
APPLIED PROCESS MINING, RECOMMENDATION, AND VISUAL

ANALYTICS

by

SEN YANG

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Ivan Marsic

And approved by

New Brunswick, New Jersey

JANUARY, 2019

© 2019

SEN YANG

ALL RIGHTS RESERVED

 ii

ABSTRACT OF THE DISSERTATION

APPLIED PROCESS MINING, RECOMMENDATION AND VISUAL

ANALYTICS

by Sen Yang

Dissertation Director: Dr. Ivan Marsic

Process mining techniques attempt to extract non-trivial knowledge and insights from

activity logs and use them for further analyses. The traditional process mining focuses on

addressing three different problems: workflow discovery, conformance checking and

model enhancement. Although many theoretical studies have been done in the process

mining domain, studies that applying process mining on solving real-world problems are

limited. This dissertation explores how process mining can be used in real-world process

analysis to reveal process insights and help human decision making. Novel algorithms and

frameworks were proposed to better model and address the real-world problems. In

addition, we introduced the recommender system into the process mining domain to help

build a data-driven decision support system. Specifically, this dissertation includes three

main contributions: (1) application of process mining techniques in real-world medical

process analysis; (2) two different process recommender systems; and (3) a process visual

analytic tool.

First, we applied process mining techniques to real-world medical process analysis. To

enhance the existing workflow discovery algorithm, we developed a splitting-based

workflow discovery method. Our method is able to tackle the duplicate-activity problem

by allowing the activity nodes in the model to further split. By comparing our discovered

model to hand-made expert workflow model of the same process, we were able to find the

discrepancies between work-as-done and work-as-imaged. To further quantify and analyze

the discrepancies between work-as-done and work-as-imaged, we invented a framework

for automatic process deviation detection. Our framework first compares the observed

 iii

process traces with knowledge-driven workflow models using a phase-based conformance

checking algorithm. The discrepancies (process deviations) were analyzed and false alarms

were identified. The false alarms were categorized into three types of causes: (1) model

gaps or discrepancies between the model (“work as imagined”) and actual practice (“work

as done”), (2) errors in activity trace coding, and (3) algorithm limitations. The deviation

detection system was then repaired according to the false alarms. With our framework, the

deviation detection accuracy was improved from 66.6% to 98.5%. The output system was

then applied on unseen datasets to automatically detect the deviations. We applied our

framework to two different medical processes and discovered meaningful medical

findings. In addition, to analyze the differences between the medical treatment procedures

of different patients, we introduced a framework for analyzing the association between

treatment procedures and patient cohorts. The framework works by learning weights of

context attributes by best-first search, deciding patient cohorts using clustering algorithms,

discovering treatment procedures (or patterns) with process mining techniques, and

analyzing the cohort-vs.-procedure through statistical analysis.

Second, existing recommender systems have not been developed based on process

mining. Our work presents such a bridge. We designed a data-driven process analysis and

recommender system that can provide contemporaneous recommendations of process steps

and help with retrospective analyses of the process. We first designed a prototype-based

recommender system. This approach relies on mining historic data to uncover the potential

association between the way of enacting a process and contextual attributes. If association

tests are significant, we train a recommender system to output a prototypical enactment for

the given context attributes. The system recommends all steps at once. Although it may not

be feasible for the performers to study and follow a long list of steps, this recommendation

can be used at runtime to automatically verify the process compliance and detect omitted

steps and other process errors. Later, we proposed another recommender system that is able

to provide step-by-step recommendations. The system was built on recurrent neural

networks. The networks took both environmental and behavioral contextual information as

input and output next-step suggestions.

Last, we implemented our methods into a visual analytic tool. The tool was named as

VIT-PLA, which is short for Visual Interactive Tool for Process Log Analysis. In this tool,

 iv

we proposed a prototype-based process data visualization strategy. The strategy works by

first clustering process data into clusters and then discovering the prototypical procedure

from each cluster. Only such cluster prototypes were visualized and presented to the users.

Our strategy can greatly reduce the data amount to visualize but preserve the characteristics

of each cluster. Statistical analyses were followed and visualized to help analysts better

understand their process data.

 v

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Ivan

Marsic, for his guidance and support in the past four years. He brought me to this amazing

project and was dedicated to educating and directing me throughout my Ph.D. journey. His

great encouragements, inspirations, advice and feedback lead me to a thorough

understanding of my research. I also enjoyed the freedom he gave me and benefited from

the independent research opportunities. I feel very fortunate to work with him.

Next, I would like to express my gratitude to Prof. Xiong Hui from Rutgers Business

School. Since my research focuses on applied data mining and analytics, there are not many

people with a similar background in our department. Ever since I took Prof. Xiong’s data

mining class, he has been a helpful tutor and friend. In addition, I would like to thank Dr.

Randall S. Burd from Children’s National Medical Center. Dr. Burd is very important to

my Ph.D. study. His medical domain knowledge is valuable to me and to my papers. And,

with the second major in math, he gave me countless guidance on statistics in my data

analytics. He is an outstanding mentor that inspires me all the time. I am also grateful to

Prof. Sarcevic Aleksandra from Drexel University, who I worked together in the past four

years and helped me in the paper writing. I would also like to thank all the medical experts

that I have collaborated with, Dr. Rachel Webman, JaeWon Yang, Richard A. Farneth, Dr.

Omar Z. Ahmed, and Megan Cheng. They are insightful and knowledgeable. Without their

help, I could not achieve this.

I would like to thank Prof. Anand D. Sarwate, Prof. Shantenu Jha, Prof. Desheng Zhang

and Prof. Yingying Chen, for their time to serve on my committee and provide me with

suggestions on improving the dissertation.

In addition, during my graduate school journal at Rutgers, I received tremendous help

from my lab colleagues and friends. I would like to thank my lab colleagues, Xinyu Li,

Yue Gu, Moliang Zhou, Shuhong Chen, Xin Dong, Jingyuan Li, Weiqing Ni, Haiyue Ma,

and Fei Tao. I would also like to thank all friends who have accompanies me along the

journey.

Finally, my special appreciation is dedicated to my family. Their love is the compass

that guides me to greater heights.

 vi

Table of Contents

ABSTRACT OF THE DISSERTATION ·· ii

ACKNOWLEDGEMENTS ·· v

TABLE OF CONTENTS ··· vi

PART I INTRODUCTION ··· 1

CHAPTER 1 INTRODUCTION ··· 2

1.1 Introduction and Motivation ·· 2

1.2 Dissertation Outline ·· 4

CHAPTER 2 PRELIMINARIES ·· 5

2.1 Related Medical Processes ··· 5
2.1.1 Trauma Resuscitation Process ··· 5
2.1.2 Tracheal Intubation Process ·· 7

2.2 Process Mining and Related Techniques ·· 8

PART II APPLIED PROCESS MINING AND ANALYSIS ··· 10

CHAPTER 3 MEDICAL WORKFLOW MODELING USING ALIGNMENT-GUIDED STATE-SPLITTING HMM ···························· 11

3.1 Introduction ·· 11

3.2 Related Work ·· 15

3.3 Alignment Guided State-splitting HMM ··· 16
3.3.1 Definitions and Data Formalization ··· 16
3.3.2 Alignment Guided State-splitting HMM ·· 18

3.4 Experiments ·· 24
3.4.1 Real World Medical Process Datasets ··· 25
3.4.2 Measuring Quality of Induced HMM ··· 25
3.4.3 Computational Complexity Comparison ·· 28

3.5 Case Study: Trauma Workflow Mining ··· 30

CHAPTER 4 AN APPROACH TO AUTOMATIC PROCESS DEVIATION DETECTION IN A TIME-CRITICAL CLINICAL PROCESS ········ 35

4.1 Introduction ·· 36

4.2 Related Work ·· 38

4.3 Terms and Definitions ··· 40

4.4 Deviation Detection Approach and System Description ··· 42
4.4.1 Knowledge-Driven Model of the Trauma Resuscitation Workflow ··· 43
4.4.2 Trauma Resuscitation Activity Traces ·· 45

 vii

4.4.3 Conformance Checking Algorithm ··· 48
4.4.4 Workflow Model Probing, Repair and Evaluation ··· 50

4.5 Results: Deviation Detection and Analysis of Deviations·· 52
4.5.1 Deviation Detection and Analysis Before System Repair ·· 52
4.5.2 Deviation Detection After System Repair: Validation and Testing ·· 57
4.5.3 Analysis of Process Deviations Detected with the Repaired System ··· 57

CHAPTER 5 PROCESS MINING THE TRAUMA RESUSCITATION PATIENT COHORTS ·· 64

5.1 Introduction ·· 64

5.2 Patient Cohort Discovery and Analysis ··· 66
5.2.1 Data Description and Formalization ·· 66
5.2.2 Attribute Weight Learning ··· 67
5.2.3 Patient Cohorts Discovery ··· 70
5.2.4 Workflow Discovery and Sequential Pattern Mining ··· 71
5.2.5 Statistical Analytics ·· 72

5.3 Experiments ·· 73
5.3.1 Attribute Weights ·· 73
5.3.2 Patient Cohorts ·· 73
5.3.3 Resuscitation Workflow and Patterns ··· 75

PART III PROCESS RECOMMENDER SYSTEM ··· 78

CHAPTER 6 A DATA-DRIVEN PROCESS RECOMMENDER FRAMEWORK ·· 79

6.1 Introduction ·· 79

6.2 Related Work ·· 81

6.3 Process Recommender Framework ·· 82
6.3.1 Terms and Definitions ··· 83
6.3.2 Trace Similarity based on Time Warping ··· 84
6.3.3 Clustering Process Traces ·· 88
6.3.4 Determining the Cluster Prototype ··· 90
6.3.5 The Recommender Model ··· 93

6.4 Experiments ·· 95
6.4.1 Real World Medical Process Datasets ··· 95
6.4.2 Similarity Measure Evaluation ··· 95
6.4.3 Prototype Analysis ··· 97
6.4.4 Recommendation System Evaluation ·· 99
6.4.5 A Case Study with Intubation Process ··· 101

CHAPTER 7 A CONTEXT-AWARE DEEP LEARNING FRAMEWORK FOR NEXT MEDICAL TREATMENT ACTIVITY

RECOMMENDATION ··· 104

7.1 Introduction ·· 104

 viii

7.2 Treatment Recommendation with Deep Learning ··· 107
7.2.1 Data Description and Notations ·· 107
7.2.2 Context-aware Deep Treatment Recommendation Framework ··· 108
7.2.3 Data Augmentation and Model Pre-training ··· 114

7.3 Experiments ·· 116
7.3.1 Real-world Data and Synthetic Pre-training Data ·· 116
7.3.2 Experimental Setup ··· 118
7.3.3 Comprehensive Comparison ··· 119
7.3.4 Visual Analytics for Knowledge Discovery ··· 122

PART IV IMPLEMENTATION AND CONCLUSION ·· 125

CHAPTER 8 VIT-PLA: VISUAL INTERACTIVE TOOL FOR PROCESS LOG ANALYSIS ··· 126

8.1 Motivation ·· 128

8.2 Methods ··· 129
8.2.1 Data Preprocessing: Sequencing of Traces ·· 129
8.2.2 Summary Visualization of Process Logs ··· 130
8.2.3 Association between Trace Clusters and Trace Attributes ··· 132

8.3 Visual Interface Design ··· 134
8.3.1 G1: Three Common Ways to Visualize Raw Process Traces ·· 134
8.3.2 G2: Simplified Visualization of Process Traces ·· 136
8.3.3 G3: Visualization of Statistics of Trace Clusters vs. Trace Attributes. ·· 137
8.3.4 Additional supportive functions ·· 138

8.4 Case Studies ·· 139
8.4.1 Case Study I: Artificial Data ··· 139
8.4.2 Case Study II: Trauma Resuscitation Workflow Data··· 140

CHAPTER 9 CONCLUSIONS ··· 144

REFERENCES ··· 146

1

Part I

Introduction

Part I: Introduction

Chapter 1
Introduction

Chapter 2
Preliminaries

Part II: Applied Process Mining and Analysis

Chapter 3
Workflow Model
Discovery

Chapter 4
Workflow Deviation
Analysis

Part III: Process Recommender System

Chapter 6
Trace-level
Recommendation

Chapter 7
Activity-level
Recommendation

Part IV: Implementation and Conclusion

Chapter 8
VIT-PLA

Chapter 9
Conclusions

Chapter 5
Patient Cohorts
Analysis

2

Chapter 1

Introduction

1.1 Introduction and Motivation

Process mining is a relatively new research field that sits between data mining and business

process management. In process mining, specialized data mining algorithms are applied to

activity or event logs to identify the insights and knowledge. Existing studies in the process

mining have several gaps. This dissertation attempts to uncover these gaps and provides

solutions. First, although many research and techniques have been conducted or developed

in process mining filed in recent years, we found many limitations and challenges when

applying the process mining techniques to real-world processes. The limitations mainly

come from methods’ accuracy, computational complexity, interpretation ability,

robustness and generality. Hence we proposed our own solutions to address these

limitations and evaluated them on real-world process datasets. Second, traditional process

mining studies focus on process diagnosis, i.e., descriptive analysis. We extend the current

process mining research to operational support level. We brought the predictive model and

recommender systems into the process mining domain and contributed two different

process recommender systems. Third, existing tools for process data visualization and

analysis are limited. We developed a visual analytic tool for process data, providing several

different visualization strategies and statistical analyses. Here is the detailed introduction

of these three studies.

1) Applied Process Mining and Analysis

We developed novel process mining methods and applied them to real-world medical

process analysis. First, to enhance the existing workflow discovery algorithm, we

developed a splitting-based workflow discovery method. Our method is able to tackle the

duplicate-activity problem by allowing the activity nodes in the model to further split.

Second, to quantify and analyze the discrepancies between work-as-done and work-as-

imaged, we invented a framework for automatic process deviation detection. This

3

framework provides a method for identifying repeated, omitted and out-of-sequence

activities that can be included in the design of decision support systems for complex

medical processes. Third, to analyze the differences between the medical treatment

procedures of different patients, we introduced a framework for analyzing the association

between treatment procedures and patient cohorts. The framework works by learning

weights of context attributes by best-first search, deciding patient cohorts using clustering

algorithms, discovering treatment procedures (or patterns) with process mining techniques,

and analyzing the cohort-vs.-procedure through statistical analysis.

2) Process Recommender System

Existing recommender systems have not been developed based on process mining. Our

work presents such a bridge. We designed a data-driven process analysis and recommender

system that can provide contemporaneous recommendations of process steps and help with

retrospective analyses of the process. We first designed a prototype-based recommender

system. This approach relies on mining historic data to uncover the potential association

between the way of enacting a process and contextual attributes. If association tests are

significant, we train a recommender system to output a prototypical enactment for the given

context attributes. The system recommends all steps at once. Although it may not be

feasible for the performers to study and follow a long list of steps, this recommendation

can be used at runtime to automatically verify the process compliance and detect omitted

steps and other process errors. Later, we proposed another recommender system that is able

to provide step-by-step recommendations. The system was built on recurrent neural

networks. The networks took both environmental and behavioral contextual information as

input and output next-step suggestions.

3) Visual Analytic Tool for Process Data Analysis

We implemented our methods into a visual analytic tool. The tool was named as VIT-

PLA, which is short for Visual Interactive Tool for Process Log Analysis. In this tool, we

proposed a prototype-based process data visualization strategy. The strategy works by first

clustering process data into clusters and then discovering the prototypical procedure from

each cluster. Only such cluster prototypes were visualized and presented to the users. Our

strategy can greatly reduce the data amount to visualize but preserve the characteristics of

4

each cluster. Statistical analyses were followed and visualized to help analysts better

understand their process data.

The presented approaches, frameworks and tools were evaluated with several real-world

datasets. As we have a partnership with Children’s National Medical Center, we were able

to continuously access valuable domain knowledge and feedback on our methods. This

research is supported by a 4-year NIH project, i.e., Smart Trauma Resuscitation Decision

Support System. Existing studies have shown that critically-injured patients have up to a

four-fold higher risk of death from errors than general hospital patients [12], with nearly

half of these preventable deaths related to errors that occur during the initial resuscitation

phase of treatment [13][14]. Although a standardized trauma resuscitation protocol has

been shown to improve the care of injured patients, human errors are still commonly

observed and can contribute to adverse outcomes. Hence we built a decision support system

using process mining and data mining techniques for monitoring medical team (trauma

resuscitation team) behaviors, extracting data-oriented insights, and providing real-time

alerts or recommendations. With this system, we aimed to reduce medical team errors and

improve patient outcomes.

1.2 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2 of Part I, we introduce the

background knowledge, two real-world medical processes and process mining techniques.

In Part II, we applied and evaluated our process mining methods and frameworks on real-

world processes. Specifically, in Chapter 3, we propose a novel workflow mining

algorithm. In Chapter 4, we describe our framework to identify the process deviations. In

Chapter 5, we bridge the gap between patient cohort analysis and process mining analysis.

In Part III, we propose two different recommender frameworks, the prototype-based

framework (Chapter 6) and the recurrent neural network based framework (Chapter 7). In

the last Part (IV), we show the implementations of our visual analytic tool, VIT-PLA.

5

Chapter 2

Preliminaries

In this chapter, we give preliminary knowledge that highly relevant to this dissertation.

First, we provide a description of the two medical processes, trauma resuscitation and

intubation, that frequently used in our study. Then we introduce the process mining and

related techniques.

2.1 Related Medical Processes

Two real-world medical process datasets were used throughout my Ph.D. project funded

by NIH. Both of the two datasets were collected in Children’s National Medical Center

(CNMC), a level 1 trauma center in Washington D.C. Since these two datasets were used

heavily in this dissertation, we would like to provide in this section the data descriptions,

data exploration results and data characteristics analysis.

2.1.1 Trauma Resuscitation Process

Trauma resuscitation [15][16] is the process that the trauma team works together to assess

and treat the patients who are severely injured (Figure 2.1). The trauma team includes

bedside physicians, bedside nurses (left nurse, right nurse and charge nurse), and other

team roles (e.g., surgical coordinator, respiratory therapist). A junior reside or nurse

practitioner usually takes the role of bedside physician, depending on provider availability.

The entire trauma resuscitation process mainly includes two medical phases, primary

survey and secondary survey. The primary survey consists airway (assessing airway

patency), breathing (assessing breath sounds and adequate oxygenation), circulation

(assessing extremity pulse and managing blood loss), disability (assessing neurological

status), and exposure (removing all clothes and managing hypothermia). The secondary

survey consists of a multi-step, head-to-toe physical examination of the patient’s body.

6

We started collecting the trauma resuscitation process data from August 2014. We

performed selective sampling by including only the cases with patients who were admitted

to the hospital following the resuscitation when errors and error management were more

likely to have an impact on patient outcome. The process data was coded using

retrospective video review of the sampled trauma resuscitations. The videos were recorded

using the surveillance cameras installed in the trauma bays. The use of video recordings

has been approved for use for research purposes by the Institutional Review Board at

Children’s National Medical Center. The videos were manually reviewed in Studiocode1

(a video analysis tool) to identify the set of activities performed during the resuscitation,

start and end times for each activity, the role performing the activity. Our studies (Chapter

1 https://vosaic.com/support/category/studiocode

Figure 2.1 The trauma team in the trauma bay. Source of this figure (Fig. 1. in our paper

“Teamwork errors in trauma resuscitation” [17]).

Nurse re
Scribe; re
d t

Attending physician
(ATP)

EMS par
Briefs the
the scrib
trauma in

 O2)

 te

performs intubation

Critical care technician
(CCT) O d l bt i &

Doer phy
(Junior res
Performs
by team le

Trauma f

Refrigera
medicatio

 der
 ly

 ata

 PNR)
 side

 sists
 es;

 tient

Orthopedic
id t (ORT)

7

3 – Chapter 8) were conducted at different times of the data collection. Hence I report in

my dissertation the trauma resuscitation datasets of different size. The details of the

datasets used are described in each work below accordingly.

2.1.2 Tracheal Intubation Process

Endotracheal intubation is a procedure by which an endotracheal tube is inserted through

the mouth down into the patient trachea (Figure 2.2). This is done because the patient

cannot maintain their airway, cannot breathe on their own without assistance, or both. This

may be because they are given anesthesia or they may be severely injured.

We collected our intubation dataset between February 2014 and February 2016. We

included all patients less than 21 years old undergoing RSI in the emergency department

resuscitation rooms. Although the intubation process may occur as part of the trauma

resuscitation process, our intubation dataset excluded trauma patients because the trauma

team in CNMC is a different hospital-based team with intubations managed by

anesthesiology.

Figure 2.2 Diagram of an endotracheal tube that has been inserted into the patient’s trachea.

Source of this figure (https://en.wikipedia.org/wiki/Tracheal_intubation).

8

2.2 Process Mining and Related Techniques

Process mining [18], an interdisciplinary research field between data mining and business

process management, aims to discover, monitor and improve real-world processes by

extracting knowledge from activity (event) logs. An “activity log” is a collection of process

cases, which contains a trace of “activities”. An activity is a well-defined action or step in

the process. It is usually denoted with the activity type, start time and end time. In this

dissertation, we prefer the term “activity” to “event” because intuitively “event” only

emphasizes the “occurrence” and it does not have a duration. On the other hand, “activity”

not only emphasizes the occurrence of an action but also indicates it may last for a period

of time.

The process mining techniques attempt to tackle three problems, process discovery,

process conformance checking and process enhancement (Figure 2.3). Process discovery

techniques take activity or event logs as inputs and produce workflow models without using

any prior information. Process conformance checking algorithm compares workflow

models with activity or event logs to measure the level of compliance and identify process

deviations. Process enhancement aims to improve the a-priori workflow models with

observed activity or event logs.

Process discover (a.k.a. workflow discovery) is the most essential process mining task.

Based on the activity (or event) log, a process model is constructed to capture the behavior

observed in the log. The problem of automated process discovery has been intensively

researched in recent years. Despite a rich set of proposals [19], the process discovery

methods suffer from two major deficiencies when applied to real-world processes [20]: (1)

they produce complex and spaghetti-like models; and (2) they produce models that either

poorly fit the event log or over-generalize it. In addition, since process mining has half of

its DNAs from business process management. Business process modeling languages (i.e.,

graphical representations for specifying business processes in a business process model,

such as Petri nets [21], Declarative models [22], Business Process Model and Notation

(BPMN) [23]) were used for workflow representation. Such notations can be confusing

and uncomfortable for people outside this domain. Hence, in the computer science domain,

we can simply interpret the process models as “(probabilistic) graphical models”.

9

Conformance checking [24] is another essential process mining task that aims to analyze

whether reality, as recorded in an activity log, conforms to the given workflow model and

vice versa. The goal is to detect the discrepancies and quantify such discrepancies. The

measure used to quantify the degree of discrepancies (or compliance) between the activity

log and model is called fitness score, ranging from 0 (fully non-compliant) to 1 (fully

compliant). The fitness score (Eq. 2.1) is defined as one minus the ratio between the number

of deviations 𝑁𝑁𝑑𝑑 from the expert model and the number of tasks 𝑁𝑁𝑡𝑡 in a process trace.

fitness = 1 −
𝑁𝑁𝑑𝑑
𝑁𝑁𝑡𝑡

 (2.1)

Model enhancement [25] aims to extend and improve a process model using information

extracted from the activity log. The model enhancement is actually duplicate with

conformance checking. Because discrepancies between the activity logs and the

corresponding process model can be discovered after conformance checking. The model

can then be repaired with the discovered discrepancies.

Figure 2.3 Three major tasks in process mining: (a) process model discovery, (b) process

conformance checking, and (c) process model enhancement.

Process Discovery

Conformance
Checking

Enhancement

(a)

(b)

(c)

Activity Log

Activity Log

Process Model

Activity Log

Process Model

Data-driven
Process Model

Discrepancies

Repaired Model

10

Part II

Applied Process Mining and Analysis

Part I: Introduction

Chapter 1
Introduction

Chapter 2
Preliminaries

Part II: Applied Process Mining and Analysis

Chapter 3
Workflow Model
Discovery

Chapter 4
Workflow Deviation
Analysis

Part III: Process Recommender System

Chapter 6
Trace-level
Recommendation

Chapter 7
Activity-level
Recommendation

Part IV: Implementation and Conclusion

Chapter 8
VIT-PLA

Chapter 9
Conclusions

Chapter 5
Patient Cohorts
Analysis

11

Chapter 3

Medical Workflow Modeling Using Alignment-Guided

State-Splitting HMM

This chapter on Medical Workflow Modeling with Alignment-Guided State-Splitting

HMM is based on our paper [4][5]. Process mining techniques have been used to discover

and analyze workflows in various fields, ranging from business management [18] to

healthcare [51]. Much of this research, however, has overlooked the potential of hidden

Markov models (HMMs) for workflow discovery. We present a novel alignment-guided

state-splitting HMM inference algorithm (AGSS) for discovering workflow models based

on observed traces of process executions. We compared the AGSS to existing methods

(ML-SSS [34], MDL [36], heuristic approach [28], and STACT [37]) using four real-world

medical workflow datasets and a more detailed case study on one of them. Our numerical

results show that AGSS not only generates more accurate workflow models, but also better

represents the underlying process. In addition, with trace alignment to guide state splitting,

AGSS is significantly more efficient (by a factor of O(n)) than previous HMM inference

algorithms. Our case study results show that our approach produces a more readable and

accurate workflow model that existing algorithms. Comparing the discovered model to the

hand-made expert model of the same process, we found three discrepancies. The

discrepancies were recognized as mismatches between “work as done” (actual practice

described in the discovered model) and “work as imagined” (hand-made expert model).

These three discrepancies were reconsidered by medical experts and used for enhancing

the expert model.

3.1 Introduction

The application of workflow discovery and analysis in the medical field has the potential

to improve patient outcomes. In the past, medical experts carefully designed medical

workflow models, but actual practice often deviates from a perceived ideal process [26].

12

Models discovered from real process data provide information about the actual executions,

and are critical for understanding process errors, e.g., omitted and duplicate activities. In

addition, many clinical workflows do not have a predetermined workflow model. Process

model extraction is then essential for discovering workflows more representative of their

actual executions. We present a novel hidden Markov model (HMM) inference algorithm

derived from existing work [27][28] to efficiently discover representative workflow

models from medical processes.

Existing workflow discovery algorithms cannot provide the optimal workflow models.

These methods assume that duplicate activities in a process trace are equivalent. Based on

our analysis of trauma resuscitation workflow and previous work, each occurrence of an

activity may have different underlying “intentions”. For instance, over the course of a

single trauma resuscitation, the trauma team may check the patient’s eyes at two different

points in time for different reasons. During the primary survey they assess the patient’s

pupillary response for neurological disability. During the secondary survey the team may

examine the eyes in more detail, looking for injuries to the cornea, sclera and eyelids. To

discover an accurate workflow model, an algorithm should be able to distinguish the first

eye check from the second one, despite their identical labels. To our knowledge, no existing

workflow mining algorithm can properly model such duplicate activities. Recent work has

presented a strategy to refine duplicate activity labels, but only during preprocessing [29].

We address this problem by modeling duplicate activities as different hidden states in an

HMM.

While HMMs are well-studied in speech, handwriting, and bioinformatics, they have

been overlooked in process mining for several reasons. First, HMM inference is

computationally demanding due to the iterative maximization procedures (i.e., Baum-

Welch (BW) algorithm). Second, classical BW HMM inference depends heavily on

subjective and labor-intensive parameter initialization (i.e. finding the number of hidden

states, observation vectors, transition matrices). Finally, the resulting HMM may be too

complex for knowledge acquisition purposes; the interpretation of hidden states can be

challenging even for simple processes.

We also studied the balance between model accuracy and generality. If a workflow

discovery algorithm only pursues model accuracy, it may overfit the observed process data,

13

making the model too specific. If the algorithm does not represent specific features of the

process, the model may underfit the observed data. In both cases, the derived models are

biased from the ground-truth process that generates the observed data. Consider a simple

process log with five observed traces where letters represent activities performed in the

shown order: O = {ABCDEBA, ABBDEBA, ABDEBA, ABDEA, ABCDDEA}. Three

different representative workflow models may be discovered based on O (Figure 3.1). The

most specific workflow model (a), a very general workflow model (b), and the ground-

truth workflow model that was used to generate the example traces (c). Although model

(a) describes the observed process traces very accurately, it lacks generality to represent

unseen traces generated by the same process. Model (b) would be discovered by existing

process mining algorithms [18]. It represents each activity by a single workflow node and

overlooks potentially different “intentions” of the repeated activities. Our empirical study

Figure 3.1 (a) The most specific workflow model of process log O; (b) a typical workflow

model discovered based on existing Markov chain modeling methods (probabilities not

shown); (c) the possible underlying workflow model that generated O.

(c)

Start
C D E

End
A1 A2B2

B1

(b)

A

BStart

C D E

End

Start

(a)

A DB B AE

A CB D E B A

A BB D E B A

A B D E A

A CB D D E A

End

14

based on medical knowledge shows the activities of the same name but occurring at

different locations (i.e., sequential order in the execution) are usually performed due to

different intentions. This model (b) allows the existence of sequences that are improbable

in the underlying model (c). For example, activity A may go directly to “End”, or ABCDE

may loop many times. On the other hand, the underlying model (c) used to generate the

traces has repeated activities A (A1, A2) and B (B1, B2). A2 and B2 occur at the end of

process executions, rather than in the loop shown in model (b). We present an algorithm

that uncovers workflows like (c) from a process log.

Our AGSS algorithm uses trace alignment—a data-driven algorithm—to guide HMM

model inference. Trace alignment can discover the consensus sequence, or the backbone

procedure of the observed process traces [30]. The trace alignment algorithm alone,

however, is not sufficient for model mining because it only models sequential relationships

between activities, and cannot handle parallelism. This limitation is not an issue for HMMs,

a graphical model that can easily represent branches. Instead, HMMs face problems with

model parameter initialization and computational complexity. Since trace alignment is able

to find the distribution of the activities, incorporating alignment into HMM inference can

help avoid subjective parameter initialization, boost inference speed, and produce better

HMMs. Our contributions in this study are:

• A novel alignment-guided state-splitting HMM inference algorithm (AGSS) for

real-world workflow discovery. Taking advantage of alignment, AGSS can

efficiently find which states to split and how many states to split. This way, the

complexity of the induced HMM is controlled by both the activity distribution in

the alignment matrix and the dataset size (number of observed process traces). We

compared AGSS to existing state-splitting-based HMM inference algorithms. The

performance was evaluated using data from four real-world medical processes, in

three different aspects: (1) How representative the induced model is of the observed

process traces. (2) How close the induced model is to the underlying model that

generated the observed process traces. (3) The computational complexity of HMM

inference.

• An HMM simplification algorithm that reduces the number of insignificant

transitions and extracts a fully connected backbone workflow model from a

15

spaghetti-like HMM model. The simplified model is more readable and allows for

easier knowledge extraction.

3.2 Related Work

Most HMM inference methods are used for supervised classification, with heuristic

initialization 𝜆𝜆0 = (𝜋𝜋0,𝐴𝐴0,𝐵𝐵0,𝑛𝑛,𝑚𝑚) . Given an approximate HMM topology, these

algorithms fine-tune the HMM with the Baum-Welch algorithm [31]. Without appropriate

initial parameter, the inferred HMM can be heavily biased from the ground truth. Other

HMM inference algorithms implement either state-merging or state-splitting to address the

initial parameter problem [27][32].

The state-merging approach was first proposed by Stolcke, et al. [32]. It begins the

inference with the most specific topology, containing one path for each observed trace (as

in Figure 3.1 (a)), and iteratively merges states to maximize the posteriori (MAP) [32]. The

state-merging approach however is computationally expensive [28][33] because of two

reasons. First, as initializing the HMM with all observed traces usually requires many

nodes, calculating observation probability 𝑃𝑃(𝑶𝑶|𝜆𝜆) can be expensive. Second, the merging

method suffers from a lack of search direction and may stop too early, achieving local

convergence far from the global optima.

The state-splitting approach, proposed by Takami and Sagayama [27], infers HMMs

from the opposite direction. It begins with a general HMM and successively splits states

until convergence. Compared to merging, the splitting approach is faster. Because the

initial model is small, it is generally much closer to the final desired model [28][34][35].

Given observations O, current state-splitting algorithms can be generalized into two steps.

Step 1: determine the best state to split in each iteration j:

𝜆𝜆𝑗𝑗 = arg max
𝜆𝜆𝑗𝑗−1
𝑠𝑠 ∈𝓜𝓜𝒋𝒋−𝟏𝟏

 Score(𝜆𝜆𝑗𝑗−1𝑠𝑠 ,𝑶𝑶) (3.1)

Step 2: determine when to stop splitting:

Score(𝜆𝜆𝑗𝑗,𝑶𝑶) ≤ Score(𝜆𝜆𝑗𝑗−1,𝑶𝑶) (3.2)

where 𝜆𝜆𝑗𝑗−1𝑠𝑠 is a candidate model for splitting state s at iteration j–1, 𝓜𝓜𝑗𝑗−1 includes all the

candidate models at iteration j–1, and the scoring function Score(λ, O) quantifies how well

16

the model λ fits the observations O, as well as the model penalty. In other words, greedy

splitting is done on all possible splits, and stops when further splitting does not increase

the score. Both steps are dependent on the scoring function. It is difficult to analyze greedy

splitting’s effect on the resulting model but the stopping mechanism clearly influences the

model’s accuracy and generality. Splitting too much will overfit, sacrificing

representativeness for accuracy. Splitting too little will underfit, leading to a model with

poor accuracy. Maximum likelihood successive state-splitting (ML-SSS) [34] terminates

splitting either when the likelihood P(O|λ) saturates, or when the model size reaches a

certain threshold. ML-SSS does not penalize model complexity, so it could theoretically

keep splitting down to the most specific model. Different complexity penalties have been

used in previous research. Mavromatis [36] used minimum description length (MDL).

Herbst [28] used a heuristic score function. Siddiqi et al. [37] used Bayesian information

criterion (BIC) for simultaneous temporal and contextual splitting (STACS). Despite the

variety of scoring metrics and algorithms, none of this research is about deriving workflow

models from complex workflow data. The previous works used state-splitting method to

infer the HMMs. But the final goal is to use the trained HMMs for their classification tasks.

My goal of using HMMs on workflow data is to derive descriptive models so that analysts

can extract knowledge from them. Although these previous works can also be used for the

same purpose, we are looking for an efficient algorithm that can produce more accurate

and more interpretable workflow models.

3.3 Alignment Guided State-splitting HMM

3.3.1 Definitions and Data Formalization

We first define the terms and notations used later:

Definition 1: A process log O is a set of process traces composed of activity executions.

A log with 𝑇𝑇 process traces is denoted 𝑶𝑶 = {𝑶𝑶1, … ,𝑶𝑶𝑗𝑗 , … ,𝑶𝑶𝑇𝑇} . A process trace 𝑶𝑶𝑗𝑗 is

represented by 𝑶𝑶𝑗𝑗 = {𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎1, … ,𝑎𝑎𝑖𝑖, … ,𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒}, where 𝑎𝑎𝑖𝑖 denotes the i-th activity in

the trace and ℓ denotes the trace length. “start” (𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and “end” (𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒) symbols are added

to mark the beginning and end of each trace.

17

Definition 2: Given a process log O, an alignment algorithm 𝒜𝒜(𝑶𝑶) forms an

alignment matrix with the traces in O as rows and activities of the same type as columns.

If for a given trace a matching activity cannot be found, a gap symbol “-” is inserted in the

corresponding column (Figure 3.2 (a)). Alignment 𝒜𝒜(𝑶𝑶) returns the consensus sequence

𝓒𝓒𝓒𝓒, which we use to guide the selection of splitting candidates 𝑺𝑺𝑺𝑺. When describing

alignment algorithm computational complexity, we use L to denote the average length of

alignment matrices in a pairwise alignment. Alignment has previously been used for

workflow and activity pattern analysis [1][30].

Definition 3: A consensus sequence 𝓒𝓒𝓒𝓒 is generated from the alignment matrix. It

contains the activities in alignment matrix columns. 𝓒𝓒𝓒𝓒 can be considered the “average”,

or “backbone” of the original traces. Due to variations in the execution of complex

processes, some alignment columns contain only a small number of non-gap elements. We

define “column frequency” as the fraction of non-gap elements (Figure 3.2 (a)), which

correspond to how frequently the activity in this column was performed across different

process executions. We apply a column frequency threshold ε to filter out columns with

rare activities. We use 𝓒𝓒𝓒𝓒′ to denote the consensus sequence after the filtering. Splitting

candidates 𝑺𝑺𝑺𝑺 are taken from 𝓒𝓒𝓒𝓒′. Note that we use a “relaxed” consensus sequence that

considers the surrounding columns within a time window when calculating the frequency

of a specific column. This is because parallel activities in the workflow may result in

different alignment orderings across nearby columns, but should still be considered the

same “intention”.

Definition 4: An HMM 𝜆𝜆 is a statistical model for modeling temporal sequences with

unobserved or hidden states. An HMM is denoted by a quintuplet 𝜆𝜆 = (𝑨𝑨,𝑩𝑩,𝝅𝝅,𝑛𝑛,𝑚𝑚) ,

where matrix A records the state transition probabilities, where A(i, j) represents the

transition probability between state i and state j; B records the observation probability

distribution in each state; 𝝅𝝅 is a vector consisting initial state distribution; n is the number

of hidden states and m is the number of distinct observation symbols per state. The

observation probability 𝑃𝑃(𝑶𝑶|𝜆𝜆) is the probability that the HMM λ will emit the set of

observed traces 𝑶𝑶. Log-likelihood (a.k.a. log-likelihood) log𝑃𝑃(𝑶𝑶|𝜆𝜆) is usually used in

implementations to avoid arithmetic underflow problems.

18

Definition 5: The splitting candidates 𝑺𝑺𝑺𝑺 comprise a set of activities eligible for state

splitting during the topology inferencing of HMM λ. We use ai in 𝑺𝑺𝑺𝑺 to denote a candidate

activity to split in λ. The HMMs obtained by state-splitting are placed in the set candidate

models 𝓜𝓜. N denotes the total number of splits done during the inferencing of λ.

3.3.2 Alignment Guided State-splitting HMM

3.3.2.1 AGSS algorithm

AGSS (see Figure 3.2) first initializes a general Markov chain 𝜆𝜆0 . Unlike most state-

splitting algorithms that start with only one state [27][35][37], AGSS begins with a Markov

chain composed of one state per activity (step 1 in Alg.3.1), a strategy used in Herbst’s

heuristic state-splitting approach [28].

After initialization, AGSS determines two factors: which states to split and when to stop

splitting. AGSS determines the splitting candidates from the alignment matrix and orders

them by column frequency. Specifically, AGSS uses the following intuitions about the

consensus sequence (step 2 in Alg.3.1): (1) activities of different columns of the alignment

matrix likely have different purposes or intentions regardless of activity type; and (2) each

column’s frequency measures the importance or distinctiveness of the activity’s intention.

Having two different columns with the same activity type and frequencies above the 𝜀𝜀

threshold strongly indicates that this activity (e.g., “A and B” in Figure 3.2 (a)) has multiple

intentions, qualifying the associated state for splitting candidacy (step 3 in Alg.3.1). It also

intuitively follows, and our experiments have shown, that the candidates with higher

column frequencies (e.g. “A” in last column of Figure 3.2 (a)) should be tested for splitting

before those with lower frequencies (e.g. “B” in the column before last in Figure 3.2 (a)).

Therefore, we sorted the candidates 𝓒𝓒𝓒𝓒′ by descending frequency (step 4). Because each

activity is already assigned a state in the initial model 𝜆𝜆0, there is no need to split the first

occurrence of each activity in 𝓒𝓒𝓒𝓒′. Therefore, we revoke the candidacy of first occurrences

and return the final list 𝑺𝑺𝓒𝓒 (step 4).

After calculating the splitting candidates, AGSS performs iterative splitting. In iteration

j, given a splitting candidate activity 𝑎𝑎𝑖𝑖 ∈ 𝑺𝑺𝑺𝑺, we find states 𝑺𝑺, in the model from last

iteration λj−1, which have observations 𝑎𝑎𝑖𝑖 (e.g., S1 in Figure 3.2 (b). Step 7 in Alg.3.1). For

19

each state 𝑠𝑠𝑘𝑘 in 𝑺𝑺, we split it into two new states 𝑠𝑠𝑘𝑘′ and 𝑠𝑠𝑘𝑘′′ (step 9 in Alg.3.1). The newly-

split states (𝑠𝑠𝑘𝑘′ and 𝑠𝑠𝑘𝑘′′) are assigned the same observation as their predecessor’s state 𝑠𝑠𝑘𝑘.

