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ABSTRACT OF THE DISSERTATION

Learning-based Methods for Single Image Restoration and

Translation

by He Zhang

Dissertation Director: Vishal M Patel

In many applications such as drone-based video surveillance, self driving cars and

recognition under night-time and low-light conditions, the captured images and videos

contain undesirable degradations such as haze, rain, snow, and noise. Furthermore,

the performance of many computer vision algorithms often degrades when they are

presented with images containing such artifacts. Hence, it is important to develop

methods that can automatically remove these artifacts. However, these are difficult

problems to solve due to their inherent ill-posed nature. Existing approaches attempt

to introduce prior information to convert them into well-posed problems. In this thesis,

rather than purely relying on prior-based models, we propose to combine them with

data-driven models for image restoration and translation. In particular, we develop

new data-driven approaches for 1) single image de-raining, 2) single image dehazing,

and 3) thermal-to-visible face synthesis.

In the first part of the thesis, we develop three different methods for single image de-

raining. In the first approach, we develop novel convolutional coding-based methods for

single image de-raining, where two different types of filters are learned via convolutional

sparse and low-rank coding to characterize the background component and rain-streak
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component separately. These pre-trained filters are then used to separate the rain com-

ponent from the image. In the second approach, to ensure that the restored de-rained

results are indistinguishable from their corresponding clear images, we propose a novel

single image de-raining method called Image De-raining Conditional General Adver-

sarial Network (ID-CGAN) which consists of a new refined perceptual loss function

and a novel multi-scale discriminator. Finally, to deal with nonuniform rain densities,

we present a novel density-aware multi-stream densely connected convolutional neural

network-based algorithm that enables the network itself to automatically determine

the rain-density information and then efficiently remove the corresponding rain-streaks

guided by the estimated rain-density label.

In the second part of the thesis, we develop an end-to-end deep learning-based

method to address the single image dehazing problem. We propose to combine the

physics-based image formation model with data-driven approach for single image de-

hazing. In particular, a new end-to-end single image dehazing method, called Densely

Connected Pyramid Dehazing Network (DCPDN), is proposed which can jointly esti-

mate the transmission map, atmospheric light and dehazed image all together. The end-

to-end learning is achieved by directly embedding the atmospheric scattering model into

the network, thereby ensuring that the proposed method strictly follows the physics-

driven scattering model for dehazing.

In the final part of the thesis, we develop an image-to-image translation method for

generating high-quality visible images from polarimetric thermal faces. Since polarimet-

ric images contain different stokes images containing various polarization state infor-

mation, we propose a Generative Adversarial Network-based multi-stream feature-level

fusion technique to synthesize high-quality visible images from polarimetric thermal

images. An application of this approach is presented in polarimetric thermal-to-visible

cross-modal face recognition.
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Chapter 1

Introduction

Images are ubiquitous and indispensable in modern science and everyday life. Mirroring

the abilities of our own human visual system, it is natural to display observations of

the world in a graphical form. Images are obtained in areas ranging from everyday

photography to astronomy, remote sensing, medical imaging and microscopy. In each

case, there is an underlying object or scene we wish to observe; the image is a visual

representation of these observations.

Yet imaging, just as any other observation process, is never perfect, especially for

the images captured in unconstrained conditions such as rain, haze or extreme illumina-

tion. It has been widely acknowledged that these unpredictable impairments adversely

affect the performance of many computer vision algorithms such as detection, classifi-

cation and tracking. This is primarily due to the fact that these algorithms are trained

using images that are captured under well-controlled conditions. Consider the example

of rainy image as shown in Figure 1.1. From this figure, it can be observed that the

presence of rain-streaks greatly impairs the visual quality of the image, thus render-

ing object (human or car) detection and verification algorithms ineffective under such

degradations. A possible solution to address this issue is to include images captured

under unconstrained conditions in the training process of these algorithms. However,

it may not be practical to collect such images for all classes in the training set, espe-

cially in a large scale setting. Hence, it is important to develop algorithms that can

automatically remove these artifacts.

As image restoration is an ill-posed problem, some of the previous approaches have

introduced different priors to solve the problem. Some of the priors include low-rank
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(a)

(b)

Figure 1.1: Real-world examples of rainy images and their corresponding de-rained results.
By comparing the figures on the left with the figures on the right, one can clearly see that
the object detector fails to detect objects in rainly images. Once the images are restored (i.e.
de-rained), the detector is able to detet the objects.



3

prior for image denoising [48], sparsity prior for image super-resolution [156], and dark-

channel prior for the image dehazing [50]. However, purely prior-based approaches do

not often work well in practice since they do not consider the other information available

in the real-world data for restoration. Hence, it is important consider the data-driven

knowledge into the algorithms for obtaining better results.

The main focus of this thesis is to design learning-based methods for image restora-

tion and translation problems. Specifically, we consider three different kinds of image

restoration and translation problems in this thesis. These include single image de-

raining, single image de-hazing and polarimetric thermal to visible image synthesis. In

what follows, we give a brief overview of these problems.

1.1 Thesis Overview

1.1.1 Single Image De-raining

In this thesis, we propose three different learning-based approaches to address the single

image de-raining problem. In Chapter 3, we propose a novel Convolutional Coding-

based Rain Removal (CCRR) algorithm to automatically remove rain streaks from a

single rainy image. Our method first learns a set of generic sparsity-based and low-rank

representation-based convolutional filters for efficiently representing background clear

image and rain streaks, respectively. To this end, we first develop a new method for

learning a set of convolutional low-rank filters. Then, using these learned filters, we

propose an optimization problem to decompose a rainy image into a clear background

image and a rain streak image. By working directly on the whole image, the proposed

rain streak removal algorithm does not need to divide the image into overlapping patches

for leaning local dictionaries. Extensive experiments on synthetic and real images show

that the proposed method performs favorably compared to the state-of-the-art rain

streak removal algorithms.

In Chapter 4, we investigate a new point of view in addressing the single image

de-raining problem. Instead of focusing only on deciding what is a good prior or a

good framework to achieve good quantitative and qualitative performance, we also
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ensure that the de-rained image itself does not degrade the performance of a given

computer vision algorithm such as detection and classification. In other words, the

de-rained result should be indistinguishable from its corresponding clear image to a

given discriminator. This criterion can be directly incorporated into the optimization

framework by using the recently introduced conditional generative adversarial networks

(GANs). To minimize artifacts introduced by GANs and ensure better visual quality, a

new refined loss function is introduced. Based on this, we propose a novel single image

de-raining method called Image De-raining Conditional General Adversarial Network

(ID-CGAN), which considers quantitative, visual and also discriminative performance

into the objective function. In addition, a new de-raining dataset is created and has

been made publicly available to the research community.

Furthermore, to better characterize rain-streaks with different scales, shapes and

density, we present a novel density-aware multi-stream densely connected convolutional

neural network-based algorithm, called DID-MDN, for joint rain density estimation

and de-raining in Chapter 4. The proposed method enables the network itself to auto-

matically determine the rain-density information and then efficiently remove the cor-

responding rain-streaks guided by the estimated rain-density label. To better charac-

terize rain-streaks with different scales and shapes, a multi-stream densely connected

de-raining network is proposed which efficiently leverages features from different scales.

Furthermore, a new dataset containing images with rain-density labels is created and

is used to train the proposed density-aware network.

1.1.2 Single Image Dehazing

Similar to the de-raining problem, single image dehazing is also important since the pre-

senze of haze often degrades the image quality, as shown in Figure 1.2. In Chapter 6),

we propose a new end-to-end single image dehazing method, called Densely Connected

Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission map,

atmospheric light and dehazed result all together. The end-to-end learning is achieved

by directly embedding the atmospheric scattering model into the network, thereby en-

suring that the proposed method strictly follows the physics-driven scattering model
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Before Dehazing After Dehazing

Figure 1.2: Real-world examples of hazy image and corresponding dehazed results. Object
detection results are also shown on the images before and after restoration.

for dehazing. Inspired by the dense network that can maximize the information flow

along features from different levels, we propose a new edge-preserving densely connected

encoder-decoder structure with multi-level pyramid pooling module for estimating the

transmission map. This network is optimized using a newly introduced edge-preserving

loss function. To further incorporate the mutual structural information between the

estimated transmission map and the dehazed result, we propose a joint-discriminator

based on GANs framework to decide whether the corresponding dehazed image and

the estimated transmission map are real or fake. An ablation study is conducted to

demonstrate the effectiveness of each module evaluated at both estimated transmission

map and dehazed result.

1.1.3 Thermal-to-Visible Face Synthesis

The large domain discrepancy between faces captured in polarimetric (or conventional)

thermal and visible domain makes cross-domain face verification a highly challenging

problem for human examiners and computer vision algorithms. Consider the images

shown in Figure 1.3. On the top of the figure, thermal images are displayed while on

the bottom the corresponding visible images are displayed. As can be seen from this

figure, it is difficult to visually distinguish between the thermal images. However, it is

much easier to distinguish between these two images in the visible domain.

Hence, it is important to develop algorithms that transfer the corresponding thermal

images into the visible domain. Previous approaches utilize either a two-step procedure
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(a) (b)

Figure 1.3: Real-world examples of thermal faces (top row) and visible faces (bottom row).

(visible feature estimation and visible image reconstruction) or an input-level fusion

technique, where different polarimetric Stokes images are concatenated and used as a

multichannel input to synthesize the visible image given the corresponding polarimetric

signatures. Although these methods have yielded improvements, we argue that input-

level fusion alone may not be sufficient to realize the full potential of the available

Stokes images. We propose a GAN-based multi-stream feature-level fusion technique to

synthesize high-quality visible images from prolarimetric thermal images. The proposed

network consists of a generator sub-network, constructed using an encoder-decoder

network based on dense residual blocks, and a multi-scale discriminator sub-network.

The generator network is trained by optimizing an adversarial loss in addition to a

perceptual loss and an identity preserving loss to enable photo realistic generation of

visible images while preserving the discriminative characteristics. An extended dataset

consisting of polarimetric thermal facial signatures of 111 subjects is also introduced.
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Chapter 2

Background and Related Work

In this chapter, we review background works for single image de-raining, single image

dehazing and cross-domain face synthesis. In addition, we also review some related

methods, such as Convolutional Sparse Coding (CSC), GANs and perceptual loss func-

tions.

2.1 Single Image De-raining

One can model the observed rainy image as the superposition of two images - one

corresponding to rain streak and the other corresponding to clear background (see

Fig. 2.1). The input rainy image can be expressed as

y = yc + yr, (2.1)

where y ∈ RC×M×N ,yc ∈ RC×M×N and yr ∈ RC×M×N are rainy image (y), clear

background image (yc) and rain streak image (yr), respectively. All three images are

with C channel, height M and width N . Given, y, the goal of rain streak removal (i.e.

de-raining) is to estimate yc.

(a) (b) (c)

Figure 2.1: Rain streak removal from a single image. A rainy image (a) can be viewed as the
superposition of a clean background image (b) and a rain streak image (c).

In order to solve this ill-posed problem, various methods have been developed in
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the literature that make use of either multiple images [112, 147, 41, 42, 176] or a prior

[112, 158, 168, 186, 68] to obtain a restored image. In what follows, we review some

single image de-raining methods.

2.1.1 Layer Separation Methods

The key idea here is to utilize different prior assumptions to characterize various image

components separately and decompose a given rainy image into a clean background

image and a rain streak component. Priors such as sparsity, low-rank and Gaussian

mixture model have been investigated in the literature. The image separation model

has also been explored in other applications such as image decomposition [131, 106, 97],

image de-noising [152, 142] and image reflection removal.

Sparsity-based Methods

Sparse coding-based clustering method [68] is among the first ones to tackle the single

image de-raining problem where the authors proposed to solve it in the image de-

composition framework. They first separated the input image into low frequency and

high frequency images using a bilateral filter. The high frequency image is further

decomposed into rain and non-rain components based on the assumption that learned

dictionary atoms can sparsely represent clear background image and rain-streak image

separately. An important assumption that is made in this approach is that rain streaks

usually have similar edge orientations. This may result in the removal of non-rain com-

ponent as rain. Also, the method’s effectiveness is dependent on the performance of

the bilateral filter and clustering of basis vectors for generating sparse representation.

Similar to the above approach, Luo et al. in [86] propose a discriminative sparse cod-

ing based method that considers the mutual exclusive property into the optimization

framework. Though the authors present significant improvements as compared to pre-

vious methods, their method is ineffective in removing large rain-streaks due to the

assumption that rain streaks are high frequency components. In addition, due to the

same assumption, their method generates artifacts around the rain-streak components

in the resulting images.
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Low-rank Representation-based Methods

Chen et al. proposed a low-rank representation-based method [19] that uses patch-

rank as a prior to characterize unpredictable rain pattern. This is inspired by the

observation that rain streak components within the same rainy image share similar

shapes and orientations. Hence, the rain streaks can be better characterized by the

low-rank property. They use a low-rank model to capture correlated rain streaks while

using the total-variation norm as the prior for the clean background image. However,

the low-rank property tends to remove important texture details such as bricks on the

wall in the de-rained images and hence the de-rained results tend to loose important

details in the restored image.

Gaussian Mixture Model-based Methods

Li et al. in [83] used the image decomposition framework to propose patch-based

priors for the background and the rain component. These priors are based on Gaussian

Mixture Models (GMMs) which can accommodate multiple orientations and scales of

rain streaks. These methods [19, 83] are based on the assumption that rain streaks

have similar patterns and orientations. Due to this assumption, they tend to capture

other global repetitive patterns such as brick and texture which results in removal of

certain non-rain components from the background image.

2.1.2 Deep Learning-based Methods

Recently, due to the immense success of deep learning in both high-level and low-level

vision tasks [52, 153, 60, 128, 171, 129, 142, 103, 179, 189, 191, 166, 105, 24], several

Convolutional Neural Network (CNN) based methods have also been proposed for image

de-raining [37, 38, 158]. In these methods, the idea is to learn a mapping between input

rainy images and their corresponding ground truths using a CNN structure. According

to the observation that both rain streaks and object details remain only in the detail

layer, Fu et al. [38] leverage a two step procedure, where the input rainy image is

decomposed into a based layer and a detail layer separately. Then, a CNN non-linear
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mapping is learned to remove the rain streaks in the detail layer. Built on [38], Fu

et al. extend the network structure via leveraging Res-block [52] in [37]. Yang et al.

proposed a CNN structure that can jointly detect the rain streaks and remove them

simultaneously. Some of the other deep learning-based methods include [143, 146, 39,

33].

2.2 Convolutional Sparse Coding (CSC)

In CSC, given a set of M training samples {ym}Mi=1, the objective is to learn a set of

convolutional filters {dk}Ki=1 by solving the following optimization problem

arg min
d,x

1

2

M∑
m=1

∥∥∥∥∥ym −
K∑
k=1

dk ∗ xm,k

∥∥∥∥∥
2

2

+

λ

M∑
m=1

K∑
k=1

‖xm,k‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, · · · ,K},

(2.2)

where xm,k are the sparse coefficients that approximate the data ym when convolved

with the corresponding filters dk of fixed support and for an N -dimensional vector x,

‖ · ‖q denotes the `q-norm, 0 < q < ∞, defined as ‖x‖q =
(∑N

i=1 |xi|q
) 1

q
. Here, ∗

represents the 2-D convolution operator and λ is a positive regularization parameter.

Several methods have been proposed in the literature for solving the above optimization

problem [12, 54, 150, 148]. In particular, [150], [148] developed an efficient method that

jointly uses the space and Fourier domains to solve the CSC problem.

2.3 Single Image Dehazing

The image degradation (atmospheric scattering model) due to the presence of haze is

mathematically formulated as

I(z) = J(z)t(z) +A(z)(1− t(z)), (2.3)

where I is the observed hazy image, J is the true scene radiance, A is the global

atmospheric light, indicating the intensity of the ambient light, t is the transmission
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map and z is the pixel coordinates. Transmission map is the distance-dependent factor

that affects the fraction of light that reaches the camera sensor. When the atmospheric

light A is homogeneous, the transmission map can be expressed as t(z) = e−βd(z), where

β represents attenuation coefficient of the atmosphere and d is the scene depth. In single

image dehazing, given I, the goal is to estimate J .

It can be observed from (2.3) that there exists two important aspects in the dehaz-

ing process: (1) accurate estimation of transmission map, and (2) accurate estimation

of atmospheric light. Apart from several works that focus on estimating the atmospheric

light [8, 133], most of the other algorithms concentrate more on the accurate estima-

tion of the transmission map and they leverage empirical rule in the estimation of the

atmospheric light [50, 91, 113, 135]. This is mainly due to the common belief that good

estimation of transmission map will always lead to better dehazing. These methods

can be broadly divided into two main categories: (1). Handcraft prior-based methods

and (2). Learning-based methods. Handcraft prior-based methods often leverage dif-

ferent priors in characterizing the transmission map such as dark-channel prior [50],

contrast color-lines [35] and haze-line prior [7], while learning-based methods, such as

those based on CNNs, attempt to learn the transmission map directly from the training

data [136, 113, 13, 174, 78]. Once the transmission map and the atmospheric light are

estimated, the dehazed image can be recovered using the following equation (2.4):

Ĵ(z) =
I(z)− Â(z)(1− t̂(z))

t̂(z)
. (2.4)

2.3.1 Handcrafted Prior-based Dehazing Methods

Similar to the single image de-raining problem, single image dehazing is also a highly

ill-posed problem. Various handcrafted prior-based methods have been explored to

tackle this problem. Fattal [34] proposed a physically-grounded method by estimating

the albedo of the scene. As the images captured from the hazy conditions always lack

color contrast, Tan [135] et al. proposed a patch-based contrast-maximization method.

In [74], Kratz and Nishino proposed a factorial MRF model to estimate the albedo and

depths filed. Inspired by the observations that outdoor objects in clear weather have
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at least one color channel that is significantly dark, He. et al. in [50] proposed a dark-

channel model to estimate the transmission map. More recently, Fattal [35] proposed a

color-line method based on the observation that small image patches typically exhibit

a one-dimensional distribution in the RGB color space. Similarly, Berman et al. [7]

proposed a non-local patch prior to characterize the clean images.

2.3.2 Learning-based Dehazing Methods

Unlike some of the above mentioned methods that use different priors to estimate the

transmission map, Cai et al. [13] introduce an end-to-end CNN network for estimating

the transmission with a novel BReLU unit. In addition, they leverage the depth dataset

such as NYU-depth [95] to synthesize a large scale synthetic dataset for estimation of

transmission map. More recently, Ren et al. [113] proposed a multi-scale deep neural

network to estimate the transmission map. One of the limitations of these methods

is that they limit their capabilities by only considering the transmission map in their

CNN frameworks. To address this issue, Li. et al [78] proposed an all-in-one dehazing

network, where a linear transformation is leveraged to encode the transmission map

and the atmospheric light into one variable. Some of the other deep learning-based

single image dehazing include [159, 155, 114, 175]. Furthermore, several benchmark

datasets of both synthetic and real-world hazy images for dehazing problems have also

been introduced to the research community [177, 77, 1, 1].

2.4 Heterogeneous Face Recognition

In heterogeneous face recognition, one has to match two images corresponding to the

same subject captured by two different modalities such as visible and thermal. Distri-

butional change between the modalities makes the heterogeneous face recognition very

difficult. Various methods have been proposed in the literature for heterogeneous face

recognition such as infrared-to-visible [76, 53], thermal-to-visible [121, 118, 172, 63, 71],

and sketch-to-visible [40, 101] [141]. These approaches essentialy attempt to tackle

the heterogeneous face recognition problem by either synthesizing visible faces from the
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other domain, extracting domain-invariant features from these modalities, or projecting

heterogeneous data onto a common latent space for cross-modal matching.

Klare and Jain [72] proposed an approach using kernel prototype similarities, where

after geometric normalization and image filtering (e.g., Difference of Gaussian, Center-

Surround Divisive Normalization [92], and Gaussian) and local features extraction (e.g.,

multi-scale local binary patterns, or MLBP, and scale invariant feature transform, or

SIFT), the intra-domain kernel similarities between source (or target) domain images

and all training images from the source (or target) domain. These intra-domain kernel

similarity, which are computed using the cosine kernel, provide relational vectors for

source and target domain imagery to be compared, where the main idea is that the

kernel similarity between two source domain images should be similar to the kernel

similarity between two corresponding target domain images.

Yi et al. [160] leverage the use of multi-modal Restricted Boltzmann Machines

(RBMs) [94] to learn a shared representation, and for NIR-to-visible face recognition.

