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ABSTRACT OF THE DISSERTATION
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their Automorphism Groups
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By REBECCA COULSON

Dissertation Director:

Gregory Cherlin

We investigate the properties of graphs which are homogeneous in the sense of Fraı̈ssé when

considered as metric spaces with the graph metric (metrically homogeneous graphs), and par-

ticularly the metrically homogeneous graphs of generic type constructed by Cherlin.

We first consider the properties of the associated automorphism groups, viewed as topo-

logical groups. For a large class of metrically homogeneous graphs of generic type, we show

that the automorphism groups have ample generics, and therefore have a variety of topological

properties such as the small index property and automatic continuity. We also show that the

automorphism groups of the generic expansions of these graphs by linear orders are extremely

amenable, and describe the universal minimal glow for the full automorphism group. Using

standard model theoretic and descriptive set theoretic methods, these results are derived from

the study of combinatorial properties of the associated classes of finite partial substructures.

Turning to more algebraic questions, we determine the twisted automorphism groups of

metrically homogeneous graphs, and more generally the twisted isomorphisms between such
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graphs; these are isomorphisms up to a permutation of the natural language. Returning to the

standard automorphism group, we then study the algebra of the associated age in the sense of

Peter Cameron, showing that in most cases this algebra is a polynomial algebra. For this, we

apply a criterion of Cameron based on a unique decomposition theorem.
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Chapter 1

Introduction

In this thesis, we study a number of questions concerning metrically homogeneous graphs and

their automorphism groups.

A metric space is homogeneous in the sense of Urysohn and Fraı̈ssé if and only if every

isometry between finite subspaces extends to an isometry of the whole space [Ury27, Fra54]—

that is, the metric and group theoretic notions of congruence coincide. A connected graph is

said to be metrically homogeneous if it is homogeneous when considered as a metric space,

with the path metric.

The finite metrically homogeneous graphs were completely classified by Cameron [Cam76].

The problem of classification in the infinite case was raised by Moss [Mos92] and Cameron

[Cam98]. Cherlin gave a catalog of the known examples in [Che11], with some evidence for

its completeness; additional work in this direction is found in [ACM16, Che17]. We deal here

primarily with the properties of the known metrically homogeneous graphs, with some excep-

tions when the existing classification theory with modest extensions suffices to carry through

an analysis on an a priori basis.

Our results fall under two main headings: topological and algebraic.

The topological results concern the automorphism groups of certain metrically homoge-

neous graphs of known type. As we will see, these groups are Polish groups; that is, they

carry a natural topology, and are even complete with respect to a metric compatible with that

topology. In Section 1.1, we discuss the topological properties, and the topological dynamics,

of a substantial family of metrically homogeneous graphs of known type. Theorem 1 below

deals with the relationship between topological properties of the automorphism group and its

properties as an abstract group. Theorem 2 concerns dynamical properties of the automorphism

group, derived from consideration of the dynamical properties of the automorphism group of a
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closely related structure (Proposition 1). Here we rely on the model theoretic and descriptive

set theoretic methods of [KPT05] and [KR07], which apply more generally to automorphism

groups of homogeneous structures in the sense of Fraı̈ssé (Section 2.1), reducing topological

and dynamical problems to combinatorial problems which are themselves the subject of a rich

theory. A key combinatorial ingredient of our analysis is the study of a canonical completion

process taking a finite partial (i.e. weak) substructure of a given metrically homogeneous graph

to an induced substructure of the same graph (viewed as a metric space). Another completion

process which applies in greater generality was found slightly later by [ABH+17]; this allows

the topological and dynamical results to be extended to a correspondingly broader class.

The algebraic results are of two kinds. On the one hand, following a line inspired by work

of Cameron and Tarzi [CT17], we classify the twisted automorphisms between metrically ho-

mogeneous graphs. These are by definition isomorphisms up to a permutation of the associated

language (Definition 2.7.2). These results, formulated as Theorem 3 below, apply to all met-

rically homogeneous graphs, and not just the known ones; however to achieve this, one must

be careful about the way in which the associated metrically homogeneous graphs are charac-

terized. A noteworthy feature of this analysis is that the permutations of the language which

arise have previously been encountered in the study of finite association schemes with multiple

P-polynomial structures [BB80, Gar80].

Finally, we leave the subject of automorphisms and twisted automorphisms briefly, to con-

sider an algebraic invariant introduced by Peter Cameron, the algebra of an age. This is a

graded algebra attached to a metrically homogeneous graph of finite diameter (or to any oligo-

morphic group in the sense of Definition 2.1.6). Our Theorem 4 concerns cases in which we can

show that the associated algebra is a polynomial algebra, for the most part (with one interesting

exception) in infinitely many variables.

We proceed now to listing our results.

1.1 Topology and Dynamics of Automorphism groups

Our work on the topological and dynamical properties of the automorphism groups of met-

rically homogeneous graphs relies on a substantial body of work which applies generally to
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homogeneous structures for relational languages in the sense of Fraı̈ssé. Classically, Fraı̈ssé’s

theory, in the case of relational languages, relates the properties of a homogeneous structure

Γ to the class of finite structures embedding in Γ (Section 2.1). Powerful methods for the

study of the topological properties of automorphism groups of homogeneous structures were

introduced by Hodges, Hodkinson, Lascar, and Shelah, extended by Herwig and Lascar, and

systematized by Kechris and Rosendal [HHLS93, HL99, KR07], allowing one to work combi-

natorially in the associated class of finite structures, focusing on extension properties for partial

automorphisms. In another direction, Kechris, Pestov, and Todorčević have given a reduction

of certain dynamical properties of the automorphism groups to other combinatorial properties

of these classes, closely related to the classical Ramsey theorem. As we will see in Chapter 3,

while the topological and dynamical properties are not obviously related, and the correspond-

ing combinatorial properties have no obvious connection, in the cases of interest here the same

combinatorial analysis (given in Section 3.1) will suffice in both cases.

We begin with the topological results, following the approach of Kechris and Rosendal,

which centers on the study of ample generics, that is, finite sequences of automorphisms whose

conjugacy class under the action of the automorphism group by conjugation are co-meager in

the sense of Baire category (Section 2.3). Our first result states that a broad class of metrically

homogeneous graphs has ample generics, from which a number of striking topological conse-

quences then follow. The precise statement runs as follows; we will explain both the hypotheses

and the conclusions in more detail afterward.

Theorem 1. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1 finite,

for which C > 2δ + max(K1, δ/2), K2 ≥ δ − 1 and C′ = C + 1, and let Γ = ΓδK1,K2,C,C′,S
be the

associated primitive metrically homogeneous graph of generic type.

Then the Polish group Aut(Γ) has ample generics, and therefore has the following proper-

ties.

• The small index property and automatic continuity;

• uncountable cofinality;

• the fixed point properties (FA) and (FH).
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The small index property and automatic continuity express in different ways that the struc-

ture of the automorphism group as an abstract group determines the topology. The notions of

uncountable cofinality and the fixed point properties (FA) and (FH) (concerning actions of G

on trees or on Hilbert space) are properties of the abstract group G which can be derived from

its topological properties.

Very precise assumptions are made concerning the metrically homogeneous graphs under

consideration, which relate to the classification results reviewed in Section 2.2. These results

in turn rely on the Fraı̈ssé theory previously mentioned. The class of metrically homogeneous

graphs divides naturally into those of generic type (Definition 2.2.4) and the rest. We focus

here on the metrically homogeneous graphs of generic type.

While these graphs have not been fully classified, the ones which are associated to some set

of forbidden triangles are characterized by five numerical parameters (δ,K1,K2,C,C′), where

δ is the diameter, and all known metrically homogeneous graphs of generic type are obtained

from a graph in this family by imposing a set S of so-called “Henson constraints” in the sense

of Definition 2.2.9. In the statement of Theorem 1, we make additional assumptions on the

values of these numerical constraints, which we discuss further below.

We take up next the dynamical properties of the same class of metrically homogeneous

graphs. Here we apply the methods of Kechris, Pestov, and Todorčević presented in Section 2.4.

In topological dynamics, one considers the flows, or continuous actions on compact spaces, of a

given topological group, and more particularly the (set-theoretically) minimal flows (Definition

2.4.1). By a theorem of Ellis, there is a universal minimal flow, unique up to homeomorphism,

having any other minimal flow as a continuous image. The universal minimal flow can be

quite wild, and indeed there are examples of relatively simple groups G, e.g. countable discrete

groups, which have non-metrizable universal minimal flows (see, for example, [KPT05, page

1]). At the opposite extreme, a topological group is said to be extremely amenable (Definition

2.4.2) if the universal minimal flow reduces to a single point; in other words, every flow contains

a fixed point.

The results of Kechris, Pestov, and Todorčević relate the dynamical property of extreme

amenability to the purely combinatorial Ramsey-theoretic properties studied by structural Ram-

sey theory (Section 2.5), and more generally related metrizability of the universal flow, and a
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more concrete identification of the universal minimal flow, to the existence of suitable Ramsey

expansions of a given structure.

In applying this theory, we first expand our metrically homogeneous graphs by a generic

linear order (Definition 2.5.4) using the Fraı̈ssé theory. This gives a different structure, and

thus a different automorphism group, to which the results of Kechris, Pestov, and Todorčević

apply in their most direct form, giving the following.

Proposition 1. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1

finite, for which C > 2δ + max(K1, δ/2), K2 ≥ δ − 1 and C′ = C + 1. Let Γ = ΓδK1,K2,C,C′,S
be

the associated primitive metrically homogeneous graph of generic type, and let (Γ, <) be the

generic expansion of Γ by a linear order.

Then Aut(Γ, <) is extremely amenable.

A further application of the theory of Kechris, Pestov, and Todorčević together with a gen-

eral line of argument as formulated by Bodirsky then yields the following.

Theorem 2. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1 finite,

for which C > 2δ + max(K1, δ/2), K2 ≥ δ − 1 and C′ = C + 1, and let Γ = ΓδK1,K2,C,C′,S
be the

associated primitive metrically homogeneous graph of generic type.

Then the universal minimal flow of Aut(Γ) is metrizable.

Furthermore, the universal minimal flow of Aut(Γ) is the space L(Γ) of all linear orderings

of Γ.

Here, L(Γ) is viewed as a closed subset of 2Γ×Γ in the product topology, and hence as a

compact topological space.

The dynamical properties of Aut(Γ) are connected with the Ramsey theoretic properties

of the expansion of Γ by a generic linear order. One of the most powerful tools in structural

Ramsey theory, the partite method, works systematically with partial substructures. This is

particularly visible in the work of Nešetřil on the Ramsey property for metric spaces, where

partial metric spaces are viewed as edge-labeled graphs, and there is a canonical completion

process given by the path metric. This method is systematized by Hubička and Nešetřil in

[HN16]. Under mild assumptions (strong amalgamation, Definition 2.1.9), a sufficient condi-

tion for the Ramsey property is that the collection of partial structures which do not embed
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in Γ contains finitely many minimal elements, up to isomorphism; we call this property finite

constraint (Definition 2.6.2). The conditions given in [HN16] are considerably more general.

The following is proved in Section 3.1.

Proposition 2. Primitive metrically homogeneous graphs ΓδK1,K2,C,C′,S
of generic type for which

C > 2δ + max(K1, δ/2), C′ = C + 1, and K2 ≥ δ − 1, are finitely constrained.

This is the essential point, and the numerical assumptions imposed here and in our main

results derive from the structure of the proof of this proposition.

Namely, the method of the proof is to give a canonical completion process, which takes a

finite partial Γ-structure and completes it to a finite induced substructure of Γ. More generally,

given any finite structure in the appropriate language, the process attempts to complete it and

succeeds where possible. Proposition 2 results from an analysis of the obstructions to the

completion process.

It turns out that the numerical assumptions needed for our completion process can be re-

laxed, and almost eliminated, by adopting a modified completion process. This process in

given in [ABH+17]. In consequence, the topological and dynamical consequences can then be

derived in the same manner under considerably weaker hypotheses.

We have explained the combinatorial connection between Proposition 2 and Ramsey theory,

and hence with the dynamical properties of automorphism groups. Remarkably, Proposition 2

together with the associated completion process is sufficient to derive the ostensibly unrelated

property of ample generics, and thus give the purely topological consequences as well. The

reason for this is that results of Herwig and Lascar (Theorem 2.3.4) apply when one works

with partial substructures rather than induced substructures; but the finiteness condition, which

is usually both true and obvious in the context of induced substructures, has to be derived anew

in the partial category.

We find it useful to systematize the use of Theorem 2.3.4 in the context of partial structures

somewhat beyond what we have seen in the literature. Thus in Lemmas 2.6.1 and 2.6.2 of

Section 2.6, we lay out explicitly the relevant connections between the properties of the class

of finite induced substructures and the class of finite partial structures. We also formalize the

notion of a canonical completion process in Definition 2.6.4.
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1.2 Algebraic Results

In Chapter 4, we take up two purely algebraic questions which have been considered in the con-

text of homogeneous structures, and investigate them in the context of metrically homogeneous

graphs. In Sections 4.1, 4.2, we investigate the twisted automorphism groups of metrically

homogeneous graphs in the sense of Cameron and Tarzi [CT17], and more generally the classi-

fication of twisted isomorphisms between metrically homogeneous graphs. In Section 4.3, fol-

lowing Cameron [Cam97], we investigate the algebra of an age of a metrically homogeneous

graphs, and, specifically, the question as to whether this is a polynomial algebra (typically, in

infinitely many variables).

The groups of twisted automorphisms of some analogs of the random graph are investigated

by Cameron and Tarzi in [CT17]. These are, in a natural sense, the automorphisms of the

structure up to a permutation of the underlying language (Definition 2.7.2). The more general

notion of twisted isomorphism has arisen in some model theoretic contexts as well, sometimes

under the name permorphism (isomorphism up to permutation). Some unexpected twisted

isomorphisms between non-isomorphic metrically homogeneous graphs played a significant

role in simplifying the proof of the classification results in [ACM16], as a classification up

to twisted isomorphism immediately gives a classification up to isomorphism. Thus in this

context, the classification of twisted isomorphisms has some practical implications.

In Section 4.1 of this paper, we find all possible permutations of the language which trans-

form some metrically homogeneous graph into another metrically homogeneous graph. In Sec-

tion 4.2 we analyze in each case which pairs of metrically homogeneous graphs are “twistable”

to each other by a twisted automorphism affording the specified permutation of the language.

The level of generality of this work is considerably greater than that of Chapter 3, and in

fact we give a satisfactorily complete classification of the twisted automorphisms of metrically

homogeneous graphs in spite of the absence of a complete classification of the class of graphs

in question. However, we do rely heavily on the existing classification theory, both to break

down the question into meaningful parts, and to effect the solution even when the relevant class

of graphs is not fully determined.
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This classification problem for twisted isomorphisms breaks up naturally into two ques-

tions, which are treated separately in Sections 4.1 and 4.2, namely the following.

(A) What non-identity permutations of the language of integer-valued metric spaces (viewed

as edge-labeled graphs) can be induced by a twisted isomorphism between two metrically

homogeneous graphs?

(B) For each such permutation, what are the metrically homogeneous graphs which allow a

twisted isomorphism of the corresponding type?

Not surprisingly, some elements of classification theory are needed even for Problem (A), and

certainly for Problem (B). In fact, one would not expect a meaningful answer to Problem (B)

in the absence of a full classification of the metrically homogeneous graphs, but it turns out

that the existing classification theory allows a full solution of both problems, if the solution is

phrased with care in the case of Problem (B).

Before presenting our results in detail, we review some essential points from the classifica-

tion theory for metrically homogeneous graphs, given in detail in Section 2.2.

In the classification of metrically homogeneous graphs, a fundamental distinction is made

between generic and non-generic type (Definition 2.2.4). Roughly speaking, the non-generic

graphs occur “in nature” and result from explicit constructions, whereas for the most part the

generic type graphs are only known via the Fraı̈ssé theory (Section 2.1). Then within the class

of metrically homogeneous graphs of generic type, an important subclass consists of the so-

called 3-constrained graphs (Definition 2.2.5), which are defined in terms of the Fraı̈ssé theory

of Section 2.1 as the metrically homogeneous graphs whose induced subspaces (as a metric

space) are determined by constraints on metric triangles.

The existing classification theory provides the following.

• An explicit, complete list of the isomorphism types of metrically homogeneous graphs

of non-generic type.

• An explicit, complete list of the isomorphism types of 3-constrained metrically homoge-

neous graphs of generic type, in terms of five numerical parameters δ,K1,K2,C,C′.
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• A conjectural classification of the metrically homogeneous graphs of generic type in

terms of the 3-constrained ones together with the “Henson constraints” in the sense of

Definition 2.2.9.

• A precise definition of the numerical parameters δ,K1,K2,C,C′ associated with an ar-

bitrary metrically homogeneous graphs, and some partial information about their prop-

erties (not sufficient as yet to show that these parameters actually correspond to some

3-constrained homogeneous graph).

It is not difficult to classify the twisted isomorphisms of metrically homogeneous graphs of

non-generic type “by inspection,” and there are few non-trivial cases. The precise statement of

this result is given in Proposition 4.1.1 of Section 4.1.

What happens in the case of generic type is more interesting. Using the classification theory,

one can determine the non-trivial permutations of the language associated with some twisted

isomorphism explicitly. It turns out that the diameter δ must be finite and that only four such

permutations can occur, for fixed δ. Remarkably, these are the same permutations that were

found by Bannai and Bannai [BB80], and also by Tony Gardiner [Gar80], in the study of

“P-polynomial structures” for finite association schemes, or for finite distance regular graphs,

respectively.

Problem. Can one obtain a similar classification of twisted isomorphisms for all distance

transitive graphs?

What we have in mind here is only a classification of the relevant permutations of the

language, not a classification of the structures involved. Such a result would represent a con-

siderable strengthening of a major portion of our work on the topic, and clarify its relationship

with the results of [BB80, Gar80].

Our main result is as follows.

Theorem 3. Let δ ≥ 3 be fixed (potentially infinite), and let σ be a non-trivial permutation of

the language of metrically homogeneous graphs of diameter δ.

If there is a metrically homogeneous graph Γ of generic type such that Γσ is again a met-

rically homogeneous graph, then δ is finite and σ is one of the permutations ρ, ρ−1, τ0, or τ1

from Proposition 4.1.2.
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Conversely, if δ is finite and σ is one of the permutations ρ, ρ−1, τ0, or τ1, with δ ≥ 3, then

there is a metrically homogeneous graph Γ for which Γσ is again a metrically homogeneous

graph. Furthermore, the metrically homogeneous graphs Γ whose images Γσ are also metri-

cally homogeneous are precisely those with the numerical parameters K1,K2,C,C′ as in Table

4.1.

Here the notation Γσ represents the canonical homogeneous structure (in the sense of Sec-

tion 4.1) obtained by permuting the symbols of the language according to σ. If Γ is a metric

space, then these symbols are binary relation symbols indexed by the possible non-zero values

of the metric, and σ may be viewed more concretely as a permutation of the set of such values.

The explicit classification of the non-trivial permutations ρ, ρ−1, τ0, τ1 associated with twisted

isomorphisms between metrically homogeneous graphs relies on some elements of the classi-

fication theory to show that certain properties of the known metrically homogeneous graphs of

generic hold for all metrically homogeneous graphs of generic type (see, in particular, Propo-

sition 2.2.1 of Section 2.2), and as each of these permutations does occur for a known pair of

metrically homogeneous graphs, we arrive at a complete classification of these permutations.

We express the classification of the metrically homogeneous graphs allowing twisted iso-

morphisms associated with these permutations in terms of the associated numerical parameters

δ,K1,K2,C,C′. We must now discuss the extent to which this result is in fact a classification.

The underlying point is that the question, whether a given metrically homogeneous graph

Γ allows a twisted isomorphism to another such graph which is a associated with a specified

permutation of the language, is in fact equivalent to a set of conditions on the parameters

δ,K1,K2,C,C′. This would clearly be the case if these parameters were known to determine

precisely the types of metric triangles embeddable in Γ, a point that remains conjectural. So

this point requires some additional attention in the absence of a full classification.

Once we have determined that the existence or non-existence of twisted isomorphisms of a

specified type is completely determined by the values of the associated numerical parameters,

the final statement in Theorem 3 gives a satisfactory solution to the problem posed. It does,

however, leave open certain questions that only a fuller classification result would resolve.

Namely, the numerical parameters associated with the known metrically homogeneous graphs
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of generic type satisfy additional constraints (“admissibility,” Definition 2.2.10). Conjecturally,

the numerical parameters associated to any metrically homogeneous graph of generic type are

admissible. Regardless, the results of Theorem 3 apply to any choice of numerical parameters

which is in fact associated to some metrically homogeneous graph of generic type.

In addition, Theorem 3 as stated does not entirely settle the corresponding problem for

twisted automorphisms, but it could easily be reworded to fit that case. The Fraı̈ssé theory

provides a canonical description of any metrically homogeneous graph of generic type, and in

order for a twisted isomorphism to be a twisted automorphism, one must simply check whether

the associated description (in terms of minimal forbidden subspaces) is invariant under the

corresponding permutation of the language. The twisted isomorphisms associated with twisted

automorphisms are the involutions τ0, τ1, witnessed by known metrically homogeneous graphs

of generic type.

To transform Theorem 3 into a completely explicit list of metrically homogeneous graphs,

their twisted isomorphisms, and their twisted automorphism groups, would require solving

some instances of the classification problem, namely those associated with the values of the

numerical parameters shown in Table 4.1. This is a large problem in itself, though possibly

more tractable than the full classification.

In the context considered by Cameron and Tarzi [CT17], the structure of the permutation

group of the language induced by the twisted automorphism group was trivial, but a more sub-

tle question concerning the structure of the full group of twisted automorphisms was taken up:

when does this group split over the normal subgroup of ordinary automorphisms? In our con-

text, this amounts to a problem of lifting permutations of order two to twisted automorphisms

of order two. We hope to address this problem elsewhere.

Now we come to our second algebraic topic, namely the algebraic invariant introduced

by Peter Cameron, called the algebra of an age (Definition 4.3.1), and more particularly the

question as to when this invariant is a polynomial algebra.

There is very rich theory concerning the so-called profile of an oligomorphic permutation

group. A permutation group G acting on a set S said it be oligomorphic if the number of orbits

of G acting on n-element sets of S is finite for every n. The profile is the function giving the

number of orbits of the group on (unordered) sets of order n; thus, if a permutation group is
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oligomorphic, then the profile is finite everywhere.

Considerable attention has been paid to the asymptotic behavior of this function, and a more

precise description has been sought for the possibilities in the polynomially bounded case.

A powerful algebraic tool was introduced by Peter Cameron in [Cam81], a graded Q-

algebra AG (where G is the permutation group in question) whose Hilbert function is the

generating function for the profile. The definition of this algebra is given in §4.3. It may be

described succinctly as the ring of G-invariants in the incidence algebra of the partially ordered

set of finite subsets of the domain Γ on which G acts.

Cameron showed that multiplication by a suitable element of degree 1 gives an injection

from degree n to degree n+1, and deduced that the profile function is non-decreasing, [Cam76,

Theorem 2.2]. This argument was given prior to the formal introduction of the algebra, in terms

of a linear map which is in fact the relevant multiplication map.

Once this algebra is introduced, the following questions are natural.

• When is it an integral domain?

• When is it finitely generated?

• When is it a polynomial ring over Q (typically with infinitely many generators)?

Already in [Cam81], Cameron conjectured that the algebra AG is an integral domain if and

only if G has no finite orbits. This was proved by Pouzet [Pou08].

In the case in which the growth rate of the profile is polynomially bounded, MacPherson

asked in [Mac85] whether the associated algebra must be finitely generated, and in [Cam90],

Cameron asked whether the profile must then be asymptotically polynomial. A positive solution

to these questions, and considerably more, has been announced by Falque and Thiery [FT18].

We will prove the following in §4.3.

Theorem 4. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with K1 and δ finite,

and let Γ be the corresponding metrically homogeneous graph, with automorphism group G. If

C = 2δ+ 1, suppose that δ is even. Then the associated algebraAG is a polynomial algebra in

infinitely many variables.
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This depends on two ingredients: a criterion introduced by Cameron in [Cam97], and a

“disjoint sum” operation for metrically homogeneous graphs suggested by the “magic param-

eter” used in [ABH+17]. This magic parameter is used by Aranda et al. in order to complete

compatible edge-labeled graphs to metrically homogeneous graphs in Aδ
K1,K2,C,C′,S

. Their ap-

proach is a more general version of the completion process we develop in §3.1.3, which was

developed for an altogether different purpose than that of Cameron in [Cam97].

The general imprimitive case (Definition 2.1.7) remains open, though seems tractable.

Open Problem. Is the algebraAG associated with the automorphism group of an imprim-

itive metrically homogeneous graph of generic type a polynomial algebra?

The discussion in [Cam97, §3] contains additional open problems of this type.
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Chapter 2

Background: Fraı̈ssé theory, automorphism groups, and
combinatorics

The present chapter provides the technical tools required for our work in the remainder of the

thesis. Most of this material concerns the general theory of homogeneous structures. There

is now an elaborate “glossary” which provides a systematic method for relating three different

points of view on the subject.

Classes of finite structures Structures Automorphism groups~www� ~www� ~www�
Amalgamation classes of finite structures Homogeneous structures Non-archimedean Polish groups

An amalgamation class of finite structures provides a setting for combinatorial analysis:

examples would be the classes of all finite graphs, all finite tournaments, all finite partial orders,

all finite metric spaces, or all finite permutations. The Fraı̈ssé theory reviewed in Section 2.1

associates to each such class satisfying a few key properties, most notably the eponymous

amalgamation property, a canonical Fraı̈ssé limit, usually infinite. For example, the Fraı̈ssé

limit of the class of finite linear orders is isomorphic to the rational order, while the Fraı̈ssé

limit of the class of finite graphs gives the so-called random graph; combining these examples,

the Fraı̈ssé limit of the class of finite ordered graphs gives the random graph with a generic

linear order, or more loosely speaking, the random ordered graph.

Fraı̈ssé’s theory goes back to the 1950’s. More recently, the glossary has been substan-

tially expanded to relate topological and dynamical properties of the automorphism groups of

homogeneous structures to the combinatorial properties of the associated classes of finite com-

binatorial structures.
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The seminal work of [KPT05], inspired by prior work in dynamics, gives an exact trans-

lation of some dynamical properties, notably extreme amenability and related notions, into

combinatorial equivalents which have been extensively studied under the heading of structural

Ramsey theory in a combinatorial setting.

In a quite separate development with a similar flavor, a member of loosely related proper-

ties of the automorphism groups of homogeneous structures have been shown to follow from

a combinatorial condition which, while not equivalent to any or all of the desired properties,

occurs quite often in practice. The main combinatorial property required is the so-called exten-

sion property for partial automorphisms or EPPA. Unlike the case of structural Ramsey theory,

the associated combinatorial theory has only been taken up systematically after the connec-

tion with the topology of automorphism groups became clear. The technique was introduced

in [HHLS93], developed more broadly by [HL99], and further systematized by [KR07], and

remains the subject of active development.

We present the Fraı̈ssé theory in Section 2.1. In Section 2.3, we present topological theory

of Kechris and Rosendal, and then the dynamical theory of Kechris, Pestov, and Todorčević in

Section 2.4. In Section 2.3 we also take note of the formulation of a special case in [Sin17]

which is particularly convenient for our purposes. In addition, Sections 2.5 and 2.6 present the

combinatorial tools which apply once the reductions of Fraı̈ssé, Kechris-Pestov-Todorčević,

and Kechris-Rosendal have been made. Specifically, Section 2.5 deals with the structural Ram-

sey theoretic results used to obtain dynamical applications, which have been further system-

atized by [HN16], while Section 2.6 deals with a finiteness condition which plays a double

role in our work: in the first place, it yields a finiteness condition required for the application

of [HN16], and in the second place, it also provides a finiteness condition required to apply

results of Herwig and Lascar in the manner of Siniora [Sin17]. The bulk of Section 2.6 fills an

expository gap in the literature, connecting the general Fraı̈ssé theory to the more specialized

theory of Herwig and Lascar in a systematic way.

A common theme in the combinatorial work relating to the methods of Kechris-Pestov-

Todorčević and Kechris-Rosendal is the study of partial (or “weak”) substructures, where the

Fraı̈ssé theory and the associated topological or dynamical reductions involve induced sub-

structures. The use of partial structures is prominent in the application of the so-called partite
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method in structural Ramsey theory, more so in some cases than others. A typical example in

which this feature is particularly visible is the proof of the structural Ramsey theorem for met-

ric spaces in [Neš07], which makes explicit use of partial metric spaces and relies on a clear

understanding of the consequences of the triangle inequality in the setting of a partial metric

space. This is a critical example for the Ramsey theory of metrically homogeneous graphs as

well.

The point of working with, say, partial metric spaces rather than metric spaces is that the

free amalgam of metric spaces is a partial metric space, and the free amalgam construction

is involved in applications of the partite method. Similarly, Herwig-Lascar work with free

amalgamation classes, and hence one must also make a transition to partial structures to apply

their results in the manner of Kechris-Rosendal.

This thesis also relies heavily on the existing theory of metrically homogeneous graphs,

which is review in Section 2.2. In Chapter 3, we investigate the automorphism groups of the

known metrically homogeneous graphs, so a close acquaintance with the catalog of known

graphs and the associated notation is required. In the first section of Chapter 4, we work more

broadly, and so we also require some detailed results emerging from the existing classification

theory. At the end of Chapter 4, we will return to the context of known metrically homogeneous

graphs.

Finally, in Section 2.7, we will introduce the notion of twisted isomorphism, and consider

the theory and associated problems relating to twisted automorphism groups from the point of

view of the general theory of homogeneous structures, in preparation for the detailed consid-

eration of the classification of twisted isomorphisms between metrically homogeneous graphs

undertaken in Sections 4.1 and 4.2.

2.1 Homogeneity and Fraı̈ssé Theory

The study of metrically homogeneous graphs lies within the broader subject of homogeneous

structures in the sense of Fraı̈ssé, and we will make extensive use of Fraı̈ssé’s general theory,

and its more recent extensions, throughout the present thesis. Therefore, we begin by presenting

the main notions and results of this theory, before turning in the next section to the specific
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context of metrically homogeneous graphs. Further information, and proofs, may be found in

[Hod97].

Definition 2.1.1. A structure is homogeneous (in the sense of Fraı̈ssé) if every isomorphism

between finitely generated substructures of Γ extends to an automorphism of Γ.

There are several other notions of homogeneity in use in model theory, permutation group

theory, and metric geometry. Fraı̈ssé’s notion is often called ultrahomogeneity.

In the present work, the only homogeneous structures under consideration will be count-

able, and in later sections we omit explicit mention of that condition. However, that restriction

plays a fundamental role in Fraı̈ssé’s theory, on which we rely throughout. Furthermore, we

will specialize shortly to the case of relational languages (that is, there are no function symbols)

in which case “finitely generated” simply means “finite.”

The motivating example for the theory is the case of the rational order (Q, <), which is a

homogeneous linear order, and Cantor’s uniqueness theorem: any two countable dense linear

orders without endpoints are isomorphic. This may be generalized as follows.

Theorem 2.1.1. Any two countable homogeneous structures with the same finitely generated

substructures (up to isomorphism) are isomorphic.

This theorem can be proved in the same manner as Cantor’s isomorphism theorem, using

the back-and-forth method introduced by Hausdorff in his exposition of that result [Hau14].

Theorem 2.1.1 suggests a general program of expressing the theory of countably homoge-

neous structures in terms of the associated classes of finitely generated structures. The fun-

damental question which Fraı̈ssé’s theory addresses is the characterization of the classes of

finitely generated structures which are associated for countably homogeneous structures.

Definition 2.1.2. The age of a structure Γ is the class of finitely generated structures isomorphic

to some finitely generated substructure of Γ.

IfA is the age of a homogeneous structure Γ, then Γ is called the Fraı̈ssé limit ofA.

For example, the age of any infinite linear order is the class of all finite linear orders, and

in particular there is only one countably infinite homogeneous linear order, up to isomorphism.
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That is, the Fraı̈ssé limit of the class of finite linear orders is a countable dense linear order

without endpoints.

A synonym for the Fraı̈ssé limit is the generic A-structure. For example, if A is the class

of all finite linear orders, the Fraı̈ssé limit would be called the generic linear order.

It is easy to characterize the classes A which arise as the age of some countable structure

Γ, in terms of the following properties.

Definition 2.1.3. LetA be the class of finitely generated structures.

1. A is invariant ifA is closed under isomorphism.

2. A is hereditary ifA is closed under taking induced finitely generated substructures.

3. A has joint embedding if for any pair of structures A, B in A there is a structure in A

into which A and B embed.

These conditions are clearly satisfied by the age of a structure. The ages of countable

structures are characterized as follows.

Fact 2.1.1. Let A be a class of finitely generated structures in a fixed language. Then the

following are equivalent.

• A is the age of some countable structure.

• A is invariant, hereditary, has the joint embedding property, and only countably many

isomorphism types of structures occur inA.

This is easily verified. The characterization of the ages of homogeneous structures is more

subtle and involves a further property.

Definition 2.1.4. A class A of structures has the amalgamation property if and only if for any

triple A0, A1, A2 and any embeddings f1 : A0 → A1, f2 : A0 → A2, there is a structure A ∈ A

and there are embeddings g1 : A1 → A, g2 : A2 → A so that the compositions g1 ◦ f1 and g2 ◦ f2

agree on A0.

The structure A is said to be an amalgam of A1, A2 over A0.
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Theorem 2.1.2. LetA be a class of finitely generated structures in a fixed language. Then the

following are equivalent.

• A has a Fraı̈ssé limit.

• A is invariant, hereditary, has the joint embedding and amalgamation properties, and

only countably many isomorphism types of structures occur inA.

The existence of the Fraı̈ssé limit is proved by building the structure Γ as the direct limit

of a sequence of finitely generated structures so as to satisfy the following extension property:

for any embedding f : A → B with A a finitely generated substructure of Γ and B ∈ A, there

is an embedding g : B → Γ with g ◦ f the identity on A. From this, homogeneity follows by a

back-and-forth argument.

ClassesA satisfying all the specified conditions in Theorem 2.1.2 are called amalgamation

classes; in other words, amalgamation classes are the ages of countable homogeneous struc-

tures.

As we have mentioned above, Fraı̈ssé’s theory has since been extended to express highly

nontrivial properties of the automorphism groups of countable homogeneous structures in terms

of the associated amalgamation classes.

The level of generality of Fraı̈ssé’s theory is very broad, and in a certain sense encompasses

all countable structures, as we now indicate.

Definition 2.1.5. Let Γ be a countable structure in a language L. The canonical language LΓ

for Γ consists of one n-ary relation symbol for each orbit of Aut(Γ) on the collection of n-tuples

of distinct elements of Γ.

The associated L∗-structure Γ∗ has the same underlying set as Γ, with each relation of L∗

interpreted as the corresponding orbit, viewed as an n-ary relation.

Remark 2.1.1. If Γ is a countable L-structure, then the associated LΓ-structure Γ∗ is homoge-

neous and has the same automorphism group.

This places some limits on what one may expect from Fraı̈ssé theory, since in a certain

sense the theory is applicable to an arbitrary structure. Nonetheless, this theory provides the

conceptual framework for everything we do here.
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Canonical structures are homogeneous for a relational language. So the condition of homo-

geneity in a relational language is not very restrictive. However, the condition of homogeneity

with respect to a finite relational language is very restrictive, as we will now see.

Definition 2.1.6. A permutation group G acting on a set X is oligomorphic if G has only finitely

many orbits in the induced action on Xn, for each n.

Remark 2.1.2. A homogeneous structure in a finite relational languageL has an oligomorphic

automorphism group.

This follows easily from the fact that with n fixed, there are only finite manyL-structures of

order n, up to isomorphism, and hence also up to ordered isomorphism (i.e. as n-tuples rather

than sets).

By the theorem of Ryll-Nardzewski, Engeler, and Svenonius [RN59, Eng61, Sve59], having

an oligomorphic automorphism group is one of the characterizations of ℵ0-categoricity of the

corresponding theory.

It will be instructive to examine the case of homogeneous graphs from the point of view

of Fraı̈ssé theory. Thus the language is the language of graph theory, with a single symmetric

binary relation which we take to be irreflexive as well.

The following substantial result will serve to illustrate several features of the Fraı̈ssé theory,

and some concepts of considerable importance to our work here.

Fact 2.1.2. [Gar80, She74, LW80] Up to isomorphism and graph complementation, the count-

able homogeneous graphs are as follows.

• Two “sporadic” examples: the 5-cycle C5 and the graph on [3]2 in which the edge rela-

tion is defined by E((i, j), (i′, j′)) if and only if i = i′ or j = j′.

• The graphs m · Kn (the disjoint union of m n-cliques) with 1 ≤ m, n ≤ ∞.

• Henson’s generic Kn-free graphs with 3 ≤ n < ∞ [Hen71].