The transitions (i.e., transition probabilities from other states to 𝑠𝑠𝑘𝑘′, 𝑠𝑠𝑘𝑘′′ and from 𝑠𝑠𝑘𝑘′, 𝑠𝑠𝑘𝑘′′

to other states) can be initialized either randomly or by estimating the distribution of

surrounding activities in the alignment matrix (step 10 in Alg.3.1). After initializing the

parameters of 𝑠𝑠𝑘𝑘′and 𝑠𝑠𝑘𝑘′′, 𝜆𝜆′ is trained with the Baum-Welch Algorithm to optimize the

HMM parameters (step 11 in Alg.3.1). 𝜆𝜆′ that maximizes log-likelihood 𝑃𝑃(𝑶𝑶|𝜆𝜆′) is

assigned 𝜆𝜆𝑗𝑗 (step 14 in Alg.3.1). Afterwards, 𝜆𝜆𝑗𝑗 is compared to 𝜆𝜆𝑗𝑗−1; 𝜆𝜆𝑗𝑗 is kept only if it

improves model log-likelihood (steps 15-17 in Alg.3.1).

Compared with existing state-splitting HMM inference algorithms [34][35][37], AGSS

has the following advantages. First, as we associate each state with a single activity type

and assign newly-split states their predecessor’s activity, each state in the inferred HMM

has only one associated activity. This way, the discovered models will have easily-

Algorithm 3.1. AGSS HMM
Input: 𝑶𝑶, 𝜀𝜀
Output: 𝜆𝜆
Step 1. Initialize HMM topology as Markov chain 𝜆𝜆0;
/* Obtain candidate activities for splitting */
Step 2. Compute relaxed consensus sequence 𝓒𝓒𝓢𝓢 = 𝒜𝒜(𝑶𝑶);
Step 3. Filter consensus sequence 𝓒𝓒𝓢𝓢′ = Filter(𝓒𝓒𝓢𝓢, 𝜀𝜀);
Step 4. Find splitting candidates 𝑺𝑺𝑺𝑺 by sorting 𝓒𝓒𝓒𝓒′: 𝓓𝓓 = Sort(𝓒𝓒𝓒𝓒′), and removing the first occurrences

of all activities: 𝑺𝑺𝑺𝑺 = RemoveFirstOcurrences(𝓓𝓓);
/* Perform state splitting */
Step 5. for activity 𝑎𝑎𝑖𝑖 in 𝑺𝑺𝑺𝑺, do
Step 6. Create a temporal model 𝜆𝜆′ = λj−1;
Step 7. Find states 𝑺𝑺 that have observation 𝑎𝑎𝑖𝑖 from 𝜆𝜆′;
Step 8. for 𝑠𝑠𝑘𝑘 in 𝑺𝑺, do
Step 9. Split 𝑠𝑠𝑘𝑘 to 𝑠𝑠𝑘𝑘′and 𝑠𝑠𝑘𝑘′′ in 𝜆𝜆′;
Step10. Initialize observation and transitions of 𝑠𝑠𝑘𝑘′and 𝑠𝑠𝑘𝑘′′;
Step11. Train with Baum-Welch algorithm: 𝜆𝜆′ = Train(𝜆𝜆′,𝑶𝑶);
Step12. 𝓜𝓜 = 𝓜𝓜∪ {𝜆𝜆′} ;
Step13. end for
Step14. 𝜆𝜆𝑗𝑗 = arg max

𝜆𝜆′ ∈𝓜𝓜
𝑃𝑃(𝑶𝑶|𝜆𝜆′);

Step15. if log𝑃𝑃�𝑶𝑶�𝜆𝜆𝑗𝑗� < log𝑃𝑃�𝑶𝑶�𝜆𝜆𝑗𝑗−1�;
Step16. 𝜆𝜆𝑗𝑗 = 𝜆𝜆𝑗𝑗−1;
Step17. end if
Step18. 𝑗𝑗 = 𝑗𝑗 + 1;
Step19. end for
Step20. 𝜆𝜆 = 𝜆𝜆𝑗𝑗−1;
Step21. return 𝜆𝜆;

20

interpretable topologies. Second, because we calculate all splitting candidates based on

alignment, AGSS does not need to search the parameter hyperspace of all possible HMMs

from all possible splits. Third, as the alignment results and consensus sequence selection

are tailored to the characteristics of the data, our alignment-based strategy better captures

the activity distribution. With these advantages, AGSS not only runs faster but is also more

robust.

Figure 3.2. Illustration of the AGSS algorithm. (a) Splitting candidates 𝑪𝑪 = {A, B} are

selected from the consensus sequence. (b) The splitting starts from the initial model.

(c) Activity A is split first because the column in which A is repeated has higher frequency

(1.0) than that of activity B (0.6). (d) Activity B is split after A. The splitting stops when

all splitting candidates are split.

B C EDA

B EA
B EDA B

B ED
CB E

D

A

A B D E

A
D D

B

B
B

B

A

A
A

A
A

A

1 1 0.2 0.4 1 10.2 0.6 1

0.11

A

B
1

0.5
S1

S2

S0

C D E

0.5

0.4

0.33
0.22

0.17

0.83

0.6

0.33

1
S3 S4 S5 S6

0.11

B
1

1
S1

S2

S0

C D E

0.33

0.4
0.22

0.17

0.83

0.6

0.33

1
S3 S4 S5 S6

A1 A2S7

1

0.17

1
1

S1

S2

S0

C D E
0.33

0.17

0.83

0.5

1
S3 S4 S5 S6

A1 A2S7

1B2

B1

10.6

0.4

S8

(a)

(b)

(c)

(d)

Filtered Consensus
Sequence (CS’)
Here 𝜀𝜀 = 𝟎.𝟓

Column Frequency

Trace Alignment

A B B C D ED B A Consensus Sequence (CS)

Split S1

Split S2

State-Splitting
Splitting Candidates (SC)

21

3.3.2.2 Estimating the 𝜀𝜀 Threshold

The frequency threshold 𝜀𝜀 is important for selecting the splitting candidates which, in turn,

determine when splitting will terminate. The threshold ε for the frequency of non-gap

symbols in columns ranges between 0 and 1. As it approaches 0, more activities will be

allowed onto the candidate list; as it approaches 1, fewer states are candidates. We propose

two threshold ε selection methods. The first method finds ε by running the inference

algorithm with random ε values, and then picks the threshold yielding the best model

(model evaluation discussed later). The apparent limitation is the long running time

required to infer multiple models. The second method estimates ε from the data size (num.

of traces) using Alg.3.2, where 𝐸𝐸𝐸𝐸 is the edit distance (a.k.a. Levenshtein distance [38]),

between two filtered consensus sequences and r is an increment of ε. Alg.3.2 is based on

the law of large numbers [39], which implies that as the data size increases (more process

traces), the average of the data (consensus sequence) should converge to an expected value.

In other words, the elements in consensus sequences will stabilize with more data.

To evaluate whether we have enough data for producing a stable consensus sequence

𝓒𝓒𝓒𝓒, we randomly select half of the input traces (step 1 in Alg.3.2) and calculate their

consensus sequence 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (step 2 in Alg.3.2). 𝓒𝓒𝓒𝓒 and 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎 are filtered using the

threshold ε (step 4 in Alg.3.2). The edit distance between 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎′ and 𝓒𝓒𝓒𝓒′ will approach 0

when data size is sufficient. The convergence occurs faster for larger 𝜀𝜀 (Figure 3.3(a)).

Given the observed data, Alg.3.2 returns the smallest ε at which the edit distance converges.

The convergence threshold is set to 0.05, which is the smallest normalized edit distance

(i.e., edit distance normalized by the sum of trace lengths) between 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎′ and 𝓒𝓒𝓒𝓒′. In

Algorithm 3.2. Estimating frequency threshold 𝜀𝜀
Input: 𝑶𝑶
Output: 𝜀𝜀
Step 1. Randomly select half of the traces from 𝑶𝑶, denoted as 𝑶𝑶ℎ𝑎𝑎𝑎𝑎𝑎𝑎;
Step 2. Calculate consensus sequences: 𝓒𝓒𝓒𝓒 = 𝒜𝒜(𝑶𝑶); 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝒜𝒜(𝑶𝑶ℎ𝑎𝑎𝑎𝑎𝑎𝑎);
Step 3. for 𝜀𝜀 = 0: 𝑟𝑟: 1, do
Step 4. 𝑪𝑪𝓢𝓢′ = Filter(𝓒𝓒𝓒𝓒, 𝜀𝜀); 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎′ = Filter�𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎 , 𝜀𝜀�;
Step 5. break if 𝐸𝐸𝐸𝐸(𝓒𝓒𝓢𝓢′, 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎′) converges
Step 6. end for
Step 7. return 𝜀𝜀

22

other words, convergence occurs when over 95% of the two consensus sequences are equal.

The choosing of ε based on Alg.3.2. is automatic.

 This ε is desirable because it selects the number of splitting candidates proportional to

the size of the data. For smaller datasets, it would be inappropriate to split too much and

overfit (i.e., states split to capture characteristics or patterns that only exist in specific

observed traces). If the process log O is small, the two consensus sequences would be

unstable, forcing a higher ε that preserves only the most common activities in the consensus

sequence. This high ε produces a stable but sparse consensus sequence, therefore

disqualifying most states from being split. On the other hand, for large datasets ε would be

small, allowing the model to split more. The resulting model would be more detailed, which

is preferable when training with sufficient data. AGSS then adaptively adjusts the number

of potential splits to the amount of data available.

Figure 3.3. (a)Training dataset size plotted against edit distance between 𝓒𝓒𝓒𝓒𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 and 𝓒𝓒𝓒𝓒

using different frequency thresholds ε; (b) replay rate on test data. The results are averaged

over 30 runs using the Dutch hospital data [40].

Figure 3.4. Flawed simplified workflow model with a dangling node S3. This model is

simplified from (d) in Figure 3.2 with an arbitrary transition cutoff as 0.35.

100 200 300 400 500

Data Size (num. of traces)

0

20

40

60

80

100

R
ep

la
y

R
at

e

Replay Rate

50 100 150 200 250
Data Size (num. of traces)

0

10

20

30

40

50

Ed
it

D
is

ta
nc

e

ε = 0.1

ε = 0.3

ε = 0.5

1
1

S1

S2

S0

C D E0.83

0.5

1
S3 S4 S5 S6

A1 A2S7

1B2

B1

10.6

0.4

S8

23

3.3.2.3 Simplifying and Pruning the Discovered Model

Data-derived workflow models can be spaghetti-like [18], i.e., complex graphs with a large

amount of nodes and directed arcs (transitions). This finding is also true for the AGSS-

induced HMM. When used for classification, spaghetti-like models are acceptable black

boxes, because we only focus on classification accuracy and do not extract insights from

the model structure. In workflow discovery, finding a descriptive and interpretable model

is more important. This goal can be accomplished by model simplification.

Model simplification and pruning are techniques to reduce the size and complexity of

workflow models by omitting insignificant information. The obvious solution is to apply

transition frequency cutoffs, but this may produce a flawed workflow model with

“dangling” process fragments (C in Figure 3.4). These dangling fragments represent

impossible executions when put in the context of workflows. Removing insignificant

transitions while keeping the graph a plausible workflow is a form of the NP-hard minimal

spanning strong subgraph problem (where we artificially place a transition with frequency

one from the end to the start). In the context of process mining, however, it is more

reasonable to use heuristic methods.

In this work, we propose a heuristic HMM simplification algorithm (Alg.3.3), which

can extract the skeleton (the backbone structure) of the HMM. The strategy preserves the

dominating incoming and outgoing transitions for each state, reduces the number of

insignificant transitions, and does not produce single dangling activities. It is, however,

possible for a group of states to form a subprocess isolated from the main process (i.e., the

process that includes the start state 𝑠𝑠start and end state 𝑠𝑠end). For example, a pair of states

can construct a loop where the most significant in-and-out transitions go to each other. We

address this problem by first discovering isolated subprocesses (steps 9-18 in Alg.3.3) and

then reconnecting the subprocess to the main one through the entire subprocess’s most

significant in-and-out transitions (steps 19-25 in Alg.3.3). The output 𝜆𝜆𝑠𝑠 from algorithm 3

is the backbone model of observed processes 𝑶𝑶.

24

3.4 Experiments

We compared AGSS to existing baseline state-splitting HMM inference methods, such as

ML-SSS [34], MDL [36], heuristic approach [28], and STACT [37]. The performance was

measured based on (1) model’s quality and (2) the algorithm’s computational efficiency.

Both perspectives were quantitative (the induced HMMs were not interpreted by humans),

so model simplification or pruning (Section IV.3.3.2.3) was not applied in this section.

Experiments were run on a Dell desktop (Win 10, Intel Xeon 3.7GHz CPU, 48G RAM).

Algorithm 3.3. HMM Simplification
Input: 𝜆𝜆 = (𝑨𝑨,𝑩𝑩,𝝅𝝅,𝑛𝑛,𝑚𝑚)
Output: 𝜆𝜆𝑠𝑠
/* Preserve the dominating in-and-out transitions of each state */
Step 1. Initialize the simplified transition matrix 𝑨𝑨𝑠𝑠 = ∅;
Step 2. for 𝑖𝑖 = 0: 1:𝑛𝑛, do
Step 3. for 𝑗𝑗 = 0: 1:𝑛𝑛, do
Step 4. if 𝑨𝑨(𝑖𝑖, 𝑗𝑗)=max(𝑨𝑨(𝑖𝑖, :)), 𝑨𝑨𝒔𝒔(𝑖𝑖, 𝑗𝑗) = 𝑨𝑨(𝑖𝑖, 𝑗𝑗);
Step 5. if 𝑨𝑨(𝑖𝑖, 𝑗𝑗)=max(𝑨𝑨(: , 𝑗𝑗)), 𝑨𝑨𝒔𝒔(𝑖𝑖, 𝑗𝑗) = 𝑨𝑨(𝑖𝑖, 𝑗𝑗);
Step 6. if 𝑖𝑖 = 𝑗𝑗, 𝑨𝑨𝒔𝒔(𝑖𝑖, 𝑗𝑗) = 𝑨𝑨(𝑖𝑖, 𝑗𝑗); /* keep self-transition */
Step 7. end for
Step 8. end for
/* Discover states isolated from the main process */
Step 9. Initialize a set with all states in 𝜆𝜆 except 𝑠𝑠start: 𝑺𝑺 = {𝑠𝑠1, … 𝑠𝑠𝑛𝑛}. Initialize a stack 𝑺𝑺(𝑚𝑚) = {𝑠𝑠start};

/* 𝑠𝑠start is 𝑠𝑠0 */
Step 10. while 𝑺𝑺(𝑚𝑚) ≠ ∅
Step 11. 𝑠𝑠𝑖𝑖=𝑺𝑺(𝑚𝑚).pop();
Step 12. for 𝑗𝑗 = 0: 1:𝑛𝑛, do
Step 13. if 𝑨𝑨𝑠𝑠(𝑖𝑖, 𝑗𝑗) ≠ 0 && 𝑠𝑠𝑗𝑗 ∈ 𝑺𝑺 /* i is the index of 𝑠𝑠𝑖𝑖 */
Step 14. 𝑺𝑺(𝑚𝑚).push(𝑠𝑠𝑗𝑗);
Step 15. 𝑺𝑺.remove(𝑠𝑠𝑗𝑗);
Step 16. end if
Step 17. end for
Step 18. end while
/* Connect isolated subprocesses to the main process */
Step 19. while 𝑺𝑺 ≠ ∅ /* 𝑺𝑺 includes all states isolated from main process */
Step 20. 𝑠𝑠 = 𝑺𝑺.get(0);

Step 21. According to 𝑨𝑨𝒔𝒔, find all states in 𝑺𝑺 directly or indirectly connected to 𝑠𝑠 and insert them to
𝑺𝑺(𝑠𝑠) = {… , 𝑠𝑠, … };

Step 22.

 Find the most preceding state 𝑠𝑠𝑗𝑗 or states 𝒔𝒔𝑗𝑗 (when loop exists) in 𝑺𝑺(𝑠𝑠), 𝑨𝑨𝒔𝒔(𝑖𝑖, 𝑗𝑗) =
argmax

𝑖𝑖,𝑗𝑗
𝑨𝑨(𝑖𝑖, 𝑗𝑗), find the most succeeding state 𝑠𝑠𝑘𝑘 or states 𝒔𝒔𝑘𝑘 (when loop exists) in 𝑺𝑺(𝑠𝑠),

𝑨𝑨𝒔𝒔(𝑖𝑖,𝑘𝑘) = argmax
𝑖𝑖,𝑘𝑘

𝑨𝑨(𝑖𝑖, 𝑘𝑘);

Step 23. Remove the states in 𝑺𝑺(𝑠𝑠) from 𝑺𝑺;
Step 24. end while
Step 25. return 𝜆𝜆𝑠𝑠 = (𝑨𝑨𝑠𝑠,𝑩𝑩,𝝅𝝅,𝑛𝑛,𝑚𝑚)

25

3.4.1 Real World Medical Process Datasets

During the evaluation, we used activity logs from four real-world medical processes ().

Obtaining and using the medical data for this study was approved by the Institutional

Review Board at Children’s National Medical Center in Washington, DC. Three medical

logs were coded from surveillance videos of trauma resuscitations: (1) The endotracheal

intubation (breathing tube insertion). (2) The initial evaluation phase (i.e., primary survey)

of the trauma resuscitation [41], where the team looks for immediately life-threatening

injuries. (3) The head to toe examination phase (i.e., secondary survey) of the trauma

resuscitation. The fourth dataset was collected at a Dutch hospital and published by 4TU

(http://researchdata.4tu.nl/home/) [40]. After removing outliers and rare activities, there

remained 24,550 activities of 18 types in the Dutch hospital data.

3.4.2 Measuring Quality of Induced HMM

The challenge for HMM inferencing in workflow mining is its unsupervised nature; labeled

ground truth data is not available to test the induced model. Previous state-splitting

algorithms working with supervised classification problems had labeled data to test the

performance [37]. Our goal in this study was to induce a descriptive process model, as

opposed to a predictive one. This descriptive model can be evaluated by how well it

represents observed and unobserved data [42]. To quantify the model quality, we adopted

two concepts, model fidelity and model confidence, from previous research [43]. Model

fidelity (or accuracy) measures the agreement between a given workflow model and the

observed process traces, i.e., the log likelihood of generating the observed process traces

using the given model. The value is high if the model structure accurately describes the

Table 3-1. Statistics of our four medical process datasets.
Dataset

Stats Intubation Primary Secondary Dutch

Num. Patient Records 74 186 122 833
Num. Total Acts 900 1291 3057 24,550
Num. Act Types 15 8 17 18
Longest Trace (Num. Acts) 13 8 51 229
Shortest Trace (Num. Acts) 5 4 7 2
Avg. Num. Acts in Trace 12.16 6.94 25.06 29.47

http://researchdata.4tu.nl/home/

26

observed process traces. Model confidence measures how well a workflow model

represents the underlying process that generates the observed process traces. High model

confidence is achieved if the model describes not only the observed traces, but also the

unobserved realizations of the underlying process. Model confidence is difficult to achieve

with insufficient training data, because the model may overfit the small dataset.

Given observed traces O and inferred model λ, model fidelity (𝑀𝑀𝑓𝑓) is defined as the log-

likelihood of the observed traces:

𝑀𝑀𝑓𝑓 = log𝑃𝑃(𝑶𝑶|𝜆𝜆) = � log𝑃𝑃(𝑶𝑶𝑖𝑖|𝜆𝜆)
𝑖𝑖∈{1,2,…,ℓ}

 (3.3)

where P(Oi | λ) represents the probability that the observed trace Oi is produced by model λ

and ℓ is the average trace length.

The model confidence is hard to quantify because we have neither the underlying

ground truth model, nor the entire set of possible process traces. Model confidence (𝑀𝑀𝑐𝑐),

can be estimated by partitioning the data into training and test sets. Let λ′ denote the

inferred model from training data Otraining. We define model confidence as logP(Otest | λ′).

In practice, we chose to use 10-fold cross validation (Alg.3.4) to reduce result variance.

Real-world process logs are usually small, since they need to be coded manually by domain

experts.

Some test data Oi may not be replay-able on the trained HMM λ′ (i.e., probability P(Oi

|λ′)=0). This problem usually occurs with sparse training data, where an activity or

transition present in the test data is not in the training data. The probability P(Oi |λ′) of such

a trace would then be zero, despite missing only one activity or transition. This issue is

Algorithm 3.4. Calculating model confidence 𝑀𝑀𝑐𝑐
Input: 𝑶𝑶
Output: 𝑀𝑀𝑐𝑐
Step 1. Initialize 𝑀𝑀𝑐𝑐 = 0;
Step 2. Partition the observed traces O into 10 folds, O={O1,…, O10};
Step 3. for 𝑖𝑖 = 1: 1: 10, do
Step 4. Infer 𝜆𝜆𝑖𝑖′ with 9 folds except Oi
Step 5. Replay Oi in 𝜆𝜆𝑖𝑖′ and calculate log-likelihood logP(Oi | 𝜆𝜆𝑖𝑖′)
Step 6 Sum up log-likelihood 𝑀𝑀𝑐𝑐 += logP(Oi | 𝜆𝜆𝑖𝑖′)
Step 7. end for
Step 8. return 𝑀𝑀𝑐𝑐

27

usually addressed by smoothing the model parameters, a process of flattening the

probability distribution so that all sequences can occur with some probability. Smoothing

can improve HMM performance in a classification problem, but will not help mine

workflow models. For model mining, adding unseen activities and transitions would only

make the model. Instead of smoothing, we propose a replay rate metric 𝑅𝑅𝑟𝑟, the percent of

test data can be replayed in λ′.

𝑅𝑅𝑟𝑟 =
∑ 𝛿𝛿(𝑃𝑃(𝑶𝑶𝑖𝑖|𝜆𝜆′))𝑖𝑖

𝓃𝓃
× 100% (3.4)

where 𝛿𝛿(𝑥𝑥) = 1 if 𝑥𝑥 ≠ 0, and 𝛿𝛿(𝑥𝑥) = 0 otherwise; and 𝓃𝓃 is the number of traces in the

test set. 𝑅𝑅𝑟𝑟 is strongly related to data size (Figure 3.3(b)), with 𝑅𝑅𝑟𝑟 increasing as data size

increases.

We computed model fidelity (𝑀𝑀𝑓𝑓), model confidence (𝑀𝑀𝑐𝑐), and replay rate (𝑅𝑅𝑟𝑟) to

evaluate the HMM inducing algorithms on different datasets (Table 3-2). As described

above (Section 3.3.2), ML-SSS, MDL, and STACT were designed to start splitting from

one node and allow different activity types to be observed at the same state. On the other

hand, Heuristic and AGSS were designed to be initialized with a Markov chain. We also

used tests on synthetic data to set a convergence threshold of 0.01 for ML-SSS to prevent

too many splits [34] (splitting is terminated if the next iteration’s log likelihood is less than

1.01 times that of the previous).

Table 3-2. Comparison of AGSS with existing state-splitting algorithms on four real world
medical processes. Model fidelity (𝑀𝑀𝑓𝑓) and model confidence (𝑀𝑀𝑐𝑐) are scaled by the
number of process traces in each process.
 Intubation Primary Survey Secondary Survey Dutch Hospital

 𝑀𝑀𝑓𝑓 𝑀𝑀𝑐𝑐 𝑅𝑅𝑟𝑟 𝑀𝑀𝑓𝑓 𝑀𝑀𝑐𝑐 𝑅𝑅𝑟𝑟 𝑀𝑀𝑓𝑓 𝑀𝑀𝑐𝑐 𝑅𝑅𝑟𝑟 𝑀𝑀𝑓𝑓 𝑀𝑀𝑐𝑐 𝑅𝑅𝑟𝑟

MC1 -12.8 -12.9 84.3% -10.00 -10.38 96.6% -47.59 -44.09 65.8% -38.8 -37.3 97.6%

AGSS -12.8 -12.9 84.3% -9.98 -10.16 96.1% -45.22 -44.13 65.8% -32.76 -34.03 97.6%

ML-SSS2 -10.56 -22.05 98.6% -9.05 -10.66 100% -48.79 -60.52 100% -52.39 -54.66 100%

Heuristic -11.8 -15.8 84.3% -8.50 -10.95 96.1% -47.59 -44.10 65.8% -38.6 -36.9 97.6%

MDL -19.45 -19.78 100% -12.37 -12.97 100% -64.44 -65.37 100% -81.34 -82.03 100%

STACT -12.32 -14.23 98.6% -9.32 -10.19 100% -49.22 -58.08 99.2% -44.86 -47.04 100%
1MC stands for Markov Chain
2The convergence threshold of ML-SSS is 0.01

28

The results (Table 3-2) show that while AGSS does not achieve the best model fidelity

on intubation and primary survey, it achieves the best model confidence on all datasets.

Compared with its initial Markov chain topology, AGSS induces a model with better

fidelity and confidence, indicating that the splitting improves the model. The heuristic

approach, on the other hand, has higher model fidelity (-11.8 on intubation and -8.5 on

primary survey) but lower model confidence (-15.8 on intubation and -10.95 on primary

survey) than Markov chain. This finding indicates that the heuristic approach made

unnecessary splits and overfit to the training data. Starting from a Markov chain and using

the “one observation per state” constraint, both AGSS and the heuristic approach suffer

from low replay rates. From a model mining perspective, however, these constraints

become advantages in producing easy-interpretable workflow models. ML-SSS achieves

high model fidelity using the Intubation dataset (-10.56) and Secondary Survey dataset (-

48.79) but has low model confidence (-22.05 and -60.52), indicating it also overfit the data.

MDL and STACT have lower model fidelity and confidence when compared to AGSS and

Heuristic, indicating they penalize model complexity too severely and terminate the

splitting too early. This is in agreement with the fact that MDL and STACT assume a data

size much larger than the number of model parameters [36][37].

3.4.3 Computational Complexity Comparison

Existing state-splitting algorithms (e.g. ML-SSS, MDL, Heuristic, STACT) are

computationally complex because the search for splitting candidates at each iteration is

expensive. Each state is considered a candidate and is therefore tested. AGSS avoids this

problem by initially discovering all splitting candidates from trace alignment. The overall

computational complexity of AGSS is 𝒪𝒪(𝑇𝑇𝑛𝑛2𝑁𝑁) , consisting of trace alignment and

splitting candidate evaluation. Trace alignment requires 𝒪𝒪(𝑇𝑇2ℓ2 + 𝑇𝑇2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇)) to

construct the guide tree and 𝒪𝒪(𝑇𝑇2𝐿𝐿 + 𝑇𝑇𝐿𝐿2) for progressive alignment [1][10]. State

splitting requires 𝒪𝒪(𝑇𝑇𝑛𝑛2𝑁𝑁) for N total state splits with 𝒪𝒪(𝑇𝑇𝑛𝑛2) for Baum-Welch parameter

learning [31] and likelihood evaluation (“forward-backward”) at each split. In comparison,

other state-splitting algorithms generally take 𝒪𝒪(𝑇𝑇𝑛𝑛3𝑁𝑁), where the number of splits N

depends on the convergence rate of the score function. The computational complexities of

29

AGSS and other state-splitting algorithms strongly depend on the average number of

hidden states n because of its raised power.

When comparing the number of successful splits versus time on a logarithmic scale

(Figure 3.5(a)), we ignored the terminating criterion for each algorithm and continued

splitting until a given number of states N’ (50 is used in Figure 3.5) was reached. AGSS

showed a clear advantage in speed, using only 135.22 seconds. Other baseline algorithms

took more than 2,000 seconds. AGSS and Heuristic have a slight advantage in that they

start splitting from 17 states as opposed to one, but this is insignificant because it only takes

less than 100 seconds for MLSSS, MDL, and STACT to split to 17 states. In the

computation time vs. log-likelihood comparison (Figure 3.5(b)) , AGSS also outperformed

baseline algorithms in log-likelihood (model fidelity) from the start and maintained the

advantage through 50 states. Also, by starting from a Markov chain, AGSS and heuristic

have initial log-likelihood -32,367, while the others start from -73,936. The algorithms

starting from one node did not achieve the initial log-likelihood of AGSS and heuristic

even after splitting 49 times. Another observation is that the splitting speed slows (Figure

Figure 3.5. (a) The number of states vs. computation time in seconds; (b) the computation

time vs. log-likelihood (i.e., log-likelihood); (c) the number of states vs. log-likelihood; (d)

BIC and log-likelihood change as state splitting using STACT; (e) Heuristic score and log-

likelihood change as state splitting using Heuristic approach; (f) MDL and log-likelihood

change as state splitting using MDL. Experiments were run on Dutch hospital dataset [40].

(a) (b) (c)

(d) (e) (f)

0 500 1000 1500 2000 2500 3000

Time/s

-8

-7

-6

-5

-4

-3

-2

Lo
g-

Li
ke

lih
oo

d

10 4

AGSS

MLSSS

Heuristic

MDL

STACT

0 10 20 30 40 50

Number of States

10 -1

10 0

10 1

10 2

10 3

10 4

Ti
m

e/
s

AGSS

MLSSS

Heuristic

MDL

STACT

0 10 20 30 40 50

Number of States

-7

-6

-5

-4

-3

Lo
g-

Li
ke

lih
oo

d

10 4

AGSS

MLSSS

Heuristic

MDL

STACT

0 10 20 30 40 50

Number of States

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

Lo
g-

Li
ke

lih
oo

d

10 4

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

BI
C

10 4

Log-Likelihood

BIC

15 20 25 30 35 40 45 50

Number of States

-3.3

-3.2

-3.1

-3

-2.9

-2.8

-2.7

-2.6

Lo
g-

Li
ke

lih
oo

d

10 4

-3.15

-3.1

-3.05

-3

-2.95

-2.9

-2.85

H
eu

ris
tic

 S
co

re

10 4

Log-Likelihood

Heuristic Score

0 10 20 30 40 50

Number of States

-7.4

-7.2

-7

-6.8

-6.6

-6.4

-6.2

-6

-5.8

Lo
g-

Li
ke

lih
oo

d

10 4

1.8

1.9

2

2.1

2.2

2.3

M
D

L

10 5

Log-Likelihood

MDL

30

3.5(b)) and the log-likelihood gains per split diminish (Figure 3.5(c)) as the number of

states increase. Although log-likelihood kept increasing, model complexity penalties

behaved differently (Figure 3.5(d)(e)(f)). BIC stayed close to the log-likelihood values,

indicating a small penalty on the model complexity (Figure 3.5(d)). This small penalty

leads to large HMMs. The heuristic score starts decreasing when the number of states

arrives at 27 before beginning to oscillate (Figure 3.5(e)), indicating that further splitting

could potentially produce a better model. MDL is a positive value and smaller values are

rewarded. It first decreases, but and then starts climbing after 15 states (Figure 3.5(f)).

MDL converges faster than STACT and heuristic, meaning that it more heavily penalizes

model complexity. Compared with baseline methods, AGSS shows its unique boosting

effect on HMM inference, saving much computational time (Figure 3.5) while providing a

higher model quality (Table 3-2).

3.5 Case Study: Trauma Workflow Mining

AGSS is designed to discover workflow models without any prior information. To evaluate

the workflow model discovered by AGSS (Figure 3.6 (d)), we compared it to models

inferred from STACT (Figure 3.6 (c)), from Disco (Figure 3.6 (b), a process mining tool),

and by medical experts using domain knowledge (Figure 3.6 (a)). The model discovery

algorithm used in Disco (https://fluxicon.com/disco/) is based on a fuzzy workflow mining

algorithm [44], rather than an HMM. Comparing the AGSS model to the Disco one shows

that AGSS can find better workflow models than other process mining algorithms,

regardless of whether they use HMMs. We tested different process mining algorithms (e.g.,

alpha, heuristic, and genetic miners [45]) and chose Disco as the baseline because it is the

most widely used in process mining applications. Models discovered from highly-variable

real-world processes are usually uninterpretable spaghetti-like diagrams. Models were

simplified using Algorithm 3 before comparisons were made. Differences between the

models have implications on both medical and model engineering interpretations of the

underlying process.

First, we compare general readability. The Disco model (Figure 3.6 (b)) is simple, with

transitions between nodes with one activity per node. The reverse transition from Rectal-

Back to Palpation-Head can be confusing, because the secondary survey ends after the

https://fluxicon.com/disco/

31

back examination. This reverse transition can be misinterpreted as a start-over of the

secondary survey, which is not true in practice. The linear structure of the model inferred

by STACT is easy to follow and appears like a forward-moving workflow. The linearity

comes from STACT allowing multiple observations in the same state. For example, an

activity that occurs out of order, either early or late, can be simply represented by allowing

it to occur at the “wrong” state. In Disco models, as each activity type is uniquely mapped

to one node, such out-of-order activities are handled by adding new transitions to the

“wrong” state. In AGSS models, these types of activities are handled differently based on

their occurrence distribution. If one activity frequently occurs at multiple locations, then

new states will be split to better describe those occurrences. Infrequent repeated

Figure 3.6. (a) Expert model designed by medical experts. (b) Simplified model discovered

by Disco (redrawn for clearer view). The number in the node denotes the frequency of

activity and the number on the edge denotes the frequency of the transition. (c) HMM

induced by STACT where the transitions were simplified by Algorithm 3 and state

observations with probability less than 0.1 were filtered. (d) HMM induced by AGSS and

simplified by Algorithm 3.

Start

Palpation-H (277)

Palpation-F (199)

R-Otoscopy-EAR (125)

L-Otoscopy-EAR (120)

Palpation-NE (125)

Palpation-C (164)

Palpation-A (202)

Stability-PE (115)

Log-Roll-BK (129)

C-Spine-BK (141)

T-Spinel-BK (199)

L-Spine-BK (170)

Rectal-BK (95)

79

111

43

90

29

51

101

84

59

148

64

Palpation-RLE (284)
84

Palpation-LLE (291)

Palpation-RUE (228)

38

Palpation-LUE (193)
107

End

41

63

14

175

119

24

28

19

39

15-[Palpation-H(0.70), Palpation-F(0.11)] 0.34

14-[Palpation-H(0.19), Palpation-A(0.16), Palpation-RUE(0.21)] 0.7

5-[Palpation-H(0.18), Palpation-F(0.55), Palpation-EAR(0.17)] 0.5

0.3
0.64

0.14

0.84

3-[R-Otoscopy-Ear(0.15), Palpation-NE(0.31), R-Otoscopy-Ear(0.21) Palpation-C(0.13)] 0.62

10-[Palpation-C(0.37), Palpation-A(0.30), Palpation-LUE(0.14) Palpation-RUE(0.17)] 0.59

0.5

0.36

6-[Palpation-A(0.30), Stability-PE(0.47)] 0.42
0.41

4-[Palpation-RLE(0.40), Palpation-LLE(0.41)] 0.79
0.57

12-[Palpation-LUE(0.23), Palpation-RUE(0.24)] 0.63
0.13

7-[Log-Roll-BK(0.95)]

13-[C-Spine-BK(0.39), T-Spine-BK(0.28), L-Spine-BK(0.23)] 0.56

8-[T-Spine-BK(0.97)]

11-[L-Spine-BK(0.97)]

0.37

0.58

0.43

0.99

9-[Palpation-H(0.11), Rectal-BK(0.59), T-Spine-BK(0.15)] 0.22

1-[Palpation-H(0.16), Palpation-RLE(0.12), Palpation-LLE(0.13), Palpation-LUE(0.10), Palpation-LUE(0.11)] 0.79

Start

End

0.86

0.6

0.21

0.17

Start

1-[Palpation-H]

2-[Palpation-F]

3-[R-Otoscopy-EAR]

5-[L-Otoscopy-EAR]

4-[Palpation-NE]

21-[C-spine-BK]
6-[Palpation-C]

7-[Palpation-A]

8-[Stability-PE]

22-[Palpation-A] 9-[Palpation-RLE]

10-[Palpation-LLE]

23-[Palpation-RLE]

24-[Palpation-RUE]

11-[Palpation-LUE]

19-[Palpation-LUE]

12-[Palpation-RUE]

13-[Log-Roll-BK]

16-[C-Spine-BK]

17-[T-Spinel-BK]

18-[L-Spine-BK]

14-[Rectal-BK]

20-[Palpation-H]

End

0.65

0.56

0.26

0.12

0.22

0.72

0.24

0.41

0.56

0.54

0.18
0.09

0.22

0.57

0.84

0.37

0.13

0.140.12

0.18

0.46

0.1

0.19
0.15

0.46
0.32

0.66

0.74

0.38

0.18

0.15

0.21

0.17

0.11

Palpation-H

Palpation-F

R-Otoscopy-EAR

L-Otoscopy-EAR

Palpation-NE

Palpation-C

Palpation-A

Stability-PE

Palpation-RLE

Palpation-LLE

Palpation-RUE

Palpation-LUE

Log-roll-BK

C-spine-BK

T-spine-BK

L-spine-BK

Rectal-BK

Head Exam Chest Exam Abdomen Exam Extremity Exam Back Exam

(a)

32

occurrences would be considered outliers, and would not be granted new states. The

disadvantage of the STACT model is the difficulty of interpreting multiple activity types

per state. For example, state #3 in Figure 3.6 (c) had more than four different activities.

Another limitation is the large possibility of state self-transitions (i.e., transition from a

state to itself), making the model implicit. AGSS explicitly describes the relationship

between different activities. It also addresses the multiple occurrence problem not

considered in Disco (i.e. Palpation-H was described using two different states, #1 and #20

(Figure 3.6 (d))).

Second, we discover more insights after comparing data-derived models to the expert

model. Aside from the reverse transitions (from Rectal-BK to Palpation-H), the Disco

model follows the expert model well. This finding, however, does not mean the Disco

model is better than the other two data-driven models. Subjectively created by humans, the

expert model may not reflect practice. For example, both the expert model and Disco failed

Figure 3.7. Trace alignment and distribution of activity “Palpation-H” and “C-Spine-BK”.

In the alignment matrix, each row represents a different trace and each color represents an

activity type. In the distribution plot (under the alignment), x-axis represents the column

number (can be treated as “logic time”) of the alignment matrix and y-axis represents the

probability. The trace alignment result is generated using our process visualization tool,

VIT-PLA [2].

0 50 100 150 200 250
0

0.02

0.04

0.06
Palpation-H

C-Spine-BK

33

to capture the multiple occurrences of Palpation-H and C-Spine-BK (Figure 3.7). Unlike the

others, STACT and AGSS captured multiple occurrences. For example, Palpation-H can

be observed in states #1, #5, #9, #14, and #15 in the STACT model, as well as in states #1

and #20 of the AGSS model. While both STACT and AGSS were able to capture the

multiple occurrences of activities, they do so very differently. AGSS balances the

significance of activities’ multiple occurrences before assigning a new node for them, while

the STACT model simply creates new nodes for all multiple occurrences without

considering complexity-vs.-accuracy tradeoffs. This explains why we can see a large

number of activity recurrences in the STACT model (Figure 3.6 (c)). In comparison, AGSS

added only six states (#19-#24 in Figure 3.6 (d)). As an example, state #20 (Palpation-H)

is split from state #1, and state #21 (C-Spine-BK) is split from #16. The splitting is

conformant to the distribution of these two activities (Figure 3.7), as both Palpation-H and

C-Spine-BK occur at different times in the secondary survey. State #1 corresponds to the

first cohort of Palpation-H while state #20 corresponds to the one close to the end. State

#16 maps to the main cohort (between time 150 to 200) of C-Spine-BK and state #21 maps

to the secondary cohort (between time 0 to 100). A small cohort of C-Spine-BK occurs at

the end. It is however so small that AGSS did not split it when taking model complexity

into account. This way, AGSS identified several discrepancies between practice and the

expert model (Table 3-3). These discrepancies highlighted differences between what was

being taught and what is being practiced during trauma resuscitations. These deviations

from the expert model may be due to errors committed by the medical team, or may be

necessary based on clinical circumstance. AGSS can determine whether deviations are part

of a pattern of behaviors or isolated instances. This knowledge helps determine if these

differences are acceptable, or if an enhancement of the expert model is needed.

34

Table 3-3. Discrepancies between expert model and practical procedures. Medical

explanation and model enhancement.
Discrepancies Medical Explanation Model Enhancement

C-Spine-Back not only occurs

during the back examination but

also may occur during the head

examination.

To determine whether the patient needs cervical

spine (c-spine) support, it may be easier to

palpate the c-spine and the neck simultaneously.

From a clinical perspective, it is acceptable to

perform c-spine assessment at either point in the

secondary survey.

C-Spine-BK should be

completed during head exam

or during back exam. If it

occurs at head exam, it is not

mandatory to repeat again at

back exam.

Palpation-Head not only occurs

during the head examination but

may also occur during the back

examination.

The medical team logrolls the patient to perform

the back exam without stressing the spinal

column. To perform a complete head exam,

medical team members often visualize or

palpate the occipital region or back of the head

during the logroll, so as to reduce head

manipulation.

