04347445
22 0.8120462 (9.153486) (10.92584) (10.92584) (12) 22 0.8120462
2 43 0.04880887 83.56242 110.5964 126.366 129 45 0.02218546
26 0.8150543 (11.21573) (13.0836) (17.31243) (19.6723) 27 0.810087
3 47 0.04825873 120.2685 149.3175 184.0617 188 49 0.01539325
28 0.8053409 (12.80759) (14.68967) (23.54779) (27.4226) 29 0.8008007
4 52 0.04631875 165.6697 197.3862 254.8906 260 54 0.0114913
31 0.8146608 (14.61111) (16.53801) (30.93439) (36.0555) 32 0.810509
5 54 0.0468858 204.5753 237.2623 317.4233 324 56 0.009593304
32 0.810509 (15.95763) (17.72838) (37.2762) (44.0908) 33 0.8065126
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Ao = 0.025, Pointwise Power = 0.9
r=0.1
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value | power null One Txgroup | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 10 0.01928711 5.937091 19.35887 19.35887 20 10 0.01928711
2 0.9112841 (3.339847) (6.264188) (6.264188) (6.3246) 2 0.9112841
2 13 0.02031856 13.0325 29.5666 38.57321 39 13 0.01063538
3 0.948863 (4.585059) (7.389085) (10.45835) (10.8167) 3 0.948863
3 14 0.0178545 17.673 35.44439 55.21599 56 14 0.006362915
3 0.9377837 (5.114218) (7.916469) (14.29124) (14.9666) 3 0.9377837
4 14 0.02310948 22.09674 39.45998 68.96947 70 15 0.003768921
3 0.9377837 (5.537852) (8.196804) (17.84165) (18.7083) 3 0.9255533
5 15 0.01712671 26.48162 45.28552 88.24069 90 15 0.003768921
3 0.9255533 (5.994596) (8.672161) (21.74098) (23.2379) 3 0.9255533
r=02
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value power null One Tx group All T groups study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 17 0.01734483 13.96884 33.3187 33.3187 34 17 0.01734483
6 0.9250825 (5.178862) (7.988517) (7.988517) (8.2462) 6 0.9250825
2 18 0.0215252 22.37659 42.16297 53.13649 54 18 0.01132792
6 0.9088288 (5.965809) (8.612329) (11.97718) (12.7279) 6 0.9088288
3 21 0.01747378 34.38046 57.20752 82.86377 84 21 0.006270476
7 0.9184688 (7.083773) (9.755433) (17.2009) (18.3303) 7 0.9184688
4 21 0.02255745 42.97002 65.2097 103.4362 105 22 0.004065029
7 0.9184688 (7.668128) (10.14515) (21.31522) (22.9129) 7 0.9031455
5 22 0.01819134 51.43399 75.05559 129.7626 132 22 0.004065029
7 0.9031455 (8.252204) (10.74458) (25.8041) (28.1425) 7 0.9031455
r=05
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value power null One Tx group | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 56 0.02350578 73.80714 110.7097 110.7097 112 56 0.02350578
36 0.9002963 (11.89665) (14.10119) (14.10119) (14.9666) 36 0.9002963
2 66 0.02475517 132.4124 173.7528 196.7781 198 68 0.01114898
42 0.9064897 (14.31781) (16.71784) (22.83364) (24.3721) 43 0.9035303
3 73 0.02276763 193.7204 238.5947 289.9412 292 75 0.007085245
46 0.9068662 (16.43456) (18.89399) (31.77569) (34.176) 47 0.9041789
4 75 0.02479985 247.1244 292.5698 372.2272 375 I 0.005979507
47 0.9041789 (17.93168) (20.32476) (39.9049) (43.3013) 48 0.9015333
5 80 0.02297008 314.3978 362.5874 476.6547 480 82 0.004515245
50 0.9076484 (19.91094) (22.17803) (49.45853) (53.6656) 51 0.9051912
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Ao = 0.025, Pointwise Power = 0.8
r=0.1
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value | power null One Txgroup | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 8 0.01953125 3.934775 14.56314 14.56314 16 8 0.01953125
1 0.8057855 (2.698487) (5.703372) (5.703372) (5.6569) 1 0.8057855
2 11 0.02147097 9.864372 24.12886 32.09112 33 11 0.01123047
2 0.8921663 (3.999337) (6.818107) (9.387985) (9.9499) 2 0.8921663
3 12 0.01820289 13.43035 28.86789 46.3227 48 12 0.006469727
2 0.8716265 (4.494951) (7.372949) (12.73393) (13.8564) 2 0.8716265
4 12 0.02358442 16.82667 31.90467 57.8168 60 13 0.003692627
2 0.8716265 (4.877492) (7.526614) (15.64341) (17.3205) 2 0.8498418
5 13 0.01687877 20.14621 36.60701 74.53605 78 13 0.003692627
2 0.8498418 (5.244107) (8.10451) (19.22603) (21.6333) 2 0.8498418
r=02
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value power null One Tx group All T groups study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 13 0.02452087 9.930947 24.85771 2485771 26 13 0.02452087
4 0.8603581 (4.32311) (6.937008) (6.937008) (7.2111) 4 0.8603581
2 15 0.0183677 16.18014 33.12979 42.9337 45 15 0.009605408
4 0.8011018 (5.098958) (7.835328) (10.32012) (11.619) 4 0.8011018
3 17 0.02335044 26.02898 44.61443 65.93372 68 18 0.005311012
5 0.8530007 (6.15599) (8.71682) (14.82153) (16.4924) 5 0.8275601
4 18 0.01933926 32.58649 52.30302 86.59155 90 18 0.005311012
5 0.8275601 (6.708971) (9.293028) (18.4784) (21.2132) 5 0.8275601
5 18 0.02353171 38.9681 58.2998 103.821 108 19 0.003305376
5 0.8275601 (7.198045) (9.613744) (21.95478) (25.4558) 5 0.8004705
r=05
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error,
treatment events, pointwise years under (std dev) an uncurtailed group true power
groups critical value power null One Tx group | All Txgroups | study events,
(std dev) meets the rate meet the rate (std dev) critical
value
1 45 0.02218546 55.81427 87.51736 87.51736 90 45 0.02218546
27 0.810087 (10.33226) (12.2425) (12.2425) (13.4164) 27 0.810087
2 54 0.02164193 102.0496 138.275 158.992 162 54 0.0114913
32 0.810509 (12.59352) (14.60597) (19.34488) (22.0454) 32 0.810509
3 58 0.0218178 144.9614 183.0177 227.4298 232 58 0.008010137
34 0.8026625 (14.24042) (16.24331) (26.20047) (30.4631) 34 0.8026625
4 63 0.02129351 196.3737 237.1587 309.3609 315 63 0.006016488
37 0.8123113 (16.08262) (18.05513) (33.92744) (39.6863) 37 0.8123113
5 65 0.02176037 241.3663 283.1128 382.825 390 67 0.004208497
38 0.808855 (17.44702) (19.37528) (40.9684) (48.3735) 39 0.8055078
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Aopr = 0.01, Pointwise Power = 0.9
r=0.1
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, pointwise years under (std dev) an uncurtailed group power
groups critical value power null One Tx All Tx groups | study events,
(std dev) group meets meet the rate (std dev) critical
the rate value
1 14 0.006362915 7.983658 27.4407 27.4407 28 14 0.006362915
3 0.9377837 (3.957348) (7.423654) (7.423654) (7.4833) 3 0.9377837
2 15 0.007341652 13.07375 33.29715 44.26451 45 15 0.003768921
3 0.9255533 (4.647963) (7.926042) (11.11567) (11.619) 3 0.9255533
3 16 0.006386439 17.7011 39.12256 62.70944 64 16 0.002212524
3 0.9122111 (5.163905) (8.446407) (15.05438) (16) 3 0.9122111
4 16 0.008366001 22.13765 43.15541 78.32144 80 16 0.002212524
3 0.9122111 (5.602838) (8.718219) (18.77424) (20) 3 0.9122111
5 19 0.006128998 32.81045 57.4652 112.6585 114 19 0.001299739
4 0.9477567 (6.681102) (9.731368) (24.94089) (26.1534) 4 0.9477567
r=02
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, pointwise years under (std dev) an uncurtailed group power
groups critical value power null One Tx All Tx groups study events,
(std dev) group meets meet the rate (std dev) critical
the rate value
1 20 0.009578645 15.97569 39.33843 39.33843 40 20 0.009578645
7 0.9322597 (5.587739) (8.695048) (8.695048) (8.9443) 7 0.9322597
2 22 0.007881296 25.53829 51.02433 64.97177 66 22 0.004065029
7 0.9031455 (6.44582) (9.550633) (13.26258) (14.0712) 7 0.9031455
3 24 0.009924155 38.54554 65.26044 94.96867 96 25 0.002275692
8 0.9270981 (7.505901) (10.46316) (18.59924) (19.5959) 8 0.913969
4 25 0.008517708 48.21195 76.12009 123.2021 125 25 0.002275692
8 0.913969 (8.148895) (11.06351) (23.34782) (25) 8 0.913969
5 27 0.009062492 63.89735 93.32036 160.2432 162 27 0.001966587
9 0.9347919 (9.17552) (11.94657) (29.40114) (31.1769) 9 0.9347919
r=05
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group | error, true person specified alternatives person years in control Type | error, true
treatment events, pointwise years under (std dev) an uncurtailed group power
groups critical value power null One Tx All Tx groups | study events,
(std dev) group meets meet the rate (std dev) critical
the rate value
1 70 0.009405374 89.90713 138.5446 138.5446 140 70 0.009405374
44 0.9006217 (13.317) (15.75112) (15.75112) (16.7332) 44 0.9006217
2 82 0.008668925 159.9576 214.5515 244.4339 246 82 0.004515245
51 0.9051912 (15.89635) (18.55711) (25.45675) (27.1662) 51 0.9051912
3 86 0.009024783 222.2454 278.42 341.5849 344 86 0.003217405
53 0.9003806 (17.73552) (20.36564) (34.35155) (37.0945) 53 0.9003806
4 91 0.008938622 292.8606 351.5549 452.0749 455 91 0.002435871
56 0.9042405 (19.74729) (22.21762) (43.87986) (47.697) 56 0.9042405
5* 93 0.009273603 357.0994 416.4126 554.0885 558 96 0.001846518
57 0.9020384 (21.26332) (23.74615) (53.17317) (57.8619) 59 0.9079486

* Design parameters for this row were obtained by substituting 10° in the upper limit of the integral for the Type I error
formula (see Equation 4.2.2) in the Des_Sup code.
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Aopr = 0.01, Pointwise Power = 0.8
r=0.1
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, pointwise years under (std dev) an uncurtailed group power
groups critical value power null One Tx All Tx groups | study events,
(std dev) group meets meet the rate (std dev) critical
the rate value
1 12 0.006469727 5.972554 22.86864 22.86864 24 12 0.006469727
2 0.8716265 (3.415234) (6.971402) (6.971402) (6.9282) 2 0.8716265
2 13 0.007205844 9.904237 2757616 37.48196 39 13 0.003692627
2 0.8498418 (4.071017) (7.522233) (10.06552) (10.8167) 2 0.8498418
3 14 0.00605492 13.46324 32.23975 53.35845 56 14 0.002090454
2 0.8269907 (4.544315) (8.089376) (13.48169) (14.9666) 2 0.8269907
4 14 0.007943326 16.86934 35.26515 66.52979 70 14 0.002090454
2 0.8269907 (4.947104) (8.233229) (16.4656) (18.7083) 2 0.8269907
5 14 0.009776692 20.17393 38.27978 79.68097 84 15 0.001174927
2 0.8269907 (5.277526) (8.444078) (19.61434) (22.4499) 2 0.8032494
r=02
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, critical pointwise years under (std dev) an uncurtailed group power
groups value power null One Tx All Tx groups study events,
(std dev) group meets meet the rate (std dev) critical
the rate value
1 15 0.009605408 9.989406 28.12291 28.12291 30 15 0.009605408
4 0.8011018 (4.418558) (7.539417) (7.539417) (7.746) 4 0.8011018
2 19 0.006437142 19.33 41.90732 54.71289 57 19 0.003305376
5 0.8004705 (5.647747) (8.887193) (11.6677) (13.0767) 5 0.8004705
3 19 0.009420385 26.07857 47.90327 72.8121 76 19 0.003305376
5 0.8004705 (6.223391) (9.21925) (15.18182) (17.4356) 5 0.8004705
4 22 0.007021959 37.84301 63.0637 106.0673 110 22 0.001859583
6 0.8265294 (7.25511) (10.24375) (20.46976) (23.4521) 6 0.8265294
5 22 0.008628847 45.27057 70.10261 127.2598 132 22 0.001859583
6 0.8265294 (7.77626) (10.6023) (24.35109) (28.1425) 6 0.8265294
r=05
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, critical pointwise years under (std dev) an uncurtailed group power
groups value power null One Tx All Tx groups | study events,
(std dev) group meets meet the rate (std dev) critical
the rate value
1 56 0.009593304 67.90333 109.189 109.189 112 56 0.009593304
33 0.8065126 (11.53641) (13.70186) (13.70186) (14.9666) 33 0.8065126
2 65 0.009650911 120.417 166.0279 191.7011 195 67 0.004208497
38 0.808855 (13.79025) (16.04372) (21.28123) (24.1868) 39 0.8055078
3 69 0.009864824 169.4451 216.7916 271.0437 276 72 0.003175812
40 0.8022641 (15.47111) (17.70869) (28.62121) (33.2265) 42 0.8149469
4 74 0.009747973 226.9781 276.9251 363.7499 370 76 0.002227512
43 0.811899 (17.3317) (19.49638) (36.76967) (43.0116) 44 0.8089351
5 78 0.008464916 284.1117 336.754 459.8289 468 78 0.001865723
45 0.8060517 (19.03416) (21.12187) (44.77405) (52.9906) 45 0.8060517
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aopr = 0.001, Pointwise Power = 0.9

r=0.1
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, critical pointwise years under (std dev) an uncurtailed group power
groups value power null One Tx All Tx study events,
(std dev) group meets | groups meet | (std dev) critical
the rate the rate value
1 20 0.0007719398 10.01259 39.3163 39.3163 40 20 0.0007719398
4 0.9387666 (4.486877) (8.916792) (8.916792) (8.9443) 4 0.9387666
2 21 0.0009022344 16.23864 46.21353 62.19268 63 21 0.0004552603
4 0.9289592 (5.210792) (9.422566) (13.23537) (13.7477) 4 0.9289592
3 22 0.0007894748 21.94212 53.05151 86.58069 88 22 0.0002667606
4 0.9183452 (5.775473) (9.913869) (17.77686) (18.7617) 4 0.9183452
4 23 0.0006121234 27.43945 59.83917 112.6579 115 23 0.0001553744
4 0.9069417 (6.259315) (10.42393) (22.4024) (23.9792) 4 0.9069417
5 23 0.0007614876 32.82429 64.87457 135.1774 138 23 0.0001553744
4 0.9069417 (6.718149) (10.66539) (26.65575) (28.775) 4 0.9069417
r=02
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, critical pointwise years under (std dev) an uncurtailed group power
groups value power null One Tx All Tx study events,
(std dev) group meets | groups meet | (std dev) critical
the rate the rate value
1 29 0.0008290263 19.98139 56.96278 56.96278 58 29 0.0008290263
9 0.910977 (6.337554) (10.50991) (10.50991) (10.7703) 9 0.910977
2 32 0.0009300359 34.81423 74.10418 95.08178 96 32 0.000470337
10 0.9209501 (7.557432) (11.53035) (16.17494) (16.9706) 10 0.9209501
3 33 0.0008929883 46.85543 86.90367 130.3752 132 33 0.0003030533
10 0.9090848 (8.344098) (12.12985) (21.47863) (22.9783) 10 0.9090848
4 36 0.0006778802 63.66214 107.0575 178.178 180 36 0.0001730006
11 0.9192982 (9.389679) (13.2046) (28.22763) (30) 11 0.9192982
5 36 0.00084194 76.25116 119.0127 213.5103 216 36 0.0001730006
11 0.9192982 (10.04934) (13.66441) (33.70583) (36) 11 0.9192982
r=05
Number of Number of True Type | Expected Expected Person Years Expected Bonferroni Bonferroni True
experimental control group error, true person under specified alternatives person years in control Type | error, true
treatment events, critical pointwise years under (std dev) an uncurtailed group power
groups value power null One Tx All Tx study events,
(std dev) group meets | groups meet | (std dev) critical
the rate the rate value
1 107 0.0008453577 131.9781 212.3058 212.3058 214 107 0.0008453577
65 0.9057528 (16.24739) (19.56419) (19.56419) (20.6882) 65 0.9057528
2 116 0.0009038727 217.723 301.3838 346.2156 348 116 0.00045905
70 0.9059773 (18.63657) (22.08169) (30.31941) (32.311) 70 0.9059773
3 120 0.0009570337 299.3126 384.1562 477.2244 480 120 0.0003275152
72 0.9025216 (20.65349) (23.95707) (40.62486) (43.8178) 72 0.9025216
41 125 0.000965024 389.0955 476.345 621.8071 625 125 0.0002497132
75 0.9064813 (22.80004) (26.02728) (51.86213) (55.9017) 75 0.9064813
5t 129 0.0008567777 478.6526 568.2482 769.119 774 129 0.0001781977
77 0.9032685 (24.72241) (27.88293) (62.66241) (68.1469) 77 0.9032685

+ Des_Sup did not converge for this row when the infinite upper limit was used in the integral for the Type I error formula;
results in this row were obtained by substituting 10° in the upper limit in the Des_Sup code.
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aopr = 0.001, Pointwise Power = 0.8

r=0.1
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni True
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, critical pointwise years under (std dev) an uncurtailed group power
groups value power null One Tx All Tx study events,
(std dev) group meets | groups meet | (std dev) critical
the rate the rate value
1 18 0.0007448196 7.99608 34.66714 34.66714 36 18 0.0007448196
3 0.8824026 (3.996223) (8.632338) (8.632338) (8.4853) 3 0.8824026
2 19 0.0008483746 13.08907 40.43011 55.31585 57 19 0.0004277229
3 0.8660641 (4.693224) (9.127256) (12.27038) (13.0767) 3 0.8660641
3 20 0.0007235911 17.72216 46.12221 77.18071 80 20 0.0002441406
3 0.8488657 (5.206056) (9.667516) (16.32121) (17.8885) 3 0.8488657
4 20 0.0009592052 22.16348 50.15802 96.30801 100 20 0.0002441406
3 0.8488657 (5.644948) (9.920079) (20.22392) (22.3607) 3 0.8488657
5 21 0.0006808443 26.52995 55.79915 120.4843 126 21 0.0001385808
3 0.8308855 (6.0715) (10.38724) (24.09199) (27.4955) 3 0.8308855
r=02
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni True
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, critical pointwise years under (std dev) an uncurtailed group power
groups value power null One Tx All Tx study events,
(std dev) group meets | groups meet | (std dev) critical
the rate the rate value
1 26 0.0006593636 16.00201 49.8514 49.8514 52 26 0.0006593636
7 0.827317 (5.670755) (10.05425) (10.05425) (10.198) 7 0.827317
2 27 0.0008133551 25.56498 59.49905 78.26636 81 27 0.0004106977
7 0.8050986 (6.498393) (10.69933) (14.05928) (15.5885) 7 0.8050986
3 30 0.0006973784 38.5919 75.76505 116.6459 120 30 0.0002359934
8 0.8292057 (7.573501) (11.64249) (19.55274) (21.9089) 8 0.8292057
4 30 0.0009232272 48.23745 84.79369 145.5239 150 30 0.0002359934
8 0.8292057 (8.194891) (11.99818) (24.02359) (27.3861) 8 0.8292057
5 31 0.0007183651 57.73726 95.4132 179.504 186 31 0.0001470384
8 0.8087628 (8.786135) (12.5677) (28.53651) (33.4066) 8 0.8087628
r=05
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni True
experimental control group error, true person specified alternatives person years in control Type | error, true
treatment events, critical pointwise years under (std dev) an uncurtailed group power
groups value power null One Tx All Tx study events,
(std dev) group meets | groups meet | (std dev) critical
the rate the rate value
1 87 0.0009943432 101.9318 170.5961 170.5961 174 87 0.0009943432
50 0.8101087 (14.27662) (17.16654) (17.16654) (18.6548) 50 0.8101087
2 95 0.0009681467 169.1548 241.2223 280.7337 285 95 0.0004916666
54 0.800315 (16.449) (19.34881) (25.64296) (29.2404) 54 0.800315
3 102 0.0009205813 2425233 318.3173 402.3742 408 102 0.0003146735
58 0.8075131 (18.6246) (21.52694) (34.92705) (40.398) 58 0.8075131
41 106 0.0008588862 313.1694 391.154 522.2004 530 106 0.000221663
60 0.8032139 (20.51871) (23.34859) (44.01288) (51.4782) 60 0.8032139
5 108 0.0008950275 381.4415 460.0734 638.0635 648 108 0.0001860506
61 0.8011291 (22.09594) (24.77339) (52.60929) (62.3538) 61 0.8011291

1 The Bonferroni values for this row were obtained by substituting 10° for the upper limit in the integral for the Type | error
formula in the Des_Sup code.
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As the main interest of researchers is most likely in the probability that
experimental treatments which have a given level of efficacy are found to be superior to
the control, we chose to power our test using pointwise power. However, other options
for power exist as described below.

