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ABSTRACT OFTHE DISSERTATION
Structure design and propert&sidyof inorganic organitiybrid materials for energy
related applications
By YANG FANG
Dissertation Director:

Dr. Jing Li

Global energy consumption has escalated dramatically with continuing
consumption and population increase trends. It is one of the biggest challenge in the world
to satisfy growing energy demand in an environmentadigign mannerSolar cells have
attractel a significant amount of attention because of its inexperndaean and sustainable
renewable energy source natubdthough great progress hégen made in solar cells,
there are a lot of challengssch as high manufacturing cost, loss of materiatifgstal
silicon and low efficiency. In addition, ompared to traditional incandescent, energy
efficient lightbulbs, such as compact fluorescent lamps (CFLs) andelmitting diodes
(LEDSs), save about 25%80% energy with 3 25 times longer lifetiméNhile rareearth
element (REE) based phosphors currently dominate the lighting market, developing low
cost, highperformance and REE free phosphors has becoming increasingly important, due
to the potential cost and supply risks of REEs, as well as theitiveegapact on the
environment and human health

In this thesis | describe the design and synthesesfamily of highperformance
inorganicorganic hybrid phosphor materials composed of extended and mimistwo-

and threadimensional network$-ollowing a bottoraup solutionbased synthetic approach,



these structures are constructed by connecting highly emissive ddbic clusters via
carefully selected ligands that form strongibonds. They emit intensive yellegrange

light with high lumirescence quantum efficiency, coupled with large Stokes shift which
greatly reduces se#bsorption. They also demonstrate exceptionally high framewark
photostability, comparable to those of commercial phosphors.

As a continuing effort) have designe a unique type of multiplstranded one
dimensional (1D) structures as robust and efficient lighting phosphors. Following a
systematic ligand design strategy, these structures are constructed by forming multiple
coordination bonds between copper iodidesduh clusters (e.g. dimer, tetramer and
hexamer) and stroriginding bidentate organic ligands which lead to extended 1D chains
of high stability. The multiplestranded chain structures display significant improvements
in thermal stability, largely attribuieto the multidentate nature and enhanced-ICu
bonding The luminescence mechanism of these compounds are studied by temperature
dependent photoluminescence experiments. High internal quantum vyields (IQYs) are
achieved for these compounds under blue atioit, marking one of the highest values
reported so far for crystalline inorgarocganic hybrid yellow phosphors.

| have also developed a series of new copper iodide based hybrid compathnds
tunable narrowbandgaps. Large single crystadre grow and used itharge transport
measuremest Theyexhibit low state trap density on the order of’f@r cubic centimetre
as well & long carrier diffusion lengti.lhe highwater stabiliy coupled with with good
conductivity makingthese materaila promisng candidate for potential optoelectronic

applications.
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1. Introduction

According to statement of the International Energy Agency (IEA) in 2012, global
total primary energy supply (TPES) was 13,371 Mtoe, electricity generatier?22,688
TWh, and final consumption was 8,979 Mto&hese numbers are expected to escalate
dramatically with continuing consumption and population increase trefmigever, it is
estimated that 81.7% of the global TPES, 67.9% of global electricity generation, and
78.29% ofglobal total final consumption were met by fossil fuels, which have limited
naturé. The release of carbon dioxid@®2) and other greenhouse gas (GHGSs) due to the
consumption of fossil fuels could cause global average temperatures to increase by another
4 € or more by 2100and by 1.5 t@ times as much in many midcontinemtd far northern
locations. It is one of the biggest challenge in the world to satisfy growingggriemand,
especially in rapidly developing countries, in an environmentslyign manner.

