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ABSTRACT OF THE DISSERTATION 

 

APPLIED PROCESS MINING, RECOMMENDATION AND VISUAL 

ANALYTICS 

 

by Sen Yang 

Dissertation Director: Dr. Ivan Marsic 

Process mining techniques attempt to extract non-trivial knowledge and insights from 

activity logs and use them for further analyses. The traditional process mining focuses on 

addressing three different problems: workflow discovery, conformance checking and 

model enhancement. Although many theoretical studies have been done in the process 

mining domain, studies that applying process mining on solving real-world problems are 

limited. This dissertation explores how process mining can be used in real-world process 

analysis to reveal process insights and help human decision making. Novel algorithms and 

frameworks were proposed to better model and address the real-world problems. In 

addition, we introduced the recommender system into the process mining domain to help 

build a data-driven decision support system. Specifically, this dissertation includes three 

main contributions: (1) application of process mining techniques in real-world medical 

process analysis; (2) two different process recommender systems; and (3) a process visual 

analytic tool.  

First, we applied process mining techniques to real-world medical process analysis. To 

enhance the existing workflow discovery algorithm, we developed a splitting-based 

workflow discovery method. Our method is able to tackle the duplicate-activity problem 

by allowing the activity nodes in the model to further split. By comparing our discovered 

model to hand-made expert workflow model of the same process, we were able to find the 

discrepancies between work-as-done and work-as-imaged. To further quantify and analyze 

the discrepancies between work-as-done and work-as-imaged, we invented a framework 

for automatic process deviation detection. Our framework first compares the observed 
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process traces with knowledge-driven workflow models using a phase-based conformance 

checking algorithm. The discrepancies (process deviations) were analyzed and false alarms 

were identified. The false alarms were categorized into three types of causes: (1) model 

gaps or discrepancies between the model (“work as imagined”) and actual practice (“work 

as done”), (2) errors in activity trace coding, and (3) algorithm limitations. The deviation 

detection system was then repaired according to the false alarms. With our framework, the 

deviation detection accuracy was improved from 66.6% to 98.5%. The output system was 

then applied on unseen datasets to automatically detect the deviations. We applied our 

framework to two different medical processes and discovered meaningful medical 

findings. In addition, to analyze the differences between the medical treatment procedures 

of different patients, we introduced a framework for analyzing the association between 

treatment procedures and patient cohorts. The framework works by learning weights of 

context attributes by best-first search, deciding patient cohorts using clustering algorithms, 

discovering treatment procedures (or patterns) with process mining techniques, and 

analyzing the cohort-vs.-procedure through statistical analysis. 

Second, existing recommender systems have not been developed based on process 

mining. Our work presents such a bridge. We designed a data-driven process analysis and 

recommender system that can provide contemporaneous recommendations of process steps 

and help with retrospective analyses of the process. We first designed a prototype-based 

recommender system. This approach relies on mining historic data to uncover the potential 

association between the way of enacting a process and contextual attributes. If association 

tests are significant, we train a recommender system to output a prototypical enactment for 

the given context attributes. The system recommends all steps at once. Although it may not 

be feasible for the performers to study and follow a long list of steps, this recommendation 

can be used at runtime to automatically verify the process compliance and detect omitted 

steps and other process errors. Later, we proposed another recommender system that is able 

to provide step-by-step recommendations. The system was built on recurrent neural 

networks. The networks took both environmental and behavioral contextual information as 

input and output next-step suggestions.  

Last, we implemented our methods into a visual analytic tool. The tool was named as 

VIT-PLA, which is short for Visual Interactive Tool for Process Log Analysis. In this tool, 
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we proposed a prototype-based process data visualization strategy. The strategy works by 

first clustering process data into clusters and then discovering the prototypical procedure 

from each cluster. Only such cluster prototypes were visualized and presented to the users. 

Our strategy can greatly reduce the data amount to visualize but preserve the characteristics 

of each cluster. Statistical analyses were followed and visualized to help analysts better 

understand their process data.   
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Chapter 1  

Introduction 

1.1 Introduction and Motivation 

Process mining is a relatively new research field that sits between data mining and business 

process management. In process mining, specialized data mining algorithms are applied to 

activity or event logs to identify the insights and knowledge. Existing studies in the process 

mining have several gaps. This dissertation attempts to uncover these gaps and provides 

solutions. First, although many research and techniques have been conducted or developed 

in process mining filed in recent years, we found many limitations and challenges when 

applying the process mining techniques to real-world processes. The limitations mainly 

come from methods’ accuracy, computational complexity, interpretation ability, 

robustness and generality. Hence we proposed our own solutions to address these 

limitations and evaluated them on real-world process datasets. Second, traditional process 

mining studies focus on process diagnosis, i.e., descriptive analysis. We extend the current 

process mining research to operational support level. We brought the predictive model and 

recommender systems into the process mining domain and contributed two different 

process recommender systems. Third, existing tools for process data visualization and 

analysis are limited. We developed a visual analytic tool for process data, providing several 

different visualization strategies and statistical analyses. Here is the detailed introduction 

of these three studies.  

1) Applied Process Mining and Analysis 

We developed novel process mining methods and applied them to real-world medical 

process analysis. First, to enhance the existing workflow discovery algorithm, we 

developed a splitting-based workflow discovery method. Our method is able to tackle the 

duplicate-activity problem by allowing the activity nodes in the model to further split. 

Second, to quantify and analyze the discrepancies between work-as-done and work-as-

imaged, we invented a framework for automatic process deviation detection. This 
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framework provides a method for identifying repeated, omitted and out-of-sequence 

activities that can be included in the design of decision support systems for complex 

medical processes. Third, to analyze the differences between the medical treatment 

procedures of different patients, we introduced a framework for analyzing the association 

between treatment procedures and patient cohorts. The framework works by learning 

weights of context attributes by best-first search, deciding patient cohorts using clustering 

algorithms, discovering treatment procedures (or patterns) with process mining techniques, 

and analyzing the cohort-vs.-procedure through statistical analysis. 

2) Process Recommender System 

Existing recommender systems have not been developed based on process mining. Our 

work presents such a bridge. We designed a data-driven process analysis and recommender 

system that can provide contemporaneous recommendations of process steps and help with 

retrospective analyses of the process. We first designed a prototype-based recommender 

system. This approach relies on mining historic data to uncover the potential association 

between the way of enacting a process and contextual attributes. If association tests are 

significant, we train a recommender system to output a prototypical enactment for the given 

context attributes. The system recommends all steps at once. Although it may not be 

feasible for the performers to study and follow a long list of steps, this recommendation 

can be used at runtime to automatically verify the process compliance and detect omitted 

steps and other process errors. Later, we proposed another recommender system that is able 

to provide step-by-step recommendations. The system was built on recurrent neural 

networks. The networks took both environmental and behavioral contextual information as 

input and output next-step suggestions.  

3) Visual Analytic Tool for Process Data Analysis 

We implemented our methods into a visual analytic tool. The tool was named as VIT-

PLA, which is short for Visual Interactive Tool for Process Log Analysis. In this tool, we 

proposed a prototype-based process data visualization strategy. The strategy works by first 

clustering process data into clusters and then discovering the prototypical procedure from 

each cluster. Only such cluster prototypes were visualized and presented to the users. Our 

strategy can greatly reduce the data amount to visualize but preserve the characteristics of 
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each cluster. Statistical analyses were followed and visualized to help analysts better 

understand their process data.   

The presented approaches, frameworks and tools were evaluated with several real-world 

datasets. As we have a partnership with Children’s National Medical Center, we were able 

to continuously access valuable domain knowledge and feedback on our methods. This 

research is supported by a 4-year NIH project, i.e., Smart Trauma Resuscitation Decision 

Support System. Existing studies have shown that critically-injured patients have up to a 

four-fold higher risk of death from errors than general hospital patients [12], with nearly 

half of these preventable deaths related to errors that occur during the initial resuscitation 

phase of treatment [13][14]. Although a standardized trauma resuscitation protocol has 

been shown to improve the care of injured patients, human errors are still commonly 

observed and can contribute to adverse outcomes. Hence we built a decision support system 

using process mining and data mining techniques for monitoring medical team (trauma 

resuscitation team) behaviors, extracting data-oriented insights, and providing real-time 

alerts or recommendations. With this system, we aimed to reduce medical team errors and 

improve patient outcomes.  

1.2 Dissertation Outline 

The rest of the dissertation is organized as follows. In Chapter 2 of Part I, we introduce the 

background knowledge, two real-world medical processes and process mining techniques. 

In Part II, we applied and evaluated our process mining methods and frameworks on real-

world processes. Specifically, in Chapter 3, we propose a novel workflow mining 

algorithm. In Chapter 4, we describe our framework to identify the process deviations. In 

Chapter 5, we bridge the gap between patient cohort analysis and process mining analysis. 

In Part III, we propose two different recommender frameworks, the prototype-based 

framework (Chapter 6) and the recurrent neural network based framework (Chapter 7). In 

the last Part (IV), we show the implementations of our visual analytic tool, VIT-PLA.  
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Chapter 2  

Preliminaries 

In this chapter, we give preliminary knowledge that highly relevant to this dissertation. 

First, we provide a description of the two medical processes, trauma resuscitation and 

intubation, that frequently used in our study. Then we introduce the process mining and 

related techniques.  

2.1 Related Medical Processes 

Two real-world medical process datasets were used throughout my Ph.D. project funded 

by NIH. Both of the two datasets were collected in Children’s National Medical Center 

(CNMC), a level 1 trauma center in Washington D.C. Since these two datasets were used 

heavily in this dissertation, we would like to provide in this section the data descriptions, 

data exploration results and data characteristics analysis.    

2.1.1 Trauma Resuscitation Process 

Trauma resuscitation [15][16] is the process that the trauma team works together to assess 

and treat the patients who are severely injured (Figure 2.1). The trauma team includes 

bedside physicians, bedside nurses (left nurse, right nurse and charge nurse), and other 

team roles (e.g., surgical coordinator, respiratory therapist). A junior reside or nurse 

practitioner usually takes the role of bedside physician, depending on provider availability. 

The entire trauma resuscitation process mainly includes two medical phases, primary 

survey and secondary survey. The primary survey consists airway (assessing airway 

patency), breathing (assessing breath sounds and adequate oxygenation), circulation 

(assessing extremity pulse and managing blood loss), disability (assessing neurological 

status), and exposure (removing all clothes and managing hypothermia). The secondary 

survey consists of a multi-step, head-to-toe physical examination of the patient’s body. 
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We started collecting the trauma resuscitation process data from August 2014. We 

performed selective sampling by including only the cases with patients who were admitted 

to the hospital following the resuscitation when errors and error management were more 

likely to have an impact on patient outcome. The process data was coded using 

retrospective video review of the sampled trauma resuscitations. The videos were recorded 

using the surveillance cameras installed in the trauma bays. The use of video recordings 

has been approved for use for research purposes by the Institutional Review Board at 

Children’s National Medical Center. The videos were manually reviewed in Studiocode1 

(a video analysis tool) to identify the set of activities performed during the resuscitation, 

start and end times for each activity, the role performing the activity. Our studies (Chapter 

                                                 

 
1 https://vosaic.com/support/category/studiocode 

 

Figure 2.1 The trauma team in the trauma bay. Source of this figure (Fig. 1. in our paper 

“Teamwork errors in trauma resuscitation” [17]).  
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3 – Chapter 8) were conducted at different times of the data collection. Hence I report in 

my dissertation the trauma resuscitation datasets of different size. The details of the 

datasets used are described in each work below accordingly.  

2.1.2 Tracheal Intubation Process 

Endotracheal intubation is a procedure by which an endotracheal tube is inserted through 

the mouth down into the patient trachea (Figure 2.2). This is done because the patient 

cannot maintain their airway, cannot breathe on their own without assistance, or both. This 

may be because they are given anesthesia or they may be severely injured.  

We collected our intubation dataset between February 2014 and February 2016. We 

included all patients less than 21 years old undergoing RSI in the emergency department 

resuscitation rooms. Although the intubation process may occur as part of the trauma 

resuscitation process, our intubation dataset excluded trauma patients because the trauma 

team in CNMC is a different hospital-based team with intubations managed by 

anesthesiology.  

 

 

Figure 2.2 Diagram of an endotracheal tube that has been inserted into the patient’s trachea. 

Source of this figure (https://en.wikipedia.org/wiki/Tracheal_intubation).  
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2.2 Process Mining and Related Techniques 

Process mining [18], an interdisciplinary research field between data mining and business 

process management, aims to discover, monitor and improve real-world processes by 

extracting knowledge from activity (event) logs. An “activity log” is a collection of process 

cases, which contains a trace of “activities”. An activity is a well-defined action or step in 

the process. It is usually denoted with the activity type, start time and end time. In this 

dissertation, we prefer the term “activity” to “event” because intuitively “event” only 

emphasizes the “occurrence” and it does not have a duration. On the other hand, “activity” 

not only emphasizes the occurrence of an action but also indicates it may last for a period 

of time.  

The process mining techniques attempt to tackle three problems, process discovery, 

process conformance checking and process enhancement (Figure 2.3). Process discovery 

techniques take activity or event logs as inputs and produce workflow models without using 

any prior information. Process conformance checking algorithm compares workflow 

models with activity or event logs to measure the level of compliance and identify process 

deviations. Process enhancement aims to improve the a-priori workflow models with 

observed activity or event logs.  

Process discover (a.k.a. workflow discovery) is the most essential process mining task. 

Based on the activity (or event) log, a process model is constructed to capture the behavior 

observed in the log. The problem of automated process discovery has been intensively 

researched in recent years. Despite a rich set of proposals [19], the process discovery 

methods suffer from two major deficiencies when applied to real-world processes [20]: (1) 

they produce complex and spaghetti-like models; and (2) they produce models that either 

poorly fit the event log or over-generalize it. In addition, since process mining has half of 

its DNAs from business process management. Business process modeling languages (i.e., 

graphical representations for specifying business processes in a business process model, 

such as Petri nets [21], Declarative models [22], Business Process Model and Notation 

(BPMN) [23]) were used for workflow representation. Such notations can be confusing 

and uncomfortable for people outside this domain. Hence, in the computer science domain, 

we can simply interpret the process models as “(probabilistic) graphical models”.  
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Conformance checking [24] is another essential process mining task that aims to analyze 

whether reality, as recorded in an activity log, conforms to the given workflow model and 

vice versa. The goal is to detect the discrepancies and quantify such discrepancies. The 

measure used to quantify the degree of discrepancies (or compliance) between the activity 

log and model is called fitness score, ranging from 0 (fully non-compliant) to 1 (fully 

compliant). The fitness score (Eq. 2.1) is defined as one minus the ratio between the number 

of deviations 𝑁𝑁𝑑𝑑 from the expert model and the number of tasks 𝑁𝑁𝑡𝑡 in a process trace.  

fitness = 1 −  
𝑁𝑁𝑑𝑑
𝑁𝑁𝑡𝑡

 (2.1) 

Model enhancement [25] aims to extend and improve a process model using information 

extracted from the activity log. The model enhancement is actually duplicate with 

conformance checking. Because discrepancies between the activity logs and the 

corresponding process model can be discovered after conformance checking. The model 

can then be repaired with the discovered discrepancies.  

 

 

 

 

Figure 2.3 Three major tasks in process mining: (a) process model discovery, (b) process 

conformance checking, and (c) process model enhancement.  
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Chapter 3  

Medical Workflow Modeling Using Alignment-Guided 

State-Splitting HMM 

This chapter on Medical Workflow Modeling with Alignment-Guided State-Splitting 

HMM is based on our paper [4][5]. Process mining techniques have been used to discover 

and analyze workflows in various fields, ranging from business management [18] to 

healthcare [51]. Much of this research, however, has overlooked the potential of hidden 

Markov models (HMMs) for workflow discovery. We present a novel alignment-guided 

state-splitting HMM inference algorithm (AGSS) for discovering workflow models based 

on observed traces of process executions. We compared the AGSS to existing methods 

(ML-SSS [34], MDL [36], heuristic approach [28], and STACT [37]) using four real-world 

medical workflow datasets and a more detailed case study on one of them. Our numerical 

results show that AGSS not only generates more accurate workflow models, but also better 

represents the underlying process. In addition, with trace alignment to guide state splitting, 

AGSS is significantly more efficient (by a factor of O(n)) than previous HMM inference 

algorithms. Our case study results show that our approach produces a more readable and 

accurate workflow model that existing algorithms. Comparing the discovered model to the 

hand-made expert model of the same process, we found three discrepancies. The 

discrepancies were recognized as mismatches between “work as done” (actual practice 

described in the discovered model) and “work as imagined” (hand-made expert model). 

These three discrepancies were reconsidered by medical experts and used for enhancing 

the expert model. 

3.1 Introduction 

The application of workflow discovery and analysis in the medical field has the potential 

to improve patient outcomes. In the past, medical experts carefully designed medical 

workflow models, but actual practice often deviates from a perceived ideal process [26]. 
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Models discovered from real process data provide information about the actual executions, 

and are critical for understanding process errors, e.g., omitted and duplicate activities. In 

addition, many clinical workflows do not have a predetermined workflow model. Process 

model extraction is then essential for discovering workflows more representative of their 

actual executions. We present a novel hidden Markov model (HMM) inference algorithm 

derived from existing work [27][28] to efficiently discover representative workflow 

models from medical processes. 

Existing workflow discovery algorithms cannot provide the optimal workflow models. 

These methods assume that duplicate activities in a process trace are equivalent. Based on 

our analysis of trauma resuscitation workflow and previous work, each occurrence of an 

activity may have different underlying “intentions”. For instance, over the course of a 

single trauma resuscitation, the trauma team may check the patient’s eyes at two different 

points in time for different reasons. During the primary survey they assess the patient’s 

pupillary response for neurological disability. During the secondary survey the team may 

examine the eyes in more detail, looking for injuries to the cornea, sclera and eyelids. To 

discover an accurate workflow model, an algorithm should be able to distinguish the first 

eye check from the second one, despite their identical labels. To our knowledge, no existing 

workflow mining algorithm can properly model such duplicate activities. Recent work has 

presented a strategy to refine duplicate activity labels, but only during preprocessing [29]. 

We address this problem by modeling duplicate activities as different hidden states in an 

HMM. 

While HMMs are well-studied in speech, handwriting, and bioinformatics, they have 

been overlooked in process mining for several reasons. First, HMM inference is 

computationally demanding due to the iterative maximization procedures (i.e., Baum-

Welch (BW) algorithm). Second, classical BW HMM inference depends heavily on 

subjective and labor-intensive parameter initialization (i.e. finding the number of hidden 

states, observation vectors, transition matrices). Finally, the resulting HMM may be too 

complex for knowledge acquisition purposes; the interpretation of hidden states can be 

challenging even for simple processes.  

We also studied the balance between model accuracy and generality. If a workflow 

discovery algorithm only pursues model accuracy, it may overfit the observed process data, 
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making the model too specific. If the algorithm does not represent specific features of the 

process, the model may underfit the observed data. In both cases, the derived models are 

biased from the ground-truth process that generates the observed data. Consider a simple 

process log with five observed traces where letters represent activities performed in the 

shown order: O = {ABCDEBA, ABBDEBA, ABDEBA, ABDEA, ABCDDEA}. Three 

different representative workflow models may be discovered based on O (Figure 3.1). The 

most specific workflow model (a), a very general workflow model (b), and the ground-

truth workflow model that was used to generate the example traces (c). Although model 

(a) describes the observed process traces very accurately, it lacks generality to represent 

unseen traces generated by the same process. Model (b) would be discovered by existing 

process mining algorithms [18]. It represents each activity by a single workflow node and 

overlooks potentially different “intentions” of the repeated activities. Our empirical study 

 

Figure 3.1 (a) The most specific workflow model of process log O; (b) a typical workflow 

model discovered based on existing Markov chain modeling methods (probabilities not 

shown); (c) the possible underlying workflow model that generated O. 

(c)

Start
C D E

End
A1 A2B2

B1

(b)

A

BStart

C D E

End

Start

(a)

A DB B AE

A CB D E B A

A BB D E B A

A B D E A

A CB D D E A

End



 

 

14 

based on medical knowledge shows the activities of the same name but occurring at 

different locations (i.e., sequential order in the execution) are usually performed due to 

different intentions. This model (b) allows the existence of sequences that are improbable 

in the underlying model (c). For example, activity A may go directly to “End”, or ABCDE 

may loop many times. On the other hand, the underlying model (c) used to generate the 

traces has repeated activities A (A1, A2) and B (B1, B2). A2 and B2 occur at the end of 

process executions, rather than in the loop shown in model (b). We present an algorithm 

that uncovers workflows like (c) from a process log.  

Our AGSS algorithm uses trace alignment—a data-driven algorithm—to guide HMM 

model inference. Trace alignment can discover the consensus sequence, or the backbone 

procedure of the observed process traces [30]. The trace alignment algorithm alone, 

however, is not sufficient for model mining because it only models sequential relationships 

between activities, and cannot handle parallelism. This limitation is not an issue for HMMs, 

a graphical model that can easily represent branches. Instead, HMMs face problems with 

model parameter initialization and computational complexity. Since trace alignment is able 

to find the distribution of the activities, incorporating alignment into HMM inference can 

help avoid subjective parameter initialization, boost inference speed, and produce better 

HMMs. Our contributions in this study are: 

• A novel alignment-guided state-splitting HMM inference algorithm (AGSS) for 

real-world workflow discovery. Taking advantage of alignment, AGSS can 

efficiently find which states to split and how many states to split. This way, the 

complexity of the induced HMM is controlled by both the activity distribution in 

the alignment matrix and the dataset size (number of observed process traces). We 

compared AGSS to existing state-splitting-based HMM inference algorithms. The 

performance was evaluated using data from four real-world medical processes, in 

three different aspects: (1) How representative the induced model is of the observed 

process traces. (2) How close the induced model is to the underlying model that 

generated the observed process traces. (3) The computational complexity of HMM 

inference. 

• An HMM simplification algorithm that reduces the number of insignificant 

transitions and extracts a fully connected backbone workflow model from a 
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spaghetti-like HMM model. The simplified model is more readable and allows for 

easier knowledge extraction. 

3.2 Related Work 

Most HMM inference methods are used for supervised classification, with heuristic 

initialization 𝜆𝜆0 = (𝜋𝜋0,𝐴𝐴0,𝐵𝐵0,𝑛𝑛,𝑚𝑚) . Given an approximate HMM topology, these 

algorithms fine-tune the HMM with the Baum-Welch algorithm [31]. Without appropriate 

initial parameter, the inferred HMM can be heavily biased from the ground truth. Other 

HMM inference algorithms implement either state-merging or state-splitting to address the 

initial parameter problem [27][32].  

The state-merging approach was first proposed by Stolcke, et al. [32]. It begins the 

inference with the most specific topology, containing one path for each observed trace (as 

in Figure 3.1 (a)), and iteratively merges states to maximize the posteriori (MAP) [32]. The 

state-merging approach however is computationally expensive [28][33] because of two 

reasons. First, as initializing the HMM with all observed traces usually requires many 

nodes, calculating observation probability 𝑃𝑃(𝑶𝑶|𝜆𝜆) can be expensive. Second, the merging 

method suffers from a lack of search direction and may stop too early, achieving local 

convergence far from the global optima.  

The state-splitting approach, proposed by Takami and Sagayama [27], infers HMMs 

from the opposite direction. It begins with a general HMM and successively splits states 

until convergence. Compared to merging, the splitting approach is faster. Because the 

initial model is small, it is generally much closer to the final desired model [28][34][35]. 

Given observations O, current state-splitting algorithms can be generalized into two steps. 

Step 1: determine the best state to split in each iteration j: 

𝜆𝜆𝑗𝑗 =  arg max
𝜆𝜆𝑗𝑗−1
𝑠𝑠  ∈𝓜𝓜𝒋𝒋−𝟏𝟏

 Score(𝜆𝜆𝑗𝑗−1𝑠𝑠 ,𝑶𝑶) (3.1) 

Step 2: determine when to stop splitting: 

Score(𝜆𝜆𝑗𝑗,𝑶𝑶) ≤  Score(𝜆𝜆𝑗𝑗−1,𝑶𝑶) (3.2) 

where 𝜆𝜆𝑗𝑗−1𝑠𝑠  is a candidate model for splitting state s at iteration j–1, 𝓜𝓜𝑗𝑗−1 includes all the 

candidate models at iteration j–1, and the scoring function Score(λ, O) quantifies how well 
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the model λ fits the observations O, as well as the model penalty. In other words, greedy 

splitting is done on all possible splits, and stops when further splitting does not increase 

the score. Both steps are dependent on the scoring function. It is difficult to analyze  greedy 

splitting’s effect on the resulting model but the stopping mechanism clearly influences the 

model’s accuracy and generality. Splitting too much will overfit, sacrificing 

representativeness for accuracy. Splitting too little will underfit, leading to a model with 

poor accuracy. Maximum likelihood successive state-splitting (ML-SSS) [34] terminates 

splitting either when the likelihood P(O|λ) saturates, or when the model size reaches a 

certain threshold. ML-SSS does not penalize model complexity, so it could theoretically 

keep splitting down to the most specific model. Different complexity penalties have been 

used in previous research. Mavromatis [36] used minimum description length (MDL). 

Herbst [28] used a heuristic score function. Siddiqi et al. [37] used Bayesian information 

criterion (BIC) for simultaneous temporal and contextual splitting (STACS). Despite the 

variety of scoring metrics and algorithms, none of this research is about deriving workflow 

models from complex workflow data. The previous works used state-splitting method to 

infer the HMMs. But the final goal is to use the trained HMMs for their classification tasks. 

My goal of using HMMs on workflow data is to derive descriptive models so that analysts 

can extract knowledge from them. Although these previous works can also be used for the 

same purpose, we are looking for an efficient algorithm that can produce more accurate 

and more interpretable workflow models.   

3.3 Alignment Guided State-splitting HMM 

3.3.1 Definitions and Data Formalization 

We first define the terms and notations used later: 

Definition 1: A process log O is a set of process traces composed of activity executions. 

A log with 𝑇𝑇  process traces is denoted 𝑶𝑶 = {𝑶𝑶1, … ,𝑶𝑶𝑗𝑗 , … ,𝑶𝑶𝑇𝑇} . A process trace 𝑶𝑶𝑗𝑗  is 

represented by 𝑶𝑶𝑗𝑗 = {𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎1, … ,𝑎𝑎𝑖𝑖, … ,𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒}, where 𝑎𝑎𝑖𝑖  denotes the i-th activity in 

the trace and ℓ denotes the trace length. “start” (𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and “end” (𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒) symbols are added 

to mark the beginning and end of each trace.  
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Definition 2: Given a process log O, an alignment algorithm 𝒜𝒜(𝑶𝑶)  forms an 

alignment matrix with the traces in O as rows and activities of the same type as columns. 

If for a given trace a matching activity cannot be found, a gap symbol “-” is inserted in the 

corresponding column (Figure 3.2 (a)). Alignment 𝒜𝒜(𝑶𝑶) returns the consensus sequence 

𝓒𝓒𝓒𝓒, which we use to guide the selection of splitting candidates 𝑺𝑺𝑺𝑺. When describing 

alignment algorithm computational complexity, we use L to denote the average length of 

alignment matrices in a pairwise alignment. Alignment has previously been used for 

workflow and activity pattern analysis [1][30]. 

Definition 3: A consensus sequence 𝓒𝓒𝓒𝓒 is generated from the alignment matrix. It 

contains the activities in alignment matrix columns. 𝓒𝓒𝓒𝓒 can be considered the “average”, 

or “backbone” of the original traces. Due to variations in the execution of complex 

processes, some alignment columns contain only a small number of non-gap elements. We 

define “column frequency” as the fraction of non-gap elements (Figure 3.2 (a)), which 

correspond to how frequently the activity in this column was performed across different 

process executions. We apply a column frequency threshold ε to filter out columns with 

rare activities. We use 𝓒𝓒𝓒𝓒′ to denote the consensus sequence after the filtering. Splitting 

candidates 𝑺𝑺𝑺𝑺 are taken from 𝓒𝓒𝓒𝓒′.  Note that we use a “relaxed” consensus sequence that 

considers the surrounding columns within a time window when calculating the frequency 

of a specific column. This is because parallel activities in the workflow may result in 

different alignment orderings across nearby columns, but should still be considered the 

same “intention”. 

Definition 4: An HMM 𝜆𝜆 is a statistical model for modeling temporal sequences with 

unobserved or hidden states. An HMM is denoted by a quintuplet 𝜆𝜆 = (𝑨𝑨,𝑩𝑩,𝝅𝝅,𝑛𝑛,𝑚𝑚) , 

where matrix A records the state transition probabilities, where A(i, j) represents the 

transition probability between state i and state j; B records the observation probability 

distribution in each state; 𝝅𝝅 is a vector consisting initial state distribution; n is the number 

of hidden states and m is the number of distinct observation symbols per state. The 

observation probability 𝑃𝑃(𝑶𝑶|𝜆𝜆) is the probability that the HMM λ will emit the set of 

observed traces 𝑶𝑶. Log-likelihood (a.k.a. log-likelihood) log𝑃𝑃(𝑶𝑶|𝜆𝜆) is usually used in 

implementations to avoid arithmetic underflow problems. 
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Definition 5: The splitting candidates 𝑺𝑺𝑺𝑺 comprise a set of activities eligible for state 

splitting during the topology inferencing of HMM λ. We use ai in 𝑺𝑺𝑺𝑺 to denote a candidate 

activity to split in λ. The HMMs obtained by state-splitting are placed in the set candidate 

models 𝓜𝓜. N denotes the total number of splits done during the inferencing of λ. 

3.3.2 Alignment Guided State-splitting HMM 

3.3.2.1 AGSS algorithm 

AGSS (see Figure 3.2) first initializes a general Markov chain 𝜆𝜆0 . Unlike most state-

splitting algorithms that start with only one state [27][35][37], AGSS begins with a Markov 

chain composed of one state per activity (step 1 in Alg.3.1), a strategy used in Herbst’s 

heuristic state-splitting approach [28].  

After initialization, AGSS determines two factors: which states to split and when to stop 

splitting. AGSS determines the splitting candidates from the alignment matrix and orders 

them by column frequency. Specifically, AGSS uses the following intuitions about the 

consensus sequence (step 2 in Alg.3.1): (1) activities of different columns of the alignment 

matrix likely have different purposes or intentions regardless of activity type; and (2) each 

column’s frequency measures the importance or distinctiveness of the activity’s intention. 

Having two different columns with the same activity type and frequencies above the 𝜀𝜀 

threshold strongly indicates that this activity (e.g., “A and B” in Figure 3.2 (a)) has multiple 

intentions, qualifying the associated state for splitting candidacy (step 3 in Alg.3.1). It also 

intuitively follows, and our experiments have shown, that the candidates with higher 

column frequencies (e.g. “A” in last column of Figure 3.2 (a)) should be tested for splitting 

before those with lower frequencies (e.g. “B” in the column before last in Figure 3.2 (a)). 

Therefore, we sorted the candidates 𝓒𝓒𝓒𝓒′ by descending frequency (step 4). Because each 

activity is already assigned a state in the initial model 𝜆𝜆0, there is no need to split the first 

occurrence of each activity in 𝓒𝓒𝓒𝓒′. Therefore, we revoke the candidacy of first occurrences 

and return the final list 𝑺𝑺𝓒𝓒 (step 4).  

After calculating the splitting candidates, AGSS performs iterative splitting. In iteration 

j, given a splitting candidate activity 𝑎𝑎𝑖𝑖 ∈ 𝑺𝑺𝑺𝑺, we find states 𝑺𝑺, in the model from last 

iteration λj−1, which have observations 𝑎𝑎𝑖𝑖 (e.g., S1 in Figure 3.2 (b). Step 7 in Alg.3.1). For 
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each state 𝑠𝑠𝑘𝑘 in 𝑺𝑺, we split it into two new states 𝑠𝑠𝑘𝑘′ and 𝑠𝑠𝑘𝑘′′ (step 9 in Alg.3.1). The newly-

split states (𝑠𝑠𝑘𝑘′ and 𝑠𝑠𝑘𝑘′′) are assigned the same observation as their predecessor’s state 𝑠𝑠𝑘𝑘. 

The transitions (i.e., transition probabilities from other states to 𝑠𝑠𝑘𝑘′, 𝑠𝑠𝑘𝑘′′ and from 𝑠𝑠𝑘𝑘′, 𝑠𝑠𝑘𝑘′′ 

to other states) can be initialized either randomly or by estimating the distribution of 

surrounding activities in the alignment matrix (step 10 in Alg.3.1). After initializing the 

parameters of 𝑠𝑠𝑘𝑘′and 𝑠𝑠𝑘𝑘′′, 𝜆𝜆′ is trained with the Baum-Welch Algorithm to optimize the 

HMM parameters (step 11 in Alg.3.1). 𝜆𝜆′  that maximizes log-likelihood 𝑃𝑃(𝑶𝑶|𝜆𝜆′)  is 

assigned 𝜆𝜆𝑗𝑗 (step 14 in Alg.3.1). Afterwards, 𝜆𝜆𝑗𝑗 is compared to 𝜆𝜆𝑗𝑗−1; 𝜆𝜆𝑗𝑗 is kept only if it 

improves model log-likelihood (steps 15-17 in Alg.3.1).  
 