Another option for power is denoted “partial power” and is defined as the
probability that at least one truly superior experimental treatment is discovered, assuming
that the alternative hypothesis in Equation 4.2.1 is true. Returning to our example of three
experimental treatments labeled A, B, and C, suppose that all of these experimental
treatments are superior to the control. Partial power then corresponds to the probability
that at least one of A, B, and C are declared statistically superior to the control. Partial
power is expressed via the individual Type Il errors as

Partial Power =1 — P(BT1 NPr, NN ,BTK)
If only a subset of the K experimental treatments is truly superior, then the number of
elements in the expression above should be appropriately reduced; note that this is mainly
of theoretical interest as we will not know how many experimental treatments are truly
superior to the control in practice. As the number of truly superior experimental
treatments increases, partial power increases.

To calculate partial power, we compute P(min(Dy, ..., Dx) < m) under the
alternative hypothesis in Equation 4.2.1 as follows:

P(min(Dy, ...,Dg) < m|t) =1 —={[1 = P(D; < m|t)] - [1 = P(Dx < m|t)]}

m . m ) m .
=1- [1 — Z e Tict —(rllct)sl [1 — Z e T2ict (Tzlct)sl [1 — Z e Tkict (Txlct)sl
s! s! s!
s=0

5=0 5=0
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= P(min(Dl, "'!DK) S m) =

s=0

_ .fooof(t)dt — .fooof(t) {[1 - i e—rlict@ [1 — Z —Tkict (Tcht) ]}dt

s=0

4 @ (ict)%et e it _ —T1lct( 1l ct) B ryict (Tklct)

- [T, z e | 2 G o

_q o [TE e -rlt( ) 1 N g {0 d 4.2.4
T 0 T Z _26 o | (4.24)

s=0

Equation 4.2.4 coincides with the definition of partial power, as it clearly computes
1—=P(Br, N Br, NN Pr,).

Lastly, we define “full power” as the probability that all experimental treatments
which are truly superior to the control are found to be superior, assuming that the
alternative hypothesis in Equation 4.2.1 is true. For example, suppose treatments A and B
are superior to the control, but C is not. Full power would then correspond to the
probability that both A and B are found to be statistically superior to the control. Full
power is related to the individual Type Il errors via

Full Power =1 — P(,BT1 UpBr, U--U ,BTK)
As was the case for partial power, if only a subset of the K experimental treatments is
truly superior, then the number of elements in the expression for full power should be
appropriately reduced. As the number of truly superior experimental treatments increases,
full power decreases.

To calculate full power, we compute the probability that the number of events in

each new treatment group is less than or equal to the critical value (i.e. is adequately
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small in all K new treatment groups). This implies that the maximum number of events
among the new treatment groups must be sufficiently small, and so we compute
P(max(Dy, ..., D) < m) under the alternative hypothesis in Equation 4.2.1 as follows:

m

Z —ryict (7”1lct) ”Z —ryict (Tzlct) ] [Z —— (Tcht) ]

s=0

= P(max(Dy, ...,Dg) <m) =

* N —T1lct( 1l ct) ] [ —Tcht( cht) ]d
fo £@) [Z X ‘

_ [P Gttt leTiet [ (mct) N e Tict)®
_fo rdo) [Z t ] [Ze R ]dt

s=0

S e R

s=0

This coincides with the definition of full power as it computes P(Bf, N Bf, NN

BE) = P(Br, U Br, U+ U Br, )" = 1= P(Br, UBr, U U fr,).

Table 3 below compares the pointwise, partial, and full power achieved for given
values of d. and m. To generate this table, Des_Sup was used to determine d. and m for
a trial designed to satisfy a one-sided overall Type I error of 0.05 and a pointwise power
of 0.9. The corresponding partial power and full power were then obtained by
substituting the values of d. and m into Equations 4.2.4 and 4.2.5, respectively. Values
are reported for up to five truly superior experimental treatment groups and for rate ratios
of 0.1, 0.2, and 0.5 (the indicated rate ratio is assumed to be the same for all experimental

treatment groups under study).



Table 3: Comparison of the values of pointwise, partial, and full power for a test of
superiority designed to satisfy a one-sided overall Type I error of 0.05 and a pointwise
power of 0.9

r=0.1
Number of Superior
Experimental dcand m Pointwise Power Partial Power Full Power
Treatments
1 g 0.9288088 0.9288088 0.9288088
2 D 0.9112841 0.9883564 0.8342119
3 132 0.9587652 0.9996792 0.8849313
4 133 0.948863 0.9999324 0.8194267
5 133 0.948863 0.9999808 0.7827826
r=0.2
Number of Superior
Experimental dcandm Pointwise Power Partial Power Full Power
Treatments
1 153 0.9347349 0.9347349 0.9347349
2 166 0.9394989 0.9925503 0.8864476
3 167 0.9250825 0.9977752 0.8048559
4 168 0.9088288 0.9990017 0.7110355
5 168 0.9088288 0.9996498 0.6620089
r=05
Number of Superior
Experimental dcand m Pointwise Power Partial Power Full Power
Treatments
1 oy 0.9053749 0.9053749 | 0.9053749
2 gg 0.9002963 0.9758391 0.8247536
3 o 0.9033769 0.9917413 0.770829
4 28 0.9001535 0.9999996 0.714471
5 22 0.9035303 =1 0.6810754

Note: The indicated rate ratio applies to all experimental treatment groups under study
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4.3: Example of Applying Design C to a Real-World Clinical Trial

In this subsection, we will use data collected from a clinical trial in which multiple
experimental influenza vaccines were compared to a single control vaccine to
demonstrate the practical implementation of the Design C methodology. Influenza virus
infections can lead to respiratory illness, morbidity, and death among both very young
and very old persons, as well as among those presenting with comorbidities. Seasonal
infection and pandemic influenza is largely controlled via prophylactic vaccination. Such
vaccines are usually derived from viruses proliferated in hen eggs; however, the supply of
eggs is limited, making production difficult when demand increases unexpectedly. To
address this issue, mammalian cell lines have been suggested as alternative culture
systems (Frey et al., 2010).

Clinical trial NCT00630331, a randomized, placebo-controlled, observer-blind
trial, investigated the efficacy of cell culture-derived influenza vaccine (CCIV) and egg-
derived trivalent inactivated vaccine (TI1V) compared to a placebo (PBO) in preventing
laboratory-confirmed influenza illness in healthy adults during the 2007-2008 influenza
season. The study was designed to enroll 11,700 participants, who were equally
randomized to the three treatment groups. This sample size was determined based upon
individual comparison of each vaccine to the placebo. For a vaccine efficacy of 70%, a
one-sided Type I error of 0.0125, and an estimated influenza attack rate of 3%, there was
92% power to reject the null hypothesis that the vaccine efficacy was <40% for each
vaccine. Among the efficacy per protocol population?’ of 11,257 participants, a total of
231 influenza cases occurred; 42 cases among 3,776 subjects in the CCIV group, 49 cases

among 3,638 subjects in the TIV group, and 140 cases among 3,843 subjects in the PBO

%7 See Frey et al. (2010) for the definition of the efficacy per protocol population.
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group. This corresponds to a CCIV efficacy of 69.5% and a TIV efficacy of 63.0%. The
efficacy of each vaccine was highly significant in comparison to the placebo, and both
exceeded the Center for Biologics Evaluation and Research vaccine efficacy criteria
(Frey et al., 2010).

To conduct this trial using the methodology of Design C, we take the design
parameters K = 2, one-sided overall Type | error equal to 0.025 (since the individual
Type I errors in the trial were constrained at 0.0125, we take our global Type | error to be
2 x 0.0125 = 0.025), and pointwise power equal to 0.9. Since the trial was designed
assuming a vaccine efficacy of 0.7, we take r = 0.3. Des_Sup(2,.025,.3,.9) returns
The number of control group events dc is 27
The critical value mis 12
The true overall Type | error is 0.02240684
The true pointwise power is 0.9049494
Hence, under Design C and using pointwise power, the trial would terminate once 27
events are observed in the placebo group, and the null hypothesis of no difference in
efficacy between the experimental vaccines and placebo would be rejected if the
minimum number of events among the CCIV and TIV groups is less than or equal to 12.

Alternatively, anticipating that both the CCIV and TIV vaccines would be

superior to the placebo, investigators may power the study to find both experimental

vaccines superior to the placebo, and hence would use the full power formula

0 sdec—1,-t m s m <
P(maX(Dl,DZ) < m) = JO t[‘(T:) [Z e—rlt (rlsf) ] [Z e—rzt (rzt;) ]dt
s=0

s=0

for power computations. The R code for Des_Sup can be easily modified to accommodate
the definition of full power; taking r;, = r, = 0.3, we find the following design

parameters:
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The number of control group events dc is 31

The critical value mis 15

The true overall Type I error is 0.02439077

The true full power is 0.9096288

For completeness, we also present the resulting design parameters when partial power is
used, which corresponds to powering the study to detect at least one truly superior

experimental vaccine. In this case, we use

P(min(D,,D,) <m) =

©¢dc-1p-t m it (rlt)s m ot (th)s
1—];) Tdc)ll—ze T”l—ze T]dt

s=0 5=0

for the power computations. After modification of the Des_Sup code to account for
partial power and again taking r; = r, = 0.3, we find

The number of control group events dc is 21

The critical value mis 8

The true overall Type I error is 0.02284066

The true partial power is 0.933896

4.4: Comparison of the Exact Design C Method to the Bonferroni Procedure

Thus far we have considered global hypotheses, that is, we have used information from
all study arms simultaneously to determine whether at least one experimental treatment is
superior to the control treatment. It may be of interest, however, to compare each
experimental treatment to the control individually to identify which treatments (if any)
are superior to the control. If we were to individually conduct these K tests, the
familywise error rate (the probability of making at least one false rejection among the
family of K tests) would become inflated and exceed the specified overall Type | error
rate a,,, (Lehmann and Romano, 2005, page 349). To maintain the familywise error rate

at a,,,- despite the multiple comparisons, the Bonferroni procedure can be used. The

Bonferroni procedure conducts each individual test at significance level @,y = @yyr/K
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to conservatively control the familywise error rate (see Lehmann and Romano (2005),
pages 348-350 for details).

We can use the function Des_Sup to evaluate the experimental treatments under
the Bonferroni procedure. To do so, we set the number of treatment groups equal to one®
and the Type | error equal to «,,,-/K. For example, suppose there are three new
treatments being compared to a control treatment and we wish to conduct the trial at
significance level a,,,, = 0.05, pointwise power = 0.8, and for a rate ratio in Equation
4.2.3 of r = 0.5. Using the exact Design C method of Section 4.2, we would use
Des_Sup(3,.05,.5,.8) to find that the trial continues until 47 events are observed in the
control group, and the critical value is 28, but, under the Bonferroni procedure, we would
use Des_Sup(1,.05/3,.5,.8), which yields 49 events in the control group and a critical
value of 29. The difference between the function calls is that for (3,.05,- ,-) the
calculation is for an overall Type I error of 0.05 when comparing three groups to a
control, while for (1,.05/3, -, -) the calculation is made for an individual Type I error of
0.05/3, which, by the Bonferroni method, is conservative for an overall Type | error of
0.05 for comparing three groups to one control. The cost in using the conservative
Bonferroni approach in this example, which requires 49 events in the control group with
rejection at <29 events in the new treatment group to obtain 0.8 power when r = 0.5 for
comparing one new treatment to a control at a;,,4 = 0.05/3, is an extra two events for
the control group and one event for each new treatment arm compared to 47 events in the
control group and rejection if <28 events occur in at least one new treatment group if the

exact calculation is used to compare three new treatment groups to one control at

% Since the number of experimental treatment groups is set to one, Equation 2.4.1 reduces to a negative
binomial distribution, which is used for testing under the Bonferroni procedure.



62

Ao, = 0.05. Values of d ., m, true individual Type I error, and true pointwise power
obtained under the Bonferroni procedure are included in columns 8 and 9 of Table 2 for
comparison with those in columns 2 and 3 which, as previously discussed, were obtained
under the exact Design C methodology.

Notice in the example above that both the number of control events to be
observed and the critical value is larger under the Bonferroni design; this highlights the
fact that there are sometimes considerable savings in terms of the number of events to be
observed when the exact method is used compared to the Bonferroni procedure. Thus,
though the Bonferroni method may be simpler than the exact method, the disadvantage is
that a greater number of control events and/or a greater number of events in the
experimental treatment arms imply that it will take a greater number of person years of
follow-up for the trial to terminate, which translates to increased study costs. However,
for the scenarios presented in Table 2, the losses associated with using the Bonferroni
method were not substantial, and, in our discrete setting, values from the Bonferroni and
exact method mostly coincided. Regardless of the method used, researchers will be
interested in the expected number of person years of follow-up it takes for a trial to
terminate. This will be evaluated in the next two subsections.

4.5: Curtailment in Design C

To estimate the expected number of person years of follow-up until trial termination
under Design C, we first need to determine the possible mechanisms for discontinuation
of subject follow-up and trial termination. Accordingly, in this subsection we define and

illustrate uncurtailed and curtailed clinical trials conducted under Design C methodology.



63

In an uncurtailed trial, recruitment into all treatment arms of the trial and follow-
up of all recruited subjects continues until a pre-specified termination point, which, under
Design C, occurs when d- events are observed in the control group. In a curtailed design,
recruitment into a given treatment arm (and perhaps follow-up of persons already
recruited into that arm) can be discontinued as soon as the ultimate decision is known for
the given treatment arm, and the entire trial can be terminated once the ultimate decision
is known for all treatment arms. Under Design C, this means that recruitment into each
experimental treatment arm can be discontinued once the number of events exceeds the
critical value (i.e. once the number of events reaches m + 1) as it will no longer be
possible to reject the null hypothesis in Equation 4.2.1 based on this experimental
treatment group, and the entire trial can be terminated once either (1) all experimental
treatment arms reach m + 1 events as it will then no longer be possible to reject the null
hypothesis, even if we were to continue until all d. events are observed in the control
group, or (2) the control group reaches d. events at which time the trial is stopped and all
remaining active experimental treatment arms are declared superior to the control.

In this dissertation, we will compare the duration of study follow-up under
uncurtailed and “fully curtailed” designs. A fully curtailed trial indicates that recruitment
is stopped into given treatment arms and these arms have no ongoing follow-up of
previously enrolled subjects once they satisfy the conditions for curtailment®. We thus

assume that either (1) follow-up of subjects in a treatment arm can be discontinued once

# Alternatively, it could be argued that follow-up of subjects already recruited into a study must continue
for ethical reasons and to increase knowledge of the disease and treatments, perhaps even after d. events
have occurred in the control group. Accordingly, there may be settings in which recruitment of new
subjects is stopped, but follow-up of subjects already enrolled in the study (who may not have experienced
the outcome of interest) continues, a phenomenon known as “overrunning” (for more information on
overrunning, see for example Whitehead, John. “Overrunning and Underrunning in Sequential Clinical
Trials.” Controlled Clinical Trials, vol. 13, no. 2, Apr. 1992, pp. 106-21).
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recruitment into that arm has been terminated, because the outcome of the study for that
arm is known, or (2) that the outcome is an immediate short-term binary event of low
probability that can be approximated by a Poisson distribution. For the remainder of this
dissertation, the term “curtailment” should be interpreted as full curtailment.

Clearly, the expected person years of follow-up in a curtailed design is always
less than an uncurtailed design, since there are nonzero probabilities that follow-up of
treatment arms (or even the entire study) can be discontinued early, and thus a curtailed
design is preferred on this basis. Note that a curtailed design does not change the
rejection region for a specified hypothesis test, because curtailment does not alter the
ultimate decision made in a trial.

We illustrate the difference in the expected person years of follow-up between an
uncurtailed and fully curtailed design via an example. Suppose that two new treatments
are being compared to a control in a trial designed to satisfy a one-sided overall Type I
error of 0.05, pointwise power = 0.9, and r = 0.2. From Table 2, the critical value m for
the new treatments is 6, and the number of control group events to observe is d. = 16. In
an uncurtailed design, it does not matter how quickly the new treatment groups reach
m + 1 = 7 events. The entire trial will terminate only once the control group
accumulates 16 events, at which time the number of person years of follow-up in each of
the new treatment groups is equal to the number of person years it takes the control group

to reach 16 events. If we let N, and Ny, represent the number of person years of follow-

up in the two new treatment arms and N, the number of person years of follow-up in the
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control arm to reach d events>, then the total number of person years of follow-up in
this uncurtailed design is Ny, + Ny, + Nc = N + N¢ + N¢ (see (A) in Figure 1 below).

In comparison, consider a curtailed design for the same setting that is stopped
early because both new treatment groups reach m + 1 = 7 events prior to the control arm
reaching d. = 16 events. In this scenario, we know that it will no longer be possible to
reject the null hypothesis for either new treatment, even if we were to wait for the control
group to reach 16 events, and hence it is futile to continue the study. The total number of
person years of follow-up in the control group is then max(NTl, NTZ), as follow-up in the
control arm is curtailed at this time once the study is stopped for futility. The total follow-
up across all study arms is then Nr, + Nr, + max(NTl, NTZ) (see (B1) in Figure 1).

However, if only the first (but not the second) new treatment arm reaches
m + 1 = 7 events before the control arm reaches 16 events, then the total follow up
across all study arms is Ny, + N¢ + N¢, where N is the number of person years needed
to reach 16 events in the control arm; N is also the follow-up for the second new
treatment arm as this arm is discontinued as well as the control arm at N person years
(see (B2) in Figure 1). Similarly, by symmetry, if only the second (but not the first) new
treatment arm reaches 7 events before the control arm reaches 16 events, then the total
follow-up across all study arms is N + Nz, + N¢.

Of course, if the control arm reaches 16 events at N person years of follow-up

before either new treatment arm reaches 7 events in a curtailed trial, then the total amount

% Under a curtailed design, we may not reach d events in the control group if the study is terminated early
on account of all new treatment groups reaching m + 1 events prior to the control group reaching d.
events, and in such cases N should be interpreted as the amount of follow-up in the control group at the
time of trial termination. It should be well understand by the reader that N, in an uncurtailed trial will
always represent follow-up until d. events are observed, whereas follow-up may be stopped earlier in a
curtailed trial; as such, we do not introduce additional notation to distinguish these interpretations.
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of follow-up is N + N; + N, as all treatment arms are followed for N person years
(see (B3) in Figure 1).

In the next subsection, we will show how to estimate the expected total number of
person years of follow-up for uncurtailed and fully curtailed clinical trials conducted

under Design C.