Solar cells, the devices to convert sunlight to electricity, have attracted a significant
amount of attention because of its inexpensive clean and sustainabhald:n energy
source naturelhe solar photovoltaic (PV) market have been growing dramatically and 38
GW of PV modules were installed in 2013, making the total installed capacity reached
137GW worldwidé. Several solar cell technologidike wafer, thin film and organic, have
achieved reliability, costffectiveness and high efficiency with huge success. For example,
the most successfablar celli crystalline silicon has made up to 90% of global solar cell
market. The highest efficiency of 26% was achieved for crystalline silicon
heterojunction solar céllHowever, therare a lot of challenges involved in their use in
the cells such as high manufacturing cost, loss of material for crystal silicon while issues

affectingthe efficiency ngatively interms of amorphous silicénOrganic photovoltaics



was created as a new possibility to decrease the manufacturing cost of solar devices.
Organic polymer solar cell materials exhibit excellent solupmytessability and
impressive development have been achieved in terms of their pawmersion
efficiencies. In spite of these advantages and achievements, there are still important
obstacles to circumvent before their wide applications in solar cells. Bulk heterojunction
polymercontaning organic solar celhave producedlevices with powr conversion
efficiency values exceeding 10.2% which is one of the highest values in organic solar
cell. It still lag behind crystalline silicon solar cell counterparts in efficiency.

Compared to traditional incandescent, enatiicient lightbulbs, such as compact
fluorescent lamps (CFLs) angjtit-emitting diodegLEDS) generatédiigh-efficient light
sourcestypically use about 25980% less energthan conventional light sourtwith 3-

25 times longer lifetimé. Among all the electric consumers, lighting has one of the highest
shares in the residential and commercial sector with approximately 20% t@f30ib
electricity consumption worldwidé 13 According to U.S. Department of Enerdyy
switching towards more energy efficient lighting technologies, $250 billion in energy cost
can be saved and 1,800 million metric tons of carbonseomi£an be avoided.

LEDs became commercially available in the 1960s, when the early devices emitted
red light®. The introduction of LEDs of shorter wavelength, orange, yellow and green
followed the early devices. Then blue LEDs were first brought to market in th&98@5.
Currently, white lightemitting diode (WLED) has played a crucial role in general lighting
applications, like indicator, backlight, automabheadlight and general illumination. In
general, there are two primary ways of creating white light in LEDswkite light come

from bleeding of three monochromatic red, green and (f4@B) LEDs; (2) phosphors



converted WLEDs, in which a blue or UV LEDPhip is coated with a yellow or
multichromatic color phosphor, and the mixture of light from the phosphor and the LED
chip induces white to human eyes. Presently, commercially available WLEDs are
predominantly produced by the second method. The curradinkg phospheconverted
WLEDs normally use a 45870 nm blue chip and yelloemitting phosphor, which is
usually made ofYAG):Ce**. Although YAG: C€é" type phosphors are cheaper than RGB
diodes, they are still suffering high cost and environmental pmli$sues because of its
rare earth elements (REES) componemishe rare earthssociated strontium and uranium

are highly radioactive and are the main raw materials of nuclear weapons; b) although the
fluorocarbon antimony ore is relatively low in radctivity relative to monazite, there is

still radioactive pollution in its mining and refining; c) rare earth ore refining and separation
needs to use and produce a large amount of sulfuric acid and liquid alkali, causirg seriou
pollution to the enviroment. In addition, loveolution procesability, poorcolor rendering

index (CRI) and high correlated color temperature (C&39 limit widespread application

of YAG: Ce** type phosphots.

Crystalline inorganiorganic hybrid materials have traicted great interests
because they combine the stability, rigidity of inorganic crystal structure and flexibility,
structural diversity, processability ofganic compounds into a singbeystal latticé® 7.