Here, they learn a shared representation using the multi-modal RBMs locally for each

patch. However, since heterogeneity is only addressed locally, they further reduce the

modality gap by performing Hetra-component analysis (HCA) [82] for the holistic im-

age representation. Hetero-component analysis is based on the theory that most of the

appearance differences between imaging modalities are captured in the top eigenvec-

tors. Therefore, a common representation is given by removing the effects from the top

eigenvectors. This was shown to achieve excellent performance for NIR-to-visible face

recognition. However, it is unclear how well this method would work for an emissive

infrared band, such as LWIR, where the facial signatures are very different than in the

visible or NIR bands.

Riggan et al. [116] proposed a coupled auto-associative network for learning com-

mon representation between thermal and visible face images. The authors optimize

two sparse auto-encoders jointly, such that (1) the information within each modality is

preserved, and (2) the inter-domain representations are similar for the corresponding

images. Although this approach demonstrated some success and robustness, the con-

straint to preserve information for the source domain is not a necessary condition as
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long as the discriminability is maintain when learning the common representation.

Hu et al. [55] use conventional thermal images when applying a one-versus-all frame-

work using partial least squares classifiers on the Histogram of Oriented Gradients

(HOG) features. For each classifier, they introduce the concept of adding cross-domain

negative samples (i.e., thermal samples from a different subject) for robustness. Later,

Riggan et al. [118] proposed the use of a coupled neural network and a discriminative

classifier for enhancing the conventional thermal-to-visible face recognition and polari-

metric thermal-to-visible framework.

Riggan et al. [117] proposed a way to synthesize a visible image from both conven-

tional thermal and polarimetric thermal images. This approach used a CNN to extract

features from a conventional or polarimetric thermal images and then mapped those

features to a corresponding visible representation using a deep perceptual mapping [88],

where this representation in inverted back to the imaging domain using a forward CNN

model. One potential concern is the piece-wise nature of this synthesis method. Later,

built up on the success of GANs [47], Zhang et al. [172] improved the synthesis results

by proposing an end-to-end conditional generative adversarial network (CGAN) ap-

proach, which is optimized via a newly introduced identity-preserving loss, to synthesis

a visible image from a thermal image. This approach demonstrated results that were

photo-realistic and discriminative.

2.5 Generative Adversarial Networks (GANs)

Generative adversarial networks were proposed by Goodfellow et al. in [47] to synthesize

realistic images by effectively learning the distribution of training images. The authors

adopted a game theoretic min-max optimization framework to simultaneously train

two models: a generative model G and a discriminative model D. The goal of GANs

is to train G to produce samples from training distribution such that the synthesized

samples are indistinguishable from actual distribution by the discriminator D. Unlike

other generative models such as Generative Stochastic Networks [137], GANs do not

require a Markov chain for sampling and can be trained using standard gradient descent
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methods [47].

In order to learn a good generator G so as to fool the learned discriminator D and

to make the discriminator D good enough to distinguish real from fake, the proposed

method alternatively updates G and D. Given an actual image x and a random noise

vector z, the original GAN aims to learn a mapping function to generate output image

y by solving the following optimization problem:

min
G

max
D

Ez∼pdata(z),[log(1−D(G(z)))]+

Ex∼pdata(x) [logD(x))].

(2.5)

Initially, the success of GANs was limited as they were known to be unstable to train,

often resulting in artifacts in the synthesized images. Radford et al. in [107] proposed

Deep Convolutional GANs (DCGANs) to address the issue of instability by including

a set of constraints on their topology. Another limiting issue in GANs is that, there

is no control on the modes of data being synthesized by the generator in case of these

unconditioned generative models. Mirza et al. [93] incorporated additional conditional

information in the model, which resulted in effective learning of the generator. The

use of conditioning variables for augmenting side information not only increased the

stability in learning but also improved the descriptive power of the generator G [69].

More recently, researchers have explored various aspects of GANs such as training

improvements[120] and use of task specific cost function [23]. Also, an alternative

viewpoint for the discriminator function is explored by Zhao et al. [182] where they

deviate from the traditional probabilistic interpretation of the discriminator model.

Most recently, [4] propose to minimize the Earth-Mover distance between the density

of generated samples and the true data density, and they show the resultant Wasserstein

GAN (WGAN) can address the vanishing gradient problem that the classic GAN suffers.

2.5.1 Applications of GANs

The success of GANs in synthesizing realistic images has led researchers exploring the

GAN framework for numerous applications such as style transfer [79], image inpainting

[100, 161], text to image translation [164, 154, 179], image to image translation [110,
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180, 185], image super-resolution [75], texture synthesis [66] and generating outdoor

scenes from attributes [69]. Isola et al. [64] proposed a general purpose solution for

image-to-image translation using conditional adversarial networks. Apart from learning

a mapping function, they argue that the network also learns a loss function, eliminating

the need for specifying or hand designing a task specific loss function. Karacan et al.

in [69] proposed a deep GAN conditioned on semantic layout and scene attributes to

synthesize realistic outdoor scene images under different conditions. Recently, Jetchev

et al. [66] proposed spatial GANs for texture synthesis. Deviating from traditional

GANs, their input noise distribution constitutes a whole spatial tensor instead of a

vector, thus enabling them to create architectures more suitable for texture synthesis.

2.6 Perceptual Loss Function

Loss functions form an important and integral part of learning process, especially in

CNN-based reconstruction tasks. Several works [27],[85, 28, 89, 183, 26, 43, 165] have

explored different loss functions and their combinations for effective learning for tasks

such as super-resolution, semantic segmentation, depth estimation, feature inversion

and style transfer. Initial work on CNN-based image translation or restoration opti-

mized over pixel-wise L2-norm (Euclidean loss) or L1-norm between the predicted and

ground truth images [85, 28]. Since these losses operate at pixel level, their ability to

capture high level perceptual/contextual details is limited and they tend to produce

blurred results [75]. Hence, many authors argue and demonstrate through their re-

sults that it would be better to optimize a perceptual loss function where the aim is

to minimize perceptual difference between reconstructed image and the ground truth

image [67]. In a different approach, the conditional GAN framework can also be consid-

ered as an attempt to explore a structured loss function where, a generator network is

trained to minimize the discriminator’s ability to correctly classify between the synthe-

sized image and the corresponding ground truth image. Researchers have attempted

to solve various reconstruction tasks such as image super-resolution and style transfer

where conditional GAN framework augmented with perceptual and L2 loss function

have been used to produce state-of-the-art results [75, 64].
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Chapter 3

Convolutional Sparse and Low-Rank Coding-Based Rain

Streak Removal

In this chapter, we introduce a novel optimization-based framework to efficiently char-

acterize rain-streak components and background images using the learned convolutional

coding prior filters. Once these priors are pre-learned, we decompose a given rainy im-

age into separate components via newly proposed convolutional coding decomposition

framework. Our method of convolutional coding de-raining is compared to several state-

of-the-art methods and results on synthetic and real images show that the proposed

method performs favorably compared to state-of-the-art rain streak removal algorithms.

3.1 Introduction

One of the limitations of some of the de-raining approaches such as [68, 19, 86] is that

they are patch-based and they use local patches to learn local dictionaries. For example,

Kang et al [68] divide the whole image into overlapping patches and then they learn a

set of dictionary atoms in representing the overlapping patches. As a result, they often

contain shifted versions of the same features [12] and the filters learned via patch-based

methods are not efficient in representing the overall image. As shown in Fig. 3.1, it can

be observed that patch-based sparse coding methods tend to learn shifted versions of

the same features.

To deal with this issue and to make sure that the global structure information can

be learned into the optimization, CSC methods have been introduced in which shift

invariance is directly modeled in the objective function [163, 12, 54, 150]. Furthermore,

built on the observation that rain streak components within a single image tend to share

similar shapes and orientations, we propose a convolutional low-rank coding method to
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Figure 3.1: Filters learned by traditional sparse coding (dictionary learning) and convoluional
sparse coding.

represent the rain streak components.

In this chapter, we present a CSC and Convolutional Low-Rank Coding (CLC)

based method for rain streak removal from a single image. We first learn a set of

CSC and CLC filters to efficiently represent the background image and rain streaks,

respectively. Then, using the learned filters, we develop an image separation algorithm

based on sparse and low-rank coding. Figure 3.2 gives an overview of the proposed

Convolutional Coding based Rain Removal (CCRR) method.

In this chapter, we make the following contributions:

1. We present an optimization framework for CLC for efficiently representing low-

rank rain streaks.

2. CCRR is proposed in which pre-trained CSC and CLC filters are used to efficiently

represent background image and rain streaks, respectively. Using these filters, we

propose an image separation method based on sparse and low-rank coding for

rain streak removal.

3. We develop alternating direction method of multipliers (ADMM) based optimiza-

tion frameworks [11] for solving the proposed CLC and CCRR algorithms.

3.2 Convolutional Sparse Coding

As discussed above, in CSC, given a set of M training samples {ym}Mi=1, the objective

is to learn a set of convolutional filters {dk}Ki=1 by solving the following optimization
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CSC-based Filters

CLC-based Filters

Sparse Cofficient 
Map

Low-rank Cofficient 
Map

CSC-based Filters

CLC-based Filters

CSC

Input Image

Training background 
images

CLC

Training rain-streak 
images

Background Image

Rain-streak Image

Figure 3.2: An overview of the proposed convolutional coding based rain streak removal
algorithm.

problem

arg min
d,x

1

2

M∑
m=1

∥∥∥∥∥ym −
K∑
k=1

dk ∗ xm,k

∥∥∥∥∥
2

2

+

λ
M∑
m=1

K∑
k=1

‖xm,k‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, · · · ,K},

(3.1)

where xm,k are the sparse coefficients that approximate the data ym when convolved

with the corresponding filters dk of fixed support and for an N -dimensional vector x,

‖ · ‖q denotes the `q-norm, 0 < q < ∞, defined as ‖x‖q =
(∑N

i=1 |xi|q
) 1

q
. Here, ∗

represents the 2-D convolution operator and λ is a positive regularization parameter.

Several methods [149, 21] have been proposed in the literature in solving 3.1. In this

chapter, we adapt the method proposed in [150] for learning the convolutional filters

due to its simplicity and efficiency.

3.3 Convolutional Low-rank Coding

A rainy scene usually contains similar patterns of rain streak in different local patches.

As shown in Fig 3.4, the rain streak in different patch within single rainy image share
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similar shapes, scales and orientations. Hence, the appearance of rain streaks can be

characterized as patch-rank property. Fig 3.3 gives an example of how patch-rank works.

Even though patch-rank is able to better characterize the rain streak components within

a single image, yet it can be also capture repetitive texture patterns present in the rainy

images, as shown in Fig 3.3 and Fig 3.4. This may result in the lost of texture details

such as the brick on the wall or the texture on the clothes in the recovered de-rained

image.

To overcome the texture loss issue in the recovered de-rained image, a ’supervised’

low-rank model is proposed in this chapter, where we aim to enforce the learned low-

rank filters are able to ’only’ efficiently represent the rain streak components.

Figure 3.3: An ilustration of patch-rank.

In order to learn a set of such ’supervised’ low-rank filters for efficiently representing

rain streaks, we propose the following CLC problem

arg min
d,x

1

2

M∑
m=1

∥∥∥∥∥ym −
K∑
k=1

dk ∗ xm,k

∥∥∥∥∥
2

2

+

λl

M∑
m=1

K∑
k=1

‖xm,k‖∗

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, · · · ,K},

(3.2)

where ‖ · ‖∗ is nuclear norm, representing the sum of singular values and λl is a positive
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regularization parameter.

The problem (3.2) can be solved by iteratively updating dk and xm,k, as it is a

bi-convex optimization problem. The updating procedure is as follows:

Figure 3.4: It can be observed that the rain-streak components can be characterized by the
patch-rank. However, it can be also observed that brick can be also characterized by the patch-
rank.

3.3.1 Fix xm,k and update dk

We solve the following optimization problem for updating each filter

arg min
dk

1

2

M∑
m=1

‖ym −
K∑
k=1

dk ∗ xm,k‖22

subject to ‖dk‖2 ≤ 1, ∀k.

(3.3)

We can regard the constrains ‖dk‖2 ≤ 1 as post-processing after each iteration. Then,

(3.3) can be rewritten as

arg min
dk

1

2

M∑
m=1

‖ym −
K∑
k=1

dk ∗ xm,k‖22. (3.4)

To solve (3.4) in the DFT domain, we zero pad dk so that it has the same spatial

support as xm,k. We form another optimization problem (3.5) that can directly include

the zero-padding and normalization procedure for dk in the objective [150] as

arg min
dk,gk

1

2

M∑
m=1

‖ym −
K∑
k=1

dk ∗ xm,k‖22 +

K∑
k=1

lCzp(gk)

subject to dk − gk = 0 ∀k, (3.5)
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where lCzp is the indicator function of the constraint set Czp
1. The iterative update

methods for solving (3.5) via scaled form of ADMM are as follows

dk
(j+1) = arg min

dk

1

2

M∑
m=1

‖ym −
K∑
k=1

dk ∗ xm,k‖22

+
σ

2

K∑
k=1

‖dk − g
(j)
k + q

(j)
k ‖

2
2,

(3.7)

gk
(j+1) = arg min

gk

K∑
k=1

lCzp(gk)

+
σ

2

K∑
k=1

‖d(j+1)
k − gk + q

(j)
k ‖

2
2,

(3.8)

qk
(j+1) = q

(j)
k + d

(j+1)
k − g

(j+1)
k , (3.9)

where q is the scaled dual variable. The optimization problem (3.7) can be solved using

the DFT based method proposed in [150], and (3.8) can be solved using a proximal

algorithm [98].

3.3.2 Fix dk and update xm,k

We rewrite (3.2) as

arg min
xm,k,zm,k

1

2

M∑
m=1

‖ym −
K∑
k=1

dk ∗ xm,k‖22

+ λl

M∑
m=1

K∑
k=1

‖zm,k‖∗

subject to xm,k − zm,k = 0, ∀k.

(3.10)

1lC() is defined as

lC(p) =

{
0, if p ∈ C
∞, if p /∈ C.

(3.6)
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Then, the iterative update rules for solving (3.10) are as follows

xm,k
(j+1) = arg min

xm,k

1

2
‖ym −

K∑
k=1

dk ∗ xm,k‖22

+
ρ

2

K∑
k=1

‖xm,k − z
(j)
m,k + u

(j)
m,k‖

2
2,

(3.11)

zm,k
(j+1) = arg min

zm,k

λl

K∑
k=1

‖zm,k‖∗+

ρ

2

K∑
k=1

‖x(j+1)
m,k − zm,k + u

(j)
m,k‖

2
2,

(3.12)

um,k
(j+1) = u

(j)
m,k+x

(j+1)
m,k − z

(j+1)
m,k . (3.13)

Problem (3.11) can be solved using the optimization method proposed in [150] and

(3.12) can be solved using Singular Value Thresholding (SVT) [14].

3.4 Convolutional Coding-based Rain Removal

Assume that we have learned a set of convolutional sparsity based filters {dc,k} us-

ing CSC to sparsely represent the clean background part and another set of convolu-

tional low-rank based filters {dr,k} using CLC to efficiently represent the rain streaks.

That is, we have learned {dc,k}Kc
k=1 and {dr,k}Kr

k=1 such that yc =
∑Kc

k=1 dc,k ∗ xc,k and

yr =
∑Kr

k=1 dr,k ∗ xr,k, where xc,k are the sparse coefficients and xr,k are the low-rank

coefficients that approximate yc and yr when convolved with the filters dc,k and dr,k,

respectively.

In order to separate the rain streaks and the background image from the mixture

model, we need efficient representations for rainy component and the background image.

Since rain streaks are texture like, they are inherently low-rank in nature. In fact, this

assumption has been used in [19] for de-raining. Then, we propose to estimate the clean

background and rain components via xc,k and xr,k, respectively by solving the following
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CCRR optimization problem

x̂c,k, x̂r,k = arg min
xc,k,xr,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kr∑
k=1

dr,k ∗ xr,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 + λr

Kr∑
k=1

‖xr,k‖∗

+ βTV

(
Kc∑
k=1

dc,k ∗ xc,k

)
,

(3.14)

where β, λr and λc are positive regularization parameters and TV is the total variation

(i.e. sum of the absolute variations in the image). Note that in CCRR, we enforce

sparsity constraint on the coefficients corresponding to the background image and low-

rank constraint on the coefficients corresponding to the rain streaks. Once, xc,k and

xr,k are estimated, the two components can be obtained by ŷc =
∑Kc

k=1 dc,k ∗ x̂c,k and

ŷr =
∑Kr

k=1 dr,k ∗ x̂r,k, where ŷc represents the de-rained image.

3.5 Optimization

In this section, we derive the framework for solving the proposed CLC and CCRR opti-

mization problems. If we discard the TV part in (3.14), then the resulting optimization

problem can be solved iteratively over xc,k and xr,k.

3.5.1 Update step for xc,k

When xr,k is fixed, we need to solve the following problem to obtain the sparse coeffi-

cients xc,k

x̂c,k = arg min
xc,k

1

2

∥∥∥∥∥y −
Kr∑
k=1

dr,k ∗ xr,k −
Kc∑
k=1

dc,k ∗ xc,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 . (3.15)

This problem can be solved using the DFT based ADMM method [150].
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3.5.2 Update step for xr,k

For a fixed xc,k, we have to solve the following problem to obtain xr,k

x̂r,k = arg min
xr,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kr∑
k=1

dr,k ∗ xr,k

∥∥∥∥∥
2

2

+ λr

Kr∑
k=1

‖xr,k‖∗ . (3.16)

This problem is very similar to the sub-problem that we solve in CLC for finding the

low-rank coefficients when dk are fixed. Let yp = y−
∑Kc

k=1 dc,k ∗xc,k. Then (3.16) can

be rewritten as

x̂r,k = arg min
xr,k

1

2

∥∥∥∥∥yp −
Kr∑
k=1

dr,k ∗ xr,k

∥∥∥∥∥
2

2

+ λr

Kr∑
k=1

‖xr,k‖∗ ,

which can be solved using the optimization procedure described in the previous sub-

section for CLC.

Finally, the TV correction is applied only on the background rain-free part to control

the edges in the clear image. The overall CCRR algorithm for rain streak removal is

summarized in Algorithm 1, where L is the total iteration number and i is the iteration

index.

Algorithm 1 The CCRR Algorithm for Rain Removal.

Input: {dc,k}Kc
k=1, {dr,k}

Kr
k=1, y, λc, λr, L

Initialization
for i = 1 : L
Obtain xc,k by solving (3.14) when fixing xr,k.
Obtain yc by applying the TV correction [132].
Use yc to replace

∑Kc
k=1 dc,k ∗ x̂c,k in (3.14).

Obtain x̂r,k by solving (3.14) when fixing xc,k.
end for
ŷr =

∑Kr
k=1 dr,k ∗ x̂r,k,

ŷc=y - ŷr;
Output: ŷc, ŷr

3.6 Experimental Results

In this section, we present the results of our proposed CCRR algorithm for single

image de-raining on both gray-scale and color images. We compare the performance of
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our method with that of four state-of-the-art single image de-raining methods - sparse

dictionary based method (Auto-SP) [68], discriminative sparse coding based method

(Dis-SP) [86], low-rank representation based method (Low-rank) [19] and a CNN-based

method (CNN) [36]. In these experiments, we use Peak Signal to Noise Ratio (PSNR)

and Structural Similarity Index (SSIM) [145] to measure the performance of the routines

tested.

Sample training images shown in Figure 3.5 (a) are used to learn the convolutional

sparse filters {dc,k} using CSC. Similarly, some training images in the Figure 3.5 (b) are

utilized to learn the convolutional low-rank filters {dr,k} using CLC. The corresponding

CSC and CLC learned filters are shown in Figure 3.5 (c) and (d), respectively. The size

of each CSC filter is set equal to 8×8 and the size of each CLC filter is set equal to 6×6

for all experiments. From Figure 3.5 (d), one can see that these filters are oscillatory in

nature and they do a good job in capturing the rain texture patters. These filters can

capture the low-rank structure found in the rain streaks. Similarly, from Figure 3.5 (c),

we observe that the learned filters look similar to those found in a Gabor or curvelet

dictionary. They capture domain specific information found in natural images such as

edges and contours.