Tx 1
Tx 2

Control

Tx 1
Tx 2

Control

Tx 1
Tx 2

Control

Tx 1
Tx 2

Control

(A) Uncurtailed Trial

*®
2

Nr, = N¢
Nr, = N¢
W N

Person Years

(B1) Fully Curtailed Trial

Study stops here since the control
arm has reached d; = 16 events

. S

* v,

NC = NTl

Person Years

Study stops here since all new treatment arms

have reached m + 1 = 7 events prior to the
control group reaching d. = 16 events

(B2) Fully Curtailed Trial

X N,

NTZ = NC

Ml N

Person Years

Study stops here since the control group
reached d. = 16 events before all new
treatment groups reached m + 1 = 7 events

(B3) Fully Curtailed Trial

NT1 = NC
NTZ = NC
N

Person Years

Study stops here since the control group
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Figure 1: Person years accrued in a superiority trial under an uncurtailed design (A)
and for various scenarios under a fully curtailed design (B1-B3) with study parameters
K=2,d.=16,andm =6

= max(NTl, NTz)
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4.6: Expected Person Years Under Design C

Researchers and budget personnel will have interest in the expected number of person
years of subject follow-up until trial termination, as the longer a study lasts or the larger
the number of study participants that must be recruited, the greater the costs to conduct
the trial and potentially the shorter the patent life of the agent under study. Thus, in this
subsection we discuss formulas and algorithms for estimating the expected number and
standard deviation of person years until trial termination under both uncurtailed and fully
curtailed designs.

Again, we are working under the assumptions of equal allocation of study
subjects to the experimental treatment and control arms (i.e.a 1: 1: 1 ...: 1 allocation
ratio) and, as appropriate, immediate discontinuation of follow-up in treatment arms for
which the outcome of the study is known. Hence, at any point in time, all active study
arms will accrue the same number of person years of follow-up. For example, suppose a
trial is to be terminated once the control group reaches d. events and it takes N, person
years for the control group to accumulate these events. Then all experimental treatment
groups still under follow-up at that time will also have incurred N, person years of
follow-up.

The expected number of person years is simple to compute under an uncurtailed
design. Under Design C, the trial terminates once the number of events in the control
group reaches d.. Hence, if there are K experimental treatment groups under study, they
will also be observed until the number of events in the control group reaches d.. Thus,
the expected number of person years in an uncurtailed design is given by

(K + 1) X (expected number of person years for control to reach d; events)
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= (K +1) X E(N¢ldc)

We know the number of person years it takes to accumulate d events in the control

group follows a Gamma (dc,ii) distribution. Hence, the expected number of person
Cc

dc

years for the control arm to reach d. events is the expected value of this distribution, -
Cc

So, the expected number of person years until study termination in an uncurtailed trial

conducted under Design Cis (K + 1) X %. Furthermore, it follows that the variance of
C

the number of person years until termination is given by (K + 1)? X id_c2. For simplicity
Cc

and without loss of generality, we will take i = 1 (and so the time it takes the control
group to reach d. events will be assumed to follow a Gamma(d, 1) distribution)
throughout the remainder of this dissertation.

We now turn our attention to the case of a fully curtailed trial. Suppose we are
designing a superiority trial under Design C in which K experimental treatment groups
are compared to a single control group. Suppose further that for a given Type | error,
power, and values ry, 15, ..., 7 for the rate ratios of event accrual for the experimental
treatments, the maximum number of events to observe in the control group is d. and the
critical value is m. A curtailed design makes use of the following rules:

e Follow-up is stopped for any experimental treatment arm that reaches m + 1
events prior to the control arm reaching d events and H, is accepted for all such
experimental treatment arms.

e The entire study is stopped if the control arm reaches d. events (before all
experimental treatment arms reach m + 1 events) and H,, is rejected for all

experimental treatment arms that have not yet reached m + 1 events.
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o If all experimental treatment arms reach m + 1 events before the control arm
reaches d events, then the entire study is stopped as H, is accepted for all
experimental treatment arms.

Let Nr,, Nr,, ..., Nr,. denote the number of person years for experimental treatment arm
1,2, ..., K, respectively, to reach m + 1 events, and let N denote the number of person
years it takes the control arm to reach d events®.. Follow-up for each experimental

treatment arm will be terminated once the treatment arm reaches m + 1 events, and the

number of person years it takes to reach m + 1 events in the k" experimental treatment
arm follows a Gamma(m + 1,1) or a Gamma (m +1, %k) distribution (corresponding

to the null and alternative hypothesis in Equation 4.2.1, respectively, with the value of i,
assumed to be 1). Similarly, follow-up in the control group is terminated once it reaches
d. events, and the number of person years it takes to do so follows a Gamma(d,, 1)
distribution.

There are two settings for which the trial will terminate. In the first, the control
group reaches d. events (thus terminating the trial) before all experimental treatment

arms reach m + 1 events. In this case, all N, for experimental treatment groups which

have not reached m + 1 events are stopped at N person years. In the second setting, all
experimental treatment arms reach m + 1 events prior to the control group reaching d.

events (thus terminating the trial), so follow-up in the control arm is curtailed at

31 As was previously mentioned, in a curtailed trial the control group may not reach d events if all
experimental treatment arms have surpassed the critical value, causing the trial to terminate due to futility.
In this case, N is interpreted as the amount of follow-up in the control group at the time the trial stops.
Similarly, the experimental treatment groups may not reach m + 1 events prior to the control group
reaching d events, at which time the trial is terminated. In this case, Ny, Nr,,, ..., Ny, are interpreted as the
amount of follow-up in the experimental treatment arms at the time of trial stoppage. This is further
explained in the main text and is graphically depicted in Figure 2.
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maxy Ny, . In both settings, the sum Nz, + N, + --- + Nr, + N¢ represents the total

number of person years until the trial terminates. These two settings™ are depicted

graphically in Figure 2 below for a hypothetical study with three new treatments.

%2 In practice, a third setting could arise when d events are obtained in the control group at the same time
that m + 1 events are observed in the final active experimental treatment group. This is possible when a
trial has non-continuous follow-up of subjects for the outcome of interest. Clearly, this setting cannot be
expressed via the continuous Gamma distributions which characterize subject follow-up. However, in this
situation, N, coincides with max, Nr, , and so the total number of person years in the study would be
identical to that of setting two.
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Setting 1
Tx1 b Nr,
Nr, = N¢
TX 2 oo T_ X
Tx 3 x Unobserved
Nr,
Control N
Person Years Study stops here since the control
arm has reached d events prior to
all new treatment arms reaching
m + 1 events
Setting 2
Tx 1 X Np,
Tx2 [~ XN T,
Tx 3 X NT3 Unobserved
N¢ = Nr.
Control S—-h__ Y _m
Person Years Study stops here since all new
treatment arms have reached m + 1
events prior to the control arm
reaching d events
Control group has reached d events .

New treatment group has reached m + 1 events X

Figure 2: Person years accrued in a fully curtailed superiority trial under two settings:

(1) Control arm reaches d events prior to all new treatment arms reaching m + 1
events; (2) All new treatment arms reach m + 1 events prior to the control arm
reaching d. events
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To precisely calculate the expected number of person years until trial termination under a
fully curtailed design would entail considering all possible ways in which the
experimental treatment and control arms could accumulate events and cause the study to
terminate, a calculation which is too difficult to explicitly formulate. Therefore,
simulation was used to estimate the expected number and standard deviation of person
years of follow-up for a fully curtailed design under the null and alternative hypotheses in
Equation 4.2.1. The simulation algorithm under the null hypothesis is as follows:

1. Generate K random variables from a Gamma(m + 1,1) distribution to represent
the person years for the K experimental treatment groups to exceed the critical
value m. Let T, be a vector containing these K values.

2. Generate a random variable from a Gamma(d,, 1) distribution to represent the
person years for the control group to reach d. events. Let this random variable be
denoted by C.

3. Create the vector T, as follows: for each entry in T,, if the entry is greater than or
equal to C, the corresponding entry in T is set to C. Otherwise, the corresponding
entry in T remains the same as the entry in T,

4. Create the value C* as follows: If C is greater than the maximum of the values in
T,, set C* equal to the maximum of the values in T,. Otherwise, set C* equal to C.

5. Let S equal the sum of all values in Ty and C*.

6. Repeat steps one through five n times, denoting each calculated sum from step
five as S, ..., S, and take the mean and standard deviation of the S; to estimate
the expected number and standard deviation of person years until the trial

terminates.
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The R function Null_Time implements this algorithm and takes the arguments K (number
of experimental treatment groups, i.e. not including the control group), dc (number of
control group events to be observed), crit (the critical value for the test of hypothesis, i.e.

m for a superiority trial or w for an inferiority trial®

), test (either “Sup” or “Inf” to
specify whether the trial is of treatment superiority or inferiority, respectively), and sims
(the number of simulations used to estimate the person year values). Null_Time also
produces a 95% empirical confidence interval for the expected number of person years.
Full code for Null_Time is provided in Appendix E.

The simulation algorithm to estimate the expected number and standard deviation

of person years under the alternative hypothesis in Equation 4.2.1 is as follows:

1. Generate a random variable from a Gamma (m + 1%) distribution to represent
k

the person years for the k" experimental treatment group to exceed the critical
value m for k = 1, ..., K. Let T, be a vector containing these K values.
Steps 2 through 6 follow exactly as in the algorithm presented above for estimation
under the null hypothesis.
The R function Alt_Time implements this algorithm and takes the arguments dc (number
of control group events to be observed), crit (the critical value for the test of hypothesis,
i.e. m for a superiority trial or w for an inferiority trial), vec (a vector of length equal to
the number of experimental treatment groups with entries corresponding to the rate ratios
of each experimental treatment group, i.e. a vector of the form c(ry, 15, ..., 7%)), test
(either “Sup” or “Inf” to specify whether the trial is of treatment superiority or inferiority,

respectively), and sims (the number of simulations used to estimate the person year

% Tests of treatment inferiority will be discussed in Section 5.
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values). Alt_Time also produces a 95% empirical confidence interval for the expected
number of person years. Full code for Alt_Time is provided in Appendix E.

We next illustrate the use of these algorithms with an example. Suppose a clinical
trial is investigating four experimental treatments and is designed to satisfy a one-sided
overall Type I error of 0.01, a pointwise power of 0.9, and a hypothesized rate ratio of
r = 0.2. From Table 2, we know that the critical value for rejecting H, for any given
experimental treatment arm in this study is m = 8, with the stoppage number of events to
observe in the control group being d. = 25. Null_Time(4,25,8, “Sup ”,100000) provides
an estimated time to termination of 48.21 person years under the null hypothesis in
Equation 4.2.1 with an estimated standard deviation of 8.15 person years, based on
100,000 simulations. The associated 95% empirical confidence interval is (35.52, 65.38).
We can compare this to an asymptotic 95% confidence interval (based on the normal
distribution) for the total number of person years this study will require when the global
null hypothesis is true by computing 48.21+1.96x8.15 = (32.24, 64.18) person years.
Alt_Time(25,8,c(.2,.2,.2,.2), “Sup ”,100000) yields an estimated time to termination of
123.20 person years and a standard deviation of 23.35 person years under the alternative
hypothesis in Equation 4.2.1 when all treatment groups have a rate ratio of 0.2; the 95%
empirical confidence interval is (80.98, 171.99). The corresponding asymptotic 95%
confidence interval is (77.43, 168.97). If instead the values of the rate ratios are 0.2, 0.5,
0.6, and 0.4 for the four experimental treatment groups, we would use
Alt_Time(25,8,c(.2,.5,.6,.4), “Sup ”,100000) to find an estimated number of person years

to trial discontinuation of 101.20 with a standard deviation of 14.87, and a 95% empirical
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confidence interval of (73.65, 131.82) compared to the asymptotic 95% confidence
interval of (72.05, 130.35).
Since the algorithms assume i = 1, when using the Null_Time and Alt_Time

codes to estimate the expected number and standard deviation of person years until trial

termination in practice, the results will need to be multiplied by ll For example, in the
Cc

hypothetical study of four experimental treatments presented above, the expected number
of person years obtained from Null_Time was 48.21 with a standard deviation of 8.15.
Suppose that the true incidence rate of events in the control arm is 1 event per 10 person
years (equivalently, 0.1 events per person year). Then, the estimated expected number of
person years until trial termination under the null hypothesis would be 48.21%(1/0.1) =
482.1 person years, and the corresponding standard deviation would be 8.15%(1/0.1) =
81.5 person years.

The hypothetical study above illustrates that for a curtailed superiority trial, the
expected number of person years until trial termination under the alternative hypothesis is
always greater than under the null hypothesis. Under the null hypothesis, all new
treatment groups tend to accumulate events at the same rate as the control group, whereas
under the alternative hypothesis, events in the new treatment groups tend to accumulate at
rates lower than that of the control group. Hence, it takes longer under the alternative
hypothesis for the new treatment arms to reach m + 1 events, the time at which follow-
up of these treatment arms can be terminated, than under the null hypothesis.

Estimated values for the expected number and standard deviation of person years

until trial termination for fully curtailed superiority studies under the null and alternative
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hypotheses are provided in columns 4 through 6 in Table 2**. In Table 2, Alt_Time was
computed under two settings: (1) one new treatment group has the rate ratio r specified in
the table, and the remaining K — 1 new treatment groups have rate ratio equal to one (see
column 5), and (2) the indicated value of r in the table holds for all experimental
treatments under study (i.e. r; =1, = -+ = 1y = 1) (See column 6). Table 2 also contains
the expected number and standard deviation of person years until trial discontinuation for
an uncurtailed study (with i, = 1) in column 7.

We demonstrate the degree to which full curtailment reduces the expected number
of person years in comparison to uncurtailed designs via the graphs in Figure 3 below.
The graphs display the expected person years of follow-up in superiority trials for all
combinations of the design parameters «,,,- = 0.05, 0.01, pointwise power = 0.9, 0.8,
r=0.1,0.2,0.5 and K = 1, 2, 3,4, 5. Each graph illustrates the expected number of
person years in an uncurtailed study, under the null hypothesis under full curtailment, and
under both settings of the alternative hypothesis under full curtailment used to generate
columns 5 and 6 in Table 2 (these setting appear in the Figure 3 legend as “Curtailed-Alt
(One)” and “Curtailed-Alt (All)”, respectively). Plotting the results for both settings of
the alternative hypothesis shows that the number of person years under the alternative in
a fully curtailed design will depend heavily on the values of the rate ratios of the
experimental treatment groups. This is explored further in Figure 4 which illustrates how
the expected number of person years under the alternative hypothesis varies with the
value of the rate ratio r for the experimental treatment groups. The values of d. and m

used to determine the person years of follow-up in Figure 4 were found using design

% The person year values in columns 4 through 6 of Table 2 were estimated using Null_Time and Alt_Time
with 100,000 simulations; note that these functions return results based on assuming i, = 1.
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parameters a,,,,- = 0.05, pointwise power = 0.9, and » = 0.1 in the Des_Sup routine,
and the indicated value of  in the legend applies to all experimental treatment groups
under study.

Figure 5 displays the ratio of curtailed to uncurtailed expected person years in a
superiority trial for each combination of design parameters in Table 2; in particular, the
ratios of the values in column 4 to column 7 (labeled “Curtailed-Null”), column 5 to
column 7 (labeled “Curtailed-Alt (One)”), and column 6 to column 7 (labeled “Curtailed-
Alt (All)”) are plotted in Figure 5.

Figures 3, 4, and 5 illustrate that the expected number of person years is reduced
the most in a fully curtailed superiority trial when the null hypothesis is true. This implies
that pharmaceutical companies can terminate trials most quickly (and thus achieve the
greatest possible reduction in study costs) when none of the experimental treatments are

superior to the control, and hence, when there is no profit to be made.
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Figure 3: Expected number of person years in a superiority trial for combinations of
oy = 0.05,0.01, pointwise power = 0.9,0.8,r = 0.1,0.2,0.5,and K = 1,2,3,4,5
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Figure 4: Expected number of person years in a superiority trial for various values of the
rate ratios of the experimental treatments with design parameters «,,,,- = 0.05, pointwise
power =0.9,r =0.1,and K = 1,2,3,4,5




Figure 5: Ratio of fully curtailed to uncurtailed expected person years of
follow-up for superiority trials with design parameters given in Table 2
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SECTION 5: TESTS OF INFERIORITY, TWO-SIDED TESTS OF
HYPOTHESES, AND PAIRWISE TESTS OF EXPERIMENTAL TREATMENTS

5.1: Test of Inferiority

In Section 4, we focused on tests of superiority to determine whether at least one
experimental treatment is significantly more effective than the control treatment in terms
of reducing the incidence of events. In other circumstances, for example early on in the
research process, researchers may want to identify experimental treatments that are
significantly less effective than the control (i.e. result in significantly more events
occurring relative to the control) so that these experimental treatments can be removed
from consideration and resources can be reallocated to those more promising agents. To
derive a test of treatment inferiority®, we must define the appropriate counterpart to the
alternative hypothesis in Equation 4.2.1; that is, we must define the alternative hypothesis
corresponding to at least one experimental treatment being inferior to the control. The
hypotheses for an inferiority trial are, therefore, as follows:

HO: il = i2 == iK = iC versus Ha: il = Tlic, iz = Tzic, ""iK = rKiC (5 1 1)
where all r, > 1 and at least one of the ry, is strictly greater than 1 o

These hypotheses may be relevant during drug discovery when testing of the efficacy of
several new agents is conducted. A researcher evaluating several options to improve upon
an existing standard of care treatment may want to know if a new treatment being
considered is already proven inferior to the standard of care so that further resources are
not invested in the new agent or other compounds which have a similar mechanism of
action. These hypotheses may also be useful in safety studies where the rare outcome is

adverse events which occur during treatment. In this case, acceptance of the null

¥ As was the case for the test of treatment superiority in Section 4, we will assume an equal allocation of
study subjects to the experimental and control treatment groups in the derivation of the test of treatment
inferiority.
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hypothesis indicates an acceptable safety profile of the experimental treatments (i.e. the
experimental treatments are not significantly more harmful than the control treatment),
and the alternative hypothesis indicates that at least one of the experimental treatments is
harmful (i.e. causes too many adverse events in comparison to the control treatment).

It should be noted that for Equation 5.1.1, Type Il error corresponds to
consumers’ risk (as it indicates that one or more experimental treatments are declared to
be equally as effective as the control when they are in fact inferior), and Type | error
corresponds to producer’s risk (as one or more experimental treatments are declared to be
inferior when they are in fact equally as effective as the control)®. Attempts to manage
overall Type I error that make it more difficult to reject the null hypothesis will increase
the Type II error (i.e. consumers’ risk) and hence may not be desirable. Thus, in practice,
investigators will control both Type | and Type Il error for an inferiority trial by
recruiting an appropriate number of subjects based on sample size calculations and/or by
ensuring an adequate amount of subject follow-up.

A natural test statistic for testing the hypotheses in Equation 5.1.1 is the
maximum of the Dy, k = 1,2, ..., K. That is, we will reject the null hypothesis of no
difference in efficacy between any of the experimental treatments compared to the
control treatment (in favor of the alternative hypothesis of at least one experimental
treatment being inferior to the control) if the maximum number of events among the K
experimental treatment groups is too large, say greater than or equal to a value w (i.e. we
reject when too many events occur in at least one experimental treatment group in

comparison to the control).

% Specifically for a safety study, a Type II error (consumers’ risk) occurs when one or more experimental
treatments are declared to be safe when they are in fact harmful, and a Type I error (producer’s risk) occurs
when one or more experimental treatments are declared to be harmful when they are in fact safe.
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To calculate the Type I error, we calculate P(max(Dy, ..., Dx) = w) under the
null hypothesis in Equation 5.1.1 as follows:
P(max(Dy, ...,Dg) = w|t) =1 — P(max(Dy, ..., Dg) < w|t)
=1— P(max(Dy, ...,Dg) < w —1]|t)

By equation 4.2.5%, it follows that

P(max(Dy, ..., Dg) = w) = 1 — e [Z _] (5.1.2)
b= o T(de)

Thus, to test the hypotheses in Equation 5.1.1 at a specified one-sided overall Type I error

of a,,, and given the value of d., we must find the critical value w such that Equation

5.1.2 is as close to a,,, as possible without exceeding this value®®. Again, due to

discreteness, it is usually not possible to exactly obtain the nominal overall Type I error.

Pointwise power (the probability of finding the k" new treatment to be inferior to

the control given that it has a rate ratio of r;) follows readily from Equation 4.2.3 and is

given by
P(D; = =1- z ‘rkt
(D 2 w) 0 F(dc) [ ] (5.1.3)
or equivalently, by Equation 4.2.3*,
o +z—1y( 1\ 1V
1 _ zZ— _ *
P(D = w) =1 ZO( ot )<—1+rk) (1 1+rk) (5.13%)

¥ Throughout Section 5.1, we will make use of several formulas related to the minimum and maximum of
Dy, D,, ..., Dx which were derived in Section 4.2. In Section 4.2, the value of all rate ratios were assumed to
be < 1 as stated in Equation 4.2.1. However, when the results in Section 4.2 are applied here in Section 5.1,
the rate ratios in the resulting formulas are assumed to have value > 1 to reflect the assumptions of
Equation 5.1.1.

