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ABSTRACT OF THE DISSERTATION

Supervised Learning Methods For Variable Importance

And Regression With Uncertainty On Dependent Data

By GIANLUCA GAZZOLA

Dissertation Director:

Myong K. Jeong

This dissertation covers a collection of supervised learning methods targeted to data

with complex dependence patterns. Part of our work orbits around the concept of vari-

able importance, that is, the relative contribution an input variable to the prediction

or the explanation of an output variable. Our interest in variable importance, and its

estimation, is two-fold. On the one hand, as a tool for the characterization of data sets

produced by multi-stage systems, where variables are related to each other via a network

of correlations and causal dependencies. On the other hand, as a tool for the selection of

minimal input-variable subsets with optimal predictive performance, in a more general

framework involving data sets with an interesting structure of inter-variable dependence

and redundancy. The rest of our work focuses on the problem of function approximation

in the presence of uncertainty, and, specifically, on the calculation of optimal interpolat-

ing hyperplanes from data represented by convex polyhedra, rather than points. In this

context, we propose algorithms to determine the spatial orientation of such polyhedra

based on the multivariate relationships observed in the data, with particular focus on

missing-value scenarios. For all of our methods, we present successful validation on an

extensive and diverse array of real-world and simulated problems.
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Chapter 1

Introduction

This dissertation focuses on a variety of questions that can be formulated as supervised

learning problems, where, broadly speaking, some function is to be optimally estimated from

a collection of observations. Some of these questions are derived from the science of data

mining and revolve around the concept of variable importance, that is, the measurement of

how relevant a certain input variable is for an output variable, for prediction or explanation

purposes. Others come from the science of machine learning, and concentrate on the concept

of predictive modeling in the presence of uncertainty, that is, dealing with data which is

represented by sets, rather than points. These questions are far from lacking answers in the

literature. The goal of our work here is to enrich and improve the quality of those answers

by leveraging the often complex structure of multivariate dependencies that characterize

real-world processes, in a more effective way than state-of-the-art methods do.

Our discussion starts in Chapter 2 with the problem of estimating variable importance

within the context of multi-stage processes. In this framework, variables represent the

different steps that make up a process or system, and as such are related to each other via

a network of correlations and causal dependencies. Our contributions on this topic are two-

fold. The first contribution is a new variant of variable importance measure, which builds on

an existing measure that relies on data permutations and tree ensemble modeling. The main

innovation in this measure is its use of variable dependencies to determine the sequence of

data permutations to carry out, with the goal of effectively identifying variables that have a
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true impact on a given output. The second contribution is a method for the characterization

of a multi-stage process, based on the above measure and targeted at screening the process

for stages with substantial relationships with the final stage. This characterization may,

for example, be used as a basis to strategize intervention actions on key stages directed at

influencing the process outcome.

In Chapter 3, we extend our work on variable importance to tackle problems of variable

selection. We focus in particular on the issue of choosing a minimal subset of input variables

from a larger set, with the purpose of building the simplest ensemble tree model with

optimal prediction performance. The main novelty we propose here is a second permutation-

based variable selection measure, in which the sequence of data permutations is chosen by

aggregating observations, based on distance metrics that are functions of inter-variable

dependencies. We show how this measure can be incorporated in a recursive algorithm

to effectively eliminate redundant input variables from a dataset, without affecting the

predictability of its output variable.

With Chapter 4, we shift the attention to the problem of building predictive models

from uncertain data. Our work concentrates specifically on the estimation of hyperplanes

to optimally interpolate numeric data whose uncertainty is represented by the solutions of

systems of linear inequalities. For this purpose, we introduce a new generalization of the

well-known Support Vector Regression formulation, where we replace point observations

with convex polyhedra. We then propose an algorithm to obtain bounding-box-like convex

polyhedral representations of data with missing values; our approach is novel in the way

it orients such polyhedra in space based on the covariance structure of certain constructs

that model the multivariate uncertainty on the unobserved values. We finally show how

a characterization of these oriented bounding boxes can be used to define some of the

hyper-parameters of our novel interpolating hyperplane formulation.

In all the above chapters, we use simulated experiments to study the behavior of each

method as a function of the complexity of the underlying problem, as induced by such

factors as dependence structure, dimensionality, amount of available information, and noise

perturbations in the data, and as a function of the method’s hyper-parameters, wherever
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applicable. We also strive to provide extensive evidence of the competitiveness of our

approaches with respect to those already discussed in the literature. We give particular

emphasis to real-world applications, successfully testing our methods on data sets derived

from many diverse fields, such as manufacturing, medical diagnostics, design of experiments,

and survey research, among others.

We conclude this dissertation in Chapter 5, by outlining future directions of research,

development, and experimental investigation for the methods we propose here.
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Chapter 2

Variable importance for

multi-stage processes

2.1 Introduction

In this chapter, we study the problem of quantifying the relative contribution that each

stage of a multi-stage process (MSP) exhibits toward the others and, in particular, the

final stage. In the real world, this problem is often non-trivial since MSPs may involve a

large number of stages, which are related to each other via intricate networks of complex

relationships. In manufacturing, for example, a given stage may be processing the output of

multiple prior stages and, in turn, may be directing its own output to multiple subsequent

stages; moreover, the transformation that such stage operates on its inputs to produce an

output may be arbitrarily non-linear. Consequently, a given stage usually affects the final

stage through a cascade of both direct and indirect input/output contributions, each of

which is hard to model parametrically.

Variable importance (VI) in regression is an important topic in applied statistics and

machine learning, focused on the assessment of the relative influence that input variables in

a given set X = {X1, X2, . . . , Xp} have on a certain output variable of interest Y [1, 2, 3].

VI measures usually rely on the estimation of a regression model of the form
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Y = f(X1, X2, . . . , Xp) + ε, (2.1)

where f is a function and ε is an error term. Several state-of-the-art VI measures focus on

the special case of a linear f ; such measures aim at decomposing the predictable fraction of

the variance of Y , represented by the coefficient of determination R2 of the linear regression

model, into p shares (non-negative values summing to 100%), one for each input variable

[4, 5, 6, 7, 8]. The decomposition of R2 into individual contribution shares is unique and

straightforward only in the unlikely scenario in which all variables in X are mutually uncor-

related, because the variance of Y coincides with a weighted sum of the individual variances

of each random variable on the right hand side of (2.1). When correlations within X are

present, covariances between input variables also come into play in determining the vari-

ance of Y , rising the issue of how to reasonably break down pairwise variable contributions

(taking place via covariance) into individual ones. Differences between VI measures for

variance decomposition can essentially be traced back to the specific break-down criterion

they enforce.

Another family of VI measures that gained popularity over recent years rely on machine-

learning methods, where the relationship f is not specified a priori but is learned directly

from the data. The most extensively researched regression modeling tools in this area are, to

the best of our knowledge, random forests (RFs) [9, 10, 11]. RF-based measures define the

importance of an input variable based on how sensitive the prediction performance of a RF

is to random perturbations of such input variable. Although these measures do not formally

assess relative importance via variance decomposition, some authors suggest their possible

interpretability as variance decomposition methods [12]. The non-parametric nature of RFs

and the fact that RFs can be applied to both numerical and categorical variables, make

RF-based VI measures particularly appealing for our real-world application.

A common element to both the families of VI measures mentioned above is their focus

on the contribution that X1, X2, . . . , Xp have toward Y , without considering the contribu-

tion that X1, X2, . . . , Xp may be providing to each other, due, for example, to input/output



6

relationships existing between them. In many practical applications, in fact, the nature

and the direction of such relationships are completely unknown and the only feasible line

of analysis is the one that considers Y as the dependent variable and X1, X2, . . . , Xp as

the independent variables. For MSPs, relationships between stage variables may however

be fully known. If we let Y be the output of the final stage and X1, X2, . . . , Xp be the

outputs of the p previous stages, (2.1) would be the appropriate regression equation if all

such p stages fed directly into the final one; it would not be, however, if we knew, for exam-

ple, that some stage j ∈ {1, 2, . . . , p} took as input any of the outputs from stages k < j.

Several regression-based approaches targeted to MSPs, loosely interpretable as methods for

the assessment of VI, have been proposed in the context of process monitoring and product

improvement [13, 14, 15, 16]. Most of these approaches, however, rely on assumptions that

do not necessarily hold in the real world, such as linearity of the MSP relationships and

non-correlation of certain process variables.

In this work, we introduce a virtually assumption-free method for the characterization

of an MSP, relying upon a VI approach and aimed at screening the process for stages that

exhibit significant relationships with the final stage [17]. We name this method “Integrated

Multi-Stage Importance Assessment” (IMSIA). The method starts by deconstructing the

MSP into a collection of single-stage building blocks, each of which is defined by a specific

stage and by the set of all stages whose output feeds directly into it. Each building block

induces a “local” regression problem, that can be modeled with an equation analogous to

(2.1). From each building-block problem, the method extracts local relative stage impor-

tance measurements, based on a new variant of a conditional-permutation RF-based VI

measure. Finally, it integrates these local measurements into “global” ones, by considering

how stage contributions propagate along the network of technical relationships that define

the MSP. These contribution measurements may, for example, be employed in an economic

model to optimally allocate stage investments and intervention actions aimed at influencing

the process outcome [13]; the study of this application, however, is beyond the scope of this

work and is therefore not carried out here.

IMSIA models an MSP as a network, with stages identified by nodes, input-output
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relationships between stages identified by directed arcs, and the strength of such relation-

ships represented by arc and node weights. Within IMSIA’s framework, the problem of

stage importance assessment can be therefore assimilated to that of ranking nodes in a

network, which is a widely researched topic in the field of graph mining. Several diverse

applications of this problem can be found in a great deal of recent literature, involving,

among others, social [18, 19], criminal [20, 21, 22], bibliographic [23, 24], patent [25, 26],

and economic [27, 28] networks. State-of-the art methods generally estimate node impor-

tance with measures consisting of functions of certain topological features of a network

(as, for example, in the case of measures that build on node or edge centrality [26, 22]).

When network weights (typically, edge weights [28, 20]) are a component of the measure,

such weights are often either known a priori as a piece of data attached to the network

instance, or obtained via moderately simple transformations of such data. Some measures

add an extra dimension to the analysis, by considering, besides the topological structure

of the network, observations along variables or “attributes” associated to individual nodes;

such observations are studied to discover, for example, whether a node exhibits anomalous

properties with respect to the others [29, 30]. IMSIA goes one step further, by conjugating

topological and attribute analysis with complex, non-parametric supervised modeling, used

as the core tool to learn network weights from a data set descriptive of node-specific vari-

ables. A fundamental basis for this supervised approach is of course the prior knowledge of

the direction of the inter-node relationships, since that is what allows the key distinction

between input and output variables across nodes the network. It must also be emphasized

that IMSIA defines the importance of a node (representing some stage in the MSP) with

respect to a specific target node in the network (representing the final stage of the MSP);

this conceptually differs from typical definitions of node importance, which are given with

respect to the entire network.

This chapter is structured as follows. Section 2.2 provides relevant background knowl-

edge on RF modeling and existing RF-based VI measures. Section 2.3 presents our first

contribution, consisting of a novel variant of one of the measures described in the previous

section, targeted to the assessment of local stage importance. Section 2.4 introduces the

theoretical framework of IMSIA as our second contribution, while characterizing the inter-
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play between the local and global components of the stage importance assessment problem.

Section 2.5 illustrates the features of IMSIA on two artificial MSPs and on a real-world

MSP of semiconductor manufacturing.

2.2 Elements of modeling and variable importance assess-

ment with random forests in regression

2.2.1 Regression modeling

A RF is an ensemble of decision tree models [31, 32]. A decision tree is defined by a

partition of the training data set, given by a hierarchy of recursive bisections or “splits”

of the input variable space. At every recursion, one input variable and one splitting value

along such variable are chosen to divide the data in two disjunct subsets, called “nodes”.

The choice of splitting input variable and corresponding splitting value is carried out by

optimizing a certain objective function, which varies depending on the type of decision tree

model employed by the RF. For CART [33], the class of trees we use in our framework, the

optimization criterion is given by the improvement in homogeneity of the output variable

Y in the two subsets resulting from the bipartition, with respect to the same in the unsplit

set. Let us call U the unsplit set in the current recursion (with U coinciding with the

entire training data set in the first recursion), and let disjunct sets Sj,v1 and Sj,v2 represent

a bipartition of U , induced by a certain input variable Xj and a certain value v of Xj

observed in the training data; the recursive optimization problem to solve becomes the

following:

max
j,v

1

|U |
∑
i∈U

(yi − ȳU )2 −

[
1

|Sj,v1 |

∑
i∈Sj,v1

(
yi − ȳSj,v1

)2
+

+
1

|Sj,v2 |

∑
i∈Sj,v2

(
yi − ȳSj,v2

)2
]
, (2.2)
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where yi is the value of the Y variable in observation i, ȳU = 1
|U |
∑

i∈U yi, ȳSj,v1
= 1

|Sj,v1 |

∑
i∈Sj,v1

yi,

ȳ
Sj,v2

= 1

|Sj,v2 |

∑
i∈Sj,v2

yi, and | · | denotes the set cardinality operator. Once (2.2) has been

solved for the current recursion, each of the resulting Sj,v1 and Sj,v2 sets defines a new set U to

solve the optimization problem on, and so on. When the solution of (2.2) has a non-positive

value, that is, when no improvement in node homogeneity is possible, or when |U | ≤ m,

with m ≥ 1 parameter, the recursion is stopped and U becomes a “terminal” node. The

collection of terminal nodes of a fully grown tree represents, in a set-theoretical sense, a

partition of the training data. The predicted output value ŷxnew of an unseen (testing)

observation xnew is computed as follows:

ŷxnew,t =
1

|Uxnew |
∑

i∈Uxnew

yi, (2.3)

where Uxnew is the unique terminal node defined by a set of recursive splitting rules that

are entirely satisfied by xnew.

Within a RF, randomness is injected into the decision-tree building process by means

of two sampling techniques known as “tree bagging” and “variable bagging”. The first

consists of growing each tree on a different independent bootstrap sample of all available

observations. The second consists of selecting each split within a tree by solving (2.2) on a

different subset of q ≤ p indices j, sampled uniformly at random without replacement from

the total of p. Due to bagging, data partitioning rules and predictions differ across trees;

an overall ensemble prediction ŷxnew,RF for xnew is obtained averaging out the individual

tree predictions:

ŷxnew,RF =
1

T

T∑
t=1

ŷxnew,t, (2.4)

where T is the number of trees in the RF and ŷxnew,t is the prediction returned by tree t.

Bagging-induced tree diversity in RFs has been shown to reduce overfitting and prediction

variance, and in the specific case of variable bagging, to improve the detection of relevant

interactions among input variables compared to standard, unbagged trees.
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An estimate of the generalization error of a regression model is usually calculated

on a testing data set that only includes observations that were not used for training

the model. In RFs, each tree is trained on only a fraction of the overall training data

set available to the RF; the remaining fraction of the data (the set of so-called “out

of bag”, OOB, observations) can serve as a testing set for that tree. Now, if we let:

O = {(x1i , x2i , . . . , xpi , yi), i = 1, 2, . . . n} be the set of training observations available to

the RF, along variables X1, X2, . . . , Xp and Y , respectively; Ot ⊂ O be the set of OOB

observations for tree t; and ŷi,t be the prediction of tree t for observation i, we can estimate

the generalization error MSERF of the RF as follows:

MSERF =
1

n
SSRRF , (2.5)

where

SSRRF =
n∑
i=1

(¯̂yi − yi)2, (2.6)

¯̂yi =
1

Ti

∑
t:i∈Ot

ŷi,t, (2.7)

Ti = |{t ∈ {1, 2, . . . , T} : i ∈ Ot}|. (2.8)

In other words, MSERF corresponds to the mean square error of the n predictions for

the observations in set O, each of which obtained as an average of individual tree predictions,

computed over the only trees for which the corresponding observation is OOB. Based on

this quantity, we can compute for the RF an OOB analog of the coefficient of determination

R2 for linear regression:

R2
RF = 1− SSRRF

SSTRF
, (2.9)
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with

SSTRF =
n∑
i=1

(yi − ȳ)2 . (2.10)

We may note that, like for R2 in linear regression, the theoretical upper bound of R2
RF

is equal to 1 (for a RF with perfect OOB predictions), but unlike for R2, its theoretical lower

bound is not equal to 0 (RFs with very poor OOB performance may yield negative R2
RF ).

Consequently, we may interpret R2
RF as a goodness-of-fit measure, which is related to, but

not coinciding with, the fraction of variability of Y explained by the RF model.

2.2.2 Permutation importance

The assessment of the relative contribution of each input variable to the output variable

within a RF model is a problem that has been extensively discussed in the literature on VI.

Among the different VI measures for RFs proposed to date, “permutation importance” (PI),

first introduced in [31] for classification modeling, is the one that appears to have received

the most attention from researchers and practitioners from various applied sciences, and

is considered state-of-the-art by numerous authors. There exist two main variants of PI:

one which we will refer to as “marginal”, and one which we will refer to as “conditional”.

Marginal PI can be described as the increase in OOB mean square error when a certain

input variable of interest is randomly permuted in the OOB data of a tree, averaged out

across all trees in the RF [12]. Now, if we let ŷi,t,πj be the prediction of tree t for observation

i, i ∈ Ot, after replacing the Xj values in Ot with a random permutation of such values,

the PI of variable interest Xj is given by:

IPj =
1

T

T∑
t=1

(
MSEt,πj −MSEt

)
, (2.11)

where
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MSEt =
1

|Ot|
∑
i∈Ot

(yi − ŷi,t)2 (2.12)

and

MSEt,πj =
1

|Ot|
∑
i∈Ot

(
yi − ŷi,t,πj

)2
. (2.13)

In PI, the values of Xj are randomly permuted in order to break any dependence

existing between Xj and Y . If the two variables are indeed dependent, that is, if Xj is an

important input variable, then the expected value of IPj is positive, since the permutation

will on average deteriorate the predictability of Y from the set of input variables (MSEt,πj >

MSEt). Otherwise, the expected value of IPj is zero, since the permutation will have on

average no significant effect on the predictability of Y (MSEt,πj = MSEt). From an

empirical standpoint, important input variables will virtually always have a strictly positive

measured PI, whereas it possible, although unusual, for unimportant input variables to have

a measured PI that falls slightly below zero.

Some authors showed that PI tends to overestimate the importance of variables Xj

that are weakly influential for Y , but that happen to be highly correlated with variables

Xk that are strongly influential for Y [34, 35]. There are two factors known to cause this

issue. The first one arises when Xj is selected for split as “surrogate” of Xk, for example

when Xj appears in the pool of q variables randomly sampled as candidate for splitting at

a given recursion of the tree-learning process, while Xk does not. In general, this surrogate

effect becomes more probable as the value of q decreases. Another, more interesting factor

causing the overestimation of the importance of weakly influential variables involves the

notion of statistical independence that the variable permutation scheme in PI is testing.

Paraphrasing the reasoning given in [34], we introduce the following:

Proposition 2.1. Xj is permutation-important 6=⇒ Xj is influential for Y .

Proof. Let W (j) = {X1, X2, . . . , Xp} \ {Xj} and let P (Xj ,W
(j), Y ) be the unknown joint
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distribution from which observations are sampled. A random permutation of Xj will not

affect P (Xj ,W
(j), Y ) if and only if (a) Xj ⊥ Y and (b) Xj ⊥W (j), since

(a) ∧ (b)⇐⇒ P (Xj ,W
(j), Y ) = P (Xj)P (W (j), Y ) = P (Πj)P (W (j), Y ), (2.14)

where Πj is a random permutation of Xj . Now, consider MSEt and MSEt,πj as statistics

calculated on a sample of P (Xj ,W
(j), Y ) and on a sample of P (Πj ,W

(j), Y ), respectively.

Given (2.14), we have

(a) ∧ (b)⇐⇒ E
[
IPj
]

= 0, (2.15)

which implies that observing a significantly non-zero IPj value may result from the sole

violation of (b), which is irrelevant to the influence of Xj on Y .

Proposition 2.1 tells us that, if we observe a positive value of IPj , we will not be able

to conclude if the data violates the condition Xj ⊥ Y (and therefore if Xj plays a role in

predicting Y ), or if it violates the condition Xj ⊥W (j) (which per se does not say anything

about the predictability of Y from Xj), or if it violates both. We note, however, that this

issue can be eliminated if we condition Xj on W (j) prior to permuting Xj , in such a way

that

(Xj ⊥ Y )|W (j) ⇐⇒ P (Xj , Y |W (j)) =

= P (Xj |W (j))P (Y |W (j)) = P (Πj |W (j))P (Y |W (j)). (2.16)

With this type of conditioning, IPj > 0 would, on average, result only from a violation

the interesting condition of independence between Y and Xj . This line of reasoning led
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to the proposal of a conditional variant of the marginal permutation measure, where the

conditioning scheme (that is, the values of W (j) to condition upon) for each tree of the RF is

given by the bisection rules involving W (j) within the tree [34]. The union of all such rules

defines a partition S
(j)
t of the W (j) space into disjoint subregions s

(j)
lt
, l = 1, 2, . . . , |S(j)

t |. If

we now let O
s
(j)
lt

⊆ Ot be the set of OOB observations located in subregion s
(j)
lt

, conditional

permutation importance ICPj can be formulated as follows:

ICPj =
1

T

T∑
t=1

(
MSE

t,π,S
(j)
t
−MSEt

)
, (2.17)

where

MSE
t,π,S

(j)
t

=
1

|Ot|

|S(j)
t |∑
l=1

∑
i∈O

s
(j)
lt

(
yi − ŷi,t,π,s(j)lt

)2

(2.18)

and ŷ
i,t,π,s

(j)
lt

is the prediction of tree t for observation i, after randomly permuting Xj within

s
(j)
lt

.

2.3 A novel conditional permutation measure

2.3.1 Association-biased bagged random forests for data partitioning

The main rationale behind conditional PI (CPI) lies in the fact that each subregion in S
(j)
t

contains a group of OOB observations whose values along variables in W (j) are significantly

more homogeneous than in the overall OOB set. Therefore, permuting Xj within each group

of OOB observations, that is conditioned on specific values of W (j), allows to reduce the

effect of the dependences between Xj and W (j) when computing PI. We note that, to more

effectively isolate such effect, it is advisable to devise an alternative grouping scheme that

favors a higher degree of homogeneity specifically along those variables in W (j) that are

most statistically related with Xj . Within CPI, the grouping scheme is a byproduct of RF

training, which per se is optimized for predictive accuracy and not for effective isolation of
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inter-variable dependences. For this reason, we propose to address the problem of defining a

partitioning grid for CPI separately from that of training a predictive model for CPI.

In our proposed approach, the standard RF is kept as predictive modeling tool, whereas

a different variant of RF, which we will refer to as dependence-biased-bagged RF (DBB-RF),

is used for data partitioning. In DBB-RF, variable bagging is not carried out uniformly at

random, but with probabilities that increase with the strength of the dependence between

Xj and the input variables in W (j); this will force a larger number of bisection rules within

a tree to involve variables in W (j) that are more problematic to the assessment of PI. Since

these probabilities are a function of index j, a different DBB-RF is trained for every input

variable of interest.

Let us assume the degree of dependence between two variables is estimated from the

data by a certain function Ω, such that for any three n-vectors a1, a2, a3 of observations

along variables A1, A2, A3, respectively, the following holds:

I. Ω(a1,a2) = Ω(a2,a1).

II. Ω(αa1 + γe, αa2 + γe) = Ω(a1,a2), ∀α, γ ∈ R, e = (1, 1, . . . , 1)T .

III. The range of Ω(a1,a2) is bounded (w.l.o.g., assumed to be [0, 1]).

IV. If Ω(a1,a2) > Ω(a1,a3), then A1 and A2 are estimated to be more strongly dependent

than A1 and A3.

Letting ω ∈ [0, 1/p] be a parameter, for variable of interest Xj , variables within a tree

in DBB-RF are bagged according to probability vector wT
j = (wj1, wj2, . . . , wjp), defined

via the following procedure:

A. Let w∗jj = 0.

B. For k = 1, 2, . . . , p, k 6= j, let w∗jk =
Ω(xk,xj)∑
l 6=j Ω(xl,xj)

.

C. Let Mj = {k : w∗jk < ω}. For all k ∈Mj , let wjk = ω.

D. For k /∈Mj let wjk = (1− |Mj |ω)
w∗jk∑
l/∈Mj

w∗jl
.

The procedure starts by assigning a zero probability to Xj in step A; probabilities for
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variables in W (j), on the other hand, are defined proportionally to their respective degree

of dependence with Xj in step B. If any of the resulting probability values are smaller than

ω, such values are replaced with ω in step C, whereas step D takes care or renormalizing the

remaining probability values in such a way that the sum of the elements of wj is equal to 1;

note that ω ≤ 1/p implies 1− |Mj | ≥ 0 and consequently wjk ≥ 0. The resulting vector wj

enforces a dependence-based probabilistic bias, in that the stronger the dependence between

a certain variable Xk, k 6= j, and Xj , the larger the probability that Xk will be selected as

candidate for split at every recursion. Since DBB-RF is used as a data partitioning tool

along variables in W (j), variable Xj can in principle be excluded from bagging altogether,

by choosing ω = 0; however, it may be advisable to enforce a small but non-zero probability

lower bound on Xj , in order for the DBB-RF to include partitioning rules involving variables

Xk that exhibit interactions with Xj . Parameter ω, in fact, serves as a lower bound for all

of the probabilities in wj . As per the form of Ω, a natural choice for instances in which all

input variables are numerical is the following:

Ω(a1,a2) = |ρ(a1,a2)|u, (2.19)

where ρ(a1,a2) is the sample Pearson’s correlation coefficient of a1 and a2, and u > 0

is a parameter that allows to control the extent of the probabilistic bias within wj . An

alternative function that may be better suited for data sets with non-linear relationships

between (all numerical) input variables is the following:

Ω(a1,a2) = MIC(a1,a2)u, (2.20)

where MIC(a1,a2) is the maximal information coefficient [36], and u is as in (2.19). For

instances that include categorical variables, we instead propose the following:

Ω(a1,a2) = 1− pv(a1,a2)u, (2.21)

where pv(a1,a2) is the p-value of an appropriate test of statistical independence on vectors
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a1 and a2 and u > 0 is a parameter that plays the same role as in (2.19).

2.3.2 Conditional permutation importance with dependence-biased bagged

random forests

Our proposed revised procedure for calculating CPI, which we will refer to as DBB-CPI,

can be summarized by the following steps:

A. Choose ω and Ω, and accordingly compute wj , j = 1, 2, . . . , p.

B. Train a standard RF on the available observations.

C. For j = 1, 2, . . . , p, repeat steps C1–C2:

C1. Train the j-th DBB-RF with wj as variable bagging probability vector.

C2. Compute and return

IDBB−CPj =
1

T

T∑
t=1

(
MSE

t,π,S
(j)DBB
t

−MSEt

)
, (2.22)

where S
(j)DBB
t is defined analogously to S

(j)
t in section 2.2.2, except for the fact that

it is extracted from the j-th DBB-RF.

Remark 1. Within a given subregion, a permutation can take place provided that

multiple OOB observations are present; this condition may not always hold true if S
(j)DBB
t

is defined considering tree t of DBB-RF j from its root all the way down to its terminal

nodes. Therefore, some form of tree pruning may be applied prior to carrying out step C2:

a possible heuristic pruning criterion is to consider trees up to depth

D ≥ blog2(cn/m)c, (2.23)

where c > 0 is the fraction of OOB observations chosen for the DBB-RFs, and m ≥ 1 is an

integer parameter. With such a D, if the OOB observations were hypothetically distributed
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uniformly across the terminal nodes of the pruned tree, each terminal node would contain

at least m OOB observations, even if the pruned tree were full (that is, if it had 2D terminal

nodes).