We and others have made great effort to develop a number of structure systems to explore
their energy related applicatiortdybrid inorganieorganic perovskites (HOIPs) are one of

the most famous subclad83erovskiterefers to the mineral CEHO3z and any structure
adopting the same ABxthreedimensional structural framewo(kigure 1) In the case of

HOI Ps, at | east one of t he 0 AdThe ofgdi, or



components in the structure of these HOIPs introduce additfonationalities and
structural flexbility that cannot be achieved in purely inorganic perovskiteaddition,

their diverse structural and chemical variability offers substantial opportunities for tuning
and modulating their physical properties by faahemical modificatio& One of the

most notably perovskites hybrid materials &eélNH3(Pb,Sn)(1,Br}, have taken a
dominant positiorbecause they offer promise for future high performance and low cost
photovoltaic devices.It was first reported in 2009 to apply perovskiielsNHz:Pbk as
sensitizers in dysensitized solar cells. However, the power conversion efficiPCIE)

and cell stability were too poor for practical applicatidna key advanced was made in
2012 when a solid hole transporting layer was introduced in the solar cell devices, which
gave a high PCE of 9.7%nd enhanced cell stabifffy Since then, a variety of cell
structures have been reported with the PCEs up to 28.Héwever, since the ionic
conductivity which is intrinsic to the materials lead to speltarge effects, charge
collection efficiency will decrease significartfy Moreover, their poor chemical and
thermal stability, and the presence of lead are the main issues that need addressing, and

will have great impact on future applicatiéh®.



Figure125. The structure ishreedimensional ABX% perovskites.A, B, and X atoms are
shown as gold, cyan, and red spheres, respectiiRdyprintedwith permission fronref
26. Copyright (2015American Chemical Sociely.

Our group have been developing unprecedentededakimorganicorganic hybrid
materialssince 2000We have reported a family of inorgarocganic hybrid materials
based onlT VI semiconductorsvith a general formula of MQ(kXM = Zn, Cd Q = S, Se,
Te; L = mone or diamine, x = 0.5 or 1). In these single caysttructures, inorganic
modules and organic aminesere combined into the same crystal lattice through
coordinate bonds, forming a series of 1D, 2D, and 3D framewbhley. exhibit anumber
of enhanced ppertiescompared td¢ h e i r p asemigorductors, asvwell as new
phenomengaincludingstrong structurénduced gantum confinement effect (QCH)igh
absorption power, direct Wtk light emission, anisotropizero thermal expansiomand
temperaturalependent phadeansitions, to name akg”3°. One of the most notablyi
VI semiconductorsbased highly crystalline hybrid materials are composed of two

dimensional layers of inorganic semiconductor motifs that aredsbng amine molecules



to form perfectly ordered crystal lattié8s In addition to enhanced semiconductor
properties with respect to their parent binary compounds, #neyalso capable of
generating diret white light and are promising for use as a simgégerial whitelight-
emitting sources in LED$lowever, since their quantum efficiencies are very low (< 5%),
these systems only serve as initahcept proving case. Efforts are contributed to develop
performance enhanced hybrid materials that can be use as-Hiage whitdight-
emitting phosphors with high quantum efficiency. Mn doped -BaSed crystalline
inorganicorganic hybrid semiconductor are developed that have-deéthed and
precisely conbllable crystal structure as well as composition. They have varying optical
properties and fluorescence quantum yields as high ag'3AMhough these materials
have advantages oREEs free,excellent solutiorprocessability, lowtemperature, and
costeffective onepot synthesis, issues such as low quantum efficiency and color quality
remain to be solved.

Inspired by the success obtained fribimV/I semiconductors basdgbrid materials,
we are further looking into new hybrid system derived from metal oxides. The binary
MoO3 and WO3 have been extensively studied for potential applications in photovoltaic
devices? 32 A family of periodically ordered 1D, 2D and 3D perovsKitee modules of
hybrid semiconductors are designed and synthesized with unique prépéRigsre 2)
Through controlling the dimensionality and topology of the inorganic component as well
as selection of organic ligands, a large number of structuredbtai@ed with tunable and
significantly improved propertiggigure 3) These hybrid materials show largely reduced
thermal conductivity, greatly enhanced dielectric constant, and negative thermal expansion,

which all approve that blending of inorganic ardanic modules within a crystal lattice



is a uniqgue and promising approach in developmgtifunctional materials for energy

related applications.