Compared with existing state-splitting HMM inference algorithms [34][35][37], AGSS 

has the following advantages. First, as we associate each state with a single activity type 

and assign newly-split states their predecessor’s activity, each state in the inferred HMM 

has only one associated activity. This way, the discovered models will have easily-

Algorithm 3.1.  AGSS HMM 
Input: 𝑶𝑶, 𝜀𝜀 
Output: 𝜆𝜆 
Step 1. Initialize HMM topology as Markov chain 𝜆𝜆0; 
/* Obtain candidate activities for splitting */ 
Step 2.  Compute relaxed consensus sequence 𝓒𝓒𝓢𝓢 = 𝒜𝒜(𝑶𝑶); 
Step 3.  Filter consensus sequence 𝓒𝓒𝓢𝓢′ = Filter(𝓒𝓒𝓢𝓢, 𝜀𝜀); 
Step 4.  Find splitting candidates 𝑺𝑺𝑺𝑺 by sorting 𝓒𝓒𝓒𝓒′: 𝓓𝓓 = Sort(𝓒𝓒𝓒𝓒′), and removing the first occurrences 

of all activities: 𝑺𝑺𝑺𝑺 = RemoveFirstOcurrences(𝓓𝓓);  
/* Perform state splitting */ 
Step 5.  for activity 𝑎𝑎𝑖𝑖 in 𝑺𝑺𝑺𝑺, do 
Step 6.           Create a temporal model 𝜆𝜆′ = λj−1; 
Step 7.           Find states 𝑺𝑺 that have observation 𝑎𝑎𝑖𝑖 from 𝜆𝜆′; 
Step 8.  for 𝑠𝑠𝑘𝑘 in 𝑺𝑺, do 
Step 9.   Split 𝑠𝑠𝑘𝑘  to 𝑠𝑠𝑘𝑘′and 𝑠𝑠𝑘𝑘′′ in 𝜆𝜆′; 
Step10.   Initialize observation and transitions of 𝑠𝑠𝑘𝑘′and 𝑠𝑠𝑘𝑘′′; 
Step11.   Train with Baum-Welch algorithm: 𝜆𝜆′ = Train(𝜆𝜆′,𝑶𝑶); 
Step12.   𝓜𝓜 = 𝓜𝓜∪ {𝜆𝜆′} ; 
Step13.  end for 
Step14.  𝜆𝜆𝑗𝑗 =  arg max

𝜆𝜆′ ∈𝓜𝓜
𝑃𝑃(𝑶𝑶|𝜆𝜆′); 

Step15.  if log𝑃𝑃�𝑶𝑶�𝜆𝜆𝑗𝑗� < log𝑃𝑃�𝑶𝑶�𝜆𝜆𝑗𝑗−1�; 
Step16.           𝜆𝜆𝑗𝑗 =  𝜆𝜆𝑗𝑗−1; 
Step17.           end if 
Step18.         𝑗𝑗 = 𝑗𝑗 + 1; 
Step19. end for 
Step20. 𝜆𝜆 = 𝜆𝜆𝑗𝑗−1;  
Step21. return 𝜆𝜆; 
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interpretable topologies. Second, because we calculate all splitting candidates based on 

alignment, AGSS does not need to search the parameter hyperspace of all possible HMMs 

from all possible splits. Third, as the alignment results and consensus sequence selection 

are tailored to the characteristics of the data, our alignment-based strategy better captures 

the activity distribution. With these advantages, AGSS not only runs faster but is also more 

robust.  

 
Figure 3.2. Illustration of the AGSS algorithm. (a) Splitting candidates 𝑪𝑪 = {A, B} are 

selected from the consensus sequence. (b) The splitting starts from the initial model. 

(c) Activity A is split first because the column in which A is repeated has higher frequency 

(1.0) than that of activity B (0.6). (d) Activity B is split after A. The splitting stops when 

all splitting candidates are split. 
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3.3.2.2 Estimating the 𝜀𝜀 Threshold 

The frequency threshold 𝜀𝜀 is important for selecting the splitting candidates which, in turn, 

determine when splitting will terminate. The threshold ε for the frequency of non-gap 

symbols in columns ranges between 0 and 1. As it approaches 0, more activities will be 

allowed onto the candidate list; as it approaches 1, fewer states are candidates. We propose 

two threshold ε selection methods. The first method finds ε by running the inference 

algorithm with random ε values, and then picks the threshold yielding the best model 

(model evaluation discussed later). The apparent limitation is the long running time 

required to infer multiple models. The second method estimates ε from the data size (num. 

of traces) using Alg.3.2, where 𝐸𝐸𝐸𝐸 is the edit distance (a.k.a. Levenshtein distance [38]), 

between two filtered consensus sequences and r is an increment of ε. Alg.3.2 is based on 

the law of large numbers [39], which implies that as the data size increases (more process 

traces), the average of the data (consensus sequence) should converge to an expected value. 

In other words, the elements in consensus sequences will stabilize with more data.  

To evaluate whether we have enough data for producing a stable consensus sequence 

𝓒𝓒𝓒𝓒, we randomly select half of the input traces (step 1 in Alg.3.2) and calculate their 

consensus sequence 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎  (step 2 in Alg.3.2).  𝓒𝓒𝓒𝓒  and 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎  are filtered using the 

threshold ε (step 4 in Alg.3.2). The edit distance between 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎′  and 𝓒𝓒𝓒𝓒′ will approach 0 

when data size is sufficient. The convergence occurs faster for larger 𝜀𝜀 (Figure 3.3(a)). 

Given the observed data, Alg.3.2 returns the smallest ε at which the edit distance converges. 

The convergence threshold is set to 0.05, which is the smallest normalized edit distance 

(i.e., edit distance normalized by the sum of trace lengths) between 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎′  and 𝓒𝓒𝓒𝓒′. In 

Algorithm 3.2.  Estimating frequency threshold 𝜀𝜀 
Input: 𝑶𝑶 
Output: 𝜀𝜀 
Step 1.  Randomly select half of the traces from 𝑶𝑶, denoted as 𝑶𝑶ℎ𝑎𝑎𝑎𝑎𝑎𝑎; 
Step 2.  Calculate consensus sequences: 𝓒𝓒𝓒𝓒 = 𝒜𝒜(𝑶𝑶); 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎  = 𝒜𝒜(𝑶𝑶ℎ𝑎𝑎𝑎𝑎𝑎𝑎); 
Step 3.  for 𝜀𝜀 = 0: 𝑟𝑟: 1, do 
Step 4.           𝑪𝑪𝓢𝓢′ = Filter(𝓒𝓒𝓒𝓒, 𝜀𝜀); 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎′ = Filter�𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎 , 𝜀𝜀�; 
Step 5.           break if 𝐸𝐸𝐸𝐸(𝓒𝓒𝓢𝓢′, 𝓒𝓒𝓒𝓒ℎ𝑎𝑎𝑎𝑎𝑎𝑎′ ) converges 
Step 6. end for 
Step 7. return 𝜀𝜀 
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other words, convergence occurs when over 95% of the two consensus sequences are equal. 

The choosing of ε based on Alg.3.2. is automatic.  

 This ε is desirable because it selects the number of splitting candidates proportional to 

the size of the data. For smaller datasets, it would be inappropriate to split too much and 

overfit (i.e., states split to capture characteristics or patterns that only exist in specific 

observed traces). If the process log O is small, the two consensus sequences would be 

unstable, forcing a higher ε that preserves only the most common activities in the consensus 

sequence. This high ε produces a stable but sparse consensus sequence, therefore 

disqualifying most states from being split. On the other hand, for large datasets ε would be 

small, allowing the model to split more. The resulting model would be more detailed, which 

is preferable when training with sufficient data. AGSS then adaptively adjusts the number 

of potential splits to the amount of data available.  

 
Figure 3.3. (a)Training dataset size plotted against edit distance between 𝓒𝓒𝓒𝓒𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 and 𝓒𝓒𝓒𝓒 

using different frequency thresholds ε; (b) replay rate on test data. The results are averaged 

over 30 runs using the Dutch hospital data [40]. 

 

 
Figure 3.4. Flawed simplified workflow model with a dangling node S3. This model is 

simplified from (d) in Figure 3.2 with an arbitrary transition cutoff as 0.35.  
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3.3.2.3 Simplifying and Pruning the Discovered Model 

Data-derived workflow models can be spaghetti-like [18], i.e., complex graphs with a large 

amount of nodes and directed arcs (transitions). This finding is also true for the AGSS-

induced HMM. When used for classification, spaghetti-like models are acceptable black 

boxes, because we only focus on classification accuracy and do not extract insights from 

the model structure. In workflow discovery, finding a descriptive and interpretable model 

is more important. This goal can be accomplished by model simplification.  

Model simplification and pruning are techniques to reduce the size and complexity of 

workflow models by omitting insignificant information. The obvious solution is to apply 

transition frequency cutoffs, but this may produce a flawed workflow model with 

“dangling” process fragments (C in Figure 3.4).  These dangling fragments represent 

impossible executions when put in the context of workflows. Removing insignificant 

transitions while keeping the graph a plausible workflow is a form of the NP-hard minimal 

spanning strong subgraph problem (where we artificially place a transition with frequency 

one from the end to the start). In the context of process mining, however, it is more 

reasonable to use heuristic methods.  

In this work, we propose a heuristic HMM simplification algorithm (Alg.3.3), which 

can extract the skeleton (the backbone structure) of the HMM. The strategy preserves the 

dominating incoming and outgoing transitions for each state, reduces the number of 

insignificant transitions, and does not produce single dangling activities. It is, however, 

possible for a group of states to form a subprocess isolated from the main process (i.e., the 

process that includes the start state 𝑠𝑠start and end state 𝑠𝑠end). For example, a pair of states 

can construct a loop where the most significant in-and-out transitions go to each other. We 

address this problem by first discovering isolated subprocesses (steps 9-18 in Alg.3.3) and 

then reconnecting the subprocess to the main one through the entire subprocess’s most 

significant in-and-out transitions (steps 19-25 in Alg.3.3). The output 𝜆𝜆𝑠𝑠 from algorithm 3 

is the backbone model of observed processes 𝑶𝑶.  
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3.4 Experiments  

We compared AGSS to existing baseline state-splitting HMM inference methods, such as 

ML-SSS [34], MDL [36], heuristic approach [28], and STACT [37]. The performance was 

measured based on (1) model’s quality and (2) the algorithm’s computational efficiency. 

Both perspectives were quantitative (the induced HMMs were not interpreted by humans), 

so model simplification or pruning (Section IV.3.3.2.3) was not applied in this section. 

Experiments were run on a Dell desktop (Win 10, Intel Xeon 3.7GHz CPU, 48G RAM).  

Algorithm 3.3.  HMM Simplification 
Input: 𝜆𝜆 = (𝑨𝑨,𝑩𝑩,𝝅𝝅,𝑛𝑛,𝑚𝑚) 
Output: 𝜆𝜆𝑠𝑠 
/* Preserve the dominating in-and-out transitions of each state */ 
Step 1.  Initialize the simplified transition matrix 𝑨𝑨𝑠𝑠 = ∅; 
Step 2. for 𝑖𝑖 = 0: 1:𝑛𝑛, do 
Step 3.           for 𝑗𝑗 = 0: 1:𝑛𝑛, do 
Step 4.   if  𝑨𝑨(𝑖𝑖, 𝑗𝑗)=max(𝑨𝑨(𝑖𝑖, : )),  𝑨𝑨𝒔𝒔(𝑖𝑖, 𝑗𝑗) = 𝑨𝑨(𝑖𝑖, 𝑗𝑗); 
Step 5.   if   𝑨𝑨(𝑖𝑖, 𝑗𝑗)=max(𝑨𝑨(: , 𝑗𝑗)),  𝑨𝑨𝒔𝒔(𝑖𝑖, 𝑗𝑗) = 𝑨𝑨(𝑖𝑖, 𝑗𝑗); 
Step 6.   if   𝑖𝑖 = 𝑗𝑗, 𝑨𝑨𝒔𝒔(𝑖𝑖, 𝑗𝑗) = 𝑨𝑨(𝑖𝑖, 𝑗𝑗); /* keep self-transition */ 
Step 7.           end for 
Step 8. end for 
/* Discover states isolated from the main process */ 
Step 9. Initialize a set with all states in 𝜆𝜆 except 𝑠𝑠start: 𝑺𝑺 = {𝑠𝑠1, … 𝑠𝑠𝑛𝑛}. Initialize a stack 𝑺𝑺(𝑚𝑚) = {𝑠𝑠start};  

/* 𝑠𝑠start is  𝑠𝑠0 */ 
Step 10. while 𝑺𝑺(𝑚𝑚) ≠ ∅      
Step 11.  𝑠𝑠𝑖𝑖=𝑺𝑺(𝑚𝑚).pop();    
Step 12.  for 𝑗𝑗 = 0: 1:𝑛𝑛, do 
Step 13.   if 𝑨𝑨𝑠𝑠(𝑖𝑖, 𝑗𝑗) ≠ 0 && 𝑠𝑠𝑗𝑗 ∈ 𝑺𝑺   /* i is the index of 𝑠𝑠𝑖𝑖 */ 
Step 14.    𝑺𝑺(𝑚𝑚).push(𝑠𝑠𝑗𝑗); 
Step 15.    𝑺𝑺.remove(𝑠𝑠𝑗𝑗); 
Step 16.   end if 
Step 17.  end for 
Step 18. end while 
/* Connect isolated subprocesses to the main process */ 
Step 19. while 𝑺𝑺 ≠ ∅     /* 𝑺𝑺 includes all states isolated from main process */ 
Step 20.  𝑠𝑠 = 𝑺𝑺.get(0); 

Step 21.  According to 𝑨𝑨𝒔𝒔, find all states in 𝑺𝑺 directly or indirectly connected to 𝑠𝑠 and insert them to 
𝑺𝑺(𝑠𝑠) = {… , 𝑠𝑠, … }; 

Step 22. 

 Find the most preceding state 𝑠𝑠𝑗𝑗  or states 𝒔𝒔𝑗𝑗 (when loop exists) in 𝑺𝑺(𝑠𝑠), 𝑨𝑨𝒔𝒔(𝑖𝑖, 𝑗𝑗) =
argmax

𝑖𝑖,𝑗𝑗
𝑨𝑨(𝑖𝑖, 𝑗𝑗), find the most succeeding state 𝑠𝑠𝑘𝑘  or states 𝒔𝒔𝑘𝑘 (when loop exists) in 𝑺𝑺(𝑠𝑠), 

𝑨𝑨𝒔𝒔(𝑖𝑖,𝑘𝑘) = argmax
𝑖𝑖,𝑘𝑘

𝑨𝑨(𝑖𝑖, 𝑘𝑘); 

Step 23.  Remove the states in 𝑺𝑺(𝑠𝑠) from 𝑺𝑺; 
Step 24. end while 
Step 25. return 𝜆𝜆𝑠𝑠 =  (𝑨𝑨𝑠𝑠,𝑩𝑩,𝝅𝝅,𝑛𝑛,𝑚𝑚) 
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3.4.1 Real World Medical Process Datasets 

During the evaluation, we used activity logs from four real-world medical processes (). 

Obtaining and using the medical data for this study was approved by the Institutional 

Review Board at Children’s National Medical Center in Washington, DC. Three medical 

logs were coded from surveillance videos of trauma resuscitations: (1) The endotracheal 

intubation (breathing tube insertion). (2) The initial evaluation phase (i.e., primary survey) 

of the trauma resuscitation [41], where the team looks for immediately life-threatening 

injuries. (3) The head to toe examination phase (i.e., secondary survey) of the trauma 

resuscitation. The fourth dataset was collected at a Dutch hospital and published by 4TU 

(http://researchdata.4tu.nl/home/) [40]. After removing outliers and rare activities, there 

remained 24,550 activities of 18 types in the Dutch hospital data.  

3.4.2 Measuring Quality of Induced HMM 

The challenge for HMM inferencing in workflow mining is its unsupervised nature; labeled 

ground truth data is not available to test the induced model. Previous state-splitting 

algorithms working with supervised classification problems had labeled data to test the 

performance [37]. Our goal in this study was to induce a descriptive process model, as 

opposed to a predictive one. This descriptive model can be evaluated by how well it 

represents observed and unobserved data [42]. To quantify the model quality, we adopted 

two concepts, model fidelity and model confidence, from previous research [43]. Model 

fidelity (or accuracy) measures the agreement between a given workflow model and the 

observed process traces, i.e., the log likelihood of generating the observed process traces 

using the given model. The value is high if the model structure accurately describes the 

Table 3-1. Statistics of our four medical process datasets. 
Dataset 

Stats Intubation Primary Secondary Dutch 

Num. Patient Records 74 186 122 833 
Num. Total Acts 900 1291 3057 24,550 
Num. Act Types 15 8 17 18 
Longest Trace (Num. Acts) 13 8 51 229 
Shortest Trace (Num. Acts) 5 4 7 2 
Avg. Num. Acts in Trace  12.16 6.94 25.06 29.47 

 

http://researchdata.4tu.nl/home/
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observed process traces. Model confidence measures how well a workflow model 

represents the underlying process that generates the observed process traces. High model 

confidence is achieved if the model describes not only the observed traces, but also the 

unobserved realizations of the underlying process. Model confidence is difficult to achieve 

with insufficient training data, because the model may overfit the small dataset. 

Given observed traces O and inferred model λ, model fidelity (𝑀𝑀𝑓𝑓) is defined as the log-

likelihood of the observed traces: 

𝑀𝑀𝑓𝑓 = log𝑃𝑃(𝑶𝑶|𝜆𝜆) = � log𝑃𝑃(𝑶𝑶𝑖𝑖|𝜆𝜆)
𝑖𝑖∈{1,2,…,ℓ}

 (3.3) 

where P(Oi | λ) represents the probability that the observed trace Oi is produced by model λ 

and ℓ is the average trace length. 

The model confidence is hard to quantify because we have neither the underlying 

ground truth model, nor the entire set of possible process traces. Model confidence (𝑀𝑀𝑐𝑐), 

can be estimated by partitioning the data into training and test sets. Let λ′ denote the 

inferred model from training data Otraining. We define model confidence as logP(Otest | λ′). 

In practice, we chose to use 10-fold cross validation (Alg.3.4) to reduce result variance. 

Real-world process logs are usually small, since they need to be coded manually by domain 

experts.  

Some test data Oi may not be replay-able on the trained HMM λ′ (i.e., probability P(Oi 

|λ′)=0). This problem usually occurs with sparse training data, where an activity or 

transition present in the test data is not in the training data. The probability P(Oi |λ′) of such 

a trace would then be zero, despite missing only one activity or transition. This issue is 

Algorithm 3.4.  Calculating model confidence 𝑀𝑀𝑐𝑐 
Input: 𝑶𝑶 
Output: 𝑀𝑀𝑐𝑐 
Step 1. Initialize 𝑀𝑀𝑐𝑐 = 0; 
Step 2. Partition the observed traces O into 10 folds, O={O1,…, O10}; 
Step 3. for 𝑖𝑖 = 1: 1: 10, do 
Step 4.           Infer 𝜆𝜆𝑖𝑖′  with 9 folds except Oi 
Step 5.           Replay Oi in 𝜆𝜆𝑖𝑖′  and calculate log-likelihood logP(Oi | 𝜆𝜆𝑖𝑖′) 
Step 6  Sum up log-likelihood 𝑀𝑀𝑐𝑐 += logP(Oi | 𝜆𝜆𝑖𝑖′) 
Step 7. end for 
Step 8. return 𝑀𝑀𝑐𝑐 
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usually addressed by smoothing the model parameters, a process of flattening the 

probability distribution so that all sequences can occur with some probability. Smoothing 

can improve HMM performance in a classification problem, but will not help mine 

workflow models. For model mining, adding unseen activities and transitions would only 

make the model. Instead of smoothing, we propose a replay rate metric 𝑅𝑅𝑟𝑟, the percent of 

test data can be replayed in λ′. 

𝑅𝑅𝑟𝑟 =  
∑ 𝛿𝛿(𝑃𝑃(𝑶𝑶𝑖𝑖|𝜆𝜆′))𝑖𝑖

𝓃𝓃
× 100% (3.4) 

where 𝛿𝛿(𝑥𝑥) = 1 if 𝑥𝑥 ≠ 0, and 𝛿𝛿(𝑥𝑥) = 0 otherwise; and 𝓃𝓃 is the number of traces in the 

test set. 𝑅𝑅𝑟𝑟 is strongly related to data size (Figure 3.3(b)), with 𝑅𝑅𝑟𝑟 increasing as data size 

increases.  

We computed model fidelity (𝑀𝑀𝑓𝑓 ), model confidence (𝑀𝑀𝑐𝑐 ), and replay rate (𝑅𝑅𝑟𝑟 ) to 

evaluate the HMM inducing algorithms on different datasets (Table 3-2). As described 

above (Section 3.3.2), ML-SSS, MDL, and STACT were designed to start splitting from 

one node and allow different activity types to be observed at the same state. On the other 

hand, Heuristic and AGSS were designed to be initialized with a Markov chain. We also 

used tests on synthetic data to set a convergence threshold of 0.01 for ML-SSS to prevent 

too many splits [34] (splitting is terminated if the next iteration’s log likelihood is less than 

1.01 times that of the previous).  

Table 3-2. Comparison of AGSS with existing state-splitting algorithms on four real world 
medical processes. Model fidelity (𝑀𝑀𝑓𝑓 ) and model confidence (𝑀𝑀𝑐𝑐 ) are scaled by the 
number of process traces in each process.   
 Intubation Primary Survey Secondary Survey Dutch Hospital 

 𝑀𝑀𝑓𝑓 𝑀𝑀𝑐𝑐 𝑅𝑅𝑟𝑟 𝑀𝑀𝑓𝑓 𝑀𝑀𝑐𝑐 𝑅𝑅𝑟𝑟 𝑀𝑀𝑓𝑓 𝑀𝑀𝑐𝑐 𝑅𝑅𝑟𝑟 𝑀𝑀𝑓𝑓 𝑀𝑀𝑐𝑐 𝑅𝑅𝑟𝑟 

MC1 -12.8 -12.9 84.3% -10.00 -10.38 96.6% -47.59 -44.09 65.8% -38.8 -37.3 97.6% 

AGSS -12.8 -12.9 84.3% -9.98 -10.16 96.1% -45.22 -44.13  65.8% -32.76 -34.03 97.6% 

ML-SSS2  -10.56 -22.05 98.6% -9.05 -10.66 100% -48.79 -60.52 100% -52.39 -54.66 100% 

Heuristic -11.8 -15.8 84.3% -8.50 -10.95 96.1% -47.59 -44.10 65.8% -38.6 -36.9 97.6% 

MDL -19.45 -19.78 100% -12.37 -12.97 100% -64.44 -65.37 100% -81.34 -82.03 100% 

STACT -12.32 -14.23 98.6% -9.32 -10.19 100% -49.22 -58.08 99.2% -44.86 -47.04 100% 
1MC stands for Markov Chain 
2The convergence threshold of ML-SSS is 0.01 
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The results (Table 3-2)  show that while AGSS does not achieve the best model fidelity 

on intubation and primary survey, it achieves the best model confidence on all datasets. 

Compared with its initial Markov chain topology, AGSS induces a model with better 

fidelity and confidence, indicating that the splitting improves the model. The heuristic 

approach, on the other hand, has higher model fidelity (-11.8 on intubation and -8.5 on 

primary survey) but lower model confidence (-15.8 on intubation and -10.95 on primary 

survey) than Markov chain. This finding indicates that the heuristic approach made 

unnecessary splits and overfit to the training data. Starting from a Markov chain and using 

the “one observation per state” constraint, both AGSS and the heuristic approach suffer 

from low replay rates. From a model mining perspective, however, these constraints 

become advantages in producing easy-interpretable workflow models. ML-SSS achieves 

high model fidelity using the Intubation dataset (-10.56) and Secondary Survey dataset (-

48.79) but has low model confidence (-22.05 and -60.52), indicating it also overfit the data. 

MDL and STACT have lower model fidelity and confidence when compared to AGSS and 

Heuristic, indicating they penalize model complexity too severely and terminate the 

splitting too early. This is in agreement with the fact that MDL and STACT assume a data 

size much larger than the number of model parameters [36][37].  

3.4.3 Computational Complexity Comparison 

Existing state-splitting algorithms (e.g. ML-SSS, MDL, Heuristic, STACT) are 

computationally complex because the search for splitting candidates at each iteration is 

expensive.  Each state is considered a candidate and is therefore tested. AGSS avoids this 

problem by initially discovering all splitting candidates from trace alignment. The overall 

computational complexity of AGSS is 𝒪𝒪(𝑇𝑇𝑛𝑛2𝑁𝑁) , consisting of trace alignment and 

splitting candidate evaluation. Trace alignment requires 𝒪𝒪(𝑇𝑇2ℓ2 +  𝑇𝑇2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇))  to 

construct the guide tree and 𝒪𝒪(𝑇𝑇2𝐿𝐿 +  𝑇𝑇𝐿𝐿2)  for progressive alignment [1][10]. State 

splitting requires 𝒪𝒪(𝑇𝑇𝑛𝑛2𝑁𝑁) for N total state splits with 𝒪𝒪(𝑇𝑇𝑛𝑛2) for Baum-Welch parameter 

learning [31] and likelihood evaluation (“forward-backward”) at each split. In comparison, 

other state-splitting algorithms generally take 𝒪𝒪(𝑇𝑇𝑛𝑛3𝑁𝑁), where the number of splits N 

depends on the convergence rate of the score function. The computational complexities of 
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AGSS and other state-splitting algorithms strongly depend on the average number of 

hidden states n because of its raised power.  

When comparing the number of successful splits versus time on a logarithmic scale 

(Figure 3.5(a)), we ignored the terminating criterion for each algorithm and continued 

splitting until a given number of states N’ (50 is used in Figure 3.5) was reached. AGSS 

showed a clear advantage in speed, using only 135.22 seconds. Other baseline algorithms 

took more than 2,000 seconds. AGSS and Heuristic have a slight advantage in that they 

start splitting from 17 states as opposed to one, but this is insignificant because it only takes 

less than 100 seconds for MLSSS, MDL, and STACT to split to 17 states. In the 

computation time vs. log-likelihood comparison (Figure 3.5(b)) , AGSS also outperformed 

baseline algorithms in log-likelihood (model fidelity) from the start and maintained the 

advantage through 50 states. Also, by starting from a Markov chain, AGSS and heuristic 

have initial log-likelihood -32,367, while the others start from -73,936. The algorithms 

starting from one node did not achieve the initial log-likelihood of AGSS and heuristic 

even after splitting 49 times. Another observation is that the splitting speed slows (Figure 

 
Figure 3.5. (a) The number of states vs. computation time in seconds; (b) the computation 

time vs. log-likelihood (i.e., log-likelihood); (c) the number of states vs. log-likelihood; (d) 

BIC and log-likelihood change as state splitting using STACT; (e) Heuristic score and log-

likelihood change as state splitting using Heuristic approach; (f) MDL and log-likelihood 

change as state splitting using MDL. Experiments were run on Dutch hospital dataset [40].  
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3.5(b)) and the log-likelihood gains per split diminish (Figure 3.5(c)) as the number of 

states increase. Although log-likelihood kept increasing, model complexity penalties 

behaved differently (Figure 3.5(d)(e)(f)). BIC stayed close to the log-likelihood values, 

indicating a small penalty on the model complexity (Figure 3.5(d)). This small penalty 

leads to large HMMs. The heuristic score starts decreasing when the number of states 

arrives at 27 before beginning to oscillate (Figure 3.5(e)), indicating that further splitting 

could potentially produce a better model. MDL is a positive value and smaller values are 

rewarded. It first decreases, but and then starts climbing after 15 states (Figure 3.5(f)). 

MDL converges faster than STACT and heuristic, meaning that it more heavily penalizes 

model complexity. Compared with baseline methods, AGSS shows its unique boosting 

effect on HMM inference, saving much computational time (Figure 3.5) while providing a 

higher model quality (Table 3-2).  

3.5 Case Study: Trauma Workflow Mining 

AGSS is designed to discover workflow models without any prior information. To evaluate 

the workflow model discovered by AGSS (Figure 3.6 (d)), we compared it to models 

inferred from STACT (Figure 3.6 (c)), from Disco (Figure 3.6 (b), a process mining tool), 

and by medical experts using domain knowledge (Figure 3.6 (a)). The model discovery 

algorithm used in Disco (https://fluxicon.com/disco/) is based on a fuzzy workflow mining 

algorithm [44], rather than an HMM. Comparing the AGSS model to the Disco one shows 

that AGSS can find better workflow models than other process mining algorithms, 

regardless of whether they use HMMs. We tested different process mining algorithms (e.g., 

alpha, heuristic, and genetic miners [45]) and chose Disco as the baseline because it is the 

most widely used in process mining applications. Models discovered from highly-variable 

real-world processes are usually uninterpretable spaghetti-like diagrams. Models were 

simplified using Algorithm 3 before comparisons were made. Differences between the 

models have implications on both medical and model engineering interpretations of the 

underlying process.  

First, we compare general readability. The Disco model (Figure 3.6 (b)) is simple, with 

transitions between nodes with one activity per node. The reverse transition from Rectal-

Back to Palpation-Head can be confusing, because the secondary survey ends after the 

https://fluxicon.com/disco/
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back examination. This reverse transition can be misinterpreted as a start-over of the 

secondary survey, which is not true in practice. The linear structure of the model inferred 

by STACT is easy to follow and appears like a forward-moving workflow. The linearity 

comes from STACT allowing multiple observations in the same state. For example, an 

activity that occurs out of order, either early or late, can be simply represented by allowing 

it to occur at the “wrong” state. In Disco models, as each activity type is uniquely mapped 

to one node, such out-of-order activities are handled by adding new transitions to the 

“wrong” state. In AGSS models, these types of activities are handled differently based on 

their occurrence distribution. If one activity frequently occurs at multiple locations, then 

new states will be split to better describe those occurrences. Infrequent repeated 

 
Figure 3.6. (a) Expert model designed by medical experts. (b) Simplified model discovered 

by Disco (redrawn for clearer view). The number in the node denotes the frequency of 

activity and the number on the edge denotes the frequency of the transition. (c) HMM 

induced by STACT where the transitions were simplified by Algorithm 3 and state 

observations with probability less than 0.1 were filtered. (d) HMM induced by AGSS and 

simplified by Algorithm 3. 

 

 

Start

Palpation-H (277)

Palpation-F (199)

R-Otoscopy-EAR (125)

L-Otoscopy-EAR (120)

Palpation-NE (125)

Palpation-C (164)

Palpation-A (202)

Stability-PE (115)

Log-Roll-BK (129)

C-Spine-BK (141)

T-Spinel-BK (199)

L-Spine-BK (170)

Rectal-BK (95)

79

111

43

90

29

51

101

84

59

148

64

Palpation-RLE (284)
84

Palpation-LLE (291)

Palpation-RUE (228)

38

Palpation-LUE (193)
107

End

41

63

14

175

119

24

28

19

39

15-[Palpation-H(0.70), Palpation-F(0.11)] 0.34

14-[Palpation-H(0.19), Palpation-A(0.16), Palpation-RUE(0.21)] 0.7

5-[Palpation-H(0.18), Palpation-F(0.55), Palpation-EAR(0.17)] 0.5

0.3
0.64

0.14

0.84

3-[R-Otoscopy-Ear(0.15), Palpation-NE(0.31), R-Otoscopy-Ear(0.21) Palpation-C(0.13)] 0.62

10-[Palpation-C(0.37), Palpation-A(0.30), Palpation-LUE(0.14) Palpation-RUE(0.17)] 0.59

0.5

0.36

6-[Palpation-A(0.30), Stability-PE(0.47)] 0.42
0.41

4-[Palpation-RLE(0.40), Palpation-LLE(0.41)] 0.79
0.57

12-[Palpation-LUE(0.23), Palpation-RUE(0.24)] 0.63
0.13

7-[Log-Roll-BK(0.95)]

13-[C-Spine-BK(0.39), T-Spine-BK(0.28), L-Spine-BK(0.23)] 0.56

8-[T-Spine-BK(0.97)]

11-[L-Spine-BK(0.97)]

0.37

0.58

0.43

0.99

9-[Palpation-H(0.11), Rectal-BK(0.59), T-Spine-BK(0.15)] 0.22

1-[Palpation-H(0.16), Palpation-RLE(0.12), Palpation-LLE(0.13), Palpation-LUE(0.10), Palpation-LUE(0.11)] 0.79

Start

End

0.86

0.6

0.21

0.17

Start

1-[Palpation-H]

2-[Palpation-F]

3-[R-Otoscopy-EAR]

5-[L-Otoscopy-EAR]

4-[Palpation-NE]

21-[C-spine-BK]
6-[Palpation-C]

7-[Palpation-A]

8-[Stability-PE]

22-[Palpation-A] 9-[Palpation-RLE]

10-[Palpation-LLE]

23-[Palpation-RLE]

24-[Palpation-RUE]

11-[Palpation-LUE]

19-[Palpation-LUE]

12-[Palpation-RUE]

13-[Log-Roll-BK]

16-[C-Spine-BK]

17-[T-Spinel-BK]

18-[L-Spine-BK]

14-[Rectal-BK]

20-[Palpation-H]

End

0.65

0.56

0.26

0.12

0.22

0.72

0.24

0.41

0.56

0.54

0.18
0.09

0.22

0.57

0.84

0.37

0.13

0.140.12

0.18

0.46

0.1

0.19
0.15

0.46
0.32

0.66

0.74

0.38

0.18

0.15

0.21

0.17

0.11

Palpation-H

Palpation-F

R-Otoscopy-EAR

L-Otoscopy-EAR

Palpation-NE

Palpation-C

Palpation-A

Stability-PE

Palpation-RLE

Palpation-LLE

Palpation-RUE

Palpation-LUE

Log-roll-BK

C-spine-BK

T-spine-BK

L-spine-BK

Rectal-BK

Head Exam Chest Exam Abdomen Exam Extremity Exam Back Exam

(a)



 

 

32 

occurrences would be considered outliers, and would not be granted new states. The 

disadvantage of the STACT model is the difficulty of interpreting multiple activity types 

per state. For example, state #3 in Figure 3.6 (c) had more than four different activities. 

Another limitation is the large possibility of state self-transitions (i.e., transition from a 

state to itself), making the model implicit. AGSS explicitly describes the relationship 

between different activities. It also addresses the multiple occurrence problem not 

considered in Disco (i.e. Palpation-H was described using two different states, #1 and #20 

(Figure 3.6 (d))).  

Second, we discover more insights after comparing data-derived models to the expert 

model. Aside from the reverse transitions (from Rectal-BK to Palpation-H), the Disco 

model follows the expert model well. This finding, however, does not mean the Disco 

model is better than the other two data-driven models. Subjectively created by humans, the 

expert model may not reflect practice. For example, both the expert model and Disco failed 

  

 
Figure 3.7. Trace alignment and distribution of activity “Palpation-H” and “C-Spine-BK”. 