Palpation–Head can be

performed during the back

exam.

Palpation-Abdomen, Palpation-

Right-Lower-Extremities,

Palpation-Left-Upper-

Extremities, Palpation-Right-

Upper-Extremities were found

to repeat in the process.

To more completely assess the patient, it is

acceptable to repeat activities; for example,

repeated palpation of bilateral extremities may

occur to assess potential swelling or deformities.

The model should be repaired

to allow repetitions of

activities within a particular

body region.

35

Chapter 4

An Approach to Automatic Process Deviation Detection in

a Time-Critical Clinical Process

This chapter on Automatic Process Deviation Detection is based on our paper [11]. Prior

research has shown that minor errors and deviations from recommended protocols in

complex medical processes can accumulate to increase the likelihood that a major error

will go uncorrected and lead to an adverse outcome. Real-time automatic and accurate

detection of process deviations may help medical teams better prevent or mitigate the effect

of errors and improve patient outcomes. Our goal was to develop an approach for automatic

detection of errors and process deviations in trauma resuscitation. Using video review, we

coded activity traces of 95 pediatric trauma resuscitations collected in a Level 1 trauma

center over two years (2014-2016). Twenty-four randomly selected activity traces were

compared with a knowledge-driven model of trauma resuscitation workflow using a phase-

based conformance checking algorithm for detecting true and false deviations (alarms). An

analysis of false alarms identified three types of causes: (1) model gaps or discrepancies

between the model (“work as imagined”) and actual practice (“work as done”), (2) errors

in activity traces coding, and (3) algorithm limitations. We repaired the system to remove

model gaps, reduce coding errors, and address algorithm limitations. The repaired system

was first evaluated with another 20 traces and then applied to the entire dataset of 95 traces.

During the training, we detected 573 process deviations in 24 activity traces that include

1,099 activities. Among these deviations, only 27% represented true deviations and the

remaining 73% were false alarms. This initial deviation detection accuracy was only

66.6%, with a 𝐹𝐹1-score of 0.42. Detection accuracy of the repaired system increased to

95.2% (0.85 𝐹𝐹1-score) during system validation and to 98.5% (0.96 𝐹𝐹1-score) during

testing. After deploying the repaired deviation detection system to all 95 activity traces, we

detected 1,060 process deviations in 5,659 activities (11.2 deviations per resuscitation).

Among the 5,659 activities in these traces, 4,893 fit the repaired knowledge-driven

workflow model, 294 were errors of omission, 538 were errors of commission, and 228

36

were scheduling errors. Our approach to automatic deviation detection provides a method

for identifying repeated, omitted and out-of-sequence activities that can be included in the

design of decision support systems for complex medical processes. Our findings show the

importance of assessing detected deviations for repairing a knowledge-driven model that

best represents “work as done.”

4.1 Introduction

Trauma resuscitation—the initial evaluation and treatment of injured patients in the

emergency department—is a dynamic medical setting in which multidisciplinary teams

often perform life-saving interventions under time pressure

. Because injured patients can rapidly deteriorate, the resuscitation process requires

efficiency and accuracy. Although a standardized protocol (Advanced Trauma Life

Support [ATLS] [16][46]) has been shown to improve care of the injured patient, additional

measures have been used to enhance team performance during resuscitation, including

training with patient simulators and observation and feedback with the aid of video

recording. Despite a defined protocol and team training, errors in evaluation and treatment

persist and can contribute to adverse outcomes [46][47][48].

Errors during trauma resuscitation can be classified as errors of commission (unneeded

evaluation or treatment steps), errors of omission (omission of necessary steps), scheduling

errors (steps out of sequence), and procedure errors (performance of less effective steps),

with errors of omission having the greatest impact on outcome [48]. Although some

deviations can be identified as errors directly contributing to adverse outcome, evidence

from trauma resuscitation and other high-risk medical domains have shown that even minor

deviations from recommended protocol can accumulate to increase the likelihood that a

major error will go uncorrected and lead to an adverse outcome [49]. Although results of

this previous work have shown an association between deviations and outcomes in high-

risk clinical settings, identification of deviations within these processes has relied on

approaches not amenable to automatic and real-time analysis, including retrospective chart

review and video analysis. The availability of approaches for automatic detection of

process deviations will enable large-scale analyses of complex workflows, making it a

critical step for the development of clinical decision support systems that depend on real-

37

time data. Previous work has used this approach to discover how healthcare professionals

collaborate [50] or to assess the relationships between process deviations and patient

outcomes [51], but have not to identify individual deviations within the process.

In this chapter, we present an approach for automatic detection of errors and process

deviations in trauma resuscitation. Building on previous process mining techniques [18],

we developed an iterative, five-step approach and system for detecting deviations (Figure

4.1) that includes: (1) design of a knowledge-driven workflow model of the process and

collection and coding of activity traces reflecting these model components to produce the

ground truth data; (2) development of a deviation detection algorithm that uses the model

and activity traces as input and generates process deviations and their locations in the

process as outputs; (3) manual evaluation of the detected deviations and their classification

as either acceptable process deviations (false alarms) or harmful deviations (true alarms);

(4) repair of the system (i.e., model, algorithm, and coding of activity traces) using the

evaluation results; and (5) validation the repaired system. The third and fourth steps are

Figure 4.1. Knowledge-and-data driven process deviation discovery and analysis

framework.

Deviation-Labeled Resuscitation
Log 𝐿𝐿0 using coding method 𝑐𝑐0

Initial Expert Model
𝜆𝜆0

New Resuscitation Log
𝐿𝐿′ coded using 𝑐𝑐′

Probing Log 𝐿𝐿𝑡𝑡

Deviation Detection
Algorithm 𝛼𝛼0

Deviations 𝑖𝑖0

False Alarms True Alarms

Manually Assess 𝑖𝑖0

Repair 𝑐𝑐0, 𝜆𝜆0, 𝛼𝛼0

Validate 𝑐𝑐′, 𝜆𝜆′, 𝛼𝛼′

Accurate
Y

N

Deviation Detection 𝛼𝛼′
with Repaired Model 𝜆𝜆’

Deviations 𝑖𝑖′

Deviation Analysis

Knowl. Acquisition

Validation and
Testing Log 𝐿𝐿𝑣

Step 1

Step 2

Step 3

Step 4

Step 5

Process Deviation Discovery Process Deviation Analysis

38

needed to reduce the number of false alarms by resolving any discrepancies between the

workflow model (“work as imagined”) and actual practice (“work as done”). The fifth step

is used to quantify discrepancies. Because evaluating and repairing the deviation detection

system is time-intensive and laborious, we set a conservative threshold of an error rate of

less than 5% for terminating the iterative evaluation and repair process. Similar to many

AI-support models and systems (e.g., spam email filters, credit card fraud detection

systems, and product recommender systems), the initial learning and tuning of the models

require human intervention. Model-or-system developers need to pre-process the data,

label the data, select or build machine learning models and tune the parameters. After the

systems are built, these AI-support systems can run automatically on the new data. Our

system was similarly built with human intervention, but can now automatically detect

process deviations.

Our work makes two contributions to the process mining and modeling literature,

namely an approach: (1) for automatic process deviation detection in complex medical

processes and its implementation in the trauma resuscitation process; (2) to assist

knowledge-based process modeling that quantifies and reduces the mismatches between

“work as done” (actual practice) and “work as imagined” (model).

4.2 Related Work

Deviation detection methods used in process mining can be classified as data- or

knowledge-driven. Data-driven methods rely on process models discovered from the data,

while knowledge-driven methods rely on process models developed by domain experts.

Data-driven detection methods start by discovering an “average workflow” representation,

such as an average activity trace [52], a data-driven model [53], or frequently occurring

patterns [30][54][55]. Traces of individual activities are then compared to the average

workflow to determine the number of deviations from average. The average workflow,

however, is strictly sequential and does not account for concurrent activities and repetitive

behaviors. Knowledge-driven methods identify deviations by comparing a set of activities

to a workflow model designed by domain experts [41][56][57] or to rules specified by

experts [22][58][59]. Rule-based models, however, are designed for loosely structured

processes, limiting their applicability for structured clinical processes. Specifying all

39

possible constraints for rule-based processes requires more effort than creating a

knowledge-driven workflow model [58].

Current approaches for detecting process deviations in trauma resuscitation rely on

manual review [48][60][61]. An observational study of 100 adult trauma resuscitations

using video review found an average of 12 errors per resuscitation, with none being error-

free [48]. Errors of omission were twice as common as errors of commission and had a

greater potential impact on outcome. Most errors involved the failure to record or observe

information needed for decision-making—an average of seven missing items per

resuscitation. Another study of 90 pediatric trauma resuscitations also used video review,

finding an average of 5.9 deviations from the ATLS protocol per resuscitation [60]. A more

recent video review of 39 resuscitations [61] found a total of 337 errors (8.6 ± 4.7 errors

per resuscitation), 135 of which were errors of omissions, 106 were errors of commission

and 96 were errors of selection. Although effective in identifying and analyzing process

errors, manual review using video recordings is labor intensive, subjective, and difficult to

replicate.

Automatic process deviation detection has been used in medical and non-medical

domains. Bouarfa and Dankelman [52] used an approach of finding the mismatches

between an activity trace and a workflow model derived from 26 activity traces to detect

process deviations during laparoscopic cholecystectomy. Compared to trauma

resuscitation, which includes more than 120 activity types, the coded activities associated

with laparoscopic cholecystectomy included only eight activity types. In addition, only 26

activity traces were used to derive an “average workflow,” potentially resulting in a biased

representation of the process. Similarly, Lu et al. [54] detected deviations in a business

process by identifying frequently common and uncommon behaviors from a model derived

from actual behavior traces. In contrast, Christov et al. [55] detected process deviations

during chemotherapy and blood transfusion by first creating knowledge-driven workflow

models for these processes. Medical experts developed the chemotherapy workflow model,

and the blood transfusion workflow model was developed using a standard blood

transfusion checklist. Although this study used knowledge-driven workflow models, it only

simulated the process error detection by using synthetic activity traces and inserting

artificial process errors. Swinnen et al. [57] detected process deviations by first discovering

40

process rules using association rule mining. A domain expert then reviewed these rules for

accuracy. The authors included more than 250 rules, but their approach was evaluated using

only seven activity types, limiting the application of this approach.

Data-driven deviation detection approaches use historical data to produce workflow

models. Although these models may better represent the observed data, the process of

modeling is affected by the amount and quality of data. The training data may also include

erroneous activities, which cannot be recognized by the algorithm alone. In contrast,

knowledge-driven methods are not affected by the amount or quality of data, but instead

represent the order and types of activities that need to be performed. Although domain

experts can build simple workflow models, creating detailed models for complex medical

processes like trauma resuscitation can be challenging. In addition, previous research on

process deviation detection has focused on detecting deviations but has not addressed the

impact of those deviations. Our approach combines both knowledge- and data-driven

modeling, allowing us to build a more accurate model of a complex medical process by

reconciling the differences in models created by medical experts and extracted from data.

4.3 Terms and Definitions

A process is defined as a series of actions or activities to achieve a goal. The process

data is stored in an activity log 𝑳𝑳 = {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} where each element represents one process

case. A process case 𝑐𝑐𝑖𝑖 = {𝑖𝑖𝑖𝑖𝑖𝑖,𝑻𝑻𝑖𝑖} is indexed with a unique case ID and consists of the

activity trace 𝑻𝑻𝑖𝑖. An activity trace is represented as 𝑻𝑻𝑖𝑖 = [𝑎𝑎1
(𝑖𝑖), … ,𝑎𝑎𝑘𝑘

(𝑖𝑖)]𝑇𝑇, where 𝑎𝑎𝑗𝑗
(𝑖𝑖) is the

j-th activity (i.e., a well-defined step in the process) in the activity trace 𝑻𝑻𝑖𝑖 sorted by

activity start time, and k is the trace length (i.e., number of performed activities). In our

case, trauma resuscitation is treated as a process. A series of activities (e.g., airway

assessment, chest auscultation) are performed by the trauma team to stabilize and treat

injured patients. A process case corresponds to the record for each trauma resuscitation.

A workflow model 𝝀𝝀 represents a set of phases, steps, and activities performed during

a process and their dependencies. A process is defined as a series of activities to achieve a

particular goal, and a phase is defined as a sub-process that consists of steps needed to

achieve a sub-goal of the process (e.g., airway management in the primary survey). A

41

workflow model can be treated as a combination of several phases. Each phase can be

considered as a sub-model within the complete model. Each phase can also have sub-

phases (“steps”) of more granular goals. The workflow model can therefore be abstracted

as a hierarchical model 𝝀𝝀𝐻𝐻. A phase (or sub-model) 𝝀𝝀𝑖𝑖
(ℓ,𝑚𝑚) ∈ 𝝀𝝀𝐻𝐻 indicates the i-th model at

the ℓ-th level. 𝑚𝑚 indicates the index of the parent model at the (ℓ–1)-th level and is used to

represent the connection between the parent model (node) and children models. 𝑚𝑚 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

if the parent model does not exist. A data dictionary 𝒟𝒟 was created to map each activity

type to their respective process phase.

A fitting activity (i.e., an activity performed in conformance with the given workflow

model) is indicated as f. A process deviation d is a performed activity that is not conforming

to the model λ and can be classified as either an error of omission, error of commission or

scheduling error. An error of omission do is a skipped-but-necessary activity (e.g., failure

to assess pupils). An error of commission dc is an unnecessary (e.g., intubation without

indication) or repeated activity (e.g., several abdominal assessments). An error of

scheduling is an activity performed either before or after its predetermined order (e.g.,

confirming that the patient’s airway is secured before assessing mental status). A

scheduling error ds = {doo, doℓ} consists of: (1) an out-of-sequence activity doo that violates

the process procedural order, and (2) an original-location marker doℓ that indicates the

correct location in the activity trace where doo should have occurred.

We used three different fitness metrics to quantify the degree of agreement between the

target process element (e.g., an activity, process phase or the entire process) and the given

model, with values ranging from 0 to 1. These metrics were used in our analyses of process

deviations and for evaluating our deviation detection approach. Activity fitness 𝐹𝐹𝑎𝑎measures

the degree to which a particular activity type a deviates from the given model (Eq.4.1).

Phase fitness Fp measures the percentage of non-conforming activities within a process

(sub-)phase (Eq.4.1). Model fitness Fλ describes how well a model λ represents the

observed activity traces (Eq.4.1). The generic fitness measure is defined as:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1 −
|𝑺𝑺𝑑𝑑|

|𝑺𝑺𝑑𝑑| + �𝑺𝑺𝑓𝑓�
=

�𝑺𝑺𝑓𝑓�
|𝑺𝑺𝑑𝑑| + �𝑺𝑺𝑓𝑓�

 (4.1)

42

where S is the set of target process elements (e.g., in activity fitness 𝐹𝐹𝑎𝑎, S is the set of fitting

and deviant instances of activity type a), 𝑺𝑺𝑑𝑑 = {𝑥𝑥|𝑥𝑥 ∈ 𝑺𝑺 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) = 𝑑𝑑} is the set of

deviations and 𝑺𝑺𝑓𝑓 = {𝑥𝑥|𝑥𝑥 ∈ 𝑺𝑺 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) = 𝑓𝑓} is the set of fitting activities.

4.4 Deviation Detection Approach and System Description

To automatically identify deviations within the trauma resuscitation process, we first

developed a representation of a typical process execution (Figure 4.1). We tested extracting

workflow models automatically using workflow mining algorithms, but the discovered

models are “spaghetti-like” and difficult to interpret [20]. For this reason, medical experts

on our research team developed an initial trauma resuscitation workflow model. We then

collected video recordings of 95 trauma resuscitations at a level 1 pediatric trauma center

at the Children’s National Medical Center (CNMC) and derived activity traces for each.

We next applied an algorithm to evaluate the conformance between the workflow model

and the resuscitation activity traces. Because the workflow model was incomplete, a

fraction of the detected deviations represented false alarms. We then iteratively repaired

the initial model using resuscitation cases that were manually annotated with true

deviations. Using this approach, we developed an automatic deviation detection system

that can be applied to new trauma resuscitation cases. This study was approved by the

Institutional Review Board at the Children’s National Medical Center.

Figure 4.2. Hierarchical model of the trauma resuscitation workflow.

Airway Breathing Circulation Disability Head & Face Neck Chest Abdomen Extremities Back

Primary
Survey

Secondary
Survey

𝜆𝜆2
(2,1)

𝑙𝑙𝑙𝑙)

𝜆𝜆5
(3,2) 𝜆𝜆6

(3,2) 𝜆𝜆7
(3,2) 𝜆𝜆8

(3,2)

𝜆𝜆9
(3,2)

𝜆𝜆10
(3,2)

A Transition in Petri Net

A Place in Petri Net

43

4.4.1 Knowledge-Driven Model of the Trauma Resuscitation Workflow

We limited the scope of our model to assessment activities because diagnosis and treatment

during trauma resuscitation depend on the information that has been gathered through these

assessments. We built our model to describe a typical sequence of activities that constitute

the complete assessment during trauma resuscitation. The model was iteratively revised

until the medical experts reached a consensus about which activities to include and in what

order.

We built our workflow model λH as a three-level hierarchical structure based on medical

knowledge (Figure 4.2). The top level (Lvl 1) includes the root node, a single model 𝝀𝝀1
(1,1),

which is composed of two key phases of the resuscitation process: primary survey 𝝀𝝀1
(2,1)

and secondary survey 𝝀𝝀2
(2,2) at the second level (Lvl 2). Sub-phases (steps) at the bottom

level (Lvl 3) compose the process phases. The primary survey consists of airway 𝝀𝝀1
(3,1)

(assessing airway patency), breathing 𝝀𝝀2
(3,1) (assessing breath sounds and adequate

oxygenation), circulation 𝝀𝝀3
(3,1) (assessing extremity pulses and managing blood loss), and

disability 𝝀𝝀4
(3,1) (assessing neurological status). The secondary survey consists of a multi-

step, head-to-toe physical examination of the patient’s body (�𝝀𝝀5
(3,2), … ,𝝀𝝀10

(3,2)�,). The

bottom-level steps in Lvl 3 are the most granular components and include assessment

activities that provide diagnostic information and control activities that represent

conditional treatments based on the assessment outcome. For detecting deviations, we

omitted control activities from the model for two reasons. First, these activities are

conditional, making their occurrences often rare and challenging to study. Second,

detecting deviations associated with control activities requires considering findings from

the assessment activities and other context attributes (e.g., patient demographics or event

attributes), which is beyond the scope of this chapter. Despite this limitation, a model based

on assessment activities is sufficient for detecting deviations associated with adverse

outcomes because an incomplete assessment increases the likelihood of missed injuries

[62] or inappropriate treatments [48]. For example, an omitted or incomplete pupil

assessment could delay the recognition and management of a traumatic brain injury.

44

Omitting control activities has allowed us to build a model of the trauma resuscitation

workflow that applies to a range of patient attributes, regardless of treatments.

We included 42 assessment activity types out of 76 that were identified and coded using

video review (Figure 4.3). The omitted 34 activity types were either optional for some

patients or did not require any particular order for performance. For example, we excluded

five vital sign measurement activity types because these occur frequently and without a

specific order in the process. Three of these five activities (placement of the cardiac leads,

pulse oximeter, and blood pressure cuff) are often missing from the activity traces because

of occurrence before patient arrival. When building a workflow model for deviation

detection, the goal of capturing potentially harmful deviations needs to be balanced with

accommodating clinically permissible deviations. Within each bottom-level step (Lvl 3 in

Figure 4.2), bedside physicians can perform several assessment activity types. For

example, three assessment activities can occur during the breathing assessment: chest

visual inspection, airway visual inspection, and chest auscultation. Among these activities,

chest auscultation provides the most complete assessment of ventilation (breathing). For

this reason, we classified chest auscultation as a required activity and considered the other

two optional. We included only required activities in the model and omitted optional

assessment activities to avoid false-detection. Finally, our model considered only the

bedside physician role because this role is responsible for performing most assessment

activities.

The selected 42 activity types were ordered relative to each another based on the ATLS

guidelines. Assessment activities in the bottom-level (Lvl 3) process phases of the primary

survey were represented in parallel, meaning that their order is flexible. The order of sub-

phases (steps) for the secondary survey is defined less rigorously by the ATLS guidelines.

For this reason, we organized these activities within the model based on distinct body

regions that reflect a typical head-to-toe physical exam. The resulting workflow model of

the trauma resuscitation process allowed us to detect potentially high-risk deviations that

could negatively impact patient outcomes.

45

4.4.2 Trauma Resuscitation Activity Traces

We collected resuscitation activity traces over two time periods, August—December 2014

and April—October 2016. We performed selective sampling by including only the cases

with patients who were admitted to the hospital following the resuscitation, when errors

and error management were more likely to have an impact on patient outcome. During

these two data collection periods, 289 trauma resuscitations were followed by hospital

admission. Of these, 35 cases did not have a patient or caregiver consent and 159 cases

were unavailable for video review because of technical issues or because members of our

research team participated in the resuscitation. Our final dataset included 95 cases, of which

seven were triaged as highest acuity “trauma stat attending” level cases, 46 cases were

triaged as standard acuity “trauma stat” cases, and 42 cases were transfers from another

hospital.

46

Figure 4.3. Initial know

ledge-driven m
odel represented in Business Process M

odel and N
otation (BPM

N
) for 42

diagnostic activities perform
ed by the bedside physician before repairs w

ere m
ade to the m

odel. The bars under each

activity box represent the occurrences of m
odel gaps and true process errors based on 24 probing cases. The length of the

bars is norm
alized by the largest num

ber of occurrences (n=27) w
hich is, the num

ber of m
odel gaps for activity “V

isual

inspection-LLE”.

47

Our activity traces were obtained by manual video review and manual coding. Although

our research group is developing an automatic activity capture approach as part of a

different project, we and others have not yet implemented a strategy that is accurate enough

for obtaining activity logs required for this workflow analysis. Each activity trace contained

a set of activities performed during the resuscitation, the start and end times for each

activity, the role of the individual performing the activity, and a set of patient attributes.

Medical experts on our research team first created a data dictionary that defines over 260

resuscitation activities and their associations with each medical phase. For example, the

activity “chest auscultation” is labeled as “Chest auscultation-BA,” where BA represents

the process sub-phase (step) “breathing assessment.” The data dictionary also defines the

start and end time for each activity. For example, the start time for “chest auscultation” is

defined as the time when a stethoscope is placed on the patient’s chest to listen for breath

sounds and the end time as the time when a stethoscope is removed from chest. Using this

data dictionary, coders viewed videos and tracked team members throughout the

resuscitation, documenting activity performance and attributes relevant to their

performance (e.g., activity completion vs. incompletion or values obtained from the

activity). Patient attributes were obtained from the hospital’s trauma registry or through

medical chart review. The attributes included patient age, gender, triage level, mechanism

of injury, Injury Severity Score (ISS), Glasgow Coma Score (GCS), and whether or not the

patient was intubated. For the purposes of detecting process deviations, we excluded

patient attributes from our analysis and used only activity type, team role performing the

activity, and activity start and end times.

The final activity log contained 10,851 activities of 132 types. Among these activities,

5,659 were performed for assessment of the patient. These activities were performed by

bedside physicians, bedside nurses (left nurse, right nurse and charge nurse), or other team

roles (e.g., surgical coordinator, respiratory therapist). A junior resident or nurse

practitioner usually take the role of bedside physician, depending on provider availability.

When neither provider is present, this role may be taken by another team member,

including the surgical fellow or emergency medicine resident.

48

4.4.3 Conformance Checking Algorithm

The conformance checking algorithm [24] that we used is implemented in ProM [63] and

works by comparing the workflow model represented by Petri nets [21] with an activity

trace of the same workflow. The outputs of the algorithm are classified into either fitting

activities or process deviations of two types, errors of omission and errors of commission.

The standard conformance algorithm has two limitations. First, it is computationally

demanding [24]. When we applied the algorithm to our dataset using a typical desktop

computer configuration (Dell, Windows 10 OS, Intel Xeon 3.7GHz CPU, 48GB RAM),

processing exceeded available memory. Second, the standard conformance checking

algorithm detects only two types of process deviations—errors of commission and errors

of omission. Some activities, however, may be detected as omitted even when they occur

in the process but are out of sequence (i.e., errors of scheduling). These activities are then

detected by the algorithm as both a commission error (at the location where the activity

occurs) and an omission error (at the location where the activity should have occurred).

Our approach to deviation detection includes two novel improvements to the standard

algorithm that address these two limitations. First, to reduce computational complexity, we

developed a phase-based conformance checking algorithm which adopts a divide-and-

conquer strategy, in which a problem is split into manageable sub-problems. Our algorithm

(Alg.3.1) first decomposes long activity traces into computationally-manageable sub-

Algorithm 3.1. Phase-Based Conformance Checking (PCC) (illustrated in Figure 4)
Input: T, λH, 𝒟𝒟
Output: 𝑻𝑻𝑑𝑑
Step 1. Annotate activities in T with associated process-phase labels: 𝑻𝑻𝑝𝑝 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑻𝑻,𝒟𝒟);

Step 2. Align 𝑻𝑻𝑝𝑝 with process phases model (e.g., 𝝀𝝀1
(1,1)) to find the best split for sub-traces.

Let 𝛷𝛷 = {𝒕𝒕1, 𝒕𝒕2, … , 𝒕𝒕𝑟𝑟} denote the set of split sub-traces;
Step 3. for each 𝒕𝒕𝑖𝑖 in 𝛷𝛷:

Step 4. 𝒕𝒕𝑖𝑖
𝑑𝑑 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒕𝒕𝑖𝑖 ,𝝀𝝀𝑖𝑖

(𝑥𝑥,𝑦𝑦)), where 𝝀𝝀𝑖𝑖
(𝑥𝑥,𝑦𝑦) is the sub-phase model associated

with sub-trace 𝒕𝒕𝑖𝑖;
Step 5. for each activity 𝑎𝑎 in 𝒕𝒕𝑖𝑖𝑑𝑑:
Step 6. 𝑻𝑻𝑑𝑑 = 𝑻𝑻𝑑𝑑 ∪ {𝑎𝑎};
Step 7. 𝑻𝑻𝑑𝑑 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑻𝑻𝑑𝑑); /* Alg.3.2 */
Step 8. return 𝑻𝑻𝑑𝑑;

49

traces. Each sub-trace is associated with a process phase. Deviations are first discovered

locally in each sub-phase (step), and then reevaluated and combined globally. The

algorithm takes the activity trace T, hierarchical knowledge-driven model λH, and activity-

phase dictionary 𝒟𝒟 as inputs and then proceeds with a three-step computation (Alg.3.1,

Figure 4.5) : (1) decomposing an activity trace into sub-traces using a top-down approach

(Steps 1, 2); (2) using the standard algorithm, detecting deviations in each sub-trace

compared to the corresponding sub-workflow model (Steps 3, 4); and, (3) combining the

results using a bottom-up approach and detecting errors of scheduling (Steps 5-8). The

output is a new trace Td that contains the original activities labeled as either fitting {𝑓𝑓𝑖𝑖} or

non-conformant {𝑑𝑑𝑖𝑖𝑐𝑐, 𝑑𝑑𝑖𝑖𝑜𝑜, 𝑑𝑑𝑖𝑖𝑠𝑠}.

Figure 4.4. Visual representation of the phase-based conformance checking algorithm

(Alg. 3.1). The steps correspond to those in Alg. 3.1.

50

To address the second limitation, we designed a post-processing algorithm (Alg.3.2) to

detect scheduling errors among the errors classified as omissions and commissions. This

algorithm detects errors of scheduling by searching for an activity omission a at the correct

location relative to the workflow model and a commission of a at the wrong location.

4.4.4 Workflow Model Probing, Repair and Evaluation

To assess the extent to which this initial model reflected actual practice, we performed

model probing, manually marking any mismatches between the model and what was

observed in practice (i.e., activity traces) as deviations. Our goal was to develop a system

that would accurately identify true process errors (true alarms) while reducing the number

of false alarms and misses (i.e., true process errors identified as fitting activities). To our

knowledge, automated approaches to identifying true process errors from false alarms do

not exist. As a basis for this assessment and repair of our initial model, we created a ground

truth dataset by manually coding process deviations in 44 resuscitation cases (out of 95

total used in this study).

We divided the 44 cases into three groups: (1) 24 cases (25%) were used as probing

(training) traces to first identify true process deviations and then compare how many were

Algorithm 3.2. Detection of Scheduling Deviations from Errors of Commission and Omission
Input: 𝑻𝑻𝑑𝑑 /* Output trace from step 6 in Alg.3.1 labeled with only commissions 𝑑𝑑𝑐𝑐 and omissions
𝑑𝑑𝑜𝑜 */
Output: 𝑻𝑻𝑑𝑑 /* Trace T labeled with commissions 𝑑𝑑𝑐𝑐, omissions 𝑑𝑑𝑜𝑜 and scheduling deviations 𝑑𝑑𝑠𝑠 */
Step 1. Let deviation type set t={𝑑𝑑𝑐𝑐,𝑑𝑑𝑜𝑜}
Step 2. for each activity ai ∈ Td :
Step 3. if ai.deviationType ∈ t : /* if ai is commission or omission */
Step 4. t.remove(ai.deviationType); /* remove the ai’s deviation type from set t */
Step 5. for each aj ∈ Td s.t. i+1 ≤ j ≤ |Td| : /* check the following activities */
Step 6. if aj.deviationType ∈ t && aj.activityType.equals(ai.activityType) :
Step 7. if ai.deviationType.equals(𝑑𝑑𝑐𝑐) : /* if ai’s deviation is commission */
Step 8. ai.deviationType = 𝑑𝑑𝑜𝑜𝑜𝑜; /* assign ai out-of-sequence marker*/
Step 9. aj.deviationType = 𝑑𝑑𝑜𝑜𝑜𝑜; /* assign aj original-location marker*/
Step10. else /* if ai’s deviation is omission */
Step11. ai.deviationType = 𝑑𝑑𝑜𝑜𝑜𝑜;
Step12. aj.deviationType = 𝑑𝑑𝑜𝑜𝑜𝑜;
Step13. t.add(ai.deviationType); /* add ai’s deviation type back to set t */
Step14. return 𝑻𝑻𝑑𝑑;

51

successfully identified to inform system repairs; (2) 10 cases (11%) were used for

validating the repaired system and determining any further repairs; and (3) 10 cases (11%)

were used as testing traces to measure the performance of our deviation detection system.

We selected 24 probing traces and 10 validation traces out of 95 total cases based on

chronological order. To avoid sampling bias in selecting 10 testing traces, we first

calculated the similarity between the remaining 61 cases using the edit (Levenshtein)

distance [38]. We then clustered these 61 traces using a hierarchical clustering algorithm

and Ward’s method as the criterion [64]. The optimal number of clusters was two, as found

by both the Silhouette score and Calinski-Harabasz index [65]. Finally, we performed

random sampling from these two clusters, with the number of cases from each cluster being

proportional to cluster size (i.e., number of traces in the cluster). We reviewed the recorded

videos of 44 cases and manually annotated any process deviations perceived as potentially

having a direct or indirect adverse effect on patient outcomes. We then compared these true

process deviations to those detected by the algorithm during model probing and found that

the initial workflow model did not adequately represent the resuscitation workflow. This

result highlighted the notion that “work as imagined” is often different from “work as

done” [66]. All of the discrepancies from the previous chapter (Chapter 3) were also

captured by the new method (Chapter 4). More discrepancies were able to be discovered.

The reason is that in chapter 3, the discrepancies were extracted manually by comparing

the data-driven workflow model to the expert model. The data-driven workflow model

needs to be simplified so that people can understand. Some details were not included in the

simplified model. On the other hand, the new method (Chapter 4) can label and highlight

all the activities that deviate from the expert model. By checking the commonly deviant

activities and their context, we are able to uncover more insights and discrepancies between

work as imagined and work as done.

Most deviations detected by the algorithm were false alarms with an adverse effect on

patient outcomes being unlikely. We classified these false alarms and misses into three

categories based on their causes: gaps in the model, errors in coding of activity traces, and

algorithm limitations. After identifying these causes, we determined all possible repairs for

the initial model and categorized each as “repairable in the model” or “irreparable in the

model.” We addressed the repairable model gaps by manually updating the model (e.g.,

52

allowing multiple performances of activity a). To address irreparable model gaps, we

modified our coding strategies described in our data dictionary or the algorithm for

deviation detection (e.g., added post-processing steps, as described in Section 4.4.3).

4.5 Results: Deviation Detection and Analysis of Deviations

We first performed deviation detection in trauma resuscitation workflow using our system

before any repairs were made to the initial workflow model, conformance checking

algorithm, and coding strategies. We then repeated the deviation detection and analysis

process after implementing the model, algorithm and coding improvements to evaluate the

system.

4.5.1 Deviation Detection and Analysis Before System Repair

4.5.1.1 Initial Model Probing

We probed the initial workflow model by applying a standard conformance checking

algorithm to 24 probing traces with a total 1,099 activities of 42 types, discovering 573

Table 4-1. Deviations from the initial, knowledge-driven workflow model. Only

activities with activity fitness scores Fa < 0.5 are listed

Activity Sub-phase Fitting Omission Commission Scheduling Fitness

Log Roll-BK Back 1 23 0 0 0.04

L Visual inspection-Eye Head & Face 4 20 1 0 0.16

R Visual inspection- Eye Head & Face 5 19 0 0 0.21

L Visual inspection-Ear Head & Face 8 14 1 2 0.32

L Otoscopy-Ear Head & Face 8 13 0 3 0.33

Palpation-Neck Neck 9 5 10 2 0.35

Visual Inspection-Neck Neck 10 3 8 4 0.40

Visual Inspection-LLE UE & LE 23 1 27 0 0.45

Visual Inspection-G Abdomen 13 2 4 9 0.46

Palpation-Head Head & Face 22 2 22 0 0.48

C-spine-Back Back 15 4 7 5 0.48

Visual Inspection-Chest Chest 21 0 19 3 0.49
* Abbreviations: “G: genital”, “L: left”, “LLE: left lower extremity”, “R: right”, “UE & LE: upper extremities and lower

extremities”.

53

deviations, on average 23.9 deviations per case. Experts observed that 73% (n=418) of

these deviations were false alarms, with only 27% (155) being true alarms. Among these

false alarms, 78.5% (n=328) represented gaps in the model (e.g., acceptable repetition of

visual chest inspection), 13.9% (n=58) were errors in the manual coding of activity traces

(e.g., visual inspection of the patient’s back was performed but not coded), and 7.7%

(n=32) were due to algorithm limitations (e.g., algorithm could not clearly determine the

correct sequence of performance). In addition, the system missed 13 true process

deviations, including two model gaps, four coding errors, and seven algorithm limitations.

Deviation detection accuracy was only 66.6% with 0.42 𝐹𝐹1-score (precision 0.27 and recall

0.92). This high recall and low precision results showed that the initial deviation detection

system uncovered most process deviations (i.e., few misses) but also incorrectly labeled

many activities as deviations (i.e., many false alarms).

The initial model probing showed that process deviations accounted for about half of

the occurrences of each activity (Figure 4.3). The overall model fitness (Fλ) of 24 probing

traces was 0.56. This low score showed that 44% of the activities deviated from the model.

Errors of commission were more frequent than errors of omission and scheduling,

especially during the Extremities assessment phase. Errors of omission were often observed

during the Head and Neck assessment phase. The mean activity fitness score for all 42

activity types was 0.54 ± 0.18 (range 0 to 1). We further analyzed the 12 activities that had

very low fitness scores (Fa < 0.5,) for potential causes of deviations (Table 4-1, Figure

4.3). For example, the conformance checking showed that the log roll activity (a maneuver

used to move the patient for back assessment, coded as “log roll-back”) fit with initial

model only once, and was omitted in 23 out of 24 cases. Using video review, however, we

observed that the log roll was performed in 20 out of 23 cases. The reason for this

discrepancy was that this activity was not labeled for analysis in the 23 cases because of

being performed by bedside nurses and not by a bedside physician, as assumed by the

algorithm. Our initial model did not include the activities of other medical roles because

their workflows are less structured and depend on patient conditions. We therefore

classified this deviation as a model gap.

We observed both true process errors and model gaps for most activities (Figure 4.3),

which led to our assumption that the occurrence of process errors is associated with the

54

gaps in our model. We hypothesized that modeling a complex workflow such as trauma

resuscitation may be more challenging at places where medical teams make more errors.

To test this hypothesis, we calculated the correlation between the number of model gaps

and the number of true process errors associated with each activity, resulting in a Pearson

correlation efficient r = -0.30 (p-value = 0.06) and Spearman correlation efficient r = -0.23

(p-value = 0.14). These results showed no significant correlation between the occurrence

of process errors and model gaps, suggesting that the challenges in modeling a complex

workflow are not associated with the occurrence of deviations. The true causes of false

alarms are often found in the approaches to modeling and in the actual process of modeling.

4.5.1.2 Analysis of Process Deviations Detected as False Alarms

We identified three causes of false alarms: gaps in the model, errors due to manual coding

of the activity traces, and errors attributed to algorithm limitations.

False Alarms due to Gaps in the Model

We identified three types of model gaps and repaired them as needed. First, when creating

the initial knowledge-driven model (𝜆𝜆0), medical experts relied on their knowledge and

expertise, but still found it challenging to specify an exhaustive list of steps for a complex

workflow such as trauma resuscitation. Expert review of deviations detected in the 24

probing cases allowed us to identify the required areas of model flexibility that better

represented the process. Our model now includes repeated occurrences of activities in the

same body region. Second, although the initial model focused on the work of bedside

physicians, other medical roles (e.g., bedside nurses) performed some activities when

situations allowed. For example, bedside nurses often assessed the left pupil (“left

otoscopy-ear”) to avoid the need for the bedside physician to move to the other side of the

bed. The model was therefore repaired to account for assessment activities performed by

all providers to avoid labeling those activities as omissions. Third, some activities in the

model are marked as optional if performed in advance. For instance, visual inspection of

eyes in the secondary survey becomes optional if the pupils were previously checked in the

primary survey. This conditional logic is difficult to express using Petri nets. Although two

parallel branches can be created to represent these conditions, this approach is impractical

because it increases the complexity of the model and deviation detection. We addressed

55

this problem by considering irreparable model gaps as rule-based constraints associated

with the model at the post-processing step.

False Alarms due to Errors in Manual Coding of the Activity Traces

The manual data coding of activity traces was not only labor-intensive, but also prone to

coding errors. The initial system returned 58 false alarms (2.4/case) related to coding

errors. Most coding errors were more than just clerical errors. We analyzed frequently

miscoded activities and found that most of the errors were due to different interpretations

between coders. For example, using video review only, it was challenging to determine the

exact body parts being observed by providers during visual body inspection. Other

disagreements were due to both ambiguous interpretations of anatomical regions (e.g., how

to code for a person’s flank that can be interpreted as the abdomen or back) and subjective

interpretations (e.g., whether the provider looked at or touched a body part). We used two

strategies to improve our ground-truth data coding. First, we revised the data dictionary to

provide clearer definitions of easily miscoded activities. Second, to reduce individual coder

bias and disagreements between different coders, different coders analyzed the same

sample cases (10% of all cases) to assess inter-rater reliability. We observed an excellent

inter-rater reliability— Pearson correlation coefficient 0.99 for time-to-activity variables

and Kappa statistic 0.89 for binary variables. Although these strategies reduced the number

of coding errors, this class of errors cannot be completely eliminated because of

subjectivity associated with manual coding.

False Alarms Attributed to the Algorithm Limitations

Our deviation detection algorithm cannot avoid all errors, as processes are inherently

ambiguous. For example, in a five-activity trace T={𝑎𝑎4,𝑎𝑎5,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3}, where activities

𝑎𝑎1,𝑎𝑎2 and 𝑎𝑎3 were performed late based on the expert opinion, the algorithm may identify

activities 𝑎𝑎4 and 𝑎𝑎5 as deviations (i.e., early performance) to minimize the penalty of

mismatches. In another example with a five-activity trace T={𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎3,𝑎𝑎4 }, the

medical expert labeled the first 𝑎𝑎3 as an erroneous performance and the second 𝑎𝑎3 as the

fitting activity, while our algorithm labeled the second 𝑎𝑎3 as an error of commission. In

both examples, our algorithm made different predictions from the ground truth. In the first

example, determining whether an activity is performed early or late can be subjective

56

because it depends on the observer’s reference. Although humans tend to label activities as

late, computers may choose to label these activities as early to minimize the global penalty.

In the second example, the erroneous performance of an activity represented additional

information that was not coded in the original ground truth data and was therefore omitted

from the deviation detection algorithm. We addressed most of the algorithm limitations by

performing additional model modification and adding a post-processing step (Alg.3.2).