% Since Equation 5.1.2 is a decreasing function in w, we can always find a value of w that satisfies the
desired Type I error given the value of d.. However, this value may not satisfy a desired pointwise power
(see Equation 5.1.3 for pointwise power in an inferiority study). We will show how to find values of d. and
w that simultaneously achieve a desired Type | error and pointwise power in the main text.
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We now show how to design a trial to test the hypotheses in Equation 5.1.1 at a specified
one-sided overall Type I error «,,,- and which achieves a desired pointwise power. We
must find the smallest value d. and corresponding critical value w such that

P(max(Dy, ..., D) = w) < a,,, under the null hypothesis in Equation 5.1.1 and
P(max(Dy, ..., Dx) = w) = pointwise power for a given value of the rate ratio r (i.e.
we must find the smallest values of d. and w that simultaneously satisfy Equations 5.1.2
and 5.1.3 for given values of a,,,,- and pointwise power). To determine d. and w, the
function Des_Inf was written in R. This function takes the same arguments as Des_Sup
(i.e., K, alpha, r,pwr) and returns the number of events d to be observed in the control
group, the critical value w, the true overall Type | error achieved, and the true pointwise
power achieved in an inferiority trial conducted under Design C methodology. For
example, suppose there are four experimental treatments under study and researchers
want to determine if any of them have an unacceptable safety profile, as indicated by
causing significantly more adverse events than a control treatment. Researchers aim to
detect experimental treatments that cause at least twice as many adverse events as the
control group (i.e. r = 2). To test the hypotheses in Equation 5.1.1 at a one-sided overall
Type I error of 0.05 and to achieve a minimum pointwise power of 0.8, the function
Des_Inf(4,.05,2,.8) returns the design parameters

The number of control group events dc is 30

The critical value w is 49

The true overall Type I error is 0.04866245

The true pointwise power is 0.8008007

Hence, the study would continue until 30 events are observed in the control group, and

the global null hypothesis will be rejected (indicating at least one of the experimental

treatments is harmful) if 49 or more adverse events have occurred in any of the
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experimental treatment arms. Those treatments that cause 49 or more adverse events
would be removed from future consideration as research continues. Full code for the
Des_Inf function is provided in Appendix E.
Columns 2 and 3 in Table 4 below provide the number of control group events

d., critical value w, true one-sided overall Type | error, and true pointwise power
achieved in an inferiority trial conducted under Design C for each combination of
nominal «,,,, = 0.05,0.025,0.01,0.001, nominal pointwise power = 0.9,0.8, K =
1,2,3,4,5, and rate ratio r = 10, 5, 2. The corresponding values obtained under the

Bonferroni procedure are provided for comparison in columns 8 and 9.
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Table 4: Number of control group events d, critical value w, true one-sided overall
Type I error, true pointwise power, and expected person years until trial termination in an
inferiority trial conducted under Design C for each combination of nominal «,,,,, =
0.05,0.025,0.01,0.001, nominal pointwise power = 0.9,0.8, K = 1, 2, 3,4, 5, and rate
ratior = 10,5, 2

Ao = 0.05, Pointwise Power = 0.9

r=10
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental | control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 3 0.03271484 5.898793 1.751874 1.751874 6 3 0.03271484
9 0.9288088 (3.276461) | (0.5902905) (0.5902905) | (3.4641) 9 0.9288088
2 3 0.03419927 8.923622 6.903292 3.06093 9 3 0.01928711
10 0.9112841 (5.023876) | (3.391291) (0.7516046) | (5.1962) 10 0.9112841
3 3 0.04653185 11.94335 9.927413 4.113392 12 4 0.01063538
10 0.9112841 (6.730296) | (5.110737) (0.8706497) | (6.9282) 13 0.948863
4 4 0.03319684 19.91971 17.21691 6.755959 20 4 0.01063538
13 0.948863 (9.807395) | (7.892682) (1.053144) (10) 13 0.948863
5 4 0.03904195 23.92759 21.22344 8.089269 24 4 0.006362915
13 0.948863 (11.76612) | (9.85241) (1.154536) (12) 14 0.9377837
r=5
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 6 0.04812622 11.83748 5.100476 5.100476 12 6 0.04812622
13 0.9347349 (4.615357) | (1.394228) (1.394228) (4.899) 13 0.9347349
2 7 0.04644442 20.8838 17.05177 9.87437 21 7 0.01734483
16 0.9394989 (7.700184) | (5.242304) (1.798618) (7.9373) 17 0.9250825
3 7 0.04282289 27.92929 24.29017 13.99833 28 7 0.01132792
17 0.9250825 (10.3649) (7.921618) (2.109547) (10.583) 18 0.9088288
4 7 0.03569877 34.90644 31.44871 18.39816 35 7 0.01132792
18 0.9088288 (12.9889) (10.55262) (2.495376) (13.2288) 18 0.9088288
5 7 0.04206158 41.94544 38.47876 22.02696 42 8 0.009578645
18 0.9088288 (15.63896) | (13.18809) (2.757675) (15.8745) 20 0.9322597
r=2
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 32 0.04439121 63.61826 46.44982 46.44982 64 32 0.04439121
47 0.9053749 (10.84462) (6.453644) (6.453644) (11.3137) 47 0.9053749
2 36 0.04983791 107.6929 98.4466 81.98854 108 37 0.02350578
54 0.9039034 (17.54011) | (12.57864) (7.775) (18) 56 0.9002963
3 40 0.04437004 159.789 150.0521 123.7223 160 41 0.01484111
61 0.9033769 (24.88359) | (19.52604) (9.259815) (25.2982) 63 0.9001535
4 41 0.04722764 204.6567 194.9315 159.4957 205 44 0.01114898
63 0.9001535 (31.45184) | (25.97006) (10.45654) (32.0156) 68 0.9035303
5 44 0.04298241 263.6148 253.3574 206.2918 264 45 0.009405374
68 0.9035303 (39.35477) | (33.55302) (11.95103) (39.7995) 70 0.9006217




Aopr = 0.05, Pointwise Power = 0.8

r=10
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 2 0.03515625 3.893 1.295922 1.295922 4 2 0.03515625
7 0.8397133 (2.621769) | (0.5237544) (0.5237544) | (2.8284) 7 0.8397133
2 2 0.03442004 5.928759 4.669951 2.307309 6 2 0.01953125
8 0.8057855 (4.081039) | (2.800944) (0.7361318) | (4.2426) 8 0.8057855
3 2 0.04663015 7.908185 6.66084 3.103153 8 3 0.01123047
8 0.8057855 (5.411604) | (4.154902) (0.8992955) | (5.6569) 11 0.8921663
4 3 0.0346426 14.95992 13.02681 5.59241 15 3 0.01123047
11 0.8921663 (8.455921) | (6.841925) (1.0836) (8.6603) 11 0.8921663
5 3 0.04064392 17.94046 16.01038 6.694534 18 3 0.006469727
11 0.8921663 (10.16118) | (8.53627) (1.214613) (10.3923) 12 0.8716265
r=5
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 4 0.04614258 7.856246 3.773724 3.773724 8 4 0.04614258
10 0.8419226 (3.751093) | (1.20563) (1.20563) (4) 10 0.8419226
2 5 0.04336439 14.89835 12.39962 7.802649 15 5 0.02452087
13 0.8603581 (6.498715) | (4.509587) (1.686832) (6.7082) 13 0.8603581
3 5 0.03815039 19.94745 17.61619 11.13858 20 5 0.01544189
14 0.8317516 (8.730277) | (6.778049) (2.12693) (8.9443) 14 0.8317516
4 5 0.04720239 24.9392 22.61022 13.90014 25 5 0.009605408
14 0.8317516 (10.96543) | (8.998929) (2.473376) (11.1803) 15 0.8011018
5 5 0.03580065 29.89399 27.72576 17.57759 30 5 0.009605408
15 0.8011018 (13.19443) (11.25984) (3.115025) (13.4164) 15 0.8011018
r=2
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental | control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets | groups meet | study
the rate the rate (std dev)
1 23 0.04347445 45.6915 34.90525 34.90525 46 23 0.04347445
36 0.8120462 (9.167689) | (5.466055) (5.466055) (9.5917) 36 0.8120462
2 27 0.04762805 80.79932 74.73955 64.26006 81 28 0.02218546
43 0.8150543 (15.18776) | (11.22864) (7.016001) (15.5885) 45 0.810087
3 29 0.04630678 115.7432 109.6676 93.71933 116 30 0.01539325
47 0.8053409 (21.02785) | (16.89242) (8.617734) (21.5407) 49 0.8008007
4 30 0.04866245 149.8836 143.749 121.8773 150 33 0.0114913
49 0.8008007 (27.05042) | (22.7615) (10.18055) (27.3861) 54 0.810509
5 33 0.04400853 197.7139 191.0972 161.2836 198 34 0.009593304
54 0.810509 (34.09813) | (29.49175) (11.9323) (34.4674) 56 0.8065126
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Ao = 0.025, Pointwise Power = 0.9
r=10
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 3 0.01928711 5.937082 1.934689 1.934689 6 3 0.01928711
10 0.9112841 (3.341794) | (0.6246614) (0.6246614) | (3.4641) 10 0.9112841
2 4 0.0192862 11.96407 9.24741 4.027862 12 4 0.01063538
13 0.948863 (5.908739) | (3.971093) (0.8320869) | (6) 13 0.948863
3 4 0.01634412 15.96754 13.34916 5.790758 16 4 0.006362915
14 0.9377837 (7.887217) | (5.969545) (0.9999513) | (8) 14 0.9377837
4 4 0.02050249 19.9567 17.33867 7.231522 20 4 0.003768921
14 0.9377837 (9.902123) | (7.976523) (1.123349) (10) 15 0.9255533
5 4 0.02428145 23.92454 21.31323 8.656039 24 4 0.003768921
14 0.9377837 (11.83856) | (9.918273) (1.241889) (12) 15 0.9255533
r=5
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 7 0.01734483 13.96953 6.664143 6.664143 14 7 0.01734483
17 0.9250825 (5.179042) | (1.594557) (1.594557) (5.2915) 17 0.9250825
2 7 0.02062968 20.94186 17.46969 10.98579 21 7 0.01132792
18 0.9088288 (7.819463) | (5.377859) (1.935409) (7.9373) 18 0.9088288
3 8 0.024463 31.99767 27.93848 16.46303 32 8 0.006270475
20 0.9322597 (11.1586) (8.511046) (2.273721) (11.3137) 21 0.9184688
4 8 0.02055981 39.96106 36.09587 21.49082 40 8 0.004065028
21 0.9184688 (13.99153) (11.35407) (2.656032) (14.1421) 22 0.9031455
5 8 0.02443801 48.06447 44.18032 25.7329 48 8 0.004065028
21 0.9184688 (16.88735) (14.22741) (2.934329) (16.9706) 22 0.9031455
r=2
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental | control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets | groups meet | study
the rate the rate (std dev)
1 37 0.02350578 73.80503 55.34858 55.34858 74 37 0.02350578
56 0.9002963 (11.89769) | (7.038925) (7.038925) (12.1655) 56 0.9002963
2 43 0.02426523 128.7276 118.4836 100.1501 129 44 0.01114898
66 0.9064897 (19.42252) | (13.94251) (8.622093) (19.6723) 68 0.9035303
3 45 0.02454158 179.8053 169.511 141.7709 180 48 0.007085245
70 0.9006217 (26.67894) | (20.91968) (9.934298) (26.8328) 75 0.9041789
4 48 0.02372738 239.9857 229.1444 189.7654 240 49 0.005979507
75 0.9041789 (34.41193) | (28.37823) (11.40086) (34.641) 77 0.9015333
5 49 0.0241933 293.9446 283.1032 233.3704 294 52 0.004515245
77 0.9015333 (41.84614) | (35.66927) (12.68077) (42) 82 0.9051912




Ao = 0.025, Pointwise Power = 0.8
r=10
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 2 0.01953125 3.933693 1.455974 1.455974 4 2 0.01953125
8 0.8057855 (2.694395) | (0.5693162) (0.5693162) | (2.8284) 8 0.8057855
2 3 0.02026146 8.946299 7.013559 3.332454 9 3 0.01123047
11 0.8921663 (5.088623) | (3.452993) (0.8056968) | (5.1962) 11 0.8921663
3 3 0.01650792 11.99713 10.14216 4.831156 12 3 0.006469727
12 0.8716265 (6.867643) | (5.237033) (1.026541) (6.9282) 12 0.8716265
4 3 0.0206614 14.96859 13.11979 6.036235 15 3 0.003692627
12 0.8716265 (8.501186) | (6.888807) (1.184813) (8.6603) 13 0.8498418
5 3 0.02442433 17.94604 16.10086 7.223628 18 3 0.003692627
12 0.8716265 (10.21003) | (8.589686) (1.344081) (10.3923) 13 0.8498418
r=5
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets groups meet study
the rate the rate (std dev)
1 5 0.02452087 9.934442 4.971259 4.971259 10 5 0.02452087
13 0.8603581 (4.328975) | (1.382582) (1.382582) (4.4721) 13 0.8603581
2 5 0.01751206 14.96774 12.78643 8.783331 15 5 0.009605408
15 0.8011018 (6.608705) | (4.676108) (1.906312) (6.7082) 15 0.8011018
3 5 0.02432663 19.98037 17.8014 11.77901 20 6 0.005311012
15 0.8011018 (8.796471) | (6.86718) (2.297437) (8.9443) 18 0.8275601
4 6 0.01745989 29.9498 27.38701 17.84703 30 6 0.005311012
18 0.8275601 (12.12675) (9.965438) (2.8659) (12.2474) 18 0.8275601
5 6 0.02076794 36.00566 33.43266 21.36612 36 6 0.003305376
18 0.8275601 (14.59913) | (12.42531) (3.261003) (14.6969) 19 0.8004705
r=2
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental | control group | error, true person specified alternatives person control group true Type |
treatment events, pointwise years (std dev) years in an events, error, true
groups critical value power under null One Tx All Tx uncurtailed critical value power
(std dev) group meets | groups meet | study
the rate the rate (std dev)
1 28 0.02218546 55.81946 43.76322 43.76322 56 28 0.02218546
45 0.810087 (10.34512) | (6.122978) (6.122978) (10.583) 45 0.810087
2 33 0.02116312 98.86306 92.22471 80.66971 99 33 0.0114913
54 0.810509 (17.01375) | (12.62668) (7.902318) (17.2337) 54 0.810509
3 34 0.02494717 135.8102 129.1732 111.7126 136 35 0.008010137
56 0.8065126 (23.03135) | (18.49798) (9.405326) (23.3238) 58 0.8026625
4 37 0.02400184 184.8859 177.7495 152.2413 185 38 0.006016488
61 0.8158823 (30.19847) | (25.3255) (11.18461) (30.4138) 63 0.8123113
5 38 0.02424881 227.6398 220.49 188.3215 228 40 0.004208497
63 0.8123113 (36.6618) (31.70998) (12.92202) (36.9865) 67 0.8055078




Aopr = 0.01, Pointwise Power = 0.9
r=10
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group error, true person specified alternatives person control true Type |
treatment events, pointwise years under (std dev) years in an group error, true
groups critical value power null One Tx All Tx groups | uncurtailed events, power
(std dev) group meets meet the rate study critical
the rate (std dev) value
1 4 0.006362915 7.983576 2.744378 2.744378 8 4 0.006362915
14 0.9377837 (3.957578) (0.740786) (0.740786) (4) 14 0.9377837
2 4 0.007005218 11.98091 9.452362 4.597527 12 4 0.003768921
15 0.9255533 (5.946372) (4.023498) (0.9153506) (6) 15 0.9255533
3 4 0.009878778 16.00131 13.46671 6.166522 16 4 0.002212524
15 0.9255533 (7.936204) (6.015303) (1.056736) 8) 16 0.9122111
4 4 0.007504341 19.97944 17.54007 8.161965 20 4 0.002212524
16 0.9122111 (9.981487) (8.05994) (1.279322) (10) 16 0.9122111
5 4 0.008991286 23.95095 21.51719 9.770237 24 5 0.001299739
16 0.9122111 (11.92227) (10.00686) (1.434854) (12) 19 0.9477567
r=5
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group error, true person specified alternatives person control true Type |
treatment events, pointwise years under (std dev) years in an group error, true
groups critical value power null One Tx All Tx groups uncurtailed events, power
(std dev) group meets meet the rate study critical
the rate (std dev) value
1 8 0.009578645 15.97783 7.869714 7.869714 16 8 0.009578645
20 0.9322597 (5.59112) (1.738256) (1.738256) (5.6569) 20 0.9322597
2 8 0.007596185 23.97032 20.27702 13.37436 24 8 0.004065028
22 0.9031455 (8.440379) (5.833577) (2.146999) (8.4853) 22 0.9031455
3* 9 0.009325584 35.97744 31.71103 19.6775 36 9 0.002275692
24 0.9270981 (11.93535) (9.116911) (2.510748) (12) 25 0.913969
4 9 0.007849683 45.05927 40.95815 25.49438 45 9 0.002275692
25 0.913969 (14.96858) (12.15911) (2.929551) (15) 25 0.913969
5 9 0.009439885 54.0328 49.93701 30.5355 54 10 0.001966587
25 0.913969 (18.0266) (15.19805) (3.246268) (18) 27 0.9347919
r=2
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group | error, true person specified alternatives person control true Type |
treatment events, pointwise years under (std dev) years in an group error, true
groups critical value power null One Tx All Tx groups | uncurtailed events, power
(std dev) group meets meet the rate study critical
the rate (std dev) value
1 45 0.009405374 89.91218 69.27616 69.27616 90 45 0.009405374
70 0.9006217 (13.32989) (7.873896) (7.873896) (13.4164) 70 0.9006217
2 52 0.008521284 155.9199 1445928 124.2503 156 52 0.004515245
82 0.9051912 (21.58629) (15.53184) (9.572744) (21.6333) 82 0.9051912
3 54 0.008763323 215.9388 204572 173.9552 216 54 0.003217405
86 0.9003806 (29.28457) (22.97742) (10.99487) (29.3939) 86 0.9003806
4 57 0.008601433 284.9611 273.077 230.017 285 57 0.002435871
91 0.9042405 (37.62912) (31.05191) (12.56655) (37.7492) 91 0.9042405
5 58 0.008852303 348.1368 336.224 281.6142 348 60 0.001846518
93 0.9020384 (45.76978) (39.01762) (13.96219) (45.6946) 96 0.9079486

* Design parameters for this row were obtained by substituting 10° in the upper limit of the integral for the Type |
error formula (see Equation 5.1.2) in the Des_Inf code.