In the alignment matrix, each row represents a different trace and each color represents an 

activity type. In the distribution plot (under the alignment), x-axis represents the column 

number (can be treated as “logic time”) of the alignment matrix and y-axis represents the 

probability. The trace alignment result is generated using our process visualization tool, 

VIT-PLA [2]. 
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to capture the multiple occurrences of Palpation-H and C-Spine-BK (Figure 3.7). Unlike the 

others, STACT and AGSS captured multiple occurrences. For example, Palpation-H can 

be observed in states #1, #5, #9, #14, and #15 in the STACT model, as well as in states #1 

and #20 of the AGSS model. While both STACT and AGSS were able to capture the 

multiple occurrences of activities, they do so very differently. AGSS balances the 

significance of activities’ multiple occurrences before assigning a new node for them, while 

the STACT model simply creates new nodes for all multiple occurrences without 

considering complexity-vs.-accuracy tradeoffs. This explains why we can see a large 

number of activity recurrences in the STACT model (Figure 3.6 (c)). In comparison, AGSS 

added only six states (#19-#24 in Figure 3.6 (d)). As an example, state #20 (Palpation-H) 

is split from state #1, and state #21 (C-Spine-BK) is split from #16. The splitting is 

conformant to the distribution of these two activities (Figure 3.7), as both Palpation-H and 

C-Spine-BK occur at different times in the secondary survey. State #1 corresponds to the 

first cohort of Palpation-H while state #20 corresponds to the one close to the end. State 

#16 maps to the main cohort (between time 150 to 200) of C-Spine-BK and state #21 maps 

to the secondary cohort (between time 0 to 100). A small cohort of C-Spine-BK occurs at 

the end. It is however so small that AGSS did not split it when taking model complexity 

into account. This way, AGSS identified several discrepancies between practice and the 

expert model (Table 3-3). These discrepancies highlighted differences between what was 

being taught and what is being practiced during trauma resuscitations. These deviations 

from the expert model may be due to errors committed by the medical team, or may be 

necessary based on clinical circumstance. AGSS can determine whether deviations are part 

of a pattern of behaviors or isolated instances. This knowledge helps determine if these 

differences are acceptable, or if an enhancement of the expert model is needed.  
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Table 3-3. Discrepancies between expert model and practical procedures. Medical 

explanation and model enhancement.  
Discrepancies Medical Explanation Model Enhancement 

C-Spine-Back not only occurs 

during the back examination but 

also may occur during the head 

examination. 

To determine whether the patient needs cervical 

spine (c-spine) support, it may be easier to 

palpate the c-spine and the neck simultaneously. 

From a clinical perspective, it is acceptable to 

perform c-spine assessment at either point in the 

secondary survey. 

C-Spine-BK should be 

completed during head exam 

or during back exam. If it 

occurs at head exam, it is not 

mandatory to repeat again at 

back exam.  

Palpation-Head not only occurs 

during the head examination but 

may also occur during the back 

examination.  

The medical team logrolls the patient to perform 

the back exam without stressing the spinal 

column. To perform a complete head exam, 

medical team members often visualize or 

palpate the occipital region or back of the head 

during the logroll, so as to reduce head 

manipulation. 

Palpation–Head can be 

performed during the back 

exam. 

Palpation-Abdomen, Palpation-

Right-Lower-Extremities, 

Palpation-Left-Upper-

Extremities, Palpation-Right-

Upper-Extremities were found 

to repeat in the process.  

To more completely assess the patient, it is 

acceptable to repeat activities; for example, 

repeated palpation of bilateral extremities may 

occur to assess potential swelling or deformities. 

The model should be repaired 

to allow repetitions of 

activities within a particular 

body region. 
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Chapter 4  

An Approach to Automatic Process Deviation Detection in 

a Time-Critical Clinical Process 

This chapter on Automatic Process Deviation Detection is based on our paper [11]. Prior 

research has shown that minor errors and deviations from recommended protocols in 

complex medical processes can accumulate to increase the likelihood that a major error 

will go uncorrected and lead to an adverse outcome. Real-time automatic and accurate 

detection of process deviations may help medical teams better prevent or mitigate the effect 

of errors and improve patient outcomes. Our goal was to develop an approach for automatic 

detection of errors and process deviations in trauma resuscitation. Using video review, we 

coded activity traces of 95 pediatric trauma resuscitations collected in a Level 1 trauma 

center over two years (2014-2016). Twenty-four randomly selected activity traces were 

compared with a knowledge-driven model of trauma resuscitation workflow using a phase-

based conformance checking algorithm for detecting true and false deviations (alarms). An 

analysis of false alarms identified three types of causes: (1) model gaps or discrepancies 

between the model (“work as imagined”) and actual practice (“work as done”), (2) errors 

in activity traces coding, and (3) algorithm limitations. We repaired the system to remove 

model gaps, reduce coding errors, and address algorithm limitations. The repaired system 

was first evaluated with another 20 traces and then applied to the entire dataset of 95 traces. 

During the training, we detected 573 process deviations in 24 activity traces that include 

1,099 activities. Among these deviations, only 27% represented true deviations and the 

remaining 73% were false alarms. This initial deviation detection accuracy was only 

66.6%, with a 𝐹𝐹1-score of 0.42. Detection accuracy of the repaired system increased to 

95.2% (0.85 𝐹𝐹1-score) during system validation and to 98.5% (0.96 𝐹𝐹1-score) during 

testing. After deploying the repaired deviation detection system to all 95 activity traces, we 

detected 1,060 process deviations in 5,659 activities (11.2 deviations per resuscitation). 

Among the 5,659 activities in these traces, 4,893 fit the repaired knowledge-driven 

workflow model, 294 were errors of omission, 538 were errors of commission, and 228 
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were scheduling errors. Our approach to automatic deviation detection provides a method 

for identifying repeated, omitted and out-of-sequence activities that can be included in the 

design of decision support systems for complex medical processes. Our findings show the 

importance of assessing detected deviations for repairing a knowledge-driven model that 

best represents “work as done.” 

4.1 Introduction 

Trauma resuscitation—the initial evaluation and treatment of injured patients in the 

emergency department—is a dynamic medical setting in which multidisciplinary teams 

often perform life-saving interventions under time pressure 

. Because injured patients can rapidly deteriorate, the resuscitation process requires 

efficiency and accuracy. Although a standardized protocol (Advanced Trauma Life 

Support [ATLS] [16][46]) has been shown to improve care of the injured patient, additional 

measures have been used to enhance team performance during resuscitation, including 

training with patient simulators and observation and feedback with the aid of video 

recording. Despite a defined protocol and team training, errors in evaluation and treatment 

persist and can contribute to adverse outcomes [46][47][48].  

Errors during trauma resuscitation can be classified as errors of commission (unneeded 

evaluation or treatment steps), errors of omission (omission of necessary steps), scheduling 

errors (steps out of sequence), and procedure errors (performance of less effective steps), 

with errors of omission having the greatest impact on outcome [48]. Although some 

deviations can be identified as errors directly contributing to adverse outcome, evidence 

from trauma resuscitation and other high-risk medical domains have shown that even minor 

deviations from recommended protocol can accumulate to increase the likelihood that a 

major error will go uncorrected and lead to an adverse outcome [49]. Although results of 

this previous work have shown an association between deviations and outcomes in high-

risk clinical settings, identification of deviations within these processes has relied on 

approaches not amenable to automatic and real-time analysis, including retrospective chart 

review and video analysis. The availability of approaches for automatic detection of 

process deviations will enable large-scale analyses of complex workflows, making it a 

critical step for the development of clinical decision support systems that depend on real-
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time data. Previous work has used this approach to discover how healthcare professionals 

collaborate [50] or to assess the relationships between process deviations and patient 

outcomes [51], but have not to identify individual deviations within the process. 

In this chapter, we present an approach for automatic detection of errors and process 

deviations in trauma resuscitation. Building on previous process mining techniques [18], 

we developed an iterative, five-step approach and system for detecting deviations (Figure 

4.1)  that includes: (1) design of a knowledge-driven workflow model of the process and 

collection and coding of activity traces reflecting these model components to produce the 

ground truth data; (2) development of a deviation detection algorithm that uses the model 

and activity traces as input and generates process deviations and their locations in the 

process as outputs; (3) manual evaluation of the detected deviations and their classification 

as either acceptable process deviations (false alarms) or harmful deviations (true alarms); 

(4) repair of the system (i.e., model, algorithm, and coding of activity traces) using the 

evaluation results; and (5) validation the repaired system. The third and fourth steps are 

 
Figure 4.1. Knowledge-and-data driven process deviation discovery and analysis 

framework. 
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needed to reduce the number of false alarms by resolving any discrepancies between the 

workflow model (“work as imagined”) and actual practice (“work as done”). The fifth step 

is used to quantify discrepancies. Because evaluating and repairing the deviation detection 

system is time-intensive and laborious, we set a conservative threshold of an error rate of 

less than 5% for terminating the iterative evaluation and repair process. Similar to many 

AI-support models and systems (e.g., spam email filters, credit card fraud detection 

systems, and product recommender systems), the initial learning and tuning of the models 

require human intervention. Model-or-system developers need to pre-process the data, 

label the data, select or build machine learning models and tune the parameters. After the 

systems are built, these AI-support systems can run automatically on the new data. Our 

system was similarly built with human intervention, but can now automatically detect 

process deviations. 

Our work makes two contributions to the process mining and modeling literature, 

namely an approach: (1) for automatic process deviation detection in complex medical 

processes and its implementation in the trauma resuscitation process; (2) to assist 

knowledge-based process modeling that quantifies and reduces the mismatches between 

“work as done” (actual practice) and “work as imagined” (model). 

4.2 Related Work 

Deviation detection methods used in process mining can be classified as data- or 

knowledge-driven. Data-driven methods rely on process models discovered from the data, 

while knowledge-driven methods rely on process models developed by domain experts. 

Data-driven detection methods start by discovering an “average workflow” representation, 

such as an average activity trace [52], a data-driven model [53], or frequently occurring 

patterns [30][54][55]. Traces of individual activities are then compared to the average 

workflow to determine the number of deviations from average. The average workflow, 

however, is strictly sequential and does not account for concurrent activities and repetitive 

behaviors. Knowledge-driven methods identify deviations by comparing a set of activities 

to a workflow model designed by domain experts [41][56][57] or to rules specified by 

experts [22][58][59]. Rule-based models, however, are designed for loosely structured 

processes, limiting their applicability for structured clinical processes. Specifying all 
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possible constraints for rule-based processes requires more effort than creating a 

knowledge-driven workflow model [58]. 

Current approaches for detecting process deviations in trauma resuscitation rely on 

manual review [48][60][61]. An observational study of 100 adult trauma resuscitations 

using video review found an average of 12 errors per resuscitation, with none being error-

free [48]. Errors of omission were twice as common as errors of commission and had a 

greater potential impact on outcome. Most errors involved the failure to record or observe 

information needed for decision-making—an average of seven missing items per 

resuscitation. Another study of 90 pediatric trauma resuscitations also used video review, 

finding an average of 5.9 deviations from the ATLS protocol per resuscitation [60]. A more 

recent video review of 39 resuscitations [61] found a total of 337 errors (8.6 ± 4.7 errors 

per resuscitation), 135 of which were errors of omissions, 106 were errors of commission 

and 96 were errors of selection. Although effective in identifying and analyzing process 

errors, manual review using video recordings is labor intensive, subjective, and difficult to 

replicate. 

Automatic process deviation detection has been used in medical and non-medical 

domains. Bouarfa and Dankelman [52] used an approach of finding the mismatches 

between an activity trace and a workflow model derived from 26 activity traces to detect 

process deviations during laparoscopic cholecystectomy. Compared to trauma 

resuscitation, which includes more than 120 activity types, the coded activities associated 

with laparoscopic cholecystectomy included only eight activity types. In addition, only 26 

activity traces were used to derive an “average workflow,” potentially resulting in a biased 

representation of the process. Similarly, Lu et al. [54] detected deviations in a business 

process by identifying frequently common and uncommon behaviors from a model derived 

from actual behavior traces. In contrast, Christov et al. [55] detected process deviations 

during chemotherapy and blood transfusion by first creating knowledge-driven workflow 

models for these processes. Medical experts developed the chemotherapy workflow model, 

and the blood transfusion workflow model was developed using a standard blood 

transfusion checklist. Although this study used knowledge-driven workflow models, it only 

simulated the process error detection by using synthetic activity traces and inserting 

artificial process errors. Swinnen et al. [57] detected process deviations by first discovering 
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process rules using association rule mining. A domain expert then reviewed these rules for 

accuracy. The authors included more than 250 rules, but their approach was evaluated using 

only seven activity types, limiting the application of this approach. 

Data-driven deviation detection approaches use historical data to produce workflow 

models. Although these models may better represent the observed data, the process of 

modeling is affected by the amount and quality of data. The training data may also include 

erroneous activities, which cannot be recognized by the algorithm alone. In contrast, 

knowledge-driven methods are not affected by the amount or quality of data, but instead 

represent the order and types of activities that need to be performed. Although domain 

experts can build simple workflow models, creating detailed models for complex medical 

processes like trauma resuscitation can be challenging. In addition, previous research on 

process deviation detection has focused on detecting deviations but has not addressed the 

impact of those deviations. Our approach combines both knowledge- and data-driven 

modeling, allowing us to build a more accurate model of a complex medical process by 

reconciling the differences in models created by medical experts and extracted from data. 

4.3 Terms and Definitions 

A process is defined as a series of actions or activities to achieve a goal. The process 

data is stored in an activity log 𝑳𝑳 = {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} where each element represents one process 

case. A process case 𝑐𝑐𝑖𝑖 = {𝑖𝑖𝑖𝑖𝑖𝑖,𝑻𝑻𝑖𝑖} is indexed with a unique case ID and consists of the 

activity trace 𝑻𝑻𝑖𝑖. An activity trace is represented as 𝑻𝑻𝑖𝑖 = [𝑎𝑎1
(𝑖𝑖), … ,𝑎𝑎𝑘𝑘

(𝑖𝑖)]𝑇𝑇, where 𝑎𝑎𝑗𝑗
(𝑖𝑖) is the 

j-th activity (i.e., a well-defined step in the process) in the activity trace 𝑻𝑻𝑖𝑖  sorted by 

activity start time, and k is the trace length (i.e., number of performed activities). In our 

case, trauma resuscitation is treated as a process. A series of activities (e.g., airway 

assessment, chest auscultation) are performed by the trauma team to stabilize and treat 

injured patients. A process case corresponds to the record for each trauma resuscitation. 

A workflow model 𝝀𝝀 represents a set of phases, steps, and activities performed during 

a process and their dependencies. A process is defined as a series of activities to achieve a 

particular goal, and a phase is defined as a sub-process that consists of steps needed to 

achieve a sub-goal of the process (e.g., airway management in the primary survey). A 
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workflow model can be treated as a combination of several phases. Each phase can be 

considered as a sub-model within the complete model. Each phase can also have sub-

phases (“steps”) of more granular goals. The workflow model can therefore be abstracted 

as a hierarchical model 𝝀𝝀𝐻𝐻. A phase (or sub-model) 𝝀𝝀𝑖𝑖
(ℓ,𝑚𝑚) ∈ 𝝀𝝀𝐻𝐻 indicates the i-th model at 

the ℓ-th level. 𝑚𝑚 indicates the index of the parent model at the (ℓ–1)-th level and is used to 

represent the connection between the parent model (node) and children models. 𝑚𝑚 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

if the parent model does not exist. A data dictionary 𝒟𝒟 was created to map each activity 

type to their respective process phase.  

A fitting activity (i.e., an activity performed in conformance with the given workflow 

model) is indicated as f. A process deviation d is a performed activity that is not conforming 

to the model λ and can be classified as either an error of omission, error of commission or 

scheduling error. An error of omission do is a skipped-but-necessary activity (e.g., failure 

to assess pupils). An error of commission dc is an unnecessary (e.g., intubation without 

indication) or repeated activity (e.g., several abdominal assessments). An error of 

scheduling is an activity performed either before or after its predetermined order (e.g., 

confirming that the patient’s airway is secured before assessing mental status). A 

scheduling error ds = {doo, doℓ} consists of: (1) an out-of-sequence activity doo that violates 

the process procedural order, and (2) an original-location marker doℓ that indicates the 

correct location in the activity trace where doo should have occurred. 

We used three different fitness metrics to quantify the degree of agreement between the 

target process element (e.g., an activity, process phase or the entire process) and the given 

model, with values ranging from 0 to 1. These metrics were used in our analyses of process 

deviations and for evaluating our deviation detection approach. Activity fitness 𝐹𝐹𝑎𝑎measures 

the degree to which a particular activity type a deviates from the given model (Eq.4.1). 

Phase fitness Fp measures the percentage of non-conforming activities within a process 

(sub-)phase (Eq.4.1). Model fitness Fλ describes how well a model λ represents the 

observed activity traces (Eq.4.1). The generic fitness measure is defined as:  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  1 −  
|𝑺𝑺𝑑𝑑|

|𝑺𝑺𝑑𝑑| + �𝑺𝑺𝑓𝑓�
=

�𝑺𝑺𝑓𝑓�
|𝑺𝑺𝑑𝑑| + �𝑺𝑺𝑓𝑓�

 (4.1) 
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where S is the set of target process elements (e.g., in activity fitness 𝐹𝐹𝑎𝑎, S is the set of fitting 

and deviant instances of activity type a), 𝑺𝑺𝑑𝑑 = {𝑥𝑥|𝑥𝑥 ∈ 𝑺𝑺 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) = 𝑑𝑑} is the set of 

deviations and 𝑺𝑺𝑓𝑓 = {𝑥𝑥|𝑥𝑥 ∈ 𝑺𝑺 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) = 𝑓𝑓} is the set of fitting activities. 

4.4 Deviation Detection Approach and System Description 

To automatically identify deviations within the trauma resuscitation process, we first 

developed a representation of a typical process execution (Figure 4.1). We tested extracting 

workflow models automatically using workflow mining algorithms, but the discovered 

models are “spaghetti-like” and difficult to interpret [20]. For this reason, medical experts 

on our research team developed an initial trauma resuscitation workflow model. We then 

collected video recordings of 95 trauma resuscitations at a level 1 pediatric trauma center 

at the Children’s National Medical Center (CNMC) and derived activity traces for each. 

We next applied an algorithm to evaluate the conformance between the workflow model 

and the resuscitation activity traces. Because the workflow model was incomplete, a 

fraction of the detected deviations represented false alarms. We then iteratively repaired 

the initial model using resuscitation cases that were manually annotated with true 

deviations. Using this approach, we developed an automatic deviation detection system 

that can be applied to new trauma resuscitation cases. This study was approved by the 

Institutional Review Board at the Children’s National Medical Center.  

 
Figure 4.2. Hierarchical model of the trauma resuscitation workflow. 
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4.4.1 Knowledge-Driven Model of the Trauma Resuscitation Workflow 

We limited the scope of our model to assessment activities because diagnosis and treatment 

during trauma resuscitation depend on the information that has been gathered through these 

assessments. We built our model to describe a typical sequence of activities that constitute 

the complete assessment during trauma resuscitation. The model was iteratively revised 

until the medical experts reached a consensus about which activities to include and in what 

order. 

We built our workflow model λH as a three-level hierarchical structure based on medical 

knowledge (Figure 4.2). The top level (Lvl 1) includes the root node, a single model 𝝀𝝀1
(1,1), 

which is composed of two key phases of the resuscitation process: primary survey 𝝀𝝀1
(2,1) 

and secondary survey 𝝀𝝀2
(2,2) at the second level (Lvl 2). Sub-phases (steps) at the bottom 

level (Lvl 3) compose the process phases.  The primary survey consists of airway 𝝀𝝀1
(3,1) 

(assessing airway patency), breathing 𝝀𝝀2
(3,1)  (assessing breath sounds and adequate 

oxygenation), circulation 𝝀𝝀3
(3,1) (assessing extremity pulses and managing blood loss), and 

disability 𝝀𝝀4
(3,1) (assessing neurological status). The secondary survey consists of a multi-

step, head-to-toe physical examination of the patient’s body (�𝝀𝝀5
(3,2), … ,𝝀𝝀10

(3,2)�,). The 

bottom-level steps in Lvl 3 are the most granular components and include assessment 

activities that provide diagnostic information and control activities that represent 

conditional treatments based on the assessment outcome. For detecting deviations, we 

omitted control activities from the model for two reasons. First, these activities are 

conditional, making their occurrences often rare and challenging to study. Second, 

detecting deviations associated with control activities requires considering findings from 

the assessment activities and other context attributes (e.g., patient demographics or event 

attributes), which is beyond the scope of this chapter. Despite this limitation, a model based 

on assessment activities is sufficient for detecting deviations associated with adverse 

outcomes because an incomplete assessment increases the likelihood of missed injuries 

[62] or inappropriate treatments [48]. For example, an omitted or incomplete pupil 

assessment could delay the recognition and management of a traumatic brain injury. 
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Omitting control activities has allowed us to build a model of the trauma resuscitation 

workflow that applies to a range of patient attributes, regardless of treatments. 

We included 42 assessment activity types out of 76 that were identified and coded using 

video review (Figure 4.3). The omitted 34 activity types were either optional for some 

patients or did not require any particular order for performance. For example, we excluded 

five vital sign measurement activity types because these occur frequently and without a 

specific order in the process. Three of these five activities (placement of the cardiac leads, 

pulse oximeter, and blood pressure cuff) are often missing from the activity traces because 

of occurrence before patient arrival. When building a workflow model for deviation 

detection, the goal of capturing potentially harmful deviations needs to be balanced with 

accommodating clinically permissible deviations. Within each bottom-level step (Lvl 3 in 

Figure 4.2), bedside physicians can perform several assessment activity types. For 

example, three assessment activities can occur during the breathing assessment: chest 

visual inspection, airway visual inspection, and chest auscultation. Among these activities, 

chest auscultation provides the most complete assessment of ventilation (breathing). For 

this reason, we classified chest auscultation as a required activity and considered the other 

two optional. We included only required activities in the model and omitted optional 

assessment activities to avoid false-detection. Finally, our model considered only the 

bedside physician role because this role is responsible for performing most assessment 

activities. 

The selected 42 activity types were ordered relative to each another based on the ATLS 

guidelines. Assessment activities in the bottom-level (Lvl 3) process phases of the primary 

survey were represented in parallel, meaning that their order is flexible. The order of sub-

phases (steps) for the secondary survey is defined less rigorously by the ATLS guidelines. 

For this reason, we organized these activities within the model based on distinct body 

regions that reflect a typical head-to-toe physical exam. The resulting workflow model of 

the trauma resuscitation process allowed us to detect potentially high-risk deviations that 

could negatively impact patient outcomes. 
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4.4.2 Trauma Resuscitation Activity Traces 

We collected resuscitation activity traces over two time periods, August—December 2014 

and April—October 2016. We performed selective sampling by including only the cases 

with patients who were admitted to the hospital following the resuscitation, when errors 

and error management were more likely to have an impact on patient outcome. During 

these two data collection periods, 289 trauma resuscitations were followed by hospital 

admission. Of these, 35 cases did not have a patient or caregiver consent and 159 cases 

were unavailable for video review because of technical issues or because members of our 

research team participated in the resuscitation. Our final dataset included 95 cases, of which 

seven were triaged as highest acuity “trauma stat attending” level cases, 46 cases were 

triaged as standard acuity “trauma stat” cases, and 42 cases were transfers from another 

hospital. 
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Our activity traces were obtained by manual video review and manual coding. Although 

our research group is developing an automatic activity capture approach as part of a 

different project, we and others have not yet implemented a strategy that is accurate enough 

for obtaining activity logs required for this workflow analysis. Each activity trace contained 

a set of activities performed during the resuscitation, the start and end times for each 

activity, the role of the individual performing the activity, and a set of patient attributes. 

Medical experts on our research team first created a data dictionary that defines over 260 

resuscitation activities and their associations with each medical phase. For example, the 

activity “chest auscultation” is labeled as “Chest auscultation-BA,” where BA represents 

the process sub-phase (step) “breathing assessment.” The data dictionary also defines the 

start and end time for each activity. For example, the start time for “chest auscultation” is 

defined as the time when a stethoscope is placed on the patient’s chest to listen for breath 

sounds and the end time as the time when a stethoscope is removed from chest. Using this 

data dictionary, coders viewed videos and tracked team members throughout the 

resuscitation, documenting activity performance and attributes relevant to their 

performance (e.g., activity completion vs. incompletion or values obtained from the 

activity). Patient attributes were obtained from the hospital’s trauma registry or through 

medical chart review. The attributes included patient age, gender, triage level, mechanism 

of injury, Injury Severity Score (ISS), Glasgow Coma Score (GCS), and whether or not the 

patient was intubated. For the purposes of detecting process deviations, we excluded 

patient attributes from our analysis and used only activity type, team role performing the 

activity, and activity start and end times. 

The final activity log contained 10,851 activities of 132 types. Among these activities, 

5,659 were performed for assessment of the patient. These activities were performed by 

bedside physicians, bedside nurses (left nurse, right nurse and charge nurse), or other team 

roles (e.g., surgical coordinator, respiratory therapist). A junior resident or nurse 

practitioner usually take the role of bedside physician, depending on provider availability. 

When neither provider is present, this role may be taken by another team member, 

including the surgical fellow or emergency medicine resident.  
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4.4.3 Conformance Checking Algorithm 

The conformance checking algorithm [24] that we used is implemented in ProM [63] and 

works by comparing the workflow model represented by Petri nets [21] with an activity 

trace of the same workflow. The outputs of the algorithm are classified into either fitting 

activities or process deviations of two types, errors of omission and errors of commission. 

The standard conformance algorithm has two limitations. First, it is computationally 

demanding [24]. When we applied the algorithm to our dataset using a typical desktop 

computer configuration (Dell, Windows 10 OS, Intel Xeon 3.7GHz CPU, 48GB RAM), 

processing exceeded available memory. Second, the standard conformance checking 

algorithm detects only two types of process deviations—errors of commission and errors 

of omission. Some activities, however, may be detected as omitted even when they occur 

in the process but are out of sequence (i.e., errors of scheduling). These activities are then 

detected by the algorithm as both a commission error (at the location where the activity 

occurs) and an omission error (at the location where the activity should have occurred). 

Our approach to deviation detection includes two novel improvements to the standard 

algorithm that address these two limitations. First, to reduce computational complexity, we 

developed a phase-based conformance checking algorithm which adopts a divide-and-

conquer strategy, in which a problem is split into manageable sub-problems. Our algorithm 

(Alg.3.1) first decomposes long activity traces into computationally-manageable sub-

Algorithm 3.1. Phase-Based Conformance Checking (PCC) (illustrated in Figure 4) 
Input: T, λH, 𝒟𝒟 
Output: 𝑻𝑻𝑑𝑑   
Step 1. Annotate activities in T with associated process-phase labels: 𝑻𝑻𝑝𝑝 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑻𝑻,𝒟𝒟); 

Step 2. Align 𝑻𝑻𝑝𝑝 with process phases model (e.g., 𝝀𝝀1
(1,1)) to find the best split for sub-traces. 

Let 𝛷𝛷 = {𝒕𝒕1, 𝒕𝒕2, … , 𝒕𝒕𝑟𝑟} denote the set of split sub-traces; 
Step 3. for each 𝒕𝒕𝑖𝑖 in 𝛷𝛷: 

Step 4.  𝒕𝒕𝑖𝑖
𝑑𝑑 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒕𝒕𝑖𝑖 ,𝝀𝝀𝑖𝑖

(𝑥𝑥,𝑦𝑦)), where 𝝀𝝀𝑖𝑖
(𝑥𝑥,𝑦𝑦) is the sub-phase model associated 

with sub-trace 𝒕𝒕𝑖𝑖; 
Step 5.  for each activity 𝑎𝑎 in 𝒕𝒕𝑖𝑖𝑑𝑑: 
Step 6.   𝑻𝑻𝑑𝑑 = 𝑻𝑻𝑑𝑑 ∪ {𝑎𝑎}; 
Step 7. 𝑻𝑻𝑑𝑑 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑻𝑻𝑑𝑑);          /* Alg.3.2 */ 
Step 8. return 𝑻𝑻𝑑𝑑; 
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traces. Each sub-trace is associated with a process phase. Deviations are first discovered 

locally in each sub-phase (step), and then reevaluated and combined globally. The 

algorithm takes the activity trace T, hierarchical knowledge-driven model λH, and activity-

phase dictionary 𝒟𝒟 as inputs and then proceeds with a three-step computation (Alg.3.1, 

Figure 4.5) : (1) decomposing an activity trace into sub-traces using a top-down approach 

(Steps 1, 2); (2) using the standard algorithm, detecting deviations in each sub-trace 

compared to the corresponding sub-workflow model (Steps 3, 4); and, (3) combining the 

results using a bottom-up approach and detecting errors of scheduling (Steps 5-8). The 

output is a new trace Td that contains the original activities labeled as either fitting {𝑓𝑓𝑖𝑖} or 

non-conformant {𝑑𝑑𝑖𝑖𝑐𝑐, 𝑑𝑑𝑖𝑖𝑜𝑜, 𝑑𝑑𝑖𝑖𝑠𝑠}.  

Figure 4.4. Visual representation of the phase-based conformance checking algorithm 

(Alg. 3.1). The steps correspond to those in Alg. 3.1. 
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To address the second limitation, we designed a post-processing algorithm (Alg.3.2) to 

detect scheduling errors among the errors classified as omissions and commissions. This 

algorithm detects errors of scheduling by searching for an activity omission a at the correct 

location relative to the workflow model and a commission of a at the wrong location.  

4.4.4 Workflow Model Probing, Repair and Evaluation 

To assess the extent to which this initial model reflected actual practice, we performed 

model probing, manually marking any mismatches between the model and what was 

observed in practice (i.e., activity traces) as deviations. Our goal was to develop a system 

that would accurately identify true process errors (true alarms) while reducing the number 

of false alarms and misses (i.e., true process errors identified as fitting activities). To our 

knowledge, automated approaches to identifying true process errors from false alarms do 

not exist. As a basis for this assessment and repair of our initial model, we created a ground 

truth dataset by manually coding process deviations in 44 resuscitation cases (out of 95 

total used in this study).  

We divided the 44 cases into three groups: (1) 24 cases (25%) were used as probing 

(training) traces to first identify true process deviations and then compare how many were 

Algorithm 3.2.  Detection of Scheduling Deviations from Errors of Commission and Omission 
Input: 𝑻𝑻𝑑𝑑  /* Output trace from step 6 in Alg.3.1 labeled with only commissions 𝑑𝑑𝑐𝑐 and omissions 
𝑑𝑑𝑜𝑜 */ 
Output:  𝑻𝑻𝑑𝑑 /* Trace T labeled with commissions 𝑑𝑑𝑐𝑐, omissions 𝑑𝑑𝑜𝑜 and scheduling deviations 𝑑𝑑𝑠𝑠 */ 
Step 1. Let deviation type set t={𝑑𝑑𝑐𝑐,𝑑𝑑𝑜𝑜} 
Step 2. for each activity ai ∈ Td : 
Step 3.  if ai.deviationType ∈ t :                                /* if ai is commission or omission */ 
Step 4.   t.remove(ai.deviationType);                     /* remove the ai’s deviation type from set t */ 
Step 5.   for each aj ∈ Td    s.t. i+1 ≤ j ≤ |Td| :         /* check the following activities */ 
Step 6.    if aj.deviationType ∈ t && aj.activityType.equals(ai.activityType) : 
Step 7.     if ai.deviationType.equals(𝑑𝑑𝑐𝑐) :    /* if ai’s deviation is commission */ 
Step 8.      ai.deviationType = 𝑑𝑑𝑜𝑜𝑜𝑜;          /* assign ai out-of-sequence marker*/ 
Step 9.      aj.deviationType = 𝑑𝑑𝑜𝑜𝑜𝑜;           /* assign aj original-location marker*/ 
Step10.     else                                               /* if ai’s deviation is omission */ 
Step11.      ai.deviationType = 𝑑𝑑𝑜𝑜𝑜𝑜; 
Step12.      aj.deviationType = 𝑑𝑑𝑜𝑜𝑜𝑜; 
Step13.     t.add(ai.deviationType);               /* add ai’s deviation type back to set t */ 
Step14. return 𝑻𝑻𝑑𝑑; 

 



 

 

51 

successfully identified to inform system repairs; (2) 10 cases (11%) were used for 

validating the repaired system and determining any further repairs; and (3) 10 cases (11%) 

were used as testing traces to measure the performance of our deviation detection system. 

We selected 24 probing traces and 10 validation traces out of 95 total cases based on 

chronological order. To avoid sampling bias in selecting 10 testing traces, we first 

calculated the similarity between the remaining 61 cases using the edit (Levenshtein) 

distance [38]. We then clustered these 61 traces using a hierarchical clustering algorithm 

and Ward’s method as the criterion [64]. The optimal number of clusters was two, as found 

by both the Silhouette score and Calinski-Harabasz index [65]. Finally, we performed 

random sampling from these two clusters, with the number of cases from each cluster being 

proportional to cluster size (i.e., number of traces in the cluster). We reviewed the recorded 

videos of 44 cases and manually annotated any process deviations perceived as potentially 

having a direct or indirect adverse effect on patient outcomes. We then compared these true 

process deviations to those detected by the algorithm during model probing and found that 

the initial workflow model did not adequately represent the resuscitation workflow. This 

result highlighted the notion that “work as imagined” is often different from “work as 

done” [66]. All of the discrepancies from the previous chapter (Chapter 3) were also 

captured by the new method (Chapter 4). More discrepancies were able to be discovered. 

The reason is that in chapter 3, the discrepancies were extracted manually by comparing 

the data-driven workflow model to the expert model. The data-driven workflow model 

needs to be simplified so that people can understand. Some details were not included in the 

simplified model. On the other hand, the new method (Chapter 4) can label and highlight 

all the activities that deviate from the expert model. By checking the commonly deviant 

activities and their context, we are able to uncover more insights and discrepancies between 

work as imagined and work as done. 

Most deviations detected by the algorithm were false alarms with an adverse effect on 

patient outcomes being unlikely. We classified these false alarms and misses into three 

categories based on their causes: gaps in the model, errors in coding of activity traces, and 

algorithm limitations. After identifying these causes, we determined all possible repairs for 

the initial model and categorized each as “repairable in the model” or “irreparable in the 

model.” We addressed the repairable model gaps by manually updating the model (e.g., 
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allowing multiple performances of activity a). To address irreparable model gaps, we 

modified our coding strategies described in our data dictionary or the algorithm for 

deviation detection (e.g., added post-processing steps, as described in Section 4.4.3). 

4.5 Results: Deviation Detection and Analysis of Deviations  

We first performed deviation detection in trauma resuscitation workflow using our system 

before any repairs were made to the initial workflow model, conformance checking 

algorithm, and coding strategies. We then repeated the deviation detection and analysis 

process after implementing the model, algorithm and coding improvements to evaluate the 

system.  