Remark 2. The supervised nature of DBB-RF as a method for data partitioning

allows to build the grouping scheme along those variables in W (j) that are not only most

statistically related with Xj , but also statistically related with the output variable Y , just

like with the original CPI measure. We note that grouping data along variables that have

no explanatory/predictive power toward Y is not necessary (and therefore computationally

wasteful), since the importance inflation issue identified for marginal PI only involves weakly

influential variables that are statistically dependent on strongly influential ones, as explained

in section 2.2.2.

2.4 Stage importance within a multi-stage process

2.4.1 Local relative contribution assessment

Let us consider a MSP with |Q| stages indexed by integers forming a set Q. Let us assume

that every stage b ∈ Q yields an output described by numerical variable Zb, of which n

observations are available. Let us assume that the inputs of stage b may include outputs

of other stages with index smaller than b, and, if they do, that such information is known.

If the output Za of stage a is the input of stage b, a < b, then we will say that stage

a and stage b have a “direct technical relationship” (DTR), that a is a “direct technical

predecessor” (DTP) of stage b, and that b is a “direct technical successor” (DTS) of stage

a. Let Qb = {a ∈ Q, a < b : a is a DTP of b}.

Let us further assume that stage inputs may include sources other than DTP outputs,

such as raw materials or other (possibly controllable) process factors in a manufacturing

MSP. These further input sources, which we will refer to as “other sources” (OSs), are

indexed by integers forming a set S. For simplicity, let us assume that indices in Q induce a

partition {S1, S2, . . . , S|Q|} on S, where Sb represents the set of OSs of stage b ∈ Q. Let us
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assume that every OS h in S is described by variable Vh, which may be either numerical or

categorical. Finally, let us assume that n |Q| + |S|-dimensional observations are available,

each defined by the values of all variables in Q and S for a specific item processed by the

MSP.

Stage b, its DTPs, and its OSs altogether define what we call “subsystem” (SUB) b.

SUB b identifies a regression equation analogous to (2.1), in which Zb represents the output

variable, and Zα1 , Zα2 , . . . , Zα|Qb|
: α1, α2, . . . , α|Qb| ∈ Qb (with indices α. spanning all of

b’s DTPs) and Vβ1,b, Vβ2,b, . . . , Vβ|Sb|,b
: β1, β2, . . . , β|Sb| ∈ Sb (with indices β. spanning all

of stage b’s OSs) represent the input variables. Therefore, direct contributions to stage b

from its DTPs and OSs can be quantified applying a VI measure to the regression equation

induced by SUB b. The regression equation of SUB b is of the form

Zb = fb

(
Zα1 , Zα2 , . . . , Zα|Qb|

, Vβ1 , Vβ2 , . . . , Vβ|Sb|

)
+ εb. (2.24)

Let us call RFb the (standard) RF trained on the n observations along the variables ap-

pearing in (2.24) and let us use the quantity

r2
b = max(R2

RF,b, 0) (2.25)

as a proxy of the proportion of Zb’s variability explained by the overall variability of the

ordered set of input variables Xb = {Zα1 , Zα2 , . . . , Zα|Qb|
, Vβ1 , Vβ2 , . . . , Vβ|Sb|

}.

For the j-th input variable in Xb, with j = 1, 2, . . . , |Qb|, corresponding to DTPs and

j = |Qb|+ 1, |Qb|+ 2, . . . , |Qb|+ |Sb| corresponding to OSs, let us then define

Ij,b = max
(

0, IDBB−CPj,b

)
(2.26)

and



20

Ĩj,b =
Ij,b∑|Qb|+|Sb|

k=1 Ik,b
. (2.27)

The max operator in (2.26) takes care of those rare but possible cases in which random

fluctuations push the measured CPI of an irrelevant variable below 0; (2.27) subsequently

normalizes the CPI values into proper fractions summing to 1.

Finally, for indices j ≤ |Qb|, let us define the “local” (at the SUB level) relative

contribution cDTPαj ,b
of DTP αj ’s output variable Zαj to Zb as follows:

cDTPαj ,b
= r2

b Ĩj,b. (2.28)

Analogously, for indices j > |Qb|, let us define the local relative contribution cOSβj−|Qb|,b
of OS

βj−|Qb|’s variable Zβj−|Qb|
to Zb as follows:

cOSβj−|Qb|,b
= r2

b Ĩj,b. (2.29)

On a typical instance, (2.28) and (2.29) express the relative contribution of an input

variable as a share of R2
RF,b, proportional the VI of such input variable, as given by DBB-

CPI. For instances in which the measured VI of the j-th input variable is negative, such

variable is considered non-explanatory of the variability of Zb (since (2.26) sets Ij,b to 0).

For instances in which the prediction performance of RFb is poor to the point of producing

a negative value for R2
RF,b, the whole set Xb is considered non-explanatory (since (2.25)

sets r2
b to 0), and consequently so are all of the individual input variables it contains (since

r2
b = 0 is a multiplier in both (2.28) and (2.29)).

Finally, we define

cb = 1− r2
b (2.30)

as the relative contribution to Zb of any uncontrollable factors that inherently affect stage
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b on top of the contributions coming from stage b’s DTPs and OSs. Complementarily to

r2
b , cb can be interpreted as a proxy of the (uncontrollable) portion of Zb’s variability that

is not explained by any of the variables in Xb. The sum

cb +
∑
β∈Sb

cOSβ,b (2.31)

can be interpreted as the relative contribution that stage b has toward its own output, since

such contributions come from factors that are inherent to stage b itself and do not have to

do with previous stages.

In the special case where |Qb| + |Sb| = 1, the right hand side of (2.28) and (2.29)

reduces to r2
b , since all of the predictable portion of the variability of Zb is explained by the

only DTP or OS of stage b. In the special case in which Qb = {∅} and |Sb| = {∅}, there are

no relative contribution shares to be calculated, and we will simply set cb = 1.

2.4.2 Global relative contribution assessment via integration of local rel-

ative contribution assessments

Within a MSP, intermediate stages are typically both DTPs for some and DTSs for others,

in the sense that they send their output, obtained by transforming the output of previous

stages, to later stages. For these intermediate stages, the relative contribution they provide

to their DTSs can in principle be explained in terms of relative contributions that they

receive from their DTPs, in the sense that the latter can be viewed as the root cause of

the former. In other words, the DTPs of an intermediate stage contribute indirectly to the

DTSs of such intermediate stage via the intermediate stage itself. Based on this argument,

we propose to calculate the relative contribution of a given stage d ∈ Q to another stage

e ∈ Q by combining the VI measurements locally assessed at each of the SUBs involving

intermediate stages existing between d and e, if any. This combination takes place as a

recursive decomposition of relative contributions, obtained backtracking from e to d along

all possible sequences of DTRs through which the output of d is progressively transformed



22

into an input of e.

Let us assume the collection of DTRs in the MSP are given as a set of ordered pairs

R = {(α, b) : α, b ∈ Q,α < b}. Analogously, let R
′

= {(β, b) : β ∈ Sb, b ∈ Q}, be the set of

ordered pairs defining the collection of OS-to-stage relationships (OSRs). Let us represent

the MSP with a directed acyclic network N = (Q∪S,R∪R′) on stage/node set Q∪S and

DTR/arc set R ∪ R′ . For the sake of illustration, let us suppose that stages d and e have

an indirect relationship, given by a sequence of DTRs involving an intermediate stage g,

defining a path from d to e in N . Let us further assume that: stage e has DTPs other than

g and some OSs; stage g has DTPs other than d, and some OSs; stage d has some DTPs

and one OS, say, o (Figure 2.1). Based on what we explained in section 2.4.1, the relative

contribution cDTPg,e of stage g to stage e can be interpreted as a proxy of the share of output

e’s variability explained by output g’s variability; analogously, cDTPd,g can be interpreted as

a proxy of the share of output g’s variability explained by output d’s variability; finally,

Cd = cd + cOSo can be interpreted as a proxy of the share of output d’s variability explained

by factors that are inherent to stage d itself (that is, by factors not related to stage d’s

DTPs). Therefore, the product

Cd,e = cDTPg,e cDTPd,g Cd (2.32)

may be used to represent the relative contribution of stage d to stage e, modeled as the

sub-sub-share of the relative contribution of stage g to stage e that is attributable to stage d.

This sub-sub-share is obtained by a specific sequence of three successive decompositions of

the overall contributions to stage e, defined by the three terms of the product, backtracking

from stage e to stage d along path d− g − e.

Generalizing the above argument to arbitrary MSP topologies, we may define the

“global” (at the MSP level) relative contribution Cd,e of some stage d to some stage e in N

as:
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Figure 2.1: Extract of a hypothetical MSP network, where the three circles represent
the output variables of stages d, g, and e, the square represents OS variable o of stage d,
and solid arcs represent direct relationships between pairs of variables; dotted arcs represent
unspecified direct relationships involving the rest of the MSP. Node and arc labels represent
local relative contribution coefficients. Assuming o is the only OS of stage d, the relative
contribution of stage d to stage e is defined by (2.32).

Cd,e =


CDTPd,e Cd if e ≥ d

0 otherwise

, (2.33)

where

Cd = cd +
∑
β∈Sd

cOSβ,d, (2.34)

CDTPd,e =


nd,e∑
i=1

∏
(a,b)∈pid,e

cDTPa,b if e > d and Pd,e 6= {∅}

1 otherwise

, (2.35)

and Pd,e = {p1
d,e, p

2
d,e, . . . , p

nd,e
d,e } is the set of nd,e paths from d to e in N . If any paths

from stage d to stage e exist, then each of them represents a different sequence of successive

decompositions of relative contributions to stage e, given by a specific chain of products of

relative contribution shares in the first row of (2.35); all such sequences end with the same

last decomposition, represented by term Cd in the first row of (2.33). If stage d is neither

a direct or an indirect predecessor of stage e, then its relative contribution to stage e is

obviously 0, unless d = e, in which case it reduces to Cd, since CDTPd,e = 1 in (2.35).

Based on the definition of the local relative contributions as shares, it is straightforward
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to see that the following holds:

|Q|∑
i=1

Ci,e = 1 ∀e ∈ Q (2.36)

and that therefore the global relative contribution measurements obtained by the integra-

tion of local relative contribution shares as per (2.33) can themselves be interpreted as

shares.

As a concluding remark, it must be emphasized that, as noted in [12, 1], the concept

of VI is not uniquely defined in the literature, in the sense that there is no agreed upon

theoretical “true” quantity that a VI measure should be capable of accurately estimating.

Rather, each measure formulates and characterizes importance based on its own “empirical”

criteria, which may be more or less appropriate depending on the application on hand. For

IMSIA, which is a VI approach targeted to the discovery of key stages affecting a given

later stage, these criteria focus: at the local level, on the identification of truly important

relationships between inputs and output, via variable conditioning; at the global level, on

the location of the root causes of stage contributions, via the topological analysis of the

MSP network.

2.4.3 Overall IMSIA procedure for the assessment of stage importance

Given a MSP defined by a set of stages Q with output variables Z1, Z2, . . . , Z|Q|, a set of

OSs S with variables V1, V2, . . . , V|S|, a set of DTRs R, a set of OSRs R
′
, and n (|Q|+ |S|)-

dimensional observations along Z1, Z2, . . . , Z|Q|, V1, V2, . . . , V|S|, the overall procedure to as-

sess the relative contribution of stage d to stage e, d, e ∈ Q, can be summarized by the

following steps:

A. Represent the MSP with a directed network N = (Q ∪ S,R ∪ R′); choose ω and Ω.

For each node b ∈ Q, iterate steps B–E.

B. Consider SUB b, its stage set Qb, and its OS set Sb. If |Qb|+ |Sb| = 0, let cb = 1, label
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node b with cb, and go to the next iteration, otherwise go to step C.

C. Estimate standard RF b from observations along stage b’s ordered input variable set

Xb = {Zα1 , Zα2 , . . . , Zα|Qb|
, Vβ1 , Vβ2 , . . . , Vβ|Sb|

} and output variable Zb.

D. Compute cb = 1− r2
b and label node b with cb.

E. For j = 1, 2, . . . , |Qb|+ |Sb|, repeat steps E1 – E3b

E1. Compute wj,b; train DBB-RF j, b with wj,b as variable bagging probability vector.

E2. Compute Ĩj,b with DBB-CPI.

E3. If j ≤ |Qb|, go to step E3a; otherwise, go to step E3b:

E3a. Let cDTPαj ,b
= r2

b Ĩj,b, and label the arc connecting node αj ∈ S to node b with cDTPαj ,b
.

E3b. Let cOSβj−|Qb|,b
= r2

b Ĩj,b, and label the arc connecting node βj−|Qb| ∈ S to node b with

cOSβj−|Qb|,b
.

F. Compute and return Cd,e.

This procedure can be used to compute relative contributions between any two stages

in the MSP. If the interest is specifically on relative contributions toward the final stage,

say stage s, one would simply set e = s.
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Figure 2.2: Labeled network for the sequential artificial MSP.

2.5 Numerical illustrations

In the following sections, we illustrate IMSIA on two simulated MSPs with different topol-

ogy, and on one real-world MSP involving semiconductor manufacturing.

2.5.1 Artificial MSPs

Experimental protocol

We consider two artificial MSPs on 4 stages (Q = {1, 2, 3, 4}), each of which with two OSs

(S = {1, 2, . . . 8}, Sb = {2b − 1, 2b}, b = 1, 2, 3, 4). The first artificial MSP is defined by a

sequential technical-relationship network (Figure 2.2), that is one such that

Xb =


{Zb−1, V2b−1, V2b} if b > 1

{V1, V2} otherwise

.

For this MSP, each observation i of a total of n is generated via the following true model

(unknown to IMSIA):

Zbi =


Z
′
b−1i
− 0.5V2b−1i − 0.05V2bi + εbi if b > 1

−0.5V1i − 0.05V2i + ε1i otherwise

,

where (V1i , V2i , . . . , V8i) and (ε1i , ε2i , ε3i , ε4i) are a random sample from (V1, V2, . . . , V8) ∼

N(0,ΣV ) and (ε1, ε2, ε3, ε4) ∼ N(0,Σε), respectively, with
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Figure 2.3: Labeled network for the fully-connected artificial MSP.

σVj,k =


1 if j = k

0.7 if (j, k) ∈ {(1, 2), (3, 4), (5, 6), (7, 8)}

0 otherwise

,

representing the (j, k) element of ΣV , Σε = diag(0.1485, 0.6662, 0.6662, 0.6662), and Z
′
b−1i

being the same as Zb−1i after standardization (subtraction of the mean and division by

the standard deviation of the whole sample of n observations). The values of the diagonal

elements of Σε are calibrated in such a way that approximately 34% of the variance of Yb is

explained by εb, b = 1, 2, 3, 4.

The second artificial MSP is defined by a fully-connected technical-relationship network

(Figure 2.3), that is one such that:

Xb =


{{Za : a < b}, V2b−1, V2b} if b > 1

{V1, V2} otherwise

.

For this MSP, each observation i of a total of n is generated via the following true model

(unknown to the method):

Zbi =


∑
a<b

Z
′
ai − 0.5V2b−1i − 0.05V2bi + εbi if b > 1

−0.5V1i − 0.05V2i + ε1i otherwise

,
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where (ε1i , ε2i , ε3i , ε4i) are a random sample from (ε1, ε2, ε3, ε4) ∼ N(0,Σε), with Σε =

diag(0.1485, 0.6662, 1.9192, 3.9365), and the observations along the V and Z
′

variables are

defined the same way as in the sequential artificial MSP. The values of the diagonal elements

of Σε are calibrated in such a way that approximately 34% of the variance of Yb is explained

by εb, b = 1, 2, 3, 4, as in the sequential artificial MSP.

RF and DBB-RF modeling was carried out via the randomForest function in the

homonymous R package, whose underlying C code was modified in order to allow the spec-

ification of a variable bagging probability vector prob (wj,b, as per step E1 in IMSIA)

as an extra parameter for DBB-RF. All parameter settings were left to their defaults in

randomForest, except: parameter mtry (number of candidate variables for variable bag-

ging), which was set to 2 for all DBB-RFs; parameter prob, which was calculated by means

of function (2.19) with u = 1.5 and lower bound ω = 0.5/|Xb| (recalculated for every stage

b). DBB-RF trees were pruned at depth D, calculated from formula (2.23), setting c = 0.368

and m = 4.

Results

Tables 2.1 and 2.2 report average numerical results obtained over 100 independent artificial

data sets, each composed by n = 250 independent observations randomly generated accord-

ing to the protocol described in section 2.5.1, for the sequential and the fully-connected

MSP, respectively. Global contributions are calculated for the special case e = 4 (final

stage) of formula (2.33).

At the local level, it may be noticed that within SUBs d > 1 of both MSPs, estimated

contributions to Zd (stage d) from V variables are significantly smaller than those from Z
′

variables. This result should not surprise, if one considers that the theoretical contribution

of the variance of the V and Z
′

variables to the variance of Zd, which of such variables

is a (noisy) linear combination, is subject to a quadratic relationship with the variables’

coefficients in the linear combination, as given by the true model. Note that in all SUBs

d, the contribution of V2d is correctly deemed to be substantially larger than that V2d−1,
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despite the fairly high degree of correlation existing between the two variables.

At the global level, estimated contributions from stages d < 4 to the final stage along

every individual DTR path are expected to decrease with the number of DTR arcs in the

path, since such number corresponds to the number of recursive decompositions applied

to direct contributions to the final stage. On the other hand, the cardinality of the path

set Pd,4, representing the number of directions along which the contributing stage affects

the final stage, is expected to counterbalance the former effect. In the sequential MSP,

the recursive-decomposition effect is responsible for the pattern of decreasing measured

importance for earlier stages, whereas the path-cardinality effect is not visible, since all

stages are connected to the final stage via one only path. In the fully-connected MSP,

earlier stages connect to the final stage in more ways than later ones, making the path-

cardinality effect dominant with respect to the recursive-decomposition effect, causing the

estimated contribution to increase for earlier stages.

Table 2.1: Local and global relative contribution assessments for every stage in the sequen-
tial artificial MSP (averages over 100 repeats).

Stage d Path set Pd,4 Local contributions to stage d Global contribution Cd,4 to stage 4

4 –

c4 = 0.424
cOS7,4 = 0.068
cOS8,4 = 0.010
cDTP3,4 = 0.498

c4 + cOS7,4 + cOS8,4 = 0.502

3
{
{3, 4}

} c3 = 0.424
cOS5,3 = 0.072
cOS6,3 = 0.011
cDTP2,3 = 0.493

cDTP3,4

(
c3 + cOS5,3 + cOS6,3

)
= 0.252

2
{
{2, 3, 4}

} c2 = 0.422
cOS3,2 = 0.076
cOS4,2 = 0.012
cDTP1,2 = 0.491

cDTP3,4 cDTP2,3

(
c2 + cOS3,2 + cOS4,2

)
= 0.125

1
{
{1, 2, 3, 4}

} c1 = 0.410
cOS1,1 = 0.572
cOS2,1 = 0.019

cDTP3,4 cDTP2,3 cDTP1,2

(
c1 + cOS1,1 + cOS2,1

)
= 0.121
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Table 2.2: Local and global relative contribution assessments for every stage in the fully-
connected artificial MSP (averages over 100 repeats).

Stage d Path set Pd,4 Local contributions to stage d Global contribution Cd,4 to stage 4

4 –

c4 = 0.388
cOS7,4 = 0.034
cOS8,4 = 0.015
cDTP1,4 = 0.186
cDTP2,4 = 0.195
cDTP3,4 = 0.181

c4 + cOS7,4 + cOS8,4 = 0.437

3
{
{3, 4}

} c3 = 0.399
cOS5,3 = 0.056
cOS6,3 = 0.018
cDTP1,3 = 0.266
cDTP2,3 = 0.262

cDTP3,4

(
c3 + cOS5,3 + cOS6,3

)
= 0.086

2
{
{2, 4}, {2, 3, 4}

} c2 = 0.422
cOS3,2 = 0.076
cOS4,2 = 0.012
cDTP1,2 = 0.491

(
cDTP2,4 + cDTP2,3 cDTP3,4

) (
c2 + cOS3,2+

+cOS4,2

)
= 0.124

1

{
{1, 4}, {1, 2, 4},

{1, 3, 4}, {1, 2, 3, 4}
} c1 = 0.410

cOS1,1 = 0.572
cOS2,1 = 0.019

(
cDTP1,4 + cDTP2,4 cDTP1,2 + cDTP3,4 cDTP1,3 +

+cDTP3,4 cDTP2,3 cDTP1,2

)
·

·
(
c1 + cOS1,1 + cOS2,1

)
= 0.354

2.5.2 Case study: a real-world multi-stage semiconductor manufacturing

process

In semiconductor manufacturing, products are fabricated on wafers, and the manufacture

of wafers typically involves tens or hundreds of stages. These stages can be, moreover,

divided into sub-modules, each involving a certain number of processes. The performance

characteristics of the end product are the result of the combined impact of the output of each

sub-module on the output of all of the subsequent sub-modules. Among other important

factors, this impact involves variability, which is transferred and/or accumulated from one

sub-module to another and from one stage to another, and thus to the final product.

From a quality-control point of view, the identification of the stages that incorporate

the main sources of variability in a MSP is of substantial importance. These stages are

often the target of process-improvement and production-planning investments, typically

aimed at making the outputs of such stages more stable, and, consequently, making the

characteristics of the final product more predictable. One possible approach towards the

selection of stages that most require intervention actions consists of identifying stages that
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most contribute to the characteristics of the final product, as measured by the output of

the final stage in the MSP, and their variability. These contributions are a direct result of

the interplay between direct and indirect relationships among stages, and it is therefore key

that their measurements be defined based on the overall structure of such relationships, in

such a way that contributions inherent to a certain stage can be correctly separated from

contributions from its preceding stages. This is, in fact, the basic criterion that IMSIA

utilizes to construct its results.

We discuss here the application of IMSIA to a MSP aimed at the manufacturing of

wafers via multi-patterning photolithograpy, a technology that has been widely adopted

by leading companies in the semiconductor micro-fabrication industry. The specific pho-

tolithography MSP in our application is composed of 33 stages involving such actions as

chemical vapor disposition, photomask patterning, and etching, among others. A specific

critical dimension of the processed product, such as the thickness of the remaining wafer

mask, was defined as the output variable for each stage in the MSP. DTPs were identified

based on expert knowledge about precedence relationships existing between steps across the

fabrication process.

Analysis and IMSIA setup

A data set of n = 182 observations over the set Q = {1, 2, . . . , 33} of stage output variables

was made available to us for analysis. This data set can be conceptually divided in inde-

pendent 14 batches of 13 independent observations, with each batch representing a different

unit of the same of semiconductor wafer, and each observation within a given batch repre-

senting a chip in a different location on the wafer. No information about OS variables was

given in the data.

Stages 31, 32, and 33 correspond to three distinct final stages, each of which inducing

a slightly different technical relationship network. Analysis and results we present here

specifically focus on the MSP network induced by final stage 33, unless differently specified

below. Table 2.3 provides a high-level overview of the topology of this network by listing
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number and length of all existing paths connecting every stage to the respective final stage,

as well as the number of DTPs for every stage. Further details are not disclosed to preserve

the confidentiality of the data.

Our investigation revealed that, for almost all SUBs b, factors related to wafer-batch

and chip-location information may have played an important role in explaining the vari-

ability of output Zb, in that the RF b’s prediction performance on the OOB observations

significantly improved when such information was used to predict Zb in conjunction with the

variables in Qb. Three OSs were therefore assumed to exist for each SUB b, in such a way

that Sb = {3b− 2, 3b− 1, 3b}, b = 1, 2, . . . , 33. The first OS in Sb is related to wafer batch,

whereas the other two are related to chip location (Figure 2.4). One categorical variable,

given by the wafer-batch index, and two numerical variables, given by the two-dimensional

Cartesian coordinates of the chip’s center with respect to the the wafer’s center, were used

as proxies of the three unknown OSs, respectively. The same three proxies were provided

as predictors to the RF of every SUB, letting the regression model learn from the data

the appropriate transformation that maps each proxy to the corresponding unknown OS

variable specific to that SUB.

The parameters settings chosen for IMSIA were the same as those used for the artificial

MSPs, except for: (I) ntree (number of trees in the RFs/DBB-RFs), which was increased to

1000 from the default of 500; (II) prob, which was computed via (2.21), with pv extracted

from an asymptotic, quadratic-type re-randomization test [37, 38], by invoking function

independence test with teststat=‘quadtype’ in the coin R package; (III) u, which was

set to 1/10.

Results

Table 2.4 shows that, overall, the OOB performance of the local RF models is reasonably

good both for SUBs with no DTPs (median R2
RF,b:|Zb|=0 = 0.618) and SUBs with one

or more DTPs (median R2
RF,b:|Zb|>0 = 0.665), with a substantial boost provided by the

inclusion of wafer-batch and chip-location OS variables as predictors. The only exceptions
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Table 2.3: Number and length of paths from every stage to stage 33.

Stage
d

Number of
paths

to stage 33
nd,33

Path lengths
p1d,33, p

2
d,33, . . . , p

nd,33

d,e

Number of
DTPs
|Zd|

1 1 1 0

2 1 1 0

3 9 2, 3, 3, 5, 5, 5, 5, 5, 5 0

4 9 2, 3, 3, 5, 5, 5, 5, 5, 5 0

5 11 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5 0

6 8 3, 3, 5, 5, 5, 5, 5, 5 0

7 14 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6 0

8 6 4, 4, 6, 6, 6, 6 0

9 6 4, 4, 6, 6, 6, 6 0

10 6 4, 4, 6, 6, 6, 6 0

11 6 4, 4, 6, 6, 6, 6 0

12 2 3, 5 0

13 2 3, 5 5

14 5 3, 3, 5, 5, 5 5

15 5 3, 3, 5, 5, 5 0

16 3 3, 5, 5 0

17 2 2, 4 9

18 1 4 8

19 2 2, 4 8

20 2 2, 3 1

21 1 3 3

22 1 2 1

23 2 3, 3 0

24 1 3 0

25 0 - 1

26 1 2 2

27 1 2 2

28 1 2 9

29 0 - 9

30 1 1 10

31 0 - 3

32 0 - 3

33 0 - 3

are SUBs 11 and 16, the variability of whose respective outputs, besides not being affected

by any DTP variable (since |Z11| = |Z16| = 0), does not seem to be driven by wafer-batch-

or chip-location-related components.

The three MSP networks showed similar relative-contribution patterns across stages.

All stages with significant relative contribution to final stage’s output (say, above 5% of the

overall relative contributions to such output), involved the later phases of the semiconductor

fabrication, focused on wafer etching. Detailed analysis of the results suggested that the

recursive-decomposition effect (see section 2.5.1) was dominant with respect to the path-
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Figure 2.4: Representation of a portion of the MSP network induced by final stage 33,
including a subset of 21 out of the 33 stages, along with all DTRs existing within such subset.
Dashed arrows represent DTRs between a stage in this subset and one or more stages in the
complement of this subset (not shown to preserve the confidentiality of the data). Circular
nodes represent stages; square nodes represent OSs, with green ones corresponding to wafer-
batch-related OSs and blue ones corresponding to chip-location-related OSs.

cardinality effect in IMSIA’s determination of the relative contribution values obtained

here; this was somewhat expected, considering the sparsity of the networks (for all of

them, the number of stage-connecting arcs were less than 2% the theoretical fully-connected

maximum). Significantly contributing stages were typically located on a single short path,

corresponding to the terminal portion of a longer path. Specifically for the network induced

by final stage 33, if we define SC33 = {d : d ∈ Q,Cd,e > 0.05} as the set of stages significantly

contributing to the output of stage 33, we have SC33 = {22, 25, 26, 30, 33}, connected via

paths 22–30-33, 25–30–33, and 26–30-33. Not surprisingly, we observed that for the first

stage on all such paths, most of the local relative contributions (see section 2.4.1) are self-

contributions (see (2.31)) from wafer-batch- and chip-location-related OS variables, and

other uncontrollable factors; for the remaining stages on the path, their respective local

relative contributions are a balance of both self-contributions and the contribution they

receive from the stage that precedes them on the path.
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Table 2.4: OOB RF performance for every SUB, without and with the inclusion of wafer-
batch and location OS variables as predictors. Dashes correspond to SUBs b with no DTPs,
for which r2

b cannot be calculated prior to the inclusion of the OS variables as predictors.

