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Virtual memory offers a simple hardware abstraction to programmers freeing them

from the tedious process of manual memory management. However, the emergence of

new memory technologies is posing challenges for conventional virtual memory. Homo-

geneous memory systems are being replaced by complex heterogeneous systems with

multiple memory devices with different latency, bandwidth, and capacity characteris-

tics. This poses two problems. The first is that operating systems (OSes) must migrate

pages among the heterogeneous memory devices based on attributes like page hot-

ness and proximity to the compute unit/accelerator that uses the data. As this thesis

shows, current support for page migration is infeasibly slow on emerging hardware,

both due to the slow speeds of data movement and metadata update operations like

TLB shootdowns. The second is that the ever-increasing aggregate capacities of these

emerging heterogeneous memory systems pose immense pressure on TLBs, aggravating

address translation overheads. This thesis addresses these problems by propos-

ing modest hardware/software techniques that achieve a more efficient vir-

tual memory system via fast hardware support for translation coherence,

software support for faster page copies, and hardware/software co-design

that compresses TLB entries to reduce address translation overheads.
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Page migration is the means by which OSes can dynamically shift data to the

memory devices that best benefit latency, bandwidth, capacity, and persistence charac-

teristics in different phases of the program lifetime. The key to good performance is fast

page migration. This thesis attacks two bottlenecks that currently constrain page mi-

gration performance — high-overhead translation coherence and low-throughput page

copying. To mitigate the first source of overhead, this thesis implements hardware sup-

port for translation coherence by fusing it with existing cache coherence protocols. To

mitigate the second source of overhead, this thesis implements OS support that paral-

lelizes, aggregates, and consolidates page migration operations to maximize migration

throughput.

Heterogeneous systems are also continuing a trend that has long been seen with

traditional homogeneous memory systems — the drive towards ever-increasing mem-

ory capacities. Specific types of emerging systems with die-stacking technologies and

byte-addressable persistent memories are further accelerating the total physical mem-

ory capacity that must be addressable for each process. Consequently, page tables are

becoming bigger and TLB misses more frequent. To mitigate increasing address trans-

lation overheads, this thesis offers software techniques to facilitate the possibility of

compressing TLB entries which rely on translation contiguity.

In summary, this work upgrades virtual memory to effectively support heteroge-

neous memory systems with high-performance page migration and scalable address

translation. In so doing, this dissertation identifies bottlenecks in the existing virtual

memory, profiles the performance impacts of these bottlenecks, and proposes hardware

and software solutions to remedy them.
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Chapter 1

Introduction

Thesis Statement

High-performance virtual memory is achievable in tiered memory systems

by accelerating page migration via hardware translation coherence and

faster software page copying, and by mitigating address translation over-

heads via hardware/software co-design for TLB compression.

For decades, virtual memory has been vital to abstractions, mechanisms, and policies

used to manage memory systems. With virtual memory, an application accesses data

via its own virtual address space, abstracting away the complexity of the physical

address space made up of a complex assortment of memory and storage devices. Two

concepts are central to the success of modern virtual memory systems: paging and

address translation.

Operating systems manage data at the granularity of pages of memory. Data

accessed by applications are to locations within pages (e.g., usually contiguous 4KB

chunks of virtual/physical address spaces on x86-64 systems). Several operations can

trigger the act of paging or movement of pages of data. Data may be loaded into mem-

ory from disk, data may have to be written back from memory to disk, or data may

have to be copied between memory devices. In tandem, OSes and hardware support

virtual-to-physical memory address translation to realize virtual memory.

To implement paging and address translation efficiently, hardware and software sup-

port are required. On the software side, there is a need for good policies that measure

attributes like page utility or hotness to determine which pages to place in faster mem-

ory, slower memory, or storage devices; efficient mechanisms to copy pages of data
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between memories and storage devices; and efficient means of allocating and remap-

ping pages so as to improve the performance of hardware that is used to cache/maintain

page table information. Meanwhile, on the hardware side, caches for virtual memory

(i.e., TLBs, MMU caches, nested TLBs, etc.) must efficiently respond to page table

management events. For example, as page tables increase in the number of entries

they maintain, TLBs must be able to adapt their reach to ensure that the frequency of

misses does not become too high. Additionally, per-core private TLBs, MMU caches,

and nested TLBs must be kept coherent — just like private caches — to changes in the

page table. Today’s support for such events requires complex and often prohibitively

expensive hardware/software cooperation.

This thesis is about the impact of emerging heterogeneous memory systems on these

critical pieces of hardware and software support. Heterogeneous memory systems are

those that maintain an array of distinct memory devices with varying latency, band-

width, capacity, and persistence characteristics. Their objective is to provide processing

elements access to a cost-effective memory system with the best attributes of many dif-

ferent device technologies. While heterogeneous memory systems hold great promise

in the design of future high-performance systems (and are already seeing real-world

adoption), they pose performance problems to the need for fast paging and address

translation. We now describe in more detail these problems.

1.1 Memory Systems

Conventional systems employed homogeneous memory organizations, with a single layer

of memory devices backed by storage technologies. Figure 1.1a exemplifies such a

system, In this conventional system, a layer of memory is implemented via DRAM

technology, which acts as a cache of a hard disk. Decades of research in architecture

and operating system design has developed policies and mechanisms to best manage

these layers of memory and storage to optimize for performance, power, availability,

and reliability.

The recent development of heterogeneous memory systems, however, makes many
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Figure 1.1: The evolution of address translation from conventional homogeneous mem-
ory systems to modern heterogeneous memory systems. Address translation structures
are shown in grid-patterned boxes and different memory devices are shown in dot-
patterned boxes. Multi-Channel DRAM (MCDRAM) and High-Bandwidth Memory
(HBM) are high-bandwidth memory devices (2× to 10× bandwidth of DRAMs).
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of these conventional policies and mechanisms outdated or incomplete in some way.

Heterogeneous memory systems integrate several memory technologies with differing

latency, bandwidth, and capacity attributes into a single, cost-effective layer for the

compute elements in the system. The exact composition and topology of such systems

can vary. For example, it is possible that such systems are made up of high-bandwidth

but capacity-constrained DRAM technologies (e.g., MCDRAM or HBM in Figure 1.1b),

conventional DRAMs with lower bandwidth and higher capacity, and high-capacity

but slower byte-addressable non-volatile memories (e.g., NVM also in Figure 1.1b).

Furthermore, these memories can be organized in myriad ways, with some acting as

logical caches of the others, and others acting as extensions of the overall physical

address space. In other words, such systems offer “tiers” or levels of placement, which

the OS and hardware have to account for in allocating/moving pages to the most

desirable memory device from the perspective of the processing element that needs

these pages. And since heterogeneous memory systems are arising mainly as a response

to a sharp increase of heterogeneity in processing elements (e.g., emerging systems

integrating not only CPUs but also GPUs, NICs, and hardware for video transcoding,

computer vision, neural nets, etc.), the design space of how best to manage memory is

a vast one to navigate. In this context, the critical mechanisms of page migration and

address translation face significant challenges in the following ways.

Page migration: The two key challenges in page migration arise from sub-optimal

page copy and translation coherence mechanisms. As the inter-memory-device band-

width provided by hardware vendors continues to grow, the software support to move

data between memories in commodity OSes becomes a bottleneck. Furthermore, as the

number of computing elements and their associated virtual memory structures — i.e.,

TLBs, MMU caches, nested TLBs — proliferate, maintaining coherence amongst them

becomes a challenging task.

Address translation: As memory technologies like non-volatile memory or 3D XPoint

become common, hardware caches like TLBs are expected to increase their effective ca-

pacity to match the rapidly expanding overall size of addressable physical memory.

Because TLBs and structures like MMU caches and nested TLBs are built close to
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Issue Sources
Solution
Types

Solution Techniques

Page copy mecha-
nisms

Software
Parallelization, aggregation, and ex-
change

Address translation
coherence

Hardware
Fuse with existing cache coherence
protocols

Address translation
coverage

Hardware and
Software

Coalescing memory for emerging
TLBs (Coalesced or Range TLB)

Table 1.1: Summary of the solutions to the virtual memory bottlenecks in heterogeneous
memory management.

the pipelines within processing elements, it is difficult to increase their size efficiently.

Therefore, such high-capacity tiered memory systems risk increasing TLB miss fre-

quency, hence harming performance.

1.2 Research Goals

This thesis focuses on upgrading OS support for page migration, hardware support for

translation coherence, and OS support to encourage the use of compression in TLBs.

My work shows that efficiently architecting solutions to these three approaches has

the potential to improve the performance of tiered memory systems significantly. A

key theme of this thesis is to use modest hardware, software, or hardware/software

co-design to achieve these goals. These techniques and approaches are summarized in

Table 1.1.

To evaluate our approach in system environments representative of real-world de-

ployments, most of our work is performed on real hardware running stock Linux. When

necessary, we create performance models of hardware structures and rely on simulations

to project performance improvements from our proposed novel hardware. Additionally,

when possible, we have merged some of our research implementations into the upstream

Linux kernel. The remainder of this chapter outlines the approach this work takes.
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1.3 Fast Page Migration

Page migration has been an important topic of research for several decades, even for

traditional homogeneous memory systems and later, non-uniform memory access or

NUMA systems. However, while we focus on the mechanisms that enable page migra-

tion, the vast majority of prior work focused on the policies used to decide when to

affect page migration. There are several reasons for this change in focus. On the earliest

non-NUMA homogeneous memory systems, the transfer rate difference between mem-

ory and disk were so high that any additional page movement overheads were negligible

in comparison; consequently, intelligently deciding when to migrate (and to minimize

migration frequency) was the more critical question [41, 102, 148]. Going further, even

the transition to NUMA systems placed the approach on policies that opted to migrate

processes close to their data, rather than the other way around [34,50,86]. And finally, a

general perception existed that for these systems – and the relative infrequency of page

migrations – existing mechanisms were sufficiently performant [4,22,24,26,111,112,150].

This reality is markedly different for heterogeneous tiered memories. First, to

leverage the benefits of various memory devices, pages have to be dynamically moved

amongst the devices. Second, the idea of using process migration as an alternative to

page migration is now invalid; i.e., all tiers of memory are accessible to all processing

elements, many without discernible differences in access time. In such situations, intel-

ligently migrating hot pages to memory devices, for example, that might have higher

bandwidth are key to good performance. In other words, rather than being used rarely

when other techniques fail, page migrations now become essential to overall system

performance.

To implement a fast page migration, two major bottlenecks need to be addressed:

high-overhead address translation coherence and low-throughput data copy operations.

Address translation coherence, which ensures that all cached translation information in

TLBs and other hardware translation structures are synchronized with the operating

system page tables, must be performed on each migration to ensure correctness. Mean-

while, the data copy portion of page migration has long been unoptimized because of
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the relative infrequency of its use. This thesis attacks these problems with modest

hardware and software changes.

1.3.1 Low Overhead Hardware Translation Coherence

When a page is migrated, its virtual-to-physical page mapping in the page table must

be changed by the OS. Consequently, the OS must also initiate translation coherence

operations (e.g., TLB shootdowns in x86 systems) to invalidate stale virtual-to-physical

page mappings that may be resident in any compute element’s TLB, MMU cache, or

nested TLB structures. Past work has shown that these operations can be expensive,

taking up to 10-30% of system runtime [116, 134, 154]. These overheads are becoming

even worse for modern systems that have increasing core counts (with more TLBs,

MMU caches, and nested TLBs to keep coherent), a greater diversity of accelerators

(for many of which even a single TLB invalidation can be catastrophic for performance),

and virtualization (where multiple levels of page tables are maintained, complicating

translation coherence substantially). Measurements on real hardware show that in

virtualized systems, translation coherence activity can consume as much as 40% of

system runtime.

Chapter 2 presents our approach to mitigating this problem via Hardware Trans-

lation Invalidation and Coherence (HATRIC). HATRIC is a hardware translation co-

herence scheme for both native systems and virtualized systems [163]. The key idea

is to extend translation structures with coherence tags (or co-tags) and use them to

piggyback translation coherence atop cache coherence. Not only does HATRIC work

on native systems, but it also eliminates the translation coherence overhead on virtu-

alized systems (a topic that has mostly been ignored by prior work [116, 134, 154]). In

more detail, HATRIC precisely invalidates stale translation information in all trans-

lation structures with the help of co-tags; it accurately identify the victim CPUs by

augmenting existing cache coherence protocols; it performs all invalidation operations

in hardware atop the cache coherence protocol, which avoids expensive software oper-

ations, especially the more costly ones in virtualized systems. As a result, HATRIC
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minimizes address translation coherence overheads during the process of all page mi-

grations.

1.3.2 High Throughput Operating System Page Migration

In addition to address translation coherence, page migration overheads arise from in-

efficient copy operations. This is because page copy operations are still implemented

using single-threaded, serialized, and unoptimized software approaches. It is particu-

larly exigent to upgrade these antiquated page copy mechanisms because the hardware

bandwidth between memory devices in emerging tiered memory systems is considerably

higher than what software currently exploits. Taking Linux as an example, a page is

migrated in five steps: 1 allocating a new page, 2 unmapping the existing virtual to

physical address translation and performing address translation coherence, 3 copying

data from the old physical page into the new physical page, 4 mapping the virtual

address to the new physical page, and finally 5 freeing the old physical page. The

actual page copy process occurs in step 3 , which is a single-threaded and unoptimized

process, whereas steps 1 – 2 and 4 – 5 are runtime correctness guarantees inside the

operating system kernel and have been carefully tuned.

Chapter 3 presents four composable page migration optimizations. First, transpar-

ent huge page migration support moves a single huge page between memory devices,

instead of individually moving multiple base pages one at a time. This reduces kernel

overheads for each page migration. Second, parallel page migration enables paralleliza-

tion of page copy to enhance data copy throughput. Third, concurrent page migration

aggregates page copy operations to increase data copy throughput further. Finally, page

exchange eliminates extra kernel operations by merging two symmetric page migrations

into one. All these optimizations leverage existing hardware and can be easily adopted

in the existing operating systems. Specifically, my work merges support for transpar-

ent huge page migration support into the Linux upstream kernel v4.14 [110]. In total,

the combination of these four optimizations improves existing Linux page migration

throughput by 15×. This throughput improvement ultimately yields 40% performance

increases on our disaggregated memory evaluation testbed.
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1.4 Scalable Address Translation with Fast Page Migration

The emergence of memory technologies that permit stacking of high-bandwidth DRAM

on CPUs or byte-addressable non-volatile memories has the potential to increase overall

memory capacity on modern systems dramatically. While offering the prospect of sig-

nificant performance improvements for memory-intensive workloads, it also highlights a

growing problem with address translation — the inability of current TLB, MMU cache,

and nested TLB hardware capacities to keep up with the growth of memory capacity.

My work notes that a major source of poor address translation performance arises

from the fact that conventional virtual memory uses fixed-sized pages (e.g., x86 64

uses 4KB, 2MB, and 1GB) as basic address translation units. Unfortunately, this

means that there exist gaps between page sizes and that there is a lack of support

for page sizes that exceed 1GB. Several recent studies have observed this problem and

in response, have proposed TLB designs that leverage relatively simple incarnations

of compression approaches [13, 76, 121, 125]. In particular, these approaches rely on

the notion of “translation contiguity”, where a set of contiguous virtual pages map

to a corresponding set of contiguous physical pages. Such contiguity enables a single

TLB entry to map all the virtual-to-physical mappings. In other words, high address

translation coverage is achieved by compressing multiple page table entries into one

TLB entry, whether they are for 4KB, 2MB, or 1GB pages [121,125].

To date, however, such compression schemes have been shown to be applicable in

a limited set of real-world environments. In particular, it is challenging for a system

to produce arbitrary amounts of contiguity when the memory is fragmented in long-

running systems. To fully exploit the benefits of using contiguity-aware TLB designs,

there is a need for robust OS support to generate contiguity even in highly loaded

fragmented systems. Chapter 4 presents such an operating system service, Translation

Ranger, to actively coalesce memory to produce unbounded amounts of translation con-

tiguity in the presence or absence of memory fragmentation. Unlike existing techniques

that try to generate translation contiguity at page allocation time [13, 76, 121, 125],

Translation Ranger coalesces memory post page allocation. This method affords greater
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flexibility and opportunity in producing translation contiguity.

By leveraging our previous work on faster page migration, Translation Ranger can

be implemented efficiently in modern operating systems. We implement Translation

Ranger in Linux v4.16 to assess the feasibility of the approach. We quantify both the

amount of translation contiguity generated by Translation Ranger and the overheads

incurred by the execution of it. Translation Ranger creates significant translation con-

tiguity (> 90% of 120GB application footprint covered by only 128 contiguous regions,

compared to < 1% without it) and costs low runtime overheads (< 2% of overall ap-

plication runtime with 120GB application memory footprint). Both together result in

a net win of coalescing memory, when combining with any available TLB designs that

take advantage of translation contiguity by minimizing address translation overheads.

1.5 Contributions

This thesis contributes the following:

• To reduce the overheads of translation coherence to accelerate page migration, this

thesis proposes Hardware Translation Invalidation and Coherence (HATRIC) to

replace existing software approaches for TLB coherence. HATRIC adds coherence-

tags in translation structures (e.g., TLBs) and uses them to leverage messages

picked up by existing cache coherence protocols. Extending cache coherence pro-

tocols in this manner to support native and virtualized systems improves per-

formance and energy-efficiency. Importantly, this thesis shows that translation

coherence overheads become a much bigger problem in the context of heteroge-

neous memory management and virtualization.

• To further improve page migration from software aspect, this thesis proposes

four page migration optimizations and implements them in Linux. These opti-

mizations achieve 15× page migration throughput boost over the existing Linux

page migration. Further integrating all four optimizations into Linux for a dis-

aggregated memory system improves average application performance by 40%.
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Importantly, this work corrects a misconception that heterogeneous memory man-

agement requires only good policies and can ignore the mechanism for page mi-

gration. Furthermore, one of the page migration optimization, transparent huge

page migration, has been merged into Linux, a modern and commercial operating

system.

• To counteract the rising cost of address translation, this thesis proposes a novel

operating system service that actively coalesces memory to generate unbounded

amounts of address translation contiguity to minimize address translation over-

heads and make virtual memory scalable with ever-increasing memory sizes. For

120GB application footprint, only 128 contiguous regions, which come at the cost

of < 2% of runtime overhead, can cover > 90% of total footprint. This service

permits coalescing memory at post-memory allocation time regardless of the ex-

tent of system memory fragmentation. In other words, robust use of translation

contiguity becomes possible.

1.6 Dissertation Organization

The rest of this thesis is organized as follows. Chapter 2 introduces hardware transla-

tion coherence and evaluates the proposed approach in a die-stacked memory system

with virtualization. Chapter 3 optimizes page migration along and evaluates its utility

with a heterogeneous memory management policy for a disaggregated memory system.

Chapter 4 implements an OS service for coalescing memory and present real hard-

ware results for both address translation contiguity measurements and overall runtime

overheads of this service. Finally, Chapter 5 concludes this thesis.
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Chapter 2

Hardware Translation Coherence for
Virtualized Systems

2.1 Introduction

As the computing industry designs systems for big-memory workloads, system archi-

tects have begun embracing heterogeneous memory architectures. For example, Intel

is integrating high-bandwidth on-package memory in its Knight’s Landing chip and 3D

Xpoint memory in several products [64]. AMD and Hynix are releasing High-Bandwidth

Memory or HBM [21, 79]. Similarly, Micron’s Hybrid Memory Cube [122, 140] and

byte-addressable persistent memories [39, 131, 160, 161] are quickly gaining traction.

Vendors are combining these high-performance memories with traditional high ca-

pacity and low cost DRAM, prompting research on heterogeneous memory architec-

tures [3, 9, 79,103,116,123,131,153].

Fundamentally, heterogeneous memory management requires that OSes remap pages

between memory devices with different latency / bandwidth / energy characteristics

for desirable overall operation. Page remapping is not a new concept. OSes have

long used it to migrate physical pages to defragment memory and create superpages

[8, 81, 109, 147], to migrate pages among NUMA sockets [50, 86], and to deduplicate

memory by enabling copy-on-write optimizations [126, 127, 138]. However, while page

remappings are used sparingly in these scenarios, they become frequent when using

heterogeneous memories. This is because page remapping is necessary for applications

to utilize a memory device’s technology characteristics by moving data to these memory

devices. Consequently, IBM and Redhat are already deploying Linux patchsets to

enable page remapping amongst coherent heterogeneous memory devices [32,52,78].
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These efforts face an obstacle: page remappings suffer performance and energy

penalties. There are two components to these penalties. The first is the overhead

of copying data. The second is the cost of translation coherence. It is this second

cost that this paper focuses on. When privileged software remaps a physical page, it

has to update the corresponding virtual-to-physical page translation in the page table.