4.5.1 Deviation Detection and Analysis Before System Repair 

4.5.1.1 Initial Model Probing 

We probed the initial workflow model by applying a standard conformance checking 

algorithm to 24 probing traces with a total 1,099 activities of 42 types, discovering 573 

Table 4-1. Deviations from the initial, knowledge-driven workflow model. Only 

activities with activity fitness scores Fa < 0.5 are listed 

Activity Sub-phase Fitting Omission Commission Scheduling Fitness  

Log Roll-BK Back 1 23 0 0 0.04 

L Visual inspection-Eye Head & Face 4 20 1 0 0.16 

R Visual inspection- Eye Head & Face 5 19 0 0 0.21 

L Visual inspection-Ear Head & Face 8 14 1 2 0.32 

L Otoscopy-Ear Head & Face 8 13 0 3 0.33 

Palpation-Neck Neck 9 5 10 2 0.35 

Visual Inspection-Neck Neck 10 3 8 4 0.40 

Visual Inspection-LLE UE & LE 23 1 27 0 0.45 

Visual Inspection-G Abdomen 13 2 4 9 0.46 

Palpation-Head Head & Face 22 2 22 0 0.48 

C-spine-Back Back 15 4 7 5 0.48 

Visual Inspection-Chest Chest 21 0 19 3 0.49 
* Abbreviations: “G: genital”, “L: left”, “LLE: left lower extremity”, “R: right”, “UE & LE: upper extremities and lower 

extremities”. 
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deviations, on average 23.9 deviations per case. Experts observed that 73% (n=418) of 

these deviations were false alarms, with only 27% (155) being true alarms. Among these 

false alarms, 78.5% (n=328) represented gaps in the model (e.g., acceptable repetition of 

visual chest inspection), 13.9% (n=58) were errors in the manual coding of activity traces 

(e.g., visual inspection of the patient’s back was performed but not coded), and 7.7% 

(n=32) were due to algorithm limitations (e.g., algorithm could not clearly determine the 

correct sequence of performance). In addition, the system missed 13 true process 

deviations, including two model gaps, four coding errors, and seven algorithm limitations. 

Deviation detection accuracy was only 66.6% with 0.42 𝐹𝐹1-score (precision 0.27 and recall 

0.92). This high recall and low precision results showed that the initial deviation detection 

system uncovered most process deviations (i.e., few misses) but also incorrectly labeled 

many activities as deviations (i.e., many false alarms).  

The initial model probing showed that process deviations accounted for about half of 

the occurrences of each activity (Figure 4.3). The overall model fitness (Fλ) of 24 probing 

traces was 0.56. This low score showed that 44% of the activities deviated from the model. 

Errors of commission were more frequent than errors of omission and scheduling, 

especially during the Extremities assessment phase. Errors of omission were often observed 

during the Head and Neck assessment phase. The mean activity fitness score for all 42 

activity types was 0.54 ± 0.18 (range 0 to 1). We further analyzed the 12 activities that had 

very low fitness scores (Fa < 0.5, ) for potential causes of deviations (Table 4-1, Figure 

4.3). For example, the conformance checking showed that the log roll activity (a maneuver 

used to move the patient for back assessment, coded as “log roll-back”) fit with initial 

model only once, and was omitted in 23 out of 24 cases. Using video review, however, we 

observed that the log roll was performed in 20 out of 23 cases. The reason for this 

discrepancy was that this activity was not labeled for analysis in the 23 cases because of 

being performed by bedside nurses and not by a bedside physician, as assumed by the 

algorithm. Our initial model did not include the activities of other medical roles because 

their workflows are less structured and depend on patient conditions. We therefore 

classified this deviation as a model gap.  

We observed both true process errors and model gaps for most activities (Figure 4.3), 

which led to our assumption that the occurrence of process errors is associated with the 
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gaps in our model. We hypothesized that modeling a complex workflow such as trauma 

resuscitation may be more challenging at places where medical teams make more errors. 

To test this hypothesis, we calculated the correlation between the number of model gaps 

and the number of true process errors associated with each activity, resulting in a Pearson 

correlation efficient r = -0.30 (p-value = 0.06) and Spearman correlation efficient r = -0.23 

(p-value = 0.14). These results showed no significant correlation between the occurrence 

of process errors and model gaps, suggesting that the challenges in modeling a complex 

workflow are not associated with the occurrence of deviations. The true causes of false 

alarms are often found in the approaches to modeling and in the actual process of modeling. 

4.5.1.2 Analysis of Process Deviations Detected as False Alarms 

We identified three causes of false alarms: gaps in the model, errors due to manual coding 

of the activity traces, and errors attributed to algorithm limitations. 

False Alarms due to Gaps in the Model 

We identified three types of model gaps and repaired them as needed. First, when creating 

the initial knowledge-driven model (𝜆𝜆0), medical experts relied on their knowledge and 

expertise, but still found it challenging to specify an exhaustive list of steps for a complex 

workflow such as trauma resuscitation. Expert review of deviations detected in the 24 

probing cases allowed us to identify the required areas of model flexibility that better 

represented the process. Our model now includes repeated occurrences of activities in the 

same body region. Second, although the initial model focused on the work of bedside 

physicians, other medical roles (e.g., bedside nurses) performed some activities when 

situations allowed. For example, bedside nurses often assessed the left pupil (“left 

otoscopy-ear”) to avoid the need for the bedside physician to move to the other side of the 

bed. The model was therefore repaired to account for assessment activities performed by 

all providers to avoid labeling those activities as omissions. Third, some activities in the 

model are marked as optional if performed in advance. For instance, visual inspection of 

eyes in the secondary survey becomes optional if the pupils were previously checked in the 

primary survey. This conditional logic is difficult to express using Petri nets. Although two 

parallel branches can be created to represent these conditions, this approach is impractical 

because it increases the complexity of the model and deviation detection. We addressed 
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this problem by considering irreparable model gaps as rule-based constraints associated 

with the model at the post-processing step. 

False Alarms due to Errors in Manual Coding of the Activity Traces 

The manual data coding of activity traces was not only labor-intensive, but also prone to 

coding errors. The initial system returned 58 false alarms (2.4/case) related to coding 

errors. Most coding errors were more than just clerical errors. We analyzed frequently 

miscoded activities and found that most of the errors were due to different interpretations 

between coders. For example, using video review only, it was challenging to determine the 

exact body parts being observed by providers during visual body inspection. Other 

disagreements were due to both ambiguous interpretations of anatomical regions (e.g., how 

to code for a person’s flank that can be interpreted as the abdomen or back) and subjective 

interpretations (e.g., whether the provider looked at or touched a body part). We used two 

strategies to improve our ground-truth data coding. First, we revised the data dictionary to 

provide clearer definitions of easily miscoded activities. Second, to reduce individual coder 

bias and disagreements between different coders, different coders analyzed the same 

sample cases (10% of all cases) to assess inter-rater reliability. We observed an excellent 

inter-rater reliability— Pearson correlation coefficient 0.99 for time-to-activity variables 

and Kappa statistic 0.89 for binary variables. Although these strategies reduced the number 

of coding errors, this class of errors cannot be completely eliminated because of 

subjectivity associated with manual coding. 

False Alarms Attributed to the Algorithm Limitations 

Our deviation detection algorithm cannot avoid all errors, as processes are inherently 

ambiguous. For example, in a five-activity trace T={𝑎𝑎4,𝑎𝑎5,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3}, where activities 

𝑎𝑎1,𝑎𝑎2 and 𝑎𝑎3 were performed late based on the expert opinion, the algorithm may identify 

activities 𝑎𝑎4  and 𝑎𝑎5  as deviations (i.e., early performance) to minimize the penalty of 

mismatches. In another example with a five-activity trace T={𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎3,𝑎𝑎4 }, the 

medical expert labeled the first 𝑎𝑎3 as an erroneous performance and the second 𝑎𝑎3 as the 

fitting activity, while our algorithm labeled the second 𝑎𝑎3 as an error of commission. In 

both examples, our algorithm made different predictions from the ground truth. In the first 

example, determining whether an activity is performed early or late can be subjective 
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because it depends on the observer’s reference. Although humans tend to label activities as 

late, computers may choose to label these activities as early to minimize the global penalty. 

In the second example, the erroneous performance of an activity represented additional 

information that was not coded in the original ground truth data and was therefore omitted 

from the deviation detection algorithm. We addressed most of the algorithm limitations by 

performing additional model modification and adding a post-processing step (Alg.3.2).  

Table 4-2. Confusion matrices for 24 probing, 10 validating and 10 testing traces. 
24 Probing Traces 

 Predicted as deviation Predicted as non-deviation  

True deviation 155 13 
Model 2 

Recall: 0.92 Coding 4 
Algorithm 7 

Non-deviation 418 
Model 328 

705  Coding 58 
Algorithm 32 

 Precision: 0.27  Accuracy: 66.6% 
F1-Score: 0.42 

 
10 Validating Traces 

 Predicted as deviation Predicted as non-deviation  

True deviation 85 15 
Model 0 

Recall: 0.85 Coding 9 
Algorithm 6 

Non-deviation 16 
Model 1 

526  Coding 12 
Algorithm 3 

 Precision: 0.84  Accuracy: 95.5% 
F1-Score: 0.85 

 
10 Testing Traces 

 Predicted as deviation Predicted as non-deviation  

True deviation 139 5 
Model 4 

Recall: 0.97 Coding 1 
Algorithm 0 

Non-deviation 8 
Model 0 

522  Coding 2 
Algorithm 6 

 Precision: 0.95  Accuracy: 98.5% 
F1-Score: 0.96 
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4.5.2 Deviation Detection After System Repair: Validation and Testing 

After completing the system repairs (i.e., addressing the model gaps and improving the 

coding strategies and deviation detection algorithm), we used ten cases with a total of 621 

activities to validate the system. The repaired system detected 541 conformant activities 

and 101 deviations (10.1 per case). Among these 101 deviations, 56.4% (57) were errors 

of commission, 20.8% (21) were errors of omission and 22.8% (23) were scheduling errors. 

Using manual review, we found that 85 detected deviations were correctly labeled, 

representing “true alarms,” and 16 deviations were identified as false alarms (Table 4-2) , 

yielding a precision of 0.84. Among these 16 false alarms, 12 were due to coding errors, 

three were due to the algorithm limitations and only one was attributed to the gaps in the 

repaired model. In addition, the system missed 15 deviations, including nine errors due to 

coding issues and six due to algorithm limitations, yielding a recall of 0.85. The repaired 

system had 95.2% accuracy on the ten validation traces with an 𝐹𝐹1-score of 0.85. This result 

represented a significant improvement over the probing results. Although some coding and 

algorithm errors are difficult to avoid, model gaps continued to occur because of the need 

to balance the accuracy and complexity of the model. Introducing more patient-condition 

dependent branches into the model might produce a more accurate model, but its generality 

would decrease while increasing complexity. 

Finally, our experimental results on ten testing cases with a total of 641 activities 

showed a 𝐹𝐹1-score of 0.96 and an accuracy of 98.5%. Compared to the validation results, 

the higher accuracy was due to the increased number of true alarms and decreased number 

of false alarms and misses. We also observed fewer coding errors among the false alarms 

and misses, which contributed to the increased system accuracy. We did not observe 

significant changes in the number of model gaps and algorithm issues. 

4.5.3 Analysis of Process Deviations Detected with the Repaired System 

We applied the repaired system to all 95 cases that included 5,659 activities, finding 4,893 

fitting activities, 294 errors of omission, 538 errors of commission, and 228 scheduling 

errors (an average of 11.2 deviations per resuscitation case). These 95 cases included the 

24 probing cases, 10 validation cases and 10 testing cases from the previous stages of 
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system development. While re-using probing (training) cases for the evaluation of 

predictive models is not appropriate, reusing data for the explanatory purposes is an 

acceptable practice [42]. The probing cases were initially used to detect any gaps in our 

knowledge-driven workflow model. These gaps were then manually analyzed and the 

model was repaired where appropriate. The repaired model may be biased because repairs 

were made based on the probing cases, possibly missing the gaps that would be exposed in 

the unseen cases. This issue can only be addressed by obtaining the ground truth data (i.e., 

manual data coding) for all 95 cases, a task that is labor-intensive and impractical.  

The overall model fitness (Fλ) of 95 traces was 0.82. Activity fitness scores (Fa) ranged 

from 0.49 to 1.00 (Table 4-3). The activity “visual inspection-genital” had the lowest 

fitness score of 0.49 due to errors of omission observed in 22 cases and scheduling errors 

in 25 cases. The overall mean activity fitness score was 0.80 ± 0.12 (Table 4-3). We found 

an uneven distribution of detected deviations across process sub-phases (Figure 4.5). 

Although the Airway phase in the primary survey had only 11 deviations (Fp = 0.93), the 

Head & Face phase in the secondary survey had 281 deviations, including 133 

commissions, 84 omissions and 64 scheduling errors (𝐹𝐹𝑝𝑝 = 0.80). The Chest and Abdomen 

 
Figure 4.5. Distribution of detected deviations during process sub-phases (steps) for all 95 

cases after the system repair. 
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phases in the secondary survey had fewer total deviations (98 and 190 deviations, 

respectively, Figure 4.5), but also ower phase-fitness scores (0.68 and 0.66, respectively). 

A possible explanation for this result is that the secondary survey allows for more 

flexibility in the order of activity performance.  

Our analysis and expert video review of the 1,060 detected deviations showed that errors 

of commission were mostly due to reassessments. These errors were most common in the 

Chest and Abdomen phases of the secondary survey (Figure 4.5). Seventy-six errors of 

commission occurred in the Chest phase, leading to a decrease in the phase fitness score, 

ΔFp = –0.23, from 0.91 to 0.68. Ninety-eight errors of commission occurred in Abdomen 

phase, ΔFp = –0.14, from 0.8 to 0.66. Several reasons may explain the need for 

reassessments. First, the bedside physician and other medical team members perform rapid 

evaluation and often need to confirm the initial findings by reassessing the patient. Second, 

reassessment may also be needed when the patient presents with new symptoms. Finally, 

examination results are reported verbally and can often be missed or misheard, requiring 

team members to obtain new findings by reassessing the patient.  

Errors of omission were most common for the rectal and genitalia assessments (Table 

4-3), especially when an injury to these body areas was unlikely. The pelvis stability exam 

and Glasgow Coma Score (GCS) verbalization were omitted in 14 (ΔFa = –0.11) and 13 

(ΔFa = –0.13) in activity fitness) cases, respectively (Table 4-3). Ten of the cases that 

lacked the pelvis stability exam involved patients transferred from another hospital. For 

transfer patients, the trauma team usually follows an expedited protocol that focuses on the 

most critical injuries for which the patient was transferred. In addition, a junior resident 

was the bedside physician in eleven of these cases, suggesting that some omissions could 

also be due to inexperience. Video review did not show any other reasons that could explain 

why this examination was skipped. Although our ground truth coding showed that GCS 

exams were omitted in 13 cases, subsequent video review found that the teams performed 

this exam in two cases, but did not verbally reported the findings, which classified these 

activities incomplete. Among the remaining 11 cases in which GCS was not calculated, six 

involved transfer patients, three of which arrived without prior notification, and the other 

five cases involved three patients who arrived with prior notification and two with no prior 

notification. Finally, nine of the 13 cases involved patients with head injuries, suggesting 
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that these omissions were not permissible and could have led to adverse patient outcomes. 

Three reasons may explain why the GCS exam was omitted. First, all of the patients were 

alert, awake, and oriented, potentially making it obvious that the GCS was normal. In 

several videos, the patients were visibly upset and uncooperative with the provider. When 

this happened, the team leader often instructed the bedside physician to move on with the 

exam, skipping the GCS calculation.  

4.6 Discussion and Conclusions  

In this chapter, we introduced an approach and a system for automatic detection of process 

deviations in trauma resuscitation. This approach provides a method for identifying 

repeated, omitted and out-of-sequence activities that can be included in the design of 

decision support systems for complex medical processes. Our results have implications for 

three areas of research: (a) workflow modeling, (b) conformance checking, and (c) process 

deviation analysis in complex medical workflows. 

To identify deviations within the resuscitation workflow in an efficient and unbiased 

way, we first developed a representation of the typical execution of the process using a top-

down, knowledge-driven workflow modeling approach. Clinical workflow in the 

resuscitation setting is highly dynamic, context-sensitive, and knowledge-intensive. 

Although essential assessment activities are needed for every patient, the team must also 

select additional assessment and treatment activities based on contextual information 

relevant to a specific patient (e.g., fluid administration in the presence of signs of 

hemorrhagic shock). This complex and dynamic nature of the resuscitation workflow 

makes its modeling a challenge. In our study, we treated ATLS as a set of guidelines that 

assists with the management of injured patients rather than a protocol that precisely defines 

this management. Variations in the clinical setting may require a deviation from these 

guidelines to ensure the best care. In viewing the ATLS as a guideline, we allow the team 

to make decisions based on their experience and expertise. This flexibility allows 

adjustment to complex and dynamic circumstances.  

Our initial model underwent several revisions until the medical experts reached a 

consensus about which medical activities to include and in which order. Our preliminary 

analysis with 24 trauma resuscitation cases using conformance checking, however, found 
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discrepancies between the model and actual practice, showing that our initial model could 

not fully represent the resuscitation process. These results were significant because they 

identified false alarms that were triggered by an incomplete model, allowing us to 

effectively repair the model. The repairs were also iterative and informed by detailed 

analyses of both true and false deviations. During this study, we made several major model 

repairs, most of which involved manual updates to the model to include permissible 

deviations, allow for repeated occurrences of activities, or recognize more than one role as 

responsible for activity performance. Other model repairs were related to algorithm failures 

or errors in manual coding of the activity traces, and were addressed accordingly. These 

results highlight the importance of building accurate and complete workflow models 

because discrepancies between the model (“work as imagined”) and actual practice (“work 

as done”) can also affect the accuracy and effectiveness of the automatic deviation 

detection. Our results also show that models can serve to discover associations between 

process deviations and the occurrence of major errors that are associated with a higher 

likelihood of adverse outcomes. 

Our study has three major limitations. First, we focused on assessment activities 

performed by the bedside physician because these activities are required for every patient. 

We did not include any treatment or control activities because these are conditional (i.e., 

performed based on the outcome of assessment activities) or sparse, requiring a more 

complex model than for assessment activities. Our future work will focus on modeling 

control activities and using those models for further deviation detection. Second, we only 

considered three types of deviations related to the activity sequence: errors of omission, 

errors of commission, and scheduling errors. Other types of deviations exist but cannot be 

detected with our current system. For example, we did not analyze deviations that violate 

time constraints (e.g., blood pressure and heart rate need to be measured within the initial 

two minutes), deviations in decisions (e.g., whether the patient should be intubated or 

requires intravenous fluid), or deviations related to activity performance (e.g., incomplete 

evaluation of patient’s airway or evaluation performed using an incorrect instrument). A 

more elaborate workflow model, or even a multi-model system, that represents these 

additional attributes is needed to detect these deviations. Finally, in this work, we focused 
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on detecting process deviations and did not analyze the correlation between context 

attributes (e.g., patient demographics) and process deviations.  

Existing conformance checking algorithms fail for workflows with multiple activities 

and concurrency because of computational complexity. To address this limitation, we 

developed a novel phase-based conformance checking algorithm and our results on testing 

cases showed a detection accuracy of 98.5%. Our approach to automatic deviation 

detection using activity traces and conformance checking also allowed us to characterize 

the detected deviations as either tolerable variability or harmful errors. Given the overlap 

of resuscitation activities and steps with those in other critical care settings, our approach 

can be used to facilitate the retrospective analysis of critical care workflows that can be 

scaled to large numbers of sessions, as well as the development of novel runtime 

approaches for reducing mitigating the impact of human errors. 
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Table 4-3. Deviation detection results for 95 cases after the system repair 
Activity Fitting Omission Commission Scheduling Activity Fitness Sub-phase/Step 
Visual Inspection-G 52 22 7 25 0.49 Abdomen 
L Visual inspection-Ear 29 8 10 0 0.62 Head & Face 
L Otoscopy-Ear 63 9 3 26 0.62 Head & Face 
Visual Inspection-Neck 86 19 33 0 0.62 Neck 
R Visual inspection-Eye 19 4 7 0 0.63 Head & Face 
R Visual inspection-Ear 30 7 10 0 0.64 Head & Face 
L Visual inspection-Eye 18 4 6 0 0.64 Head & Face 
Visual Inspection-Chest 108 3 45 6 0.67 Chest 
Rectal-Back 72 30 3 1 0.68 Back 
Visual Inspection-A 121 0 49 8 0.68 Abdomen 
Palpation-Chest 101 9 31 4 0.70 Chest 
R Otoscopy-Ear 75 8 4 20 0.70 Head & Face 
Stability-PE 75 14 3 14 0.71 Abdomen 
Palpation-A 119 0 39 9 0.71 Abdomen 
L DP/PT-PC 85 11 13 9 0.72 Circulation 
Visual inspection-Mouth 83 13 7 7 0.75 Head & Face 
C-spine-Back 99 11 6 13 0.77 Back 
Visual Inspection-RUE 139 6 23 14 0.76 UE & LE 
Chest auscultation-BA 92 2 21 3 0.78 Breath 
Visual inspection-Face 147 6 32 3 0.78 Head & Face 
Palpation-Face 129 6 27 3 0.78 Head & Face 
Palpation-RUE 147 6 21 13 0.79 UE & LE 
Palpation-Neck 84 6 14 2 0.79 Neck 
Visual inspection-Nose 85 12 2 5 0.82 Head & Face 
Visual Inspection-LUE 136 9 9 12 0.82 UE & LE 
Palpation-LUE 130 10 5 13 0.82 UE & LE 
R DP/PT-PC 95 0 20 1 0.82 Circulation 
Total Verbalized-GCS 81 13 2 2 0.83 Disability 
Log Roll-Back 89 4 8 2 0.86 Back 
Left pupil-PU 103 9 2 5 0.87 Disability 
Right pupil-PU 114 10 2 5 0.87 Disability 
Visual Assessment-AA 88 6 2 1 0.91 Airway 
Palpation-Head 201 4 13 0 0.92 Head & Face 
Visual Inspection-Back 137 1 10 0 0.93 Back 
Visual inspection-Head 224 3 12 0 0.94 Head & Face 
Visual Inspection-LLE 228 2 9 0 0.95 UE & LE 
T-spine-Back 155 2 4 1 0.96 Back 
L-spine-Back 134 2 3 0 0.96 Back 
Visual Inspection-RLE 236 1 8 0 0.96 UE & LE 
Palpation-LLE 218 1 7 0 0.96 UE & LE 
Verbal Assessment-AA 66 0 1 1 0.97 Airway 
Palpation-RLE 210 1 5 0 0.97 UE & LE 
Patient arrival 95 0 0 0 1.00 N/A 
Patient departure 95 0 0 0 1.00 N/A 
       
Sum 4893 294 538 228 0.80 0 

* Abbreviations: “A: abdomen”, “AA: airway assessment”, “BA: breathing assessment”, “DP/PT-PC: dorsalis pedis/posterior 

tibial pulse”, “G: genital”, “GCS: Glasgow Coma Scale”, “L: left”, “LLE: left lower extremity”, “LUE: left upper extremity”, “PE: 
pelvic”, “PU: pupil”, “R: right”, “RLE: right lower extremity”, “RUE: right upper extremity”, “UE & LE: upper extremities and 
lower extremities”. 
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Chapter 5  

Process Mining the Trauma Resuscitation Patient Cohorts 

This chapter on Process Mining the Trauma Resuscitation Patient Cohorts is based on our 

paper. In this study, we present a framework for analyzing associations between patient 

cohorts and the trauma resuscitation procedures their patients received. Our framework 

works by quantifying associations between discovered patient cohorts and treatment 

patterns. We evaluated our framework on a trauma resuscitation dataset collected in a level 

1 trauma center. Our experimental results show that using weights learned by our algorithm 

improves measurements of patient similarity. Four patient cohorts were then found via 

clustering, and statistically significant resuscitation patterns were discovered using process 

mining techniques. Though only tested on the trauma resuscitation process, our framework 

can be generalized to analyze other medical processes. 

5.1 Introduction 

In medical research, patient cohort analysis is widely used to make clinical discoveries [67] 

[68][69]. A patient cohort is defined as a group of patients who share similar context 

attributes. Taking trauma resuscitation as an example, the trauma patients of a same cohort 

are sharing similar attributes like demographics (e.g., age, gender, ethnicity, insurance and 

medical history), injury information (e.g., injury type, injury severity and injury area), and 

trauma attributes (e.g., day vs. night shift, trauma activation level and pre-arrival 

notification). In traditional pipeline of patient cohort analysis, medical analysts [68][70] 

study patient cohorts by defining the cohorts according to the targeted attributes defined 

by medical experts. Other context attributes were considered as confounding and ignored 

in the study. The limitation of doing so is that their studies mostly reveal the expected 

results within the cohorts they are familiar with. The studies were very well oriented by 

their domain knowledge so that they were likely to miss the cohorts and findings they were 

not familiar with.    
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Process mining [18] is another analysis that has been recently applied in medical domain 

on medical process analysis. It has been used to discover medical process models, measure 

the compliance of process executions with expert models [59] and analyze medical process 

deviations [55]. Existing process mining research [18] however, mostly mines knowledge 

from an entire dataset of a process without studying the differences among the subsets of 

the process cases.  

In this chapter, we present a framework for medical process data analytics by combining 

both process mining and patient cohort analysis. Our medical process data includes two 

parts of information: process activity logs (e.g., trauma resuscitation executions) and 

context attributes (e.g., patient demographics) associated with each process cases. Our 

framework works in three steps. First, it applies data exploration methods on patient 

attributes to find data-driven cohorts. Second, it discovers process patterns (e.g., treatment 

patterns) from activity logs using process mining techniques. Third, it tests the significance 

of the correlations between process patterns and patient cohorts.   

We applied our framework to a real-world medical process, i.e., trauma resuscitation. 

Trauma resuscitation is a fast-paced process, where multidisciplinary teams need to rapidly 

identify and treat potentially life-threatening injuries. Analysis of the correlation between 

their treatment executions and patient cohorts can potentially improve their understanding 

of their behaviors and hopefully improve patient outcomes.  

Our contributions in this study are: 

• A framework for discovering and analyzing the associations between trauma patient 

cohorts and trauma resuscitation procedures. Our framework is easy to implement and 

can be used for analyzing processes with event (or activity) logs and external context 

attributes.   

• A practical algorithm and experimental procedure to learn the weighted importance of 

attributes with little human intervention. Unit weights are usually assigned to attributes 

when calculating data similarity for clustering, as the actual significance of each 

attribute is unknown. In this study, we designed an experiment to very efficiently 

acquire medical experts’ input to supplement attribute weight learning.  
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• An analysis of statistically significant correlations between context attributes 

(aggregated as patient cohorts) and discovered medical treatment patterns in a real-

world dataset of 123 trauma patients.    

5.2 Patient Cohort Discovery and Analysis 

In this section, we described the core techniques used in attribute weight learning, patient 

cohort discovery, process mining and statistical analytics. We learnt the attribute weights 

with the goal to decide the importance of different context attributes. In this way, we could 

find more accurate patient cohorts through clustering algorithms. We then mined the 

treatment patterns within each patient cohorts and analyzed them with statistical methods.   

5.2.1 Data Description and Formalization 

One hundred and twenty-three trauma resuscitation videos were collected from trauma bay 

of Children’s National Medical Center, Washington DC. The videos were reviewed jointly 

by a surgeon with Advanced Trauma Life Support (ATLS) [46] certification and trauma 

clinical nurse specialists to identify the activity traces (Table 5-1 (a)). A total of 7154 main 

activities of 44 types were selected in this study. Twenty-six context attributes were 

Table 5-1. Activity trace (a), context attributes (b), data statistics (c) and data formalization 

(d).  

 

Case ID Activity Start Time End Time
xx1 Pt arrival 0:00:00 0:00:01
xx1 Visual assessment-AA 0:00:45 0:00:52
xx1 Chest Auscultation-BA 0:00:55 0:00:58
xx1 R DP/PT-PC 0:01:04 0:01:05
xx1 Total Verbalized-GCS 0:01:29 0:01:30
xx1 Total Verbalized-GCS 0:01:50 0:01:51
xx1 Right pupil-PU 0:02:12 0:02:18
xx1 Left pupil-PU 0:02:19 0:02:24
xx1 Right pupil-PU 0:02:24 0:02:25
xx1 Visual inspection-H 0:02:33 0:02:34
xx1 Palpation-H 0:02:33 0:02:37

Case ID xxx1 xxx2
Age category 24-96 24-96
Sex Male Female
Night Shift 0 1
Weekend 0 0
Pre-arrivalNotification 1 0
Trauma Activation Level Transfer Attending
Intubation 0 0
Glasgow Coma Score >13 1 0
Injury Type Blunt Penetrating
Injury Severity Score 5 12
Neck Injury Severity Score 3 5

(a) Trauma resuscitation trace (b) Context attributes

𝑖𝑖𝑖𝑖(1)

…

𝑥𝑥1
(1) , … , 𝑥𝑥𝑔𝑔

(1)

ID Ext. Attributes Resus. Traces

𝑖𝑖𝑖𝑖(2)

𝑖𝑖𝑖𝑖(𝑒𝑒)

𝑥𝑥1
(2) , … , 𝑥𝑥𝑔𝑔

(2)

𝑥𝑥1
(𝑒𝑒) , … , 𝑥𝑥𝑔𝑔

(𝑒𝑒)

…

𝑎𝑎1
(1), … , 𝑎𝑎𝑘𝑘

(1)

𝑎𝑎1
(2), … , 𝑎𝑎𝑘𝑘

(2)

𝑎𝑎1
(𝑒𝑒) , … , 𝑎𝑎𝑘𝑘

(𝑒𝑒)

…

(d) Data formalization

Properties Stats
Num. Cases (or Patients) 123
Num. Total Activities 7154
Num. Activity Types 44
Num. External Attributes 26
Data Collection Time Period 2014.08 – 2016.12
Size of Medical Team [7, 12]
Longest Trace (Num. Acts.) 110
Shortest Trace (Num. Acts.) 26
Avg. Num. Acts. in Traces 58.6

(c) Data statistics
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collected from the trauma database or from medical chart review, including patient age, 

gender, trauma activation level, mechanism of injury (penetrating, blunt, burn, etc.), date 

and time of patient arrival, Injury Severity Score (ISS), Glasgow Coma Score (GCS), 

intubation status, and Abbreviated Injury Scale (AIS) (Table 5-1 (b)).  The collection and 

use of the data for this study were approved by the Institutional Review Board at our 

hospital.  

Here we first define the terms and notations used later. The process log 𝑳𝑳 =

[𝑐𝑐(1), … , 𝑐𝑐(𝑙𝑙)]𝑇𝑇  is a vector of elements 𝑐𝑐(𝑖𝑖) . Each 𝑐𝑐(𝑖𝑖) = {𝑖𝑖𝑖𝑖(𝑖𝑖),𝒙𝒙(𝑖𝑖),𝑻𝑻(𝑖𝑖)} (Table 5-1 (d)) 

represents a unique case, which is indexed with a unique case id, contains the activity trace 

𝑻𝑻(𝑖𝑖), and has a vector 𝒙𝒙(𝑖𝑖) of context attributes. An activity trace is 𝑻𝑻(𝑖𝑖) = [𝑎𝑎1
(𝑖𝑖), … ,𝑎𝑎𝑚𝑚

(𝑖𝑖)]𝑇𝑇, 

where m total activities a are ordered by activity start time. Traces of different executions 

may have varying lengths because complex processes may contain optional, omitted, or 

even erroneously performed activities. Context attributes 𝒙𝒙(𝑖𝑖) = [𝑥𝑥1
(𝑖𝑖), … , 𝑥𝑥𝑛𝑛

(𝑖𝑖)]𝑇𝑇  is a 

vector of 𝑛𝑛  recorded patient demographics (e.g., age, gender, ethnicity, insurance and 

medical history), injury information (e.g., injury type, injury severity and injury area), and 

trauma attributes (e.g., day vs. night shift, trauma activation level and pre-arrival 

notification). 

5.2.2 Attribute Weight Learning 

In our framework, the patient cohort is decided by unsupervised clustering algorithms. The 

clustering performance is highly associated with the attributes used. The discovered patient 

cohorts may be meaningless if irrelevant or unimportant attributes are used. Without any 

prior knowledge, the attribute weights are mostly set as unit weights (i.e., any attribute has 

the same weight as one). With domain knowledge available, it is possible to obtain the 

attribute weights by asking medical experts to provide a score (e.g., in the scale of 0 – 10) 

for each attribute. This approach however can be challenging in practice. We tried this 

method in our study by asking the medical experts in our team to decide a dictionary of 

attribute weights. Our medical experts later gave us the feedback that they would prefer to 

use unit weights rather than decide a set of subjective weights. In addition, even if the 

medical experts were able to provide a set of weights, it is likely that the study is again 
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guided and dominated by the domain knowledge, leading to an “expected” result. Hence 

we designed a simple experiment to collect medical decisions and developed a learning 

algorithm for learning attribute weights.  

Our experiment used 41 sets (denoted as S) of three patients (e.g., Patient A, B, C in 

Table 5-2) drawn randomly from the trauma resuscitation dataset without replacement. A 

surgeon was asked to decide the most similar one among three pairs of patients, (A, B), (A, 

C) and (B, C), based on their context attributes only. They used their domain knowledge 

to judge how important the differences of attributes were, and to decide which pair of 

patients is more likely to be in the same cohort than others. In our example (Patient A, B, 

C in Table 5-2), our medical expert labelled patient pair (B, C) as the one that is most likely 

to be observed in the same cohort. This experiment is simple because it does not need much 

human effort and each decision in the experiment can be made easily. We then used these 

labeled results (denoted as PDr) as the input of our attribute learning algorithm (Alg.5.1).  