All testing images are excluded from the training procedure. For the gray-scale

images, the parameters λc and λr are set equal to max(0.55 − 0.090 ∗ i, 0.001) and

max(5.20− 0.90 ∗ i, 0.05), respectively. For the color images, the parameters are set as

λc = max(1.35−0.435∗ i, 0.001) and λr = max(5.30−0.72∗ i, 0.82). The total iteration

number L is set equal to to 6 for all experiments.

3.6.1 Rain Removal from Gray-scale Images

In the first set of experiments, we evaluate the quantitative performance of different

methods on the two synthetic gray-scale images released by Kang et al. in [68]. These

synthetic rainy images are shown in Figure 3.7. The performance of different de-raining

methods in terms of PSNR and SSIM is tabulated in Table 3.1. As can be seen from this

table, on average our method performs favorably over some of the compared methods.
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(a)

(b)

(c) (d)

Figure 3.5: (a) Training non-rain images used for learning a set of sparsity based filters {dc,k}.
(b) Rain-streak images used for learning a set of low-rank filters {dr,k}. (c) Learned non-rain
filters {dc,k}. (d) Learned rain-streak filters {dr,k}.

Rainy CCRR Auto-SP [68] Low-rank [19] Dis-sp [86] CNN [38]

SSIM
Fig 3.7(a) 0.6602 0.7699 0.7410 0.7641 0.6738 0.7751
Fig 3.7(b) 0.8579 0.8939 0.8654 0.8905 0.8774 0.8510

PSNR
(dB)

Fig 3.7(a) 24.75 25.78 24.78 25.42 25.61 24.82
Fig 3.7(b) 24.44 25.17 24.49 24.58 25.01 23.62

Table 3.1: Results on two synthetic gray-scale images.
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Input rainy image

Auto-SP [68]
de-rained
estimate

Low-rank [19]
de-rained
estimate

Dis-SP [86]
de-rained
estimate

CNN [38]
de-rained
estimate

CCRR
de-rained
estimate

Auto-SP [68]
rain estimate

Low-rank [19]
rain estimate

Dis-SP [86]
rain estimate

CNN [38]
rain estimate

CCRR
rain estimate

Figure 3.6: Rain-streak removal results on a real gray-scale image.

(a) (b)

Figure 3.7: Synthetic gray-scale rainy images.
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In the second set of experiments with the gray-scale images, we use a real rainy gray-

scale image (shown in the first row of Figure 3.6) and visually inspect the performance

of different de-raining methods by displaying the separated clear background images

(shown in the second row of Figure 3.6) and rain streak images (shown in the third

row of Figure 3.6) corresponding to different methods. From the third row, we can

observe that our method can capture more rain streaks and less of other structures,

demonstrating the advantage of using convolutional low-rank filters over just using

sparsity as prior for the rain component. We also observe that the recovered rain-

streak components from Dis-SP, Auto-SP and CNN methods capture more information

corresponding to the background non-rain image.

3.6.2 Rain Removal from Color Images

Synthetic Images. We used two color rainy images released by [68] with its ground

truth to measure the de-raining performance of different methods. The results are

shown in Figure 3.8. It can be observed that our method outperforms all the other

three methods quantitatively as well as qualitatively. For example, from this figure, we

see that the Auto-SP method [68] tends to smooth the de-rained part when removing

the rain component, while the low-rank method [19] fails to capture some rain com-

ponents in the background image. Even though the Dis-SP and CNN methods have

a very competitive visual quality, some rainy components still remain in the de-rained

image for both of these methods. Furthermore, Dis-SP tend to enhance the contrast

of some details such as the face shown in the first row in Figure 3.8 and the CNN

based rain removal method has very poor quantitative performance. Similar visual and

quantitative results are also observed in the second and the third row of Figure 3.8.

Real Images. We also evaluated the performance of our proposed method on many

real images downloaded from the Internet. The de-rained results for all the methods

and their corresponding input rainy images are shown in Figure 3.9. The first row

shows the input rainy images. Results of Auto-SP [68], Low-rank based method [19],

Dis-SP [86], CNN based method [38] and our CCRR method are shown in the second
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to fourth rows, respectively. From these de-rained images, we observe that the Auto-SP

and Low-rank methods tend to smooth the details in the de-rained images even though

they can remove a lot of rain streaks. This can be seen by observing the head part of

the athletes in the third column of this figure. The de-rained images from the Dis-SP

method still contains a lot of rain streaks. In general, the CNN based method achieves

very good visual quality, however, it fails to tackle heavy rain conditions, as can be seen

by comparing the results in the second and last columns of Figure 3.9. Our proposed

CCRR method can preserve the details such as edges and contours while removing the

low-rank rain streaks. This experiment clearly demonstrates the significance of the

proposed method in removing rain streaks from real-world rainy images under a variety

of different background and conditions.
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Ground Truth Input
SSIM:0.7571
PSNR: 18.75

Auto-SP [68]
SSIM:0.7853
PSNR: 21.23

Low-rank [19]
SSIM:0.8153
PSNR: 22.74

Dis-SP [86]
SSIM:0.8419
PSNR: 24.84

CNN [38]
SSIM:0.7584
PSNR: 20.00

Our
SSIM:0.8662
PSNR: 25.56

Ground Truth Input
SSIM:0.6959
PSNR: 20.21

Auto-SP [68]
SSIM:0.8181
PSNR: 21.74

Low-rank [19]
SSIM:0.8215
PSNR: 21.87

Dis-SP [86]
SSIM:0.7915
PSNR: 24.15

CNN [38]
SSIM:0.7326
PSNR: 21.29

Our
SSIM:0.8526
PSNR: 26.05

Figure 3.8: Rain-streak removal results on two synthetic color images. We compare the
performance of our proposed CCRR method with other four methods: Auto-SP [68], Low-rank
[19], Dis-SP [86] and CNN [38].
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Input

Auto-SP [68]

Low-rank [19]

Dis-SP [86]

CNN [38]

Our

Figure 3.9: Rain-streak removal results on three real images. We compare the performance
of our proposed CCRR method with the other three methods: Auto-SP [68], Low-rank [20],
Dis-SP [86] and CNN [38].
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Chapter 4

Image De-raining Using a Conditional Generative

Adversarial Network

Even though prior-based methods such as sparsity prior have demonstrated their effec-

tiveness in characterizing the clean background and rain-streak components separately,

estimated clean background images tend to lose many details and results are far from

optimal. To more efficiently learn the mapping between input rainy images and the

corresponding clean background images, we tend to explore the strong capabilities of

using CNNs in addressing the single image de-raining problem. We have proposed a

conditional GAN with refined perceptual loss to include the discriminative information

with perceptual quality into the learning process. In addition, a multi-scale discrimi-

nator is proposed in this method to leverage information from multiple scales to decide

whether the de-rained image is real or fake. Furthermore, we synthesize a larges-scale

datasets for single image de-raining problem, which has been made publicly available

for future research. This method outperforms traditional prior-based methods and deep

learning methods both quantitatively and qualitatively.

4.1 Introduction

Even though tremendous improvements have been achieved fpr single image de-raining

problem, as discussed in Chapter 2, we note that these methods do not consider ad-

ditional information into the optimization. Hence, to design a visually appealing de-

raining algorithm, we must consider the following information into the optimization

framework:

(a) The criterion that performance of vision algorithms such as detection and classifi-

cation should not be affected by the presence of rain streaks should be considered
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Input De-rained results

Figure 4.1: Sample results of the proposed ID-CGAN method for single image de-raining.

in the objective function. The inclusion of this discriminative information ensures

that the reconstructed image is indistinguishable from its original counterpart.

(b) Rather than concentrating only on the characterization of rain-streaks, visual

quality may also be considered into the optimization function. This can ensure

that the de-rained image looks visually appealing without losing important details.

(c) Some of the existing methods adopt off-line additional image processing tech-

niques to enhance the results [38, 68]. Instead, it would be better to use a more

unified structure to deal with the problem without any additional processing.

In this work, these criteria are incorporated in a novel conditional GAN-based frame-

work called Image De-raining Conditional Generative Adversarial Network (ID-CGAN)

to address the single image de-raining problem. We aim to leverage the generative

modeling capabilities of the recently introduced CGANs. While existing CNN-based

approaches minimize only L2 error, these methods need additional regularization due
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to the ill-posed nature of the problem. In this work, adversarial loss from CGANs is

used as additional regularizer leading to superior results in terms of visual quality and

quantitative performance. The use of discriminator for classifying between real/fake

samples provides additional feedback, enabling the generator to produce results that

are visually similar to the ground-truth clean samples (real samples). Inspired by

the recent success of GANs for pixel-level vision tasks such as image generation [107],

image inpainting [100] and image super-resolution [75], our network consists of two

sub-networks: densely-connected generator (G) and multi-scale discriminator (D). The

generator acts as a mapping function to translate an input rainy image to de-rained

image such that it fools the discriminator, which is trained to distinguish rainy images

from images without rain. The discriminator is designed to capture hierarchical con-

text information through multi-scale pooling. However, traditional GANs [107] are not

stable to train and may introduce artifacts in the output image making it visually un-

pleasant and artificial. To address this issue, we introduce a new refined perceptual loss

to serve as an additional loss function to aid the proposed network in generating visually

pleasing outputs. Furthermore, to leverage different scale information in determining

whether the corresponding de-rained image is real or fake, a multi-scale discriminator is

proposed. Sample results of the proposed ID-CGAN algorithm are shown in Figure 4.1.

In summary, this chapter makes the following contributions:

1. A conditional GAN-based framework to address the challenging single image de-

raining problem without the use of any additional post-processing.

2. A densely-connected generator sub-network that is specifically designed for the

single image de-raining task.

3. A multi-scale discriminator is proposed to leverage both local and global infor-

mation to determine whether the corresponding de-rained image is real or fake.

4. Extensive experiments are conducted on publicly available and synthesized datasets

to demonstrate the effectiveness of the proposed method in terms of visual quality

and quantitative performance. Detailed qualitative and quantitative comparisons

with existing state-of-the-art methods are presented.
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Figure 4.2: An overview of the proposed ID-CGAN method for single image de-raining. The
network consists of two sub-networks: densely-connected generator G and multi-scale discrimi-
nator D.

5. Lastly, effectiveness of the proposed method in improving high-level object de-

tection task is demonstrated on VOC dataset [32]. The detections are performed

using Faster-RCNN [111].

No addition pre-
(or post) processing

End-to-end mapping
Consider discriminative performance

in the optimization
Consider visual performance

in the optimization
Not Patch-based Time efficiency

SPM [68]

PRM [19]
√

DSC [86]
√

CNN [38]
√ √ √

GMM [83]
√ √ √

CCR [169]
√ √

DDN [37]
√ √ √

JORDER [158]
√ √ √ √

ID-CGAN
√ √ √ √ √ √

Table 4.1: Compared to the existing methods, our ID-CGAN has several desirable properties:
1. No additional image processing. 2. Include discriminative factor into optimization. 3.
Consider visual performance into optimization.

4.2 Proposed Method

Instead of solving (2.1) in a decomposition framework, we aim to directly learn a map-

ping from an input rainy image to a de-rained (background) image by constructing a

conditional GAN-based deep network called ID-CGAN. The proposed network is com-

posed of three important parts (generator, discriminator and perceptual loss function)
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that serve distinct purposes. Similar to traditional GANs [64, 47], the proposed method

contains two sub-networks: a generator sub-network G and a discriminator sub-network

D. The generator sub-network G is a densely-connected symmetric deep CNN network

with appropriate skip connections as shown in the top part in Figure 4.2. Its primary

goal is to synthesize a de-rained image from an image that is degraded by rain (input

rainy image). The multi-scale discriminator sub-network D, as shown in the bottom

part in Figure 4.2, serves to distinguish ‘fake’ de-rained image (synthesized by the

generator) from corresponding ground truth ‘real’ image. It can also be viewed as a

guidance for the generator G. Since GANs are known to be unstable to train which

results in artifacts in the output image synthesized by G, we define a refined perceptual

loss functions to address this issue. Additionally, this new refined loss function ensures

that the generated (de-rained) images are visually appealing.

4.2.1 Generator with Symmetric Structure

As the goal of single image de-raining is to generate pixel-level de-rained image, the

generator should be able to remove rain streaks as much as possible without loosing

any detail information of the background image. So the key part lies in designing a

good structure to generate de-rained image.

Existing methods for solving (2.1), such as sparse coding-based methods [68, 10,

131, 106], neural network-based methods [152] and CNN-based methods [90] have all

adopted a symmetric (encoding-decoding) structure. For example, sparse coding-based

methods use a learned or pre-defined synthesis dictionaries to decode the input noisy

image into sparse coefficient map. Then another set of analysis dictionaries are used

to transfer the coefficients to desired clear output. Usually, the input rainy image

is transferred to a specific domain for effective separation of background image and

undesired component (rain-streak). After separation, the background image (in the

new domain) has to be transferred back to the original domain which requires the use

of a symmetric process.

Following these methods, a symmetric structure is adopted to form the generator

sub-network. The generator G directly learns an end-to-end mapping from input rainy
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image to its corresponding ground truth. In contrast to the existing adversarial net-

works for image-to-image translation that use U-Net [119, 64] or ResNet blocks [52, 75]

in their generators, we use the recently introduced densely connected blocks [59]. These

dense blocks enable strong gradient flow and result in improved parameter efficiency.

Furthermore, we introduce skip connections across the dense blocks to efficiently lever-

age features from different levels and guarantee better convergence. The jth dense

block Dj is represented as:

Dj = cat[Dj,1, Dj,2, ..., Dj,6], (4.1)

where Dj,i represents the features from the ith layer in dense block Dj and each layer

in a dense block consists of three consecutive operations, batch normalization (BN),

leaky rectified linear units (LReLU) and a 3×3 convolution.

Each dense block is followed by a transition block (T ), functioning as up-sampling

(Tu), down-sampling (Td) or no-sampling operation (Tn). To make the network effi-

cient in training and have better convergence performance, symmetric skip connections

are included into the proposed generator sub-network, similar to [90]. The generator

network is as follows:

CBLP(64)-D(256)-Td(128)-D(512)-Td(256)-D(1024)-Tn(512)-D(768)-Tn(128)-D(640)-

Tu(120)-D(384)-Tu(64)-D(192)-Tu(64)-D(32)-Tn(16)-C(3)-Tanh

where, CBLP is a set of convolutional layers followed by batch normalization, leaky

ReLU activation and pooling module, and the number inside braces indicates the num-

ber of channels for the output feature maps of each block.

4.2.2 Multi-scale Discriminator

From the point of view of a GANs framework, the goal of de-raining an input rainy

image is not only to make the de-rained result visually appealing and quantitatively

comparable to the ground truth, but also to ensure that the de-rained result is indistin-

guishable from the ground truth image. Therefore, a learned discriminator sub-network

is designed to classify if each input image is real or fake. Previous methods [64, 185]

have demonstrated the effectiveness of leveraging an efficient patch-discriminator in
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generating high quality results. For example, Isola et al [64] adopt a 70× 70 patch

discriminator, where 70× 70 indicates the receptive field of the discriminator. Though

such a single scale (eg. 70× 70) patch-discriminator is able to achieve visually pleasing

results, however, it is still not capable enough to capture the global context information,

resulting in insufficient estimation. As shown in the zoomed-in part of the Figure 4.5

(e), it can be observed that certain tiny details are still missing in the de-rained results

using a single scale discriminator. For example, it can be observed from the second row

of Figure 4.5 that the front mirror of truck is largely being removed in the de-rained

results. This is probably due to the fact that the receptive field size in the discriminator

is 70× 70 and no additional surrounding context is provided. Hence, we argue that it

is important to leverage a more powerful discriminator that captures both local and

global information to decide whether it is real or fake.

To effectively address this issue, a novel multi-scale discriminator is proposed in

this work. This is inspired by the usage of multi-scale features in objection detection

[51] and semantic segmentation [181]. Similar to the structure that was proposed in

[64], a convolutional layer with batch normalization and PReLU activation are used

as a basis throughout the discriminator network. Then, a multi-scale pooling module,

which pools features at different scales, is stacked at the end of the discriminator. The

pooled features are then up-sampled and concatenated, followed by a 1×1 convolution

and a sigmoid function to produce a probability score normalized between [0,1]. By

using features at different scales, we explicitly incorporate global hierarchical context

into the discriminator. The proposed discriminator sub-network D is shown in the

bottom part of Figure 4.2.

4.2.3 Refined Perceptual Loss

As discussed earlier, GANs are known to be unstable to train and they may produce

noisy or incomprehensible results via the guided generator. A probable reason is that

the new input may not come from the same distribution of the training samples. As

illustrated in Figure 4.4(c), it can be clearly observed that there are some artifacts
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Figure 4.3: Sample images from real-world rainy dataset.

introduced by the normal GAN structure. This greatly influences the visual perfor-

mance of the output image. A possible solution to address this issue is to introduce

perceptual loss into the network. Recently, loss function measured on the difference

of high-level feature representation, such as loss measured on certain layers in CNN

[67], has demonstrated much better visual performance than the per-pixel loss used in

traditional CNNs. However, in many cases it fails to preserve color and texture infor-

mation [67]. Also, it does not achieve good quantitative performance simultaneously.

To ensure that the results have good visual and quantitative scores along with good

discriminatory performance, we propose a new refined loss function. Specifically, we

combine pixel-to-pixel Euclidean loss, perceptual loss [67] and adversarial loss together

with appropriate weights to form our new refined loss function. The new loss function

is then defined as follows:

LRP = LE + λaLA + λpLP , (4.2)

where LA represents adversarial loss (loss from the discriminator D), LP is perceptual

loss and LE is normal per-pixel loss function such as Euclidean loss. Here, λp and λa

are pre-defined weights for perceptual loss and adversarial loss, respectively. If we set

both λp and λa to be 0, then the network reduces to a normal CNN configuration, which
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aims to minimize only the Euclidean loss between output image and ground truth. If

λp is set to 0, then the network reduces to a normal GAN. If λa set to 0, then the

network reduces to the structure proposed in [67].

The three loss functions LP , LE and LA are defined as follows. Given an image

pair {x,yb} with C channels, width W and height H (i.e. C ×W ×H), where x is the

input image and yb is the corresponding ground truth, the per-pixel Euclidean loss is

defined as:

LE =
1

CWH

C∑
c=1

W∑
x=1

H∑
y=1

‖φE(x)c,w,h − (yb)
c,w,h‖22, (4.3)

where φE is the learned network G for generating the de-rained output. Suppose the

outputs of certain high-level layer are with size Ci×Wi×Hi. Similarly, the perceptual

loss is defined as

LP =
1

CiWiHi

Ci∑
c=1

Wi∑
w=1

Hi∑
h=1

‖V (φE(x))c,w,h − V (yb)
c,w,h‖22, (4.4)

where V represents a non-linear CNN transformation. Similar to the idea proposed in

[67], we aim to minimize the distance between high-level features. In our method, we

compute the feature loss at layer relu2 2 in VGG-16 model [128].1

Given a set of N de-rained images generated from the generator {φE(x)}Ni=1, the

entropy loss from the discriminator to guide the generator is defined as:

LA = − 1

N

N∑
i=1

log(D(φE(x))). (4.5)

4.3 Experiments and Results

In this section, we present details of the experiments and quality measures used to

evaluate the proposed ID-CGAN method. We also discuss the dataset and training

details followed by comparison of proposed methods against a set of baseline methods

and recent state-of-the-art approaches.

1https://github.com/ruimashita/caffe-train/blob/master/vgg.train val.prototxt
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Figure 4.4: Qualitative comparisons for different baseline configurations of the proposed
method. (a) Input image, (b) GEN, (c) GEN-CGAN-S, (d) GEN-P, (e) GEN-CGAN-PS, (f)
ID-CGAN and (g) Target image.

Figure 4.5: Qualitative comparisons for different baseline configurations of the proposed
method. (a) Input image, (b) GEN, (c) GEN-CGAN-S, (d) GEN-P, (e) GEN-CGAN-PS, (f)
ID-CGAN and (g) Target image.
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4.3.1 Experimental Details

Synthetic dataset

Due to the lack of availability of large size datasets for training and evaluation of

single image de-raining, we synthesized a new set of training and testing samples in

our experiments. The training set consists of a total of 700 images, where 500 images

are randomly chosen from the first 800 images in the UCID dataset [123] and 200

images are randomly chosen from the BSD-500’s training set [3]. The test set consists

of a total of 100 images, where 50 images are randomly chosen from the last 500

images in the UCID dataset and 50 images are randomly chosen from the test-set of

the BSD-500 dataset [3]. After the train and test sets are created, we add rain-streaks

to these images by following the guidelines mentioned in [38] using Photoshop2. It is

ensured that rain pixels of different intensities and orientations are added to generate

a diverse training and test set. Note that the images with rain form the set of observed

images and the corresponding clean images form the set of ground truth images. All

the training and test samples are resized to 256×256. All the images are available in

https://github.com/hezhangsprinter/ID-CGAN.