• The generic or “random” graph.

To begin with, we notice that the list is given only up to graph complementation. In the

canonical language associated with a homogeneous graph, there is a symbol for the edge re-

lation E and a symbol for the non-edge relation N (also taken to be irreflexive). Forming
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the graph theoretic complement involves a permutation of the symbols of the canonical lan-

guage in which E,N are switched. Permutations of the canonical language carry homogeneous

structures to homogeneous structures, so classification results need only be given up to such

permutations. This observation leads to the consideration of twisted isomorphisms, to which

we return at the end of this chapter.

In dealing with homogeneous structures, it is useful to distinguish the primitive and im-

primitive cases.

Definition 2.1.7. A homogeneous structure is imprimitive if it carries a non-trivial equivalence

relation definable without parameters. Equivalently, there is a non-trivial equivalence relation

invariant under the action of the automorphism group.

A structure which is not imprimitive is said to be primitive.

We remark that in permutation group theoretic usage, the terms “primitive” and “imprim-

itive” are only applied to structures with transitive automorphism groups, and in fact all the

homogeneous structures which concern us will satisfy this transitivity condition.

A first step toward the classification of the homogeneous graphs is the following straight-

forward result.

Remark 2.1.3. Up to complementation, an imprimitive homogeneous graph is a disjoint union

of at least two non-trivial cliques, of constant size.

Indeed, by homogeneity, a non-trivial equivalence relation must be the reflexive extension

of the edge relation or the non-edge relation, so up to complementation the equivalence classes

are cliques, and the rest follows by vertex transitivity.

Next we consider the use of the term “generic” in various senses in connection with Fraı̈ssé

theory.

In the context of relational languages, amalgamation classes are invariant hereditary classes

of finite structures, and therefore may be characterized in terms of the minimal forbidden sub-

structures: these are the minimal structures which are not in the given class A. Thus one may

construct homogeneous structures by specifying a set F of forbidden substructures, verifying

that the class so defined has the amalgamation property, and taking the Fraı̈ssé limit, which is

then called the generic F -free structure.
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We have used this notion of genericity twice in the statement of Fact 2.1.2. Namely, taking

A to be the class of all finite graphs, one obtains the generic graph. TakingA to be the class of

all Kn-free graphs, that is, graphs containing no clique of order n, we obtain the generic Kn-free

graph [Hen71].

Of course, one must check the amalgamation property in all such cases, and this is not

always trivial. However for the class of all finite graphs, or all Kn-free finite graphs, it suffices

to use free amalgamation in the following sense.

Definition 2.1.8. The free amalgam of two relational structures A1, A2 over their intersection

A0 = A1 ∩ A2 is the set A1 ∪ A2 equipped with the union of the corresponding relations. More

generally, given a structure A0 and two embeddings f1 : A0 → A1, f2 : A0 → A2, one forms

the free amalgam by first replacing A1, A2 by isomorphic copies A′1, A
′
2 for which the functions

f1, f2 correspond to inclusion maps, with A′1 ∩ A′2 = A0, and then one takes the usual free

amalgam of A′1 with A′2 over A0.

This notion makes sense also when A1, A2 are equipped with some unary functions, but

functions of more than one variable would no longer be functions in the free amalgam as we

define it.

It is easy to see that the class of all finite graphs, or all finite Kn-free graphs, is closed

under free amalgamation. Thus the Fraı̈ssé theory immediately provides the corresponding

homogeneous graph. The generic graph is also called the random graph because there is a

natural probabilistic construction which with probability 1 produces the same graph, up to

isomorphism. On the other hand, there is no comparably natural probabilistic construction

producing the generic Kn-free graphs.

Note that passage to graph complements leads to a different notion of free amalgamation,

in which the free join of two graphs treats the “default” condition on pairs as the edge relation

rather than the non-edge relation. In particular, the complement of the generic Kn-free graph

is the generic In-free graph, with In an independent set of order n, and with the age a free

amalgamation class in this dual sense.

Thus the catalog of homogeneous graphs reduces to a few easily found “in nature” and
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some graphs whose existence is provided most naturally by a generic construction in the sense

of Fraı̈ssé. The Fraı̈ssé theory continues to play a role in the proof of Fact 2.1.2. In fact, it is

not that easy to extract the statement of this fact from the presentation in [LW80], which gives

the statement in terms of the minimal forbidden substructures, after the following reductions.

The finite homogeneous graphs were classified partially by Sheehan [She74], and fully and

independently by Gardiner [Gar80]. In the infinite case, one may set aside the imprimitive case,

where as we have already remarked, the graphs have the form m · Kn up to complementation,

that is, a disjoint union of m n-cliques, where 2 ≤ m, n ≤ ∞.

In the case of infinite graphs, an application of Ramsey’s theorem guarantees that there is

an infinite complete subgraph or an infinite independent set, and up to complementation one

may suppose there is an infinite independent set. Therefore what actually remains to be proved

to arrive at Fact 2.1.2 is the following: an infinite primitive homogeneous graph which contains

an infinite independent set, and which also contains an n-clique Kn, must contain every finite

graph which does not contain Kn+1. This is the content of [LW80]. The proof is elaborate and

goes more deeply into the theory of amalgamation classes, in directions that will not be needed

here.

We now sum up some characteristic features of the classification of homogeneous graphs

which have some parallels in the known families of metrically homogeneous graphs.

A few exceptional types of homogeneous graphs occur “in nature” as special cases, such

as the finite ones and some imprimitive graphs that appear as their natural infinite limits. The

infinite primitive homogeneous graphs are most simply constructed in terms of Fraı̈ssé theory,

and we have observed that Fraı̈ssé theory also provides an essential tool for the proof of their

classification.

We notice further that the homogeneous graphs furnished directly by Fraı̈ssé theory are of

a particularly simple and uniform kind. Namely, we may fix the amalgamation procedure in

advance: free amalgamation. Having done so, the only possible forbidden graphs are cliques,

and we arrive at Henson’s constraints.

While there is a highly developed theory of free amalgamation classes which we will make

good use of, notably in connection with the automorphism extension property discussed in
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Section 2.3, most of the amalgamation classes we deal with are not closed under free amalga-

mation. Rather they generally satisfy the following much broader condition.

Definition 2.1.9. An amalgamation class has strong amalgamation if every amalgamation di-

agram f1 : A0 → A1, f2 : A0 → A2 in A has an amalgam g1 : A1 → A, g2 : A2 → A such that

the images of A1 and A2 in A meet in the image of A0.

There is a useful connection between the strong amalgamation property in the age of a

structure and free amalgamation in the associated class of partial structures, which we will

develop in Section 2.6.

Furthermore, strong amalgamation classes allow some further useful constructions, of par-

ticular relevance in connection with Ramsey theory as discussed in Section 2.5. The following

is immediate, but useful.

Lemma 2.1.1. LetA,B be strong amalgamation classes in disjoint relational languagesL1,L2.

LetA?B be the class of finite structures in the language L1 ∪L2 whose reducts to L1,L2 are

inA or B respectively. ThenA ? B is a strong amalgamation class.

The corresponding Fraı̈ssé limits will be structures Γ1,Γ2, and Γ, each homogeneous in the

appropriate language, with the reducts of Γ to the languages L1,L2 isomorphic to Γ1 and Γ2

respectively.

A case of particular interest arises when B is the class of finite linear orders. Then the

resulting structure Γ is called the expansion of Γ1 by a generic linear ordering. Most of the

metrically homogeneous graphs we are about to encounter are associated with strong amalga-

mation classes and therefore have generic expansions by linear orderings, to be investigated in

Section 3.3.

2.2 Metrically Homogeneous Graphs

We now discuss the general theory of (countable) metrically homogeneous graphs, the subject

matter of the remainder of the thesis. These graphs are considered, notably, in [Mos92] and

[Cam98], where the question of a possible classification was more or less explicitly raised.

That classification is by no means complete, but a wide range of examples is known, and useful

classification results are known in several special cases.
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We will be concerned mostly with the known metrically homogeneous graphs in our work in

Chapters 3 and 4, with the exception of the work in Sections 4.1, 4.2 where detailed information

resulting from the existing classification theory, supplemented by some new information along

the same general lines, allows us to treat the general case with some additional effort.

We will present the relevant results from the classification theory below. This includes a few

concepts on which we rely throughout as well as some more technical material that will be used

more sporadically in the body of the thesis. Of particular importance is the notion of generic

type and the associated class of examples which arise via the Fraı̈ssé theory of the previous

section, depending mainly on five numerical parameters denoted δ,K1,K2,C,C′, which play a

leading role in the various combinatorial analyses on which all of our results depend. As we

will see, these parameters encode information about metric triangles which embed in a given

metrically homogeneous graph.

Definition 2.2.1. A connected graph Γ is metrically homogeneous if the metric space (Γ, d) is

homogeneous in Fraı̈ssé’s sense (Definition 2.1.1) where d is the associated path metric.

One could apply the notion more broadly to vertex-transitive graphs whose connected com-

ponents are metrically homogeneous (which amounts to replacing d by d∗, which takes the

value infinity when not already defined). We will not do so.

Note that the definition presupposes that we are treating metric spaces as relational struc-

tures. In general, this is done as follows.

Definition 2.2.1, cont. Let S ⊆ R>0. A metric space with values in S will be viewed as a

complete edge-labeled graph with labels in S , satisfying the triangle inequality. Such structures

may then be viewed as relational structures carrying symmetric binary relations (Rs | s ∈ S ),

with

Rs(x, y)⇐⇒ d(x, y) = s.

It is often the case in examples of interest here that the set S is finite, and in all cases

we consider, S will be at worst countable, so that the corresponding language (Rs | s ∈ S )

is countable. One subtlety that should be noted in passing is that an S -metric space need not

realize every value in S —it may even consist of a single point, and realize no value in S .

This case arises frequently in practice, as the Fraı̈ssé theory leads us to consider arbitrary finite
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subspaces of a given space.

Metrically homogeneous graphs fall within the broader class of homogeneous integer-

valued metric spaces, and are geodesic metric spaces in the following sense, which is a discrete

analog of the usual definition for R-valued spaces.

Definition 2.2.2. An integer-valued metric space is geodesic if every pair of points u, v is con-

nected by a geodesic path (u = u0, · · · , ur = v) in which successive vertices lie at distance 1.

(Thus r = d(u, v).)

In fact, metrically homogeneous graphs, viewed as metric spaces, and homogeneous integer-

valued geodesic metric spaces are the same class of metric spaces. We now give several similar

characterizations in this vein, all of them useful. Here we rephrase Proposition 5.1 of [Cam98],

where the statement is given in terms of the first two of our four conditions, in the broader

context of distance-transitive graphs.

Fact 2.2.1. Let (Γ, d) be a homogeneous integer-valued metric space and let (Γ, E) be Γ viewed

as a graph with edge relation d(x, y) = 1. Then the following are equivalent.

1. (Γ, E) is a metrically homogeneous graph, and d is the graph metric.

2. (Γ, E) is connected.

3. (Γ, d) is a geodesic metric space.

4. (Γ, d) contains geodesics of arbitrary length up to the diameter of Γ.

5. (Γ, d) contains all triangles with edge lengths (1, k, k + 1) with k less than the diameter

of (Γ, d).

The equivalence of items (3, 4) is a typical instance of homogeneity for pairs (i.e. distance

transitivity).

Classification: General theory

Now we take up the classification theory for metrically homogeneous graphs. We begin with

a general description of the present state of the theory, adopting terminological conventions
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introduced in [Che17]. Also, we deal only with the case of metrically homogeneous graphs of

diameter at least 3, as the case of smaller diameter falls under the case of homogeneous graphs

discussed earlier, and involves some additional exceptional cases.

The theory begins by considering two mutually exclusive but not quite exhaustive possibil-

ities, which we call local exceptional type and generic type. We begin with the former. In any

metrically homogeneous graph Γ, the graph induced on the set of neighbors of a fixed vertex

is a homogeneous graph, and by vertex transitivity, the isomorphism type of this graph is an

invariant of Γ. By Fact 2.1.2, this graph is of known type, and up to complementation is either

finite, imprimitive, generic Kn-free for some n, or fully generic. The first two cases are of a

special character while the last two cases may result from general constructions relating to the

Fraı̈ssé theory. Accordingly, we make the following definition in the metrically homogeneous

case.

Definition 2.2.3. A metrically homogeneous graph Γ is of local exceptional type if the graph

induced on the set of neighbors of a vertex is finite or imprimitive.

The metrically homogeneous graphs of local exceptional type have been explicitly classi-

fied, as we will discuss a little further on in full detail.

Now we turn to the remaining metrically homogeneous graphs. By definition, the associated

graph induced on the neighbors of a vertex is infinite and primitive. In the definition of generic

type, we require somewhat more than this.

Definition 2.2.4. A metrically homogeneous graph Γ is of generic type if it satisfies the follow-

ing two conditions.

• The graph induced on the set of neighbors of a vertex is primitive.

• The graph induced on the set of common neighbors of a pair of vertices at distance 2

contains an infinite independent set.

This is the most interesting class of metrically homogeneous graphs, and will be the main

object of study in the present thesis. Much of the thesis concerns the known metrically homo-

geneous graphs in this class. Occasionally we are able to work more generally.
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The classification of metrically homogeneous graphs which are not of generic type is com-

plete. Those of local exceptional type are described below.

Fact 2.2.2. [Che11, Lemmas 8.6, 8.12] A metrically homogeneous graph Γ which is neither of

exceptional local type nor of generic type is a regular tree with infinite branching.

Moreover, we also deduce the following from [Che17], reproduced in [ACM16].

Fact 2.2.3. Let Γ be an infinite metrically homogeneous graph of finite diameter. Then Γ is of

generic type.

As the statement given in [Che11] is phrased in a different way, we give the necessary

reductions to the statement actually found there. By assumption, the graph Γ1 induced on

the set of neighbors of a fixed vertex v of Γ is infinite and primitive. By the classification

of homogeneous graphs, it follows that Γ1 is either an independent set, a Henson graph, the

complement of a Henson graph, or a generic graph. By Lemma 8.12 of [Che11], Γ1 contains an

independent set, and hence must be an independent set, a Henson graph, or a generic graph. As

Γ is not of generic type, the common neighbors of a pair of vertices at distance 2 in Γ1 contains

no infinite independent set, and so Γ1 cannot be a Henson graph or a generic graph. Therefore

Γ1 is an infinite independent set, and any pair of vertices at distance 2 in Γ have infinitely many

neighbors. By Lemma 8.6 of [Che11], Γ is a regular tree with infinite branching.

Classification: Exceptional local type

We now return to the exceptional local case, giving the complete classification in this case,

based on [Che11]. This consists of two parts—the existence of the graphs in question, and the

completeness of the resulting list. The statement is as follows.

Fact 2.2.4. [Che11, Theorem 10] Let Γ be a metrically homogeneous graph of exceptional local

type of diameter δ ≥ 3. Then either Γ is finite, or Γ is a tree-like graph Tm,n with m, n ≤ ∞, as

described below.

In fact, Theorem 10 of [Che11] is given in a slightly more general form, including the case

in which the graph induced on the neighbors of a fixed vertex is the complement of a Henson

graph.
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The graphs Tm,n are introduced in [Mac82]. They may be defined in terms of the theory

of blocks (maximal 2-connected subgraphs) as graphs in which all blocks are cliques of order

n + 1 (i.e. infinite if n = ∞) and each vertex lies in m distinct blocks. (Recall that a graph

is 2-connected if there does not exist a vertex whose removal disconnects the graph.) A more

explicit and more useful definition is the following. Let T (m, n + 1) be a biregular tree with

degrees m and n + 1; that is, every vertex has degree m or n + 1, and vertices of degree m are

joined only to vertices of degree n + 1 (it is possible however that m = n + 1). Let V be the set

of vertices of degree m and let Tm,n be the graph with vertex set V and edge relation d(x, y) = 2,

where d is the path metric. To put this in a broader context, we may put the construction in the

following framework.

Lemma 2.2.1. Let Γ be a connected bipartite graph which is homogeneous when considered as

a structure in the language consisting of the path metric in Γ together with unary predicates A, B

defining the sets in a bipartition of Γ. Let ΓA be the graph on A with edge relation d(x, y) = 2,

where d is the path metric in Γ. Then ΓA is a metrically homogeneous graph.

Proof. Since Γ is connected and bipartite, ΓA is connected.

It is clear that ΓA is homogeneous as a metric space with the metric dΓ induced from Γ,

which takes on only even values. Therefore ΓA is also homogeneous as an integer-valued

metric space with the scaled metric (1/2)dΓ. Then ΓA satisfies the conditions of Fact 2.2.1 (2),

and Fact 2.2.1 (1) tells us that ΓA is metrically homogeneous with path metric (1/2)dΓ. �

We apply this to the biregular tree T (m, n+1) in a language containing a bipartition by unary

predicates. Then the metric homogeneity of Tm,n follows from the homogeneity of T (m, n + 1)

as a metric space with a bipartition. For this we refer to Lemma 5.3 of [Che11].

Now to complete the classification of the metrically homogeneous graphs of exceptional

local type, it suffices to treat the finite case. Here we will once more encounter some particular

instances of more general constructions.

Fact 2.2.5. [Cam76] The finite metrically homogeneous graphs of diameter at least 3 are as

follows.

• n-cycles with n ≥ 6.
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• Antipodal double covers of finite homogeneous graphs of one of the following forms:

1. the 5-cycle C5;

2. the graph [3]2 described in Fact 2.1.2; or

3. an independent set In of order n ≥ 2.

The general definition of an antipodal double cover is given in [Che11, Definition 5.4].

When Γ is a finite graph of diameter 2 and order n which is not complete, it produces a graph

of diameter 3 and order 2n + 2 which will be metrically homogeneous if it is vertex transitive.

The antipodal double cover of C5 (order 12) is the set of vertices of an icosahedron with edge

relation given by the 1-skeleton. The antipodal double cover of [3]2 (order 20) is the Johnson

graph J(6, 3) with vertices the triples from a 6-element set and edge relation given by |x∩y| = 2.

The antipodal double cover of In is the bipartite complement of a perfect matching between two

sets of order n + 1.

In these graphs, each vertex lies at distance 3 from a unique “antipodal” vertex. We will

discuss the general notion of “antipodal graph” below in the context of metrically homogeneous

graphs of generic type.

Classification: Generic type

As we have seen, the classification of the metrically homogeneous graphs of non-generic type

is complete. We now take up the classification of metrically homogeneous graphs of generic

type.

There is a uniform description of all known metrically homogeneous graphs of generic

type, in terms of the class of 3-constrained metrically homogeneous graphs. This class is

defined using Fraı̈ssé theory, as follows.

Definition 2.2.5. Let L be a finite relational language. A homogeneous L-structure is 3-

constrained if the minimal L-structures not in its age have order at most 3.

In other words, a homogeneous structure is 3-constrained if the associated amalgamation

class is 3-constrained in the sense that it is determined by a set of forbidden structures (con-

straints) of order at most 3. A typical example of such a constraint would be the triangle

inequality in metric spaces, which defines a set of forbidden structures of order 3.
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The status of the classification theory is best understood in terms of the following conjec-

ture. We consider L-structures, where L is the language of integer-valued metric spaces (i.e.

the language of edge-labeled graphs with positive integer labels).

Conjecture 2.2.1. If Γ is a metrically homogeneous graph of generic type and TΓ is the set of

structures of order at most 3 which do not embed in Γ, then the class of TΓ-free structures is an

amalgamation class.

In other words, the conjecture states that every metrically homogeneous graph of generic

type has the same forbidden triangles as some 3-constrained metrically homogeneous graph

(also of generic type) with the same diameter.

Now we give the classification of 3-constrained metrically homogeneous graphs of generic

type. This involves 5 numerical parameters δ,K1,K2,C0,C1 which may be defined for any

metrically homogeneous graphs as follows.

Definition 2.2.6. Let Γ be an integer-valued metric space.

The type of a triangle in Γ is the triple (i, j, k) of edge lengths which occur (taken in any

order).

We define parameters δ,K1,K2,C0,C1 as follows.

• δ is the diameter (possibly infinite).

• K1 is the smallest number k such that there is a triangle of type (k, k, 1) in Γ, and K2 is

the largest such number (possibly infinite). In the event that there are no such triangles

realized in Γ, K1 is set equal to∞ and K2 is set equal to 0.

• For ε = 0 or 1, Cε is the smallest number of parity ε, greater than 2δ, such that all

triangles in Γ with perimeter p having parity ε satisfy p < Cε .

Furthermore, we set C = min(C0,C1) and C′ = max(C0,C1).

In many cases, C′ = C + 1, and in such cases there is no real distinction on the basis of

parity, as C becomes a uniform bound on the perimeter of all triangles in Γ.

Fact 2.2.6. [Che17, Theorems 12.1 and 13.1] Let Γ be a 3-constrained metrically homogeneous

graph of generic type and diameter at least 3. Then
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Case (a) (bipartite case). K1 = ∞:

• K2 = 0 and C1 = 2δ + 1.

Case (b) (low C). K1 finite, C ≤ 2δ + K1.

• C = 2K1 + 2K2 + 1 ≥ 2δ + 1;

• K1 + 2K2 ≤ 2δ − 1;

• If C′ > C + 1 then K1 = K2 and 3K2 = 2δ − 1.

Case (c) (high C). C > 2δ + K1.

• K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ;

• If K1 + 2K2 = 2δ − 1 then C ≥ 2δ + K1 + 2;

• If C′ > C + 1, then C ≥ 2δ + K2.

Table 2.1: Admissible parameter choices with δ ≥ 3 (Definition 2.2.10)

1. The set of triangles embedding in Γ is determined by the numerical parameters δ,K1,K2,C0,

and C1.

2. These parameters satisfy one of the three sets of numerical conditions given in Table 2.1.

Conversely, every such parameter sequence is realized by some 3-constrained metrically ho-

mogeneous graph.

We will have occasion to refer to the precise conditions on the numerical parameters shown

in Table 2.1. We call such sequences of numerical parameters admissible.

Fact 2.2.6 involves three issues: the construction of 3-constrained amalgamation classes

associated with a given admissible sequence of parameters, the proof of admissibility, and the

proof that the numerical parameters completely determine the set of forbidden triangles, in the

3-constrained context. We elaborate on the last of these points.

Definition 2.2.7. Let δ,K1,K2,C0,C1 be numerical parameters, some of which may be infinite.

The associated set T (δ,K1,K2,C0,C1) of forbidden triangle types consists of all triangle types

(i, j, k) which violate one or more of the following constraints.

• i, j, k ≤ δ;

• If the perimeter p = i + j + k is odd, then 2K1 < p < 2K2 + 2 min(i, j, k).
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• If the perimeter p ≡ ε (mod 2), (ε = 0 or 1), then p < Cε .

We may reformulate the discussion up to this point in more explicit terms as follows.

• For an admissible sequence of parameters, constraints of the form T (δ,K1,K2,C0,C1)

defines an amalgamation class Aδ
K1,K2,C0,C1

of [δ]-valued metric spaces, whose Fraı̈ssé

limit ΓδK1,K2,C0,C1
is then a 3-constrained metrically homogeneous graph of generic type.

• Conversely, any countable 3-constrained metrically homogeneous graph of generic type

has the form ΓδK1,K2,C0,C1
for some admissible sequence of numerical parameters.

• Conjecturally, if Γ is a metrically homogeneous graph of generic type and δ,K1,K2,C0,C1

are the associated parameters, then both of the following should hold.

– The sequence of numerical parameters is admissible.

– The metric triangles not embedding in Γ are those which lie in the setT (δ,K1,K2,C0,C1).

As we saw in connection with the classification of metrically homogeneous graphs, it is

useful to separate the primitive and imprimitive cases of the classification problem. The funda-

mental result concerning this division is the following.

Fact 2.2.7. [Smi71, Theorem 2]; [Che17, Lemma 7.1] Let Γ be an imprimitive metrically

homogeneous graph of diameter at least 3 and degree at least 3. Then Γ is bipartite or antipodal

(Definition 2.2.8 below).

This is stated by D.H. Smith in the context of finite distance transitive graphs but holds in

several other forms as well; for finite distance regular graphs [AH06], with a suitably modified

definition of imprimitivity, and for infinite distance transitive graphs, hence also for metrically

homogeneous graphs.

Definition 2.2.8. A graph of finite diameter δ is antipodal if the reflexive closure of the relation

d(x, y) = δ is an equivalence relation.

In particular, an antipodal graph of diameter 2 is a complete multi-partite graph. As there

are no antipodal graphs of infinite diameter, the imprimitive graphs of infinite diameter are

bipartite.
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Note that there is also a metric definition of bipartite: the definition “d(x, y) is even” is

an equivalence relation. The definition of antipodality may be rephrased in a similar way:

the relation “d(x, y) is divisible by δ” is an equivalence relation. In fact, the proof of Smith’s

theorem starts by showing that the equivalence relation in question has the form “d(x, y) is

divisible by d” for some parameter d, and then showing that d must be 2 or δ.

There are stronger forms of antipodality which are equivalent to the stated condition in the

context of metrically homogeneous graphs, and which are sometimes taken as the definition in

that setting. But the definition given above is the appropriate one in the more general setting of

distance transitive graphs.

Fact 2.2.8. [Che17, Lemma 6.1 and Theorem 11] If Γ is a metrically homogeneous graph of

diameter at least 3, then the following conditions are equivalent.

1. Γ is antipodal.

2. For every vertex u in Γ, there is a unique vertex u′ at distance δ.

3. There is an automorphism α of Γ satisfying the law

d(x, α(y)) = δ − d(x, y).

4. There is no triangle of perimeter greater than 2δ.

5. C1 = 2δ + 1,C0 = 2δ + 2.

Corollary 2.2.1. Let Γ be an antipodal metrically homogeneous graph of diameter δ ≥ 3. Then

K1 + K2 = δ.

The main point to be proved in Fact 2.2.8 is the derivation of the strong form of antipodality

given in (2) from the usual definition of antipodality, in the metrically homogeneous context.

Once one has this, one can define α(x) by the condition d(x, α(x)) = δ and deduce the formally

stronger condition (3). This is the subject of [Che11, Theorem 11]. Condition (4) follows easily

from (3) and implies (2); this is the content of [Che11, Lemma 6.1].

The numerical reformulation of (4) as (5) is straightforward but convenient. Assuming the

parameters are admissible, (5) reduces to C = 2δ + 1. Similarly, the bipartite case corresponds

numerically to K1 = ∞.
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There are as yet no general classification results for imprimitive metrically homogeneous

graphs. There is a useful reduction of the bipartite case to primitive cases [Che17, Theorem

1.27]. In the case of antipodal graphs, there is a general reduction which applies in the context

of distance transitive graphs but which is not helpful in the metrically homogeneous setting as

the reduced graph, while still distance transitive, may not be metrically homogeneous.

We now discuss the full catalog of known metrically homogeneous graphs of generic type

and their relationship with 3-constrained metrically homogeneous graphs. The main classifica-

tion conjecture amounts to the statement that this relationship holds in general.

Just as the Henson graphs may be obtained by fixing an amalgamation procedure, namely

free amalgamation, and then considering what additional constraints may be imposed which are

compatible with that procedure, a broader class of metrically homogeneous graphs can be ob-

tained by starting with one of the 3-constrained cases, considering the associated amalgamation

procedure in detail, and then adding in additional constraints compatible with that procedure.

This leads to a notion of Henson constraint appropriate to the setting of metrically homoge-

neous graphs of diameter at least 3. In fact, it leads to two such notions: one is appropriate in all

cases except the antipodal case, while there is a special notion of antipodal Henson constraint

arising as an exceptional case.

Under the assumption that the diameter δ is at least 3, it is frequently the case that the

amalgamation procedure can be carried out so as to introduce no new pairs at distance 1 or

at distance δ. Therefore it is natural to consider metric spaces with values in the set {1, δ} as

additional constraints.

Definition 2.2.9. A (1, δ)-space is a metric space with values in the set {1, δ}.

When δ ≥ 3, we will also refer to a (1, δ)–space as a Henson constraint, or more precisely,

as an ordinary Henson constraint. We will subsequently introduce antipodal Henson constraints

(Definition 2.2.11).

Observe that Henson constraints consist of cliques of various sizes lying at distance δ from

each other. The extreme cases of a single clique or trivial cliques are permitted.

Definition 2.2.10. Let (δ,K1,K2,C,C′) be an admissible parameter sequence with δ ≥ 3 and

C > 2δ + 1.
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A set S with ordinary Henson constraints is said to be admissible with respect to the pa-

rameter sequence if the following conditions are satisfied.

• No structure in S contains any of the forbidden triangles in T (δ,K1,K2,C,C′).

• If K1 = δ or C = 2δ + 2, then S is empty.

A sequence of parameters (δ,K1,K2,C,C′,S) with C > 2δ + 1 is admissible if the sequence of

numerical parameters is admissible, and if S is admissible with respect to that sequence.

It would also be reasonable to impose the requirement on S that no constraint in S contain

any other constraint in S (that is, S is an antichain) but we do not require that here.

Now we pass to the consideration of the case of antipodal graphs, that is, C = 2δ + 1, and

the appropriate notion of Henson constraint in that context.

Definition 2.2.11. Let δ ≥ 3.

Let A be a [δ]-metric space. An antipodal variant of A is obtained by dividing A into two

parts A0, A1 and replacing the distances d(x, y) between the two parts by the values δ − d(x, y).

In particular, an antipodal variant of an n-clique is a structure consisting of the union of two

cliques Kn1 ,Kn2 with n1 + n2 = n, and all distances between the two cliques equal to δ − 1.

An antipodal Henson constraint is an antipodal variant of an n-clique.

For δ,K1,K2,C,C′ an admissible sequence of numerical parameters with C = 2δ + 1, a set

S of antipodal Henson constraints is admissible if the following conditions are satisfied.

• No structure in S contains any of the forbidden triangles in T (δ,K1,K2,C,C′).

• If δ = 3, then S is empty.

• If S contains a constraint A then it contains all antipodal variants of A.

This is strictly analogous to the preceding definition in spite of its exceptional character.

The first two conditions are as before, and the third condition is necessary if one wishes to

specify the constraints for an antipodal graph. Furthermore, in the antipodal case, the only

(1, δ)-spaces which come into consideration are cliques. So we are more or less forced to

consider the notion given above if there is to be a notion of Henson constraint in the antipodal

context. As it happens, the situation with δ = 3 is already too tight to allow for this.
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Since admissible collections of antipodal Henson constraints consist of cliques together

with their antipodal variants, there is no loss of generality in requiring S to consist of a single

clique and its antipodal variants. But we do not impose this requirement here.

The first condition on S simplifies considerably in the antipodal context. If S is empty, then

K1 = 1 and hence K2 = δ − 1.

Fact 2.2.9. [Che11, Theorems 9 and 14] Let (δ,K1,K2,C,C′,S) be an admissible sequence

of parameters; in particular, S is a set of Henson constraints of the appropriate type. Then

Aδ
K1,K2,C,C′,S

is an amalgamation class, and thus one may speak of the associated metrically

homogeneous graph ΓδK1,K2,C,C′,S
.

This is given without proof in [Che11]. The proof is found in [Che17].

As we have noted, it is conjectured that the classification of metrically homogeneous graphs

is complete.

Conjecture 2.2.2. [Che17] Let Γ be a countable metrically homogeneous graph of generic

type. Then Γ is isomorphic to the Fraı̈ssé limit of an amalgamation class associated to an

admissible parameter sequence (δ,K1,K2,C,C′,S) where S is, in particular, a set of Henson

constraints of appropriate type—antipodal if C = 2δ + 1, and ordinary if C > 2δ + 1.

We focus in this thesis on the known metrically homogeneous graphs, but occasionally

make use of the classification theory to give results more generally in terms of the associated

numerical parameters (and Henson constraints, when relevant).

The classification is also complete in diameter 3.

Fact 2.2.10. [ACM16, Theorem 1] The metrically homogeneous graphs of diameter 3 are all of

known type, that is, either finite or of generic type, and in the latter case of the form ΓδK1,K2,C,C′,S

with admissible parameters.

Another reduction of interest, though not used in the present thesis, is the reduction of the

main conjecture in the case of infinite diameter to the case of finite diameter [Che17, Theorem

1.23].

Other results of a more technical nature which have been developed for the uses of the clas-

sification theory will be applied in Chapter 4 in the classification of the twisted isomorphisms
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and the associated metrically homogeneous graphs. These results will be presented below.

Another problem connected with the classification problem concerns the strong amalgama-

tion property. This property is particularly important for a number of reasons, notably because

it permits us to form generic linear orderings, which are useful in the context of Ramsey the-

ory, and in fact will be one of the key assumptions in the treatment of Ramsey theory given in

Section 2.5 below.

Observation 1. A known metrically homogeneous graph of generic type is the Fraı̈ssé limit of

a strong amalgamation class if and only if it is not antipodal.

Clearly an antipodal graph does not allow strong amalgamation of finite substructures. This

is the case whenever we have an imprimitive structure carrying an equivalence relation with

finite classes.

We have presented the known metrically homogeneous graphs above, and, in particular, the

detailed catalog of known metrically homogeneous graphs of generic type, as well as the known

results and conjectures regarding the classification problem. We now pass to the discussion

of some more technical points to be used mainly in Chapter 4 when dealing with metrically

homogeneous graphs which are not necessarily of known type. These results can all be verified

by inspection in the case of the known metrically homogeneous graphs but can also be proved

in general by direct, though sometimes lengthy, arguments.

The first result of this kind concerns the significance of the numerical parameter K1.

Fact 2.2.11. [Che17, Lemma 13.15] Let Γ be a metrically homogeneous graph which is not

bipartite. Let p be the least odd number which is the perimeter of some triangle in Γ. Then the

following conditions hold.

1. A p-cycle embeds isometrically in Γ.

2. p ≤ 2δ + 1.

3. p = 2K1 + 1.

This result has the following consequences concerning the interpretation of the parameter

K1.
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Corollary 2.2.2. Let Γ be a metrically homogeneous graph with K1 > 1. Then the following

hold.

1. Any triangle type of odd perimeter less than 2K1 is not realized in Γ.

2. Every triangle type of perimeter 2K1 + 1 is realized in Γ.

Local analysis

One of the main topics in the classification theory is some knowledge of the local structure of

a metrically homogeneous graph.

Definition 2.2.12. If Γ is a graph, u a vertex, and i ≥ 0, then Γi(u) denotes the set of vertices at

distance i from u with the induced metric structure, given by the path metric on Γ. In particular,

the graph structure induced on Γi by Γ is given by the relation d(x, y) = 1.

If Γ is vertex-transitive, then we may write Γi for Γi(u), and this is well-defined up to iso-

morphism.

We note that metrically homogeneous graphs are vertex-transitive.

In general, one hopes to derive information about Γ from information about its local struc-

ture, that is, the structure of the parts Γi, particularly when working in an inductive setting.

While Γi is homogeneous as a metric space with the induced structure, one difficulty is that it is

possible that this metric structure is not closely related to the graph structure induced on Γi. In

particular, Γi may be an independent set (for example, with i = 1 and K1 > 1). The following

shows that in all other cases the situation is satisfactory.

Fact 2.2.12. [Che17, Theorem 1.29] Let Γ be a metrically homogeneous graph of generic type.

Suppose i ≤ δ, and Γi is not an independent set. Then Γi is a metrically homogeneous graph.

Furthermore, Γi is primitive and of generic type except in the following two cases, in which

i = δ or i = δ/2.

1. If i = δ, K1 = 1, C0 = 2δ + 2, C1 = C0 + 1, then Γδ is an infinite complete graph.

2. If δ is even, i = δ/2, and Γ is antipodal, then Γi is also antipodal of diameter δ.
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Note that by definition, metrically homogeneous graphs are connected. In fact, the claim

that if Γi contains at least one edge then it is connected is one of the main points in the proof of

Fact 2.2.12.

Neither of the “exceptional” cases is particularly exceptional. If the graph Γδ is an infinite

complete graph, then it is primitive, and while not of generic type in the strict sense, it is the

generic metrically homogeneous graph of diameter 1. On the other hand, if δ is even and Γ is

antipodal, then Γδ/2 is again an antipodal graph of diameter δ. In fact, the conjecture in this

case would be that Γδ/2 is isomorphic to Γ.

This fact is very helpful whenever it applies, and conjecturally it should apply whenever

K1 ≤ i ≤ K2, but this point has not been proved. However the following special case is known.

Fact 2.2.13. [Che17, Proposition 1.30] Let Γ be a metrically homogeneous graph of generic

type and diameter δ with

K1 ≤ 2.

Then Γi contains an edge for K1 ≤ i ≤ δ − 1, except in the case in which Γ is antipodal and

K1 = 1 K2 = δ − 2 i = δ − 1

A technical variant of Fact 2.2.12 not only plays a major role in the proof of that fact, but is

occasionally useful in its own right.

Fact 2.2.14. [Che17, Lemma 15.4] Let Γ be a metrically homogeneous graph of generic type

and diameter δ. Suppose that i ≤ δ, and if i = δ, suppose also that K1 > 1.