Our learning algorithm was designed with the core idea that by adjusting the weights of 

context attributes, we can increase the classification accuracy (i.e., deciding which pair of 

Algorithm 5.1.  Patient Attribute Weighting 
Input: N random drawn sets 𝑺𝑺; labels from medical expert 𝑷𝑷𝐷𝐷𝐷𝐷 
Output: Learnt Attribute weights 𝒘𝒘 
Step 1. Initialize 𝒘𝒘 ∈ ℝ1×𝑛𝑛, and 𝒂𝒂𝒂𝒂𝒂𝒂 ∈ ℝ1×2𝑛𝑛 as vectors of zeros  
Step 2. do 
Step 3.  for each weight 𝑤𝑤𝑖𝑖 ∈ 𝒘𝒘, do 
Step 4.   𝑤𝑤𝑖𝑖++ 
Step 5.   Calculate the most similar pair in each set of 𝑺𝑺, denoted as 𝑷𝑷𝑠𝑠 
Step 6.   Calculate 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 (𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 ∈ 𝒂𝒂𝒂𝒂𝒂𝒂) based on 𝑷𝑷𝐷𝐷𝐷𝐷 and 𝑷𝑷𝑠𝑠 
Step 7.    𝑤𝑤𝑖𝑖-- 
Step 8.  end for 
Step 9.  for each 𝑤𝑤𝑖𝑖 ∈ 𝒘𝒘, do 
Step10.   𝑤𝑤𝑖𝑖-- 
Step11.   if 𝑤𝑤𝑖𝑖 < 0, 𝑤𝑤𝑖𝑖++, continue 
Step12.   Calculate the most similar pair in each set of 𝑺𝑺, denoted as 𝑷𝑷𝑠𝑠 
Step13.   Calculate 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛+𝑖𝑖 based on 𝑷𝑷𝐷𝐷𝐷𝐷 and 𝑷𝑷𝑠𝑠 
Step14.   𝑤𝑤𝑖𝑖++ 
Step15.  end for 
Step16.  𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = max (𝑎𝑎𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑎𝑎2, … , 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 ,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛+1, … ,𝑎𝑎𝑎𝑎𝑎𝑎2𝑛𝑛), and let 𝛼𝛼 be the number of maximum values.  
Step17.  for 𝑖𝑖 in range(1, 2𝑛𝑛) 
Step18.   if 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 == 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 && 𝑖𝑖 ≤ 𝑛𝑛  
Step19.    𝑤𝑤𝑖𝑖 += 1/𝛼𝛼 
Step20.   else if 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 == 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 && 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 2𝑛𝑛 
Step21.    𝑤𝑤𝑖𝑖−𝑛𝑛 −= 1/𝛼𝛼 
Step22.   end if 
Step23.  end for 
Step24. until 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 keeps unchanged for a defined number iterations 
Step25. return 𝒘𝒘 

* the source code is available at https://github.com/marlonli/PatientCohortsAnalysis 
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patient is more similar). The similarity measure is defined using weighted Euclidean 

distance [65][71], a modification of Euclidean distance with each attribute is weighted: 

𝑑𝑑𝐴𝐴𝐴𝐴 = (� 𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖
(𝐴𝐴) − 𝑥𝑥𝑖𝑖

(𝐵𝐵))2
𝑛𝑛

𝑖𝑖=1
)
1
2 (5.1) 

where 𝑤𝑤𝑖𝑖  is the weight given to the i-th component. 𝑥𝑥𝑖𝑖
(𝐴𝐴)  and 𝑥𝑥𝑖𝑖

(𝐵𝐵)  are the i-th context 

attributes of patients A and B. If distance 𝑑𝑑𝐴𝐴𝐴𝐴 < 𝑑𝑑𝐴𝐴𝐴𝐴  && 𝑑𝑑𝐴𝐴𝐴𝐴 < 𝑑𝑑𝐵𝐵𝐵𝐵, it means that patient 

A and B is most similar pair given a set of weights 𝒘𝒘 = [𝑤𝑤1, … ,𝑤𝑤𝑛𝑛]𝑇𝑇. Then if the label 

given by medical expert is also pair (A, B), it is a hit, otherwise a miss. The overall 

classification accuracy over N patient sets is defined as the ratios of hits: 

𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑛𝑛𝑛𝑛𝑛𝑛(ℎ𝑖𝑖𝑖𝑖𝑖𝑖)

𝑁𝑁
 (5.2) 

Our algorithm updates the attribute weights iteratively. At each iteration, we test adding 

(Step 4) or subtracting (Step 10) a unit weight from a single attribute weight 𝑤𝑤𝑖𝑖 . An 

important boundary condition is 𝑤𝑤𝑖𝑖 ≥ 0 (Step 11), otherwise 𝑤𝑤𝑖𝑖  does not have physical 

Table 5-2. Context attributes (1st column), a set of three patients (2nd-4th columns), and 

the weights learnt from Alg.5.1. 
Attributes Patient A Patient B Patient C … Weights Learnt 
AGE Group 0 0 2 … 0 
Gender (male = 1) 1 1 1 … 0 
Transfer 1 1 0 … 0 
Stat 0 0 1 … 0 
Attending 0 0 0 … 0.14 
Blunt 1 1 1 … 1 
Penetrating 0 0 0 … 1.31 
Animal Bite 0 0 0 … 0.81 
Burn 0 0 0 … 0 
No Injury 0 0 0 … 0.81 
Non-critical admission 1 1 0 … 1 
Critical Admission 0 0 0 … 0 
Discharged 0 0 1 … 0 
ETA Now 0 0 1 … 0 
Weekend 1 0 0 … 0 
ntubation 0 0 0 … 0.14 
Daytime 0 0 1 … 0 
GCS>13 1 1 1 … 0.14 
ISS Group 0 0 0 … 0 
AIS_HEAD_NECK 2 0 0 … 0 
AIS_FACE 0 0 0 … 0 
AIS_CHEST 0 0 0 … 2.39 
AIS_ABD_PELVIC 0 0 0 … 0 
AIS_EXTREMITIE 0 0 0 … 0.25 
AIS_EXTERNAL 0 1 1 … 0 
Maximum AIS 2 1 1 … 0 
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meaning in similarity calculation. Then we calculate the updated accuracy (Step 6 & 13) 

after addition and subtraction. Last, we update (Step 17-23) the attributes which lead to the 

highest accuracy (Step 16). The algorithm terminates when the accuracy stays unchanged 

for a defined number of iterations (Step 24). Alg.5.1 is based on greedy search [72]. At 

each step, we only update the weights on attributes which provide maximum improvement. 

Our algorithm gradually improves the weights and accepts the suboptimal solutions, while 

finding the optimal solution is computationally difficult.   

5.2.3 Patient Cohorts Discovery 

To discover patient cohorts, we clustered the patients. The clusters were calculated 

according to the similarity of patient context attributes. The patients being clustered 

together must share similar attributes. Hence the clusters can be treated as patient cohorts. 

The learning of attribute weights in the previous step helps us decide which attributes are 

more important and guide the clustering process to partition the patient data into clusters 

(cohorts) of more clinical meaning.  

Numerous clustering algorithms were developed for all kinds of datasets and problems. 

Some clustering algorithms were specifically designed for certain data distributions (e.g., 

EM clustering algorithm on Gaussian distribution and DBSCAN on noise data). In our 

study, the patient context attributes can be heterogeneous, including categorical, binary, 

numerical and ordinal attributes. Hence, to achieve the best generation of our framework, 

we chose two most commonly used clustering algorithms, k-means clustering (centroid-

based) [73][74] and hierarchical clustering (connectivity-based) [74].  

In addition, selecting the number of clusters is a difficult and well-known problem. 

Hierarchical clustering itself is widely used to intuitively decide the optimal number of 

clusters when the results were visualized in the dendrogram. Another widely used method 

is silhouette analysis [65]. The silhouette value is a measure of how similar a data point is 

to its own cluster (cohesion) compared to other clusters (separation). The silhouette score 

ranges from -1 to +1, where a high value usually indicates a better clustering configuration. 

We used both methods in our study. 
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5.2.4 Workflow Discovery and Sequential Pattern Mining 

To discover the treatment patterns and procedures of different patient cohorts, we used two 

different techniques, workflow discovery (Section 2.2) and sequential pattern mining. In 

this study, we used Disco (https://fluxicon.com/disco/), a process mining tool based on a 

fuzzy workflow mining algorithm [44]. The workflow discovery algorithms tend to 

produce spaghetti-like models [20] which are difficult to interpret for analysts. And 

searching for the differences in treatment patterns in several workflow models can be even 

more challenging. The sequential pattern approach can help address this limitation. 

Treatment patterns can be discovered from activity traces using sequential pattern mining 

algorithms. Although numerous sequential patterns may be found, the significance of the 

patterns can be evaluated using the statistical methods. Manual analysis only needs to be 

done on patterns that are shown as statistical significant. In our implementation, we used 

SPADE [75], an efficient algorithm for mining frequent sequential patterns.  

 
Figure 5.1. Attribute weight learning process. The accuracy increases with the number of 

the learning iterations. 
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5.2.5 Statistical Analytics 

We used statistical analysis to study the association between the treatment patterns and 

patient cohorts. Differences in number of treatment patterns between patient cohorts were 

compared using Student’s t-test [76]. Student’s t-test compares the means of two sets of 

data (dataset size can be small) and tells the difference from each other. Two different kinds 

of comparisons can be performed for patient cohort analysis, comparison between two 

cohorts (one-vs.-one) and one cohort and the rest of the cohorts (one-vs.-rest). We defined 

statistical significance level set at p < 0.05 [76].     

 
Figure 5.2. (a) K-means clustering results of 123 patients without unit weights. The number 

of clusters (k) was set as 4. Dots of the same color from a same cluster. (b) K-means 

clustering results (k = 4) of 123 patients using weighted attributes. (c) The value of average 

silhouette (y-axis) changes as the number of clusters (x-axis). (d) The dendrogram plot of 

the hierarchical clustering results.  

 

(a) (b)

(c) (d)
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5.3 Experiments 

Our experimental results involve three aspects, the performance of attribute learning 

algorithm, the patient cohorts we discovered and the resuscitation patterns as well as their 

significance test results.     

5.3.1 Attribute Weights 

The initial accuracy (Figure 5.1) was 0.34 before applying the weight learning algorithm. 

The initial accuracy was calculated with unit weights. The accuracy increased quickly in 

the first 50 iterations before slowing down. The accuracy always increased and never 

dropped because the learning algorithm (Alg.5.1) is guided by accuracy, only updating the 

weights when if accuracy increases. The accuracy stopped at 0.61 when the learning 

terminated and was 0.27 higher than that of using unit weights. The accuracy may stop 

higher if more data was labeled so that it covers more comparisons.  Our results (Table 

5-2) showed that the injury features (injury mechanism, injury area and severity score) are 

more important than patient demographics (age, gender, etc.) and resuscitation attributes 

(i.e., stat, attending, daytime, etc.). Most attributes of patient demographics and 

resuscitation have zero weights. Two resuscitation attributes that have non-zero weights 

are “attending” and “intubation”. Both “stat” and “attending” represents the patient arriving 

from the scene but attendings are more severe cases. The “intubation” is an important 

attribute indicating whether the patients were intubated prehospital. The patients who could 

not maintain their airway were intubated. Within injury features, the injury mechanism 

(penetrating, blunt, etc.) has the most non-zero weights. “AIS_CHEST” (injury severity of 

chest) has the highest weights.  

5.3.2 Patient Cohorts 

The silhouette analysis suggested the number of clusters as four or eight (two peaks in 

Figure 5.2 (c)). From dendrogram (Figure 5.2 (d)), we can easily identify four clusters. We 

decided the number of cluster as four. Although the silhouette score is higher if we have 

four more clusters (eight in total), our result showed the additional four clusters were 

partitioned from the two smaller clusters of the four clusters. Some of them were too small 
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(few data points), making them a better fit for specific case studies rather than being 

included in a cohort analysis.  

Our result also showed that the k-means clustering result was conformant (100% same) 

with the hierarchical clustering result when having four clusters (Figure 5.2 (b)(d)). The k-

means clustering result was visualized after as the dimension reduction with PCA [77]. We 

also ran the clustering on the same dataset with unit attribute weights (Figure 5.2 (a)). Great 

difference can be noticed from the two k-means clustering results (Figure 5.2 (a) vs. (b)). 

With unit attribute weights, four similar sizes of clusters were formed. No clear boundary 

can be noted between the clusters.  The distribution of data points (a) is much sparser than 

that of (b) because all attributes were taken in the similarity measurement. As it is usually 

of a small chance that two patients have exact same or highly similar context attributes, the 

data points in (a) cannot be distributed as dense as the clusters in (b), where only important 

attributes were taken into account (Table 5-2). Four patient cohorts (from cohort 0 to cohort 

3) include 55, 13, 49 and 6 patients respectively. To better understand the characteristics 

of each patient cohort, we used a radar chart (Figure 5.3) to help visualize attribute 

distribution within each patient cohort. We also calculate the significance of each attribute 

 

Figure 5.3. Radar charts visualizing the characteristics of the patient cohorts. Each radar 

chart represents a patient cohort. Each attribute is depicted by the node on the spoke. The 

number of patients in each cohort is shown in the parenthesis, e.g., cohort 0 has 55 patients. 
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in its cohort versus that attribute of the rest cohorts (Table 5-3). As we have a large number 

(26) of context attributes, we filtered the attributes by just showing the attributes that have 

a non-zero weight (Table 5-2). Both cohort 0 and cohort 2 included patients with blunt 

injuries and GCS over 13. The difference is whether the patients were critically admitted. 

Cohort 1 and 3 are two smaller cohorts. They have very different distributions from each 

other, and from the cohort 0 and 2. Cohort 1 includes patients of the remaining injury 

mechanisms except for blunt. Only cohort 3 includes patients with injury on the chest.  

5.3.3 Resuscitation Workflow and Patterns 

With patient cohorts identified, we performed workflow mining and sequential pattern 

mining on each cohort. The complete workflow models are spaghetti-like because of a 

large number of non-zero transitions. To obtain descriptive and interpretable workflow 

models, we applied two model simplification methods. First, we focused our study on a 

specific medical phase each time. A medical phase a part of the complete trauma 

resuscitation process, e.g., airway assessment phase (checking patient’s airway), disability 

assessment phase (assessing patient’s disability level), head assessment phase (assessing 

injuries on patient’s head), etc. Second, we pruned the workflow model by only preserving 

the most dominant incoming and outgoing transitions for each node. This method omitted 

insignificant details, i.e., a large number of transitions of rare occurrence.  

Table 5-3. p-values of each attribute of a cohort versus other cohorts.  
Attributes Name Cohorts 0 Cohorts 1 Cohorts 2 Cohorts 3 

Attending  0.758 0.172 0.104 0.305 

Blunt 0.000 0.000 0.001 0.679 

Penetrating 0.040 0.000 0.064 0.111 

Animal Bite 0.203 0.000 0.249 0.749 

No Injury 0.068 0.000 0.100 0.648 

Non-critical Admission 0.000 0.511 0.000 0.330 

Intubation 0.107 0.437 0.064 0.111 

GCS>13 0.019 0.260 0.045 0.437 

AIS_CHEST 0.042 0.375 0.034 0.000 

AIS_EXTREMITIE 0.756 0.529 0.208 0.214 
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Our workflow results (Figure 5.4)  on head phase showed high similarity in the four 

head assessment workflows. All of them follow a similar sequential order as “head (H) -> 

face (F) -> (nose (N) -> mouth (M)) || (eye (EY))) -> ear (EAR)”.  Two differences can be 

noticed from workflows of cohort 0 and cohort 2. First, the occurrence of “visual 

 
Figure 5.4. Workflow models discovered from patient cohort 0 and cohort 2. The major 

differences are highlighted in the figure. Each node includes an activity type and the count 

of its occurrences. The transition represents the sequential order of activities and the 

numbers on the transitions represent the count of such sequential pattern.  
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inspection-head” is more frequent in cohort 0 than that in cohort 2. On the other hand, 

“left/right visual inspection-eye” are much more frequent in cohort 2. The medical 

explanation is activities “left/right visual inspection-eye” can be optional because there is 

another pair of activity “right/left pupil check” in disability assessment phase (prior to head 

assessment phase) to evaluate patient’s disability level. The pupil examination requires a 

light source to be used to assess pupil response. This exam is more thorough than only 

performing an unaided visual examination of the eye. In addition, considering most patients 

in cohort 0 are critically admitted patients with more severe conditions, medical team 

tended to omit these unimportant eye visual inspections to save time.  

By performing sequential mining algorithms on patient cohort 0 and 2, we discovered 

39784 sequential patterns in total. 178 sequential patterns were computed as statistical 

significant (a small part is shown in Table IV). For example, “visual inspection-head” is 

found to occur on average 2.87 times in cohort 0 versus 2.06 times in cohort 2 (p-value = 

0.026). Similarly, “visual inspection-back” is found to occur on average 1.77 times in 

cohort 0 versus 1.27 in cohort 2. The potential medical explain is the patients in cohort 0 

were of critical admission types, indicating they may have more severe injuries than 

patients of cohort 2. Hence, it is more likely that after the medical team members perform 

rapid evaluation, they need to confirm the initial findings by reassessing the patient.   

 

 

Table 5-4. Significant resuscitation patterns discovered from cohort 0 and cohort 2  
Resuscitation Patterns Occur. Frequency Raw Count (Average) p-value 

Visual inspection-H 96.43% 97.96% 155 (2.87) 99 (2.06) 0.026 

Visual inspection-RUE 89.29% 93.88% 120 (2.4) 76 (1.65) 0.046 

Visual inspection-BK 94.64% 100.00% 94 (1.77) 62 (1.27) 0.001 

Visual inspection-H  …* R otoscopy-Ear 42.59% 10.20% 23 5 0.000 

Visual inspection-H  … Palpation-RLE 29.63% 4.08% 16 2 0.000 

Log roll-BK  … Visual inspection-BK, T-spine-BK 24.07% 2.04% 13 1 0.001 

Visual inspection-M  Visual inspection-N 33.33% 8.16% 18 4 0.002 

Visual inspection-BK, T-spine-BK  … L-spine-BK 22.22% 2.04% 12 1 0.002 

* “ ”- direct sequence; “ … ”- intervening tasks allowed 
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Part III 

Process Recommender System 
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Chapter 6  

A Data-driven Process Recommender Framework 

This chapter on Data-driven Process Recommender System is based on our paper [3]. In 

this study, we present an approach for improving the performance of complex knowledge-

based processes by providing data-driven step-by-step recommendations. Our framework 

uses the associations between similar historic process performances and contextual 

information to determine the prototypical way of enacting the process. We introduce a 

novel similarity measure for grouping traces into clusters that incorporate temporal 

information about activity performance and handles concurrent activities. Our data-driven 

recommender system selects the appropriate prototype performance of the process based 

on user-provided context attributes. Our approach for determining the prototypes discovers 

the commonly performed activities and their temporal relationships. We tested our system 

on data from three real-world medical processes and achieved recommendation accuracy 

up to an F1 score of 0.77 (compared to an F1 score of 0.37 using ZeroR) with 63.2% of 

recommended enactments being within the first five neighbors of the actual historic 

enactments in a set of 87 cases. Our framework works as an interactive visual analytic tool 

for process mining. This work shows the feasibility of data-driven decision support system 

for complex knowledge-based processes. 

6.1 Introduction 

Contemporary information systems, such as personal calendars and electronic health 

records (EHR), often record activity logs. Process mining techniques attempt to extract 

non-trivial knowledge and insights from activity logs and use them for further analyses 

[18]. Process mining techniques have been applied to practical problems, assisting in 

visualizing, interpreting and diagnosing processes [18]. Existing recommender systems 

have not been developed based on process mining. Our current work presents such a bridge. 

We are designing a data-driven process analysis and recommender system that can provide 

contemporaneous recommendations of process steps and help with retrospective analyses 
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of the process. Our approach relies on mining historic data to uncover the potential 

association between the way of enacting a process and contextual attributes. If association 

tests are significant, we train a recommender system to output a prototypical enactment for 

the given context attributes. 

Unlike most recommender systems that propose one or few next steps at a time, our 

system initially recommends all steps at once. Although it may not be feasible for the 

performers to study and follow a long list of steps, this recommendation can be used at 

runtime to automatically verify the process compliance and detect omitted steps and other 

process errors. Our framework has two stages: process analysis and process 

recommendation (Figure 6.1 (a)). Process analysis includes: (1) clustering of historic traces 

based on similarity; (2) determining the cluster prototypes that represent the established 

process enactment for each cluster; (3) regression analysis to explore the correlation 

between cluster membership and context attributes; and (4) interactive visualization and 

statistical analysis of process traces. The recommendation stage includes: (1) predicting 

the cluster to which the given trace belongs based on the observed context attributes, and 

(2) displaying the prototype of the predicted cluster as the recommended enactment. 

Key technical challenges for this system include measuring the similarity of process 

traces and determining the cluster prototypes. Similarity measurement strongly affects the 

results of trace clustering and plays a key role in our system. Several measures of trace 

similarity exist but suffer from either inaccurate measurement because of timeline 

stretching needed to normalize the trace duration and compute the overlap between the 

traces, or information loss from forced sequencing of concurrent activities needed to apply 

edit distance or pattern-based distance [2]. Another challenge is determining a prototype 

that represents the recommended sequence of steps for each cluster. Our contributions 

include: 

• A novel measure of pairwise similarity between process traces based on time 

warping. Unlike existing similarity measures (edit distance, pattern-based distance, 

and Euclidean distance based on a normalized timeline), our approach incorporates 

the time information while correcting for temporal differences between the same 

activities in different process traces, such as different start times, idle times and 
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duration of the performance. Our approach also handles concurrent activities and 

parallel activities for which the order of performance is irrelevant.  

• A novel approach for determining a prototype for a cluster of process traces. Our 

prototype captures the established enactment for a given context and considers the 

temporal relationships between activities. It achieves a higher average similarity to 

process traces in its cluster than the cluster medoid. 

• A data-driven recommender system that selects a representative enactment based 

on user-provided context attributes. We tested our system on data from three real-

world medical processes and achieved high recommendation accuracy. 

6.2 Related Work 

Complex knowledge-based processes are usually performed based on domain knowledge 

and standard protocols. For example, for trauma resuscitation the Advanced Trauma Life 

Support (ATLS) protocol [16] suggests the workflow based on treatment priorities: Airway 

 Breathing  Circulation  (Neurological) Disability. Clarke et al. [78] and Fitzgerald 

et al. [47] developed computer-aided decision support that recommends next steps to 

reduce human errors. These systems rely on rules manually specified by domain experts, 

lack generalizability, and are subject to human bias. We present an automatic, data-driven, 

label-free framework for process analysis and recommendation. 

Our framework incorporates three main techniques: similarity measures for process 

traces, trace clustering algorithms, and cluster prototype extraction. These techniques have 

been well studied in the analysis of time series [79], but are not applicable to process data. 

Unlike time series with numerical values, process data is typically categorical, representing 

different activity types and their properties. Different process datasets may have very 

different features and no rule exists to decide a similarity between traces of process 

enactment. Common similarity measures include edit or Levenshtein distance [38][30] and 

pattern-based similarity, e.g., n-gram [80][81]. Both measures accept as input only process 

traces represented as sequences, which requires that concurrent activities are sequenced 

(e.g., by activity start time) and that temporal information on activity duration and idle 

times is ignored. Forestier et al. [82][83] proposed dynamic time warping (DTW) as a 

similarity measure for process traces. The DTW, however, cannot handle concurrent 
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activities, does not consider idle time intervals, and has other issues when used for process 

traces [1]. In addition, Forestier et al. considered processes that are mostly sequential (non-

concurrent), with no activities for which the order of performance is irrelevant. To address 

these challenges, we introduce a novel similarity measure based on time warping that 

incorporates temporal information, such as activity start time, performance duration, and 

idle intervals. 

Hierarchical clustering has been commonly used for process trace clustering 

[82][84][85][86]. This algorithm does not need a predefined number of clusters and 

produces a visually intuitive dendrogram (tree diagram). Its main limitation is its 

computational complexity, generally O(n2log(n)) where n is the number of traces, which 

makes it too slow for large datasets. We implemented hierarchical clustering in our 

framework as well as two other state-of-the-art clustering algorithms. 

Cluster prototype candidates can be determined using different techniques. A widely 

used cluster centroid represents the cluster center with a minimum distance to other points 

in the cluster, e.g., sum-squared distance [79]. For categorical and event-based data, 

however, the notion of a “center” may not apply [79]. For example, the centroid of 

categorical data {orange, apple, banana} cannot be determined. An alternative is the cluster 

medoid as the most representative data object in the cluster—an existing object that has a 

minimal average dissimilarity to all other objects in its cluster. The medoid, however, may 

not be adequate when no “suitable” representative exists in the cluster. Another kind of 

prototype is the consensus sequence, a sequence of commonly observed activities found 

by aligning many process traces [1][2]. The consensus sequence, however, represents only 

the order of performance without temporal information. We introduce a novel approach for 

cluster prototype extraction that incorporates temporal information. 

6.3 Process Recommender Framework 

Our framework performance (i.e., recommendation accuracy) does not depend as much on 

the recommender model as on the ability to capture significant commonalities between 

process performances using a similarity measure and clustering, as well as on determining 

the proper cluster prototype. Therefore, we focus on the similarity measure, clustering, and 

prototype extraction for assessing the performance. 
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6.3.1 Terms and Definitions 

A performance of a process can be captured with activity codes and timestamps. We 

represent each activity by its type and performance time (Figure 6.1 (b)) denoted as A = 

{Atype, Ats, Ate}, where Atype is the activity type, Ats is the start time, and Ate is the end time. 

A process case c = {id, x, T} is an instance of process performance. It is indexed with a 

unique case id and consists of the trace T which is a vector of performed activities (internal 

information), and the vector x of context attributes (external information). An ith process 

trace is represented as Ti = [Ai1, …, Aik], where k is the trace length (number of performed 

activities). To make explicit concurrent activities, we use a matrix representation of traces 

 
Figure 6.1. Data sample and our framework structure. 

 

Case ID Activity Start Time End Time
xx1 Patient Arrival 0:00:00 0:00:01
xx1 NRB 0:00:00 0:00:01
xx1 Pre-Oxy Chest Ausc 0:01:08 0:01:23
xx1 Pre-Oxy Breath Verb 0:01:48 0:01:49
xx1 Airway Assessment 0:05:59 0:06:08
xx1 BVM 0:06:43 0:06:44
xx1 Critical Window 0:07:19 0:07:20
xx1 RSI Sedative Meds 0:07:50 0:08:02
xx1 RSI Paralytic Meds 0:08:16 0:08:32
xx1 BVM 0:09:52 0:09:53
xx1 Laryngoscopy 0:10:19 0:10:51

Case ID xxx1 xxx2
Age category 24-96 24-96
Sex Male Female
Intubator PEM Attending PEM/ED Resident
Direct laryngoscopy 1 1
Night Shift 1 0
Reason Seizure Respiratory Distress
Type of Call ED Patient Now
Height (cm) 86 90
Weight (kg) 13 16.4
BMI 17.6 20.2
Num. Intubation Attempts 3 3

(b) Medical process trace (c) Process case context attributes
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as 𝑻𝑻𝑖𝑖 = [𝒑𝒑1𝑖𝑖 , . . ,𝒑𝒑𝑘𝑘𝑖𝑖
𝑖𝑖 ], where the duration of ith trace is discretized into ki time units and in 

each time unit m the vector pi
m = [a1, …, aℓ] represents the execution status of all ℓ activity 

types. If an activity of type a j is being performed during time m, then a j = 1 and a j = 0 

otherwise. The magnitude of each activity vector is |pi
m| =∑j |a j|. Context attributes (or 

external attributes) record the contextual information of a process case, such as the patient 

demographics (Figure 6.1 (c)) in a vector x = [x1, …, xd]T of d observed attributes xi. By 

associating context attributes with step-by-step activities based on historic data, we can 

recommend the best process enactment for given attributes. 

A process trace cluster C = [T1, …, Tc] is a group of c traces that are similar in terms 

of type, activity performance order and times. The cluster membership is determined by 

information internal to process traces. A prototype trace of a cluster is the most 

representative or typical process enactment for this cluster. This representative enactment 

can be an actually observed trace (an exemplar) or derived from other traces in the cluster. 

Cluster prototypes summarize the cluster information and highlight the commonalities of 

the process traces, which can help visualize and compare the differences between different 

clusters. 

A recommended process trace is determined using both internal and contextual 

information of historic traces to find a standardized process performance. This trace can be 

used to guide the process performance or verify the process compliance and detect omitted 

steps and other process errors. 

6.3.2 Trace Similarity based on Time Warping 

The process traces we considered are not simple sequences just recording activity type and 

the order of their performance, but concurrent timelines showing the performance status of 

each activity type over time. Pairwise comparison of these composite traces is challenging. 

An effective similarity measure should combine (i) intrinsic activity likeness, e.g., some 

activities are mutually substitutable, (ii) activity performance time, (iii) relative order of 

performance, and (iv) temporal variation between different performances. The temporal 

variation has several causes, such as activities initiated at different times relative to the 

process start, performed at different speeds, omitted or repeated. The same activities may 

have different temporal characteristics in different traces and traces may have different 
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duration. Although several similarity measures exist for temporal sequences 

[30][38][82][83][84][85][86], none satisfies the above requirements. 

We introduce a novel similarity measure for complex process traces using timeline 

warping to determine the optimal pairwise alignment (Figure 6.2). Our measure considers 

both the sequential order and temporal overlaps of activities during this optimization. We 

define the similarity between traces Ti and Tj as: 

𝑠𝑠(𝑖𝑖, 𝑗𝑗) =  
�𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗�
�𝑻𝑻𝑖𝑖 ∪ 𝑻𝑻𝑗𝑗�

 (6.1) 

where |Ti| =∑m |p i
m| is the total performance time of activities in trace Ti and p i

m is the 

vector of performance status of all activities in mth time unit. |Ti ∩ Tj| is the time when 

both traces had same activities performed and |Ti ∪ Tj| is the time when one or both traces 

had same activities performed. If we define |Ti ⊗ Tj| as the time when only one trace had 

activities performed, then the total active time in a pair of traces is: 

|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗� =  �𝑻𝑻𝑖𝑖 ∪ 𝑻𝑻𝑗𝑗� +  �𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗� (6.2) 

and  

|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗� =  �𝑻𝑻𝑖𝑖 ∪ 𝑻𝑻𝑗𝑗� +  �𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗� (6.3) 

By combining these equations, the similarity of Ti and Tj is:  

𝑠𝑠(𝑖𝑖, 𝑗𝑗) =
�𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗�

|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗� − �𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗�
=

|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗�
|𝑻𝑻𝑖𝑖| + �𝑻𝑻𝑗𝑗� − �𝑻𝑻𝑖𝑖 ∩ 𝑻𝑻𝑗𝑗�

− 1

=
𝟐𝟐|𝑻𝑻𝑖𝑖| + 𝟐𝟐�𝑻𝑻𝑗𝑗�

|𝑻𝑻𝒊𝒊| + �𝑻𝑻𝑗𝑗� + �𝑻𝑻𝑖𝑖⨂𝑻𝑻𝑗𝑗�
− 1 

(6.4) 

The only variable term in this equation during warping alignment of two traces is |Ti ⊗ Tj|. 

The optimal warping path between Ti and Tj is 𝑷𝑷𝑖𝑖𝑖𝑖 = �𝒑𝒑𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 � = ��𝒑𝒑𝑚𝑚𝑖𝑖 ,𝒑𝒑𝑛𝑛

𝑗𝑗 ��, which is the 

solution to this optimization problem: 
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argmin
𝑝𝑝𝑖𝑖𝑖𝑖

�𝑻𝑻𝑖𝑖 ⨂ 𝑻𝑻𝑗𝑗� = ��(𝒑𝒑𝑚𝑚𝑖𝑖 − 𝒑𝒑𝑛𝑛𝑗𝑗 )(𝑱𝑱ℓ − 𝐒𝐒𝑎𝑎)𝒘𝒘�
𝑚𝑚,𝑛𝑛

𝑠𝑠. 𝑡𝑡. �𝒑𝒑𝑚𝑚𝑖𝑖
𝑚𝑚

∈ 𝑻𝑻𝑖𝑖 and �𝒑𝒑𝑛𝑛𝑗𝑗
𝑛𝑛

∈ 𝑻𝑻𝑗𝑗
 (6.5) 

where w = [w1, …, wℓ]T is a vector of weights indicating that some activities are more 

important than others. The weight can be any positive real number and the default is 1. 

When the weights are included,  the trace magnitude is redefined as |Ti| =∑m |pi
m w|. The ℓ-

by-ℓ matrix Sa(i,j) ∈ [0,1] represents the degree to which any pair of ℓ activity types are 

substitutable and Sa(i,j) = 1 when activity types ai and aj are identical. An ℓ-by-ℓ matrix Jℓ 

of all ones is used to determine the distance between pairwise activity types as Jℓ – Sa. The 

weights and substitutability information are optional and may be given by domain experts 

when appropriate. Otherwise, they will default to a vector of ones and an identity matrix, 

respectively. Examples illustrate the influence of activity weight (Figure 6.3 (a)(c)) and 

 
Figure 6.2. Our time warping approach to find the minimum warping distance between two 

process traces T1 and T2. (a) Illustration of the warping path calculated between T1 and T2 

(Eq.6.4). (b) Alignment of the warped timelines. 
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substitutability (Figure 6.3 (a), (d)). Eq.6.5) can be solved similarly as Levenshtein distance 

[38] using dynamic programming with a novel score function: 

𝑡𝑡𝑖𝑖𝑖𝑖(𝑔𝑔,ℎ) =  

⎩⎪
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎧− ∑ |𝒑𝒑𝑚𝑚

𝑖𝑖 𝒘𝒘|
𝑔𝑔

𝑚𝑚=0
−  ∑ |𝒑𝒑𝑛𝑛

𝑗𝑗 𝒘𝒘|
ℎ

𝑛𝑛=0
− 𝜖𝜖,         if min(𝑔𝑔,ℎ) = 0

max

⎩⎪
⎪⎪
⎪⎨
⎪⎪
⎪⎪
⎧𝑡𝑡𝑖𝑖𝑖𝑖(𝑔𝑔 − 1,ℎ − 1) − |(𝒑𝒑𝑔𝑔

𝑖𝑖 − 𝒑𝒑ℎ
𝑗𝑗 )(𝑱𝑱ℓ − 𝑺𝑺𝑎𝑎)𝒘𝒘|    

𝑡𝑡𝑖𝑖𝑖𝑖(𝑔𝑔 − 1,ℎ) − |𝒑𝒑𝑔𝑔
𝑖𝑖 𝒘𝒘|− 𝜖𝜖                                        

𝑡𝑡𝑖𝑖𝑖𝑖(𝑔𝑔,ℎ − 1) − |𝒑𝒑ℎ
𝑗𝑗 𝒘𝒘|− 𝜖𝜖                                         

 (6.6) 

The score function tij(g,h) is defined for alignment costs of two time units pi
g and pj

h. For 

aligning traces Ti and Tj, we define the (ki+1)-by-(kj+1) score matrix t ij. The time-penalty 

vector ε =[ϵ, ϵ, …, ϵ]T ∈ ℝ1×k is designed to penalize excessive warping of the timeline 

(grayed out bottom rows of traces in (Figure 6.3(a)). When ϵ = 0, the timeline can be 

warped without cost, which may declare a short trace similar to a long trace. Constant ϵ 

 
Figure 6.3. (a) Example traces T1 – T4 showing how the similarity results are affected by 

(b) the time penalty ε, (c) activity weights w, and (d) activity substitutability Sa. 
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can be heuristically set to the reciprocal of the standard deviation of case duration. When 

time penalty ε is applied, the trace magnitude is redefined as |Ti| =∑g |pi
g w| + ϵ. The above 

problem is a combinatorial optimization of interval data. We first discretize the time axis 

and then use a time warping algorithm to find the optimal warping path Pij and similarity 

sij. Alg. 6.1  (TwS-PT) shows our approach for calculating the similarity of process traces. 