Real-world rainy images dataset

In order to demonstrate the effectiveness of the proposed method on real-world data,

we created a dataset of 50 rainy images downloaded from the Internet. While creating

this dataset, we took all possible care to ensure that the images collected were diverse

in terms of content as well as intensity and orientation of the rain pixels. A few sample

images from this dataset are shown in Figure 4.3. This dataset is used for evaluation

(test) purpose only.

2http://www.photoshopessentials.com/photo-effects/rain/
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GEN GEN-CGAN-S GEN-P GEN-CGAN-PS ID-CGAN

PSNR (dB) 24.40 23.55 23.77 24.08 24.34

SSIM 0.8275 0.8290 0.8305 0.8376 0.8430

UQI 0.6506 0.6541 0.6557 0.6705 0.6741

VIF 0.3999 0.4003 0.4056 0.4133 0.4188

Table 4.2: Quantitative comparison baseline configurations.

Quality measures

The following measures are used to evaluate the performance of different methods:

Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) [145], Univer-

sal Quality Index (UQI) [144] and Visual Information Fidelity (VIF) [126]. Similar to

previous methods [83], all of these quantitative measures are calculated using the lumi-

nance channel. Since we do not have ground truth reference images for the real dataset,

the performance of the proposed and other methods on the real dataset is evaluated

visually.

4.3.2 Model Details and Parameters

The entire network is trained on a Nvidia Titan-X GPU using the torch framework [22].

We used a batch size of 1 and number of training iterations of 100k. Adam algorithm

[70] with a learning rate of 2 × 10−3 is used. During training, we set λa = 6.6 × 10−3

and λp = 1. All the parameters are set via cross-validation. A low value for λa is used

so as to ensure that the adversarial loss does not dominate the other losses.

SPM [68] PRM [19] DSC [86] CNN [38] GMM [83] CCR [169] DDN [37] JORDER [158] ID-CGAN

PSNR (dB) 18.88 20.46 18.56 19.12 22.27 20.56 22.28 21.09 24.34

SSIM 0.7632 0.7297 0.5996 0.6013 0.7413 0.7332 0.7508 0.7525 0.8430

UQI 0.4149 0.5668 0.4804 0.4706 0.5751 0.5582 0.5995 0.5768 0.6741

VIF 0.2197 0.3441 0.3325 0.3307 0.4042 0.3607 0.3916 0.3785 0.4188

Table 4.3: Quantitative comparisons with state-of-the-art methods evaluated on using four
different criterions.

4.3.3 Comparison with Baseline Configurations

In order to demonstrate the significance of different modules in the proposed method,

we compare the performance of following baseline configurations:
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• GEN: Generator G is trained using per-pixel Euclidean loss by setting λa and λp to

zero in (4.2). This amounts to a traditional CNN architecture with Euclidean loss.

• GEN-CGAN-S: Generator G trained using per-pixel Euclidean loss and Adversarial

loss from a single-scale discriminator D (no multi-scale pooling). λp is set to zero in

(4.2).

• GEN-P: Generator G is trained using per-pixel Euclidean loss and perceptual loss.

λa is set to zero in (4.2).

• GEN-CGAN-PS: Generator G is trained using per-pixel Euclidean loss, perceptual

loss and adversarial loss from a single scale discriminator.

• ID-CGAN: Generator G is trained using per-pixel Euclidean loss, perceptual loss and

adversarial loss from multi-scale discriminator D.

All four configurations along with ID-CGAN are learned using training images from

the synthetic training dataset. Results of quantitative performance, using the measures

discussed earlier on test images from the synthetic dataset, are shown in Table 4.2.

Sample results for the above baseline configurations on test images from real dataset

are shown in Figure 4.4 and Figure 4.5. It can be observed from Figure 4.4(c), that the

introduction of adversarial loss improves the visual quality over the traditional CNN

architectures, however, it also introduces certain artifacts. The use of perceptual loss

along with adversarial loss from a single scale discriminator reduces these artifacts while

producing sharper results. However, part of the texture details are still missing in the

de-rained results (Figure 4.4(e)) such as the edge of the left back part of the car (shown

in third row in Figure 4.4) and the structure of truck’s front mirror (shown in second

row in Figure 4.5). Finally, the use of adversarial loss from multi-scale discriminator

along with other loss functions (ID-CGAN) results in recovery of these texture details

and achieve the best results. Quantitative results shown in Table 4.3 also demonstrate

the effectiveness of the each module.

4.3.4 Comparison with State-of-the-art Methods

We compare the performance of the proposed ID-CGAN method with the following

recent state-of-the-art methods for single image de-raining:
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Input PRM [19] DSC [86] CNN [38] GMM [83]

CCR [169] DDN [37] JORDER [68] ID-CGAN Ground Truth

Input PRM [19] DSC [86] CNN [38] GMM [83]

CCR [169] DDN [37] JORDER [158] ID-CGAN Ground Truth

Figure 4.6: Qualitative comparison of rain-streak removal on two sample images from synthetic
dataset.
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Input DSC [86] CNN [38] GMM [83]

CCR [169] DDN [37] JORDER [158] ID-CGAN

Input DSC [86] CNN [38] GMM [83]

CCR [169] DDN [37] JORDER ID-CGAN

(a)

Input DSC [86] CNN [38] GMM [83]

CCR [169] DDN [37] JORDER [158] ID-CGAN

Input DSC [86] CNN [38] GMM [83]

CCR [169] DDN [37] JORDER ID-CGAN

(b)

Figure 4.7: Qualitative comparison of rain-streak removal on two sample real images.
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• SPM: Sparse dictionary-based method [68] (TIP ’12 )

• PRM: PRM prior-based method[19] (ICCV ’13 )

• DSC: Discriminative sparse coding-based method [86] (ICCV ’15 )

• GMM: GMM-based method [83] (CVPR ’16 )

• CNN: CNN-based method [38] (TIP ’17 )

• CCR: Convolutional-coding based method [169] (WACV ’17 )

• DDN: Deep Detail Network method [37] (CVPR ’17 )

• JORDER: CNN-based method [158] (CVPR ’17 )

Results on synthetic dataset

In the first set of experiments, we compare quantitative and qualitative performance

of different methods on the test images from the synthetic dataset. As the ground

truth is available for the these test images, we calculate the quantitative measures such

as PSNR, SSIM, UQI and VIF. Results are shown in Table 4.3. It can be clearly

observed that the proposed ID-CGAN method is able to achieve superior quantitative

performance using all the measures.

To visually demonstrate the improvements obtained by the proposed method on the

synthetic dataset, results on two difficult sample images are presented in Figure 4.6.

Note that we selectively sample difficult images to show that our method performs well

in difficult conditions. While PRM [19] is able to remove the rain-streaks, it produces

blurred results which are not visually appealing. The other compared methods are able

to either reduce the intensity of rain or remove the streaks in parts, however, they fail

to completely remove the rain-streaks. In contrast to the other methods, the proposed

method is able to successfully remove majority of the rain streaks while maintaining

the details of the de-rained images.

Evaluation on Real Rainy Images

We also evaluated the performance of the proposed method and recent state-of-the-art

methods on real-world rainy test images. The de-rained results for all the methods on

two sample input rainy images are shown in Figure 4.7. For better visual comparison, we
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show zoomed versions of the two specific regions-of-interest below the de-rained results.

By looking at these regions-of-interest, we can clearly observe that DSC [86] tends to add

artifacts on the de-rained images. Even though the other methods GMM [83], CNN [38],

CCR [169], DDN [37] and JORDER [158] are able to achieve good visual performance,

rain drops are still visible in the zoomed regions-of-interest. In comparison, the proposed

method is able to remove most of the rain drops while maintaining the details of the

background image. One may observe that the proposed method leaves out a few rain-

streaks in the output images. This is because the two image samples represent relatively

difficult cases for de-raining. However, the proposed method is able to achieve better

results compared to state-of-the-art methods. Additional comparisons are provided in

Figure 4.8. It can be seen that the proposed method achieves better results among all

the methods. In addition, more de-rained results on different rainy images, shown in

Figure 4.10, demonstrate that the proposed method successfully removes rain streaks.

Evaluation on Object Detection Results

Single image de-raining algorithms can be used as a pre-processing step to improve the

performance of other high level vision tasks such as face recognition and object detection

[68]. In order to demonstrate the performance improvement obtained after de-raining

using the proposed ID-CGAN method, we evaluated Faster-RCNN [111] on VOC 2007

dataset [32]. First, the VOC 2007 dataset is artificially degraded with rain streaks

similar to Section IV A. Due to the degradations, object detection performance using

Faster-RCNN results in poor performance. Next, the degraded images are processed by

ID-CGAN method to remove the rain streaks and the de-rained images are fed to the

Faster-RCNN method. We present the mean average precision (mAP) for the entire

VOC dataset in Table IV. It may be noted that Faster-RCNN on degraded images

results in a low average precision, however, the performance is boosted by 78% when

Table 4.4: Object detection performance using Faster-RCNN on VOC 2007 dataset.

Condition mAP

With Rain 0.39

De-rained 0.69
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the images undergo de-raining using the proposed ID-CGAN method.

Input DSC [86] CNN [38] GMM [83]

CCR [169] DDN [37] JORDER [158] ID-CGAN

Input DSC [86] CNN [38] GMM [83]

CCR [169] DDN [37] JORDER [158] ID-CGAN

Figure 4.8: Qualitative comparison of rain-streak removal on two sample real images.

Sample detection results for Faster-RCNN on real-world rainy and de-rained images

are shown in Figure 4.9. The degradations result in total failure of Faster-RCNN on

these images, however, after being processed by ID-CGAN, the same detection method

is able successfully detect different objects in the scene.
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(a)

(b)

Figure 4.9: Real-world examples of object detection (Faster-RCNN [111]) improvements ob-
tained by the proposed ID-CGAN. Left : Detection results on rainy images; Right : Detection
results on de-rained images. The detection performance is boosted when ID-CGAN is used as
a pre-processing step.
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Figure 4.10: Additional de-rained results using the proposed ID-CGAN method on real-world
dataset. Left : Input; Right : Derained results.

Table 4.5: Time complexity (in seconds) for different methods.

SPM [68] PRM [19] DSC [86] CNN (GPU) [38] GMM [83] CCR [169] DDN (GPU) [37] JORDER (GPU) [158] ID-CGAN (GPU)

250X250 400.5s 40.5s 1.3s 54.9s 169.6s 150.2s 0.2s 0.4s 0.2s

500X500 1455.2s 140.3s 2.8s 189.3 674.8 600.6s 0.3s 1.4s 0.3s

Computation time

Table 4.5 compares the running time of several state-of-the-art methods. All baseline

methods are implemented using MATLAB or MATLAB wrapper. Our method is im-

plemented in Torch. It can be observed that all GPU-based CNN methods [38, 37, 158]

are computationally more efficient. The proposed ID-CGAN is able achieve the fastest

time3 as compared to these methods. On an average, ID-CGAN in GPU can process

and image of size 500 × 500 in about 0.3s.

3ID-CGAN is running as fast as Fu et al [37].
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Chapter 5

Density-aware Single Image De-raining using a

Multi-stream Dense Network

As discussed earlier, single image rain streak removal is an extremely challenging prob-

lem due to the presence of non-uniform rain densities in images. In this chapter, we

develop a novel density-aware image de-raining method with multi-stream densely con-

nected network (DID-MDN) for jointly rain-density estimation and de-raining. In com-

parison to existing approaches which attempt to solve the de-raining problem using a

single network to learn to remove rain streaks with different densities (heavy, medium

and light), we investigate the use of estimated rain-density label for guiding the synthe-

sis of the de-rained image. To efficiently predict the rain-density label, a residual-aware

rain-density classier is proposed in this chapter. In addition, an ablation study is per-

formed to demonstrate the improvements obtained by different modules in the proposed

method. Code and data can be found at: https://github.com/hezhangsprinter/DID-

MDN

5.1 Introduction

One of the main limitations of the existing single image de-raining methods is that

they are designed to deal with certain types of rainy images and they do not effectively

consider various shapes, scales and density of rain drops into their algorithms. State-of-

the-art de-raining algorithms such as [158, 37] often tend to over de-rain or under de-

rain the image if the rain condition present in the test image is not properly considered

during training. For example, when a rainy image shown in Figure 5.1(a) is de-rained

using the method of Fu et al. [37], it tends to remove some important parts in the de-

rained image such as the right arm of the person, as shown in Figure 5.1(b). Similarly,
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Image de-raining results. (a) Input rainy image. (b) Result from Fu et al. [37].
(c) DID-MDN. (d) Input rainy image. (e) Result from Li et al. [158]. (f) DID-MDN. Note that
[37] tends to over de-rain the image while [158] tends to under de-rain the image.

when [158] is used to de-rain the image shown in Figure 5.1(d), it tends to under de-rain

the image and leaves some rain streaks in the output de-rained image. Hence, more

adaptive and efficient methods, that can deal with different rain density levels present

in the image, are needed.

One possible solution to this problem is to build a very large training dataset with

sufficient rain conditions containing various rain-density levels with different orienta-

tions and scales. This has been achieved by Fu et al. [37] and Yang et al.[158], where

they synthesize a novel large-scale dataset consisting of rainy images with various con-

ditions and they train a single network based on this dataset for image de-raining.

However, one drawback of this approach is that a single network may not be capable

enough to learn all types of variations present in the training samples. It can be ob-

served from Figure 5.1 that both methods tend to either over de-rain or under de-rain

results. Alternative solution to this problem is to learn a density-specific model for

de-raining. However, this solution lacks flexibility in practical de-raining as the den-

sity label information is needed for a given rainy image to determine which network to
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choose for de-raining.

In order to address these issues, we propose a novel Density-aware Image De-raining

method using a Multi-stream Dense Network (DID-MDN) that can automatically de-

termine the rain-density information (i.e. heavy, medium or light) present in the input

image (see Figure 5.2). The proposed method consists of two main stages: rain-density

classification and rain streak removal. To accurately estimate the rain-density level,

a new residual-aware classifier that makes use of the residual component in the rainy

image for density classification is proposed in this work. The rain streak removal algo-

rithm is based on a multi-stream densely-connected network that takes into account the

distinct scale and shape information of rain streaks. Once the rain-density level is esti-

mated, we fuse the estimated density information into our final multi-stream densely-

connected network to get the final de-rained output. Furthermore, to efficiently train

the proposed network, a large-scale dataset consisting of 12,000 images with different

rain-density levels/labels (i.e. heavy, medium and light) is synthesized. Figure 5.1(c) &

(d) present sample results from our network, where one can clearly see that DID-MDN

does not over de-rain or under de-rain the image and is able to provide better results

as compared to [37] and [158].

This chapter makes the following contributions:

1. A novel DID-MDN method which automatically determines the rain-density in-

formation and then efficiently removes the corresponding rain-streaks guided by

the estimated rain-density label is proposed.

2. Based on the observation that residual can be used as a better feature repre-

sentation in characterizing the rain-density information, a novel residual-aware

classifier to efficiently determine the density-level of a given rainy image is pro-

posed in this chapter.

3. A new synthetic dataset consisting of 12,000 training images with rain-density

labels and 1,200 test images is synthesized. To the best of our knowledge, this is

the first dataset that contains the rain-density label information. Although the

network is trained on our synthetic dataset, it generalizes well to real-world rainy

images.
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Figure 5.2: An overview of the proposed DID-MDN method. The proposed network contains
two modules: (a) residual-aware rain-density classifier, and (b) multi-stream densely-connected
de-raining network. The goal of the residual-aware rain-density classifier is to determine the
rain-density level given a rainy image. On the other hand, the multi-stream densely-connected
de-raining network is designed to efficiently remove the rain streaks from the rainy images
guided by the estimated rain-density information.

4. Extensive experiments are conducted on three highly challenging datasets (two

synthetic and one real-world) and comparisons are performed against several re-

cent state-of-the-art approaches. Furthermore, an ablation study is conducted to

demonstrate the effects of different modules in the proposed network.

5.2 Background and Related Work

In this section, we briefly review several recent related works on multi-scale feature

aggregation.

5.2.1 Multi-scale Feature Aggregation

It has been observed that combining convolutional features at different levels (scales)

can lead to a better representation of an object in the image and its surrounding context

[51, 181, 60, 166]. For instance, to efficiently leverage features obtained from different

scales, the FCN (fully convolutional network) method [85] uses skip-connections and

adds high-level prediction layers to intermediate layers to generate pixel-wise predic-

tion results at multiple resolutions. Similarly, the U-Net architecture [119] consists
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of a contracting path to capture the context and a symmetric expanding path that

enables the precise localization. The HED model [153] employs deeply supervised

structures, and automatically learns rich hierarchical representations that are fused to

resolve the challenging ambiguity in edge and object boundary detection. Multi-scale

features have also been leveraged in various applications such as semantic segmenta-

tion [181], face-alignment [102], visual tracking [81] crowd-counting [129], single image

super-resolution[178], face anti-Spoofing [5], action recognition [188], depth estimation

[29], single image dehazing [113, 174, 170] and also in single image de-raining [158].

Similar to [158], we also leverage a multi-stream network to capture the rain-streak

components with different scales and shapes. However, rather than using two convolu-

tional layers with different dilation factors to combine features from different scales, we

leverage the densely-connected block [60] as the building module and then we connect

features from each block together for the final rain-streak removal. The ablation study

demonstrates the effectiveness of our proposed network compared with the structure

proposed in [158].

5.3 Proposed Method

The proposed DID-MDN architecture mainly consists of two modules: (a) residual-

aware rain-density classifier, and (b) multi-stream densely connected de-raining net-

work. The residual-aware rain-density classifier aims to determine the rain-density

level given a rainy image. On the other hand, the multi-stream densely connected de-

raining network is designed to efficiently remove the rain streaks from the rainy images

guided by the estimated rain-density information. The entire network architecture of

the proposed DID-MDN method is shown in Figure 5.2.

5.3.1 Residual-aware Rain-density Classifier

As discussed above, even though some of the previous methods achieve significant im-

provements on the de-raining performance, they often tend to over de-rain or under

de-rain the image. This is mainly due to the fact that a single network may not be
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sufficient enough to learn different rain-densities occurring in practice. We believe that

incorporating density level information into the network can benefit the overall learn-

ing procedure and hence can guarantee better generalization to different rain conditions

[112]. Similar observations have also been made in [112], where they use two different

priors to characterize light rain and heavy rain, respectively. Unlike using two priors

to characterize different rain-density conditions [112], the rain-density label estimated

from a CNN classifier is used for guiding the de-raining process. To accurately estimate

the density information given a rainy input image, a residual-aware rain-density classi-

fier is proposed, where the residual information is leveraged to better represent the rain

features. In addition, to train the classier, a large-scale synthetic dataset consisting of

12,000 rainy images with density labels is synthesized. Note that there are only three

types of classes (i.e. labels) present in the dataset and they correspond to low, medium

and high density.

One common strategy in training a new classifier is to fine-tune a pre-defined model

such as VGG-16 [128], Res-net [52] or Dense-net [60] on the newly introduced dataset.

One of the fundamental reasons to leverage a fine-tune strategy for the new dataset is

that discriminative features encoded in these pre-defined models can be beneficial in

accelerating the training and it can also guarantee better generalization. However, we

observed that directly fine-tuning such a ‘deep’ model on our task is not an efficient

solution. This is mainly due to the fact that high-level features (deeper part) of a CNN

tend to pay more attention to localize the discriminative objects in the input image

[184]. Hence, relatively small rain-streaks may not be localized well in these high-level

features. In other words, the rain-streak information may be lost in the high-level

features and hence may degrade the overall classification performance. As a result, it

is important to come up with a better feature representation to effectively characterize

rain-streaks (i.e. rain-density).