Table 4-2. Confusion matrices for 24 probing, 10 validating and 10 testing traces.
24 Probing Traces

 Predicted as deviation Predicted as non-deviation

True deviation 155 13
Model 2

Recall: 0.92 Coding 4
Algorithm 7

Non-deviation 418
Model 328

705 Coding 58
Algorithm 32

 Precision: 0.27 Accuracy: 66.6%
F1-Score: 0.42

10 Validating Traces

 Predicted as deviation Predicted as non-deviation

True deviation 85 15
Model 0

Recall: 0.85 Coding 9
Algorithm 6

Non-deviation 16
Model 1

526 Coding 12
Algorithm 3

 Precision: 0.84 Accuracy: 95.5%
F1-Score: 0.85

10 Testing Traces

 Predicted as deviation Predicted as non-deviation

True deviation 139 5
Model 4

Recall: 0.97 Coding 1
Algorithm 0

Non-deviation 8
Model 0

522 Coding 2
Algorithm 6

 Precision: 0.95 Accuracy: 98.5%
F1-Score: 0.96

57

4.5.2 Deviation Detection After System Repair: Validation and Testing

After completing the system repairs (i.e., addressing the model gaps and improving the

coding strategies and deviation detection algorithm), we used ten cases with a total of 621

activities to validate the system. The repaired system detected 541 conformant activities

and 101 deviations (10.1 per case). Among these 101 deviations, 56.4% (57) were errors

of commission, 20.8% (21) were errors of omission and 22.8% (23) were scheduling errors.

Using manual review, we found that 85 detected deviations were correctly labeled,

representing “true alarms,” and 16 deviations were identified as false alarms (Table 4-2) ,

yielding a precision of 0.84. Among these 16 false alarms, 12 were due to coding errors,

three were due to the algorithm limitations and only one was attributed to the gaps in the

repaired model. In addition, the system missed 15 deviations, including nine errors due to

coding issues and six due to algorithm limitations, yielding a recall of 0.85. The repaired

system had 95.2% accuracy on the ten validation traces with an 𝐹𝐹1-score of 0.85. This result

represented a significant improvement over the probing results. Although some coding and

algorithm errors are difficult to avoid, model gaps continued to occur because of the need

to balance the accuracy and complexity of the model. Introducing more patient-condition

dependent branches into the model might produce a more accurate model, but its generality

would decrease while increasing complexity.

Finally, our experimental results on ten testing cases with a total of 641 activities

showed a 𝐹𝐹1-score of 0.96 and an accuracy of 98.5%. Compared to the validation results,

the higher accuracy was due to the increased number of true alarms and decreased number

of false alarms and misses. We also observed fewer coding errors among the false alarms

and misses, which contributed to the increased system accuracy. We did not observe

significant changes in the number of model gaps and algorithm issues.

4.5.3 Analysis of Process Deviations Detected with the Repaired System

We applied the repaired system to all 95 cases that included 5,659 activities, finding 4,893

fitting activities, 294 errors of omission, 538 errors of commission, and 228 scheduling

errors (an average of 11.2 deviations per resuscitation case). These 95 cases included the

24 probing cases, 10 validation cases and 10 testing cases from the previous stages of

58

system development. While re-using probing (training) cases for the evaluation of

predictive models is not appropriate, reusing data for the explanatory purposes is an

acceptable practice [42]. The probing cases were initially used to detect any gaps in our

knowledge-driven workflow model. These gaps were then manually analyzed and the

model was repaired where appropriate. The repaired model may be biased because repairs

were made based on the probing cases, possibly missing the gaps that would be exposed in

the unseen cases. This issue can only be addressed by obtaining the ground truth data (i.e.,

manual data coding) for all 95 cases, a task that is labor-intensive and impractical.

The overall model fitness (Fλ) of 95 traces was 0.82. Activity fitness scores (Fa) ranged

from 0.49 to 1.00 (Table 4-3). The activity “visual inspection-genital” had the lowest

fitness score of 0.49 due to errors of omission observed in 22 cases and scheduling errors

in 25 cases. The overall mean activity fitness score was 0.80 ± 0.12 (Table 4-3). We found

an uneven distribution of detected deviations across process sub-phases (Figure 4.5).

Although the Airway phase in the primary survey had only 11 deviations (Fp = 0.93), the

Head & Face phase in the secondary survey had 281 deviations, including 133

commissions, 84 omissions and 64 scheduling errors (𝐹𝐹𝑝𝑝 = 0.80). The Chest and Abdomen

Figure 4.5. Distribution of detected deviations during process sub-phases (steps) for all 95

cases after the system repair.

154

92

180

298

1.1e+03

170
209

367

1.44e+03

686

3
21 33

6

133

47
76

98 87

34
6 2 11

32

84

25 12
36 36 50

2 3 10 12

64

2 10

56 52
17

Airway Breathing Circulation Disability Head & Face Neck Chest Abdomen Extremities Back

Phases

0

100

200

300

400

500

1000

1500

C
ou

nt

Fitting

Commision

Omission

Scheduling

59

phases in the secondary survey had fewer total deviations (98 and 190 deviations,

respectively, Figure 4.5), but also ower phase-fitness scores (0.68 and 0.66, respectively).

A possible explanation for this result is that the secondary survey allows for more

flexibility in the order of activity performance.

Our analysis and expert video review of the 1,060 detected deviations showed that errors

of commission were mostly due to reassessments. These errors were most common in the

Chest and Abdomen phases of the secondary survey (Figure 4.5). Seventy-six errors of

commission occurred in the Chest phase, leading to a decrease in the phase fitness score,

ΔFp = –0.23, from 0.91 to 0.68. Ninety-eight errors of commission occurred in Abdomen

phase, ΔFp = –0.14, from 0.8 to 0.66. Several reasons may explain the need for

reassessments. First, the bedside physician and other medical team members perform rapid

evaluation and often need to confirm the initial findings by reassessing the patient. Second,

reassessment may also be needed when the patient presents with new symptoms. Finally,

examination results are reported verbally and can often be missed or misheard, requiring

team members to obtain new findings by reassessing the patient.

Errors of omission were most common for the rectal and genitalia assessments (Table

4-3), especially when an injury to these body areas was unlikely. The pelvis stability exam

and Glasgow Coma Score (GCS) verbalization were omitted in 14 (ΔFa = –0.11) and 13

(ΔFa = –0.13) in activity fitness) cases, respectively (Table 4-3). Ten of the cases that

lacked the pelvis stability exam involved patients transferred from another hospital. For

transfer patients, the trauma team usually follows an expedited protocol that focuses on the

most critical injuries for which the patient was transferred. In addition, a junior resident

was the bedside physician in eleven of these cases, suggesting that some omissions could

also be due to inexperience. Video review did not show any other reasons that could explain

why this examination was skipped. Although our ground truth coding showed that GCS

exams were omitted in 13 cases, subsequent video review found that the teams performed

this exam in two cases, but did not verbally reported the findings, which classified these

activities incomplete. Among the remaining 11 cases in which GCS was not calculated, six

involved transfer patients, three of which arrived without prior notification, and the other

five cases involved three patients who arrived with prior notification and two with no prior

notification. Finally, nine of the 13 cases involved patients with head injuries, suggesting

60

that these omissions were not permissible and could have led to adverse patient outcomes.

Three reasons may explain why the GCS exam was omitted. First, all of the patients were

alert, awake, and oriented, potentially making it obvious that the GCS was normal. In

several videos, the patients were visibly upset and uncooperative with the provider. When

this happened, the team leader often instructed the bedside physician to move on with the

exam, skipping the GCS calculation.

4.6 Discussion and Conclusions

In this chapter, we introduced an approach and a system for automatic detection of process

deviations in trauma resuscitation. This approach provides a method for identifying

repeated, omitted and out-of-sequence activities that can be included in the design of

decision support systems for complex medical processes. Our results have implications for

three areas of research: (a) workflow modeling, (b) conformance checking, and (c) process

deviation analysis in complex medical workflows.

To identify deviations within the resuscitation workflow in an efficient and unbiased

way, we first developed a representation of the typical execution of the process using a top-

down, knowledge-driven workflow modeling approach. Clinical workflow in the

resuscitation setting is highly dynamic, context-sensitive, and knowledge-intensive.

Although essential assessment activities are needed for every patient, the team must also

select additional assessment and treatment activities based on contextual information

relevant to a specific patient (e.g., fluid administration in the presence of signs of

hemorrhagic shock). This complex and dynamic nature of the resuscitation workflow

makes its modeling a challenge. In our study, we treated ATLS as a set of guidelines that

assists with the management of injured patients rather than a protocol that precisely defines

this management. Variations in the clinical setting may require a deviation from these

guidelines to ensure the best care. In viewing the ATLS as a guideline, we allow the team

to make decisions based on their experience and expertise. This flexibility allows

adjustment to complex and dynamic circumstances.

Our initial model underwent several revisions until the medical experts reached a

consensus about which medical activities to include and in which order. Our preliminary

analysis with 24 trauma resuscitation cases using conformance checking, however, found

61

discrepancies between the model and actual practice, showing that our initial model could

not fully represent the resuscitation process. These results were significant because they

identified false alarms that were triggered by an incomplete model, allowing us to

effectively repair the model. The repairs were also iterative and informed by detailed

analyses of both true and false deviations. During this study, we made several major model

repairs, most of which involved manual updates to the model to include permissible

deviations, allow for repeated occurrences of activities, or recognize more than one role as

responsible for activity performance. Other model repairs were related to algorithm failures

or errors in manual coding of the activity traces, and were addressed accordingly. These

results highlight the importance of building accurate and complete workflow models

because discrepancies between the model (“work as imagined”) and actual practice (“work

as done”) can also affect the accuracy and effectiveness of the automatic deviation

detection. Our results also show that models can serve to discover associations between

process deviations and the occurrence of major errors that are associated with a higher

likelihood of adverse outcomes.

Our study has three major limitations. First, we focused on assessment activities

performed by the bedside physician because these activities are required for every patient.

We did not include any treatment or control activities because these are conditional (i.e.,

performed based on the outcome of assessment activities) or sparse, requiring a more

complex model than for assessment activities. Our future work will focus on modeling

control activities and using those models for further deviation detection. Second, we only

considered three types of deviations related to the activity sequence: errors of omission,

errors of commission, and scheduling errors. Other types of deviations exist but cannot be

detected with our current system. For example, we did not analyze deviations that violate

time constraints (e.g., blood pressure and heart rate need to be measured within the initial

two minutes), deviations in decisions (e.g., whether the patient should be intubated or

requires intravenous fluid), or deviations related to activity performance (e.g., incomplete

evaluation of patient’s airway or evaluation performed using an incorrect instrument). A

more elaborate workflow model, or even a multi-model system, that represents these

additional attributes is needed to detect these deviations. Finally, in this work, we focused

62

on detecting process deviations and did not analyze the correlation between context

attributes (e.g., patient demographics) and process deviations.

Existing conformance checking algorithms fail for workflows with multiple activities

and concurrency because of computational complexity. To address this limitation, we

developed a novel phase-based conformance checking algorithm and our results on testing

cases showed a detection accuracy of 98.5%. Our approach to automatic deviation

detection using activity traces and conformance checking also allowed us to characterize

the detected deviations as either tolerable variability or harmful errors. Given the overlap

of resuscitation activities and steps with those in other critical care settings, our approach

can be used to facilitate the retrospective analysis of critical care workflows that can be

scaled to large numbers of sessions, as well as the development of novel runtime

approaches for reducing mitigating the impact of human errors.

63

Table 4-3. Deviation detection results for 95 cases after the system repair
Activity Fitting Omission Commission Scheduling Activity Fitness Sub-phase/Step
Visual Inspection-G 52 22 7 25 0.49 Abdomen
L Visual inspection-Ear 29 8 10 0 0.62 Head & Face
L Otoscopy-Ear 63 9 3 26 0.62 Head & Face
Visual Inspection-Neck 86 19 33 0 0.62 Neck
R Visual inspection-Eye 19 4 7 0 0.63 Head & Face
R Visual inspection-Ear 30 7 10 0 0.64 Head & Face
L Visual inspection-Eye 18 4 6 0 0.64 Head & Face
Visual Inspection-Chest 108 3 45 6 0.67 Chest
Rectal-Back 72 30 3 1 0.68 Back
Visual Inspection-A 121 0 49 8 0.68 Abdomen
Palpation-Chest 101 9 31 4 0.70 Chest
R Otoscopy-Ear 75 8 4 20 0.70 Head & Face
Stability-PE 75 14 3 14 0.71 Abdomen
Palpation-A 119 0 39 9 0.71 Abdomen
L DP/PT-PC 85 11 13 9 0.72 Circulation
Visual inspection-Mouth 83 13 7 7 0.75 Head & Face
C-spine-Back 99 11 6 13 0.77 Back
Visual Inspection-RUE 139 6 23 14 0.76 UE & LE
Chest auscultation-BA 92 2 21 3 0.78 Breath
Visual inspection-Face 147 6 32 3 0.78 Head & Face
Palpation-Face 129 6 27 3 0.78 Head & Face
Palpation-RUE 147 6 21 13 0.79 UE & LE
Palpation-Neck 84 6 14 2 0.79 Neck
Visual inspection-Nose 85 12 2 5 0.82 Head & Face
Visual Inspection-LUE 136 9 9 12 0.82 UE & LE
Palpation-LUE 130 10 5 13 0.82 UE & LE
R DP/PT-PC 95 0 20 1 0.82 Circulation
Total Verbalized-GCS 81 13 2 2 0.83 Disability
Log Roll-Back 89 4 8 2 0.86 Back
Left pupil-PU 103 9 2 5 0.87 Disability
Right pupil-PU 114 10 2 5 0.87 Disability
Visual Assessment-AA 88 6 2 1 0.91 Airway
Palpation-Head 201 4 13 0 0.92 Head & Face
Visual Inspection-Back 137 1 10 0 0.93 Back
Visual inspection-Head 224 3 12 0 0.94 Head & Face
Visual Inspection-LLE 228 2 9 0 0.95 UE & LE
T-spine-Back 155 2 4 1 0.96 Back
L-spine-Back 134 2 3 0 0.96 Back
Visual Inspection-RLE 236 1 8 0 0.96 UE & LE
Palpation-LLE 218 1 7 0 0.96 UE & LE
Verbal Assessment-AA 66 0 1 1 0.97 Airway
Palpation-RLE 210 1 5 0 0.97 UE & LE
Patient arrival 95 0 0 0 1.00 N/A
Patient departure 95 0 0 0 1.00 N/A

Sum 4893 294 538 228 0.80 0

* Abbreviations: “A: abdomen”, “AA: airway assessment”, “BA: breathing assessment”, “DP/PT-PC: dorsalis pedis/posterior

tibial pulse”, “G: genital”, “GCS: Glasgow Coma Scale”, “L: left”, “LLE: left lower extremity”, “LUE: left upper extremity”, “PE:
pelvic”, “PU: pupil”, “R: right”, “RLE: right lower extremity”, “RUE: right upper extremity”, “UE & LE: upper extremities and
lower extremities”.

64

Chapter 5

Process Mining the Trauma Resuscitation Patient Cohorts

This chapter on Process Mining the Trauma Resuscitation Patient Cohorts is based on our

paper. In this study, we present a framework for analyzing associations between patient

cohorts and the trauma resuscitation procedures their patients received. Our framework

works by quantifying associations between discovered patient cohorts and treatment

patterns. We evaluated our framework on a trauma resuscitation dataset collected in a level

1 trauma center. Our experimental results show that using weights learned by our algorithm

improves measurements of patient similarity. Four patient cohorts were then found via

clustering, and statistically significant resuscitation patterns were discovered using process

mining techniques. Though only tested on the trauma resuscitation process, our framework

can be generalized to analyze other medical processes.

5.1 Introduction

In medical research, patient cohort analysis is widely used to make clinical discoveries [67]

[68][69]. A patient cohort is defined as a group of patients who share similar context

attributes. Taking trauma resuscitation as an example, the trauma patients of a same cohort

are sharing similar attributes like demographics (e.g., age, gender, ethnicity, insurance and

medical history), injury information (e.g., injury type, injury severity and injury area), and

trauma attributes (e.g., day vs. night shift, trauma activation level and pre-arrival

notification). In traditional pipeline of patient cohort analysis, medical analysts [68][70]

study patient cohorts by defining the cohorts according to the targeted attributes defined

by medical experts. Other context attributes were considered as confounding and ignored

in the study. The limitation of doing so is that their studies mostly reveal the expected

results within the cohorts they are familiar with. The studies were very well oriented by

their domain knowledge so that they were likely to miss the cohorts and findings they were

not familiar with.

65

Process mining [18] is another analysis that has been recently applied in medical domain

on medical process analysis. It has been used to discover medical process models, measure

the compliance of process executions with expert models [59] and analyze medical process

deviations [55]. Existing process mining research [18] however, mostly mines knowledge

from an entire dataset of a process without studying the differences among the subsets of

the process cases.

In this chapter, we present a framework for medical process data analytics by combining

both process mining and patient cohort analysis. Our medical process data includes two

parts of information: process activity logs (e.g., trauma resuscitation executions) and

context attributes (e.g., patient demographics) associated with each process cases. Our

framework works in three steps. First, it applies data exploration methods on patient

attributes to find data-driven cohorts. Second, it discovers process patterns (e.g., treatment

patterns) from activity logs using process mining techniques. Third, it tests the significance

of the correlations between process patterns and patient cohorts.

We applied our framework to a real-world medical process, i.e., trauma resuscitation.

Trauma resuscitation is a fast-paced process, where multidisciplinary teams need to rapidly

identify and treat potentially life-threatening injuries. Analysis of the correlation between

their treatment executions and patient cohorts can potentially improve their understanding

of their behaviors and hopefully improve patient outcomes.

Our contributions in this study are:

• A framework for discovering and analyzing the associations between trauma patient

cohorts and trauma resuscitation procedures. Our framework is easy to implement and

can be used for analyzing processes with event (or activity) logs and external context

attributes.

• A practical algorithm and experimental procedure to learn the weighted importance of

attributes with little human intervention. Unit weights are usually assigned to attributes

when calculating data similarity for clustering, as the actual significance of each

attribute is unknown. In this study, we designed an experiment to very efficiently

acquire medical experts’ input to supplement attribute weight learning.

66

• An analysis of statistically significant correlations between context attributes

(aggregated as patient cohorts) and discovered medical treatment patterns in a real-

world dataset of 123 trauma patients.

5.2 Patient Cohort Discovery and Analysis

In this section, we described the core techniques used in attribute weight learning, patient

cohort discovery, process mining and statistical analytics. We learnt the attribute weights

with the goal to decide the importance of different context attributes. In this way, we could

find more accurate patient cohorts through clustering algorithms. We then mined the

treatment patterns within each patient cohorts and analyzed them with statistical methods.

5.2.1 Data Description and Formalization

One hundred and twenty-three trauma resuscitation videos were collected from trauma bay

of Children’s National Medical Center, Washington DC. The videos were reviewed jointly

by a surgeon with Advanced Trauma Life Support (ATLS) [46] certification and trauma

clinical nurse specialists to identify the activity traces (Table 5-1 (a)). A total of 7154 main

activities of 44 types were selected in this study. Twenty-six context attributes were

Table 5-1. Activity trace (a), context attributes (b), data statistics (c) and data formalization

(d).

Case ID Activity Start Time End Time
xx1 Pt arrival 0:00:00 0:00:01
xx1 Visual assessment-AA 0:00:45 0:00:52
xx1 Chest Auscultation-BA 0:00:55 0:00:58
xx1 R DP/PT-PC 0:01:04 0:01:05
xx1 Total Verbalized-GCS 0:01:29 0:01:30
xx1 Total Verbalized-GCS 0:01:50 0:01:51
xx1 Right pupil-PU 0:02:12 0:02:18
xx1 Left pupil-PU 0:02:19 0:02:24
xx1 Right pupil-PU 0:02:24 0:02:25
xx1 Visual inspection-H 0:02:33 0:02:34
xx1 Palpation-H 0:02:33 0:02:37

Case ID xxx1 xxx2
Age category 24-96 24-96
Sex Male Female
Night Shift 0 1
Weekend 0 0
Pre-arrivalNotification 1 0
Trauma Activation Level Transfer Attending
Intubation 0 0
Glasgow Coma Score >13 1 0
Injury Type Blunt Penetrating
Injury Severity Score 5 12
Neck Injury Severity Score 3 5

(a) Trauma resuscitation trace (b) Context attributes

𝑖𝑖𝑖𝑖(1)

…

𝑥𝑥1
(1) , … , 𝑥𝑥𝑔𝑔

(1)

ID Ext. Attributes Resus. Traces

𝑖𝑖𝑖𝑖(2)

𝑖𝑖𝑖𝑖(𝑒𝑒)

𝑥𝑥1
(2) , … , 𝑥𝑥𝑔𝑔

(2)

𝑥𝑥1
(𝑒𝑒) , … , 𝑥𝑥𝑔𝑔

(𝑒𝑒)

…

𝑎𝑎1
(1), … , 𝑎𝑎𝑘𝑘

(1)

𝑎𝑎1
(2), … , 𝑎𝑎𝑘𝑘

(2)

𝑎𝑎1
(𝑒𝑒) , … , 𝑎𝑎𝑘𝑘

(𝑒𝑒)

…

(d) Data formalization

Properties Stats
Num. Cases (or Patients) 123
Num. Total Activities 7154
Num. Activity Types 44
Num. External Attributes 26
Data Collection Time Period 2014.08 – 2016.12
Size of Medical Team [7, 12]
Longest Trace (Num. Acts.) 110
Shortest Trace (Num. Acts.) 26
Avg. Num. Acts. in Traces 58.6

(c) Data statistics

67

collected from the trauma database or from medical chart review, including patient age,

gender, trauma activation level, mechanism of injury (penetrating, blunt, burn, etc.), date

and time of patient arrival, Injury Severity Score (ISS), Glasgow Coma Score (GCS),

intubation status, and Abbreviated Injury Scale (AIS) (Table 5-1 (b)). The collection and

use of the data for this study were approved by the Institutional Review Board at our

hospital.

Here we first define the terms and notations used later. The process log 𝑳𝑳 =

[𝑐𝑐(1), … , 𝑐𝑐(𝑙𝑙)]𝑇𝑇 is a vector of elements 𝑐𝑐(𝑖𝑖) . Each 𝑐𝑐(𝑖𝑖) = {𝑖𝑖𝑖𝑖(𝑖𝑖),𝒙𝒙(𝑖𝑖),𝑻𝑻(𝑖𝑖)} (Table 5-1 (d))

represents a unique case, which is indexed with a unique case id, contains the activity trace

𝑻𝑻(𝑖𝑖), and has a vector 𝒙𝒙(𝑖𝑖) of context attributes. An activity trace is 𝑻𝑻(𝑖𝑖) = [𝑎𝑎1
(𝑖𝑖), … ,𝑎𝑎𝑚𝑚

(𝑖𝑖)]𝑇𝑇,

where m total activities a are ordered by activity start time. Traces of different executions

may have varying lengths because complex processes may contain optional, omitted, or

even erroneously performed activities. Context attributes 𝒙𝒙(𝑖𝑖) = [𝑥𝑥1
(𝑖𝑖), … , 𝑥𝑥𝑛𝑛

(𝑖𝑖)]𝑇𝑇 is a

vector of 𝑛𝑛 recorded patient demographics (e.g., age, gender, ethnicity, insurance and

medical history), injury information (e.g., injury type, injury severity and injury area), and

trauma attributes (e.g., day vs. night shift, trauma activation level and pre-arrival

notification).

5.2.2 Attribute Weight Learning

In our framework, the patient cohort is decided by unsupervised clustering algorithms. The

clustering performance is highly associated with the attributes used. The discovered patient

cohorts may be meaningless if irrelevant or unimportant attributes are used. Without any

prior knowledge, the attribute weights are mostly set as unit weights (i.e., any attribute has

the same weight as one). With domain knowledge available, it is possible to obtain the

attribute weights by asking medical experts to provide a score (e.g., in the scale of 0 – 10)

for each attribute. This approach however can be challenging in practice. We tried this

method in our study by asking the medical experts in our team to decide a dictionary of

attribute weights. Our medical experts later gave us the feedback that they would prefer to

use unit weights rather than decide a set of subjective weights. In addition, even if the

medical experts were able to provide a set of weights, it is likely that the study is again

68

guided and dominated by the domain knowledge, leading to an “expected” result. Hence

we designed a simple experiment to collect medical decisions and developed a learning

algorithm for learning attribute weights.

Our experiment used 41 sets (denoted as S) of three patients (e.g., Patient A, B, C in

Table 5-2) drawn randomly from the trauma resuscitation dataset without replacement. A

surgeon was asked to decide the most similar one among three pairs of patients, (A, B), (A,

C) and (B, C), based on their context attributes only. They used their domain knowledge

to judge how important the differences of attributes were, and to decide which pair of

patients is more likely to be in the same cohort than others. In our example (Patient A, B,

C in Table 5-2), our medical expert labelled patient pair (B, C) as the one that is most likely

to be observed in the same cohort. This experiment is simple because it does not need much

human effort and each decision in the experiment can be made easily. We then used these

labeled results (denoted as PDr) as the input of our attribute learning algorithm (Alg.5.1).

Our learning algorithm was designed with the core idea that by adjusting the weights of

context attributes, we can increase the classification accuracy (i.e., deciding which pair of

Algorithm 5.1. Patient Attribute Weighting
Input: N random drawn sets 𝑺𝑺; labels from medical expert 𝑷𝑷𝐷𝐷𝐷𝐷
Output: Learnt Attribute weights 𝒘𝒘
Step 1. Initialize 𝒘𝒘 ∈ ℝ1×𝑛𝑛, and 𝒂𝒂𝒂𝒂𝒂𝒂 ∈ ℝ1×2𝑛𝑛 as vectors of zeros
Step 2. do
Step 3. for each weight 𝑤𝑤𝑖𝑖 ∈ 𝒘𝒘, do
Step 4. 𝑤𝑤𝑖𝑖++
Step 5. Calculate the most similar pair in each set of 𝑺𝑺, denoted as 𝑷𝑷𝑠𝑠
Step 6. Calculate 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 (𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 ∈ 𝒂𝒂𝒂𝒂𝒂𝒂) based on 𝑷𝑷𝐷𝐷𝐷𝐷 and 𝑷𝑷𝑠𝑠
Step 7. 𝑤𝑤𝑖𝑖--
Step 8. end for
Step 9. for each 𝑤𝑤𝑖𝑖 ∈ 𝒘𝒘, do
Step10. 𝑤𝑤𝑖𝑖--
Step11. if 𝑤𝑤𝑖𝑖 < 0, 𝑤𝑤𝑖𝑖++, continue
Step12. Calculate the most similar pair in each set of 𝑺𝑺, denoted as 𝑷𝑷𝑠𝑠
Step13. Calculate 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛+𝑖𝑖 based on 𝑷𝑷𝐷𝐷𝐷𝐷 and 𝑷𝑷𝑠𝑠
Step14. 𝑤𝑤𝑖𝑖++
Step15. end for
Step16. 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = max (𝑎𝑎𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑎𝑎2, … , 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 ,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛+1, … ,𝑎𝑎𝑎𝑎𝑎𝑎2𝑛𝑛), and let 𝛼𝛼 be the number of maximum values.
Step17. for 𝑖𝑖 in range(1, 2𝑛𝑛)
Step18. if 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 == 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 && 𝑖𝑖 ≤ 𝑛𝑛
Step19. 𝑤𝑤𝑖𝑖 += 1/𝛼𝛼
Step20. else if 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 == 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 && 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛
Step21. 𝑤𝑤𝑖𝑖−𝑛𝑛 −= 1/𝛼𝛼
Step22. end if
Step23. end for
Step24. until 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 keeps unchanged for a defined number iterations
Step25. return 𝒘𝒘

* the source code is available at https://github.com/marlonli/PatientCohortsAnalysis

69

patient is more similar). The similarity measure is defined using weighted Euclidean

distance [65][71], a modification of Euclidean distance with each attribute is weighted:

𝑑𝑑𝐴𝐴𝐴𝐴 = (� 𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖
(𝐴𝐴) − 𝑥𝑥𝑖𝑖

(𝐵𝐵))2
𝑛𝑛

𝑖𝑖=1
)
1
2 (5.1)

where 𝑤𝑤𝑖𝑖 is the weight given to the i-th component. 𝑥𝑥𝑖𝑖
(𝐴𝐴) and 𝑥𝑥𝑖𝑖

(𝐵𝐵) are the i-th context

attributes of patients A and B. If distance 𝑑𝑑𝐴𝐴𝐴𝐴 < 𝑑𝑑𝐴𝐴𝐴𝐴 && 𝑑𝑑𝐴𝐴𝐴𝐴 < 𝑑𝑑𝐵𝐵𝐵𝐵, it means that patient

A and B is most similar pair given a set of weights 𝒘𝒘 = [𝑤𝑤1, … ,𝑤𝑤𝑛𝑛]𝑇𝑇. Then if the label

given by medical expert is also pair (A, B), it is a hit, otherwise a miss. The overall

classification accuracy over N patient sets is defined as the ratios of hits:

𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑛𝑛𝑛𝑛𝑛𝑛(ℎ𝑖𝑖𝑖𝑖𝑖𝑖)

𝑁𝑁
 (5.2)

Our algorithm updates the attribute weights iteratively. At each iteration, we test adding

(Step 4) or subtracting (Step 10) a unit weight from a single attribute weight 𝑤𝑤𝑖𝑖 . An

important boundary condition is 𝑤𝑤𝑖𝑖 ≥ 0 (Step 11), otherwise 𝑤𝑤𝑖𝑖 does not have physical

Table 5-2. Context attributes (1st column), a set of three patients (2nd-4th columns), and

the weights learnt from Alg.5.1.
Attributes Patient A Patient B Patient C … Weights Learnt
AGE Group 0 0 2 … 0
Gender (male = 1) 1 1 1 … 0
Transfer 1 1 0 … 0
Stat 0 0 1 … 0
Attending 0 0 0 … 0.14
Blunt 1 1 1 … 1
Penetrating 0 0 0 … 1.31
Animal Bite 0 0 0 … 0.81
Burn 0 0 0 … 0
No Injury 0 0 0 … 0.81
Non-critical admission 1 1 0 … 1
Critical Admission 0 0 0 … 0
Discharged 0 0 1 … 0
ETA Now 0 0 1 … 0
Weekend 1 0 0 … 0
ntubation 0 0 0 … 0.14
Daytime 0 0 1 … 0
GCS>13 1 1 1 … 0.14
ISS Group 0 0 0 … 0
AIS_HEAD_NECK 2 0 0 … 0
AIS_FACE 0 0 0 … 0
AIS_CHEST 0 0 0 … 2.39
AIS_ABD_PELVIC 0 0 0 … 0
AIS_EXTREMITIE 0 0 0 … 0.25
AIS_EXTERNAL 0 1 1 … 0
Maximum AIS 2 1 1 … 0

70

meaning in similarity calculation. Then we calculate the updated accuracy (Step 6 & 13)

after addition and subtraction. Last, we update (Step 17-23) the attributes which lead to the

highest accuracy (Step 16). The algorithm terminates when the accuracy stays unchanged

for a defined number of iterations (Step 24). Alg.5.1 is based on greedy search [72]. At

each step, we only update the weights on attributes which provide maximum improvement.

Our algorithm gradually improves the weights and accepts the suboptimal solutions, while

finding the optimal solution is computationally difficult.

5.2.3 Patient Cohorts Discovery

To discover patient cohorts, we clustered the patients. The clusters were calculated

according to the similarity of patient context attributes. The patients being clustered

together must share similar attributes. Hence the clusters can be treated as patient cohorts.

The learning of attribute weights in the previous step helps us decide which attributes are

more important and guide the clustering process to partition the patient data into clusters

(cohorts) of more clinical meaning.

Numerous clustering algorithms were developed for all kinds of datasets and problems.

Some clustering algorithms were specifically designed for certain data distributions (e.g.,

EM clustering algorithm on Gaussian distribution and DBSCAN on noise data). In our

study, the patient context attributes can be heterogeneous, including categorical, binary,

numerical and ordinal attributes. Hence, to achieve the best generation of our framework,

we chose two most commonly used clustering algorithms, k-means clustering (centroid-

based) [73][74] and hierarchical clustering (connectivity-based) [74].

In addition, selecting the number of clusters is a difficult and well-known problem.

Hierarchical clustering itself is widely used to intuitively decide the optimal number of

clusters when the results were visualized in the dendrogram. Another widely used method

is silhouette analysis [65]. The silhouette value is a measure of how similar a data point is

to its own cluster (cohesion) compared to other clusters (separation). The silhouette score

ranges from -1 to +1, where a high value usually indicates a better clustering configuration.

We used both methods in our study.

71

5.2.4 Workflow Discovery and Sequential Pattern Mining

To discover the treatment patterns and procedures of different patient cohorts, we used two

different techniques, workflow discovery (Section 2.2) and sequential pattern mining. In

this study, we used Disco (https://fluxicon.com/disco/), a process mining tool based on a

fuzzy workflow mining algorithm [44]. The workflow discovery algorithms tend to

produce spaghetti-like models [20] which are difficult to interpret for analysts. And

searching for the differences in treatment patterns in several workflow models can be even

more challenging. The sequential pattern approach can help address this limitation.

Treatment patterns can be discovered from activity traces using sequential pattern mining

algorithms. Although numerous sequential patterns may be found, the significance of the

patterns can be evaluated using the statistical methods. Manual analysis only needs to be

done on patterns that are shown as statistical significant. In our implementation, we used

SPADE [75], an efficient algorithm for mining frequent sequential patterns.

Figure 5.1. Attribute weight learning process. The accuracy increases with the number of

the learning iterations.

0 100 200 300 400 500

Iteration times

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

https://fluxicon.com/disco/

72

5.2.5 Statistical Analytics

We used statistical analysis to study the association between the treatment patterns and

patient cohorts. Differences in number of treatment patterns between patient cohorts were

compared using Student’s t-test [76]. Student’s t-test compares the means of two sets of

data (dataset size can be small) and tells the difference from each other. Two different kinds

of comparisons can be performed for patient cohort analysis, comparison between two

cohorts (one-vs.-one) and one cohort and the rest of the cohorts (one-vs.-rest). We defined

statistical significance level set at p < 0.05 [76].

Figure 5.2. (a) K-means clustering results of 123 patients without unit weights. The number

of clusters (k) was set as 4. Dots of the same color from a same cluster. (b) K-means

clustering results (k = 4) of 123 patients using weighted attributes. (c) The value of average

silhouette (y-axis) changes as the number of clusters (x-axis). (d) The dendrogram plot of

the hierarchical clustering results.

(a) (b)

(c) (d)

73

5.3 Experiments

Our experimental results involve three aspects, the performance of attribute learning

algorithm, the patient cohorts we discovered and the resuscitation patterns as well as their

significance test results.

5.3.1 Attribute Weights

The initial accuracy (Figure 5.1) was 0.34 before applying the weight learning algorithm.

The initial accuracy was calculated with unit weights. The accuracy increased quickly in

the first 50 iterations before slowing down. The accuracy always increased and never

dropped because the learning algorithm (Alg.5.1) is guided by accuracy, only updating the

weights when if accuracy increases. The accuracy stopped at 0.61 when the learning

terminated and was 0.27 higher than that of using unit weights. The accuracy may stop

higher if more data was labeled so that it covers more comparisons. Our results (Table

5-2) showed that the injury features (injury mechanism, injury area and severity score) are

more important than patient demographics (age, gender, etc.) and resuscitation attributes

(i.e., stat, attending, daytime, etc.). Most attributes of patient demographics and

resuscitation have zero weights. Two resuscitation attributes that have non-zero weights

are “attending” and “intubation”. Both “stat” and “attending” represents the patient arriving

from the scene but attendings are more severe cases. The “intubation” is an important

attribute indicating whether the patients were intubated prehospital. The patients who could

not maintain their airway were intubated. Within injury features, the injury mechanism

(penetrating, blunt, etc.) has the most non-zero weights. “AIS_CHEST” (injury severity of

chest) has the highest weights.

5.3.2 Patient Cohorts

The silhouette analysis suggested the number of clusters as four or eight (two peaks in

Figure 5.2 (c)). From dendrogram (Figure 5.2 (d)), we can easily identify four clusters. We

decided the number of cluster as four. Although the silhouette score is higher if we have

four more clusters (eight in total), our result showed the additional four clusters were

partitioned from the two smaller clusters of the four clusters. Some of them were too small

74

(few data points), making them a better fit for specific case studies rather than being

included in a cohort analysis.

Our result also showed that the k-means clustering result was conformant (100% same)

with the hierarchical clustering result when having four clusters (Figure 5.2 (b)(d)). The k-

means clustering result was visualized after as the dimension reduction with PCA [77]. We

also ran the clustering on the same dataset with unit attribute weights (Figure 5.2 (a)). Great

difference can be noticed from the two k-means clustering results (Figure 5.2 (a) vs. (b)).

With unit attribute weights, four similar sizes of clusters were formed. No clear boundary

can be noted between the clusters. The distribution of data points (a) is much sparser than

that of (b) because all attributes were taken in the similarity measurement. As it is usually

of a small chance that two patients have exact same or highly similar context attributes, the

data points in (a) cannot be distributed as dense as the clusters in (b), where only important

attributes were taken into account (Table 5-2). Four patient cohorts (from cohort 0 to cohort

3) include 55, 13, 49 and 6 patients respectively. To better understand the characteristics

of each patient cohort, we used a radar chart (Figure 5.3) to help visualize attribute

distribution within each patient cohort. We also calculate the significance of each attribute

Figure 5.3. Radar charts visualizing the characteristics of the patient cohorts. Each radar

chart represents a patient cohort. Each attribute is depicted by the node on the spoke. The

number of patients in each cohort is shown in the parenthesis, e.g., cohort 0 has 55 patients.

75

in its cohort versus that attribute of the rest cohorts (Table 5-3). As we have a large number

(26) of context attributes, we filtered the attributes by just showing the attributes that have

a non-zero weight (Table 5-2). Both cohort 0 and cohort 2 included patients with blunt

injuries and GCS over 13. The difference is whether the patients were critically admitted.

Cohort 1 and 3 are two smaller cohorts. They have very different distributions from each

other, and from the cohort 0 and 2. Cohort 1 includes patients of the remaining injury

mechanisms except for blunt. Only cohort 3 includes patients with injury on the chest.

5.3.3 Resuscitation Workflow and Patterns

With patient cohorts identified, we performed workflow mining and sequential pattern

mining on each cohort. The complete workflow models are spaghetti-like because of a

large number of non-zero transitions. To obtain descriptive and interpretable workflow

models, we applied two model simplification methods. First, we focused our study on a

specific medical phase each time. A medical phase a part of the complete trauma

resuscitation process, e.g., airway assessment phase (checking patient’s airway), disability

assessment phase (assessing patient’s disability level), head assessment phase (assessing

injuries on patient’s head), etc. Second, we pruned the workflow model by only preserving

the most dominant incoming and outgoing transitions for each node. This method omitted

insignificant details, i.e., a large number of transitions of rare occurrence.

Table 5-3. p-values of each attribute of a cohort versus other cohorts.
Attributes Name Cohorts 0 Cohorts 1 Cohorts 2 Cohorts 3

Attending 0.758 0.172 0.104 0.305

Blunt 0.000 0.000 0.001 0.679

Penetrating 0.040 0.000 0.064 0.111

Animal Bite 0.203 0.000 0.249 0.749

No Injury 0.068 0.000 0.100 0.648

Non-critical Admission 0.000 0.511 0.000 0.330

Intubation 0.107 0.437 0.064 0.111

GCS>13 0.019 0.260 0.045 0.437

AIS_CHEST 0.042 0.375 0.034 0.000

AIS_EXTREMITIE 0.756 0.529 0.208 0.214

76

Our workflow results (Figure 5.4) on head phase showed high similarity in the four

head assessment workflows. All of them follow a similar sequential order as “head (H) ->

face (F) -> (nose (N) -> mouth (M)) || (eye (EY))) -> ear (EAR)”. Two differences can be

noticed from workflows of cohort 0 and cohort 2. First, the occurrence of “visual

Figure 5.4. Workflow models discovered from patient cohort 0 and cohort 2. The major

differences are highlighted in the figure. Each node includes an activity type and the count

of its occurrences. The transition represents the sequential order of activities and the

numbers on the transitions represent the count of such sequential pattern.