6.3.3 Clustering Process Traces 

To determine the recommended enactments from a large number of process traces, we 

clustered the traces. Exemplar-based clustering (EC) is an important category of clustering 

algorithms. These algorithms first select exemplars (representative points) from the whole 

dataset and then assign the remaining objects to their nearest exemplar. EC includes classic 

clustering algorithms, like K-means and K-medoids, and recent methods, like Affinity 

Propagation (AP) [87] and Density Peaks based Clustering (DPC) [88]. Because the 

similarities of process traces are measured pairwise, we chose to use clustering methods 

that take similarity matrix as input. We used Hierarchical Clustering, AP, and DPC. 

Selecting the number of clusters is a difficult and well-known problem. Our method for 

setting this number is motivated by an intuition about cluster perception. A set of data 

points projected onto a similarity space observed from distance would appear as having 

fewer clusters than when observed up close. We propose that the number of clusters that 

remains stable over the greatest range of observation granularities represents the most 

probable structure of the dataset. We used AP clustering to analyze how the number of 

clusters varies with perception granularity. In methods like K-means, K-medoids, and 

Algorithm 6.1.  Time-warping Similarity of Process Traces (TwS-PT) 

Input: Ti, Tj 

Output: 𝑠𝑠(𝑖𝑖, 𝑗𝑗) 

Step1. Initialize 𝑻𝑻𝑖𝑖 = [𝒑𝒑1𝑖𝑖 , . . ,𝒑𝒑𝑘𝑘𝑖𝑖
𝑖𝑖 ] , 𝑻𝑻𝑗𝑗 = [𝒑𝒑1

𝑗𝑗 , . . ,𝒑𝒑𝑘𝑘𝑗𝑗
𝑗𝑗 ] , 𝑷𝑷𝑖𝑖𝑖𝑖 = {∅} , |𝑻𝑻𝑖𝑖| = ∑ |𝒑𝒑𝑔𝑔𝑖𝑖 |𝑔𝑔 , 

�𝑻𝑻𝑗𝑗� = ∑ |𝒑𝒑ℎ
𝑗𝑗 |ℎ , 𝒕𝒕𝑖𝑖𝑖𝑖 = {∅}.  

Step2. Fill score matrix 𝒕𝒕𝑖𝑖𝑖𝑖 progressively using Eq.6.6;  

Step3. Deduce 𝑷𝑷𝑖𝑖𝑖𝑖  by tracing back 𝒕𝒕𝑖𝑖𝑖𝑖  from 𝑡𝑡𝑖𝑖𝑖𝑖(𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗) to 𝑡𝑡𝑖𝑖𝑖𝑖(0,0) and at each step 

choosing the neighboring cell that yields the maximum score (Eq.6.6). 

Step4. �𝑻𝑻𝑖𝑖  ⨂ 𝑻𝑻𝑗𝑗� = (−1) ∗ 𝒕𝒕𝑖𝑖𝑖𝑖(𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗); 

Step5. return 𝑠𝑠(𝑖𝑖, 𝑗𝑗) computed using Eq.6.4  
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spectral clustering, the number of clusters K is specified by the user. Although a similar 

parameter (preference p) is specified in AP clustering, the selection of p is more robust 

than that of K, as p linearly controls the perception granularity. The number of clusters 

increases with p and depends on the number of input objects [87]. We used pc 

(p coefficient) to avoid the dependence on the number of objects:  

𝑝𝑝 = mean(𝑺𝑺) − 𝑝𝑝𝑐𝑐 ∙ 𝑁𝑁 (6.7) 

Algorithm 6.2. Number of Clusters using AP (NumC-AP) 

Input: 𝑺𝑺 = {𝑠𝑠(𝑖𝑖, 𝑗𝑗)}, 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 ,𝛾𝛾 

Output: 𝑁𝑁𝑐𝑐∗ 

Step1. Initialize 𝑢𝑢 = 1, 𝑝𝑝𝑐𝑐(𝑢𝑢) = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 ; 

Step2. Run AP clustering with S and pc(u). The output is the number of 

clusters N c(u). 

Step3. If 𝑁𝑁𝑐𝑐(𝑢𝑢) > 1, 𝑢𝑢 = 𝑢𝑢 + 1, 𝑝𝑝𝑐𝑐(𝑢𝑢) = 𝑝𝑝𝑐𝑐(𝑢𝑢 − 1) + 𝛾𝛾, go to Step2. 

Step4. return the most stable number of clusters 𝑁𝑁𝑐𝑐∗ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁𝑐𝑐). 

 

 
Figure 6.4. Two examples of synthetic data in rows (1) and (2) showing how NumC-AP 

(Algo. 2) decides the number of clusters. (a) The data distribution in a plane. (b) pc vs. the 

number of clusters. (c) Zoomed-in view of (b). 
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where S is the similarity matrix of traces and N is the number of traces. Alg. 6.2 summarizes 

our approach for selecting the number of clusters using the AP clustering algorithm 

(NumC-AP). In Alg. 6.2, γ is the increment of pc and Nc is the number of clusters. We used 

synthetic data to show how NumC-AP works (Figure 6.4). In the first example, points are 

distributed into four groups (Figure 6.4 (1.a)). The NumC-AP results show how the number 

of clusters changes with pc from N to 1 (Figure 6.4 (1.b)). The proper number of clusters 

determined by NumC-AP is 4 and the second best choice is 2 clusters (Figure 6.4 (1.c)) as 

they best reflect the actual distribution of data points (Figure 6.4 (1.a)). Changing the 

distribution of the synthetic data causes the optimal number of clusters to change 

accordingly (Figure 6.4 (2)).  

 

6.3.4 Determining the Cluster Prototype 

After trace clusters are determined, a step-by-step prototype trace representing the 

recommended enactment is identified for each cluster. In the past, the medoid or a 

consensus sequence have been used as process prototypes. Because our traces contain 

concurrent activities that vary in the order of performance and temporal characteristics, 

existing methods cannot provide representative prototypes for our application. We 

developed an approach for determining cluster prototypes in three steps: (1) discovering 

the time-warped prototype using time warping paired with a divide-and-conquer strategy 

(a method of dividing the problem into recursively conquerable subproblems used, for 

example, in Quicksort); (2) unwarping the timeline to find the prototype; and (3) filtering 

and repairing the prototype for easier interpretation. Given a cluster C of traces, we first 

build a guide tree t (a dendrogram) using hierarchical clustering with Ward’s method 

linkage criterion [89]. The time-warped cluster prototype q is then solved recursively from 
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the leaves to the root of the guide tree (Figure 6.5 (b)). At each step, q is calculated pairwise 

from process traces by summing up their aligned results (Figure 6.5 (a)).  

 
Figure 6.5. Steps for calculating a cluster prototype. (a) Calculating prototype q pairwise 

recursively from a set of process traces. Trace activities are shown in rows. After traces are 

aligned and activities summed up, the summed value is visualized using the color-bar from 

1 to n, where n is the number of traces. (b) A guide tree for directing the prototype 

calculation for a cluster of traces. (c) Unwarping the warped timeline to restore the timeline 

and find the prototype. (d) Filtering the prototype using α. (e) Repairing activity C by 

merging smaller fragment to the larger one.  
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𝒒𝒒 = 𝑻𝑻𝑖𝑖,𝑗𝑗 = 𝑻𝑻𝑖𝑖 + 𝑻𝑻𝑗𝑗 = [𝒑𝒑1𝑖𝑖 + 𝒑𝒑1
𝑗𝑗   𝒑𝒑2𝑖𝑖 + 𝒑𝒑2

𝑗𝑗 … 𝒑𝒑𝑘𝑘𝑖𝑖 + 𝒑𝒑𝑘𝑘
𝑗𝑗 ] (6.8) 

where 𝑻𝑻𝑖𝑖 and 𝑻𝑻𝑗𝑗  denote traces aligned using Alg. 6.1 and k is the length of the warped 

timeline. The time penalty vector ε is set to [0.2, …, 0.2]T  (bottom rows in Figure 6.5 (a)). 

The penalties start as equal for the original traces so during alignment 𝜺𝜺  can capture 

whether a warped time unit was frequently aligned or only existed in few cases. The 

summed ε in q in the root of guide tree t can guide the time unwarping by its values in each 

time unit (Figure 6.5 (c)). For example, the long yellow bar in the bottom row of Figure 

6.5 (a), between time 10 and 25 in T (1,3,2),4 comes from trace T3 which has a long idle period 

in the middle. For easier interpretation, we simplify q by thresholding out the rare activities 

(Figure 6.5 (d)). To this aim, we define the support of a time cell 𝑎𝑎𝑖𝑖𝑖𝑖
𝒒𝒒  as:  

𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑎𝑎𝑖𝑖𝑖𝑖
𝒒𝒒 𝑐𝑐⁄  (6.9) 

where c is the number of traces in the cluster; i is the ith row (also ith activity type) of q; j 

is the jth column (also jth time unit) of q. The time unit is set to 1 when its support is greater 

than a threshold α and 0 otherwise, where α is by default set to 0.5. A potential drawback 

of this thresholding strategy is that it cannot capture frequent but sparsely distributed 

activities. To address this problem, we estimated the activity’s frequency and included 

frequent activities (unique freq ≥ 0.5 in the clusters’ cases) back into the prototype at the 

most likely position. This adjustment was done because the sparsely distributed rare 

activities may be aligned to several different positions during the prototyping. The 

thresholding removed them from consideration during warping, and left them to 

reincorporate more appropriately later. Another problem is, as time units are independent 

and discrete, activity-time cells of an activity may be fragmented after alignment and 

filtering (e.g., activity C in Figure 6.5 (d)). This fragmentation occurs because the time axis 

is discretized, a continuous activity is sliced into discrete slices and each slice is aligned 

independently with the corresponding time slice in other traces. When the slices of a 

continuous activity are independently aligned with other traces, the alignment may 

introduce gaps between the slices (e.g., activity C in in Figure 6.5 (d)) because in another 

trace the same activity was performed with an interruption or because a concurrent activity 

forced this fragmentation to achieve higher similarity score. We apply a repair to mitigate 
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this problem by moving the smaller fragment to merge with the large one and close the gap 

if the gap is smaller than a time threshold β, which can be set as the mean value of all 

activity durations. We move the smaller fragment to the larger one since this repair has a 

smaller cost. Our procedure for extracting cluster prototype is summarized as Alg. 6.3.  

6.3.5 The Recommender Model 

We chose to use regression model for our recommender system rather than a complex 

model (e.g., SVM or neural networks), as the statistical analysis (e.g., significance test) in 

regression model can help us easier interpret the correlations between data cluster 

membership and context attributes. 

The goal of our logistic regression model is to leverage a set of n process cases to design 

a classifier that can distinguish between m≥2 clusters given context attributes x. The cluster 

label of a process trace is encoded as 𝒚𝒚 = [𝑦𝑦(1),𝑦𝑦(2), … ,𝑦𝑦(𝑚𝑚)]𝑇𝑇 where y(i) = 1 if x is the 

context information of a trace that belongs to cluster i and y(i) = 0 otherwise. The n process 

cases can then be represented as 𝒮𝒮 = {(𝒙𝒙1,𝒚𝒚1), … , (𝒙𝒙𝑛𝑛,𝒚𝒚𝑛𝑛)}. By default, we define the last 

class (the mth cluster) as the reference category, against which logits of the first m – 1 

categories are compared. Our logistic regression was trained with L2 regularizer: 

𝜷𝜷� = arg max
𝜷𝜷

�� log𝑃𝑃(𝒚𝒚𝑗𝑗|𝒙𝒙𝑗𝑗 ,𝜷𝜷)
𝑛𝑛

𝑗𝑗=1

+ 𝜆𝜆‖𝜷𝜷‖𝟐𝟐� (6.10) 

 

Algorithm 6.3. Time-warping based Cluster Prototype (TwCP) 
Input: C, α, β 
Output: q 

Step1. Calculate similarity matrix S of C using Alg. 6.1 (TwS-PT); 

Step2. Build the guide tree t with HC algorithm and S; 

Step3. Traverse t bottom up, from leaves to the root; 

Step4. 𝑻𝑻𝑖𝑖= node.get(left), 𝑻𝑻𝑗𝑗= node.get(right), align 𝑻𝑻𝑖𝑖 and 𝑻𝑻𝑖𝑖; 

𝒒𝒒 = 𝑻𝑻𝑖𝑖,𝑗𝑗 = 𝑻𝑻𝑖𝑖 + 𝑻𝑻𝑗𝑗;  

Step5. Go to Step 3 until current node equals root; 

Step6. Unwarp q to recover the timeline; 

Step7. Filter q with a predefined α and repair q with β; 

Step8. return q 
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where β are regression coefficients for context attributes and λ is the ridge estimator of L2 

regularizer. To find which attributes are associated with cluster membership, we used the 

Wald test [90] for logistic regression and a significance level at <0.05. 

To generate recommendations, our system works by taking a new context attribute set 

x′ (given by the user) and outputs a recommended enactment. The trained regression model 

selects the cluster class label y that maximizes the likelihood function: 

𝒚𝒚 = arg max
𝒚𝒚

𝑃𝑃�𝒚𝒚�𝒙𝒙′,𝜷𝜷�� (6.11) 

Our system then returns the prototype of the most probable cluster as the recommended 

enactment. Because not all contextual attributes are good predictors, we used only 

statistically significant attributes to improve the recommendation accuracy. If no attribute 

was found as significant, all attributes are considered. Our framework was implemented as 

a web app (VIT-PLA, Figure 6.6) using D3.js, Bootstrap, JSP, Java, and includes 

interactive visual functions. 

 

 
Figure 6.6. Graphical user interface of the implementation of our framework for process 

mining and recommendation. 
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6.4 Experiments 

We demonstrated the use of our framework with three real-world logs and evaluated the 

performance of different techniques. 

6.4.1 Real World Medical Process Datasets 

Datasets from three medical processes, collected in the emergency department of 

Children’s National Medical Center, a level 1 pediatric trauma center in Washington, DC, 

were used for evaluating our framework (Table 6-1): 

Tracheal Intubation Data: Ten context attributes are of three types: (a) patient 

demographics: age (<24 months, 24-96, >96), gender, height, weight, body mass index 

(BMI); (b) provider attributes: intubator’s medical role (emergency medicine attending, 

anesthesia resident, etc.); and (c) event attributes: night/day, emergency/pre-arrival, direct-

laryngoscopy/video-laryngoscopy and reason for intubation (seizure, respiratory distress, 

altered mental status—AMS). 

Trauma Resuscitation Data: The trauma resuscitation is performed by a trauma team 

comprised of several physicians, nurses and ancillary medical staff, all working 

concurrently. Each case was coded with 17 context attributes of two types: (a) patient 

demographics: age, race, gender, injury type, injury severity score, pre-arrival intubation, 

mental status, body region injured (e.g., head, face, chest, etc.); and (b) treatment attributes: 

paged response (stat, transfer), day/night, weekend/weekday. 

Emergency Department (ED) Data: This dataset contained a very diverse set of patient 

procedures. The attribute types are the same as for the trauma resuscitation data. Unlike 

tracheal intubation and trauma resuscitation, which are standardized processes, the ED 

process is not. ED data is quite different from case to case and the activities are temporally 

sparse. 

6.4.2 Similarity Measure Evaluation  

To evaluate our similarity measure, we performed experiments using 65 randomly selected 

sets of three traces from the Intubation dataset {Ti, Tj, Tk} (Figure 6.7(a)). Three medical 

experts were asked to decide the most similar among three trace pairs, (Ti, Tj), (Ti, Tk) and 
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(Tj, Tk) based on their domain knowledge. Our visualizations (Figure 6.7(a)) of traces 

helped them to quickly detect the differences between traces in a set. They used their 

domain knowledge to judge how important these differences are, and decide which trace 

pair is more similar than others. We used these labeled results to evaluate our similarity 

measure. Our baselines included edit distance (ED), sequential-pattern based distance (SP 

based on algorithm CM-SPADE [92]), normalized Euclidean-distance (NE), and dynamic 

time warping distance (DTW). We also evaluated these similarity measures using a 

majority voting strategy that determines whether the most similar pair selected by each 

measure matched the majority decision.  

The results (Figure 6.7(b)) showed that our time-warping-based similarity measure 

achieved the highest accuracy on both medical expert labels (0.69) and voting-based results 

(0.80). Edit distance, the simplest measure considered, also performed well because the 

intubation data was mostly sequential so the activity type and order of performance were 

the keys to comparing the traces. Normalized Euclidean distance and DTW performed 

worse because they failed in cases where a long intubation trace (e.g., 40 mins) was 

compared with a brief trace (e.g., 10 mins). The normalized Euclidean distance failed 

because it could only capture few similarities after normalizing long and short timelines. 

The DTW failed because it did not penalize long idle times and activity duration 

differences between traces. In addition to individual measures, we also computed the 

accuracy of the majority. The majority of our similarly measures correctly identified 

39 sets (≥3 votes) and 5 sets as unsure (with two tied majorities). 

Table 6-1. Properties of our three medical process datasets. 

    Dataset 

Stats 
Intubation Trauma ED  

Num. Patient Records 101 87 644 

Num. Total Acts 1244 9477 2290 

Num. Act Types 15 128 65 

Longest Trace (Num. Acts) 20 196 12 

Shortest Trace (Num. Acts) 8 60 1 

Num. External Attributes 10 11 11 
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In 12 of the 65 sets, all measures and the medical experts agreed on the most similar 

trace pairs. In another 5 cases, all measures made wrong choices. We reanalyzed these 5 

cases and found that the ground truth was incorrectly labelled in two, and in the other three 

cases the experts used medical knowledge that was not explicitly considered by the 

similarity measures: (1) time-to-task for “decision to intubate,” and (2) the type of oxygen 

mask (BVM vs. NRB). Even without additional domain knowledge, we found that in 62 of 

65 cases (95.4%), at least one data-driven similarity measure made the same decision as 

the experts did. Our TwS-PT (Alg. 6.1) independently achieved 69% decision accuracy. 

These two findings show the feasibility of using purely data-driven similarity measures for 

comparing complex process traces.  

6.4.3 Prototype Analysis 

We evaluated our prototype extraction method (TwCP, Alg. 6.3) quantitatively and by 

qualitative feedback from domain experts. We used mediod as the benchmark prototype 

since it is often used as cluster exemplar. For this comparison, we extracted the prototypes 

 
Figure 6.7. (a) A sample set of Intubation procedure given to medical experts to evaluate. 

The horizontal-axis denotes timestamp in minutes and vertical-axis denotes activity types. 

The blue blocks represent the performance time and duration of activities. (b) Performance 

of different similarity measures compared to expert opinion. 
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and medoids from the whole datasets without clustering, to avoid potential bias from 

clustering algorithms (Figure 6.8). We omitted the ED dataset from this comparison 

because its prototype and medoid had only two activities. Our results show TwCP 

prototype had higher average similarity to other traces than the medoid (Figure 6.9(a)). 

This difference was greater for the trauma dataset than for the intubation dataset because 

the medoid depends on dataset size (number of traces) and trace complexity. A large dataset 

is more likely to contain a trace close to the centroid. In a small dataset, the medoid may 

be far from the centroid. Process complexity also affects the medoid because more 

activities and greater variability make it less likely that an existing trace will well represent 

the characteristics of the process. Our intubation data is much simpler than trauma data that 

had more than 100 activity types and average trace length of 109 activities.  

 The medoids may not fully capture deviations from the standard protocol due to the 

variable injuries of different patients. Our TwCP prototype better captured standard 

practices and included more tasks applicable to a diverse range of injuries, but it may 

 
Figure 6.8. (a) TwCP prototype (left) and medoid (right) for the whole Intubation dataset. 

(b) TwCP and medoid for Trauma dataset showing the 52 commonly performed activities. 

For easier comparison, the vertical axis labels (activity names) were ordered based on a 

rough temporal order of activities. The horizontal axis denotes the real (not warped) 

timeline in minutes.  

(b)

(a)
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capture idiosyncratic details that would not be expected by a domain expert. For the 

Trauma data (Figure 6.8 (b)), the medoid omitted inspection of the eyes, nose and pelvis 

while the TwCP suggested an acceptable but uncommon sequence for the extremity exam. 

For the Intubation data (Figure 6.8 (a)), TwCP included the performance of airway 

assessment and the use of the non-rebreather (NRB), which the medoid omitted. The 

medoid more accurately represented oxygen delivery during intubation because one cannot 

use a bag valve mask (BVM) and NRB simultaneously. TwCP, however, showed that both 

mechanisms of oxygen delivery were acceptable before intubation and included airway 

assessment, making the prototype more complete. The human factors literature [93] and 

our study [11] suggests to study work-as-done rather than work-as-imagined when 

designing computerized support systems. TwCP prototype is useful since it captures actual 

work. By comparing a given trace to the prototype, one can detect and analyze the process 

deviations. 

6.4.4 Recommendation System Evaluation 

Our recommendation system was evaluated using two approaches: (E1) whether the actual 

process trace (denoted as 𝑻𝑻𝑎𝑎) belonged to the most probable cluster decided based on 

context attributes by the trained regression model; and (E2) whether the recommended 

trace (denoted as 𝑻𝑻𝑟𝑟) was close to the actual trace.  

Because trace clusters may be of very different sizes (multi-class imbalance learning 

problem), we adopted the F-measure (F1-score) and geometric mean (G-mean) [91] to 

properly evaluate the performance using the first approach (E1). We did not choose the 

commonly used accuracy measure as it is ineffective at evaluating imbalanced learning 

scenarios, where the accuracy of the majority class may dominate. F-measure and G-mean 

can balance the classification performances of all majority and minority classes. 

The second approach (E2) evaluated our system by checking if the recommended trace 

𝑻𝑻𝑟𝑟 was among the k nearest neighbors of 𝑻𝑻𝑎𝑎, where k ranged from 1 to n and for k=1 the 

recommended prototype was the closest neighbor. This measure is not symmetrical, i.e., 

𝑻𝑻𝑟𝑟  being within k neighbors of 𝑻𝑻𝑎𝑎  does not imply that 𝑻𝑻𝑎𝑎  is within k neighbors of 𝑻𝑻𝑟𝑟 . 

Therefore, a recommended trace that is among a few neighbors of most traces is very 

representative for the given cluster.  
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We implemented several similarity measures: edit distance (ED), sequential pattern 

(SP), and TwS-TP, and several clustering algorithms: hierarchical clustering (HC), density-

peak clustering (DPC) and affinity propagation clustering (APC). We clustered the process 

traces using different combinations of similarity and clustering algorithms. We used 

tenfold cross-validation to reduce the variance of the recommendation accuracy. We 

selected ZeroR as the baseline, which always takes the largest cluster as the prediction 

result. Our experimental results (Table 6-2) show that the combination of time-warping 

distance and APC algorithm achieved the highest F1 score for both the Intubation and 

Trauma data. Edit distance with APC algorithm achieved the highest F1 score for the ED 

procedure data. From the perspective of the clustering algorithm, APC performed better 

than HC and DPC in most cases regardless of the similarity measure. From the perspective 

of the similarity measure, our TwS-PT performed best for both the Intubation and Trauma 

data. Edit distance performed best for ED data (Table 6-2), because ED procedures are 

sparse with only few activities and temporal information is not essential. Temporal 

information is informative and important for some but not all processes. The selection of 

similarity measure is best decided by the nature of dataset with the help of visualization 

tools. Medical procedures depend on other factors that were not recorded in our data, such 

Table 6-2. Recommendation evaluation on three medical process datasets. The format 

𝜶𝜶 (𝝉𝝉) represents the regression model result 𝜶𝜶 and the baseline (ZeroR) result (𝝉𝝉). Rec NC 

stands for recommended number of clusters. 

 Intubation Data Trauma Resuscitation Data ED Procedure Data 

Rec NC ED (2), SP (3), Time-warping (2) ED(2), SP (2), Time-warping (2) ED (2), SP(3), Time-warping (2) 

Metrics F-Score G-means F-Score G-means F-Score G-means 

ED + HC 0.505 (0.504) 0.445 (0.479) 0.634 (0.654) 0.448 (0.428) 0.615 (0.615) 0.445 (0.445) 

ED + DPC 0.719 (0.755) 0.383 (0.374) 0.692 (0.686) 0.436 (0.413) 0.860 (0.860) 0.293 (0.293) 

ED + APC  0.415 (0.339) 0.416 (0.500) 0.346 (0.353) 0.392 (0.500) 0.595 (0.447) 0.571 (0.491) 

SP + HC 0.286 (0.275) 0.412 (0.497) 0.637 (0.533) 0.603 (0.471) 0.395 (0.292) 0.531 (0.499) 

SP + DPC 0.446 (0.264) 0.566 (0.496) 0.637 (0.533) 0.603 (0.471) 0.516 (0.516) 0.476 (0.476) 

SP + APC 0.487 (0.277) 0.593 (0.471) 0.645 (0.519) 0.591 (0.475) 0.485 (0.477) 0.485 (0.494) 

TwS-PT + HC 0.596 (0.419) 0.590 (0.495) 0.526 (0.392) 0.520 (0.497) 0.502 (0.395) 0.554 (0.497) 

TwS-PT + DPC 0.605 (0.567) 0.494 (0.461) 0.713 (0.670) 0.556 (0.421) 0.531 (0.387) 0.538 (0.498) 

TwS-PT + APC 0.700 (0.384) 0.695 (0.498) 0.767 (0.366) 0.683 (0.499) 0.581 (0.471) 0.549 (0.486) 
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as the environment, patient condition, and medical team status. This fact explains why we 

could not achieve very high recommendation accuracy for these complex datasets. An 

alternative is making recommendations only for a subset of cases when regression model 

has a high confidence. For example, when we made prediction only for patients whose 

intubation reason was altered mental status (AMS) and type of call was “now,” we achieved 

87.5% recommendation accuracy using the TwS-PT + APC combination. 

In 55 of 87 cases (63.2%) in the Trauma dataset, our recommended prototype was 

among the 5 nearest neighbors of the actual trace (Figure 6.9 (b)).  In the remaining 32 

cases, the recommended prototype was not among the 5 nearest neighbors of the actual 

trace because our regression model incorrectly predicted the cluster membership from 

trace’s context. For example, TwS-PT+APC had 0.767 F1 score for finding cluster 

membership using context attributes for trauma data (Table 6-2). A wrong cluster, in turn, 

results in recommending a wrong prototype.  

6.4.5 A Case Study with Intubation Process 

We used the Intubation dataset as a case study to further illustrate the performance of our 

framework. The recommended number of clusters given by NumC-AP (Alg. 6.2) was 2  

(Figure 6.10 (a)(b)). The process traces were clustered using algorithms HC (Figure 6.10 

(c)), DPC, and APC. In the trained regression model, several context attributes, e.g., 

 
Figure 6.9. (a) Avg. similarity between prototypes and other process traces. (b) Number of 

hits of recommended process enactment within k nearest neighbors of the actual 

enactment. 
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intubator role, night shift, intubation reasons, were statistically significant for trace clusters 

(Table 6-3). Using the APC result as an example, the reason for intubation and intubator 

role was significantly correlated with the two clusters. The two prototypes (qc1 and qc2) 

(Figure 6.11) extracted from two clusters showed many differences: (1) qc1 (Figure 6.11 

(a)) had the activities “airway assessment” and “NRB,” while in qc2 (Figure 6.11 (b))   these 

activities were missing; (2) qc1 (~19.5 mins) was shorter than qc2 (~22 mins); (3) activities 

“pre-oxy breathing verb.” and “decision to intubate” occurred later in qc2. In addition to 

these differences, qc1 and qc2 had many commonalities, e.g., performance time and 

sequential order of activities “chest auscultation,” “critical window,” “RSIs” and 

“laryngoscopy.” Our medical experts explained that in cluster-1 clinicians used a passive 

non-rebreather (NRB) instead of an active bag-valve-mask (BVM) for initial oxygen 

delivery. The ATLS protocol requires that providers secure the patient’s airway before 

 
Figure 6.10. (a)(b) NumC-AP (Alg. 6.2) on Intubation data and (c) hierarchical clustering 

(based on Ward’s method). 

 

 
Figure 6.11. Prototypes of cluster-1 (qc1) and cluster-2 (qc2). 
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moving onto other survey items. Our results showed that patients in cluster-1 more 

frequently underwent intubation for respiratory distress. If patients in cluster-1 originally 

presented with a secured airway, it would make sense that the onset of respiratory distress 

would necessitate intubation to secure the airway. Patients in cluster-2 were already 

experiencing some degree of respiratory distress or they would not have needed a BVM. It 

is plausible, then, that other clinical indicators prompted intubation in cluster-2.  

Table 6-3. p-values from regression model. 
    Clustering 

Attributes 
HC DPC APC 

(Intercept) 0.43 0.73 0.03 

Age 
<24 months 0.43 0.07 0.11 

24-96 months 0.75 0.39 0.94 

Gender 0.76 0.1 0.34 

Intubator Role 

Anesthesia Resident 0.41 0.31 0.2 

PEM Attending 0.58 0.85 0.03 

PEM Fellow 0.17 0.2 0.25 

PEM/ED Resident 0.64 0.09 0.79 

PICU Fellow 0.43 0.74 0.36 

Direct Laryngoscopy 0.77 0.11 0.4 

Night Shift 0.18 0.03 0.51 

Reason 
Respiratory Distress 0.15 0.87 0.02 

Seizure 0.74 0.94 0.56 

Type of Call 
ED Patient 0.85 0.53 0.14 

Now 0.79 0.34 0.57 
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Chapter 7 A Context-Aware Deep Learning Framework for 

Next Medical Treatment Activity Recommendation 

This chapter is about the Deep Process Recommender System. AI recommender systems 

have been successfully applied in many domains (e.g., e-commerce, e-learning). It is 

believed by medical experts that such systems may help reduce medical team errors and 

improve patient outcomes in treatment processes (e.g., trauma resuscitation, surgical 

processes). Limited research, however, has been done to explore automatic data-driven 

treatment recommendations. In this chapter, we bridge this gap by presenting a deep-

learning-based process recommender system to provide runtime treatment 

recommendations. The system is built on state-of-the-art recurrent neural networks, which 

take into account both environmental (e.g., patient demographics) and behavioral (i.e., 

preceding treatment activities) contextual information. In our implementation, we 

presented novel designs like Act2vec and sliding-window attention to improve the model 

performance and help interpret the results. We also proposed a data augmentation 

algorithm to address the limited amount of data and help pre-train the model. Our 

framework was evaluated on two real-world medical process datasets. The experimental 

results show our system outperforms baseline methods in recommendation accuracy, 

demonstrating the feasibility of data-driven context-aware recommender systems for 

complex real-world medical processes. 

7.1 Introduction 

Medical teams make unavoidable errors in fast-paced and high-risk medical treatment 

processes. Take trauma resuscitations for example. Critically injured trauma patients have 

up to a four-fold higher risk of death from errors than general hospital patients. Nearly half 

of these preventable deaths are related to errors during the initial resuscitation phase of 

treatment [94]. During such medical processes, multidisciplinary teams are responsible for 

rapidly identifying and treating potentially life-threatening injuries, then developing and 

executing a short-term management plan for those injuries. Some computer-aided decision 
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support systems [47] and expert-derived algorithms [95] have been proposed to reduce 

medical team errors and improve patient outcomes for treatment processes. Despite being 

carefully designed by medical experts, these initial attempts have had limited success for 

three reasons. First, the expert-derived knowledge-based models might not reflect reality. 

Second, the expert model’s rules are meant for general patients and do not take into account 

the specific needs of a particular patient. Third, these approaches are heavily case-based 

and lack generalizability to other medical processes. Our research explores how to 

automatically provide data-driven recommendations to accompany the clinicians’ decision 

process. The recommender system built on artificial intelligence (AI) and data mining 

techniques would provide the medical team leader (or surgical coordinator) with next-step 

treatment recommendations through the wall displays (monitors).  

Despite the wide application of data-driven recommender systems in e-commerce and 

e-service [96], there are only a limited number of applications in health or medical related 

fields [97][98]. There is even less related work for temporally correlated data. Sun et al. 

[99] proposed a similarity-based framework to extract typical treatment regimens from 

large-scale electronic medical records; they used these to match the discovered treatment 

regimens with patient cohorts for personalized medication recommendation. However, 

their work recommends a whole treatment regimen to patients, while this chapter studies 

how to recommend next activities dynamically. Yang et al. [3] clustered patients into 

cohorts to find prototypical treatment patterns for each cohort. The prototypical treatment 

patterns were recommended to the new patients by first deciding which cohort the patient 

belonged to. This work only considered static contextual information (patient 

demographics), and did not consider the dynamic contextual information (e.g., ongoing 

treatment process). The recommendations were given before the treatment started and 

would not adjust during the treatment. Edward et al. [98] studied how to predict the next 

clinical event by considering both environmental and behavioral medical information, but 

their method can only predict the occurrences of three main endpoints and takes the 

advantage of sufficiently available electronic medical records. 

Our recommender system application for medical processes has two characteristics. 

Firstly, temporal information plays an important role. Treatment activities have temporal 

correlations, i.e., the secondary survey of the trauma resuscitation usually follows a head-
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to-toe examination. Temporal correlations do not only exist between directly adjacent 

activities, but also exist between activities separated by several intervening activities. 

Secondly, the medical team must take into account that different patients with different 

conditions (e.g., injury area and severity) need different medical treatment procedures. For 

this reason, it is important to incorporate context attributes into the recommender system 

for prescriptive analytics [100]. There are two types of contextual information: 

environmental and behavioral. Behavioral context refers to the treatment workflow: the 

activities performed and the order of their performance. Environmental context can be 

further divided into two categories: static and dynamic. Static context is features of the 

patient or resuscitation that are present when the patient arrives and do not change. 