Figure 234, Design and construction of 1D, 2D, and 3D ¥IQ hybrid semiconductors
based on perovskiiéke layers of MoQ or WOz (ReGs type structure) and organic linkers:
red ball, O; blue ball, N; gray ball, C; light blue ball in the center of octahedron, W or Mo.
(Reprinted with permission fromef 34. Copyright (2013American Chemical Society.
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Inorganicorganic hybrid materials of particular attraction are based\ih |
binary metal halides (e.g. Cul). They represent one of the most promising material
classes for use as legost, REE free lighting pisphors due to their solution
processability structural diversity, earth abundance, and high luminesé&fice
Various structure motifs have been prepared by mixing copper iodide and organic
ligands of different ratios and under different reaction conditibhese structures
can be grouped into three types based on the nature of chemicialdo@¥igure 4):
if the inorganic and organic part in the structure are neutral, and they are connected
through coordination bonds, we calligpe | structuresf the inorganic and organic
part in the structure are charged, we cdlypell structure andif both the inorganic
and organic part are charged and they are connected thovoagthination bonds, we

call it Typelll. Rhomboid dimers, cubic tetramers and stairdé&sechains are the



three most common building units of this material faritfiy.Most of these
compounds are luminescent and emit within the visible light region. Our previous
work on staircaséike 1D-Cul(L) structures show that their band gap and emission
wavelength can be systematically tuned by using organic ligands with suitable
LUMO energies and white phosphors can be obtained through ligand défiag.

until recently, our group developed a new tyHestructures or alin-one(AlO)
structure?d’. These materials generally exhibit interesting luminescence properties
which are decided by their inorganic motifs and organic ligands. Detailed
luminescent mechanism study have been carried out among these inorganic organic
hybrid materials, and widely acceptexplanations are from metatligand charge
transfer (MCLT), haliddo-ligand charge transfer (XLCT) or cluster centered (CC).
Our previous work on staircatigke 1D-Cul(L) structures show that their band gap
and emission wavelength can be systemdyitahed by using organic ligands with
suitable LUMO energies and white phosphors can be obtained through ligand
doping™®! However, this type of structures suffers from low fluorescence quantum
yield (QY). On the other hand, @u dimerbased moleculantsictures show high

QYs comparable to commercial phosphors, but their photo and thermal stabilities
are generally podf! We have designed and synthesized a series of new 1D, 2D, and
3D network structures of CWl) hybrid phosphors built on Glu cubic module using

a solutionbased, bottorup, and systematic precursor approach. We have
demonstrated that by incorporating strongly emissivdQGuoolecular clusters into
extended network structures via exchange of monodentate ligand with bidentate

ligands that form strong GN bonds, not only the strong emission of thelCcore
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Is retained but their thermal and photo stability is also increased byfoidItirhe
results will be summarized in chap&in an attempt to develop high$table, blue

light excitable yellow phosphors, we have synthesized a group of unique multiple
stranded 1D hybrid structures with specially designed ligamuish will be detailed
described in chapter 3.

Copper iodide have been considered to be a good alternative afioigple
transport material (HTM) in perovskite solar cefisorder to solve issues associated with
organic HTM, such as high manufacturing cost, the necessity of external doping and long
term stability®. Cul based perovskite solar cells can retain 90% of its initial PCE after
storage in air for 14 da$fsand even after 90 days in dark, it can retai#@# its initial
PCE. In addition, interms of conductivity, Cul exhibits two orders of magnitude higher
than that ospiroMeOTAD, a common used organic HTM in perovskite solar ella
addition of the advantages of high conductivity, low cost, excellent stability, Cul has wide
band gap and high solution processability, making it an extraordinamngiging HTM.