Translation coherence is the means by which caches dedicated to translations (e.g.,

TLBs [19, 96, 124, 125], MMU caches [16], etc.) are kept up-to-date with page table

mappings.

Past work has shown that translation coherence overheads can consume 10-30%

of system runtime [116, 134, 154]. These overheads are even worse on virtualized sys-

tems. We show that as much as 40% of application runtime on virtualized systems can

be wasted on translation coherence overhead. This is because modern virtualization

support requires the use of two page tables. Systems with hardware assists for virtual-

ization like Intel VT-x and AMD-V use a guest page table to map guest virtual pages

to guest physical pages and a nested page table to map guest physical pages to system

physical pages [15]. Changes to either page table require translation coherence.

The problem of coherence is not restricted to translation mappings. In fact, the

systems community has studied problems posed by cache coherence for several decades

[145] and has developed efficient hardware cache coherence protocols [100]. What makes

translation coherence challenging today is that unlike cache coherence, it relies on

cumbersome software support. While this may have sufficed in the past when page

remappings were used relatively infrequently, it is problematic today as heterogeneous

memories require more frequent page remapping. Consequently, we believe that there

is a need to architect better support for translation coherence. In order to understand

what this support should constitute, we list three attributes desirable for translation

coherence.

1© Precise invalidation: Processors use several hardware translation structures –

TLBs, MMU caches [11, 16], and nested TLBs (nTLBs) [15] – to cache portions of the

page table(s). Ideally, translation coherence should invalidate the translation structure
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entries corresponding to remapped pages, rather than flushing all the contents of these

structures.

2© Precise target identification: The CPU running privileged code that remaps a

page is known as the initiator. An ideal translation coherence protocol would allow

the initiator to identify and alert only CPUs whose TLBs, MMU caches, and nTLBs

cache the remapped page’s translation. By restricting coherence messages to only these

targets, other CPUs remain unperturbed by coherence activity.

3© Lightweight target-side handling: Target CPUs should invalidate their trans-

lation structures and relay acknowledgment responses to the initiator quickly, without

excessively interfering with workloads executing on the target CPUs.

Over time, vendors have addressed some of these requirements. For example, x86-

64 and ARM architectures support instructions that invalidate specific TLB entries,

obviating the need to flush the entire TLB in some cases. OSes like Linux can track

coherence targets (though not with complete precision so some spurious coherence activ-

ity remains) [154]. Crucially however, all this support is restricted to native execution.

Translation coherence for virtualized systems meets none of these goals today.

In particular, virtualized translation coherence becomes especially problematic when

there are changes to the nested page table. Consider 1© – when hypervisors change a

nested page table entry, they track guest physical and system physical page numbers,

but not the guest virtual page. Unfortunately, x86-64 and ARM only allow precise TLB

invalidation for entries whose guest virtual page is known. Consequently, hypervisors

are forced to conservatively flush all translation structures, even if only a single page

is remapped. This degrades performance since virtualized systems need expensive two-

dimensional page table walks to re-populate the flushed structures [5, 15, 18, 27, 36, 49,

124,125,127].

Virtualized translation coherence protocols also fail to achieve 2©. Hypervisors track

the subset of CPUs that a guest VM runs on but cannot (easily) identify the CPUs

used by a process within the VM. Therefore, when the hypervisor remaps a page,

it conservatively initiates coherence activities on all CPUs that may potentially have
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executed any process in the guest VM. While this does spare CPUs that never execute

the VM, it needlessly flushes translation structures on CPUs that execute the VM but

not the process.

Finally, 3© is also not implemented. Initiators currently use expensive inter-processor

interrupts (on x86) or tlbi instructions (on ARM, Power) to prompt VM exits on all

target CPUs. Translation structures are flushed on a VM re-entry. VM exits are

particularly detrimental to performance, interrupting the execution of target-side ap-

plications [2, 15].

We believe that it is time to implement translation coherence in hardware to solve

these issues. This view is inspired by influential prior work on UNITD [134], which

showcased the potential of hardware translation coherence. We propose hardware

translation invalidation and coherence or HATRIC, a hardware mechanism that goes

beyond UNITD and other recent work on TLB coherence for native systems [116, 154],

and tackles 1©- 3©. HATRIC extends translation structure entries with coherence tags

(or co-tags) storing the system physical address where the translation entry resides (not

to be confused with the physical address stored in the page table). This solves 1©, since

translation structures can now be identified by the hypervisor without knowledge of

the guest virtual address. HATRIC exposes co-tags to the underlying cache coherence

protocol, achieving 2© and 3©.

We evaluate HATRIC under a forward-looking virtualized system with a high-bandwidth

die-stacked memory and a slower off-chip memory. HATRIC improves performance by

up to 33% and saves up to 10% of energy, but requires only 0.2% additional CPU area.

Overall, our contributions are:

• We quantify the overheads of translation coherence on hypervisor-managed die-

stacked memory. We focus on KVM but also study Xen. All prior work on

translation coherence [116, 134, 154] overlooks the problems posed by changes to

nested page tables. We show that such changes cause slowdown, but that better

translation coherence can potentially improve performance by as much as 35%.

• We design HATRIC to subsume translation coherence in hardware by piggybacking
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on existing cache coherence protocols. Our initial goal was to use UNITD, with

the simple extensions recommended in the original paper [134] for virtualization.

However, we found UNITD to be inadequate for virtualization in three important

ways. First, UNITD (and indeed all prior work on translation coherence [116,154])

ignores MMU caches and nested TLBs, which we find accounts for 8-15% of

system runtime. Second, UNITD requires large energy-hungry CAMs. Third,

the original UNITD work presents a blueprint, but not concrete details, on how

to fold translation coherence atop directory-based coherence protocols. HATRIC

addresses all three shortcomings to provide a complete end-to-end solution for

virtualized translation coherence.

• We perform several studies that illustrate the benefits of HATRIC’s design deci-

sions. Further, we discuss HATRIC’s advantages over purely software approaches

to mitigate translation coherence issues.

While we focus mostly on the particularly arduous challenges of translation coher-

ence due to nested page table changes, HATRIC is also applicable to shadow paging [5,49]

and native execution.

2.2 Background

We begin by presenting an overview of the key hardware and software structures in-

volved in page remapping. Our discussion focuses on x86-64 systems. Other architec-

tures are broadly similar but differ in some low-level details.

2.2.1 HW and SW Support for Virtualization

Virtualized systems accomplish virtual-to-physical address translation in one of two

ways. Traditionally, hypervisors used shadow page tables to map guest virtual pages

(GVPs) to system physical pages (SPPs), keeping them synchronized with guest OS

page tables [5]. However, the overheads of page table synchronization can be high [49].

Consequently, most systems now use two-dimensional page tables instead. Figure 2.1
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illustrates two-dimensional page table walks (see past work for more details [5, 11, 12,

15, 48, 127]). Guest page tables map GVPs to guest physical pages (GPPs). Nested

page tables map GPPs to SPPs. Further, x86-64 systems use 4-level forward mapped

radix trees for both page tables [12, 15, 48, 127]. We refer to these as levels 4 (the root

level) to 1 (the leaf level) similar to recent work [11, 15, 16]. When a process running

in a guest VM makes a memory reference, its GVP is translated to an SPP. The guest

CR3 register is combined with the requested GVP (not shown in the picture) to deduce

the GPP of level 4 of the guest page table (shown as GPP Req.). However, to look up

the guest page table (gL4-gL1), the GPP must be converted into the SPP where the

page table resides. Therefore, we first use the GPP to look up the nested page tables

(nL4-nL1), to find SPP gL4. Looking up gL4 then yields the GPP of the next guest

page table level (gL3). The rest of the page table walk proceeds similarly, requiring 24

sequential, and hence expensive, memory references in total. CPUs use three types of

translation structures to accelerate this walk:

1© Private per-CPU TLBs cache the requested GVP to SPP mappings, short-

circuiting the entire walk. TLB misses trigger hardware page table walkers to look up

the page table.

2© Private per-CPU MMU caches store intermediate page table information to

accelerate parts of the page table walk [11,15,16]. There are two flavors of MMU cache.

The first is a page walk cache and is implemented in AMD chips [15, 16]. Figure 2.1

shows the information cached in page walk caches. Page walk caches are looked up with

GPPs and provide SPPs where page tables are stored. The second is called a paging

structure cache and is implemented by Intel [11,16]. Paging structure caches are looked

up with GVPs and provide the SPPs of page table locations. Paging structure caches

generally perform better, so we focus on them [11,16].

3© Private per-CPU nTLBs short-circuit nested page table lookups by caching GPP

to SPP translations [15]. Figure 2.1 shows the information cached by nTLBs.

Apart from caching translations in these dedicated structures, CPUs also cache

page tables in private L1 (L2, etc.) caches and the shared last-level cache (LLC).
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Figure 2.1: Two-dimensional page table walks for virtualized systems. Nested page
tables are represented by boxes and guest page tables are represented by circles. Each
page table’s levels from 4 to 1 are shown. We show items cached by MMU caches and
nTLBs. TLBs (not shown) cache translations from the requested guest virtual page
(GVP) to the requested system physical page (SPP).

The presence of separate private translation caches poses coherence problems. While

standard cache coherence protocols ensure that page table entries in private L1 (L2,

etc.) caches are coherent, there are no such guarantees for TLBs, MMU caches, and

nTLBs. Instead, privileged software keeps translation structures coherent with data

caches and one another.

2.2.2 Page Remapping in Virtualized Systems

We now detail how translation coherence can be triggered on a virtualized system.

All page remappings can be classified by the data they move, and the software agent

initiating the move.



21

Remapped data: Systems may remap a page storing a© the guest page table; b© the

nested page table; or c© non-page table data. Most remappings are from c© as they

constitute most memory pages. We have found that less than 1% of page remappings

correspond to a©- b©. We therefore highlight HATRIC’s operation using c© although

HATRIC also implicitly supports the first two cases.

Remapping initiator: Pages can be remapped by a guest OS or the hypervisor. When

a guest OS remaps a page, the guest page table changes. Past work achieves low-overhe-

ad guest page table coherence with simple and effective software approaches [117].

Unfortunately, there are no such workarounds to mitigate the translation coherence

overheads of hypervisor-initiated nested page table remappings. For these reasons,

cross-VM memory deduplication [57,127] and page migration between NUMA memories

on multi-socket systems [10, 132, 133] are known to be expensive. In the past, such

overheads may have been mitigated by using these optimizations sparingly. However,

with heterogeneous memories such as die-stacked memory, we may actually desire nested

page table remappings to dynamically migrate data for good performance (see past work

exploring paging policies for die-stacked memory [116]).

2.3 Software Translation Coherence

Our goal is to ensure that translation coherence does not impede the adoption of het-

erogeneous memories. We study forward-looking die-stacked DRAM as an example

of an important heterogeneous memory system. Die-stacked memory uses DRAM

stacks that are tightly integrated with the processor die using high-bandwidth links

like through-silicon vias or silicon interposers [74,116]. Die-stacked memory is expected

to be useful for multi-tenant and rack-scale computing where memory bandwidth is

often a performance bottleneck and will require a combination of application, guest

OS, and hypervisor management [44,92,116,155].
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Figure 2.2: Performance of no-hbm (no die-stacked DRAM), inf-hbm (data always in
die-stacked DRAM), curr-best (best die-stacked DRAM paging policy with current soft-
ware translation coherence overheads), and achievable (best paging policy, assuming no
translation coherence overheads). Data is normalized to no-hbm runtime.

2.3.1 Translation Coherence Overheads

We quantify translation coherence overheads on a die-stacked system that is virtualized

with KVM. We modify KVM to page between the die-stacked and off-chip DRAM.

Since ours is the first work to consider hypervisor management of die-stacked memory,

we implement a variety of paging policies. Rather than focusing on developing a single

best policy, our objective is to show that current translation coherence overheads are

so high that they generally curtail the effectiveness of any paging policy.

Our paging mechanisms extend prior work on software-guided die-stacked DRAM

paging [116]. When off-chip DRAM data is accessed, there is a page fault. KVM then

migrates the desired page into an available die-stacked DRAM physical page frame.

The GVP and GPP remain unchanged but KVM changes the SPP and hence its nested

page table entry. This triggers translation coherence.

We run our modified KVM on the detailed cycle-accurate simulator described in

Section 2.5. Like prior work [116], we model a system with 2GB of die-stacked DRAM

with 4× the memory bandwidth of a slower off-chip 8GB DRAM. This is a total of

10GB of addressable DRAM. We model 16 CPUs based on Intel’s Haswell architecture.

Figure 2.2 quantifies the performance of hypervisor-managed die-stacked DRAM.
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We normalize all performance numbers to the runtime of a system with only off-chip

DRAM and no high-bandwidth die-stacked DRAM (no-hbm). Further, we show an un-

achievable best-case scenario where all data fits in an infinite-sized die-stacked memory

(inf-hbm). After profiling several paging strategies (evaluated in detail in Section 2.6),

we plot the best-performing ones with the curr-best bars. These results assume tra-

ditional software translation coherence mechanisms. In contrast, the achievable bars

represent the potential performance of the best paging policies with ideal zero-overhead

translation coherence.

Figure 2.2 shows that (unachievable) infinite die-stacked DRAM can improve per-

formance by 25-75% (inf-hbm versus no-hbm). Unfortunately, the current best paging

policies (curr-best) fall far short of ideal inf-hbm. Translation coherence overheads are

a big culprit – when these overheads are eliminated in achievable, system performance

comes within 3-10% of the case with infinite die-stacked DRAM capacity (inf-hbm). In

fact, Figure 2.2 shows that translation coherence overheads can be so high that they can

prompt die-stacked DRAM to, counterintuitively, degrade performance. For example,

data caching and tunkrank suffer 23% and 10% performance degradations in curr-best,

respectively, despite using high-bandwidth die-stacked memory.

We also compare the costs of translation coherence to those of the actual data copy.

We find that translation coherence can degrade performance almost as badly as data

copying. For example, when running canneal with 16 CPUs, both translation coherence

and data copying consume 30% of runtime. Like us, others have also noted that trans-

lation coherence can surprisingly exceed or match data copy costs [116]. Intuitively,

this is because translation coherence scales poorly compared to data copying. While

copying involves reading and writing a fixed-size page’s data contents between mem-

ories regardless of core counts, translation coherence costs continue to increase with

more cores. Virtualization exacerbates this problem by forcing VM exits on all these

cores.
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Figure 2.3: Sequence of operations associated with a page unmap. Initiator to target
IPIs are shown in blue 1©, VM exits are shown in green 2©, and translation structure
flushes are shown in black 3©.

2.3.2 Page Remapping Anatomy

We now shed light on why translation coherence performs poorly. While we use page

migration between off-chip and die-stacked DRAM as our driving example, the same

mechanisms are used today to migrate pages between NUMA memories, or to defrag-

ment memory. When a VM is configured, KVM assigns it virtual CPU threads or

vCPUs. Figure 2.3 assumes 3 vCPUs executing on physical CPUs. Suppose vCPU 0

frequently demands data in GVP 3, which maps to GPP 8 and SPP 5, and that SPP

5 resides in off-chip DRAM. The hypervisor may want to migrate SPP 5 to die-stacked

memory (e.g. SPP 512) to improve performance. On a VM exit (assumed to have

occurred prior in time to Figure 2.3), the hypervisor modifies the nested page table to

update the SPP, triggering translation coherence. There are three problems with this:

All vCPUs are identified as targets: Figure 2.3 shows that the hypervisor initiates

translation coherence by setting the TLB flush request bit in every vCPU’s kvm vcpu

structure. The kvm vcpu structure stores vCPU state. When a vCPU is scheduled on

a physical CPU, kvm vcpu is used to provide register content, instruction pointers, etc.

By setting bits in kvm vcpu, the hypervisor signals that TLB, MMU cache, and nTLB

entries need to be flushed.
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Ideally, we would like the hypervisor to identify only the CPUs that cache the stale

translation as targets. The hypervisor does skip physical CPUs that never executed

the VM. However, it flushes all physical CPUs that ran any of the vCPUs of the VM,

regardless of whether they cache the modified page table entries.

All vCPUs suffer VM exits: Next, the hypervisor launches inter-processor inter-

rupts (IPIs) to all the vCPUs. IPIs are deployed by the processor’s advanced pro-

grammable interrupt controllers (APICs). APIC implementations vary and depending

on the APIC technology, KVM converts broadcast IPIs into a loop of individual IPIs or

a loop across processor clusters. We have profiled IPI overheads using microbenchmarks

on Haswell systems and like past work [116,154], we find that they consume thousands

of clock cycles. If the receiving CPUs are running vCPUs, they suffer VM exits, com-

promising goal 3© from Section 2.1. IPI targets then acknowledge the initiator, which

is paused waiting for all vCPUs to respond.

All translation structures are flushed: The next step is to invalidate stale map-

pings in translation structure entries. Current architectures provide ISA and microar-

chitectural support for this via, for example, invlpg instructions in x86. There are

two caveats however. First, these instructions need the GVP of the modified nested

page table mapping to identify the TLB entries that need to be invalidated. This is

primarily because modern TLBs maintain GVP bits in the tag. While this is a good

design choice for non-virtualized systems, it is problematic for virtualized systems be-

cause hypervisors do not have easy access to GVPs. Instead, they have GPPs and

SPPs. Consequently, KVM and Xen flush all TLB contents when they modify a nested

page table entry, rather than selectively invalidating TLB entries. Second, there are

currently no instructions to selectively invalidate MMU caches or nTLBs, even though

they are tagged with GPPs and SPPs. This is because the marginal benefits of adding

ISA support for selective MMU cache and nTLB invalidation are limited when the more

performance-critical TLBs are flushed.
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2.3.3 Hardware Versus Software Solutions

It is natural to ask whether translation coherence problems can be solved with better

software. However, we believe that practical software solutions can only partially solve

the problem of flushing all translation structures and cannot easily solve the problem

of identifying all vCPUs as translation coherence targets. Consider the problem of

flushing translation structures. One might consider tackling this by modifying the

guest-hypervisor interface to enable the hypervisor to use existing ISA support (e.g.,

invlpg) to selectively invalidate TLB entries. But this only fixes TLB invalidation – no

architectures currently support selective invalidation instructions for MMU caches and

nTLBs, so these would still have to be flushed.

Even if this problem could be solved, making target-side translation coherence han-

dling lightweight is challenging. Fundamentally, handling translation coherence in soft-

ware means that CPU context switches are unavoidable. One alternative to VM exits

might be to switch to lighter-weight interrupts to query the guest OS for GVP-SPP

mappings. Unfortunately, even these interrupts remain expensive. We profiled inter-

rupt costs using microbenchmarks on Intel’s Haswell machines and found that they

require 640 cycles on average, which is just half of the average of 1300 cycles required

for a VM exit. Contrast this with HATRIC, which entirely eliminates these costs by

never disrupting the operation of the guest OS or requiring context switching.

2.4 Hardware Design

We now detail HATRIC’s design. HATRIC achieves all three goals from Section 2.1. It

does so by adding co-tags to translation structures. This obviates the need for full

translation structure flushes by more precisely identifying invalidation targets. HA-

TRIC then exposes these co-tags to the cache coherence protocol to precisely identify

coherence targets and to eliminate VM exits.



27

!"#$%&'(&

&

!)'&*& & &!''&*&

!)'&+ & &!''&+&

!)'&, & &!''&,&

-&

(./&

&

&

&

&

!(01!!!!!20%0&

!)'*&&3''*&

!)'+&&3'',&

4056705#&

!"#$%&83&

9#$%#6&'(&

&

!''&*& & &3''&*&

!''&+ & &3''&+&

!''&, & &3''&,&

-&

4:;#5<=$>5&

?>@%01&

*A+**B&

*A+*+*&

3>C705#&

*A****&

*A***B&

*A**+*&

*A+***&

*A+**B&

*A+*+*&

Figure 2.4: We add co-tags to store the system physical addresses where nested page
table entries are stored. In our final implementation, we only store a subset of the
system physical address bits.

2.4.1 Co-Tags

What are co-tags? Consider the page tables of Figure 2.4 and suppose that the hy-

pervisor modifies the GPP 2–SPP 2 nested page table mapping, making the TLB entry

caching information about SPP 2 stale. Since the TLB caches GVP–SPP mappings

rather than GPP–SPP mappings, this means that we would like to selectively invali-

date GVP 1–SPP 2 from the TLB, and although not shown, corresponding MMU cache

and nTLB entries. Co-tags allow us to do this by logically acting as tag extensions

that allow precise identification of translations when the hypervisor does not know the

GVP. In other words, each TLB, MMU cache, and nTLB entry has its own co-tag.