SUB
b

r2b prior to
inclusion of OS

variables

r2b after
inclusion

of OS
variables

1 – 0.527

2 – 0.619

3 – 0.694

4 – 0.605

5 – 0.412

6 – 0.420

7 – 0.723

8 – 0.620

9 – 0.432

10 – 0.806

11 – 0.031

12 ∼ 0 0.369

13 0.522 0.623

14 – 0.537

15 – 0.782

16 – 0.080

17 0.264 0.376

18 0.079 0.297

19 0.716 0.846

20 ∼ 0 0.723

21 0.160 0.382

22 ∼ 0 0.787

23 – 0.551

24 – 0.585

25 0.273 0.406

26 0.011 0.678

27 0.045 0.539

28 0.596 0.628

29 0.419 0.543

30 0.621 0.643

31 0.719 0.834

32 0.640 0.798

33 0.873 0.907
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Table 2.5: Global relative contribution assessments (second column) for every stage in the
real-world MSP toward final stage 33 (values multiplied by 1000). Dashed entries correspond
to nodes not included in the subnetwork of Figure 2.4.

Stage
d

Global
contribution

Cd,33

Wafer-lot-OS
contribution
cOS3d−2C

DTP
d,33

Chip-location-OS
contribution

(cOS3d−1 + cOS3d )CDTPd,33

Non-OS
contribution
cdC

DTP
d,33

1 19.479 5.887 4.375 9.217

2 7.229 2.949 1.523 2.757

3 – – – –

4 14.444 7.880 0.853 5.711

5 – – – –

6 – – – –

7 – – – –

8 – – – –

9 – – – –

10 – – – –

11 – – – –

12 0.987 0.217 0.069 0.701

13 0.015 0.003 0.001 0.011

14 0.348 0.003 0.183 0.161

15 0.540 0.191 0.231 0.118

16 0.197 0.015 0.001 0.181

17 4.069 0.407 0.152 3.509

18 1.993 0.161 0.241 1.591

19 9.226 5.144 0.267 3.815

20 23.037 16.263 <0.001 6.774

21 29.709 4.258 4.824 20.628

22 74.348 27.494 27.317 19.537

23 8.591 2.685 2.050 3.857

24 6.637 2.108 1.775 2.755

25 103.127 1.757 20.571 80.799

26 116.701 24.025 51.380 41.296

27 6.024 1.779 1.086 3.159

28 – – – –

29 – – – –

30 386.547 24.440 66.067 296.040

31 – – – –

32 – – – –

33 143.442 25.577 24.480 93.385
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Chapter 3

Dependence-biased clustering for

variable selection

3.1 Introduction

Variable selection is a well-known problem in supervised learning [39, 40, 41]. For a given

data set (X,y), withX ∈ Rnxp containing the values of n observations along input variables

X1, X2, . . . , Xp, and y ∈ Rn containing the values of the same observations along output

variable Y , variable selection is the search of a subset W of X = {X1, X2, . . . , Xp} that

satisfies certain properties, which, in quite general terms, depend on the “relevance” that the

variables in W have for Y and, possibly, also on the “redundancy” that the variables in W

have toward each other [39, 32]. Relevance may be expressed, for example, as a function of

predictability, statistical association, or even causal dependence between Y and the variables

in W . Redundancy, on the other hand, refers to the degree of similarity between variables

in W , as measured, for example, by linear correlation or mutual information. Depending

on the application, the uses of variable selection may be fairly diverse, but they usually

boil down to the construction of simpler supervised models that are less prone to data

overfitting, quicker to train and deploy, and more straightforward to analyze and interpret,

especially when p is very large.
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In this chapter, we extend the work we presented in chapter 2 by introducing a new

RF-based method aimed at the selection of a small set of strong, non-redundant predictors.

This method relies on a novel CPI measure, which, unlike DBB-CPI (section 2.3.2), carries

out the data partitioning task separately from that of model training. This is done by

replacing the DBB-RF with a clustering procedure, targeted at finding optimal values of

W (j) to condition upon when assessing the importance of Xj . The key feature of this

clustering approach lies in its definition of optimality, which is formulated to reflect the

structure of dependencies existing between the variables in W (j) and Xj itself.

This chapter is organized as follows. Section 3.1.1 provides relevant background on RF-

based methods for variable selection. Section 3.2 presents our novel clustering-based CPI

measure as the main theoretical contribution of this work, and explains how we incorporate

it in a recursive backward-elimination algorithm to solve the underlying variable selection

problem. Section 3.3 finally discusses the performance of our algorithm on several artificial

and real-world data sets, comparing results with a variety of state-of-the-art RF-based

methods for variable selection.

3.1.1 Background: Variable Selection with Random Forests

The problem of variable selection has been widely studied within the RF framework. Most

methods appeared in the literature so far build on a PI measure analogous to that described

in section 2.2.2, but differ in the approach they employ to solve the variable selection

problem. There are essentially three main classes of approaches, aimed at either finding a

variable subset that yields optimal prediction performance, or a compact, small-cardinality

variable subset with no redundant variables, or a variable subset that contains all predictors

whose contributions to the output variable are statistically significant. Below we briefly

summarize the basic elements that characterize each of these approaches.

The performance-based approach is primarily geared towards the elimination of vari-

ables that are detrimental to RF prediction accuracy, with the goal of training a RF with the

best possible testing performance. Methods that employ this approach usually start by cal-

culating PI on all input variables and then iteratively reject a certain fraction of them, cho-
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sen from those with the least measured importance. At every iteration, model performance

is assessed via OOB or cross-validation error, and the variable subset that yields the best

model is finally returned as solution. Although generally not explicitly targeted to the elim-

ination of redundant variables, some of these methods do return small-cardinality solutions,

thus showing some overlap with the compactness-based approach [42, 43, 44, 45].

The compactness-based approach seeks a variable subset with small or, ideally, minimal

cardinality, by excluding variables that are not essential to the model’s predictive power,

because they are either irrelevant to the output variable or redundant with variables that are

relevant. The inclusion of subset-cardinality minimization in the variable selection criterion

results in simpler, more interpretable RF models that are somewhat less prone to data

overfitting. Some methods that follow this approach rely on regularization penalties for

unimportant variables enforced within the RF training algorithm [46, 47], whereas others

complement the RF with tools for the detection of masking relationships among variables

[48].

The significance-based approach aims at identifying all input variables that have a

relationship with the output variable, without any regard to the redundancies that may

exist among those input variables. This approach may be desirable when the underlying

analytic goal is that of developing broad intuition on the process that is generating the data.

Most methods that use these approach start by measuring the PI of all input variables; they

then perform repeated permutations of either the output variable or the input variables,

and after each repetition they measure PI again. These repeated measurements are used to

build an empirical distribution of PI under a null hypothesis of independence between input

variables and output. This distribution is employed to calculate a p-value or a Z-score on

the PI measurements obtained prior to the repeated permutations, and all variables with

statistically significant PI are finally selected [49, 50, 51, 52].
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3.2 A new method for variable selection with conditional

permutation importance

We propose a new method for variable selection with CPI, placed at the intersection between

the performance-based and the compactness-based approach described in section 3.1.1. The

method consists of a RF-based backward-elimination algorithm [53, 54, 55], targeted at the

selection of a minimal subset of input variables characterized by high predictive power and

low reciprocal redundancy. The core of our method is a novel CPI measure, which relies

on a clustering approach for optimally partitioning the W (j) space while leveraging the

structure of dependencies existing among input variables.

Broadly speaking, clustering is an optimization problem concerned with dividing ob-

servations in a data set into groups, in such a way that observations within each group be

more homogeneous than those belonging to different groups [32]. As such, this grouping

task is closely related to the goal of devising a partition S(j) of the W (j) space, composed

of sets with homogeneous values (see section 2.2.2). Now, let us suppose we can formulate

the clustering problem in such a way that, the stronger the dependence between Xk and

Xj , Xk ∈ W (j), the more any two observations are considered dishomogeneous along Xk.

Intuitively, with such a formulation, a good clustering solution will be one where within-

group homogeneity holds specifically along variables Xk with more substantial dependence

on Xj . As mentioned at the end of section 2.2.2, those are indeed the variables whose

homogeneity is most critical to the correct assessment of Xj ’s conditional importance. The

use of a clustering formulation of this kind as a partitioning engine for the W (j) space is

the basic idea behind the CPI measure we propose. We name this measure “Dependence-

Biased-Clustering Conditional Permutation Importance” (DBC-CPI).

3.2.1 Dependence-biased-clustering conditional permutation importance

Let Ω be a function as in section 2.3.1, and let (X,y) be a data set as defined in section

3.1, and let us assume that X is numeric and standardized to zero mean and unit variance.

Let wj , j ∈ {1, 2, . . . , p} be a p-dimensional vector defined as in section 2.3.1 after setting
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ω = 0. After letting Mj = diag(wj), let us define a wj-biased Euclidean distance function

between any two p-dimensional observations xa and xb in X:

dj(xa,xb) =
√

(xa − xb)T M2
j (xa − xb). (3.1)

For (3.1) we can straightforwardly derive the following.

Proposition 3.1. dj is a metric.

Proof. We can rewrite dj as follows:

dj(xa,xb) =

√√√√ p∑
k=1

w2
kj(xka − xkb)2

=

√√√√ p∑
k=1

(wkjxka − wkjxkb)2

=

√(
x

[j]
a − x[j]

b

)T (
x

[j]
a − x[j]

b

)
,

(3.2)

where x
[j]
a = Mjxa = (w1jx1a, w2jx2a, . . . , wpjxpa)

T and x
[j]
b = Mjxb = (w1jx1b, w2jx2b, . . . ,

wpjxpb)
T . Equation (3.2) shows that dj is equivalent to the standard (unbiased) Euclidean

distance metric on a linear transformation of the original p-dimensional variable space, in-

duced by scaling/projection matrix Mj , with scaling bias wkj along variables Xk, k 6= j,

and projection of Xj to 0, given wjj = 0.

In summation, dj is defined in such a way that the more strongly Xk is dependent on

Xj , k 6= j, the farther xa and xb (or, equivalently, x
[j]
a and x

[j]
b ) are considered to be along

Xk; dj , on the other hand, is not affected by the values that xa and xb have along Xj .

Now, let us consider a RF with T trees, trained on (X,y), and with cn OOB obser-
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vations per tree, 0 < cn < n. As above, let Ot be the OOB data for the t-th tree. Let ∆

be a function that, given a set of grouped observations, somewhat quantifies how heteroge-

neous observations are within each group, overall. Given a choice of Ω, ∆, and integer K,

1 ≤ K ≤ cn, the procedure to calculate DBC-CPI for each variable Xj , j ∈ {1, 2, . . . p} is

as follows:

A. Compute wj from X via Ω, and accordingly define dj .

B. Cluster X into K groups, by minimizing ∆ and using dj as a measure of within-group

heterogeneity.

C. For t = 1, 2, . . . , T , partition the observations in Ot according to the group assignments

of the corresponding observations in X. Let S
(j)DBC
t be this partition.

D. Compute and return

IDBC−CPj =
1

T

T∑
t=1

(
E
t,π,S

(j)DBC
t

− Et
)
, (3.3)

where E. is a mean square error (as in 2.17) if Y is numeric or a misclassification error if

Y is categorical. Regarding step B, we note that: (I) minimizing within-group heterogeneity

is equivalent to maximizing within-group “compactness”, which is a common criterion to

measure cluster validity [56]; (II) the standardization of X ensures that variable scale does

not affect within-group heterogeneity. Moreover, we note that S
(j)DBC
t in (3.3) plays the

same role as S
(j)
t in (2.17).

We propose a choice of ∆ derived from the K-means formulation of the clustering

problem [32], which seeks for the partition into K groups that minimizes

∆ =
K∑
l=1

∑
i∈sl

d2 (xi,µl) , (3.4)

where sl is the l-th group, d(·, ·) is the Euclidean distance, and µl is the center of the

l-th group, given by the mean of the observations it contains. In this work, however, we

replace d with dj , thus changing objective function (3.4) to the following:
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∆j =
K∑
l=1

∑
i∈s(j)l

d2
j

(
xi,µ

(j)
l

)

=
K∑
l=1

∑
i∈s(j)l

(
xi − µ(j)

l

)T
M2

j

(
xi − µ(j)

l

) (3.5)

where µ
(j)
l is the mean of group s

(j)
l . Now, if we let nl be the cardinality of group s

(j)
l and

v
Xk|s

(j)
l

be the sample variance of variable Xk computed on the observations in group s
(j)
l ,

we may rewrite (3.5) as follows:

∆j =
K∑
l=1

nl

p∑
k=1

w2
kjvXk|s

(j)
l

(3.6)

Equation (3.6) shows that using (3.5) as an objective function pushes step B of DBC-

CPI towards finding groups that are more homogeneous along the most critical conditioning

variables (that is, those most dependent on Xj), since the variance of such variables is

associated to larger bias and has therefore a larger impact on the objective value. As a

concluding remark, we note that, given the equivalence of (3.1) and (3.2), we can look for

an optimum of (3.5) by deploying a standard algorithm for solving the K-means problem

(relying, that is, on the standard Euclidean distance) on the transformed data set XMj

instead of X.

A DBC-CPI Variant for Categorical Variables

If X contains any categorical variables, observations cannot be grouped based on their

Euclidean distance, and group means are not defined. For this type of data, our biased

Euclidean distance may be replaced, for example, by Gower’s coefficient of dissimilarity

[57], which defines the distance between two observations xa and xb as follows:

d(xa,xb) =

∑p
k=1 ζkδ

′
abkδ

′′
abk∑p

k=1 ζkδ
′
abk

(3.7)
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In (3.7), ζk is a bias associated to Xj ; δ
′
kab is equal to 0 if Xj is asymmetric binary and

xka and xkb are both zero, and equal to 1 otherwise; for categorical Xk, δ
′′
kab is equal to 0 if

xka = xkb, and equal to 1 otherwise; for numeric Xk, δ
′′
kab is equal to |xka − xkb| /Rk, where

Rk is the range of Xk.

By setting ζk = wjk, (3.7) may be used as a replacement for (3.1) in objective function

∆j ; note that the scale of any numeric variables in X will not affect the value of such a

∆j . Observations in X may then be clustered via a K-medoids formulation, which is an

analog of K-means where group centers are defined by the medoid of the observations they

contain, rather than their mean [32].

3.2.2 Variable selection with DBC-CPI

From a variable importance standpoint, each variable in Xj ∈ X can be categorized into one

of three types, based both on the relationship that Xj has with Y and the relationship it has

with the other variables in X: (I) irrelevant for Y , (II) relevant for Y but redundant with

(dependent on) some other variables in X, and (III) relevant for Y and non-redundant with

all other variables in X. Analogously to standard CPI, we expect DBC-CPI to assign lower

important values to variables of type I and II, and higher importance values to variables of

type III. Now, if the goal of the variable-selection task is that of choosing a minimal-size,

minimally-redundant subset of variables with maximal predictive power, it is obvious that

such subset should not include variables of type I; the same does not necessarily hold for

variables of type II, since excluding all of them may result in the loss of useful predictors,

that is ones that would become of type III if one or more other predictors of type II

were eliminated. Consequently, the variable selection criterion cannot rely simply on the

ranking of the p variables based on their DBC-CPI values. For such a reason, we propose a

recursively-defined criterion, in which DBC-CPI is first calculated on the entire variable set

and used to eliminate the least important variable; subsequently, DBC-CPI is recalculated

on the p−1 remaining variables and the procedure is repeated until one only variable is left.

We expect each of these recursions to eliminate one variable of either type I or type II; in

the latter case, the elimination will, on average, cause an increase of the relative DBC-CPI
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importance of one or more of the remaining variables in the following recursion, since the

elimination will rule out one source of redundancy from the current variable subset.

Variable selection algorithm with recursively-calculated DBC-CPI

Given a data set (X,y) defined as above, and hyper-parameters Ω, ∆, and K for DBC-CPI,

let us let Qp = X, and let δ ≥ 0 be an extra hyper-parameter. Our DBC-CPI-based variable

selection algorithm consists of the following steps:

A. For o = 0, 1, . . . , p− 1:

A1. Calculate the (p−o)-dimensional vector io =
(
IDBC−CPj1

, IDBC−CPj2
, . . . , IDBC−CPjp−o

)
of DBC-CPI values, where Jp−o = {j1, j2, . . . , jp−o} ⊆ {1, 2, . . . , p} is the set of

indices pertaining to the variables in Qp−o.

A2. Train an RF model on the observations along input variables in Qp−o and output

variable Y . Let up−0 be the mean OOB prediction error of such model and γp−o

be the corresponding standard error.

A3. Let Qp−o−1 = {Qp−o \Xk}, k = argmin
j∈Jp−o

IDBC−CPj .

B. Let õ∗ = min
o≤õ

uo≤uõ+δγõ

o, õ = argmin
o∈{0,1,...,p−1}

up−o. Return Qõ∗ .

We will refer to this algorithm as “DBC-RCPI”, where the “R” stands for “recursive”.

Remark 1. In step A2, given observed output yi and corresponding OOB prediction

ŷOOBi for observation i, we define OOB prediction error as

eOOBi =
(
ŷOOBi − yi

)2
(3.8)

for regression and
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eOOBi =


1 if ŷOOBi 6= yi

0 otherwise

(3.9)

for classification. Letting ēOOB = 1
n

∑n
i=1 e

OOB
i be the mean error and sOOBe the standard

deviation of the error, the standard error sēOOB = sOOBe√
n

of ēOOB is given by

sēOOB =

√∑n
i=1

(
eOOBi − ēOOB

)2
n(n− 1)

(3.10)

for regression and

sēOOB =

√
nēOOB(1− ēOOB)

n(n− 1)
(3.11)

for classification (in the latter, sOOBe corresponds to the standard deviation of a Bernoulli

distribution with probability ēOOB).

Remark 2. The final solution returned in step B corresponds to the smallest variable

subset Qõ∗ whose corresponding mean RF OOB performance is no more than δ standard

errors worse than the overall best obtained in all recursions, as given by Qõ.

Remark 3. Although K should generally be fixed throughout all recursions, certain

scenarios may justify adjusting K as recursions go by. For example:

• If X contains any variables with fewer than n distinct values, its p − o-dimensional

projection (along the only variables in Qp−o) in step A1 may contain fewer and fewer

distinct observations for larger and larger o. If at the o-th recursion the number

of distinct observations ndo is less than K, then obviously there will not exist any

feasible clustering solutions. In that case, it is necessary to decrease K to a value

no larger than ndo to proceed to the next recursion. Our approach to this issue is,

however, slightly more conservative: if ndo < 2K, that is, there do not exist any

feasible clustering solutions in which each of the K groups contains at least 2 distinct

observations, we set K = 1, that is, we replace DBC-CPI with non-conditional PI for
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the current and all subsequent recursions.

• If X is very high-dimensional, setting K = 1, that is, again, replacing DBC-CPI with

non-conditional PI, for the first ostart ≤ p recursions, may be an effective strategy

to save some of the overall computational effort. This approach would then provide

DBC-RCPI with a warm-start solution, which DBC-RCPI would then refine for the

remaining p − ostart recursions. During the this warm-start phase, further computa-

tional boosts can be achieved by: (I) removing multiple input variables, rather than

only one, at a time in step A3, as done in [45]; (II) calculating non-conditional PI only

once in recursion o = 0, and setting io = i0 in step A1 in the following recursions, as

done in [43].

3.3 Experiments

We evaluated the performance of DBC-RCPI, and of a variety of benchmark methods, via

50 repeats of 10-fold, stratified cross-validation [58, 59]. For experiments on artificial data

instances, the data set used in each repeat corresponds to a different independent sample

from the same, given theoretical distribution. For experiments on real-world data instances,

each repeat used the same data set.

For each repeat and cross-validation fold, we (I) deployed each method on the training

subset of the data, (II) trained a RF on the variable subset of the training data selected

by that method, and (III) measured the testing performance of the RF on the testing

subset of the data. We calculated testing performance as the mean cardinality v∗ of the

selected variable subset and the corresponding mean testing prediction error e∗. We finally

calculated the mean v̄∗ and ē∗ of these two performance indicators across the 50 repeats, as

well as the corresponding standard errors.

For a few real-world data sets with small n (∼ 101) and large p (∼ 102 − 103), we

replaced 10-fold cross-validation with leave-one-out cross validation, and ran one only re-

peat, since multiple repeats would have yielded identical results, given our experimental

protocol, as clarified in the next paragraph. For these data sets, the values of v̄∗ and ē∗
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coincide therefore with the values of v∗ and e∗ calculated over the n folds of the single

repeat of leave-one-out cross-validation. Since in this special one-repeat scenario the stan-

dard errors of v̄∗ and ē∗ obviously cannot be calculated, we chose to replace them with the

standard errors of v∗ and e∗, calculated over the n cross-validation folds, when reporting

our results.

We used version 3.4.3 of the R language for all method implementations and exper-

iment executions. For all methods, we trained the RFs with function randomForest of

the randomForest package, using ntree=1000 trees and default values for all other hyper-

parameters (including sample=TRUE, resulting in a proportion of c ≈ (1 − 1/n)n OOB

observations per tree, with c thus approaching 1/e ≈ 0.368 as n increases), unless otherwise

specified below. In order to rule out any random fluctuations across methods resulting

exclusively from the stochastic training process of RFs, for a given training data set, we

mapped each subset of input variables to a unique integer, which we then used as seed for

R’s random number generator immediately prior to model training. This made sure that

RFs trained on the same data were identical. We generated stratified cross-validation splits

with function createFolds of package caret, setting k=10.

Within DBC-RCPI, for data sets with fully numeric input variables: we set Ω(x(j),x(k)) =

|ρ(x(j),x(k))|u, where ρ(x(j),x(k)) is the sample Pearson’s correlation coefficient of x(j) and

x(k), and u > 0 is a hyper-parameter, which we set to 2, unless differently specified be-

low; we carried out K-means clustering with the Hartigan and Wong algorithm [60], as

implemented in the kmeans function of the stats package, called from nstart=10 ran-

dom initial solutions, run for a maximum of iter.max=1000 iterations. For data sets

with one or more categorical input variables: we set Ω(x(j),x(k)) = 1 − pv(x
(j),x(k))u,

where pv(x
(j),x(k)) is the p-value of an asymptotic, quadratic-type re-randomization test of

independence [37, 38] on vectors x(j) and x(k) (obtained invoking the independence test

function with teststat=quadtype in the coin R package), and u > 0 is a hyper-parameter,

which we set to 1/20; we carried out K-medoids clustering with the Partitioning Around

Medoids algorithm [61], as implemented in the pam function of the cluster package, with

dissimilarity matrix diss calculated via the daisy function of the same package, setting
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metric="gower" and bias= w̃j = wj/e
Twj , where e is a p-dimensional vector of ones (the

use of [0, 1]-normalized bias vector w̃j , rather than raw bias vector wj , seemed to allow

the pam function to run numerically more stable on some data instances, although from

a theoretical standpoint, w̃j and wj are equivalent). Finally, unless differently specified

below, we set K = bbcnc/mc, with m = 4 (m is approximately the mean group cardinality

if the bcnc OOB observations are partitioned into K clusters), and δ = 0. All of the above

can be considered as the “default” hyper-parameter values of DBC-RCPI.

The first group of benchmark methods we utilized includes all methods tested in [50],

that is: Hapfelmeier et al., without and with Bonferroni correction (Hap and HapB) [50],

Altmann et al. (Alt) [49], Diaz et al. with 0- and 1-standard error rule (Diaz0 and Diaz1)

[45], Jiang et al. with 0- and 1-standard error rule (Jiang0 and Jiang1) [44], Svetnik et al.

(Svet) [43], and Genuer et al. with prediction and interpretation variants (GenP and GenI)

[42]. Our implementation of these methods is based on the code provided in [50], with the

main exception being our use of CART-based RFs, instead of Conditional Inference RFs,

motivated by the computational impracticality of the latter (as implemented in package

party) on large data sets, as also reported in other studies [35]. PI calculations were carried

out via function importance with scale=FALSE in the randomForest package for all of

these methods. For Hap, HapB, and Alt, we set ntree=100, as suggested by their respective

authors; for all other methods we set ntree=1000, for consistency with DBC-RCPI. We set

all remaining parameters of these methods as suggested in their respective articles.

The second group of benchmark methods includes: Kursa et al. (Boruta) [52], Deng et

al. (GRRF) [46], and Deng (GRF) [47]. For Boruta we used the Boruta function in package

Boruta, with default parameters, except ntree, which we set to 1000. For GRRF and GRF

we used function RRF in the RRF package, setting ntree=1000. We left all parameters to

their default values, except gamma, which defines the penalty associated to unimportant

variables during RF training. For GRF we set gamma=1, as in [47]. For GRRF we set:

on classification instances, gamma=0.5, corresponding to the medium value used in [46]; on

regression instances, gamma=0.9, corresponding to the medium value between 0.8 (minimum

value at which we observed the solution of GRRF starting to differ from that of GRF on
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our data sets) and the theoretical maximum of 1. Finally, as a “control” method, we also

included a variant of Diaz, which maintains all of the features of the method discussed in

[45], except it relies on a standard form of CPI, analogous to that presented in [34], rather

than on PI. For the calculation of CPI in this method, which we will refer to as Std-CPI,

we used function randomForest of R package extendedForest [62]. For Std-CPI, we set:

maxLevel, which controls the depth at which trees in the RF are pruned prior to calculation

of CPI, to blog2(cn/m)c, with the same value of m as in DBC-RCPI (m here corresponds

to the mean number of OOB observations per leaf in each pruned tree); ntree=1000; all

other parameters to their default values.

3.3.1 Artificial data

We used numeric continuous data sets artificially generated from multiple linear true mod-

els, with polynomially-transformed input variables mapping to a Normally-perturbed con-

tinuous output variable. We focused in particular on polynomial models of degree 1, with

form

Y = β0 +

p∑
j=1

βjXj + αε (3.12)

and of degree 2 with interactions, with form

Y = β0 +

p∑
j=1

βjXj +

p∑
j=1

βjjX̃2
j +

p−1∑
j=1

p∑
k>j

βjkX̃kXj + αε (3.13)

where X1, X2, . . . , Xp are jointly standard Normal random variables with correlation matrix

R, X̃2
j and X̃kXj are the standardized squared random variable X2

j and the standardized

product random variable XkXj , respectively, ε is a standard Normal random variable, in-

dependent of X1, X2, . . . , Xp, and α, β0, β1, . . . , βp, β11, β12, . . . , βpp ∈ R.

The standardization of each term in (3.12) and (3.13) is employed to ensure that

terms with the same β value have the same bias in the sum on the right hand side of the
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equations, since their scale is identical. Parameter α is used to modulate the scale of the

noise perturbations, and consequently the overall relative contribution that the set of input

variables has towards Y , given by the coefficient of determination R2.