Then the metric space Γi is connected with respect to the edge relation defined by

d(x, y) = 2.

The following is new.

Lemma 2.2.2. Let Γ be a metrically homogeneous graph of diameter δ and let δ′ be the diam-

eter of Γδ. Then for i ≤ (δ − δ′)/2, the diameter of Γδ−i is δ′ + 2i.

Proof. This is proved by induction on i, with the base case i = 0 holding by definition.

Suppose i > 0, δ′ + 2i ≤ δ, and Γδ− j has diameter δ′ + 2 j for j < i. We show first that the

diameter of Γδ−i is at least δ′ + 2i.
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Take u, v ∈ Γδ−(i−1) at distance δ′ + 2i − 2 and u′, v′ adjacent to u, v respectively at distance

d(u, v) + 2. It suffices to show that u′, v′ are both in Γδ−i to conclude. Note that

u′, v′ ∈ Γδ−(i−2),Γδ−(i−1), or Γδ−i.

Assume towards a contradiction that we do not have both u′, v′ in Γi−1. Our inductive diameter

bounds imply that we do not have u′, v′ ∈ Γδ−(i−1), nor do we have u′, v′ ∈ Γδ−(i−2).

Suppose next that u′ ∈ Γδ−(i−1), v′ ∈ Γδ−(i−2). In that case, we take v′′ ∈ Γδ−(i−1) adjacent

to v′ and then d(u′, v′′) violates the diameter bound of Γδ−(i−2). Thus we may assume that

u′ ∈ Γδ−i.

This leaves us with v′ ∈ Γδ− j with j = i − 1 or i − 2. We may take u′′ ∈ Γδ− j with

d(u′, u′′) = i − j, and find

d(u′′, v′) ≥ d(u′, v′) − d(u′, u′′) = d(u, v) + 2 − (i − j) = δ′ + i + j > δ′ + 2 j,

which is a violation of the diameter bound on Γδ− j. Thus we have a contradiction. Hence,

u′, v′ ∈ Γδ−i.

This shows that the diameter of Γδ−i is at least δ′ + 2i, and the reverse inequality follows

similarly: if u, v ∈ Γδ−i and u′, v′ are adjacent to u, v respectively and lie in Γδ−i+1, induction

and the triangle inequality give d(u, v) ≤ δ′ + 2i. �

Fact 2.2.15. [Che17, Lemma 15.6] Let Γ be a metrically homogeneous graph of generic type

and diameter δ which contains a triangle of perimeter 2δ + d. Then Γδ has diameter at least d.

In terms of triangle types, the conclusion is that Γ contains a triangle of type (δ, δ, d′) with

d′ ≥ d.

Fact 2.2.16. [Che17, Lemma 15.5] Let Γ be a metrically homogeneous graph of generic type

and diameter δ. Suppose 1 ≤ i ≤ δ. Then for u ∈ Γi±1, the set Γ1(u) ∩ Γi is infinite.

The next result shows that in many cases, the parameters C,C′ can be directly computed

from the diameter of Γδ.

Lemma 2.2.3. Let Γ be a metrically homogeneous graph of generic type and finite diameter δ

and let δ′ be the diameter of Γδ. Then

C′ = 2δ + δ′ + 2.
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Let Dδ denote the set of distances realized in Γδ by pairs of distinct points. Then one of the

following occurs.

1. C = 2δ + δ′ + 1.

2. C = C1 = 2δ + 1, δ′ is even, and Dδ consists of the even numbers in the interval [2, δ′].

3. C = C1 = 2δ + d with d odd and min Dδ = 2 < d < δ′.

In particular, Dδ is not an interval.

Proof. This follows fairly directly from Facts 2.2.12–2.2.15 and one further estimate: min Dδ ≤

2. So we begin with the last point.

Take w ∈ Γδ−1. By Fact 2.2.16, there are distinct neighbors u, v of w in Γδ. Thus

min Dδ ≤ d(u, v) ≤ 2.

By definition, there are triangles of perimeter Cε − 2, for ε = 0, 1. So by Fact 2.2.15 we have

the following:

Cε − 2 ≤ 2δ + δ′ (ε = 0, 1).

Thus

C ≤ 2δ + δ′ + 1 C′ ≤ 2δ + δ′ + 2.

Thus if C = 2δ + δ′ + 1, then C′ = 2δ + 2δ′ + 2 and the claim follows.

We may suppose then that C = 2δ + d for some d ≤ δ′. Now Γ contains triangles of type

(δ, δ, i) and thus of perimeter 2δ + i whenever i ∈ Dδ. So

d < Dδ.

If 1 ∈ Dδ then by Fact 2.2.12 we have Dδ = [1, δ′] and we have a contradiction. So

min Dδ = 2.

Case 1. d = 1.

Then C = C1 = 2δ + 1, and there are no triangles of larger odd perimeter, implying that

Dδ consists of even integers in the interval [2, δ′]. Thus we claim that all of these distances are
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realized in Γδ. If Γδ is connected with respect to the distance 2 relation, then this follows at

once. In particular, if K1 > 1 this holds by Fact 2.2.14.

Suppose on the contrary that Γδ has at least two connected components with respect to the

relation d(x, y) = 2, and in particular K1 = 1. Let v1, v2 ∈ Γδ lie in distinct components with

respect to the distance 2 relation, and take d1,2 = d(v1, v2) to be minimal. Then d1,2 > 2 and

d1,2 is even. Let v′1, v
′
2 be neighbors of v1, v2 with d(v′1, v

′
2) = d1,2 − 2. Then v′1, v

′
2 lie in Γδ−1.

By Fact 2.2.13, Γδ−1 contains an edge and by Fact 2.2.12, Γδ−1 is connected, with the

induced metric given by the path metric in Γδ−1. So there is a geodesic in Γδ−1 between v′1 and

v′2, and in particular there is a neighbor v′′1 of v′1 in Γδ−1 with

d(v1, v′′1 ) = 2 d(v2, v′′1 ) = d1,2 − 2.

Take a neighbor u of v′′1 in Γδ. By the triangle inequality,

d(v1, u) ≤ 3 d(v2, u) < d1,2.

It follows that d(v1, u), d(v2, u) < d1,2 and thus u lies in the same connected component with

respect to the distance 2 relation as both v1 and v2, which gives a contradiction.

Thus Γδ is connected with respect to the relation d(x, y) = 2 and the claims follow in this

case.

Case 2. d > 1.

Since d is not in Dδ, we have

min Dδ < d < δ′

and Dδ is not an interval. As d < δ′ and there are no triangles in Γ of perimeter 2δ + δ′,

it follows that C and δ′ have opposite parity. Thus C′ and δ′ have the same parity and in

particular C ≥ 2δ + 2δ′ + 2. Thus again C′ = 2δ + δ′ + 2 in this case.

This completes the proof in all cases. �

Our final goal is a new result on realizations of triangles, which will be use in Chapter 4. It

is conjectured that any triangle of even perimeter at most 2δ will be realized in any metrically

homogeneous graph of generic type. The following is a special case of this.
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Proposition 2.2.1. Let Γ be a metrically homogeneous graph of generic type and diameter δ.

Suppose that

k ≤ i i + k ≤ δ

Then Γ contains a triangle of type (i, i, 2k).

The bulk of the proof is contained in the following technical result.

Lemma 2.2.4. Let Γ be a metrically homogeneous graph of generic type and diameter δ. Sup-

pose

k ≤ δ/2.

Let u1, u2 be vertices at distance 2k in Γ. Then in Γk(u1) ∩ Γk(u2) there is a geodesic path

(v0, · · · , vk) with successive vertices vi, vi+1 at distance 2.

Proof. This is proved by induction on k, for 1 ≤ k ≤ δ/2. By metric homogeneity, if such

a path exists for a given pair of vertices at distance 2k, then the same applies to all pairs at

distance 2k.

For k = 1, the condition is a direct consequence of the definition of generic type.

Now suppose 2 ≤ k ≤ δ/2 and the result holds for j < k. Take an arbitrary basepoint v∗ in

Γ. Since Γ is connected, of diameter at least 2k, and metrically homogeneous, there are points

v0, vk in Γk which lie at distance 2k, with v∗ as the midpoint of a geodesic path between them.

Then there are points a, b ∈ Γk−1 adjacent to v0, vk respectively. By the triangle inequality,

this forces

d(a, b) = 2(k − 1).

By the induction hypothesis and homogeneity applied to the triple (v∗, a, b), there is a geodesic

path (a = w0,w1, · · · ,wk−1 = b) in Γk−1 with successive points wi,wi+1 at distance 2.

We claim that for 1 ≤ i ≤ k − 1, the vertices wi−1 and wi have a common neighbor vi in Γk.

By homogeneity, it suffices to find some vertex v ∈ Γk having two neighbors in Γk−1 at distance

2. For this, begin with v ∈ Γk and take v′ ∈ Γk−2 at distance 2 from v. Applying the hypothesis

of generic type to the pair v, v′, we find infinitely many common neighbors of v, v′ which are

pairwise at distance 2, and in particular we have two such.
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At this point, we have constructed a path Pk = (v0, v1, · · · , vk) in Γi such that each successive

pair vi, vi+1 has the common neighbor wi, and such that the distance d(v0, vk) is 2k. It follows

from the triangle inequality that this is a geodesic path. To complete our analysis, it remains to

find a vertex u ∈ Γ2k such that the path Pk lies in Γk(u).

The first part of the argument involved building up successively longer paths in Γ1, · · · ,Γk.

Now we will build successively longer paths Pk+` for 0 ≤ ` ≤ k with the following properties.

• Pk+` lies in Γk+`.

• Pk+` is a geodesic path on k + 1 − ` vertices with successive vertices at distance 2

The inductive construction of the paths Pk+` goes much as in the first part of the proof, using

the hypothesis that Γ is of generic type. Given Pk+`, we choose the vertices of Pk+`+1 to be

adjacent to successive pairs of vertices of Pk+`. If Pk+` is a geodesic path on k + 1 − ` vertices

of total length 2(k − `), then this construction produces a path Pk+`+1 on k − ` vertices whose

endpoints lie at distance at least 2(k − ` − 1) and with successive vertices at distance at most 2.

So again this must be a geodesic path and all conditions are fulfilled.

In particular, the path P2k consists of a single vertex u. As every vertex of one of the paths

Pk+` has neighbors in the next path Pk+`+1, the distance from any vertex of Pk to u is at most k.

On the other hand, Pk is contained in Γk and u is in Γ2k, so this distance is at least k. Therefore

Pk ⊆ Γk(u), as required. �

Proof of Proposition 2.2.1. We have k ≤ i, i + k ≤ δ. In particular Γi−k and Γi+k are both

non-empty.

As 2k ≤ i + k ≤ δ, there is a geodesic triangle of type (i − k, 2k, i + k) in Γ. Therefore we

may fix a ∈ Γi−k and b ∈ Γi+k with d(a, b) = 2k.

Applying the previous lemma with basepoint a and with b playing the role of u there, by

homogeneity we may find a geodesic path (v0, . . . , vk) in Γk(a) with

d(v`, v`+1) = 2 (` < k) and d(b, v`) = k (` ≤ k)

As d(a, v`) = d(b, v`) = k for ` ≤ k, and a ∈ Γi−k, b ∈ Γi+k, it follows that v` ∈ Γi. In

particular the vertices v0, vk and the basepoint of Γ form a triangle of type (i, i, 2k). �
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2.3 Topological Properties of Automorphism Groups

Chapter 3 of this thesis will deal with the properties of automorphism groups of metrically ho-

mogeneous structures viewed as topological groups. As we shall see below, the automorphism

group of any countable structure can be viewed in a natural way as a Polish group, that is, as a

separable topological group carrying a complete metric which is compatible with the topology.

There is an extensive theory relating properties of an amalgamation class of structures with the

properties of the automorphism group of its Fraı̈ssé limit, viewed as a topological group. In

fact, there are two such theories. The first of these, which centers on the notion of ample gener-

ics, will be discussed in this section, generally following the presentation of [Kec13]. When

applicable, this shows that in various senses, the algebraic structure of the group completely

determines the associated topology, and has other remarkable consequences for the interplay

of the algebra and topology. The second theory concerns more specifically the topological

dynamical properties of the automorphism group, and will be discussed in the next section.

Definition 2.3.1. Sym(N) is the full (infinitary) symmetric group on N, with the topology in-

herited from the product topology on NN. Two metrics compatible with this topology may be

defined as follows.

For g, h ∈ Sym(N), define |g| by

|g| :=


2−min(n : g(n),n) if g , 1

0 if g = 1

Note that |g| = |g−1| and |gh| ≤ max(|g|, |h|) for g ∈ Sym(N).

We define the metrics d0 and d by

d0(g, h) = |g−1h|

d(g, h) = min(d(g, h), d(g−1, h−1)).

Then both d0 and d define the topology on Sym(N).

Any d0-Cauchy sequence (gn) in Sym(N) has a limit g which defines an injective map from

N to N, and conversely any injective map is the limit of a sequence is Sym(N). Thus d0 is not

complete.
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If (gn) is a d-Cauchy sequence in Sym(N), then both (gn) and (g−1
n ) are d0-Cauchy, hence

there are limits g = lim gn and h = lim g−1
n which are injective maps, and furthermore h = g−1,

so g ∈ Sym(N). Thus Sym(N) is d-complete and is, in particular, a Polish group. Therefore any

closed subgroup of Sym(N) is a Polish group under the induced topology.

These definitions may be transferred to any countable set Ω, and to the group Sym(Ω), by

choosing an enumeration of Ω.

It turns out that the closed subgroups of Sym(Ω) are exactly the automorphism groups of

countable structures with domain Ω. We give this in detail, following [Kec13].

Fact 2.3.1. [Kec13, Theorems 1.1, 1.3]

1. If Γ is a countable structure, then Aut(Γ) is a closed subgroup of Sym(Γ), and in partic-

ular Aut(Γ) is a Polish group in the induced topology.

2. Conversely, let G be a closed subgroup of Sym(Ω) and let Γ be the canonical structure

on Ω associated to G, in which each G-orbit on Ωm is a distinguished relation, for all n

(cf. Definition 2.1.5). Then G = Aut(Γ).

A more abstract characterization of this class of groups is the following.

Definition 2.3.2. A Polish group is non-archimedean if it has a neighborhood basis at the

identity consisting of open subgroups.

Fact 2.3.2. [Kec13, Theorem 1.1] A Polish group is topologically isomorphic to a closed sub-

group of Sym(N) if and only if it is non-archimedean.

Thus one way to view our subject is that we study non-archimedean Polish groups by repre-

senting them as automorphism groups of countable structures, and then studying the underlying

structure. Accordingly, we may view these groups at three successively more concrete levels

of generality:

1. As abstract (discrete) groups;

2. As Polish groups;

3. As automorphism groups (closed permutation groups).
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It is very natural to consider the question as to when the structure at a more abstract level

determines the structure at a more concrete level. There is particular interest in the case in

which the abstract group structure determines the topology as a Polish group uniquely.

One way to express is via the notion of automatic continuity. There are several closely

relation notions going under this name in the literature. We take the following definition.

Definition 2.3.3. A Polish group G has the property of automatic continuity if every homomor-

phism of abstract groups from G into a Polish group G∗ is necessarily continuous.

This specializes to the following key property, taking G∗ = G and the homomorphism to be

the identity: G carries a unique topology for which G is a Polish group.

One way in which the latter property may arise is as follows.

Definition 2.3.4. A Polish group has the small index property (SIP) if and only if its open

subgroups are precisely those of index less than 2ℵ0 .

This implies the more natural condition that the open subgroups are precisely those of

countable index, but the methods used to prove this generally prove the stronger version as

well. Either of these conditions implies that the topology is determined by the abstract group

structure. As we will see in Theorem 1, Chapter 3, these two properties hold for a broad

class of metrically homogeneous graphs, and thus in these groups the abstract group structure

determines the topology.

The remaining points in Theorem 1 depend heavily on the topology of G but concern some

remarkable properties of G as an abstract group. These are the properties of uncountable cofi-

nality and the fixed point properties (FA) and (FH).

Definition 2.3.5. The group G has uncountable cofinality if it is not the union of a countable

chain of proper subgroups.

Equivalently: if a countable union of subsets of G generates G, then one of the subsets

generates G.

Definition 2.3.6. Let G be a group.

1. G has property (FA) if every action of G on a tree with no inversions of edges fixes a point

[Ser74, Ser77].
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2. G has property (FH) if every action of G by affine isometries on a Hilbert space fixes a

point.

Here the symbols A and H abbreviate the terms arbre (tree) and Hilbert.

One can also formulate a strong form of uncountable cofinality, due to Bergman, which

implies properties (FH) and (FA), and which can sometimes be proved by the same methods

used to prove uncountable cofinality.

Definition 2.3.7. The group G has the Bergman property if and only if for any countable se-

quence of sets Xn whose union generates G, there is an n and a k such that

Xk
n = G.

Equivalently, G has uncountable cofinality, and for any set X which generates G, there is some

k so that Xk = G (i.e. X boundedly generates G).

Fact 2.3.3. [KR07] The Bergman property implies the fixed point properties (FA) and (FH).

This is explained in [KR07, discussion of Theorem 1.8]. We summarize the key points;

full references are found in [KR07]. In the first place, it is known that the Bergman property

implies that any action of the group G by isometries on a metric space has bounded orbits. This

applies in particular to actions of G on trees, viewed as metric spaces, or on Hilbert space by

affine isometries. In the case of an action on a tree, it follows that the action fixes a vertex or an

edge, and in the case of an action on Hilbert space, it may be shown that a point is fixed.

Ample generics and their applications

The theory of generic sequences (“ample generics”) is a powerful tool for deriving topological

and algebraic properties of Polish groups. We will apply this theory to the Polish group Aut(Γ)

for Γ a suitable metrically homogeneous graph. Our presentation generally follows [KR07].

Definition 2.3.8. Let G be a Polish group.

A sequence (g1, · · · , gn) of elements of G is n-generic if its orbit under the action of G by

conjugation on the Cartesian power Gn is co-meager in Gn.

G has generic sequences if there are n-generic sequences of elements of G for all n.
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In the special case in which G = Aut(Γ) is the automorphism group of a countable structure

Γ, if the group Aut(Γ) has generic sequences of elements, we say that the structure Γ has generic

sequences of automorphisms or simply that it has ample generics.

We will first discuss some consequences of the existence of ample generics for the topolog-

ical and algebraic properties of certain classes of Polish groups, and then turn to the combina-

torial conditions used to prove the existence of ample generics in automorphism groups.

Theorem 2.3.1. [KR07, Theorems 1.6, 1.10] Suppose that G is a Polish group with generic

sequences of elements. Then the following hold.

• G has the small index property.

• G has automatic continuity.

Theorems 1.6 and 1.10 of [KR07] prove the small index property and a stronger form of

automatic continuity than the one we have given in Definition 2.3.3.

Theorem 2.3.2. [KR07, Theorem 1.7, Corollary 1.9] Suppose that G is an oligomorphic closed

subgroup of Sym(Ω), with Ω countable, and that G has generic sequences of elements. Then

the following hold.

• G has uncountable cofinality.

• G has the fixed point properties (FA) and (FH).

Uncountable cofinality in the case of oligomorphic groups is derived from the more general

Theorem 1.7 of [KR07] by a further application of a result of Peter Cameron, as explained in

[KR07]. The fixed point properties are derived from the Bergman property, proved in [KR07,

Theorem 1.8], by an application of Fact 2.3.3.

2.3.1 Establishing the existence of ample generics

Now we turn to the combinatorial side of the theory in the context of automorphism groups

of homogeneous structures. The goal here is to reduce the problem of constructing generic

sequences of automorphisms for a homogeneous structure Γ to combinatorial issues involving

the age of Γ.
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The usual approach to this is via the so-called extension property for partial automorphisms

(EPPA), defined below. Kechris and Rosendal have given an exact reduction of the topological

problem of existence of ample generics to combinatorial properties of the corresponding class

of finite structures [KR07]. We will make use of the simpler, though less general, criterion of

[Sin17], in which the property EPPA plays a central role.

Following [Sin17] (and, ultimately, [HL99]), we introduce the extension property for partial

automorphisms (EPPA) and the amalgamation property with automorphisms (APA).

Definition 2.3.9. [Sin17, Definition 1.5.1] Let A be a class of finite structures in a relational

language. ThenA has the extension property for partial automorphisms (EPPA) if for all A inA

there is a structure Â ∈ A so that every partial automorphism of A extends to an automorphism

of Â.

Definition 2.3.10. [Sin17, Def. 2.1.1]Let A be a class of finite structures in a relational lan-

guage. Then A has the amalgamation property with automorphisms (APA) if for every em-

bedding A0 → A1, A2 in A, there is an amalgam A in A with the following property: for any

automorphisms h1, h2 of A1, A2 respectively which leave the image of A0 invariant and induce

the same automorphism on A0, there is an automorphism h of A inducing h1, h2 on A1, A2

respectively.

Theorem 2.3.3. [Sin17, Theorem 2.1.5] Suppose that Γ is a homogeneous structure such that

Age(Γ) has both the EPPA and the APA. Then Γ has ample generics.

In view of Theorem 2.3.3, Theorem 1 will follow once we establish the properties APA and

EPPA of the relevant amalgamation classes, after which one deduces the existence of ample

generics and one may then apply the general theory reviewed above.

Proving the APA and the EPPA

Now we arrive at the combinatorial problem of establishing the two properties APA and EPPA

in the cases of interest to us. We will make some further reductions of the problem of a general

character in Section 2.6, which involve a close study of the partial substructures associated with

an amalgamation class.
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The treatment of the APA and the EPPA are based on the notion of a canonical completion

process (Section 2.6, Definition 2.6.4). In Section 2.6, Lemma 2.6.4 it will be shown how to

derive the APA from a suitable canonical completion process for partial structures. In addition,

in Lemma 2.6.5 it will be shown that the EPPA can also be derived from a suitable canonical

completion process if the EPPA is known to hold in a slightly weaker sense at the level of partial

substructures. The rest of this section is devoted to a purely combinatorial result of Herwig and

Lascar [HL99, Theorem 3.2] which gives criteria for the required weak form of the EPPA to

hold.

This will require some additional terminology. Since the terminology in this subject is

extremely variable at this point, we first settle the purely terminological issues. The most

important of these issues is that the term “EPPA” in [HL99] has a different meaning from that

used in [Sin17] and elsewhere. We will largely follow Siniora’s terminology but indicate the

variations in terminology found in the literature.

We will use the following terminology in the present thesis.

Definition 2.3.9(cf. Definition 2.3.9). LetL be a relational language. A class C ofL-structures

has the weak EPPA if for all finite A ∈ C, and any sequence of partial automorphisms of A,

whenever there is an extension C of A in C for which the given sequence of partial automor-

phisms extends to an automorphism of C, then there is also a finite extension Ã of A in C for

which the same sequence of partial automorphisms extends.

In one crucial case, the weak EPPA implies the full EPPA.

Example 2.3.1. Let A be an amalgamation class, Γ its Fraı̈ssé limit, and C = A ∪ {Γ}. Then

the following are equivalent.

• The EPPA forA.

• The weak EPPA for C.

Indeed, applying the weak EPPA to the sequence of all partial automorphisms of A, and taking

C to be Γ in the definition of the weak EPPA, the full EPPA follows.

As mentioned above, terminology in this area is remarkably variable. Since we are inter-

ested in quoting from [HL99], [KR07], and [Sin17], and since [Her98] is an important precursor
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of [HL99], we take a moment to pin down the variations in terminology. We present the main

points in a table showing our terminology in parallel with terminology used elsewhere.

Thesis [Her98] [HL99] [Sin17] [KR07]

EPPA EP EP EPPA HP

weak EPPA WEP EPPA (see below) —

Here HP abbreviates “Hrushovski property.”

Our terminology follows [Sin17] fairly closely, but he uses the term “weak EPPA” for

another condition slightly weaker than the one given in [HL99].

There are also some variations in related terminology which we will come to shortly: there

are three notions of forbidden structure in common use, all of which are used at one point or

another in this thesis. But we will return to this point below.

The only serious issue posed by all of these variations is that the term EPPA is used on

different occasions for the weak or strong form of the condition. In working with amalgamation

classes, the difference is negligible: Example 2.3.1 above shows that modulo a slight shift in

notation, they are essentially equivalent in that context.

However, we will not always be working with amalgamation classes. We rely on the fol-

lowing combinatorial result of [HL99], which is not limited to amalgamation classes.

Theorem 2.3.4. [HL99, Theorem 3.2] Let L be a finite relational language and T a finite set

of L-structures. Then the class of homomorphically T -free L-structures has the weak EPPA.

Here of course Herwig and Lascar write “EPPA” rather than “weak EPPA.” Furthermore,

they use the term “T -free” where we write “homomorphically T -free.” This is defined as fol-

lows.

Definition 2.3.11. Let L be a relational language, and let T and A be L-structures.

Then L is homomorphically T -free if there is no homomorphism from T into A. In other

words, there is no quotient of T which is isomorphic to a partial substructure of A.

For T a class of L-structures, A is said to be homomorphically T -free if it is T -free for

each T in T .
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Siniora, who also uses all three commonly considered notions of T -freeness, refers to this

one as free with respect to homomorphisms [Sin17, Section 1.5]. The other two notions of

freeness commonly encountered refer to forbidden induced substructures (in the context of

Fraı̈ssé theory) and to forbidden partial substructures, a topic we take up in Section 2.6.

2.4 Dynamical Properties of Automorphism Groups

Definition 2.4.1. Let G be a topological group.

1. A G-flow is a continuous action of G on a compact space X.

2. A subflow of X is a compact invariant subset with the restriction of the action.

3. A flow is minimal if it has no proper subflows or equivalently every orbit is dense.

4. A homomorphism between two G-flows X,Y is a continuous G-map π : X → Y, that is,

π(g · x) = g · π(x),∀g ∈ G, x ∈ X. An isomorphism is a bijective homomorphism.

The existence of minimal subflows follows from Zorn’s lemma. It is also true that there is

a unique (up to isomorphism) universal minimal flow:

Theorem 2.4.1. [Ell60, Theorem 2] For any topological group G, there is a minimal G-flow,
M(G), with the following property.

For any minimal G-flow X, there is a homomorphism π : M(G) → X. Moreover,
M(G) is the unique (up to isomorphism) minimal G-flow with this property.

We define M(G) to be the universal minimal flow of G.

Definition 2.4.2. A topological group G is extremely amenable if its universal minimal flow

M(G) is trivial. In other words, every G-flow has a fixed point.

Extreme amenability strengthens the older notion of amenability, which requires that every

G-flow admits an invariant Borel probability measure. Extreme amenability was viewed ini-

tially as a pathological condition. In the classical setting of locally compact groups, if G is non-

trivial, then M(G) is non-trivial [Vee77], and apart from the compact case, where M(G) = G,

the universal minimal flow is not even metrizable [KPT05, Theorem A2.2]. But it turns out

that many automorphism groups of homogeneous structures have metrizable universal flows,
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and that extreme amenability is closely connected with the subject of structural Ramsey theory.

This is the subject of [KPT05], and the issue has been explored systematically by Ben Yaakov,

Melleray, Tsankov, and Van Thé [MTT16, YMT17]; see the review by Lupini [Lup17].

We will show in Section 3.1.3 that for many metrically homogeneous graphs Γ, the au-

tomorphism group of the generic expansion of Γ by a linear order (Section 2.1) is extremely

amenable (Proposition 1). We will show that the universal minimal flow of the automorphism

group of Γ is metrizable, and even identify it explicitly (Theorem 2).

Connections of the universal minimal flow to Ramsey theory

Definition 2.4.3. LetA be a class of finite structures in a relational language L. For A ≤ B in

A let

(
B
A

)
= {A′ ⊆ B : A′ � A}

be the set of isomorphic copies of A contained in B. For A ≤ B ≤ C inA and r ≥ 1, let

C→
(
B
)A
r

mean that for any coloring c :
(
C
A

)
→ {1, ..., r}, there is B′ ∈

(
C
B

)
such that c is constant on(

B′
A

)
. We say that A has the Ramsey Property (RP) if for any A ≤ B in A and r ≥ 1, there is

C ≥ B inA with C→ (B)A
r .

We get the following significant result from [KPT05], which is stated there in terms of a

larger class of languages.

Theorem 2.4.2. LetA′ be an amalgamation class of finite structures in the language L ∪ {<},

where L is a finite relational language, and {<} denotes a linear order. Let Γ′ be the Fraı̈ssé

limit ofA′. Then the following are equivalent:

(i) Aut(Γ′) is extremely amenable.

(ii)A′ has the Ramsey Property.

Theorem 2.4.2 will be applied to the study of the automorphism group of the generic ex-

pansion of a metrically homogeneous graph of finite diameter by a linear order. Our main focus
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is the automorphism group of Γ. A variant of Theorem 2.4.2 included in Theorem 2.4.3 below

will give us the metrizability of the universal minimal flow for Aut(Γ). More precise results

require a further notion, the ordering property.

Definition 2.4.4. Let L be a relational language, A a class of finite L-structures, and A′ a

class of ordered L-structures, that is, structures for the language L′ = L ∪ {<}, in which the

symbol < is interpreted by a linear order. Suppose thatA is the class of all reducts of structures

inA′ to the language L.

The class A′ has the ordering property if for every L-structure A ∈ A there is a structure

B ∈ A such that for any two ordered expansions A′ of A and B′ of B, both lying inA′, there is

an embedding of A′ into B′.

Now we may state the result which connects the topological dynamical properties of the

automorphism group of a given structure with the topological dynamical properties of an ap-

propriate expansion. The following result is a special case of [KPT05, Theorem 7.5].

Theorem 2.4.3. [KPT05, Theorem 7.5] Let L be a finite relational language, and let L′ =

L∪ {<} be its expansion by a symbol for a linear order. LetA be a strong amalgamation class

of L-structures andA′ the class of all expansions of structures inA to ordered L-structures in

the language L′. Let Γ be the Fraı̈ssé limit of the classA. Then the following hold.

• If the class A′ has the Ramsey property, then the universal minimal flow of Aut(Γ) is

metrizable.

• If the classA′ has both the Ramsey property and the ordering property, then the universal

minimal flow of Aut(Γ) may be identified with the compact topological space L(Γ) of all

linear orders of Γ, under the natural action of Aut(Γ).

Theorem 7.5 of [KPT05] gives somewhat more detail, which we can neglect here, but also

works at a substantially greater level of generality, so we take a moment to explain the setting

of [KPT05] and to verify that our special case actually falls under the form of the theorem

originally given.

The key difference in the two formulations is found in the notion of reasonable Fraı̈ssé

order class used in [KPT05]. In addition to generic expansions by linear orders, this covers
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such cases as expansions of partial orders by linear orders which are required to extend the

given partial order. The requirement is simply that for every embedding A → B between

structures in A, every expansion of A which is in A′ embeds (via the same map) into some

expansion of B which is in A′. This certainly applies in the context of generic expansions by

linear orders. We have also simplified matters by taking L(Γ) to consist of all possible linear

orders; this again is the special case corresponding to expansions by generic linear orders.

Even more general variants have been considered (and applied) allowing expansions not

necessarily given by linear orderings. But this will suffice for our purposes.

We will use the following result by Bodirsky to establish the ordering property. We special-

ize to the setting of finite relational languages.

Theorem 2.4.4. [Adapted from [Bod15, Theorem 6.4]] Let L be a finite relational language,

Γ a homogeneous L-structure, and Γ′ a homogeneous ordered L-structure, that is, a homoge-

neous L′-structure in the language L ∪ {<} for which < denotes a linear order. Suppose that

the age of Γ′ is a Ramsey class, and every acyclic 2-type of Γ does not split in Γ′.

Then the age of Γ′ has the ordering property.

There is some terminology to be explained here. A 2-type of Γ is an orbit of Aut(Γ) on

ordered pairs from Γ. In particular, it is a binary relation on Γ which is definable without

parameters. A 2-type of Γ is acyclic if it defines a directed graph on Γ with no oriented cycles.

A 2-type of Γ splits in Γ′ if it has more than one expansion to a 2-type in L′ which is realized

in Γ′.

In the context of metrically homogeneous graphs, all 2-types are symmetric, and hence

none are acyclic (there are cycles of length 2). Accordingly, the meaning of Theorem 2.4.4 in

this context is that the Ramsey property implies the ordering property.

2.5 Structural Ramsey Theory

As we have seen in the previous section, the key to understanding the dynamical properties of

automorphism groups of countable structures lies in structural Ramsey theory. One powerful

method for proving Ramsey theoretic results is the so-called partite method.
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The following is an early and quite general result obtained by this method, which will serve

also as a point of departure for our applications. This result comes from [NR77], but we give

a formulation found in [HN16], which is more convenient from the point of view of model

theory.

Theorem 2.5.1. [HN16, Theorem 3.6] LetL be a relational language and F a possibly infinite

family of ordered irreducible L-structures. Then the class of all finite ordered L-structures

containing no induced substructure isomorphic to a structure in F has the Ramsey Property.

The terminology requires some detailed explanation here. In the first place, as in the pre-

vious section, we are considering the language L′ = L ∪ {<}, and an ordered L-structure is

actually an L′-structure in which the symbol < denotes an ordering.

However, the notions of irreducible L-structure and ordered irreducible L-structure are

more subtle (and the latter does not mean irreducible ordered L-structure, as we shall see).

Definition 2.5.1. [HN16, Definition 2.1 and pg. 25] Let L be a relational language and L′ =

L ∪ {<}.

An L-structure is said to be irreducible if every pair of elements occurs within some n-tuple

belonging to one of theL-relations. In model theory, this is often called Gaifman completeness,

i.e. the associated “Gaifman graph” is complete.

An L′-structure is said to be an ordered irreducible L-structure if on the one hand it is an

ordered L-structure, and on the other hand the reduct to L is irreducible.

The statement of Theorem 2.5.1 is non-trivial even when the set of forbidden structures F

is empty. One may use the class F to impose conditions like irreflexivity and symmetry on the

class of structures under consideration. In a model theoretic context, if one wishes to consider

the class of finite ordered graphs, then the language L will consist of a binary relation, and

the class of L-structures is quite broad; thus one needs the restrictions in F to impose even

rudimentary conditions on the structures. One can also do something more substantial: forbid

n-cliques for some n. In this way, one picks up a much more delicate Ramsey theoretic result.

The proof of Theorem 2.5.1 involves a double application of the partite method alluded to

above: a first step gives the result when F is empty, and a second step reduces the general case
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to this case. This reduction process is considerably generalized by the main result of [HN16],

which gives a more flexible approach to the derivation of new Ramsey theoretic results from

old ones. This result is very well-suited to a model theoretic setting, and will easily cover the

cases of interest to us.

This result involves a very flexible notion of local finiteness which we will explain following

the statement. In the next section, we will consider a more straightforward notion of finite

constraint (Definition 2.6.2), which will suffice for our applications.

Theorem 2.5.2. [HN16, Theorem 2.1] Let L be a relational language, and letA be a class of

finite irreducible L-structures, and let A∗ be a hereditary class contained in A. Suppose the

following hold.

• The classA has the Ramsey property.

• The classA∗ is a strong amalgamation class.

• The classA∗ is locally finite relative toA.

Then the classA∗ has the Ramsey property.

Here it would perhaps be more natural to use the term “locally finitely constrained” in place

of “locally finite,” in view of the terminology introduced in the next section, but we follow

[HN16] on this point. The main technical definitions run as follows.

Definition 2.5.2. [HN16, Definitions 2.2–2.4] Let L be a relational language, A a class of

finite L-structures, andA∗ a subclass ofA.

1. Let A0 be a finite L-structure and A a structure inA containing A0 as a partial substruc-

ture (that is, the relations on A0 are contained in the relations on A). Then A is a strong

A-completion of A0 if every irreducible substructure of A0 is an induced substructure of

A.

2. The class A∗ is locally finite relative to A if for every structure X in A, there is a finite

number n such that any structure A in A which satisfies the following conditions has a

strongA-completion.

• (Local embedding condition) Every substructure of A on n vertices has a strong A-

completion.
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• (Global X-homomorphism condition) There is a homomorphism from A to X which

is injective on every irreducible substructure of A.

We have rephrased and condensed the definitions from [HN16], concentrating on the points

required for our applications later. We will apply this in the context of a metrically homoge-

neous graph Γ of finite diameter [δ] expanded by a generic linear ordering, viewing the age of Γ

as a subclass of the class of all edge-labeled graphs with labels in [δ]. After due attention to the

interpretation of the formalism of [HN16] in this context, our focus will be on the verification

of the local finiteness condition of Theorem 2.5.2.

We will use this to conclude that Aδ
K1,K2,C,C′,S

, when augmented with a linear order, is

Ramsey. Explicitly, the augmented class will be the following.

Definition 2.5.3. We define the augmented class Aδ,<
K1,K2,C,C′,S

to consist of the finite metric

spaces of Aδ
K1,K2,C,C′,S

, each of which now are augmented with a linear order <. We define

(Γ, <) to be the corresponding Fraı̈ssé limit.