95



Aopr = 0.01, Pointwise Power = 0.8
r=10
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group error, true person specified alternatives person control true Type |
treatment events, pointwise years under (std dev) years in an group error, true
groups critical value power null One Tx All Tx groups | uncurtailed events, power
(std dev) group meets meet the rate study critical
the rate (std dev) value
1 3 0.006469727 5.972426 2.285659 2.285659 6 3 0.006469727
12 0.8716265 (3.416178) (0.6955404) | (0.6955404) (3.4641) 12 0.8716265
2 3 0.00684373 8.975906 7.211382 3.853152 9 3 0.003692627
13 0.8498418 (5.158271) (3.541614) (0.9260471) (5.1962) 13 0.8498418
3 3 0.009630278 11.99483 10.22492 5.175775 12 3 0.002090454
13 0.8498418 (6.87807) (5.262187) (1.115422) (6.9282) 14 0.8269907
4 3 0.007054364 14.99365 13.30582 6.876503 15 3 0.002090454
14 0.8269907 (8.588582) (6.991712) (1.424767) (8.6603) 14 0.8269907
5 3 0.008443001 17.99235 16.3051 8.231803 18 3 0.001174927
14 0.8269907 (10.35406) (8.744416) (1.645541) (10.3923) 15 0.8032494
r=5
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group error, true person specified alternatives person control true Type |
treatment events, critical pointwise years under (std dev) years in an group error, true
groups value power null One Tx All Tx groups uncurtailed events, power
(std dev) group meets meet the rate study critical
the rate (std dev) value
1 5 0.009605408 9.990324 5.622902 5.622902 10 5 0.009605408
15 0.8011018 (4.421643) (1.502533) (1.502533) (4.4721) 15 0.8011018
2 6 0.009842686 17.96538 15.40048 10.66882 18 6 0.003305376
18 0.8275601 (7.295522) (5.141215) (2.058423) (7.3485) 19 0.8004705
3 6 0.008766978 23.99511 21.58674 14.93234 24 6 0.003305376
19 0.8004705 (9.752058) (7.628331) (2.624493) (9.798) 19 0.8004705
4 7 0.006432686 34.98367 32.19442 21.82139 35 7 0.001859583
22 0.8265294 (13.16383) (10.82797) (3.197795) (13.2288) 22 0.8265294
5 7 0.007741562 42.14228 39.32981 26.13677 42 7 0.001859583
22 0.8265294 (15.88123) (13.52096) (3.631462) (15.8745) 22 0.8265294
r=2
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group error, true person specified alternatives person control true Type |
treatment events, critical pointwise years under (std dev) years in an group error, true
groups value power null One Tx All Tx groups | uncurtailed events, power
(std dev) group meets meet the rate study critical
the rate (std dev) value
1 34 0.009593304 67.90258 54.58797 54.58797 68 34 0.009593304
56 0.8065126 (11.54017) (6.841786) (6.841786) (11.6619) 56 0.8065126
2 39 0.009462751 116.7911 109.6118 97.10712 117 40 0.004208497
65 0.808855 (18.62893) (13.86542) (8.704557) (18.735) 67 0.8055078
3 41 0.009540422 163.8427 156.5856 137.5359 164 43 0.003175812
69 0.8022641 (25.56137) (20.56941) (10.54688) (25.6125) 72 0.8149469
4 44 0.009333973 219.9841 212.2223 184.6081 220 45 0.002227512
74 0.811899 (33.07177) (27.77891) (12.41654) (33.1662) 76 0.8089351
5 45 0.009522206 269.9505 262.1602 227.129 270 46 0.001865723
76 0.8089351 (40.11444) (34.72178) (14.2406) (40.2492) 78 0.8060517
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aopr = 0.001, Pointwise Power = 0.9

r=10
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person control Type | error,
treatment events, critical pointwise years under (std dev) years in an group true power
groups value power null One Tx All Tx uncurtailed events,
(std dev) group meets | groups meet | study critical
the rate the rate (std dev) value
1 5 0.0007719398 10.0123 3.9329 3.9329 10 5 0.0007719398
20 0.9387666 (4.485938) (0.8907877) | (0.8907877) | (4.4721) 20 0.9387666
2 5 0.0008743739 15.01158 12.06768 6.415964 15 5 0.0004552603
21 0.9289592 (6.712832) (4.55437) (1.085284) (6.7082) 21 0.9289592
3 5 0.0007487147 20.02216 17.16854 8.975901 20 5 0.0002667606
22 0.9183452 (8.963022) (6.807211) (1.307772) (8.9443) 22 0.9183452
4 5 0.0009706419 24.98507 22.14079 11.20995 25 5 0.0001553744
22 0.9183452 (11.14538) (9.000686) (1.496245) (11.1803) 23 0.9069417
5 5 0.000698678 30.07172 27.30345 13.97195 30 5 0.0001553744
23 0.9069417 (13.47475) (11.32346) (1.77373) (13.4164) 23 0.9069417
r=5
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni true
experimental control group error, true person specified alternatives person control Type | error,
treatment events, critical pointwise years under (std dev) years in an group true power
groups value power null One Tx All Tx uncurtailed events,
(std dev) group meets | groups meet | study critical
the rate the rate (std dev) value
1 10 0.0008290263 19.98268 11.39437 11.39437 20 10 0.0008290263
29 0.910977 (6.341044) (2.099073) (2.099073) (6.3246) 29 0.910977
2% 11 0.0009081847 32.97134 28.28809 19.50176 33 1 0.000470337
32 0.9209501 (9.96132) (6.872559) (2.562185) (9.9499) 32 0.9209501
3t 11 0.0008571444 44.00483 39.49741 26.837 44 11 0.000303053
33 0.9090848 (13.25985) (10.18349) (3.018996) (13.2665) 33 0.9090848
4 12 0.0009886811 59.92714 54.85737 35.72402 60 12 0.0001730006
35 0.9296741 (17.282) (14.01526) (3.378549) (17.3205) 36 0.9192982
5 12 0.000789422 72.04075 67.13102 43.89268 72 12 0.0001730006
36 0.9192982 (20.83322) (17.5646) (3.880026) (20.7846) 36 0.9192982
r=2
Number of Number of True Type | Expected Expected Person Years Expected Bonferroni Bonferroni
experimental control group error, true person under specified alternatives person control True Type |
treatment events, critical pointwise years under (std dev) years in an group error, true
groups value power null One Tx All Tx uncurtailed events, power
(std dev) group meets | groups meet | study critical
the rate the rate (std dev) value
1 66 0.0008453577 131.9755 106.1604 106.1604 132 66 0.0008453577
107 0.9057528 (16.2538) (9.778866) (9.778866) (16.2481) 107 0.9057528
2 69 0.0009906176 207.0493 194.0932 170.8481 207 71 0.00045905
113 0.9001822 (24.9882) (18.03552) (11.23494) (24.9199) 116 0.9059773
3 73 0.0009389094 291.8217 278.4314 242.3819 292 73 0.0003275152
120 0.9025216 (34.19647) (26.84334) (13.03819) (34.176) 120 0.9025216
4 76 0.000940831 379.9758 366.0709 315.5337 380 76 0.0002497132
125 0.9064813 (43.43582) (35.84505) (14.68223) (43.589) 125 0.9064813
5 7 0.000980573 462.3637 448.3553 384.1871 462 78 0.0001781977
127 0.9048674 (52.70097) (44.90322) (16.23976) (52.6498) 129 0.9032685

+ Bonferroni values for this row were obtained by substituting 10° in the upper limit of the integral for the Type I error
formula in the Des_Inf code.
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aopr = 0.001, Pointwise Power = 0.8

r=10
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group error, true person specified alternatives person control True Type |
treatment events, critical pointwise years under (std dev) years in an group error, true
groups value power null One Tx All Tx uncurtailed events, power
(std dev) group meets | groups meet | study critical
the rate the rate (std dev) value
1 4 0.000744819 7.995816 3.467864 3.467864 8 4 0.000744819
18 0.8824026 (3.995293) (0.8617723) | (0.8617723) | (4) 18 0.8824026
2 4 0.0008204864 11.99013 9.817389 5.674194 12 4 0.0004277229
19 0.8660641 (5.988192) (4.118107) (1.12055) (6) 19 0.8660641
3 4 0.0006840587 16.00544 13.91007 7.946991 16 4 0.0002441406
20 0.8488657 (8.001619) (6.139492) (1.431762) 8) 20 0.8488657
4 4 0.0008862584 19.97916 17.88923 9.921867 20 4 0.0002441406
20 0.8488657 (9.97136) (8.113325) (1.689673) (10) 20 0.8488657
5 4 0.0006217585 24.0397 22.02267 12.37588 24 4 0.0001385808
21 0.8308855 (12.04926) (10.19584) (2.08553) (12) 21 0.8308855
r=5
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group error, true person specified alternatives person control True Type |
treatment events, critical pointwise years under (std dev) years in an group error, true
groups value power null One Tx All Tx uncurtailed events, power
(std dev) group meets | groups meet | study critical
the rate the rate (std dev) value
1 8 0.0006593636 16.00334 9.971721 9.971721 16 8 0.0006593636
26 0.827317 (5.674045) (2.007542) (2.007542) (5.6569) 26 0.827317
2 8 0.0007923881 23.98932 21.14072 15.9089 24 8 0.0004106977
27 0.8050986 (8.492664) (6.069242) (2.614148) (8.4853) 27 0.8050986
3 9 0.0006685265 35.96352 32.75027 23.85317 36 9 0.0002359934
30 0.8292057 (11.98107) (9.356992) (3.243882) (12) 30 0.8292057
4 9 0.000869796 45.06092 41.82748 29.80425 45 9 0.0002359934
30 0.8292057 (15.00252) (12.35957) (3.772347) (15) 30 0.8292057
5 9 0.0006700265 54.06693 50.99137 36.63959 54 9 0.0001470384
31 0.8087628 (18.1057) (15.4765) (4.590356) (18) 31 0.8087628
r=2
Number of Number of True Type | Expected Expected person years under Expected Bonferroni Bonferroni
experimental control group error, true person specified alternatives person control True Type |
treatment events, critical pointwise years under (std dev) years in an group error, true
groups value power null One Tx All Tx uncurtailed events, power
(std dev) group meets | groups meet | study critical
the rate the rate (std dev) value
1 51 0.0009943432 101.9314 85.28772 85.28772 102 51 0.0009943432
87 0.8101087 (14.28051) (8.573397) (8.573397) (14.2829) 87 0.8101087
2 55 0.000956185 164.9128 156.5008 141.8629 165 55 0.0004916666
95 0.800315 (22.24269) (16.64607) (10.54808) (22.2486) 95 0.800315
3 59 0.0009015878 236.0527 227.0928 203.6122 236 59 0.0003146735
102 0.8075131 (30.75402) (24.70533) (12.73727) (30.7246) 102 0.8075131
4 60 0.0009923353 299.9331 290.972 259.2723 300 61 0.0002216631
104 0.8053415 (38.7307) (32.62529) (14.93282) (38.7298) 106 0.8032139
5 62 0.0008655343 371.8901 362.8875 322.5611 372 62 0.0001860506
108 0.8011291 (47.327) (41.04687) (17.22202) (47.244) 108 0.8011291
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We next provide the formulas for partial power and full power in the context of
testing for treatment inferiority. Partial power denotes the probability that at least one
truly inferior experimental treatment is found to be inferior to the control, assuming that
the alternative hypothesis in Equation 5.1.1 is true. To calculate partial power, we
compute P(max(D;, ..., Dg) = w) under the alternative hypothesis in Equation 5.1.1. The

result again follows from Equation 4.2.5 and is given by
P(max(Dl, D) =w) =

®¢dc—1 e M)’ e t)° e (K) (5.1.4)
D I

Full power corresponds to the probability that all truly inferior experimental treatments

S=

are found to be inferior to the control, assuming that the alternative hypothesis in
Equation 5.1.1 is true. In this case, the number of events in all truly inferior experimental
treatment groups must be sufficiently large. Hence, we must find P(min(Dy, ..., D) =
w) under the alternative hypothesis in Equation 5.1.1 and we proceed as follows:
P(min(Dy, ...,Dg) = w|t) =1 — P(min(D;, ..., Dg) < w|t)

=1— P(min(Dy, ..., Dg) < w — 1|t)

Therefore, by Equation 4.2.4, we have

P(min(Dy, ...,Dg) = w) =

f‘”tdc_le‘f ) Vf e (0)*
o Tl | &5 Tl

As was noted in Section 4, the number of elements in Equations 5.1.4 and 5.1.5 should, in

S.

=0

theory, be appropriately reduced to the number of truly inferior experimental treatments,

though this value will not be known in practice.
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Recall that an important consideration for investigators is the expected number of
person years of follow-up until trial termination, as the longer a study lasts or the larger
the number of subjects which need to be enrolled, the greater the expenses. We therefore
turn our attention to calculating the expected number of person years until trial
termination in an inferiority study. We will consider trials conducted under both
uncurtailed and fully curtailed stoppage.

In an uncurtailed design, the trial will stop only when the control group reaches

d. events, so the formulas for the expected number and variance of person years are

given by (K + 1) X % and (K + 1)% x id—“;, respectively (the same as in an uncurtailed
C C

superiority trial). We will, as in Section 4.6, assume that i, = 1 for the following

derivations concerning subject follow-up in inferiority trials, keeping in mind that, in

practice, multiplication by ll will need to be performed when reporting the expected
Cc

amount and standard deviation of follow-up.
In a fully curtailed inferiority trial, the stopping rules are as follows:

e Follow-up is stopped for any experimental treatment arm that reaches w events
prior to the control arm reaching d. events and H,, is rejected for all such
experimental treatment arms.

e The entire study is stopped if the control arm reaches d events (before all
experimental treatment arms reach w events), and H,, is accepted for all
experimental treatment arms which have not yet reached w events.

o If all experimental treatment arms reach w events before the control arm reaches
d. events, then the entire study is stopped and H,, is rejected for all experimental

treatment arms.
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The algorithms to calculate the expected number and standard deviation of person years
of follow-up until trial termination in a fully curtailed inferiority study are identical to
those presented in Section 4.6 for superiority trials, with one modification. In Section 4.6,
follow-up of an experimental treatment arm was discontinued once it reached m + 1
events. In the inferiority setting, follow-up of an experimental treatment arm will
terminate once it reaches w events. Hence, replacing m + 1 with w in the algorithms in
Section 4.6 will yield the desired results for inferiority studies. Estimates of the expected
number and standard deviation of person years of follow-up until study termination for
inferiority trials are included in Table 4 for the specified parameter combinations™.
Values are computed under the null hypothesis (see column 4) and under two specific
alternative hypotheses: (1) one new treatment group has the rate ratio r specified in the
table, and the remaining K — 1 new treatment groups have rate ratio equal to one (see
column 5), and (2) the indicated value of r in the table holds for all new treatments under
study (i.e. r, =1, = - = r¢ = r) (see column 6). Table 4 also contains the expected
number and standard deviation of person years until trial discontinuation for an
uncurtailed study (with i = 1) in column 7.

Figure 6 displays the ratio of curtailed to uncurtailed expected person years in an
inferiority trial for each combination of design parameters in Table 4; in particular, the
ratios of the values in column 4 to column 7 (labeled “Curtailed-Null””), column 5 to
column 7 (labeled “Curtailed-Alt (One)”), and column 6 to column 7 (labeled “Curtailed-
Alt (All)”) in Table 4 are plotted in Figure 6. Figure 6 illustrates that the expected

number of person years is reduced the most in a fully curtailed inferiority trial when the

% The person year values in columns 4 through 6 of Table 4 were estimated using Null_Time and Alt_Time
with 100,000 simulations; note that these functions return results based on assuming i, = 1.
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alternative hypothesis is true. This is because events tend to accumulate more quickly in
the experimental treatment arms under the alternative hypothesis than the null hypothesis,
and hence reach w events (the time at which follow-up of the experimental treatment

arms can be terminated) more quickly.
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Figure 6: Ratio of fully curtailed to uncurtailed expected person years of follow-up
for inferiority trials with design parameters given in Table 4
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5.2: Two-sided Test Combining One-sided Superiority and Inferiority Boundaries
We now present a two-sided test which combines the information obtained from the test
of the hypotheses in Equation 4.2.1 corresponding to demonstrating treatment superiority
and the test of the hypotheses in Equation 5.1.1 corresponding to demonstrating treatment
inferiority. The proposed two-sided test will allow researchers to determine whether
rejection of the null hypothesis for an individual experimental treatment group is due to
superiority of the experimental treatment in comparison to the control (i.e. a sufficiently
small number of events occur in the experimental treatment group compared to the
control) or is due to inferiority of the experimental treatment in comparison to the control
(i.e. too many events occur in the experimental treatment group compared to the
control)®.

Based on these considerations, the two sided hypotheses are as follows:

HO: il = iz = = iK = iC versus Ha: il = rlic, iz = Tzic, "'FiK = rKiC
where at least one of the 1, # 1

(5.2.1)
We will reject the null hypothesis that all experimental treatments are statistically
equivalent to the control in terms of efficacy in favor of the alternative hypothesis when

either few enough or too many events occur in at least one of the experimental treatment

groups.

“0 Throughout Section 5.2, when a sufficiently small number of events are observed in a new treatment
group we declare the new treatment to be superior to the control, as we have implicitly taken “events” to
mean number of disease cases. This may be an appropriate assumption in the context of most clinical trials,
but in other, perhaps non-clinical, settings, rejection due to too few or too many events may both be
indicative of an undesirable comparator. Consider the following example: suppose there are several new
radiation-detection devices which need to be calibrated. Each will be exposed to the same number of
radioactive particles, as controlled by study investigators, and compared to a control device which is known
to detect the amount of radiation with sufficient accuracy. If a new device reads too few or too many
particles, it will be declared inadequately calibrated. In either case, misreading the amount of radiation
could have significant practical consequences, and, as such, rejection in either direction is indicative of an
inadequate comparator.
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We can construct a conservative two-sided test with a two-sided overall Type |
error of a,,,- for the hypotheses in Equation 5.2.1 by combining the one-sided tests for
superiority (see Section 4.2) and inferiority (see Section 5.1) using the Bonferroni
approach. We define a “balanced two-sided test” to be one in which the two-sided overall
Type | error is equally allocated to the one-sided superiority and inferiority tests; that is,
the parameters for the balanced two-sided test are derived from the one-sided superiority and
inferiority tests each at significance level «,,,-/2. By the Bonferroni method, the two-sided
overall Type I error of the balanced two-sided test is < a,y/2 + Qppr/2 = Ay Whenin
addition the superiority test is powered using rate ratio r and the inferiority test is powered using
rate ratio 1/r (power is taken to be pointwise for both of the one-sided tests), the test will be
referred to as a “completely balanced two-sided test”. In contrast, the term “unbalanced two-sided
test” will denote tests for which the level of significance allocated to the one-sided superiority
and inferiority tests are a; and a,, respectively, where a; + a, = @, and a; # a,.

To construct the two-sided test at overall significance level a; + @, = a,,,, We
need to find the following parameters:

1. The number of events to observe in the control group d. when testing for
superiority at significance level a;. For the remainder of this subsection, we will
refer to this value as dg, the subscript S identifying that the value is obtained
from a superiority trial.

2. The critical value m from the test of superiority at significance level a;.

3. The number of events to observe in the control group d. when testing for
inferiority at significance level a,. For the remainder of this subsection, we will
refer to this value as d;, the subscript I identifying that the value is obtained from

an inferiority trial.
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4. The critical value w from the test of inferiority at significance level a,.
Hence, there are four values (d.s, m, d;, and w) needed to construct the two-sided test.
There are six possible arrangements* for these values, each of which is displayed on a
number line in Figure 7 below, where the x-axis is discrete and enumerates number of
events.

For a balanced two-sided test we require that a; = a, = a,,,,-/2, and for a
completely balanced two-sided test we impose the additional restriction that the
parameters d.s and m are determined from a superiority trial powered using rate ratio r
and the parameters d; and w are determined from an inferiority trial powered using rate

ratio 1/r.

*! For the sake of brevity, in Figure 7 we do not present cases in which the parameter values coincide.
Based on the parameter values in Tables 2 and 4, of the 120 completely balanced two-sided tests we
observed 12 cases where m = d;, 94 cases where w = dg, and 14 cases where there was no overlap of
parameter values. No test had more than two coinciding parameter values. Also for the completely balanced
two-sided tests constructed from the values in Tables 2 and 4, we observed only configurations (1), (2), and
(3) in Figure 7. However, we suspect that it may be possible to obtain the remaining configurations in the
case of the more general unbalanced two-sided test.
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Note that it is impractical to conduct an uncurtailed trial in the two-sided test
setting. This is because if the study were to continue until the control group reaches
max(dcs, d¢;), then some of the new treatment groups would have needless (and hence
uneconomical) follow-up depending on the configuration of the study parameters, or the
decision made at min(dg, d;) for each new treatment group could be contradicted at
max(dcs, d¢;). Consider configurations (1) through (4) in Figure 7; in these
configurations, max(dcs, d¢c;) = dcs and m < w. These configurations imply that the
control group reaches d; events before d.¢ events, at which time the new treatments
would be evaluated for inferiority. If any of the new treatments have reached w events at
this time, they would be declared inferior to the control, and hence it would not make
statistical nor economic sense to continue follow-up in these arms and subsequently
evaluate them for superiority once the control group reaches d s events, as they have also
already exceeded m events (since w > m). Now, consider configuration (5) in Figure 7
in which the control group reaches d.s events prior to d.; events. Suppose a given new
treatment group has not reached m + 1 events by the time the control group reaches d g
events. The new treatment will then be declared to be superior to the control. If the trial is
uncurtailed, the new treatment group will continue to be followed until the control group
reaches d; events. As the trial continues, if the new treatment group accumulates w
events prior to the control group reaching d.; events, it would indicate that the new
treatment is inferior to the control, thus contradicting the decision made when superiority
was evaluated at the time the control group reached d.s events. Similar rationale applies
to configuration (6). These examples illustrate that it is not sensible to conduct an

uncurtailed trial in the two-sided test setting.
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A fully curtailed trial is possible for the two-sided setting, and the rules of
stoppage for each treatment arm are as follows:

e If agiven new treatment arm reaches w events prior to the control group reaching
d.; events, then discontinue follow-up in the new treatment arm and declare the
new treatment to be inferior to the control.

e |f at the time the control group reaches d; events a given new treatment arm has
accrued [m + 1,w — 1] events, discontinue follow-up in the new treatment arm
and declare the new treatment to be neither inferior nor superior to the control.

e While the number of events observed in the control group is in [d¢; + 1, dcs], ifa
given new treatment arm reaches m + 1 events, discontinue follow-up in the new
treatment arm and declare the new treatment to be neither inferior nor superior to
the control.

e If a given new treatment arm has accrued less than m + 1 events at the time the
control group reaches d.s events, then discontinue follow-up in the new treatment
arm and declare the new treatment to be superior to the control.

e Follow-up of the control arm is terminated at the earliest of (1) a decision is made
for all new treatment arms (i.e. there are no longer any active new treatment arms
because each new treatment has been declared inferior, superior, or neither
inferior nor superior to the control) and (2) the control arm reaches max(ds, d¢;)
events.