When the Cul was first applied in perovskite solar cells as the HTM, only 6% of PCE was
achieved- Throughfacile spray depositioapproach, PCE of the perovskite solar cells was
reported to be 17.6%, which was significantly imprdv¥edlthough some progress have

been made, there are still some issues needed to be solved. For example, the maximum
PCE of Cul contained solar cell is far from the maximum theoreShatckleyQueisser

limit (31.4%)* 44 andthere is no reported study on thapplications of light absorbers in solar

cells. Inspired by the success in th&Il binary metal halidevased hybrid phosphor materials,
we firstly present a new type of Cbésed hybrid semiconductor, demonstrating a long diffusion
length, exceptionastable, leadree, and bandgap tuneable materials, which possess significant

potential in future photovoltaic field$he results will be summarized in chapter 5.
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Figure4*®. Conceptual representation of Types |, dhd Il structures. Green ball:
inorganic module; purple ball: organic ligand; yellow rod: coordinate bond. Type |
structures are neutral Cul(L)n species made ot Gative bond onlyType I

structures are ionic Cul(L) species cgmsed of ionic bond only. Type Il structures are
AIO Cul(L) species pasessing both bondéReprodued with permission from ref 39.
Copyright © 2012 WILEY¥VCH Verlag GmbH & Co. KGaA, Weinheim.)
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2. Precursor approach for the synthesis oflCcubane based structures and their
applications
2.1 Introduction

In the lighting industry, phosphors are important components for both
fluorescent lamps (FLs) and lighmitting diodes (LEDSY 4’ Yellow phosphor
converted (PC) whiteEDs (WLEDS) serve as a good example. These are made by
coating a yellow phosphor (YAG:€%8 onto a blue LED chip to generate white
light*®. However, white light obtained by this approach usually has a low color
rendering index (CRI) and a high correlated color temperature (CCT), and is thus
t oo ficol dilumihation'®. Highdyoabty white light may be achieved by
use of white phosphors, which are either singtemulti-component basétl 30 5%2,
The singlecomponent system involves a singlease white light phosphor having
emission covering the entire visible region, and a rugihponent system contains
a mixture of two or more monochromatic phospkersrhe latter option is more
attractive because of its high luminescence efficiency and tunable light quality,
which often cannobe achievd by the other systefts While rareearth element
(REE) based phosphors currently dominate the lighting market, developincplsiyv
high-performance and REE free phosphors has becoming increasingly important,
due to the potential cost and supply risks of REES, as well as their negative impact
on the environrant and human heaithThe design of mer efficient, stable, and
environmental friendly phosphors has been the focus of current phosphor research.
Several groups of materials, such as nanocrystals, quantum dots, metal organic

frameworks (MOFs), show promising results as alternatives to the camhiREE
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based phosphofe. However, low efficiency, complex procedure, and thermal
and/or moisture instability remain to be the main drawbacks that limit their practical
applications.

Crystalline inorganierganic hybrid materials combine the good features of
both constituend in a single crystal lattice, thereby giving rise to sigatfit
enhancement of their overall optical propetties s, Some of these hybird
materials have been reported for their strong lumineseeilnce Among them,
compounds made of copper(l) halides (mostly iodides) and fdentate or bi
dentate Ncontaining ligands are oparticular interest due to their solution
processability, structural diversity, earth abundance, and high luminescence. As a
result they are considered as one of the most promising material groupscastow
and REEfree phosphor candidatess ¢ Various structure motifs have been
prepared by mixing copper iodide and organic ligands of different ratios and under
different reaction conditions. Rhombaidners, cubic tetramers and stairctike
chains are the three most common building units of this material familost of
these compounds are luminescent and emit within the visible light region. Our
previous work on staircadike 1D-Cul(L) structures show #t their band gap and
emission wavelength can be systematically tuned by using organic ligands with
suitable LUMO energies and white phosphors can be obtained through ligand
dopinge. However, this type of structures suffers from low fluorescence quantum
yield (QY). On the other hah Cwl.> dimerbased molecular structures show high
QYs comparable to commercial phosphors, but their photo and thermal stabilities

are generally poer
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2.2ynthesis Strategy