As a baseline for our experiments, we generated n = 100 independent observations

from a true model of form (3.12), almost identical to that employed in study III of [50],

with p = 20, β0 = 0, β1 = β4 = β7 = 3, β2 = β5 = β8 = 2, β3 = β6 = β9 = 1, β10 = β11 =

. . . = β20 = 0, with correlation matrix R with ρXjXk , j 6= k, equal to ρ = 0.9 if either j, k ∈

{4, 5, 6} or j, k ∈ {7, 8, 9, 10, 11} or j, k ∈ {12, 13} and equal to 0 otherwise, and α calibrated

to yield R2 = 0.9. Note that the 20 input variables can be separated in 5 blocks: the first

block involving X1, X2, X3, all causally relevant to the output variable and uncorrelated; the

second block involving X4, X5, X6, all causally relevant and mutually correlated; the third

block involving X7, X8, . . . , X11, all correlated but with only the first three variables causally

relevant; the fourth block involving X12, X13, both causally irrelevant and correlated; finally,

the fifth block involving X14, X15, . . . , X20, all causally irrelevant and uncorrelated. In

section 3.3.3 we will refer to this experimental setup, as well as its variants with different

values of n, ρ, and R2, as 20DLinear. Our experiments also included several extensions of

20DLinear:

• 20DLinearClass, a classification variant of 20DLinear used also in [50], with Xj , j =

1, 2, . . . , p defined as in 20DLinear, and Y following a Bernoulli distribution with suc-

cess probability π defined as follows:

π =
e
∑p
j=1 βjXj

1 + e
∑p
j=1 βjXj

. (3.14)

• 20DLinearMixed, identical to 20DLinear, except after generating the observations, the

values of X1, X4, X7, X11, and X13 are discretized into univariate quartilic bins and

the resulting discrete values are then treated as unordered categorical levels.

• 20DLinearDecreasCov, identical to 20DLinear, except within the first, second, and third

block, the correlation between Xj , and Xk, j 6= k, is not constant but decreases with

the distance between indices k and j, according to formula
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ρXjXk = 0.9− 0.2(|j − k| − 1). (3.15)

• 11DLinear+Poly, corresponding to a model of type (3.13), with R2 = 0.9, p = 11,

X1, X2, . . . , X11 and respective β parameters defined as in 20DLinear, and second-

degree terms X̃kXj with βjk =
√
βjβk (always defined since βj , βk ≥ 0, j, k =

1, 2, . . . , 11), for a total of 2p+ p(p− 1)/2 = 77 input variables.

• 11DLinear+HiddenPoly, identical to 11DLinear+Poly, except the second-degree terms

are completely hidden from the variable selection methods and the RF models (which

therefore process observations only along X1, X2, . . . , X11, and Y ).

In all these latter experimental setups, the number of generated independent obser-

vations was n = 100 as for 20DLinear, with the exception of 11DLinear+Poly and 11DLin-

ear+HiddenPoly, where we increased n to 300.

3.3.2 Real-world data

We experimented with real-world data sets from several diverse fields, including, among oth-

ers, neuroimaging, evolutionary design of experiments, DNA microarrays, and meteorology.

Details about each of these data sets are provided below.

fMRI brain-network data

This data set was kindly provided by the Integrated Brain Imaging Center of the Univer-

sity of Washington, during a fruitful collaboration that allowed us to acquire all of the

neuro-scientific and technical background necessary for the analysis described below. The

data refers to a sample of subjects from the Seattle Longitudinal Study (SLS), a cohort-

sequential longitudinal study started in 1956 [63]. The SLS consists of periodical cognitive

and behavioral assessments obtained with a battery of test underwent by all available prior

participants, plus a new random sample added every 7 years. Out of the 600 currently

active participants, 200 individuals with 3 midlife assessments (over a 14-year period) were
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selected for a further longitudinal neuroimaging study. These subjects were classified as

“decliners”, “stable” or “gainers” based on their performance in tests that examined mem-

ory, executive function, and psychomotor speed. The brain activity at rest of these subjects

was investigated via functional magnetic resonance imaging (fMRI), producing for each

subject a set of time series of the so-called “blood oxygenation level dependent” (BOLD)

signal, which is a proxy of neural activation. Each BOLD time series is associated with a

different (x, y, z) coordinate within the brain, known as volumetric pixel or “voxel”. In our

study, we focused on the BOLD time series of a specific set of areas or “regions of interest”

(ROI) of the brain (known as “medial frontal”, “posterior cingulate”, “left lateral parietal”,

“left medial temporal”, “right lateral parietal”, and “medial temporal” region), with each

of these ROIs representing a different group of contiguous voxels in the so-called “Default

Mode Network” (DMN).

We characterized the DMN time-series data set via the extraction of features aimed

at identifying connectivity patterns within and between ROIs, with the goal of using these

features as predictors for the decliner/non-decliner class (the latter being an aggregation of

the “stable” and “gainer” classes). Our feature-extraction algorithms (FEAs) involved the

iterative manipulation of Pearson’s linear correlation values computed between the BOLD

time series of a given source or “seed” voxel and that of a given set of target voxels. We

extracted a total of 225 numeric features, subdivided in four groups, each of which is in

turn presented in two variants. The first variant uses absolute correlations, while the second

uses what we call “top positive” correlations, corresponding to a given fraction of top values

selected from the only correlations with positive sign.

Further neuroscience background on the data set, as well as the pseudo-code of all

our FEAs can be found in appendix B. Below we will refer to this n = 29, p = 225 data

set as fMRI. Given the n << p scenario, as mentioned in section 3.3, for this data set we

replaced 10-fold cross validation with leave-one-out cross validation in our experimental

protocol.
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Evolutionary design of experiments data

These data sets, as well as the computational hardware to process them, were kindly pro-

vided by ProtoLife Inc., a company that develops combinatorial optimization methods for

evolutionary design of experiments (EDoE). A fruitful collaboration with ProtoLife Inc.

allowed us to acquire all of the EDoE and technical background required for the analysis

described below. Design of experiments [64] comprises a broad set of statistical techniques

for the estimation and study of the mathematical relationship f between the set of p com-

ponents (input variables) that describe a process and the properties (output or “response”

variable) of that process. These relationships are inferred from a collection of observations,

with each observation corresponding to a different “experiment”, represented by a vector

of p values, one for each input variable, and its corresponding response value (typically,

a number in R), measured after materially executing that experiment in the real world.

Since experiments are usually expensive, DoE aims at minimizing the size of the so-called

“experimental space” E, that is, the overall set of experiments that need to be executed. A

fundamental feasibility issue arises when p is large, since E typically grows exponentially

with p. This issue is further exacerbated when p cannot be straightforwardly reduced by

removing components a priori without severely affecting the process’ response (for example,

when components exhibit complex non-linear interactions).

EDoE is a form of DoE targeted to the discovery of f -optimizing experiments without

the need of exhaustively performing all experiments in E [65]. In several variants of EDoE,

experiments are iteratively executed in batches, corresponding to tiny subsets of E, called

“generations” [66]. After each generation, a statistical or machine-learning model of the

experimental process is trained on the observations collected at all previous generations, and

is then used to predict the response of the remaining experiments in E, with the purpose

of selecting new experiments in promising regions of E [67]. Further experiments are then

selected in unexplored regions of E, usually disregarding their predicted response, with

the purpose to collect observations where the currently available data is more sparse. The

combination of these two experiment-selection criteria is essentially a design-of-experiments

analog of exploration and exploitation strategies in approximate dynamic programming
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[68]. Notably, observations collected based on these EDoE criteria are often dependent

across input variables, unlike in DoE where inter-variable orthogonality is usually explicitly

enforced.

We considered 4 data sets of experimental observations (all with numeric output vari-

able) obtained with an EDoE approach:

• Liposome: with n = 450 and p = 28, with 2 binary and 26 numeric input variables.

• Amphiphile: with n = 180 and p = 16, with all numeric input variables.

• Robot: with n = 529 and p = 22, with all numeric input variables.

• Protein: with n = 215 and p = 11, with 1 categorical and 10 numeric input variables.

DNA microarray data

These data sets are available in the public domain, and were collected via DNA microarray

technology [69]. A DNA microarray consists of an ensemble of DNA molecules attached to a

rigid surface in a matrix-like arrangement. DNA microarrays allow to analyze in parallel the

expression levels of a very large number of genes within a tissue or an organism. One of the

typical goals of this analysis is the comparison of the expression levels of sick individuals

with those of healthy ones, in order to identify genes that are responsible for a certain

pathology. We considered 4 DNA microarray data sets, all with numeric continuous input

variables and binary output variable [45]:

• Leukemia: with n = 38 observations and p = 3051 input variables.

• NCI: with n = 61 observations and p = 5244 input variables.

• Brain: with n = 42 observations and p = 5597 input variables.

• Breast2: with n = 77 observations and p = 4869 input variables.

For these n << p microarray data sets, as mentioned in section 3.3, we replaced 10-fold

cross validation with leave-one-out cross validation in our experimental protocol. Moreover:

we excluded Hap and HapB from the list of benchmark methods, due to their computational
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impracticality for problems of this high dimension; for DBC-RCPI, we evaluated the per-

formance resulting from variations of the default hyper-parameter values, by increasing the

value of δ to 1 (DBC-RCPI,δ = 1), decreasing the value of m to 2 (DBC-RCPI,m = 2), or

both of the above (DBC-RCPI,δ = 1,m = 2).

Other data

This final collection includes miscellaneous public-domain data sets that were used to vali-

date other methods for variable selection with RFs, such as [42] and [50]:

• Ozone: originally with n = 366 observations, but reduced to n = 203 in our study due

to the removal of all observations containing missing values; p = 12 input variables,

9 of which numeric and 3 time-resolved, which we treated as numeric, and numeric

output variable [70].

• BostonHousing: with n = 506 observations and originally p = 13 input variables, of

which 11 numeric and 1 binary, but augmented to p = 15 in our study by including

numeric “LAT” and “LON” variables from the corrected version of the data set [71].

The numeric continuous output variable was given by variable “CMEDV” from the

same corrected version.

• Heart: with n = 270 observations and p = 13 input variables, of which 6 numeric, 4

categorical (of which 1 ordered), and 3 binary, and binary output variable [50].

• Parkinson’s: with n = 195 observations and p = 22 input variables, all of which

numeric, and binary output variable [72].

3.3.3 Results

The tables below report the values of v̄∗ and ē∗ (see section 3.3) for all methods, as well

as that of two further indicators, defined as follows: rv̄∗ = (v̄∗LEBM − v̄∗) /v̄∗LEBM and

rē∗ = (ē∗LEBM − ē∗) /ē∗LEBM , where v̄∗LEBM and ē∗LEBM are the v̄∗ and ē∗ values of the

“least error benchmark method” (LEBM), that is the benchmark method that yields the
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smallest ē∗. In case multiple benchmark methods have minimal ē∗, the LEBM is chosen to

be the method with both the smallest ē∗ and the smallest v̄∗.

Positive values of these indicators represent relative improvements over the cardinality

of the solution and over the error performance of the LEBM, respectively. For cases in

which ē∗LEBM = 0 would make rē∗ undefined, we define rē∗ = 0 if ē∗ = 0, and simply write

rē∗ < 0 otherwise. Note this indefiniteness issue does not apply to rv̄∗ , since v̄∗LEBM is

always a strictly positive quantity. We will refer to v̄∗DBC−RCPI and ē∗DBC−RCPI as the v̄∗

and ē∗ values for DBC-RCPI, and to rv̄∗DBC−RCPI and rē∗DBCI−RCPI as the corresponding rv̄∗

and rē∗ values.

Artificial data

The analysis of the results obtained on the artificial data sets suggests that, in most cases,

DBC-RCPI with hyper-parameters set to their default values (see section 3.3) yields testing

error performance comparable to that of the LEBM, but through variable-subset solutions

with significantly smaller cardinality. A similar conclusion can be drawn when comparing

DBC-RCPI with control benchmark Std-CPI. With 20DLinear (Table 3.1) and on the vast

majority of its variants with different values of n (Tables 3.2, 3.3, 3.4), R2 (Tables 3.8, 3.9,

3.10) and ρ (Tables 3.5, 3.6, 3.7), rv̄∗DBC−RCPI fluctuates around 0.3 and rē∗DBCI−RCPI around

0. Larger values of n appear to result in larger values of rv̄∗DBC−RCPI and rē∗DBCI−RCPI . We

observe that v̄∗DBC−RCPI tends to decrease with n, unlike with most of the other meth-

ods, which tend to return solutions with larger cardinality when n grows. The values of

rv̄∗DBC−RCPI and rē∗DBCI−RCPI appears to also increase with R2, which however does not seem

to affect v̄∗DBC−RCPI ; on the other hand, most of the other methods yield solutions with

larger cardinality as R2 grows. Larger values of ρ are associated with significantly larger

values of rv̄∗DBC−RCPI , as a consequence of decreasing values of v̄∗DBC−RCPI (unlike with most

other methods, whose solutions tend to increase in size as ρ grows). This is not surprising,

since the clustering criterion within DBC-RCPI is specifically engineered to leverage strong

inter-variable dependencies. While this behavior is desirable, we notice that it comes at the

price of a slight decrease in rē∗DBCI−RCPI . With the exception of 20DLinearClass (Table 3.11),
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in which DBC-RCPI scores its worst error performance relative to the LEBM across all arti-

ficial data sets (rē∗DBCI−RCPI = −0.119), the competitiveness of our method is confirmed on

the various extensions of 20DLinear involving mixed input variables (20DLinearMixed, Table

3.12), varying correlation levels within input variable blocks (20DLinearDecreasCov, Table

3.13), and hidden non-linear transformations of the input variables (11DLinear+HiddenPoly,

Table 3.15). Particularly encouraging is, moreover, the result on the high-dimensional,

non-linear 11DLinear+Poly case (Table 3.14), where DBC-RCPI virtually matches the error

performance of the LEBM via a solution a fifth of the size of that returned by the LEBM

(v̄∗DBC−RCPI = 0.8).

Table 3.1: 20DLinear data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.578± 0.138 25.18± 0.476 0.324 −0.024
Hap 10.134± 0.099 25.129± 0.389 −0.042 −0.022
HapB 8.456± 0.078 26.435± 0.484 0.131 −0.075
Alt 6.046± 0.112 30.253± 0.662 0.379 −0.23

Diaz0 9.944± 0.188 24.936± 0.369 −0.022 −0.014
Diaz1 6.564± 0.287 27.575± 0.49 0.325 −0.121
Jiang0 9.776± 0.164 24.755± 0.372 −0.005 −0.007
Jiang1 6.374± 0.214 27.384± 0.485 0.345 −0.113
Svt 9.23± 0.209 25.393± 0.39 0.051 −0.032
GenP 3.086± 0.114 41.252± 1.475 0.683 −0.677
GenI 8.248± 0.235 25.66± 0.445 0.152 −0.043
Boruta 9.73± 0.09 24.595± 0.397 0 0
GRF 20± 0 27.387± 0.428 −1.055 −0.114
GRRF 15.08± 0.101 26.384± 0.429 −0.55 −0.073
Std-CPI 9.662± 0.191 24.52± 0.373 0.007 0.003

Table 3.2: 20DLinear data, variant with n = 50.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.024± 0.168 32.959± 0.824 0.313 −0.068
Hap 8.82± 0.11 31.677± 0.849 −0.005 −0.026
HapB 5.24± 0.204 38.457± 1.478 0.403 −0.246
Alt 4.714± 0.092 39.194± 1.146 0.463 −0.27

Diaz0 8.114± 0.283 32.019± 0.853 0.075 −0.037
Diaz1 4.14± 0.197 37.466± 1.031 0.528 −0.214
Jiang0 8.388± 0.224 31.089± 0.796 0.044 −0.007
Jiang1 4.662± 0.115 35.776± 0.887 0.469 −0.159
Svt 9.17± 0.212 31.655± 0.75 −0.045 −0.026
GenP 2.61± 0.099 48.947± 1.763 0.702 −0.586
GenI 7.048± 0.236 31.989± 0.834 0.197 −0.036
Boruta 8.772± 0.108 30.863± 0.788 0 0
GRF 20± 0 33.858± 0.782 −1.28 −0.097
GRRF 14.734± 0.129 32.551± 0.739 −0.67 −0.055
Std-CPI 8.21± 0.259 31.352± 0.813 0.064 −0.016
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Table 3.3: 20DLinear data, variant with n = 200.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.824± 0.111 21.193± 0.233 0.346 0.015
Hap 10.758± 0.084 21.783± 0.24 −0.031 −0.012
HapB 9.646± 0.049 22.13± 0.243 0.076 −0.029
Alt 7.116± 0.062 28.27± 0.36 0.318 −0.314

Diaz0 10.342± 0.089 21.605± 0.236 0.009 −0.004
Diaz1 9.346± 0.109 22.111± 0.283 0.104 −0.028
Jiang0 10.434± 0.091 21.515± 0.233 0 0
Jiang1 8.624± 0.097 22.756± 0.266 0.173 −0.058
Svt 9.97± 0.03 21.565± 0.233 0.044 −0.002
GenP 3.31± 0.106 35.299± 1.02 0.683 −0.641
GenI 9.508± 0.112 21.915± 0.247 0.089 −0.019
Boruta 10.254± 0.061 21.547± 0.228 0.017 −0.001
GRF 20± 0 23.828± 0.257 −0.917 −0.107
GRRF 15.616± 0.071 23.024± 0.245 −0.497 −0.07
Std-CPI 10.22± 0.154 21.543± 0.228 0.021 −0.001

Table 3.4: 20DLinear data, variant with n = 400.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.844± 0.073 17.425± 0.188 0.352 0.046
Hap 10.982± 0.081 18.419± 0.17 −0.041 −0.009
HapB 10.252± 0.049 18.285± 0.172 0.029 −0.002
Alt 7.38± 0.062 26.23± 0.266 0.301 −0.437

Diaz0 10.2± 0.058 18.337± 0.18 0.034 −0.004
Diaz1 9.328± 0.119 18.761± 0.181 0.116 −0.028
Jiang0 10.47± 0.06 18.28± 0.172 0.008 −0.001
Jiang1 8.982± 0.137 18.951± 0.189 0.149 −0.038
Svt 10± 0 18.301± 0.176 0.052 −0.002
GenP 3.52± 0.106 29.701± 0.532 0.666 −0.627
GenI 9.234± 0.153 18.719± 0.187 0.125 −0.025
Boruta 10.554± 0.071 18.257± 0.171 0 0
GRF 20± 0 20.133± 0.179 −0.895 −0.103
GRRF 15.976± 0.062 19.513± 0.175 −0.514 −0.069
Std-CPI 10.028± 0.106 18.351± 0.168 0.05 −0.005

Table 3.5: 20DLinear data, variant with ρ = 0.5.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.792± 0.1 24.696± 0.416 0.239 0.012
Hap 9.33± 0.142 25.382± 0.427 −0.045 −0.015
HapB 6.516± 0.13 27.012± 0.474 0.27 −0.08
Alt 4.054± 0.075 32.555± 0.697 0.546 −0.302

Diaz0 7.634± 0.177 25.463± 0.466 0.145 −0.018
Diaz1 4.97± 0.11 28.858± 0.567 0.443 −0.154
Jiang0 7.402± 0.152 25.114± 0.422 0.171 −0.004
Jiang1 5.052± 0.09 28.255± 0.508 0.434 −0.13
Svt 8.13± 0.283 26.278± 0.43 0.089 −0.051
GenP 3.908± 0.104 31.09± 0.488 0.562 −0.243
GenI 6.396± 0.15 25.904± 0.489 0.283 −0.036
Boruta 8.926± 0.132 25.005± 0.409 0 0
GRF 20± 0 28.495± 0.451 −1.241 −0.14
GRRF 15.074± 0.095 27.468± 0.454 −0.689 −0.099
Std-CPI 7.12± 0.138 25.039± 0.452 0.202 −0.001
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Table 3.6: 20DLinear data, variant with ρ = 0.7.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.712± 0.126 25.693± 0.358 0.207 0.002
Hap 10.028± 0.102 25.898± 0.357 −0.184 −0.006
HapB 7.77± 0.139 27.373± 0.408 0.082 −0.063
Alt 4.7± 0.08 32.509± 0.7 0.445 −0.263

Diaz0 8.694± 0.18 25.858± 0.348 −0.027 −0.004
Diaz1 5.5± 0.211 29.776± 0.563 0.35 −0.157
Jiang0 8.468± 0.171 25.744± 0.353 0 0
Jiang1 5.576± 0.145 29.007± 0.489 0.342 −0.127
Svt 9.39± 0.17 26.149± 0.385 −0.109 −0.016
GenP 3.436± 0.099 35.837± 0.797 0.594 −0.392
GenI 7.254± 0.19 26.667± 0.399 0.143 −0.036
Boruta 9.59± 0.078 25.786± 0.359 −0.132 −0.002
GRF 20± 0 28.518± 0.369 −1.362 −0.108
GRRF 15.002± 0.087 27.361± 0.353 −0.772 −0.063
Std-CPI 8.092± 0.206 25.883± 0.371 0.044 −0.005

Table 3.7: 20DLinear data, variant with ρ = 0.99.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 5.786± 0.196 25.931± 0.443 0.399 −0.012
Hap 10.094± 0.091 25.772± 0.443 −0.048 −0.006
HapB 8.702± 0.068 27.715± 0.534 0.097 −0.082
Alt 7.326± 0.09 31.677± 0.645 0.24 −0.237

Diaz0 10.314± 0.083 25.618± 0.45 −0.071 0
Diaz1 7.674± 0.274 28.019± 0.536 0.203 −0.094
Jiang0 10.244± 0.08 25.64± 0.45 −0.063 −0.001
Jiang1 7.21± 0.207 28.255± 0.501 0.252 −0.103
Svt 9.31± 0.218 26.277± 0.512 0.034 −0.026
GenP 2.598± 0.108 54.181± 1.704 0.73 −1.115
GenI 8.884± 0.169 26.314± 0.463 0.078 −0.027
Boruta 9.634± 0.087 25.615± 0.467 0 0
GRF 20± 0 28.76± 0.502 −1.076 −0.123
GRRF 16.016± 0.118 27.76± 0.502 −0.662 −0.083
Std-CPI 10.372± 0.105 25.584± 0.461 −0.077 0.001

Table 3.8: 20DLinear data, variant with R2 = 0.7.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.544± 0.164 56.668± 1.212 0.296 −0.055
Hap 9.49± 0.099 54.005± 0.934 −0.021 −0.006
HapB 6.65± 0.178 58.684± 1.211 0.285 −0.093
Alt 5.358± 0.109 61.813± 1.219 0.424 −0.151

Diaz0 9.672± 0.269 54.358± 1.023 −0.04 −0.012
Diaz1 4.448± 0.208 60.647± 1.113 0.522 −0.129
Jiang0 9.57± 0.227 54.079± 0.982 −0.029 −0.007
Jiang1 5.05± 0.152 59.38± 1.049 0.457 −0.106
Svt 9.28± 0.201 53.893± 0.941 0.002 −0.003
GenP 3.094± 0.102 72.134± 1.757 0.667 −0.343
GenI 8.024± 0.226 54.78± 1.011 0.137 −0.02
Boruta 9.298± 0.097 53.708± 0.975 0 0
GRF 20± 0.133 55.464± 0.975 −1.151 −0.033
GRRF 16.728± 0 54.894± 0.988 −0.799 −0.022
Std-CPI 9.658± 0.279 54.475± 1.091 −0.039 −0.014
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Table 3.9: 20DLinear data, variant with R2 = 0.8.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.558± 0.137 38.013± 0.783 0.312 −0.024
Hap 9.882± 0.1 37.383± 0.631 −0.037 −0.007
HapB 7.738± 0.112 39.801± 0.723 0.188 −0.072
Alt 5.762± 0.117 43.648± 0.939 0.395 −0.176

Diaz0 10.042± 0.203 37.456± 0.635 −0.054 −0.009
Diaz1 5.318± 0.24 42.236± 0.828 0.442 −0.138
Jiang0 9.746± 0.187 37.338± 0.635 −0.023 −0.006
Jiang1 5.61± 0.202 41.083± 0.763 0.411 −0.107
Svt 9.23± 0.221 37.696± 0.609 0.031 −0.015
GenP 3.064± 0.091 53.961± 1.471 0.678 −0.453
GenI 8.342± 0.217 37.911± 0.634 0.124 −0.021
Boruta 9.528± 0.097 37.128± 0.669 0 0
GRF 20± 0 39.502± 0.655 −1.099 −0.064
GRRF 15.888± 0.115 38.697± 0.651 −0.667 −0.042
Std-CPI 9.724± 0.211 37.206± 0.666 −0.021 −0.002

Table 3.10: 20DLinear data, variant with R2 = 0.99.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.548± 0.118 16.353± 0.295 0.334 0.01
Hap 10.208± 0.096 16.875± 0.249 −0.038 −0.021
HapB 8.88± 0.072 17.835± 0.306 0.097 −0.079
Alt 6.294± 0.103 21.491± 0.478 0.36 −0.301

Diaz0 9.938± 0.123 16.65± 0.254 −0.01 −0.008
Diaz1 7.49± 0.297 18.291± 0.305 0.239 −0.107
Jiang0 9.824± 0.115 16.536± 0.245 0.001 −0.001
Jiang1 7.026± 0.243 18.22± 0.318 0.286 −0.103
Svt 9.37± 0.189 17.18± 0.305 0.047 −0.04
GenP 2.886± 0.103 33.293± 1.508 0.707 −1.015
GenI 8.402± 0.215 17.274± 0.277 0.146 −0.046
Boruta 9.836± 0.078 16.522± 0.239 0 0
GRF 20± 0 19.337± 0.295 −1.033 −0.17
GRRF 14.424± 0.078 18.175± 0.275 −0.466 −0.1
Std-CPI 9.752± 0.117 16.541± 0.24 0.009 −0.001

Table 3.11: 20DLinearClass data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.51± 0.28 0.174± 0.006 0.3 −0.119
Hap 9.78± 0.109 0.158± 0.004 −0.052 −0.015
HapB 6.802± 0.148 0.174± 0.006 0.269 −0.117
Alt 5.71± 0.107 0.185± 0.007 0.386 −0.188

Diaz0 8.264± 0.37 0.167± 0.005 0.111 −0.071
Diaz1 4.662± 0.194 0.185± 0.007 0.499 −0.185
Jiang0 8.344± 0.267 0.166± 0.005 0.103 −0.063
Jiang1 5.078± 0.15 0.176± 0.005 0.454 −0.13
Svt 12.99± 0.482 0.159± 0.005 −0.397 −0.02
GenP 2.362± 0.076 0.264± 0.009 0.746 −0.69
GenI 9.79± 0.334 0.164± 0.005 −0.053 −0.052
Boruta 9.3± 0.097 0.156± 0.004 0 0
GRF 17.118± 0.089 0.16± 0.005 −0.841 −0.029
GRRF 6.798± 0.159 0.171± 0.005 0.269 −0.094
Std-CPI 8.416± 0.367 0.165± 0.005 0.095 −0.055
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Table 3.12: 20DLinearMixed data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.884± 0.14 28.206± 0.526 0.288 −0.047
Hap 9.816± 0.114 27.697± 0.435 −0.016 −0.028
HapB 7.78± 0.087 29.226± 0.513 0.195 −0.085
Alt 5.998± 0.089 31.574± 0.653 0.379 −0.172

Diaz0 9.902± 0.222 27.95± 0.472 −0.024 −0.038
Diaz1 5.508± 0.245 31.403± 0.52 0.43 −0.166
Jiang0 9.67± 0.181 27.711± 0.469 0 −0.029
Jiang1 5.852± 0.165 30.361± 0.474 0.395 −0.127
Svt 7.7± 0.281 29.734± 0.534 0.203 −0.104
GenP 3.052± 0.091 39.386± 1.29 0.684 −0.462
GenI 7.884± 0.227 28.655± 0.485 0.184 −0.064
Boruta 9.666± 0.094 26.937± 0.428 0 0
GRF 20± 0 30.033± 0.489 −1.069 −0.115
.GRRF 16.59± 0.089 29.433± 0.472 −0.009 0.007
Std-CPI 9.828± 0.133 27.093± 0.434 −0.017 −0.006

Table 3.13: 20DLinearDecreasCov data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 6.074± 0.119 25.339± 0.465 0.238 0.006
Hap 8.998± 0.1 25.841± 0.444 −0.129 −0.014
HapB 6.894± 0.078 27.181± 0.535 0.135 −0.066
Alt 4.95± 0.061 30.636± 0.624 0.379 −0.202

Diaz0 8.252± 0.122 25.982± 0.486 −0.035 −0.019
Diaz1 5.442± 0.191 28.935± 0.595 0.317 −0.135
Jiang0 7.97± 0.116 25.493± 0.454 0 0
Jiang1 5.538± 0.112 27.752± 0.506 0.305 −0.089
Svt 6.79± 0.281 28.5± 0.61 0.148 −0.118
GenP 2.818± 0.095 38.961± 1.159 0.646 −0.528
GenI 6.86± 0.133 25.857± 0.501 0.139 −0.014
Boruta 8.76± 0.102 25.84± 0.462 −0.099 −0.014
GRF 20± 0 29.137± 0.45 −1.509 −0.143
GRRF 14.808± 0.087 27.924± 0.453 −0.858 −0.095
Std-CPI 8.038± 0.134 25.319± 0.467 −0.008 0.007

Table 3.14: 11DLinear+Poly data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 15.058± 0.437 348.538± 8.84 0.804 −0.019
Alt 11.408± 0.172 485.072± 11.2 0.852 −0.419
Hap 34.256± 0.761 352.688± 8.408 0.551 −0.031
HapB 17.866± 0.566 411.453± 11.312 0.768 −0.203
Diaz0 41.266± 0.849 343.084± 8.558 0.464 −0.003
Diaz1 17.724± 0.741 412.559± 15.098 0.77 −0.207
Jiang0 33.386± 1.045 347.74± 8.623 0.566 −0.017
Jiang1 11.094± 0.469 419.006± 13.449 0.856 −0.225
Svt 42.098± 1.23 346.127± 8.753 0.453 −0.012
GenP 3.888± 0.098 554.951± 14.613 0.95 −0.623
GenI 34.928± 0.599 349.905± 8.707 0.546 −0.023
Boruta 39.166± 0.737 345.349± 8.406 0.491 −0.01
GRF 77± 0 341.918± 8.499 0 0
GRRF 28.608± 0.084 357.425± 8.411 0.628 −0.045
Std-CPI 37.138± 0.914 342.686± 8.233 0.517 −0.002
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Table 3.15: 11DLinear+HiddenPoly data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 7.572± 0.13 413.556± 9.444 0.312 −0.02
Hap 9.714± 0.068 413.249± 8.868 0.117 −0.019
HapB 7.674± 0.21 450.057± 15.613 0.302 −0.11
Alt 3.302± 0.086 596.644± 20.24 0.7 −0.472

Diaz0 10.07± 0.128 409.596± 8.957 0.085 −0.01
Diaz1 4.624± 0.2 478.025± 11.626 0.58 −0.179
Jiang0 9.798± 0.111 408.717± 8.908 0.109 −0.008
Jiang1 4.864± 0.133 466.249± 10.622 0.558 −0.15
Svt 9.93± 0.225 417.878± 8.852 0.097 −0.031
GenP 3.462± 0.121 560.762± 18.985 0.685 −0.383
GenI 8.088± 0.195 424.348± 9.284 0.265 −0.047
Boruta 9.82± 0.06 410.51± 8.76 0.107 −0.012
GRF 11± 0 405.458± 8.656 0 0
GRRF 11± 0 405.458± 8.656 0 0
Std-CPI 9.778± 0.109 408.88± 9.172 0.111 −0.008

Real-world data

The results on the real-world data sets overall confirm the competitiveness of DBC-RCPI

over the benchmark methods, as observed with the artificial data sets.