Though the rules above apply, in theory, to configurations (5) and (6), their practical
application to these configurations is questionable. This is because in configuration (5),

the superiority boundaries occur prior to the inferiority boundaries, and vice versa for
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configuration (6). In configuration (5), follow-up of all new treatment arms which have
< m events when the control arm reaches d.s events will be terminated and the new
treatments declared superior to the control, while all new treatment arms with > m + 1
events are followed until the control arm reaches d; events, at which time these
treatments are evaluated for inferiority. These rules indicate that the new treatment arms
that are declared superior to the control at the time the control reaches d.s events are not
evaluated for inferiority. It could be argued that if these treatment arms were followed
until the control arm reaches d; events, they may accumulate w events, leading to a
seemingly contradictory classification of the treatments as inferior. Take for example a
trial with parameters m = 3,d.s = 9,d; = 12, and w = 17, and suppose that one of the
new treatments is declared superior to the control as the treatment group has accrued < 3
events by the time the control arm reaches d.s = 9 events. Rather than terminate follow-
up in this new treatment arm per the curtailment rules, suppose instead that follow-up of
this new treatment arm were continued until the control arm reaches d; events. If at this
time the number of events in the new treatment arm is > 17, then the treatment would be
declared inferior to the control as it has reached the value of w. Researchers may
therefore be concerned that configuration (5) could lead to an improper designation of
treatment superiority as not all new treatments are evaluated for both superiority and
inferiority. Similar reasoning also applies to configuration (6). However, such a reversal
is unlikely to happen (i.e. by chance alone), unless a time-mediated change in the rate of
events is observed.

We next provide an example of the completely balanced two-sided test. Suppose

there are five experimental treatments under study and we wish to determine whether any
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are statistically significantly different from the control at a two-sided overall Type I error
. = 0.05, power equal to 0.8, and for a rate ratio of r = 0.2 when an experimental
treatment is superior to the control and a rate ratio of 1/r = 1/0.2 = 5 when the
experimental treatment is inferior to the control. We use Des_Sup(5,0.025,0.2,0.9) and

Des_Inf(5,0.025,5,0.9) to find the trial design parameters (i.e. we find the design

parameters using the one-sided trial parameters at level of significance % = 0.025 and
at pointwise power v. 8 ~ 0.9)*. Using these functions (or extracting their values from
Tables 2 and 4), we find the design parameters d.g = 22, m = 7,d, = 8,and w = 21.

These parameters are consistent with configuration (3) in Figure 7.

5.3: Two-sided Test Based on the Chi-squared Distribution for Detection of a
Cumulative Signal

The hypotheses in Equation 5.2.1 can also be tested using a test-statistic which follows a
chi-squared distribution under the null hypothesis. This test will reject based on the
cumulative difference of the experimental treatment groups from the control; that is, the
probability of rejection increases when an experimental treatment is either superior or
inferior to the control treatment.

Steyn (1955) proved that for X, X,, ..., X,~NM (v, py, P1, ---, Prn), the statistic

n (xi - v&)z (v + Y X — %)2

2 Po/
X—Z V& v

i=1 Po Do

asymptotically follows a chi-squared distribution with n degrees of freedom. Since

Dy, D,,...,Dgld; ~ NM (dc, dd b L2 e — ) under Design

. . ) . ) . . ) ) .
lC+ZI]c(=1 Lk lC+ZI]({=1 Lk lC+ZI]c(=1 Lk lC+ZI]c(=1 lk

C, we know that

*2 See Section 6 for a discussion of the power of the two-sided test.
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asymptotically follows a chi-squared distribution with K degrees of freedom, where d; is
an observed value of the random variable D; for j = 1,2, ..., K. Under the null hypothesis

in Equation 5.2.1, the negative multinomial distribution is balanced, and so i; = i, =

-+ = ix = ic. Thus, under the null hypothesis, the chi-squared test statistic is

2
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Thus, we will reject the null hypothesis in Equation 5.2.1 in favor of the alternative at
level of significance a when x2,,, exceeds the critical value 2 x, where P(x% >
X(%:,K) =a.

To illustrate this test, consider an agricultural experiment in which five plants of
the same species are each exposed to a different agent, four being experimental pesticides
and one being a control treatment (no exposure to pesticides). The outcome variable in
this experiment is the number of holes in each plant due to insect activity. Assuming
holes appear in the leaves over time according to a Poisson process, the NMD

characterization is appropriate for this study given that we stop the experiment once a
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pre-specified number of holes appear in the control plant. We will use the chi-squared
test to determine if the ability of any of the pesticides in repelling insects is different from
that of the control treatment. Suppose we wait until d. = 20 holes are found in the leaves
of the control plant, and, at that time, the number of holes found in the four remaining

plants are d; = 16,d, = 13,d; = 23, and d, = 18. Then, our test statistic is

4 2
d; — 20 70 — (20 * 4))?
X‘Izlull:z(] ) —( ( )

— 0.8+ 245+ 045+ 02 —1 =29
20 (20 % 5) Todo 04

j=1
If we conduct the test at significance level 0.05, the critical values is x§ s 4 =~ 9.488.
Hence, since our test statistic does not exceed the critical value at 5% significance, we do
not have enough evidence to conclude that the efficacy of any of the experimental
pesticides in protecting the plant species from insect damage is different from that of the
control treatment.

As a final example of the application of the chi-squared test, suppose a
manufacturer is evaluating five potential suppliers to provide a machine component. The
manufacturer wants to know if any of the potential suppliers produce the component with
a different rate of breakdown than the current supplier, so that the manufacturer can
evaluate prospective business partners (we assume the number of breakdowns over time
follows a Poisson distribution so that the chi-squared test is applicable). As such, the
manufacturer orders one component from each of the potential suppliers and records the
number of times each one breaks down. The experiment is terminated when the current
supplier’s component reaches 12 breakdowns. Suppose that the number of breakdowns at
this time among the five potential suppliers’ machine components isd, = 7,d, =

5d; =16,d, = 3, and ds = 3. The test statistic is thus
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The critical value at 5% significance is approximately 11.071. Thus, at 5% significance,
the null hypothesis is rejected and the manufacturer can conclude that at least one
potential supplier provides a machine component with a different rate of breakdown than
the component of their current supplier. One limitation to this test, however, is that it
does not identify which supplier(s) are different, albeit the most extreme deviations could
perhaps be identified qualitatively. The manufacturer would want to subsequently
identify which supplier(s) can provide a component less prone to failures and may also
want to know which supplier(s) produce machine components which are prone to high
rates of failure so that they can avoid using these suppliers in the future.

This lack of identification of which new condition(s) is different from the control
is an important difference between the chi-squared test and the two-sided test combining
the one-sided superiority and inferiority boundaries discussed in Section 5.2. In the
context of clinical studies, the two-sided test based on the chi-squared distribution rejects
based on the cumulative difference of the experimental treatment groups from the
control. That is, the value of the test statistic increases when a treatment is either superior
or inferior to the control. However, if the null hypothesis in Equation 5.2.1 is rejected, the
chi-squared test does not indicate which of the experimental treatment groups are
responsible for the rejection (i.e. it does not indicate which experimental treatments are
superior or inferior to the control). This information is often desired by researchers,
making the usefulness of the chi-squared test limited. In contrast, the two-sided test

which combines the one-sided superiority and inferiority boundaries does identify which
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individual experimental treatments are superior or inferior to the control and responsible
for rejection of the null hypothesis in Equation 5.2.1.

5.4: Pairwise Tests of Experimental Treatments

Thus far, all evaluations of the superiority or inferiority of experimental treatments have
been conducted in comparison to a control treatment. Another interest may be in
comparing the efficacy of the experimental treatments to each other, even if the study is
being conducted as a negative multinomial process with stoppage at a specified number
of events in the control group. Consider if multiple experimental treatments are declared
superior to the control, then investigators will likely want to further know which
experimental treatment is the most effective so that resources can be invested into this
treatment. This is important as the expenses associated with development of a drug
increase as the drug advances through the necessary clinical trials for approval.

Dose ranging studies provide a natural setting for comparing experimental
treatments to each other. Though such studies may include a control group, the primary
objective is to compare varying doses of a drug to determine the minimal effective and
maximum tolerable doses so that an optimal dosing strategy can be determined for
subsequent clinical trials.

In this dissertation, comparison of the experimental treatments to each other will
depend upon the fact that if X, X,, ..., X, ~NM (v, po, p1, P2, ---, Pr), then conditional on
the sum X; + X, + -+ + X,,, the distribution of X;, X, ..., X,, is multinomial with

pj

parameters Y™, x; and ———,j = 1, ...,n. The proof is as follows™®:

i=1 Di

*® The desired result is stated (without a formal proof) in Lemma 1 in Tsui (1986, pages 47-48). Lemma 1
also states that the distribution of Y™, X; is negative binomial with parameters v and 1 — I, p;, a fact
that is used in our proof.
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So, pairwise comparisons of experimental treatment groups can be conducted using the
multinomial distribution. Under Design C, by Equation 2.4.1 we know that the
parameters in our multinomial distribution are ¥X_, d, and i]-/Zf=1 i, forj =1,2,..,K.
An exact multiple comparisons test for the multinomial distribution was

developed by Shaffer (1971). For a multinomial distribution with k outcome categories,
Shaffer’s exact test simultaneously tests the k(k — 1) hypotheses of the form Hy: p; <
pj vs Hy:p; > pjand Hy:p; = pj vs Hy:p; < p; forall i # j. For example, for a
trinomial distribution there are six hypotheses as listed below:

Ho:py < p, vs Haipy > p,

HE:py 2 pa vs HE:py < p2

H3:py < ps vs H3:py > ps

Hg:p1 = p3 vs Hg:py < ps

HG:p, < p3 vs H3:p, > p3

H§:p, = p3 vs HG:p, < p3
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For the comparison of experimental treatment groups under Design C, the hypotheses
equate to tests of Hy: i, < if vs Hy: i, > i and Hy: i, = i vs Hy: i, < if forall

e,f €{1,2,..,K}and e # f. As Shaffer’s work is quite technical, condensing the results
here would be insufficient. As a result, we instruct readers to consult the original
publication, which contains full details of the testing procedure as well as examples of its
implementation. It is then simple to understand its potential for application to the
pairwise comparison of experimental treatments in a trial conducted under Design C

methodology.
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SECTION 6: FUTURE DIRECTIONS
The landscape of clinical trials has rapidly expanded, and trials evaluating the efficacy
and/or safety of three or more treatments are now relatively common (Parmar, Carpenter,
and Sydes, 2014). As such, a number of clinical trials aim to compare multiple
experimental treatments to a single control. In this dissertation, we have provided an
approach to conducting studies of this nature based upon waiting for a fixed number of
events to occur in the control arm, leading to tests based on the negative multinomial
distribution. This methodology represents an alternative approach to the multivariate
extensions of Gail’s Designs A and B (wait until a total number of events have occurred
among the study arms or wait until a predetermined amount of time has elapsed,
respectively), which are based on the multinomial distribution. We have provided
methods for conducting one-sided global tests of treatment superiority and inferiority and
combined these results to construct a two-sided test. Finally, we explored the possibility
of comparing experimental treatments to each other using the work of Shaffer (1971).
However, several open questions are implicated by the work in this dissertation and are
discussed below.

Order Statistics of the Negative Multinomial Distribution

In Section 3, equations representing the distribution of discrete order statistics provided
in Theorem 1 from Casella and Berger (2002), in conjunction with the comparative
Poisson formulation of the negative multinomial distribution, were used to compute
probabilities related to the order statistics of a balanced NMD. As one of the
requirements of Theorem 1 is a sample of i.i.d. random variables, the theorem cannot be

directly applied in the case of an unbalanced NMD, as the random variables are no longer
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identically distributed. As a result, estimates of probabilities concerning order statistics of
an unbalanced NMD were obtained via simulation. Though simulating a very large
number of counts from an NMD provides sufficient accuracy for practical purposes, it
remains of theoretical interest as to whether the comparative Poisson representation of the
NMD can be used to provide a formula for the order statistics of an unbalanced NMD. In
undertaking such work, it may be simplest to start by finding a representation for partially
balanced NMDs, which constitute a subset of the unbalanced distributions.

One-sided Tests of Superiority and Inferiority

In Section 4, we presented the methodology for comparing multiple experimental
treatments to a single control to determine if at least one experimental treatment had
superior efficacy relative to the control. In Section 5, the corresponding test for treatment
inferiority was presented. It is important to remember that the formulas for these tests of
hypotheses were derived under the assumption of equal allocation of person years among
the experimental and control treatment groups. However, to augment the utility of the
tests, derivation of the formulas and updates to the Des_Sup and Des_Inf codes
accommodating unequal allocation ratios is of interest.

Incorporating unequal allocation ratios is important for several reasons. Firstly, it
is not always feasible to satisfy a 1: 1: ...: 1 allocation ratio, even if such was intended,
due to difficulties in recruiting certain patient populations. Secondly, depending on the
specified alternative hypothesis, unequal allocation can reduce the total number of person
years of follow-up or total number of subjects required for the trial (see Fleiss (1986),
page 96). Finally, there may be a gain in statistical power in allocating a larger portion of

study subjects to the control arm while keeping the portions allocated to each
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experimental treatment arm equal. Equivalently, in some settings it has been shown that
variance of the treatment effect estimate is minimized by allocating more person years of
follow-up or subjects to the control arm, and such may be the case here (Dunnett, 1955
and Hoover and Blackwelder, 2001). This interest in unequal allocation ratios leads quite
naturally to the subsequent objective of optimizing the allocation ratio to minimize the
expected number of person years of follow-up until trial termination. Optimization of the
allocation ratio will depend on whether the null or specified alternative hypothesis is
assumed to be true.

The R functions Des_Sup and Des_Inf return the necessary parameters for
designing a superiority or inferiority trial, respectively, under Design C. For a specified
one-sided overall Type I error, a desired minimum level of pointwise power, and a given
value of the rate ratio, these functions provide the number of control events which must
be observed in the trial and the critical value for the test of hypothesis. Rather than
determine the parameters needed to satisfy a required minimum power, researchers may
be interested in determining the range of values of the rate ratio r under the alternative
hypothesis which can be distinguished between the experimental treatment arms and the
control arm at a given level of power. This question is of practical interest as the results
of preclinical and early-phase studies are often used to inform researchers of appropriate
parameter values for use in the design of large-scale trials.

Expected Person Years of Follow-up in Curtailed Design C Studies

Following the development of the methodology for conducting a test of superiority or
inferiority, we considered the expected number of person years of follow-up until trial

termination. As operating a trial under curtailed stopping rules can lead to a considerable



122

reduction in the total amount of person years and resources required for the study,
algorithms were presented to estimate the expected number and standard deviation of
person years until trial termination. The exact distribution for the number of person years
was not provided as deriving this distribution may require enumeration of all possible
ways the experimental treatment groups and the control group can acquire events leading
to study stoppage. Though the simulated values are sufficiently accurate for practical use,
obtaining the exact distribution for the number of person years in curtailed trials remains
an open problem.

Stoppage at Interim Analysis Due to Futility

Another idea of interest is trial stoppage due to futility evaluated at one or more interim
analyses. At an interim analysis, the conditional probability of rejecting the null
hypothesis given the current collected data and assuming that the specified alternative
hypothesis is true is computed (Snapinn et al., 2006). If this probability is high enough
(based on a predetermined threshold), then the trial will continue. Otherwise, the trial is
terminated early, again to “cut one’s losses” and obtain a reduction in expenses. This
differs from early termination due to curtailment, because under curtailment the trial is
stopped early only once the ultimate decision is known (which is why the rejection
regions under an uncurtailed and curtailed design coincide). Under futility stoppage, the
decision made at the end of the trial is projected at an interim analysis using conditional
probabilities, meaning that there is a non-zero probability that the decision to terminate
the trial early at an interim analysis could be proven incorrect if the trial were to be
continued to completion. As an example of futility under Design C, consider a clinical

trial for superiority in which K = 3, d. = 30,and m = 18. Suppose that one interim
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analysis is conducted when the control group reaches 15 events, and at this time, the
number of events observed in the three experimental treatment groups is X; = 8, X, =

10, and X5 = 7. This example is illustrated below in Figure 8.

m-= 18 dC = 30
Tx 1 o
Tx 2 ®
Tx 3 PY Interim analysis conducted
when the control group
/ reaches 15 events
Control l
} } + } }
5 10 15 20 25 30

Number of Events

Figure 8: Example of a superiority trial under Design C with study
parameters K = 3, d. = 30,and m = 18 and one interim analysis
conducted when the control group reaches 15 events

Suppose further that we will only proceed with the trial if there is greater than a 90%
chance that the null hypothesis in Equation 4.2.1 will be rejected once the control group
reaches 30 events based on the data collected at the interim analysis and assuming that
the alternative hypothesis in Equation 4.2.1 is true; otherwise, we will terminate the trial
at the interim analysis. To decide whether the trial will continue, we must calculate

P(at least one Tx group has < 18 events when the control reaches 30 events
| X1 = 8,X, = 10,X; = 7 when the control reaches 15 events)

If this probability is greater than 90%, then the trial will proceed until the control group

reaches 30 events (i.e. the trial will proceed to completion). Otherwise, the trial will be
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terminated early at the interim analysis as there is too great a chance that the trial will fail
to reach significance at the end of the study. Computing the aforementioned conditional
probabilities is a potential area of future research. Note that thus far, futility has been
discussed in terms of terminating the entire trial if acceptance of the specified alternative
hypothesis at the end of the study appears unlikely at interim analysis; we may also want
to make decisions for individual treatment arms. For example, if at interim analysis in a
superiority trial one or more treatment arms are projected to have too large a probability
of reaching m + 1 events by the time the control group reaches d events , then follow-
up in those individual arms would be terminated at the interim analysis. Returning to the
example depicted in Figure 8, to make an individual decision for treatment 1 we would
need to compute

P(X; < 18 events when the control group reaches 30 events
|X; = 8 when the control group reaches 15 events)

The event in the expression above is clearly characterized by a negative binomial process,

and, using the marginal distribution of X, the probability may be calculated as P(X; <
18 — 8 = 10) where X;~NB (30 —15 = 15,%). If this probability is sufficiently
1

large, follow-up in treatment group 1 would continue until the control group reaches 30
events; otherwise, follow-up of treatment group 1 is terminated at the interim analysis as
there is too great a chance that the treatment group will reach m + 1 = 19 events and the
treatment found non-superior to the control at the time of stoppage at d. = 30 events in
the control group. Similar calculations would guide individual decisions for treatment
groups 2 and 3.