Co-tags store the system physical address of the nested page table entry (nL1 from the

bottom-most row in Figure 2.1). For example, GVP 1–SPP 2 uses the nested page table

entry at system physical address 0x1010, which is stored in the co-tag.

What do co-tags accomplish? Co-tags not only permit more precise translation

identification, but can also be piggybacked on existing cache coherence protocols. When

the hypervisor modifies a nested page table translation, cache coherence protocols detect

the modification to the system physical address of the page table entry. Ordinarily, all

private caches respond so that only one amongst them holds the up-to-date copy of the

cache line storing the nested page table entry. With co-tags, HATRIC extends cache

coherence as follows. Coherence messages, previously restricted to just private caches,
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are now also relayed to translation structures too. Co-tags are used to identify which (if

any) TLB, MMU cache, and nTLB entries correspond to the modified nested page table

cache line. Overall, this means that co-tags: a© pick up on nested page table changes

entirely in hardware, without the need for IPIs, VM exits, or invlpg instructions; b©

rely on, without fundamentally changing, existing cache coherence protocols; c© permit

selective TLBs, MMU caches, and nTLBs rather than flushes.

How are co-tags implemented? Logically, co-tags act as tag extensions. Physically,

we implement co-tags in separate set-associative structures, one per translation struc-

ture. Each translation structure’s co-tag array maintains one co-tag per translation

structure entry. It is possible to use either set-associative CAM or SRAM structures

to realize co-tag arrays. Naturally, CAM-based lookups are quicker. We therefore fo-

cus on set-associative CAM structures, similar to the reverse CAM structures used for

UNITD [134].

Thus far, we have assumed that co-tags store all the bits associated with the physical

address of its corresponding page table entry. This, however, is a naive implementation

with an important drawback. Like the reverse CAMs used in UNITD, co-tags storing

all 64 physical address bits become as large as TLB entries themselves. Even worse, co-

tags triple the area needed for MMU cache and nTLB entries. Since address translation

can account for 13-15% of processor energy [45, 71, 73, 77, 144], using such large CAMs

implies unacceptable area and energy overheads.

Therefore, our HATRIC implementation uses co-tags with a fewer number of bits

than the 64 physical address bits. This decreased resolution means that groups of

TLB entries, rather than individual TLB entries, may be invalidated when one nested

page table entry is changed. However, judiciously-sized co-tags achieve a good balance

between invalidation precision, and area/energy overheads. Section 2.6 shows, using

detailed RTL modeling, that 2-byte co-tags (a per-core area overhead of 0.2%) strike a

good balance.

Who sets co-tags? For performance, co-tags must be set by hardware without an

OS or hypervisor interrupt. HATRIC uses the page table walker to do this. On TLB,
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MMU cache, and nTLB misses, the page table walker performs a two-dimensional page

table walk. In so doing, it infers the system physical address of the page table entries

and stores it in the TLB, MMU cache, and nTLB co-tags.

2.4.2 Coherence States and Initiators

Since TLBs, MMU caches, and nested TLBs are read-only structures, HATRIC inte-

grates them into existing cache coherence protocol in a manner similar to read-only

instruction caches. We describe HATRIC’s operation on a directory-based MESI pro-

tocol, with the coherence directories located at the shared LLC cache banks and use

dual-grain coherence directories from recent work [164].

Translation structure coherence states: Since translation structures are read-only,

their entries require only two states: Shared (S), and Invalid (I). These two states may

be realized using valid bits. When a translation is entered into the TLB, MMU cache, or

nTLB, the valid bit is set, representing the S state. At this point, the translation can be

accessed by the local CPU. The translation structure entry remains in this state until

it receives a coherence message. Co-tags are compared to incoming messages. When

an invalidation request matches the co-tag, the translation entry is invalidated.

Translation coherence initiators: With HATRIC, translation coherence activity is

initated by either the hardware page table walker or privileged software (i.e., the OS

or hypervisor). Page table walkers are hardware finite state machines that are invoked

on TLB misses. They traverse page tables and are responsible for filling translation

information into the translation structures and setting the co-tags. Page table walkers

cannot map or unmap pages. On the other hand, the OSes and hypervisor can map

and unmap page table entries using standard load/store instructions. HATRIC picks up

these changes and keeps private cache and translation structures coherent.

2.4.3 Coherence Directory and Co-Tag Interaction

HATRIC requires some changes to the coherence directory. We discuss these changes

and their design implications in this section.
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Figure 2.5: Coherence directories identify translation structures caching page table
entries, aside from private L1 cache contents.

Tracking translation entries: There are several ways to implement coherence direc-

tories, but we assume banked directories placed in conjunction with the LLC (one bank

per LLC bank). HATRIC’s coherence directories track, as is usual, both cache lines that

store non-page table data and page table data. However, some changes are necessary

to interpret the directory entries maintaining page table data. Specifically, all cache

coherence protocol directory entries maintain a sharer list that indicates which CPUs

have their private caches hosting each cache block. Directory entries for non-page table

data can be left unchanged. However, we need to change how the sharer list is updated

and interpreted for directory entries tracking page table data. Consider a directory

entry for page table data with a sharer list of {CPU 0, CPU 1, CPU 3}. Ordinarily,

this sharer list means that a cache line storing page table data is available in the private

caches of CPU 0, CPU 1, and CPU 3. In other words, this sharer list tells us nothing

about which translation structures (i.e., TLBs, MMU caches, and nTLBs) maintain

page table entries from this page table cache line. Instead, HATRIC updates and inter-

prets these sharer lists different. That is, a sharer list with CPU 0, CPU 1, and CPU

3 indicates that these CPUs may be caching page table entries from the corresponding

page table cache line in any of the private caches or translation structures.

Figure 2.5 shows an example of how sharer lists are maintained. We show a system

with four CPUs, with an LLC and adjoining directory, each banked four ways. CPU
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0 maintains a cache line of eight page table entries, one of which also exists in its

TLB. Meanwhile CPU 1 also maintains this cache line, but does not cache any of the

page table entries in its TLB, while CPU 3 caches one of the page table entries in the

TLB but none in the private cache. The sharer list in the directory entry does not

differentiate among these cases however, and merely tracks the fact that these CPUs

maintain a private copy of at least one of the page table entries in the cache line in one

of the private caches or translation structures (i.e., the TLB or, although not shown,

the MMU caches or nTLBs).

It is possible to modify the sharer list to provide more specific information about

where translations reside. However, this requires additional bits of storage in directory

entries. Instead, we choose this pseudo-specific implementation to simplify hardware.

Naturally, this may result in spurious coherence messages – when a CPU modifies page

table contents and invalidation messages need to be sent to the sharers, they are relayed

to the L1 caches and all translation structures regardless of which ones actually cache

page tables. In Figure 2.5, for example, this results in spurious coherence activity

to CPU 3’s L1 cache. In practice, because modifications of the page table are rare

compared to other coherence activity, this additional traffic is tolerable. Ultimately,

the gains from eliminating high-latency software TLB coherence far outweigh these

relatively minor overheads (see Section 2.6).

Coherence granularity: HATRIC’s directory entries store information at the cache

line granularity. Since x86-64 systems cache 8 page table entries per 64-byte cache

line, similar to false sharing in caches, HATRIC conservatively invalidates all transla-

tion structure entries caching these 8 page table entries if a single page table entry

is modified. Consider CPU 3 in Figure 2.5, where the TLB caches two translations

mapped to the same cache line. If any CPU modifies either one of these translations,

HATRIC has to invalidate both TLB entries. This has implications on the size of co-

tags. Recall that in Section 2.4.1, we stated that co-tags use a subset of the address

bits. We want to use the least significant and hence highest entropy bits as co-tags. But

since cache coherence protocols track groups of 8 translations, co-tags do not store the

3 least significant address bits. Our 2 byte co-tags use bits 18-3 of the system physical
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address storing the page table. Naturally, this means that translations from different

addresses in the page table may alias to the same co-tag. In practice, we find this has

little adverse effect on HATRIC’s performance.

Looking up co-tags: Thus far, we have ignored details of how the translation structure

co-tags are looked up. However, when directory entries identify sharers, it is important

that the TLB, MMU cache, and nTLB lookup and invalidation messages they relay

be energy efficient. As we have already detailed, we achieve better energy efficiency

than prior work on UNITD by architecting the co-tags as set-associative CAMs. This

begs the following question: how can directory entries identify the target set number

in the various translation structures? We use separate approaches for TLBs and MMU

caches/nTLBs.

1© TLBs: HATRIC uses the simple approach for L1 and L2 TLBs and records set

numbers in the directory. Since a directory entry essentially tracks information about

all 8 page table entries within a cache line, we need to record L1 and L2 TLB set

numbers for each individual page table entry. Modern systems (e.g., Intel’s Broadwell

or Skylake architectures) tend to use 64 entry L1 TLBs and 512-1536 entry L2 TLBs

that are 4 way and 8-12 way associative, respectively. Therefore, L1 and L2 TLBs tend

to use up to 16 and 128 sets respectively, meaning that they need 4 and 7 bits for set

identification. This amounts to a total of 88 bits to store all the L1 and L2 TLB set

numbers for all 8 page table entries in a cache line.

Consequently, we studied two options for embedding set numbers in the directory.

In one option, we use an additional coherence directory entry to record TLB set infor-

mation. We save storage space by using 6 bits to record L1 and L2 TLB set numbers

for each of the 8 page table entries. This results in a usage of 48 bits, matching the

size of coherence directory entries. The tradeoff is that this approach requires lookup

of multiple TLB sets to find the matching co-tag, expending more energy. In the sec-

ond option (shown in Figure 2.6), we use two additional directory coherence directory

entries, which comfortably maintain all 11 set identification bits per page table entry.
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Figure 2.6: We use additional coherence directory entries adjacent to the directory
entry tracking sharers, to track TLB set numbers.

In both scenarios, these additional directory entries are managed such that their alloca-

tion and replacement are performed in tandem with the original directory entry storing

sharer information. We have modeled both options and have found no performance

difference between the two approaches and only a minor energy difference. We assume

the second approach for the remainder of this work since we have found it to be more

energy efficient.

2© MMU caches and nTLBs: One might initially consider treating MMU caches and

nTLBs in a manner that parallels TLBs and embed their set numbers in the directory

too. However, we use a alternative storage-efficient approach. We observe that MMU

caches and nTLBs cache information from a single dimension of the page tables, as

opposed to TLBs, which cache information across both dimensions. This enables an

implementation trick that precludes the need to embed MMU cache and nTLB set

information in the directory.

Figure 2.7 shows this approach. We show the contents of a guest page table, and

a nested page table. Furthermore, we focus on changes to the nTLB, with changes

to MMU caches proceeding in a similar manner. Suppose that the nested page table

entry mapping GPP 2 to SPP 2 is changed by a CPU. The coherence directory entry
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Figure 2.7: MMU cache and nTLB set numbers can be inferred directly from the
physical address of the page table entry being modified, so there is no need to store
them in the coherence directory entries.

must consequently infer the set numbers within the MMU caches and nTLBs where

this translation resides, so as to relay invalidation messages to them. We observe the

following. The coherence protocol already tracks the physical address of the nested

page table entry that is being changed ((0x1010) in our example). Since each page

table entry is 8 bytes, the last 3 bits can be ignored. However, bits 11-3 of the physical

address identifies which of the 512 page table entries in the nested page table page is

being modified. It so happens that these 9 bits correspond exactly with 9 bits from the

GPP. For example, if we’re updating an L1 page table entry, bits 11-3 of the nested

page table entry’s physical address are equivalent to bits 20-12 of the GPP. Therefore,

if – and this is true for all commercial MMU caches and nTLBs today – the MMU

caches and nTLBs have fewer than 29 or 512 sets, the desired MMU cache/nTLB set

can be uniquely identified by bits 11-3 of the physical address of the nested page table

being changed. Since modern MMU caches and nTLBs use 2-8 sets (see Figure 2.7)

today, there is no need to embed MMU cache or nTLB set numbers in the coherence

directory entries.

Co-tag lookup filtering: Naturally, we would like to initiate coherence activities for

translation structures only when page tables are modified, to save co-tag lookup energy

and reduce coherence traffic. Therefore, we need a way to distinguish directory entries

corresponding to cache lines from page tables from those that store non-page table

data. We achieve this by adding a single bit, a nested page table or nPT bit, for every
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Figure 2.8: Coherence activity from the eviction of a cache line holding page table entries from
CPU0’s private cache. HATRIC updates sharer list information lazily in response to cache line
evictions.

coherence directory entry. The nPT bit is set by the hardware page table walker when

any page table entry from the corresponding cache line is brought into the translation

structures.

Silent versus non-silent evictions: Directories track translations in a coarse-grained

and pseudo-specific manner. This has implications on cache line evictions. Usually,

when a private cache line is evicted, the directory is sent a message to update the

line’s sharer list [164]. An up-to-date sharer list eliminates spurious coherence traffic.

We continue to employ this strategy for non-page table cache lines but use a slightly

different approach for page tables. When a cache line holding page table entries is

evicted, its content may still be cached in the TLB, MMU cache, or nTLB. Even

worse, other translations with matching co-tags may still be residing in the translation

structures. One option is to detect all translations with matching co-tags and invalidate

them. This hurts energy because of additional translation structure lookups, and hurts

performance because of unnecessary TLB, MMU cache, and nTLB entry invalidations.

Figure 2.8 shows how HATRIC handles this problem, contrasting it with traditional

cache coherence. Our approach is to essentially employ a slightly modified version of the

well-known concept of silent evictions already used to reduce coherence traffic [145]. To

showcase this in detail, suppose CPU 0 evicts a cache line containing page table entries.



36

!"#$

$

$

"%$&$

$

$

'()$*$ '()$%$ '()$+$ '()$,$

""'$#-./$ ""'$#-./$ ""'$#-./$ ""'$#-./$

012345627$

$

012345627$

$

012345627$

$

012345627$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

!"#$

$

$

"%$&$

$

$

.(!$8$!-9$8$:;-232<$$$$$$$$$$$$$$ $$

%$$$8$!-9$8$=*>$%>$,?$

%$

+$

@$

A$

,B$
,-$

C-$

C4$

CB$

CD$

"%$-.D$"+$!"#$<35$.EFB32$G62$H-93$5-BI3$3.5213<$*JK$

Figure 2.9: Coherence directories identify translation structures caching page table
entries, aside from private L1 cache contents.

Both approaches relay a message to the coherence directory. Ordinarily, we remove

CPU 0 from the sharer list. However, if HATRIC sees that this message corresponds to

a cache line storing a page table (by checking the directory entry’s page table bits), the

sharer list is untouched. This means that if CPU 1 subsequently writes to the same

cache line, HATRIC sends spurious invalidate messages to CPU 0, unlike traditional

cache coherence. However, we mitigate frequency of spurious messages; when CPU 0

sees spurious coherence traffic, it sends a message back to the directory to demote CPU

0 from the sharer list. Sharer lists are hence lazily updated. Similarly, evictions from

translation structures lazily update coherence directory sharer lists.

Directory evictions: Past work shows that coherence directory entry evictions require

back-invalidations of the associated cache lines in the cores [164]. This is necessary for

correctness; all lines in private caches must always have a directory entry. HATRIC

extends this approach to relay back-invalidations to all translation structures.

2.4.4 Putting It All Together

Figure 2.9 details HATRIC’s overall operation. Initially, CPU 0’s TLB and L1 caches

are empty. On a memory access, CPU 0 misses in the TLB 1©. Whenever a request is

satisfied from a page table line in the L1 cache in the M, E, or S state, there is no need
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to initiate coherence transactions. However, suppose that the last memory reference in

the page table walk from Figure 2.1 is absent in the L1 cache. A read request is sent

to the coherence directory in step 2©.

Two scenarios are possible. In the first, the translation may be uncached in the

private caches and there is no coherence directory entry. A directory entry is allocated

and the nPT bit is set. In the second scenario (shown in Figure 2.9) the request matches

an existing directory entry. The nPT bit already is set and HATRIC reads the sharer

list which identifies CPUs 1 and 3 as also caching the desired translation (and the 7

adjacent translations in the cache line) in shared state. In response, the cache line with

the desired translations is sent back to CPU 0 (from CPU 1, 3, or memory, whichever

is fastest), updating the L1 cache 3a© and TLB 3b©. Subsequently, the sharer list adds

CPU 0.

Now suppose that CPU 1 runs the hypervisor and unmaps the solid green translation

from the nested page table in step 4©. To transition the L1 cache line into the M

state, the cache coherence protocol relays a message to the coherence directory. The

corresponding directory entry is identified in 5© and we find that CPU 0 and 3 need

to be sent invalidation requests. However, the sharer list is (i) coarse-grained and (ii)

pseudo-specific. Because of (i), CPU 0 has to invalidate not only its TLB entry 6a©

but also 8 translations in the L1 cache 6b© and CPU 3 has to invalidate the 2 TLB

entries with matching co-tags 6c©. Because of (ii), CPU 1’s L1 cache receives a spurious

invalidation message 6d©.

2.4.5 Other Key Observations

Translation structure lookup latency and energy: We have modeled the area,

latency, and energy implications of HATRIC on translation structures using CACTI.

Our improvements result in a 0.2% area increase for each CPU, primarily from imple-

menting co-tags. Despite this, translation structure accesses initiated by the local CPU

see no change in access times and energy. This is because co-tags are not accessed on

CPU-side lookups and are only used on translation coherence lookups. Further, when
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CPU-side lookups occur at the same time as coherence lookups, we prioritize the for-

mer. Finally, since HATRIC does not need associative lookups when probing co-tags,

translation coherence lookups suffer little energy.

Other co-tag sizing issues: An important design issue is the relationship between

translation structure size and co-tag resolution. In general, we need more co-tag bits for

larger translation structures to ensure that false-positive matches do not become exces-

sive. However, since we assume a set-associative co-tag implementation, the number of

false-positives is restricted to the number of co-tags in a set, in the worst case. So unless

translations become far more set-associative (an unlikely event since L2 TLBs already

employ 12-way set associativity), false-positives are unlikely to become problematic.

Metadata updates: Beyond software changes to the translations, they may also be

changed by hardware page table walkers. Specifically, page table walkers update dirty

and access bits to aid page replacement policies [127]. However because these updates

are picked up by the standard cache coherence protocol, HATRIC naturally handles

these updates too.

Prefetching optimizations: Beyond simply invalidating stale translation structure

entries, HATRIC could potentially update (or prefetch) the updated mappings into

the translation structures. Since a thorough treatment of these studies requires an

understanding of how to manage translation access bits while speculatively prefetching

into translation structures [97], we leave this for future work.

Coherence protocols: We have studied a MESI directory based coherence protocol

but we have also implemented HATRIC atop MOESI protocols too. HATRIC requires

no fundamental changes to support these protocols.

Synonyms and superpages: HATRIC naturally handles synonyms or virtual address

aliases. This is because synonyms are defined by unique translations in separate page

table locations, and hence separate system physical addresses. Therefore, changing or

removing a translation has no impact on other translations in the synonym set, allowing

HATRIC to be agnostic to synonyms. Similarly, HATRIC supports superpages, which
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also occupy unique translation entries and can be easily detected by co-tags.

Multiprogrammed workloads: One might expect that when an application’s phys-

ical page is remapped, there is no need for translation coherence activities to extend to

the other applications, because they operate on distinct address spaces. Unfortunately,

hypervisors do not know which physical CPUs an application executed on; all they know

is the vCPUs the entire VM uses. Therefore, the hypervisor conservatively flushes even

the translation structures of CPUs that never ran the offending application. HATRIC

eliminates this problem by precisely tracking the correspondence between translations

and CPUs.

Comparison to past approaches: HATRIC is inspired by UNITD [134]. HATRIC uses

energy-frugal co-tags instead of UNITD’s large reverse-lookup CAMs, achieving greater

energy efficiency. We showcase this in Section 2.6 where we compare the efficiency

of HATRIC versus an enhanced UNITD design for virtualization. Further, HATRIC

extends translation coherence to MMU caches and nTLBs. Beyond UNITD, past work

on DiDi [154] also targets translation coherence for non-virtualized systems. Similarly,

recent work investigates translation coherence overheads in the context of die-stacked

DRAM [116]. While this work mitigates translation coherence overheads, it does so

specifically for non-virtualized x86 architectures. Finally, recent work uses software

mechanisms to reduce translation overheads for guest page table modifications [117],

while HATRIC tackles nested page table coherence.