This is an example of a expansion via a generic linear order.

Definition 2.5.4. LetA be a strong amalgamation class. Then its ordered expansionA≤ is an

amalgamation class as well. We say that ≤ is a generic linear order of the Fraı̈ssé limit Γ ofA

if it is a linear order on Γ so that the expansion (Γ,≤) is isomorphic to the Fraı̈ssé limit ofA≤.

2.6 Partial Structures and Finite Constraint

When dealing with amalgamation classes via the Fraı̈ssé theory, we will first pass to a larger

class of partial substructures of the Fraı̈ssé limit and analyze this class combinatorially. The

present section establishes a formalism for passing back and forth between the point of view of

Fraı̈ssé theory and this more combinatorial setting.

In order to obtain our finiteness results, we require the following terminology.

Definition 2.6.1. Let L be a fixed relational language. All structures considered here are L-

structures.

1. Let A, B be relational structures with A ⊆ B as sets. Then A is a partial substructure of B

if every relation holding in A holds also in B (i.e., the identity map is a homomorphism).
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2. Let A be a class of structures. Then Ã denotes the class of structures which are isomor-

phic to partial substructures of structures inA.

3. Ãc denotes the complement of Ã in the class of all L-structures. Structures in Ãc will be

called the forbidden partial structures associated with the classA (e.g., in the context of

graph theory, one would speak of forbidden subgraphs).

Definition 2.6.2. Let L be a relational language and letA be a class of finite L-structures.

We say that A is finitely constrained if there exists some finite set F of finite “forbidden”

L-structures such that the structures in Ã are precisely the finite L-structures not containing

any structure in F as a partial substructure.

It might seem more natural to call the class Ã finitely constrained in this context, but as the

property will be applied to give information about the original classA, we have chosen this less

natural terminology. It should be noted that the classesA of interest are generally “finitely con-

strained” in a very different sense: namely, they are defined by finitely many forbidden induced

substructures. It turns out that the notion of finite constraint introduced in Definition 2.6.2 is

a non-trivial and powerful condition on the class A. We illustrate with a pair of examples (cf.

Sections 3.1.1, 3.1.2).

Example 2.6.1. Let Aδ be the class of all finite [δ]-valued metric spaces, and let Uδ be the

class of all finite [δ]-valued ultrametric spaces.

ThenAδ is finitely constrained andUδ is not finitely constrained.

In this example, both classes Aδ and Uδ are determined by finitely many forbidden sub-

structures, specifically the triangles violating the triangle inequality or the ultrametric inequal-

ity, respectively. But the class of [δ]-metric spaces is also finitely constrained in our stronger

sense: it suffices to avoid violations of the triangle inequality along cycles of length at most

δ (Definition 3.1.5), whereas in the case of Uδ there are arbitrarily long cycles violating the

ultrametric inequality as soon as δ ≥ 2.

We need to develop systematic methods for relating properties of amalgamation classes A

with properties of the associated class Ã. The first essential point is to see how freeness with

respect to homomorphisms arises if one begins with a suitable amalgamation class of structures

(Lemma 2.6.1 below). This relies on the following notions.
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Definition 2.6.3. Let A be a class of finite structures. A structure A ∈ A is relationally max-

imal in A if it is an induced structure of any structure B ∈ A which contains it as a partial

substructure. The classA is relationally complete if all of its elements are relationally maximal

inA.

A relation in n variables is irreflexive if it contains no n-tuple with at least two equal entries.

A relational L-structure will be called irreflexive if all of the relations in the language L other

than equality are irreflexive.

Example 2.6.2. The class of graphs in the usual language of graph theory is not relationally

complete. The class of tournaments is relationally complete in its natural language.

The class of [δ]-metric spaces is relationally complete when construed in the usual way as

the class of edge-labeled graphs with labels from [δ].

Lemma 2.6.1. LetA be a relationally complete amalgamation class of finite irreflexive struc-

tures in a relational language L. Then the following are equivalent.

1. A is a strong amalgamation class.

2. Ac is closed under homomorphism.

Proof. We will use irreflexivity in the forward direction and relational completeness in the

reverse direction.

(1⇒ 2)

Let A ∈ Ãc be a forbidden partial structure and h : A → A′ a homomorphism. We claim

that A′ is forbidden as well.

Any homomorphism can be obtained by composing injective homomorphisms with canon-

ical homomorphisms that identify exactly two vertices a, b of A and take only the induced

relations, so we may suppose that h is either injective or canonical in this sense.

If h is injective, the claim is clear. We may suppose therefore that h identifies the points a, b

of A to a single point c, and let A′ be the resulting homomorphic image of A.

Now suppose toward a contradiction that A′ is not forbidden, and thus extends to a structure

B in A. Let A0 be the structure induced by A on A \ {a, b}. Take two copies B1, B2 of B with

intersection A and consider the amalgamation diagram A0 → B1, B2. By strong amalgamation
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and closure under isomorphism, we may take a structure C ∈ A containing B1∪B2 (the structure

formed by taking the union of the sets and the union of the relations).

We claim that C is an extension of the image of A under the map sending a, b to the images

of c in B1, B2 respectively.

For any relation not involving both a and b this holds since A′ ⊆ B ' B1, B2. On the other

hand, there can be no relation on A holding between a and b, since the equation a = b does not

hold and any other relation would give rise to a violation of irreflexivity in A′. Thus C extends

the image of A, and as A is not in Ã, we have arrived at a contradiction.

(2⇒ 1)

Consider an amalgamation problem

A0 → A1, A2.

Let A be the free join of A1, A2 over A0, formed by taking copies of A1, A2 disjoint over A and

forming the union of the underlying sets and the union of the corresponding relations. As A

is an amalgamation class, there is some amalgam B of A1, A2 over A0, and by construction the

natural map from A to B will then be a homomorphism.

Since B ∈ A, it follows from our hypothesis that A ∈ Ã and thus A extends to some

C ∈ A. In particular, B1, B2 are partial structures in C and by relational completeness are

induced substructures of C. Thus C is a strong amalgam of A1, A2 over A. �

We extend the previous lemma to take into account the finiteness conditions on the associ-

ated constraints.

Lemma 2.6.2. LetA be a relationally complete strong amalgamation class of finite irreflexive

structures in a relational language L. Then the following are equivalent.

• The classA is finitely constrained.

• The associated class Ã of partial structures is the class of finite homomorphically T -free

structures for some finite set T of finite L-structures.

Proof. (1⇒ 2)
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By assumption, there is a finite set T ⊆ Ac of finite L-structures such that any structure

not in Ã contains some structure in T as a partial substructure. By Lemma 2.6.1, any L-

structure containing a homomorphic image of a structure in T is in Ãc. Thus Ã is the class of

homomorphically T -free structures.

(2⇒ 1)

Conversely, if T is a finite set of L-structures and Ã is the class of homomorphically T -

free structures, then let F be the closure of T under homomorphic image. Then F is again

finite, and provides a finite set of constraints for partialA-structures, in the sense of Definition

2.6.2. Then the structures in Ã are precisely the finiteL-structures not containing any structure

in F as partial substructure, soA is finitely constrained. �

Lemma 2.6.2 allows for the direct application of the results of [HL99].

Lemma 2.6.3. LetA be a finitely constrained relationally complete strong amalgamation class

of finite irreflexive structures in a relational languageL. Let C be the class of structures C such

that every finite partial substructure of C lies in Ã.

Then C has the weak EPPA.

Proof. By Lemma 2.6.2, there is a finite set T of finite L-structures such that Ã is the class of

finite homomorphically T -free structures.

Then the class C is the set of homomorphically T -free structures. By Theorem 2.3.3, the

class C has the weak EPPA. �

In order to transfer information about the APA or the EPPA between a class of partial

substructures and a class of induced substructures, we will need to have a canonical completion

process in the following sense.

Definition 2.6.4. Let L be a fixed language and suppose that ζ is a function (or algorithm)

which takes L-structures to L-structures.

1. We say that ζ is a completion process if and only if the following hold, with A the range

of ζ.

• For A in the domain of ζ, A is a partial substructure of ζ(A).
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• The domain of ζ contains Ã.

• OnA, ζ is the identity.

2. A completion process ζ is called canonical if its domain is closed under isomorphism, and

for any isomorphism

α : A→ B

between structures in the domain of ζ, the map α is also an isomorphism between ζ(A)

and ζ(B).

A canonical completion process provides a stationary independence relation in the sense

of Tent and Ziegler [TZ12]. This amounts to a canonical completion process for amalgamation

diagrams, and amalgamation diagrams are a particular instance of partial structures.

A canonical completion process gives us the APA, in the following sense.

Lemma 2.6.4. LetA be a strong amalgamation class of structures, and suppose that there is a

canonical completion process for partialA-structures. ThenA has the amalgamation property

for automorphisms (APA).

Proof. We take an amalgamation diagram A0 → A1, A2 in A, where A0 may be empty. We

may suppose that the embeddings from A0 to A1 and A2 are inclusions and that A1 ∩ A2 = A0.

AsA is a strong amalgamation class, the union A1∪A2 is a partialA-structure. Therefore it

has a canonical completion B inA. We will check that B serves to amalgamate automorphisms,

in the sense of Definition 2.3.10.

Fix automorphisms α1, α2 of A1, A2 respectively which leave A0 invariant and agree on A0.

The union α = α1 ∪ α2 is then an automorphism of the partial structure A1 ∪ A2. By canonicity

(invariance under isomorphisms), it is also an automorphism of the canonical completion of B.

The lemma follows. �

A canonical completion process also allows transfer of information about EPPA between

classes of partial substructures and classes of induced substructures.

Lemma 2.6.5. Let A be an amalgamation class of finite structures, and suppose that there is

a canonical completion process for finite partial A-structures. Let C be the class of structures
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C such that every finite partial substructure of C belongs to Ã. If C has the weak EPPA, then

A has the EPPA.

Proof. Let A be a structure in A, and let (α1, · · · , αn) be a list of all partial automorphisms of

A.

The Fraı̈ssé limit Γ of A belongs to the class C, so application of the weak EPPA in C,

taking C = Γ in the definition, gives a structure B in Ã containing A, such that all partial

automorphisms of A extend to automorphisms of B. Now let C be the canonical completion of

B in A. Then any automorphism of B acts on C as an automorphism as well. Thus all partial

automorphisms of A extend to C and the EPPA holds inA. �

We may now prove a useful general criterion for the EPPA.

Proposition 2.6.1. LetA be a finitely constrained relationally complete strong amalgamation

class of finite irreflexive structures in a relational languageL. Suppose that there is a canonical

completion process for finite partialA-structures.

ThenA has the EPPA.

Proof. Let C be the class of structures C such that every finite partial substructure of C lies in

Ã. By Lemma 2.6.3, the class C has the weak EPPA. By Lemma 2.6.5, the class A has the

EPPA. �

At one point in our finiteness argument, the following will be useful.

Lemma 2.6.6. The set of finite sequences over a finite alphabet is well-quasi-ordered by the

subsequence relation.

2.7 Twisted Isomorphisms

In Chapter 4, we will study the twisted isomorphisms between metrically homogeneous graphs

and, in particular, the twisted automorphism group.

Definition 2.7.1. Let L be a relational language. A twisted isomorphism between two L-

structures is an isomorphism up to a permutation of the language.
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The following more explicit definition has some practical utility.

Definition 2.7.2. Let L be a relational language, and let σ be a permutation of the relational

symbols of L which respects the number of variables in the relations.

1. If Γ is an L-structure, then Γσ denotes the structure with the same universe, and the same

set of relations, but with

(Rσ)Γσ = RΓ (R ∈ L).

In other words, in Γσ the symbol Rσ stands for the relation denoted by R in Γ.

2. A σ-isomorphism between two L-structures Γ1 and Γ2 is an isomorphism of Γ1 with Γσ2 .

3. A twisted isomorphism between two L-structures is a σ-isomorphism for some permuta-

tion σ of the language, as above.

The permutation σ is called the associated twist.

A twisted automorphism of a structure Γ is a twisted isomorphism of Γ with itself.

Observe that as Γ and Γσ carry the same set of relations, they have the same automorphism

groups. Thus twisted isomorphisms preserve substantial amounts of information; in fact, all

information not tied to the choice of language.

We mention some typical and familiar examples.

Example 2.7.1.

1. Let F be a field and consider F-vector spaces V1,V2 viewed in the functional language

with the binary operation + and the unary multiplication operators (µa : a ∈ F), or in the

equivalent relational language, where the definitions above may be applied directly.

A twisted isomorphism between V1,V2 will be a isomorphism of vector spaces up to an

isomorphism of the base field (unless V1,V2 are trivial, in which case any permutation

of F is allowed). This holds since Vσ
2 must satisfy the vector space axioms for the corre-

sponding operations, namely: µσab = µσa µ
σ
b and µσ(a+b) = µσa + µσb , and if V2 is non-trivial,

the operations determine the corresponding field elements.

2. Let Γ1 be a graph and Γ2 its graph complement. If we work in a language with sym-

bols E+ and E− for the edge and non-edge relations, then the identity map is a twisted

isomorphism of Γ1 with Γ2, where the associated twist σ swaps the two symbols.
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3. Similarly, we may consider twisted automorphisms of a graph Γ, which include isomor-

phisms with the graph complement.

As the last example indicates, the notion of twisted isomorphism is excessively dependent

on the choice of language, and in the interesting case one chooses the language to allow the

largest possible group of twisted isomorphisms. it may not be immediately clear that there is

such a largest choice, but as we will see, the canonical language in the sense of Section 2.1 is

appropriate here.

For our present purposes, there is no loss of generality in considering structures with the

same underlying set, since any twisted isomorphism is the composition of an ordinary isomor-

phism with a twisted isomorphism which does not change the underlying set.

Lemma 2.7.1. Let L be a relational language, and let Γ1,Γ2 be L-structures with the same

underlying set Ω.

1. If f ∈ Sym(Ω) is a twisted isomorphism of Γ1 with Γ2, then f conjugates Aut(Γ1) to

Aut(Γ2). In particular, twisted automorphisms of Γ1 normalize Aut(Γ1).

2. Conversely, if L is interpreted as the canonical language for Γ1 and for Γ2, then a permu-

tation f ∈ Sym(Ω) which conjugates Aut(Γ1) to Aut(Γ2) is a twisted isomorphism.

Proof.

1. Let h ∈ Aut(Γ1), let R be a relation symbol of L. Let R1 be the relation on Γ1 and R2 be

the relation on Γ2. We claim that f h f −1, acting on the left, preserves R2.

Let σ be the twist associated with f . Then Rσ denotes the relation R2 in Γσ2 . So by as-

sumption, R1 = f −1[R2] is the relation denoted by R on Γ1. Hence h f −1[Rσ] = R1 as well, and

f h f −1[R2] is again R2.

2. Now suppose that the symbols of L denote the orbits of Aut(Γi) on Γi. If f conjugates

Aut(Γ1) to Aut(Γ2) then f takes the orbits of Aut(Γ1) to the orbits of Aut(Γ2) and hence induces

a permutation σ of the language L, and a σ-isomorphism of Γ1 with Γ2. �

Now we examine the case of twisted automorphisms.

Lemma 2.7.2. Let L be a relational language and Γ an L-structure with underlying set Ω.
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Then the twisted automorphisms of Γ form a subgroup of Aut∗(Γ) of Sym(Ω) is contained

in the normalizer

NSym(Ω)(Aut(Γ)).

Moreover, the permutations of L associated with the twisted automorphisms of Γ form a sub-

group Out(Γ) of Sym(L).

If distinct relation symbols in L represent distinct relations on Γ, then there is a canonical

surjective homomorphism

Aut∗(Γ)→ Out(Γ)

with kernel Aut(Γ).

If L is the canonical language for Γ, then

Aut∗(Γ) = NSym(Ω)(Aut(Γ))

Out(Γ) ' NSym(Ω)(Aut(Γ))/Aut(Γ)

Proof. This is largely formal. Since (Γσ)τ = Γστ for any two σ, τ ∈ Sym(Ω), it follows that the

twisted automorphisms and the twists each form groups.

If the symbols of L represent distinct relations on Γ, then clearly the map from twisted

automorphisms to associated twists is well-defined and is a homomorphism. In particular, the

kernel Aut(Γ) is normal in Aut∗(Γ) in this case.

In the case in which L has more than one symbol representing a given relation, we may

eliminate redundancies; this may increase the twisted automorphism group but will not de-

crease it, so Aut(Γ) must be normal in Aut∗(Γ) in general.

Coming down to the case in which L is the canonical language for Γ, and applying the

previous lemma, we see that Aut∗(Γ) is the full normalizer NSym(Ω)(Aut(Γ)).

Thus everything is proved. �

We prefer to work with finite languages and finite permutation groups where possible. In

particular, we have already chosen a language for metrically homogeneous graphs of diameter

δ. The following result allows this.



70

Lemma 2.7.3. Let k be fixed, and let Γ be a homogeneous structure whose language is the

restriction of the canonical language to relations in k variables. Then

Aut∗(Γ) = NSym(Ω)(Aut(Γ)).

Proof. The proof is the same as in the case of the full canonical language. The inclusion

Aut∗(Γ) ⊆ NSym(Ω)(Aut(Γ)) holds generally, and the reverse inclusion holds since the normalizer

of Aut(Γ) permutes its orbits on k-tuples. �

One must be slightly careful in applying this result. If one starts with a homogeneous

structure Γ then the language will be traded in for a more symmetric language Lk, but k must

be chosen large enough so that the resulting automorphism group is still Aut(Γ). In other words,

we require Γ to be homogeneous with respect to a language of bounded complexity.

Our customary language for metrically homogeneous graphs is in fact the language L2

(even when the diameter δ is infinite). A similar analysis would show that this is satisfactory not

only for the consideration of twisted automorphisms, but also for the consideration of twisted

isomorphisms between pairs of structures.
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Chapter 3

Topological Results

The present chapter deals with the properties of the automorphism group of a metrically ho-

mogeneous graph, when that group is viewed as a Polish group. This involves on the one

hand descriptive set theoretic or topological properties of the group, and notably the question

as to the extent to which the purely algebraic structure determines the topological structure,

and on the other hand the dynamical properties of the group in terms of continuous actions on

compact topological spaces. In technical terms, the former is handled using the method of am-

ple generics (discussed in Section 2.3), while the latter is reduced to structural Ramsey theory

(Section 2.5). Remarkably, the main tool in both cases is the finiteness property discussed in

Section 3.1, and an associated completion process. We obtain this property for a broad class of

known metrically homogeneous graphs of generic type. Subsequent work [ABH+17] extends

this combinatorial result to all known primitive metrically homogeneous graphs of generic type,

and therefore the related topological and dynamical results can be obtained at the same level of

generality.

In Section 3.1 we deal with the purely combinatorial issues. That is, we show that the amal-

gamation classes associated with certain primitive metrically homogeneous graphs of generic

type are finitely constrained, in the sense of Definition 2.6.2, via a completion process which

has an additional canonicity property which will be exploited further. In Section 3.2, we exploit

both finite constraint and the associated canonical completion process as discussed in Section

2.3, and in Section 3.3, we proceed similarly to derive dynamical properties of the automor-

phism group via connections with structural Ramsey theory.
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3.1 Finite constraint

In this section, we will show that the classes of finite metric spaces associated with the known

primitive metrically homogeneous graphs of generic type whose associated numerical parame-

ters satisfy some additional restrictions are finitely constrained (Proposition 2). This makes use

of a fairly delicate completion process.

As a model for the construction, we first treat two similar problems for the classes of finite

metric spaces defined by less intricate conditions. Namely, in Section 3.1.1, we deal with the

class of all [δ]-metric spaces for fixed finite δ, which is an instance of our general problem.

Then in Section 3.1.2, we consider the broader class of S -metric spaces for S an arbitrary finite

subset of the positive real numbers. This is not an instance of our general problem, but it is a

case of substantial independent interest, in which the corresponding issues are more transparent.

Sauer characterized the finite sets S for which the S -metric spaces form an amalgamation

class by a condition which may be expressed as the associative law in an associated semigroup

defined on the set S , while Hubička and Nešetřil [HN16, §4.2.2] characterized the finite sets

S for which the class is a finitely constrained amalgamation class by a further condition on

this semigroup, viewed now as an ordered semigroup. In Section 3.1.2, we characterize the

finite sets S for which finite constraint holds in terms of the same operation; however, as not

all such sets correspond to amalgamation classes, we must work with this operation also in a

non-associative context. Remarkably, a characterization very similar to that of [HN16] results,

even in the absence of associativity.

After these preparations, we return to the case of metrically homogeneous graphs in Sec-

tion 3.1.3 and show finite constraint under the assumptions of Proposition 2. Later analysis

has shown that there is also an associated partially ordered semigroup, on which the relevant

completion process can be viewed as a “shortest path” completion (as in Section 3.1.2), but this

lies outside the scope of our discussion.

3.1.1 [δ]-metric spaces

In this section we prove the following, to serve as a general template for all of our work on

finite constraint.
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Proposition 3.1.1. The class of [δ]-metric spaces, for a fixed finite δ, is finitely constrained.

Our general approach is as follows. One may associate with any weighted graph the metric

space given by the associated path metric. We may call this the path completion of the given

metric space. But this is an abuse of technology, as the given weights may not be preserved

in the path completion (notably, if the original graph was a complete graph but not a metric

space). At the same time, the passage from the weighted graph to the path completion is a

reasonable completion process in the following sense: if there is any extension of the given

weighted graph to a metric space, then the path completion is one such extension.

With minor modifications, this completion process can be adjusted to one applicable to [δ]-

weighted graphs, which produces a [δ]-metric extension wherever there is one. This may be

done by making a direct and ad hoc adjustment to the definition, or by modifying the operation

of addition to restrict it to [δ] and then extending the notion of path metric to allow the use of a

modified addition.

Once we have settled on a completion process which serves our purposes, we know that the

partial [δ]-metric spaces are those whose weights are preserved by the completion process. The

remaining step in the proof of finite constraint is to determine the minimal obstructions to this

last condition, and to show that only finitely many occur. The same method will apply in the

following section to the class of S -metric spaces, and then, with more substantial adjustments,

to certain primitive metrically homogeneous structures of generic type.

Definition 3.1.1. Let G = (G,w) be an edge-labeled graph with edge weights in R>0.

For γ a path in G, the weight w(γ) is the sum of the weights along γ.

The path metric dp on G is given by

dp(u, v) = min(w(γ) : γ is a path from u to v),

for u, v ∈ G.

If no such path exists, then the path distance is set to∞.

For δ > 0, the δ-restricted path metric dδp is defined by

dδp = min(dp(u, v), δ).

We set Ḡ = (G, dδp).
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The following is well-known and easily checked.

Lemma 3.1.1.

1. Let Γ be an R>0-edge-labeled graph. Then the path metric on Γ is a generalized metric

with values in R>0 ∪ {∞}.

2. The infimum of two generalized metrics is a generalized metric.

Corollary 3.1.1. For any [δ]-edge-labeled graph G = (G,w), the edge-labeled graph Ḡ =

(G, dδp) is a [δ]-metric space.

We are now ready to prove the following.

Lemma 3.1.2. Let G be an [δ]-edge-labeled graph. Then the following are equivalent.

1. G is a partial [δ]-metric space.

2. G is a labeled subgraph of Ḡ.

3. G contains no cycles (u1, u2, · · · , un) such that w(u1, un) > w(u1, · · · , un).

We take a moment to distinguish between the first two items. The first item says that G

can be extended to some [δ]-metric space, and the second item says that the above defined

completion will extend G, in that it will respect the original edge weights of G, and indeed

yield a [δ]-metric space, though this last point was already shown in Corollary 3.1.1. Their

equivalence means that whether or not G can be extended to a [δ]-metric space is determined

by whether or not the defined completion will indeed extend G.

Proof.

(1 −→ 3)

Any metric space will satisfy (3), and any partial subspace will therefore also satisfy (3).

(3 −→ 2)

In other words, if we have no violations of the generalized triangle inequality, then the

completion process given in Definition 3.1.1 will maintain the weights originally present in

G = (G,w).

Item 3 ensures that for every edge (u, v) in G and every path γ from u to v, we have w(u, v) ≤

w(γ). Therefore w(u, v) = dp(u, v). Of course, w(u, v) ≤ δ, and thus w(u, v) = dδp(u, v).
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(2 −→ 1)

This follows immediately from the definition of a partial [δ]-metric space. �

Proof of Proposition 3.1.1. It remains to show that there are finitely many cycles which violate

the generalized triangle inequality in (3).

That is, we must show that there are finitely many cycles (u1, · · · , un) where w(u1, un) >

w(u1, · · · , un). This follows, as there are finitely many choices for n,w(u1, · · · , un),w(u1, un)

such that

n ≤ w(u1, · · · , un) < w(u1, un) ≤ δ.

�

3.1.2 S -metric spaces

Our main result is the following.

Proposition 3.1.2. . For a finite set S ⊆ R>0, the following are equivalent.

1. For a, b ∈ S with a < max(S ), there exists s ∈ S such that a < s ≤ a + b.

2. S -metric spaces are finitely constrained.

We begin by giving a completion process for completing an S -edge-labeled graph to an S -

metric space. After checking that the completion process indeed yields an S -metric space, we

show the sufficiency of the restriction on S , that is, (1→ 2), after which we show its necessity.

Definition 3.1.2. Let G = (G,w) be an edge-labeled graph with edge weights in a finite set S .

Define

a ⊕S b = max(s ∈ S : s ≤ a + b)

for a, b ∈ S .

We record some formal properties of the operation ⊕S .

Lemma 3.1.3. The operation ⊕S has the following properties.

• Commutativity.

• max(a, b) ≤ a ⊕S b ≤ a + b.
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• Monotonicity: if a1 ≤ a2 and b1 ≤ b2 then a1 ⊕S b1 ≤ a2 ⊕S b2.

A walk is a sequence of vertices and edges (v0, e1, v1, · · · , en, vn) with each term incident

with the next. In our context, this may be represented either as a sequence of vertices joined by

edges or a sequence of edges with common vertices.

If P1, P2 are walks in G with the terminal vertex of P1 equal to the initial vertex of P2,

we write P1 + P2 for the combined walk, which is simply the concatenation when P1, P2 are

represented as sequences of edges. We are interested primarily in paths, where by definition

the vertices do not repeat, except possibly the first and the last. When the context is clear, we

sometimes only write the ordered vertices of a path.

Define the length |P| of a walk as the number of edges occurring in the walk.

Definition 3.1.3. Define the S -weight wS (P) of a walk P inductively by

wS (P) =



0 if |P| = 0

w(e) if |P| = 1

inf(wS (P1) ⊕ wS (P2) |

P = P1 + P2 |P1|, |P2| > 0) otherwise

Finally, we define the path metric dS in G by

d(x, y) = min(wS(P) | P a path from x to y).

If no such path exists, then we define d(x, y) = max(S ).

Lemma 3.1.4. Let G = (G,w) be an S -edge-labeled graph, let Q be a walk in G, and let P be

a walk contained in Q, with the edges ordered as in Q. Then

wS (P) ≤ wS (Q).

Proof. If Q contains a single edge, this is clear.

Otherwise, we argue inductively. Write Q = Q1 + Q2 with

wS (Q) = wS (Q1) ⊕S wS (Q2).
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Then P decomposes as P1 + P2 with P1, P2 contained in Q1,Q2 respectively, in order. Then

wS (P) ≤ wS (P1) ⊕S wS (P2) ≤ wS (Q1) ⊕S wS (Q2) = wS (Q)

by induction and monotonicity. �

The condition that the ordering on P be induced by the ordering on Q is necessary.

Example 3.1.1. Let S be the set {2, 3, 4, 5, 7, 9} and let G be a triangle with edges of lengths

(2, 3, 4). Then G contains a walk P1 with weights (2, 3, 4) and another walk P2 with weights

(3, 2, 4). The weight of P1 is min(9, 9) = 9 and the weight of P2 is min(9, 7) = 7.

Remark 3.1.1. Every walk W between two vertices u, v contains a path P from u to v with the

edges of P inheriting the order from W. In fact, P may be taken to consist of an initial segment

of W followed by a terminal segment of W. By Lemma 3.1.4, we find wS (P) ≤ wS (W) and thus

if we define the same path metric using walks rather than paths, we obtain the same metric.

Lemma 3.1.5. Let S ⊆ R>0 be finite and let G = (G,w) be an S -edge-labeled graph. Then the

path metric dS is in fact a metric on G.

Proof. This is clear using walks rather than paths to define the metric: given vertices u, v,w

and walks from u to v and from v to w, their sum is a walk from u to v. �

Now we move on to show the sufficiency of the restriction on S .

Definition 3.1.4. Let S ⊆ R>0. A non-metric S -cycle is an S -edge-labeled cycle consisting of

a path P and one additional edge e such that

w(e) > wS (P).

Lemma 3.1.6. Let S ⊆ R>0. Then an S -edge-labeled graph (G,w) embeds in an S -metric

space if and only if it contains no non-metric S -cycle.

Proof. We show first that no non-metric S -cycle can be a substructure of an S -metric space

(G, d). In other words, we claim that the S -metric inequality implies the generalized triangle

inequality

d(u, v) ≤ wS (P) for P a path from u to v.
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This is immediate by induction on the length of P, using the ordinary triangle inequality. It

is clear for |P| ≤ 1. For |P| > 1, we write P = P1 + P2 with |P1|, |P2| > 0 and wS (P) =

wS (P1) ⊕ wS (P2), and we let w be the terminal vertex of P1. Since d(u, v) ∈ S and d(u, v) ≤

d(u,w) + d(w, v), we then have by induction and monotonicity

d(u, v) ≤ d(u,w) ⊕ d(w, v) ≤ wS (P1) ⊕ wS (P2) = wS (P)

as required.

Now we show that any S -edge-labeled graph not containing a non-metric S -cycle as a

substructure can be extended to an S -metric space. We use the path metric dS with respect

to S , which certainly gives G the structure of an S -metric space. It remains to show that dS

extends the given weight function w.

Suppose u, v ∈ G and w(u, v) is defined. By definition, dS (u, v) ≤ w(u, v). If dS (u, v) <

w(u, v), then there is a path P from u to v with wS (P) < w(u, v). Letting Q be the path (v, u),

P + Q is then a non-metric S -cycle, and we have a contradiction. �

This now allows us to deduce the following.

Proposition 3.1.3. Let S ⊆ R>0 be a finite set and suppose that for every a, b ∈ S with a <

max S we have a < a ⊕S b. Then the class of S -metric spaces is finitely constrained.

Proof. In view of the preceding lemma, it suffices to show that the set of non-metric cycles is

finite. Since S is finite, it suffices to bound the lengths of these cycles.

Let the elements of S be listed in increasing order as (s1, s, · · · , sk). We may show by

induction that any walk P of length n ≥ 2i has weight at least si for i ≤ k, using the relation

wS (P1) ⊕ wS (P2) > wS (P1),wS (P2) which holds for |P1|, |P2| > 0 and wS (P1),wS (P2) < sk, by

assumption on S .

For a cycle γ = (u0, · · · , un) in F , letting P be the path (u0, · · · , un−1) we have

wS (P) < w(un−1, un) ≤ max S

and hence the length n − 2 is at most 2k−1.

Thus n is bounded, and the proposition follows. �
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Now we show the necessity of the restriction on S .

Proposition 3.1.4. Let S ⊆ R>0 be finite, and let G = (G,w) be an S -edge-labeled graph.

Suppose there are a, b ∈ S with a < max S such that a ⊕S b = a. Then the class of finite

S -metric spaces is not finitely constrained.

Proof. Observe that b ≤ a.

Consider the set Fb of all cycles consisting of a path P consisting of a single repeated edge

weight b and one additional edge of weight max(S ).

By our assumption on a, by monotonicity, and by induction on the length of P, we find

wS (P) ≤ a < max S .

Thus these cycles are non-metric. As there are infinitely many such cycles, if the class of finite

S -metric spaces were finitely constrained then there would be one constraint embedding into in-

finitely many of the cycles in Fb. In particular, some proper substructure of a cycle in Fb would

be forbidden. But a proper substructure of a cycle contains no cycle, and therefore contains no

non-metric cycle. So by Lemma 3.1.6, no such proper substructure can be forbidden. �

Thus we may finally deduce Proposition 3.1.2.

Proof of Proposition 3.1.2. This follow immediately from Propositions 3.1.3 and 3.1.4. �

3.1.3 Metrically Homogeneous Graphs

Here we develop a completion algorithm for extending a partial substructure of a given met-

rically homogeneous graph Γ to an induced substructure of Γ. More precisely, this process

associates a complete [δ]-edge-labeled graph to any [δ]-edge-labeled graph. The aim of this

process is to assign an element of A = age(Γ) extending the given [δ]-edge-labeled graph,

whenever one exists. For a broad class of metrically homogeneous graphs Γ, this succeeds.

Analysis of this procedure shows that with few exceptions, associated to imprimitive cases, the

minimal obstructions to success form a finite set. Thus whenever the completion process works

as desired, the associated class of finite structures will be finitely constrained. Our main result

is as follows.
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Proposition 2. For any primitive metrically homogeneous graph ΓδK1,K2,C,C′,S
of generic type

for which C > 2δ + max(K1, δ/2), C′ = C + 1, and K2 ≥ δ − 1, the classAδ
K1,K2,C,C′,S

is finitely

constrained.

Explicitly, by finitely constrained, we mean there exists some finite set of edge-labeled

graphs F such that the exclusion of this set is equivalent to having an extension to the relevant

class of metric spaces. If an edge-labeled graph G = (G,w) can be completed to a metric space

inAδ
K1,K2,C,C′,S

, then we refer to G as a partialA-metric space.

The assumption that a metrically homogeneous graph of generic type is primitive is equiva-

lent to the assumption that K1 < ∞ (not bipartite) and C > 2δ+1 (not antipodal). Our numerical

assumptions actually imply these conditions, but we wish to stress that we are dealing here with

a portion of the primitive case. Dealing with the imprimitive case generally requires more at-

tention and a change of language. The bipartite analog of these results would require a change

of language but little change in the arguments.

As noted above, a variation of this completion process gives a more general result applying

to any primitive metrically homogeneous graph of generic type [ABH+17].

Proposition 2 has strong consequences for the dynamical and Ramsey theoretic properties

of the associated amalgamation classes and automorphism groups, as seen in Sections 3.2 and

3.3. In addition, we show that the completion process has a certain canonicity property which

provides additional information about the automorphism groups of these structures (see Lemma

3.2.1).

We give two proofs of Proposition 2. The first proof shows the constraint set is finite, but

gives little information about it. This proof is based mainly on an analysis of the completion

process defined and analyzed in Section 3.1.3.3. The second proof gives an entirely explicit

description of the constraint set, which is the subject of Section 3.1.3.1.

Our less explicit proof was our original argument, and the more general proof from [HKK17]

was based on a similar quantitative analysis of a different completion process.

As per our discussion in Chapter 1, we continue the blanket assumption that δ ≥ 3.
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3.1.3.1 The set of constraints F

In this section, we introduce and study the constraint discussed in the introduction in connection

with the more explicit form of Proposition 2. We first check that under very general conditions,

this set will be finite (the exceptions being associated with the imprimitive cases). Then we

will show that it is necessary to forbid F under isometric embedding in order for a [δ]-edge-

labeled graph G to be able to be extended to a space inAδ
K1,K2,C,C′,S

. Sufficiency will be shown

in Section 3.1.3.5 as part of Corollary 3.1.27.1, which comes after the proof of Proposition 2

in a more qualitative form, which relies only on the material of Section 3.1.3.3 and Corollary

3.1.11.1 to Lemma 3.1.11 below.

Apart from the elementary Corollary 3.1.11.1 below, none of the material in this subsection

will be needed until the end of Section 3.1.3, as it comes in only to the proof of the sharper

proof of Proposition 3.1.1 alluded to above. For Proposition 3.1.1 as stated, it suffices to begin

with the completion process discussed in Section 3.1.3.3.

Definition 3.1.5. Given finite numerical parameters δ,K1,K2,C, where K2 ≥ δ − 1, and a

family S of (1, δ)-spaces, we define the set F = F (δ,K1,K2,C,S) of forbidden configurations

to be the union of the following sets of [δ]-edge-labeled graphs:

• The minimal spaces in S, and the triangle type (1, δ, δ) if K2 = δ − 1;

• Cycles of odd perimeter less than 2K1;

• n-Cycles where

w(e1) + w(e2) + · · · + w(e2`+1) > `(C − 1) + w(e2`+2) + · · · + w(en) (3.1)

where the n edges are not necessarily ordered so that ei and ei+1 are adjacent.

For brevity, we refer to the collection of cycles that satisfy Inequality (3.1) as F0.

Note that when ` = 0, the cycles which obey Inequality (3.1) are the non-metric cycles, in

that they contradict the generalized form of the triangle inequality (and thus any comple-

tion would itself violate the triangle inequality).

We take up the question of finiteness of the constraint set F , which will be settled by

Lemma 3.1.10. We deal first with S, which is a set of forbidden (1, δ)-spaces.
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Lemma 3.1.7. For δ ≥ 3, any antichain of finite (1, δ)-spaces is finite.