As a final note on trial designs which incorporate futility analysis, futility can be

combined with curtailment, and determining the futility bounds in this formulation would
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also require additional work. An easily implemented closed-form solution for the
expected number of person years of follow-up under a design which implements both
curtailment and one or more interim analyses for assessment of futility may be difficult to
achieve, but it may be possible to use simulation to estimate this value.

Power of Two-sided Hypothesis Tests

In Section 5, the one-sided tests of superiority and inferiority were combined to create a
conservative two-sided hypothesis test. We did not discuss the overall power of the two-
sided test due to difficulties in specifying appropriate definitions of power and deriving
the corresponding power formulas; thus, power was selected individually for each
direction (i.e. direction of treatment superiority and treatment inferiority). Defining and
deriving the overall power of the two-sided test therefore remains an area of future work.
A two-sided test based on the chi-squared distribution, first introduced by Stein (1955),
was also described in Section 5. The power of this test was not found in the literature and
was not addressed in this dissertation but may be of interest to other researchers.

Back-Up Approaches Under Failure to Reach d- Events in a Trial Conducted Under
Design C

Throughout this dissertation, it has been assumed that a clinical trial conducted under
Design C will terminate once the control group reaches d. events (unless curtailment is
used in which case the trial may stop earlier once all experimental treatment groups have
reached m + 1 or w events in a superiority or inferiority trial, respectively). However, in
practice, investigators may need to stop a clinical trial prior to the control arm
accumulating d. events due to time or financial restrictions. This may occur if the true
incidence rate of events for the control treatment is overestimated during study planning,

resulting in events accumulating more slowly than anticipated during the trial; in such a
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situation, we refer to the control group as being biased downwards. In this case,
investigators will need to select a strategy to compare the experimental treatments to the
control despite failure to reach d. events in the control group. We propose two possible
approaches:

1. Assume that conditional on the total number of events among all treatment groups
(i.e. among all experimental treatment groups and the control group) at the time of
stoppage, the distribution of t, D;, D,, ..., Dy is multinomial, where T < d, is the
number of events in the control group at the time of stoppage, and apply the
multivariate version of Gail’s Design A (see Section 2 and Hsu (2010) for a
discussion of this test). Of course, the true distribution is not multinomial since
the number of events in each experimental treatment group is dependent upon the
rate at which the control group accumulates events (for example, if the control
group accumulates events at a slower rate than anticipated, then under the global
null hypothesis we would also expect the rate of event accrual in each
experimental treatment group to be lower than anticipated).

2. Suppose that when the trial is stopped, T < d. events have occurred in the control
arm, and let A= d. — 7. Add A events to all experimental treatment arms and to
the control arm, and conduct the test of hypothesis as if the control arm had
actually reached d events.

We believe that both of the suggested ad-hoc approaches are conservative, meaning that
the Type I error incurred will be no greater than the nominal error rate under which
Design C was originally implemented, due to the discrete nature of the distributions

involved. If a formal proof cannot be achieved, simulation may either refute this belief or
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otherwise allow researchers to proceed under the assumption that the overall Type | error

will be maintained when the above approaches are applied.
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Appendix A: Proof that the Time to Obtain d. Events in the Reference Group is
Distributed Gamma (dc, ll)
C

The proof that the time to obtain d. events in the reference group follows a Gamma
distribution is well known* and is as follows: suppose that events accumulate in the
reference group according to a Poisson process with parameter i.. Let X denote the
number of events that occur in the time interval [0, t] and N, the time until the d.™ event
is observed. Then,
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Hence, N, is distributed Gamma (dcli) This proof is also applied in Section 4.6 where
Cc

it is used to show that the number of person years to reach m + 1 events in the k"

experimental treatment group is Gamma (m + 1%) or Gamma (m +1, ril)
C ktC

* See for example Casella, George, and Roger L. Berger. Statistical Inference. 1 ed., Duxbury Press, 1990.
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corresponding to the null and alternative hypotheses in Equation 4.2.1, respectively.
Assuming i = 1 yields Gamma(m + 1,1) and Gamma (m +1, rl) distributions,

k

which were used in the simulation algorithms of Section 4.6.
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Appendix B: Order Statistics of the Negative Multinomial Distribution when the
Reference Outcome is Included

In Section 3, we considered the order statistics of the negative multinomial distribution.
We derived formulas which provide exact probabilities when the distribution is balanced
and provided R code to estimate the probabilities for unbalanced distributions. Here, we
extend the definition of the order statistics of the NMD to include the reference outcome.

Again, consider rolling a die until we obtain five 6’s (the reference outcome), and
during the course of these trials we observe eight 1’s, four 2’s, five 3’s, ten 4’s, and seven
5’s. Our definition of the order statistics in Section 3 indicated that X1y = 4, X(2) =
5,X3) = 7,X4) = 8,and X5y = 10. Now, consider inclusion of the reference outcome
(which is observed on a fixed number, d. = 5, of trials) in the order statistics. In this
case, we have X1y = 4,X(3) = 5,X3) = 5,X4) = 7, X(5) = 8, and X(6) = 10.

It is clear from this example that when the reference outcome is included in the
order statistics, it only disrupts the indexing of the original order statistics (the order
statistics when the reference outcome is excluded) with value greater than d, increasing
the index of each of these order statistics by one. This rule is predicated upon retaining
the index of any original order statistic with value equal to d.. For example, in the die
experiment, the original second order statistic X,y had value 5, which coincided with the
value of d., and hence we retained the index “(2)” for this order statistic when
considered in conjunction with the reference outcome, while the index of the original
order statistics X3y, X(4), and X(s) (which each took on a value greater than d) each

increased by one.
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To calculate the probabilities of the order statistics when the reference outcome is

included, we will use the following notation: let p;; = P(X;, = i) when the reference

outcome is excluded and let r;; = P(X(;, = i) when the reference outcome is included.

As in Section 3, K is the number of comparator outcomes and d. is the number of times

the reference outcome is to be observed during the trials. From Equation 3.2.2., we know

that for a balanced distribution
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When the distribution is unbalanced, the R function unbalanced_order can be used to
estimate pj;.

We now show how to compute 7;; from p;;, making use of the fact that the
number of trials resulting in the reference outcome is equal to the fixed value d.

For the minimum (i.e. j = 1), we have

T10 = P1o
1 = P11

M,dc-1 = P1dc-1
M,de = 1- (P10 +pyptot P1,dc—1)
Tide+1 = Tydes+2 = Tydess = =0
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For the maximum (i.e. j = K + 1), we have

Tk+1,0 = Tk+1,1 = *°° = Tk41,de—1 = 0

Tk+1,de = Pko T Pxk1 + -+ Prac—1 + Prac =1 — (pK,dC+1 + Pk,a.+2 T Prac+3 + )
Tk+1,dc+1 = PK,d.+1

Tk+1,dc+2 = PK,d.+2
Tk+1,dc+3 = PK,d.+3

Finally, for the remaining order statistics j = 2, 3, ..., K, we have

Tjo = Pjo
i1 = Pj1

r}',dc—l = pj,dc—l
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Appendix C: Conservativeness of the Test of Superiority when One or More
Experimental Treatments are Inferior to the Control

In Equation 4.2.1, we assumed that i; = i, = -+ = iy = i under the null hypothesis.
Suppose that one or more of the experimental treatments are in fact inferior to the control.
This can be represented by instead assuming that i; = ryic, i, = ryic, ..., ig = rxic Where
e = 1fork =1,2,..,K and r;, > 1 for at least one of the 7, under the null hypothesis.
We will show that in this case, the test of treatment superiority presented in Section 4.2 is
conservative with respect to the overall Type | error; that is, we will show that the overall
Type | error when one or more experimental treatments are inferior to the control does
not exceed the overall Type | error when it is assumed that i; = i, = -+ = ix = i under
the null hypothesis. When one or more experimental treatments are inferior to the control,

it is clear that the Type I error is given by

@ et e )’ . (th)
[ S-S

Hence, we must prove that

@ tdcle e ()’ e ()’
[ S o] S et

s=0
tdc le—t m tts K (Cl)
Sl—J —1—28_— dt
0 rde) pos s!
dc-1, m
(:) R - Z e 0)* (rlt) A Z J— (rxt)® "
0 F(dc) pr s!

o=

td(: le -t m tS
> — |1 - Z e t—| dt
jo rddc) [ pemr] s!]
From properties of the integral, we know that if f(x) > g(x) fora < x < b, then

f:f(x)dx > ff g(x) dx. Hence, we need to show
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[1—ie‘mglm[l—ie‘wgl > [1—?6‘”5] (C2)

for 0 < t < oo. Suppose without loss of generality that r; > 1; we will show that

m m
t)s ts
1_Ze-m@21_ze-t_
s! s!

s=0 s=0
m m
(r1t)* t°
(= e_rlt— < e‘t—
s! s!
s=0 s=0

o zMe~2

m -x X _
We know that )72, e sl fx r(m+1)

dz (see Casella and Berger (2002), page 130).

Therefore, we must show that

oo Zme—z o Zme—z
——dz < f —dz C3
jrltl"(m+1) ¢ T'(m+1) (3)
Sincer;t = 0and t = 0 (since 0 < t < oo for the integrals in (C1) and r;, > 1 for all k)

and m > 0, we know that the integrands in (C3) are positive. Thus, since r;t > t (since

r; > 1 by assumption), we know that

® zMe~2 ® zMe~2
——dz <f ——dz
frltf(m+1) . I'(m+1)

This obviously implies that (C3) holds. It should be clear that if any number of the
experimental treatments are inferior to the control (i.e. if any subset of the r;, are strictly
greater than one), then the inequality in (C2) will hold. This completes the proof of the
relationship specified in (C1).

Similar computations will show that the inferiority test presented in Section 5.1 is
conservative with respect to overall Type | error when one or more experimental
treatments are superior to the control under the null hypothesis. Finally, as the two-sided

test presented in Section 5.2 is based on the rejection boundaries obtained from the one-
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sided tests of superiority and inferiority, the two-sided test is conservative since the one-

sided tests are conservative.
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Appendix D: Alternate Formulas for the Minimum and Maximum Number of
Events in a Negative Multinomial Distribution

In Section 3, we considered the order statistics of the negative multinomial distribution,
providing an explicit formula in the case of balanced distributions, and in Section 4 we
derived simple expressions for the minimum and maximum. Here we draw attention to
some relevant formulas derived by Olkin and Sobel (1965) and Joshi (1972). Olkin and
Sobel consider a negative multinomial design in which there are k + 2 mutually
exclusive cells denoted by C;, ..., Cy.» and observations are recorded until cell Cy 1
contains s observations. They consider the events E; and E, described below:

E;:at the time of stopping,X; = s; forallj=1,..,k
E,: at the time of stopping,X; <s;—1forallj=1,..,k

where the s; are non-negative integers and X; denotes the number of observations in cell
C; at the time of stopping for j = 1, ..., k. Letting x, = >¥ . x;, the corresponding

formula for P{E,} is

PlEL} = i i i M@ ([T P )PiceaPices

r(s)r(a—s—xo+ D1, )

a=sx1=S;  Xk=Sk
where p; is the probability of observing cell C;,i = 1, ..., k + 2. Clearly, if the s; are all
equal to a common value, then E; corresponds to the minimum and E, corresponds to the
maximum of (X3, ..., X;). The authors provide additional equivalent formulas for P{E, }
throughout the paper, but the formulas are unwieldy, particularly for the purposes of this
dissertation. Joshi improves upon Olkin and Sobel’s results by utilizing the comparative
Poisson representation of the NMD to determine Py(x) = P(X; < x;,i = 1,2, ...,5) as

follows:
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Py(x) = f nz ”(ifz(f)k e do

i=1r;=0

_J.Ooﬁfooe_ZiZix'd e o de—p<Zi>A 12 )
o _tlue ! % r) =Plg>Mi=12..s

where Z;, Z,, ..., Z, © are mutually independent gamma random variables with density

functions f,(2) =

— and fo(0) = Slmllar methods can be employed to find

F(k)
Qx(x) =P(X; > x;,i =1,2,..,5). When the x; are all equal (say x; = a for all i),
Joshi’s results can be applied to determine P(min(X4, ..., X5) < a) and

P(max(Xy, ..., Xg) < a), though Joshi does not provide the explicit results for the

minimum and maximum as we have in Equations 4.2.4 and 4.2.5, respectively.
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Appendix E: R Functions Used in this Dissertation®

1. balanced_order_less(dc,j,i,K) and balanced_order_equal(dc,j,i,K):
balanced_order_less takes the arguments d. (number of trials resulting in the reference
outcome to be observed), j (denotes the j* order statistic), i (takes a value in 0,1,2,...),
and K (number of comparator outcomes in the experiment, i.e. not including the reference
outcome). For a balanced negative multinomial distribution, balanced_order_less returns
P(X(jy < i) when there are K comparator outcomes and trials are conducted until d
reference outcomes are observed. The function balanced_order_equal takes the same
arguments as balanced_order_less and returns P(X(;y = ©).

balanced_order_less Code:

balanced_order_less<-function(dc,j,i,K){
if(dc<=0|dc%%1!=0|j<=0]j%%1'=0|j>K]i<0]i%%1!=0|K<=0|K%%1!=0){
cat("Error. Valid values of arguments are as follows:\n")

cat(""dc must be a positive integer\n™)

cat("j must be an integer from 1 to",K,"inclusive\n®)

cat("i must be an integer value greater than or equal to 0\n")

cat("K must be a positive integer\n")

k

else{

empty<-c()

for(lin j:K){
terms<-function(x){dgamma(x,dc)*choose(K,l)*((ppois(i,x)))*((1-ppois(i,x))(K-1))}
int_val<-integrate(terms,0,Inf)$value

empty<-c(empty,int_val)

prob_val<-sum(empty)
return(prob_val)

¥
¥

balanced_order_equal Code:

balanced_order_equal<-function(dc,j,i,K){
if(dc<=0]|dc%%1!=0|j<=0|j%%1!=0]j>K]i<0|i%%1!=0|K<=0|K%%1!=0){
cat("Error. Valid values of arguments are as follows:\n")

cat("'dc must be a positive integer\n™)

cat("'] must be an integer from 1 to",K,"inclusive\n")

cat("i must be an integer value greater than or equal to 0\n")

cat("K must be a positive integer\n")

¥

* Al results in this dissertation from functions which depend upon simulation were generated using seed
value 1234567 in R version 3.2.0 and using 100,000 simulations, unless otherwise indicated.
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else{
p_equal<-balanced_order_less(dc,j,i,K)-balanced_order_less(dc,j,i-1,K)
return(p_equal)

}

}

Examples:

(1) For a balanced negative multinomial distribution in which there are 5 comparator
outcomes and the number of trials resulting in the reference outcome to be observed is
10, the probability that the fourth order statistic is less than or equal to 4 is given by:

balanced_order_less(10,4,4,5)
0.01403157

(2) Under the settings in example (1), the probability that the fourth order statistic is
equal to 4 is given by:

balanced_order_equal(10,4,4,5)
0.01031401

2. unbalanced_order(probs,dc,j,i,sims): unbalanced_order takes the arguments probs
(vector of length K, where K is the number of comparator outcomes in the NMD,
containing the probabilities of a trial resulting in each comparator outcome, i.e. not
including the reference outcome), d. (humber of trials resulting in the reference outcome
to be observed), j (denotes the jt" order statistic), i (takes a value in 0,1,2,...), and sims
(number of simulations used to estimate the probability). unbalanced_order returns an
estimate of P(X(;) < i) for unbalanced negative multinomial distributions. This function
can also be used to find the probability that the j** order statistic is equal to i by
computing P(X(j) < i) — P(X(jy < i— 1) (see example (2) below for an illustration).

unbalanced _order Code:

library(MGLM)

unbalanced_order<-function(probs,dc,j,i,sims){

if(any(probs<=0)){

cat("Error: All entries in probs vector must be greater than 0\n")

}

else if(sum(probs)>=1){

cat("Error: Sum of probabilities in probs vector may not be greater than or equal to 1\n")
cat("probs vector should contain the probabilities of an outcome in each comparator
group\n”)

cat("(i.e. not including the probability of an outcome in the reference group)\n")

¥
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else
if(dc<=0|dc%%1!=0|j<=0]j%%1!=0|j>length(probs)|i<0]i%%1!=0|sims<=0|sims%%1!=0)
{

cat("Error. Valid values of arguments are as follows:\n")

cat("dc must be a positive integer\n™)

cat("j must be an integer from 1 to",length(probs),"inclusive, based on the vector of
probabilities entered\n™)

cat("i must be an integer value greater than or equal to 0\n")

cat("'sims must be a positive integer\n*)

}

else{

vec<-rnegmn(sims,probs,dc)

new<-t(apply(vec,1,s0rt))

column<-new/[,j]

emp<-c()

for(val in column){

if(val<=i){

emp<-c(emp,1)

}

}

final<-sum(emp)/sims
return(final)

¥
¥

Examples:

(1) For an unbalanced negative multinomial distribution in which there are 5 comparator
outcomes with probabilities 0.1, 0.1, 0.3, 0.2, and 0.1 (so the probability the reference
outcome is observed in a trial is 0.2) and the number of reference outcomes to be
observed is 10, the probability that the third order statistic is less than or equal to 4 using
1,000,000 simulations and a seed value of 1234567 is estimated to be:

unbalanced_order(c(.1,.1,.3,.2,.1),10,3,4,1000000)
0.218617

(2) Under the settings in example (1), the estimated probability that the third order
statistic is equal to 4 using 1,000,000 simulations and a seed value of 1234567 is
estimated to be:

unbalanced_order(c(.1,.1,.3,.2,.1),10,3,4,1000000)-
unbalanced_order(c(.1,.1,.3,.2,.1),10,3,3,1000000)
0.119906

3. Des_Sup(K,alpha,r,pwr): Des_Sup takes the arguments K (number of experimental
treatment groups, i.e. not including the control group), alpha (nominal one-sided overall
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Type I error at which the test of hypothesis is to be conducted), r (estimate of the rate
ratio of the experimental treatment group to the control group which we wish to detect),
and pwr (minimum desired pointwise power of the study). Des_Sup returns the number
of events d to be observed in the control group, the critical value m for the hypothesis
test, the true overall Type | error achieved, and the true pointwise power achieved in a
superiority trial conducted under Design C methodology. Des_Sup can also be used to
generate the corresponding results under the Bonferroni method by setting the number of
experimental treatment groups equal to one and replacing the nominal overall Type |
error with a,,,,,-/K (see example (2) below for an illustration).

Des_Sup calls several functions to compute the results. Among these is the function
Prob, which takes the arguments d (hnumber of events to observe in the control group),
m (an integral value), and K (number of experimental treatment groups) and returns
P(min(Dy, ..., Dg) < m) under the null hypothesis in Equation 4.2.1. This function can
be used to find the p-value for a test of treatment superiority by substituting the observed
minimum number of events among the experimental treatment groups for m (see
example (3) below for an illustration).