2.5 Methodology

Our experimental methodology has two primary components. First, we modify KVM

to implement paging on a two-level memory with die-stacked DRAM. Second, we use

detailed cycle-accurate simulation to assess performance and energy.

2.5.1 Die-Stacked DRAM Simulation

We evaluate HATRIC’s performance on a cycle-accurate simulation framework that mod-

els the operation of a 32-CPU Haswell processor. We assume 2GB of die-stacked DRAM
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with 4× the bandwidth of slower 8GB off-chip DRAM, similar to prior work [116]. Each

CPU maintains 32KB L1 caches, 256KB L2 caches, 64-entry L1 TLBs, 512-entry L2

TLBs, 32-entry nTLBs [15], and 48-entry paging structure MMU caches [16]. Further,

we assume a 20MB LLC. We model the energy usage of this system using the CACTI

framework [107]. We use Ubuntu 15.10 Linux as our guest OS and evaluate HATRIC in

detail using KVM and Xen.

We use a trace-based approach to drive our simulation framework. We collect in-

struction traces from our modified hypervisors with 50 billion memory references using

a modified version of Pin [95] which tracks all GVPs, GPPs, and SPPs, as well as

changes to the guest and nested page tables. In order to collect accurate paging ac-

tivity, we collect these traces on a real system. Ideally, we would like this system to

use die-stacked DRAM but since this technology is in its infancy, we are inspired by

recent work [116] to modify a real-system to mimic the activity of die-stacking. We

take an existing multi-socket NUMA platform and by introducing contention, creates

two different speeds of DRAM. We use a 2-socket Intel Xeon E5-2450 system, running

our software stack. We dedicate the first socket for execution of the software stack and

mimicry of fast or die-stacked DRAM. The second socket mimics the slow or off-chip

DRAM. It does so by running several instances of memhog on its cores. Similar to prior

work [125,127], we use memhog to carefully generate memory contention to achieve the

desired bandwidth differential between the fast and slow DRAM of 4×. By using Pin

to track KVM and Linux paging code on this infrastructure, we accurately generate

instruction traces to test HATRIC.

2.5.2 KVM Paging Policies

Our goal is to showcase the overheads imposed by translation coherence on paging

decisions rather than design the optimal paging policy. Thus, we pick well-known

paging policies that cover a wide range of design options. For example, we have studied

FIFO and LRU replacement policies, finding the latter to perform better as expected.

We implement LRU policies in KVM by repurposing Linux’s well-known pseudo-LRU

CLOCK policy [41]. LRU alone doesn’t always provide good performance since it is
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expensive to traverse page lists to identify good candidates for eviction from die-stacked

memory. Instead, performance is improved by moving this operation off the critical path

of execution; we therefor pre-emptively evict pages from die-stacked memory so that a

pool of free pages are always maintained. We call this operation a migration daemon

and combine it with LRU replacement. We have also investigated the benefits of page

prefetching; that is, when an application demand fetches a page from off-chip to die-

stacked memory, we also prefetch a set number of adjacent pages. Generally, we have

found that the best paging policy uses a combination of these approaches.

2.5.3 Workloads

We focus on two sets of workloads. The first set comprises applications that benefit

from the higher bandwidth of die-stacked memory. We use canneal and facesim from

PARSEC [20], data caching and tunkrank from Cloudsuite [46], and graph500 as part

of this group. We also create 80 multiprogrammed combinations of workloads from all

the SPEC applications [60] to showcase the problem of imprecise target identification

in virtualized translation coherence.

Our second group of workloads is made up of smaller-footprint applications whose

data fits within the die-stacked DRAM. We use these workloads to evaluate HATRIC’s

overheads in situations where hypervisor-mediated paging (and hence translation coher-

ence) between die-stacked and off-chip DRAM is rarer. We use the remaining PARSEC

applications [20] and SPEC applications [60] for these studies.

2.6 Evaluation

Performance as a function of vCPU counts: Figure 2.10 shows HATRIC’s runtime,

normalized as a fraction of application runtime in the absence of any die-stacked mem-

ory (no-hbm from Figure 2.2). We compare runtimes for the best KVM paging policies

(sw), HATRIC, and ideal unachievable zero-overhead translation coherence (ideal). Fur-

ther, we vary the number of vCPUs per VM and observe the following. HATRIC is

always within 2-4% of the ideal performance. In some cases, HATRIC is instrumental
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Figure 2.10: For varying vCPUs, runtime of the best KVM paging policy without HA-
TRIC (sw), with HATRIC (hatric), and with zero-overhead translation coherence (ideal).
All results are normalized to the case without die-stacked DRAM.

in achieving any gains from die-stacked memory at all. Consider data caching, which

slows down when using die-stacked memory because of translation coherence overheads,

HATRIC cuts runtimes down to roughly 75% of the baseline runtime in all cases.

Figure 2.10 also shows that HATRIC is valuable across all vCPU counts. In some

cases, more vCPUs exacerbate translation coherence overheads. This is because IPI

broadcasts become more expensive and more vCPUs suffer VM exits. This is why

data caching and tunkrank become slower (see sw) when vCPUs increase from 4 to 8.

HATRIC eliminates these problems, flattening runtime improvements across all vCPU

counts. In other scenarios, fewer vCPUs worsen performance since each vCPU performs

more of the application’s total work. Here, the impact of a full TLB, nTLB, and MMU

cache flush for every page remapping is expensive (e.g. graph500 and facesim). HATRIC

eliminates these overheads almost entirely.

Performance as a function of paging policy: Figure 2.11 also shows HATRIC

performance but as a function of different KVM paging policies. We study three policies

with 16 vCPUs. First, we show lru, which determines which pages to evict from die-

stacked DRAM. We then add the migration daemon (&mig-dmn), and page prefetching

(&pref).

Figure 2.11 shows HATRIC improves runtime substantially for any paging policy.

Performance is best when all techniques are combined but HATRIC achieves 10-30%
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Figure 2.11: HATRIC’s performance benefits for KVM paging policies, with LRU, mi-
gration daemons (mig-dmn), and prefetching (pref.). Results are normalized to the case
without die-stacked DRAM.
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performance improvements even for just lru. Furthermore, Figure 2.11 shows that

translation coherence overheads can often be so high that the paging policy itself makes

little difference to performance. Consider tunkrank, where the difference between lru

versus the &pref bars is barely 2-3%. With HATRIC, however, paging optimizations like

prefetching and migration daemons help.

Impact of translation structure sizes: One of HATRIC’s advantages is that it

converts translation structure flushes to selective invalidations. This improves TLB,

MMU cache, and nTLB hit rates substantially, obviating the need for expensive two-

dimensional page table walks. We expect HATRIC to improve performance even more
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Figure 2.13: (Left) Weighted runtime for all 80 multiprogrammed workloads on VMs
without (sw) and with HATRIC (hatric); (Right) the same for the slowest application in
mix.

as translation structures become bigger (and flushes needlessly evict more entries).

Figure 2.12 quantifies the relationship. We vary TLB, nTLB, and MMU cache sizes

from the default (see Section 2.5) to double (2×) and quadruple (4×) the number of

entries.

Figure 2.12 shows that translation structure flushes largely counteract the benefits of

greater size. Specifically, the sw results see very small improvements, even when sizes are

quadrupled. Inter-DRAM page migrations essentially flush the translation structures

so often that additional entries are not effectively leveraged. Figure 2.12 shows that

this is a wasted opportunity since zero-overhead translation coherence (ideal) actually

does enjoy 5-7% performance benefits. HATRIC solves this problem, comprehensively

achieving within 1% of the ideal, thereby exploiting larger translation structures.

Multiprogrammed workloads: We now focus on multiprogrammed workloads made

up of sequential applications. Each workload runs 16 Spec benchmarks on a Linux VM

atop KVM. As is standard for multiprogrammed workloads, we use two performance

metrics [146]. The first is weighted runtime improvement, which captures overall system

performance. The second is the runtime improvement of the slowest application in the

workload, capturing fairness.

Figure 2.13 shows our results. The graph on the left plots the weighted runtime

improvement, normalized to cases without die-stacked DRAM. As usual, sw represents
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the best KVM paging policy. The x-axis represents the workloads, arranged in ascend-

ing order of runtime. The lower the runtime, the better the performance. Similarly,

the graph on the right of Figure 2.12 shows the runtime of the slowest application in

the workload mix; again, lower runtimes indicate a speedup in the slowest application.

Figure 2.13 shows that translation coherence can be disastrous to the performance

of multiprogrammed workloads. More than 70% of the workload combinations suffer

performance degradation when using die-stacked memory without HATRIC. These ap-

plications suffer from unnecessary translation structure flushes and VM exits, caused

by software translation coherence’s imprecise target identification. The runtime of 11

workloads is more than double. Additionally, translation coherence degrades applica-

tion fairness. For example, in more than half the workloads, the slowest application’s

runtime is (2×)+ with a maximum of (4×)+. Applications that struggle are usu-

ally those with limited memory-level parallelism that benefit little from the higher

bandwidth of die-stacked memory and instead, suffer from the additional translation

coherence overheads.

HATRIC solves these issues, achieving improvements for every single weighted run-

time and even for the slowest applications. In fact, HATRIC eliminates translation

coherence overheads, reducing runtime to 50-80% of the baseline without die-stacked

DRAM. The key enabler is HATRIC’s precise identification of coherence targets; appli-

cations that do not need to participate in translation coherence operations have their

translation structure contents left unflushed and do not suffer VM exits.

Performance-energy tradeoffs: Intuitively, we expect that since HATRIC reduces

runtime substantially, it should reduce static energy sufficiently to offset the higher

energy consumption from the introduction of co-tags. Indeed, this is true for workloads

that have sufficiently large memory footprints to trigger inter-memory paging. However,

we also assess HATRIC’s energy implications on workloads that do not frequently remap

pages (i.e. their memory footprints fit comfortably within die-stacked DRAM).
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Figure 2.14: (Left) Performance-energy plots for default HATRIC configuration com-
pared to a baseline with the best paging policy; and (Right) impact of co-tag size on
performance-energy tradeoffs.

The graph on the left of Figure 2.14 plots all the workloads including the single-

threaded and multithreaded ones that benefit from die-stacking and those whose mem-

ory needs fit entirely in die-stacked DRAM. The x-axis plots the workload runtime, as

a fraction of the runtime of sw results. The y-axis plots energy, similarly normalized.

We desire points that lie on the lower-left corner of the graph.

Figure 2.14 shows that HATRIC always boosts performance, and almost always im-

proves energy too. Energy savings of 1-10% are routine. In fact, HATRIC even improves

the performance and energy of many workloads that do not page between the two mem-

ory levels significantly. This is because these workloads still remap pages to defragment

memory (to support superpages) and HATRIC mitigates the associated translation co-

herence overheads. There are some rare instances (highlighted in black) where energy

does exceed the baseline by 1-1.5%. These are workloads for whom efficient translation

coherence does not make up for the additional energy of the co-tags. Nevertheless,

these overheads are low, and their instances rare.

Co-tag sizing: We now turn to co-tag sizing. Excessively large co-tags consume

significant lookup and static energy, while small ones force HATRIC to invalidate too

many translation structures on a page remap. The graph on the right of Figure 2.14

shows the performance-energy implications of varying co-tag size from 1 to 3 bytes.

First and foremost, 2B co-tags, our design choice, provides the best balance of

performance and energy. While 3B co-tags track page table entries at a finer granularity,
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Figure 2.15: Baseline HATRIC versus approaches with eager update of directory on cache
and translation structure evictions (EGR-dir-update), fine-grained tracking of transla-
tions (FG-tracking), and an infinite directory with no back-invalidations (No-back-inv).
All combines these approach. We show average runtime and energy, normalized to the
metrics for the best paging policy without HATRIC.

they only modestly improve performance over 2B co-tags, but consume much more

energy. Meanwhile 1B co-tags suffer in terms of both performance and energy. Since

1B co-tags have a coarser tracking granularity, they invalidate more translation entries

from TLBs, MMU caches, and nTLBs than larger co-tags. While the smaller co-tags

do consume less lookup and static energy, these additional invalidations lead to more

expensive two-dimensional page table walks and a longer system runtime. The end

result is an increase in energy.

Coherence directory design decisions: Section 2.4 detailed the nuances modifying

traditional coherence directories to support translation coherence. Figure 2.15 captures

the performance and energy (normalized to those of the best paging policy or sw in pre-

vious graphs) of these approaches. We consider the following options, beyond baseline

HATRIC:

EGR-dir-update: This is a design that eagerly updates coherence directories whenever a

translation entry is evicted from a CPU’s L1 cache or translation structures. While this

does reduce spurious coherence messages, it requires expensive lookups in translation
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structures to ensure that entries with the same co-tag have been evicted. Figure 2.15

shows that the performance gains from reduced coherence traffic is almost negligible,

while energy does increase, relative to HATRIC.

FG-tracking: We study a hypothetical design with greater specificity in translation

tracking. That is, coherence directories are modified to track whether translations

are cached in the TLBs, MMU caches, nTLBs, or L1 caches. Unlike HATRIC, if a

translation is cached in only the MMU cache but not the TLB, the latter is not sent

invalidation requests. Figure 2.15 shows that while one might expect this specificity to

result in reduced coherence traffic, system energy is slightly higher than HATRIC. This

is because more specificity requires more complex and area/energy intensive coherence

directories. Further, since the runtime benefits are small, we believe HATRIC remains

the smarter choice.

No-back-inv: We study an ideal design with infinitely-sized coherence directories which

never need to relay back-invalidations to private caches or translation structures. We

find that this does reduce energy and runtime, but not significantly from HATRIC.

All: Figure 2.15 compares HATRIC to an approach which marries all the optimiza-

tions discussed. HATRIC almost exactly meets the same performance and is more

energy-efficient, largely because the eager updates of coherence directories add signifi-

cant translation structure lookup energy.

Comparison with UNITD: We now compare HATRIC to prior work on UNITD [134].

To do this, we first upgrade the baseline UNITD design in several ways. First and most

importantly, we extend virtualization support by storing the system physical addresses

of nested page tables entries in the originally proposed reverse-lookup CAM [134].

Second, we extend UNITD to work seamlessly with coherence directories. We call this

upgraded design UNITD++.

Figure 2.16 compares HATRIC and UNITD++ results, normalized to results from the

case without die-stacked DRAM. As expected both approaches outperform a system

with only traditional software-based translation coherence (sw). However, HATRIC

provides an additional 5-10% performance boost versus UNITD++ by also extending
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Figure 2.16: Comparison of HATRIC’s performance and energy versus UNITD++. All results
are normalized to results for a system without die-stacked memory and compared to sw.

the benefits of hardware translation coherence to MMU caches and nTLBs. Further,

HATRIC is more energy efficient than UNITD++ as it boosts performance (saving static

energy) but also does not need reverse-lookup CAMs.

Xen results: To assess HATRIC’s generality, we have begun studying its effectiveness

on Xen. Because our memory traces require months to collect, we have thus far evalu-

ated canneal and data caching, assuming 16 vCPUs. Our initial results show that Xen’s

performance is improved by 21% and 33% for canneal and data caching respectively,

over the best paging policy employing software translation.

2.7 Conclusion

We propose HATRIC, folding translation coherence atop existing hardware cache co-

herence protocols. We achieve this with simple modifications to translation structures

(TLBs, MMU caches, and nTLBs) and with state-of-the-art coherence protocols. HA-

TRIC is readily-implementable and beneficial for upcoming systems, especially as they

rely on page migration to exploit heterogeneous memory systems.
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Chapter 3

Nimble Page Management for Tiered
Memory Systems

3.1 Introduction

Modern computing systems are embracing heterogeneity in their processing and mem-

ory systems. Processors are specializing to improve performance and/or energy effi-

ciency, with CPUs, GPUs, and accelerators pushing the boundaries of instruction and

data level parallelism. Memory systems are combining the best properties of emerg-

ing technologies that may be optimized for latency, bandwidth, capacity, or cost. For

example, Intel’s Knight’s Landing uses a form of high bandwidth memory called multi-

channel DRAM (MCDRAM) alongside DDR4 memory to achieve both high bandwidth

and high capacity [65, 67]. Non-volatile 3D XPoint memory has been commercialized

for next-generation database systems, and disaggregated memory may be a promis-

ing solution to capacity scaling for blade servers [62, 87]. Both CPUs and GPUs are

embracing heterogeneous memory with IBM and NVIDIA having recently delivered su-

percomputers containing high-bandwidth GPU memories and high-capacity CPU mem-

ories [68,84,114,115].

Figure 3.1 illustrates an abstract example of the memory systems architects and OS

designers will likely have to consider in the future. These systems consist of a compute

node (CPU, GPU, or both) connected to multiple types of memory with varying latency,

bandwidth, and/or capacity properties. Of course, the particular configuration will vary

by system.

The critical operating system support needed to enable the vision of efficiently

moving data as programs navigate different phases of execution, each with potentially
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Figure 3.1: A hypothetical future multi-memory system with 4 technology nodes, all
exposed as non-uniform memory nodes to the operating system.

distinct working sets, is efficient page management and migration. Regardless of con-

figuration, to optimize for performance, ideally the hottest pages will be placed in

the fastest memory node (in terms of latency or bandwidth) until that node is filled

to capacity, the next-hottest pages will be filled into the second-fastest node up to

its capacity, and so on. Then as programs execute, these pages must be constantly

re-organized based on their hotness to retain maximum workload performance.

Unfortunately, page migration in today’s systems is surprisingly inefficient. We

performed an experiment in which we moved pages between two memory nodes where

each local node has more memory bandwidth available than the inter-socket intercon-

nect. After allocating memory from distinct memory nodes, we measured both the cost

breakdown and the throughput of several types of cross-socket page migration. Fig-

ure 3.2 shows the cost breakdown and throughput achieved when migrating different

page sizes on Linux today. For single base page migration, the majority of time is spent
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Figure 3.2: Page migration cost breakdown for migrating a single 4KB page, 512 con-
secutive base pages, and both splitting and migrating a 2MB THP. (Figure best viewed
in color.)

within kernel memory management and synchronization routines. Only a small frac-

tion of time is consumed by the actual page copy. As a result, the effective migration

throughput is just 40MB/s even though the hardware that has 19.2GB/s cross-socket

memory bandwidth (see Table 3.1 for our experimental platform configuration). We

also scaled the number of pages being migrated to 512, matching the huge page size

(2MB), to amortize the software overhead across multiple migrations. In this case,

throughput does scale up to 750MB/s, but this is still just 5% of peak hardware band-

width. To investigate the potential improvement of page migration, we profile the data

copy throughput of our system (described in Section 3.4.1) with different thread counts

and data sizes including 2MB. Figure 3.3 shows that existing page migration through-

put is 10× slower than what is achievable with a 2MB data size and the gap is bigger

with larger transferred data sizes.

To eliminate the page migration bottleneck, we propose a set of four optimizations:
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transparent huge page migration, parallelized data copy, concurrent multi-page migra-

tion, and symmetric exchange of pages. On top of these mechanisms we build a holistic

multi-level memory solution that directly moves data between heterogeneous memories

using the existing OS active / inactive page lists, eliminating another major source

of software overhead in current systems. The novel contributions of our work are as

follows:

1. We show that breaking transparent huge pages (THPs), which are currently non-

movable, into movable base pages reduces the effectiveness of THPs. We also

demonstrate that existing base page migration only achieves throughput an order

of magnitude lower than hardware line rate. We remedy this by implementing

native huge page (THP) migration which improves migration throughput by 2.8×

over the Linux baseline, while also having the side effect of improving TLB cov-

erage.

2. Our additional page migration optimizations improve throughput by 5.2× over our

native THP migration implementation alone. Together, this set of improvements

increases page migration throughput 15× over the state of the art today. By re-

using existing OS interfaces, these optimizations are automatically inherited by

any memory management policy using the standard Linux memory management

APIs. Our claim of broad applicability is supported by the fact that some of these

improvements have been adopted into upstream Linux [110].

3. We explore a simple, yet general, end-to-end heterogeneous memory profiling and

placement policy. Unlike existing implementations and other recent proposals,

our proposed system does not swap data out to disk, nor does it make portions of

memory unavailable to profile accesses to them via page faults. Instead, it simply

repurposes the existing OS active/inactive page lists. Therefore, our approach

imposes no profiling overhead on systems which may not need its functionality.