(a) Cohort 0 (55) (b) Cohort 1 (13)

Start

Visual inspection-H (155)

Visual inspection-F (96)

L visual inspection-EY (4)

R visual inspection-EY (6)

R otoscopy-EAR (56)

L otoscopy-EAR (52)

R Visual inspection-EAR (25)

L Visual inspection-EAR (21)

Visual inspection-N (46)

Visual inspection-M (50)

End

45

53

27

17

48

16

2

3 21

10
1

13 11

32

17

4

910

2418

18

Start

Visual inspection-H (31)

Visual inspection-F (19)

Visual inspection-N (14)

Visual inspection-M (13)

R otoscopy-EAR (15)

L otoscopy-EAR (12)

R Visual inspection-EAR (9)

L Visual inspection-EAR (7)

L visual inspection-EY (5)

R visual inspection-EY (1)

End

9

10
2

10

5

6

51 5

2

7

9

4

1 1
3 2 5

Start

Visual inspection-H (99)

Visual inspection-F (97)

L visual inspection-EY (21)

R visual inspection-EY (23)

R otoscopy-EAR (47)

L otoscopy-EAR (50)

R Visual inspection-EAR (23)

L Visual inspection-EAR (26)

Visual inspection-N (36)

Visual inspection-M (48)

End

35

43

21

13

19

18

6

9 2212

10

3

9 11

23

10

10

4

1310

17

(c) Cohort 2 (49)

Start

Visual inspection-H (19)

Visual inspection-F (18)

Visual inspection-N (8)

Visual inspection-M (6)

R otoscopy-EAR (7)

L otoscopy-EAR (6)

R Visual inspection-EAR (3)

L Visual inspection-EAR (5)

L visual inspection-EY (2)

R visual inspection-EY (2)

End

4

10

4

2

5

4

1

2

3

3

2

1

3

3

7

1

1

1

77

inspection-head” is more frequent in cohort 0 than that in cohort 2. On the other hand,

“left/right visual inspection-eye” are much more frequent in cohort 2. The medical

explanation is activities “left/right visual inspection-eye” can be optional because there is

another pair of activity “right/left pupil check” in disability assessment phase (prior to head

assessment phase) to evaluate patient’s disability level. The pupil examination requires a

light source to be used to assess pupil response. This exam is more thorough than only

performing an unaided visual examination of the eye. In addition, considering most patients

in cohort 0 are critically admitted patients with more severe conditions, medical team

tended to omit these unimportant eye visual inspections to save time.

By performing sequential mining algorithms on patient cohort 0 and 2, we discovered

39784 sequential patterns in total. 178 sequential patterns were computed as statistical

significant (a small part is shown in Table IV). For example, “visual inspection-head” is

found to occur on average 2.87 times in cohort 0 versus 2.06 times in cohort 2 (p-value =

0.026). Similarly, “visual inspection-back” is found to occur on average 1.77 times in

cohort 0 versus 1.27 in cohort 2. The potential medical explain is the patients in cohort 0

were of critical admission types, indicating they may have more severe injuries than

patients of cohort 2. Hence, it is more likely that after the medical team members perform

rapid evaluation, they need to confirm the initial findings by reassessing the patient.

Table 5-4. Significant resuscitation patterns discovered from cohort 0 and cohort 2
Resuscitation Patterns Occur. Frequency Raw Count (Average) p-value

Visual inspection-H 96.43% 97.96% 155 (2.87) 99 (2.06) 0.026

Visual inspection-RUE 89.29% 93.88% 120 (2.4) 76 (1.65) 0.046

Visual inspection-BK 94.64% 100.00% 94 (1.77) 62 (1.27) 0.001

Visual inspection-H  …* R otoscopy-Ear 42.59% 10.20% 23 5 0.000

Visual inspection-H  … Palpation-RLE 29.63% 4.08% 16 2 0.000

Log roll-BK  … Visual inspection-BK, T-spine-BK 24.07% 2.04% 13 1 0.001

Visual inspection-M  Visual inspection-N 33.33% 8.16% 18 4 0.002

Visual inspection-BK, T-spine-BK  … L-spine-BK 22.22% 2.04% 12 1 0.002

* “ ”- direct sequence; “ … ”- intervening tasks allowed

78

Part III

Process Recommender System

Part I: Introduction

Chapter 1
Introduction

Chapter 2
Preliminaries

Part II: Applied Process Mining and Analysis

Chapter 3
Workflow Model
Discovery

Chapter 4
Workflow Deviation
Analysis

Part III: Process Recommender System

Chapter 6
Trace-level
Recommendation

Chapter 7
Activity-level
Recommendation

Part IV: Implementation and Conclusion

Chapter 8
VIT-PLA

Chapter 9
Conclusions

Chapter 5
Patient Cohorts
Analysis

79

Chapter 6

A Data-driven Process Recommender Framework

This chapter on Data-driven Process Recommender System is based on our paper [3]. In

this study, we present an approach for improving the performance of complex knowledge-

based processes by providing data-driven step-by-step recommendations. Our framework

uses the associations between similar historic process performances and contextual

information to determine the prototypical way of enacting the process. We introduce a

novel similarity measure for grouping traces into clusters that incorporate temporal

information about activity performance and handles concurrent activities. Our data-driven

recommender system selects the appropriate prototype performance of the process based

on user-provided context attributes. Our approach for determining the prototypes discovers

the commonly performed activities and their temporal relationships. We tested our system

on data from three real-world medical processes and achieved recommendation accuracy

up to an F1 score of 0.77 (compared to an F1 score of 0.37 using ZeroR) with 63.2% of

recommended enactments being within the first five neighbors of the actual historic

enactments in a set of 87 cases. Our framework works as an interactive visual analytic tool

for process mining. This work shows the feasibility of data-driven decision support system

for complex knowledge-based processes.

6.1 Introduction

Contemporary information systems, such as personal calendars and electronic health

records (EHR), often record activity logs. Process mining techniques attempt to extract

non-trivial knowledge and insights from activity logs and use them for further analyses

[18]. Process mining techniques have been applied to practical problems, assisting in

visualizing, interpreting and diagnosing processes [18]. Existing recommender systems

have not been developed based on process mining. Our current work presents such a bridge.

We are designing a data-driven process analysis and recommender system that can provide

contemporaneous recommendations of process steps and help with retrospective analyses

80

of the process. Our approach relies on mining historic data to uncover the potential

association between the way of enacting a process and contextual attributes. If association

tests are significant, we train a recommender system to output a prototypical enactment for

the given context attributes.

Unlike most recommender systems that propose one or few next steps at a time, our

system initially recommends all steps at once. Although it may not be feasible for the

performers to study and follow a long list of steps, this recommendation can be used at

runtime to automatically verify the process compliance and detect omitted steps and other

process errors. Our framework has two stages: process analysis and process

recommendation (Figure 6.1 (a)). Process analysis includes: (1) clustering of historic traces

based on similarity; (2) determining the cluster prototypes that represent the established

process enactment for each cluster; (3) regression analysis to explore the correlation

between cluster membership and context attributes; and (4) interactive visualization and

statistical analysis of process traces. The recommendation stage includes: (1) predicting

the cluster to which the given trace belongs based on the observed context attributes, and

(2) displaying the prototype of the predicted cluster as the recommended enactment.

Key technical challenges for this system include measuring the similarity of process

traces and determining the cluster prototypes. Similarity measurement strongly affects the

results of trace clustering and plays a key role in our system. Several measures of trace

similarity exist but suffer from either inaccurate measurement because of timeline

stretching needed to normalize the trace duration and compute the overlap between the

traces, or information loss from forced sequencing of concurrent activities needed to apply

edit distance or pattern-based distance [2]. Another challenge is determining a prototype

that represents the recommended sequence of steps for each cluster. Our contributions

include:

• A novel measure of pairwise similarity between process traces based on time

warping. Unlike existing similarity measures (edit distance, pattern-based distance,

and Euclidean distance based on a normalized timeline), our approach incorporates

the time information while correcting for temporal differences between the same

activities in different process traces, such as different start times, idle times and

81

duration of the performance. Our approach also handles concurrent activities and

parallel activities for which the order of performance is irrelevant.

• A novel approach for determining a prototype for a cluster of process traces. Our

prototype captures the established enactment for a given context and considers the

temporal relationships between activities. It achieves a higher average similarity to

process traces in its cluster than the cluster medoid.

• A data-driven recommender system that selects a representative enactment based

on user-provided context attributes. We tested our system on data from three real-

world medical processes and achieved high recommendation accuracy.

6.2 Related Work

Complex knowledge-based processes are usually performed based on domain knowledge

and standard protocols. For example, for trauma resuscitation the Advanced Trauma Life

Support (ATLS) protocol [16] suggests the workflow based on treatment priorities: Airway

 Breathing  Circulation  (Neurological) Disability. Clarke et al. [78] and Fitzgerald

et al. [47] developed computer-aided decision support that recommends next steps to

reduce human errors. These systems rely on rules manually specified by domain experts,

lack generalizability, and are subject to human bias. We present an automatic, data-driven,

label-free framework for process analysis and recommendation.

Our framework incorporates three main techniques: similarity measures for process

traces, trace clustering algorithms, and cluster prototype extraction. These techniques have

been well studied in the analysis of time series [79], but are not applicable to process data.

Unlike time series with numerical values, process data is typically categorical, representing

different activity types and their properties. Different process datasets may have very

different features and no rule exists to decide a similarity between traces of process

enactment. Common similarity measures include edit or Levenshtein distance [38][30] and

pattern-based similarity, e.g., n-gram [80][81]. Both measures accept as input only process

traces represented as sequences, which requires that concurrent activities are sequenced

(e.g., by activity start time) and that temporal information on activity duration and idle

times is ignored. Forestier et al. [82][83] proposed dynamic time warping (DTW) as a

similarity measure for process traces. The DTW, however, cannot handle concurrent

82

activities, does not consider idle time intervals, and has other issues when used for process

traces [1]. In addition, Forestier et al. considered processes that are mostly sequential (non-

concurrent), with no activities for which the order of performance is irrelevant. To address

these challenges, we introduce a novel similarity measure based on time warping that

incorporates temporal information, such as activity start time, performance duration, and

idle intervals.

Hierarchical clustering has been commonly used for process trace clustering

[82][84][85][86]. This algorithm does not need a predefined number of clusters and

produces a visually intuitive dendrogram (tree diagram). Its main limitation is its

computational complexity, generally O(n2log(n)) where n is the number of traces, which

makes it too slow for large datasets. We implemented hierarchical clustering in our

framework as well as two other state-of-the-art clustering algorithms.

Cluster prototype candidates can be determined using different techniques. A widely

used cluster centroid represents the cluster center with a minimum distance to other points

in the cluster, e.g., sum-squared distance [79]. For categorical and event-based data,

however, the notion of a “center” may not apply [79]. For example, the centroid of

categorical data {orange, apple, banana} cannot be determined. An alternative is the cluster

medoid as the most representative data object in the cluster—an existing object that has a

minimal average dissimilarity to all other objects in its cluster. The medoid, however, may

not be adequate when no “suitable” representative exists in the cluster. Another kind of

prototype is the consensus sequence, a sequence of commonly observed activities found

by aligning many process traces [1][2]. The consensus sequence, however, represents only

the order of performance without temporal information. We introduce a novel approach for

cluster prototype extraction that incorporates temporal information.

6.3 Process Recommender Framework

Our framework performance (i.e., recommendation accuracy) does not depend as much on

the recommender model as on the ability to capture significant commonalities between

process performances using a similarity measure and clustering, as well as on determining

the proper cluster prototype. Therefore, we focus on the similarity measure, clustering, and

prototype extraction for assessing the performance.

83

6.3.1 Terms and Definitions

A performance of a process can be captured with activity codes and timestamps. We

represent each activity by its type and performance time (Figure 6.1 (b)) denoted as A =

{Atype, Ats, Ate}, where Atype is the activity type, Ats is the start time, and Ate is the end time.

A process case c = {id, x, T} is an instance of process performance. It is indexed with a

unique case id and consists of the trace T which is a vector of performed activities (internal

information), and the vector x of context attributes (external information). An ith process

trace is represented as Ti = [Ai1, …, Aik], where k is the trace length (number of performed

activities). To make explicit concurrent activities, we use a matrix representation of traces

Figure 6.1. Data sample and our framework structure.

Case ID Activity Start Time End Time
xx1 Patient Arrival 0:00:00 0:00:01
xx1 NRB 0:00:00 0:00:01
xx1 Pre-Oxy Chest Ausc 0:01:08 0:01:23
xx1 Pre-Oxy Breath Verb 0:01:48 0:01:49
xx1 Airway Assessment 0:05:59 0:06:08
xx1 BVM 0:06:43 0:06:44
xx1 Critical Window 0:07:19 0:07:20
xx1 RSI Sedative Meds 0:07:50 0:08:02
xx1 RSI Paralytic Meds 0:08:16 0:08:32
xx1 BVM 0:09:52 0:09:53
xx1 Laryngoscopy 0:10:19 0:10:51

Case ID xxx1 xxx2
Age category 24-96 24-96
Sex Male Female
Intubator PEM Attending PEM/ED Resident
Direct laryngoscopy 1 1
Night Shift 1 0
Reason Seizure Respiratory Distress
Type of Call ED Patient Now
Height (cm) 86 90
Weight (kg) 13 16.4
BMI 17.6 20.2
Num. Intubation Attempts 3 3

(b) Medical process trace (c) Process case context attributes

Process Traces Context Attributes

Similarity Measurement

Trace Clustering

Num. Clusters
Recommendation

Cluster Prototypes

Process Trace
Clusters

Cluster Prototype
Extraction

New Context
Attributes

Logistic Regression

Significance Test

Feature Selection
(Statistics)

Regression Model

Cluster Membership Recommended
Procedure

(a) An overview of framework

Input

84

as 𝑻𝑻𝑖𝑖 = [𝒑𝒑1𝑖𝑖 , . . ,𝒑𝒑𝑘𝑘𝑖𝑖
𝑖𝑖], where the duration of ith trace is discretized into ki time units and in

each time unit m the vector pi
m = [a1, …, aℓ] represents the execution status of all ℓ activity

types. If an activity of type a j is being performed during time m, then a j = 1 and a j = 0

otherwise. The magnitude of each activity vector is |pi
m| =∑j |a j|. Context attributes (or

external attributes) record the contextual information of a process case, such as the patient

demographics (Figure 6.1 (c)) in a vector x = [x1, …, xd]T of d observed attributes xi. By

associating context attributes with step-by-step activities based on historic data, we can

recommend the best process enactment for given attributes.

A process trace cluster C = [T1, …, Tc] is a group of c traces that are similar in terms

of type, activity performance order and times. The cluster membership is determined by

information internal to process traces. A prototype trace of a cluster is the most

representative or typical process enactment for this cluster. This representative enactment

can be an actually observed trace (an exemplar) or derived from other traces in the cluster.

Cluster prototypes summarize the cluster information and highlight the commonalities of

the process traces, which can help visualize and compare the differences between different

clusters.

A recommended process trace is determined using both internal and contextual

information of historic traces to find a standardized process performance. This trace can be

used to guide the process performance or verify the process compliance and detect omitted

steps and other process errors.

6.3.2 Trace Similarity based on Time Warping

The process traces we considered are not simple sequences just recording activity type and

the order of their performance, but concurrent timelines showing the performance status of

each activity type over time. Pairwise comparison of these composite traces is challenging.

An effective similarity measure should combine (i) intrinsic activity likeness, e.g., some

activities are mutually substitutable, (ii) activity performance time, (iii) relative order of

performance, and (iv) temporal variation between different performances. The temporal

variation has several causes, such as activities initiated at different times relative to the

process start, performed at different speeds, omitted or repeated. The same activities may

have different temporal characteristics in different traces and traces may have different

85

duration. Although several similarity measures exist for temporal sequences

[30][38][82][83][84][85][86], none satisfies the above requirements.

We introduce a novel similarity measure for complex process traces using timeline

warping to determine the optimal pairwise alignment (Figure 6.2). Our measure considers

both the sequential order and temporal overlaps of activities during this optimization. We

define the similarity between traces Ti and Tj as:

𝑠𝑠(𝑖𝑖, 𝑗𝑗) =
�𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗�
�𝑻𝑻𝑖𝑖 ∪ 𝑻𝑻𝑗𝑗�

 (6.1)

where |Ti| =∑m |p i
m| is the total performance time of activities in trace Ti and p i

m is the

vector of performance status of all activities in mth time unit. |Ti ∩ Tj| is the time when

both traces had same activities performed and |Ti ∪ Tj| is the time when one or both traces

had same activities performed. If we define |Ti ⊗ Tj| as the time when only one trace had

activities performed, then the total active time in a pair of traces is:

|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗� = �𝑻𝑻𝑖𝑖 ∪ 𝑻𝑻𝑗𝑗� + �𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗� (6.2)

and

|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗� = �𝑻𝑻𝑖𝑖 ∪ 𝑻𝑻𝑗𝑗� + �𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗� (6.3)

By combining these equations, the similarity of Ti and Tj is:

𝑠𝑠(𝑖𝑖, 𝑗𝑗) =
�𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗�

|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗� − �𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗�
=

|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗�
|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗� − �𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗�

− 1

=
𝟐𝟐|𝑻𝑻𝑖𝑖| + 𝟐𝟐�𝑻𝑻𝑗𝑗�

|𝑻𝑻𝒊𝒊| + �𝑻𝑻𝑗𝑗� + �𝑻𝑻𝑖𝑖⨂𝑻𝑻𝑗𝑗�
− 1

(6.4)

The only variable term in this equation during warping alignment of two traces is |Ti ⊗ Tj|.

The optimal warping path between Ti and Tj is 𝑷𝑷𝑖𝑖𝑖𝑖 = �𝒑𝒑𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 � = ��𝒑𝒑𝑚𝑚𝑖𝑖 ,𝒑𝒑𝑛𝑛

𝑗𝑗 ��, which is the

solution to this optimization problem:

86

argmin
𝑝𝑝𝑖𝑖𝑖𝑖

�𝑻𝑻𝑖𝑖 ⨂ 𝑻𝑻𝑗𝑗� = ��(𝒑𝒑𝑚𝑚𝑖𝑖 − 𝒑𝒑𝑛𝑛𝑗𝑗)(𝑱𝑱ℓ − 𝐒𝐒𝑎𝑎)𝒘𝒘�
𝑚𝑚,𝑛𝑛

𝑠𝑠. 𝑡𝑡. �𝒑𝒑𝑚𝑚𝑖𝑖
𝑚𝑚

∈ 𝑻𝑻𝑖𝑖 and �𝒑𝒑𝑛𝑛𝑗𝑗
𝑛𝑛

∈ 𝑻𝑻𝑗𝑗
 (6.5)

where w = [w1, …, wℓ]T is a vector of weights indicating that some activities are more

important than others. The weight can be any positive real number and the default is 1.

When the weights are included, the trace magnitude is redefined as |Ti| =∑m |pi
m w|. The ℓ-

by-ℓ matrix Sa(i,j) ∈ [0,1] represents the degree to which any pair of ℓ activity types are

substitutable and Sa(i,j) = 1 when activity types ai and aj are identical. An ℓ-by-ℓ matrix Jℓ

of all ones is used to determine the distance between pairwise activity types as Jℓ – Sa. The

weights and substitutability information are optional and may be given by domain experts

when appropriate. Otherwise, they will default to a vector of ones and an identity matrix,

respectively. Examples illustrate the influence of activity weight (Figure 6.3 (a)(c)) and

Figure 6.2. Our time warping approach to find the minimum warping distance between two

process traces T1 and T2. (a) Illustration of the warping path calculated between T1 and T2

(Eq.6.4). (b) Alignment of the warped timelines.

0

25 mins

A
B
C
D

30 mins

A
B
C
D

25

300

23

29

20

22

1715
14

14
17

12

12

1

3

6 7 8

30
 m

in
s

0
30

ABCD

25 mins

0 25
A
B
C
D

(a) (b)

T1

T2

T1

T2

𝑷𝑷12

87

substitutability (Figure 6.3 (a), (d)). Eq.6.5) can be solved similarly as Levenshtein distance

[38] using dynamic programming with a novel score function:

𝑡𝑡𝑖𝑖𝑖𝑖(𝑔𝑔,ℎ) =

⎩⎪
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎧− ∑ |𝒑𝒑𝑚𝑚

𝑖𝑖 𝒘𝒘|
𝑔𝑔

𝑚𝑚=0
− ∑ |𝒑𝒑𝑛𝑛

𝑗𝑗 𝒘𝒘|
ℎ

𝑛𝑛=0
− 𝜖𝜖, if min(𝑔𝑔,ℎ) = 0

max

⎩⎪
⎪⎪
⎪⎨
⎪⎪
⎪⎪
⎧𝑡𝑡𝑖𝑖𝑖𝑖(𝑔𝑔 − 1,ℎ − 1) − |(𝒑𝒑𝑔𝑔

𝑖𝑖 − 𝒑𝒑ℎ
𝑗𝑗)(𝑱𝑱ℓ − 𝑺𝑺𝑎𝑎)𝒘𝒘|

𝑡𝑡𝑖𝑖𝑖𝑖(𝑔𝑔 − 1,ℎ) − |𝒑𝒑𝑔𝑔
𝑖𝑖 𝒘𝒘|− 𝜖𝜖

𝑡𝑡𝑖𝑖𝑖𝑖(𝑔𝑔,ℎ − 1) − |𝒑𝒑ℎ
𝑗𝑗 𝒘𝒘|− 𝜖𝜖

 (6.6)

The score function tij(g,h) is defined for alignment costs of two time units pi
g and pj

h. For

aligning traces Ti and Tj, we define the (ki+1)-by-(kj+1) score matrix t ij. The time-penalty

vector ε =[ϵ, ϵ, …, ϵ]T ∈ ℝ1×k is designed to penalize excessive warping of the timeline

(grayed out bottom rows of traces in (Figure 6.3(a)). When ϵ = 0, the timeline can be

warped without cost, which may declare a short trace similar to a long trace. Constant ϵ

Figure 6.3. (a) Example traces T1 – T4 showing how the similarity results are affected by

(b) the time penalty ε, (c) activity weights w, and (d) activity substitutability Sa.

A
B
C
D

A
B
C
D

T1

T2

A
B
C
D

T3

A
B
C
D

T4

1 𝓍
1

1
𝓍 1

A
B
C
D

A B C D𝑺𝑺𝑠𝑠

𝒘𝒘 = {1, 𝓍, 𝓍, 1}

𝜀𝜀

𝜀𝜀

𝜀𝜀

𝜀𝜀

Time Penalty = 𝜺𝜺

(c)

(d) (a)

(b)
0 0.2 0.4 0.6 0.8 1

Time penalty

0.5

0.55

0.6

0.65

0.7

Si
m

ila
rit

y

s(T1,T2)

s(T1,T3)

1 2 3 4 5 6

Weights of activities B and C

0.4

0.5

0.6

0.7

0.8

S
im

ila
rit

y s(T1,T2)

s(T1,T3)

0 0.2 0.4 0.6 0.8 1

Substitutability of activities A and D

0.2

0.3

0.4

0.5

0.6

S
im

ila
rit

y

s(T1,T4)

88

can be heuristically set to the reciprocal of the standard deviation of case duration. When

time penalty ε is applied, the trace magnitude is redefined as |Ti| =∑g |pi
g w| + ϵ. The above

problem is a combinatorial optimization of interval data. We first discretize the time axis

and then use a time warping algorithm to find the optimal warping path Pij and similarity

sij. Alg. 6.1 (TwS-PT) shows our approach for calculating the similarity of process traces.

6.3.3 Clustering Process Traces

To determine the recommended enactments from a large number of process traces, we

clustered the traces. Exemplar-based clustering (EC) is an important category of clustering

algorithms. These algorithms first select exemplars (representative points) from the whole

dataset and then assign the remaining objects to their nearest exemplar. EC includes classic

clustering algorithms, like K-means and K-medoids, and recent methods, like Affinity

Propagation (AP) [87] and Density Peaks based Clustering (DPC) [88]. Because the

similarities of process traces are measured pairwise, we chose to use clustering methods

that take similarity matrix as input. We used Hierarchical Clustering, AP, and DPC.

Selecting the number of clusters is a difficult and well-known problem. Our method for

setting this number is motivated by an intuition about cluster perception. A set of data

points projected onto a similarity space observed from distance would appear as having

fewer clusters than when observed up close. We propose that the number of clusters that

remains stable over the greatest range of observation granularities represents the most

probable structure of the dataset. We used AP clustering to analyze how the number of

clusters varies with perception granularity. In methods like K-means, K-medoids, and

Algorithm 6.1. Time-warping Similarity of Process Traces (TwS-PT)

Input: Ti, Tj

Output: 𝑠𝑠(𝑖𝑖, 𝑗𝑗)

Step1. Initialize 𝑻𝑻𝑖𝑖 = [𝒑𝒑1𝑖𝑖 , . . ,𝒑𝒑𝑘𝑘𝑖𝑖
𝑖𝑖] , 𝑻𝑻𝑗𝑗 = [𝒑𝒑1

𝑗𝑗 , . . ,𝒑𝒑𝑘𝑘𝑗𝑗
𝑗𝑗] , 𝑷𝑷𝑖𝑖𝑖𝑖 = {∅} , |𝑻𝑻𝑖𝑖| = ∑ |𝒑𝒑𝑔𝑔𝑖𝑖 |𝑔𝑔 ,

�𝑻𝑻𝑗𝑗� = ∑ |𝒑𝒑ℎ
𝑗𝑗 |ℎ , 𝒕𝒕𝑖𝑖𝑖𝑖 = {∅}.

Step2. Fill score matrix 𝒕𝒕𝑖𝑖𝑖𝑖 progressively using Eq.6.6;

Step3. Deduce 𝑷𝑷𝑖𝑖𝑖𝑖 by tracing back 𝒕𝒕𝑖𝑖𝑖𝑖 from 𝑡𝑡𝑖𝑖𝑖𝑖(𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗) to 𝑡𝑡𝑖𝑖𝑖𝑖(0,0) and at each step

choosing the neighboring cell that yields the maximum score (Eq.6.6).

Step4. �𝑻𝑻𝑖𝑖 ⨂ 𝑻𝑻𝑗𝑗� = (−1) ∗ 𝒕𝒕𝑖𝑖𝑖𝑖(𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗);

Step5. return 𝑠𝑠(𝑖𝑖, 𝑗𝑗) computed using Eq.6.4

89

spectral clustering, the number of clusters K is specified by the user. Although a similar

parameter (preference p) is specified in AP clustering, the selection of p is more robust

than that of K, as p linearly controls the perception granularity. The number of clusters

increases with p and depends on the number of input objects [87]. We used pc

(p coefficient) to avoid the dependence on the number of objects:

𝑝𝑝 = mean(𝑺𝑺) − 𝑝𝑝𝑐𝑐 ∙ 𝑁𝑁 (6.7)

Algorithm 6.2. Number of Clusters using AP (NumC-AP)

Input: 𝑺𝑺 = {𝑠𝑠(𝑖𝑖, 𝑗𝑗)}, 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 ,𝛾𝛾

Output: 𝑁𝑁𝑐𝑐∗

Step1. Initialize 𝑢𝑢 = 1, 𝑝𝑝𝑐𝑐(𝑢𝑢) = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 ;

Step2. Run AP clustering with S and pc(u). The output is the number of

clusters N c(u).

Step3. If 𝑁𝑁𝑐𝑐(𝑢𝑢) > 1, 𝑢𝑢 = 𝑢𝑢 + 1, 𝑝𝑝𝑐𝑐(𝑢𝑢) = 𝑝𝑝𝑐𝑐(𝑢𝑢 − 1) + 𝛾𝛾, go to Step2.

Step4. return the most stable number of clusters 𝑁𝑁𝑐𝑐∗ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁𝑐𝑐).

Figure 6.4. Two examples of synthetic data in rows (1) and (2) showing how NumC-AP

(Algo. 2) decides the number of clusters. (a) The data distribution in a plane. (b) pc vs. the

number of clusters. (c) Zoomed-in view of (b).

(1)

(2)

(a) (b) (c)

(a) (b) (c)
0 2 4 6

0

2

4

6

0 0.05 0.1 0.15

p coeff

0

50

100

150

200

N
um

 C

0 0.05 0.1 0.15

p coeff

0

2

4

6

N
um

 C

0 2 4 6
0

2

4

6

0 0.05 0.1 0.15 0.2

p coeff

0

50

100

150

200

N
um

 C

0 0.05 0.1 0.15 0.2

p coeff

0

2

4

6

N
um

 C

90

where S is the similarity matrix of traces and N is the number of traces. Alg. 6.2 summarizes

our approach for selecting the number of clusters using the AP clustering algorithm

(NumC-AP). In Alg. 6.2, γ is the increment of pc and Nc is the number of clusters. We used

synthetic data to show how NumC-AP works (Figure 6.4). In the first example, points are

distributed into four groups (Figure 6.4 (1.a)). The NumC-AP results show how the number

of clusters changes with pc from N to 1 (Figure 6.4 (1.b)). The proper number of clusters

determined by NumC-AP is 4 and the second best choice is 2 clusters (Figure 6.4 (1.c)) as

they best reflect the actual distribution of data points (Figure 6.4 (1.a)). Changing the

distribution of the synthetic data causes the optimal number of clusters to change

accordingly (Figure 6.4 (2)).

6.3.4 Determining the Cluster Prototype

After trace clusters are determined, a step-by-step prototype trace representing the

recommended enactment is identified for each cluster. In the past, the medoid or a

consensus sequence have been used as process prototypes. Because our traces contain

concurrent activities that vary in the order of performance and temporal characteristics,

existing methods cannot provide representative prototypes for our application. We

developed an approach for determining cluster prototypes in three steps: (1) discovering

the time-warped prototype using time warping paired with a divide-and-conquer strategy

(a method of dividing the problem into recursively conquerable subproblems used, for

example, in Quicksort); (2) unwarping the timeline to find the prototype; and (3) filtering

and repairing the prototype for easier interpretation. Given a cluster C of traces, we first

build a guide tree t (a dendrogram) using hierarchical clustering with Ward’s method

linkage criterion [89]. The time-warped cluster prototype q is then solved recursively from

91

the leaves to the root of the guide tree (Figure 6.5 (b)). At each step, q is calculated pairwise

from process traces by summing up their aligned results (Figure 6.5 (a)).

Figure 6.5. Steps for calculating a cluster prototype. (a) Calculating prototype q pairwise

recursively from a set of process traces. Trace activities are shown in rows. After traces are

aligned and activities summed up, the summed value is visualized using the color-bar from

1 to n, where n is the number of traces. (b) A guide tree for directing the prototype

calculation for a cluster of traces. (c) Unwarping the warped timeline to restore the timeline

and find the prototype. (d) Filtering the prototype using α. (e) Repairing activity C by

merging smaller fragment to the larger one.

(c)

𝒔𝒔𝒖𝒑𝒑 ≥ 𝟎.𝟓

(d)

(e)

𝐜𝐜𝐞𝐩𝐚𝐢𝐜𝐜
0 5 10 15 20 25

D

C

B

A

T
(1

,3
,2

),4

0 5 10 15 20 25

D

C

B

A

T
(1

,3
,2

),4

0 5 10 15 20 25

D

C

B

A

T
(1

,3
,2

),4

𝑇𝑇1,3

T4T2T3T1

𝑇𝑇 1,3,2 ,4

𝑇𝑇 1,3 ,2

 (b)

2 4 6 8 10 12 14 16 18 20 22

D
C
B
A

T
1

5 10 15 20 25 30 35

D
C
B
A

T
1,

3

5 10 15 20 25 30 35 40

D
C
B
A

T
(1

,3
)2

5 10 15 20 25 30 35 40

D
C
B
A

T
(1

,3
,2

),4

5 10 15 20 25 30 35 40

D

C

B

A

T
(1

,3
,2

),4

92

𝒒𝒒 = 𝑻𝑻𝑖𝑖,𝑗𝑗 = 𝑻𝑻𝑖𝑖 + 𝑻𝑻𝑗𝑗 = [𝒑𝒑1𝑖𝑖 + 𝒑𝒑1
𝑗𝑗 𝒑𝒑2𝑖𝑖 + 𝒑𝒑2

𝑗𝑗 … 𝒑𝒑𝑘𝑘𝑖𝑖 + 𝒑𝒑𝑘𝑘
𝑗𝑗] (6.8)

where 𝑻𝑻𝑖𝑖 and 𝑻𝑻𝑗𝑗 denote traces aligned using Alg. 6.1 and k is the length of the warped

timeline. The time penalty vector ε is set to [0.2, …, 0.2]T (bottom rows in Figure 6.5 (a)).

The penalties start as equal for the original traces so during alignment 𝜺𝜺 can capture

whether a warped time unit was frequently aligned or only existed in few cases. The

summed ε in q in the root of guide tree t can guide the time unwarping by its values in each

time unit (Figure 6.5 (c)). For example, the long yellow bar in the bottom row of Figure

6.5 (a), between time 10 and 25 in T (1,3,2),4 comes from trace T3 which has a long idle period

in the middle. For easier interpretation, we simplify q by thresholding out the rare activities

(Figure 6.5 (d)). To this aim, we define the support of a time cell 𝑎𝑎𝑖𝑖𝑖𝑖
𝒒𝒒 as:

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎𝑖𝑖𝑖𝑖
𝒒𝒒 𝑐𝑐⁄ (6.9)

where c is the number of traces in the cluster; i is the ith row (also ith activity type) of q; j

is the jth column (also jth time unit) of q. The time unit is set to 1 when its support is greater

than a threshold α and 0 otherwise, where α is by default set to 0.5. A potential drawback

of this thresholding strategy is that it cannot capture frequent but sparsely distributed

activities. To address this problem, we estimated the activity’s frequency and included

frequent activities (unique freq ≥ 0.5 in the clusters’ cases) back into the prototype at the

most likely position. This adjustment was done because the sparsely distributed rare

activities may be aligned to several different positions during the prototyping. The

thresholding removed them from consideration during warping, and left them to

reincorporate more appropriately later. Another problem is, as time units are independent

and discrete, activity-time cells of an activity may be fragmented after alignment and

filtering (e.g., activity C in Figure 6.5 (d)). This fragmentation occurs because the time axis

is discretized, a continuous activity is sliced into discrete slices and each slice is aligned

independently with the corresponding time slice in other traces. When the slices of a

continuous activity are independently aligned with other traces, the alignment may

introduce gaps between the slices (e.g., activity C in in Figure 6.5 (d)) because in another

trace the same activity was performed with an interruption or because a concurrent activity

forced this fragmentation to achieve higher similarity score. We apply a repair to mitigate

93

this problem by moving the smaller fragment to merge with the large one and close the gap

if the gap is smaller than a time threshold β, which can be set as the mean value of all

activity durations. We move the smaller fragment to the larger one since this repair has a

smaller cost. Our procedure for extracting cluster prototype is summarized as Alg. 6.3.

6.3.5 The Recommender Model

We chose to use regression model for our recommender system rather than a complex

model (e.g., SVM or neural networks), as the statistical analysis (e.g., significance test) in

regression model can help us easier interpret the correlations between data cluster

membership and context attributes.

The goal of our logistic regression model is to leverage a set of n process cases to design

a classifier that can distinguish between m≥2 clusters given context attributes x. The cluster

label of a process trace is encoded as 𝒚𝒚 = [𝑦𝑦(1),𝑦𝑦(2), … ,𝑦𝑦(𝑚𝑚)]𝑇𝑇 where y(i) = 1 if x is the

context information of a trace that belongs to cluster i and y(i) = 0 otherwise. The n process

cases can then be represented as 𝒮𝒮 = {(𝒙𝒙1,𝒚𝒚1), … , (𝒙𝒙𝑛𝑛,𝒚𝒚𝑛𝑛)}. By default, we define the last

class (the mth cluster) as the reference category, against which logits of the first m – 1

categories are compared. Our logistic regression was trained with L2 regularizer:

𝜷𝜷� = arg max
𝜷𝜷

�� log𝑃𝑃(𝒚𝒚𝑗𝑗|𝒙𝒙𝑗𝑗 ,𝜷𝜷)
𝑛𝑛

𝑗𝑗=1

+ 𝜆𝜆‖𝜷𝜷‖𝟐𝟐� (6.10)

Algorithm 6.3. Time-warping based Cluster Prototype (TwCP)
Input: C, α, β
Output: q

Step1. Calculate similarity matrix S of C using Alg. 6.1 (TwS-PT);

Step2. Build the guide tree t with HC algorithm and S;

Step3. Traverse t bottom up, from leaves to the root;

Step4. 𝑻𝑻𝑖𝑖= node.get(left), 𝑻𝑻𝑗𝑗= node.get(right), align 𝑻𝑻𝑖𝑖 and 𝑻𝑻𝑖𝑖;

𝒒𝒒 = 𝑻𝑻𝑖𝑖,𝑗𝑗 = 𝑻𝑻𝑖𝑖 + 𝑻𝑻𝑗𝑗;

Step5. Go to Step 3 until current node equals root;

Step6. Unwarp q to recover the timeline;

Step7. Filter q with a predefined α and repair q with β;

Step8. return q

94

where β are regression coefficients for context attributes and λ is the ridge estimator of L2

regularizer. To find which attributes are associated with cluster membership, we used the

Wald test [90] for logistic regression and a significance level at <0.05.

To generate recommendations, our system works by taking a new context attribute set

x′ (given by the user) and outputs a recommended enactment. The trained regression model

selects the cluster class label y that maximizes the likelihood function:

𝒚𝒚 = arg max
𝒚𝒚

𝑃𝑃�𝒚𝒚�𝒙𝒙′,𝜷𝜷�� (6.11)

Our system then returns the prototype of the most probable cluster as the recommended

enactment. Because not all contextual attributes are good predictors, we used only

statistically significant attributes to improve the recommendation accuracy. If no attribute

was found as significant, all attributes are considered. Our framework was implemented as

a web app (VIT-PLA, Figure 6.6) using D3.js, Bootstrap, JSP, Java, and includes

interactive visual functions.

Figure 6.6. Graphical user interface of the implementation of our framework for process

mining and recommendation.

95

6.4 Experiments

We demonstrated the use of our framework with three real-world logs and evaluated the

performance of different techniques.

6.4.1 Real World Medical Process Datasets

Datasets from three medical processes, collected in the emergency department of

Children’s National Medical Center, a level 1 pediatric trauma center in Washington, DC,

were used for evaluating our framework (Table 6-1):

Tracheal Intubation Data: Ten context attributes are of three types: (a) patient

demographics: age (<24 months, 24-96, >96), gender, height, weight, body mass index

(BMI); (b) provider attributes: intubator’s medical role (emergency medicine attending,

anesthesia resident, etc.); and (c) event attributes: night/day, emergency/pre-arrival, direct-

laryngoscopy/video-laryngoscopy and reason for intubation (seizure, respiratory distress,

altered mental status—AMS).

Trauma Resuscitation Data: The trauma resuscitation is performed by a trauma team

comprised of several physicians, nurses and ancillary medical staff, all working

concurrently. Each case was coded with 17 context attributes of two types: (a) patient

demographics: age, race, gender, injury type, injury severity score, pre-arrival intubation,

mental status, body region injured (e.g., head, face, chest, etc.); and (b) treatment attributes:

paged response (stat, transfer), day/night, weekend/weekday.

Emergency Department (ED) Data: This dataset contained a very diverse set of patient

procedures. The attribute types are the same as for the trauma resuscitation data. Unlike

tracheal intubation and trauma resuscitation, which are standardized processes, the ED

process is not. ED data is quite different from case to case and the activities are temporally

sparse.

6.4.2 Similarity Measure Evaluation

To evaluate our similarity measure, we performed experiments using 65 randomly selected

sets of three traces from the Intubation dataset {Ti, Tj, Tk} (Figure 6.7(a)). Three medical

experts were asked to decide the most similar among three trace pairs, (Ti, Tj), (Ti, Tk) and

96

(Tj, Tk) based on their domain knowledge. Our visualizations (Figure 6.7(a)) of traces

helped them to quickly detect the differences between traces in a set. They used their

domain knowledge to judge how important these differences are, and decide which trace

pair is more similar than others. We used these labeled results to evaluate our similarity

measure. Our baselines included edit distance (ED), sequential-pattern based distance (SP

based on algorithm CM-SPADE [92]), normalized Euclidean-distance (NE), and dynamic

time warping distance (DTW). We also evaluated these similarity measures using a

majority voting strategy that determines whether the most similar pair selected by each

measure matched the majority decision.

The results (Figure 6.7(b)) showed that our time-warping-based similarity measure

achieved the highest accuracy on both medical expert labels (0.69) and voting-based results

(0.80). Edit distance, the simplest measure considered, also performed well because the

intubation data was mostly sequential so the activity type and order of performance were

the keys to comparing the traces. Normalized Euclidean distance and DTW performed

worse because they failed in cases where a long intubation trace (e.g., 40 mins) was

compared with a brief trace (e.g., 10 mins). The normalized Euclidean distance failed

because it could only capture few similarities after normalizing long and short timelines.

The DTW failed because it did not penalize long idle times and activity duration

differences between traces. In addition to individual measures, we also computed the

accuracy of the majority. The majority of our similarly measures correctly identified

39 sets (≥3 votes) and 5 sets as unsure (with two tied majorities).