From (2.1), one can regard yr = y − yc as the residual component which can be

used to characterize the rain-density. To estimate the residual component (ŷr) from

the observation y, a multi-stream dense-net (without the label fusion part) using the

new dataset with heavy-density is trained. Then, the estimated residual is regarded as
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the input to train the final classifier. In this way, the residual estimation part can be

regarded as the feature extraction procedure 1, which is discussed in Section 3.2. The

classification part is mainly composed of three convolutional layers (Conv) with kernel

size 3× 3, one average pooling (AP) layer with kernel size 9×9 and two fully-connected

layers (FC). Details of the classifier are as follows:

Conv(3,24)-Conv(24,64)-Conv(64,24)-AP- FC(127896,512)-FC(512,3),

where (3,24) means that the input consists of 3 channels and the output consists of 24

channels. Note that the final layer consists of a set of 3 neurons indicating the rain-

density class of the input image (i.e. low, medium, high). An ablation study, discussed

in Section 4.3, is conducted to demonstrate the effectiveness of proposed residual-aware

classifier as compared with the VGG-16 [128] model.

Loss for the Residual-aware Classifier:. To efficiently train the classifier, a two-

stage training protocol is leveraged. A residual feature extraction network is firstly

trained to estimate the residual part of the given rainy image, then a classification

sub-network is trained using the estimated residual as the input and is optimized via

the ground truth labels (rain-density). Finally, the two stages (feature extraction and

classification) are jointly optimized. The overall loss function used to train the residual-

aware classier is as follows:

L = LE,r + LC , (5.1)

where LE,r indicates the per-pixel Euclidean-loss to estimate the residual component

and LC indicates the cross-entropy loss for rain-density classification.

5.3.2 Multi-stream Dense Network

It is well-known that different rainy images contain rain-streaks with different scales

and shapes. Considering the images shown in Figure 5.3, the rainy image in Figure 5.3

(a) contains smaller rain-streaks, which can be captured by small-scale features (with

smaller receptive fields), while the image in Figure 5.3 (b) contains longer rain-streaks,

1Classificaiton network can be regarded as two parts: 1.Feature extractor and 2. Classifer
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(a) (b)
Figure 5.3: Sample images containing rain-streaks with various scales and shapes.(a) contains
smaller rain-streaks, (b) contains longer rain-streaks.

which can be captured by large-scale features (with larger receptive fields). Hence, we

believe that combining features from different scales can be a more efficient way to

capture various rain streak components [58, 158].

Based on this observation and motivated by the success of using multi-scale features

for single image de-raining [158], a more efficient multi-stream densely-connected net-

work to estimate the rain-streak components is proposed, where each stream is built on

the dense-block introduced in [60] with different kernel sizes (different receptive fields).

These multi-stream blocks are denoted by Dense1 (7× 7), Dense2 (5× 5), and Dense3

(3× 3), in yellow, green and blue blocks, respectively in Figure 5.2. In addition, to fur-

ther improve the information flow among different blocks and to leverage features from

each dense-block in estimating the rain streak components, a modified connectivity is

introduced, where all the features from each block are concatenated together for rain-

streak estimation. Rather than leveraging only two convolutional layers in each stream

[158], we create short paths among features from different scales to strengthen feature

aggregation and to obtain better convergence. To demonstrate the effectiveness of our

proposed multi-stream network compared with the multi-scale structure proposed in

[158], an ablation study is conducted.

To leverage the rain-density information to guide the de-raining process, the up-

sampled label map 2 is concatenated with the rain streak features from all three streams.

2For example, if the label is 1, then the corresponding up-sampled label-map is of the same dimension
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Then, the concatenated features are used to estimate the residual (r̂) rain-streak infor-

mation. In addition, the residual is subtracted from the input rainy image to estimate

the coarse de-rained image. Finally, to further refine the estimated coarse de-rained

image and make sure better details well preserved, another two convolutional layers

with ReLU are adopted as the final refinement.

There are six dense-blocks in each stream. Mathematically, each stream can be

represented as

sj = cat[DB1, DB2, ..., DB6], (5.2)

where cat indicates concatenation, DBi, i = 1, · · · 6 denotes the output from the ith

dense block, and sj , j = 1, 2, 3 denotes the jth stream. Furthermore, we adopt different

transition layer combinations3 and kernel sizes in each stream. Details of each stream

are as follows:

Dense1: three transition-down layers, three transition-up layers and kernel size 7× 7.

Dense2: two transition-down layers, two no-sampling transition layers, two transition-

up layers and kernel size 5× 5.

Dense3: one transition-down layer, four no-sampling transition layers, one transition-

up layer and kernel size 3× 3.

Note that each dense-block is followed by a transition layer. Fig 5.4 presents an overview

of the first stream, Dense1.

Loss for the De-raining Network:. Motivated by the observation that CNN feature-

based loss can better improve the semantic edge information [67, 75] and to further

enhance the visual quality of the estimated de-rained image [173], we also leverage a

weighted combination of pixel-wise Euclidean loss and the feature-based loss. The loss

for training the multi-stream densely connected network is as follows

L = LE,r + LE,d + λFLF , (5.3)

as the output features from each stream and all the pixel values of the label map are 1.

3The transition layer can function as up-sample transition, down-sample transition or no-sampling
transition [65].
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Figure 5.4: Details of the first stream Dense1.

where LE,d represents the per-pixel Euclidean loss function to reconstruct the de-rained

image and LF is the feature-based loss for the de-rained image, defined as

LF =
1

CWH
‖F (x̂)c,w,h − F (x)c,w,h‖22, (5.4)

where F represents a non-linear CNN transformation and x̂ is the recovered de-rained

image. Here, we have assumed that the features are of size w × h with c channels. In

our method, we compute the feature loss from the layer relu1 2 of the VGG-16 model

[128].

Table 5.1: Quantitative results evaluated in terms of average SSIM and PSNR (dB)
(SSIM/PSNR).

Input DSC [86] (ICCV’15) GMM [83] (CVPR’16) CNN [38] (TIP’17) JORDER [158] (CVPR’17) DDN [37] (CVPR’17) JBO [186] (ICCV’17) DID-MDN

Test1 0.7781/21.15 0.7896/21.44 0.8352/22.75 0.8422/22.07 0.8622/24.32 0.8978/ 27.33 0.8522/23.05 0.9087/ 27.95

Test2 0.7695/19.31 0.7825/20.08 0.8105/20.66 0.8289/19.73 0.8405/22.26 0.8851/25.63 0.8356/22.45 0.9092/ 26.0745

5.3.3 Testing

During testing, the rain-density label information using the proposed residual-aware

classifier is estimated. Then, the up-sampled label-map with the corresponding input

image are fed into the multi-stream network to get the final de-rained image.

5.4 Experimental Results

In this section, we present the experimental details and evaluation results on both

synthetic and real-world datasets. De-raining performance on the synthetic data is
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evaluated in terms of PSNR and SSIM [145]. Performance of different methods on

real-world images is evaluated visually since the ground truth images are not available.

The proposed DID-MDN method is compared with the following recent state-of-the-

art methods: (a) Discriminative sparse coding-based method (DSC) [86] (ICCV’15),

(b) Gaussian mixture model (GMM) based method [83] (CVPR’16), (c) CNN method

(CNN) [38] (TIP’17), (d) Joint Rain Detection and Removal (JORDER) method [158]

(CVPR’17), (e) Deep detailed Network method (DDN) [37] (CVPR’17), and (f) Joint

Bi-layer Optimization (JBO) method [186] (ICCV’17).

5.4.1 Synthetic Dataset

Even though there exist several large-scale synthetic datasets [37, 173, 158], they lack

the availability of the corresponding rain-density label information for each synthetic

rainy image. Hence, we develop a new dataset, denoted as Train1, consisting of 12,000

images, where each image is assigned a label based on its corresponding rain-density

level. There are three rain-density labels present in the dataset (e.g. light, medium

and heavy). There are roughly 4,000 images per rain-density level in the dataset.

Similarly, we also synthesize a new test set, denoted as Test1, which consists of a total

of 1,200 images. It is ensured that each dataset contains rain streaks with different

orientations and scales. Images are synthesized using Photoshop. We modify the noise

level introduced in step 3 of 4 to generate different rain-density images, where light,

medium and heavy rain conditions correspond to the noise levels 5% ∼ 35%, 35% ∼

65%, and 65% ∼ 95%, respectively 5. Sample synthesized images under these three

conditions are shown in Fig 5.5. To better test the generalization capability of the

proposed method, we also randomly sample 1,000 images from the synthetic dataset

provided by Fu [37] as another testing set, denoted as Test2.

4http://www.photoshopessentials.com/photo-effects/photoshopweather-effects-rain/

5The reason why we use three labels is that during our experiments, we found that having more
than three rain-density levels does not significantly improve the performance. Hence, we only use three
labels (heavy, medium and light) in the experiments.
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Heavy Medium Light
Figure 5.5: Samples synthetic images in three different conditions.

Table 5.2: Quantitative results compared with three baseline configurations on Test1.

Single Yang-Multi [158] Multi-no-label DID-MDN

PSNR (dB) 26.05 26.75 27.56 27.95

SSIM 0.8893 0.8901 0.9028 0.9087

5.4.2 Training Details

During training, a 512 × 512 image is randomly cropped from the input image (or its

horizontal flip) of size 586×586. Adam is used as optimization algorithm with a mini-

batch size of 1. The learning rate starts from 0.001 and is divided by 10 after 20 epoch.

The models are trained for up to 80×12000 iterations. We use a weight decay of 0.0001

and a momentum of 0.9. The entire network is trained using the Pytorch framework.

During training, we set λF = 1. All the parameters are defined via cross-validation

using the validation set.

5.4.3 Ablation Study

The first ablation study is conducted to demonstrate the effectiveness of the proposed

residual-aware classifier compared to the VGG-16 [128] model. The two classifiers are

trained using our synthesized training samples Train1 and tested on the Test1 set.

The classification accuracy corresponding to both classifiers on Test1 is tabulated in

Table 5.3. It can be observed that the proposed residual-aware classifier is more accurate

than the VGG-16 model for predicting the rain-density levels.

Table 5.3: Accuracy of rain-density estimation evaluated on Test1.

VGG-16 [128] Residual-aware

Accuracy 73.32 % 85.15 %
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PSNR: 16.47
SSIM: 0.51

Input

PSNR: 22.87
SSIM: 0.8215

Single

PSNR: 23.02
SSIM: 0.8213

Yang-Multi [158]

PSNR: 23.47
SSIM: 0.8233

Multi-no-label

PSNR: 24.88
SSIM: 0.8623

DID-MDN

PSNR: Inf
SSIM: 1

Ground Truth

Figure 5.6: Results of ablation study on a synthetic image.

In the second ablation study, we demonstrate the effectiveness of different modules

in our method by conducting the following experiments:

• Single: A single-stream densely connected network (Dense2) without the pro-

cedure of label fusion.

• Yang-Multi [158]6: Multi-stream network trained without the procedure of

label fusion.

• Multi-no-label: Multi-stream densely connected network trained without the

procedure of label fusion.

• DID-MDN (our): Multi-stream Densely-connected network trained with the

procedure of estimated label fusion.

The average PSNR and SSIM results evaluated on Test1 are tabulated in Table

5.2. As shown in Figure 5.6, even though the single stream network and Yang’s multi-

stream network [158] are able to successfully remove the rain streak components, they

both tend to over de-rain the image with the blurry output. The multi-stream network

6To better demonstrate the effectiveness of our proposed muli-stream network compared with the
state-of-the-art multi-scale structure proposed in [158], we replace our multi-stream dense-net part with
the multi-scale structured in [158] and keep all the other parts the same.
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PSNR: 17.27
SSIM: 0.8257

PSNR:21.89
SSIM: 0.9007

PSNR: 25.30
SSIM:0.9455

PSNR: 20.72
SSIM: 0.8885

PSNR: 25.95
SSIM: 0.9605

PSNR: Inf
SSIM: 1

PSNR:19.31
SSIM: 0.7256

PSNR:22.28
SSIM: 0.8199

PSNR:26.88
SSIM:0.8814

PSNR: 21.42
SSIM:0.7878

PSNR: 29.88
SSIM:0.9252

PSNR: Inf
SSIM:1

PSNR: 20.74
SSIM:0.7992

Input

PSNR:24.20
SSIM:0.8502

JORDER
(CVPR’17)

[158]

PSNR:29.44
SSIM:0.9429

DDN
(CVPR’17)

[37]

PSNR:25.32
SSIM: 0.8922

JBO
(ICCV’17)

[186]

PSNR:29.84
SSIM:0.9482

DID-MDN

PSNR: Inf
SSIM:1

Ground Truth

Figure 5.7: Rain-streak removal results on sample images from the synthetic datasets Test1
and Test2.

without label fusion is unable to accurately estimate the rain-density level and hence

it tends to leave some rain streaks in the de-rained image (especially observed from

the derained-part around the light). In contrast, the proposed multi-stream network

with label fusion approach is capable of removing rain streaks while preserving the

background details. Similar observations can be made using the quantitative results as

shown in Table 5.2.

Results on Two Synthetic Datasets

We compare quantitative and qualitative performance of different methods on the test

images from the two synthetic datasets - Test1 and Test2. Quantitative results corre-

sponding to different methods are tabulated in Table 5.1. It can be clearly observed

that the proposed DID-MDN is able to achieve superior quantitative performance.

To visually demonstrate the improvements obtained by the proposed method on the

synthetic dataset, results on two sample images selected from Test2 and one sample

chosen from our newly synthesized Test1 are presented in Figure 5.7. Note that we
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Figure 5.8: Rain-streak removal results on sample real-world images.
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selectively sample images from all three conditions to show that our method performs

well under different variations 7. While the JORDER method [158] is able to remove

some parts of the rain-streaks, it still tends to leave some rain-streaks in the de-rained

images. Similar results are also observed from [186]. Even though the method of Fu et

al. [37] is able to remove the rain-streak, especially in the medium and light rain

conditions, it tends to remove some important details as well, such as flower details, as

shown in the second row and window structures as shown in the third row (Details can

be better observed via zooming-in the figure). Overall, the proposed method is able to

preserve better details while effectively removing the rain-streak components.

Results on Real-World Images

The performance of the proposed method is also evaluated on many real-world images

downloaded from the Internet and also real-world images published by the authors of

[173, 37]. The de-raining results are shown in Fig 5.8.

As before, previous methods either tend to under de-rain or over de-rain the images.

In contrast, the proposed method achieves better results in terms of effectively removing

rain streaks while preserving the image details. In addition, it can be observed that

the proposed method is able to deal with different types of rain conditions, such as

heavy rain shown in the second row of Fig 5.8 and medium rain shown in the fifth row

of Fig 5.8. Furthermore, the proposed method can effectively deal with rain-streaks

containing different shapes and scales such as small round rain streaks shown in the third

row in Fig 5.8 and long-thin rain-streak in the second row in Fig 5.8. Overall, the results

evaluated on real-world images captured from different rain conditions demonstrate the

effectiveness and the robustness of the proposed DID-MDN method.

Running Time Comparisons

Running time comparisons are shown in the table below. It can be observed that the

testing time of the proposed DID-MDN is comparable to the DDN [37] method. On

7Due to space limitations and for better comparisons, we only show the results corresponding to the
most recent state-of-the-art methods [158, 37, 186].
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average, it takes about 0.2s to de-rain an image of size 512× 512.

Table 5.4: Running time (in seconds) for different methods averaged on 1000 images with size
512×512.

DSC GMM CNN (GPU) JORDER (GPU) DDN (GPU) JBO (CPU) DID-MDN (GPU)

512X512 189.3s 674.8s 2.8s 600.6s 0.3s 1.4s 0.2s
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Chapter 6

Densely Connected Pyramid Dehazing Network

A new end-to-end single image dehazing method, called Densely Connected Pyramid

Dehazing Network (DCPDN), which can jointly learn the transmission map, atmo-

spheric light and dehazing all together is proposed in this chapter. This network is

optimized using a newly introduced edge-preserving loss function. To further incorpo-

rate the mutual structural information between the estimated transmission map and the

dehazed result, we propose a joint-discriminator based on generative adversarial net-

work framework to decide whether the corresponding dehazed image and the estimated

transmission map are real or fake. An ablation study is conducted to demonstrate the

effectiveness of each module evaluated at both estimated transmission map and dehazed

result. Extensive experiments demonstrate that the proposed method achieves signifi-

cant improvements over the state-of-the-art methods. Code and data is made available

at: https://github.com/hezhangsprinter/DCPDN

6.1 Introduction

Under severe hazy conditions, floating particles in the atmosphere such as dusk and

smoke greatly absorb and scatter the light, resulting in degradations in the image

quality. These degradations in turn may affect the performance of many computer vision

systems such as classification and detection. To overcome the degradations caused

by haze, image and video-based haze removal algorithms have been proposed in the

literature [113, 13, 136, 7, 50, 73, 84, 174, 78, 187, 34, 35, 34, 114].

It can be observed from Eq. 2.3 that there exists two important aspects in the dehaz-

ing process: (1) accurate estimation of transmission map, and (2) accurate estimation
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Figure 6.1: Sample image dehazing result using the proposed DCPDN method. Left: Input
hazy image. Right: Dehazed result.

of atmospheric light. Apart from several works that focus on estimating the atmo-

spheric light [8, 133], most of the other algorithms concentrate more on the accurate

estimation of the transmission map and they leverage empirical rule in estimating the

atmospheric light [50, 91, 113, 135]. This is mainly due to the common belief that good

estimation of transmission map will lead to better dehazing. As discussed in Chapter

2, these methods can be broadly divided into two main groups: prior-based methods

and learning-based methods.

Though tremendous improvements have been made by the learning-based methods,

several factors hinder the performance of these methods and the results are far from

optimal. This is mainly because: 1. Inaccuracies in the estimation of transmission map

translates to low quality dehazed result. 2. Existing methods do not leverage end-to-

end learning and are unable to capture the inherent relation among transmission map,

atmospheric light and dehazed image. The disjoint optimization may hinder the overall

dehazing performance. Most recently, a method was proposed in [78] to jointly optimize

the whole dehazing network. This was achieved by leveraging a linear transformation

to embed both the transmission map and the atmospheric light into one variable and

then learning a light-weight CNN to recover the clean image.

In this chapter, we take a different approach in addressing the end-to-end learn-

ing for image dehazing. In particular, we propose a new image dehazing architecture,

called Densely Connected Pyramid Dehazing Network (DCPDN), that can be jointly

optimized to estimate transmission map, atmospheric light and also image dehazing
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simultaneously by following the image degradation model Eq. 2.3 (see Figure 6.2). In

other words, the end-to-end learning is achieved by embedding Eq. 2.3 directly into

the network via the math operation modules provided by the deep learning framework.

However, training such a complex network (with three different tasks) is very challeng-

ing. To ease the training process and accelerate the network convergence, we leverage a

stage-wise learning technique in which we first progressively optimize each part of the

network and then jointly optimize the entire network. To make sure that the estimated

transmission map preserves sharp edges and avoids halo artifacts when dehazing, a new

edge-preserving loss function is proposed in this chapter based on the observation that

gradient operators and first several layers of a CNN structure can function as edge ex-

tractors. Furthermore, a densely connected encoder-decoder network with multi-level

pooling modules is proposed to leverage features from different levels for estimating

the transmission map. To exploit the structural relationship between the transmis-

sion map and the dehazed image, a joint discriminator-based GAN is proposed. The

joint discriminator distinguishes whether a pair of estimated transmission map and de-

hazed image is a real or fake pair. To guarantee that the atmospheric light can also be

optimized within the whole structure, a U-net [119] is adopted to estimate the homo-

geneous atmospheric light map. Shown in Figure 6.1 is a sample dehazed image using

the proposed method.

This chapter makes the following contributions:

• A novel end-to-end jointly optimizable dehazing network is proposed. This is

enabled by embedding Eq. 2.3 directly into the optimization framework via math

operation modules. Thus, it allows the network to estimate the transmission map,

atmospheric light and dehazed image jointly. The entire network is trained by a

stage-wise learning method.

• An edge-preserving pyramid densely connected encoder-decoder network is pro-

posed for accurately estimating the transmission map. Further, it is optimized

via a newly proposed edge-preserving loss function.

• As the structure of the estimated transmission map and the dehazed image are

highly correlated, we leverage a joint discriminator within the GAN framework to
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Figure 6.2: An overview of the proposed DCPDN image dehazing method. DCPDN consists
of four modules: 1. Pyramid densely connected transmission map estimation net. 2. Atmo-
spheric light estimation net. 3. Dehazing via Eq2.4. 4. Joint discriminator. We first estimate
the transmission map using the proposed pyramid densely-connected transmission estimation
net, followed by prediction of atmospheric light using the U-net structure. Finally, using the es-
timated transmission map and the atmospheric light we estimate the dehazed image via Eq. 2.4.

determine whether the paired samples (i.e. transmission map and dehazed image)

are from the data distribution or not.