4. We show that in a disaggregated memory system, an emerging class of important

multi-tier memory system [55, 87, 88], our optimized OS support for multi-level
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Figure 3.3: Impact of thread count and transfer size on raw data copy throughput
(higher is better).

memories will improve application performance over 40%, on average, compared

to current OS support for multi-level memories.

3.2 Background

Modern heterogeneous memory systems typically consist of low-capacity, high-bandwidth

memory as well as high-capacity, low-bandwidth memory. Latency to large capacity

memories is also expected to be higher due to longer, potentially multi-hop physical

connections or differences in the underlying memory technology. Consequently, hetero-

geneous memory systems will often have non-uniform memory access (NUMA) prop-

erties for both latency and bandwidth. To ensure optimal performance, application

developers will rely on both initial page placement policies and follow-up page migra-

tion policies to ensure that hot data pages remain within the highest bandwidth or

lowest latency memory node during an application’s runtime [34,75,113].
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3.2.1 Page Management Policies and Mechanisms

Modern OSes are already NUMA-aware [31, 37, 83]. In fact, standards are already

being introduced that allow heterogeneous memory properties (latency, bandwidth,

durability) to be exposed to the operating system so that page location decisions can

be optimized to maximize throughput [152, 165]. To explain holistic OS support for

multi-level memory we must conceptually separate this memory management into two

distinct components. Figure 3.4 shows that memory management policy decisions may

be driven by the kernel, device drivers, programmer, or a system administrator. These

policies are all built on top of a common mechanism, page migration, which performs

the desired OS page movement operations. Policy decisions are thus separated from

page migration mechanisms through a system call (or analogous kernel interface), such

as move_pages() on Linux.

Figure 3.4 also shows that a generic page migration mechanism involves 1 allocating

a new page, 2 unmapping the existing virtual to physical address translation (and, on

many architectures, issuing a TLB shootdown), 3 copying data from the old physical

page into the new physical page, 4 mapping the virtual address to the new physical

page, and finally 5 freeing the old physical page. The actual copy between the old and

new physical page occurs only in step 3 . Steps 1 – 2 and 4 – 5 are overheads needed

to ensure both correctness and protection guarantees so that neither the old page nor

the new page is accessed during the page migration process. This work investigates the

natural evolution of this multi-step process to leverage modern hardware and improve

migration throughput.

Today, Linux uses autoNUMA [34] to try and fairly balance memory and compute

requirements between NUMA nodes. It relies on two basic techniques to do this: process

migration and page migration. Unfortunately, process migration is not applicable to

to heterogeneous memory systems, where multiple memory nodes are all connected

to a single processor. Page migration is also currently limited in multi-level memory

systems because autoNUMA can only migrate pages to a memory node with free space;

otherwise, pages are swapped out to disk. This is at odds with the system’s goal of
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Figure 3.4: Separation of page migration policy and page migration mechanism in a
multi-level memory system.

placing as many pages in a (small) fast memory as possible. Additionally, to obtain

page access information autoNUMA offlines pages for profiling, and such offlining causes

unpredictable memory access latency and bandwidth. These two issues have spurred

a range of academic work on two-level memories; however, prior studies have generally

focused on page migration policy while assuming page migration mechanisms should

be sufficient [4, 28,38,40,58,85,101,116,130,163].

3.2.2 Recent Developments

Because heterogeneous memories are only now being adopted commercially, multi-level

memory paging remains an active area of research. Researchers have begun exploring

hardware techniques to identify hot/cold pages and facilitate their movement among

memory devices [29, 56, 69, 93, 129, 142]. This work has spurred further studies on

software-based approaches that are better able to manage heterogeneous memories with

complex topologies [3,4,55,75,116,163]. While these studies have established the appeal

of OS-managed multi-level memories, they mostly rely on trace-based simulation (which
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excludes OS effects) [3, 103, 163], use non-standard OS plumbing (such as the use of

reserved page table entry bits) [4], hoist page migration out of the OS (due to the

unavailability of the source code or the prohibitively large engineering work) [26,31,111,

112, 136], and/or simply assume that the OS can deliver the full hardware bandwidth

(which we demonstrate is not possible) during page migrations [3].

Page migration mechanisms themselves have not been studied as extensively as poli-

cies, despite being critical to performance in multi-level memory systems [50]. Com-

bined, these seemingly subtle issues may hinder real-world adoption of many prior

proposals because their conclusions may ultimately be shown to be incomplete. Solu-

tions must be generally maintainable to be adopted in practice [53,102]. However, this

growing body of work does point to the need for both better page migration mecha-

nisms and policies, in addition to system level evaluations of what effect the OS will

have on multi-level memory systems, both of which we now address.

3.3 Native OS Support for Multi-Level Memories

Holistic support for multi-level memory systems includes both intelligent memory man-

agement policies and efficient page migration mechanisms. In this section we present

our page migration mechanism improvements, which are independent of any one par-

ticular policy, as well as one specific low-overhead policy that we use in Section 3.4 to

demonstrate the end-to-end benefits of our memory management system.

3.3.1 Optimizing Page Migration Mechanisms

Four critical issues need to be addressed within the operating system to implement an

efficient page migration mechanism:

Larger data sizes: With larger data sizes, the software overheads of page migration

can be amortized away.

Multiple threads: Today, page migration is single-threaded primarily for the sake of

simplicity, but using multiple threads would speed up the copy time itself.
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Concurrent Migrations: Performing multiple migrations concurrently can help us

avoid the Amdahl’s Law bottleneck seen in Figure 3.2. This problem cannot be solved

by simply using larger pages, since architectures only support a very limited set of

page sizes, and in general the largest page sizes (e.g., 1GB on x86) are not supported

transparently.

Efficient two-sided migration: When a page is migrated to fast memory, a victim

page must be migrated to slow memory to make room. By eliding allocation/deallocation

and simply exchanging pages, two-sided operations can be faster than the sum of two

one-directional migrations.

We address each of the above issues in turn below.

Native THP Migration

Our first optimization is to implement native THP migration. THP migration decreases

both the hardware and software overhead of migrating THPs by a factor of 512, due

to not splitting pages and reducing the number of required TLB invalidations and

shootdowns. It also improves the amount of data migrated within a single migration

operation. Although it may appear obvious, page migration support for THPs in Linux

(and many OSes) is not yet mature, general, or high-performance. Page migration

was originally proposed to enhance NUMA system performance and achieve memory

hotplug functionally before THPs had even been introduced [7, 82].

Today, for example, Linux cannot migrate THPs in response to programmatic re-

source management requests like mbind and move pages, which are designed to move

data to specific memory nodes at the request of programmers. This is a serious

shortcoming for heterogeneous memories since there are important situations where

programmer-directed data placement enables good performance [116]. Similarly, Linux

cannot directly migrate THPs in response to memory hot removal, soft off-lining, or

cpuset/cgroup. In all these cases, when Linux is migrating a virtual memory range that

contains transparent huge pages, it must split the THPs and migrate the constituent

base pages instead, resulting in poor page migration performance and reduced TLB
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coverage.

To implement THP migration, we augment the five steps shown in Figure 3.4 to be

THP aware. Our THP implementation supports all resource management requests (i.e.,

mbind, cpuset, etc.) In addition, we adjust other THP-specific code paths in the kernel

to account for the fact that THPs may be undergoing migration at the time of the call.

We do this either by waiting for the end of the migration or by simply skipping the

THPs (as is done for base pages). Other OSes can follow the same principle to realize

THP migration to enable significantly higher-throughput page migration for a better

support of heterogeneous memory systems.

Parallelized THP Migration

Currently, the Linux kernel page migration routine is single-threaded and has a limited

amount of data (usually the size of one base page) to transfer within a single migration

operation. Motivated by Figure 3.3, we implemented a variable-thread count based

copy subroutine within the page migration operation.

To enable multi-threaded page copies within the Linux move_pages() system call,

we use kernel workqueues to spawn helper threads to copy data between arbitrary

physical ranges. Our implementation calculates the amount of data to be copied via

each parallel thread by dividing the page size (or, in Section 3.3.1, the aggregate of

pages being migrated concurrently) by the selected number of worker threads.

Because the exact selection of thread location and thread count needed to maxi-

mize throughput is likely to differ among systems, we provide parameter configuration

through the sysfs interface, so that system administrators can enable or disable multi-

threaded CPU copy or change the number of CPUs involved in the data copy. We also

augment the move_pages() system call with an optional parameter flag, MPOL_MF_MT,

to enable migration policy engines to dynamically choose the level of parallelism on a

per migration basis.
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Figure 3.5: Improvements to Linux multi-page migration to enable large transfers for
improved copy bandwidth.

Concurrent Multi-page Migration

Multi-page migration is expected to be common in multi-level memory systems due

to spacial locality and prefetching effects. The Linux move_pages() interface already

supports migration of multiple pages with a single system call by passing in a list of

pointers to the pages to be migrated between memory nodes. However, as shown in

Figure 3.5a, the current implementation serializes the copies and performs them one

page at a time.

Our new page migration implementation concurrently migrates all pages in the list

provided to move_pages() by aggregating all data copy procedures into a single larger

logical step, as shown in Figure 3.5b. As an example, consider the case of migrating

16 THPs of 2MB. In the current Linux implementation, even using the parallel copy

optimization, Linux will transfer 16 THPs of 2MB, with an implicit barrier between

each parallel 2MB copy. In our concurrent migration optimization, each of the pages in

the list is allocated and assigned a new page with matching size and then unmapped.
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(b) Proposed Exchange Page Migration

Figure 3.6: Exchanging pages improves efficiency by eliminating memory allocation and
release when migrating symmetric page lists between memory nodes.

Then, all pages in the list are distributed to the per-CPU workqueues according to

the sysfs configuration. If more parallel transfer threads are available than concurrent

pages to migrate, our implementation uses multiple threads to copy different parts of a

single page to maximize throughput. Once the concurrent page copy step is completed,

the new pages are mapped onto the correct page table entries and the old pages are

freed. It may also be possible to parallelize other steps of page migration. However,

because there are strict correctness requirements for synchronization including architec-

ture dependent page table manipulation, complicated situations arise involving failure

recovery if optimizations become too aggressive.



62

Symmetric Exchange of Pages

In multi-level memory systems, single-ended page migration is unlikely to be the com-

mon case. Higher-bandwidth memory is generally capacity-limited compared to larger

lower-bandwidth memories. Therefore, when migrating pages into a higher-level mem-

ory node, at steady state, the page migration policy will need to migrate pages out of

that node, so as to not exceed physical memory capacity. Therefore, when managing

a high performance heterogeneous memory node as a software controlled cache, each

hot-page insertion requires a symmetric cold-page eviction.

Naive two-step, one-way migration makes inefficient use of system hardware if the

two copies are protected by locks and executed serially, as is the case in today’s OSes.

Figure 3.6a shows this common two-step page migration operation. First, the locking

serialization limits the benefits of our previously discussed optimizations. Second, each

migration operation must perform independent physical page allocation and dealloca-

tion, and both are expensive software overheads (as shown in Figure 3.2).

To eliminate these overheads, we propose to combine the two one-way migration

operations into a new single symmetric exchange operation. By exchanging pages,

our implementation eliminates many of the kernel operations required in unidirectional

page migration and reuses the existing physical pages instead of allocating new ones

(as shown in Figure 3.6b).

We implement symmetric page migration in Linux by providing a new exchange_pages()

system call that accepts two equal-sized lists, of equal-sized pages. If the page lists do

not meet the requirement, the caller must revert to a traditional two-step migration

process. When called with two symmetric page lists, our exchange of pages implemen-

tation follows a similar path to unidirectional page migration. The differences are that

that no new pages are allocated, and that instead of copying data into new pages, we

transfer data between each pair of pages using copy thread(s) that use CPU registers

as the temporary storage for in-flight iterative data exchange operations. This use of

registers allows our mechanism to avoid allocating a complete temporary page.

Both our parallel page copy and concurrent page migration optimizations focus on
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improving the data copy itself while symmetric page exchange eliminates two of the most

expensive software overheads that occur during page migration: page allocation and

release. Because these kernel operations consume constant time irrespective of page size,

page exchange improves the migration throughput of both base pages and transparent

huge pages if memory management policies choose to use it. Additionally, pairs of pages

can also be exchanged using parallel exchange (Section 3.3.1), concurrent exchange

(Section 3.3.1), or both, without extra locking as long as each parallel exchange thread

operates in isolation.

3.3.2 Optimizing Page Tracking and Policy Decisions

A multi-level memory paging policy and system needs to be sufficiently general and

representative of real-world scenarios in order to be broadly useful on the diverse set

of heterogeneous memory systems that are beginning to emerge. To this end, we pro-

pose a page migration policy that is simple, has been shown to work well in a wide

range of environments [75], and adds negligible overhead to the baseline. As such,

our implementation builds upon the existing Linux page replacement algorithm. We

intentionally make as few changes as possible to keep our implementation maximally

compatible with the upstream kernel.

The goal of a page replacement algorithm is to identify hot and cold pages so that

the page migration mechanism can migrate hot pages out of (historically) disk or (in

our case) slow memory, and into fast memory. Linux already achieves this by separating

hot and cold pages within each memory node into active and inactive lists, where a page

can be in only one of these lists at a time. As hot pages become cold and vice versa,

the kernel actively moves the pages between these lists as shown in Figure 3.7.

Like Linux’s, our policy moves pages from one list to another by checking each

page’s state and two access bits, one in the page table entry pointing to the page and

the other in the metadata of the page maintained by the kernel. We call the former the

hardware access bit and the latter the software access bit. A page table entry’s access

bit is set by the hardware page table walkers on the first TLB miss to each virtual-to-

physical translation corresponding to that page. Its software access bit is set by the
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existing Linux paging algorithm for each physical page. Both hardware and software

access bits are inspected using the atomic operation test_and_clear(), except where

marked “Ignored” in Figure 3.7, in which case the bit is neither checked nor cleared.

The key difference between our proposed paging policy and the standard Linux

approach is graphically illustrated with the greyed box in Figure 3.7. In Linux today,

cold pages that have not been accessed recently can be reclaimed (freed or paged to

disk). However, heterogeneous memory systems aim to percolate such pages to the

slower memory instead, to avoid the high cost of paging them back in from disk later.

Consequently, our policy chooses to keep this page in the inactive list to make it a

candidate for migration out of the fast memory. Similarly, if capacity is available in our

fast memory (e.g., due to memory deallocations or migration of inactive pages), pages

from the slow memory active list will be migrated into the fast memory. If the fast

memory is full and does not contain inactive pages, no migration will occur.

Similar to traditional NUMA allocation policies, when new memory is allocated, it

will occur in the fast memory if free space is available; otherwise, it will only occur in the

slower memory node. We do not evict pages upon allocation so that we can keep page

migration off the memory allocation path, which is performance critical. Finally, our

system optimizes page locations only every 5 seconds throughout application runtime

to minimize active process interference, based on profiling results.

3.4 Experimental Results

To quantify the utility of optimized page migration in a concrete scenario, we evaluate

our approach on a disaggregated memory system due to the emerging importance of

these systems in industry [55,87].

3.4.1 Methodology

We emulate a disaggregated memory system using an experimental machine that has

two memory nodes; we use one as fast local memory and the other as slow remote

memory. We emulate slow memory by running one or more instances of memhog, an
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Intel Xeon Dual Socket System

Processors 2-socket E5–2650v3
Memory DDR4 — 2133MHz

Cross-socket QPI BW 19.2 GB/s
Memory BW 34.0 GB/s (per-socket)

Memory Latency 84.9 ns
OS & Kernel Debian Buster — v4.14.0

Disaggr Mem BW (Emulated) 17.0 GB/s
Disaggr Mem Latency (Emulated) 199.2 ns

Table 3.1: Overview of experimental system.

artificial memory-intensive workload that has been used in prior studies to load the sys-

tem [116,124]. The memhog instances, which run on otherwise-idle CPUs, inject extra

memory traffic into the system. This has the effect of reducing remote memory band-

width to one half of local memory bandwidth and increasing unloaded access latency

to double that of local memory, which has been validated by Intel Memory Latency

Checker [63]. Table 3.1 gives additional details of our setup.

To evaluate our OS optimizations, we integrate our proposed optimizations into

Linux v4.14. The statistics of kernel modification given by git diff is: 23 files

changed, 627 insertions(+), 114 deletions(-). We intend to open-source our

code upon publication.

For the evaluation itself, we perform a variety of experiments. First, we evaluate a

set of microbenchmarks to measure the effect of each of our proposed optimizations in

isolation and combination. Second, to get complete end-to-end performance numbers,

we run workloads from SpecACCEL [72] and graph500 [108], and we show the perfor-

mance across a range of fast memory oversubscription scenarios. Third, we sweep the

design space to highlight the interesting behaviors that arise and to identify the con-

figuration parameters that perform the best. Finally, we evaluate them on additional

non-x86 architectures to prove the generality of our proposed enhancements.

3.4.2 Page Migration System Call Performance

To build intuition as to the sources of the overall performance improvements achieved

by our page migration mechanisms, we first use microbenchmarks to tease out the
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Figure 3.8: Cost breakdown of 512-base-page migration, THP-split migration, native
THP migration.

relative benefits of the different (complementary) optimizations. Our experiments use

the generic page migration interfaces, move_pages() (with our optimizations), and

exchange_pages() (our newly proposed system call).

Native THP Migration

Figure 3.8 contrasts the performance of a kernel that migrates pages in three ways. The

leftmost bar is unmodified Linux migrating 512 4KB pages. The middle bar is Linux

migrating a 2MB THP by splitting it into 4KB pages, which are then migrated. The

right bar is our proposed native THP migration support.

Migrating a 2MB THP with splitting achieves virtually identical throughput as

migrating 512 4KB pages. This is unsurprising, since they perform the same kernel

operations for 512 pages plus one additional THP split. Our native THP migration

improves throughput by 2.9× because it reduces kernel overhead by consolidating 512-

page operations into a single page operation. Figure 3.8 also shows that page copy

time decreases only marginally; i.e., there is still significant room for our additional

optimizations to improve overall throughput.
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Figure 3.9: Throughput (higher is better) of multi-threaded single page migration
for both base page (4KB) and THP (2MB).

Multi-threaded Transfers

Figure 3.9 shows the results of our first optimization, parallel (multi-threaded) page

copying. We separate results for the cases where we migrate 2MB THPs (the graph on

the top) and 4KB base pages (the graph on the bottom) also varying the number of

threads used to perform the copies.

There are two primary observations from our multi-threaded copy results. First,

parallel page copies are primarily beneficial when the page sizes are larger. For example,

2MB THP page migration time is sped up 2.8×, while parallel copies do not improve the

throughput for 4KB pages, because the thread launch overhead cannot be amortized

sufficiently. This overhead is likely the reason that the current Linux page migration

has remained single-threaded regardless of base page sizes. Second, the graph at the

top of Figure 3.9 shows that even though parallel migration is useful for 2MB THPs,

overall throughput still remains well below the maximum cross-socket copy throughput

of around 16 GB/s (see Figure 3.3), motivating the need for concurrent page migrations.
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Concurrent Page Transfers

Figure 3.10 illustrates the performance advantage of using concurrent page migration

optimization whenever possible. Results are again separated for 2MB THPs (the graph

on the top) and 4KB base pages. For 4KB pages, parallel non-concurrent migration is

always inferior to single threaded migration (due to the aforementioned parallelization

overheads), and concurrent parallel migration only surpasses the baseline at sufficiently

large page counts. As previously mentioned, the OS overheads are too large to overcome.

However, utilizing both parallelism and concurrency are clear wins when transferring

2MB THPs, with a performance advantage (over parallelism alone) ranging from 10-

25% depending on the number of pages transferred.

Symmetric Exchange Pages

Figure 3.11 shows the benefits of symmetric page exchange atop our prior optimizations.

When using THPs, exchange page throughput follows similar trends as concurrent page

migration, but with a performance improvement ranging from 10-50% depending on the

number of pages exchanged. Interestingly, the largest fractional improvement is when

exchanging small numbers of pages, because in these cases the software overhead re-

mains a significant fraction of total transfer time. Removing the memory management

overheads from the page migration process can improve the throughput of page migra-

tion to as high as 11.2GB/s when exchanging two lists of 512 2MB pages (1GB data on

each list); this is very close to the best achievable copy throughput (excluding kernel

overhead) of 11.7GB/s.

Unlike our prior optimizations, when exchanging base pages (4KB) we also observe

throughput improvements. When exchanging two lists of 512 4KB pages (2MB data on

each list), we get 1.1GB/s throughput, or 37.5% more than the throughput of Linux’s

base page migration.