Examples are time of day, age of patient, and mechanism of injury. Dynamic context is 

features that change as treatment goes on; these are usually activity attributes (e.g. 

descriptor and whether the activity was completed).  

Our recommender system was specifically designed to handle these differences. To 

model temporal dependencies, we used recurrent neural networks (RNN). To address the 

second challenge of patient diversity, we modified the RNN to receive and incorporate 

patient demographics as auxiliary inputs to the network. In addition, we included two novel 

designs, Act2vec and sliding-window attention, to improve RNN performance and 

interpretability. Another technical challenge in our study is the limited amount of medical 

process data. The proper learning of the complex temporal correlations requires a sizable 

amount of training data. Coding medical process data, however, is labor-intensive. Over 

two years, we coded 122 resuscitation cases, but our data is still too small to train a deep 

neural network. We address this limitation by pre-training the neural network with 

synthetic data. The synthetic process data was generated by a novel data-augmentation 

algorithm that is based on trace alignment algorithm and multivariate Bernoulli 

distribution. Our main contributions are: 

• A novel process recommender framework using a multi-input recurrent neural 

network that integrates both environmental and behavioral context information. We 

applied our approach to the trauma resuscitation process, and the results show that 

we achieved better recommendation accuracy than the baselines. 
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• Act2vec activity embedder designed to translate treatment activities into numerical 

vectors. Act2vec can capture the proximity between different activities. The use of 

Act2vec in the model helps improve model performance. And the visual analytics 

based on Act2vec can reveal interesting insights from medical processes.  

• A sliding-window attention designed to improve model performance and 

interpretability. The sliding-window attention mechanism can focus RNN on 

outputs of the last several hidden states, rather than just a single hidden state (i.e., 

the current hidden state). This mechanism can focus the network on states produced 

many time steps earlier, and does not require that the last state store all the 

information. By checking the attention score vector, it is also possible for us to 

know what information the neural network focuses on when making decisions.  

• A data-augmentation algorithm to help pre-train and regularize neural networks. 

The algorithm can procedurally fabricate a large amount of unique synthetic patient 

data that closely resembles authentic data. Generated synthetic data was used to 

pre-train the neural network, addressing the problem of limited training data. 

7.2 Treatment Recommendation with Deep Learning 

7.2.1 Data Description and Notations 

The historic patient records 𝒓𝒓 = [𝑟𝑟(1), … , 𝑟𝑟(𝑛𝑛)]𝑇𝑇 is a vector of 𝑛𝑛 elements 𝑟𝑟(𝑖𝑖), where 𝑖𝑖 here 

is the index of the patient record. Each patient record 𝑟𝑟(𝑖𝑖) = {𝑖𝑖𝑖𝑖(𝑖𝑖),𝒙𝒙(𝑖𝑖),𝑻𝑻(𝑖𝑖)} is indexed 

with a unique patient id, contains the medical process trace 𝑻𝑻(𝑖𝑖), and has a vector 𝒙𝒙(𝑖𝑖) of 

associated patient attributes. A trace 𝑻𝑻(𝑖𝑖) = [�𝑎𝑎1
(𝑖𝑖),𝒃𝒃1

(𝑖𝑖)�, … , �𝑎𝑎t
(𝑖𝑖),𝒃𝒃t

(𝑖𝑖)�… , �𝑎𝑎q
(𝑖𝑖),𝒃𝒃q

(𝑖𝑖)�]𝑇𝑇 

includes 𝑞𝑞 treatment activities that are ordered based on activity occurrence time. 𝒃𝒃t
(𝑖𝑖) =

[𝑏𝑏1
(𝑖𝑖), … , 𝑏𝑏𝑚𝑚

(𝑖𝑖)]𝑇𝑇 is a vector of attributes associated with the activity 𝑎𝑎t
(𝑖𝑖) (e.g., who is the 

activity “Descriptor” and whether the activity is “Verbalized” in Table 7-1 (a)).  Patient 

attributes 𝒙𝒙(𝑖𝑖) = [𝑥𝑥1
(𝑖𝑖), … , 𝑥𝑥𝑔𝑔

(𝑖𝑖)]𝑇𝑇 is a vector of 𝑔𝑔 recorded attributes (e.g., patient age, injury 

type and injured body area). Attribute vector 𝒙𝒙 is at patient level while attribute vector 𝒃𝒃 

is at activity level.  
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7.2.2 Context-aware Deep Treatment Recommendation Framework 

7.2.2.1 Overview of the Proposed Framework 

The goal of the proposed algorithm is to recommend next-step treatment activities to the 

medical team based on the observed behavioral contextual information (up-to-now 

treatment traces) and environmental contextual information (i.e., activity attributes and 

patient attributes).  The recommender system (Figure 7.1) built on an RNN. The RNN takes 

as input the concatenation of the activity embedding vectors 𝒗𝒗𝑎𝑎 = [𝒗𝒗1𝑎𝑎, … ,𝒗𝒗𝑡𝑡𝑎𝑎] (main input) 

and the activity attribute vectors 𝒗𝒗𝑏𝑏 = [𝒗𝒗1𝑏𝑏 , … ,𝒗𝒗𝑡𝑡𝑏𝑏]  (auxiliary input, dynamic 

environmental context). The latent vector outputs from the RNN go through our attention 

layer and then merged with the patient attribute vector 𝒗𝒗𝑥𝑥  (auxiliary input, static 

environmental context).  For the final output, we used a densely connected layer after the 

merging layer followed by a top-k softmax activation function.  The most probable k 

activities will be shown to the medical team as the recommended treatment for the next 

step (t+1). In practice, the dynamic contextual information will be updated by our sensor-

based activity recognition system or by the nurse recorder who has access to the 

computerized decision support system.   

Table 7-1. A data sample of medical process data 

 
 

 

ID Activity Start Time End Time Descriptor Verbalized
xx1 Pt arrival 0:00:00 0:00:01
xx1 Visual assessment-AA 0:00:45 0:00:52 Jr Resident 1
xx1 Chest Auscultation-BA 0:00:55 0:00:58 Jr Resident 0
xx1 Oxygen Preparation 0:01:04 0:01:05 EM Attending 1
xx1 Oxygen-BC 0:01:29 0:01:30 EM Attending 1
xx1 Total Verbalized-GCS 0:01:50 0:01:51 Jr Resident 0
xx1 MBP-BP 0:02:12 0:02:18 Nurse Left 1
xx1 Left pupil-PU 0:02:19 0:02:24 Jr Resident 1
xx1 Right pupil-PU 0:02:24 0:02:25 Jr Resident 1
xx1 Visual inspection-H 0:02:33 0:02:34 Jr Resident 0
xx1 Palpation-H 0:02:33 0:02:37 Jr Resident 0

Attributes xx1
Age category 24-96
Sex Male
Night Shift 0
Weekend 0
Pre-arrival Notification 1
Trauma Activation Level Transfer
Intubation 0
Glasgow Coma Score >13 1
Injury Type Blunt
Injury Severity Score 5
Neck Injury Severity Score 3

(a) Trauma resuscitation trace (b) Patient demographics
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7.2.2.2 Multiple Contextual Information as Input 

Given the treatment activity trace from time 1 to t: 𝑻𝑻 = [𝑎𝑎1, … ,𝑎𝑎𝑡𝑡]𝑇𝑇, the i-th activity  𝑎𝑎𝑖𝑖 ∈

𝑻𝑻 is embedded into a vector representation 𝒗𝒗𝑖𝑖𝑎𝑎. This behavioral context is the main input to 

the model. Each activity may also be associated with a set of attributes 𝒗𝒗𝑖𝑖𝑏𝑏, e.g., descriptor 

and whether the task was completed. As the environmental context is also dynamically 

changing over time, we merged 𝒗𝒗𝑖𝑖𝑎𝑎  and 𝒗𝒗𝑖𝑖𝑏𝑏  before feeding it to the recurrent neural 

network. The other auxiliary input, patient attributes 𝒗𝒗𝑥𝑥 , is static over time. We thus 

integrate this information after the RNN step. In addition, according to our domain 

knowledge, we however know that not all environmental context will contribute to the 

model performance. Environmental attributes, like patient gender and weight, may have 

little or no predictive power. Hence, we add a dense layer after the auxiliary input layer to 

help reduce the feature dimensionality and let the model itself learn the weights of different 

features.  

7.2.2.3 Activity Embedding (Act2vec) 

A simple way to format treatment activities is through a one-hot vector. This naïve 

approach disregards relationships between activity types. In medical processes, treatment 

activities may have causal relationships and coexist in the same case; some activities are 

temporally closer than other activities according to treatment protocols. Inspired by 
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Word2vec [101] in natural language processing, we proposed Act2vec, which embeds the 

activity types into numerical vectors via a neural net. Act2vec uses skip-grams [101] to 

maximize the conditional probability of behavioral context (neighboring treatment 

activities) given an activity, learning a vector representation of each activity type. Act2vec 

can help reveal the proximity of treatment activities to each other. Compared to the huge 

word vocabulary in nature language processing domain, the vocabulary of treatment 

activity types is usually much smaller. The datasets we used in this study have 102 and 15 

activity types respectively. The embeddings of the activities are easier to train even with a 

limited amount of treatment process data. 

7.2.2.4 LSTM and GRU 

RNNs are powerful at modeling temporal sequences. The standard RNN, however, still 

suffers vanishing or exploding gradients when learning long-term dependencies. We thus 

used two RNN variations, Long Short Term Memory (LSTM, [102]) networks and Gated 

Recurrent Unit (GRU, [103]). The gates in both RNNs are able to decide what information 

to store and forget. The RNN in our system generates a sequence of hidden state 

representations 𝒉𝒉1, …, 𝒉𝒉𝑡𝑡,…, 𝒉𝒉𝑞𝑞, and each state 𝒉𝒉𝑡𝑡 can retain information from previous 

members of the sequence. 

7.2.2.5 Sliding-Window Attention Mechanism 

In our problem, the goal is to recommend the next-step activity 𝑎𝑎𝑡𝑡+1 according to the 

treatments that have been done in previous steps, i.e., from 𝑎𝑎1 to 𝑎𝑎𝑡𝑡. Without an attention 

mechanism, the prediction is made only based on the t-th hidden vector output 𝒉𝒉𝑡𝑡, a fixed-

length vector. However, medical processes can be very flexible, e.g., some parallel 

treatment activities may occur in any order. The next-step activity may not be strongly 

associated with the latest state, but instead be associated with a state produced many time 

steps earlier. LSTM and GRU, memory based networks, were designed to address this 

problem. The long and short memories are used to store the information that have been 

observed. It is just like the human’s memory. But because LSTM and GRU flow in one 

direction and the memorized information diminishes as the networks proceed, this memory 

based mechanism cannot provide complete context information when making the 
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predictions at each step. Our sliding-window attention mechanism can supplement the 

memory based mechanism by providing complete context information within the window. 

The network will decide what context information to focus on at each step. For example, 

when people read or review a paper, it is common that the readers look back at the context 

(previous paragraph or sentences) to understand the current sentence. It is possible but 

usually difficult to understand every sentence just based on the memory without looking 

back. We thus incorporated the attention mechanism in LSTM and GRU to help predict 

𝑎𝑎𝑡𝑡+1.  

Unlike attentions used in machine translation [104][105] or text classification problems 

[106], where the attentions are applied on the entire input sequence, our attention must span 

different inputs as the prediction proceeds in the timeline. Hence, we proposed a sliding-

window attention. The sliding window attention can guide the RNN to focus on nearby 

hidden vectors with more predictive power for the next activity. In implementation, we 

take the hidden vectors {𝒉𝒉𝑡𝑡−𝑙𝑙+1, … ,𝒉𝒉𝑡𝑡} from LSTMs or GRUs as input to the attention 

layer. The aim is then to derive a context vector 𝒄𝒄𝑡𝑡 that captures the information within the 

window to help predict the current target activity 𝑎𝑎𝑡𝑡+1.  We specify 𝑙𝑙 as our sliding window 

size, and 𝑑𝑑 as the size of the hidden state vector. We implemented three variations of 

attention. The attention score 𝛼𝛼𝑡𝑡,𝑖𝑖 (alpha) for each time step 𝑖𝑖 in the sliding window at time 

step 𝑡𝑡 can be calculated as follows: 

𝛼𝛼𝑡𝑡,𝑖𝑖 =  �
𝒉𝒉𝑡𝑡𝑇𝑇𝑾𝑾𝛼𝛼𝒉𝒉𝑖𝑖                                   general
𝒗𝒗𝛼𝛼𝑇𝑇 tanh(𝑾𝑾𝛼𝛼

′ [𝒉𝒉𝑡𝑡;𝒉𝒉𝑖𝑖])             concat
𝒗𝒗𝛼𝛼𝑇𝑇 tanh(𝒉𝒉𝑖𝑖)                             simple

 (7.1) 
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where 𝑾𝑾𝛼𝛼 ∈ ℝ𝑑𝑑×𝑑𝑑,𝑾𝑾𝛼𝛼
′ ∈ ℝ𝑑𝑑×2𝑑𝑑,𝒉𝒉𝑖𝑖 ∈ ℝ𝑑𝑑 ,   𝒗𝒗𝛼𝛼 ∈ ℝ𝑑𝑑 .  The first two are alignment-based 

attentions (Figure 7.2 (a)) , “general” and “concat” [104], that are widely used in machine 

translation. The score vector 𝜶𝜶𝑖𝑖 is derived by comparing the target hidden vector state  ℎ𝑡𝑡 

with the source hidden vectors 𝒉𝒉𝑖𝑖 ∈ {𝒉𝒉𝑡𝑡−𝑙𝑙+1, … ,𝒉𝒉𝑡𝑡−1}. This process thus takes into account 

the relationship between 𝒉𝒉𝑡𝑡  and 𝒉𝒉𝑖𝑖  to make predictions [107]. The third score function 

(namely simple-weight in this chapter, Figure 7.2 (b)) is more straightforward and is used 

in text classification [106]. The current hidden vector 𝒉𝒉𝑡𝑡 is considered a member of the 

source hidden vectors 𝒉𝒉𝑖𝑖 ∈ {𝒉𝒉𝑡𝑡−𝑙𝑙+1, … ,𝒉𝒉𝑡𝑡}. Vector 𝒗𝒗𝛼𝛼𝑇𝑇  and matrix 𝑾𝑾𝛼𝛼 (or 𝑾𝑾𝛼𝛼
′ ) are trained 

and shared over all time steps. Zero paddings were added to the front when the current 

location 𝑡𝑡  is smaller than the window size  𝑘𝑘 . The computed attention scores were 

normalized by a softmax function. The normalized attention score vector 𝜶𝜶𝑡𝑡 of alignment-

based attentions and simple-weight attentions are Eq.7.2 and Eq.7.3 respectively:  

𝜶𝜶𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠([𝛼𝛼𝑡𝑡,𝑡𝑡−𝑙𝑙+1,𝛼𝛼𝑡𝑡,𝑡𝑡−𝑙𝑙+2, … ,𝛼𝛼𝑡𝑡,𝑡𝑡−1]) (7.2) 

𝜶𝜶𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠([𝛼𝛼𝑡𝑡,𝑡𝑡−𝑙𝑙+1,𝛼𝛼𝑡𝑡,𝑡𝑡−𝑙𝑙+2, … ,𝛼𝛼𝑡𝑡,𝑡𝑡−1]) (7.3) 

The context vector 𝒄𝒄𝑡𝑡 is then computed as a weighted sum of hidden state vectors within 

the window size:  

𝒄𝒄𝑡𝑡 = �𝜶𝜶𝑡𝑡𝒉𝒉𝑖𝑖
𝑖𝑖

 (7.4) 

 
Figure 7.2. Two types of sliding-window attention architecture. (a) Alignment-based 

attention mechanism. (b) Simple-weight attention mechanism. The window size illustrated 

here is 5. 
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In alignment-based attentions, given the target hidden vector 𝒉𝒉𝑡𝑡 and the context vector 𝒄𝒄𝑡𝑡, 

a concatenation layer is used to combine the information from both vectors to produce the 

final attentional hidden vector (Eq.7.5). And in simple-weight attention, we obtained the 

final attention vector with a hyperbolic tangent function directly (Eq.7.6). 

𝒉𝒉�𝑡𝑡 = tanh (𝑾𝑾𝑐𝑐[𝒄𝒄𝑡𝑡;𝒉𝒉𝑡𝑡]) (7.5) 

𝒉𝒉�𝑡𝑡 = tanh (𝒄𝒄𝑡𝑡) (7.6) 

where 𝑾𝑾𝑐𝑐 ∈ ℝ𝑑𝑑×2𝑑𝑑 is the weight matrix. 

7.2.2.6 Classifying 

The attentional vector 𝒉𝒉�𝑡𝑡  is fed through the softmax layer to produce the predicted 

distribution of the next treatment activity: 

𝒚𝒚�𝒕𝒕 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑾𝑾𝑠𝑠𝒉𝒉�𝑡𝑡 +  𝒃𝒃𝑠𝑠) (7.7) 

where 𝑾𝑾𝑠𝑠 ∈ ℝ𝑢𝑢×𝑑𝑑 is the weight matrix and 𝒃𝒃𝑠𝑠 ∈ ℝ𝑢𝑢 is the bias. 𝑢𝑢 is the size of vocabulary 

of treatment activity types. We used categorical cross-entropy as the loss function (Eq.7.8).  

ℒ({𝒚𝒚�𝑡𝑡
(𝑖𝑖)}, {𝒚𝒚𝑡𝑡

(𝑖𝑖)})

= −
1
𝑛𝑛
�

1
𝑞𝑞(𝑖𝑖) �((𝒚𝒚𝑡𝑡

(𝑖𝑖))𝑇𝑇 log𝒚𝒚�𝑡𝑡
(𝑖𝑖) + (1 − 𝒚𝒚𝑡𝑡

(𝑖𝑖))𝑇𝑇 log(1 − 𝒚𝒚�𝑡𝑡
(𝑖𝑖)))

𝑞𝑞(𝑖𝑖)

𝑡𝑡

𝑛𝑛

𝑖𝑖

 
(7.8) 

where {𝒚𝒚𝑡𝑡
(𝑖𝑖)} is the ground truth activity type at time 𝑡𝑡 in the i-th patient record. 

 
Figure 7.3. Alignment-based synthetic patient data generator. Environmental context 

attributes associated with each activity were not drawn.  
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7.2.3 Data Augmentation and Model Pre-training 

Pre-training is widely used to address having a limited amount of data. Model parameters 

are initialized by learning reusable features from datasets of similar domains. However, to 

our best knowledge, the data we collect for our medical process application is not collected 

by any other institution in the same manner. Hence, we present a synthetic data generator 

to fabricate pre-training samples from the limited real training data. Our algorithm 

(Alg.7.1) has two steps: (1) calculate the alignment matrix (step 1 in Alg.7.1) and (steps 2-

10 in Alg.7.1) fit the data distribution into a multivariate Bernoulli (binary) distribution 

(step 1 in Alg.7.1) and generate synthetic data (steps 11-20 in Alg.7.1).  

Different treatment procedures have different patterns and numbers of activities. We 

thus used trace alignment [10] to find the best alignment across different traces. Given 

process traces T, the trace alignment algorithm 𝒜𝒜(𝑻𝑻) forms an alignment matrix 𝓜𝓜 with 

the traces in T as rows and activities of the same type as columns. If for a given trace a 

matching activity cannot be found, a gap symbol “-” is inserted in the corresponding cell 

(Figure 7.3 ). 𝒜𝒜(𝑻𝑻) also returns the consensus sequence 𝓒𝓒𝓒𝓒, a sequence that records the 

activities of frequent columns of the alignment matrix. In the meantime, we can calculate 

the occurrence frequency of each column 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐.  

With computed 𝓒𝓒𝓒𝓒 and 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐, a naïve data generation approach is to consider the occurrence 

of each activity in 𝓒𝓒𝓒𝓒 follows a univariate Bernoulli distribution with “success” probability 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐. The limitation of this naïve approach is that it assumes that the occurrences of the 

activities across the columns are independent. However, in practice, the occurrences of the 

activities are correlated. For example, in trauma resuscitation, there is a much higher 

change to observe the activity “Miami-j collar adjustment” when activity “Miami-j collar 
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application” occurs (“Miami-j collar” is a neck brace used to prevent patient neck 

movement). Thus, to take into account the correlations, a multivariate Bernoulli (MVB) 

distribution is more accurate. MVB has two parameters that needs to be estimated from 

data, the probability vector for each binary variable and the matrix of binary correlations. 

The probability vector in our problem is the column frequencies: 

𝒑𝒑 = [𝑓𝑓1, … ,𝑓𝑓𝑚𝑚] = [
𝑒𝑒1
n

,
𝑒𝑒2
n

, … ,
𝑒𝑒𝑚𝑚
n

] (7.9) 

where 𝑚𝑚 is the number of columns of the alignment matrix and 𝑒𝑒𝑖𝑖 is the number of non-

gap activities in column 𝑖𝑖. The correlation matrix can be calculated with the phi coefficient 

[108], a measure of association for two binary variables. The phi coefficient is special case 

of the Pearson correlation coefficient when the input data are binary variables. The phi 

coefficient of two columns 𝝐𝝐𝑖𝑖 and 𝝐𝝐𝑗𝑗 in the alignment matrix 𝓜𝓜 is 

𝜙𝜙𝑖𝑖𝑖𝑖 =  
𝑛𝑛11𝑛𝑛00 −  𝑛𝑛10𝑛𝑛01

�𝑛𝑛𝑖𝑖(𝑛𝑛 − 𝑛𝑛𝑖𝑖)𝑛𝑛𝑗𝑗(𝑛𝑛 − 𝑛𝑛𝑗𝑗)
 (7.10) 

Algorithm 7.1.  Synthetic Patient Record Generator with Historical Patient Data 
Input: 𝒓𝒓 = {𝒊𝒊𝒊𝒊,𝒙𝒙,𝑻𝑻}  /* historic patient records with ids, patient attributes and treatment traces */  
Output:  𝑟𝑟𝑠𝑠                 /* A synthetic patient record */ 
Step 1. Calculate alignment matrix {𝓜𝓜,𝓒𝓒𝓒𝓒} = 𝒜𝒜(𝑻𝑻) 
Step 2. Calculate correlation matrix 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = [𝜙𝜙𝑖𝑖𝑖𝑖]𝑚𝑚×𝑚𝑚 (Eq.7.10) 
Step 3. for col in range(1,m): 
Step 4.   Calculate 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐  (Eq.7.9); 𝒑𝒑 = 𝒑𝒑 ∪ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐  
Step 5.  for each activity a in column col: 
Step 6.   Let b as the activity attributes of a  
Step 7.   Let x as patient attributes associated with the trace that contains a 
Step 8.   𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐 ∪ 𝒃𝒃;  𝑿𝑿𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑿𝑿𝑐𝑐𝑐𝑐𝑐𝑐 ∪ 𝒙𝒙 
Step 9.  𝒃𝒃𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒙𝒙𝑐𝑐𝑐𝑐𝑐𝑐 = avg(𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐), avg(𝑿𝑿𝑐𝑐𝑐𝑐𝑐𝑐)     /* compute average probability distribution */ 
Step 10.  𝓒𝓒𝓒𝓒[𝑐𝑐𝑐𝑐𝑐𝑐] = {𝑎𝑎, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒃𝒃𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒙𝒙𝑐𝑐𝑐𝑐𝑐𝑐} 
Step 11. Generate activity trace 𝑨𝑨 = MVB(𝒑𝒑, 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)  /* A trace of 0s and 1s */ 
Step 12. for i in range(1,m):   
Step 13.  Let 𝑎𝑎, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒃𝒃𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒙𝒙𝑐𝑐𝑐𝑐𝑐𝑐 = 𝓒𝓒𝓒𝓒[𝑖𝑖]  
Step 14.  if 𝑨𝑨[𝑖𝑖] == 1                    
Step 15.   Randomly generate activity attributes 𝒃𝒃 based on activity distribution saved in 𝒃𝒃𝑖𝑖 
Step 16.   𝑻𝑻𝑠𝑠 = 𝑻𝑻𝑠𝑠 ∪ {𝑎𝑎,𝒃𝒃}              
Step 17.   𝒙𝒙𝑠𝑠 = 𝒙𝒙𝑠𝑠 + 𝒙𝒙𝑖𝑖      /* sum up the patient attributes over columns */ 
Step 18.  else continue 
Step 19. Randomly generate 𝒙𝒙𝑠𝑠 based on patient attributes distribution 𝒙𝒙𝑠𝑠/n averaged over columns 
Step 20. return 𝑟𝑟𝑠𝑠 = {0,𝒙𝒙𝑠𝑠,𝑻𝑻𝑠𝑠} 

* the source code is available https://github.com/allen9408/Deep_treatment_recommender 
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where 𝑛𝑛11, 𝑛𝑛10, 𝑛𝑛01, 𝑛𝑛00, are non-negative counts that add to 𝑛𝑛. They represent the number 

of both-present, present-absent, absent-present, and both-absent of the corresponding 

entries in 𝝐𝝐𝑖𝑖 and 𝝐𝝐𝑗𝑗. The 𝑛𝑛i and 𝑛𝑛j represent the total number of present entries in 𝝐𝝐𝑖𝑖 and 𝝐𝝐𝑗𝑗, 

respectively. Note that 𝑛𝑛𝑖𝑖 = 𝑛𝑛10 + 𝑛𝑛11  and 𝑛𝑛𝑗𝑗 = 𝑛𝑛00 + 𝑛𝑛01 . The correlation matrix 

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = [𝜙𝜙𝑖𝑖𝑖𝑖]𝑚𝑚×𝑚𝑚. It is important to note that the Bernoulli distribution requires 0 < p < 1. 

Hence columns with p = 1 need to be handled separately. The generation algorithm 

MVB(𝒑𝒑, 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜) is based on the methodology proposed by Demirtas and Doganay [109]. To 

generate environmental context attributes at the same time, we only need to associate them 

with the activities in the alignment matrix. Our synthetic data will retain most of real data’s 

characteristics. Throughout, we introduce noise to vary the synthetic data from the 

authentic data, helping the model generalize better to unseen data.  

7.3 Experiments 

7.3.1 Real-world Data and Synthetic Pre-training Data 

The use of medical data for this study was approved by the Institutional Review Board at 

our hospital. 122 trauma resuscitation records and 101 endotracheal intubation (breathing 

tube insertion) records were coded from surveillance videos. In addition, we generated 

5,000 synthetic trauma records and 5,000 synthetic intubation records from the two real 

Table 7-2. Statistics of two real-world medical datasets and two synthetic datasets 

generated using Alg.7.1. 

                                 Dataset 
Stats Trauma Intubation Synthetic 

Trauma  
Synthetic  
Intubation 

Num. Patient Records 122 101 5,000 5,000 
Num. Total Acts 11,464 1239 470,090 61,356 
Num. Act Types 102 15 102 15 
Avg. Num. Acts in Trace  93.97 12.27 94.02 12.27 
Num. Patient Demographics 22 17 22 17 
Num. Activity Attributes 23 0 23 0 
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training sets (Table 7-2). We evaluated the synthetic data quality based on statistics and 

medical expect feedback. Our results (Table 7-3) showed high similarity between our 

synthetic data and the authentic data. We compared trace length, activity distribution, 

patient attributes ((a) in Figure 7.4), and activity attributes ((b) in Figure 7.4). The synthetic 

intubation records have a high proximity with the authentic records. The distribution of 

generated trace length only has a 0.03 difference in mean value and a 0.02 difference in 

standard deviation. Relative differences of the distributions of activity occurrence and 

context attributes were less than 3%. The trauma process is more complex than the 

intubation process because it has a larger activity vocabulary (102 vs. 15) and longer traces 

Table 7-3. Similarity comparison between synthetic data and authentic data (training set). 

For trace length distribution, the mean value and standard deviation is reported. For the 

distribution of each activity type and context attribute, the relative difference is reported.  

                    Dataset   
Measures 

Trauma  
(auth.) 

Trauma  
(synth.) 

Intubation  
(auth.) 

Intubation  
(synth.) 

Trace length 93.93 ± 24.13  94.02 ± 27.71 12.24 ± 2.56 12.27 ± 2.54 
Activity occurrence  reference 6.27% rf reference 1.08% rf 
Patient attributes  reference 7.51% rf reference 2.89% rf 
Activity attributes reference 8.40% rf N/A N/A 

* The “rf” stands for “relative difference”, which is quantified using mean absolute percentage error: mean(abs(xs − xa)/xa)*100% , 
where xs, xa are values of activity occurrence, activity attributes or patient attributes in synthetic data and authentic data respectively.  
 
 

 
Figure 7.4. (a) Distribution of patient attributes, authentic data (red) vs. synthetic data 

(green). Blue shows the overlapped area. Each dimension has scale 0 to 100, indicating the 

corresponding probability distribution. (b) Distribution of activity attributes, authentic data 

(red) vs. synthetic data (green). Dimensions of small values are x10, x100 or x1000 for 

better view.  

 

(b)(a)
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(94 vs. 12). Hence bigger distribution differences were observed in the more complex 

trauma dataset. Our results also show that all synthetic records were unique. In addition, 

we created a mixed log with 16 authentic and 19 synthetic patient records. A medical expert 

with experience coding our datasets was asked to identify which cases are authentic and 

which cases are synthetic. Our results show her classification accuracy was only 54.3 %, 

similar to random guessing, implying that the synthetic data was realistic and may be 

observed in practice.  

7.3.2 Experimental Setup 

7.3.2.1 Evaluation Metrics 

Our goal is to correctly recommend the next-step treatment activities to the medical team. 

The ground truth at a particular time step is therefore the set of activities that occur next. 

Our trauma dataset and intubation dataset have 102 and 15 possible activity types to 

recommend, respectively. Hence, in addition to using the standard accuracy (i.e., top-1 

accuracy), we also evaluated the top-k accuracy. The top-k accuracy measures the fraction 

of the recommendations for which the correct label is among the top-k most probable 

predicted. 

7.3.2.2 Baseline Methods. 

We compared our method with six baseline methods.  

POP [110]: a baseline method that always recommends the most popular (POP) items 

in the data. In our problem, it recommends the most frequent activity types.  

Act-KNN [111]: a classic recommendation method that returns k most similar (k nearest 

neighbors) items. In our problem, it recommends k activities most similar to the current 

activity. The similarity between activities is measured by their locations in the activity 

traces. 

MC [112]: a classic modeling method for sequential data. Markov chains (MC) make 

predictions based on the latest activity.  

HMM [37]: another model for sequential data. Hidden Markov models (HMM) are able 

to model observations driven by latent variables. The latent variable in our problem can be 

considered as the treatment goals of the medical team. To avoid subjective initialization of 
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latent variables, we used a state-splitting method [37] which can automatically infer an 

optimal HMM.  

LSTM: a simple implementation of LSTM with activity sequences as input and 

weighted loss function, recently introduced to recommendation problems [96]. 

GRU: a simple implementation of GRU with only activity sequences as input and 

weighted loss function [98].  

7.3.2.3 Our Approaches 

We proposed several model variants with different designs (Act2vec, multiple inputs, 

sliding-window attention of 3 types (Eq.7.1) and pre-training): 

LSTM(A): LSTM with Act2vec (and embedding) 

LSTM(Am): LSTM(A) with multiple contextual information as input. 

LSTM(Ama1): LSTM(Am) with general sliding-window attention. 

LSTM(Ama2): LSTM(Am) with concat sliding-window attention. 

LSTM(Ama3): LSTM(Am) with simple-weight sliding-window attention. 

LSTM(Ama1p): LSTM(Ama1) pre-trained by synthetic data and fine-tuned by authentic data.  

The number of variants doubles to 12 by replacing LSTM with GRU. The 

implementation details can be found in our code (same link as Alg.7.1). For our and 

baseline models, we divided the dataset with an 80-10-10 training, validation, and testing 

split.  

7.3.3 Comprehensive Comparison 

Our experimental results (Table 7-4) show that the neural networks outperform 

conventional recommendation and sequential models. As important baselines, POP and 

Act-KNN only achieved top-1 accuracies of 3.06% and 4.84% respectively on the trauma 

resuscitation. This exemplifies the challenges of making treatment recommendations from 

a large activity vocabulary (102 activity types in trauma and 15 in intubation). It also shows 

the importance of modeling sequential associations between activities in our problem. 

Classical sequential models like MC and HMM achieved much higher accuracy. 