Proof. We follow an argument sketched in [ACM16, page 10]: If δ ≥ 3, then (1, δ)-spaces

consist of collections of cliques, with distinct cliques being at distance δ away from each other.

These spaces therefore can be described up to isomorphism by multisets of integers, where

each integer represents the size of a clique.

The embeddability relation between (1, δ)-spaces then corresponds to the following relation

on multisets: A � B if and only if there is a function f : A → B with a ≤ f (a); here we allow

a function defined on a multiset to take different values at different occurrences of the same

element. There is a similar relation on ordered sequences, namely: a � b if and only if there

is an order-preserving function φ on the indices such that ai ≤ bφ(i) for all i. Higman’s Lemma

(Lemma 2.6.6) says that there is no infinite antichain of finite sequences of integers under this

relation, which implies that there is no infinite antichain of finite multisets of integers under the

corresponding relation. The lemma follows. �

Since the minimal elements of any partially ordered set form an antichain, we have the

following.

Corollary 3.1.7.1. If S is a set of (1, δ)-spaces then the set of minimal elements of S is finite,

up to isomorphism.

Lemma 3.1.8. Let K1 and δ be finite. Then in a [δ]-edge-labeled graph G = (G,w), there can

be only finitely many cycles (u1, u2, · · · , uk) up to isomorphism whose perimeter is odd and less

than 2K1.

Proof. Indeed, there are up to isomorphism only finitely many cycles with perimeter less than

2K1. This is because each label is an integer at least 1. �

Lemma 3.1.9. When C > 2δ + 1, there are finitely many forbidden configurations in F0 (as in

Definition 3.1.5).

Proof. Recall that F0 consists of finite cycles γ where

w(e1) + · · · + w(e2`+1) > `(C − 1) + w(e2`+2) + · · · + w(en). (3.2)
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We argue first that ` is bounded.

Since each w(ei) is at most δ, there will be no possible such cycles when

δ(2` + 1) ≤ `(C − 1).

This is equivalent to the following restriction on `:

` ≤
δ

C − 2δ − 1
.

Note that this denominator is well-defined, since C > 2δ + 1.

As ` is bounded and the left-side of Inequality (3.2) contains 2`+ 1 terms, each bounded by

δ, the left-hand side is bounded. Hence the number of terms on the right is also bounded. Thus

there are finitely many possible configurations of this type. �

Hence we have the following.

Lemma 3.1.10. Given finite numerical parameters δ,K1,K2,C with C > 2δ+1 and K2 ≥ δ−1,

and a set S of (1, δ)-spaces, the associated family F (Definition 3.1.5) is finite.

Proof. Recall that F is the union of three sets. The first such set is the set of minimal spaces

in S together one more element if K2 = δ. Thus by Corollary 3.1.7.1 this first set is finite.

The second set consists of cycles of odd perimeter less than 2K1, and we showed in Lemma

3.1.8 that this set is finite.

Finally, the third set is the set F0. We showed in Lemma 3.1.9 that this set is finite.

Thus F is itself finite. �

3.1.3.2 Necessity

We will show in Proposition 3.1.5 that under mild conditions, the structures in Aδ
K1,K2,C,C′,S

do not contain any configurations in the corresponding constraint set F . Thus, to characterize

embeddability for this class, it is necessary to forbid the configurations in F . The converse

(sufficiency) will be proved under more limited conditions.

This result follows from the more precise Lemma 3.1.27, to be proven in Section 3.1.3.5,

which reduces it in large part to an inequality established by a direct argument in the proof
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of Proposition 2, via the proof of Lemma 3.1.27. As it plays no direct role in anything done

subsequently, the proof given here may be omitted. However, Corollary 3.1.11.1 to Lemma

3.1.11 will itself be used in the proof of Proposition 2.

The more delicate Lemma 3.1.12 will not be used subsequently, but the calculation used in

its proof recurs in the proof of Lemma 3.1.27.

Proposition 3.1.5. Let Aδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces as-

sociated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ + 1, C′ = C + 1. Then no configuration in F =

F (δ,K1,K2,C,S) embeds into a member ofAδ
K1,K2,C,C′,S

.

We first show the necessity of forbidding cycles of odd perimeter less than 2K1.

We will use the following definition.

Definition 3.1.6. We say that an edge-labeled graph G = (G,w) satisfies the generalized trian-

gle inequality if for any finite collection of vertices (u1, u2, · · · , uk) in G, we have

w(u1, uk) ≤ w(u1, u2) + w(u2, u3) + · · · + w(uk−1, uk)

whenever all these distances are defined.

We call cycles which violate the generalized triangle inequality non-metric cycles.

Lemma 3.1.11. Let (u1, u2, · · · , uk) be the vertices of a cycle γ in the [δ]-edge-labeled graph

G = (G,w). Assume moreover that the perimeter of γ is odd and less than 2K1.

Then any proper [δ]-edge-labeled extension of γ which satisfies the generalized triangle

inequality will contain a cycle on strictly fewer vertices which also has odd perimeter less than

2K1.

Proof. Assume we have such an extension γ̂ of γ. Let ui, u j be non-adjacent vertices of γ

for which the weight ŵ(ui, u j) is defined in γ̂. Then each of the cycles (ui, ui+1, · · · , u j) and

(u j, u j+1, · · · , ui) has perimeter less than 2K1 by the generalized triangle inequality. As exactly

one of the paths (ui, ui+1, · · · , u j) and (u j, u j+1, · · · , ui) has odd length, we also have that exactly
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one of the cycles (ui, ui+1, · · · , u j), (u j, u j+1, · · · , ui) has odd perimeter. Thus, we have our

desired result. �

Corollary 3.1.11.1. Let K1 be finite. Then any integer-valued metric space A which contains a

cycle of odd perimeter less than 2K1, also contains a triangle of odd perimeter less than 2K1.

Proof. Take a cycle of minimal odd perimeter embedding in A. By Lemma 3.1.11, this cycle

is complete, and is therefore a triangle. �

Lemma 3.1.12. Let δ and C be finite, with C > 2δ + 1. Then no configuration satisfying

Inequality (3.1) of Definition 3.1.5 embeds into a [δ]-valued metric space (A, d) in which every

triangle has perimeter strictly less than C.

Proof. We suppose toward a contradiction that A contains a cycle γ whose edges may be in-

dexed so that for some ` we have

w(e1) + · · · + w(e2`+1) > `(C − 1) + w(e2`+2) + · · · + w(en). (3.3)

We proceed by induction on `. If ` = 0, then (3.3) violates the generalized triangle inequal-

ity. So ` ≥ 1.

View γ as an oriented cycle, and each ei as an oriented edge (ui, vi). We may suppose that

e1, e2, · · · , e2`+1 have been enumerated so as to come in cyclic order around the cycle. Let γi

be the path in γ joining ei to ei+1 (computing modulo 2` + 1). We note that γi consists solely of

edges from {e2`+1, · · · , en}.

See Figure 3.1 below for clarity.

By the triangle inequality, we have

d(v2`, v2`+1) ≥ w(e2`+1) −
∑
e∈γ2`

w(e).

So if we replace the path from v2` to v2`+1 in γ by a single edge e′2`+1 = (v2`, v2`+1) to get a new

cycle γ′, then we get a corresponding inequality to (3.3)

w(e1) + w(e2) + · · · + w(e`) + d(v2`, v2`+1) ≥ `(C − 1) +
∑
e∈γi

i∈{1,··· ,2`+1}\2`

w(e). (3.4)
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v2`+1u2`+1 e2`+1

u2`

v2`

e2`

e′′

e′2`+1

γ2`

Figure 3.1: Lemma 3.1.12

This inequality has fewer terms on the right than that of Inequality (3.3). Note that e2`

and e′2`+1 are adjacent edges. Then applying the perimeter bound to the triangle with edges

e2`, e′2`+1, and e′′ = (u2`, v2`+1) we have

w(e2`) + w(e′2`+1) ≤ (C − 1) − w(e′′).

So we may replace the terms w(e2`) + w(e′2`+1) on the left side of Inequality (3.4) by C − 1 −

w(e′′), and then, after cancelling C − 1 and moving w(e) to the right, we have the inequality

corresponding to the cycle γ′′ which is obtained from γ′ by replacing e2` and e′2`+1 by e′′.

Then ` is reduced, and we conclude by induction. �

We may now deduce Proposition 3.1.5.

Proof of Proposition 3.1.5. Lemma 3.1.12 and Corollary 3.1.11.1 show that the second and

third families of configurations (those relating to K1 and those referred to as F0) are forbidden.

Let A belong to Aδ
K1,K2,C,C′,S

. By definition, no configuration in S embeds into A, and if

K2 = δ − 1, the same applies to triangles of type (1, δ, δ). By Corollary 3.1.11.1 and Lemma

3.1.12 none of the other configurations in F embeds into A.

The result follows. �

3.1.3.3 A completion process

In the present section, we will define what we mean by a “candidate configuration” for com-

pletion to a structure in the classAδ
K1,K2,C,C′,S

; define a completion process for such candidates;
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and show that under suitable numerical conditions, candidates for completion may in fact be

completed by our process.

The notion of candidate for completion, given in Definition 3.1.8, involves omitting some of

the more natural constraints discussed in the previous section, as well as satisfying an additional

condition which is a prerequisite for the sensible application of our completion process, which

relies on the preliminary definitions of Section 3.1.3.3 below.

The main result of this section will then be the following.

Proposition 3.1.6. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces asso-

ciated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, satisfying the following conditions.

• C > 2δ + 1;

• C′ = C + 1;

• K2 ≥ δ − 1.

If a [δ]-edge-labeled graphG = (G,w) is a candidate configuration for completion toAδ
K1,K2,C,C′,S

,

then the completion G of G using the completion algorithm in Definition 3.1.9 yields a metric

space inAδ
K1,K2,C,C′,S

.

Towards the completion process

As preparation for the completion process given in Definition 3.1.9 below, we now introduce

two weight functions, ρ− and ρ+, associated with any parameters δ,C, and any [δ]-edge-labeled

graph G. These functions may be defined informally as natural lower and upper bounds for the

distance in any extension of G to a [δ]-metric space with perimeter bound C. In particular, our

completion process will attempt to assign a weight to the edge (u, v) which lies in the interval

[ρ−(u, v), ρ+(u, v)]. Of course, if ρ−(u, v) > ρ+(u, v), it will not succeed, but it will assign a

value anyway.

Definition 3.1.7. LetG = (G,w) be a [δ]-edge-labeled graph and C a numerical parameter. We
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define weight functions ρ±i = ρ±i,G,C for the complete graph on G by induction on i as follows:

ρ−0 (u, v) =


w(u, v) if defined

1 otherwise
ρ+

0 (u, v) =


w(u, v) if defined

δ otherwise

ρ−i+1(u, v) = max(ρ−i (u, v),max
w

(ρ−i (u,w) − ρ+
i (v,w)),max

w
(ρ−i (v,w) − ρ+

i (u,w))),

ρ+
i+1(u, v) = min(ρ+

i (u, v),min
w

(ρ+
i (u,w) + ρ+

i (v,w)),

min
w

(C − 1 − (ρ−i (u,w) + ρ−i (v,w)))).

Notice that the sequences of functions (ρ−i ), (ρ+
i ) are monotonic (non-decreasing and non-

increasing, respectively), integer-valued, and uniformly bounded above and below, and hence

eventually constant (pointwise). So we may define limit functions

ρ−(u, v) = lim
i→∞

ρ−i (u, v)

and

ρ+(u, v) = lim
i→∞

ρ+
i (u, v).

We show first that once the parameter δ is fixed, the limit values are attained in a uniformly

bounded number of iterations, specifically: 2δ − 1.

Lemma 3.1.13. Let the numerical parameters δ and C be fixed, with C > 2δ + 1.

Then for any [δ]-edge-labeled graph G = (G,w), we have

ρ− = ρ−2δ−1 ρ+ = ρ+
2δ−1.

Proof of Lemma 3.1.13. We make use of the following inductive definitions, which keep track

of the places where the assigned values of our weight functions change.

R−0 = {ρ−0 (u, v) | u, v ∈ G, u , v}

R+
0 = {ρ+

0 (u, v) | u, v ∈ G, u , v}

R−i+1 = {ρ−i+1(u, v) | u, v ∈ G, u , v, ρ−i+1(u, v) > ρ−i (u, v)}

R+
i+1 = {ρ+

i+1(u, v) | u, v ∈ G, u , v, ρ+
i+1(u, v) < ρ+

i (u, v)}
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We note that Lemma 3.1.13 is shown if we can find a single i ≤ 2δ where R−i = ∅ and

likewise R+
i = ∅. Indeed, if that were to happen, then both ρ−i = ρ−i−1 and ρ+

i = ρ+
i−1, so all

subsequent ρ−j , ρ
+
j agree with ρ−i−1, ρ

+
i−1 respectively.

We shift then to showing the following claim.

Claim 3.1.13.1. For any i, we have:

sup R−2i ≤ δ − i inf R+
2i ≥ i + 1

sup R−2i+1 ≤ δ − i − 1 inf R+
2i+1 ≥ i + 1

Once we have shown this claim, it then follows that R±2δ is empty. Indeed, we would have

that sup R−2δ ≤ δ − δ = 0, and inf R+
2δ ≥ δ + 1. Thus, once we prove our claim, we will also be

done with our proof.

Proof of Claim 3.1.13.1. We proceed by induction over i.

It follows immediately that sup R−0 ≤ δ because our partial space is of bounded diameter

δ, and that inf R+
0 ≥ 1, since we are only considering distinct points u, v ∈ G. We also get

immediately that inf R+
1 ≥ 1, since C − 2δ − 1 ≥ 1.

We now assume for k ≤ i that:

sup R−2k ≤ δ − k

inf R+
2k ≥ k + 1

inf R+
2k+1 ≥ k + 1.

We wish to show that it then follows that sup R−2k+1 ≥ δ − k − 1, and that the three inequalities

above are valid for k = i + 1 as well.

Subclaim. sup R−2k+1 ≤ δ − k − 1.

By the inductive definition of ρ−i , if ρ−2k+1(u, v) lies in R−i , then it has the form

ρ−2k(u1,w) − ρ+
2k(u2,w)

with u1, u2 equal to u, v in some order. Furthermore, either the first term is in R−2k or the second

term is in R+
2k, as otherwise ρ−2k would already have reached this value.
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Accordingly,

ρ−2k+1(u, v) ≤ max(sup R−2k − 1, δ − inf R+
2k)

≤ max(δ − k − 1, δ − k − 1) = δ − k − 1,

by the inductive hypothesis, and the subclaim is proved.

Similarly, if ρ−2k+2(u, v) ∈ R−2k+1, then we find by the same calculation

ρ−2k+2(u, v) ≤ max(sup R−2k+1, δ − inf R+
2k+1) = δ − k − 1

and thus sup R−2k+1 ≤ δ − k − 1, which is one of the desired inequalities for k = i + 1.

It remains to deal with the two inequalities concerning R+
2k+2 and R+

2k+3:

inf R+
2k+2, inf R+

2k+3 ≥ k + 2.

There are two ways a value ρ+
2k+2(u, v) could get into R+

2k+2. Either

ρ+
2k+2(u, v) = ρ+

2k+1(u,w) + ρ+
2k+1(v,w),

with one of the entries on the right in R+
2k+1, or

ρ+
2k+2(u, v) = C − (ρ−2k+1(u,w) + ρ−2k+1(v,w)) − 1,

with one of the two entries on the right in R−2k+1.

In the first case, we find at once that ρ+
2k+2(u, v) ≥ k + 2.

In the second case, we find

ρ+
2k+2(u, v) ≤ C − (δ − k − 1 + δ) − 1 = C − (2δ − k) ≥ k + 2

since C > 2δ + 1.

This takes care of the inequality for R+
2k+2, and the argument for R+

2k+3 is almost exactly the

same.

This proves Claim 3.1.13.1. �

By our earlier remarks, the lemma follows from the claim. �

The following result will prove useful.
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Lemma 3.1.14. Let δ and C be finite, with C > 2δ + δ/2, and let G = (G,w) be a [δ]-edge-

labeled graph. Then

ρ+(x, y) ≤ ρ+(x,w) + ρ+(y,w) and ρ−(x, y) ≤ ρ−(x,w) + ρ+(y,w)

for any x, y,w ∈ A. Moreover,

ρ+(x1, xn) ≤
n−1∑
i=1

ρ+(xi, xi+1) (3.5)

for any x1, · · · , xn ∈ G.

Proof. By definition of ρ±i , we have

ρ+
i+1(x, y) ≤ ρ+

i (x,w) + ρ+
i (y,w) ρ−i+1(x,w) ≥ ρ−i (x, y) − ρ+

i (y,w).

Taking the limit over i gives the first two inequalities.

Inequality (3.5) follows by induction. �

Lemma 3.1.15. With δ and C fixed, there is a finite set of configurations F1, such that a [δ]-

edge-labeled graph G = (G,w) satisfies the condition ρ− ≤ ρ+ everywhere if and only if G

omits all configurations in F1.

Proof. More precisely, we claim the following.

Claim. For any edge e in G, there are two configurations γ−, γ+ contained in G, and con-

taining the vertices of e, with the following properties.

• In any [δ]-edge-labeled graph G′ containing γ−, we have ρ−
G′

(e) ≥ ρ−
G

(e).

• In any [δ]-edge-labeled graph G′′ containing γ+, we have ρ+
G′′

(e) ≤ ρ+
G

(e).

• γ− and γ+ each contain at most 22δ−1 vertices.

As we have noted in the course of the previous proof, a lower bound for ρ−i (u, v) or an

upper bound for ρ+
i (u, v) must have a witness consisting of a third vertex w together with a

corresponding upper or lower bound for ρ±(u,w) and ρ±(v,w).

Since the value of ρ±(u, v) is given by ρ±2δ−1, tracing backward we can replace the given edge

by two edges with a common third vertex, then by at most four edges, and so forth, together
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with estimates on ρ±2δ−1−i for these edges, for i = 0, 1, · · · , 2δ − 1, concluding when we reach

the original edges of G, which then make up the desired configurations.

The claim follows.

Now the lemma is immediate: the configurations of the form γ− ∪ γ+ as above, ranging

over all possible [δ]-edge-labeled graphs G, provide the required set F1. This set is finite, since

the number of vertices occurring is bounded by 2 · 22δ−1 = 22δ, and there are only finitely many

such configurations for a fixed δ. �

A sharper analysis, Lemma 3.1.27, will show that the set F1 (which is a set of circuits) can

be replaced by the set F0 of cycles (and even that F0 is the set of minimal elements of F1).

Lemma 3.1.16. Let δ and C be finite. Let G = (G,w) be a [δ]-edge-labeled graph such that

ρ− ≤ ρ+ on G.

Then the weights ρ− and ρ+ extend the weight w given on G.

Proof. By construction, we have

ρ+(u, v) ≤ ρ+
0 (u, v) = w(u, v) ρ−(u, v) ≥ ρ−0 (u, v) = w(u, v)

and so

ρ+(u, v) ≤ w(u, v) ≤ ρ−(u, v).

As ρ− ≤ ρ+, we conclude ρ+(u, v) = w(u, v) = ρ−(u, v). �

Corollary 3.1.16.1. Let δ and C be finite. LetG = (G,w) be a [δ]-edge-labeled graph satisfying

ρ− ≤ ρ+.

Then G contains no non-metric cycle.

Proof. By Lemma 3.1.14 (3.5), (G, ρ+) contains no non-metric cycle. By the previous lemma,

ρ+ agrees with w when the latter is defined. �

We will make copious use of the following definition.
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Definition 3.1.8. A finite [δ]-edge-labeled graph G = (G,w) will be called a candidate con-

figuration for completion toAδ
K1,K2,C,C′,S

, a class of [δ]-metric spaces associated to admissible

parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ + 1 if

1. G satisfies ρ− ≤ ρ+ everywhere;

2. None of the spaces in S embed into G;

3. If K2 = δ − 1, then the triangle type (1, δ, δ) also does not embed into G.

4. No cycles of odd perimeter less than 2K1 embed into S.

We note that candidate configurations will not contain any non-metric cycles (Corollary

3.1.16.1).

Remark 3.1.2. By Lemma 3.1.15, a configuration which does not embed any of the configura-

tions in F is a candidate configuration.

Furthermore, we have the following.

Lemma 3.1.17. Let ΓδK1,K2,C,C′,S
be a primitive metrically homogeneous graph of generic type

for which C > 2δ + max(K1, δ/2), C′ = C + 1, and K2 ≥ δ − 1.

Then configurations which embed into an element ofAδ
K1,K2,C,C′,S

are candidate configura-

tions for completion toAδ
K1,K2,C,C′,S

.

Proof. Since the set of candidate configurations is closed under taking substructures, it suffices

to check that the structures inAδ
K1,K2,C,C′,S

are candidate configurations.

Let (A, d) be in Aδ
K1,K2,C,C′,S

. By definition, A contains no forbidden Henson constraint or

forbidden triangle, so clauses (2, 3) of Definition 3.1.8 are satisfied.

From the inductive definition of ρ± and the condition C′ = C + 1 it follows at once that

ρ−k ≤ d ≤ ρ+
k

for all k. (The condition C′ = C + 1 means that no triangles of perimeter greater than C − 1 can

occur.)
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Finally, Corollary 3.1.11.1 to Lemma 3.1.11 shows that no cycle of odd perimeter less than

2K1 can occur.

This proves the lemma. �

Our main task will be to show, conversely, that any candidate configuration does embed in

a member ofAδ
K1,K2,C,C′,S

when the parameters satisfy some additional constraints.

We are now ready to give our completion algorithm.

The completion algorithm

Definition 3.1.9. Let G = (G,w) be a candidate configuration for completion to the class

of finite metric spaces Aδ
K1,K2,C,C′,S

, which correspond to a primitive metrically homogeneous

graph Γ of generic type. Then the completion algorithm for G is to:

1. Assign the value of ρ+ to all unlabeled edges (u, v) for which ρ+(u, v) < C − 2δ − 1.

We write this extended edge-labeled graph as Ĝ = (G, ŵ).

2. Recalculate the values ρ−, ρ+ in Ĝ. We denote these new values by ρ̂− and ρ̂+.

3. Assign the value of max(ρ̂−, (C − 2δ − 1)′) to the remaining unlabeled edges, where (C −

2δ−1)′ = min(C−2δ−1, δ−1), unless S is empty, in which case (C−2δ−1)′ = C−2δ−1.

Thus we begin to fill in edges with the first step, in which we use as many ρ+ values as

possible.

The completion process pauses here in step 2, as we recalculate ρ− and ρ+.

The second step of the completion algorithm is necessary, as the ρ− and ρ+ values may

have changed, but we note that this recalculation only happens the one time. This raises the

question as to whether the new weight functions ρ̂− and ρ̂+ also satisfy the desirable inequality

ρ̂− ≤ ρ̂+. Indeed, it is possible that after the first step of the completion algorithm, the ρ−

terms have grown, that is that ρ̂− > ρ−. We will show that under suitable restrictions on

the parameters, the ρ+ values will not shrink, and that despite potential ρ− growth, the desired

inequality is maintained. In fact, the configuration produced by Step 1 will again be a candidate

configuration (Lemma 3.1.22).

We then recommence the completion process in step 3, now using ρ̂− and (C − 2δ − 1)′.
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We introduce the parameter (C − 2δ − 1)′ in order to ensure that the completion Ḡ satisfies

the Henson constraints (as will be seen in Lemmas 3.1.19 and 3.1.25).

We note that the assumption K2 ≥ (δ − 1) ensures that the only triangle type that might be

forbidden based on the K2 value is (1, δ, δ). Since this a (1, δ)-space, arguments for its exclusion

can be grouped together with those for S.

3.1.3.4 The completion of a candidate configuration

In this section, we will show the following.

Proposition 3.1.6. Let Aδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces as-

sociated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, satisfying the following conditions.

• C > 2δ + max(K1, δ/2);

• C′ = C + 1;

• K2 ≥ δ − 1.

If a [δ]-edge-labeled graphG = (G,w) is a candidate configuration for completion toAδ
K1,K2,C,C′,S

,

then the completion G of G using the completion algorithm in Definition 3.1.9 yields a metric

space inAδ
K1,K2,C,C′,S

.

Our process in proving Proposition 3.1.6 is to show the following.

a. After Step 1, the extension Ĝ satisfies conditions (2–4) of Definition 3.1.8.

b. The inequality ρ̂− ≤ ρ̂+ holds.

c. The final step of the completion algorithm (Definition 3.1.9) produces a [δ]-metric space

Ḡ which again satisfies conditions (2–4) of Definition 3.1.8, as well as the perimeter

bound corresponding to C,C′, and is therefore inAδ
K1,K2,C,C′,S

.

Under the hypotheses of Proposition 3.1.6, all three points can be carried through. We will

be more precise about the hypotheses actually used at various stages of the analysis.
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We take up the first point. We begin by showing that no K1 violations have been introduced.

Lemma 3.1.18. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ+max(K1, δ/2). LetG = (G,w) be a candidate configuration

for completion toAδ
K1,K2,C,C′,S

.

Suppose Ĝ = (G, ŵ) is the extension of G obtained after Step 1 of the completion algorithm.

Then Ĝ does not contain any cycles of odd perimeter less than 2K1.

Proof. Note that since G is a candidate configuration, it does not itself contain any cycles of

odd perimeter less than 2K1. Thus we restrict our attention to a cycle γ in (G, ŵ) which contains

newly labeled edges (u, v) with labels ρ+(u, v).

When ρ+(u, v) ≥ K1, we know that any cycle of odd perimeter which contains the edge (u, v)

must have perimeter at least 2K1, since by Lemma 3.1.16 the edges in Ĝ are in fact labeled with

ρ+, and by Lemma 3.1.14 (3.5), ρ+ satisfies the generalized triangle inequality.

We assume then that any newly labeled edge (u, v) occurring in γ satisfies

ρ+(u, v) < K1.

Recall that for j ≥ 0, ρ+
j (u, v) is the minimum of the following three quantities:

ρ+
j−1(u, v),

min
w

(ρ+
j−1(u,w) + ρ+

j−1(v,w)),

min
w

(C − (ρ−j−1(u,w) + ρ−j−1(v,w)) − 1).

Let j be minimal such that ρ+(u, v) = ρ+
j (u, v). If j = 0, then as (u, v) is a new edge, we

have that ρ+(u, v) = δ ≥ K1, a contradiction. So j > 0.

Now ρ+
j (u, v) cannot be of the form (C − (ρ−j−1(u,w) + ρ−j−1(v,w)) − 1), since

(C − (ρ−j−1(u,w) + ρ−j−1(v,w)) − 1) ≥ (2δ + K1 + 1) − 2δ − 1 = K1.

Thus we may assume that

ρ+
j (u, v) = ρ+

j−1(u,w) + ρ+
j−1(v,w).
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Similarly, if (u,w) is a new edge, then the term ρ+
j−1(u,w) may be replaced by ρ+

k (u,w′) +

ρ+
k (w′, v), for some k < j − 1. Continuing in this fashion, one ultimately expands ρ+(u, v) into

the sum along a walk (u1, · · · , un) from u to v with edges in G:

ρ+(u, v) =
∑
i<n

w(ui, ui+1).

Replacing each edge (u, v) of γ not in G by such a walk, one obtains a circuit γ′ in G with the

same perimeter as γ. But then this is a union of cycles with total perimeter the perimeter of γ.

Thus if γ has odd perimeter less than 2K1, then at least one of these cycles has odd perimeter

less than 2K1.

Hence extending to Ĝ cannot have introduced any cycles of odd perimeter less than 2K1. �

Lemma 3.1.19. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ + K1. Let G = (G,w) be a candidate configuration for

completion toAδ
K1,K2,C,C′,S

.

Suppose Ĝ = (G, ŵ) is the extension of G obtained after Step 1 of the completion algorithm.

Then the space Ĝ will not contain any isometric copies of the forbidden Henson spaces in S,

or the triangle type (1, δ, δ), in the case that K2 = δ − 1.

Proof. We deal first with S.

Since G is a candidate configuration, none of the Henson spaces in S embed into G. Thus

we must ensure that extending by ρ+ will not introduce any such Henson spaces. As these

spaces are (1, δ)-spaces, we consider when a newly assigned value ρ+(u, v) could introduce the

value 1 or δ.

As C ≤ 3δ + 1 and ρ+(u, v) < C − 2δ − 1 ≤ δ, we do not have that ρ+(u, v) = δ.

In particular as the edge (u, v) is not inG and ρ+(u, v) , δ, the minimal j for which ρ+(u, v) =

ρ+
j (u, v) is nonzero, and thus ρ+(u, v) has one of the two forms

ρ+
j−1(u,w) + ρ+

j−1(w, v) ≥ 2

C − (ρ−j−1(u,w) + ρ−j−1(w, v)) − 1 ≥ C − 2δ − 1.
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So if ρ+(u, v) = 1 then C = 2δ + 2. Then by definition of admissibility (Definition 2.2.10), we

have that S is empty, and no violation is possible.

Thus, either ρ+ does not introduce the values 1 or δ (and therefore cannot introduce any

violations of Henson constraints), or there are no Henson constraints.

Similarly, if K2 = δ − 1 and a triangle of type (1, δ, δ) appears in Ĝ, then the corresponding

value ρ+(u, v) must be 1, and C = 2δ+2. However it follows from the definition of admissibility

that for C > 2δ + K1 and K2 = δ − 1, we must have that C > 2δ + 2 (Table 2.1). �

Lemma 3.1.20. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite.

Let G = (G,w) be a candidate configuration for completion to Aδ
K1,K2,C,C′,S

. Suppose that

(u, v) is a non-edge in G with ρ+(u, v) < C − 2δ − 1. Let Ǧ = (G, w̌) be the extension of G in

which the edge (u, v) is added, and is labeled with ρ+(u, v). Then the functions ρ̌± associated

with Ǧ satisfy

ρ̌+ = ρ+ (3.6)

ρ−(x, y) ≤ ρ̌−(x, y) ≤ max(ρ−(x, y),C − 2δ − 1) (3.7)

for all x, y ∈ G.

Proof. We will prove the following two statements for all k, by induction on k:

ρ+(x, y) ≤ ρ̌+
k (x, y) ≤ ρ+

k (x, y) (3.8)

ρ−k (x, y) ≤ ρ̌−k (x, y) ≤ max(ρ−(x, y),C − 2δ − 2). (3.9)

Then passing to the limit proves the lemma.

The base case is

k = 0.

Then ρ̌±0 (x, y) = ρ±0 (x, y) unless (x, y) = (u, v) (in some order). When (x, y) , (u, v), then (3.8)

is clear for k = 0, as is (3.9), since in this case ρ−0 (u, v) = r ≤ C − 2δ − 2.
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On the other hand, (3.8) is equally clear for k = 0 when applied to the edge (u, v) in Ǧ, and

(3.9) for k = 0, since ρ̌−0 (u, v) = r.

This disposes of the case k = 0. Now we proceed inductively, passing from (k − 1) to k.

We begin with (3.8) for k.

By definition, ρ̌+
k (x, y) is the minimum of terms of the following forms:

a. ρ̌+
k−1(x, y)

b. ρ̌+
k−1(x, z) + ρ̌+

k−1(y, z)

c. C − (ρ̌−k−1(x, z) + ρ̌−k−1(y, z)) − 1.

Applying the upper and lower bounds from (3.8,3.9), respectively, for k − 1, shows that

each of the corresponding terms in the definition of ρ+
k (x, y) dominates a term shown here, so

ρ̌+
k (x, y) ≤ ρ+

k (x, y).

We must also show that each of the terms of types (a−c) is dominated by ρ+(x, y). Applying

induction together with Lemma 3.1.14 (3.5) gives the required estimate for terms of types (a, b).

Now we come to the critical case (c), where the term has the form

C − (ρ̌−k−1(x, z) + ρ̌−k−1(y, z)) − 1.

According to our inductive hypothesis (3.9) for k − 1, one of the following bounds applies:

ρ̌−k−1(x, z) ≤ ρ−(x, z)

ρ̌−k−1(x, z) ≤ C − 2δ − 2

with a similar bound applying to ρ̌−k−1(y, z).

If we have both ρ̌−k−1(x, z) ≤ ρ−(x, z) and ρ̌−k−1(y, z) ≤ ρ−(y, z), then these bounds together

yield

C − (ρ̌−k−1(x, z) + ρ̌−k−1(y, z)) − 1 ≥ C − (ρ−(x, z) + ρ−(y, z)) − 1

≥ ρ+(x, y)

as required.

So we may suppose that a bound of the second type applies to ρ̌−k−1(x, z),

ρ̌−k−1(x, z) ≤ C − 2δ − 2.
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In this case we have the following

C − (ρ̌−k−1(x, z) + ρ̌−k−1(y, z)) − 1 ≥ C − [(C − 2δ − 2) + δ] − 1 = δ + 1

≥ ρ+(x, y).

Thus we have the first inequality for (3.8) for all cases and (3.8) follows for k.

Now we deal with (3.9) for k, namely:

ρ−k (x, y) ≤ ρ̌−k (x, y) ≤ max(ρ−(x, y),C − 2δ − 2).

By definition, ρ̌−k−1(x, y) is the maximum of terms of the forms

(a) ρ̌−k−1(x, y)

(b) ρ̌−k−1(x, z) − ρ̌+
k−1(y, z)

(b′) ρ̌−k−1(y, z) − ρ̌+
k−1(x, z).

Now ρ−k (x, y) is given by a similar formula, and each of the terms of types (a, b, b′) dominates

the corresponding term without the check, by our induction hypothesis. So the first inequality

in (3.9) is immediate. We turn to the second inequality in (3.9).

The term of type (a) is covered by our induction hypothesis

ρ̌−k−1(x, y) ≤ max(ρ−(x, y),C − 2δ − 2).

So it will suffice now to show that terms of type (b) are bounded above by max(ρ−(x, y),C −

2δ − 2). These terms have the following form:

ρ̌−k−1(x, z) − ρ̌+
k−1(y, z).

By induction, we have one of the following:

ρ̌−k−1(x, z) ≤ ρ−(x, z)

ρ̌−k−1(x, z) ≤ C − 2δ − 2.

In the second case, the whole term (b) is bounded by C − 2δ − 2. In the first case, we bound it

as follows,

ρ̌−k−1(x, z) − ρ̌+
k−1(y, z) ≤ ρ−(x, z) − ρ+(y, z) ≤ ρ−(x, y),

to conclude.

This completes the inductive proof of (3.9), and Lemma 3.1.20 follows. �
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Lemma 3.1.21. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite.

Let G = (G,w) be a candidate configuration for completion to Aδ
K1,K2,C,C′,S

. Suppose that

(u, v) is a non-edge in G with ρ+(u, v) < C − 2δ − 1. Let Ǧ = (G, w̌) be the extension of G in

which the edge (u, v) is added, and is labeled with ρ+(u, v). Then the functions ρ̌± associated

with Ǧ satisfy

ρ̌− ≤ ρ̌+. (3.10)

Proof. We first strengthen the upper bound for ρ̌− from Lemma 3.1.20.

Claim 3.1.21.1. For all x, y ∈ G we have

ρ̌−(x, y) ≤max(ρ−(x, y), r − (ρ+(x, u) + ρ+(y, v)), (3.11)

r − (ρ+(x, v) + ρ+(y, u)))

where we adopt the convention that ρ+(u, u) = ρ+(v, v) = 0, when x or y is equal to u or v in

Proof of Claim 3.1.21.1. We prove inductively

ρ̌−k (x, y) ≤max(ρ−(x, y), r − ρ+(u, x) − ρ+(v, y),

r − ρ+(v, x) − ρ+(u, y)) (3.12)

for k ≥ 0. The claim will then follow when passing to the limit.

For the base case, k = 0, we have ρ̌−0 (x, y) = ρ−0 (x, y), and (3.12) is clear, unless (x, y) =

(u, v). In the latter case, ρ̌−(x, y) = r, and as this term occurs on the right in (3.12), again (3.12)

is clear.

Now we proceed inductively, passing from (k − 1) to k.

Once again, ρ̌−k (x, y) is among the three following forms:

ρ̌−k−1(x, y)

ρ̌−k−1(x, z) − ρ̌+
k−1(y, z)

ρ̌−k−1(y, z) − ρ̌+
k−1(x, z).
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If ρ̌−k (x, y) = ρ̌−k−1(x, y), then our inductive hypothesis yields our desired result.

We assume then without loss of generality that

ρ̌−k (x, y) = ρ̌−k−1(x, z) − ρ̌+
k−1(y, z)

= ρ̌−k−1(x, z) − ρ+
k−1(y, z). (3.13)

By induction, we have one of the following.

a. ρ̌−k−1(x, z) ≤ ρ−(x, z);

b. ρ̌−k−1(x, z) ≤ r − (ρ+(x, u) + ρ+(z, v)); or

c. ρ̌−k−1(x, z) ≤ r − (ρ+(x, v) + ρ+(z, u)).