Table 6-1. Properties of our three medical process datasets.

 Dataset

Stats
Intubation Trauma ED

Num. Patient Records 101 87 644

Num. Total Acts 1244 9477 2290

Num. Act Types 15 128 65

Longest Trace (Num. Acts) 20 196 12

Shortest Trace (Num. Acts) 8 60 1

Num. External Attributes 10 11 11

97

In 12 of the 65 sets, all measures and the medical experts agreed on the most similar

trace pairs. In another 5 cases, all measures made wrong choices. We reanalyzed these 5

cases and found that the ground truth was incorrectly labelled in two, and in the other three

cases the experts used medical knowledge that was not explicitly considered by the

similarity measures: (1) time-to-task for “decision to intubate,” and (2) the type of oxygen

mask (BVM vs. NRB). Even without additional domain knowledge, we found that in 62 of

65 cases (95.4%), at least one data-driven similarity measure made the same decision as

the experts did. Our TwS-PT (Alg. 6.1) independently achieved 69% decision accuracy.

These two findings show the feasibility of using purely data-driven similarity measures for

comparing complex process traces.

6.4.3 Prototype Analysis

We evaluated our prototype extraction method (TwCP, Alg. 6.3) quantitatively and by

qualitative feedback from domain experts. We used mediod as the benchmark prototype

since it is often used as cluster exemplar. For this comparison, we extracted the prototypes

Figure 6.7. (a) A sample set of Intubation procedure given to medical experts to evaluate.

The horizontal-axis denotes timestamp in minutes and vertical-axis denotes activity types.

The blue blocks represent the performance time and duration of activities. (b) Performance

of different similarity measures compared to expert opinion.

(b)(a)

41

37
36

33

45

48

45

42

49

52

Expert Assessment Majority Voting
0.4

0.6

0.8

1

Ac
cu

ra
cy

ED

SP

NE

DTW

TwS-PT

5 10

NRB

BVM
Laryngoscopy

RSI Paralytic Meds

RSI Sedative Meds

Intubation Safety Timeout
Post-Oxy Breathing Verb

Post-Oxy Chest Ausc

Critical Window

Decision to Intubate
Pre-Oxy Breathing Verb

Pre-Oxy Chest Ausc

Airway Verbalized

Airway Assessment

Patient Arrival

5 10 15 20

NRB

BVM
Laryngoscopy

RSI Paralytic Meds

RSI Sedative Meds

Intubation Safety Timeout
Post-Oxy Breathing Verb

Post-Oxy Chest Ausc

Critical Window

Decision to Intubate
Pre-Oxy Breathing Verb

Pre-Oxy Chest Ausc

Airway Verbalized

Airway Assessment

Patient Arrival

5 10 15

NRB

BVM
Laryngoscopy

RSI Paralytic Meds

RSI Sedative Meds

Intubation Safety Timeout
Post-Oxy Breathing Verb

Post-Oxy Chest Ausc

Critical Window

Decision to Intubate
Pre-Oxy Breathing Verb

Pre-Oxy Chest Ausc

Airway Verbalized

Airway Assessment

Patient Arrival

98

and medoids from the whole datasets without clustering, to avoid potential bias from

clustering algorithms (Figure 6.8). We omitted the ED dataset from this comparison

because its prototype and medoid had only two activities. Our results show TwCP

prototype had higher average similarity to other traces than the medoid (Figure 6.9(a)).

This difference was greater for the trauma dataset than for the intubation dataset because

the medoid depends on dataset size (number of traces) and trace complexity. A large dataset

is more likely to contain a trace close to the centroid. In a small dataset, the medoid may

be far from the centroid. Process complexity also affects the medoid because more

activities and greater variability make it less likely that an existing trace will well represent

the characteristics of the process. Our intubation data is much simpler than trauma data that

had more than 100 activity types and average trace length of 109 activities.

 The medoids may not fully capture deviations from the standard protocol due to the

variable injuries of different patients. Our TwCP prototype better captured standard

practices and included more tasks applicable to a diverse range of injuries, but it may

Figure 6.8. (a) TwCP prototype (left) and medoid (right) for the whole Intubation dataset.

(b) TwCP and medoid for Trauma dataset showing the 52 commonly performed activities.

For easier comparison, the vertical axis labels (activity names) were ordered based on a

rough temporal order of activities. The horizontal axis denotes the real (not warped)

timeline in minutes.

(b)

(a)

99

capture idiosyncratic details that would not be expected by a domain expert. For the

Trauma data (Figure 6.8 (b)), the medoid omitted inspection of the eyes, nose and pelvis

while the TwCP suggested an acceptable but uncommon sequence for the extremity exam.

For the Intubation data (Figure 6.8 (a)), TwCP included the performance of airway

assessment and the use of the non-rebreather (NRB), which the medoid omitted. The

medoid more accurately represented oxygen delivery during intubation because one cannot

use a bag valve mask (BVM) and NRB simultaneously. TwCP, however, showed that both

mechanisms of oxygen delivery were acceptable before intubation and included airway

assessment, making the prototype more complete. The human factors literature [93] and

our study [11] suggests to study work-as-done rather than work-as-imagined when

designing computerized support systems. TwCP prototype is useful since it captures actual

work. By comparing a given trace to the prototype, one can detect and analyze the process

deviations.

6.4.4 Recommendation System Evaluation

Our recommendation system was evaluated using two approaches: (E1) whether the actual

process trace (denoted as 𝑻𝑻𝑎𝑎) belonged to the most probable cluster decided based on

context attributes by the trained regression model; and (E2) whether the recommended

trace (denoted as 𝑻𝑻𝑟𝑟) was close to the actual trace.

Because trace clusters may be of very different sizes (multi-class imbalance learning

problem), we adopted the F-measure (F1-score) and geometric mean (G-mean) [91] to

properly evaluate the performance using the first approach (E1). We did not choose the

commonly used accuracy measure as it is ineffective at evaluating imbalanced learning

scenarios, where the accuracy of the majority class may dominate. F-measure and G-mean

can balance the classification performances of all majority and minority classes.

The second approach (E2) evaluated our system by checking if the recommended trace

𝑻𝑻𝑟𝑟 was among the k nearest neighbors of 𝑻𝑻𝑎𝑎, where k ranged from 1 to n and for k=1 the

recommended prototype was the closest neighbor. This measure is not symmetrical, i.e.,

𝑻𝑻𝑟𝑟 being within k neighbors of 𝑻𝑻𝑎𝑎 does not imply that 𝑻𝑻𝑎𝑎 is within k neighbors of 𝑻𝑻𝑟𝑟 .

Therefore, a recommended trace that is among a few neighbors of most traces is very

representative for the given cluster.

100

We implemented several similarity measures: edit distance (ED), sequential pattern

(SP), and TwS-TP, and several clustering algorithms: hierarchical clustering (HC), density-

peak clustering (DPC) and affinity propagation clustering (APC). We clustered the process

traces using different combinations of similarity and clustering algorithms. We used

tenfold cross-validation to reduce the variance of the recommendation accuracy. We

selected ZeroR as the baseline, which always takes the largest cluster as the prediction

result. Our experimental results (Table 6-2) show that the combination of time-warping

distance and APC algorithm achieved the highest F1 score for both the Intubation and

Trauma data. Edit distance with APC algorithm achieved the highest F1 score for the ED

procedure data. From the perspective of the clustering algorithm, APC performed better

than HC and DPC in most cases regardless of the similarity measure. From the perspective

of the similarity measure, our TwS-PT performed best for both the Intubation and Trauma

data. Edit distance performed best for ED data (Table 6-2), because ED procedures are

sparse with only few activities and temporal information is not essential. Temporal

information is informative and important for some but not all processes. The selection of

similarity measure is best decided by the nature of dataset with the help of visualization

tools. Medical procedures depend on other factors that were not recorded in our data, such

Table 6-2. Recommendation evaluation on three medical process datasets. The format

𝜶𝜶 (𝝉𝝉) represents the regression model result 𝜶𝜶 and the baseline (ZeroR) result (𝝉𝝉). Rec NC

stands for recommended number of clusters.

 Intubation Data Trauma Resuscitation Data ED Procedure Data

Rec NC ED (2), SP (3), Time-warping (2) ED(2), SP (2), Time-warping (2) ED (2), SP(3), Time-warping (2)

Metrics F-Score G-means F-Score G-means F-Score G-means

ED + HC 0.505 (0.504) 0.445 (0.479) 0.634 (0.654) 0.448 (0.428) 0.615 (0.615) 0.445 (0.445)

ED + DPC 0.719 (0.755) 0.383 (0.374) 0.692 (0.686) 0.436 (0.413) 0.860 (0.860) 0.293 (0.293)

ED + APC 0.415 (0.339) 0.416 (0.500) 0.346 (0.353) 0.392 (0.500) 0.595 (0.447) 0.571 (0.491)

SP + HC 0.286 (0.275) 0.412 (0.497) 0.637 (0.533) 0.603 (0.471) 0.395 (0.292) 0.531 (0.499)

SP + DPC 0.446 (0.264) 0.566 (0.496) 0.637 (0.533) 0.603 (0.471) 0.516 (0.516) 0.476 (0.476)

SP + APC 0.487 (0.277) 0.593 (0.471) 0.645 (0.519) 0.591 (0.475) 0.485 (0.477) 0.485 (0.494)

TwS-PT + HC 0.596 (0.419) 0.590 (0.495) 0.526 (0.392) 0.520 (0.497) 0.502 (0.395) 0.554 (0.497)

TwS-PT + DPC 0.605 (0.567) 0.494 (0.461) 0.713 (0.670) 0.556 (0.421) 0.531 (0.387) 0.538 (0.498)

TwS-PT + APC 0.700 (0.384) 0.695 (0.498) 0.767 (0.366) 0.683 (0.499) 0.581 (0.471) 0.549 (0.486)

101

as the environment, patient condition, and medical team status. This fact explains why we

could not achieve very high recommendation accuracy for these complex datasets. An

alternative is making recommendations only for a subset of cases when regression model

has a high confidence. For example, when we made prediction only for patients whose

intubation reason was altered mental status (AMS) and type of call was “now,” we achieved

87.5% recommendation accuracy using the TwS-PT + APC combination.

In 55 of 87 cases (63.2%) in the Trauma dataset, our recommended prototype was

among the 5 nearest neighbors of the actual trace (Figure 6.9 (b)). In the remaining 32

cases, the recommended prototype was not among the 5 nearest neighbors of the actual

trace because our regression model incorrectly predicted the cluster membership from

trace’s context. For example, TwS-PT+APC had 0.767 F1 score for finding cluster

membership using context attributes for trauma data (Table 6-2). A wrong cluster, in turn,

results in recommending a wrong prototype.

6.4.5 A Case Study with Intubation Process

We used the Intubation dataset as a case study to further illustrate the performance of our

framework. The recommended number of clusters given by NumC-AP (Alg. 6.2) was 2

(Figure 6.10 (a)(b)). The process traces were clustered using algorithms HC (Figure 6.10

(c)), DPC, and APC. In the trained regression model, several context attributes, e.g.,

Figure 6.9. (a) Avg. similarity between prototypes and other process traces. (b) Number of

hits of recommended process enactment within k nearest neighbors of the actual

enactment.

(b)(a)
0 5 10 15 20

kth Nearest Neighbor

0

20

40

60

80

100

N
um

be
r o

f H
its

Intubation

Trauma

0.457 0.463

0.32

0.351

Intubation Trauma Resuscitation
0.3

0.35

0.4

0.45

0.5

0.55

0.6

S
im

ila
rit

y
(T

w
S

-P
T)

Medoid

TwCP

102

intubator role, night shift, intubation reasons, were statistically significant for trace clusters

(Table 6-3). Using the APC result as an example, the reason for intubation and intubator

role was significantly correlated with the two clusters. The two prototypes (qc1 and qc2)

(Figure 6.11) extracted from two clusters showed many differences: (1) qc1 (Figure 6.11

(a)) had the activities “airway assessment” and “NRB,” while in qc2 (Figure 6.11 (b)) these

activities were missing; (2) qc1 (~19.5 mins) was shorter than qc2 (~22 mins); (3) activities

“pre-oxy breathing verb.” and “decision to intubate” occurred later in qc2. In addition to

these differences, qc1 and qc2 had many commonalities, e.g., performance time and

sequential order of activities “chest auscultation,” “critical window,” “RSIs” and

“laryngoscopy.” Our medical experts explained that in cluster-1 clinicians used a passive

non-rebreather (NRB) instead of an active bag-valve-mask (BVM) for initial oxygen

delivery. The ATLS protocol requires that providers secure the patient’s airway before

Figure 6.10. (a)(b) NumC-AP (Alg. 6.2) on Intubation data and (c) hierarchical clustering

(based on Ward’s method).

Figure 6.11. Prototypes of cluster-1 (qc1) and cluster-2 (qc2).

0 0.02 0.04

p coeff

0

50

100

N
um

 C

0 0.02 0.04

p coeff

0

2

4

6

N
um

 C

1

2

3

4

(a) (b) (c)

Prototype of C1 Prototype of C2 Overlapped Act.
5 10 15 20

NRB
BVM

Laryngoscopy

RSI Paralytic Meds
RSI Sedative Meds

Intubation Safety Timeout
Post-Oxy Breathing Verb

Post-Oxy Chest Ausc

Critical Window
Decision to Intubate

Pre-Oxy Breathing Verb
Pre-Oxy Chest Ausc

Airway Verbalized
Airway Assessment

Patient Arrival

103

moving onto other survey items. Our results showed that patients in cluster-1 more

frequently underwent intubation for respiratory distress. If patients in cluster-1 originally

presented with a secured airway, it would make sense that the onset of respiratory distress

would necessitate intubation to secure the airway. Patients in cluster-2 were already

experiencing some degree of respiratory distress or they would not have needed a BVM. It

is plausible, then, that other clinical indicators prompted intubation in cluster-2.

Table 6-3. p-values from regression model.
 Clustering

Attributes
HC DPC APC

(Intercept) 0.43 0.73 0.03

Age
<24 months 0.43 0.07 0.11

24-96 months 0.75 0.39 0.94

Gender 0.76 0.1 0.34

Intubator Role

Anesthesia Resident 0.41 0.31 0.2

PEM Attending 0.58 0.85 0.03

PEM Fellow 0.17 0.2 0.25

PEM/ED Resident 0.64 0.09 0.79

PICU Fellow 0.43 0.74 0.36

Direct Laryngoscopy 0.77 0.11 0.4

Night Shift 0.18 0.03 0.51

Reason
Respiratory Distress 0.15 0.87 0.02

Seizure 0.74 0.94 0.56

Type of Call
ED Patient 0.85 0.53 0.14

Now 0.79 0.34 0.57

104

Chapter 7 A Context-Aware Deep Learning Framework for

Next Medical Treatment Activity Recommendation

This chapter is about the Deep Process Recommender System. AI recommender systems

have been successfully applied in many domains (e.g., e-commerce, e-learning). It is

believed by medical experts that such systems may help reduce medical team errors and

improve patient outcomes in treatment processes (e.g., trauma resuscitation, surgical

processes). Limited research, however, has been done to explore automatic data-driven

treatment recommendations. In this chapter, we bridge this gap by presenting a deep-

learning-based process recommender system to provide runtime treatment

recommendations. The system is built on state-of-the-art recurrent neural networks, which

take into account both environmental (e.g., patient demographics) and behavioral (i.e.,

preceding treatment activities) contextual information. In our implementation, we

presented novel designs like Act2vec and sliding-window attention to improve the model

performance and help interpret the results. We also proposed a data augmentation

algorithm to address the limited amount of data and help pre-train the model. Our

framework was evaluated on two real-world medical process datasets. The experimental

results show our system outperforms baseline methods in recommendation accuracy,

demonstrating the feasibility of data-driven context-aware recommender systems for

complex real-world medical processes.

7.1 Introduction

Medical teams make unavoidable errors in fast-paced and high-risk medical treatment

processes. Take trauma resuscitations for example. Critically injured trauma patients have

up to a four-fold higher risk of death from errors than general hospital patients. Nearly half

of these preventable deaths are related to errors during the initial resuscitation phase of

treatment [94]. During such medical processes, multidisciplinary teams are responsible for

rapidly identifying and treating potentially life-threatening injuries, then developing and

executing a short-term management plan for those injuries. Some computer-aided decision

105

support systems [47] and expert-derived algorithms [95] have been proposed to reduce

medical team errors and improve patient outcomes for treatment processes. Despite being

carefully designed by medical experts, these initial attempts have had limited success for

three reasons. First, the expert-derived knowledge-based models might not reflect reality.

Second, the expert model’s rules are meant for general patients and do not take into account

the specific needs of a particular patient. Third, these approaches are heavily case-based

and lack generalizability to other medical processes. Our research explores how to

automatically provide data-driven recommendations to accompany the clinicians’ decision

process. The recommender system built on artificial intelligence (AI) and data mining

techniques would provide the medical team leader (or surgical coordinator) with next-step

treatment recommendations through the wall displays (monitors).

Despite the wide application of data-driven recommender systems in e-commerce and

e-service [96], there are only a limited number of applications in health or medical related

fields [97][98]. There is even less related work for temporally correlated data. Sun et al.

[99] proposed a similarity-based framework to extract typical treatment regimens from

large-scale electronic medical records; they used these to match the discovered treatment

regimens with patient cohorts for personalized medication recommendation. However,

their work recommends a whole treatment regimen to patients, while this chapter studies

how to recommend next activities dynamically. Yang et al. [3] clustered patients into

cohorts to find prototypical treatment patterns for each cohort. The prototypical treatment

patterns were recommended to the new patients by first deciding which cohort the patient

belonged to. This work only considered static contextual information (patient

demographics), and did not consider the dynamic contextual information (e.g., ongoing

treatment process). The recommendations were given before the treatment started and

would not adjust during the treatment. Edward et al. [98] studied how to predict the next

clinical event by considering both environmental and behavioral medical information, but

their method can only predict the occurrences of three main endpoints and takes the

advantage of sufficiently available electronic medical records.

Our recommender system application for medical processes has two characteristics.

Firstly, temporal information plays an important role. Treatment activities have temporal

correlations, i.e., the secondary survey of the trauma resuscitation usually follows a head-

106

to-toe examination. Temporal correlations do not only exist between directly adjacent

activities, but also exist between activities separated by several intervening activities.

Secondly, the medical team must take into account that different patients with different

conditions (e.g., injury area and severity) need different medical treatment procedures. For

this reason, it is important to incorporate context attributes into the recommender system

for prescriptive analytics [100]. There are two types of contextual information:

environmental and behavioral. Behavioral context refers to the treatment workflow: the

activities performed and the order of their performance. Environmental context can be

further divided into two categories: static and dynamic. Static context is features of the

patient or resuscitation that are present when the patient arrives and do not change.

Examples are time of day, age of patient, and mechanism of injury. Dynamic context is

features that change as treatment goes on; these are usually activity attributes (e.g.

descriptor and whether the activity was completed).

Our recommender system was specifically designed to handle these differences. To

model temporal dependencies, we used recurrent neural networks (RNN). To address the

second challenge of patient diversity, we modified the RNN to receive and incorporate

patient demographics as auxiliary inputs to the network. In addition, we included two novel

designs, Act2vec and sliding-window attention, to improve RNN performance and

interpretability. Another technical challenge in our study is the limited amount of medical

process data. The proper learning of the complex temporal correlations requires a sizable

amount of training data. Coding medical process data, however, is labor-intensive. Over

two years, we coded 122 resuscitation cases, but our data is still too small to train a deep

neural network. We address this limitation by pre-training the neural network with

synthetic data. The synthetic process data was generated by a novel data-augmentation

algorithm that is based on trace alignment algorithm and multivariate Bernoulli

distribution. Our main contributions are:

• A novel process recommender framework using a multi-input recurrent neural

network that integrates both environmental and behavioral context information. We

applied our approach to the trauma resuscitation process, and the results show that

we achieved better recommendation accuracy than the baselines.

107

• Act2vec activity embedder designed to translate treatment activities into numerical

vectors. Act2vec can capture the proximity between different activities. The use of

Act2vec in the model helps improve model performance. And the visual analytics

based on Act2vec can reveal interesting insights from medical processes.

• A sliding-window attention designed to improve model performance and

interpretability. The sliding-window attention mechanism can focus RNN on

outputs of the last several hidden states, rather than just a single hidden state (i.e.,

the current hidden state). This mechanism can focus the network on states produced

many time steps earlier, and does not require that the last state store all the

information. By checking the attention score vector, it is also possible for us to

know what information the neural network focuses on when making decisions.

• A data-augmentation algorithm to help pre-train and regularize neural networks.

The algorithm can procedurally fabricate a large amount of unique synthetic patient

data that closely resembles authentic data. Generated synthetic data was used to

pre-train the neural network, addressing the problem of limited training data.

7.2 Treatment Recommendation with Deep Learning

7.2.1 Data Description and Notations

The historic patient records 𝒓𝒓 = [𝑟𝑟(1), … , 𝑟𝑟(𝑛𝑛)]𝑇𝑇 is a vector of 𝑛𝑛 elements 𝑟𝑟(𝑖𝑖), where 𝑖𝑖 here

is the index of the patient record. Each patient record 𝑟𝑟(𝑖𝑖) = {𝑖𝑖𝑖𝑖(𝑖𝑖),𝒙𝒙(𝑖𝑖),𝑻𝑻(𝑖𝑖)} is indexed

with a unique patient id, contains the medical process trace 𝑻𝑻(𝑖𝑖), and has a vector 𝒙𝒙(𝑖𝑖) of

associated patient attributes. A trace 𝑻𝑻(𝑖𝑖) = [�𝑎𝑎1
(𝑖𝑖),𝒃𝒃1

(𝑖𝑖)�, … , �𝑎𝑎t
(𝑖𝑖),𝒃𝒃t

(𝑖𝑖)�… , �𝑎𝑎q
(𝑖𝑖),𝒃𝒃q

(𝑖𝑖)�]𝑇𝑇

includes 𝑞𝑞 treatment activities that are ordered based on activity occurrence time. 𝒃𝒃t
(𝑖𝑖) =

[𝑏𝑏1
(𝑖𝑖), … , 𝑏𝑏𝑚𝑚

(𝑖𝑖)]𝑇𝑇 is a vector of attributes associated with the activity 𝑎𝑎t
(𝑖𝑖) (e.g., who is the

activity “Descriptor” and whether the activity is “Verbalized” in Table 7-1 (a)). Patient

attributes 𝒙𝒙(𝑖𝑖) = [𝑥𝑥1
(𝑖𝑖), … , 𝑥𝑥𝑔𝑔

(𝑖𝑖)]𝑇𝑇 is a vector of 𝑔𝑔 recorded attributes (e.g., patient age, injury

type and injured body area). Attribute vector 𝒙𝒙 is at patient level while attribute vector 𝒃𝒃

is at activity level.

108

7.2.2 Context-aware Deep Treatment Recommendation Framework

7.2.2.1 Overview of the Proposed Framework

The goal of the proposed algorithm is to recommend next-step treatment activities to the

medical team based on the observed behavioral contextual information (up-to-now

treatment traces) and environmental contextual information (i.e., activity attributes and

patient attributes). The recommender system (Figure 7.1) built on an RNN. The RNN takes

as input the concatenation of the activity embedding vectors 𝒗𝒗𝑎𝑎 = [𝒗𝒗1𝑎𝑎, … ,𝒗𝒗𝑡𝑡𝑎𝑎] (main input)

and the activity attribute vectors 𝒗𝒗𝑏𝑏 = [𝒗𝒗1𝑏𝑏 , … ,𝒗𝒗𝑡𝑡𝑏𝑏] (auxiliary input, dynamic

environmental context). The latent vector outputs from the RNN go through our attention

layer and then merged with the patient attribute vector 𝒗𝒗𝑥𝑥 (auxiliary input, static

environmental context). For the final output, we used a densely connected layer after the

merging layer followed by a top-k softmax activation function. The most probable k

activities will be shown to the medical team as the recommended treatment for the next

step (t+1). In practice, the dynamic contextual information will be updated by our sensor-

based activity recognition system or by the nurse recorder who has access to the

computerized decision support system.

Table 7-1. A data sample of medical process data

ID Activity Start Time End Time Descriptor Verbalized
xx1 Pt arrival 0:00:00 0:00:01
xx1 Visual assessment-AA 0:00:45 0:00:52 Jr Resident 1
xx1 Chest Auscultation-BA 0:00:55 0:00:58 Jr Resident 0
xx1 Oxygen Preparation 0:01:04 0:01:05 EM Attending 1
xx1 Oxygen-BC 0:01:29 0:01:30 EM Attending 1
xx1 Total Verbalized-GCS 0:01:50 0:01:51 Jr Resident 0
xx1 MBP-BP 0:02:12 0:02:18 Nurse Left 1
xx1 Left pupil-PU 0:02:19 0:02:24 Jr Resident 1
xx1 Right pupil-PU 0:02:24 0:02:25 Jr Resident 1
xx1 Visual inspection-H 0:02:33 0:02:34 Jr Resident 0
xx1 Palpation-H 0:02:33 0:02:37 Jr Resident 0

Attributes xx1
Age category 24-96
Sex Male
Night Shift 0
Weekend 0
Pre-arrival Notification 1
Trauma Activation Level Transfer
Intubation 0
Glasgow Coma Score >13 1
Injury Type Blunt
Injury Severity Score 5
Neck Injury Severity Score 3

(a) Trauma resuscitation trace (b) Patient demographics

109

7.2.2.2 Multiple Contextual Information as Input

Given the treatment activity trace from time 1 to t: 𝑻𝑻 = [𝑎𝑎1, … ,𝑎𝑎𝑡𝑡]𝑇𝑇, the i-th activity 𝑎𝑎𝑖𝑖 ∈

𝑻𝑻 is embedded into a vector representation 𝒗𝒗𝑖𝑖𝑎𝑎. This behavioral context is the main input to

the model. Each activity may also be associated with a set of attributes 𝒗𝒗𝑖𝑖𝑏𝑏, e.g., descriptor

and whether the task was completed. As the environmental context is also dynamically

changing over time, we merged 𝒗𝒗𝑖𝑖𝑎𝑎 and 𝒗𝒗𝑖𝑖𝑏𝑏 before feeding it to the recurrent neural

network. The other auxiliary input, patient attributes 𝒗𝒗𝑥𝑥 , is static over time. We thus

integrate this information after the RNN step. In addition, according to our domain

knowledge, we however know that not all environmental context will contribute to the

model performance. Environmental attributes, like patient gender and weight, may have

little or no predictive power. Hence, we add a dense layer after the auxiliary input layer to

help reduce the feature dimensionality and let the model itself learn the weights of different

features.

7.2.2.3 Activity Embedding (Act2vec)

A simple way to format treatment activities is through a one-hot vector. This naïve

approach disregards relationships between activity types. In medical processes, treatment

activities may have causal relationships and coexist in the same case; some activities are

temporally closer than other activities according to treatment protocols. Inspired by

Figure 7.1. Proposed context-aware deep treatment recommendation framework

Main Input

Patient Demographics

𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑔𝑔

Environmental Contextual
Information (Static)

Activity Attributes

Runtime Activity
Sequence at time t

𝑎𝑎1 𝑎𝑎2 … 𝑎𝑎𝑡𝑡 …

…𝒃𝒃1 𝒃𝒃2 … 𝒃𝒃𝑡𝑡

Em
bedding

Behavioral Contextual
Information

Auxiliary Input

merge

RNN (GRU/LSTM
)

Densemerge Main output

𝒗𝒗1𝑠𝑠 𝒗𝒗2𝑠𝑠 … 𝒗𝒗𝑡𝑡𝑠𝑠
…

Softm
ax

𝑎𝑎𝑡𝑡+1

Ground truth is the
activity of time t+1

110

Word2vec [101] in natural language processing, we proposed Act2vec, which embeds the

activity types into numerical vectors via a neural net. Act2vec uses skip-grams [101] to

maximize the conditional probability of behavioral context (neighboring treatment

activities) given an activity, learning a vector representation of each activity type. Act2vec

can help reveal the proximity of treatment activities to each other. Compared to the huge

word vocabulary in nature language processing domain, the vocabulary of treatment

activity types is usually much smaller. The datasets we used in this study have 102 and 15

activity types respectively. The embeddings of the activities are easier to train even with a

limited amount of treatment process data.

7.2.2.4 LSTM and GRU

RNNs are powerful at modeling temporal sequences. The standard RNN, however, still

suffers vanishing or exploding gradients when learning long-term dependencies. We thus

used two RNN variations, Long Short Term Memory (LSTM, [102]) networks and Gated

Recurrent Unit (GRU, [103]). The gates in both RNNs are able to decide what information

to store and forget. The RNN in our system generates a sequence of hidden state

representations 𝒉𝒉1, …, 𝒉𝒉𝑡𝑡,…, 𝒉𝒉𝑞𝑞, and each state 𝒉𝒉𝑡𝑡 can retain information from previous

members of the sequence.

7.2.2.5 Sliding-Window Attention Mechanism

In our problem, the goal is to recommend the next-step activity 𝑎𝑎𝑡𝑡+1 according to the

treatments that have been done in previous steps, i.e., from 𝑎𝑎1 to 𝑎𝑎𝑡𝑡. Without an attention

mechanism, the prediction is made only based on the t-th hidden vector output 𝒉𝒉𝑡𝑡, a fixed-

length vector. However, medical processes can be very flexible, e.g., some parallel

treatment activities may occur in any order. The next-step activity may not be strongly

associated with the latest state, but instead be associated with a state produced many time

steps earlier. LSTM and GRU, memory based networks, were designed to address this

problem. The long and short memories are used to store the information that have been

observed. It is just like the human’s memory. But because LSTM and GRU flow in one

direction and the memorized information diminishes as the networks proceed, this memory

based mechanism cannot provide complete context information when making the

111

predictions at each step. Our sliding-window attention mechanism can supplement the

memory based mechanism by providing complete context information within the window.

The network will decide what context information to focus on at each step. For example,

when people read or review a paper, it is common that the readers look back at the context

(previous paragraph or sentences) to understand the current sentence. It is possible but

usually difficult to understand every sentence just based on the memory without looking

back. We thus incorporated the attention mechanism in LSTM and GRU to help predict

𝑎𝑎𝑡𝑡+1.

Unlike attentions used in machine translation [104][105] or text classification problems

[106], where the attentions are applied on the entire input sequence, our attention must span

different inputs as the prediction proceeds in the timeline. Hence, we proposed a sliding-

window attention. The sliding window attention can guide the RNN to focus on nearby

hidden vectors with more predictive power for the next activity. In implementation, we

take the hidden vectors {𝒉𝒉𝑡𝑡−𝑙𝑙+1, … ,𝒉𝒉𝑡𝑡} from LSTMs or GRUs as input to the attention

layer. The aim is then to derive a context vector 𝒄𝒄𝑡𝑡 that captures the information within the

window to help predict the current target activity 𝑎𝑎𝑡𝑡+1. We specify 𝑙𝑙 as our sliding window

size, and 𝑑𝑑 as the size of the hidden state vector. We implemented three variations of

attention. The attention score 𝛼𝛼𝑡𝑡,𝑖𝑖 (alpha) for each time step 𝑖𝑖 in the sliding window at time

step 𝑡𝑡 can be calculated as follows:

𝛼𝛼𝑡𝑡,𝑖𝑖 = �
𝒉𝒉𝑡𝑡𝑇𝑇𝑾𝑾𝛼𝛼𝒉𝒉𝑖𝑖 general
𝒗𝒗𝛼𝛼𝑇𝑇 tanh(𝑾𝑾𝛼𝛼

′ [𝒉𝒉𝑡𝑡;𝒉𝒉𝑖𝑖]) concat
𝒗𝒗𝛼𝛼𝑇𝑇 tanh(𝒉𝒉𝑖𝑖) simple

 (7.1)

112

where 𝑾𝑾𝛼𝛼 ∈ ℝ𝑑𝑑×𝑑𝑑,𝑾𝑾𝛼𝛼
′ ∈ ℝ𝑑𝑑×2𝑑𝑑,𝒉𝒉𝑖𝑖 ∈ ℝ𝑑𝑑 , 𝒗𝒗𝛼𝛼 ∈ ℝ𝑑𝑑 . The first two are alignment-based

attentions (Figure 7.2 (a)) , “general” and “concat” [104], that are widely used in machine

translation. The score vector 𝜶𝜶𝑖𝑖 is derived by comparing the target hidden vector state ℎ𝑡𝑡

with the source hidden vectors 𝒉𝒉𝑖𝑖 ∈ {𝒉𝒉𝑡𝑡−𝑙𝑙+1, … ,𝒉𝒉𝑡𝑡−1}. This process thus takes into account

the relationship between 𝒉𝒉𝑡𝑡 and 𝒉𝒉𝑖𝑖 to make predictions [107]. The third score function

(namely simple-weight in this chapter, Figure 7.2 (b)) is more straightforward and is used

in text classification [106]. The current hidden vector 𝒉𝒉𝑡𝑡 is considered a member of the

source hidden vectors 𝒉𝒉𝑖𝑖 ∈ {𝒉𝒉𝑡𝑡−𝑙𝑙+1, … ,𝒉𝒉𝑡𝑡}. Vector 𝒗𝒗𝛼𝛼𝑇𝑇 and matrix 𝑾𝑾𝛼𝛼 (or 𝑾𝑾𝛼𝛼
′) are trained

and shared over all time steps. Zero paddings were added to the front when the current

location 𝑡𝑡 is smaller than the window size 𝑘𝑘 . The computed attention scores were

normalized by a softmax function. The normalized attention score vector 𝜶𝜶𝑡𝑡 of alignment-

based attentions and simple-weight attentions are Eq.7.2 and Eq.7.3 respectively:

𝜶𝜶𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠([𝛼𝛼𝑡𝑡,𝑡𝑡−𝑙𝑙+1,𝛼𝛼𝑡𝑡,𝑡𝑡−𝑙𝑙+2, … ,𝛼𝛼𝑡𝑡,𝑡𝑡−1]) (7.2)

𝜶𝜶𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠([𝛼𝛼𝑡𝑡,𝑡𝑡−𝑙𝑙+1,𝛼𝛼𝑡𝑡,𝑡𝑡−𝑙𝑙+2, … ,𝛼𝛼𝑡𝑡,𝑡𝑡−1]) (7.3)

The context vector 𝒄𝒄𝑡𝑡 is then computed as a weighted sum of hidden state vectors within

the window size:

𝒄𝒄𝑡𝑡 = �𝜶𝜶𝑡𝑡𝒉𝒉𝑖𝑖
𝑖𝑖

 (7.4)

Figure 7.2. Two types of sliding-window attention architecture. (a) Alignment-based

attention mechanism. (b) Simple-weight attention mechanism. The window size illustrated

here is 5.

ℎ𝑡𝑡

𝑐𝑐𝑡𝑡

𝛼𝛼𝑡𝑡

align weights

ℎ�𝐹𝐹
sliding-window attention

𝑡𝑡�𝐹𝐹

ℎ𝑖𝑖 ℎ𝑡𝑡

𝑐𝑐𝑡𝑡

ℎ�𝐹𝐹

sliding-window attention

𝑡𝑡�𝐹𝐹

ℎ𝑖𝑖

𝛼𝛼𝑡𝑡,1

𝛼𝛼𝑡𝑡,2 𝛼𝛼𝑡𝑡,3 𝛼𝛼𝑡𝑡,4

𝛼𝛼𝑡𝑡,5

(b)(a)

113

In alignment-based attentions, given the target hidden vector 𝒉𝒉𝑡𝑡 and the context vector 𝒄𝒄𝑡𝑡,

a concatenation layer is used to combine the information from both vectors to produce the

final attentional hidden vector (Eq.7.5). And in simple-weight attention, we obtained the

final attention vector with a hyperbolic tangent function directly (Eq.7.6).

𝒉𝒉�𝑡𝑡 = tanh (𝑾𝑾𝑐𝑐[𝒄𝒄𝑡𝑡;𝒉𝒉𝑡𝑡]) (7.5)

𝒉𝒉�𝑡𝑡 = tanh (𝒄𝒄𝑡𝑡) (7.6)

where 𝑾𝑾𝑐𝑐 ∈ ℝ𝑑𝑑×2𝑑𝑑 is the weight matrix.

7.2.2.6 Classifying

The attentional vector 𝒉𝒉�𝑡𝑡 is fed through the softmax layer to produce the predicted

distribution of the next treatment activity:

𝒚𝒚�𝒕𝒕 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑾𝑾𝑠𝑠𝒉𝒉�𝑡𝑡 + 𝒃𝒃𝑠𝑠) (7.7)

where 𝑾𝑾𝑠𝑠 ∈ ℝ𝑢𝑢×𝑑𝑑 is the weight matrix and 𝒃𝒃𝑠𝑠 ∈ ℝ𝑢𝑢 is the bias. 𝑢𝑢 is the size of vocabulary

of treatment activity types. We used categorical cross-entropy as the loss function (Eq.7.8).

ℒ({𝒚𝒚�𝑡𝑡
(𝑖𝑖)}, {𝒚𝒚𝑡𝑡

(𝑖𝑖)})

= −
1
𝑛𝑛
�

1
𝑞𝑞(𝑖𝑖) �((𝒚𝒚𝑡𝑡

(𝑖𝑖))𝑇𝑇 log𝒚𝒚�𝑡𝑡
(𝑖𝑖) + (1 − 𝒚𝒚𝑡𝑡

(𝑖𝑖))𝑇𝑇 log(1 − 𝒚𝒚�𝑡𝑡
(𝑖𝑖)))

𝑞𝑞(𝑖𝑖)

𝑡𝑡

𝑛𝑛

𝑖𝑖

(7.8)

where {𝒚𝒚𝑡𝑡
(𝑖𝑖)} is the ground truth activity type at time 𝑡𝑡 in the i-th patient record.

Figure 7.3. Alignment-based synthetic patient data generator. Environmental context

attributes associated with each activity were not drawn.

1 1 0.2 0.4 1 10.2 0.6 1
A B B C D ED B A

A B C D E-- A-- --
A B -- D E-- AB B

𝑇𝑇𝑠𝑠1:
𝑇𝑇𝑠𝑠2:

A B ̶ C D ̶ E B A
A B B ̶ D ̶ E B A
A B ̶ ̶ D ̶ E B A
A B ̶ ̶ D ̶ E ̶ A
A B ̶ C D D E ̶ A

1 1 0.2 0.4 1 10.2 0.6 1
A B B C D ED B AT1: A, B, C, D, E, B, A

T2: A, B, B, D, E, B, A
T3: A, B, D, E, B, A
T4: A, B, D, E, A
T5: A, B, C, D, D, E, A 𝓒𝓒𝓒𝓒:

𝑡𝑡𝑐𝑐𝑜𝑜𝑙𝑙:

𝓜𝓜𝑻𝑻

𝒜𝒜(𝑻𝑻)
Generate Synthetic Data

114

7.2.3 Data Augmentation and Model Pre-training

Pre-training is widely used to address having a limited amount of data. Model parameters

are initialized by learning reusable features from datasets of similar domains. However, to

our best knowledge, the data we collect for our medical process application is not collected

by any other institution in the same manner. Hence, we present a synthetic data generator

to fabricate pre-training samples from the limited real training data. Our algorithm

(Alg.7.1) has two steps: (1) calculate the alignment matrix (step 1 in Alg.7.1) and (steps 2-

10 in Alg.7.1) fit the data distribution into a multivariate Bernoulli (binary) distribution

(step 1 in Alg.7.1) and generate synthetic data (steps 11-20 in Alg.7.1).

Different treatment procedures have different patterns and numbers of activities. We

thus used trace alignment [10] to find the best alignment across different traces. Given

process traces T, the trace alignment algorithm 𝒜𝒜(𝑻𝑻) forms an alignment matrix 𝓜𝓜 with

the traces in T as rows and activities of the same type as columns. If for a given trace a

matching activity cannot be found, a gap symbol “-” is inserted in the corresponding cell

(Figure 7.3). 𝒜𝒜(𝑻𝑻) also returns the consensus sequence 𝓒𝓒𝓒𝓒, a sequence that records the

activities of frequent columns of the alignment matrix. In the meantime, we can calculate

the occurrence frequency of each column 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐.

With computed 𝓒𝓒𝓒𝓒 and 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐, a naïve data generation approach is to consider the occurrence

of each activity in 𝓒𝓒𝓒𝓒 follows a univariate Bernoulli distribution with “success” probability

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐. The limitation of this naïve approach is that it assumes that the occurrences of the

activities across the columns are independent. However, in practice, the occurrences of the

activities are correlated. For example, in trauma resuscitation, there is a much higher

change to observe the activity “Miami-j collar adjustment” when activity “Miami-j collar

115

application” occurs (“Miami-j collar” is a neck brace used to prevent patient neck

movement). Thus, to take into account the correlations, a multivariate Bernoulli (MVB)

distribution is more accurate. MVB has two parameters that needs to be estimated from

data, the probability vector for each binary variable and the matrix of binary correlations.