70

TH
P (2M

B)
Base Page (4KB)

1 2 4 8 16 32 64 128 256 512

2

4

6

8

10

0.00

0.25

0.50

0.75

Number of Pages

Th
ro

ug
hp

ut
(G

B/
s)

Base Page Migration THP Migration
4-Thread Non-concurrent 4-Thread Concurrent

Figure 3.10: Throughput (higher is better) of concurrent page migration for both base
page (4KB) and THP (2MB) with different numbers of pages under migration. 4-Thread
Non-concurrent uses 4-thread data copy and 4-thread Concurrent adds concurrent page
migration. Single-threaded Base Page Migration and THP Migration are shown for
reference.

Microbenchmark Summary

When using only base pages and the three non-THP improvements (multi-threaded

copy, concurrent copy, and two-way exchange), our system yields a 1.4× throughput

improvement as compared to Linux’s single threaded implementation. For THP mi-

gration, native THP migration alone (i.e., without our parallel/concurrent/exchange

optimizations) delivers a 2.9× migration throughput improvement over Linux’s state

of the art. With our parallel copy and concurrent page migration optimizations added,

we achieve a 4.6× throughput improvement over native-THP migration. With two-way

exchange, we further improve throughput by 1.1×. The combined overall improvement

for THP migration over the Linux baseline is 5.2× versus THP-splitting migration and

15× over base page only migration.
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Figure 3.11: Throughput (higher is better) of page exchange vs. 2 page migrations
for both base page (4KB) and THP (2MB) sizes while varying the number of pages
exchanged. 4-Thread Concur Migrate and 4-Thread Concur Exchange use both con-
current and 4-thread parallel data copy. Single-threaded Base Page and THP Migration
throughput are shown for reference.

3.4.3 End-to-End Performance Results

Thus far, we have used microbenchmarks to quantify the performance benefits of our

page mechanism optimizations. We now turn our attention to evaluating the end-

to-end performance improvements that these optimizations, combined with our low

overhead page management policy, can achieve. Our experimental testbed emulating

a disaggregated memory is described in Section 3.4.1. No changes have been made to

Linux’s THP allocation policy and they are provided, when possible, on demand by the

operating system.

We evaluate SpecACCEL and graph500, with the memory footprints scaled to 32GB.

With these workloads running under our experimental setup, we find that over 90% of

the pages for each workloads is typically backed by THPs, indicating that there is a

significant negative impact of having to split THPs into base pages before migration.

We first run each workload in a disaggregated memory scenario that has 16GB local

memory and 40GB remote memory. In this configuration, the local memory is only half

the size of the workload memory footprint, while the remote memory can accommodate
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the entire workload footprint. We compare four different page migration mechanisms,

along with an upper and lower bound for comparison:

1. All Remote, the lower bound, where workloads are run entirely from the 40GB

remote memory

2. Base Page Migration, the Linux default (THPs are split before migration)

3. Opt. Exchange Base Pages, 4-threaded parallel copy and 512-page concurrent

exchange (THPs are split before migration)

4. THP Migration, our native THP approach without parallel, concurrent, or

exchange optimizations

5. Opt. Exchange Pages, THP migration, 4-threaded parallel copy and 8-page

concurrent exchange

6. All Local, the upper bound, where workloads are run entirely from a 40GB fast

local memory

In configurations 3 and 5, we use 4 threads for copying and 512 and 8 pages respectively

for our migration parameters. From our microbenchmark results, this presents the best

configuration for both base and THP migrations. In Section 3.4.5 we present further

sensitivity analysis to justify these selections.

Figure 3.12 shows the relative speedup of these six configurations over All Remote.

All Local, which is our ideal case, on average achieves about 2× geomean speedup

over All Remote, reflecting the local vs remote memory bandwidth and access latency

difference in our system. Base Page Migration, which is our baseline for managing disag-

gregated memories, improves workload performance on average by 9%. However, some

workloads (e.g. 551.ppalm, 556.psp, and graph500) perform worse than All Remote,

meaning Base Page Migration is not always making good use of the 16GB local mem-

ory. Opt. Exchange Base Pages improves workload performance by 16% on average,

and in this case, only graph500 does not take advantage of the 16GBs of local memory.

Both of these results are testament to the notion that poor migration mechanisms can

actually degrade performance despite the addition of a faster tier of memory.
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Figure 3.12: Benchmark runtime speedup (over All Remote) with 16GB local mem-
ory. Base page migration and THP migration are single-threaded and serialized and
shown for comparison, while Opt Exchange Base Pages uses 4-thread parallel and 512-
page concurrent migration and Opt Exchange Pages use 4-thread parallel and 8-page
concurrent migration.

Fortunately, enabling our native THP Migration can indeed harness the benefit of

fast memory. Enabling THP migration improves the geomean workload performance

by 31% over All Remote and achieving 68% of the geomean All Local performance,

which is our ideal case. Our Opt. Exchange Pages (which can migrate both base pages

and THPs) further improves average performance by 48% over All Remote and achieves

77% of the geomean ideal All Local performance.

3.4.4 Sensitivity to Local Memory Size

To further demonstrate the general applicability of our approach, we sweep the local

memory size from 4GB to 28GB and show the geomean of all benchmark speedup over

All Remote. Figure 3.13 show that the performance trends are similar to those of the

16GB local memory case and we note four key observations First, Linux’s Base Page

Migration is not able to exploit the full potential of the disaggregated memories. When

the local memory size (such as 4GB and 8GB) is much smaller than the workload’s

32GB memory footprint, it degrades workload performance by 5% to 10% on average.

Second, our Opt. Exchange Base Pages can help improve performance but is still limited
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Figure 3.13: Geomean speedup (over All Remote) over a sweep of local memory sizes,
from 4GB to 28GB. Base page migration and THP migration are single-threaded and
serialized, while Opt. Exchange Base Pages uses 4-thread parallel and 512-page concur-
rent migration, and Opt. Exchange Pages uses 4-thread parallel and 8-page concurrent
migration.

by page migration throughput. It is however slightly better than Base Page Migration.

Third, our THP Migration keeps improving performance; thus, it is able to make using

disaggregated memory feasible without any performance loss. Fourth, our Opt. Ex-

change Pages improves performance substantially, exploiting most of the potential in

the disaggregated memory system and outperform Linux’s Base Page Migration 40%

on average.

3.4.5 Sensitivity to Tunable Parameters

Our page management system provides a number of user-tunable parameters. Here, we

evaluate how sensitive the performance is to two of those parameters: the parallel copy

thread count and the number of pages migrated concurrently.

Number of threads used for parallel page migration

Because our system allows the number of threads used to copy data to vary, it is

important to understand the importance of this tunable parameter. Using higher thread

counts will improve copy throughput, but steals compute resources from the application
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under migration. Opt Exchange Pages use 4-thread parallel data copy. “Unconstrained”
means we do not limit the number of pages under migration; instead we just migrate
all pages at once. All use 16GB Local Memory.

itself, thus how to strike a balance between these factors is important to understand.

We swept the number of threads used by parallel page migration from 1 to 16.

We discovered that using 4 copy threads was almost always the highest performing

configuration, but that performance when using other thread counts had a maximum

variance of just 4%, indicating that our proposed system is not overly sensitive to

this parameter. Therefore, simply selecting a reasonable point (such as the 4 thread

configuration we used in our end-to-end results) is a reasonable decision.

Number of pages being migrated concurrently

Similar to the variation possible in copy threads, we tested our system’s sensitivity to

the number of pages we allow to be migrated concurrently. As the number of migrated

pages increases, so should throughput; however, beyond a certain point, migrating a

high number of pages also means that these pages are inaccessible (because they are

in-flight and unavailable to the user process). This can result in application stalls and

decreased performance.

Figure 3.14 shows the effect of varying the concurrent migration page count. We ob-

serve that limiting the number of concurrently migrated pages in the system is necessary,

with 8 pages (32KB or 16MB of data respectively depending on page size) performing

best. There is very little performance variance when using any value less than 64 pages,

but performance does drop by almost 10% if the number is left unconstrained.
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Page Migration Type
Platform Base Page THP Opt. Opt. Exch.

Intel Xeon 0.75 2.15 9.80 11.23
IBM Power 8 1.24 8.70 23.20 26.88
NVIDIA TX1 0.64 1.36 - -

Table 3.2: Maximum achieved huge page migration (in GB/s) throughput based on ar-
chitecture independent optimizations (bolded) shown across three architectures. When
on NVIDIA TX1 (ARM64), due to platform constraints, we are only able to run THP
migration.

3.4.6 Architectural Independence of OS Optimizations

To explore the platform independence of our multi-level memory system and optimiza-

tions, we port them to other hardware platforms and compare the microbenchmarks

used in Section 3.4.2. Our multi-level memory page tracking and policy implemen-

tation is architecture independent by design, because it is based on Linux’s current

architecture-independent active and inactive page list implementation. Thus we focus

on platform sensitivity for our migration optimizations. We show results in Table 3.2

using optimal tunable parameters, as the best configuration for each platform varies

due to available memory bandwidth and CPU performance.

While all platforms benefit from our optimizations, using Intel Xeons, we get a

2.9× improvement in migration bandwidth using native THP migration, an additional

4.6× by employing parallelization and concurrency optimizations, and another 1.1× by

utilizing our new exchange_page() interface, which results in 15× total improvement.

For Power, we achieve 7.0×, 2.7×,and 1.2× the throughput, respectively, with the

same optimizations. This results in a 21.7× page migration throughput improvement.

For an NVIDIA TX1 (ARM64), we observe 2.1× throughput with THP migration

as compared to base page migration. However due to lack of NUMA support on this

hardware platform, we do not include concurrent THP migration and exchange of pages,

as measuring results within a single socket may skew the results.

Additionally, on the Xeon platform there is variance in copy throughput depending

on the x86 64 data copy instructions (integer vs. floating-point) used. However our

testing finds that SIMD floating-point instructions, like SSE and AVX, no longer pro-

vide significantly higher copy throughput than mov on x86 64 due to aggressive linear
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prefetching within caches for easily identified memory patterns like page migrations.

On Power systems, a single-threaded data transfer can achieve almost 10GB/s of

copy bandwidth regardless of transfer size, but this is still less than 50% of the maximum

achievable copy bandwidth when using multiple threads. The improved single-threaded

throughput on Power arises from the use of an integer vector move instruction that

moves data at an efficient 16-byte granularity. CPU instructions and architectures

that can improve single threaded copy bandwidth will ultimately help both base and

transparent huge page migration, but it is unlikely that even vector instructions can

achieve the 15× improvement needed to match the aggregate performance this work

achieves through software only techniques.

3.4.7 Summary of Experimental Results

To summarize, in heterogeneous memory systems such as the disaggregated memory

system we use, low-throughput page migration mechanisms (such as Linux’s baseline)

are not able to exploit the benefits of fast memory. In fact, the existing mechanisms

often even degrade performance to the point that they may result in runtime that are

worse than simply running on a system without any fast memory.

Fully releasing the potential of multi-tiered memory requires enabling our four key

optimizations: THP migration, multi-threaded copy, concurrent migration of multiple

pages, and two-way exchange. Our evaluation shows that the heterogeneous memory

page management system that we propose is able to deliver significant speedup across

multiple benchmarks, and our design space exploration shows that our techniques are

flexible and general enough to apply across a range of architectures and memory system

configurations.

3.5 Related Work

Heterogeneous Memory: Hybrid memory systems consisting of high-bandwidth,

low-capacity memory (e.g. Hybrid Memory Cube (HMC) [105, 122], High Bandwidth

Memory (HBM) [68]) and low-bandwidth, high-capacity memory (e.g. DDR, NVM [98])
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are being widely adopted by vendors [65,114]. Recent work has investigated architecting

high performance memory in a hybrid memory system either as a hardware-managed

cache [129,143] or part of the OS-visible main memory system [29,65,106,142]. When

hybrid memory is OS-managed, performance is primarily dependent on the service rate

from the high bandwidth, low capacity memory.

Page Placement Policies: To effectively utilize hybrid memory system perfor-

mance, prior art focuses on page placement policies. Such policies use heuristics or hard-

ware counters for page access profiling [131, 150], dynamic page access tracking [103],

or bandwidth partitioning [3]. These page access profiling techniques either require

specialized hardware (precluding policy portability) or incur high overhead, reducing

the number of profiled pages. For example, consider that autoNUMA is carefully de-

signed to balance the costs of profiling with the benefits of accurate profiling. Since

autoNUMA uses page faults to sample data (which can consume ∼ 1000 cycles [151]),

it limits its sampling rate to reduce the performance problems of excessive page faults.

Thermostat [4] samples page hotness using page faults (via BadgerTrap [47]). This can

cause ∼ 4× slowdown if all pages are profiled; consequently, Thermostat only profiles

0.5% of total memory.

HeteroOS [75] targets heterogeneous memory in virtualized environments. This

work adapts Linux’s page replacement algorithm as we do, but relies on page hotness

tracking. This tracking mechanism can cause frequent and expensive TLB invalidations;

consequently the authors are careful to limit aspects of their tracking mechanism. Like

our work, HeteroOS shows that the high overhead of page migration makes heteroge-

neous memory system management suboptimal but does not address the issue further.

Page Migration Mechanisms: Similar in spirit to optimizing page migration,

one recent study focuses on enhancements to the DRAM architecture to migrate pages

within the memory controller without bringing data on-chip [137, 156]. This avoids

cache pollution effects. Further, to avoid locking down page accesses during migration,

other proposals pin data in caches, enabling pages to be accessed during migration [23].

Others have attempted to avoid the use of the in-kernel locks by freezing the related

applications instead [86]. Lin et al. propose an asynchronous OS interface called memif,
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for accelerating page migration with DMA devices [89]. Instead of using traditional

Linux migration interfaces, it requires rewriting programs to adopt a new interface and

is limited to only ARM processors due to an architectural dependence for race-detection.

More recently, Ryoo et al. discover that migrating larger numbers of pages (64KB or

2MB in groups of 4KB pages) could improve application performance in heterogeneous

memory systems based on their leading-load model, which further supports our THP

migration proposal [136].

Huge Page Management: Ingens [81] is a huge page management framework.

Their focus in on principled ways to coordinate the construction of more THPs. Our

work asks a complementary question: how can we preserve THPs? Our work can speed

up their huge page promotion process and reduce memory fragmentation by preserving

THPs during migrations.

3.6 Conclusions

Current OS page migration and management frameworks were developed at at time

when page sizes were small and page migration existed to support memory hotplug

functionality rather than performance optimization. With the introduction of hetero-

geneous memory systems, pressure is being put on the OS to adapt to new hardware

paradigms and efficiently support multi-tiered memory systems. This work implements

a novel holistic high-performance page migration system which increases migration

throughput from under 100MB/s to over 10GB/s, rendering it appropriate for a wide

variety of future asymmetric memory studies. We also design a low overhead page track-

ing and migration policy, that significantly re-uses pre-existing internal OS structures,

thus having wide applicability to a range of anticipated multi-level memory systems.

Using a disaggregated memory system as an example, our page migration enhancements

along with this native two-level paging system result in a 40% end-to-end improvement

in workload performance. Our work demonstrates that combining simple management

policies with high performance page migration is critical, yet achievable, to the future

of high-performance heterogeneous memory systems.
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Chapter 4

Translation Ranger: Operating System
Support to Actively Produce Address

Translation Contiguity

4.1 Introduction

Virtual memory (VM) provides programmers with a number of important benefits: it

abstracts away the physical memory details, it provides memory protection and process

isolation, and it facilitates communication between cores and/or compute units sharing

the same virtual address space. As such, virtual memory is used today not just by

CPUs but also by GPUs and many other accelerators [6, 61, 149]. Figure 4.1 shows an

example of a system with a group of CPUs, GPUs, and accelerators, where each can

access its own dedicated/shared memory and one another’s memory directly via the

virtual memory system.

Generally, in systems using virtual memory systems, the translation lookaside buffer

(TLB) in each computation unit is desired to cover all physical memories, requiring

considerable translation storage overhead [59,141]. Consequently, processor vendors are

implementing increasingly large TLBs. For example, Intel has been (approximately)

doubling its CPU TLB resources every generation from Sandybridge to Skylake [66],

resulting in TLBs with thousands of entries today. Vendors like AMD implement even

larger TLBs for accelerators like GPUs [94,153]. Large TLBs consume non-trivial area

and power [14, 36, 77, 120] and are particularly ill-suited for accelerators with limited

hardware resources [59,128,141].

Recent studies focusing on this address translation wall [17] have touted translation

contiguity as a way to mitigate VM overheads [13, 30, 76, 121, 125]. With translation



81

     Memory addressable to 
all CPUs, GPUs, and accelerators

CPUsCPUsCPUs

CPU Memory
(e.g., 1TB)

GPU Memory
(e.g., 32GB)

GPU
TLB

TLB

Accelerators

GPU Memory
(e.g., 32GB)

GPU
TLB

TLBTLBTLBTLB TLBTLB TLBTLB

Cache-
coherent

Link

Cache-
coherent

Link

Figure 4.1: A system with CPUs and accelerators sharing memory (in a cache coherent
manner). All memories are addressable by all CPUs, GPUs, and accelerators.

contiguity, virtually contiguous pages mapping onto physically contiguous frames (re-

ferred to as a contiguous region) can be covered by one translation entry. OSes can

generate contiguity using contiguous memory allocators [104], and hardware can take

advantage of contiguity via coalescing as shown in Figure 4.2 [30, 125]. Additionally,

academic studies have shown how to use translation contiguity even more aggressively

with recently-proposed range TLBs [76], devirtualized virtual memory [59], and direct

segment hardware [13].

Although influential, prior studies require either specific amounts of contiguity (e.g.,

discrete page-sized contiguity [36, 119, 139]), restricted types of contiguity (e.g., where

virtual and physical pages must be identity mapped [59]), serendipitously-generated

contiguity where the OS offers no guarantees of contiguity creation (e.g., TLB coa-

lescing [125]), or swaths of contiguity that can be created only at memory allocation

(e.g., direct segments and ranges [13,76]). Consequently, the question of how OSes can

generate unrestricted and general-purpose contiguity remains open.

Our goal is to create such general-purpose contiguity: (1) during the entire lifetime of

workloads and not just at memory allocation; (2) on real-world systems with long upti-

mes, where memory may be (heavily) fragmented by diverse co-running workloads that

are spawned and terminated over time; and (3) that does not require OS/application
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V0       →      P4

Traditional TLB

Contiguity-aware TLB

V3       →      P7

V12     →      P8

 V15     →     P11

[V0-V3] → [P4-P7]

[V12-V15] → [P8-P11]

[V0-V3] → [P4-P7]

[V12-V15] → [P8-P11]

…
…

Page Table

V0             P4
V1             P5
V2             P6
V3             P7

V12          P8
V13          P9
V14        P10
V15        P11

V0             P4
V1             P5
V2             P6
V3             P7

V12          P8
V13          P9
V14        P10
V15        P11

…

V0             P4
V1             P5
V2             P6
V3             P7

V12          P8
V13          P9
V14        P10
V15        P11

…

…
…

Figure 4.2: A contiguity-aware TLB (left) uses two entries to cache 4-page translation
each. A traditional TLB (right) requires eight entries to cache the same number of
translations.

customizations, like identity mappings, which can be difficult to create, preclude im-

portant OS features like copy-on-write, and may affect security features like address

space layout randomization (ASLR) [59]. To achieve this, we propose Translation

Ranger, an OS service that actively coalesces fragmented pages from the same virtually

contiguous range to generate unrestricted amounts of physical memory contiguity in all

scenarios outlined above. This enables previously proposed hardware TLB techniques—

i.e., from COLT [30, 36, 125], direct segments [13], range TLB [76], hybrid coalescing

TLB [121], to devirtualized memory [59]—to compress information about address trans-

lations into fewer hardware TLB entries. This permits us to realize area-efficient TLBs

that scale gracefully with increasing memory capacity for accelerators (and CPUs). Our

contributions are:

1. We are the first to propose active OS page coalescing to generate unbounded

amounts of translation contiguity in all execution environments, in the presence or

absence of memory fragmentation, or post-memory allocation. Because it does not

depend on any special hardware, Translation Ranger’s robust and general-

purpose translation contiguity is widely applicable to all systems in real-world dat-

acenter and cloud deployments with commercially-existing or recently-proposed
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hardware techniques to compress entries in TLBs.

2. We implement Translation Ranger in Linux kernel v4.16 to assess the feasi-

bility of our approach. Our real-system implementation and evaluation permits

us to identify the subtle challenges of building Translation Ranger in com-

modity OSes. Chief amongst them are the challenges of reducing page migration

overheads, dealing with the presence of pages deemed non-movable by the kernel,

and understanding the impact of page coalescing on user application performance.