• Extensive experiments are conducted on two synthetic datasets and one real-

world image dataset. In addition, comparisons are performed against several

recent state-of-the-art approaches. Furthermore, an ablation study is conducted

to demonstrate the improvements obtained by different modules in the proposed

network.

6.2 Proposed Method

The proposed DCPDN network architecture is illustrated in Figure 6.2 which consists

of the following four modules: 1) Pyramid densely connected transmission map esti-

mation net, 2) Atmosphere light estimation net, 3) Dehazing via Eq. 2.4, and 4) Joint

discriminator. In what follows, we explain these modules in detail.

Pyramid Densely Connected Transmission Map Estimation Network. In-

spired by the previous methods that use multi-level features for estimating the trans-

mission map [113, 13, 136, 2, 78], we propose a densely connected encoder-decoder
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structure that makes use of the features from multiple layers of a CNN, where the

dense block is used as the basic structure. The reason to use dense block lies in that it

can maximize the information flow along those features and guarantee better conver-

gence via connecting all layers. In addition, a multi-level pyramid pooling module is

adopted to refine the learned features by considering the ‘global’ structural information

into the optimization [181]. To leverage the pre-defined weights of the dense-net [60],

we adopt the first Conv layer and the first three Dense-Blocks with their corresponding

down-sampling operations Transition-Blocks from a pre-trained dense-net121 as our

encoder structure. The feature size at end of the encoding part is 1/32 of the input

size. To reconstruct the transmission map into the original resolution, we stack five

dense blocks with the refined up-sampling Transition-Blocks [65, 190] as the decoding

module. In addition, concatenations are employed with the features corresponding to

the same dimension.

Figure 6.3: An overview of the proposed pyramid densely connected transmission map esti-
mation network.

Even though the proposed densely connected encoder-decoder structure combines

different features within the network, the result from just densely connected structure

still lack of the ‘global’ structural information of objects with different scales. One pos-

sible reason is that the features from different scales are not used to directly estimate the

final transmission map. To efficiently address this issue, a multi-level pyramid pooling
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block is adopted to make sure that features from different scales are embedded in the fi-

nal result. This is inspired by the use of global context information in classification and

segmentation tasks [181, 166, 51]. Rather than taking very large pooling size to capture

more global context information between different objects [181], more ‘local’ informa-

tion to characterize the ‘global’ structure of each object is needed. Hence, a four-level

pooling operation with pooling sizes 1/32, 1/16, 1/8 and 1/4 is adopted. Then, all

four level features are up-sampling to original feature size and are concatenated back

with the original feature before the final estimation. Fig 6.3 gives an overview of the

proposed pyramid densely connected transmission map estimation network.

Atmospheric Light Estimation Network. Following the image degradation model

(2.3), we assume that the atmospheric light map A is homogeneous [50, 13]. Similar

to previous works, the predicted atmospheric light A is uniform for a given image. In

other words, the predicted A is a 2D-map, where each pixel A(z) has the same value

(eg. A(z) = c, c is a constant). As a result, the ground truth A is of the same feature

size as the input image and the pixels in A are filled with the same value. To estimate

the atmospheric light, we adopt a 8-block U-net [119] structure, where the encoder

is composed of four Conv-BN-Relu blocks and the decoder is composed of symmetric

Dconv-BN-Relu block 1.

Dehazing via (2.3). To bridge the relation among the transmission map, the atmo-

spheric light and the dehazed image and to make sure that the whole network structure

is jointly optimized for all three tasks, we directly embed (2.3) into the overall opti-

mization framework. An overview of the entire DCPDN structure is shown in Fig 6.1.

1Con: Convolution, BN: Batch-normalization [62] and Dconv: Deconvolution (transpose
convolution).
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Figure 6.4: Left: a dehazed image. Right: The transmission map used to produce a hazy
image from which the dehazed image on the left was obtained.

6.2.1 Joint Discriminator Learning

Let Gt and Gd denote the networks that generate the transmission map and the de-

hazed result, respectively. To refine the output and to make sure that the estimated

transmission map Gt(I) and the dehazed image Gd(I) are indistinguishable from their

corresponding ground truths t and J , respectively, we make use of a GAN [47] with

novel joint discriminator.

It can be observed from (2.3) and also Figure 6.4 that the structural information

between the estimated transmission map t̂ = Gt(I) and the dehazed image Ĵ are highly

correlated. Hence, in order to leverage the dependency in structural information be-

tween these two modalities, we introduce a joint discriminator to learn a joint distri-

bution to decide whether the corresponding pairs (transmission map, dehazed image)

are real or fake. By leveraging the joint distribution optimization, the structural corre-

lation between them can be better exploited. Similar to previous works, the predicted

air-light A is uniform for a given image. In other words, the predicted air-light A is a

2D-map, where each pixel A(z) has the same value (eg. A(z) = c, c is a constant).
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(a) (b) (c) (d) (e)

Figure 6.5: Feature visualization for gradient operator and low-level features. (a) Input
transmission map. (b) Horizontal gradient output. (c) Vertical gradient output. (d) and (e)
are visualization of two feature maps from relu1 2 of VGG-16 [128].

We propose the following joint-discriminator based optimization

min
Gt,Gd

max
Djoint

EI∼pdata(I) [log(1−Djoint(Gt(I)))]+

EI∼pdata(I) [log(1−Djoint(Gd(I)))]+

Et,J∼pdata(t,J)
[logDjoint(t, J))].

(6.1)

In practice, we concatenate the dehazed image with the estimated transmission map

as a pair sample and then feed it into the discriminator.

6.2.2 Edge-preserving Loss

It is commonly acknowledged that the Euclidean loss (L2 loss) tends to blur the final

result. Hence, inaccurate estimation of the transmission map with just the L2 loss may

result in the loss of details, leading to the halo artifacts in the dehazed image [61]. To

efficiently address this issue, a new edge-preserving loss is proposed, which is motivated

by the following two observations. 1) Edges corresponds to the discontinuities in the

image intensities, hence it can be characterized by the image gradients. 2) It is known

that low-level features such as edges and contours can be captured in the shallow (first

several) layers of a CNN structure [162]. In other words, the first few layers function

as an edge detector in a deep network. For example, if the transmission map is fed

into a pre-defined VGG-16 [128] model and then certain features from the output of

layer relu1 2 are visualized, it can be clearly observed that the edge information being

preserved in the corresponding feature maps (see Figure 6.5).

Based on these observations and inspired by the gradient loss used in depth estima-

tion [140, 80] as well as the use of perceptual loss in low-level vision tasks [67, 171], we
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Figure 6.6: Transmission map estimation results using different modules. (a) DED; (b). DED-
MLP; (c).DED-MLP-GRA; (d). DED-MLP-EP; (e). DCPDN; (f) Target. It can be observed
that the multi-level pooling module is able to refine better global structure of objects in the
image (observed from (a) and (b) ), the edge-preserving loss can preserve much sharper edges
(comparing (b), (c) and (d)) and the final joint-discriminator can better refine the detail for
small objects (comparing (d) and (e)).

propose a new edge-preserving loss function that is composed of three different parts:

L2 loss, two-directional gradient loss, and feature edge loss, defined as follows

LE = λE,l2LE,l2 + λE,gLE,g + λE,fLE,f , (6.2)

where LE indicates the overall edge-preserving loss, LE,l2 indicates the L2 loss, LE,g

indicates the two-directional (horizontal and vertical) gradient loss and LE,f is the

feature loss. LE,g is defined as follows

LE,g =
∑
w,h

‖(Hx(Gt(I)))w,h − (Hx(t))w,h‖2

+ ‖(Hy(Gt(I)))w,h − (Hy(t))w,h‖2,

(6.3)

where Hx and Hy are operators that compute image gradients along rows (horizontal)

and columns (vertical), respectively and w × h indicates the width and height of the

output feature map. The feature loss is defined as

LE,f =
∑

c1,w1,h1

‖(V1(Gt(I)))c1,w1,h1 − (V1(t))c1,w1,h1‖2

+
∑

c2,w2,h2

‖(V2(Gt(I)))c2,w2,h2 − (V2(t))c2,w2,h2‖2,
(6.4)

where Vi represents a CNN structure and ci, wi, hi are the dimensions of the corre-

sponding low-level feature in Vi. As the edge information is preserved in the low-level
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features, we adopt the layers before relu1-1 and relu2-1 of VGG-16 [128] as the edge

extractors V1 and V2, respectively. Here, λE,l2 , λE,g, and λE,f are weights to balance

the loss function.

6.2.3 Overall Loss Function

The proposed DCPDN architecture is trained using the following four loss functions

L = Lt + La + Ld + λjL
j , (6.5)

where Lt is composed of the edge-preserving loss LE , La is composed of the traditional

L2 loss in predicting the atmospheric light and Ld represents the dehazing loss, which

is also composed of the L2 loss only. Lj , which is denoted as the joint discriminator

loss 2, is defined as follows

Lj = − log(Djoint(Gt(I))− log(Djoint(Gd(I)). (6.6)

Here λj is a constant.

6.2.4 Stage-wise Learning

During experiments, we found that directly training the whole network from scratch

with the complex loss (6.5) is difficult and the network converges very slowly. A

possible reason may be due to the gradient diffusion caused by different tasks. For

example, gradients from the de-hazed image loss may ‘distract’ the gradients from the

loss of the transmission map initially, resulting in the slower convergence. To address

this issue and to speed up the training, a stage-wise learning strategy is introduced,

which has been used in different applications such as multi-model recognition [30] and

feature learning [6]. Hence, the information in the training data is presented to the

network gradually. In other words, different tasks are learned progressively. Firstly, we

optimize each task separately by not updating the other task simultaneously. After the

‘initialization’ for each task, we fine-tune the whole network all together by optimizing

all three tasks jointly.

2To address the vanishing gradients problem for the generator, we also minimize (6.6) rather than
the first two rows in (6.1) [47, 46].
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Table 6.1: Quantitative SSIM results for ablation study evaluated on synthetic TestA and
TestB datasets.

TestA

DED DED-MLP DED-MLP-GRA DED-MLP-EP DCPDN

Transmission 0.9555 0.9652 0.9687 0.9732 0.9776

Image 0.9252 0.9402 0.9489 0.9530 0.9560

TestB

Transmission 0.9033 0.9109 0.9239 0.9276 0.9352

Image 0.8474 0.8503 0.8582 0.8652 0.8746

6.3 Experimental Results

In this section, we demonstrate the effectiveness of the proposed approach by conducting

various experiments on two synthetic datasets and a real-world dataset. All the results

are compared with five state-of-the-art methods: He et al. (CVPR’09) [50], Zhu et

al (TIP’15) [187], Ren et al. [113] (ECCV’16), Berman et al. [7, 8] (CVPR’16 and

ICCP’17) and Li et al. [78] (ICCV’17). In addition, we conduct an ablation study to

demonstrate the effectiveness of each module of our network.

6.3.1 Datasets

Similar to the existing deep learning-based dehazing methods [113, 13, 78, 174], we

synthesize the training samples {Hazy /Clean /Transmission Map /Atmosphere Light}

based on (2.3). During synthesis, four atmospheric light conditions A ∈ [0.5, 1] and

the scattering coefficient β ∈ [0.4, 1.6] are randomly sampled to generate their corre-

sponding hazy images, transmission maps and atmospheric light maps. A random set

of 1000 images are selected from the NYU-depth2 dataset [95] to generate the training

set. Hence, there are in total 4000 training images, denoted as TrainA. Similarly, a

test dataset TestA consisting of 400 (100×4) images also from the NYU-depth2 are

obtained. We ensure that none of the testing images are in the training set. To demon-

strate the generalization ability of our network to other datasets, we synthesize 200

{Hazy /Clean /Transmission Map /Atmosphere Light} images from both the Middle-

bury stereo database (40) [124] and also the Sun3D dataset (160) [130] as the TestB

set.
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Table 6.2: Quantitative SSIM results on the synthetic TestA dataset.

Input
He. et al. [50]
(CVPR’09)

Zhu. et al. [187]
(TIP’15)

Ren. et al. [113]
(ECCV’16)

Berman. et al. [7, 8]
(CVPR’16)

Li. et al. [78]
(ICCV’17)

DCPDN

Transmission N/A 0.8739 0.8326 N/A 0.8675 N/A 0.9776

Image 0.7041 0.8642 0.8567 0.8203 0.7959 0.8842 0.9560

Table 6.3: Quantitative SSIM results on the synthetic TestB dataset.

Input
He. et al. [50]
(CVPR’09)

Zhu. et al. [187]
(TIP’15)

Ren. et al. [113]
(ECCV’16)

Berman. et al. [7, 8]
(CVPR’16)

Li. et al. [78]
(ICCV’17)

DCPDN

Transmission N/A 0.8593 0.8454 N/A 0.8769 N/A 0.9352

Image 0.6593 0.7890 0.8253 0.7724 0.7597 0.8325 0.8746

6.3.2 Training Details

We choose λE,l2 = 1, λE,g = 0.5, λE,f = 0.8 for the loss in estimating the transmission

map and λj = 0.25 for optimizing the joint discriminator. During training, we use

ADAM as the optimization algorithm with learning rate of 2× 10−3 for both generator

and discriminator and batch size of 1. All the training samples are resized to 512×512.

We trained the network for 400000 iterations. All the parameters are chosen via cross-

validation.

6.3.3 Ablation Study

In order to demonstrate the improvements obtained by each module introduced in the

proposed network, we perform an ablation study involving the following five experi-

ments: 1) Densely connected encoder decoder structure (DED), 2) Densely connected

encoder decoder structure with multi-level pyramid pooling (DED-MLP), 3) Densely

connected encoder decoder structure with multi-level pyramid pooling using L2 loss

and gradient loss (DED-MLP-GRA), 4) Densely connected encoder decoder struc-

ture with multi-level pyramid pooling using edge-preserving loss (DED-MLP-EP), 5)

The proposed DCPDN that is composed of densely connected encoder decoder struc-

ture with multi-level pyramid pooling using edge-preserving loss and joint discriminator

(DCPDN). 3

The evaluation is performed on the synthesized TestA and TestB datasets. The

SSIM results averaged on both estimated transmission maps and dehazed images for

the various configurations are tabulated in Table 6.1. Visual comparisons are shown in

3The configuration 1) DED and 2) DED-MLP are optimized only with L2 loss.
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the Fig 6.6. From Fig 6.6, we make the following observations: 1) The proposed multi-

level pooling module is able to better preserve the ‘global’ structural for objects with

relatively larger scale, compared with (a) and (b). 2) The use of edge-preserving loss

is able to better refine the edges in the estimated transmission map, compared with

(b), (c) and (d). 3) The final joint-discriminator can further enhance the estimated

transmission map by ensuring that the fine structural details are captured in the results,

such as details of the small objects on the table shown in the second row in (e). The

quantitative performance evaluated on both TestA and TestB also demonstrate the

effectiveness of each module.

6.3.4 Comparison with state-of-the-art Methods

To demonstrate the improvements achieved by the proposed method, it is compared

against the recent state-of-the-art methods [50, 187, 113, 7, 8, 78]. on both synthetic

and real datasets.

Evaluation on synthetic dataset: The proposed network is evaluated on two syn-

thetic datasets TestA and TestB. Since the datasets are synthesized, the ground truth

images and the transmission maps are available, enabling us to evaluate the performance

qualitatively as well as quantitatively. Sample results for the proposed method and five

recent state-of-the-art methods, on two sample images from the test datasets are shown

in Figure 6.7. It can be observed that even though previous methods are able to remove

haze from the input image, they tend to either over dehaze or under dehaze the image

making the result darker or leaving some haze in the result. In contrast, it can be

observed from our results that they preserve sharper contours with less color distortion

and are more visually closer to the ground-truth. The quantitative results, tabulated

in Table 6.2 and Table 6.3 4, evaluated on both TestA and TestB also demonstrate

the effectiveness of the proposed method.

Evaluation on a real dataset: To demonstrate the generalization ability of the

proposed method, we evaluate the proposed method on several real-world hazy images

4N/A: Code released is unable to estimate the transmission map.
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provided by previous methods and other challenging hazy images downloaded from the

Internet.

Results for four sample images obtained from the previous methods [113, 13, 35] are

shown in Figure 6.8. As revealed in Figure 6.8, methods of He et al. [50] and Ren et al.

[113] (observed on the fourth row) tend to leave haze in the results and methods of Zhu

et al. [187] and Li et al. [78](shown on the second row) tend to darken some regions

(notice the background wall). Methods from Berman et al. [7, 8] and our method

have the most competitive visual results. However, by looking closer, we observe that

Berman et al. [7, 8] produce unrealistic color shifts such as the building color in the

fourth row. In contrast, our method is able to generate realistic colors while better

removing haze. This can be seen by comparing the first and the second row.

We also evaluate on several hazy images downloaded from the Internet. The dehazed

results are shown in Figure 6.9. It can be seen from these results that outputs from

He et al. [50] and Berman et al. [7, 8] suffer from color distortions, as shown in the

second and third rows. In contrast, our method is able to achieve better dehazing with

visually appealing results.
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Figure 6.7: Dehazing results from the synthetic test datasets TestA (first row) and TestB
(second row).
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Figure 6.8: Dehazing results evaluated on real-world images released by the authors of previous
methods.

Figure 6.9: Dehazing results evaluated on real-world images downloaded from the Internet.
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Chapter 7

Synthesis of High-Quality Visible Faces from Polarimetric

Thermal Faces using Generative Adversarial Networks

It has been shown that faces captured in polarimetric (or conventional) thermal and

visible domain are quite different and makes cross-domain face verification highly chal-

lenging. To effectively bridge the gap between these two different modalities, we

propose a GAN-based multi-stream feature-level fusion technique to synthesize high-

quality visible images from prolarimetric thermal images. The proposed network con-

sists of a generator sub-network, constructed using an encoder-decoder network based

on dense residual blocks, and a multi-scale discriminator sub-network. The genera-

tor network is trained by optimizing an adversarial loss in addition to a perceptual

loss and an identity preserving loss to enable photo realistic generation of visible im-

ages while preserving discriminative characteristics. An extended dataset consisting

of polarimetric thermal facial signatures of 111 subjects is also introduced. Multiple

experiments evaluated on different experimental protocols demonstrate that the pro-

posed method achieves state-of-the-art performance. Code will be made avaialbe at

https://github.com/hezhangsprinter.

7.1 Introduction

Face is one of the most widely used biometrics for person recognition. Various face

recognition systems have been developed over the last two decades. Recent advances in

machine learning and computer vision methods have provided robust frameworks that

achieve significant gains in performance of face recognition systems [134], [125], [16].

Deep learning methods, enabled by the vast improvements in processing hardware cou-

pled with the ubiquity of face data and algorithmic development, have led to significant
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improvements in face recognition accuracy, particularly in unconstrained face imagery

[108], [17], [109].

Even though these methods are able to address many challenges and have even

achieved human-expert level performance on challenging databases such as the low-

resolution, pose variation and illumination variation to some extent [138], [104], [16],

[25], [108], they are specifically designed for recognizing face images that are collected

near-visible spectrum. Hence, they often do not perform well on the face images cap-

tured from other domains such as thermal [117], [172], [55], [56], infrared [71], [96] or

millimeter wave [44], [45] due to significant phenomenological differences as well as a

lack of sufficient training data.

Figure 7.1: Examples of (a) visible-LWIR pair [116], (b) visible-polarimetric pair [127], (c)
visible-MWIR pair [116], and (d) visible-NIR pair [116].

Thermal imaging has been proposed for night-time and low-light face recognition

when external illumination is not practical due to various collection considerations.

The infrared spectrum can be divided into a reflection dominated region consisting

of the near infrared (NIR) and shortwave infrared (SWIR) bands, and an emission
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dominated thermal region consisting of the midwave infrared (MWIR) and longwave

infrared (LWIR) bands [118]. In particular, recent works have been proposed to use

the polarization-state information of thermal emissions to enhance the performance of

thermal face recognition [56], [117], [127], [172]. It has been shown that polarimetric-

thermal images capture geometric and textural details of faces that are not present in

the conventional thermal facial imagery [127]. As a result, the use of polarization-state

information can perform better than using only conventional thermal imaging for face

recognition.