The probability vector in our problem is the column frequencies:

𝒑𝒑 = [𝑓𝑓1, … ,𝑓𝑓𝑚𝑚] = [
𝑒𝑒1
n

,
𝑒𝑒2
n

, … ,
𝑒𝑒𝑚𝑚
n

] (7.9)

where 𝑚𝑚 is the number of columns of the alignment matrix and 𝑒𝑒𝑖𝑖 is the number of non-

gap activities in column 𝑖𝑖. The correlation matrix can be calculated with the phi coefficient

[108], a measure of association for two binary variables. The phi coefficient is special case

of the Pearson correlation coefficient when the input data are binary variables. The phi

coefficient of two columns 𝝐𝝐𝑖𝑖 and 𝝐𝝐𝑗𝑗 in the alignment matrix 𝓜𝓜 is

𝜙𝜙𝑖𝑖𝑖𝑖 =
𝑛𝑛11𝑛𝑛00 − 𝑛𝑛10𝑛𝑛01

�𝑛𝑛𝑖𝑖(𝑛𝑛 − 𝑛𝑛𝑖𝑖)𝑛𝑛𝑗𝑗(𝑛𝑛 − 𝑛𝑛𝑗𝑗)
 (7.10)

Algorithm 7.1. Synthetic Patient Record Generator with Historical Patient Data
Input: 𝒓𝒓 = {𝒊𝒊𝒊𝒊,𝒙𝒙,𝑻𝑻} /* historic patient records with ids, patient attributes and treatment traces */
Output: 𝑟𝑟𝑠𝑠 /* A synthetic patient record */
Step 1. Calculate alignment matrix {𝓜𝓜,𝓒𝓒𝓒𝓒} = 𝒜𝒜(𝑻𝑻)
Step 2. Calculate correlation matrix 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = [𝜙𝜙𝑖𝑖𝑖𝑖]𝑚𝑚×𝑚𝑚 (Eq.7.10)
Step 3. for col in range(1,m):
Step 4. Calculate 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 (Eq.7.9); 𝒑𝒑 = 𝒑𝒑 ∪ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐
Step 5. for each activity a in column col:
Step 6. Let b as the activity attributes of a
Step 7. Let x as patient attributes associated with the trace that contains a
Step 8. 𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐 ∪ 𝒃𝒃; 𝑿𝑿𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑿𝑿𝑐𝑐𝑐𝑐𝑐𝑐 ∪ 𝒙𝒙
Step 9. 𝒃𝒃𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒙𝒙𝑐𝑐𝑐𝑐𝑐𝑐 = avg(𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐), avg(𝑿𝑿𝑐𝑐𝑐𝑐𝑐𝑐) /* compute average probability distribution */
Step 10. 𝓒𝓒𝓒𝓒[𝑐𝑐𝑐𝑐𝑐𝑐] = {𝑎𝑎, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒃𝒃𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒙𝒙𝑐𝑐𝑐𝑐𝑐𝑐}
Step 11. Generate activity trace 𝑨𝑨 = MVB(𝒑𝒑, 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) /* A trace of 0s and 1s */
Step 12. for i in range(1,m):
Step 13. Let 𝑎𝑎, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒃𝒃𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒙𝒙𝑐𝑐𝑐𝑐𝑐𝑐 = 𝓒𝓒𝓒𝓒[𝑖𝑖]
Step 14. if 𝑨𝑨[𝑖𝑖] == 1
Step 15. Randomly generate activity attributes 𝒃𝒃 based on activity distribution saved in 𝒃𝒃𝑖𝑖
Step 16. 𝑻𝑻𝑠𝑠 = 𝑻𝑻𝑠𝑠 ∪ {𝑎𝑎,𝒃𝒃}
Step 17. 𝒙𝒙𝑠𝑠 = 𝒙𝒙𝑠𝑠 + 𝒙𝒙𝑖𝑖 /* sum up the patient attributes over columns */
Step 18. else continue
Step 19. Randomly generate 𝒙𝒙𝑠𝑠 based on patient attributes distribution 𝒙𝒙𝑠𝑠/n averaged over columns
Step 20. return 𝑟𝑟𝑠𝑠 = {0,𝒙𝒙𝑠𝑠,𝑻𝑻𝑠𝑠}

* the source code is available https://github.com/allen9408/Deep_treatment_recommender

116

where 𝑛𝑛11, 𝑛𝑛10, 𝑛𝑛01, 𝑛𝑛00, are non-negative counts that add to 𝑛𝑛. They represent the number

of both-present, present-absent, absent-present, and both-absent of the corresponding

entries in 𝝐𝝐𝑖𝑖 and 𝝐𝝐𝑗𝑗. The 𝑛𝑛i and 𝑛𝑛j represent the total number of present entries in 𝝐𝝐𝑖𝑖 and 𝝐𝝐𝑗𝑗,

respectively. Note that 𝑛𝑛𝑖𝑖 = 𝑛𝑛10 + 𝑛𝑛11 and 𝑛𝑛𝑗𝑗 = 𝑛𝑛00 + 𝑛𝑛01 . The correlation matrix

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = [𝜙𝜙𝑖𝑖𝑖𝑖]𝑚𝑚×𝑚𝑚. It is important to note that the Bernoulli distribution requires 0 < p < 1.

Hence columns with p = 1 need to be handled separately. The generation algorithm

MVB(𝒑𝒑, 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜) is based on the methodology proposed by Demirtas and Doganay [109]. To

generate environmental context attributes at the same time, we only need to associate them

with the activities in the alignment matrix. Our synthetic data will retain most of real data’s

characteristics. Throughout, we introduce noise to vary the synthetic data from the

authentic data, helping the model generalize better to unseen data.

7.3 Experiments

7.3.1 Real-world Data and Synthetic Pre-training Data

The use of medical data for this study was approved by the Institutional Review Board at

our hospital. 122 trauma resuscitation records and 101 endotracheal intubation (breathing

tube insertion) records were coded from surveillance videos. In addition, we generated

5,000 synthetic trauma records and 5,000 synthetic intubation records from the two real

Table 7-2. Statistics of two real-world medical datasets and two synthetic datasets

generated using Alg.7.1.

 Dataset
Stats Trauma Intubation Synthetic

Trauma
Synthetic
Intubation

Num. Patient Records 122 101 5,000 5,000
Num. Total Acts 11,464 1239 470,090 61,356
Num. Act Types 102 15 102 15
Avg. Num. Acts in Trace 93.97 12.27 94.02 12.27
Num. Patient Demographics 22 17 22 17
Num. Activity Attributes 23 0 23 0

117

training sets (Table 7-2). We evaluated the synthetic data quality based on statistics and

medical expect feedback. Our results (Table 7-3) showed high similarity between our

synthetic data and the authentic data. We compared trace length, activity distribution,

patient attributes ((a) in Figure 7.4), and activity attributes ((b) in Figure 7.4). The synthetic

intubation records have a high proximity with the authentic records. The distribution of

generated trace length only has a 0.03 difference in mean value and a 0.02 difference in

standard deviation. Relative differences of the distributions of activity occurrence and

context attributes were less than 3%. The trauma process is more complex than the

intubation process because it has a larger activity vocabulary (102 vs. 15) and longer traces

Table 7-3. Similarity comparison between synthetic data and authentic data (training set).

For trace length distribution, the mean value and standard deviation is reported. For the

distribution of each activity type and context attribute, the relative difference is reported.

 Dataset
Measures

Trauma
(auth.)

Trauma
(synth.)

Intubation
(auth.)

Intubation
(synth.)

Trace length 93.93 ± 24.13 94.02 ± 27.71 12.24 ± 2.56 12.27 ± 2.54
Activity occurrence reference 6.27% rf reference 1.08% rf
Patient attributes reference 7.51% rf reference 2.89% rf
Activity attributes reference 8.40% rf N/A N/A

* The “rf” stands for “relative difference”, which is quantified using mean absolute percentage error: mean(abs(xs − xa)/xa)*100% ,
where xs, xa are values of activity occurrence, activity attributes or patient attributes in synthetic data and authentic data respectively.

Figure 7.4. (a) Distribution of patient attributes, authentic data (red) vs. synthetic data

(green). Blue shows the overlapped area. Each dimension has scale 0 to 100, indicating the

corresponding probability distribution. (b) Distribution of activity attributes, authentic data

(red) vs. synthetic data (green). Dimensions of small values are x10, x100 or x1000 for

better view.

(b)(a)

118

(94 vs. 12). Hence bigger distribution differences were observed in the more complex

trauma dataset. Our results also show that all synthetic records were unique. In addition,

we created a mixed log with 16 authentic and 19 synthetic patient records. A medical expert

with experience coding our datasets was asked to identify which cases are authentic and

which cases are synthetic. Our results show her classification accuracy was only 54.3 %,

similar to random guessing, implying that the synthetic data was realistic and may be

observed in practice.

7.3.2 Experimental Setup

7.3.2.1 Evaluation Metrics

Our goal is to correctly recommend the next-step treatment activities to the medical team.

The ground truth at a particular time step is therefore the set of activities that occur next.

Our trauma dataset and intubation dataset have 102 and 15 possible activity types to

recommend, respectively. Hence, in addition to using the standard accuracy (i.e., top-1

accuracy), we also evaluated the top-k accuracy. The top-k accuracy measures the fraction

of the recommendations for which the correct label is among the top-k most probable

predicted.

7.3.2.2 Baseline Methods.

We compared our method with six baseline methods.

POP [110]: a baseline method that always recommends the most popular (POP) items

in the data. In our problem, it recommends the most frequent activity types.

Act-KNN [111]: a classic recommendation method that returns k most similar (k nearest

neighbors) items. In our problem, it recommends k activities most similar to the current

activity. The similarity between activities is measured by their locations in the activity

traces.

MC [112]: a classic modeling method for sequential data. Markov chains (MC) make

predictions based on the latest activity.

HMM [37]: another model for sequential data. Hidden Markov models (HMM) are able

to model observations driven by latent variables. The latent variable in our problem can be

considered as the treatment goals of the medical team. To avoid subjective initialization of

119

latent variables, we used a state-splitting method [37] which can automatically infer an

optimal HMM.

LSTM: a simple implementation of LSTM with activity sequences as input and

weighted loss function, recently introduced to recommendation problems [96].

GRU: a simple implementation of GRU with only activity sequences as input and

weighted loss function [98].

7.3.2.3 Our Approaches

We proposed several model variants with different designs (Act2vec, multiple inputs,

sliding-window attention of 3 types (Eq.7.1) and pre-training):

LSTM(A): LSTM with Act2vec (and embedding)

LSTM(Am): LSTM(A) with multiple contextual information as input.

LSTM(Ama1): LSTM(Am) with general sliding-window attention.

LSTM(Ama2): LSTM(Am) with concat sliding-window attention.

LSTM(Ama3): LSTM(Am) with simple-weight sliding-window attention.

LSTM(Ama1p): LSTM(Ama1) pre-trained by synthetic data and fine-tuned by authentic data.

The number of variants doubles to 12 by replacing LSTM with GRU. The

implementation details can be found in our code (same link as Alg.7.1). For our and

baseline models, we divided the dataset with an 80-10-10 training, validation, and testing

split.

7.3.3 Comprehensive Comparison

Our experimental results (Table 7-4) show that the neural networks outperform

conventional recommendation and sequential models. As important baselines, POP and

Act-KNN only achieved top-1 accuracies of 3.06% and 4.84% respectively on the trauma

resuscitation. This exemplifies the challenges of making treatment recommendations from

a large activity vocabulary (102 activity types in trauma and 15 in intubation). It also shows

the importance of modeling sequential associations between activities in our problem.

Classical sequential models like MC and HMM achieved much higher accuracy.

Depending on first-order Markov assumptions, their prediction is only based on the

immediate previous state. Their high accuracy reveals the strong dependency between the

120

adjacent activities. By considering both adjacent and long-term dependencies, the simple

GRU and LSTM achieved the better performance. LSTM(A) and GRU(A), featured with

Act2vec and embedding layer achieved higher accuracy than LSTM and GRU with a one-

hot vector representation. This is expected, as the skip-gram training of Act2vec takes

neighboring activities (a form of low-order logic) into account. HMM and MC perform

well with just first-order logic, so Act2vec would intuitively help the neural network in

prediction. LSTM(Am) and GRU(Am) achieved better performance than LSTM(A) and GRU(A)

by taking the advantage of extra context information. Attention mechanism of different

architectures improves the model performance in most cases. While in some cases, e.g.,

GRU(Ama2) and LSTM(Ama2) in trauma data, they do not improve the performance. The

Table 7-4. Model performance comparison on two real-world medical datasets. The

attention window is set to 5 for intubation data and 10 for trauma data. The trauma data has

a bigger window size and large k values in Top-k measure. This design is mainly because

that the trauma resuscitation process is much longer and more complex than intubation

process.
Model Trauma Intubation

 Top-1 Top-5 Top-10 Top-1 Top-3 Top-5

POP 0.0306 0.1358 0.2552 0.0979 0.3023 0.4537

Act-KNN 0.0484 0.3559 0.4952 0.1134 0.4948 0.6804

MC 0.3469 0.6013 0.6975 0.4276 0.6477 0.7892

HMM 0.3532 0.6178 0.6761 0.3955 0.6949 0.8257

LSTM 0.3646 0.6093 0.7263 0.4227 0.7422 0.8144

LSTM(A) 0.3800 0.6305 0.7369 0.4536 0.7113 0.8453

LSTM(Am) 0.3849 0.6344 0.7543 0.4639 0.7422 0.8866

LSTM(Ama1) 0.3878 0.6218 0.7388 0.5051 0.7216 0.8762

LSTM(Ama2) 0.3800 0.6325 0.7446 0.5154 0.7422 0.8659

LSTM(Ama3) 0.3858 0.6179 0.7427 0.4845 0.7319 0.8350

LSTM(Ama4) 0.2746 0.5657 0.7069 0.4536 0.7422 0.8659

LSTM(Ama1p) 0.3871 0.6277 0.7302 0.5361 0.7835 0.9175

GRU 0.3694 0.6315 0.7515 0.4433 0.7319 0.8556

GRU(A) 0.3878 0.6392 0.7408 0.4845 0.6907 0.8453

GRU(Am) 0.3955 0.6412 0.7524 0.5051 0.6907 0.8453

GRU(Ama1) 0.3858 0.6237 0.7301 0.4845 0.7525 0.8247

GRU(Ama2) 0.3810 0.6170 0.7417 0.5154 0.7216 0.8659

GRU(Ama3) 0.3868 0.6208 0.7466 0.5463 0.7422 0.8866

GRU(Ama4) 0.2659 0.5290 0.6818 0.4433 0.7525 0.8350

GRU(Ama1p) 0.3955 0.6296 0.7302 0.5567 0.7938 0.8866

121

window size of the attention also affects the performance. Our experimental results show

(Table 7-5) the model performance usually decreases as the window size increases. Pre-

training on the synthetic data also improves model performance. The pre-trained models

(LSTM(Ama1p) and GRU(Ama1p)) outperform the models without pre-training, achieved top-1

accuracy of 39.55% and 55.67% with trauma and intubation data respectively. This implies

that the synthetic data helps to generalize the model. Another experiment shows that

compared with a randomly initialized model, the validation loss of the pre-trained model

converges faster to a lower loss and higher accuracy (Figure 7.5). In addition, it is also

noticeable that the GRUs outperforms LSTMs in most cases (Table 7-4). The reason is that

the GRU has simpler internal structure than LSTM and are easier to train with fewer data.

The results not only show the model performance improvements from our methods but

also show the challenges of accurately recommending the next treatment activities. The

Table 7-5. Different attention architectures with different window size. The dataset used is

trauma records. Top-1 accuracy is reported.
Model Attention Window Size

 Win = 10 Win = 20 Win = 30 Win = 40 All preceding

GRU(Ama1) 0.3858 0.3829 0.3752 0.3762 0.3491

GRU(Ama2) 0.3810 0.3820 0.3742 0.3675 0.3627

GRU(Ama3) 0.3868 0.3791 0.3771 0.3684 0.3665

Figure 7.5. Training and validation loss plot (a) and accuracy plot (b) for models with

(GRU(Ama1p)) and without pre-training (GRU(Ama1)). Intubation data was used for these

plots. The data used for pre-training is the 5000 synthetic intubation data. The training loss

is higher than validation loss because of dropout and regularizer applied in the model.

122

recommendations need to be done within 102 classes in trauma data and 15 classes in

intubation data. The best performance we obtained is on the intubation process, where we

achieved 55.67% top-1 and 79.38% top-3 accuracy. This performance may not be

satisfactorily high enough to use in real-world cases. But we were applying this method to

simulated medical processes to help train the new medical students.

7.3.4 Visual Analytics for Knowledge Discovery

In the medical field, model interpretability is important. In this section, we show the visual

analysis of Act2vec and the sliding-window attention mechanism. The analysis reveals

interesting medical insights.

7.3.4.1 Act2vec.

We embedded 102 trauma activities into 100D vectors. Then, we used t-SNE (dimension

reduction) to project them onto a 2D plane (Figure 7.6). To test if the data-driven insights

matched our human knowledge, we requested our medical experts to group the activities

based only on their domain knowledge. According to their treatment goals, our medical

experts clustered the 102 activities into 12 groups (colors in Figure 7.6).

Our result reveals several interesting insights. First, activities of the same medical goal are

usually closer than activities of different medical goals. This finding indicates that, in most

cases, our medical team accomplishes the trauma resuscitation by addressing medical goals

one by one rather than simultaneously. Second, without taking into account the points that

lie alone in low-density regions, the activity points can be grouped into four major clusters

(dashed circles in Figure 7.6). The clusters reveal high-level medical goals. The left cluster

consists of goals airway (A), breath (B), circulation (C), disability (D), and exposure (E).

These five goals constitute the primary survey, a medical phase with the goal of quickly

identifying life-threatening injuries. The top and right clusters constitute the secondary

survey, a head-to-toe physical examination of the patient’s body. The bottom cluster

includes activities assessing the patient’s back and the conditional treatments performed

depending on assessment outcomes.

123

7.3.4.2 Sliding-window Attention.

We visualized the sliding-window attention score vectors of each time step in a matrix

(Figure 7.7 (a)). The attention scores were computed from the general attention

architecture. The value of the attention score roughly reflects how important the hidden

vector helps the current 𝒉𝒉𝑡𝑡 predict the next activity. For example, when the current input

is activity “rsi paralytic medicine” (the 2nd to last activity in the horizontal axis in Figure

7.7 (a)), the current hidden vector 𝒉𝒉𝑡𝑡 heavily relies on presence of the “critical window”

hidden vector in the sliding window (the 4th to last activity in the horizontal axis) to predict

“laryngoscopy” (the 2nd to last activity in the vertical axis). In addition, we also visualized

that all previous hidden layer was given some attention, including those of padding (Figure

7.7 (b)). Considering more previous hidden layers can then be said to dilute attention,

compared to using a small sliding-window. It is also interesting to see that attention is

usually given to the several latest states. This finding is aligned with our knowledge that

the medical team tends to consider just the most recent activities when planning the next

steps.

Figure 7.6. Activity vector visualization. Each dot (labeled by a unique number) represents

an activity (type). The distance between dots reveal the similarity of the activities. The

color of the dots reveals the probable associated medical goals of the treatment activities.

124

Figure 7.7. Visualization of attention scores for an intubation case. The attention scores

were generated using the general attention architecture (Eq.7.1). The horizontal axis

represents the activities (from left to right) that occurred sequentially in this intubation

case. The vertical axis represents the predicted activities. [PAD] denotes the “paddings”

added for variable length input trace, and [NA] denotes the “paddings” added for the

sliding window in the attention. The color of each cell represents the attention score (αt in

Figure 7.2) of each hidden vector. (a) Sliding-window attention mechanism with a window

size of 5. (b) Attention mechanism that considers all the preceding hidden vectors. It can

also be considered as a special case of the sliding-window mechanism when the window

size is larger than the length of activity trace.

(b)(a)

125

Part IV

Implementation and Conclusion

Part I: Introduction

Chapter 1
Introduction

Chapter 2
Preliminaries

Part II: Applied Process Mining and Analysis

Chapter 3
Workflow Model
Discovery

Chapter 4
Workflow Deviation
Analysis

Part III: Process Recommender System

Chapter 6
Trace-level
Recommendation

Chapter 7
Activity-level
Recommendation

Part IV: Implementation and Conclusion

Chapter 8
VIT-PLA

Chapter 9
Conclusions

Chapter 5
Patient Cohorts
Analysis

126

Chapter 8

VIT-PLA: Visual Interactive Tool for Process Log

Analysis

We developed two different versions of VIT-PLA, the Java version (Figure 8.1) and the

Web version (Figure 8.2). This chapter focuses on the Java version, which is based on our

paper [2]. Techniques for analyzing and visualizing process or workflow data have been

developed and applied in a wide range of domains. Visual analysis of large process logs

and integration of statistical analysis, however, have been limited. We introduce the Visual

Interactive Tool for Process Log Analysis (VIT-PLA) that provides a simplified process

log visualization and performs statistical correlation analysis on process attributes. We

demonstrate its use by applying it to an artificial dataset and running a preliminary analysis

of trauma team task data collected from a medical emergency department.

127

Figure 8.1. VIT-PLA, the Java version. This work is based on our paper [2].

Figure 8.2. VIT-PLA, the Web version. This work is based on our paper [3].

4

65

1

7 8

9

10

2

3

128

8.1 Motivation

Many contemporary information systems record activity logs, including personal calendars

and electronic health records (EHR). Process mining techniques attempt to extract non-

trivial knowledge and insights from these activity logs and use them for further analyses

[18]. Most research in process mining has focused on workflow discovery and process

execution visualization [18][113]. When visualized, real-world workflow often produces

“spaghetti-like” graphics that are difficult to analyze and do not provide useful

observations or insights. In addition to graphical visualization, other efforts have also been

made to produce different visualizations for process executions or workflow data

[30][114][115][116][117][118][119]. Although these systems have been shown to work

well with focused processes and relatively small event logs, little work has been done with

large process logs with many execution traces (typically hundreds or thousands of different

process cases). Simply displaying all traces at once does not make a useful visualization.

We observed that only several dozen traces can fit intelligibly on one screen at a time. Even

if the symbols were distinguishable, the amount of displayed data make it inconvenient for

human interpretation. When working with large workflow datasets, it is often useful to

obtain a concise visualization that summarizes the data into an easily interpretable format.

We present an approach for visualizing a summary of large process logs by aggregating

the data with a trace clustering method. Process traces are clustered based on the similarity

or proximity between their elements (i.e. process tasks). Each cluster is represented using

a “representative” or “average” trace extracted from the corresponding cluster. Using this

approach, we are able to usefully visualize large process logs. To help users better

understand the clusters, we also included tools for running statistical tests on the clusters

and their associated process attributes. These statistical test results can reveal significant

and interesting correlations between process executions and process attributes. We

implemented these approaches in a Java-based application, named VIT-PLA.

Our main contribution is a novel approach to producing summarized visualizations of

large process logs and directly integrating statistical analyses into the visualization. These

129

features help users discover attributes associated with specific sequence progressions and

deviations within the dataset.

8.2 Methods

The core methods implemented in VIT-PLA can be summarized as follows (Figure 8.3) :

(1) clustering of process traces (workflow data) based on proximity of data objects, (2)

aggregation of process traces and selection of cluster prototype, (3) regression analysis to

explore underlying knowledge, (4) interactive visualization of process traces and statistical

analysis results. This section will describe (1), (2), and (3); (4) will be discussed in Section

3.

8.2.1 Data Preprocessing: Sequencing of Traces

Process sequencing is necessary before more advanced processing. Activities coded in a

process log usually have start and end timestamps (some logs may not include end time)

for each activity. Idle time may exist between activities, and some activities may be

executed concurrently (Figure 8.4(a)). In process mining, process traces are usually

sequenced by ascending order of the start time of activities (Figure 8.4(b)).

Figure 8.3. Flowchart outlining the core methods implemented in VIT-PLA and their

corresponding inputs and outputs.

Process
Attributes

Process
Traces

Trace
Clustering

Data
Aggregation

VisualizationRegression
Analysis

Statistics

Clusters

Cluster
Membership

Cluster
Prototypes

(1) (2)

(3) (4)

130

8.2.2 Summary Visualization of Process Logs

8.2.2.1 Process Trace Clustering

Our approach uses clustering techniques to simplify the process trace visualizations.

Clustering provides an abstraction from the original data objects to generalized data

representatives, i.e. cluster prototypes. In most data mining problems, data clusters are

calculated based on the data objects’ feature set. However, to aggregate process traces that

follow an underlying workflow model, we cluster the traces based on the similarity of their

constituent tasks in terms of task type and sequential order of execution [86]. That is to

say, our sole feature used for clustering is the structure of each trace’s task sequence, not

the process attributes.

In VIT-PLA, the clustering algorithm we use is agglomerative hierarchical clustering

[120] with Ward’s method [89] as clustering criterion. We calculate the similarity of

process traces based on Edit Distance (a.k.a. Levenshtein Distance [38]). If activity

duration information is also available, the similarity can be calculated with “Duration-

Aware Edit Distance” [1], a metric derived from Edit Distance that penalizes dissimilarity

between durations of the same activity type.

Figure 8.4. Two steps of sequencing the traces with concurrent activities (such as d in T1

and c in T2) and idle times (white spaces between activities). (a) Example process traces

before sequencing. (b) The same process traces after sequencing.

T1 a b c d d

T2 a b c c a d

d
T1 a b c d

c
T2 a b c a d

0

Sequencing: Step 1: Reorder concurrent activates

Step 2: Remove the idle time between activities

131

8.2.2.2 Cluster Prototype and Trace Alignment

After clustering, each cluster can be characterized by a cluster prototype (Figure 8.5).

Because it is not practical to visualize all the data objects on a single computer screen, a

substantial reduction in the data size is needed. The deployment of cluster prototypes helps

compress the dataset.

Several candidates can be considered as cluster prototype, such as the widely-used

cluster centroid [121], the center of a cluster. There is, however, a great chance that there

may not be an actual data point at the cluster’s center. In this case, the centroid location is

calculated from the data in the cluster with the aim of minimizing the sum-squared distance

to other points.

Note that for categorical data and event-based data, the notion of a center (centroid)

does not apply [121]. For example, the centroid of categorical data (e.g. {orange, apple,

banana}) cannot be determined. In this case, we may use the cluster medoid, the most

representative data object in the cluster, i.e. a data point with minimal average dissimilarity

to all other objects in the cluster. The medoid, however, may not be adequate if the cluster

does not contain an “appropriate” representative.

To ensure that the chosen sequence is representative of the cluster, we used the

consensus sequence as the cluster prototype even though it may not be an observed trace

from the data. The consensus sequence, a concept derived from aligning biological

Figure 8.5. An example showing data clustering and aggregation. The cluster prototype

used here is cluster medoid.

1 A B C D E
2 A B B D E
3 A B D E
4 A B D E
5 A B C D D E
6 B A C D
7 B A C D E
8 B A D E
9 E C D

10 E B C D

1 A B C D E
2 A B B D E
3 A B D E
4 A B D E
5 A B C D D E

6 B A C D
7 B A C D E
8 B A D E

9 E C D
10 E B C D

Cluster 1

Cluster 2

Cluster 3

Cluster 1 (5) A B D E
Cluster 2 (3) B A C D E
Cluster 3 (2) E C D

Cluster Prototype (Medoid)Clustering Aggregate

Input Process Log

132

sequences (e.g. DNA) in bioinformatics, is a sequence of the most frequent residues found

in the alignment matrix’s columns. In process mining, consensus sequences may be

considered the “average” or “common” sequence of tasks [30] (Figure 8.6). To find the

consensus sequence for each cluster, trace alignment [1][30] needs to be performed using

traces from each cluster respectively. Trace alignment reformats the original data by

placing the same or similar activities of all traces to the same column of the alignment

matrix. If a matching activity cannot be found, a gap symbol “-” is inserted. Bose and Van

der Aalst [30] have shown how to use trace alignment techniques to visualize and analyze

process traces (Figure 8.6(a)). In our previous work, we extended their work by introducing

a duration-aware trace alignment algorithm [1] that also takes activity duration into

consideration. In our implementation, the alignment algorithm can work for data either

with or without activity durations (Figure 8.6).

8.2.3 Association between Trace Clusters and Trace Attributes

In addition to visualization, VIT-PLA also provides statistical analysis functions. The goal

of our statistical analyses is to help the user discover the underlying associations between

data cluster membership and trace attributes. This goal is accomplished using either

multinomial or binary logistic regression. The user chooses between these two statistical

methods depending on the domain question being asked. Multinomial logistic regression

works for binary comparison between two clusters (one-vs.-one cluster comparison), while

binomial logistic regression works for binary comparison between one cluster and the rest

Figure 8.6. An example of two types of trace alignment: (a) Context-Aware and (b)

Duration-Aware. The sequences at the bottom of (a) and (b) are consensus sequences

derived from the data. A gap symbol “-” or white space is inserted if a match cannot be

found. The five process traces shown here are from Cluster 1 in Figure 8.5.

133

of the clusters (one-vs.-rest). Using both logistic regression models can help discover

attributes associated with particular clusters.

8.2.3.1 Multinomial logistic regression

In multinomial logistic regression [122], let K denote the number of independent variables,

and let J denote the number of discrete categories of the dependent variable, where J ≥ 2.

In our case, the independent variables correspond to the trace attributes and the dependent

variables correspond to the trace cluster membership. The number of trace attributes is K

and the number of clusters is J. By default, we define the last category (the Jth cluster) to

be the reference category, against which logits of the first J−1 categories are compared. Let

C denote cluster membership. Represented formally:

ln�
𝑃𝑃(𝐶𝐶 = 𝑖𝑖)
𝑃𝑃(𝐶𝐶 = 𝐽𝐽)

� = ln�
𝑃𝑃(𝐶𝐶 = 𝑖𝑖)

1 − ∑ 𝑃𝑃(𝐶𝐶 = 𝑗𝑗)𝐽𝐽−1
𝑗𝑗=1

�

= 𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖1𝑥𝑥𝑖𝑖1 + 𝛽𝛽𝑖𝑖2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, … ,𝐾𝐾 − 1

(8.1)

where 𝑥𝑥𝑖𝑖 are trace attributes, and 𝛽𝛽𝑖𝑖 are regression coefficients for each of the trace

attributes. In VIT-PLA, users can also choose which cluster to use as the reference

category.

8.2.3.2 Binomial logistic regression

Binary logistic regression [122] is a special case of multinomial logistic regression, in

which there are only two categories (J = 2). In our problem, one category is the target

cluster of interest and the other category is all other clusters. Let K denote the total number

of independent variables and C denote cluster membership. Represented formally:

ln�
𝑃𝑃(𝐶𝐶 = 𝑖𝑖)
𝑃𝑃(𝐶𝐶 ≠ 𝑖𝑖)

� = ln�
𝑃𝑃(𝐶𝐶 = 𝑖𝑖)

1 − 𝑃𝑃(𝐶𝐶 = 𝑖𝑖)
�

= 𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖1𝑥𝑥𝑖𝑖1 + 𝛽𝛽𝑖𝑖2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, … ,𝐾𝐾
(8.2)

where the parameters have the same meaning as in Eq.8.1.

134

8.2.3.3 Hypothesis Test

To identify which trace attributes are significantly associated with cluster membership, we

use the Wald test [90] for logistic regression, which is defined as:

𝑊𝑊 =
(𝛽̂𝛽𝑖𝑖 − 𝛽𝛽𝑖𝑖)
𝑠𝑠𝑠𝑠�(𝛽̂𝛽𝑖𝑖)

 (8.3)

where 𝛽̂𝛽𝑖𝑖 is the regression coefficient for trace attributes 𝑥𝑥𝑖𝑖; 𝛽𝛽𝑖𝑖 = 0 is the null hypothesis,

i.e. the trace attribute 𝑥𝑥𝑖𝑖 has a corresponding coefficient of zero; 𝑠𝑠𝑠𝑠 is standard error. In

our implementation, we use a normal distribution and 𝓏𝓏-values for calculating p-values.

The null hypothesis can be rejected when p-value is less than or equal to alpha, the

significance level which is most often set at 0.05.

8.3 Visual Interface Design

During software development, we received feedback from domain experts and

continuously improved our design. In this section, we describe the first prototype of VIT-

PLA. The visual interface design (Figure 8.1) was developed with three main goals:

G1. Interactive visualization of raw process traces, the basic visualization functionality.

G2. Simplified visualization of process traces (for large data applications).

G3. Visualization of trace cluster vs. trace attribute association statistics.

Although VIT-PLA has many other functions, the rest of this chapter focuses on how its

design achieves these three goals.

8.3.1 G1: Three Common Ways to Visualize Raw Process Traces

VIT-PLA provides three common ways of visualizing raw process traces. We refer to the

data as “raw process traces” to distinguish goal G1 from G2, where the data is visualized

in an aggregated format. The three visualization methods are:

Simple stack of activities in the process traces (Figure 8.7 (a) without activity duration,

and Figure 8.7 (b) with activity duration). This approach is one of the simplest ways to

visualize process traces. Activities are stacked based on their occurrence time. Activity

information can be accessed with a mouse click on the corresponding symbol. This

135

visualization is easily interpretable and computationally efficient, but it cannot provide

deep insights into the data.

Overlay of the process execution on the timeline (Figure 8.8). Activities are scaled based

on duration and aligned to the timeline according to their start and end times. The advantage

of this visualization approach is that it clearly shows the concurrent activities in each

process.

Process trace alignment (Figure 8.9 (a) context-aware alignment and Figure 8.9 (b)

duration-aware alignment). The context-aware trace alignment algorithm is based on Bose

and Van der Aalst’s work [30] and the duration-aware trace alignment algorithm proposed

in our previous research [1]. The duration of each activity in the consensus sequence

Figure 8.7. Simple stack (a) Process executions are stacked (b) Process executions are

stacked and symbol blocks are scaled based on activity duration. Each row represents a

single trace and each block represents a single activity. The data comes from Cluster 1 in

Figure 8.5.

(a) (b)

Figure 8.8. Visualize process traces on a timeline. The top scale is the timeline with second

as the unit. Each row, separated by a bold line, represents a single process. Each block

represents a single activity. Symbol blocks that are vertically stacked in one process are

activities occurring simultaneously. The data comes from the input log in Figure 8.5.

136

(bottom line of Figure 8.9 (b)) of duration-aware trace alignment is the mean activity

duration of the corresponding column. Compared with the previous two visualizations, the

alignment view makes it easier to interpret process traces and extract insights. When

considering algorithm execution time, our previous research found that for a moderately-

sized dataset (e.g. 50,000 activities, ~1,000 traces and ~50 activity for each trace), the

alignment can be effectively calculated in 25.5±1.5 seconds [1]. This time is not

instantaneous (which would be ideal), but is still reasonable.

8.3.2 G2: Simplified Visualization of Process Traces

The first interactive visualization feature in G2 is the selection of cluster number (clicking

button  in Figure 8.1 and inputting cluster number k in the pop-up dialogue). A

hierarchical tree structure with k clusters will be shown at the bottom panel (Figure 8.1 and

Figure 8.10) where the non-leaf (a.k.a. internal) nodes show the current height (a.k.a.

depth) and process traces included under this node. k leaf nodes correspond to the k clusters

and display all the process IDs in the cluster.

Figure 8.9. Alignment (a) Process trace alignment (b) Duration-aware trace alignment.

Each row represents a single process and each block represents an activity. The bottom line

of each figure is the consensus sequence. Dashes or spaces are introduced to achieve

alignment of the activities. The data comes from Cluster 1 in Figure 8.5.

(a)

(b)

137

After clustering, each cluster is represented with its own cluster prototype. By default,

the cluster prototypes are visualized as activity stacks (Figure 8.11). The prototypes can

also be visualized in alignment view (Figure 8.1 and Figure 8.12) by clicking on the button

“Align Cluster Prototype” ( in Figure 8.1). Another interactive function allows the user

to check the pre-aggregated traces under a certain cluster. This feature may be accessed by

clicking on the buttons showing the cluster information ( in Figure 8.1).

8.3.3 G3: Visualization of Statistics of Trace Clusters vs. Trace Attributes.

Users can access statistics of trace clusters and trace attributes by clicking on the button

“Multi-Logistic Regression” ( in Figure 8.1) or on “Binomial Logistic Regression” (

in Figure 8.1). The number of clusters is decided by the user. The significance tests for

trace attributes on trace clusters (p-value statistics) are shown in a chart ( in Figure 8.1,

JFreeChart2 library is used). The horizontal axis represents the p-value, while the vertical

axis represents the trace attributes. The p-value of different clusters is denoted with

different shapes and colors. Because alpha = 0.05 is widely used as the significance level,

we placed a highlighted line at this level. When performing multinomial logistic regression,

the reference category is set to the last-numbered category by default. Users, however, may

change the reference category manually ( in Figure 8.1). In addition to p-values for each

2 http://www.jfree.org/

Figure 8.10. Hierarchical Tree Structure (we cited the same source code from ProM [63]

here and made modifications showing only the number of clusters specified by the user).

The result is based on the data in Figure 8.5.

138

trace attribute, the regression coefficients of the logistic regression model are also listed in

a table ( in Figure 8.1 and Figure 8.13).

8.3.4 Additional supportive functions

In addition to the three main goals, VIT-PLA also includes several useful supportive

functions. The Activity Filter ( in Figure 8.1) allows the user to include and exclude

activities in the visualization and analysis. The Color Map ( in Figure 8.1) allows the

Figure 8.11. Simplified visualization of raw process traces. Each row is a cluster’s

prototype. The information in the white block before the prototypes shows the cluster ID

that each prototype represents and the number of process traces in that cluster. (a) Cluster

prototypes are consensus sequences calculated from context-aware alignment (Figure 8.9

(a)); (b) Cluster prototypes are consensus sequences calculated from duration-aware

alignment ((b)). The data comes from Figure 8.5.

Figure 8.12. Alignment view of the cluster prototypes in Figure 8.11(a). The data comes

from Figure 8.5.

Figure 8.13. Statistics for regression coefficients

139

user to recolor the activity symbols. The Zoom Slider ( in Figure 8.1) enables the user to

resize the activity symbols in the visualization panel (the sliders in the top-right corner

control the size of the activity symbols).

8.4 Case Studies

8.4.1 Case Study I: Artificial Data

8.4.1.1 Data Description

This dataset was artificially generated using the Process Log Generator (PLG) [123]. It

includes 500 process traces consisting of 10 different activity types. The drawback of this

artificial data is that it does not have background attributes associated with each process

trace. For this reason, we only focus on the simplification of trace visualization when using

this dataset.

8.4.1.2 Results and Discussion

The visualization of 500 process traces without data aggregation strategies can lead to

extremely large and complex visualization results (Figure 8.14(a)). When represented this

way, the symbols are too small to identify, making it difficult to extract useful information.

To improve visualization, we used clustering to aggregate the original dataset into a small

number of representative process traces (Figure 8.14(b). In this example, we arbitrarily

chose 10 clusters, a manageable number of clusters to understand). The visualization

becomes clearer when put into the alignment view (Figure 8.14(c)). From these two

simplified visualizations (Figure 8.14(b) and Figure 8.14(c)), it is easy to extract some

interesting insights: (1) the sequential order of consensus tasks (tasks that occur more than

or equal to 50% in the column) is “ACEGFDHIB”; (2) the pattern “HIJ” is repeated in two

of the ten clusters (cluster 1 and cluster 2); (3) activity C is performed late in one cluster

(cluster 5); and (4) activity D is performed late in one cluster (cluster 3) and omitted in

another (cluster 7).

140

8.4.2 Case Study II: Trauma Resuscitation Workflow Data

8.4.2.1 Data Description

We used a trace log obtained from video analysis of 171 child trauma resuscitations

between May and August 2013 at Children’s National Medical Center in Washington, DC.

An event log of five activities typically performed during the initial evaluation was created

and used as the dataset for this case study. We obtained the workflow model for these

activities from domain experts (Figure 8.15(a)). Activities “Airway, Breath, Circulation”

follow a sequential order. Activities “GCS” and “Pupil check” are parallel and should be

performed after the previous three activities. We also obtained from the medical chart

Figure 8.14. Visualization of artificially generated dataset. (a) Alignment view of all 500

process traces; (b) Simplified visualization of 500 process traces using 10 cluster

prototypes; (c) Alignment view of 10 cluster prototypes.

(a)

(b)

(c)

141

review several patients and resuscitation attributes (including pre-hospital triage level, the

resuscitation’s time of the day and day of the week, Injury Severity Score [ISS], and patient

admission status after the resuscitation) (Table 8-1). This dataset is not a “large process

log,” but we chose it for our preliminary analysis to demonstrate how our approach can be

integrated with medical domain knowledge.