In case (a), we have

ρ̌−k (x, y) ≤ ρ−(x, z) − ρ+
k−1(y, z) ≤ ρ−(x, z)

and (3.12) holds.

In case (b), we have

ρ̌−k (x, y) = ρ̌−k−1(x, z) − ρ+
k−1(y, z)

≤ r − (ρ+(x, u) + ρ+(z, v) + ρ+(z, y))

All that remains to be shown is that r − ρ+(u, x)− ρ+(v, y) ≤ ρ+(x, y). This follows immedi-

ately from Lemma 3.1.14 (3.5).

The treatment of case (c) is similar.

This proves Claim 3.1.21.1.

We now prove the lemma. We have ρ̌+ = ρ+ by Lemma 3.1.20, so by Claim 3.1.21.1, it

suffices to show that

max(ρ−(x, y), r − (ρ+(x, u) + ρ+(y, v)), r − (ρ+(x, v) + ρ+(y, u)) ≤ ρ+(x, y).

Now ρ− ≤ ρ+ by hypothesis, and it follows from Lemma 3.1.14 (3.5) that

r − (ρ+(x, u) + ρ+(y, v)) ≤ ρ+(x, y)

r − (ρ+(x, v) + ρ+(y, u)) ≤ ρ+(x, y).

The lemma follows. �
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Corollary 3.1.21.1. SupposeG = (G,w) is a candidate configuration for completion toAδ
K1,K2,C,C′,S

,

where δ,K1, and C are finite. Then after the first and second steps of the completion algorithm

have been applied to G, yielding Ĝ = (G, ŵ), we will have that

ρ̂−(x, y) ≤ ρ̂+(x, y),

for every x, y ∈ G.

Proof. Let (u, v) and (x, y) be two edges of G satisfying ρ+(u, v), ρ+(x, y) < C − 2δ − 1. After

adding the edge (u, v) with the label ρ+(u, v) to G to form Ǧ, by Lemma 3.1.21 we have ρ̌+ = ρ+

and therefore ρ̌+(x, y) < C − 2δ − 1 also in Ǧ. Therefore the application of Lemma 3.1.21 can

be iterated until all (finitely many) such pairs from G have been dealt with. �

We have thus shown the following.

Lemma 3.1.22. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ + max(K1, δ/2), C′ = C + 1. Let G = (G,w) be a [δ]-edge-

labeled graph which is a candidate configuration for completion toAδ
K1,K2,C,C′,S

.

Then applying the first step of the completion algorithm to G will extend G to another

candidate configuration Ĝ for completion toAδ
K1,K2,C,C′,S

.

Furthermore, the new configuration Ĝ satisfies

ρ̃+(x, y) ≥ C − 2δ − 1

for all pairs (x, y) which are not edges of Ǧ.

Proof. The first point follows immediately from Corollary 3.1.21.1 and Lemmas 3.1.19 and

3.1.18.

For the second point, since ρ̂+ = ρ+, any edge with ρ̃+(u, v) < C − 2δ − 1 has already been

added to Ĝ. �

We proceed to show that the entirety of the completion algorithm yields a desired metric

space inAδ
K1,K2,C,C′,S

.
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Lemma 3.1.23. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ+max(K1, δ/2). LetG = (G,w) be a candidate configuration

for completion toAδ
K1,K2,C,C′,S

.

Suppose that for every non-edge (u, v) of G, we have

ρ+(u, v) ≥ C − 2δ − 1.

Then assigning weights

w̄ = max(ρ−(u, v), (C − 2δ − 1)′)

to the remaining non-edges (u, v) yields a completion G which satisfies the triangle inequality.

Proof. Since G is a candidate configuration for completion toAδ
K1,K2,C,C′,S

, it does not contain

any triangles violating the triangle inequality.

We check the following inequalities:

1. w(x, y) ≤ w(x, z) + w̄(y, z);

2. w̄(x, y) ≤ w(x, z) + w(y, z);

3. w(x, y) ≤ w̄(x, z) + w̄(y, z);

4. w̄(x, y) ≤ w(x, z) + w̄(y, z);

5. w̄(x, y) ≤ w̄(x, z) + w̄(y, z),

for x, y, z ∈ G, where we write w̄ only when the pair in question is a non-edge in G.

We observe first that ρ− ≤ w̄ ≤ ρ+ by our definition and the hypotheses. Therefore it

will suffice to prove any of the inequalities with ρ+ substituted for w̄ wherever it occurs on the

left side, and with ρ− substituted for w̄ wherever it occurs on the right side. This transforms

inequalities (1, 2, 4) into

(1′) w(x, y) ≤ w(x, z) + ρ−(y, z);

(2′) ρ+(x, y) ≤ w(x, z) + w(y, z);

(4′) ρ+(x, y) ≤ w(x, z) + ρ−(y, z).
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Note that in this form, inequalities (1′, 2′) are instances of (4′), which is an instance of an

inequality given in Lemma 3.1.14.

This leaves us with

(3) w(x, y) ≤ w̄(x, z) + w̄(y, z);

(5) w̄(x, y) ≤ w̄(x, z) + w̄(y, z).

Here each term on the right is at least (C − 2δ − 1)′; if one of these terms is δ − 1, then

the inequality becomes trivial, and otherwise both are at least C − 2δ − 1 ≥ δ/2, and again the

inequality becomes trivial. �

Lemma 3.1.24. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ+max(K1, δ/2). LetG = (G,w) be a candidate configuration

for completion toAδ
K1,K2,C,C′,S

.

Suppose that for every non-edge (u, v) of G, we have

ρ+(u, v) ≥ C − 2δ − 1.

Then assigning weights

w̄ = max(ρ−(u, v), (C − 2δ − 1)′)

to the remaining non-edges (u, v) yields a completion G which does not isometrically embed

any triangles of odd perimeter less than 2K1.

Proof. By assumption, G contains no triangles of odd perimeter less than 2K1, so any such

triangle in G must contain at least one new edge with weight at least (C − 2δ− 1)′ = C − 2δ− 1

or δ − 1.

Suppose first that (C − 2δ − 1)′ = C − 2δ − 1. By our assumptions on C, this is at least K1.

But the triangle inequality holds in G by Lemma 3.1.23, so any triangle with an edge of weight

at least K1 has perimeter at least 2K1.

This leaves the case (C − 2δ − 1)′ , C − 2δ − 1, a very special case in which we have

(C − 2δ − 1)′ = δ − 1 S , ∅.
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If K1 = δ then S = ∅, by the definition of admissibility (Table 2.1). So here we have

(C − 2δ − 1)′ ≥ K1, and we conclude as above. �

Lemma 3.1.25. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ+max(K1, δ/2). LetG = (G,w) be a candidate configuration

for completion toAδ
K1,K2,C,C′,S

.

Suppose that for every non-edge (u, v) of G, we have

ρ+(u, v) ≥ C − 2δ − 1.

Then assigning weights

w̄ = max(ρ−(u, v), (C − 2δ − 1)′)

to the remaining non-edges (u, v) yields a completion G which does not contain any violations

of the Henson constraints, or the triangle type (1, δ, δ), in the case that K2 = δ − 1.

Proof. We first address S.

We first show that if (u, v) is a non-edge of G and ρ−(u, v) > (C − 2δ − 1)′, then ρ−(u, v) <

{1, δ}.

Since ρ−(u, v) > (C − 2δ − 1)′ > 0, we have that ρ−(u, v) > 1.

In particular, ρ−(u, v) , ρ−0 (u, v) and thus

ρ−(u, v) = ρ−j (u, v) = ρ−j−1(u,w) − ρ+
j−1(w, v)

for some j and some w < {u, v}. Hence ρ−(u, v) ≤ δ − 1.

Therefore ρ−(u, v), when ρ−(u, v) > (C − 2δ− 1)′, cannot introduce any values of 1 or δ and

thus using the value ρ− will not not yield any violations of Henson constraints.

Now we show that the value (C − 2δ − 1)′ does not lie in {1, δ} either. Certainly the value

δ − 1 is not in {1, δ}, since δ ≥ 3.

Suppose then that (C−2δ−1)′ = C−2δ−1 and that this value lies in {1, δ}. If C−2δ−1 = 1,

then C = 2δ + 2. By the definition of admissibility (Table 2.1), this implies that S = ∅.
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If C − 2δ − 1 = δ and S , ∅, then step 3 of the completion algorithm would use the value

(C − 2δ − 1)′ = δ − 1 instead of C − 2δ − 1.

Thus, extending by (C − 2δ − 1)′ would also not result in any violations of Henson con-

straints.

Similarly, if K2 = δ − 1 and a triangle of type (1, δ, δ) appears in Ḡ, then the corresponding

value w̄(u, v) must be 1, and C = 2δ+2. However it follows from the definition of admissibility

that for C > 2δ + K1 and K2 = δ − 1, we must have that C > 2δ + 2 (again from Table 2.1). �

Lemma 3.1.26. LetAδ
K1,K2,C,C′,S

be the amalgamation class of finite [δ]-metric spaces associ-

ated to admissible parameters

(δ,K1,K2,C,C′,S)

with δ,K1, and C finite, and C > 2δ+max(K1, δ/2). LetG = (G,w) be a candidate configuration

for completion toAδ
K1,K2,C,C′,S

.

Suppose that for every non-edge (u, v) of G, we have

ρ+(u, v) ≥ C − 2δ − 1.

Then assigning weights

w̄ = max(ρ−(u, v), (C − 2δ − 1)′)

to the remaining non-edges (u, v) yields a completion G which does not contain any triangles

of perimeter larger than C − 1.

Proof. AsG is a candidate configuration, it satisfies ρ− ≤ ρ+ and therefore contains no triangles

of perimeter greater than C. So any triangle in G must contain at least one newly labeled edge.

If a newly labeled edge is labeled with the value (C−2δ−1)′ ≤ C−2δ−1, then any triangle

containing this edge would have perimeter at most C − 1.

Thus we turn our attention to triangles for which any newly labeled edges were labeled with

ρ−.

Since w = ρ+ on all edges in G, and ρ− ≤ ρ+, it suffices to prove

ρ+(x, y) + ρ+(x, z) + ρ+(y, z) < C

which follows at once from the inductive definition of the weights ρ+
i . �
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We therefore have the following.

Proof of Proposition 3.1.6. By Lemma 3.1.22, the extended graph Ĝ obtained after Step 1 of

the completion algorithm is again a candidate configuration and satisfies the condition

ρ̃+(x, y) ≥ C − 2δ − 1

for all pairs (x, y) which are not edges of Ĝ. Lemmas 3.1.23–3.1.26 show that the further

extension G constructed in Step 3 belongs toAδ
K1,K2,C,C′,S

. �

3.1.3.5 Proof of the main theorem

We may now prove Proposition 2.

Proposition 2. For any primitive metrically homogeneous graph ΓδK1,K2,C,C′,S
of generic type

for which C > 2δ + max(K1, δ/2), C′ = C + 1, and K2 ≥ δ − 1, the classAδ
K1,K2,C,C′,S

is finitely

constrained.

Proof.

Claim 3.1.0.1. The candidate configurations for Aδ
K1,K2,C,C′,S

are precisely those configura-

tions which embed into an element ofAδ
K1,K2,C,C′,S

.

The claim comes easily now: inclusion in one direction is given by Proposition 3.1.6, using

the completion process. Inclusion in the reverse direction is given by Lemma 3.1.17.

By Corollary 3.1.7.1 to Lemma 3.1.7 Lemmas3.1.8 and 3.1.15, the candidate configurations

are characterized by a finite set of forbidden configurations. The theorem follows. �

We now give a sharper version of Proposition 2, with an explicit set of forbidden config-

urations. The argument above was our original proof, and the more general form given in

[ABH+17] is also based on a certain completion procedure terminating in uniformly bounded

time.

The following analysis is similar to that given more generally in [HKK17].

Lemma 3.1.27. Let δ and C be finite, with C > 2δ + 1.
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Then a finite [δ]-edge-labeled graph G = (G,w) satisfies the condition

ρ− ≤ ρ+

if and only if G does not contain any of the configurations in the set F0.

Proof.

Claim 3.1.27.1. If G contains a cycle whose edges can be indexed so that

∑
i≤2`+1

ρ−(ei) > `(C − 1) +
∑

i≥2`+2

ρ+(ei)

then ρ−(x, y) > ρ+(x, y) for some vertices x, y in G.

We proceed by induction on `.

For ` = 0, the inequality becomes

ρ−(e1) >
∑
i≥2

ρ+(ei).

As the edges form a cycle, Lemma 3.1.14 (3.5) applies and gives ρ−(e1) > ρ+(e1). The claim

follows.

Now we proceed inductively from ` − 1 to `.

Take the edges e1, · · · , e2`+1 to be in cyclic order according to some orientation of the cycle,

with vertices (ui, vi) labeled consistently with respect to the same orientation, and let γi be the

path from vi to ui+1 (take modulo 2` + 1).

Then repeated use of the inequalities in Lemma 3.1.14 yields

ρ−(v2`, u1) ≥ ρ−(e2`+1) −
∑

e∈γ2`∪γ2`+1

ρ+(e).

Then the definition of ρ+ gives

ρ+(v2`, u1) ≤ (C − 1) − (ρ−(e2`) + ρ−(e2`+1) −
∑

e∈γ2`∪γ2`+1

ρ+(e))

and then

ρ+(v2`−1, u1) ≤ (C − 1) − (ρ−(e2`) + ρ−(e2`+1) −
∑

e∈γ2`−1∪γ2`∪γ2`+1

ρ+(e)).
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Thus if we shorten the cycle by replacing the segment from v2`−1 to u1 by the edge (v2`−1, u1),

the corresponding inequality will continue to hold with ` replaced by `−1, and we may conclude

by induction.

This proves the claim.

Claim 3.1.27.2. If ρ− ≤ ρ+ in G, then G contains no cycle in F0.

Supposing the contrary, since ρ− ≤ ρ+, it follows that ρ± must agree with w on the cycle,

by Lemma 3.1.16. But this contradicts the first claim. Thus G does not contain any cycle in F0.

Claim 3.1.27.3. If there is a cycle in G whose edges can be enumerated so that∑
i≤2`+1

ρ−(ei) > `(C − 1) +
∑

i≥2`+2

ρ+(ei)

then G contains one of the cycles in F0.

For large k, this may be written as∑
i≤2`+1

ρ−k (ei) > `(C − 1) +
∑

i≥2`+2

ρ+
k (ei). (?)

Take k minimal so that there is a cycle satisfying (?). We show first that k = 0.

Supposing the contrary, replace each edge e for which a term ρ±k (e) occurs in (?) with

a different value from the corresponding term ρ±k−1(e) by a pair of edges e′, e′′ joining the

endpoints of e and satisfying one of the relations

ρ+
k (e) = ρ+

k−1(e′) + ρ+
k−1(e′′)

ρ+
k (e) = (C − 1) − (ρ−k−1(e′) + ρ−k−1(e′′))

ρ−k (e) = ρ−k−1(e′) − ρ+
k−1(e′′).

This produces a circuit whose edges can be enumerated so as to satisfy the same inequality,

with k − 1 in place of k, and with an increased value of ` if the second formula has been used.

(Since terms with ρ+ go on the right and terms with ρ− go on the left, it is clear how the edges

should be indexed, and one then checks that the inequality is preserved.)

This circuit then breaks up into cycles. For those with an even number of edges occurring

on the left side of the inequality (?) for k − 1, we have the reverse inequality
′∑
e

ρ−(e) ≤ 2`δ ≤ `(C − 1) +

′′∑
e

ρ+(e)
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with the sums restricted to edges in the given cycle.

It follows that one of the cycles with an odd number of edges occurring on the left side of

(?) must satisfy the inequality (?) for k − 1, applied to that cycle. But this then contradicts the

minimality of k.

So k = 0. We examine (?) in this case.∑
i≤2`+1

ρ−0 (ei) > `(C − 1) +
∑

i≥2`+2

ρ+
0 (ei).

If one of the terms on the left is 1 then we find

2`δ + 1 ≥
∑

i≤2`+1

ρ−0 (ei) > `(C − 1) ≥ `(2δ + 1)

hence ` = 0.

But then the inequality becomes

1 >
∑
i≥2

ρ+(ei)

and even a degenerate cycle of length two would have a term on the right. So all of the terms

on the left side of our inequality are of the form w(e).

If one of the terms on the right side is δ, then our inequality implies

(2` + 1)δ > `(C − 1) + δ ≥ `(2δ + 1) + δ = (2` + 1)δ + `,

a contradiction. So the terms on the right side are also of the form w(e) and our cycle lies in F0.

Claim 3.1.27.4. If there is a pair (x, y) in G with ρ−(x, y) > ρ+(x, y) then G contains one of the

cycles in F0.

We may consider the degenerate cycle with two oriented edges e1 = (x, y) and e2 = (y, x).

We then have

ρ−(e1) > ρ+(e2)

and the previous claim applies even to this degenerate case, with ` = 0, giving the desired

result.

Now our second and fourth claims give the lemma. �

We may now deduce the following.
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Corollary 3.1.27.1. Let Γ = ΓδK1,K2,C,C′,S
be a primitive metrically homogeneous graph of

generic type for which C > 2δ + max(K1, δ/2),C′ = C + 1, and K2 ≥ δ − 1. Then a finite

[δ]-edge-labeled graph embeds into Γ if and only if it does not contain any of the cycles in the

finite set F .

Proof. By the proof of Proposition 2, the finite [δ]-edge-labeled graphs which embed in Γ

are the candidate configurations for completion to Aδ
K1,K2,C,C′,S

. By definition and by Lemma

3.1.27, these are the configurations which do not contain any cycle from F .

Finally, F is finite by Lemma 3.1.10. �

3.2 Ample generics and the topological group Aut(Γ)

Both this section and the next are concerned with Aut(Γ) as a Polish group.

In Section 3.1, we showed that the known primitive metrically homogeneous graphs of

generic type whose associated numerical parameters satisfy some additional restrictions are

finitely constrained in the sense of Definition 2.6.2. At the same time, we developed a comple-

tion process for systematically completing a partial substructure to an induced substructure.

In this section, we show that the results of Section 3.1 have powerful consequences for

the behavior of the automorphism group as a Polish group. Using the formulation developed

in Section 2.6, we combine the results of Herwig-Lascar and Kechris-Rosendal, discussed in

Section 2.3, with the results of Section 3.1, to show that the automorphism group has ample

generics, and then deduce a plethora of topological consequences. In the following section, we

will derive dynamical properties of the automorphism group as a topological group by applying

the result of Section 3.1 in conjunction with the combinatorial results of Hubička-Nešetřil and

the general theory of Kechris-Pestov-Todorčević, discussed in Section 2.4.

The main result of this section is the following.

Theorem 1. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1 finite,

for which C > 2δ + max(K1, δ/2), K2 ≥ δ − 1 and C′ = C + 1, and let Γ = ΓδK1,K2,C,C′,S
be the

associated primitive metrically homogeneous graph of generic type.

Then the Polish group Aut(Γ) has ample generics, and therefore has the following proper-

ties.
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• The small index property and automatic continuity;

• uncountable cofinality;

• the fixed point properties (FA) and (FH).

As we mentioned in the introduction, the small index property and automatic continuity

both address ways in which the structure of the automorphism group as an abstract group deter-

mines its topology. Uncountable cofinality and properties (FA) and (FH) conversely state that

properties of the abstract group can be derived from topological properties.

In the setting of Theorem 1, we will derive the existence of ample generics from the prop-

erties EPPA and APA discussed in Sections 2.3 and 2.6. The key to this is to show that the

completion process of Section 3.1.3 is a canonical completion process in the sense of Defini-

tion 2.6.4.

Lemma 3.2.1. Under the hypotheses of Theorem 1, the completion process given in Definition

3.1.9 is a canonical completion process for finite partialAδ
K1,K2,C,C′,S

-structures.

Proof. We recall the procedure in general terms.

1. Calculate weights ρ±i inductively and take limits to get weights ρ±.

2. Add edges with weight ρ+ whenever ρ+ < C − 2δ − 1.

3. Recalculate ρ±i and ρ±, calling the result ρ̂±.

4. Assign weights max(ρ−, (C − 2δ − 1)′) to the remaining edges, where (C − 2δ − 1)′ is an

explicitly given constant.

Since the weights ρ±i are defined inductively in terms of the original weights and the previous

weights ρ±j ( j < i), at each of these four stages these weights are preserved by isomorphisms at

the level of the initial structures. Therefore the completion process is canonical. �

Lemma 3.2.2. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1

finite, for which

C > 2δ + max(K1, δ/2) K2 ≥ δ − 1 C′ = C + 1.

LetA = Aδ
K1,K2,C,C′,S

be the associated amalgamation class of finite [δ]-valued metric spaces.

Then A has the amalgamation property for automorphisms (APA) and the extension property

for partial automorphisms (EPPA).
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Proof. The class A is a strong amalgamation class (Observation 1). By Lemma 3.2.1, there is

a canonical completion process for finite partial A-structures. By Lemma 2.6.4, the class A

has the APA.

By Proposition 2, the class A is finitely constrained. As we are treating metrically homo-

geneous graphs of diameter δ as edge-labeled complete graphs with labels in [δ], the class is

relationally complete and the structures are irreflexive. By Proposition 2.6.1, the class A has

the EPPA. �

We may now prove Theorem 1.

Theorem 1. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1 finite,

for which C > 2δ + max(K1, δ/2), K2 ≥ δ − 1 and C′ = C + 1, and let Γ = ΓδK1,K2,C,C′,S
be the

associated primitive metrically homogeneous graph of generic type.

Then the Polish group Aut(Γ) has ample generics, and therefore has the following proper-

ties.

• The small index property and automatic continuity;

• uncountable cofinality;

• the fixed point properties (FA) and (FH).

Proof. By Lemma 3.2.2, the age of Γ has the APA and the EPPA. By Theorem 2.3.3, Γ has

ample generics. By Theorem 2.3.1, we have that Γ has the small index property and automatic

continuity. By Theorem 2.3.2, G has uncountable cofinality and properties (FA) and (FH). �

3.3 The Ramsey property and extreme amenability

In this section, we use the finiteness result of Section 3.1.3 to derive results on the dynami-

cal properties of the automorphism groups of the metrically homogeneous graphs Γ to which

Proposition 2 applies. We first consider the automorphism group of the generic expansion of Γ

by a linear order, and then return to the full automorphism group of the underlying graph.

Our main result is as follows.

Theorem 2. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1 finite,

for which C > 2δ + max(K1, δ/2), K2 ≥ δ − 1 and C′ = C + 1, and let Γ = ΓδK1,K2,C,C′,S
be the
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associated primitive metrically homogeneous graph of generic type.

Then the universal minimal flow of Aut(Γ) is metrizable.

Furthermore, the universal minimal flow of Aut(Γ) is the space L(Γ) of all linear orderings

of Γ.

With Γ as in Theorem 2, we first consider the automorphism group of its generic expansion

by a linear order (Γ, <).

Proposition 1. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1

finite, for which C > 2δ + max(K1, δ/2), K2 ≥ δ − 1 and C′ = C + 1. Let Γ = ΓδK1,K2,C,C′,S
be

the associated primitive metrically homogeneous graph of generic type, and let (Γ, <) be the

generic expansion of Γ by a linear order.

Then Aut(Γ, <) is extremely amenable.

Proof. Let A be the age of Γ and let A< be the age of (Γ, <). By Theorem 2.4.2, it suffices to

show thatA< has the Ramsey property. Note that for our choices of parameters, the classesA

andA< are strong amalgamation classes.

Let L0 be the language consisting of binary relations Ri for i ∈ [δ] and let L be the expan-

sion of L0 by a binary relation ≤. Let F0 be the class of irreducible L0-structures on at most

two points in which at least one of the following occurs:

• an edge relation is asymmetric;

• an edge relation is reflexive;

• more than one edge relation holds on a pair of points.

Let F be the class of ordered L-structures whose reducts to the language L0 lie in F0.

Let R be the class of finite ordered L-structures which forbid all elements of F under

embedding. In other words, R consists of L-structures for which ≤ is a total order and the

reduct to the language L0 is a [δ]-edge-labeled graph.

By Theorem 2.5.1, the class R is a Ramsey class.

By Theorem 2.5.2, it now suffices to check that the subclassA is locally finite.

By Proposition 2, the class A is finitely constrained. Let F be a suitable finite set of

constraints and let n be the maximal cardinality of an element of F . It suffices to show that any
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finite L-structure A with the following two properties can be completed to an element inA<.

1. Any induced substructure ofA on n elements completes to an element ofA<;

2. There is a homomorphism h from A to a structure Ā in R which is injective on each

irreducible substructure of A.

The first condition implies that the reduct of A to the language of [δ]-metric spaces is F -free,

and therefore has a completion inA.

Consider A and Ā as directed graphs with edge relations given by ≤, the interpretation of ≤,

respectively. Since h is a homomorphism, it takes cycles in A to cycles in Ā. As Ā is acyclic,

we have that A is also acyclic. Therefore the relation ≤ on A extends to a linear order, as

required. �

We now turn to the topological dynamical properties of the full automorphism group of our

metrically homogeneous graphs. We show that the universal minimal flow is metrizable, and

even identify it explicitly.

Theorem 2. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with δ and K1 finite,

for which C > 2δ + max(K1, δ/2), K2 ≥ δ − 1 and C′ = C + 1, and let Γ = ΓδK1,K2,C,C′,S
be the

associated primitive metrically homogeneous graph of generic type.

Then the universal minimal flow of Aut(Γ) is metrizable.

Furthermore, the universal minimal flow of Aut(Γ) is the space L(Γ) of all linear orderings

of Γ.

Proof. This will follow from the two parts of [KPT05, Theorem 7.5] (Theorem 2.4.3), with

K0 = Aδ
K1,K2,C,C′,S

, and K = A
δ,<
K1,K2,C,C′,S

.

By Theorem 2.5.1, we have that Aδ,<
K1,K2,C,C′,S

is Ramsey, and therefore metrizability fol-

lows from part 1 from the aforementioned theorem. The explicit identification of the universal

minimal flow follows from part 2, once the ordering property is known.

The ordering property follows from Theorem 2.4.4, since Γ is homogeneous for a symmetric

binary language (see the comment following Theorem 2.4.4). �
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Chapter 4

Algebraic Results

We now take a very different approach to the study of metrically homogeneous graphs from

the topological approach of Chapter 3. We consider two topics of a more algebraic character,

relying ultimately on the same type of Fraı̈ssé theoretic information as in Chapter 3.

The first of these topics is the classification of twisted isomorphisms of metrically homoge-

neous graphs (Definition 2.7.2), and in particular, the twisted automorphism groups and asso-

ciated groups of twists acting on the language, which we identify with the set [δ]. As noted in

the introduction, we find the same twists in our context (Theorem 3) as were found by Bannai

and Bannai, and by Gardiner, in [BB80, Gar80], and we classify the metrically homogeneous

graphs for which non-trivial twists occur, to the extent the current state of the classification

theory allows. In particular, the group of outer automorphisms turns out to be either trivial

or cyclic of order 2 in the case of metrically homogeneous graphs of generic type, known or

otherwise. This is proved in Sections 4.1 and 4.2.

Our second topic is the question as to when the algebra of the age of a known metrically ho-

mogeneous graph of generic type is a polynomial algebra. Using a criterion given in [Cam97],

we find that this s usually the case, with some extreme cases still unsettled (Theorem 4). Here a

very special case of canonical completion of partial structures is required, namely the canonical

completion of a disjoint union.

4.1 Twists

The following lemmas will be widely applicable in our argument.

Lemma 4.1.1. Let δ ≤ ∞ be fixed, and let σ be a permutation of [δ] for which there is some

metrically homogeneous graph Γ twistable by σ. Let k = σ−1(1). Then σ(ik) = i for all i

satisfying ik ≤ δ.
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Proof. We proceed by induction. Our base case i = 1 holds by definition, so we fix some i with

1 < i ≤ δ/k and assume for all j < i that σ( jk) = j. A geodesic of type (k, (i − 1)k, ik) must be

realized in Γ and therefore its image under σ, the triangle type (1, i− 1, σ(ik)), must be realized

in Γσ. By the triangle inequality we have |σ(ik) − (i − 1)| ≤ 1. As σ( jk) = j for all j < i, the

only remaining option then is σ(ik) = i. �

Note that from this we may deduce that if σ(1) = 1, then σ(i) = i for all i ≤ δ. This point

also follows from Fact 2.2.1 as the metric d in Γσ must be the graph metric. Thus if σ is a

non-trivial permutation of the language for which there is some metrically homogeneous graph

Γ twistable by σ, then σ(1) > 1.

We also deduce that the diameter of Γ must be finite:

Lemma 4.1.2. Let Γ be a metrically homogeneous graph and let σ be a non-trivial permuta-

tion of the language of a metrically homogeneous graph Γ such that Γσ is also a metrically

homogeneous graph. Then the diameter δ of Γ is finite.

Proof. Suppose δ = ∞ and let k = σ−1(1). By Lemma 4.1.1, we have

σ[kN] = N

and hence kN = N. Thus k = 1, but then σ is trivial. �

We will make frequent use of the following fact.

Fact 2.2.1 from 2.2 may be phrased usefully for our purposes as follows.

Fact 4.1.1. Let Γ be a metrically homogeneous graph and σ a permutation of the language of

Γ. Then the following are equivalent.

• Γσ is a metrically homogeneous graph

• Γσ is a metric space, and contains all triangles of type (1, k, k + 1) for k less than the

diameter of Γ.

4.1.1 Non-generic type

Here we work towards proving the following main result:
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Proposition 4.1.1. Let Γ be a metrically homogeneous graph of non-generic type or diameter

δ ≤ 2, and σ a non-trivial permutation of the language such that Γσ is metrically homogeneous.

Then Γσ is also of non-generic type or diameter δ ≤ 2, and one of the following applies.

• Γ has diameter 2 and is not complete multipartite, with σ the transposition (12).

• Γ is finite, antipodal of diameter 3, not bipartite, with σ the transposition (12).

• Γ is an n-cycle Cn, n ≥ 7; δ = bn/2c: σ is given by multiplication by ±k (mod n) for some

k with (k, n) = 1, with ±i identified.

We prove this result by first showing the following three claims.

Claim 4.1.1.1. For δ ≤ 2 the metrically homogeneous graphs with non-trivial twists are the

homogeneous graphs which are neither disjoint unions of complete graphs nor complements of

disjoint unions of complete graphs.

Claim 4.1.1.2. Let Γ be an n-cycle with n ≥ 3. Then the permutations σ of the language of

Γ for which Γσ is a metrically homogeneous graph are given by the group Un/(±1) acting on

the set of distances, where Un is the group of units modulo n. More specifically, we define the

action µk on the set of distances to be multiplication by k modulo n where k ∈ Un.

Claim 4.1.1.3. Let Γ be a metrically homogeneous antipodal graph of diameter 3. If Γ is not

bipartite, then σ = (12) is the unique non-trivial twist for which Γσ is metrically homogeneous.

If Γ is bipartite, then no such permutation exists.

Proof of Claim 4.1.1.1. The metrically homogeneous graphs of diameter at most 2 are pre-

cisely the connected homogeneous graphs. For diameter δ = 2, twisting via σ = (12) is equiva-

lent to taking the complement of the graph. Since the complement of a homogeneous graph is a

homogeneous graph, in order to ensure that both Γ and Γσ are metrically homogeneous graphs,

we need to show that both Γ and Γσ are connected homogeneous graphs.

The only disconnected homogeneous graphs of diameter at most 2 are those which are

disjoint unions of complete graphs (Fact 2.1.2). Thus, the twistable metrically homogeneous

graphs of diameter δ ≤ 2 are the homogeneous graphs which are neither disjoints unions of

complete graphs nor are they the complements of disjoint unions of complete graphs.
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Proof of Claim 4.1.1.2. If k ∈ Un, then µk is an automorphism of the group Z/nZ. The

group Z/nZ can be endowed with the graph structure of Cn by defining two elements a, b to be

adjacent if a − b = ±1. The action of µk on Z/nZ yields another graph where now there is a

edge between a and b if a − b = ±k. This graph is isomorphic to Cn since k is a generator of

Z/nZ. Hence the action of µk not only sends Cn to some metrically homogeneous graph, rather

it sends Cn to Cn.

Now suppose Cσ
n is a metrically homogeneous graph and k = σ−1(1). As Γ is connected, all

points of Γ are connected by paths with successive distances equal to k, and thus all distances

occurring in Γσ are divisible by gcd(k, n). But one of these distances is 1, so k ∈ U∗n. Recalling

from Lemma 4.1.1 that σ(1) determines σ, we have σ = µk.

Proof of Claim 4.1.1.3. Suppose Γ is antipodal of diameter 3 and that Γσ is metrically homo-

geneous (in particular, connected) with σ a non-trivial twist. Note that Γσ is also of diameter

3. Write dσ for the path metric on Γσ; dσ(x, y) = d(x, y)σ.

Let k = σ(3). Then dσ(x, y) = k defines a pairing on Γσ; that is, for each vertex v there is a

unique v′ with dσ(x, y) = k.

If k = 1, then since Γσ is connected, it consists of just two vertices, and cannot have

diameter 3.

If k = 2, then (Γσ)2 consists of a unique vertex v. But every vertex of (Γσ)1 ∪ (Γσ)2 has a

neighbor in (Γσ)2, so v is adjacent to all points of Γσ other than the chosen basepoint. But then

no vertex lies at distance 3 from v, a contradiction.

So σ must fix the value 3, and being non-trivial, must be the permutation (12). Since Γσ is

connected, Γ is connected with respect to the edge relation d(x, y) = 2. But then Γ cannot be

bipartite.

Now, conversely, suppose that Γ is antipodal, metrically homogeneous, of diameter 3, and

not bipartite, and that σ = (12). We claim that Γσ is a metrically homogeneous graph. By Fact

4.1.1, it suffices to show that Γσ contains geodesic triangles of types (1, 1, 2) and (1, 2, 3), and

does not contain triples of type (1, 1, 3).

As Γ contains geodesic triangles of type (1, 2, 3), so does Γσ.

As Γ is not bipartite, it contains some triangle of odd perimeter, and as Γ is antipodal, the
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perimeter is bounded by 2δ = 6. So the possible triangle types are (1, 1, 1) or (2, 2, 1). By a

given triangle of type (1, 1, 1), after replacing a point by an antipodal point and applying the

antipodal law of Fact 2.2.8, we get a triangle of type (2, 2, 1). So in any case, Γ contains a

triangle of type (2, 2, 1), and thus Γσ contains a triangle of type (1, 1, 2).

This concludes the proof of the claim.

Proof of Proposition 4.1.1. The case of diameter at most 2 is covered by Claim 4.1.1.1, bearing

in mind that Γσ has the same diameter as Γ. So we suppose δ ≥ 3 and Γ is of non-generic type.

By the classification of non-generic type, given as Fact 2.2.2 in Section 2.2, Γ is then finite or

one of the tree-like graphs Tm,n. When Γ is finite, Fact 2.2.5 describes the possibilities, and

Claims 4.1.1.2 and 4.1.1.3 deal with those possibilities. Of course in this case Γσ is also finite

and thus not of generic type. Finally, the case of Tm,n does not arise since Lemma 4.1.2 tells us

that the diameter must be finite. �

4.1.2 Generic type

We work towards the following result.

Proposition 4.1.2. Let σ be a non-trivial permutation of the language of a metrically homoge-

neous graph Γ of generic type where Γσ is itself a metrically homogeneous graph. Then σ is

one of ρ, ρ−1, τ0, τ1, which are defined as follows:

ρ(i) =


2i i ≤ δ/2

2(δ − i) + 1 i > δ/2
ρ−1(i) =


i/2 i even

δ − i−1
2 i odd

and for ε = 0 or 1, τε is the involution defined by

τε(i) =


(δ + ε) − i for min(i, (δ + ε) − i) odd

i otherwise.

We begin by showing the following:

Proposition 4.1.3. Let σ be a non-trivial permutation of the language of a metrically homoge-

neous graph Γ of generic type which maps Γ to another metrically homogeneous graph.

Then δ is finite, and σ(1) ∈ {2, δ − 1, δ}.
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Proof. Let σ(1) = k, and assume towards a contradiction that 2 < k < δ − 1. By Proposition

2.2.1 of Section 2.2, the triangle types (k, k, 2) and (k, k, 4) must be realized in Γσ. Thus their

inverse images under σ, namely (1, 1, σ−1(2)) and (1, 1, σ−1(4)), satisfy the triangle inequality.

This implies that σ−1({2, 4}) = {1, 2}. Hence

σ(1) = 4 σ(2) = 2 δ ≥ 6,

as σ(1) < δ − 1.

We will now argue that this implies that δ = 6, and a contradiction will follow.

If δ ≥ 7, then again by Proposition 2.2.1, the triangle types (k, k, 2), (k, k, 4) and (k, k, 6)

must all be realized in Γσ. However, there are only two possible values i for which the triple

(1, 1, i) will satisfy the triangle inequality. We therefore have a contradiction in this case.