In attempt of resolving these issuasd achieving yellow and orange
phosphors with both high QY and framework stability, we have developed a
synthetic strategy that involves a tstep process: (1) synthesis of highly emissive
Cuwls cubic molecular clusters as soluble precursors, and (2frcation of robust
and extended network structures using these molecular precursors (as building
blocks) and ligands that form strong-Gl bonds (as linkers) (Figurg.5

Among various Cux based molecular species, the sGutetramers
demonstrate thstrongest emission in yellearange region, making them attractive
phosphor candi dates f or nawaThengeomattyBfDs (|
the Culs is usually a distorted cubane, which can also be considered as fivo Cu
dimer fragments oriented perpendicular to each othemell-studied example of
this structure type, 0T wl4(py)s (py = pyridine), emits strong yellow light (560
nm) under UV irradiation at room temperature, with an impvegs high QY of
92%. The emissions of various tetranucleasl §L)s clusters (in various solutions
and at different temperatures) have been attributed to several different mechanisms,
including cluster centered (CC), metal to ligand charge transfer (NiLU@lide to
ligand charge transfer (XLCT), and sometimes a combination of’themsvever,
the thermal stability of OBCwil4(py)4 (or other 0DCuwla(L)4 clusters) is simply too
low for any practical applications, as it decomposes at a temperature as low as 60
~C. To address this issue, we have applied astep precursor approach described
above and designed and synthesized a series of ngwh@sed rtended network

structures by substituting the moedentate (terminal) ligand of the @wmolecular
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precursor with selected bidentate ligands while keeping highly emissivedote

intact. The extended 1D, 2D and 3D network structurasbsained exhiliigreatly

enhanced framework stability (Figuse Tables 12, Figures 1217).
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Figureb. (a) lllustration of the design and incorporation of molecuald{tore into an
extended network structure. Representative 1D, 2D and 3D structures of {b) 1D
Cuwla(msmbi); (c) 2D-Cuwls(dipel and (d) 3DCwls(dipe). Color scheme: Cu: cyan; I:
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rods with blue ends.

The O0DCuwla(py)s was chosen as a molecular precursor for the synthesis. It
was well dispersed in ethanol solution prior to ligand substitution. The stability of
the cluster in ethanol was confirmegt UV-Vis ab®rption spectroscopy (Figure

21). Ligand substitution was accomplished through the addition of a-dairitate
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ligand to the solution accompanied by heating. A variety of ligands with different
types, lengths and functional groups (including several imidazolesatiees

specially designed for this studsyiccessfully exchanged wifly of the precursor.
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The details of the syntheses, which diffievm previously reported procedures

are described in the experimental section.
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2 3 Synthtesucst amel Description

Synt hegibenafyl 8x vy oyf% dTmea (Bi xture o
mg , 0.40 pmehpnthyrod0ine (144 mg,(10..BO0 m
g, 6. 00 mmod mqgpymiddi3ne (4. 00 mmol ) I n a

and nitrogen purged) were added toluene

heated in an oil bath at 110 AC for 24 n
removed under reduced pressur e. The crud
chromatography (el uent: et hyl acetat e,

charact®r NMBd( BQONMHzi)sGDeUHY, 42 ( In6 - 7H) ,
8.40(m, 2H), yield 80 %.
Synt hespirso-patfle nlz o[ d] ipm)pbtPaznwd @H (( 1. 2 ¢

mmo | ) was added to a solwution of benzim

mL ) , the smikxtuee aas70 -AComopr2phboet ¢$ 91
mmo | ) was injected into the solution.
AC overnight. Then poured the solution

room temper at uase .e XTthrea stod di t wiotnh wmet hyl er
and the combined organi c phaspersaswegreeyco
oi I . Hi gh yield (90%)H pNMR (px Mz ) waBC
0.9500(t, J = -Z.60HmM, ¥M3H)7,(t4. 88 =-6 Hz,
7.44(m, -73.HB)5( n7,. 822H) .