8.4.2.2 Results and Discussion

Data Interpretation from Visual Analysis

Four cluster prototypes were generated (Figure 8.15(b) and (c)). Prototypes of clusters 1

and 3 conform to our expert model, but clusters 2 and 4 do not. From the alignment view

of prototypes, we can observe that the sequential order of activity GCS (G) and pupil

assessment (P) is interchangeable, which conforms with the parallel structure in our expert

model. Visualizations of pre-aggregated traces for each prototype are not displayed, but

users can visualize the traces by clicking on the cluster button at the front of each row

(Figure 8.15(b) and (c)).

With the attribute data for these process traces, we can perform statistical analysis to

explore the underlying correlation between the trace attributes and trace cluster

membership. The following are examples of the statistical findings, followed by feedback

from domain experts:

Observation #1: Attribute “Daytime Event” is statistically significant (p-value = 0.021,

red square point in row “Daytime event” in Figure 8.15) for cluster 1. The regression

coefficient of Daytime Event is 1.108 (Figure 8.13). This attribute is statistically significant

Table 8-1 Process trace attributes
Attribute List Values

Weekend Event 1 0

Daytime Event 1 0

ISS Score <15 ≥15

Activation Level1 Attending Stat Stat Transfer

EDDISPGroup2 Non-critical Admission Critical Admission Discharged
1Activation level = pre-hospital triage level

2 EDDISPGroup = admission status of patients after ED care

142

because the proportion of data objects that have this feature (daytime = 1) in this cluster is

12/31 (68%), while the proportion of data objects that have this feature (daytime = 1) in

the reference category (all other clusters) is 71/140 (51%).

Figure 8.15. (a) Workflow model (drawn based on BPMN) given by domain expert

describing the initial evaluation of trauma, (b) Simplified visualization of 171 traces using

four cluster prototypes, (c) Alignment view of four cluster prototypes (d) p-value for

binomial logistic regression coefficients

(a)

(b) (c)

(d)

143

Observation #2: Attribute “Daytime Event” is statistically significant (p-value = 0.017,

blue circle point in row “Daytime event” in Figure 8.15) for cluster 2. The regression

coefficient of Daytime Event is −1.375 (Figure 8.13). This attribute is significantly

significant because the proportion of data objects that have this feature (daytime = 1) in

this cluster is 6/19 (31%), while the proportion of data objects that have this feature

(daytime = 1) in the reference category (all other clusters) is 86/152 (57%).

Medical expert feedback: For the care of injured patients, improved outcomes are

associated with compliance with the Advanced Trauma Life Support model [16],

represented here as the expert model. We find that one cluster (cluster 1) whose cluster

prototype follows the model occurs more often during the day and another cluster (cluster

2) whose cluster prototype deviates from the model occurs more often at night. This

association finding supports previous work showing decreased compliance with trauma

protocols at night [46].

Domain Expert Feedback on VIT-PLA Design:

To evaluate the quality of our design, we had two medical domain experts evaluate a

prototype of VIT-PLA. Both positive and negative feedback was received.

Both domain experts liked the visualization’s flexibility and interactivity. They found that

its data clustering, activity filtering, symbol resizing, and recoloring functions were very

useful. They were also found that with the knowledge uncovered by the program’s

statistical analysis was useful. One domain expert found it useful to switch between the

aggregated data and the original traces, and also commented on the helpfulness of the

cluster’s “average sequence”.

Most negative comments focused on our approach for statistical analysis. One domain

expert felt that data-driven clustering approach lacked consistency because its result varied

when different clustering algorithms or similarity metrics were used. Also, the domain

expert found that some small clusters did not have sufficient data to support the statistical

hypothesis test correlating trace clusters and trace attributes.

144

Chapter 9

Conclusions

This dissertation has three major contributions which correspond to the three topics of Part

II, Part III, and Part IV. Specifically, the contributions are: (1) novel approaches and

frameworks for applied process mining and their implementations in real-world medical

processes; (2) two different process recommender systems that close the gap between

process mining and recommender systems; and (3) development of a visual analytic tool

for process mining. The presented approaches, frameworks and tools were evaluated with

several real-world datasets. As we have a partnership with Children’s National Medical

Center, we were able to continuously access valuable domain knowledge and feedback on

our methods. Although most of the datasets and case studies are conducted in medical

domain, our methods can be easily applied to other problems with similar settings.

In Part II, we developed novel process mining methods and applied them to real-world

medical process analysis. First, to enhance the existing workflow discovery algorithm, we

developed a splitting-based workflow discovery method. Our method is able to tackle the

duplicate-activity problem by allowing the activity nodes in the model to further split.

Second, to quantify and analyze the discrepancies between work-as-done and work-as-

imaged, we invented a framework for automatic process deviation detection. This

framework provides a method for identifying repeated, omitted and out-of-sequence

activities that can be included in the design of decision support systems for complex

medical processes. Third, to analyze the differences between the medical treatment

procedures of different patients, we introduced a framework for analyzing the association

between treatment procedures and patient cohorts. The framework works by learning

weights of context attributes by best-first search, deciding patient cohorts using clustering

algorithms, discovering treatment procedures (or patterns) with process mining techniques,

and analyzing the cohort-vs.-procedure through statistical analysis.

In Part III, we presented two process recommender systems which present as a bridge

between process mining and recommender systems. We first designed a prototype-based

145

recommender system. This approach relies on mining historic data to uncover the potential

association between the way of enacting a process and contextual attributes. If association

tests are significant, we train a recommender system to output a prototypical enactment for

the given context attributes. Later, we proposed another recommender system that is able

to provide a step-by-step recommendation. The system was built on recurrent neural

networks. The networks took both environmental and behavioral contextual information as

input and output next-step suggestions.

In Part IV, we implemented our methods into a visual analytic tool. The tool was named

as VIT-PLA, which is short for Visual Interactive Tool for Process Log Analysis. In this

tool, we proposed a prototype-based process data visualization strategy. The strategy can

greatly reduce the data amount to visualize but preserve the characteristics of each process

cluster. Statistical analyses were also implemented and visualized to help users better

understand their process data.

Several challenges can be further explored in future work. First, the data amount is a

limitation of our project and a common problem in the process mining community. For

processes like the trauma resuscitation, there are no automated approaches that can

accurately collect the activity logs. We made some efforts trying to collect such activity

logs automatically by installing sensors (camera, microphone array and RFID tags), but the

current system is not accurate enough. Manual coding of the activity logs can be tedious

can greatly limit the data amount. Another reason that limits the data amount is

confidentiality issues. Some of the process data, like ours, need strictly evaluated by

institutional review board before usage. It poses risks to the privacy of both patients and

medical teams. Hence, privacy-preserving process data sharing methods are desired for the

process mining research community. Second, although we proposed the process

recommender systems and evaluated using our datasets and case studies, we believe this is

just a start for process recommender systems and there will be plenty of applications and

improvements on such systems. Hopefully, we could see more process recommender

systems studied and applied in real-world processes to help simplify and standardize the

procedures in the near future.

146

References

[1] Yang, Sen, Moliang Zhou, Rachel Webman, JaeWon Yang, Aleksandra Sarcevic, Ivan Marsic,
and Randall S. Burd. "Duration-aware alignment of process traces." In Industrial Conference on
Data Mining, pp. 379-393. Springer, Cham, 2016.

[2] Yang, Sen, Xin Dong, Moliang Zhou, Xinyu Li, Shuhong Chen, Rachel Webman, Aleksandra
Sarcevic, Ivan Marsic, and Randall S. Burd. "VIT-PLA: Visual Interactive Tool for Process Log
Analysis." In KDD Workshop on Interactive Data Exploration and Analytics. 2016.

[3] Yang, Sen, Xin Dong, Leilei Sun, Yichen Zhou, Richard A. Farneth, Hui Xiong, Randall S. Burd,
and Ivan Marsic. "A Data-driven Process Recommender Framework." In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2111-
2120. ACM, 2017.

[4] Yang, Sen, Moliang Zhou, Shuhong Chen, Xin Dong, Omar Z. Ahmed, Randall S. Burd, and Ivan
Marsic. "Medical Workflow Modeling Using Alignment-Guided State-Splitting HMM."
In Healthcare Informatics (ICHI), 2017 IEEE International Conference on, pp. 144-153. IEEE,
2017.

[5] Li, Jingyuan, Sen Yang, Shuhong Chen, Fei Tao, Ivan Marsic, and Randall S. Burd. "Discovering
Interpretable Medical Workflow Models." In 2018 IEEE International Conference on Healthcare
Informatics (ICHI), pp. 437-439. IEEE, 2018.

[6] Yang, Sen, Fei Tao, Jingyuan Li, Dawei Wang, Shuhong Chen, Omar Z. Ahmed, Ivan Marsic,
and Randall S. Burd. "Process Mining the Trauma Resuscitation Patient Cohorts." In 2018 IEEE
International Conference on Healthcare Informatics (ICHI), pp. 29-35. IEEE, 2018.

[7] Yang, Sen, Weiqing Ni, Xin Dong, Shuhong Chen, Richard A. Farneth, Aleksandra Sarcevic, Ivan
Marsic, and Randall S. Burd. "Intention Mining in Medical Process: A Case Study in Trauma
Resuscitation." In 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 36-
43. IEEE, 2018.

[8] Yang, Sen, Yichen Zhou, Yifeng Guo, Richard A. Farneth, Ivan Marsic, and Randall S. Burd.
"Semi-Synthetic Trauma Resuscitation Process Data Generator." In Healthcare Informatics
(ICHI), 2017 IEEE International Conference on, pp. 573-573. IEEE, 2017.

[9] Zhou, Moliang, Sen Yang, Xinyu Li, Shuyu Lv, Shuhong Chen, Ivan Marsic, Richard A. Farneth,
and Randall S. Burd. "Evaluation of Trace Alignment Quality and its Application in Medical
Process Mining." In Healthcare Informatics (ICHI), 2017 IEEE International Conference on, pp.
258-267. IEEE, 2017.

[10] Chen, Shuhong, Sen Yang, Moliang Zhou, Randall S. Burd, and Ivan Marsic. Process-oriented
Iterative Multiple Alignment for Medical Process Mining. In2017 IEEE International Conference
on Data Mining Workshops (ICDMW) 2017 Nov 1 (pp. 438-445). IEEE.

[11] Yang, Sen, Aleksandra Sarcevic, Richard A. Farneth, Shuhong Chen, Omar Z. Ahmed, Ivan
Marsic, and Randall S. Burd. "An Approach to Automatic Process Deviation Detection in a Time-
Critical Clinical Process." Journal of Biomedical Informatics.

[12] Stahl, Kenneth D., and Susan E. Brien. "Reducing patient errors in trauma care." Acute Care
Surgery and Trauma Care. London, UK: Informa Health Care (2009): 268-277.

147

[13] Demetriades, Demetrios, Brian Kimbrell, Ali Salim, George Velmahos, Peter Rhee, Christy
Preston, Ginger Gruzinski, and Linda Chan. "Trauma deaths in a mature urban trauma system: is
“trimodal” distribution a valid concept?." Journal of the American College of Surgeons 201, no.
3 (2005): 343-348.

[14] Gruen, Russell L., Gregory J. Jurkovich, Lisa K. McIntyre, Hugh M. Foy, and Ronald V. Maier.
"Patterns of errors contributing to trauma mortality: lessons learned from 2594 deaths." Annals of
Surgery 244, no. 3 (2006): 371.

[15] Yang, Sen, Jingyuan Li, Xiaoyi Tang, Shuhong Chen, Ivan Marsic, and Randall S. Burd. "Process
Mining for Trauma Resuscitation." The IEEE intelligent informatics bulletin 18, no. 1 (2017): 15.

[16] Subcommittee AT, Tchorz KM, International ATLS working group. Advanced trauma life support
(ATLS®): the ninth edition. The Journal Of Trauma And Acute Care Surgery. 2013;74(5):1363.

[17] Sarcevic, Aleksandra, Ivan Marsic, and Randal S. Burd. "Teamwork errors in trauma
resuscitation." ACM Transactions on Computer-Human Interaction (TOCHI) 19, no. 2 (2012): 13.

[18] Van der Aalst, Wil MP. "Process Discovery: An Introduction." In Process Mining, pp. 125-156.
Springer, Berlin, Heidelberg, 2011.

[19] Augusto, Adriano, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Fabrizio M. Maggi,
Andrea Marrella, Massimo Mecella, and Allar Soo. "Automated discovery of process models from
event logs: Review and benchmark." IEEE Transactions on Knowledge and Data Engineering
(2018).

[20] De Weerdt, Jochen, Manu De Backer, Jan Vanthienen, and Bart Baesens. "A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life event logs."
Information Systems 37, no. 7 (2012): 654-676.

[21] Murata, Tadao. "Petri nets: Properties, analysis and applications." Proceedings of the IEEE 77, no.
4 (1989): 541-580.

[22] Rovani, Marcella, Fabrizio M. Maggi, Massimiliano de Leoni, and Wil MP van der Aalst.
"Declarative process mining in healthcare." Expert Systems with Applications 42, no. 23 (2015):
9236-9251.

[23] Chinosi, Michele, and Alberto Trombetta. "BPMN: An introduction to the standard." Computer
Standards & Interfaces 34, no. 1 (2012): 124-134.

[24] Adriansyah, Arya, Boudewijn F. van Dongen, and Wil MP van der Aalst. "Conformance checking
using cost-based fitness analysis." In Enterprise Distributed Object Computing Conference
(EDOC), 2011 15th IEEE International, pp. 55-64. IEEE, 2011.

[25] Fahland, Dirk, and Wil MP van der Aalst. "Model repair—aligning process models to reality."
Information Systems 47 (2015): 220-243.

[26] Clarke, John R., Beverly Spejewski, Abigail S. Gertner, Bonnie L. Webber, Catherine Z. Hayward,
Thomas A. Santora, David K. Wagner et al. "An objective analysis of process errors in trauma
resuscitations." Academic Emergency Medicine 7, no. 11 (2000): 1303-1310.

[27] Takami, Jun-ichi, and Shigeki Sagayama. "A successive state splitting algorithm for efficient
allophone modeling." In Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE
International Conference on, vol. 1, pp. 573-576. IEEE, 1992.

[28] Herbst, Joachim, and Dimitris Karagiannis. "Integrating machine learning and workflow

148

management to support acquisition and adaptation of workflow models." Intelligent Systems in
Accounting, Finance & Management 9, no. 2 (2000): 67-92.

[29] Lu, Xixi, Dirk Fahland, Frank JHM van den Biggelaar, and Wil MP van der Aalst. "Handling
duplicated tasks in process discovery by refining event labels." In International Conference on
Business Process Management, pp. 90-107. Springer, Cham, 2016.

[30] Bose, RP Jagadeesh Chandra, and Wil MP van der Aalst. "Process diagnostics using trace
alignment: opportunities, issues, and challenges." Information Systems 37, no. 2 (2012): 117-141.

[31] Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in speech
recognition." Proceedings of the IEEE 77, no. 2 (1989): 257-286.

[32] Stolcke, Andreas, and Stephen M. Omohundro. "Best-first model merging for hidden Markov
model induction." arXiv preprint cmp-lg/9405017 (1994). https://arxiv.org/abs/cmp-lg/9405017

[33] Blum, Tobias, Nicolas Padoy, Hubertus Feußner, and Nassir Navab. "Workflow mining for
visualization and analysis of surgeries." International Journal of Computer Assisted Radiology
and Surgery 3, no. 5 (2008): 379-386.

[34] Singer, Harald, and Mari Ostendorf. "Maximum likelihood successive state splitting." In
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996
IEEE International Conference on, vol. 2, pp. 601-604. IEEE, 1996.

[35] Ostendorf, Mari, and Harald Singer. "HMM topology design using maximum likelihood
successive state splitting." Computer Speech & Language 11, no. 1 (1997): 17-41.

[36] Mavromatis, Panayotis. "Minimum description length modelling of musical structure." Journal of
Mathematics and Music 3, no. 3 (2009): 117-136.

[37] Siddiqi, Sajid M., Geoffrey J. Gordon, and Andrew W. Moore. "Fast state discovery for HMM
model selection and learning." International Conference on Artificial Intelligence and Statistics.
2007.

[38] Levenshtein, Vladimir I. "Binary codes capable of correcting deletions, insertions, and reversals."
In Soviet physics doklady, vol. 10, no. 8, pp. 707-710. 1966.

[39] Hsu, Pao-Lu, and Herbert Robbins. "Complete convergence and the law of large numbers."
Proceedings of the National Academy of Sciences 33, no. 2 (1947): 25-31.

[40] Mans, Ronny S., M. H. Schonenberg, Minseok Song, Wil MP van der Aalst, and Piet JM Bakker.
"Application of process mining in healthcare–a case study in a dutch hospital." In International
Joint Conference on Biomedical Engineering Systems and Technologies, pp. 425-438. Springer,
Berlin, Heidelberg, 2008.

[41] Kelleher, Deirdre C., Elizabeth A. Carter, Lauren J. Waterhouse, Samantha E. Parsons, Jennifer
L. Fritzeen, and Randall S. Burd. "Effect of a checklist on advanced trauma life support task
performance during pediatric trauma resuscitation." Academic Emergency Medicine 21, no. 10
(2014): 1129-1134.

[42] Shmueli, Galit. "To explain or to predict?." Statistical Science (2010): 289-310.

[43] Yu, Lu, Jason M. Schwier, Ryan M. Craven, Richard R. Brooks, and Christopher Griffin.
"Inferring statistically significant hidden markov models." IEEE Transactions on Knowledge and
Data Engineering 25, no. 7 (2013): 1548-1558.

[44] Günther, Christian W., and Wil MP Van Der Aalst. "Fuzzy mining–adaptive process

149

simplification based on multi-perspective metrics." In International Conference on Business
Process Management, pp. 328-343. Springer, Berlin, Heidelberg, 2007.

[45] Van der Aalst, Wil MP, AK Alves De Medeiros, and A. J. M. M. Weijters. "Genetic process
mining." In International Conference on Application and Theory of Petri Nets, pp. 48-69. Springer,
Berlin, Heidelberg, 2005.

[46] Carter, Elizabeth A., Lauren J. Waterhouse, Mark L. Kovler, Jennifer Fritzeen, and Randall S.
Burd. "Adherence to ATLS primary and secondary surveys during pediatric trauma resuscitation."
Resuscitation 84, no. 1 (2013): 66-71.

[47] Fitzgerald, Mark, Peter Cameron, Colin Mackenzie, Nathan Farrow, Pamela Scicluna, Robert
Gocentas, Adam Bystrzycki et al. "Trauma resuscitation errors and computer-assisted decision
support." Archives of Surgery 146, no. 2 (2011): 218-225.

[48] Clarke, John R., Beverly Spejewski, Abigail S. Gertner, Bonnie L. Webber, Catherine Z. Hayward,
Thomas A. Santora, David K. Wagner et al. "An objective analysis of process errors in trauma
resuscitations." Academic Emergency Medicine 7, no. 11 (2000): 1303-1310.

[49] Wiegmann, Douglas A., Andrew W. ElBardissi, Joseph A. Dearani, Richard C. Daly, and Thoralf
M. Sundt. "Disruptions in surgical flow and their relationship to surgical errors: an exploratory
investigation." Surgery 142, no. 5 (2007): 658-665.

[50] Alvarez, Camilo, Eric Rojas, Michael Arias, Jorge Munoz-Gama, Marcos Sepúlveda, Valeria
Herskovic, and Daniel Capurro. "Discovering role interaction models in the Emergency Room
using Process Mining." Journal of Biomedical Informatics (2017).

[51] Rojas, Eric, Jorge Munoz-Gama, Marcos Sepúlveda, and Daniel Capurro. "Process mining in
healthcare: A literature review." Journal of Biomedical Informatics 61 (2016): 224-236.

[52] Bouarfa, Loubna, and Jenny Dankelman. "Workflow mining and outlier detection from clinical
activity logs." Journal of Biomedical Informatics 45, no. 6 (2012): 1185-1190.

[53] Caron, Filip, Jan Vanthienen, Kris Vanhaecht, Erik Van Limbergen, Jochen De Weerdt, and Bart
Baesens. "Monitoring care processes in the gynecologic oncology department." Computers in
Biology and Medicine 44 (2014): 88-96.

[54] Lu, Xixi, Dirk Fahland, Frank JHM van den Biggelaar, and Wil MP van der Aalst. "Detecting
deviating behaviors without models." In International Conference on Business Process
Management, pp. 126-139. Springer, Cham, 2015.

[55] Christov, Stefan C., George S. Avrunin, and Lori A. Clarke. "Online deviation detection for
medical processes." In AMIA Annual Symposium Proceedings, vol. 2014, p. 395. American
Medical Informatics Association, 2014.

[56] Kirchner, Kathrin, Nico Herzberg, Andreas Rogge-Solti, and Mathias Weske. "Embedding
conformance checking in a process intelligence system in hospital environments." In Process
Support and Knowledge Representation in Health Care, pp. 126-139. Springer, Berlin, Heidelberg,
2013.

[57] Swinnen, Jo, Benoît Depaire, Mieke J. Jans, and Koen Vanhoof. "A process deviation analysis–a
case study." In International Conference on Business Process Management, pp. 87-98. Springer,
Berlin, Heidelberg, 2011.

[58] Grando, María Adela, Wil MP Van Der Aalst, and Ronny S. Mans. "Reusing a declarative
specification to check the conformance of different CIGs." In International Conference on

150

Business Process Management, pp. 188-199. Springer, Berlin, Heidelberg, 2011.

[59] Rozinat, Anne, and Wil MP Van der Aalst. "Conformance checking of processes based on
monitoring real behavior." Information Systems 33, no. 1 (2008): 64-95.

[60] Oakley, Ed, Sergio Stocker, Georg Staubli, and Simon Young. "Using video recording to identify
management errors in pediatric trauma resuscitation." Pediatrics 117, no. 3 (2006): 658-664.

[61] Webman, Rachel, Jennifer Fritzeen, JaeWon Yang, Grace F. Ye, Paul C. Mullan, Faisal G.
Qureshi, Sarah H. Parker, Aleksandra Sarcevic, Ivan Marsic, and Randall S. Burd. "Classification
and team response to non-routine events occurring during pediatric trauma resuscitation." The
Journal of Trauma and Acute Care Surgery 81, no. 4 (2016): 666.

[62] Houshian, Shirzad, Morten S. Larsen, and Carsten Holm. "Missed injuries in a level I trauma
center." Journal of Trauma and Acute Care Surgery 52, no. 4 (2002): 715-719.

[63] Van Dongen, Boudewijn F., Ana Karla A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters,
and Wil MP Van Der Aalst. "The ProM framework: A new era in process mining tool support."
In International Conference on Application and Theory of Petri Nets, pp. 444-454. Springer,
Berlin, Heidelberg, 2005.

[64] Ward Jr, Joe H. "Hierarchical grouping to optimize an objective function." Journal of the
American Statistical Association 58, no. 301 (1963): 236-244.

[65] Liu, Yanchi, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. "Understanding of internal
clustering validation measures." In Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pp. 911-916. IEEE, 2010.

[66] Clay-Williams, Robyn, Jeanette Hounsgaard, and Erik Hollnagel. "Where the rubber meets the
road: using FRAM to align work-as-imagined with work-as-done when implementing clinical
guidelines." Implementation Science 10, no. 1 (2015): 125.

[67] Kleinman, Nathan, Safiya Abouzaid, Lenae Andersen, Zhixiao Wang, and Annette Powers.
"Cohort analysis assessing medical and nonmedical cost associated with obesity in the workplace."
Journal of Occupational and Environmental Medicine 56, no. 2 (2014): 161-170.

[68] Delgado, João, Jane AH Masoli, Kirsty Bowman, W. David Strain, George A. Kuchel, Kate
Walters, Louise Lafortune, Carol Brayne, David Melzer, and Alessandro Ble. "Outcomes of
treated hypertension at age 80 and older: Cohort analysis of 79,376 individuals." Journal of the
American Geriatrics Society 65, no. 5 (2017): 995-1003.

[69] Nelson, Jana, Adrian T. Billeter, Burkhardt Seifert, Valentin Neuhaus, Otmar Trentz, Christoph
K. Hofer, and Matthias Turina. "Obese trauma patients are at increased risk of early hypovolemic
shock: a retrospective cohort analysis of 1,084 severely injured patients." Critical Care 16, no. 3
(2012): R77.

[70] Kelleher, Deirdre C., RP Jagadeesh Chandra Bose, Lauren J. Waterhouse, Elizabeth A. Carter,
and Randall S. Burd. "Effect of a checklist on advanced trauma life support workflow deviations
during trauma resuscitations without pre-arrival notification." Journal of the American College of
Surgeons 218, no. 3 (2014): 459-466.

[71] Hand, David J., Heikki Mannila, and Padhraic Smyth. Principles of data mining (adaptive
computation and machine learning). Cambridge, MA: MIT press, 2001.

[72] Cormen, Thomas H. Introduction to algorithms. MIT press, 2009.

151

[73] MacQueen, James. "Some methods for classification and analysis of multivariate observations."
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol.
1, no. 14, pp. 281-297. 1967.

[74] Rokach, Lior, and Oded Maimon. "Clustering methods." In Data mining and knowledge discovery
handbook, pp. 321-352. Springer, Boston, MA, 2005.

[75] Zaki, Mohammed J. "SPADE: An efficient algorithm for mining frequent sequences." Machine
Learning 42, no. 1-2 (2001): 31-60.

[76] De Winter, Joost CF. "Using the Student's t-test with extremely small sample sizes." Practical
Assessment, Research & Evaluation 18, no. 10 (2013).

[77] Shlens, Jonathon. "A tutorial on principal component analysis." arXiv preprint arXiv:1404.1100
(2014). https://arxiv.org/abs/1404.1100

[78] Clarke, John R., Catherine Z. Hayward, Thomas A. Santora, David K. Wagner, and Bonnie L.
Webber. "Computer-generated trauma management plans: comparison with actual care." World
Journal of Surgery 26, no. 5 (2002): 536-538.

[79] Aghabozorgi, Saeed, Ali Seyed Shirkhorshidi, and Teh Ying Wah. "Time-series clustering–A
decade review." Information Systems 53 (2015): 16-38.

[80] Huaulmé, Arnaud, Sandrine Voros, Laurent Riffaud, Germain Forestier, Alexandre Moreau-
Gaudry, and Pierre Jannin. "Distinguishing surgical behavior by sequential pattern discovery."
Journal of Biomedical Informatics 67 (2017): 34-41.

[81] Liu, Chuanren, Fei Wang, Jianying Hu, and Hui Xiong. "Temporal phenotyping from longitudinal
electronic health records: A graph based framework." In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 705-714. ACM, 2015.

[82] Forestier, Germain, Florent Lalys, Laurent Riffaud, Brivael Trelhu, and Pierre Jannin.
"Classification of surgical processes using dynamic time warping." Journal of Biomedical
Informatics 45, no. 2 (2012): 255-264.

[83] Forestier, Germain, Francois Petitjean, Laurent Riffaud, and Pierre Jannin. "Non-linear temporal
scaling of surgical processes." Artificial Intelligence in Medicine 62, no. 3 (2014): 143-152.

[84] Jung, Jae-Yoon, Joonsoo Bae, and Ling Liu. "Hierarchical clustering of business process models."
International Journal of Innovative Computing, Information and Control 5, no. 12 (2009): 1349-
4198.

[85] Liu, Chuanren, Kai Zhang, Hui Xiong, Guofei Jiang, and Qiang Yang. "Temporal skeletonization
on sequential data: patterns, categorization, and visualization." IEEE Transactions on Knowledge
and Data Engineering 28, no. 1 (2016): 211-223.

[86] Bose, RP Jagadeesh Chandra, and Wil MP Van der Aalst. "Context aware trace clustering:
Towards improving process mining results." In Proceedings of the 2009 SIAM International
Conference on Data Mining, pp. 401-412. Society for Industrial and Applied Mathematics, 2009.

[87] Frey, Brendan J., and Delbert Dueck. "Clustering by passing messages between data points."
Science 315, no. 5814 (2007): 972-976.

[88] Rodriguez, Alex, and Alessandro Laio. "Clustering by fast search and find of density peaks."
Science 344, no. 6191 (2014): 1492-1496.

[89] Ward Jr, Joe H. "Hierarchical grouping to optimize an objective function." Journal of the

152

American Statistical Association 58, no. 301 (1963): 236-244.

[90] Wasserman, Larry. All of statistics: a concise course in statistical inference. Springer Science &
Business Media, 2013.

[91] He, Haibo, and Edwardo A. Garcia. "Learning from imbalanced data." IEEE Transactions on
Knowledge and Data Engineering 21, no. 9 (2009): 1263-1284.

[92] Fournier-Viger, Philippe, Antonio Gomariz, Manuel Campos, and Rincy Thomas. "Fast vertical
mining of sequential patterns using co-occurrence information." In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 40-52. Springer, Cham, 2014.

[93] Clay-Williams, Robyn, Jeanette Hounsgaard, and Erik Hollnagel. "Where the rubber meets the
road: using FRAM to align work-as-imagined with work-as-done when implementing clinical
guidelines." Implementation Science 10, no. 1 (2015): 125.

[94] Demetriades, Demetrios, Brian Kimbrell, Ali Salim, George Velmahos, Peter Rhee, Christy
Preston, Ginger Gruzinski, and Linda Chan. "Trauma deaths in a mature urban trauma system: is
“trimodal” distribution a valid concept?." Journal of the American College of Surgeons 201, no.
3 (2005): 343-348.

[95] Bernhard, Michael, Torben K. Becker, Tim Nowe, Marko Mohorovicic, Marcus Sikinger,
Thorsten Brenner, Goetz M. Richter et al. "Introduction of a treatment algorithm can improve the
early management of emergency patients in the resuscitation room." Resuscitation 73, no. 3
(2007): 362-373.

[96] Yu, Feng, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. "A dynamic recurrent model for next
basket recommendation." In Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval, pp. 729-732. ACM, 2016.

[97] Lu, Jie, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. "Recommender
system application developments: a survey." Decision Support Systems 74 (2015): 12-32.

[98] Choi, Edward, Mohammad Taha Bahadori, Andy Schuetz, Walter F. Stewart, and Jimeng Sun.
"Doctor ai: Predicting clinical events via recurrent neural networks." In Machine Learning for
Healthcare Conference, pp. 301-318. 2016.

[99] Sun, Leilei, Chuanren Liu, Chonghui Guo, Hui Xiong, and Yanming Xie. "Data-driven automatic
treatment regimen development and recommendation." In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1865-1874.
ACM, 2016.

[100] Gröger, Christoph, Holger Schwarz, and Bernhard Mitschang. "Prescriptive analytics for
recommendation-based business process optimization." In International Conference on Business
Information Systems, pp. 25-37. Springer, Cham, 2014.

[101] Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. "Efficient estimation of word
representations in vector space." arXiv preprint arXiv:1301.3781 (2013).
https://arxiv.org/abs/1301.3781

[102] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural Computation 9,
no. 8 (1997): 1735-1780.

[103] Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-
decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

153

https://arxiv.org/abs/1406.1078

[104] Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-
based neural machine translation." arXiv preprint arXiv:1508.04025 (2015).
https://arxiv.org/abs/1508.04025

[105] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly
learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
https://arxiv.org/abs/1409.0473

[106] Zhou, Peng, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu. "Attention-
based bidirectional long short-term memory networks for relation classification." In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), vol. 2, pp. 207-212. 2016.

[107] Ma, Fenglong, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao. "Dipole:
Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks." In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1903-1911. ACM, 2017.

[108] Cramér, Harald. Mathematical methods of statistics (PMS-9). Vol. 9. Princeton University Press,
2016.

[109] Demirtas, Hakan, and Beyza Doganay. "Simultaneous generation of binary and normal data with
specified marginal and association structures." Journal of Biopharmaceutical Statistics 22, no. 2
(2012): 223-236.

[110] Steck, Harald. "Item popularity and recommendation accuracy." In Proceedings of the Fifth ACM
Conference on Recommender Systems, pp. 125-132. ACM, 2011.

[111] Lee, Jongwuk, Dongwon Lee, Yeon-Chang Lee, Won-Seok Hwang, and Sang-Wook Kim.
"Improving the accuracy of top-N recommendation using a preference model." Information
Sciences 348 (2016): 290-304.

[112] Gagniuc, Paul A. Markov Chains: From Theory to Implementation and Experimentation. John
Wiley & Sons, 2017.

[113] Van der Aalst, Wil, Ton Weijters, and Laura Maruster. "Workflow mining: Discovering process
models from event logs." IEEE Transactions on Knowledge and Data Engineering 16, no. 9
(2004): 1128-1142.

[114] Monroe, Megan, Rongjian Lan, Hanseung Lee, Catherine Plaisant, and Ben Shneiderman.
"Temporal event sequence simplification." IEEE Transactions on Visualization and Computer
Graphics 19, no. 12 (2013): 2227-2236.

[115] Malik, Sana, Fan Du, Megan Monroe, Eberechukwu Onukwugha, Catherine Plaisant, and Ben
Shneiderman. "Cohort comparison of event sequences with balanced integration of visual
analytics and statistics." In Proceedings of the 20th International Conference on Intelligent User
Interfaces, pp. 38-49. ACM, 2015.

[116] Wongsuphasawat, Krist, and David Gotz. "Exploring flow, factors, and outcomes of temporal
event sequences with the outflow visualization." IEEE Transactions on Visualization and
Computer Graphics 18, no. 12 (2012): 2659-2668.

[117] Perer, Adam, and Fei Wang. "Frequence: Interactive mining and visualization of temporal
frequent event sequences." In Proceedings of the 19th International Conference on Intelligent User

154

Interfaces, pp. 153-162. ACM, 2014.

[118] Perer, Adam, Fei Wang, and Jianying Hu. "Mining and exploring care pathways from electronic
medical records with visual analytics." Journal of Biomedical Informatics 56 (2015): 369-378.

[119] Song, Minseok, and Wil MP van der Aalst. "Supporting process mining by showing events at a
glance." In Proceedings of the 17th Annual Workshop on Information Technologies and Systems
(WITS), pp. 139-145. 2007.

[120] Jain, Anil K., and Richard C. Dubes. "Algorithms for clustering data." (1988)
https://homepages.inf.ed.ac.uk/rbf/BOOKS/JAIN/Clustering_Jain_Dubes.pdf.

[121] Tan, Pang-Ning. Introduction to data mining. Pearson Education India, 2006.

[122] Czepiel, Scott A. "Maximum likelihood estimation of logistic regression models: theory and
implementation." Available at czep. net/stat/mlelr. pdf (2002).

[123] Burattin, Andrea, and Alessandro Sperduti. "PLG: A framework for the generation of business
process models and their execution logs." In International Conference on Business Process
Management, pp. 214-219. Springer, Berlin, Heidelberg, 2010.

	ABSTRACT OF THE DISSERTATION
	Acknowledgements
	Table of Contents
	Part I Introduction
	Chapter 1 Introduction
	1.1 Introduction and Motivation
	1.2 Dissertation Outline

	Chapter 2 Preliminaries
	2
	2.1 Related Medical Processes
	2.1.1 Trauma Resuscitation Process
	2.1.2 Tracheal Intubation Process

	2.2 Process Mining and Related Techniques

	Part II Applied Process Mining and Analysis
	Chapter 3 Medical Workflow Modeling Using Alignment-Guided State-Splitting HMM
	3
	3.1 Introduction
	3.2 Related Work
	3.3 Alignment Guided State-splitting HMM
	3.3.1 Definitions and Data Formalization
	3.3.2 Alignment Guided State-splitting HMM
	3.3.2.1 AGSS algorithm
	3.3.2.2 Estimating the 𝜀 Threshold
	3.3.2.3 Simplifying and Pruning the Discovered Model

	3.4 Experiments
	3.4.1 Real World Medical Process Datasets
	3.4.2 Measuring Quality of Induced HMM
	3.4.3 Computational Complexity Comparison

	3.5 Case Study: Trauma Workflow Mining

	Chapter 4 An Approach to Automatic Process Deviation Detection in a Time-Critical Clinical Process
	4
	4.1 Introduction
	4.2 Related Work
	4.3 Terms and Definitions
	4.4 Deviation Detection Approach and System Description
	4.4.1 Knowledge-Driven Model of the Trauma Resuscitation Workflow
	4.4.2 Trauma Resuscitation Activity Traces
	4.4.3 Conformance Checking Algorithm
	4.4.4 Workflow Model Probing, Repair and Evaluation

	4.5 Results: Deviation Detection and Analysis of Deviations
	4.5.1 Deviation Detection and Analysis Before System Repair
	4.5.1.1 Initial Model Probing
	4.5.1.2 Analysis of Process Deviations Detected as False Alarms
	False Alarms due to Gaps in the Model
	False Alarms due to Errors in Manual Coding of the Activity Traces
	False Alarms Attributed to the Algorithm Limitations

	4.5.2 Deviation Detection After System Repair: Validation and Testing
	4.5.3 Analysis of Process Deviations Detected with the Repaired System

	4.6 Discussion and Conclusions

	Chapter 5 Process Mining the Trauma Resuscitation Patient Cohorts
	5
	5.1 Introduction
	5.2 Patient Cohort Discovery and Analysis
	5.2.1 Data Description and Formalization
	5.2.2 Attribute Weight Learning
	5.2.3 Patient Cohorts Discovery
	5.2.4 Workflow Discovery and Sequential Pattern Mining
	5.2.5 Statistical Analytics

	5.3 Experiments
	5.3.1 Attribute Weights
	5.3.2 Patient Cohorts
	5.3.3 Resuscitation Workflow and Patterns

	Part III Process Recommender System
	Chapter 6 A Data-driven Process Recommender Framework
	6
	6.1 Introduction
	6.2 Related Work
	6.3 Process Recommender Framework
	6.3.1 Terms and Definitions
	6.3.2 Trace Similarity based on Time Warping
	6.3.3 Clustering Process Traces
	6.3.4 Determining the Cluster Prototype
	6.3.5 The Recommender Model

	6.4 Experiments
	6.4.1 Real World Medical Process Datasets
	6.4.2 Similarity Measure Evaluation
	6.4.3 Prototype Analysis
	6.4.4 Recommendation System Evaluation
	6.4.5 A Case Study with Intubation Process

	Chapter 7 A Context-Aware Deep Learning Framework for Next Medical Treatment Activity Recommendation
	7
	7.1 Introduction
	7.2 Treatment Recommendation with Deep Learning
	7.2.1 Data Description and Notations
	7.2.2 Context-aware Deep Treatment Recommendation Framework
	7.2.2.1 Overview of the Proposed Framework
	7.2.2.2 Multiple Contextual Information as Input
	7.2.2.3 Activity Embedding (Act2vec)
	7.2.2.4 LSTM and GRU
	7.2.2.5 Sliding-Window Attention Mechanism
	7.2.2.6 Classifying

	7.2.3 Data Augmentation and Model Pre-training

	7.3 Experiments
	7.3.1 Real-world Data and Synthetic Pre-training Data
	7.3.2 Experimental Setup
	7.3.2.1 Evaluation Metrics
	7.3.2.2 Baseline Methods.
	7.3.2.3 Our Approaches

	7.3.3 Comprehensive Comparison
	7.3.4 Visual Analytics for Knowledge Discovery
	7.3.4.1 Act2vec.
	7.3.4.2 Sliding-window Attention.

	Part IV Implementation and Conclusion
	Chapter 8 VIT-PLA: Visual Interactive Tool for Process Log Analysis
	8
	8.1 Motivation
	8.2 Methods
	8.2.1 Data Preprocessing: Sequencing of Traces
	8.2.2 Summary Visualization of Process Logs
	8.2.2.1 Process Trace Clustering
	8.2.2.2 Cluster Prototype and Trace Alignment

	8.2.3 Association between Trace Clusters and Trace Attributes
	8.2.3.1 Multinomial logistic regression
	8.2.3.2 Binomial logistic regression
	8.2.3.3 Hypothesis Test

	8.3 Visual Interface Design
	8.3.1 G1: Three Common Ways to Visualize Raw Process Traces
	8.3.2 G2: Simplified Visualization of Process Traces
	8.3.3 G3: Visualization of Statistics of Trace Clusters vs. Trace Attributes.
	8.3.4 Additional supportive functions

	8.4 Case Studies
	8.4.1 Case Study I: Artificial Data
	8.4.1.1 Data Description
	8.4.1.2 Results and Discussion

	8.4.2 Case Study II: Trauma Resuscitation Workflow Data
	8.4.2.1 Data Description
	8.4.2.2 Results and Discussion
	Data Interpretation from Visual Analysis
	Domain Expert Feedback on VIT-PLA Design:

	Chapter 9 Conclusions
	9

	References