Now suppose that δ = 6. Since the triangle type (2, 4, 6) is of geodesic type, it must be

realized in Γσ (Observation 2.2.1), and therefore σ−1(2, 4, 6) = (1, 2, σ−1(6)) must be realized

in Γ. This implies then that σ−1(6) ≤ 3. The only option then is that

σ(3) = 6.

This leaves σ(4) ∈ {1, 3, 5}. The geodesic types (1, 3, 4) and (2, 2, 4) are realized in Γ,

and therefore their images (4, 6, σ(4)) and (2, 2, σ(4)) are realized in Γσ. This implies that

2 ≤ σ(4) ≤ 4. Thus,

σ(4) = 3.

Finally, we examine σ−1(1) ∈ {5, 6}. The geodesic type (1, 3, 4) being realized in Γσ implies

that (1, 4, σ−1(1)) is realized in Γ, and therefore σ−1(1) ≤ 5. This gives us that σ(5) = 1, and

thus σ = (14365). However, this permutation would send the geodesic type (2, 3, 5) to (1, 2, 6),

and hence is not a suitable twist.

We have therefore indeed shown that σ(1) ∈ {2, δ − 1, δ}. �

Proposition 4.1.4. Let σ be a permutation of the language of a metrically homogeneous graph

Γ of generic type which sends Γ to another metrically homogeneous graph, satisfying σ(1) = 2.

Then either σ = ρ or δ = 3 and σ is the transposition (12).
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Proof. By Lemma 4.1.1, σ(i) = 2i for all i ≤ δ/2. So the image of σ on (δ/2, δ] is the set I of

odd numbers in the interval [1, δ].

Consider the geodesic type (1, i, i + 1) for any i < δ, which σ maps to (2, σ(i), σ(i + 1)).

Since this triple must satisfy the triangle inequality, we know that

|σ(i) − σ(i + 1)| ≤ 2. (4.1)

If i > δ/2, then both σ(i) and σ(i + 1) are odd, and therefore |σ(i) − σ(i + 1)| = 2. Thus the

values σ(i) for i > δ/2 give either an increasing or a decreasing enumeration of I. In the latter

case σ = ρ. So we suppose that σ(i) enumerates I in increasing order for i > δ/2.

Let k = bδ/2c + 1. Then we have in particular that σ(k) = 1. The image of the geodesic

triangle type (1, k − 1, k) under σ is (2, 2k − 2, 1) and the triangle inequality gives 2bδ/2c ≤ 3,

hence δ ≤ 3. But then, as σ(1) = 2, we either have σ = ρ or σ = (12) with δ = 3. �

Corollary 4.1.1. Let σ be a permutation of the language of a metrically homogeneous graph

Γ of generic type for which Γσ is a metrically homogeneous graph, with σ(2) = 1. Then either

σ = ρ−1, or σ is the transposition (12) and δ = 3.

Proof. The graph Γσ is twistable by σ−1 and is of non-generic type by Proposition 4.1.1. So

Proposition 4.1.4 applies to σ−1 and Γσ, giving the result. �

We finally show the following:

Proposition 4.1.5. Let σ be a permutation of the language of a metrically homogeneous graph

Γ of generic type with diameter δ ≥ 3 such that Γσ is itself a metrically homogeneous graph.

Assume in addition that σ−1(1) > 2, that σ(1) ≥ δ − 1, and σ(1) > 2. Then either σ = τε , with

ε = σ(1) − (δ − 1) ∈ {0, 1}, or σ = ρ−1 and δ = 3.

The proof will be inductive. The base of the induction depends in part on the following.

Lemma 4.1.3. Let σ be a permutation of the language of a metrically homogeneous graph Γ

of generic type with diameter δ ≥ 3 such that Γσ is itself a metrically homogeneous graph.

Assume moreover that σ(1) ≥ δ − 1, σ(1) > 2, and σ−1(1) > 2. Then σ(2) = 2.
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Proof. Suppose first thatσ(1) = δ−1. Since by Proposition 2.2.1 the triangle type (δ−1, δ−1, 2)

is realized in Γσ, its inverse image (1, 1, σ−1(2)) must satisfy the triangle inequality, meaning

that σ−1(2) ≤ 2. Since by assumption σ(1) > 2, we have that σ(2) = 2.

Now assume that σ(1) = δ. Then (Γσ)δ = (Γ1)σ. There are at most two distances realized

in Γ1, and hence the same applies to (Γ1)σ; namely, at most σ(1) and σ(2) occur. Hence the

same applies to (Γσ)δ; thus the only two distances which may occur in (Γσ)δ are σ(1) = δ and

σ(2).

Using Fact 2.2.16, we know that each vertex in Γδ−1 has two neighbors in Γδ. The distance

i between these two points is either 1 or 2. So i , σ(1). We therefore have that σ(2) = i ≤ 2.

Since σ−1(1) > 2, we have our desired result: σ(2) = 2. �

Lemma 4.1.4. Let σ be a permutation of the language of a metrically homogeneous graph Γ

of generic type such that Γσ is metrically homogeneous and suppose that σ(2) = 2. Then for

3 ≤ k ≤ δ, we have that

|σ(k) − σ(k − 2)| ≤ 2.

and

|σ−1(k) − σ−1(k − 2)| ≤ 2.

Proof. Apply the triangle inequality to the image under σ or σ−1 of the geodesic type (2, k −

2, k). Our assumption that σ(2) = 2 then yields our desired result. �

We now proceed with the proof of Proposition 4.1.5.

Proof of Proposition 4.1.5. We initially assert the following claim.

Claim 4.1.5.1. Let k be even and at most δ. Assume moreover that k ≤ (δ + ε)/2 or (δ + ε) is

even. Then

σ−1(τε(k)) ≤ k σ−1(τε(k − 1)) ≤ k − 1

Proof of Claim 4.1.5.1. Note that for the values specified, τε(k) = k. Thus we show that

σ−1(k) ≤ k.

We proceed by induction.
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For k = 2, we have from Lemma 4.1.3 that σ(2) = 2. Moreover, by assumption, σ−1(δ +

ε − 1) = 1. Thus our base case holds. We assume then that k > 2 and for all even j < k that

σ−1( j) ≤ j and σ−1(τε( j − 1)) ≤ j − 1.

By Lemma 4.1.4, we know that |σ−1(k)−σ−1(k−2)| ≤ 2. Since by assumption σ−1(k−2) ≤

k − 2, we have that σ−1(k) ≤ k.

We consider now σ−1(τε(k − 1)). Note that for even j with j ≤ (δ + ε)/2 or (δ + ε) even,

we have τε( j + 1) = τε( j − 1) − 2, and thus σ−1(τε(k − 1)) = σ−1(τε(k − 3) − 2). Again using

Lemma 4.1.4, we get that

|σ−1(τε(k − 1)) − σ−1(τε(k − 3))| ≤ 2.

Since by induction σ−1(τε(k − 3)) ≤ k − 3, we indeed have that σ−1(τε(k − 1)) ≤ k − 1.

We now move on to the next claim:

Claim 4.1.5.2. Suppose that k is even and 2 ≤ k ≤ δ. Assume that k ≤ (δ + ε)/2 or δ + ε is

even. Then σ(k) = τε(k) and σ(k − 1) = τε(k − 1).

Proof of Claim 4.1.5.2. We begin by noting that for i ≤ (δ + ε)/2 or for δ + ε even, the

permutation τε is as follows.

τε(i) =


(δ + ε) − i i odd

i i even

We proceed by induction. We know by assumption and by Lemma 4.1.3 that σ(2) = 2 =

τε(2) and σ(1) = δ + ε − 1 = τε(1). Thus we assume that k > 2 and for j even, j ≤ k − 2, that

σ( j) = τε( j) = j and σ( j − 1) = τε( j − 1) = δ + ε − i.

For the assumed values of k and δ + ε, we have from Claim 4.1.5.1 that σ−1(τε(k)) ≤ k and

σ−1(τε(k − 1)) ≤ k − 1.

Since τε(k − 1) , τε(i) for any i < k − 1, it is also the case that σ−1(τε(k − 1)) , σ−1(τε(i))

for any i < k − 1. Thus by our inductive hypothesis, σ−1(τε)(k − 1) cannot equal any of

{σ−1(σ(1)), σ−1(σ(2)), ...σ−1(σ(k − 2))} = {1, 2, ..., k − 2}. Therefore the only possible value

that remains is σ−1(τε(k − 1)) = k − 1. By a similar argument, we obtain that σ−1(τε(k)) = k.
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We note here that one possible value of σ(i) has not been explicitly determined from Claim

4.1.5.2 when δ+ ε is even, namely σ(δ) when δ is odd. Of course this is easily resolved. Claim

4.1.5.2 tells us that for δ + ε even, σ(i) = τε(i) for all i < δ. Hence σ(δ) = τε(δ).

It remains to consider the case when

δ + ε is odd.

We maintain this assumption for the rest of the proof of the proposition.

Claim 4.1.5.3. σ = τε .

Proof of Claim 4.1.5.3. By assumption σ−1(1) > 2, and therefore by Proposition 4.1.3,

σ−1(1) ∈ {δ − 1, δ}. We write then σ−1(1) = δ + ε′ − 1 with ε′ ∈ {0, 1}. If ε′ , ε, then

δ + ε′ is even, and by from Claim 4.1.5.2, we have that σ−1 = τε′ . Since τ−1
ε′ = τε′ , we would

have that σ = τε′ , and we would therefore still obtain that ε′ = ε.

Hence we may apply Claims 4.1.5.1 and 4.1.5.2 to both σ and σ′, yielding the following

for k ≤ δ/2.

σ(k) = k if k is even

σ(k) = δ + ε − k if k is odd

σ(δ + ε − k) = k if k is odd

As δ + ε is odd, it remains to determine σ on the set

A = {i | (δ + ε)/2 < i ≤ δ and i is odd}.

We already know that σ[A] = A. Moreover, since all the elements in A are odd, we deduce

from Lemma 4.1.4 that σ either fixes or reverses A.

If σ fixes A, then σ = τε . Thus we assume towards a contradiction that σ reverses A and

that |A| ≥ 2, so δ ≥ 5.

We consider first the case when ε = 1. Since we are also assuming that δ + ε is odd, we

have that δ is even and max A = δ− 1. Under our assumptions then, σ would send the geodesic
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type (1, δ − 1, δ) to (1,min A, δ), which must therefore satisfy the triangle inequality. Therefore

min A ≥ δ − 1 which would imply that |A| = 1, which is a contradiction.

Now suppose that ε = 0. Then δ is odd and max A = δ. Under these assumptions, σ maps

the geodesic type (2,min A − 2,min A) to the triangle type (2, δ −min A + 2, δ). Once again we

obtain from the triangle inequality a restriction:

δ ≤ δ −min A + 4.

Since min A is odd, we find that min A ≤ 3. However min A > δ/2, so then δ ≤ 5.

Thus δ = 5, and σ = σ−1 = (14)(35)(2). This permutation sends the geodesic type (2, 2, 4)

to the triangle type (2, 2, 1) and the forbidden triple (1, 1, 4) to the triple (1, 4, 4). Therefore

the triangle type (2, 2, 1) is realized in Γ and the triangle type (4, 4, 1) is not realized in Γ. So

K1 ≤ 2 and Γ4 contains no edge. By Fact 2.2.13 we find that Γ is antipodal. Thus Γ does not

realize the triangle type (5, 5, 2) and hence Γσ does not realize the triangle type (3, 3, 2). This

contradicts Proposition 2.2.1 of Section 2.2. �

Proof of Proposition 4.1.2. This follows directly from Propositions 4.1.3, 4.1.4, Corollary 4.1.1,

and Proposition 4.1.5. �

4.2 Twistable graphs

We work towards showing the following main result:

Proposition 4.2.1. Let σ be one of the permutations ρ, ρ−1, τ0, or τ1, with δ ≥ 3. Then the

metrically homogeneous graphs Γ of generic type whose images Γσ are also metrically homo-

geneous are precisely those with the numerical parameters K1,K2,C,C′ as in Table 4.1 below.

Note that we do not assume that Γ is of known type. If Γ is of known type, then its iso-

morphism type will be determined by its numerical parameters together with a set of Henson

constraints. But by Proposition 4.2.1, twistability depends only on the value of the numerical

parameters.

The values of the parameters given in the tables correspond to the realization or omission

of certain triangle types which are either of the form (k, k, 1) or of some fixed perimeter, and

will be proved in that form.
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σ δ K1 K2 C C′

ρ ≥ 3, < ∞ 1 δ 2δ + 2 2δ + 3
ρ−1 ≥ 3, < ∞ δ δ 3δ + 1 3δ + 2
τε ≥ 3, < ∞ b δ+ε2 c d δ+ε2 e 2(δ + ε) + 1 2(δ + ε) + 2
τε ≥ 3, ≡ ε (mod 2) ∞ 0 2δ + 1 2(δ + ε) + 2

Exceptional Cases
σ = τ1, δ = 3 or 4

τ1 3 1 2 10 11
3 1 2 9 10
3 2 2 10 11
4 1 3 11 14
4 1 3 11 12
4 2 3 11 14

Table 4.1: Twistable Metrically Homogeneous Graphs

We break up our analysis into two subsections: one addressing the necessity of these pa-

rameter values for twistability, and another addressing the sufficiency of these parameter values

for twistability.

4.2.1 Necessity of the restrictions on the parameters

In this section we prove the following.

Proposition 4.2.2. Let σ be one of the permutations ρ, ρ−1, τ0 or τ1, with δ ≥ 3. Then the met-

rically homogeneous graphs of generic type whose images Γσ are also metrically homogeneous

graphs must have numerical parameters among those shown in Table 4.1.

The numerical parameters were defined in Definition 2.2.6, Section 2.2.

We consider twists individually in the following order: σ = ρ, ρ−1, τε .

Lemma 4.2.1. Let Γ be a metrically homogeneous graph of generic type such that Γρ is also a

metrically homogeneous graph. Then the associated numerical parameters K1,K2,C,C′ for Γ

must be 1, δ, 2δ + 2, 2δ + 3 respectively.

Proof. The triangle types (2, 2, 2) and (1, 1, 2) must both be realized in Γρ, by the definition of

generic type. Therefore their inverse images (1, 1, 1) and (δ, δ, 1) must both be realized in Γ.

Thus we already know that

K1 = 1,K2 = δ, and C ≥ 2δ + 2.
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Consider a distance k realized in Γδ, that is, the triangle type (δ, δ, k) is realized in Γ. Under

ρ, this is mapped to (1, 1, ρ(k)), so ρ(k) ≤ 2. Thus k = 1 or δ. Since Γδ is connected (Fact

2.2.12) and δ ≥ 3, the distance δ cannot occur. Thus, Γδ has diameter at most 1. As the distance

1 occurs in Γδ, the diameter equals 1. It follows from Lemma 2.2.3 that C = 2δ + 2 and

C′ = 2δ + 3. �

Lemma 4.2.2. Let Γ be a metrically homogeneous graph of generic type such that Γρ
−1

is also

a metrically homogeneous graph. Then the associated numerical parameters K1,K2,C,C′ for

Γ must be δ, δ, 3δ + 1, 3δ + 2 respectively.

Proof. For ease of notation, we write Γ̃ = Γρ
−1

.

The graph Γ̃ is twistable by ρ, and is of generic type by Proposition 4.1.1, so its numerical

parameters are given by Lemma 4.2.1. We denote them by K̃1, K̃2, C̃, C̃′.

We begin by showing the following.

Claim 4.2.2.1. K1 = K2 = δ.

Proof of Claim 4.2.2.1. By Corollary 2.2.2, in order to prove the claim, it suffices to find

triangle types of all odd perimeters less than 2δ + 1 which are not realized in Γ, as well as a

triangle type of perimeter 2δ + 1 which is realized in Γ. We first find forbidden triangles of

perimeter 2k − 1 for 2 ≤ k ≤ δ.

As C̃ = 2δ + 2 and C̃′ = 2δ + 3 (or by the proof of that fact), we have that Γ̃δ has diameter

1. Since the triangle type (δ, δ, δ) is not realized in Γ̃, the triangle type (1, 1, 1) is not realized in

Γ.

Thus we turn our attention to k satisfying 3 ≤ k ≤ δ and consider the triangle type

(2, 2dk/2e − 2, 2bk/2c − 1). This triangle type has perimeter 2k − 1 and is mapped under ρ−1 to

(1, dk/2e − 1, δ − bk/2c + 1). This triple violates the triangle inequality, since bk/2c + dk/2e = k

and k < δ + 1. Thus the triangle types (2, 2dk/2e − 2, 2bk/2c − 1) must be forbidden in Γ..

To see that some triangle type of perimeter 2δ+1 is indeed realized in Γ, we argue according

to the parity of δ. If δ is even, then the triangle type (1, δ, δ) is the image of (δ, δ/2, δ/2) under

ρ−1, which is of geodesic type. Thus the triangle type (1, δ, δ) is realized in Γ. If δ is odd, we

consider the triangle type (3, δ − 1, δ − 1). This has the image (δ−1, δ−1
2 , δ−1

2 ) under ρ−1, which

again is of geodesic type. Thus the triangle type (3, δ − 1, δ − 1) is realized in Γ.
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This proves the claim. In particular, C > 2δ + 1.

We turn our attention now to C and C′. Here we use some additional structure theory. Since

K2 = δ, we may apply Lemma 2.2.3 to get that C = 2δ + δ′ + 1 and C′ = C + 1 where δ′ is the

diameter of Γδ. It remains to show that δ′ = δ, or in other words that a triangle of type (δ, δ, δ)

occurs in Γ.

The permutation ρ−1 takes (δ, δ, δ) to ( δ+ε2 , δ+ε2 , δ+ε2 ), where ε is the parity of δ.

We first consider the case when δ is even. Proposition 2.2.1 gives us that (δ/2, δ/2, 2) is

realized in Γ̃ and therefore the triangle type (δ, δ, 4) is realized in Γ. Thus δ′ = diam(Γδ) ≥ 4.

Moreover, Γδ is connected by Fact 2.2.12. Thus the distance 2 is realized in Γδ and hence the

triangle type (δ/2, δ/2, 1) is realized in Γ̃. Therefore we may again apply Fact 2.2.12 to get that

Γ̃δ/2 is connected. The distance δ occurs in Γ̃δ/2, as seen from the geodesic type (δ/2, δ/2, δ), so

the distance δ/2 also occurs in Γ̃δ/2. Thus the triangle type (δ/2, δ/2, δ/2) is realized in Γ̃ and

the triangle type (δ, δ, δ) is realized in Γ.

We now consider the case when δ is odd. In this case we need the triangle type ( δ+1
2 , δ+1

2 , δ+1
2 )

to be realized in Γ̃. If we can show that the diameter of Γ̃ δ+1
2

is at least δ+1
2 , then we may argue

as we did for δ even.

Let ε′ be the parity of j = δ+1
2 . We show that Γ̃ contains the triangle type ( j, j, j + ε′). The

value j + ε′ is even and we claim that j + ( j + ε′)/2 ≤ δ, or equivalently 3 j + ε′ ≤ 2δ. This is

clearly true for δ ≥ 5, and for δ = 3, we have that j = 2 and ε′ = 0, and thus this inequality

holds for all odd δ. Thus Proposition 2.2.1 tells us that ( j, j, j + ε′) is realized in Γ̃, and thus are

done with the case when δ+1
2 is even.

We are left then with the case δ odd and δ+1
2 is odd. Note that this implies that δ ≥ 5. As

in the case when δ even, we may deduce that Γ̃ δ+1
2

is connected. The distance δ+1
2 + 1 occurs in

Γ̃ δ+1
2

, since by Proposition 2.2.1 the triangle type ( δ+1
2 , δ+1

2 , δ+1
2 + 1) is realized in Γ̃. Thus the

connectivity of Γ̃ δ+1
2

yields that the distance δ+1
2 is also realized in Γ̃ δ+1

2
and therefore (δ, δ, δ) is

realized in Γ.

Our claim is now complete. �

Our analysis of the parameter values compatible with a twist of the form τε is somewhat

more involved, and involves some exceptional cases, as seen in Table 4.1. We break up our
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analysis into a series of lemmas.

Lemma 4.2.3. Let Γ be a metrically homogeneous graph of generic type and diameter at least

3 such that Γτε is metrically homogeneous. Suppose moreover that Γ is bipartite. Then δ ≡ ε

(mod 2) and C0 = 2(δ + ε) + 2.

Proof. When δ . ε (mod 2), then τ−1
ε = τε maps the geodesic ( δ+ε−1

2 , δ+ε−1
2 , 2 δ+ε−1

2 ) to either

( δ+ε−1
2 , δ+ε−1

2 , δ+ ε − 2 δ+ε−1
2 ) or (δ+ ε − δ+ε−1

2 , δ+ ε − δ+ε−1
2 , δ+ ε − 2 δ+ε−1

2 ). In either case, this

implies that a triangle type of odd perimeter in Γ is being mapped to a geodesic in Γτε . This is

a contradiction, since bipartite graphs have no triangle types of odd perimeter. Thus τε is not a

viable twist.

When δ ≡ ε (mod 2), the parities of the distances between elements of Γ are preserved

under τε . Thus the image Γτε is bipartite, with the same parts as Γ.

We turn our attention now to C0 and we show first that C0 ≥ 2(δ+ ε)+2. If ε = 0, this holds

by definition. If ε = 1, then τε maps the triangle type (δ, δ, 2) to (1, 1, 2) which is a geodesic

and therefore is realized in Γτε . Thus C0 > 2δ + 2, and therefore C0 ≥ 2(δ + ε) + 2.

Thus in order to show that C0 = 2(δ + ε) + 2, it suffices to prove that any triangle type of

perimeter at least 2(δ + ε) + 2 is forbidden in Γ. Working towards a contradiction, we assume

that such a triangle type is realized in Γ. Fact 2.2.15 then says that Γ has a triangle of type

(δ, δ, d) with d ≥ 2ε + 2.

If ε = 0, then we consider a pair of vertices u, v ∈ Γδ at distance d. Using homogeneity, we

take u′, v′ adjacent to u and v respectively so that d(u′, v) ≥ min(d + 1, δ − 1) and

d(u′, v′) ≥ min(d(u′, v) + 1, δ − 1) ≥ min(d + 2, δ − 1).

Let d′ = d(u′, v′).

As Γ is bipartite we have u′, v′ ∈ Γδ−1 and thus u′, v′ and the basepoint form a triangle of

type (δ − 1, δ − 1, d′). The permutation τ0 maps this triangle type to (1, 1, τ0(d′)). As Γτ0 is

bipartite we find τ0(d′) = 2 and hence d′ = 2. But as δ ≡ ε (mod 2), δ is even and thus

d′ ≥ min(d + 2, δ − 1) ≥ 3,

a contradiction.
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If ε = 1, then our assumption and Fact 2.2.15 would imply that Γ contains the triangle type

(δ, δ, d) for some d ≥ 4. The permutation τ1 sends this triangle type to (1, 1, τ1(d)) and as Γτ1 is

bipartite we have τ1(d) = 2 and d = 2, which is a contradiction.

Therefore every triangle type of perimeter at least 2(δ + ε) + 2 is forbidden, and thus C0 =

2(δ + ε) + 2. �

Lemma 4.2.4. Let Γ be a metrically homogeneous graph of generic type such that Γτε is met-

rically homogeneous. Suppose furthermore that Γ is not bipartite. Then one of the following

holds:

• The unique distance occurring in Γδ+ε−1 is 2, and if ε = 0 then δ ≥ 4;

• ε = 0, δ = 3; in this case, we have Γ ' Γ3
1,2,7,8 (the generic antipodal graph of diameter

3);

• Γ is in one of the exceptional cases listed with ε = 1 and δ ≤ 4, and the distance δ occurs

in Γδ.

Proof. We prove this result via a series of claims.

Claim 4.2.4.1. If δ = 3 and ε = 0 then Γ ' Γ3
1,2,7,8.

Proof of Claim 4.2.4.1. By Fact 2.2.10, any triangle type realized in the canonical metrically

homogeneous graph Γ3
K1,K2,C,C′

with the same numerical parameters as Γ will also be realized

in Γ. Thus any forbidden triangle types must be directly excluded by one of the parameters.

The triangle type (2, 3, 3) corresponds under τ0 to the triple (1, 1, 3), which violates the triangle

inequality. Therefore the type (2, 2, 3) must be excluded from Γ, and is hence excluded either

by the value of a parameter K1 or K2, or by the value of C1. As Γ is not bipartite, the type

(2, 2, 3) is not excluded by K1. By Definition 2.2.7, the triangle types excluded by K2 have odd

perimeter p and

p > 2K2 + 2 min(i, j, k).

Thus in our case, 7 > 2K2 + 2 min(2, 2, 3) = 2K2 + 4 and hence K2 = 1. By the definition of K1

we have K1 = 1 as well, and as δ−1 = 2, Fact 2.2.13 gives a contradiction. So this triangle type

is not excluded by K2. Thus the triangle type (2, 2, 3) can only be excluded by the parameter
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C1, that is, C1 = 7. Now we may use the classification from [ACM16, Theorem 1] to identify

Γ (Fact 2.2.10).

Claim 4.2.4.2. If δ + ε > 3, then the only possible distances which may occur in Γδ+ε−1 are 2

and δ + ε − 1, and at least the distance 2 does occur.

Proof of Claim 4.2.4.2. Consider a triangle type of the form (δ + ε − 1, δ + ε − 1, k) realized

in Γ with 1 ≤ k ≤ δ. The permutation τε maps this triangle type to (1, 1, τε(k)). Thus τε(k) ≤ 2

and k is either 2 or δ+ ε − 1, as claimed. For k = 2, as δ+ ε > 3 we have (1, 1, τε(k)) = (1, 1, 2),

which is a geodesic type. So the distance 2 does occur.

Claim 4.2.4.3. If ε = 0 and δ ≥ 4, then the distance δ − 1 is not realized in Γδ−1.

Proof of Claim 4.2.4.3. Suppose that ε = 0 and that Γδ−1 does realize the distance δ − 1. Then

(δ−1, δ−1, δ−1)τ0 = (1, 1, 1) is realized in Γτε . By Fact 2.2.13, the triangle type (δ−1, δ−1, 1)

is also realized in Γτ0 . Thus its inverse image (1, 1, δ − 1) must be in Γ, and therefore δ ≤ 3, a

contradiction.

Claim 4.2.4.4. If ε = 1 and the distance δ is realized in Γδ, then δ ≤ 4 and Γ is one of the listed

exceptional cases.

Proof of Claim 4.2.4.4. We show first that there is a triangle of type (2, 2, δ) in Γ, and in

particular δ ≤ 4. Note that since δ is realized in Γδ, we have K1 = 1 for Γτ1 since (δ, δ, δ) in Γ

corresponds to (1, 1, 1) in Γτ1 . We may apply Proposition 2.2.1 to get that there is a triangle of

type (2, 2, 1) in Γτ1 , and therefore a triangle of type (2, 2, δ) in Γ. Therefore δ ≤ 4.

Case 1: δ = 3

We are assuming that the triangle type (3, 3, 3) is realized in Γ and we have also shown

that the triangle type (2, 2, 3) is realized in Γ, since δ = 3. By Claim 4.2.4.2, the triangle type

(2, 3, 3) is also realized in Γ, and the triangle type (1, 3, 3) is not realized in Γ. In particular, there

are triangles of perimeters 7, 8, 9 in Γ and thus C = 10 and C′ = 11. Moreover, K1 ≤ K2 ≤ 2.

Since all the metrically homogeneous graphs of diameter 3 are known, we refer to the catalog

in [ACM16] to deduce that K2 = 2 and K1 = 1 or 2. These correspond to the first and third

exceptional cases in Table 4.1, as claimed.

Case 2: δ = 4
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In this case, by assumption, the triangle type (4, 4, 4) is realized in Γ. Thus, C0 = 14

and Γ is not antipodal. The triangle type (3, 4, 4) would be mapped under τ1 to (1, 1, 3) and

therefore must be forbidden. As this is the only possible triangle type of perimeter 11, we see

that C1 ≤ 11. The triangle type (2, 3, 4) is mapped to (1, 2, 3) and thus is realized in Γ. Since

this triangle type has perimeter 9, we also have that C1 = 11.

The triangle type (4, 4, 1) is forbidden from being realized in Γ since it would be mapped

under τ1 to (1, 1, 4). We see however that the triangle type (2, 2, 1) is realized in Γ, since it is

mapped to (2, 2, 4). Thus K2 < 4 and K1 ≤ 2.

We may therefore apply Fact 2.2.13 to get that (1, 3, 3) is realized in Γ, yielding K2 = 3.

Once again, K1 = 1 or 2 corresponds to the first and third exceptional cases for δ = 4, as

claimed.

Thus the claim holds in all cases.

We argue now that Lemma 4.2.4 follows from Claims 4.2.4.1, 4.2.4.2, 4.2.4.3, and 4.2.4.4.

Recall from Proposition 4.1.1 that we may assume δ ≥ 3.

If δ + ε < 4, then δ = 3 and ε = 0, and we arrive at the second case mentioned the lemma

with Claim 4.2.4.1 providing the additional information about Γ.

We suppose then that

δ + ε ≥ 4.

If the distance δ+ε−1 does not occur in Γδ then by Claim 4.2.4.2 the only distance occurring

in Γδ is 2, as in the first case of our lemma. Thus we finally suppose that

The distance δ + ε − 1 occurs in Γδ.

Then Claim 4.2.4.3 shows that ε = 1. As we are supposing that the distance δ is realized in Γδ,

Claim 4.2.4.4 shows that we are in one of the corresponding exceptional cases with δ ≤ 4. �

Lemma 4.2.5. Let Γ be a metrically homogeneous graph such that Γτ0 is metrically homoge-

neous. Suppose moreover that Γ is not bipartite. Then Γ is antipodal and K1 =
⌊
δ
2

⌋
, K2 =

⌈
δ
2

⌉
.

Proof. Note that for this lemma we are only working with ε = 0.
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In Lemma 4.2.4 the third case is excluded, and in the second case our lemma holds since

the graph is Γ3
1,2,7,8. Thus we restrict ourselves to the remaining case of Lemma 4.2.4, where

the unique distance realized in Γδ−1 is 2 and δ ≥ 4.

Claim 4.2.5.1. For u ∈ Γδ−1, v ∈ Γδ, we have d(u, v) ≤ δ − 2.

Proof of Claim 4.2.5.1. If d(u, v) = δ, then we take v′ ∈ Γδ−1 adjacent to v. That would imply

that d(u, v′) ≥ δ − 1, but since both u and v′ are in Γδ−1, we have d(u, v′) = 2. As δ ≥ 4, this is

a contradiction.

If d(u, v) = δ−1, we find a v′ adjacent to v such that d(u, v′) = δ. By the previous paragraph,

v′ < Γδ. But then v′ ∈ Γδ−1, and since the unique distance realized in Γδ−1 is 2, we would have

that δ = 2, a contradiction.

Claim 4.2.5.2. Γ is antipodal.

Proof of Claim 4.2.5.2. Working towards a contradiction, we assume there are two distinct

points u, v in Γδ and we assume without loss of generality that δ′ = d(u, v) = diam(Γδ). We

notice first that there must be a u′ ∈ Γδ−1 adjacent to u with d(u′, v) ≥ min(δ′ + 1, δ − 1).

Indeed, if δ′ < δ, then by the homogeneity of Γδ, we may take u′ to be adjacent to u with

d(u′, v) = δ′ + 1. Then u′ is in Γδ−1. If on the other hand δ′ = δ, we may simply take any u′ in

Γδ−1 that is adjacent to u.

Take u1 ∈ Γδ−1, v1 ∈ Γδ with d(u1, v1) maximal; in particular, d(u1, v1) ≥ d(u, v′). By the

previous claim d(u1, v1) < δ and thus there is v′ adjacent to v1 with d(u1, v′) = d(u1, v1) + 1. By

the choice of u1, v1, we have v′ < Γδ, so v′ ∈ Γδ−1. But

d(u1, v′) ≥ d(u′, v) + 1 ≥ min(δ′ + 2, δ) > 2

a contradiction.

Thus, Γ must be antipodal.

Claim 4.2.5.3. K1 = b δ2c and K2 = d δ2e.

Proof of Claim 4.2.5.3. We begin by considering any triangle type of the form (i, i, 1) which is

realized in Γ. If min(i, δ − i) is even then τ0 sends this triangle type to (i, i, δ − 1). The triangle



136

inequality and the perimeter bound afforded by antipodality would then yield

δ − 1 ≤ 2i ≤ δ + 1.

If min(i, δ − i) is odd, the corresponding inequalities found would be

δ − 1 ≤ 2(δ − i) ≤ δ + 1

which are equivalent to the inequalities in the even case. Thus we have that K1 ≥ b
δ
2c and

K2 ≤ d
δ
2e. Recalling that K1 + K2 = δ for antipodal graphs — see, for example, [ACM16, pg.

13] — our claim is shown.

Claims 4.2.5.2 and 4.2.5.3 prove the lemma. �

The following will be used in the proof of Lemma 4.2.7.

Lemma 4.2.6. Let Γ be a metrically homogeneous graph such that Γ̃ = Γτ1 is also metrically

homogeneous. Suppose moreover that Γ satisfies the following conditions.

• δ = 3 or 4

• The distance δ is realized in Γδ

• The numerical parameters associated with Γ are those associated with one of the excep-

tional cases in Table 4.1, namely one of the following.

K1 ≤ 2 K2 = δ − 1 C = δ + 7 C′ = 3δ + 2

K1 = 1 K2 = δ − 1 C = 2δ + 3 C′ = C + 1

If the unique distance occurring in Γ̃δ is 2 then K1 = 2 and Γ̃ is also one of the exceptional

cases listed, with parameters

K̃1 = 1 K̃2 = δ − 1 C̃ = 2δ + 3 C̃′ = 2δ + 4

Proof. If K1 = 1, then the triangle type (1, 1, 1) is realized in Γ, and therefore the triangle type

(δ, δ, δ) is realized in Γ̃, contradicting the assumption that the unique distance in Γ̃δ is 2. Thus,

K1 = 2.
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In these cases the triangle type (δ, δ, δ) is realized in Γ, so the type (1, 1, 1) is realized in Γ̃,

yielding

K̃1 = 1

The distance δ in Γ̃ corresponds to the distance 1 in Γ, but the relation d(x, y) = 1 is not a pairing

on Γ. That is, given a vertex v ∈ Γ, there is more than one vertex v′ such that d(v, v′) = 1. Thus

Γ̃ is not antipodal, and we may apply Fact to get

K̃2 ≥ δ − 1

The distance 1 does not occur in Γ̃δ, since the triple (1, 1, δ) = (δ, δ, 1)τ1 violates the triangle

inequality. Thus

K̃2 = δ − 1

Since by assumption the unique distance in Γ̃δ is 2, Lemma 2.2.3 of Section 2.2 tells us that

C̃′ = 2δ + 4, and C̃ = 2δ + 3 or C̃ = 2δ + 1.

Thus it remains to show that

C̃ , 2δ + 1

We argue that a triangle of type (2, δ − 1, δ) is realized in Γ̃.

The image (2, δ − 1, δ)τ1 = (2, δ − 1, 1) is a geodesic, and therefore is realized in Γ if δ = 4.

It is of type (2, 2, 1) if δ = 3. This is realized in Γ since K2 = 2; hence (2, δ − 1, δ) is realized in

Γ̃, leaving C̃ = 2δ + 3.

This concludes the proof. �

Lemma 4.2.7. Let Γ be a metrically homogeneous graph such that Γτ1 is metrically homoge-

neous and assume that Γ is not bipartite. Then either the parameters K1,K2,C,C′ have the

values b δ+1
2 c, d

δ+1
2 e, 2δ + 3, 2δ + 4 respectively, or Γ is in one of the exceptional cases of Table

4.1 with δ ≤ 4.

Proof. If the distance δ occurs in Γδ, then Lemma 4.2.4 provides our desired result. So we

suppose that the unique distance occurring in Γδ is 2.

If the distance δ occurs in Γτ1 then by Lemma 4.2.4 the assumptions of Lemma 4.2.6 are

applicable to Γτ1 , yielding that Γ is one of the exceptional cases of Table 4.1. Thus we also

suppose that the unique distance realized in (Γδ)τ1 is 2.
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Fact 2.2.15 then implies that no triangle realized in Γ or in Γτ1 can have perimeter greater

than 2δ + 2.

Consider a triangle type of the form (i, i, 1) realized in Γ. The permutation τ1 sends this

triangle type to either (i, i, δ) or (δ− i + 1, δ− i + 1, δ). The triangle inequality and the perimeter

bounds applied to these two triangle types yield the following pairs of inequalities in the two

cases, respectively.

δ ≤ 2i ≤ δ + 2

δ ≤ 2(δ − i + 1) ≤ δ + 2.