Thermal face imagery, which can be acquired passively at night, but are not care-

fully maintained in biometric-enabled watch lists, must be compared with visible-

light face images to enable face recognition in low lighting conditions. Distributional

change between thermal and visible images makes thermal-to-visible face recognition

very challenging (see Figure 7.1). Various methods have been developed in the litera-

ture to bridge this gap, seeking to develop a cross-domain face recognition algorithm

[121, 55, 122, 118, 63]. In particular, methods that synthesize visible faces from thermal

facial signatures have gained traction in recent years [117], [172]. One of the advantages

of face synthesis is that once the face images are synthesized in the visible domain, any

off-the-shelf face matching algorithm can be used to match the synthesized image to

the gallery of visible images.

Previous approaches utilize either a two-step procedure (visible feature estimation

and visible image reconstruction) [117] or a fusion technique where different Stokes

images are concatenated and used as a multi-channel input [172] to synthesize the visible

image given the corresponding polarimetric signatures. Though these methods are able

to effectively synthesize photo-realistic visible face images, the results are still far from

optimal. One possible reason lies in that these methods treat polarimetric thermal

images as multi-channel inputs without any additional attempts to capture multi-modal

information inherently present in the different Stokes (modalities) of these thermal

domain images. Hence, in order to efficiently leverage the multi-modal information

provided by the polarimetric thermal images, we propose a novel multi-stream feature-

level fusion method for synthesizing visible images from thermal domain using recently
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proposed Generative Adversarial Networks [47].

The proposed GAN-based network consists of a generator, a discriminator sub-

network and a deep guided sub-network (see Figure 7.3). The generator is composed

of a multi-stream encoder-decoder network based on dense-residual blocks, the dis-

criminator is designed to capture features at multiple-scales for discrimination and the

deep guided sub-net aims to guarantee that the encoded features contain geometric and

texture information to recover the visible face. To further enhance the network’s per-

formance, it is guided by perceptual loss and an identity preserving loss in addition to

adversarial loss. Once the face images are synthesized, any off-the-shelf face recognition

and verification networks trained on the visible-only face data can be used for matching.

Figure 7.2 illustrates the differences between visible and polarimetric thermal images.

In addition, this figure also presents the photo-realistic and identity-preserving results

obtained from our proposed method.

In addition to developing a novel face synthesis network, we also collected an ex-

tended dataset consisting of visible and polarimetric facial signatures from 111 subjects.

A subset of this dataset consisting data from 60 subjects was described in [56]. The

collected polarimetric thermal facial dataset is available to computer vision and bio-

metrics researchers to facilitate the development of cross-spectrum and multi-spectrum

face recognition algorithms.

To summarize, this chapter makes the following contributions.

1. A novel face synthesis framework based on GANs is proposed which consists of a

multi-stream generator and multi-scale discriminator.

2. To embed the identity information into the objective function and make sure that

the synthesized face images are photo-realistic, a refined loss function is proposed

for training the network.

3. An extended dataset consisting of visible and polarimetric data from 111 subjects

is collected.

4. Detailed experiments are conducted to demonstrate improvements in the synthesis
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Polar S0 S1 S2 Proposed Target

Figure 7.2: Sample results of the proposed method. (a) Input Polarimetric image. (b) Input
S0 image. (c) Input S1 image. (d) Input S2 image (e) Results from the proposed method, and
(f) Target image.

results. Further, three ablation studies are conducted to verify the effectiveness

of iterative synthesis and various loss function.

7.2 Background and Related Work

In this section, we give a brief overview of polarimetric thermal imaging.

7.2.1 Polarimetric Thermal Imaging

Polarimetric thermal imaging uses advanced optics and sensor technology to measure

the polarization state of light. While traditional imaging exploits the intensity of light

and infrared imaging exploits the frequency of light, polarimetric imaging exploits the

orientation of light. Natural visible light exhibits no preferred polarization state. If

natural light is either transmitted across a boundary from one medium to another, or is

reflected by the boundary (i.e., the material is opaque) a preferential polarization state

(usually linear) may occur.

This induced polarization change is a directional quantity and is a function of the

angle between the surface normal and the transmitted/reflected ray. For example,

unpolarized sunlight reflecting off an air-water interface results in an induced linear
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polarization state that is orthogonal to the plane of reflection, as defined by the surface

normal and the reflected ray. A similar phenomena exists when considering light energy

in the “thermal” infrared (IR) part of the spectrum, e.g., MidIR (3-5µm) and/or LWIR

(8-12µm). For induced polarization in the thermal IR, the radiation is treated as either

emitted and/or reflected from a surface boundary. It is this interaction at the boundary

that results in an induced net linear polarization state, similar to situation seen for

visible light. By capturing this thermal radiance using an IR polarimetric camera, one

can exploit the additional polarization based information and reconstruct a 3D surface

from a 2D polarimetric image.

Polarimetric imaging sensors capture polarization-state information by filtering light

at different orientations. This is traditionally done using a rotating element [139] (i.e.,

division of time), but other approaches exist, such as micro-grid polarizers [139] (i.e.,

division of focal plane array). In essence, polarization-state information is captured

at four orientations, I0, I90, I45, and I135. The I0 and I90 measurements represent

horizontal and vertical polarized light and I45 and I135 capture diagonally polarized light

with respect to the camera axis. A stack of 2-D images captured using a polarimeter

is summarized by Stokes images, as defined in [49], which highlight various edges of

the face. A Degree of Linear Polarization (DoLP) image can be produced from the

Stokes images which highlights geometric and textural features of the face. These

Stokes images are illustrated in Figure 7.2 for three subjects with corresponding visible-

spectrum facial signatures. The S0 image is a total intensity polarimetric image and

is representative of what a conventional thermal imager (i.e., without linear polarizer)

would capture. S1, and S2 illustrate the additional details provided by polarimetric

imaging. In this chapter, we refer to Polar as the three channel polarimetric image

with S0, S1 and S2 as the three channels.

7.3 Proposed Method

As discussed earlier, a polarimetric sample consists of three different Stokes images (S0,

S1 and S2), where S0 represents the conventional thermal image and S1 and S2 represent

the horizontal/vertical and diagonal polarization-state information, respectively. Unlike
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Figure 7.3: An overview of the proposed GAN-based multi-stream encoder-decoder network.
The generator contains a multi-stream feature-level fusion encoder-decoder network. In addi-
tion, a deep-guided subnet is stacked at the end of the encoding part. The discriminator is
composed of a multi-scale patch-discriminator structure.

traditional three-channel RGB images where each channel contains exactly the same

structural content information, the S0, S1, S2 images contain different geometric and

texture information. For example, as shown in the first row of Figure 7.2, S0 is able

to capture the mustache information, which is not captured in S1 and S2. On the

other hand, S0 does not capture some of the other texture and geometric details such

as wrinkles, which are well-preserved in S1 and S2. In other words, the Stokes images

individually capture different facial features and when combined together they provide

complementary information. Hence, it is important to fully utilize the information from

all three Stokes images to effectively synthesize a visible face image.

Previous methods have attempted to utilize this information by exploiting input

level fusion, where three Stokes images are concatenated together as a three-channel

input [117, 172]. Even though the three-channel concatenation in the input level is

able to generate better visible face results by bringing in the geometric and texture

differences preserved in these three modalities as compared with using just a single
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Stokes image as input (eg. S0), the results are still far from optimal [172]. A potential

reason is that input level fusion or mere concatenation of different Stokes images may not

be sufficient enough to exploit the different geometric and texture information present

in these modalities 1. To efficiently address this problems and generate better photo-

realistic visible face images, a multi-stream feature-level fusion structure is proposed

in this chapter. Specifically, different encoder structures are leveraged to encode each

Stokes image separately and then the embedded features from each encoder are fused

together via a fusion block for further visible face reconstruction (i.e. decoding).

Synthesizing photo-realistic visible images from polarimetric images (or even any

single Stokes image) is an extremely challenging problem due to information differences

caused by phenomenology between polarimetric thermal images and visible images. As

shown in Figure 7.2, polarimetric thermal images fail to capture fine details such as

edges and gradients as compared to visible images. Due to the absence of these sharp

details in the polarimetric images, reconstructing visible images from them requires joint

modeling of the images from these two modalities. To efficiently leverage the training

samples and guarantee better convergence with less gradient vanishing for such joint

modeling, a novel dense residual structure is proposed in this chapter. Furthermore,

a multi-scale patch-discriminator is utilized to classify between real and synthesized

images at multiple scales. By performing the discrimination at multiple scales, we are

able to effectively leverage contextual information in the input image, resulting in better

high-frequency details in the reconstructed image.

To summarize, we propose a multi-stream feature-level fusion GAN structure (see

Figure 7.3) which consists of the following components:

(1) Multi-stream densely-connected encoder.

(2) Deep guidance sub-network.

(3) Single-stream dense residual decoder.

(4) Multi-scale discriminator.

1Input level fusion can be regarded as an extreme case for low-level feature fusion, where low-level
(features from shallow layers) features often preserve edge information rather than semantic mid-level
or high-level class-specific information [162].
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In what follows, we describe these components in detail.

7.3.1 Multi-stream Feature-level Fusion Generator

The proposed feature-level fusion method is inspired by the face dis-entangled repre-

sentation work proposed by Peng et al. and Tran et al. in [104, 138, 102], where the

encoded feature representations are explicitly disentangled into separate parts repre-

senting different facial priors such as identity, pose and gender. Rather than leveraging

the supervised label information to enforce the disentangling factor in the embedded

features, each encoder structure in the proposed method inherently learns to character-

ize different geometric and texture information that is captured in the Stokes images.

This information is then combined with a residual block-based fusion network, followed

by a decoder network, consisting of a dense network and a residual network, to recon-

struct visible domain faces from the fused feature maps. Furthermore, a deep-guided

sub-network is leveraged at the end of the encoding part to ensure that the encoded

features preserve geometric and texture information.

Multi-stream Densely-connected Encoding. The encoder consists of three streams

of sub-networks, with each sub-network having the same structure 2. Each stream pro-

cesses a particular input Stokes image. Basically, each stream is composed of a con-

volutional layer, rectified linear unit (ReLU) and a max-pooling operator at the front

followed by three dense-blocks [60] which are stacked at the end. Each dense-block is

followed by a transition-down block that performs down-sampling. Each layer Dj in a

dense block can be represented as

Dj = T (cat[D1, D2, ..., Dj−1]), (7.1)

where T (·) indicates the combination of Batch Normalization (BN) [62], rectified linear

unit (ReLU) and Convolution operator. Figure 7.4 gives an overview of a single stream

in the multi-stream densely-connected encoding.

2Weights are not shared among each stream.
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Figure 7.4: Overview of a single stream in the multi-stream densely-connected encoding part.

The dense-net blocks have a similar structure to that of Dense-net 121 structure

[60], where the first dense-block contains 12 densely-connected layers, second block

contains 16 densely-connected layers and the third block contains 24 densely-connected

layers. The weights for each stream are initialized from the pre-trained Dense-net 121

network[60]. Feature maps from each of the three streams are of size C × H × W .

These feature maps are concatenated and are forwarded to the residual-fusion block,

which consists of a res-block with 1×1 convolution layer. To guarantee that the learned

features contain geometric and texture facial information, a deep guidance sub-network

[153] is introduced at the end of the encoding part. The deep guided sub-network is part

of the network that is branching out from the end of the encoder. This sub-network is

composed a 1×1 convolution layer followed by the non-linear function Tanh. Hence, the

output of the guided sub network will be a three-channel RGB image with size 16×16

if the input size is 256×256.

Dense-Residual Decoder. The fused feature representations are then fed into a

decoder network that is based on dense-residual decoding blocks. Specifically, each

dense-residual block involves a dense-block, followed by a transition-up operator that

operates as an up-sampler [189] and two res-block structures to refine the learned dense

features. Once the feature maps are up-sampled to the original resolution (input res-

olution, e.g. 256 × 256), these learned features are concatenated with the three input

Stokes images. Finally, a multi-level pyramid pooling block is adopted at the end of the

decoding part to make sure that features from different scales are embedded in the final

result. This is inspired by the use of global context information in classification and
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segmentation tasks [181, 167]. Rather than taking very large pooling size to capture

more global context information between different objects [181], more ‘local’ informa-

tion is leveraged here. Hence, a four-level pooling operation with sizes 1/32, 1/16, 1/8

and 1/4 are used. Then, features from all four levels are up-sampled to the original

feature size and are concatenated back with the original feature maps before the final

estimation. Figure 7.5 gives an overview of the proposed dense-residual decoder.

Figure 7.5: Overview of the dense-residual decoding part.

7.3.2 Multi-scale Discriminator

To ensure the synthesized visible faces are indistinguishable from real images while pre-

serving high-frequency details, a learned multi-scale patch-discriminator sub-network

is designed to decide if each input image (to the discriminator) is real or fake. Similar

to the structure that was proposed in [64], a convolution layer with batch normal-

ization and Leaky ReLU [87] activation are used as the basis throughout the patch-

discriminator part. Basically, the patch-discriminator consists of the following struc-

ture:

CB(K2)-CBL(2K2)-CBL(4K2)-CBL(8K2)

where, CBL(K2) is a set of K2-channel convolution layers followed by batch normaliza-

tion and Leaky ReLU [87]. Then, a multi-scale pooling module, which pools features at

different scales, is stacked at the end of the discriminator. The pooled features are then

upsampled and concatenated, followed by a 1×1 convolution and a sigmoid function to

produce a probability score normalized between 0 and 1. The proposed discriminator
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sub-network, D, is shown at the bottom of Figure 7.3.

7.3.3 Loss Functions

It is well-known that the use of Euclidean loss, LE , alone often results in blurry results.

Hence, to overcome this and to discriminate the generated visible face images from their

corresponding ground truth, an adversarial loss function is employed. Even though the

use of adversarial loss can generate more reasonable results compared to the LE loss,

as shown in [172], these results contain undesirable facial artifacts. To address this

issue and generate visually pleasing results, perceptual loss is incorporated in our work.

The perceptual loss is computed using a pre-trained VGG-16 models as discussed in

[67, 165, 173, 75].

Since the ultimate goal of the our proposed synthesis method is to guarantee that

human examiners or face verification systems can identify the person given his/her

synthesized face images, it is also important to involve the discriminative information

into consideration. Similar to the perceptual loss, we propose an identity-preserving

loss that is evaluated on a certain layer of the fine-tuned VGG-Polar model. The VGG-

Polar model is fine-tuned using the visible images with their corresponding labels from

the newly introduced Polarimetric Visible database.

The proposed method contains the following loss functions: the Euclidean L2 loss

enforced on the reconstructed visible image, the LE(G) loss enforced on the guidance

part, the adversarial loss to guarantee more sharp and indistinguishable results, the

perceptual loss to preserve more photo realistic details and the identity loss to preserve

more discriminative information for the outputs. The overall loss function is defined as

follows

Lall = L2 + L2(G) + λALA + λPLP + λILI , (7.2)

where L2 denotes the Euclidean loss, L2(G) denotes the Euclidean loss on the guidance

sub-network, LA represents the adversarial loss, LP indicates the perceptual loss and

LI is the identity loss. Here, λA, λP and λI are the corresponding weights.
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The L2 and the adversarial losses are defined as follows:

L2, L2(G) =
∑
w,h

‖φG(S0, S1, S2)
w,h − Y w,h

t ‖2, (7.3)

LA = − log(φD(φG(S0, S1, S2)), (7.4)

where S0, S1 and S2 are the three different input Stokes images, Yt is the ground truth

visible image, W × H is the dimension of the input image, φG is the multi-stream

feature-fusion generator sub-network G and φD is the multi-scale discriminator sub-

network D.

As the perceptual loss and the identity losses are evaluated on a certain layer of the

given CNN model, both can be defined as follows:

LP,I =
∑

ci,wi,hi

‖V (φG(S0, S1, S2))
ci,wi,hi − V (Yt)

ci,wi,hi‖2, (7.5)

where Yt is the ground truth visible image, φE is the proposed generator, V represents

a non-linear CNN transformation and Ci,Wi, Hi are the dimensions of a certain high

level layer V , which differs for perceptual and identity losses.

7.4 Polarimetric Thermal Face Dataset

A polarimetric thermal face database of 111 subjects is used for this study, which ex-

panded on the previously released database of 60 subjects (described in detail in Hu et

al., 2016 [56]). The database used in this study therefore consisted of the 60-subject

database collected at the U.S. Army Research Laboratory (ARL) in 2014-2015 (referred

to as Volume 1 hereinafter), and a 51-subject database collected at a Department of

Homeland Security test facility (referred to as Volume 2 hereinafter). While the partic-

ipants of the Volume 1 collect consisted exclusively of ARL employees, the participants

of the Volume 2 collect were recruited from the local community in Maryland, resulting

in more demographic diversity. Note that this extended databased is available upon

request.
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7.4.1 Sensors

The sensors employed to collect Volume 1 and Volume 2 were the same, consisting of a

polarimetric LWIR imager and visible cameras. The LWIR polarimetric was developed

by Polaris Sensor Technologies, and is based on a division-of-time spinning achromatic

retarder (SAR) design which incorporated a spinning phase-retarder in conjunction

with a linear wire-grid polarizer. This system has a spectral response range of 7.5-11

µm, and employed a Stirling cooler with a mercury telluride focal plane array (640×480

pixel array format). Data was recorded at 60 frames per second, using a lens with a

field of view (FOV) of 10.6◦×7.9◦. Four Basler Scout GigE cameras with different lens

(ranging from 5◦ to 53◦) were used for Volume 1, consisting of two grayscale cameras

(model # scA640-70gm; 659×494 pixel FPA) and two color cameras (model # scA640-

70gc; 658 × 492 pixel FPA) to generate visible facial imagery at different resolutions.

For Volume 2, a single Basler Scout color camera with a zoom lens was used, adjusted

to produce the same facial resolution as the polarimeter.
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Figure 7.6: The ROC curves corresponding to Ablation 1.

7.4.2 Dataset

The dataset protocols for Volume 1 and Volume 2 were approved by the respective

Institutional Review Boards (IRBs) where each collection occurred. The Volume 1

collection involved two experimental conditions: range and expressions. Acquisitions

were made at distances of 2.5 m, 5 m, and 7.5 m. At each range, a 10 second video

sequence was first collected of the subject with a neural expression, and then a 10 second
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PSNR:11.55;
SSIM: 0.46

PSNR:19.42;
SSIM: 0.75
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Figure 7.7: Sample results of for the Ablation 1. It can be observed that the dense-resisual
encoder-decoder structure is able to generate better visible results and the introduced multi-
level pooling module is able to preserve better structure information. Detail discussions can be
found in Sec 7.5.2.

“expressions” sequence was collected as the subject counted out loud numerically from

one upwards, which induced a continuous range of motions of the mouth and, to a lesser

extent the eyes. In the experimental setup for Volume 1, a floor lamp was placed 1 m

in front of the subject at each range to provide additional illumination.

Table 7.1: The average PSNR (dB), SSIM, EER and AUC results corresponding to different
methods for Ablation 1.

I-Polar GAN-VFS [172] DR-ED DR-ED-MP

PSNR (dB) 11.74 18.07 18.28 18.80

SSIM 0.4625 0.7047 0.7128 0.7194

EER 41.51% 22.45% 16.51% 15.67%

AUC 62.93% 86.10% 91.67% 92.55%

The data collection setup used for Volume 2 matched that of Volume 1. However, no

floor lamp was employed in the Volume 2 collect, as the DHS test facility had sufficient

illumination. Furthermore, Volume 2 data was collected at a single range of 2.5 m,

due to time limitations since the polarimetric face acquisition was part of a broader

collection.
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7.4.3 Preprocessing

The raw polarimetric thermal imagery underwent several preprocessing steps. First, a

two-point non-uniformity correction (NUC) was applied on the raw data using software

provided by Polaris Sensor Technologies and calibration data collected with a Mikron

blackbody prior to each session. Images were sampled/extracted from the polarimetric

thermal sequences. Bad pixels in the extracted images were identified, and those pixel

intensities corrected via a median filter. To crop and align the facial imagery, three

fiducial points (centers of the eyes, base of the nose) were first manually annotated, and

an affine transform was used to normalize each face to canonical coordinates. Facial

imagery was finally cropped to m×n pixels, and saved as 16-bit PNG files. The visible

imagery required neither non-uniformity correction nor bad pixel correction. The same

steps were used to crop and align the visible images, which were then saved as 16-bit

grayscale PNG files.