DBC-RCPI clearly outperforms all other methods on the fMRI data set (Table 3.16),

returning a solution that typically contains only one variable (corresponding to the IeTC

proportion between the medial frontal and posterior cingulate ROIs, see section B.2), yield-

ing a classification accuracy of about 83% (with 73% sensitivity and 89% specificity). On

three out four of the EDoE data sets (Liposome, Amphiphile, and Robot, Tables 3.17 3.18

3.19), DBC-RCPI produces solutions with substantially smaller size than that obtained

with the LEBM, although in the Liposome case getting outperformed by three of the other

benchmark methods, and in the Amphiphile case at the cost of a relatively large loss in

error performance (rē∗DBCI−RCPI = −0.076). In the remaining Protein data set (Table

3.20), while the advantage of DBC-RCPI over the LEBM in terms of solution size is just

moderate, it also comes with a small but significant improvement over the LEBM’s er-

ror (rē∗DBCI−RCPI = 0.054, corresponding to an advantage over the LEBM of more than 6

standard errors).

On the Ozone (Table 3.21), BostonHousing (Table 3.22), and Heart (Table 3.23) data

sets, DBC-RCPI’s error performance is essentially identical to that of the LEBM, while it is

obtained with a significantly, and sometimes drastically, smaller solution (e.g., about a third
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as large in the Heart case). A similar gap in solution size is observed in the Parkinson’s data

set (v̄∗DBC−RCPI = 0.68), where however DBC-RCPI’s error is 6.5% larger than the LEBM’s

(Table 3.24); it is worth noting, nonetheless, that all of the benchmarks with comparably

small solutions yield substantially larger error compared to DBC-RCPI.

Within the collection of DNA microarray data sets, DBC-RCPI obtains its best results

on Leukemia and NCI with variant DBC-RCPI,m = 2, δ = 1. In the former data set, such

variant yields a zero error as the LEBM, but with a solution about a tenth of the size.

A similar result is obtained in the latter data set, with error performance analogous to

that of the LEBM, but via a solution about a twentieth as large. On the Brain (variants

DBC-RCPI,δ = 1 and DBC-RCPI,m = 2, δ = 1) and Breast2 (variant DBC-RCPI,δ = 1) data

sets, DBC-RCPI’s error is slightly larger than the LEBM’s, although it is in line with that

of most benchmark methods; in terms of solution size, DBC-RCPI ranks roughly average

with respect to benchmark methods with similar error performance.

Table 3.16: fMRI data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI, δ = 2 1.034± 0.034 0.172± 0.071 0.250 0.169
Hap 9.655± 0.537 0.31± 0.087 −6.001 −0.498
HapB 0.621± 0.135 0.483± 0.094 0.550 −1.333
Alt 10.241± 0.538 0.379± 0.092 −6.426 −0.831

Diaz0 3.069± 0.530 0.241± 0.081 −1.226 −0.164
Diaz1 1.379± 0.160 0.207± 0.077 0 0
Jiang0 2.483± 0.459 0.207± 0.077 −0.801 0
Jiang1 1.966± 0.312 0.207± 0.077 −0.426 0
Svt 16.897± 4.919 0.379± 0.092 −11.253 −0.831
GenP 1.207± 0.077 0.241± 0.081 0.125 −0.164
GenI 6.69± 0.951 0.379± 0.092 −3.851 −0.831
Boruta 4.069± 0.488 0.276± 0.093 −1.951 −0.333
GRF 81.207± 9.677 0.448± 0.151 −57.888 −1.164
GRRF 4.724± 0.155 0.31± 0.128 −2.426 −0.498
Std-CPI 3± 0.489 0.31± 0.087 −1.175 −0.498
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Table 3.17: Liposome data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 16.22± 0.147 1± 0.005 0.421 −0.02
Hap 9.995± 0.06 0.99± 0.003 0.643 −0.01
HapB 5.25± 0.06 1.028± 0.005 0.813 −0.049
Alt 7.455± 0.065 1± 0.003 0.734 −0.02

Diaz0 18.395± 0.197 0.99± 0.004 0.343 −0.01
Diaz1 6.61± 0.063 1.016± 0.004 0.764 −0.037
Jiang0 18.1± 0.281 0.988± 0.005 0.354 −0.008
Jiang1 6.795± 0.088 1.026± 0.003 0.757 −0.047
Svt 9.5± 0.093 1.001± 0.005 0.661 −0.021
GenP 4.495± 0.028 1.035± 0.003 0.839 −0.056
GenI 9.21± 0.125 1.011± 0.004 0.671 −0.032
Boruta 10.485± 0.066 0.999± 0.004 0.626 −0.019
GRF 28± 0 0.98± 0.004 0 0
GRRF 28± 0 0.98± 0.004 0 0
Std-CPI 18.495± 0.2 1.006± 0.005 0.339 −0.027

Table 3.18: Amphiphile data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 10.501± 0.101 0.969± 0.015 0.343 −0.076
Hap 4.73± 0.041 1.056± 0.012 0.704 −0.173
HapB 2.495± 0.037 1.244± 0.011 0.844 −0.381
Alt 2.2± 0.023 1.282± 0.008 0.862 −0.424

Diaz0 8.055± 0.178 1.02± 0.012 0.497 −0.134
Diaz1 4.175± 0.028 1.01± 0.011 0.739 −0.122
Jiang0 7.915± 0.16 1.028± 0.014 0.505 −0.142
Jiang1 4.045± 0.014 0.958± 0.011 0.747 −0.064
Svt 2.4± 0.04 1.268± 0.008 0.85 −0.408
GenP 3.305± 0.027 1.168± 0.014 0.793 −0.297
GenI 3.765± 0.033 1.052± 0.018 0.765 −0.168
Boruta 7.675± 0.042 1.022± 0.012 0.52 −0.135
GRF 16± 0 0.9± 0.008 0 0
GRRF 16± 0 0.9± 0.008 0 0
Std-CPI 11.435± 0.126 0.93± 0.011 0.285 −0.033

Table 3.19: Robot data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 17.72± 0.075 0.988± 0.007 0.114 −0.012
Hap 19.845± 0.023 0.987± 0.008 0.008 −0.011
HapB 19.065± 0.024 0.987± 0.008 0.047 −0.011
Alt 3.99± 0.016 1.436± 0.011 0.8 −0.471

Diaz0 17.64± 0.132 1± 0.007 0.118 −0.025
Diaz1 11.135± 0.055 1.067± 0.007 0.443 −0.093
Jiang0 17.88± 0.14 0.999± 0.007 0.106 −0.024
Jiang1 11.38± 0.062 1.078± 0.007 0.431 −0.105
Svt 6.85± 0.042 1.151± 0.008 0.657 −0.179
GenP 4.985± 0.008 1.209± 0.008 0.751 −0.239
GenI 5.05± 0.017 1.209± 0.008 0.747 −0.239
Boruta 19.995± 0.005 0.976± 0.007 0 0
GRF 20± 0 0.976± 0.007 0 0
GRRF 20± 0 0.976± 0.007 0 0
Std-CPI 18.565± 0.102 0.986± 0.008 0.072 −0.01
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Table 3.20: Protein data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 7.01± 0.02 0.858± 0.006 0.039 0.054
Hap 7.63± 0.039 0.935± 0.008 −0.046 −0.031
HapB 6.32± 0.039 1.008± 0.009 0.134 −0.111
Alt 3.915± 0.036 1.294± 0.022 0.463 −0.427

Diaz0 7.3± 0.066 0.909± 0.006 −0.001 −0.002
Diaz1 6.16± 0.052 1.011± 0.011 0.156 −0.115
Jiang0 7.295± 0.067 0.907± 0.007 0 0
Jiang1 6.195± 0.063 1± 0.008 0.151 −0.103
Svt 3± 0 1.773± 0.005 0.589 −0.955
GenP 2.825± 0.019 1.872± 0.015 0.613 −1.064
GenI 3± 0 1.773± 0.005 0.589 −0.955
Boruta 7.005± 0.032 0.932± 0.009 0.040 −0.028
GRF 11± 0 0.988± 0.005 −0.508 −0.089
GRRF 11± 0 0.988± 0.005 −0.508 −0.089
Std-CPI 7.075± 0.027 0.872± 0.006 0.030 0.039

Table 3.21: Ozone data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 4.6± 0.051 16.986± 0.084 0.489 0.011
Hap 8.768± 0.016 17.391± 0.062 0.026 −0.012
HapB 8.058± 0.018 17.927± 0.062 0.105 −0.044
Alt 2.978± 0.009 23.331± 0.093 0.669 −0.358

Diaz0 10.388± 0.038 17.565± 0.055 −0.153 −0.022
Diaz1 6.196± 0.034 19.63± 0.095 0.312 −0.143
Jiang0 9.516± 0.041 17.439± 0.059 −0.057 −0.015
Jiang1 5.168± 0.039 19.619± 0.104 0.426 −0.142
Svt 12± 0 17.604± 0.054 −0.332 −0.025
GenP 4.45± 0.066 23.569± 0.211 0.506 −0.372
GenI 9.212± 0.022 17.302± 0.057 −0.023 −0.007
Boruta 9.006± 0.003 17.179± 0.059 0 0
GRF 12± 0 17.604± 0.054 −0.332 −0.025
GRRF 11.996± 0.003 17.603± 0.053 −0.332 −0.025
Std-CPI 7.104± 0.05 17.245± 0.076 0.211 −0.004

Table 3.22: BostonHousing data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 9.46± 0.078 9.311± 0.065 0.208 −0.003
Hap 12.81± 0.03 9.346± 0.06 −0.073 −0.007
HapB 11.458± 0.027 9.382± 0.061 0.04 −0.011
Alt 3.732± 0.037 13.785± 0.126 0.687 −0.485

Diaz0 11.288± 0.088 9.396± 0.065 0.054 −0.012
Diaz1 5.468± 0.038 10.955± 0.068 0.542 −0.18
Jiang0 11.938± 0.072 9.282± 0.068 0 0
Jiang1 5.93± 0.022 10.716± 0.078 0.503 −0.154
Svt 7.152± 0.045 10.73± 0.101 0.401 −0.156
GenP 4.122± 0.024 12.316± 0.093 0.655 −0.327
GenI 5.386± 0.03 10.962± 0.078 0.549 −0.181
Boruta 15± 0 9.358± 0.057 −0.256 −0.008
GRF 15± 0 9.358± 0.057 −0.256 −0.008
GRRF 13.68± 0.026 9.283± 0.061 −0.146 0
Std-CPI 11.288± 0.092 9.326± 0.07 0.054 −0.005
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Table 3.23: Heart data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 4.422± 0.101 0.168± 0.002 0.66 0.007
Hap 8.798± 0.034 0.178± 0.002 0.323 −0.051
HapB 7.688± 0.027 0.176± 0.001 0.409 −0.04
Alt 4.992± 0.026 0.176± 0.002 0.616 −0.041

Diaz0 7.588± 0.17 0.176± 0.002 0.416 −0.044
Diaz1 4.494± 0.096 0.189± 0.002 0.654 −0.117
Jiang0 11.562± 0.069 0.175± 0.001 0.111 −0.035
Jiang1 7.592± 0.067 0.2± 0.002 0.416 −0.185
Svt 12.958± 0.024 0.169± 0.001 0.003 −0.003
GenP 1.702± 0.045 0.271± 0.004 0.869 −0.602
GenI 6.988± 0.131 0.178± 0.002 0.462 −0.052
Boruta 9.368± 0.022 0.18± 0.002 0.279 −0.063
GRF 13± 0 0.169± 0.001 0 0
GRRF 8.866± 0.025 0.192± 0.001 0.318 −0.138
Std-CPI 3.938± 0.098 0.163± 0.002 0.697 0.037

Table 3.24: Parkinson’s data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 7.038± 0.164 0.094± 0.002 0.68 −0.065
Hap 14.702± 0.064 0.09± 0.001 0.331 −0.016
HapB 7.662± 0.05 0.1± 0.002 0.651 −0.13
Alt 3.798± 0.028 0.113± 0.002 0.827 −0.272

Diaz0 11.554± 0.19 0.096± 0.001 0.474 −0.086
Diaz1 6.038± 0.077 0.109± 0.002 0.725 −0.227
Jiang0 8.784± 0.166 0.096± 0.002 0.6 −0.085
Jiang1 4.824± 0.046 0.1± 0.002 0.781 −0.126
Svt 15.328± 0.219 0.098± 0.001 0.303 −0.101
GenP 3.658± 0.053 0.136± 0.002 0.834 −0.534
GenI 9.97± 0.16 0.101± 0.002 0.546 −0.137
Boruta 21.978± 0.006 0.089± 0.001 0 0
GRF 19.998± 0.038 0.089± 0.001 0.09 −0.001
GRRF 5.36± 0.03 0.109± 0.002 0.756 −0.233
Std-CPI 12.006± 0.18 0.097± 0.002 0.454 −0.09

Table 3.25: Leukemia data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 5.895± 1.222 0.053± 0.029 0.856 < 0
DBC-RCPI,δ = 1 5.895± 1.222 0.053± 0.029 0.856 < 0
DBC-RCPI,m = 2 3.658± 0.602 0± 0 0.911 0

DBC-RCPI,m = 2,δ = 1 3.658± 0.602 0± 0 0.911 0
Alt 104.5± 0.853 0.053± 0.029 −1.547 < 0

Diaz0 2.316± 0.233 0.053± 0.029 0.944 < 0
Diaz1 2.316± 0.233 0.053± 0.029 0.944 < 0
Jiang0 2± 0.03 0.053± 0.029 0.951 < 0
Jiang1 2± 0.03 0.053± 0.029 0.951 < 0
Svt 31.421± 2.865 0.053± 0.029 0.234 < 0
GenP 1.5± 0.064 0.026± 0.021 0.963 < 0
GenI 1.579± 0.70 0.026± 0.021 0.962 < 0
Boruta 41.026± 0.356 0± 0 0 0
GRF 237.895± 0.716 0± 0 −4.799 0
GRRF 2.921± 0.116 0.026± 0.021 0.929 < 0
Std-CPI 1.342± 0.035 0± 0 0.967 0



68

Table 3.26: NCI data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 39.508± 3.207 0.393± 0.063 0.897 −0.143
DBC-RCPI,δ = 1 21.984± 1.488 0.377± 0.063 0.942 −0.095
DBC-RCPI,m = 2 32.279± 2.003 0.393± 0.063 0.915 −0.143

DBC-RCPI,m = 2,δ = 1 19.967± 1.064 0.344± 0.061 0.948 0
Alt 381.82± 1.377 0.344± 0.061 0 0

Diaz0 87.557± 7.921 0.393± 0.063 0.771 −0.143
Diaz1 47.984± 3.351 0.393± 0.063 0.874 −0.143
Jiang0 47.115± 3.209 0.459± 0.064 0.877 −0.333
Jiang1 30.525± 2.693 0.475± 0.064 0.92 −0.381
Svt 1045.279± 136.122 0.344± 0.061 −1.738 0
GenP 2.787± 0.194 0.754± 0.056 0.993 −1.19
GenI 210.508± 27.24 0.426± 0.064 0.449 −0.238
Boruta 32.246± 0.422 0.426± 0.064 0.916 −0.238
GRF 458.41± 1.012 0.361± 0.062 −0.201 −0.048
GRRF 10.803± 0.321 0.59± 0.063 0.972 −0.714
Std-CPI 139.377± 14.272 0.443± 0.064 0.635 −0.286

Table 3.27: Brain data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 12.048± 0.74 0.31± 0.072 0.96 −0.625
DBC-RCPI,δ = 1 12.048± 0.74 0.31± 0.072 0.96 −0.625
DBC-RCPI,m = 2 15.881± 1.454 0.286± 0.071 0.947 −0.505

DBC-RCPI,m = 2,δ = 1 15.881± 1.454 0.286± 0.071 0.947 −0.505
Alt 301.286± 1.492 0.19± 0.061 0 0

Diaz0 23.714± 2.326 0.262± 0.069 0.921 −0.375
Diaz1 22.405± 2.035 0.286± 0.071 0.926 −0.5
Jiang0 9.19± 0.331 0.286± 0.071 0.969 −0.5
Jiang1 9.19± 0.331 0.286± 0.071 0.969 −0.5
Svt 333.405± 40.775 0.214± 0.064 −0.107 −0.125
GenP 4.167± 0.186 0.429± 0.077 0.986 −1.25
GenI 16.619± 2.448 0.286± 0.071 0.945 −0.5
Boruta 40.548± 0.836 0.286± 0.071 0.865 −0.5
GRF 407.143± 1.116 0.19± 0.061 −0.351 0
GRRF 6.119± 0.178 0.262± 0.069 0.98 −0.375
Std-CPI 32.048± 3.53 0.31± 0.072 0.894 −0.625

Table 3.28: Breast2 data.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI 22.169± 1.401 0.351± 0.054 −1.052 −0.227
DBC-RCPI,δ = 1 12.39± 1.152 0.338± 0.056 −0.147 −0.182
DBC-RCPI,m = 2 20.026± 1.132 0.416± 0.057 −0.853 −0.455

DBC-RCPI,m = 2,δ = 1 9.221± 0.596 0.416± 0.058 0.147 −0.455
Alt 229.87± 0.938 0.338± 0.054 −20.274 −0.182

Diaz0 27.558± 2.246 0.39± 0.056 −1.55 −0.364
Diaz1 11.117± 0.775 0.351± 0.055 −0.029 −0.227
Jiang0 21.065± 1.302 0.299± 0.053 −0.95 −0.045
Jiang1 10.805± 0.360 0.286± 0.052 0 0
Svt 114.597± 17.437 0.312± 0.053 −9.606 −0.091
GenP 2.052± 0.031 0.416± 0.057 0.81 −0.455
GenI 20.571± 0.877 0.338± 0.054 −0.904 −0.182
Boruta 8.325± 0.236 0.351± 0.055 0.23 −0.227
GRF 413.182± 0.919 0.351± 0.055 −37.239 −0.227
GRRF 7.221± 0.155 0.377± 0.056 0.332 −0.318
Std-CPI 25.61± 2.535 0.377± 0.056 −1.37 −0.318
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Effect of hyper-parameters on DBC-RCPI’s performance

We studied the effect that DBC-RCPI’s hyper-parameters have on its perfomance by vary-

ing the value of one between u, m, and δ, while keeping the other two fixed to their default

values; we focused our analysis on the 20DLinear case and its variant with ρ = 0.99, and on

the 11DLinear+Poly case. As expected, increasing the value of u tends to produce solutions

with smaller v̄∗DBC−RCPI and slightly larger ē∗DBCI−RCPI (Tables 3.29, 3.30), although the

latter effect is not observed in 11DLinear+Poly (Table 3.31). Not surprisingly, the most

significant decrease in v̄∗DBC−RCPI is observed when increasing u from 0 (an extremal value,

which causes the clustering objective within DBC-RCPI to be non-biased) to any positive

value. This behavior is more apparent in 20DLinear with ρ = 0.99 and 11DLinear+Poly,

where positive values of u result in a 20% improvement on v̄∗DBC−RCPI over the same with

u = 0, while essentially not affecting ē∗DBCI−RCPI . The effect of m appears to be data

set-specific: larger values tend to increase both v̄∗DBC−RCPI and ē∗DBCI−RCPI in the two

20DLinear variants (Tables 3.32, 3.33), while, somewhat suprisingly, the opposite behav-

ior is observed in 11DLinear+Poly (Table 3.34). By definition, larger values of δ result

in smaller values of v̄∗DBC−RCPI , and, as expected, larger values of ē∗DBCI−RCPI , causing

rē∗DBCI−RCPI to decrease to significantly negative values (Tables 3.35, 3.36, 3.37). We no-

tice, however, that a positive δ allows to reduce v̄∗DBC−RCPI to values that are substantially

smaller than the size of the solutions provided by benchmark methods with comparable

error performance. This behavior may result useful, for example, in applications where

solution cardinality is more crucial than error performance. As an overall conclusion, we

note that, albeit all hyper-parameters play a significant role in determining the performance

of DBC-RCPI, their default values appear near-optimal in most situations, thus, in gen-

eral, relieving the user from potentially computationally expensive hyper-parameter tuning

operations.

Table 3.29: 20DLinear data, and DBC-RCPI with different u values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI, u = 0 6.81± 0.149 24.385± 0.402 0.3 0.009
DBC-RCPI, u = 1 6.646± 0.121 25.141± 0.448 0.317 −0.022
DBC-RCPI, u = 2 6.578± 0.138 25.18± 0.476 0.324 −0.024
DBC-RCPI, u = 4 6.52± 0.125 25.101± 0.456 0.33 −0.021
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Table 3.30: 20DLinear data, variant with ρ = 0.99, and DBC-RCPI with different u values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI, u = 0 7.408± 0.2 25.477± 0.488 0.231 0.005
DBC-RCPI, u = 1 5.794± 0.174 25.674± 0.467 0.399 −0.002
DBC-RCPI, u = 2 5.786± 0.196 25.931± 0.443 0.399 −0.012
DBC-RCPI, u = 4 5.73± 0.157 25.856± 0.499 0.405 −0.009

Table 3.31: 11DLinear+Poly data, and DBC-RCPI with different u values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI, u = 0 18.71± 0.516 349.319± 8.815 0.751 −0.024
DBC-RCPI, u = 1 14.658± 0.419 349.35± 8.995 0.805 −0.024
DBC-RCPI, u = 2 15.058± 0.437 348.173± 8.786 0.8 −0.021
DBC-RCPI, u = 4 15.046± 0.401 348.602± 8.878 0.8 −0.022

Table 3.32: 20DLinear data, and DBC-RCPI different m values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI,m = 2 6.61± 0.131 25.271± 0.463 0.321 −0.027
DBC-RCPI,m = 4 6.578± 0.138 25.18± 0.476 0.324 −0.024
DBC-RCPI,m = 8 6.604± 0.118 24.959± 0.444 0.321 −0.015
DBC-RCPI,m = 16 7.37± 0.204 24.986± 0.442 0.243 −0.016

Table 3.33: 20DLinear data, variant with ρ = 0.99, and DBC-RCPI with different m values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI,m = 2 5.144± 0.152 25.995± 0.467 0.466 −0.015
DBC-RCPI,m = 4 5.786± 0.196 25.931± 0.443 0.399 −0.012
DBC-RCPI,m = 8 6.302± 0.194 25.462± 0.45 0.346 0.006
DBC-RCPI,m = 16 8.338± 0.252 25.606± 0.477 0.135 0

Table 3.34: 11DLinear+Poly data, and DBC-RCPI with different m values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI,m = 2 15.378± 0.449 344.088± 8.516 0.796 −0.009
DBC-RCPI,m = 4 15.058± 0.437 348.173± 8.786 0.8 −0.021
DBC-RCPI,m = 8 14.45± 0.425 350.782± 8.788 0.808 −0.029
DBC-RCPI,m = 16 13.972± 0.38 353.908± 9.022 0.814 −0.038

Table 3.35: 20DLinear data, and DBC-RCPI with different δ values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI, δ = 0 6.578± 0.138 25.18± 0.476 0.324 −0.024
DBC-RCPI, δ = 0.25 5.6± 0.113 25.596± 0.499 0.424 −0.041
DBC-RCPI, δ = 0.5 4.832± 0.096 26.268± 0.524 0.503 −0.068
DBC-RCPI, δ = 1 3.96± 0.074 27.613± 0.598 0.593 −0.123

Table 3.36: 20DLinear data, variant with ρ = 0.99, and DBC-RCPI with different δ values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI, δ = 0 5.786± 0.196 25.931± 0.443 0.399 −0.012
DBC-RCPI, δ = 0.25 4.746± 0.134 26.044± 0.443 0.507 −0.017
DBC-RCPI, δ = 0.5 4.116± 0.081 26.329± 0.465 0.573 −0.028
DBC-RCPI, δ = 1 3.38± 0.066 27.848± 0.506 0.649 −0.087
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Table 3.37: 11DLinear+Poly data, and DBC-RCPI with different δ values.
Method v̄∗ ē∗ rv̄∗ rē∗

DBC-RCPI, δ = 0 15.058± 0.437 348.173± 8.786 0.8 −0.021
DBC-RCPI, δ = 0.25 9.052± 0.235 364.168± 11.552 0.88 −0.068
DBC-RCPI, δ = 0.5 7.288± 0.196 378.873± 12.402 0.903 −0.111
DBC-RCPI, δ = 1 5.514± 0.169 407.768± 14.548 0.927 −0.196
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Chapter 4

Support vector regression for

polyhedral data

4.1 Introduction

Support vector regression (SVR) is a well-known supervised learning method for the esti-

mation of an unknown function from a data set of observations, each of which represented

by a point with multiple input values and one output value [32]. Such estimation is carried

out via a hyperplane, which is optimally fit on the data set, possibly after a non-linear

transformation of the input values by means of a kernel function [73, 74, 75]. Its remarkable

performance as a predictive model has gained SVR considerable popularity in a variety of

fields of application, including finance [76], transportation [77], genetics [78], neuroimaging

[79], and medicine [80], among others.