Synt hesibs st HAQ Bd}iymi) paedbbdlj p'e Na OH
(1.2 g, wa®G mmaled to a solution of benzi

DMSO (20 mL), the mixAQurfeorwaz Iseauanmrsed
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di bromopenrlt anédg mBdD) was i njected i nt o
mi xture was heated ar pwmud ed0Q@ hACsoV et mi
water (150 mL) after cooling to room te
met hyl ene chl oride three ti mes, and the
I n vacuulbitgose gihviet e sol i d. yRPedae grRO®@dW c t
obtained after recryst 4l INIMRa t(i3dr0 Mwizt, h Cd
G) : 4. 32 (m, -12.H)6 ( nl,. -846H1) 7, ( nd,. -T42H3) 2, ( n7,. -266H ) ,

7.84(m, 4H).

Synt hes-bsane@@ H¥d &nz o[ dl}liymi) pgaebambeh e (
The compound was synt hbbiuyp=xidange n& Yyl s i mi
benzo[d]i mi dazol é& mbfiaffsergdri enyg scooltd pddN MRdi e | ¢
(300MHz,; @D&I339(m, -PH§9(n,. 86H), 2.50¢(s
4.13(m, -74H)4,()n7,. -FAOHR 7 ( m, -72.H7)9,( n¥,. 720H) .

Synt hesids (-iarhli diryz®0) pedi)preTHe compound
synt hesi zed i lmbiaupsa inmgi li ari dvaazy | @sdafpafor di n
colorl ess i INMRy i(e4l0d0 MHEZ®.) -DITO0 ( m, -2H) ,
1.81(m, -34.H)2 ( nB,.4BEB)0,7 (6n, 8BLH)4, ( n7,. 324H) .

Synt hes-« ¢ meotfhy IL t-hlbce)nmeot] dy] li jnsi di%Z o1 e (

NaOH (1.2 g, 30 mmol ) was added to a so
i n DMSO (20 mL) , the mi xture was stirre
solution into cold water (150 hd)s alfuteiro

was extracted with methyl ene chloride t1

were concentratend mas waeyumitio ieed (5
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was obHaNMBRdAd(300NMHZA)ORADOG!I, 3H),-753188 (ms,
2H) , -77..&HO(m, 2H), 7.98(s, 1H).

Synt hesCulspf ODhe sOBCwui(e)wass ocfar r i ed
by a modidiioend of t hiéllreplor¢(edimeghoed. 0 mi
di spersed in ethanol (20 MY pP.BA g, cHhBhoHedmc
added directly into the reaction solution
30 minutes, the precipitate was filtered o
it was died in vacuwamacvtemiagwaei minghtTheef ar
drying procedures were applied for other ¢
yield based on Cu).

Synt hes-CagsSbfzmp}p D wdd synthesized by prect
Culspppr ecur s@®r 1( nmdbl ) §azrmly Oe.xCc7e sgs, 0. 4 mmol )
in ethanol in a closed reaction vi al at ro
crystaltese shbhatable for analysis werCe fobt &i n
days kwaltlhiPcyr ex t-sibhb@pedVYel yowwalsedwere obt a
on Cu) .

Synt hesCals3pHlé0D The synthesis o00Dpure
CulsBpmwas si mi | @BCuty(8b zphpeetx ceefpt t he I|0iBgand,
Cusp¥p (0.1 mmdpg Oaad mmol ) mi xXture was stir
temperature for 1 h (92% yield based on Cu
met hod.