7.4.4 Experimental Protocols

Even though there exist several conventional thermal-visible pair databases [31, 18],

they lack the availability of the corresponding polarization state information such as

S1 and S2. Hence, an extended database, which contains polarimetric (S0, S1, S2) and

visible image pairs from 111 subjects is used for evaluation in this chapter. Following

the protocol defined in [117, 172], sample pairs corresponding to range 1 (baseline and

expression) are used for comparisons. In particular, two different protocols are defined

in this chapter for further research. To be consistent with previous methods [117, 172],

the first protocol is defined as follows:

Protocol 1: The protocol 1 is evaluated on Volume 1, which contains 60 subjects, 30

subjects from Volume 1 with eight samples for each subject (in total 240 sample pairs)

are used as training samples, denoted as Train1. Similarly, the remaining 30 subjects

with eight samples for each subject (in total 240 sample pairs) are used as testing sam-

ples, denoted as Protocol1. All the training and testing samples are randomly chosen
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from the overall 60 subjects. Results are evaluated on five random splits. In Protocol

1, each split contains around 28800 pairs of templates on average (1080 positive and

27720 negative).

Protocol 2: Different from Protocol 1, the newly introduced and extended dataset

with 111 subjects is used for training and testing, where 85 subjects with eight samples

for each subject are randomly chosen as training samples (in total 680 sample pairs),

denoted as Train2 and the other 26 subjects are used as testing (in total 208 sample

pairs), denoted as Protocol2. As before, results are evaluated on five random splits. In

Protocol 2, each split on average contains around 21632 pairs of templates (936 positive

and 20696 negative).

These protocols and splits will be made publicly available to the research community.

7.5 Experimental Results

In this section, we demonstrate the effectiveness of the proposed approach by conducting

various experiments on the two defined protocols for the new polarimetric thermal

dataset as described above. Once the visible images are synthesized using the proposed

method, deep features can be extracted from these images using any one of many pre-

trained CNNs such as VGG-face [99], Light-CNN [151], or GoogleNet [157]. In this

chapter, we extract the features from the second last fully connected layer of the VGG-

face network [99]. Finally, the cosine distance is used to calculate the scores. Results are

compared with four state-of-the-art methods: Ben et al. [117], GAN-VFS [172], Pix2pix

[64] and Pix2pix with BEGAN [64, 9]. In addition, three ablation studies are conducted

to demonstrate the effectiveness of different modules of the proposed method. Quality

of the synthesized images is evaluated using Peak Signal-to-Noise Ratio (PSNR) and

Structural SIMilarity (SSIM) index [145]. The face verification performance is evaluated

using the receiver operating characteristic (ROC) curve, Area Under the Curve (AUC)

and Equal Error Rate (EER) measures.
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Figure 7.8: Sample results for Ablation 2. It can be observed that the proposed multi-stream
feature-level fusion GAN is able to generate better results compared to input-level (S-Polar-IF),
output-level fusion (M-Polar-OF) and also simply levering single Stokes modality. Detailed
discussions can be found in Sec 7.5.2.

Table 7.2: The average PSNR (dB), SSIM, EER and AUC results corresponding to different
methods for Ablation 2.

I-Polar S-S0 S-S1 S-S2 S-Polar-IF M-Polar-OF Proposed

PSNR (dB) 11.74 17.34 17.03 17.17 18.80 18.87 19.55

SSIM 0.4625 0.6905 0.6852 0.6794 0.7194 0.7225 0.7433

EER 41.51% 23.18% 21.61% 21.56% 15.67% 15.90% 11.78%

AUC 62.93% 85.74% 86.64% 87.30% 92.55% 92.69% 96.03%

7.5.1 Implementation

The entire network is trained on a Nvidia Titan-X GPU. We choose λA = 0.005 for

the adversarial loss, λP = 0.8 for the perceptual loss and λI = 0.1 for the identity loss.

During training, we use ADAM [70] as the optimization algorithm with learning rate of

8× 10−4 and batch size of 1 image. All the pre-processed training samples are resized

to 256 × 256. The perceptual loss is evaluated on relu 1-1 and relu 2-1 layers in the

pre-trained VGG [99] model. The identity loss is evaluated on the relu2-2 layer of the

fine-tuned VGG-Polar model.

7.5.2 Ablation Study

In order to better demonstrate the effectiveness of the proposed feature-level fusion,

the improvements obtained by different modules and the importance of different loss
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Figure 7.9: Sample results on different loss functions for Ablation 3.

functions in the proposed network, three ablation studies are presented in this section.

All the experiments in the first two ablation studies are optimized with the same loss

function discussed in Eq (2).

Ablation 1

In the first ablation study, we demonstrate the effectiveness of different modules (eg.

densely connected encoder-decoder structure) in our method by conducting the follow-

ing experiments. All the experimental results are evaluated using Protocol 1 based

on the polrimetric images as input:

(a) GAN-VFS: The GAN network proposed in [172] with polarimetric images as

inputs.

(b) DR-ED: A single stream dense-resisual encoder-decoder structure. 3

(c) DR-ED-MP: A single stream dense-resisual encoder-decoder structure with multi-

level pooling.

Table 7.3: The average PSNR (dB), SSIM, EER and AUC results corresponding to different
methods for Ablation 3.

I-Polar L2 L2-GAN L2-GAN-P Our

PSNR (dB) 11.74 17.57 17.33 18.99 19.55

SSIM 0.4625 0.7088 0.7115 0.7352 0.7433

EER 41.51% 18.07% 13.23% 11.79% 11.78%

AUC 62.93% 90.89% 93.64% 95.64% 96.03%

3Basically, this network is composed of one stream of the encoder part followed by the same decoder
without multi-level pooling.
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Figure 7.10: The ROC curves corresponding to Ablation 2.
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Figure 7.11: The ROC curves corresponding to Ablation 3.
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Figure 7.12: The ROC curves corresponding to Protocol1.

One synthesis example corresponding to Ablation 1 is shown in Figure 7.7. It

can be observed from this figure (comparing second column with third column) that

the overall performance improves after leveraging the newly introduced dense-residual

encoder-decoder (DR-ED) structure. This can be clearly observed from the left part

of the reconstructed mouth. This essentially demonstrates the effectiveness of the pro-

posed dense-residual encoder-decoder structure. Though the DR-ED is able to recon-

struct better visible face, from the close-up of the left eye shown in the second row

in Figure7.7 we observe that some structure information is missing. The multi-level

pooling module at the end of the encoder-decoder structure overcomes this issue and

preserves the the overall eye structure. Quantitative results evaluated based on PSNR

and SSIM [145], as shown in Table 7.1, also show similar results.

In addition to comparing the performance of the synthesized images in terms of

SSIM and PSNR, we also compare the contribution of each module in face verification

by plotting the ROC curves. The verification results are evaluated based on the cosine
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Figure 7.13: Sample results compared with state-of-the-art methods evaluated on Protocol1.

similarity using the deep features extracted from the pre-defined VGG-face model [99].

The results are shown in Figure 7.6. From the ROC curves, it can be clearly observed

that the proposed dense-residual network with multi-level pooling can also provide

some discriminative information. Similar results can also be observed from the EER

and AUC comparisons, tabulated in Table 7.1.

Table 7.4: The PSNR, SSIM and EER and AUC results corresponding to Protocol1.

I-Polar Btas-2016 [117] Pix2pix [64] Pix2pix-BEGAN [64, 9] GAN-VFS [172] Proposed

PSNR (dB) 11.74 16.12 16.79 17.55 18.07 19.55

SSIM 0.4625 0.6785 0.6490 0.7033 0.7041 0.7433

EER 41.51% 26.72% 22.61% 22.56% 23.19% 11.78%

AUC 62.93% 81.90% 85.14% 85.30% 85.89% 96.03%

Ablation 2

The second ablation study is conducted to demonstrate the effectiveness of the proposed

feature level multi-model fusion by conducting experiments with the following baselines:

(a) S-S0: Single stream dense-resisual encoder-decoder with the proposed structure

with S0 as the input.

(b) S-S1: Single stream dense-resisual encoder-decoder with the proposed structure

with S1 as the input

(c) S-S2: Single stream dense-resisual encoder-decoder with the proposed structure
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Figure 7.14: The ROC curves corresponding to Protocol1.

with S2 as the input.

(d) S-Polar-IF: Single stream dense-resisual encoder-decoder with the proposed struc-

ture with Polar as the input (i.e. input level fusion). The S-Polar-IF model shares

the exact same structure as DR-ED-ML as discussed in Ablation 1.

(e) M-Polar-OF: Multi stream dense-resisual encoder-decoder structure with output

level fusion. The M-Polar-OF is basically composed of three stream dense-resisual

encoder-decoder structure, where each stream shares the same structure with S-

Polar-IF but with different input (S0, S1 and S2) for each stream. Then, the

output features from each stream are fused (concatenated) at the end of the

decoding part to generate visible face images.

(f) M-Polar-F-L2: Multi-stream dense-resisual encoder-decoder with the proposed

structure based on feature-level fusion optimized with L2 loss only.

(g) M-Polar-F-L2-GAN: Multi-stream dense-resisual encoder-decoder with the pro-

posed structure based on feature-level fusion optimized with L2 and GAN loss.
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(h) M-Polar-F-L2-GAN-Perp: Multi-stream dense-resisual encoder-decoder with

the proposed structure based on feature-level fusion optimized with L2, GAN loss

and perceptual loss.

(i) Our (M-Polar-FF): Multi-stream dense-resisual encoder-decoder with the pro-

posed structure based on feature-level fusion with all the losses.

Figure 7.15: Sample results compared with state-of-the-art methods evaluated on Protocol2.

Sample results corresponding to Ablation 2 is shown in Figure 7.8. It can be

observed that just leveraging any one of the Stokes images as input is unable to fully

capture the geometric and texture details of the whole face. For example, as shown in

the first column second row in Figure 7.8, the nose is over-synthesized if just S0 (conven-

tional thermal) is used. Leveraging input level fusion (just concatenating three modal-

ities as three-channel input) S-Polar-IF enables better visible face with less undesired

artifacts as compared to S-S0, S-S1 and S-S2. Furthermore, the proposed multi-stream

feature-level fusion structure is able to preserve more geometric facial details and is
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Figure 7.16: The ROC curves corresponding to the Protocol2.

able to generate photo-realistic visible face images. Visual results also demonstrate the

effectiveness of leveraging feature level fusion over input level or output level fusion.

Quantitative results evaluated in terms of PSNR and SSIM are shown in Table 7.2.

Results are also consistent with our visual comparison.

Similar to Ablation study 1, the face verification results are also used as a metric

to evaluate the performnace of different fusion techniques. We plot the ROC curves

corresponding to the different settings discussed above. The ROC curves are shown in

Figure 7.10. Again, the verification results are evaluated based the cosine similarity

using the deep features extracted from the VGG-face model [99] without fine-tuning.

From the ROC curves, it can be clearly observed that the proposed multi-stream feature-

level fusion can bring in more discriminative information as compared to input level or

output level fusion.

Ablation 3
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Table 7.5: The PSNR, SSIM, EER and AUC results corresponding to Protocol2.

I-Polar Btas-2016 [117] Pix2pix [64] Pix2pix-BEGAN [64, 9] GAN-VFS [172] Proposed

PSNR (dB) 10.88 15.82 17.82 18.28 18.58 19.18

SSIM 0.4467 0.6854 0.6828 0.7214 0.7283 0.7340

EER 40.87% 14.60% 13.49% 15.81% 11.42% 7.99%

AUC 61.27% 93.99% 93.46% 92.50% 95.96% 98.00%

In the third ablation study, we demonstrate the effectiveness of different loss functions

used in the proposed method (e.g. adversarial loss, perceptual loss and identity pre-

serving loss) by conducting the following experiments. All the experimental results are

evaluated using Protocol 1 based on the polarimetric images as the input:

(a) L2: The proposed architecture (M-Polar-FF) optimized with the L2 loss.

(b) L2-GAN: The proposed architecture optimized with the L2 loss and the adver-

sarial loss.

(c) L2-GAN-P: The proposed architecture optimized with the L2 loss, the adver-

sarial loss and the perceptual loss.

(d) Our: The proposed architecture optimized with the L2 loss, the adversarial loss,

the perceptual loss and the identity-preserving loss.

Visual results corresponding to this ablation study are shown in Figure 7.12. It can

be observed from the results that the L2 loss itself generates blurry faces and many

details around the eyes and the mouth regions are missing. By involving the GAN

structure in the proposed method, more details are being added to the results. But it

can be observed that GAN itself produces images with artifacts. Introduction of the

perceptual loss in the proposed framework is able to remove some of the artifacts and

makes the results visually pleasing. Finally, the combination of all the losses is able to

generate more reasonable results with better facial details.

To better demonstrate the effectiveness of different losses in the proposed method,

we plot the ROC curves corresponding to the above four different network settings.

The results are shown in Figure 7.11. All the verification results are evaluated on the

deep features extracted from the VGG-face model [99] without fine-tuning. From the

ROC curves, it can be clearly observed that even though the identity loss does not

produce visually different results, it can bring in more discriminative information. The
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corresponding PSNR, SSIM values as well as the AUC and EER values are summarized

in Table 7.3.

7.5.3 Comparison with state-of-the-art Methods

To demonstrate the improvements achieved by the proposed method, it is compared

against recent state-of-the-art methods [117, 64, 9, 172] on the new dataset. We compare

quantitative and qualitative performance of different methods on the test images from

the two distinct protocols Protocol1 and Protocol2 discussed earlier.

Sample results corresponding to Protocol 1 and Protocol 2 are shown in Figure 7.13

and Figure 7.15, respectively. It can be observed from these figures, Pix2pix and

Pix2pix-BEGAN introduce undesirable artifacts in the final reconstructed images.

The introduction of the perceptual loss in [172] is able to remove some of these

artifacts and produce visually pleasing results. However, the synthesized images still

lack some geometric and texture details as compared to the target image. In contrast,

the proposed method is able to generate photo-realistic visible face images while bet-

ter retaining the discriminative information such as the structure of mouth and eye.

Quantitative results corresponding to different methods evaluated on both protocols are

tabulated in Table 7.4 and Table7.5, showing that the proposed multi-stream feature-

level fusion GAN structure is able to achieve superior performance.

Similar to the ablation study, we also propose to use the performance of face veri-

fication as a metric to evaluate the performance of different methods. Figure7.14 and

Figure7.16 show the ROC curves corresponding to the two experimental protocols. The

AUC and EER results are reported in Table 7.4 and Table 7.5. From these results, it

can be clearly observed that the proposed method is able to achieve superior quan-

titative performance compared the previous approaches. These results highlight the

significance of using a GAN-based approach to image synthesis.
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Chapter 8

Summary

In this dissertation, we developed learning-based methods for single image restoration

(such as single image de-raining and single image dehazing) and translation (thermal-

to-visible image synthesis). This thesis has explored the effectiveness of combining

physical/empirical priors with data-driven methods in the discussed applications. We

have demonstrated the effectiveness and the efficiency of the techniques theoretically

and practically. Specially, we have developed the following methods:

8.1 Single Image de-raining

Firstly, we presented the CCRR algorithm for removing rain streaks from a given rainy

image. Our method entails learning sparsity based and low-rank representation based

filters directly from training examples. Using these learned filters, we proposed an

optimization framework for de-raining. Various experiments showed the significance of

our CCRR de-raining method over several recent state-of-the-art de-raining methods.

Secondly, we presented a conditional GAN-based algorithm for the removal of rain

streaks form a single image. In comparison to the existing approaches which attempt to

solve the de-raining problem in an image decomposition framework by using prior infor-

mation, we investigated the use of generative modeling for synthesizing de-rained image

from a given input rainy image. For improved stability in training and reducing artifacts

introduced by GANs in the output images, we proposed the use of a new refined loss

function in the GAN optimization framework. In addition, a multi-scale discriminator

was proposed to leverage features from different scales to determine whether the de-

rained image is real or fake. Detailed experiments and comparisons were performed on

synthetic and real-world images to demonstrate that the proposed ID-CGAN method
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significantly outperforms many recent state-of-the-art methods. Additionally, the pro-

posed ID-CGAN method was compared against baseline configurations to illustrate the

performance gains obtained by different modules. Furthermore, experimental results

evaluated on objection detection using Faster-RCNN demonstrate significant improve-

ments in detection performance when ID-CGAN method was used as a pre-processing

step.

Thirdly, we developed a novel density-aware image de-raining method with multi-

stream densely connected network (DID-MDN) for jointly rain-density estimation and

de-raining. In comparison to the existing approaches which attempt to solve the de-

raining problem using a single network to learn to remove rain streaks with different

densities (heavy, medium and light), we investigated the use of estimated rain-density

label for guiding the synthesis of the de-rained image. To efficiently predict the rain-

density label, a residual-aware rain-density classier was proposed in this chapter. De-

tailed experiments and comparisons were performed on two synthetic and one real-world

datasets to demonstrate that the proposed DID-MDN method significantly outperforms

many recent state-of-the-art methods. Additionally, the proposed DID-MDN method

was compared against baseline configurations to illustrate the performance gains ob-

tained by each module.

8.2 Single Image dehazing

We presented a new end-to-end deep learning-based dehazing method that can jointly

optimize transmission map, atmospheric light and dehazed image. This was achieved

via directly embedding the atmospheric image degradation model into the overall op-

timization framework. To efficiently estimate the transmission map, a novel densely

connected encoder-decoder structure with multi-level pooling module was proposed

and this network was optimized by a new edge-preserving loss. In addition, to refine

the details and to leverage the mutual structural correlation between the dehazed image

and the estimated transmission map, a joint-discriminator based GAN framework was

introduced in the proposed method. Various experiments were conducted to show the

significance of the proposed method.
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8.3 Thermal-to-visible face synthesis

We presented a new multi-level dense-residual fusion GAN structure for synthesizing

photo-realistic visible face images from the corresponding polarimetric data. In contrast

to the previous methods that leverage input level fusion techniques to combine geomet-

ric and texture information from different Stokes image, we take a different approach

where visual features extracted from different Stokes images were combined to synthe-

size the photo-realistic face images. Quantitative and qualitative experiments evaluated

on a real polarimetric visible database demonstrate that the proposed method is able to

achieve significantly better results as compared to the recent state-of-the-art methods.

In addition, three ablation studies were performed to demonstrate the improvements

obtained by the feature-level fusion methods, different modules and different loss func-

tions in the proposed method. Furthermore, an extended polarimetric-visible database

consisting of data from 111 subjects was also presented.
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Chapter 9

Future Directions

There are several important topics in image restoration and translation that need fur-

ther investigation. We discuss interesting and promising topics that we will pursue in

the future as follows:

How to make synthetic samples realistic (Single Image De-raining/Single

Image Dehazing): Even the success of using synthetic samples avoiding the need of

Figure 9.1: Synthetic [(a), (b), (c)] and real-world [(d), (e), (f)] examples of rainy image. It can
be observed that synthetic rainy images are not realistic enough. Image credit to: Wei, Wei, et
al. ”Semi-supervised CNN for Single Image Rain Removal.” arXiv preprint arXiv:1807.11078
(2018).

expensive annotations has demonstrated the effectiveness in single image de-raining

and single image dehazing, the learning from synthetic data still does not achieve the

desired performance due to the gap between synthetic and real image characteristics.

Hence, it is important to explore the possibility of how to leverage the algorithms
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to automatically improve the quality of the synthetic samples. In the future, we will

explore how to leverage the GAN framework to improve the quality of synthetic images.

How to Design an All-can-do Model (Single Image De-raining/Single Im-

age Dehazing): Even though many deep learning methods have achieved incredible

improvements in different image restoration problems such as single image de-raining,

single image dehazing, single image super-resolution and etc., yet there is still no sin-

gle model that can deal with all the image restoration problems together. It will be

interesting to design a model/framework which is able to address the image restoration

problems all together.

Figure 9.2: A possible overview of All-can-do model. Image credit to: Gao, Ruohan, and Kris-
ten Grauman. ”On-demand learning for deep image restoration.” Proc. IEEE Conf. Comput.
Vision and Pattern Recognition. 2017.

How to augment training samples (Thermal-to-visible Face Synthesis): It

has been shown that an effective deep learning framework with large-scale training pair

samples is able to achieve state-of-the-art performance in image synthesis problems.

However, collecting a large-scale paired samples need a lot of manual annotations.

Furthermore, the collection procedure is very expensive. Hence, it is important to

explore how to augment or collect a large-scale dataset with less manual efforts.
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