Depending on first-order Markov assumptions, their prediction is only based on the 

immediate previous state. Their high accuracy reveals the strong dependency between the 
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adjacent activities. By considering both adjacent and long-term dependencies, the simple 

GRU and LSTM achieved the better performance. LSTM(A) and GRU(A), featured with 

Act2vec and embedding layer achieved higher accuracy than LSTM and GRU with a one-

hot vector representation. This is expected, as the skip-gram training of Act2vec takes 

neighboring activities (a form of low-order logic) into account. HMM and MC perform 

well with just first-order logic, so Act2vec would intuitively help the neural network in 

prediction. LSTM(Am) and GRU(Am) achieved better performance than LSTM(A) and GRU(A) 

by taking the advantage of extra context information. Attention mechanism of different 

architectures improves the model performance in most cases. While in some cases, e.g., 

GRU(Ama2) and LSTM(Ama2) in trauma data, they do not improve the performance. The 

Table 7-4. Model performance comparison on two real-world medical datasets. The 

attention window is set to 5 for intubation data and 10 for trauma data. The trauma data has 

a bigger window size and large k values in Top-k measure. This design is mainly because 

that the trauma resuscitation process is much longer and more complex than intubation 

process.  
Model Trauma Intubation 

 Top-1    Top-5 Top-10 Top-1    Top-3 Top-5 

POP 0.0306 0.1358 0.2552 0.0979 0.3023 0.4537 

Act-KNN 0.0484 0.3559 0.4952 0.1134 0.4948 0.6804 

MC 0.3469 0.6013  0.6975 0.4276 0.6477 0.7892 

HMM 0.3532 0.6178 0.6761    0.3955 0.6949 0.8257 

LSTM 0.3646 0.6093 0.7263 0.4227 0.7422 0.8144 

LSTM(A) 0.3800 0.6305 0.7369 0.4536 0.7113 0.8453 

LSTM(Am) 0.3849 0.6344 0.7543 0.4639 0.7422 0.8866 

LSTM(Ama1) 0.3878 0.6218 0.7388 0.5051 0.7216 0.8762 

LSTM(Ama2) 0.3800 0.6325 0.7446 0.5154 0.7422 0.8659 

LSTM(Ama3) 0.3858 0.6179 0.7427 0.4845 0.7319  0.8350 

LSTM(Ama4) 0.2746 0.5657 0.7069 0.4536 0.7422 0.8659 

LSTM(Ama1p) 0.3871 0.6277 0.7302 0.5361 0.7835 0.9175 

GRU 0.3694 0.6315 0.7515 0.4433 0.7319 0.8556 

GRU(A) 0.3878 0.6392 0.7408 0.4845 0.6907 0.8453 

GRU(Am) 0.3955 0.6412 0.7524 0.5051 0.6907 0.8453 

GRU(Ama1) 0.3858 0.6237 0.7301 0.4845 0.7525 0.8247 

GRU(Ama2) 0.3810 0.6170 0.7417 0.5154 0.7216 0.8659 

GRU(Ama3) 0.3868 0.6208 0.7466 0.5463 0.7422 0.8866 

GRU(Ama4) 0.2659 0.5290 0.6818 0.4433 0.7525 0.8350 

GRU(Ama1p) 0.3955 0.6296 0.7302 0.5567 0.7938 0.8866 
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window size of the attention also affects the performance. Our experimental results show 

(Table 7-5)  the model performance usually decreases as the window size increases. Pre-

training on the synthetic data also improves model performance. The pre-trained models 

(LSTM(Ama1p) and GRU(Ama1p)) outperform the models without pre-training, achieved top-1 

accuracy of 39.55% and 55.67% with trauma and intubation data respectively. This implies 

that the synthetic data helps to generalize the model. Another experiment shows that 

compared with a randomly initialized model, the validation loss of the pre-trained model 

converges faster to a lower loss and higher accuracy (Figure 7.5). In addition, it is also 

noticeable that the GRUs outperforms LSTMs in most cases (Table 7-4). The reason is that 

the GRU has simpler internal structure than LSTM and are easier to train with fewer data.  

The results not only show the model performance improvements from our methods but 

also show the challenges of accurately recommending the next treatment activities. The 

Table 7-5. Different attention architectures with different window size. The dataset used is 

trauma records. Top-1 accuracy is reported.  
Model Attention Window Size 

 Win = 10 Win = 20 Win = 30 Win = 40 All preceding 

GRU(Ama1) 0.3858 0.3829 0.3752 0.3762 0.3491 

GRU(Ama2) 0.3810 0.3820 0.3742 0.3675 0.3627 

GRU(Ama3) 0.3868 0.3791 0.3771 0.3684 0.3665 

 

 
Figure 7.5. Training and validation loss plot (a) and accuracy plot (b) for models with 

(GRU(Ama1p)) and without pre-training (GRU(Ama1)).  Intubation data was used for these 

plots. The data used for pre-training is the 5000 synthetic intubation data. The training loss 

is higher than validation loss because of dropout and regularizer applied in the model. 
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recommendations need to be done within 102 classes in trauma data and 15 classes in 

intubation data. The best performance we obtained is on the intubation process, where we 

achieved 55.67% top-1 and 79.38% top-3 accuracy. This performance may not be 

satisfactorily high enough to use in real-world cases. But we were applying this method to 

simulated medical processes to help train the new medical students.  

7.3.4 Visual Analytics for Knowledge Discovery 

In the medical field, model interpretability is important. In this section, we show the visual 

analysis of Act2vec and the sliding-window attention mechanism. The analysis reveals 

interesting medical insights.  

7.3.4.1 Act2vec.  

We embedded 102 trauma activities into 100D vectors.  Then, we used t-SNE (dimension 

reduction) to project them onto a 2D plane (Figure 7.6). To test if the data-driven insights 

matched our human knowledge, we requested our medical experts to group the activities 

based only on their domain knowledge. According to their treatment goals, our medical 

experts clustered the 102 activities into 12 groups (colors in Figure 7.6).    

Our result reveals several interesting insights. First, activities of the same medical goal are 

usually closer than activities of different medical goals. This finding indicates that, in most 

cases, our medical team accomplishes the trauma resuscitation by addressing medical goals 

one by one rather than simultaneously. Second, without taking into account the points that 

lie alone in low-density regions, the activity points can be grouped into four major clusters 

(dashed circles in Figure 7.6).  The clusters reveal high-level medical goals. The left cluster 

consists of goals airway (A), breath (B), circulation (C), disability (D), and exposure (E). 

These five goals constitute the primary survey, a medical phase with the goal of quickly 

identifying life-threatening injuries. The top and right clusters constitute the secondary 

survey, a head-to-toe physical examination of the patient’s body. The bottom cluster 

includes activities assessing the patient’s back and the conditional treatments performed 

depending on assessment outcomes.  
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7.3.4.2 Sliding-window Attention.  

We visualized the sliding-window attention score vectors of each time step in a matrix 

(Figure 7.7 (a)).   The attention scores were computed from the general attention 

architecture. The value of the attention score roughly reflects how important the hidden 

vector helps the current 𝒉𝒉𝑡𝑡 predict the next activity. For example, when the current input 

is activity “rsi paralytic medicine” (the 2nd to last activity in the horizontal axis in Figure 

7.7 (a)), the current hidden vector 𝒉𝒉𝑡𝑡 heavily relies on presence of the “critical window” 

hidden vector in the sliding window (the 4th to last activity in the horizontal axis) to predict 

“laryngoscopy” (the 2nd to last activity in the vertical axis). In addition, we also visualized 

that all previous hidden layer was given some attention, including those of padding (Figure 

7.7 (b)). Considering more previous hidden layers can then be said to dilute attention, 

compared to using a small sliding-window. It is also interesting to see that attention is 

usually given to the several latest states. This finding is aligned with our knowledge that 

the medical team tends to consider just the most recent activities when planning the next 

steps.  

 
Figure 7.6. Activity vector visualization. Each dot (labeled by a unique number) represents 

an activity (type). The distance between dots reveal the similarity of the activities. The 

color of the dots reveals the probable associated medical goals of the treatment activities.  

 



 

 

124 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.7. Visualization of attention scores for an intubation case. The attention scores 

were generated using the general attention architecture (Eq.7.1). The horizontal axis 

represents the activities (from left to right) that occurred sequentially in this intubation 

case. The vertical axis represents the predicted activities. [PAD] denotes the “paddings” 

added for variable length input trace, and [NA] denotes the “paddings” added for the 

sliding window in the attention. The color of each cell represents the attention score (αt in 

Figure 7.2) of each hidden vector. (a) Sliding-window attention mechanism with a window 

size of 5. (b) Attention mechanism that considers all the preceding hidden vectors. It can 

also be considered as a special case of the sliding-window mechanism when the window 

size is larger than the length of activity trace.  

 

 

(b)(a)



 

 

125 

Part IV 

Implementation and Conclusion 
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Chapter 8  

VIT-PLA: Visual Interactive Tool for Process Log 

Analysis 

We developed two different versions of VIT-PLA, the Java version (Figure 8.1) and the 

Web version (Figure 8.2). This chapter focuses on the Java version, which is based on our 

paper [2]. Techniques for analyzing and visualizing process or workflow data have been 

developed and applied in a wide range of domains. Visual analysis of large process logs 

and integration of statistical analysis, however, have been limited. We introduce the Visual 

Interactive Tool for Process Log Analysis (VIT-PLA) that provides a simplified process 

log visualization and performs statistical correlation analysis on process attributes. We 

demonstrate its use by applying it to an artificial dataset and running a preliminary analysis 

of trauma team task data collected from a medical emergency department. 
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Figure 8.1. VIT-PLA, the Java version. This work is based on our paper [2]. 

 

Figure 8.2. VIT-PLA, the Web version. This work is based on our paper [3]. 
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8.1 Motivation 

Many contemporary information systems record activity logs, including personal calendars 

and electronic health records (EHR). Process mining techniques attempt to extract non-

trivial knowledge and insights from these activity logs and use them for further analyses 

[18]. Most research in process mining has focused on workflow discovery and process 

execution visualization [18][113]. When visualized, real-world workflow often produces 

“spaghetti-like” graphics that are difficult to analyze and do not provide useful 

observations or insights. In addition to graphical visualization, other efforts have also been 

made to produce different visualizations for process executions or workflow data 

[30][114][115][116][117][118][119]. Although these systems have been shown to work 

well with focused processes and relatively small event logs, little work has been done with 

large process logs with many execution traces (typically hundreds or thousands of different 

process cases). Simply displaying all traces at once does not make a useful visualization. 

We observed that only several dozen traces can fit intelligibly on one screen at a time. Even 

if the symbols were distinguishable, the amount of displayed data make it inconvenient for 

human interpretation. When working with large workflow datasets, it is often useful to 

obtain a concise visualization that summarizes the data into an easily interpretable format. 

We present an approach for visualizing a summary of large process logs by aggregating 

the data with a trace clustering method. Process traces are clustered based on the similarity 

or proximity between their elements (i.e. process tasks). Each cluster is represented using 

a “representative” or “average” trace extracted from the corresponding cluster. Using this 

approach, we are able to usefully visualize large process logs. To help users better 

understand the clusters, we also included tools for running statistical tests on the clusters 

and their associated process attributes. These statistical test results can reveal significant 

and interesting correlations between process executions and process attributes. We 

implemented these approaches in a Java-based application, named VIT-PLA. 

Our main contribution is a novel approach to producing summarized visualizations of 

large process logs and directly integrating statistical analyses into the visualization. These 
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features help users discover attributes associated with specific sequence progressions and 

deviations within the dataset.  

 

8.2 Methods 

The core methods implemented in VIT-PLA can be summarized as follows (Figure 8.3) : 

(1) clustering of process traces (workflow data) based on proximity of data objects, (2) 

aggregation of process traces and selection of cluster prototype, (3) regression analysis to 

explore underlying knowledge, (4) interactive visualization of process traces and statistical 

analysis results. This section will describe (1), (2), and (3); (4) will be discussed in Section 

3.  

8.2.1 Data Preprocessing: Sequencing of Traces 

Process sequencing is necessary before more advanced processing. Activities coded in a 

process log usually have start and end timestamps (some logs may not include end time) 

for each activity. Idle time may exist between activities, and some activities may be 

executed concurrently (Figure 8.4(a)). In process mining, process traces are usually 

sequenced by ascending order of the start time of activities (Figure 8.4(b)). 

 
Figure 8.3. Flowchart outlining the core methods implemented in VIT-PLA and their 

corresponding inputs and outputs. 
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8.2.2 Summary Visualization of Process Logs 

8.2.2.1 Process Trace Clustering 

Our approach uses clustering techniques to simplify the process trace visualizations. 

Clustering provides an abstraction from the original data objects to generalized data 

representatives, i.e. cluster prototypes. In most data mining problems, data clusters are 

calculated based on the data objects’ feature set. However, to aggregate process traces that 

follow an underlying workflow model, we cluster the traces based on the similarity of their 

constituent tasks in terms of task type and sequential order of execution [86]. That is to 

say, our sole feature used for clustering is the structure of each trace’s task sequence, not 

the process attributes. 

In VIT-PLA, the clustering algorithm we use is agglomerative hierarchical clustering 

[120] with Ward’s method [89] as clustering criterion. We calculate the similarity of 

process traces based on Edit Distance (a.k.a. Levenshtein Distance [38]). If activity 

duration information is also available, the similarity can be calculated with “Duration-

Aware Edit Distance” [1], a metric derived from Edit Distance that penalizes dissimilarity 

between durations of the same activity type. 

 
Figure 8.4. Two steps of sequencing the traces with concurrent activities (such as d in T1 

and c in T2) and idle times (white spaces between activities). (a) Example process traces 

before sequencing. (b) The same process traces after sequencing. 
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Sequencing: Step 1: Reorder concurrent activates

Step 2: Remove the idle time between activities
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8.2.2.2 Cluster Prototype and Trace Alignment 

After clustering, each cluster can be characterized by a cluster prototype (Figure 8.5). 

Because it is not practical to visualize all the data objects on a single computer screen, a 

substantial reduction in the data size is needed. The deployment of cluster prototypes helps 

compress the dataset. 

Several candidates can be considered as cluster prototype, such as the widely-used 

cluster centroid [121], the center of a cluster. There is, however, a great chance that there 

may not be an actual data point at the cluster’s center. In this case, the centroid location is 

calculated from the data in the cluster with the aim of minimizing the sum-squared distance 

to other points. 

Note that for categorical data and event-based data, the notion of a center (centroid) 

does not apply [121]. For example, the centroid of categorical data (e.g. {orange, apple, 

banana}) cannot be determined. In this case, we may use the cluster medoid, the most 

representative data object in the cluster, i.e. a data point with minimal average dissimilarity 

to all other objects in the cluster. The medoid, however, may not be adequate if the cluster 

does not contain an “appropriate” representative. 

To ensure that the chosen sequence is representative of the cluster, we used the 

consensus sequence as the cluster prototype even though it may not be an observed trace 

from the data. The consensus sequence, a concept derived from aligning biological 

 
Figure 8.5. An example showing data clustering and aggregation. The cluster prototype 

used here is cluster medoid. 
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sequences (e.g. DNA) in bioinformatics, is a sequence of the most frequent residues found 

in the alignment matrix’s columns. In process mining, consensus sequences may be 

considered the “average” or “common” sequence of tasks [30] (Figure 8.6). To find the 

consensus sequence for each cluster, trace alignment [1][30] needs to be performed using 

traces from each cluster respectively. Trace alignment reformats the original data by 

placing the same or similar activities of all traces to the same column of the alignment 

matrix. If a matching activity cannot be found, a gap symbol “-” is inserted. Bose and Van 

der Aalst [30] have shown how to use trace alignment techniques to visualize and analyze 

process traces (Figure 8.6(a)). In our previous work, we extended their work by introducing 

a duration-aware trace alignment algorithm [1] that also takes activity duration into 

consideration. In our implementation, the alignment algorithm can work for data either 

with or without activity durations (Figure 8.6). 

8.2.3 Association between Trace Clusters and Trace Attributes  

In addition to visualization, VIT-PLA also provides statistical analysis functions. The goal 

of our statistical analyses is to help the user discover the underlying associations between 

data cluster membership and trace attributes. This goal is accomplished using either 

multinomial or binary logistic regression. The user chooses between these two statistical 

methods depending on the domain question being asked. Multinomial logistic regression 

works for binary comparison between two clusters (one-vs.-one cluster comparison), while 

binomial logistic regression works for binary comparison between one cluster and the rest 

 
Figure 8.6. An example of two types of trace alignment: (a) Context-Aware and (b) 

Duration-Aware. The sequences at the bottom of (a) and (b) are consensus sequences 

derived from the data. A gap symbol “-” or white space is inserted if a match cannot be 

found. The five process traces shown here are from Cluster 1 in Figure 8.5. 
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of the clusters (one-vs.-rest). Using both logistic regression models can help discover 

attributes associated with particular clusters. 

8.2.3.1 Multinomial logistic regression  

In multinomial logistic regression [122], let K denote the number of independent variables, 

and let J denote the number of discrete categories of the dependent variable, where J ≥ 2. 

In our case, the independent variables correspond to the trace attributes and the dependent 

variables correspond to the trace cluster membership. The number of trace attributes is K 

and the number of clusters is J. By default, we define the last category (the Jth cluster) to 

be the reference category, against which logits of the first J−1 categories are compared. Let 

C denote cluster membership. Represented formally: 

ln�
𝑃𝑃(𝐶𝐶 = 𝑖𝑖)
𝑃𝑃(𝐶𝐶 = 𝐽𝐽)

� = ln�
𝑃𝑃(𝐶𝐶 = 𝑖𝑖)

1 −  ∑ 𝑃𝑃(𝐶𝐶 = 𝑗𝑗)𝐽𝐽−1
𝑗𝑗=1

�  

=  𝛽𝛽𝑖𝑖0 +  𝛽𝛽𝑖𝑖1𝑥𝑥𝑖𝑖1 + 𝛽𝛽𝑖𝑖2𝑥𝑥𝑖𝑖2 + ⋯+  𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖,         𝑖𝑖 = 1, … ,𝐾𝐾 − 1     

(8.1) 

where 𝑥𝑥𝑖𝑖  are trace attributes, and 𝛽𝛽𝑖𝑖  are regression coefficients for each of the trace 

attributes. In VIT-PLA, users can also choose which cluster to use as the reference 

category. 

8.2.3.2 Binomial logistic regression 

Binary logistic regression [122] is a special case of multinomial logistic regression, in 

which there are only two categories (J = 2). In our problem, one category is the target 

cluster of interest and the other category is all other clusters. Let K denote the total number 

of independent variables and C denote cluster membership. Represented formally: 

ln�
𝑃𝑃(𝐶𝐶 = 𝑖𝑖)
𝑃𝑃(𝐶𝐶 ≠ 𝑖𝑖)

� = ln�
𝑃𝑃(𝐶𝐶 = 𝑖𝑖)

1 −  𝑃𝑃(𝐶𝐶 = 𝑖𝑖)
�  

=  𝛽𝛽𝑖𝑖0 +  𝛽𝛽𝑖𝑖1𝑥𝑥𝑖𝑖1 + 𝛽𝛽𝑖𝑖2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖,         𝑖𝑖 = 1, … ,𝐾𝐾        
(8.2) 

where the parameters have the same meaning as in Eq.8.1. 
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8.2.3.3 Hypothesis Test 

To identify which trace attributes are significantly associated with cluster membership, we 

use the Wald test [90] for logistic regression, which is defined as: 

𝑊𝑊 =  
(𝛽̂𝛽𝑖𝑖 − 𝛽𝛽𝑖𝑖)
𝑠𝑠𝑠𝑠�(𝛽̂𝛽𝑖𝑖)

 (8.3) 

where 𝛽̂𝛽𝑖𝑖 is the regression coefficient for trace attributes 𝑥𝑥𝑖𝑖; 𝛽𝛽𝑖𝑖 = 0 is the null hypothesis, 

i.e. the trace attribute 𝑥𝑥𝑖𝑖 has a corresponding coefficient of zero; 𝑠𝑠𝑠𝑠 is standard error. In 

our implementation, we use a normal distribution and 𝓏𝓏-values for calculating p-values. 

The null hypothesis can be rejected when p-value is less than or equal to alpha, the 

significance level which is most often set at 0.05. 

8.3 Visual Interface Design 

During software development, we received feedback from domain experts and 

continuously improved our design. In this section, we describe the first prototype of VIT-

PLA. The visual interface design (Figure 8.1) was developed with three main goals: 

G1. Interactive visualization of raw process traces, the basic visualization functionality. 

G2. Simplified visualization of process traces (for large data applications).  

G3. Visualization of trace cluster vs. trace attribute association statistics.  

Although VIT-PLA has many other functions, the rest of this chapter focuses on how its 

design achieves these three goals. 

8.3.1 G1: Three Common Ways to Visualize Raw Process Traces 

VIT-PLA provides three common ways of visualizing raw process traces. We refer to the 

data as “raw process traces” to distinguish goal G1 from G2, where the data is visualized 

in an aggregated format. The three visualization methods are: 

Simple stack of activities in the process traces (Figure 8.7 (a) without activity duration, 

and Figure 8.7 (b) with activity duration). This approach is one of the simplest ways to 

visualize process traces. Activities are stacked based on their occurrence time. Activity 

information can be accessed with a mouse click on the corresponding symbol. This 
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visualization is easily interpretable and computationally efficient, but it cannot provide 

deep insights into the data.  

 

Overlay of the process execution on the timeline (Figure 8.8). Activities are scaled based 

on duration and aligned to the timeline according to their start and end times. The advantage 

of this visualization approach is that it clearly shows the concurrent activities in each 

process. 

 

 

Process trace alignment (Figure 8.9 (a) context-aware alignment and Figure 8.9 (b) 

duration-aware alignment). The context-aware trace alignment algorithm is based on Bose 

and Van der Aalst’s work [30] and the duration-aware trace alignment algorithm proposed 

in our previous research [1]. The duration of each activity in the consensus sequence 

 
Figure 8.7. Simple stack (a) Process executions are stacked (b) Process executions are 

stacked and symbol blocks are scaled based on activity duration. Each row represents a 

single trace and each block represents a single activity. The data comes from Cluster 1 in 

Figure 8.5. 

 

(a) (b)

 
Figure 8.8. Visualize process traces on a timeline. The top scale is the timeline with second 

as the unit. Each row, separated by a bold line, represents a single process. Each block 

represents a single activity. Symbol blocks that are vertically stacked in one process are 

activities occurring simultaneously. The data comes from the input log in Figure 8.5. 
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(bottom line of Figure 8.9 (b)) of duration-aware trace alignment is the  mean activity 

duration of the corresponding column. Compared with the previous two visualizations, the 

alignment view makes it easier to interpret process traces and extract insights. When 

considering algorithm execution time, our previous research found that for a moderately-

sized dataset (e.g. 50,000 activities, ~1,000 traces and ~50 activity for each trace), the 

alignment can be effectively calculated in 25.5±1.5 seconds [1]. This time is not 

instantaneous (which would be ideal), but is still reasonable.  

 

8.3.2 G2: Simplified Visualization of Process Traces 

The first interactive visualization feature in G2 is the selection of cluster number (clicking 

button   in Figure 8.1 and inputting cluster number k in the pop-up dialogue). A 

hierarchical tree structure with k clusters will be shown at the bottom panel (Figure 8.1 and 

Figure 8.10) where the non-leaf (a.k.a. internal) nodes show the current height (a.k.a. 

depth) and process traces included under this node. k leaf nodes correspond to the k clusters 

and display all the process IDs in the cluster. 

 
Figure 8.9. Alignment (a) Process trace alignment (b) Duration-aware trace alignment. 

Each row represents a single process and each block represents an activity. The bottom line 

of each figure is the consensus sequence. Dashes or spaces are introduced to achieve 

alignment of the activities. The data comes from Cluster 1 in Figure 8.5. 

 

(a)

(b)
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After clustering, each cluster is represented with its own cluster prototype. By default, 

the cluster prototypes are visualized as activity stacks (Figure 8.11). The prototypes can 

also be visualized in alignment view (Figure 8.1 and Figure 8.12) by clicking on the button 

“Align Cluster Prototype” ( in Figure 8.1). Another interactive function allows the user 

to check the pre-aggregated traces under a certain cluster. This feature may be accessed by 

clicking on the buttons showing the cluster information ( in Figure 8.1).  

8.3.3 G3: Visualization of Statistics of Trace Clusters vs. Trace Attributes. 

Users can access statistics of trace clusters and trace attributes by clicking on the button 

“Multi-Logistic Regression” ( in Figure 8.1) or on “Binomial Logistic Regression” (  

in Figure 8.1). The number of clusters is decided by the user. The significance tests for 

trace attributes on trace clusters (p-value statistics) are shown in a chart (  in Figure 8.1, 

JFreeChart2 library is used). The horizontal axis represents the p-value, while the vertical 

axis represents the trace attributes. The p-value of different clusters is denoted with 

different shapes and colors. Because alpha = 0.05 is widely used as the significance level, 

we placed a highlighted line at this level. When performing multinomial logistic regression, 

the reference category is set to the last-numbered category by default. Users, however, may 

change the reference category manually ( in Figure 8.1). In addition to p-values for each 

                                                 

 
2 http://www.jfree.org/ 

 
Figure 8.10. Hierarchical Tree Structure (we cited the same source code from ProM [63] 

here and made modifications showing only the number of clusters specified by the user). 

The result is based on the data in Figure 8.5. 
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trace attribute, the regression coefficients of the logistic regression model are also listed in 

a table ( in Figure 8.1 and Figure 8.13).  

 

 

8.3.4 Additional supportive functions 

In addition to the three main goals, VIT-PLA also includes several useful supportive 

functions. The Activity Filter ( in Figure 8.1) allows the user to include and exclude 

activities in the visualization and analysis. The Color Map ( in Figure 8.1) allows the 

 
Figure 8.11. Simplified visualization of raw process traces. Each row is a cluster’s 

prototype. The information in the white block before the prototypes shows the cluster ID 

that each prototype represents and the number of process traces in that cluster. (a) Cluster 

prototypes are consensus sequences calculated from context-aware alignment (Figure 8.9 

(a)); (b) Cluster prototypes are consensus sequences calculated from duration-aware 

alignment ( (b)). The data comes from Figure 8.5. 

 

 
Figure 8.12. Alignment view of the cluster prototypes in Figure 8.11(a). The data comes 

from Figure 8.5.  

 

 
Figure 8.13. Statistics for regression coefficients 
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user to recolor the activity symbols. The Zoom Slider ( in Figure 8.1) enables the user to 

resize the activity symbols in the visualization panel (the sliders in the top-right corner 

control the size of the activity symbols). 

8.4 Case Studies 

8.4.1 Case Study I: Artificial Data 

8.4.1.1 Data Description 

This dataset was artificially generated using the Process Log Generator (PLG) [123]. It 

includes 500 process traces consisting of 10 different activity types. The drawback of this 

artificial data is that it does not have background attributes associated with each process 

trace. For this reason, we only focus on the simplification of trace visualization when using 

this dataset. 

8.4.1.2 Results and Discussion 

The visualization of 500 process traces without data aggregation strategies can lead to 

extremely large and complex visualization results (Figure 8.14(a)). When represented this 

way, the symbols are too small to identify, making it difficult to extract useful information. 

To improve visualization, we used clustering to aggregate the original dataset into a small 

number of representative process traces (Figure 8.14(b). In this example, we arbitrarily 

chose 10 clusters, a manageable number of clusters to understand). The visualization 

becomes clearer when put into the alignment view (Figure 8.14(c)). From these two 

simplified visualizations (Figure 8.14(b) and Figure 8.14(c)), it is easy to extract some 

interesting insights: (1) the sequential order of consensus tasks (tasks that occur more than 

or equal to 50% in the column) is “ACEGFDHIB”; (2) the pattern “HIJ” is repeated in two 

of the ten clusters (cluster 1 and cluster 2); (3) activity C is performed late in one cluster 

(cluster 5); and (4) activity D is performed late in one cluster (cluster 3) and omitted in 

another (cluster 7).  
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8.4.2 Case Study II: Trauma Resuscitation Workflow Data 

8.4.2.1 Data Description 

We used a trace log obtained from video analysis of 171 child trauma resuscitations 

between May and August 2013 at Children’s National Medical Center in Washington, DC. 

An event log of five activities typically performed during the initial evaluation was created 

and used as the dataset for this case study. We obtained the workflow model for these 

activities from domain experts (Figure 8.15(a)). Activities “Airway, Breath, Circulation” 

follow a sequential order. Activities “GCS” and “Pupil check” are parallel and should be 

performed after the previous three activities. We also obtained from the medical chart 

 
Figure 8.14. Visualization of artificially generated dataset. (a) Alignment view of all 500 

process traces; (b) Simplified visualization of 500 process traces using 10 cluster 

prototypes; (c) Alignment view of 10 cluster prototypes.  

 

(a)

(b)

(c)
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review several patients and resuscitation attributes (including pre-hospital triage level, the 

resuscitation’s time of the day and day of the week, Injury Severity Score [ISS], and patient 

admission status after the resuscitation) (Table 8-1). This dataset is not a “large process 

log,” but we chose it for our preliminary analysis to demonstrate how our approach can be 

integrated with medical domain knowledge.  

8.4.2.2 Results and Discussion 

Data Interpretation from Visual Analysis 

Four cluster prototypes were generated (Figure 8.15(b) and (c)). Prototypes of clusters 1 

and 3 conform to our expert model, but clusters 2 and 4 do not. From the alignment view 

of prototypes, we can observe that the sequential order of activity GCS (G) and pupil 

assessment (P) is interchangeable, which conforms with the parallel structure in our expert 

model. Visualizations of pre-aggregated traces for each prototype are not displayed, but 

users can visualize the traces by clicking on the cluster button at the front of each row 

(Figure 8.15(b) and (c)). 

With the attribute data for these process traces, we can perform statistical analysis to 

explore the underlying correlation between the trace attributes and trace cluster 

membership. The following are examples of the statistical findings, followed by feedback 

from domain experts:  

Observation #1: Attribute “Daytime Event” is statistically significant (p-value = 0.021, 

red square point in row “Daytime event” in Figure 8.15) for cluster 1. The regression 

coefficient of Daytime Event is 1.108 (Figure 8.13). This attribute is statistically significant 

Table 8-1 Process trace attributes 
Attribute List  Values 

Weekend Event  1 0  

Daytime Event  1 0  

ISS Score  <15 ≥15  

Activation Level1  Attending Stat Stat Transfer 

EDDISPGroup2  Non-critical Admission Critical Admission Discharged 
1Activation level = pre-hospital triage level 

2 EDDISPGroup = admission status of patients after ED care 
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because the proportion of data objects that have this feature (daytime = 1) in this cluster is 

12/31 (68%), while the proportion of data objects that have this feature (daytime = 1) in 

the reference category (all other clusters) is 71/140 (51%). 

  
Figure 8.15. (a) Workflow model (drawn based on BPMN) given by domain expert 

describing the initial evaluation of trauma, (b) Simplified visualization of 171 traces using 

four cluster prototypes, (c) Alignment view of four cluster prototypes (d) p-value for 

binomial logistic regression coefficients  

 

(a)

(b) (c)

(d)
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Observation #2: Attribute “Daytime Event” is statistically significant (p-value = 0.017, 

blue circle point in row “Daytime event” in Figure 8.15) for cluster 2. The regression 

coefficient of Daytime Event is −1.375 (Figure 8.13). This attribute is significantly 

significant because the proportion of data objects that have this feature (daytime = 1) in 

this cluster is 6/19 (31%), while the proportion of data objects that have this feature 

(daytime = 1) in the reference category (all other clusters) is 86/152 (57%).  

Medical expert feedback: For the care of injured patients, improved outcomes are 

associated with compliance with the Advanced Trauma Life Support model [16], 

represented here as the expert model. We find that one cluster (cluster 1) whose cluster 

prototype follows the model occurs more often during the day and another cluster (cluster 

2) whose cluster prototype deviates from the model occurs more often at night. This 

association finding supports previous work showing decreased compliance with trauma 

protocols at night [46]. 

Domain Expert Feedback on VIT-PLA Design: 

To evaluate the quality of our design, we had two medical domain experts evaluate a 

prototype of VIT-PLA. Both positive and negative feedback was received. 

Both domain experts liked the visualization’s flexibility and interactivity. They found that 

its data clustering, activity filtering, symbol resizing, and recoloring functions were very 

useful. They were also found that with the knowledge uncovered by the program’s 

statistical analysis was useful. One domain expert found it useful to switch between the 

aggregated data and the original traces, and also commented on the helpfulness of the 

cluster’s “average sequence”. 

Most negative comments focused on our approach for statistical analysis. One domain 

expert felt that data-driven clustering approach lacked consistency because its result varied 

when different clustering algorithms or similarity metrics were used. Also, the domain 

expert found that some small clusters did not have sufficient data to support the statistical 

hypothesis test correlating trace clusters and trace attributes. 
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Chapter 9  

Conclusions 

This dissertation has three major contributions which correspond to the three topics of Part 

II, Part III, and Part IV. Specifically, the contributions are: (1) novel approaches and 

frameworks for applied process mining and their implementations in real-world medical 

processes; (2) two different process recommender systems that close the gap between 

process mining and recommender systems; and (3) development of a visual analytic tool 

for process mining. The presented approaches, frameworks and tools were evaluated with 

several real-world datasets. As we have a partnership with Children’s National Medical 

Center, we were able to continuously access valuable domain knowledge and feedback on 

our methods. Although most of the datasets and case studies are conducted in medical 

domain, our methods can be easily applied to other problems with similar settings.  

In Part II, we developed novel process mining methods and applied them to real-world 

medical process analysis. First, to enhance the existing workflow discovery algorithm, we 

developed a splitting-based workflow discovery method. Our method is able to tackle the 

duplicate-activity problem by allowing the activity nodes in the model to further split. 

Second, to quantify and analyze the discrepancies between work-as-done and work-as-

imaged, we invented a framework for automatic process deviation detection. This 

framework provides a method for identifying repeated, omitted and out-of-sequence 

activities that can be included in the design of decision support systems for complex 

medical processes. Third, to analyze the differences between the medical treatment 

procedures of different patients, we introduced a framework for analyzing the association 

between treatment procedures and patient cohorts. The framework works by learning 

weights of context attributes by best-first search, deciding patient cohorts using clustering 

algorithms, discovering treatment procedures (or patterns) with process mining techniques, 

and analyzing the cohort-vs.-procedure through statistical analysis. 

In Part III, we presented two process recommender systems which present as a bridge 

between process mining and recommender systems. We first designed a prototype-based 
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recommender system. This approach relies on mining historic data to uncover the potential 

association between the way of enacting a process and contextual attributes. If association 

tests are significant, we train a recommender system to output a prototypical enactment for 

the given context attributes. Later, we proposed another recommender system that is able 

to provide a step-by-step recommendation. The system was built on recurrent neural 

networks. The networks took both environmental and behavioral contextual information as 

input and output next-step suggestions.  

In Part IV, we implemented our methods into a visual analytic tool. The tool was named 

as VIT-PLA, which is short for Visual Interactive Tool for Process Log Analysis. In this 

tool, we proposed a prototype-based process data visualization strategy. The strategy can 

greatly reduce the data amount to visualize but preserve the characteristics of each process 

cluster. Statistical analyses were also implemented and visualized to help users better 

understand their process data.   

Several challenges can be further explored in future work. First, the data amount is a 

limitation of our project and a common problem in the process mining community. For 

processes like the trauma resuscitation, there are no automated approaches that can 

accurately collect the activity logs. We made some efforts trying to collect such activity 

logs automatically by installing sensors (camera, microphone array and RFID tags), but the 

current system is not accurate enough. Manual coding of the activity logs can be tedious 

can greatly limit the data amount. Another reason that limits the data amount is 

confidentiality issues. Some of the process data, like ours, need strictly evaluated by 

institutional review board before usage. It poses risks to the privacy of both patients and 

medical teams. Hence, privacy-preserving process data sharing methods are desired for the 

process mining research community. Second, although we proposed the process 

recommender systems and evaluated using our datasets and case studies, we believe this is 

just a start for process recommender systems and there will be plenty of applications and 

improvements on such systems. Hopefully, we could see more process recommender 

systems studied and applied in real-world processes to help simplify and standardize the 

procedures in the near future. 
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