Note that these two pairs of inequalities are in fact equivalent and may be written in the form⌊
δ + 1

2

⌋
≤ i ≤

⌈
δ + 1

2

⌉
Given that Γ is not bipartite, the triangle type (i, i, 1) must be realized for some finite i. Thus

b δ+1
2 c ≤ K1 ≤ K2 ≤ d

δ+1
2 e.

We now consider separately the case when δ is odd and the case when δ is even.

If δ is odd, then the values K1 and K2 are squeezed to be

K1 = K2 =
δ + 1

2
.

Since τ−1
1 = τ1, the same applies for Γτ1 . Thus (1, δ+1

2 , δ+1
2 ) is realized in Γτ1 and gets mapped

under τ1 to ( δ+1
2 , δ+1

2 , δ), so Γ realizes a triangle type of perimeter 2δ + 1. The graph Γ also

realizes the triangle type (δ, δ, 2) of perimeter 2δ + 2. By Fact 2.2.15, Γ contains no triangle of

perimeter larger than 2δ + 2. Thus,

C = 2δ + 3 and C′ = 2δ + 4.

If δ is even, then τ1 maps the geodesic triangle type (1, δ/2, δ/2 + 1) from Γτ1 to (δ/2, δ/2 +

1, δ) in Γ. This triangle type has perimeter 2δ + 1. Using the same reasoning as in the case of δ

odd, we have again that C = 2δ + 3 and C′ = 2δ + 4.

We address now the parameters K1 and K2. In the even case, the above inequalities are

δ/2 ≤ K1 ≤ K2 ≤ δ/2 + 1.
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The geodesic type (δ/2, δ/2, δ) is mapped to (1, δ/2, δ/2) and hence K1 = δ/2.

As Γδ has diameter 2, Lemma 2.2.2 yields that diam(Γδ/2+1) = δ. The same may be said

for Γτ1 . Thus the triangle type (δ/2 + 1, δ/2 + 1, δ) is in Γτ1 and therefore the triangle type

(1, δ/2 + 1, δ/2 + 1) is in Γ. This tells us that K2 = δ/2 + 1. �

Proof of Proposition 4.2.2. Lemmas 4.2.1 and 4.2.2 deal with the cases of ρ and ρ−1. Lemma

4.2.3 treats τ1 in the bipartite case. Lemmas 4.2.5 and 4.2.7 treat the cases of τ0 and τ1 respec-

tively, in the non-bipartite case, including the exceptional cases. �

4.2.2 Sufficiency of the restrictions of the parameters

We aim at the following.

Proposition 4.2.3. Let σ be one of the permutations ρ, ρ−1, τ0, or τ1, with δ ≥ 3. Let Γ be a

metrically homogeneous graph whose numerical parameters are given in Table 4.1. Then Γ is

twistable by the corresponding permutation σ.

We begin with the case of ρ.

Lemma 4.2.8. Let Γ be a metrically homogeneous graph of generic type with numerical pa-

rameters

K1 = 1 K2 = δ C = 2δ + 2 C′ = 2δ + 3.

Then Γρ is metrically homogeneous.

Proof. Here we make use of Fact 4.1.1 from Section 2.2, which tells us that in order to show that

Γρ is metrically homogeneous, it suffices to check that the triangle type (i, j, k) is not realized

in Γρ for i + j < k, and that the triangle type (1, k, k + 1) is realized in Γρ for 1 ≤ k < δ. Thus

we need to check that the corresponding triangle type (i, j, k)ρ
−1

is not realized in Γ and that

(1, k, k + 1)ρ
−1

is realized in Γ.

Claim 4.2.8.1. For i + j < k, the triangle type (i, j, k)ρ
−1

is not realized in Γ.

Proof of Claim 4.2.8.1. We argue according to the parities of i, j and k.
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If i, j and k are all even, then the triple (i, j, k)ρ
−1

violates the triangle inequality, since

i/2 + j/2 < k/2. If i and j are even but k is odd, then the triple (i, j, k) still violates the triangle

inequality. Indeed, then i + j ≤ k − 2 and therefore i + j + k ≤ 2k − 2 ≤ 2δ − 2. Then we

conclude that

i/2 + j/2 ≤ δ − k/2 − 1 ≤ δ −
k − 1

2
.

As (i, j, k)ρ
−1

= (i/2, j/2, δ − k−1
2 ), this triple violates the triangle inequality.

If i and j are both odd, then we show that the perimeter of (i, j, k)ρ
−1

is greater than 2δ + 1,

thereby violating the C,C′ bounds. Indeed, if k is also odd, then (i, j, k)ρ
−1

is (δ− i−1
2 , δ−

j−1
2 , δ−

k−1
2 ) and therefore has perimeter 3δ − i+ j+k−3

2 . Since i + j < k ≤ δ, we have that

3δ −
i + j + k − 3

2
> 3δ −

2k − 3
2
≥ 2δ + 3/2.

If k is even, then (i, j, k)ρ
−1

= (δ− i−1
2 , δ−

j−1
2 , k/2) and thus has perimeter 2δ+

k−i− j
2 +1 > 2δ+1.

If i and j have opposing parity, then we show that (i, j, k)ρ
−1

violates the triangle inequality.

We assume without loss of generality that i is odd and j is even. If k is even, then (i, j, k)ρ
−1

=

(δ − i−1
2 , j/2, k/2) and j/2 + k/2 < δ − i−1

2 because i + j + k < 2k − 1 ≤ 2δ − 1. If k is odd, then

(i, j, k)ρ
−1

= (δ − i−1
2 , j/2, δ − k−1

2 ) and (δ − k−1
2 ) + j/2 < δ − i−1

2 because i + j < k.

Thus none of these triples may be realized in Γ and our claim is shown.

Claim 4.2.8.2. For 1 ≤ k < δ, the triangle type (1, k, k + 1)ρ
−1

is in Γ.

Proof of Claim 4.2.8.2. By definition, (1, k, k+1)ρ
−1

is either (δ, k/2, δ−k/2) or (δ, k−1
2 , δ− k−1

2 ).

In either case, (1, k, k + 1)ρ
−1

is of geodesic type and therefore will indeed be realized in Γ.

The lemma follows. �

Lemma 4.2.9. Let Γ be a metrically homogeneous graph of generic type with finite diameter δ

with associated numerical parameters

K1 = δ K2 = δ C = 3δ + 1 C′ = C + 1

Then Γρ
−1

is metrically homogeneous.

Proof. Our reasoning proceeds as in the proof of the previous lemma. That is, we show that

Γρ
−1

is metrically homogeneous by verifying that the triangle type (i, j, k) for i + j < k ≤ δ is
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not realized in Γρ
−1

while the triangle types (1, k, k + 1) for 1 ≤ k < δ are. We work instead with

the graph Γ and the images of these triples under ρ.

Claim 4.2.9.1. For i + j < k ≤ δ, the triangle type (i, j, k)ρ is not in Γ.

Proof of Claim 4.2.9.1. If k ≤ δ/2, then (i, j, k)ρ = (2i, 2 j, 2k). Since 2i + 2 j < 2k, this triple

is not realized in Γ.

If i ≤ δ/2 < j, then

(i, j, k)ρ = (2i, 2(δ − j) + 1, 2(δ − k) + 1).

Since 2i + 2(δ − k) + 1 < 2(δ − j) + 1, this triple cannot be realized in Γ.

The remaining case to consider is i, j ≤ δ/2 < k. In this case,

(i, j, k)ρ = (2i, 2 j, 2(δ − k) + 1).

The perimeter here is 2(δ+ i+ j−k)+1 which is odd and less than 2δ+1, and thus by Corollary

2.2.2 is also excluded from being realized in Γ.

Thus no such triangle type (i, j, k) will be realized in Γ.

Claim 4.2.9.2. For 1 ≤ k < δ, the triangle type (1, k, k + 1)ρ is in Γ.

Proof of Claim 4.2.9.2. If k , bδ/2c, then (1, k, k + 1)ρ is of geodesic type and is realized in Γ.

If k = bδ/2c, then

(1, k, k + 1)ρ = (2, 2k, 2(δ − (k + 1)) + 1)

which has perimeter 2δ + 1. We apply Corollary 2.2.2 to see that this triangle type must be

realized in Γ.

�

Lemma 4.2.10. Let Γ be a metrically homogeneous graph of generic type. Suppose that δ = 3

or 4 and that the parameters K1,K2,C,C′ for Γ are among those in the table below. Then Γτ1

is also metrically homogeneous.

Proof. By Lemma 4.1.1 the structure Γτ1 will be a metrically homogeneous graph if it does

not realize any triple violating the triangle inequality, and does realize all geodesic types of the

form (1, k, k + 1) with 1 ≤ k < δ.
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δ K1 K2 C C′ δ K1 K2 C C′

3 ∞ 0 7 10 4 1 3 11 14
3 1 2 10 11 4 1 3 11 12
3 1 2 9 10 4 2 3 11 12
3 2 2 9 10 4 2 3 11 14
3 2 2 10 11

Thus for δ = 3, the triple (1, 1, 3) must be omitted by Γτ1 and the triangle types (1, 1, 2) and

(1, 2, 3) must be realized by Γτ1 .

For δ = 4, the triples (1, 1, 3), (1, 1, 4) and (1, 2, 4) must be omitted by Γτ1 while the triangle

types (1, 1, 2), (1, 2, 3), (1, 3, 4) must be realized by Γτ1 .

This translates into the following restrictions for Γ when δ = 3:

Forbidden Realized

(1,3,3) (1,2,3), (2,3,3)

and the following restrictions for Γ when δ = 4:

Forbidden Realized

(3,4,4), (1,4,4), (1,2,4) (2,4,4), (1,3,4), (2,3,4)

Equivalently, setting aside geodesic types and triples violating the triangle inequality, we

must verify that Γ satisfies the following four conditions.

• K2 < δ;

• Γ realizes the triangle type (δ, δ, 2);

• for δ = 4, Γ realizes the triangle type (2, 3, 4);

• for δ = 4, Γ does not realize the triangle type (3, 4, 4).

Indeed, in every line in our table above, K2 < δ. In addition, whenever δ = 4 we have

C = 11 and therefore the triangle type (3, 4, 4) will be forbidden. This disposes of the first and

last conditions.

In every line in our table, C0 ≥ 2δ + 4, and therefore Γ contains a triangle of perimeter

2δ+ 2. By Fact 2.2.15, Γδ realizes some distance d ≥ 2. If K1 = 1, then Facts 2.2.12 and 2.2.13

tell us that Γδ is connected and therefore contains a pair of vertices at distance 2. If K1 > 1,

then Fact 2.2.14 tells us that Γδ is connected by the edge relation d(x, y) = 2. Thus in either

case the distance 2 occurs in Γδ and our second condition is satisfied.
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Suppose then that δ = 4. To conclude our proof, we must show that the triangle type (2, 3, 4)

is realized in Γ. Thus we must find vertices u ∈ Γ3 and v ∈ Γ4 such that d(u, v) = 2.

In every line in our table, K2 = 3, and therefore Γ3 contains an edge. Fact 2.2.12 tells us

then that Γ3 is connected. Moreover we also see that Γ3 has diameter at least 2, since Γ2 has

diameter 4. Thus Γ3 realizes the distance 2. Take then v ∈ Γ4 and define Iv to be the set of

neighbors of v in Γ3. If Iv = Γ3 then by homogeneity every vertex of Γ4 is adjacent to every

vertex of Γ3 and Γ4 has diameter at most 2, a contradiction. So Γ3 , Iv.

Since Γ3 is connected, there is a vertex u ∈ Γ3 \ Iv adjacent to some vertex v′ ∈ Iv. It then

follows that d(u, v) = 2 and u, v and the basepoint form the desired triangle. �

Lemma 4.2.11. Let Γ be a bipartite metrically homogeneous graph of generic type with diame-

ter δ ≡ ε (mod 2) where ε = 0 or 1 and C0 = 2(δ+ ε) + 2. Then Γτε is metrically homogeneous.

Proof. By Fact 4.1.1, it suffices to check that the triangle types (i, j, k) for

i + j < k ≤ δ

are not in Γτε and the triangle types (1, k, k + 1) for 1 ≤ k < δ are in Γτε . We work in Γ with

their images under τε .

Claim 4.2.11.1. For i + j < k ≤ δ, the triangle type (i, j, k)τε is not in Γ.

Proof of Claim 4.2.11.1. We observe that since δ ≡ ε (mod 2), the permutation τε preserves

parity. Therefore, if i + j + k is odd then (i, j, k)τε is forbidden, as there are no triangle types of

odd perimeter in bipartite graphs.

If i, j, and k are all even, then they will all be fixed by τε . So the triangle type (i, j, k) is

excluded from Γ.

Thus it remains to consider the case in which one of i, j, k is even and the other two are odd.

If i and j are odd and k is even, then

jτε + kτε = δ + ε − j + k < δ + ε − i = iτε

and once again by the triangle inequality the triple (i, j, k)τε will not be realized in Γ.

Finally, suppose that i is even and j and k are odd. In this case,

iτε + kτε = δ + ε + i − k < δ + ε − j = jτε
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so again the triple (i, j, k)τε violates the triangle inequality.

Claim 4.2.11.2. For 1 ≤ k < δ, the triangle type (1, k, k + 1)τε is in Γ.

Proof of Claim 4.2.11.2. If k is even, then

(1, k, k + 1)τε = (δ + ε − 1, k, δ + ε − (k + 1))

which is of geodesic type and therefore is realized in Γ.

If k is odd, then

(1, k, k + 1)τε = (δ + ε − 1, δ + ε − k, k + 1)

We consider the two values of ε separately.

Suppose first that

ε = 0.

Then by hypothesis the graph Γ is antipodal and the triangle type (1, k, k + 1)τε is (δ− 1, δ−

k, k + 1). Replacing one of the vertices v of this triangle type by its antipodal vertex v′ yields

the triangle type (1, k, k + 1), by the antipodal law (Fact 2.2.8). Therefore the original triangle

type must in be Γ since this triangle is of geodesic type.

Now suppose

ε = 1.

In this case, C0 = 2δ+4 and (i, j, k)τε = (δ, δ−k+1, k+1). Moreover, we may apply Fact 2.2.15

to get that diam(Γδ) = 2. Since (δ, δ−k+1, k+1) is invariant under the substitution of δ−k for k,

we may assume that k ≤ δ/2. Applying Lemma 2.2.2 then, we get that diam(Γδ−k+1) = 2k. We

may take u, v ∈ Γδ−k+1 at distance 2k and u′, v′ ∈ Γδ at distance k − 1 from u and v respectively.

It follows that d(u′, v′) ≥ 2 and hence d(u′, v′) = 2. This implies that d(u, v′) ≤ k + 1. By the

triangle inequality, d(u, v′) ≥ k + 1, and therefore d(u, v′) = k + 1. The triangle formed by u, v′

and the basepoint has type (δ − k + 1, δ, k + 1), and hence this triangle type is indeed in Γ.

�
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Lemma 4.2.12. Let Γ be a metrically homogeneous graph of generic type with diameter δ, with

the numerical parameters

K1 =

⌊
δ + ε

2

⌋
K2 =

⌈
δ + ε

2

⌉
C = 2(δ + ε) + 1 C′ = C + 1.

Then Γτε is metrically homogeneous.

Proof. By Fact 4.1.1, it suffices to show that violations of the triangle equality are not in Γτε

and geodesics of the form (1, k, k + 1) for 1 ≤ k < δ are in Γτε . We work in Γ with the images

of these triples under τε . We begin with the first point.

Claim 4.2.12.1. For i + j < k ≤ δ, the triple (i, j, k)τε is not in Γ;

Proof of Claim 4.2.12.1. For brevity, we refer to the parity of min(h, δ + ε − h) as the (δ + ε)-

parity of h. Note that by definition h and hτε have the same (δ+ε)-parity. We break our argument

into cases, based on the relative (δ + ε)-parities of i, j, and k.

Case 1. The (δ + ε)-parity of i and j are both even.

If the (δ + ε)-parity of k is also even, then (i, j, k)τε = (i, j, k), which violates the triangle

inequality.

If the (δ + ε)-parity of k is odd and δ + ε − k ≥ k, then (i, j, k)τε still violates the triangle

inequality.

If the (δ + ε)-parity of k is odd and δ + ε − k < k, then k > (δ + ε)/2.

In that case, min(k, δ+ε−k) = δ+ε−k is odd. Then the perimeter of (i, j, k)τε is i+ j+δ+ε−k <

δ + ε. Since K1 = b δ+ε2 c, the perimeter of (i, j, k)τε must be even. Thus iτε and jτε have opposite

parity, and we assume without loss of generality that iτε is even and jτε is odd.

From this we infer that (δ+ ε) is odd, that i is even and iτε = i < δ+ε
2 , and that jτε = j > δ+ε

2 .

We therefore conclude that

iτε + kτε = i + δ + ε − k < i + δ + ε − (i + j) = δ + ε − j < j = jτε

and hence the triple (i, j, k)τε violates the triangle inequality.

Case 2. The (δ + ε)-parity of i and j are both odd.

If the (δ + ε)-parity of k is even, then the perimeter of (i, j, k)τε is 2(δ + ε) + k − i − j > 2

which is forbidden by the C,C′ bounds.
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Suppose the (δ + ε)-parity of k is odd. In this case, the perimeter of (i, j, k)τε is

3(δ + ε) − (i + j + k) > 3(δ + ε) − 2k ≥ 2K2 + 2(δε − k) = 2K2 + 2kτε

and thus violates the condition associated to K2.

Without loss of generality, the remaining case is the following.

Case 3. The (δ + ε)-parities of i and j are even and odd respectively.

If the (δ + ε)-parity of k is odd, then we have that

iτε + kτε = i + (δ + ε) − k < (δ + ε) − j = jτε

and therefore this triple violates the triangle inequality.

If the (δ + ε)-parity of k is even then the perimeter of (i, j, k)τε is

i + (δ + ε − j) + k ≥ (δ + ε) + 2i ≥ 2K2 + 2i

and the bound associated with K2 is violated.

We may finally assume that

i >
δ + ε

2
j ≤

δ + ε

2
k >

δ + ε

2
.

Then the perimeter of (i, j, k)τε is

i + (δ + ε) − j + k ≥ (δ + ε) + 2i > 2(δ + ε)

which violates the C bounds.

We conclude then that every such triple (i, j, k)τε is forbidden in Γ.

Claim 4.2.12.2. For 1 ≤ k < δ the triangle type (1, k, k + 1)τε is in Γ.

Proof of Claim 4.2.12.2. Note that min(k, δ + ε − k) ≤ b δ+ε2 c.

If min(k, δ + ε − k) = b δ+ε2 c then (1, k, k + 1)τε = (1, k, k + 1), with k and k + 1 either fixed

for swapped. So we may assume

min(k, δ + ε − k) < (δ + ε)/2.
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If min(k, δ + ε − k) is even, then (1, k, k + 1)τε = (δ + ε − 1, k, δ + ε − k − 1). This is itself of

geodesic type, and therefore must be realized in Γ.

Now suppose that min(k, δ+ ε − k) is odd. If ε = 0, then Γ is antipodal and the triangle type

under consideration is (k + 1, δ − k, δ − 1).

We may therefore replace one of the vertices of this triangle types with its opposite to obtain

the triangle type (1, k, k + 1). Since the latter triangle type is realized in Γ, the former one is as

well.

If ε = 1, then we require the triangle type (δ, δ−k+1, k+1) to be realized in Γ. We follow the

proof of Claim 4.2.8.2 in the proof of Lemma 4.2.11. We argue that Γδ has diameter 2, that we

may suppose without loss of generality that k ≤ δ/2, and that there are vertices u, v ∈ Γδ−k+1 at

distance 2k. Then taking u′, v′ ∈ Γδ at distance k−1 from u, v respectively, we find d(u′, v′) = 2

and argue as previously that the triangle type formed by u, v′ and the basepoint has the desired

type. This proves the claim.

These two claims show that Γτε is indeed a metrically homogeneous graph. �

Proof of Proposition 4.2.3. This follows immediately from Lemmas 4.2.8, 4.2.9, 4.2.10, 4.2.11,

and 4.2.12. �

We may therefore conclude the following.

Proof of Proposition 4.2.1. This follows immediately from Propositions 4.2.2 and 4.2.3. �

We now combine Propositions 4.1.2 and 4.2.1 to get the following.

Theorem 3. Let δ ≥ 2 be fixed (potentially infinite), and let σ be a non-trivial permutation of

the language of metrically homogeneous graphs of diameter δ.

If there is a metrically homogeneous graph Γ of generic type such that Γσ is again a metri-

cally homogeneous graph, then σ is one of the permutations ρ, ρ−1, τ0, or τ1 from Proposition

4.1.2.

Conversely, if σ is one of the permutations ρ, ρ−1, τ0, or τ1, with δ ≥ 3, then there is

a metrically homogeneous graph Γ for which Γσ is again a metrically homogeneous graph.

Furthermore, the metrically homogeneous graphs Γ whose images Γσ are also metrically ho-

mogeneous are precisely those with the numerical parameters K1,K2,C,C′ as in Table 4.1.
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4.3 Algebra of an Age

Here we will consider the graded Q-algebra AG introduced by Peter Cameron in the study of

growth rates of profile functions, measuring the number of orbits of G on unordered sets. Here

G will be the group Aut(Γ) with Γ a metrically homogeneous graph, so the number of orbits

of G on sets of order n is the number of structures on n vertices embedding into Γ (as a metric

space), taken up to isomorphism.

We aim to show (Theorem 4) that this algebra is a polynomial algebra when Γ is a known

metrically homogeneous graph of generic type, that is, one of the graphs

ΓδK1,K2,C,C′S

with admissible parameters, where K1 is finite and either C > 2δ + 1, or else C = 2δ + 1 with δ

even (i.e., setting aside the bipartite case, and the antipodal case for δ odd).

The algebra in question may be defined as follows.

Definition 4.3.1. [Cam97] Let Ω be a set, and G a group acting on Ω. The reduced incidence

algebra A associated with the partial order of finite subsets of Ω [Rot64] is the graded Q-

algebra defined as follows. For each n let Vn be the vector space of Q-valued functions on the

set of n-element subsets of Ω. ThenA =
⊕

Vn with multiplication determined by

( f g)(X) =
∑

X=X1tX2

f (X1)g(X2).

Then G acts naturally onA andAG denotes the subalgebra of G-invariant functions.

Remark 4.3.1. Equivalently, A =
⊕

VG
n where VG

n is the space of functions constant on

G-orbits, which may be identified with the space of functions on the G-orbits. If G is the

automorphism group of a homogeneous structure Γ, then the orbits on sets of order n are the

isomorphism types of substructures of Γ of order n, which make up the so-called “age” of Γ.

Our main result is the following.

Theorem 4. Let (δ,K1,K2,C,C′,S) be an admissible parameter sequence with K1 and δ finite,

and let Γ be the corresponding metrically homogeneous graph, with automorphism group G. If

C = 2δ+ 1, suppose that δ is even. Then the associated algebraAG is a polynomial algebra in

infinitely many variables.
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Cameron gave a criterion in purely structural terms sufficient to establish that the algebra

is polynomial, with many applications, among them the case in which the structure Γ is the

random graph. We will show that his method applies also in our general case.

Cameron’s Criterion

We present a modified version of Cameron’s framework, with slightly narrower assumptions

than his.

Definition 4.3.2. Let C be a class of finite structures, closed under isomorphism. We write

A ⊆ B for the partial substructure relation (e.g., subgraph is partial substructure, whereas

induced subgraph is a substructure).

1. A decomposition operator for C consists of a binary operation + on C satisfying the fol-

lowing conditions.

• Functorality: On isomorphisms of structures in C, we have that for any pair of iso-

morphisms i : A→ A′ and j : B→ B′, the operator + satisfies

A + B ' A′ + B′;

• Additivity: |A + B| = |A| + |B|;

• Unique decomposition: The commutative semigroup (C,+) is freely generated by its

indecomposable elements.

2. A decomposition operator for C is free if there is a partial order on C satisfying the

following.

For A in C, if A is partitioned into induced substructures B1, · · · , Bk, then

B1 + · · · + Bk ≤ A.

Remark 4.3.2. If a decomposition operator on C is free then there is a canonical partial order

≤ associated with the theory. Namely, one considers the transitive closure of the relation

B ≤+ A

defined on C by
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B = B1 + · · · + Bk for some partition of A into induced substructures.

In particular, this partial order is also invariant under isomorphism. In practice however, one

proves freeness by specifying a suitable partial order.

Example 4.3.1. The decomposition of graphs as disjoint sums of connected graphs is a decom-

position theory. It is free with respect to the subgraph relation.

More subtle examples are found in [Cam97].

The point of this is the following.

Theorem 4.3.1. [Cam97, Theorem 2.1] If G = Aut(Γ) is the automorphism group of a homo-

geneous structure for a finite relational language, and the age C of Γ has a free decomposition

operator, then the algebraAG is the polynomial algebra with generators corresponding to the

isomorphism types of indecomposable elements of C.

The statement given in [Cam97] is phrased in more general terms.

Example 4.3.2. [Cam97, Example 1] The algebra associated with the random graph is a poly-

nomial algebra.

Remark 4.3.3. In the case of graphs, a dual decomposition theory is obtained by switching

edges and non-edges. The dual relation to “subgraph” is “supergraph.”

The dual theory is free with respect to the supergraph relation.

The following is immediate.

Lemma 4.3.1. Let C have the free decomposition operator + and let C′ be a +-closed hereditary

subset of C. Then + is a free decomposition operator for C′.

Example 4.3.3. [Cam97, Example 1 (cont.)] The algebra associated with the generic Kn-free

graph is a polynomial algebra.

Direct sum operations

A straightforward generalization of the decomposition theories considered above for graphs is

the following.
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Definition 4.3.3. Let L be a relational language and E a distinguished binary relation symbol

in L. For L-structures A, B, define

A +E B

to be the structure consisting of the disjoint union of A and B together with all relations E(a, b)

and E(b, a), for (a, b) in A × B.

Lemma 4.3.2. With the notation of Definition 4.3.3, the operation +E is a free decomposition

operator on the class of finite L-structures.

Proof. The operation is clearly functorial and additive.

If we associate to each structure A ∈ C the graph Ac which is the graph complement of

A with edge relation E, then a decomposition of A corresponds to a decomposition of Ac as a

disjoint sum. So unique decomposition follows.

Similarly, if A is partitioned into induced subgraphs B1, · · · , Bk, then the disjoint sum

Bc
1, · · · , B

c
k is contained in Ac. So we define B ≤+ A on C by Bc ⊆ Ac, and freeness follows. �

Corollary 4.3.2.1. Let C be a hereditary class of binary relational structures. Let E be a

distinguished binary symmetric relation in the language. If C is closed under the operation +E ,

then this operation provides a free decomposition theory for C.

In practice, the case one has in mind in the above is the following: C is the class of finite

substructures of a homogeneous structure in a binary relational language L. The language L

consists of names for the orbits on pairs of distinct elements. Furthermore, C should have a

transitive automorphism group (otherwise, the single relation E would be replaced by a finite

set of relations, complicating the notation).

In the case of graphs, E is either the edge or the non-edge relation.

4.3.1 The case of metrically homogeneous graphs

The question now becomes, what sorts of generalized disjoint sum operations are available

in the language of metrically homogeneous graphs. Here we replace the notation +E by the

notation +i, where i is the distance corresponding to the binary relation E.

The following is implicit in [ABH+17].
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Lemma 4.3.3. Let Γ be a 3-constrained metrically homogeneous graph with parameters (δ,K1,K2,C,C′),

where δ ≥ 3. Let M ∈ [δ]. Then the following are equivalent.

• The class C of finite substructures of Γ is closed under the operation +M.

• max(K1, δ/2) ≤ M ≤ min(K2, (C − δ − 1)/2).

Proof. As any triangles occurring in a composition A+M B have type (M,M, i) for some distance

i ≤ δ, and all such triangles occur in some composition, this is equivalent to the requirement

that all triangles of type (M,M, i) embed into Γ, and thus is covered by [ABH+17, Observation

4.1]. We give some additional details for the proof.

The condition

M ≥ δ/2

is necessary and sufficient to ensure that structures in C +M C satisfy the triangle inequality.

Similarly, the condition 2M+δ < C is necessary and sufficient to ensure that C+MC respects

the perimeter bound.

It remains to consider constraints on triangles of odd perimeter. By considering triangles of

type (M,M, 1), we find that the conditions

K1 ≤ M ≤ K2

are necessary.

It remains to check their sufficiency. There are three conditions on triangles of type (M,M, i)

corresponding to the parameters K1,K2.

2M + i ≥ K1 M + i ≤ 2K2 + 2M 2M ≤ 2K2 + 2i

If K1 ≤ M ≤ K2, the first and third inequalities are clearly satisfied, and the second inequality

becomes

i ≤ 2K2 + M.

We know that M ≥ K1, and in particular this implies that K1 is finite. The conditions for

admissibility imply in all cases that 2K2 + K1 ≥ δ. Since M ≥ K1 and i ≤ δ, it follows that

i ≤ 2K2 + M, as required.

The lemma follows. �
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We require a similar lemma for the general case, in which Henson constraints occur.

Lemma 4.3.4. Let Γ be a metrically homogeneous graph of generic type and of known type,

with associated parameters (δ,K1,K2,C,C′,S), where δ ≥ 3. Let M ∈ [δ]. Then the following

are equivalent.

• The class C of finite substructures of Γ is closed under the operation +M.

• max(K1, δ/2) ≤ M ≤ min(K2, (C − δ − 1)/2) and in addition

– If there is a constraint H ∈ S in which the distance δ occurs, then M < δ.

Proof. In general there are two notions of Henson constraint which apply: one in the case

C = 2δ + 1, and one in the remaining cases.

When C = 2δ+ 1, our conditions imply M = δ/2 and in particular δ is even. In this setting,

the Henson constraints involve distances 1 and δ − 1, and as M , 1, δ − 1 in this case, the

additional condition is both vacuous and unnecessary, and the previous lemma suffices.

So we come to the main case in which C > 2δ+ 1 and S is a family of (1, δ)-spaces. In this

case, we have M ≥ δ/2 > 1, so if the distance δ does not occur in a Henson constraint, then

once again the additional constraint is both vacuous and unnecessary.

So we come down to the case in which the distance δ does occur in some (minimal for-

bidden) Henson constraint H. Then H is itself +δ-decomposable, and as the factors are not

forbidden, we require M < δ. Conversely, if M < δ, then no conflicts can arise.

This completes consideration of all cases. �

The following is closely related to [ABH+17, Lemma 5.1]: the conditions for the comple-

tion process used there are slightly more restrictive than those required here, where we take

only disjoint sums.

Lemma 4.3.5. The following conditions on an admissible sequence of parameters (δ,K1,K2,C,C′,S)

are equivalent.

• There is a parameter M for whichAδ
K1,K2,C,C′,S

is +M-closed.

• δ and K1 are finite. If C = 2δ + 1, then δ is even.
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Proof. We refer to the conditions on M given in Lemma 4.3.4.

Suppose first a suitable parameter M exists. The conditions M ≥ K1, δ/2 imply that K1 and

δ are both finite. If C = 2δ + 1, the conditions δ/2 ≤ M ≤ (C − δ − 1)/2 imply that M = δ/2

and δ is even.

Conversely, with δ and K1 finite, we use the minimum value

M = max(K1, dδ/2e).

So we first require the numerical conditions

max(K1, dδ/2e ≤ min(K2, (C − δ − 1)/2).

We know that K1 ≤ K2 by definition, and 2dδ/2e ≤ δ+ 1 ≤ C − 2δ− 1 unless C = 2δ+ 1, and in

this case as δ is even, the required inequality still holds. The other two inequalities required are

2K1 + δ + 1 ≤ C

dδ/2e ≤ K2.

Here one must examine the conditions on admissible parameters in detail. There are three cases,

the first of which has already been excluded. We give the conditions which separate these three

cases along with some of the relevant side conditions which apply in each case.

I . K1 = ∞;

II . K1 < ∞, C = 2K1 + 2K2 + 1 ≤ 2δ + K1; and K1 + K2 ≥ δ;

III . K1 ≤ ∞, C > 2δ + K1; and δ ≤ (3/2)K2.

In case (II), we have

C = 2K1 + 2K2 + 1 ≥ 2K1 + (K1 + K2) + 1 ≥ 2K1 + δ + 1

δ ≤ K1 + K2 ≤ 2K2

so the relevant inequalities hold in this case.

In case (III), we have

C > 2δ + K1 ≥ δ + 2K1 + 1

δ/2 ≤ (3/4)K2 ≤ K2
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and again the relevant inequalities hold.

This disposes of the purely numerical constraints. The final point to check is the following:

if M = δ, then S does not contain a Henson constraint in which the distance δ occurs. By our

choice of M, this would mean

K1 = δ < ∞.

The characterization of admissibility in such cases implies that no Henson constraint in S in-

volves the distance δ. More precisely, in case (II), 1-cliques are allowed as Henson constraints,

and in case (III), no Henson constraints are allowed.

Thus all conditions are verified and the lemma follows. �

We may now apply the general theory to prove Theorem 4.

Proof of Theorem 4. Our hypotheses on the parameters are those necessary for the application

of Lemma 4.3.5. So we have a value M for which the associated class of finite structures is

closed under +M. Therefore by Lemma 4.3.2, the operator +M provides a free decomposition

operator for the class.

By Cameron’s criterion Theorem 4.3.1, the associated algebra is polynomial.

The indecomposable elements are those which are connected after deleting edges with

weight M. For any n, any configuration consisting of a point a and n neighboring points is

connected with respect to weight 1 edges. So there are infinitely many indecomposable iso-

morphism types and therefore the polynomial algebra has infinitely many generators. �

4.3.2 The bipartite antipodal case

We now examine one of the cases not covered by Theorem 4.

Lemma 4.3.6. Let Γ be the generic bipartite antipodal graph of diameter 3, with G = Aut(Γ).

Then the associated algebraAG is a polynomial algebra in three variables.

Furthermore, the associated class C has a free decomposition operator.

Proof. If A is a finite bipartite antipodal graph with parts A1, A2, let

α(A) = (k,m, n)
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where m = min(|A1|, |A2|), n = max(|A1|, |A2|), and k is the number of antipodal pairs in A.

Claim 4.3.6.1. The function α induces a bijection between the set of isomorphism types of

bipartite finite antipodal graphs and the set S of triples (k,m, n) satisfying k ≤ m ≤ n.

We define a map β from S to bipartite finite antipodal graphs by setting β(k,m, n) = (V1,V2)

with |V1| = m, |V2| = n, d(ai, bi) = 3 for ai, bi which are k elements of V1,V2, respectively, and

remaining distances 1 between V1 and V2 and 2 within V1 or V2.

Then α ◦ β is the identity on S . We claim that β ◦ α is also the identity.

If α(A) = (k,m, n), then we may suppose that |A1| = m, |A2 = n. Since there are exactly k

pairs (ai, bi) at distance 3, with ai ∈ A1 and bi ∈ B2, clearly A ' B.

The claim follows.

Now S is a semigroup under pointwise addition, and the elements x = (0, 0, 1), y = (0, 1, 1),

z = (1, 1, 1) are indecomposable. Any element (k,m, n) may be written uniquely as

k(1, 1, 1) + (m − k)(0, 1, 1) + (n − m)(0, 0, 1

so the semigroup is freely generated by x, y, z.

We may transfer this semigroup structure to the age of Γ.

There is also a natural partial order ≤ on S given by (k1,m1, n1) ≤ (k2,m2, n2) if k1 ≤ k2,

m1 ≤ m2, and m1 + n1 = m2 + n2 (this last condition is unimportant but will hold in all cases of

interest).

We transfer this partial order to the age of Γ as well. Then the final assumption in Cameron’s

criterion (Definition 4.3.2) is that if A is partitioned into induced substructures B1, · · · , B`, with

α(A) = (k,m, n) and α(Bi) = (ki,mi, ni), then(∑
ki,

∑
mi,

∑
ni
)
≤ (k,m, n),

i.e., ∑
ki ≤ k

∑
mi ≤ m

∑
mi +

∑
ni = m + n.

Clearly
∑

ki ≤ k by counting, and m is the sum of terms mi or ni with mi ≤ ni, so the second

inequality also holds. The final equality holds since the Bi collectively partition A.

Thus Cameron’s criterion applies, and the generators for AG as a polynomial algebra cor-

respond to the indecomposable elements x, y, z of S . �
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Open problems

Problem 4.3.1. Is the associated algebra polynomial also in the remaining cases of the known

metrically homogeneous graphs of generic type, namely the general case of bipartite graphs

and of antipodal graphs of odd diameter?

In such cases there is no operator of the form +M under which the class is closed, but as

we have seen in Lemma 4.3.6, there may be a suitable free decomposition operator of another

kind.

Problem 4.3.2. Let F be a finite set of finite connected graphs and suppose that there is an

ℵ0-categorical countable universal F -free graph Γ. Is the associated algebra a polynomial

algebra?

To clarify, in this setting there is a canonical ℵ0-categorical countable universal F -free

graph (namely, the existentially complete one), and the question applies to this particular graph.

Again Cameron’s criterion suggests a natural approach to the problem.
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