Des_Sup Code:

Prob<-function(dc,m,K){
new_function<-function(x){dgamma(x,dc)*((1-ppois(m,x))"K)}
result<-1-integrate(new_function,0,Inf)$value

return(result)

}
Control_ind<-function(K,alpha){
counter<-1

while(Prob(counter,0,K)>alpha){
counter<-counter+1

}

control_start<-counter
return(control_start)

¥

CritVal<-function(dc,K,alpha){

ind<-0
while((Prob(dc,ind,K)<alpha)&(Prob(dc,ind+1,K)<=alpha)){
ind<-ind+1

}

x<-ind

return(x)

¥

PointPwr<-function(dc,K,alpha,r){
s_comp<-c()
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for(term in 0:(CritVal(dc,K,alpha))){
component<-(choose(dc+term-1,term)*(r*term))/((1+r)"(dc+term))
S_comp<-c(s_comp,component)

}

power<-sum(s_comp)

return(power)

ks

Des_Sup<-function(K,alpha,r,pwr){
if(K<=0|K%%1!=0lalpha<=0|alpha>=1|r<=0|r>1|pwr<=0|pwr>=1){
cat("Error. Valid values of arguments are as follows:\n")

cat("K must be a positive integer\n")

cat("0O<alpha<1\n")

cat("0<r<=1\n")

cat("0<pwr<1\n")

¥

else{

start<-Control_ind(K,alpha)

while(PointPwr(start,K,alpha,r)<pwr){

start<-start+1

ky

cat("The number of control group events dc is",start)

cat("\nThe critical value m is",CritVal(start,K,alpha))

cat("\nThe true overall Type I error is",Prob(start,CritVal(start,K,alpha),K))
cat("\nThe true pointwise power is",PointPwr(start,K,alpha,r),"\n")
¥

k

Examples:

(1) The design parameters for a superiority trial in which four experimental treatment
groups are compared to a control group at nominal one-sided overall Type | error of 0.05,
desired pointwise power equal to 0.9, and a rate ratio r of 0.2 are:

Des_Sup(4,.05,.2,.9)

The number of control group events dc is 18
The critical value mis 6

The true overall Type | error is 0.03944082
The true pointwise power is 0.9088288

(2) The Bonferroni design parameters for the superiority trial described in example (1)
are:

Des_Sup(1,.05/4,.2,.9)
The number of control group events dc is 18
The critical value mis 6
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The true overall Type | error is 0.01132792
The true pointwise power is 0.9088288

(3) The p-value for the superiority test corresponding to the trial described in example (1)
when the minimum number of events observed among the experimental treatment groups
is 3is:

Prob(18,3,4)
0.002885246

4. Des_Inf(K,alpha,r,pwr): Des_Inf takes the arguments K (number of experimental
treatment groups, i.e. not including the control group), alpha (nominal one-sided overall
Type I error at which the test of hypothesis is to be conducted), r (estimate of the rate
ratio of the experimental treatment group to the control group which we wish to detect),
and pwr (minimum desired pointwise power of the study). Des_Inf returns the number of
events d to be observed in the control group, the critical value w for the hypothesis test,
the true overall Type | error achieved, and the true pointwise power achieved in an
inferiority trial conducted under Design C methodology. Values under the Bonferroni
approach and the p-value for the test of hypothesis can be found in the same manner as
was explained for the Des_Sup routine above.

Des_Inf Code:

Prob<-function(dc,w,K){
new_function<-function(x){dgamma(x,dc)*((ppois(w-1,x))*K)}
result<-1-integrate(new_function,0,Inf)$value

return(result)

}

PointPwr<-function(dc,w,r){

s_comp<-c()

for(term in 0:w-1){
component<-(choose(dc+term-1,term)*(r*term))/((1+r)"(dc+term))
s_comp<-c(s_comp,component)

}

power<-1-sum(s_comp)

return(power)

¥

Des_Inf<-function(K,alpha,r,pwr){
if(K<=0|K%%1!=0lalpha<=0|alpha>=1|r<1|pwr<=0[pwr>=1){
cat("Error. Valid values of arguments are as follows:\n")
cat("K must be a positive integer\n")

cat("0O<alpha<1\n")

cat("r>=1\n")

cat("0O<pwr<1\n")
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ks

else{

start<-1

ind<-0

while(start>0){

while(Prob(start,ind,K)>alpha){

ind<-ind+1

}

if(PointPwr(start,ind,r)>=pwr){

cat("The number of control group events dc is",start)
cat("\nThe critical value w is",ind)

cat("\nThe true overall Type | error is",Prob(start,ind,K))
cat("\nThe true pointwise power is",PointPwr(start,ind,r))
cat("\n")

start<-0

}

else{

start<-start+1

}

}

}

}

Examples:

(1) The design parameters for an inferiority trial in which four experimental treatment
groups are compared to a control group at nominal one-sided overall Type | error equal to
0.05, desired pointwise power of 0.8, and rate ratio r equal to 2 are:

Des_Inf(4,.05,2,.8)

The number of control group events dc is 30
The critical value w is 49

The true overall Type | error is 0.04866245
The true pointwise power is 0.8008007

5. Null_Time(K,dc,crit,test,sims): Null_Time takes the arguments K (number of
experimental treatment groups, i.e. not including the control group), dc (humber of
events to be observed in the control group), crit (the critical value for the test of
hypothesis, i.e. m for a superiority trial or w for an inferiority trial), test (either “Sup” or
“Inf” to specify whether the trial is of treatment superiority or inferiority, respectively),
and sims (number of simulations used to estimate the person year values). Null_Time
returns the estimated expected number, standard deviation, and 95% empirical confidence
interval of person years of follow-up until trial termination (assuming i = 1) for either a
fully curtailed superiority trial or a fully curtailed inferiority trial under the null
hypothesis in Equation 4.2.1 or Equation 5.1.1, respectively.
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Null_Time Code:

ExpTime<-function(K,dc,crit,test){
if(toString(test)=="Sup"){
Txs<-rgamma(K,crit+1,1)

}

else if(toString(test)=="1Inf"){
Txs<-rgamma(K,crit,1)

}

Cont<-rgamma(1,dc,1)
Txstar<-Txs
Txstar[Txstar>=Cont]<-Cont
ntkstar<-Txstar

Contstar<-Cont
ifelse(Cont>max(Txs),Contstar<-max(Txs),Contstar<-Cont)
sumall<-sum(ntkstar,Contstar)
return(sumall)

}

Null_Time<-function(K,dc,crit,test,sims){

v<-c("Sup","Inf")
if(dc<=0]|dc%%1!=0|crit<0|crit%%1!=0|sims<0|sims%%1!=0|K<=0|K%%1'!=0){
cat("Error. Valid values of arguments are as follows:\n")

cat("K must be a positive integer\n")

cat("dc must be a positive integer\n")

cat("'crit must be an integer value greater than or equal to 0\n")

cat("'sims must be a positive integer\n")

else if(is.element(toString(test),v)==FALSE){

cat("Error: Must specify 'Sup’ or 'Inf' as an argument\n™)

}

else{

Times<-vector()

for(i in 1:sims){

newval<-ExpTime(K,dc,crit,test)
Times<-c(Times,newval)

}

estimateTime<-mean(Times)

estimatestd<-sd(Times)

Sorted<-sort(Times)

TwoFive<-Sorted[.025*sims]
NineSeven<-Sorted[.975*sims]

cat("The estimated time is",estimateTime,"\n")

cat("The estimated standard deviation is",estimatestd,"\n")
cat("Interval based on 2.5 and 97.5 percentiles is (", TwoFive,",",NineSeven,")\n",sep="")

¥
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ks

Examples:

(1) The estimated mean, standard deviation, and 95% empirical confidence interval of
person years of follow-up until trial termination for a fully curtailed superiority trial
under the null hypothesis in Equation 4.2.1 when there are four experimental treatment
groups, the number of events to observe in the control group is d. = 25, and the critical
value is m = 8 using 100,000 simulations and seed value 1234567 are:

Null_Time(4,25,8,"Sup",100000)

The estimated time is 48.21195

The estimated standard deviation is 8.148895

Interval based on 2.5 and 97.5 percentiles is (33.51516,65.38062)

(1) The estimated mean, standard deviation, and 95% empirical confidence interval of
person years of follow-up until trial termination for a fully curtailed inferiority trial under
the null hypothesis in Equation 5.1.1 when there are four experimental treatment groups,
the number of events to observe in the control group is d. = 30, and the critical value is
w = 49 using 100,000 simulations and seed value 1234567 are:

Null_Time(4,30,49,"Inf",100000)

The estimated time is 149.8836

The estimated standard deviation is 27.05042

Interval based on 2.5 and 97.5 percentiles is (100.9101,206.8324)

6. Alt_Time(dc,crit,vec,test,sims): Alt_Time takes the arguments dc (number of events to
be observed in the control group), crit (the critical value for the test of hypothesis, i.e. m
for a superiority trial or w for an inferiority trial), vec (a vector of length equal to the
number of experimental treatment groups with entries corresponding to the rate ratios of
each experimental treatment group to the control group, i.e. a vector of the form

c(ry, 12, ..., Tg)), test (either “Sup” or “Inf” to specify whether the trial is of treatment
superiority or inferiority, respectively), and sims (number of simulations used to estimate
the person year values). Alt_Time returns the estimated expected number, standard
deviation, and 95% empirical confidence interval of person years of follow-up until trial
termination (assuming i, = 1) for either a fully curtailed superiority trial or a fully
curtailed inferiority trial under the alternative hypothesis in Equation 4.2.1 or 5.1.1,
respectively.

Alt_Time Code:

ExpTime_Alt<-function(dc,crit,vec,test){
empty<-c()

if(toString(test)=="Sup"){

for(i in vec){

randv<-rgamma(1,crit+1,i)
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empty<-c(empty,randv)

¥

else if(toString(test)=="Inf"){
for(i in vec){
randv<-rgamma(1,crit,i)
empty<-c(empty,randv)

}

}

Cont<-rgamma(1,dc,1)
Txstar<-empty
Txstar[Txstar>=Cont]<-Cont
ntkstar<-Txstar
Contstar<-Cont
ifelse(Cont>max(empty),Contstar<-max(empty),Contstar<-Cont)
sumall<-sum(ntkstar,Contstar)
return(sumall)

}

Alt_Time<-function(dc,crit,vec,test,sims){

v<-c("Sup","Inf")
if(dc<=0|dc%%1!=0|crit<0|crit%%1!=0|sims<0|sims%%1!=0){
cat("Error. Valid values of arguments are as follows:\n")
cat(""dc must be a positive integer\n™)

cat("crit must be an integer value greater than or equal to 0\n")
cat("'sims must be a positive integer\n")

}

else if(any(vec<=0)){

cat("Error. All entries in vec must be greater than 0\n")
}

else if(is.element(toString(test),v)==FALSE){
cat("Error: Must specify 'Sup’ or 'Inf' as an argument\n")
}

else{

Alt_Times<-vector()

for(i in 1:sims){

newval<-ExpTime_Alt(dc,crit,vec,test)
Alt_Times<-c(Alt_Times,newval)

}

estimateTime<-mean(Alt_Times)
estimatestd<-sd(Alt_Times)

Sorted<-sort(Alt_Times)

TwoFive<-Sorted[.025*sims]
NineSeven<-Sorted[.975*sims]

cat("The estimated time is",estimateTime,"\n")

cat("The estimated standard deviation is",estimatestd,"\n")
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cat("Interval based on 2.5 and 97.5 percentiles is (", TwoFive,",",NineSeven,")\n",sep="")

¥
ki

Examples:

(1) The estimated mean, standard deviation, and 95% empirical confidence interval of
person years of follow-up until trial termination for a fully curtailed superiority trial
under the alternative hypothesis in Equation 4.2.1 when there are four experimental
treatment groups, the number of events to observe in the control group is d. = 25, the
critical value is m = 8, and the anticipated rate ratios in the four experimental treatment
groups are 0.2, 0.5, 0.6, and 0.4 using 100,000 simulations and seed value 1234567 are:

Alt_Time(25,8,c(.2,.5,.6,.4),"Sup",100000)

The estimated time is 101.201

The estimated standard deviation is 14.86817

Interval based on 2.5 and 97.5 percentiles is (73.64713,131.8204)

(2) The estimated mean, standard deviation, and 95% empirical confidence interval of
person years of follow-up until trial termination for a fully curtailed inferiority trial under
the alternative hypothesis in Equation 5.1.1 when there are four experimental treatment
groups, the number of events to observe in the control group is d. = 30, the critical
value is w = 49, and the anticipated rate ratios in the four experimental treatment groups
are 5, 2, 10, and 2 using 100,000 simulations and seed value 1234567 are:

Alt_Time(30,49,c(5,2,10,2),"Inf",100000)

The estimated time is 87.72808

The estimated standard deviation is 7.712449

Interval based on 2.5 and 97.5 percentiles is (72.58614,102.9377)



149

References

Bates, Grace, and Jerzy Neyman. "Contributions to the Theory of Accident Proneness I.
An Optimistic Model of the Correlation Between Light and Severe Accidents.”
University of California publications in statistics, vol. 1, no. 9, 30 Apr. 1952, pp. 215-53.

Birnbaum, Allan. "Some Procedures for Comparing Poisson Processes or Populations."
Biometrika, vol. 40, no. 3/4, Dec. 1953, pp. 447-49.

Birnbaum, Allan. "Statistical Methods for Poisson Processes and Exponential
Populations.” Journal of the American Statistical Association, vol. 49, no. 266, June
1954, pp. 254-66.

Brown, Charles C., and Sylvan B. Green. "Additional Power Computations for Designing
Comparative Poisson Trials." American Journal of Epidemiology, vol. 115, no. 5, 1982,
pp. 752-58.

Casella, George, and Roger L. Berger. Statistical Inference. 2nd ed., Duxbury Press,
2002, pp. 66-230.

Chatelain, Florent, Sophie Lambert-Lacroix, and Jean-Yves Tourneret. "Pairwise
likelihood estimation for multivariate mixed Poisson models generated by Gamma
intensities."” Statistics and Computing, vol. 19, no. 3, 2009, pp. 283-301.

Dunnett, Charles W. "A Multiple Comparison Procedure for Comparing Several
Treatments with a Control." Journal of the American Statistical Association, vol. 50, no.
272, Dec. 1995, pp. 1096-121.

Engel, J. "Split-Plot Design: Model and Analysis for Count Data." Statistica Neerlandica,
vol. 40, no. 1, 1986, pp. 21-33.

Ferrari, A, G Letac, and J Y. Tourneret. "Multivariate Mixed Poisson Distributions."
Signal Processing Conference, Sep. 2004, pp. 1067-70.

Fleiss, Joseph L. The design and analysis of clinical experiments. Wiley, 1986, p. 96.

Frey, Sharon, Timo Vesikari, Agnieszka Szymczakiewicz-Multanowska, Maria Lattanzi,
Allen Izu, Nicola Groth, and Sandra Holmes. "Clinical Efficacy of Cell Culture-Derived
and Egg-Derived Inactivated Subunit Influenza Vaccines in Healthy Adults.” Clinical
Infectious Diseases, vol. 51, no. 9, 1 Nov. 2010, pp. 997-1004.

Gail, Mitchell. "Power Computations for Designing Comparative Poisson Trials."
Biometrics, vol. 30, no. 2, June 1974, pp. 231-37.

Gallager, Robert G. Discrete Stochastic Processes. Boston, Kluwer Academic Publishers,
1996, pp. 31-55.



150

Greenwood, Major, and G. Udny Yule. "An Inquiry into the Nature of Frequency
Distributions Representative of Multiple Happenings with Particular Reference to the
Occurrence of Multiple Attacks of Disease or of Repeated Accidents." Journal of the
Royal Statistical Society, vol. 83, no. 2, Mar. 1920, pp. 255-79.

Hoover, Donald R., and William C. Blackwelder. "Allocation of subjects to test null
relative risks smaller than one." Statistics in Medicine, vol. 20, 30 Oct. 2001, pp. 3071-
82.

Hsu, Tzu-Lin. Comparative Poisson trials for comparing multiple new treatments to the
control. PhD Dissertation. Rutgers University, 2010. Retrieved from
https://doi.org/doi:10.7282/T3FJ2GHX

Johnson, Norman L., Samuel Kotz, and Adrienne W. Kemp. Univariate Discrete
Distributions. 2nd ed., New York, John Wiley & Sons, Inc., 1992, pp. 199-235.

Johnson, Norman L., Samuel Kotz, and N Balakrishnan. Discrete Multivariate
Distributions. New York, John Wiley & Sons, Inc., 1997, pp. 31-123.

Joshi, S W. "Integral Expressions for Tail Probabilities of the Negative Multinomial
Distribution.” Annals of the Institute of Statistical Mathematics, vol. 27, no. 1, 1975, pp.
95-97.

Karlis, Dimitris, and Evdokia Xekalaki. "Mixed Poisson Distributions." International
Statistical Review, vol. 73, no. 1, 2005, pp. 35-58.

Le Gall, Frangoise. "The modes of a negative multinomial distribution."” Statistics and
Probability Letters, vol. 76, 2006, pp. 619-24.

Lehmann, E.L., and H Scheffé. "Completeness, similar regions, and unbiased estimation:
Part I1." Sankhya, vol. 15, 1955, pp. 219-36.

Lehmann, E.L., and Joseph P. Romano. Testing Statistical Hypotheses. 3rd ed., New
York, Springer, 2005, pp. 124-350.

Neyman, Jerzy. "Certain Chance Mechanisms Involving Discrete Distributions."
Sankhya: The Indian Journal of Statistics, Series A, vol. 27, no. 2/4, Dec. 1965, pp. 249-
58.

Nguyen, Truc T., Arjun K. Gupta, Diem M. Nguyen, and Yining Wang.
"Characterizations of Negative Multinomial Distributions Based on Conditional
Distributions." Metrika, vol. 66, no. 3, Nov. 2007, pp. 315-22.

Olkin, Ingram, and Milton Sobel. "Integral Expressions for Tail Probabilities of the
Multinomial and Negative Multinomial Distributions.” Biometrika, vol. 52, no. 1/2, June
1965, pp. 167-79.



151

Ord, J.K., G.P. Patil, and C. Taillie, editors. Statistical distributions in ecological work.
Vol. 4, Burtonsville, International Co-operative Publishing House, 1979, pp. 157-91.

Papageorgiou, H. "A Characterization of the Negative Multinomial as a Poisson
Mixture." Journal of Statistical Computation and Simulation, vol. 17, 1983, pp. 245-47.

Parmar, Mahesh K.B., James Carpenter, and Matthew R. Sydes. "More multiarm
randomised trials of superiority are needed." Lancet, vol. 384, no. 9940, 26 July 2014, pp.
283-84.

Patil, G P., and M T. Boswell. "On a Class of Multivariate Birth and Death Processes."
Sankhya: The Indian Journal of Statistics, vol. 34, no. 3, Sept. 1972, pp. 293-96.

Peng, Jie, and K Krishnamoorthy. "Conditional and Unconditional Tests for Comparing
Several Poisson Means." Journal of Applied Statistical Science, vol. 18, no. 3, 2010, pp.
319-26.

Przyborowski, J, and H Wilenski. "Homogeneity of results in testing samples from
Poisson series.” Biometrika, vol. 31, no. 3-4, 1 March 1940, pp. 313-23.

Shaffer, Juliet. "An Exact Multiple Comparisons Test for a Multinomial Distribution.”
British Journal of Mathematical and Statistical Psychology, vol. 24, no. 2, 1971, pp. 267-
72.

Sibuya, Masaaki, Isao Yoshimura, and Ryoichi Shimizu. "Negative Multinomial
Distribution.” Annals of the Institute of Statistical Mathematics, vol. 16, no. 3, 1964, pp.
409-26.

Singh, Bahadur. "Bayesian Inference for Comparing Several Treatment Means Under a
Poisson Model." Communications in Statistics, A: Theory and Methods, vol. 9, 1980, pp.
1137-45.

Sinoquet, Hervé, and Raymond Bonhomme. "A Theoretical Analysis of Radiation
Interception in a Two-Species Plant Canopy." Mathematical Biosciences, vol. 105, 1991,
pp. 23-45.

Snapinn, Steven, Mon-Gy Chen, Qi Jiang, and Tony Koutsoukos. "Assessment of futility
in clinical trials." Pharmaceutical Statistics, vol. 5, no. 4, 2006, pp. 273-81.

Steyn, H S., N.A.S. Crowther, E L. Raath, and T M. Shaw. "A General Model for
Negative Multinomial Frequency Counts.” South African Statistical Journal, vol. 23, no.
1, Jan. 1989, pp. 85-117.

Steyn, H S. "On Discrete Multivariate Probability Functions of Hypergeometric Type."
Indagationes Mathematicae (Proceedings), vol. 58, 1955, pp. 588-95.



152

Steyn, H S. "On y2-tests for contingency tables of negative multinomial types." Statistica
Neerlandica, vol. 13, no. 4, 1959, pp. 433-44.

Suissa, Samy, and Rachid Salmi. "Unidirectional Multiple Comparisons of Poisson
Rates." Statistics in Medicine, vol. 8, 1989, pp. 757-64.

Tsui, Kam-Wah. "Multiparameter Estimation for Some Multivariate Discrete
Distributions with Possibly Dependent Components.” Annals of the Institute of Statistical
Mathematics, vol. 38, no. 1, 1986, pp. 45-56.

Zhang, Yiwen, and Hua Zhou (2017). MGLM: Multivariate Response Generalized Linear
Models. R package version 0.0.8. URL https://CRAN.R-project.org/package=MGLM

Zhou, Hua, and Kenneth Lange. "MM Algorithms for Some Discrete Multivariate
Distributions." Journal of Computational and Graphical Statistics, vol. 19, no. 3, 1 Sept.
2010, pp. 645-65.