After the first introduction of SVR in [74], numerous variants of the original formu-

lation have been introduced, involving different combinations of loss functions [81, 82, 83],

regularization criteria [84], robustness properties [85, 86], and approximation capabilities

[87, 88]. Of particular interest for this work, however, are certain variants of SVR that have

been proposed for the purpose of handling non-point data. Some of these non-point variants

represent observations, and the possible uncertainty existing on their values, as stochastic
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distributions with given mean and variance, and use a probabilistic approach to enforce

constraints on the model’s prediction errors [89, 90]. Often, these formulations focus on the

special case of Normal distributions, therefore actually representing observations as ellip-

soids [91, 92]. Examples of SVR models where observations are represented by triangular

fuzzy numbers have also been introduced [93, 94]. Other authors have proposed to represent

observations as box polyhedra, that is, hyper-rectangles whose axes of symmetry coincide

with the Cartesian axes [95, 96]. Convex polyhedra have also been used to model prior

knowledge, rather than information on specific observations, in the form of linear bounds

imposed on the predictive hyperplane [97, 98].

In this work, we introduce “polyhedral SVR” (PSVR), a novel, computationally-

efficient extension of SVR, where arbitrary convex polyhedra are used as a geometrical

construct to represent non-point information (for example, uncertainty) about an observa-

tion. Unlike [95], which models observations via the Cartesian product of independent in-

tervals, we use convex polyhedra to capture multivariate dependencies that may exist across

variables in an observation. Our formulation also introduces a novel criterion for weighting

prediction errors based on certain characteristics of the polyhedral observations, which may

reflect, for example, the degree of uncertainty associated to such observations.

This chapter is structured as follows. Section 4.2 provides the basic background el-

ements on the standard primal formulation of SVR. Section 4.3 introduces PSVR, our

generalization of SVR targeted to observations modeled by convex polyhedra. Section 4.4

illustrates how PSVR can be applied to problems of regression with missing data; sec-

tion 4.4.3 and 4.4.4 emphasize, in particular, how data-uncertainty estimates can be used

towards both the construction of convex polyhedral representations of the data and the

calibration of the error hyper-parameters in the formulation. Section 4.5 finally discusses

the performance of PSVR on both artificial and real-world data sets, comparing results with

those obtained with different benchmark methods.
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4.2 Support vector regression: standard formulation

Given a data set D of n observations (xi, yi)
T , xi ∈ Rp, yi ∈ R, SVR seeks to find a

hyperplane with gradient w ∈ Rp and offset w0 ∈ R, which predicts yi from xi for each

observation i in D. In the standard variant of SVR, such predictions are required to deviate

no more than a certain quantity ε ≥ 0, specified as a hyper-parameter, from the true value,

while minimizing some norm (typically, the L2-norm) of the gradient vector w. This yields

the following convex quadratic program:

min
w,w0

1

2
wTw

yi −wTxi − w0 ≤ ε

wTxi + w0 − yi ≤ ε

i = 1, 2, . . . , n

(4.1)

Since program (4.1) may not be feasible, slack variables ξ+
i and ξ−i are introduced in the

constraints for each observation i, and their magnitude enters the objective function as a

penalty for constraint violation:

min
w,w0,ξ

+
i ,ξ
−
i

1

2
wTw + c

n∑
i=1

(
ξ+
i + ξ−i

)
yi −wTxi − w0 ≤ ξ+

i + ε

wTxi + w0 − yi ≤ ξ−i + ε

ξ+
i , ξ

−
i ≥ 0, i = 1, 2, . . . , n

(4.2)

In (4.2), c ≥ 0 is a hyper-parameter that strikes a balance between model regularization

(minimization of the L2-norm of w) and model accuracy (minimization of the L1-norm of

ξ =
(
ξ+

1 + ξ−1 , ξ
+
2 + ξ−2 , . . . , ξ

+
n + ξ−n

)T
). Note that, at the optimal solution, either ξ+

i or

ξ−i , i = 1, 2, . . . , n, can be non-zero, but not both. Note, moreover, that the enforcement of

the constraints is equivalent to calculating prediction errors according to the following loss

function:
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e(yi, ŷi) =

{
0 if |yi − ŷi| < ε

|yi − ŷi| − ε otherwise
(4.3)

where ŷi = wTxi +w0, and with ε interpretable as a measure of tolerance or robustness to

noise.

4.3 A generalization of support vector regression for convex

polyhedral observations

We now wish to extend (4.2), where each observation i is defined by an individual vector

(xi, yi)
T , to a new formulation where each observation i is defined by an infinite set of

vectors Λi, given as follows:

Λi =

{(
x
y

)
: x ∈ Rp, y ∈ R,

(
x
y

)
∈ Pi

}
, (4.4)

where Pi is a convex non-empty polyhedron defined by the intersection of a finite number

of half spaces, that is:

Pi =

{(
x
y

)
: Ai

(
x
y

)
≤ ai

}
(4.5)

with Ai ∈ Rmi×(p+1), ai ∈ Rmi , mi > 0. Set Λi, i = 1, 2, . . . , n, may be viewed as an alge-

braic representation of the possible locations of observation i in the Rp+1-dimensional space,

as a result, for example, of uncertain (imprecise or not fully observed) measurements.

In order to incorporate polyhedral-set observations in the model, we propose to refor-

mulate SVR as follows:
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min
x,w,w0,ξi

1

2
wTw +

n∑
i=1

ciξi

max
(x,y)∈Pi

{
y −wTx− w0

}
≤ ξi + εi

max
(x,y)∈Pi

{
wTx+ w0 − y

}
≤ ξi + εi

ξi ≥ 0, i = 1, 2, . . . , n

(4.6)

with ci, εi ≥ 0, i = 1, 2, . . . , n, hyper-parameters, and where the prediction error on obser-

vation i is defined by the largest prediction error obtained in Pi (figure 4.1). Note that (4.2)

is a special case of (4.6), by setting ci = c, εi = ε, and assuming that the system of linear

inequalities in (4.5) has a unique solution (xi, yi)
T for each i. It is also clear that (4.6),

as it is formulated, is a harder problem to solve than (4.2), due to the non-linearity of its

constraints. It is however possible to transform (4.6) to an equivalent linearly-constrained

quadratic program via the following:

Theorem 4.1. Given Ai and ai as in (4.5), (4.6) is equivalent to

min
ui,vi,w,w0,ξi

1

2
wTw +

n∑
i=1

ciξi

aTi ui − w0 ≤ ξi + εi

aTi vi + w0 ≤ ξi + εi

AT
i ui =

(
−w

1

)

AT
i vi =

(
w
−1

)
ui,vi,≥ 0, ξi ≥ 0

i = 1, 2, . . . , n

(4.7)

Proof. In order to make the two max constraints in (4.6) feasible, the following systems of

linear inequalities must be both infeasible:
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
y −wTx− w0 > ξi + εi

Ai

(
x
y

)
≤ ai

(4.8)


wTx+ w0 − y > ξi + εi

Ai

(
x
y

)
≤ ai

(4.9)

By the affine Farkas’ Lemma [99], alternative systems (4.10) and (4.11) must therefore be

both feasible:

ui ≥ 0 and


AT
i ui =

(
−w

1

)
aTi ui − w0 ≤ ξi + εi

or


AT
i ui = 0

aTi ui < 0

(4.10)

vi ≥ 0 and

 AT
i vi =

(
w
−1

)
aTi vi + w0 ≤ ξi + εi

or

{
AT
i vi = 0

aTi vi < 0
(4.11)

The feasibility of (4.10) and (4.11), and the non-emptiness of Pi imply the following:


uTi

(
Ai

(
x
y

)
− ai

)
≤ 0

vTi

(
Ai

(
x
y

)
− ai

)
≤ 0

. (4.12)

Now, since both

{
AT
i ui = 0

aTi ui < 0
(4.13)

and

{
AT
i vi = 0

aTi vi < 0
(4.14)

contradict (4.12), neither can hold true, which leads to formulation (4.7).
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Figure 4.1: Illustration of 2-dimensional convex polyhedra and interpolating plane. The
length of each dotted vertical line represents the maximum prediction error obtained in the
corresponding polyhedron.

4.4 PSVR for regression with missing data

We consider the problem of finding an optimal interpolating hyperplane from a data matrix

D with missing values; specifically, we assume that each observation i in D is missing a

measurement along any qi of the p+1 variables, with 0 ≤ qi ≤ p. In this application, Pi ⊂ Rqi

represents a set of “beliefs” or “guesses” as to what the true, unavailable coordinates of the

i-th observation are. This use and interpretation of Pi raises the issue of (I) how to derive

from D a “construct” of guesses on the possible true values taken on by each partially

unavailable observation, as well as of (II) how such construct can be represented in convex

polyhedral form. Our approach to this two-fold issue relies on multiple imputation (MI)

and principal component analysis (PCA), of which we summarize the most relevant basic

notions in sections 4.4.1 and 4.4.2. In section 4.4.3 we introduce a novel procedure that

uses a combination of these two techniques to derive Pi as a representation of uncertainty.

In section 4.4.4 we then propose a characterization of such Pi, aimed at setting reasonable

values for hyper-parameters ci and εi in (4.7).
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4.4.1 Elements of multiple imputation

Our approach to the above-mentioned issue (I) builds on multiple imputation (MI) [100,

101], a Monte Carlo method for handling missing data. This method consists of three

steps. In the first step, a set of plausible estimates is obtained for the missing values in the

data. Each estimate in this set, which represents an individual imputation of all missing

values, is a different sample of a posterior predictive distribution of the missing values.

This distribution is built based on the multivariate structure of the available data, and

incorporates stochastic components that characterize the variability and the uncertainty on

the values to estimate. A different complete data set can therefore be obtained replacing the

missing values with a different individual imputation. The choice of predictive distribution

or “imputation model” used to generate the estimates depends on the type of variables to

impute, as well as on the distribution that is assumed to underlie the data. This step is key

to our approach to issue (I), since it provides us with a tool to generate our construct of

guesses on the missing data in the form of a sampling distribution of estimates. The second

and third step involve the analysis of the individual complete data sets and the pooling of

the corresponding results, but we do not discuss them here since the are not relevant to our

approach.

In this work, we employ a popular MI technique known as “fully conditional spec-

ification” or “chained equations” (CE) [102]. The basics elements of this technique are

as follows. Let us consider a generic data set Z defined on variables Z1, Z2, . . . , Zm, and

let ZA
j , ZM

j be the available and the missing portion of Zj , j = 1, 2, . . . ,m, respectively.

CE stochastically generates imputations in cycles, each cycle consisting of a sequence of

m imputations, one for each ZM
j . A total of C cycles are performed, with C chosen large

enough to allow imputations to converge. Let Z
I,(k)
j be the imputation of ZM

j generated in

the k-th repeat, and let Z
A,I,(k)
j be the same as Zj after replacing ZM

j with Z
I,(k)
j . Z

I,(k)
j is

obtained as a sample from the estimated density function (predictive distribution) f
(k)
j of

Zj conditioned on the available values of Zj , and both the available and the imputed values

of all other variables:
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Z
I,(k)
j ∼ f (k)

j (Zj |ZA,I,(k−1)
1 , Z

A,I,(k−1)
2 , . . . , Z

A,I,(k−1)
j−1 , ZA

j , Z
A,I,(k−1)
j+1 , . . . , ZA,I,(k−1)

m ,φ
(k)
j ),

(4.15)

where initial imputations Z
I,(0)
j may be obtained as a random sample with replacement

drawn from ZAj . In (4.15), the functional form of f
(k)
j is fixed, but its parameter vector

φ
(k)
j , obtained by regressing ZA

j on Z
A,I,(k−1)
1 , Z

A,I,(k−1)
2 , . . . , Z

A,I,(k−1)
m , varies as a function

of k. For details beyond this high-level overview on CE, we refer the reader to [103, 104,

105].

4.4.2 Elements of principal component analysis

Our approach to the above-mentioned issue (II) relies on principal component analysis

(PCA) [106, 107, 108]. PCA is a method aimed at algebraically and geometrically char-

acterizing the structure of the sample covariance S of a generic data matrix Z ∈ Rr×m.

This characterization is given by m uncorrelated linear combinations of the m variables,

called “principal components” (PC), representing directions of the m-dimensional space

along which the data has the most variability. Assuming w.l.o.g. that Z has mean zero

(implying S = ZTZ), the linear-combination coefficient vector c1 of the first PC is given

by

c1 = arg max
cT c=1

Var[Zc] = arg max
cT c=1

cTSc, (4.16)

that is, by the unit coefficient vector that results in the linear combination of the columns

of Z with the largest variance. The coefficient vector cj of the j-th PC is then obtained

iterating the following for j = 2, 3, . . . ,m:

cj = arg max
cT c=1

Cov[Zc,Zck]=0
k<j

Var[Zc] = arg max
cT c=1

Cov[cTSc,cTk Sck]=0
k<j

cTSc (4.17)
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where cj therefore corresponds to the unit coefficient vector that results in the linear com-

binations of the columns of Z with the largest variance, provided it is uncorrelated with

all of the coefficient vectors calculated in the previous iterations. The elements of vec-

tor cj , j = 1, 2, . . . ,m are called the “loadings” the j PC; the elements of vector Zcj ,

j = 1, 2, . . . ,m are called the “scores” of the observations in Z along the j-th PC.

Letting (e1, λ1), (e2, λ2), . . . , (em, λm) be the eigenvector-eigenvalue pairs of S, with

λ1 ≥ λ2 ≥ . . . ≥ λm, it is possible to obtain vector cj defined as in (4.16)-(4.17) by setting

cj = ej . Equivalently, cj can be obtained from the j-th right singular vector of Z, which

can, in turn, be derived from singular value decomposition

Z = UTCT , (4.18)

where U is the orthogonal Rr×m matrix whose columns are the left singular vectors of Z, T

is the Rm×m diagonal matrix whose diagonal elements t1 ≥ t2 ≥ . . . ≥ tm are the singular

values of Z, and C ∈ Rm×m is the orthogonal matrix whose columns are the right singular

vectors of Z [32, 109, 110].

In most applications, PCA is used to obtain a low-rank approximation Zm∗ = ZCm∗

of Z, with Cm∗ coinciding with the matrix formed by the left-most m∗ < m columns of

C. This approximation minimizes the Frobenius norm of Z − Zm∗ among all possible

approximations of rank m∗, and has therefore desirable properties for data-compression

applications. In this context, however, we are interested in PCA as a tool to obtain a

full-rank characterization Z, by means of its directions of (co-)variation c1, c2, . . . , cm. We

will, in fact, use c1, c2, . . . , cm to define the axes of a convex, hyper-rectangular bounded

polyhedron that encloses a sampling distribution of guesses (obtained by MI), which we will

store in matrix Z. This polyhedral enclosure will involve all of Z’s dimensions (columns),

and will be devised to reflect the directional patterns of the data that Z contains [111].

A different Z with m = qi dimensions will be defined for each observation i. Note that

the fact that any hyper-rectangle can be defined as the intersection of two half spaces per

dimension implies that Ai ∈ R2qi×(p+1), ai,ui,vi ∈ R2qi in (4.7).
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4.4.3 Derivation of convex polyhedra from data uncertainty

In this section, we describe in detail our proposed MI/PCA-based procedure (referred to

as “bounding polyhedron estimation” (BPE) below), targeted at the derivation of convex

polyhedral representations of the uncertainty that involves the missing values in a data set.

Let D be an n x (p + 1) data matrix, containing up to p missing values per row. Let I

be some MI technique (such as CE) and M be a choice of hyper-parameter values for I,

including the number of MIs r, which we will assume at least as large as p. Let s ∈ [0, 1] be

a “shrinkage” coefficient. Our proposed procedure for the estimation of convex polyhedron

Pi from a set of MIs for each observation i in D consists of the following steps:

1. Obtain r complete n x (p + 1) matrices D1,D2, . . .Dr by generating r MIs of the

missing values of D with I, M .

2. Calculate the median matrix D̄ of D1,D2, . . .Dr.

3. Calculate p+ 1-dimensional vectors mD̄ and sD̄, corresponding to the column mean

and standard deviation of D̄.

4. Let D̄′,D′1,D
′
2, . . .D

′
r be the same as of D̄,D1,D2, . . .Dr after standardization by

means of mD̄ and sD̄.

For i = 1, 2, . . . , n, repeat steps 5–10:

5. Let Zi be the r x qi matrix formed by stacking together the i-th row of each of

D′1,D
′
2, . . .D

′
r, projected down to the qi columns corresponding to the missing values

of the i-th observation in D, and subsequently subtracting the column mean of this

matrix from each row.

6. Calculate the PC matrix Ci of Zi, and the corresponding linear transformation Z∗i =

ZiCi.

7. Calculate qi-dimensional vectors λi(1−s)/2 and λi(1+s)/2 , corresponding to the column

quantiles of order (1− s)/2 and (1 + s)/2 of Z∗i .
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8. Let Z∗∗i be the matrix formed by rows nji of Z ′i, for all j ∈ {1, 2, . . . , qi} such that

λi(1−s)/2 ≤ n
j
i ≤ λi(1+s)/2 .

9. Let Pi be the intersection of the half spaces defining the smallest qi-dimensional hyper-

rectangle enclosing all observations in Z∗∗i and with axes of symmetry parallel to the

columns of Ci.

10. Return Pi.

The above procedure starts with the calculation of multiply-imputed data matrices D1,D2,

. . . ,Dr and of an “average” D̄ of those matrices; the latter is then used to center and scale

the former (steps 1-4). The r MIs of the qi missing values of observation i in D are collected

from D1,D2, . . .Dr and centered, to form matrix Zi (step 5). After mapping the data in Zi

into PC space (step 6), the medium s ·100 percent of the mapped data Z∗i is retained (steps

7-8) and enclosed with the tightest bounding hyper-rectangle Pi whose axes of symmetry

coincide with the axes of Zi’s PC space (step 9) (figure 4.2).

4.4.4 Definition of error cost and insensitivity from data uncertainty

We now want to define ci and εi in (4.7) as quantities that reflect the degree of uncertainty

of observation i, as modeled by its corresponding polyhedron Pi, calculated by BPE. In the

special case of a singleton Pi (which typically occurs when observation i has no missing

values), we simply set ci = c and εi = ε, where c, ε ≥ 0 are the same hyper-parameter

as in the standard SVR formulation (4.2). For a general, non-singleton Pi, our procedure

(referred to as “uncertainty-based cost definition” (UCD) below) is as follows:

A. Letting νi be a vector containing the indices of the qi variables with missing values in

observation i, calculate an “overall” bounding hyper-rectangle P νi by running steps

analogous to steps 6–10 of BPE on the corresponding qi columns of D̄′, rather than

on Zi.

B. Set and return:

Ψi =
qi
p

min

( ∑qi
j=1 l

j
i∑qi

j=1 L
j
νi

, 1

)
(4.19)
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ci = cu (1−Ψi) (4.20)

εi = ε+ εuΨi (4.21)

where lji is the span of hyper-rectangle Pi along the j-th dimension of its own PC

space, Ljνi is the span of hyper-rectangle P νi along the j-th dimension of its own PC

space, ε is the same as in the singleton Pi case, and cu, εu ≥ 0 are hyper-parameters.

Note that in (4.19) if observation i1 and observation i2 share the same missing variables,

then P νi1 = P νi2 , which implies that the computational cost of this procedure will typically

be paid less than n times (figure 4.2).

With the parameter definitions given by step B, we can conclude that the objective function

in (4.7) becomes less sensitive to the prediction error on observation i the larger its degree

of uncertainty Ψi, the smaller cu, and the larger εu. In (4.19), Ψi ∈ [0, 1] is a measure of

relative uncertainty, since qi/p is the ratio of the number of missing variables for observation

i over the theoretical maximum number of variables that may be missing, and
∑qi
j=1 l

j
i∑qi

j=1 L
j
νi

is

the ratio between the amount of uncertainty of observation i (as measured by the sum of the

univariate spans of Pi along its own PC dimensions) to the overall amount of uncertainty in

the data set along the (only) qi variables with missing values in observation i (as measured

by the sum of the univariate spans of P νi along its own PC dimensions). Note that the min

operator in (4.19) makes sure that Ψi be within [0, 1] even in the unlikely case in which the

sum of the univariate PC spans of Pi is larger than that of P νi .

4.5 Experiments

We evaluated the performance of PSVR via 20 repeats of nested 5-fold, stratified cross-

validation [58, 59]; for two only large real-world data sets, however, we decreased the

number of repeats to a smaller value, due to high computational cost (see section 4.5.2

for details). For experiments on artificial data instances, the data set used in each repeat

was a different independent sample from the same, given theoretical distribution. For ex-

periments on real-world data instances, each repeat processed the same data set, unless
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Figure 4.2: Illustration of BPE and UCD on a toy example with 4 observations with missing
values along X1 and X3. (a): BPE generation of MIs; circles, plus signs, crosses, and stars
represent the points/rows of matrices Zi, i = 1, 2, 3, 4, respectively. (b) BPE enclosure of
Zi’s points with PC-oriented bounding rectangle Pi (assuming s = 1). (c): UCD projection
of D̄′ on the X1 and X3 dimensions; the circle, plus sign, cross, and star, represent the
median point of Zi, i = 1, 2, 3, 4, respectively, whereas squares represent points in the data
with no missing values along X1, X3. (d): UCD enclosure of D̄′ with oriented bounding
rectangle P (1,3). (e): UCD calculation of Ψi, ci, and εi based on the univariate spans of Pi
(denoted by the length of sides l1i and l2i ) and of P (1,3) (denoted by the length of sides L1

(1,3)

and l2(1,3)).
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differently specified below. For each outer fold we used the inner training-validation folds

to tune hyper-parameters c and cu (both with possible values 0, 0.05, 0.1, 0.5, 1, 2, 5), ε

and εu (both with possible values 0, 0.25, 0.5, 1), and s (with possible values 0, 0.0001,

0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1). We carried out hyper-parameter tuning once for each

of several prediction error measures: root mean square error, mean absolute error, and

quantiles of order 0.8 and 1 (maximum) of the absolute error, calculated on all observations

(erms, ema, eq.8a, emaxa, respectively); the same calculated on the certain (missing-value-free)

observations only (ecrms, e
c
ma, e

c
q.8a, e

c
maxa, respectively); and the same calculated on the un-

certain (with missing values) observations only (eurms, e
u
ma, e

u
q.8a, e

u
maxa, respectively). For

each error measure, we selected the hyper-parameter values that yielded the smallest mean

of such measure’s values, calculated across the inner-fold validation data sets. We then

trained the corresponding PSVR on the training data of the outer fold, and applied the

same error measure to the testing predictions. We finally obtained a testing grand mean for

such error measure, calculated across all outer folds of all cross-validation repeats. In sec-

tion 4.5.3, we will report these grand means as ērms, ēma, ēq.8a, ēmaxa, ē
c
rms, ē

c
ma, ē

c
q.8a, ē

c
maxa

ēurms, ē
u
ma, ē

u
q.8a, ē

u
maxa. ; moreover, we will refer to ērms, ēma, ēmaxa as a whole as the “ē.

measures”, to ēcrms, ē
c
ma, ē

c
maxa as a whole as the “ēc. measures”, and to ēurms, ē

u
ma, ē

u
maxa as

the “ēu. measures”.

We obtained r = 40 MIs via C = 20 cycles of CE for each uncertain training observa-

tion, using a predictive-mean-matching imputation model [112, 113], as implemented in the

mice function of the homonymous R package [114], using the training data only as the data

input to the function, and setting m=40, maxit=20, and method=‘pmm’, We enclosed such

MIs with PC hyper-rectangles computed via the prcomp function of the stats R package,

setting center=TRUE and scale.=TRUE, and trained the resulting PSVR model with the

Gurobi software, version 7.5.2, through the interface provided by the gurobi function of

the homonymous R package, after standardizing the data to zero mean and unit variance.

With the same approach, we then obtained MIs for the validation data sets, providing both

the training and the validation data as input to the mice function, and their enclosing

PC hyper-rectangles. We obtained output predictions for the uncertain validation data by

computing the value of the fitting hyperplane at the median point of the corresponding PC
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hyper-rectangle, as calculated in PC space. We used the same approach to process uncer-

tain testing observations, with the exception of their MIs, which we obtained providing all

the data to the mice function.

We employed the same cross-validation procedure as above to test four benchmark

methods, all of which implemented in R and solved with Gurobi as for PSVR. The first

benchmark method consists of a standard SVR (with formulation as in (4.2)), trained on

the median of the r MIs calculated in PC space (MSVR), that is, a model that disregards

the uncertainty represented by the distribution of those MIs. Note that MSVR is equivalent

to PSVR with s = 0, ci = c, and εu = 0. The second benchmark method consists, again, of

a standard SVR, but this time trained on the only certain observations (CSVR). Note that

CSVR is equivalent to PSVR with ci = c and εu →∞. For the calculation of ēurms, ē
u
ma, ē

u
q.8a,

and ēumaxa we used CSVR models with hyper-parameters tuned via ecrms, e
c
ma, e

c
q.8a, and

ecmaxa, respectively. For both MSVR and CSVR, the possible values for the two only hyper-

parameters c and ε were the same as for PSVR. The remaining two benchmark methods are

the two maximum-distance variants of Carrizosa’s et al.’s non-oriented box polytope SVRs.

One variant relies on box polytopes estimated from the mean and standard deviation of the

available data (BoxSD) and the other one on box polytopes estimated from the quantiles of

the available data (BoxQ). Both include a “shrinkage” hyper-parameter (called k in BoxSD

and 2a in BoxQ), which we tuned using the same possible values as s. For both variants,

we obtained output-value predictions for validation and testing observations as in in [95],

to which we refer for further details. As mentioned in [95], setting k = 0 and 2a = 1 makes

BoxSD and BoxQ equivalent to a standard SVR formulation where each missing value is

replaced with a single univariate imputation, equal to the mean or median of the available

values along the corresponding missing variable, respectively. Therefore, our experiments

also implicitly include these two single-imputation, standard SVR benchmarks.

4.5.1 Artificial data

We employed artificial data sets D of n = 100 independent observations on p = 10 input

variables, generated from a linear true model with form (3.12), setting β0 = 0, β1 = 1, β2 =
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2, . . . , β10 = 10, correlation matrix R with ρXjXk = ρ, for all j 6= k, and R2 = 0.9. We

considered scenarios with either low (ρ = 0.3) or high (ρ = 0.9) inter-variable correlations.

We artificially injected missigness into the data by removing a proportion of π2p of the p

input values from a (expected) proportion of π1 of the n observations, with π1, π2 ∈ (0, 1)

parameters, enforcing a missing-at-random (MAR) mechanism, where the probability of

a value to be missing depends on the only available values of an observation [115]. We

considered scenarios with either low (π1 = π2 = 0.3), medium (π1 = π2 = 0.6), or high

(π1 = π2 = 0.9) missingness. For a given choice of p + 1-dimensional vector parameter γ,

our procedure to inject MAR missingness into the data is as follows:

1. For each observation i, i = 1, 2, . . . , n, sample uniformly at random without replace-

ment bπ2p + 0.5c input-variable indices from {1, 2, . . . , p}. Let νi be the vector con-

taining such indices.

2. Let di be the i-th row of the standardized D. For all j ∈ νi, replace the j-th element

of di with 0. Let D̃ be the resulting matrix, and d̃i its i-th row.

3. Find the unique root δ∗ of equation

eT
[
e[−(D̃γ+δe)] + e

]−1
− nπ1 = 0, (4.22)

where e is an n-dimensional vector of ones, and e[.] and [.]−1 are exponential and

power functions applied element-wise to their argument.