We establish that it is useful to coalesce pages not only at allocation time but

also post-allocation in highly-fragmented systems. This observation goes beyond

all prior work which generally avoids post-allocation defragmentation because of

its presumed overheads [13,36,59,76,125].

3. We show that Translation Ranger generates significant contiguity (> 90% of

120GB application footprint covered using only 128 contiguous regions, compared

to < 1% without coalescing). It does so with very low overhead (< 2% of overall

application runtime while coalescing 120GB memory), thereby ensuring that the

performance gain delivered via coalescing is a net win.

4.2 Background

The increasing overheads of address translation and virtual memory have prompted sig-

nificant academic and industry research on higher-performance address translation tech-

niques [13,30,36,59,76,121,124,125,153]. Before we describe Translation Ranger,

we first review this important background.

4.2.1 Specialized Contiguity-Aware Hardware

Several recent studies have proposed TLB hardware that can support arbitrary amounts

of translation contiguity within each entry. These approaches generally task the pro-

grammer and OS with generating the necessary large swaths of contiguity. Direct

segments [13] uses programmer-OS coordination to mark gigabyte- to terabyte-sized

primary segments of memory which are guaranteed to maintain contiguous translation.
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However, this approach presents challenges such as the need for one direct primary

segment (real-world applications often require more flexibility in allocating contiguous

segments in different parts of their address space) and explicit programmer interven-

tion. Redundant memory mappings [76] support arbitrary translation ranges in TLBs;

however, they do rely on aggressive OS changes to produce these translation ranges.

Devirtualized virtual memory [59] extends the concepts of direct segments and vast

translation contiguity for area-constrained accelerators, but it works under the some-

what optimistic assumption that OSes can always offer large contiguous memory regions

for devirtualization.

The approaches above all require that large amounts of contiguity can be produced

at allocation time, either via eager paging (which always allocates largest possible con-

tiguous pages up to 2GB) or via boot-time memory reservation [13, 59, 76]. They also

require non-standard changes to the OS kernel (e.g., custom memory allocators, use

of position-independent executables, inefficient eager paging, etc.). Finally, these tech-

niques are unable to react to dynamically-changing conditions or memory fragmenta-

tion, as discussed below. As such, these approaches are less general than Translation

Ranger.

4.2.2 Improving Allocation-Time Contiguity

One approach to creating allocation-time contiguity is to simply reserve the memory

in advance. With libhugetlbfs [91], memory is reserved at boot time and allocations

for 2MB or 1GB pages are satisfied from these reserved memory pools. Device drivers

often use customized memory allocators that perform similar advance reservation [35].

For allocations performed at runtime, the widely-used buddy memory allocator [80]

is a source of translation contiguity because it groups contiguous free memory into free

page pools of different sizes, from 1 to 2N pages, where N is called the max order of the

buddy allocator. Standard allocations will contain a maximum of 2N contiguous pages.

For example, Linux’s buddy allocator supports maximum contiguous allocations of

4MB. However, because the buddy allocator must support fast insertions and deletions,

free pages are stored in unordered lists, meaning that larger than 2N pages worth of
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Figure 4.3: There is plenty of contiguity available at boot time, but memory becomes
fragmented soon thereafter.

contiguity cannot be guaranteed upon sequential memory accesses even if two or more

contiguous 2N pages are in the same free list.

Previous work creates allocation-time contiguity by simply increasing the max order

of the buddy allocator [59, 76]. However, this poses multiple problems. First, Linux’s

sparsemem (used to support discontiguous physical address spaces, which is common

in modern systems), requires each contiguous physical address range to be aligned to

2N [157]. This means, for example, that if the max order is increased to support

contiguous free ranges of 1GB, gigabytes of available memory may be wasted. Second,

increasing the max order does not solve the problem of fragmentation, i.e., the lack of

contiguity of free pages. Fragmentation does not directly affect the contiguity of in-use

memory ranges, but it can affect the amount of contiguity available at allocation time.

4.2.3 Memory Fragmentation and Defragmentation

To quantify the problem of fragmentation, we ran a set of benchmarks multiple times

each, starting with a fresh-booted system. This system has 128GB memory (see Ta-

ble 4.1), and we increased the max order of the buddy allocator to allocate large con-

tiguous regions [59, 76]. Figure 4.3 shows that all benchmarks have majority (¿80%)

of their footprint covered by 1GB contiguous regions (not to be confused with 1GB
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P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14 P15 P16P1P0 P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14 P15 P16P1P0

(a) In-use page fragmentation prevents 8-page contiguity even though there are 10 free pages available.
Filled blocks are in-use pages.

P0-P3
Kernel Free Pool

P4-P7
User Free Pool

P8-P11
Kernel Free Pool

P12-P15
User Free Pool

(b) Free page fragmentation prevents 8-page contiguity even though all pages are free.

Figure 4.4: Some possible types of fragmentation.

pages, which must also be aligned) on their first execution, right after the machine

boots. However, as the benchmarks keep running, the number of 1GB contiguous re-

gions decreases to only 20%. This degradation of large contiguous regions is often seen

in long-run systems and is caused by memory fragmentation.

Fragmentation can occur for many reasons. In-use pages can prevent otherwise-free

buddy pages from being promoted to a larger free page pool for allocation, as shown in

Figure 4.4a. In-use pages allocated for use by the kernel are non-movable (also called

wired in FreeBSD, non-paged in Windows [102,135]), which means that they cannot be

defragmented [118]. The use of kernel free page pools can minimize the interleaving of

kernel pages with user pages, as shown in Figure 4.4b; this avoids non-movable page

fragmentation, but can cause free page fragmentation where kernel free page pools and

user free page pools interleave with each other, preventing large contiguous regions

from being formed [118]. This also explains why benchmarks in Figure 4.3 lose 1GB

contiguous regions over multiple rounds of executions.

Perhaps surprisingly, defragmentation techniques can in practice turn out to have a

detrimental effect on the contiguity of in-use memory. As shown in Figure 4.5, Linux

uses memory compaction to move in-use pages to one end of physical address space,

leaving the other end with contiguous free pages for high order free page promotions.

However compaction moves only base pages and not transparent huge pages (THP),

because traditional non-coalescing TLBs are unable to benefit from any higher con-

tiguity. Therefore, it cannot assist in forming free page contiguity beyond 2MB size.
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(Begin)                   Physical Frames                     (End)
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P3 P4 P5 P6P2 P7P1P0 P3 P4 P5 P6P2 P7P1P0

Figure 4.5: Defragmentation via memory compaction (e.g., in Linux) might destroy
in-use contiguity as an unintended side effect of creating more free memory contiguity.

Compaction is also unaware of the contiguity of in-use pages, so if a set of contiguous

in-use pages are moved to a set of scattered free pages, the original contiguity may be

destroyed. Translation Ranger’s goal is to show that instead, careful active coa-

lescing can create contiguity post-allocation too, thereby overcoming the limitations of

past approaches.

4.3 Translation Ranger

Previous sections established that in real-world settings, contiguity-based address trans-

lation optimizations will be highly sensitive to OS limitations such as memory frag-

mentation, lazy page allocation, and buddy allocator max order settings in the range

of megabytes rather than gigabytes. Translation Ranger attacks these problems

by gathering scattered physical pages that belong to a virtually contiguous range and

rearranging them to achieve both virtual and physical contiguity. Unlike prior work,

Translation Ranger generates contiguity at any granularity (including sizes be-

tween the architecturally-available page sizes), allowing it to scale with memory size

with little runtime overhead.
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Page frame
coalescing

Figure 4.6: Coalescing the pages in a Virtual Memory Area (VMA): after coalescing
page frames, virtual pages V0–V3 map to contiguous physical frames P4–P7. Filled
page frame boxes denotes those mapped by V0–V3, marked boxes denotes the frames
mapped by other VMAs, and blank boxes denotes free frames. The VMA’s Anchor
Point is (V0, P4).

4.3.1 Design Overview

We define a contiguous region as one where an arbitrary number of successive virtual

pages map to an equal number of successive physical frames. The objective is that these

contiguous translations can be leveraged with contiguity-aware TLBs (see Figure 4.2).

Ideally, a contiguous region of N pages is cached with just a single TLB entry instead

of N entries.

Contiguity in the virtual address space depends upon the layout of a process’s vir-

tual address space. Most OSes organize each process’s virtual address space as multiple

non-overlapping virtual address ranges. In Linux, each such virtual address range is de-

scribed by the struct vm_area_struct, or virtual memory area (VMA). Applications

obtain virtually-contiguous address ranges via mmap or malloc, but physical frames are

allocated lazily upon the first access to each page. Contiguous regions are created when

faulting virtual pages that are contiguous in a VMA are assigned contiguous physical

frames. On-demand paging does not restrict the physical frame assigned to a fault-

ing virtual page. Therefore, contiguous virtual pages in a VMA can be mapped to

non-contiguous physical frames (see Figure 4.6).

Translation Ranger’s approach is to rearrange the physical memory layout such

that each VMA can be covered by as few contiguous regions as possible, with regions
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that are as large as possible. Ideally, a single VMA would constitute one contiguous

region, and would be tracked using just one TLB entry. To achieve this ideal situation,

Translation Ranger follows three steps:

1. Actively coalesce memory within a VMA.

2. Avoid interference between the various VMAs in a process and in the overall

system.

3. Iterate to maintain contiguity during the course of VMA allocations/expansions

throughout application lifetime.

4.3.2 Intra-VMA Page Coalescing

As Figure 4.6 shows, Translation Ranger coalesces scattered physical frames into a

contiguous region by first determining an anchor point for each VMA. An anchor point

is a virtual page (VPN) and physical frame (PFN) pair, (Vanchor, Panchor). After anchor

point selection, Translation Ranger determines that to coalesce frames effectively,

physical frames should be located at Pn = (Vn−Vanchor)+Panchor for each virtual page

number Vn. Figure 4.6 shows an example where (V0, P4) is the anchor point. The

VMA is coalesced by 1 migrating P2 to P4, 2 exchanging P5 with P9, 3 exchanging

P7 with P6, 4 exchanging P7 with P3, ultimately leading to V0-V3 mapping to P4-P7.

To do this correctly and efficiently, we must handle several key algorithmic issues:

Targeting In-Use Page Frames. Target physical frames may be in one of two states:

free or in-use. If a target page frame Pn is free, Linux’s page migration mechanism is

used to move the source frame to the target frame. If a target page frame Pn is in

use, we cannot simply clobber it during coalescing. A simple solution would be to

move the contents of the in-use frame itself to an intermediate physical frame before

migrating the source frame to the target frame, but this suffers from extra storage

and copy time overhead. In addition, when the system is under memory pressure,

allocating a new intermediate physical frame can trigger the page reclamation process,

leading to performance degradation. Therefore, we opt for an alternative approach:
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we use an experimental patch available in Linux to directly exchange two anonymous

pages [162]. This approach requires no extra storage and even supports the exchange of

THPs. We further extended this patch to add support to exchange anonymous pages

with file-backed pages, but we do not support exchange of two file-backed pages (due

to complicated file system locking and their rare appearance).

Non-movable pages. Non-movable pages, which complicate page frame coalescing,

can occur for several reasons. Some examples are that the page is used by the kernel

(e.g., for SLAB allocations, page tables, or other kernel data structures), or that the

page is busy (because it is involved in I/O operations, migration, dirty page write-

back, or DMA). We use different approaches for kernel versus busy pages. Since kernel

pages generally have long lifetimes and limited OS support for page migration, we skip

them during the coalescing process. However, busy pages are generally only temporar-

ily so; therefore, even if these pages cannot be moved on a first pass, Translation

Ranger tries to coalesce them again in the future using its iterative process described

in subsequent sections.

Upon skipping a non-movable page frame, Translation Ranger continues coa-

lescing subsequent pages using the original anchor point. We investigated the value of

creating new anchor points following non-movable pages, but we found that doing so

yields little benefit. In fact, for busy pages, new anchor points can even be harmful

if the page become non-busy in the near future. Creating the additional anchor point

needlessly splits a large contiguous region into two smaller contiguous regions.

Anchor point alignment. When considering anchor point placement in a VMA,

there is no constraint of alignment in VPN and PFN, which means any pair of VPN

and PFN can be used as an anchor point. When Translation Ranger is used to

improve contiguity in systems with traditional TLBs for 4KB, 2MB, and 1GB page

sizes, to enable in-place promotion of 512 contiguous 4KB pages (or 2MB pages) to

a single 2MB THP (or 1GB page), both the VPN and the PFN of the anchor point

need to be aligned to 2MB (or 1GB) boundaries. In practice, we run experiments to

align VMAs with sizes <1GB to 2MB boundaries and VMAs with sizes >1GB to 1GB
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Physical Frames
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(a) Interference during coalescing

VMA1
[V0, V3]

V1 V2 V3V0

VMA1
[V0, V3]

V1 V2 V3V0

VMA2
[V12, V15]
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Physical Frames

…P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14…

(b) Avoiding interference

Figure 4.7: Anchor points must be chosen carefully in order to prevent inter-VMA
interference.

boundaries and are able to obtain 2MB THPs out of aligned 512 4KB pages (1GB THPs

are not supported in Linux). This means Translation Ranger is also effective on

forming huge pages for systems with traditional TLBs. In terms of overall contiguity,

we find that there is no difference in the effectiveness of page frame coalescing between

using anchor points with any alignments and without alignments.

4.3.3 Avoiding Inter-VMA Interference

Achieving large contiguous regions also requires Translation Ranger to understand

interaction between multiple VMAs. For example, consider Figure 4.7, where VMA1

contains V0-V3, while VMA2 contains V12-V15. If VMA1 and VMA2 use (V0, P4)

and (V12, V8) as their respective anchor points, both VMAs can maximize the sizes of

their contiguity regions. Figure 4.7a shows, however, that a less fortunate anchor point

selection of (V12, P6) for VMA2 leads to poor contiguity formation. The problem is

that these anchor points prompt both VMAs overlap in the physical frames that they

must use to realize contiguous regions. In this situation, coalescing VMA2 would wipe

out (some of) VMA1’s contiguity and vice-versa. Furthermore, multiple coalescing

passes would revisit this problem, creating excessive page migrations and increasing

Translation Ranger’s overheads.

To avoid this situation, Translation Ranger partitions the physical address

space into disjoint coalesced and uncoalesced regions. Translation Ranger assigns

each new VMA to an uncoalesced region. When this VMA is coalesced, the physical

region to which it is assigned is marked coalesced. For this Translation Ranger
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simply uses an algorithm similar to first-fit [159], i.e., scan linearly through all coa-

lesced regions, and stop at the first sufficiently large hole between any two coalesced

regions. This approach avoids inter-VMA interference, and thus substantially mitigates

Translation Ranger overheads by minimizing unnecessary page migrations caused

by physical range interference. This also provides useful information for tackling the

problem of VMA size changes, which we subsequently discuss.

4.3.4 Iterative Page Frame Coalescing

Applications can grow and shrink their VMAs over time. This can be problematic

when a VMA grows such that its physically contiguous region overlaps with another

VMA, limiting contiguity. To avoid this problem, Translation Ranger tracks per-

VMA size along with each VMA’s coalesced region size during each coalescing iteration.

If, on future iterations, Translation Ranger discovers that a VMA that has now

grown and overlaps with another VMA (by examining coalesced region information),

Translation Ranger relocates the coalesced region of one of the two VMAs by

assigning a new anchor point. To minimize page frame relocation overheads, the smaller

of the two is moved. On the other hand, if no overlapping occurs, the grown part of the

VMA will be coalesced and the VMA’s coalesced region size will be adjusted accordingly.

Second, Translation Ranger is designed to coalesce large important VMAs and

ignore smaller shorter-lived VMAs (¡ 2MB) such as those used to map data structures

like thread stacks. Our rationale was that these VMAs tend to be sufficiently small such

that that coalescing their page frames them yields little additional contiguity relative to

the overhead of the necessary page migrations. We believe more sophisticated strategies,

e.g. consolidating multiple thread stacks, or lazy VMA deallocation to lengthen VMA

lifetimes, could further decrease coalescing overhead and generate even larger contiguous

regions, but we leave these for future work.

4.3.5 Multi-Process Coalescing and Synonyms

Finally, Translation Ranger coalesces page frames not for just one process, but all

of them. For multi-process environments, Translation Ranger tracks the VMAs
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Experimental Environment

Processors
2-socket Intel E5–2650v4 (Broadwell), 24 cores/socket, 2
threads/core, 2.2 GHz

L1 DTLB
4KB pages: 64-entry, 4-way set assoc.
2MB pages: 32-entry, 4-way set assoc.
1GB pages: 4-entry, 4-way set assoc.

L1 ITLB
4KB pages: 128-entry, 4-way set assoc.
2MB pages: 8-entry, fully assoc.

L2 TLB
4KB&2MB pages: 1536-entry, 6-way set assoc.
1GB pages: 16-entry, 4-way set assoc.

Memory 128GB DDR4 (per socket)

OS Debian Buster — Linux v4.16.0

Table 4.1: System configurations and per-core TLB hierarchy.

present in all running processes, just as khugepaged does in Linux. Translation

Ranger is designed to account for forked and shared memories, or any situation where

a contiguous physical region is shared by multiple VMAs. Translation Ranger only

coalesces one physical range in these cases and skips the synonym VMAs. This can be

done efficiently within Linux, for example, by checking anon_vma for anonymous VMAs

and address_space for file-backed VMAs.

4.4 Experimental Methodology

Translation Ranger’s strength is that it is widely deployable on systems with and

without fragmentation and can leverage any previously-proposed TLB hardware that

supports translation contiguity [13,59,76,121,125]. Naturally, Translation Ranger’s

performance benefits will vary depending on the target system, as well as the partic-

ular contiguity-aware TLB employed on that system. To achieve good performance,

Translation Ranger must generate enough translation contiguity that contiguity-

aware TLBs can leverage it to offset any runtime overheads imposed by Translation

Ranger’s page movement operations.
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4.4.1 Evaluation Platform

We implement Translation Ranger in Linux kernel v4.16 and evaluate it on a

two-socket Intel server (see Table 4.1). We run benchmarks from SPEC ACCEL [72],

graph500, and GUPS in (see Table 4.2). Translation Ranger is tuned to periodi-

cally coalesce application memory; to produce contiguity statistics, application memory

is scanned every 5 seconds to retrieve the virtual-to-physical mappings of each page be-

longing to the application. This statistics collection is engineered to have negligible

impact on runtime.

One of Translation Ranger’s goals is to generate contiguity on machines with

realistic loads and uptimes, and with reasonable memory fragmentation. To eliminate

the boot-time bonus we saw before executing our tests in Section 4.2.3, we induce frag-

mentation by compiling the Linux kernel multiple times; this allocates many file-backed

pages, triggering SLAB allocations in the kernel. We also run a synthetic benchmark,

memhog, an application that allocates memory all over the physical address space, and

has been used in prior studies to create fragmentation [36, 124]. These precondition-

ing step ensures that memory in kernel and user free pools are in a fragmented state

similar to a realistic steady state shown in Figure 4.3. To minimize artificial in-use

page fragmentation caused by kernel compilations, we also release all file-backed pages

and the corresponding kernel caches (e.g. inodes and dentries) by executing sync

followed by echo 3 > /proc/sys/vm/drop_caches [90]. We configure our benchmarks

to use around 95% of the total free memory. This usage is also typical of HPC systems

where job schedulers attempt to match applications with available memory to prevent

underutilization.

4.4.2 Experimental Configurations

To understand Translation Ranger’s effectiveness on improving memory contiguity,

we use Linux’s default buddy allocator configuration (Linux Default) as our baseline,

because most contiguity-aware TLB designs rely on serendipitously generated conti-

guity [121, 124, 125]. We also compare against an enhanced buddy allocator with its

max order increased to 20, permitting 2GB contiguous region allocations. This Large
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Suite Description Benchmark Footprint

SPEC
ACCEL

compute & memory
intensive multi-threaded
workloads

503.postencil 121GB
551.ppalm 121GB
553.pclvrleaf 121GB
555.pseismic 120GB
556.psp 113GB
559.pmniGhost 120GB
560.pilbdc 121GB
563.pswim 117GB
570.pbt 119GB

HPC

Generation and search of
graphs

Graph500 122GB

Random access benchmark GUPS 128GB

Table 4.2: Benchmark descriptions and memory footprints.

Max Order is representative of approaches from prior work like redundant memory

mappings and devirtualized memory because it relies on generating contiguity at allo-

cation time and hence serves as a valuable point of comparison to our approach [59,76].