Synt hes-Cols(4btp p@h py= -MMen-pyli di ne). The s

pure powde®0DBCaladapzd pwad si mi | OrBC ul«3-b r-pya t o f
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except the Il igand. Orange c ulOiBCulgprigpf Ot. dl s w
mmol )4bamyl 0. 4 mmol ) mi xturCe fwas 5h edaatwasld| i ant al
Pyrex tubeaqda@d¥ryi@u). b

Synt hes-Cal4(4pfipy0@ppy 4phepyltidine). Di ffe
reporte’d metehsgnt hesi s @FBCwadpép Yowaved esri nsi d napr
t o tI0&CulsBh zm, which was made by miO®i ng an
Cuspp( 0.1 mMellpy G.nd mmdlapnoilnfer 2 h (86% yi

Synt hesiCulyporp i@ Db ilpro-pkblenzo[ d] i midazol e
powder <SOdBpldper )povas obtained through similar
i n syntoOhRE gli(3izpy. Pr eCBEBCrulg(m)} ( O mthol ) pratnia. 4
mmol ) were stirred in methanol. The trans|

sealed Pyrex f2oubzyat( d90% yield based on Cu)
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Figure?. Crystal image of 0BCwl4(3-bzo-py)a.

Figure8. Crystal image of 0BCwl4(4-bz-py)a.

Synt hesCusbbdf) 8D Si ngl & BQutsp b t)avies eofgr own
by reacti o0 BCulslppp(r®@.cli4 sp,r Ob.bli(ppemdb )gand. 5 mn
12@€ in methanol fory3tadagsweTlkreipgollaowd by
(66% yield based on Cu) .

Synt hesi s -Culgnis mMbins mbi 1-( (smet hy |l t-hH o) met |
benzo[d]i midazol e) . 1BCHiagmsenNbwassdpr epamedd ebypf
t he proeulpsy(r0. 1 mmosimpO0amBd mmoC) i ateflBaAnol

days (58% yield based on Cu) .
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Synt hesiCslspodfa®?@Dal m3r opandi ami ne) . Si mi
met hod and pr ot BClb b Bpweesr et huaste dofexcept | i g
OBCuls(py( 0. 14 g, Op.dlaOmm&l )g,amd 6 mmome¢t handkRO
days (72% yield based on Cu).

Synt hesCusdojpe2DSi mi | ar precursor met hod
1 BCulsb b i)owe dh.peSi ngle crystals were o®BE ained
Cusp¥( 0.1 mndolp)®.a&bndnmol ) mi xture w&s (MR&t ed
yield based on Cu).

Synt hes-Csalsbofb )opRE xktrelsi¢@e 25 mmol ) was adc
precOD-Guisp (0. 14 g, 0.1 mmol) i n ethanol S
temperatur Cuspowndbgwver ef f or med after 1 hour
crystals were obtained in mEthasa®wl yiaéterba
Cu) .

Synt hesGCusb@ipP32DPrecursor method was use
was si millaBCulams mihia pr eCERC ulgpoyr( 0. 1 mnrbplpp . 8n d

mmol ) was h@aitredetahtarn®l0 for 3 days (85% vyi e
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Figure9. From bottom to top: PXRD pattern of simulated-Gsl4(py)a,
experimental 0BCwla(py)s, simulated OBCuwl4(3-bzo-py)s, experimental 0D
Cuwl4(3-bzo-py)s, simulateddD-Cusl4(3-pcl, experimental OBCwla(3-pch,
simulated 0BCuwla(4-bz-py)s, and experimental 0T wla(4-bz-py)a.

Synt hesiCsls5onfep 2D Si ngl e 2 &C wsb-mapl s w eorf e
coll ected from the reaction of prbemepmsor (|
(0.047 g, 0.05 mmolQ fior 110 dnaly .e tGreaereml cautb i Ic:
pure phase of powders were isol.ated and wa
Synt hesGui(dodp2®,dpss4 ,di'pyridyl sulfide).
synthesi Dbpulsfdc edhPsvaost simi |l ar to thazab for 8
Culs(4 ,-dpsvas prepared by OREadpiyy(d .t1h enmMuoridd& wawmgdo

dp(s0. 3 mRdC)i mtetthanol for 3 days (81% yi el




























































































































































































































