4. For each observation i, i = 1, 2, . . . , n, remove the values of all variables j ∈ νi with

probability

π1,i =
eγ

T d̃i+δ
∗

eγT d̃i+δ∗ + 1
. (4.23)

In our MAR-injecting procedure, the probability of an observation to contain missing values

varies across observations, as a function π1,i of an observation i’s values and of parameters

γ and δ∗ (the latter, calculated in step 3, based on the chosen γ). Step 2 ensures that
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the missingness mechanism is truly MAR, by making π1,i depend on the only values of

observation i that will certainly not be artificially removed, that is those whose correspond-

ing variable indices do not appear in νi (since in our experiments we defined vector γ as

(1, 2, . . . , p, 0)T , π1,i was also not a function of the output value). Building on Theorem

C.1 in Appendix C, the value of δ∗ calculated in step 3 finally ensures that the expected

proportion of observations with missing values is the desired π1.

4.5.2 Real-world data

We used three fully-numeric real-world data sets for our experiments:

• BostonHousing: originally with n = 506 observations and p = 13 input variables, but

reduced to p = 12, by removing binary variable “CHAS”, and to n = 100 in our study

(see also section 3.3.2). The reduced data set of n = 100 observations corresponds to

a random sample of the original data set, with a different independent sample drawn

for each nested cross-validation repeat. We artificially injected missingness into each

of these samples using the same procedure and the same scenarios with either low

(π1 = π2 = 0.3), medium (π1 = π2 = 0.6), or high (π1 = π2 = 0.9) missingness as for

the artificial data (see section 4.5.1).

• Ozone: with n = 366 observations and p = 12 input variables. A total of 163 ob-

servations contain 1 or more missing values along the input variables, with most of

them missing only 1 (see also section 3.3.2). Due to the large computational cost,

we decreased the number of nested cross-validation repeats to 4 when processing this

data set.

• Boys: with n = 748 observations and p = 9 input variables. A total of 525 observations

contain 1 or more missing values along the input variables, with most of them missing

3 [114]. Due to the large computational cost, we decreased the number of nested

cross-validation repeats to 2 when processing this data set.
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4.5.3 Results

Artificial data

The experiments on the artificial data sets overall suggest that the amount of missing values

in the data, as implied by π1, π2, plays a key role in explaining how each method performs

and ranks with respect to the others. Less clear appears to be the role of variable correlation

ρ. Notably, PSVR appears to be superior to all other methods when missingness is massive

(π1, π2 = 0.9). As π1, π2 decrease, PSVR’s performance becomes closer to that of MSVR,

and, for low values π1, π2, also to that of CSVR, although PSVR appears to remain superior

according to error measures ēcmax and/or ēumax. Interestingly, BoxSD and BoxQ perform

worse than PSVR for any value of π1, π2, when errors are calculated on all observations

(which include both certain and uncertain observations) or on the uncertain observations

only. Details specific to each data set are presented below.

Normal data set with low missingness (π1, π2 = 0.3), Tables 4.1, 4.2: PSVR, MSVR, and

CSVR show comparable error performance when errors are calculated on all observations

(ē. measures), or on the certain observations only (ēc. measures), although PSVR appears

to be superior according to ēcmaxa when ρ is high. MSVR (as well as CSVR, if ρ is high),

however, yields slighty better performance than PSVR when errors are calculated on the

uncertain observations only (ēu. measures). Both BoxSD and BoxQ perform similarly to the

other three methods according to ēc. , but substantially worse according to ē. and even more

so according to ēu. .

Normal data set with medium missingness (π1, π2 = 0.6), Tables 4.3, 4.4: PSVR per-

forms overall comparably to MSVR if ρ is high and slightly worse than MSVR if ρ is low,

although in the latter case PSVR appears to be superior to MSVR according to ēcmaxa and

ēumaxa. CSVR performs worse than PSVR and MSVR, except according to some of the ēc.

measures when ρ is high. Both BoxSD and BoxQ perform significantly worse than the other

methods, especially according to ē. and ēu. .

Normal data set with high missingness (π1, π2 = 0.9), Tables 4.5, 4.6: PSVR is clearly

superior to all other methods, according to any error measure, if ρ is low. With high ρ,
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PSVR performs slightly better than MSVR according to ēu. (and especially ēumaxa), more or

less comparably to MSVR according to ē., and slightly worse than MSVR according to ēc. .

CSVR performs worse than PSVR and MSVR, except according to ēc. when ρ is low. Both

BoxSD and BoxQ perform overall significantly worse than the other methods, with some

exceptions for BoxSD according to ēc. (comparably to PSVR if ρ is low, and between PSVR

and CSVR if ρ is high).

Table 4.1: Normal data, ρ = 0.3, π1 = π2 = 0.3
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 12.587± 0.217 12.137± 0.159 12.964± 0.194 15.283± 0.173 15.287± 0.173
ēma 10.133± 0.213 9.848± 0.136 10.729± 0.175 12.534± 0.126 12.529± 0.117
ēq.8a 15.201± 0.225 15.227± 0.227 16.186± 0.239 18.336± 0.268 18.468± 0.287
ēmaxa 28.436± 0.423 28.335± 0.556 28.003± 0.6 34.951± 0.765 34.078± 0.799
ēcrms 13.616± 0.21 13.078± 0.135 13.487± 0.146 13.459± 0.175 13.601± 0.162
ēcma 10.98± 0.14 10.842± 0.129 11.111± 0.14 11.144± 0.14 10.997± 0.13
ēcq.8a 16.272± 0.306 16.872± 0.295 17.062± 0.42 17.198± 0.286 17.035± 0.295
ēcmaxa 27.412± 0.402 27.367± 0.299 26.933± 0.386 28.042± 0.289 27.43± 0.328
ēurms 10.845± 0.431 9.943± 0.404 11.155± 0.428 18.295± 0.362 18.058± 0.406
ēuma 8.865± 0.333 8.283± 0.338 9.15± 0.35 15.363± 0.385 15.61± 0.401
ēuq.8a 13.178± 0.634 11.734± 0.44 13.652± 0.587 21.286± 0.562 21.481± 0.479
ēumaxa 18.059± 0.854 17.39± 0.819 19.526± 0.676 30.852± 0.749 31.122± 0.758

Table 4.2: Normal data, ρ = 0.9, π1 = π2 = 0.3
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 19.06± 0.269 19.343± 0.256 19.118± 0.252 21.55± 0.271 21.723± 0.331
ēma 15.543± 0.262 15.788± 0.259 15.733± 0.197 17.69± 0.269 17.418± 0.235
ēq.8a 23.685± 0.417 25.032± 0.41 24.859± 0.465 26.584± 0.456 26.335± 0.391
ēmaxa 41.352± 0.648 41.834± 0.719 42.276± 0.963 47.312± 0.917 49.31± 1.107
ēcrms 18.901± 0.323 19.302± 0.318 19.486± 0.407 18.765± 0.331 19.231± 0.34
ēcma 15.523± 0.215 15.785± 0.276 15.805± 0.305 15.418± 0.247 15.661± 0.269
ēcq.8a 24.059± 0.583 23.921± 0.519 23.586± 0.525 23.889± 0.349 24.077± 0.375
ēcmaxa 37.761± 0.839 39.171± 0.936 40.45± 1.172 38.603± 0.778 39.201± 0.915
ēurms 20.692± 0.617 19.803± 0.522 19.763± 0.473 24.728± 0.739 24.282± 0.58
ēuma 17.219± 0.65 16.31± 0.502 16.092± 0.457 20.206± 0.622 20.313± 0.602
ēuq.8a 26.067± 1.094 24.218± 0.844 23.411± 0.777 29.293± 0.917 29.458± 0.965
ēumaxa 35.536± 0.861 33.882± 0.794 33.941± 0.917 43.438± 1.251 42.14± 1.084
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Table 4.3: Normal data, ρ = 0.3, π1 = π2 = 0.6
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 11.835± 0.144 11.537± 0.2 13.248± 0.316 20.7± 0.264 20.811± 0.238
ēma 9.186± 0.213 9.039± 0.196 10.46± 0.244 16.86± 0.16 16.763± 0.199
ēq.8a 14.307± 0.219 13.922± 0.28 15.952± 0.394 25.106± 0.387 25.469± 0.379
ēmaxa 28.065± 0.472 28.102± 0.55 31.94± 0.771 47.261± 0.774 47.734± 0.707
ēcrms 14.608± 0.293 14.249± 0.263 15.492± 0.36 15.591± 0.265 15.89± 0.308
ēcma 11.441± 0.164 11.743± 0.258 12.809± 0.293 12.792± 0.193 13.025± 0.38
ēcq.8a 17.174± 0.399 17.563± 0.405 18.328± 0.592 18.88± 0.334 19.606± 0.375
ēcmaxa 26.147± 0.583 27.574± 0.425 29.864± 0.6 28.712± 0.958 29.37± 0.841
ēurms 8.868± 0.336 8.853± 0.251 11.472± 0.502 23.219± 0.292 23.393± 0.338
ēuma 7.327± 0.263 7.084± 0.207 9.011± 0.4 19.42± 0.234 19.658± 0.268
ēuq.8a 10.933± 0.453 10.596± 0.393 13.873± 0.631 29.157± 0.347 29.154± 0.442
ēumaxa 18.501± 0.627 19.223± 0.646 24.935± 1.24 46.564± 0.751 45.972± 1.003

Table 4.4: Normal data, ρ = 0.9, π1 = π2 = 0.6
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 18.098± 0.206 18.649± 0.248 19.401± 0.254 25.578± 0.225 25.626± 0.252
ēma 14.613± 0.202 14.91± 0.245 15.921± 0.251 20.691± 0.138 20.39± 0.18
ēq.8a 23.678± 0.446 23.179± 0.453 24.761± 0.487 31.942± 0.25 31.99± 0.459
ēmaxa 41.261± 0.615 41.287± 0.809 43.288± 0.85 57.71± 0.68 58.824± 0.754
ēcrms 19.041± 0.413 20.304± 0.525 20.458± 0.468 21.868± 0.436 21.591± 0.383
ēcma 15.91± 0.37 16.879± 0.512 16.68± 0.443 17.824± 0.394 18.655± 0.393
ēcq.8a 24.022± 0.669 24.6± 0.704 24.659± 0.675 26.178± 0.427 25.772± 0.499
ēcmaxa 37.574± 1.091 37.019± 1.136 38.339± 0.946 41.231± 0.613 41.233± 0.797
ēurms 16.977± 0.26 16.735± 0.391 18.481± 0.429 27.427± 0.341 26.247± 0.429
ēuma 13.191± 0.254 13.329± 0.292 15.383± 0.348 21.26± 0.297 21.458± 0.393
ēuq.8a 20.418± 0.417 20.581± 0.413 23.512± 0.635 31.938± 0.524 32.928± 0.593
ēumaxa 35.514± 0.77 34.441± 0.918 37.973± 1.029 56.602± 0.718 55.663± 0.774

Table 4.5: Normal data, ρ = 0.3, π1 = π2 = 0.9
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 18.816± 0.903 19.821± 0.994 28.873± 1.156 33.197± 0.554 33.183± 0.446
ēma 14.228± 0.696 15.414± 0.754 23.512± 1.029 26.534± 0.423 26.431± 0.416
ēq.8a 21.511± 0.839 23.307± 1.162 37.164± 1.399 41.792± 0.686 42.024± 0.605
ēmaxa 46.462± 1.783 47.552± 1.876 64.517± 2.595 71.653± 0.604 74.654± 1.129
ēcrms 23.724± 1.14 29.513± 1.98 24.481± 1.095 26.863± 1.471 23.851± 1.115
ēcma 21.466± 0.997 26.407± 1.903 22.672± 0.899 23.601± 1.105 20.661± 0.866
ēcq.8a 25.871± 1.431 31.265± 2.162 27.538± 1.227 29.62± 1.447 26.768± 1.312
ēcmaxa 29.313± 1.482 35.295± 1.864 31.271± 1.366 34.414± 1.982 29.784± 1.241
ēurms 15.691± 0.619 16.616± 0.746 29.6± 1.175 33.788± 0.548 34.047± 0.469
ēuma 12.288± 0.45 13.942± 0.77 23.087± 1.127 26.966± 0.463 26.849± 0.417
ēuq.8a 18.608± 0.568 21.11± 1.169 36.805± 1.429 41.981± 0.65 41.584± 0.708
ēumaxa 35.034± 1.267 39.233± 1.759 61.876± 2.619 71.482± 0.547 70.881± 0.701
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Table 4.6: Normal data, ρ = 0.9, π1 = π2 = 0.9
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 16.705± 0.469 16.73± 0.337 26.429± 1.015 43.893± 0.529 45.756± 0.443
ēma 12.602± 0.35 12.763± 0.268 21.155± 0.874 34.697± 0.498 37.4± 0.425
ēq.8a 18.496± 0.624 18.845± 0.503 30.799± 1.413 56.285± 0.846 56.007± 0.912
ēmaxa 41.338± 1.467 40.429± 0.996 61.475± 2.851 100.717± 1.739 110.869± 3.476
ēcrms 21.957± 1.085 20.495± 0.982 24.454± 1.522 22.102± 1.08 29.718± 1.131
ēcma 18.941± 1.037 18.633± 0.973 21.295± 1.433 21.844± 1.011 26.107± 1.178
ēcq.8a 23.813± 1.159 22.443± 1.152 26.421± 1.758 24.737± 1.469 33.731± 1.42
ēcmaxa 25.347± 1.327 25.478± 1.229 29.061± 2.165 28.853± 1.672 41.779± 1.924
ēurms 14.539± 0.289 15.455± 0.354 26.665± 1.209 45.445± 0.633 46.4± 0.541
ēuma 11.981± 0.291 12.179± 0.274 21.716± 0.74 36.057± 0.563 36.935± 0.445
ēuq.8a 17.641± 0.533 17.679± 0.508 30.87± 1.519 57.027± 0.832 57.113± 0.628
ēumaxa 32.261± 0.786 36.089± 0.645 60.29± 2.954 98.869± 1.621 111.421± 3.524

Real-world data

The experiments on the real-world data sets generally confirm the main findings of the

experiments on the artificial data sets, especially with respect to the dependence of each

method’s performance on the amount of missing values in the data. Details specific to each

data set are presented below.

BostonHousing data set with low missingness (π1, π2 = 0.3), Table 4.7: PSVR and

MSVR exhibit overall similar performance, slightly better than CSVR according to ē. and

ēc. , and more substantially so according to ēu. . Both BoxSD and BoxQ perform similarly to

PSVR and MSVR according to ēc. , and similarly to CSVR according to ē. and ēu. .

BostonHousing data set with medium missingness (π1, π2 = 0.6), Table 4.8: The pat-

terns are somewhat analogous to those observed with π1, π2 = 0.3, except for two facts:

CSVR here performs similarly to PSVR and MSVR according to ēc. ; BoxSD and Box perform

worse than CSVR according to ē. and ēu. .

BostonHousing data set with high missingness (π1, π2 = 0.9), Table 4.9: PSVR is slightly

superior to MSVR according to ērms, ēq.8a, ēmaxa, and ēcq.8a, whereas the two methods

perform similarly according to the remaining error measures. CSVR performs worse than

PSVR anb MSVR according to ē. and ēu. , but, somewhat surprisingly, better than both of

them according to ēc. . BoxSD and BoxQ perform roughly the same as PSVR and MSVR

according to ēc. , but substantially worse than all other methods according to the other error

measures.
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Ozone data set, Table 4.10: The performance is roughly equivalent across all methods.

This is most likely due to the very limited amount of missing values in the data. Indeed, the

fact that CSVR, which ignores observations with missing values, yields overall the same level

of error as the other methods, which do process observations with missing values, seems

to suggests that there is no benefit in learning from uncertain data when a substantial

majority of the data is certain. This is essentially in accordance with what we observed on

the Normal and BostonHousing data sets with π1, π2 = 0.3.

Boys data set, Table 4.11: PSVR and MSVR perform quite similarly overall, although

there is some evidence of PSVR’s superiority according to a few error measures (ērms, ē
c
maxa,

and ēumaxa). CSVR performs about the same as PSVR according to ēc. , but worse than PSVR

(and MSVR) according to the other error measures. BoxSD and BoxQ perform overall

substantially worse than both PSVR and MSVR; compared to CSVR, they underperform

according to ēc. and overperform according to the other error measures.

Table 4.7: BostonHousing data, π1 = π2 = 0.3
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 5.104± 0.127 5.077± 0.118 5.47± 0.119 5.653± 0.104 5.71± 0.115
ēma 3.565± 0.077 3.59± 0.083 3.878± 0.073 3.982± 0.066 3.996± 0.074
ēq.8a 5.263± 0.136 5.148± 0.148 5.889± 0.15 5.778± 0.09 6.002± 0.109
ēmaxa 14.544± 0.419 14.275± 0.46 14.751± 0.443 16.307± 0.404 16.952± 0.54
ēcrms 4.365± 0.095 4.592± 0.137 4.74± 0.183 4.567± 0.124 4.714± 0.111
ēcma 3.226± 0.073 3.232± 0.084 3.369± 0.1 3.269± 0.064 3.337± 0.062
ēcq.8a 4.799± 0.083 4.829± 0.137 4.893± 0.104 4.948± 0.075 5.019± 0.098
ēcmaxa 11.386± 0.39 11.299± 0.363 12.111± 0.633 11.677± 0.427 11.94± 0.445
ēurms 5.331± 0.226 5.286± 0.228 6.604± 0.245 6.7± 0.303 6.543± 0.295
ēuma 4.041± 0.164 4.209± 0.177 5.251± 0.181 5.367± 0.24 5.368± 0.234
ēuq.8a 5.189± 0.255 5.762± 0.288 7.462± 0.315 7.096± 0.361 7.057± 0.275
ēumaxa 10.381± 0.49 10.32± 0.515 11.778± 0.438 12.625± 0.559 12.954± 0.644
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Table 4.8: BostonHousing data, π1 = π2 = 0.6
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 5.061± 0.187 5.146± 0.192 5.524± 0.194 6.232± 0.073 6.195± 0.098
ēma 3.34± 0.075 3.636± 0.107 4.006± 0.129 4.39± 0.053 4.385± 0.068
ēq.8a 5.151± 0.134 5.103± 0.129 5.668± 0.216 6.418± 0.13 6.539± 0.127
ēmaxa 14.654± 0.595 14.772± 0.647 15.534± 0.683 17.03± 0.513 17.778± 0.529
ēcrms 5.07± 0.204 4.952± 0.147 5.184± 0.198 4.92± 0.141 5.154± 0.131
ēcma 3.754± 0.135 4.057± 0.158 3.877± 0.138 3.653± 0.107 3.871± 0.119
ēcq.8a 5.934± 0.267 5.773± 0.172 5.588± 0.247 5.253± 0.156 5.605± 0.197
ēcmaxa 11.067± 0.402 10.558± 0.255 11.058± 0.519 10.901± 0.351 10.826± 0.34
ēurms 4.847± 0.255 4.827± 0.216 5.31± 0.245 6.555± 0.133 6.705± 0.117
ēuma 3.243± 0.106 3.238± 0.122 3.832± 0.15 4.945± 0.084 5.053± 0.077
ēuq.8a 4.84± 0.131 4.625± 0.164 5.777± 0.275 6.725± 0.145 7.124± 0.134
ēumaxa 12.174± 0.592 11.972± 0.658 14.203± 0.989 15.761± 0.534 15.298± 0.469

Table 4.9: BostonHousing data, π1 = π2 = 0.9
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 6.04± 0.177 6.447± 0.187 7.681± 0.211 9.33± 0.165 9.59± 0.143
ēma 4.359± 0.102 4.331± 0.109 5.51± 0.165 6.384± 0.079 6.598± 0.092
ēq.8a 6.083± 0.247 6.542± 0.215 8.328± 0.319 9.897± 0.171 9.689± 0.192
ēmaxa 17.219± 0.801 19.681± 0.967 19.52± 0.566 26.587± 1.048 27.13± 0.773
ēcrms 8.8± 0.724 9.022± 0.708 7.062± 0.56 8.769± 0.556 8.714± 0.6
ēcma 7.551± 0.68 7.947± 0.682 6.366± 0.491 7.692± 0.477 7.836± 0.591
ēcq.8a 9.408± 0.815 9.912± 0.81 7.865± 0.624 9.74± 0.65 9.543± 0.666
ēcmaxa 11.471± 0.9 11.434± 0.941 8.836± 0.74 12.055± 0.917 11.034± 0.758
ēurms 5.513± 0.196 5.441± 0.173 7.116± 0.226 8.827± 0.131 9.172± 0.123
ēuma 3.901± 0.099 3.818± 0.098 5.345± 0.196 6.233± 0.123 6.571± 0.125
ēuq.8a 5.468± 0.203 5.714± 0.167 8.371± 0.357 9.826± 0.213 9.986± 0.223
ēumaxa 14.197± 0.533 14.075± 0.681 18.911± 0.622 22.492± 0.299 24.043± 0.627

Table 4.10: Ozone data
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 4.371± 0.067 4.356± 0.051 4.394± 0.063 4.692± 0.044 4.717± 0.022
ēma 3.44± 0.047 3.463± 0.064 3.512± 0.066 3.684± 0.038 3.682± 0.03
ēq.8a 5.605± 0.067 5.52± 0.055 5.628± 0.123 5.967± 0.169 5.937± 0.068
ēmaxa 12.156± 0.614 11.919± 0.494 12.163± 0.213 12.489± 0.763 12.464± 0.512
ēcrms 4.596± 0.125 4.53± 0.147 4.595± 0.086 4.689± 0.144 4.681± 0.102
ēcma 3.721± 0.228 3.637± 0.112 3.663± 0.11 3.728± 0.1 3.712± 0.104
ēcq.8a 5.726± 0.164 5.518± 0.058 5.529± 0.154 5.818± 0.177 5.802± 0.122
ēcmaxa 11.528± 0.587 10.899± 0.789 11.435± 0.524 11.506± 0.467 11.465± 0.72
ēurms 4.217± 0.037 4.132± 0.034 4.226± 0.079 4.62± 0.094 4.628± 0.101
ēuma 3.274± 0.12 3.254± 0.079 3.403± 0.07 3.679± 0.066 3.627± 0.043
ēuq.8a 5.308± 0.288 5.181± 0.121 5.654± 0.232 5.812± 0.12 5.819± 0.116
ēumaxa 10.527± 0.747 10.383± 0.634 10.359± 0.528 11.004± 0.417 10.841± 0.628
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Table 4.11: Boys data
Error Measure PSVR MSVR CSVR BoxSD BoxQ

ērms 1.094± 0.241 1.207± 0.264 3.705± 0.731 1.589± 0.291 1.581± 0.293
ēma 0.866± 0.19 0.869± 0.147 2.902± 0.691 1.06± 0.207 1.07± 0.232
ēq.8a 1.476± 0.275 1.463± 0.327 5.772± 1.279 1.774± 0.284 1.837± 0.342
ēmaxa 3.044± 0.554 3.257± 0.656 6.354± 1.191 6.245± 1.438 6.73± 1.614
ēcrms 1.247± 0.245 1.356± 0.284 1.217± 0.212 1.647± 0.316 1.611± 0.258
ēcma 1.011± 0.228 1.102± 0.224 1.012± 0.216 1.258± 0.301 1.255± 0.219
ēcq.8a 1.716± 0.386 1.788± 0.425 1.699± 0.335 1.877± 0.402 2.104± 0.436
ēcmaxa 2.658± 0.506 3.108± 0.54 2.875± 0.657 4.753± 1.039 4.516± 0.726
ēurms 1.065± 0.214 1.051± 0.17 4.349± 0.852 1.435± 0.335 1.441± 0.32
ēuma 0.713± 0.117 0.726± 0.121 3.716± 0.833 0.954± 0.195 0.963± 0.156
ēuq.8a 1.221± 0.24 1.182± 0.211 5.924± 1.129 1.468± 0.274 1.536± 0.334
ēumaxa 2.841± 0.289 3.201± 0.399 6.354± 1.178 5.685± 1.224 5.638± 0.986

Effect of hyper-parameters on PSVR’s performance

We studied the effect that PSVR’s hyper-parameters have on the method’s perfomance by

investigating how validation error varies across an array of combinations of hyper-parameter

values. We focused our analysis on a representative inner-cross validation fold of the Normal

data set with ρ = 0.3 and π1 = π2 = 0.9, and investigated all combinations of the possible

hyper-parameter values mentioned in section 4.5, with the following exceptions: we added

0.125, 0.7, and 0.85 to the list of possible values for ε and εu, to increase granularity;

we added 0.05, 0.125, and 0.375 and removed 0.5, 0.75, and 1 from the list of possible

values for s, to shift the analysis towards lower values, since higher ones appeared to yield

systematically worse validation performance on the data set we considered.

For each error measure, for each hyper-parameter, and for each possible value of such

hyper-parameter, we recorded the minimum error obtained over all possible combinations of

values of the other hyper-parameters. Figures 4.3, 4.4, and 4.5 report such minimum error

as a curve, given as a function of each hyper-parameter’s value, when errors are calculated

on all observations, on the certain observations only, and on the uncertain observations

only, respectively; each subfigure considers a different error measure. In these figures, we

normalized the values of all hyper-parameters to the same range, to facilitate comparisons

across different curves along the (logarithmic) y-axis; note, however, that the range starts

from 0 for all hyper-parameters.

With the exception of, possibly, εu, all hyper-parameters have a very clear impact
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on PSVR’s performance. Most notably, this holds for cu and s, which are key to the

exploitation of data-uncertainty information within the model. Further details are provided

below.

Hyper-parameter c: The optimum is close to zero according to all error measures.

Interestingly, but not surprisingly, when performance is calculated via eu. , the optimal value

of c is exactly 0. This result implies that the certain data is completely ignored when

training a model tailored to the uncertain data.

Hyper-parameter cu: The optimum is attained at medium to low values according to

all error measures. It does not surprise that, when performance is calculated via ec. , the

non-zero optimal value of cu offers little advantage with respect to cu = 0. This result

suggests that the uncertain data plays a marginal role when training a model tailored to

the certain data.

Hyper-parameter ε: The optimum is attained at medium to high values according to

all error measures. Somewhat interestingly, ε appears to play a particularly significant role

when performance is calculated via ec. .

Hyper-parameter εu: The impact on performance is usually not substantial, although

it appears to allow some degree of fine-tuning according to a few error measures, such as

emaxa and euq.8a, for which larger values of εu seem to yield smaller error.

Hyper-parameter s: The optimum is attained at medium-low values according to all

error measures. It does not surprise that, when performance is calculated via ec. , the non-

zero optimal value of s provides little advantage with respect to s = 0. This result is in line

with what we observed for cu above.
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Figure 4.3: Validation error performance as a function of the hyper-parameter values,
calculated on all observations.



99

●

●●

● ● ● ●

Hyper−parameter value

e m
a

c

Min (0) Max

6
7

8
9

10
11

12

● c
cu

ε
εu

s

●

●

● ● ● ● ●

Hyper−parameter value

e m
ax

a
c

Min (0) Max

6
8

10
12

14

● c
cu

ε
εu

s

●

●●

● ● ● ●

Hyper−parameter value

e q.
8a

c

Min (0) Max

6
8

10
12

● c
cu

ε
εu

s

●

●●

● ● ● ●

Hyper−parameter value

e rm
s

c

Min (0) Max

6
8

10
12

● c
cu

ε
εu

s

Figure 4.4: Validation error performance as a function of the hyper-parameter values,
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Chapter 5

Conclusions

In this dissertation we proposed a set of methods targeted to problems of variable impor-

tance, variable selection, and regression with uncertain information. The most important

feature that all of these methods share is their capability of modeling and leveraging complex

inter-variable dependences towards providing effective characterizations of the data and re-

turning accurate predictions of unseen information. With extensive experimental validation

in a multitude of real-world applications, we showed how this feature is key to our methods’

performance, which is often superior to that of other state-of-the art approaches. The work

we discussed here lends itself to several directions of development. Those of our current

interest involve mainly the methods covered in Chapters 3 and 4 and are briefly presented

below.