Furthermore, we compare Translation Ranger to khugepaged, which is another

technique Linux uses to generate contiguity by collapsing scattered 4KB pages into a

new THP. To conservatively assess Translation Ranger’s relative benefits, we tune

khugepaged to scan the entire application footprint every 5s as opposed to its default

of defragmenting only 16MB of memory every 60s.

Finally, when profiling Translation Ranger, we quantify the results when co-

alescing every 5 seconds, and every 50 seconds to showcase the relationship between

runtime overheads and Translation Ranger’s ability to generate contiguity. For all

five configurations, THPs are enabled by default and the buddy allocator uses Linux’s

default max order 11 to allow a maximum 4MB contiguous page allocation, except for

Large Max Order.

4.4.3 Contiguity Metrics

We evaluate Translation Ranger using real-system experimentation, focusing on

two key metrics. First, we count the total number of contiguous regions needed to

cover the entire application memory footprint (TotalNumContigRegions). Our goal with
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this metric is to push the number of contiguous regions to quantities comparable to

the most aggressive eager paging and identity mapping techniques from prior work

(e.g., direct segments, range TLBs, devirtualization [13, 59, 76]). It is also to show

that Translation Ranger can rival these techniques with respect to contiguity gen-

eration without sacrificing software and OS flexibility (by requiring the non-standard

approaches the way these prior techniques do).

Next, we calculate the percentage of total application footprint covered by the

largest 32 contiguous regions (MemCoverage32Regions) and the percentage of total appli-

cation footprint covered by the largest 128 contiguous regions (MemCoverage128Regions).

Our goal with this metric is to show that even small 32-128 entry contiguity-aware TLBs

can capture the majority of the application footprint. This metric has been previously

used by prior work [59,76] to understand contiguity improvements.

4.4.4 Measuring Overhead

Translation Ranger’s primary overhead comes from page migrations because pages

undergoing migration are not accessible to applications, and necessitate frequent TLB

invalidations and shootdowns. To understand these overheads, we present all bench-

mark runtimes for the five measured configurations and normalize them to our baseline,

Linux Default. Our experimental platform supports discrete page sizes (4KB, 2MB, and

1GB) for address translation but does not take advantage of other kinds of contiguity,

so excess application runtime due to coalescing can be viewed as the software tax of our

system. Ultimately, the goal is to show that Translation Ranger generates conti-

guity comparable to the most aggressive of previous techniques, while simultaneously

incurring such low overheads that the benefits are virtually “for free”.

4.5 Experimental Results

We begin by showing translation contiguity results for all benchmarks. We follow that

by highlighting two particularly interesting cases in order to provide more detail about

how applications behave over time. Finally, we show the overhead.



98

Different memory allocation patterns within applications can have a large impact

on contiguity generation. Based on profiling, we categorize our 11 benchmarks into two

classes based on their memory allocation patterns:

Class A – Bulk memory allocation up front: 503.postencil, 551.ppalm, 553.pclvrleaf,

555.pseismic, 559.pmniGhost, 560.pilbdc, 563.pswim, graph500, and GUPS.

Class B – Continuous memory allocation over time: 556.psp and 570.pbt.

Class A is a very common HPC workload pattern where the majority of application

memory is allocated at program inception before computation begins. Class B typically

occurs when an application spawns many short-lived worker threads, each of which has

its own private working memory pool.

4.5.1 Overall Translation Contiguity Results

To concisely show individual results, we show TotalNumContigRegions, MemCoverage32Regions,

and MemCoverage128Regions in Figure 4.8 using Violin plots [158]. Violin plots aggre-

gates all metric numbers over application runtime into a distribution “violin plot”

parallel to the y-axis. The thickness of a violin plot indicates how often the value from

y-axis occurs. In addition, the average number is shown as a diamond symbol within

each plot.

Figure 4.8a shows the TotalNumContigRegions distributions of all benchmarks. We

observe that most Class A benchmarks show TotalNumContigRegions aggregating in one

primary area, which reflects their bulk memory allocation behavior; the number of

regions does not change much over time. On the other hand, 556.psp and 570.pbt

(Class B), which allocate memory recurrently, have their TotalNumContigRegions spread

across a range of values along the y-axis due to frequent small allocations.

Among all five configurations, Linux Default and khugepaged typically require many

more contiguous regions (violin plots are thick at the top of each plot) to cover the appli-

cation footprint, because they are both limited by the buddy allocator, which can only

provide up to 4MB contiguous regions. We see that the Large Max Order configuration
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can generate much larger and thus fewer contiguous regions, since it modifies the buddy

allocator to provide up to 2GB contiguous regions. However, Translation Ranger

(at either frequency) is able to coalesce memory further and needs a far smaller number

of contiguous regions to cover each application footprint; i.e., it is the most successful

technique for generating contiguity.

Looking at Figure 4.8b for MemCoverage32Regions and MemCoverage128Regions dis-

tribution across all benchmarks, we see that unlike Figure 4.8a, the mean value of all

benchmarks aggregates at certain point. This is because TLB coverage is influenced

by both the size of the largest contiguous regions present in the system and not just

the total number of regions. Among all five OS configurations, Linux Default and

khugepaged typically only cover < 1% of each application footprint (with either 32 or

128 regions), since they can achieve at most 4MB contiguous regions. The Large Max

Order configuration can typically cover up to 40% of the application footprint, but is

also limited by 2GB contiguous regions from its buddy allocator modifications. The-

oretically, the Large Max Order configuration should be able to cover all application

footprints with 128 contiguous regions, if each region is at least 1GB. However, due to

memory fragmentation, not all contiguous regions obtained from the buddy allocator

are maximally-sized.

Translation Ranger (at frequencies of either 5 seconds or 50 seconds) consis-

tently creates much larger contiguous regions that can cover the majority of each ap-

plication’s footprint. Utilizing 128 contiguous regions, Translation Ranger can

typically cover > 90% of a 120GB application footprint. In comparison, the last level

TLB of a CPU today typically contains 1024 entries and using entirely THPs (2MB)

can only cover 2GB of footprint. The Translation Ranger approach combined with

existing coalescing TLB proposals can improve TLB coverage by a factor of 20× while

simultaneously decreasing TLB storage requirements by 10×.

4.5.2 Highlighting Individual Benchmarks of Interest

In order to provide more insight into how Translation Ranger achieves contiguity,

we highlight one workload from each previously-defined class of applications: we pick
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503.postencil to represent applications in Class A and 556.psp to represent Class B.

503.postencil (Class A)

Figure 4.9a shows the contiguity results over the runtime of 503.postencil, which first

creates a huge address region, fills it with physical frames, then processes all data in

memory. The left most plot in Figure 4.9a shows the TotalNumContigRegions over appli-

cation runtime for the 5 contiguity producing approaches. This plot shows the same

data as the left most plot of Figure 4.8a, but in different forms. To translate between

them, first consider the left most plot of Figure 4.9a. We can see TotalNumContigRegions

for Linux Default increases from 0 to about 32,000 during the first 40% of application

runtime and becomes stable for the remaining 60% runtime. In the left most plot of

Figure 4.8a, the Linux Default violin plot is thickest around the value of 32,000, then

is fairly uniformly distributed between 0 and 32,000.

From the leftmost plot in Figure 4.9a, we see several interesting trends. For exam-

ple, with Translation Ranger more frequent invocation (every 5 seconds) is able

to generate large contiguous regions more quickly than the less frequent invocation

(every 50 seconds). However, after application memory allocations become stable (at

approximately 40% of the application runtime), the less frequent invocation eventually

results in a similar number of contiguous regions being produced for the remainder of

the execution.

In terms of contiguous region TLB coverage, the middle and right most plots of

Figure 4.9a show MemCoverage32Regions and MemCoverage128Regions over application

runtime, respectively. We observe that the Linux Default and khugepaged configura-

tions can cover very little (< 1%) of the application footprint with even 128 contiguous

regions. The Large Max Order configuration is a substantial improvement with 12.5% of

the application footprint being covered with the largest 32 contiguous regions and 32.3%

with the largest 128 contiguous regions respectively. However Translation Ranger

can cover at least 80% of application footprint with just 32 contiguous regions, and

over 95% of the 121GB footprint using 128 contiguous regions.

To summarize, for 503.postencil, contiguity-aware TLB designs will attain 3–6×
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more TLB coverage (or could reduce their hardware resources proportionally), if they

simply use Translation Ranger instead of their custom software solutions.

556.psp (Class B)

Figure 4.9b shows the contiguity results for 556.psp, which frequently allocates and

deallocates memory from within spawned worker threads. The left most plot of Fig-

ure 4.9b shows high volatility across all configurations for TotalNumContigRegions because

frequent memory allocations add many fragmented small pages and deallocations re-

move existing contiguous regions. All five experimental configurations suffer notably

from this type of application memory allocation pattern.

Because Translation Ranger iteratively coalesces memory to generate contigu-

ous regions, it requires 40% fewer contiguous regions to cover the entire application

footprint than Linux Default, Large Max Order, or khugepaged. The middle and right

plots in Figure 4.9b show that using the largest 32 or 128 contiguous regions, Linux

Default and khugepaged can cover < 1% of the application footprint. Large Max Order

does a little better, covering about 8% initially, but decreases to < 2% because of the

frequent memory allocations and deallocations.

In contrast, Translation Ranger (running every 5 seconds) covers more than

80% of the application footprint and up to 99% during the bulk of application runtime

when considering 32 regions or 128 regions. Translation Ranger (with frequency

set to every 50 seconds) can cover more than 45% of the application footprint with the

largest 32 contiguous regions and the coverage is over 75% during the bulk of application

runtime; increasing the number of regions to 128 further improves the coverage of the

application’s footprint to 94%. It is clear that Translation Ranger provides a

significant advantage over the alternatives when trying to generate contiguity.

4.5.3 Low Translation Ranger Overheads

So far we have seen that Translation Ranger creates systematically larger and dra-

matically fewer contiguous regions compared to other approaches, but we must also
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consider the runtime overhead it imposes on applications. Figure 4.10 shows the appli-

cation execution time across all five configurations normalized to our baseline, Linux

Default, when run 5 times to account for runtime variation. Large Max Order, which on

average adds 0.4% runtime overhead, incurs very minor slowdowns due to zeroing every

free large page at allocation time. The overhead of khugepaged is negligible. Although

it runs very frequently (every 5 seconds), the majority of each workload memory are

already THPs, leaving few base pages for it to convert to THPs. This also explains its

small improvements in contiguity for most workloads.

We find that Translation Ranger adds, on average, only 1.9% overhead when

it runs every 5 seconds and 1.2% overhead when it runs every 50 seconds. In the

worst case, 556.psp suffers from 6.7% overhead when Translation Ranger runs

every 5 seconds. However, not only can this overhead be lowered to 0.6% once we

decrease Translation Rangerś frequency to every 50 seconds, we can do this while

effectively enjoying similar contiguity creation as the 5 second case. Graph500 also

suffers a 5.1% overhead when Translation Ranger runs too frequently, but the

overhead is reduced to 1.7% by reducing Translation Ranger frequency (again,

without noticeable drop in contiguity). Though Translation Ranger has slightly

higher software overheads than previously proposed solutions (represented by Large

Max Order), it is typically under 1%, which will be more than offset by the performance

improvements achieved via TLB efficiency, reported at 20-30% in prior proposals [59,

76,125]. Because Translation Ranger generates substantially more contiguity than

used in these studies, we would expect to see more performance but an exhaustive study

of contiguity-aware TLB designs is beyond the scope of this work.

4.5.4 Summary

From the translation contiguity results and runtime results, we conclude Transla-

tion Ranger is a low overhead and highly effective technique to generate translation

contiguity in systems with fragmented memory, particularly when compared to three

other approaches on which prior contiguity-aware TLB designs rely. Translation
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Rangerachieves the following —it covers > 60% application footprint with 32 con-

tiguous regions and > 90% with 128 contiguous regions.

4.6 Discussion

Applicability to other OSes. Translation Ranger is compatible with other OSes

like Windows and FreeBSD, which maintain VMA-like data structures per process. For

example, FreeBSD uses vm_map_entry to identify a contiguous virtual address range

instead of a VMA, vm_object to represent a group of physical frames from one memory

object instead of anon_vma for an anonymous memory object and address_mapping for

a file in Linux. To port Translation Ranger to FreeBSD, we can generate contiguity

on each vm_map_entry and assign one anchor point to each vm_map_entry instead of

each VMA. Extra care needs to be taken when generating contiguity on pages created by

copy-on-write (COW). FreeBSD uses shadow vm_objects to keep track of private pages

created at COW, thus we should skip the pages in shadow vm_objects during memory

defragmentation to avoid unnecessary work, the same way Translation Ranger does

for skipping similar VMAs.
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Permission checks. Contiguity generated by Translation Ranger and other tech-

niques belongs to one VMA, which has a uniform permission across all virtual addresses

in it. When the permission of a virtual address range in this VMA is changed, the VMA

will be broken into two or more new VMAs with corresponding updated permissions,

and the page table entries will be updated respectively. This also breaks one contiguous

region into multiples, and contiguity-aware TLBs will need additional entries to address

the original memory address range. To mitigate this problem, new address translation

designs [1, 13] can decouple permission checks from virtual-to-physical address trans-

lation, could be helpful, allowing the TLB to maintain the original contiguous region

entry but with additional permission subsections.

NUMA effects. Our initial study focuses on single-socket systems as a tractable

configuration to thoroughly understand Translation Ranger. However, Transla-

tion Ranger could be extended to NUMA systems. In fact, Translation Ranger’s

cross-socket traffic overheads can likely be tamed by previously-proposed NUMA paging

policies, like autoNUMA, Carrefour-LP, and Ingens [34,50,81].

4.7 Related Work

There exists a wealth of work on memory allocation to increase contiguity and reduce

memory fragmentation [25,70,104]. Table 4.3 summarizes these contiguity-based tech-

niques and discusses the requirements they impose on system software, as well the

hardware support they require and their ability to cover memory capacity.

Memory allocation. Internal and external memory fragmentations are two major

problems for memory allocations. To mitigate internal memory fragmentation, SLAB

allocator and others (e.g., jemelloc and tcmellaoc) pack small memory objects with the

same size together in one or more pages to avoid wasting space internally [25, 43, 51].

For external memory fragmentation, OSes use buddy allocators to achieve fast memory

allocation and restrict external fragmentation [80]. Linux developers also have other

heuristics to further reduce external fragmentation [54]. Additionally, peripheral de-

vices often require access to physically contiguous memory. Linux accommodates these
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Techniques Software Requirements
Hardware

Requirements
Coverage Limits

Buddy Allo-
cator

Reser-
vation

Page Table

hugetlbfs
Separate
pools

Required No change
2MB & 1GB page
size TLB

2MB and 1GB

THP &
khugepaged

2MB pages None No change
2MB page size
TLB

2MB

COLT [125]
Contiguous
pages

None No change Coalesced TLB Up to 8× 4KB

Dir Seg-
ments [13]

Not related Required
Segment ta-
ble

Direct Segment
registers

Any size

Redundant
Mem Map-
pings [76]

Increase max
order, eager
paging

None Range table Range TLB
Any size in HW, but lim-
ited by SW

Hybrid
TLB [121]

Contiguous
pages

None
Anchor page
table

Hybrid TLB N× 4KB or 2MB

Devirtualized
VM [59]

Increase max
order, eager
paging

None
A new page
table entry

Access validation
cache

4KB, 2MB, or 1GB in
HW, but limited by
SW

Table 4.3: Techniques used/proposed by industrial or academic research groups for high
performance address translation.

devices with drivers that use boot-time allocation and reserve contiguous memory before

others can request memory via Contiguous Memory Allocators (CMAs) [35]. CMAs use

memory compaction to migrate fragmented pages and offer large contiguous physical

memory for devices use, especially for DMA data transfer [104]. These approaches try

to preserve contiguity for future use, but cannot prevent large free memory blocks from

being broken into small ones when memory requests are small in sizes.

Huge pages. Significant prior work has gone into improving the performance of huge

pages. For example, huge page has only one access bit, causing memory access imbal-

ance implementation problems in NUMA systems [50]. Several proposals try to manage

huge page wisely by restricting huge page creation and splitting huge pages when they

cause utilization imbalance issues [50,81]. These utilization issues could also happen on

contiguous regions created by Translation Ranger, thus integrating these policies

with Translation Ranger could further improve application performance in NUMA

systems.

In heterogeneous memory systems, classifying hot and cold pages to determine how
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to move them between fast/slow memories is important. Previous work by Thermostat

analyzes huge page utilization by sampling sub-pages in each huge page and migrates

these cold sub-pages to slow memory to make efficient use of fast memory [4]. Thermo-

stat could provide useful utilization information to Translation Ranger to assess

page hotness in identifying which VMAs are particularly worth defragmenting.

The high cost of huge page allocation has been a long standing problem for Linux

and can lead to application performance degradation [42, 99]. Recent work studies

methods in which Linux can prevent free page fragmentation and eliminate most huge

page allocation costs by aggregating kernel page allocations [118]. With the help of this

work, Translation Ranger could also improve in-use page fragmentation and free

page fragmentation, thereby generating even larger contiguous regions.

4.8 Conclusions

Translation Ranger is a low overhead and effective technique of coalescing scattered

physical frames and generating translation contiguity. The enormous contiguous regions

created by Translation Ranger can be used by emerging contiguity-aware TLBs to

dramatically minimize address translation overhead for all computation units in het-

erogeneous systems, especially accelerators, which have limited hardware resources for

address translation. Translation Ranger can scale easily with increasing memory

sizes regardless of the limitations imposed by memory allocators. With less than 2%

runtime overhead, Translation Ranger generates contiguous regions covering more

than 90% of 120GB application footprints with at most 128 regions, which can be fully

cached by contiguity-aware TLBs to minimize high address translation overhead. To

address ever-increasing memory sizes, contiguity-aware TLBs provide promising hard-

ware support and Translation Ranger is the software cornerstone needed to support

contiguity-aware TLBs.
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Chapter 5

Conclusions

Virtual memory, as powerful hardware abstraction, has existed for decades and keeps

evolving. With the emergence of heterogeneous memory systems, virtual memory needs

an upgrade for the new challenges posed by the systems. This dissertation has addressed

one of the most critical challenges, how to upgrade virtual memory support for hetero-

geneous memory management. The thesis of this dissertation is that page migration is

an essential operation for heterogeneous memory management, hence accelerating page

migration and making the intelligent use of it is the key to attain high performance

in heterogeneous memory systems. To support the thesis, several contributions that

reduce the overheads of virtual memory brought by the introduction of heterogeneous

memory systems are made in this dissertation, i.e. eliminating the address translation

coherence overheads from frequent page migration, accelerating operating system page

migration process for high throughput data movement, and utilizing fast page migration

to coalesce memory for scalable address translation coverage.

Although this dissertation focuses on two different parts, address translation coher-

ence and page copy process, of page migration and the intelligent use of it, memory

coalescing to increase address translation coverage individually, the optimizations on

both parts of page migration can be easily combined to achieve even higher performance

in page migration, while the memory coalescing is also able to lower the virtual memory

overhead during page migration in turn. A good fusion of all three techniques proposed

by this dissertation is the key to managing heterogeneous memories. It requires careful

tunings of these three techniques depending on the cache coherence protocol used in the

system, the availability and capability of data copy hardware, like a DMA data copy

engine or a process with high-throughput data movement instructions, and the ways
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that the system TLBs are utilizing address translation contiguity. Different methods

of maintaining cache coherence impacts address translation coherence when hardware

translation coherence is used, which is also influenced by the means of translation struc-

tures, like TLBs, compressing translation information, because the scope of translation

coherence is widened by condensed translation information. In a system with DMA

data copy engines, the data copy process in page migration no longer consumes CPU

resource, which changes page migration policies in a way that they do not need to con-

sider the CPU resource competition between page migration and applications. These

are the tradeoffs, which give significant performance impacts in heterogeneous memory

systems.

Although this dissertation targets heterogeneous memory systems, all techniques

proposed may apply to conventional homogeneous memory systems, like NUMA sys-

tems. For example, memory fragmentation has been a long-standing problem for virtual

memory, which can be alleviated by the memory coalescing technique from Chapter 4.

Using page migration to decrease memory fragmentation is not uncommon, Linux has

used page migration to compact memory for less fragmentation [33].

In summary, the research from this dissertation shows that high-performance het-

erogeneous memory systems can be attained as virtual memory keeps adapting to the

new system demands via fast page migration and the intelligent use of it.
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