5.1 Extensions and future work on DBC-CPI and DBC-RCPI

The biased clustering approach behind the DBC-CPI measure is possibly the only unsuper-

vised methodological component of this entire dissertation. A potential supervised extension

of this approach may be targeted to calibrating the clustering effort on the W (j) space not

only as a function of the dependence between Xj and the variables in W (j), but also as a

function of the relevance that the variables in W (j) have towards Y . The basic conjecture

that justifies this alternative approach is that, the larger the importance of Xk ∈W (j), the
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more the dependence between Xj and Xk will inflate Xj ’s non-conditional PI (see section

2.2.2). If that were indeed the case, it would be reasonable to exclude unimportant input

variables from the space where the clustering of the data is performed. Alternatively, the

non-conditional PI of Xk ∈W (j) could be used to rescale weight wkj prior to clustering, in

such a way that within-group homogeneity be more strongly enforced on variables Xk that

are both dependent on Xj and predictive of Y .

Despite being faster to execute than some of its competitor methods, DBC-RCPI re-

mains a rather computationally intensive procedure. We envision two main directions to

improve DBC-RCPI’s computational performance: one implementational and one method-

ological. As per the former, the key observation is that DBC-RCPI is highly parallelizable.

Each recursion, in fact, results in a total of p independent clustering problems (one per

input variable), each of which inducing T (trees) × K (number of clusters) independent

conditional permutations, which in turn rely on T independently trained trees. A paral-

lelized implementation of DBC-RCPI, therefore, promises substantial computational gains.

As per the methodological direction, we plan to incorporate in DBC-RCPI a hybrid im-

portance measure IHj that carries both conditional and non-conditional information about

Xj ’s importance. This hybrid measure could be defined, for example, as a convex combi-

nation IHj = τIPj + (1− τ)IDBC−CPj , with τ ∈ [0, 1] hyper-parameter. It has been already

shown in [43] that, within each recursion of a backward-elimination algorithm relying on

non-conditional PI (IHj with τ = 1) for variable ranking, variable selection can be carried

out both without the recalculation of PI and with the elimination of multiple variables. In

section 3.2.2 we emphasized how, on the other hand, PI should be recalculated at every

recursion if variable ranking is performed via the conditional variant (IHj with τ = 0), with

the obvious drawback that no more than one variable can be eliminated at a time. We

conject, however, that, by appropriately tuning the value of τ , the number of recalculations

of IHj may be reduced to less than p, and the corresponding number of variables eliminated

at every recursion may be increased to more than one, without significantly affecting the

quality of the solution currently returned by DBC-RCPI with τ = 0 and p recalculations.

This approach should obviously strike a reasonable balance between the computational gain

resulting from the reduction of the number of recalculations/recursions, the computational
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cost generated by the tuning of τ = 0, and the properties of the resulting solution.

Interesting further extensions of DBC-CPI and DBC-RCPI may finally involve the

replacement of RFs with other types of predictive models. In fact, the definition of variable

importance by means of testing-data permutations and the measurement of the correspond-

ing impact on predictive performance does not per se have to rely on the use of any specific

model class. Analogously, it is conceivable to consider the substitution of K-means/medoids

with different formulations of the clustering problem as a basis for devising partitions of the

W (j) space. These lines of research are essentially unexplored in the literature on variable

importance, and, as such, are open to potentially substantial innovations.

5.2 Extensions and future work on PSVR

SVR-like models are often processed in their dual formulation, primarily because that allows

the solution of the optimal interpolating hyperplane problem within an abstract, arbitrarily-

dimensional non-linear space, without incurring the additional computational cost of map-

ping the training points onto such space. This is made possible by the manipulation of

the dual objective, which depends on the inner product of pairs of mapped training points.

For certain types of maps, in fact, these inner products are equivalent to kernel functions,

whose value can be efficiently calculated in the original space. To date, dual formulations

have been proposed in the literature only for the special case of PSVR where uncertainty

affects exclusively the output variable and can be modeled as an interval. Our intention

is, therefore, to derive a dual PSVR formulation that can be applied to scenarios where

uncertainty is modeled by arbitrary convex polyhedra, defined on both input and output

variables.

Our use of MI for estimating polyhedra from datasets with missing values showed

encouraging results in a variety of experiments. In the work we presented here, however,

we limited our attention exclusively to MIs obtained via chained equations and predictive

mean matching. A natural direction of further investigation, therefore, involves the study

of the behavior of our approach as a function of different imputation models, and, possibly,
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different MI techniques, which may be more or less appropriate depending on the nature of

the data at hand.

Finally, an important open question is whether polyhedral data may be available to

process as a given, rather than having to be estimated, in any real-world scenario in which

numerical prediction or interpolation is of practical use. Interval data, that is, data ge-

ometrically represented by non-oriented box polyhedral data, are not uncommon in ap-

plications that involve measurements collected imprecisely or available as ranges. As per

the more interesting general polyhedral data, a possible starting point may be the field of

computer graphics, where convex polytopes play an important role in modeling real-world

objects.
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Appendix A

R2 modulation in a multiple linear

model

Theorem A.1. Let Y = β0+
∑P

j=1 βjXj+ε̃ be a multiple linear model, with β0, β1, . . . , βp ∈

R, X1, X2, . . . , XP random variables with covariance matrix Σ =
(
σXjXk

)
∈ RP×P and

correlation matrix R =
(
ρXjXk

)
∈ RP×P, ε̃ = βεε, βε ∈ R, and ε random variable such that

Var[ε] = 1 and Cov[Xj , ε] = 0, ∀j, k ∈ {1, 2, . . . ,P}. The two values of βε that yield a given

coefficient of determination R2 ∈ [0, 1] in the multiple linear model are ±
√
cTR−1c
R2 − b,

where b =
∑P

k=1

∑P
l=1 βkβlσXkXl, c =

(
a1
σX1

, a2
σX2

, . . . , aP
σXP

)T
, and aj =

∑P
k=1 βkσXjXk .

Proof. Let ρ =
(
ρX1,Y , ρX2,Y , . . . , ρXp,Y

)T
be the vector of correlations between each of

X1, X2, . . . , XP and Y . The assumptions in the theorem allow to rewrite ∀j ∈ {1, 2, . . . ,P}:

ρXj ,Y =
σXjY

σXjσY

=
Cov

[
Xj ,

∑p
j=1 βjXj + βεε

]
σX1

√
Var

[∑
j βjXj + βεε

]
=

∑p
k=1 βkσXjXk

σX1

√∑p
k=1

∑p
l=1 Cov [βkXk, βlXl] + β2

εVar [ε]

=
aj

σXj
√
b+ β2

ε
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Letting cT =
(

a1
σX1

, a2
σX2

, . . . , aP
σXP

)
, we can express the coefficient of determination R2 as

follows:

R2 = ρTR−1ρ

=
1

b+ β2
ε

cTR−1c

Solving the last equation for βε yields βε = ±
√
cTR−1c
R2 − b.

Remark. Theorem A.1 applies to any multiple linear model. It is easy to see that is the

case with (3.12), by simply setting P = p; for (3.13), it is sufficient to set P = p + p2 and

Xj , j > p equal to the appropriate standardized product terms.

Theorem A.2. Let X1, X2, . . . , XP be standard Normal random variables with correlation

matrix R =
(
ρXjXk

)
∈ RP×P. The covariance matrix over X1, X2, . . . , XP and their second-

degree transforms XjXk is given by Σ2 =
(
R 0
0T A

)
∈ R

P(P+3)
2
×P(P+3)

2 , where 0 ∈ RP×P(P−1)
2

is a zero matrix and A =
(
ρXjXlρXkXm + ρXjXkρXlXm

)
∈ RP(P+1)×P(P+1), ∀j, k, l,m ∈

{1, 2, . . . ,P} : j ≤ k ≤ l ≤ m.

Proof. Matrix R: R is, trivially, the matrix of covariances on the pairs of random variables

(Xj , Xk), ∀j, k ∈ {1, 2, . . . ,P}. Matrix 0: We observe we can write Xk = rjkXj + sjkZk,

∀rjk ∈ [0, 1], sjk = 1 − r2
jk, with Zk ∼ N(0, 1) independent of Xj . Since ρXjXk ∈ [0, 1], we

can set r = ρXjXk and calculate:

Cov[Xj , XkXl] = E[XjXkXl]− E[Xj ]E[XkXl]

= E
[
Xj(ρXjXkXj + sjkZk)(ρXjXlXj + sjlZl)

]
− 0 · E[XkXl]

= E
[
ρXjXkρXjXlX

3
j + ρXjXksjlX

2
jZl + ρXjXlsjkX

2
jZk + sjksjlXjZkZl

]
= ρXjXkρXjXlE

[
X3
j

]
+ ρXjXksjlE

[
X2
jZl
]

+ ρXjXlsjkE
[
X2
jZk

]
+ sjksjlE [XjZkZl]

= 0 + 0 + 0 + sjksjl (E [(XjZk − E[XjZk]) (Zl − E[Zl]))] + E[XjZk]E[Zl])

= 0
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where we have used the fact that E[Xq
j ] = (q− 1)!! for q even and E[Xq

j ] = 0 for q odd, and

that E[Xq
jZ

t
. ] = E[Xq

j ]E[Zt. ], ∀q, t ∈ N, because functions of independent random variables

are themselves independent. This result can be used to build the matrix 0 of covariances

on the pairs of random variables (Xj , XkXl), ∀j, k, l ∈ {1, 2, . . . , p} : j ≤ k ≤ l. Matrix A:

Cov[XjXk, XlXm] =

= E[XjXkXlXm]− E[XjXk]E[XlXm]

= E
[
Xj(ρXjXkXj + sjkZk)(ρXjXlXj + sjlZl)(ρXjXmXj + sjmZm)

]
− E[Xj(ρXjXkXj + sjkZk)]E[Xl(ρXlXmXl + slmZm)]

= E
[
ρXjXkρXjXlρXjXmX

4
j + ρXjXkρXjXlsjmX

3
jZm + ρXjXkρXjXmsjlX

3
jZl

+ ρXjXksjlsjmX
2
jZlZm + ρXjXlρXjXmsjkX

3
jZk + ρXjXlsjksjmX

2
jZkZm

+ ρXjXmsjksjlX
2
jZkZl + sjksjlsjmX1ZkZlZm

]
− E

[
ρXjXkX

2
j + sjkXjZk

]
E
[
ρXlXmX

2
l + slmXlZm

]
= ρXjXkρXjXlρXjXmE

[
X4
j

]
+ ρXjXkρXjXlsjmE

[
X3
jZm

]
+ ρXjXkρXjXmsjlE

[
X3
jZl
]

+ ρXjXksjlsjmE
[
X2
jZlZm

]
+ ρXjXlρXjXmsjkE

[
X3
jZk

]
+ ρXjXlsjksjmE

[
X2
jZkZm

]
+ ρXjXmsjksjlE

[
X2
jZkZl

]
+ sjksjlsjmE [X1ZkZlZm]

−
(
ρXjXkE

[
X2
j

]
+ sjkE [XjZk]

) (
ρXlXmE

[
X2
l

]
+ slmE [XlZm]

)
= 3ρXjXkρXjXlρXjXm + 0 + 0 + ρXjXksjlsjmE

[
X2
j

]
E [ZlZm] + 0

+ ρXjXlsjksjmE
[
X2
j

]
E [ZkZm] + ρXjXmsjksjlE

[
X2
j

]
E [ZkZl] + 0

− (ρXjXk + 0)(ρXlXm + 0) + 0 + ρXjXlsjksjmE
[
X2
j

]
E [ZkZm]

= ρXjXlρXkXm + ρXjXkρXlXm ,

where last step follows from

E
[
Z(.)Z(..)

]
= E


(
X(.) − ρXjX(.)

Xj

)(
X(..) − ρXjX(..)

Xj

)
sj(.)sj(..)

 =
ρX(.)X(..)

sj(.)sj(..)
,
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by X(.) = ρXjX(.)
Xj + sj(.)Z(.) and X(..) = ρXjX(..)

Xj + sj(..)Z(..). This result can be used

to build the matrix A of covariances on the pairs of random variables (XjXk, XlXm),

∀j, k, l,m ∈ {1, 2, . . . ,P} : j ≤ k ≤ l ≤ m.

Corollary A.3. Let X1, X2, . . . , XP be as in Theorem A.2. The covariance/correlation

matrix over X1, X2, . . . , Xp and their standardized second-degree transforms X̃jXk is the

same as Σ2, except A =

(
−ρXjXkρXlXm

/(
ρ2
XjXk

+ 1
) 1

2
(
ρ2
XlXm

+ 1
) 1

2

)
.

Proof. Matrix R is obvious. Matrix 0:

Cov[Xj , X̃kXl] = E
[
XjX̃kXl

]
− E[Xj ]E

[
X̃kXl

]
= E

[
Xj

XkXl − E [XkXl]√
Var [XkXl]

]
− 0 · E

[
X̃kXl

]
= E

[
Xj

XkXl − E [Xk (ρXkXlXk + sklZl)]√
Var [Xk (ρXkXlXk + sklZl)]

]

= E

Xj
XkXl − ρXkXl√

ρ2
XkXl

+ 1


=

1√
ρ2
XkXl

+ 1
(E [XjXkXl]− ρXkXlXj)

=
1√

ρ2
XkXl

+ 1
(0− 0)

= 0
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Matrix A:

Cov[X̃jXk, X̃lXm] =

= E[X̃jXkX̃lXm]− E[X̃jXk]E[X̃lXm]

=
−ρXjXkρXlXm√(

ρ2
XjXk

+ 1
)(

ρ2
XlXm

+ 1
) − 0 · 0

=
−ρXjXkρXlXm√(

ρ2
XjXk

+ 1
)(

ρ2
XlXm

+ 1
)
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Appendix B

Characterization of brain-network

connectivity

B.1 A brief neuro-scientific overview

The anatomical architecture and the integrated physiological activity of large-scale complex

neuronal networks are fundamental factors that affect brain functionality. Studies show that

alterations in brain network organization may act as predictors of neurological dysfunctions.

Of particular interest are alterations that affect the connectivity between and within ele-

ments of the brain network. Connectivity may take place in three forms: structurally,

effectively, and functionally [116, 117, 118]. Structural connectivity is determined by physi-

cal connections, such as fiber pathways and synaptic links, whereas effective and functional

connectivity are identified by specific relationships between temporal dynamics of neuronal

activity (NA) in different brain areas, causal in nature for the former, similarity-related for

the latter.

Functional connectivity, which our work specifically focuses on, can be analyzed both

in a task-positive and in a task-negative framework. Depending on whether a subject is

performing a task or remaining idle while being examined, different functional networks

arise in the brain. In the former case, the so called “cognitive control network” becomes
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apparent [119] and the focus of the analysis is typically on how activation and network

connections vary depending on the task being performed. In the latter case, the so called

“default mode network” (DMN) becomes dominant [120], and the focus of the analysis

is on the characterization of the typical local NA patterns and distributed connections at

rest.

DMN plays a crucial role in cognition. Studies have, for example, shown a clear

relationship between DMN organization, defined by the pattern of interconnections between

elements of the network, and several measures of cognitive performance, such as intelligence

quotient and episodic memory. Reorganization of connections within DMN, generally taking

the form of reduced connectivity levels, arises with decline in cognitive performance (e.g.,

aging), disturbed cognitive function (e.g., schizophrenia), and degenerative disorders (e.g.,

Alzheimer’s, multiple sclerosis).

A DMN-dependent medical condition that is particularly relevant to our work is mild

cognitive impairment (MCI). MCI is a brain function syndrome that falls between normal

cognitive decline caused by aging and abnormal cognitive decline induced by neurological

pathologies, such as Alzheimer’s, of which MCI may be a precursor. Diagnosis of MCI is

made on a symptomatic basis, with the drawback that clear signs of MCI appear once the

condition has already reached an advanced stage. Standard pre-symptomatic diagnostic

criteria to assess the risk of developing the MCI or early detecting its progression are still

not available, preventing timely medical treatment of the disorder. A variety of data-driven

approaches have been proposed to mitigate this issue [121, 122, 123, 124, 125, 126, 127, 128,

129].

The characterization of distributed NA and the organization of brain networks boomed

with the development of functional magnetic resonance imaging (fMRI), which emerged in

the early 1990s as an evolution of conventional magnetic resonance imaging (MRI). MRI

is a biomedical imaging technology that employs a combination of radio waves and strong

magnetic fields to acquire detailed images of a subject’s bodily structure by means of non-

invasive scans. fMRI focuses on mapping NA over time, via the collection of sequences

of individual MRI images that allow the detection of specific physiological changes in the
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scanned tissues [130]. NA has been shown to be closely connected to local fluctuations

in blood oxygenation level. In fact, when a neuron becomes active, its metabolic rate

increases and so does its demand of oxygen, causing a shift in the relative concentration

of oxygenated and deoxygenated hemoglobin in the blood flowing to the proximate vessels.

This quantity, which is referred to as BOLD (Blood Oxygenation Level Dependent) signal,

can be measured by an MRI scanner, since the magnetic susceptibility of blood is a function

of its oxygenation level, and is therefore used as a proxy of NA [131, 132].

fMRI images can be seen as brain “slices”, acquired along three orthogonal x, y, z

directions (top-down, front-back, left-right with respect to the body of the subject). Each

of them is uniformly partitioned into a grid of (typically, 64 x 64 or 128 x 128) cubic cells

called voxels, with x- y- z-dimensions in the order 3 x 3 x 4 mm. A given image records the

BOLD signal of every voxel of a brain slice at a given time point; a volumetric snapshot

of the NA of the entire brain can be obtained by stacking together all images (typically

in the order of 30 of them, each located at a different z-coordinate) acquired at the same

moment. Throughout the course of an fMRI experiment, the NA of each voxel is measured at

uniformly spaced time points; the time distance between two successive observations, known

as “repetition time” (TR), typically ranges from 500 to 4000 milliseconds. In conclusion,

the output of an fMRI experiment is a volume of spatially resolved time series, each of

which describing the dynamics of NA at a different brain location.

B.2 Functional-connectivity feature extraction algorithms

Our functional-connectivity feature-extraction algorithms (FEAs) process matrices whose

elements represent correlations between a the BOLD time series of a row-voxel and that

of a column-voxel. Let a (b) be a list of row (column) indices. We define a submatrix of

a matrix M with either M [a, b] or M [−a,−b], depending on whether the submatrix is

obtained selecting or removing a-indexed rows and b-indexed columns from M . We use two

special types of lists of indices: sequential lists and empty lists. Sequential lists identify

chunks of adjacent rows (or columns) and are denoted by i:j, where i and j are the first
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and last row (or column) in the chunk, with 1 ≤ i ≤ j; if i = j, we omit the ‘: j’ part.

Empty lists leave rows (or columns) of the array untouched, and are denoted by a colon (‘:’).

Analogous notation is used for vectors, that are treated as one-column matrices; however,

when defining subvectors we simply use one list of row indices to identify the elements to

select or remove.

Other data manipulation operators used in the FEAs are the following: abs(M),

which returns the matrix obtained extracting the absolute value from the elements of M ;

nrows(M) (ncols(M)), which returns the number of rows (columns) ofM ; mean(v), sd(v),

skew(v), which respectively return the mean, the standard deviation and the nonparamet-

ric skew of the elements of vector v (disregarding any missing elements); freq(v), which

returns the vector containing the relative frequency of all values taken on by the elements

of v; round(s), which rounds scaler s to the nearest integer; order(v), which returns a list

containing the permutation of the indices of the elements of v that sorts such elements in

increasing order; intersect(a, b), which returns a list containing the indices shared by a and

b.

The input of the FEAs consists of a certain number of parameters and one of three

different types of matrices. If we let R = (rkl) be the Pearson’s linear correlation matrix

computed on the BOLD time series of every voxel pair (k, l), and let a = {list of indices

of voxels in ROI i}, ā = {list of indices of voxels in ROIs other than i}, and b = {list of

indices of voxels in ROI j}, the three types of matrices are: Ri
i = R[a, a], Rī

i = R[a, ā],

Rj
i = R[a, b].

Although targeted to the DMN, these FEAs can be used to characterize functional

connectivity within any brain network. For a network with N ROIs, the FEAs extract a

total of 3
2N(3N + 7) features. The N = 6 ROIs of the DMN, for example, results in a total

of 225 features. Details and pseudocode pertinent to each FEA are presented below.

Intra-ROI Connectivity (IaC): It computes the average absolute correlation of every

voxel (referred to as “seed” voxel) in a given ROI with all other voxels (referred to

as “target” voxels) in the same ROI and returns average, standard deviation, and
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nonparametric skew of such averages across all seed voxels, for a total of 3N features.

procedure IaC(Ri
i)

n← nrows(Ri
i)

v ← n-dimensional empty vector

Ri
i ← abs(Ri

i)

for k = 1, 2, ..., n do

w ← Ri
i[k,−k]

v[k]← mean(w)

end for

return mean(v), sd(v), skew(v)

end procedure

Intra-ROI Top Positive Connectivity (IaTC): It finds the top positive correlations

(via subroutine TPC) of every seed voxel in a given ROI with all other target voxels

in the same ROI and computes their average as well as their proportion over all

correlation values. It finally returns average, standard deviation, and nonparametric

skew of (a) such averages and (b) such proportions across all seed voxels, for a total

of 6N features.

procedure IaTC(Ri
i, s)

n← nrows(Ri
i)

ms ← round(s(n− 1))

v1 ← n-dimensional empty vector

v2 ← n-dimensional empty vector

for k = 1, 2, ..., n do

w ← Ri
i[k,−k]

w ←TPC(w,ms)

if w is not empty then

v1[k]← mean(w)

v2[k]← nrows(w)/ms
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end if

end for

return mean(v1), sd(v1), skew(v1), mean(v2), sd(v2), skew(v2)

end procedure

Inter-ROI Connectivity (IeC): It computes the average absolute correlation of every

seed voxel in a given ROI (referred to as “seed” ROI) with all voxels in another ROI

(referred to as “target” ROI) and returns the average of such averages, for a total

of N(N − 1)/2 features (since swapping seed and target ROI does not change the

returned value, IeC is run only once per unordered pair of ROIs).

procedure IeC(Rj
i )

n← nrows(Rj
i )

m← ncols(Rj
i )

for k = 1, 2, ..., n do

w ← Rj
i [k, :]

v[k]← mean(w)

end for

return mean(v), sd(v), skew(v)

end procedure

Inter-ROI Top Positive Connectivity (IeTC): It finds the set of top positive correla-

tions of every seed voxel in a given seed ROI with all voxels in a given target ROI

and computes their average as well as their proportion over all correlation values. It

finally returns the average of (a) such averages and (b) such proportions across all seed

voxels, for a total of 2N(N − 1) features. Any seed voxels whose set of top positive

correlations is empty are disregarded.

procedure IeTC(Rj
i , s)

n← nrows(Rj
i )

m← ncols(Rj
i )
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ms ← round(sm)

v1 ← n-dimensional empty vector

v2 ← n-dimensional empty vector

for k = 1, 2, ..., n do

w ← Rj
i [k, :]

w ←TPC(w,ms)

if w is not empty then

v1[k]← mean(w)

v2[k]← nrows(w)/ms

end if

end for

return mean(v1), mean(v2)

end procedure

Maximum Inter-ROI Connectivity Region (MIeCR): It computes the average ab-

solute correlation of every seed voxel in a given seed ROI with all voxels in each

of all possible target ROIs, and identifies the target ROI for which such average is

maximum. It finally returns the relative frequency of every target ROI as region of

maximum average correlation, calculated across all seed voxels, for a total of N(N−1)

features.

procedure MIeCR({Rj
i : j 6= i})

Rj
i = abs(Rj

i ) ∀j 6= i

n← nrows(R1
i )

v ← n-dimensional empty vector

for k = 1, 2, ..., n do

m← mean(Rj
i [k, :])

v[k] = arg maxj 6=im

end for

return freq(v)

end procedure
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Maximum Inter-ROI Top Positive Connectivity Region (MIeTCR): It finds the

top positive correlations of every seed voxel in a given seed ROI with all voxels in

a given target ROI, calculates their average, and identifies the target ROI for which

such average is maximum. It finally returns the relative frequency of every target

ROI as region of maximum average top positive correlation, calculated across all seed

voxels, for a total of N(N − 1) features.

procedure MIeTCR({Rj
i : j 6= i})

Rj
i = abs(Rj

i ) ∀j 6= i

n← nrows(R1
i )

v ← n-dimensional empty vector

for k = 1, 2, ..., n do

for j 6= i do

m← ncols(Rj
i )

ms ← round(s(m− 1))

wj ← Rj
i [k, :]

wj ←TPC(wj ,ms)

end for

m← mean(wj)

v[k] = arg maxj 6=im

end for

return freq(v)

end procedure

Intra/Inter-ROI Connectivity Ratio (IaIeCR): It calculates the average absolute cor-

relation of every seed voxel in a given ROI with all target voxels in the same ROI,

as well as the average absolute correlation of every seed voxel with all voxels in any

target ROI, and computes the ratio of those two quantities. It finally returns average,

standard deviation, and nonparametric skew of such ratios across all seed voxels, for

a total of 3N features.
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procedure IaIeCR(Rj
i , R

ī
i)

n← nrows(Ri
i)

v ← n-dimensional empty vector

Ri
i ← abs(Ri

i)

Rī
i ← abs(Rī

i)

for k = 1, 2, ..., n do

w1 ← Ri
i[k,−k]

w2 ← Rj
i [k, :]

v1[k]← mean(w1)

v2[k]← mean(w2)

v[k]← v1[k]/v2[k]

end for

return mean(v), sd(v), skew(v)

end procedure

Intra/Inter-ROI Top Positive Connectivity Ratio (IaIeTCR): It finds the top pos-

itive correlations of every seed voxel in a given seed ROI with all other target voxels in

the same ROI and computes their average; it then finds the top positive correlations

of each of the same seed voxels with all voxels in any target ROI, and computes its

average. It finally computes the ratio of those two quantities and their returns aver-

age, standard deviation, and nonparametric skew across all seed voxels, for a total of

3N features.

procedure IaIeTCR(Rj
i , R

ī
i, s)

n← nrows(Ri
i)

ns ← round(s(n− 1))

m← ncols(Rj
i )

ms ← round(sm)

v ← n-dimensional empty vector

v1 ← n-dimensional empty vector

v2 ← n-dimensional empty vector
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Ri
i ← abs(Ri

i)

Rīi ← abs(Rī
i)

for k = 1, 2, ..., n do

w1 ← Ri
i[k,−k]

w1 ←TPC(w1, ns)

w2 ← Rj
i [k, :]

w2 ←TPC(w2,ms)

if w1 and w2 are both non empty then

v1[k]← mean(w1)

v2[k]← mean(w2)

v[k]← v1[k]/v2[k]

end if

end for

return mean(v), sd(v), skew(v)

end procedure

Top Positive Correlation (TPC) subroutine: For a given threshold s, 0 < s < 1, it

selects the largest s · 100% of the elements of an input vector v by absolute value and

returns a vector containing those of such elements that have positive value.

procedure TPC(v, s)

n← nrows(v)

n← round(s · n)

vA ← abs(v)

a← order(vA)

a← a[1 : ns]

b← {list of indices of voxels associated to positive elements in v}

c← intersect(a, b)

v ← v[c]

return v

end procedure
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Appendix C

MAR missingness modulation

Theorem C.1. Consider a data matrix D̃ containing n random independent observations

d̃i, i = 1, 2, . . . , n on p+1 variables. Let π1,i = eγ
T d̃i+δ

∗

eγ
T d̃i+δ

∗
+1

be the probability that d̃i contains

missing values, for a given vector γ ∈ Rp+1. For any π1 ∈ [0, 1], if δ∗ ∈ R is the unique

solution of

eT
[
e[−(D̃γ+δe)] + e

]−1
− nπ1 = 0, (C.1)

where e is an n-dimensional vector of ones, and e[.] and [.]−1 are exponential and power

functions applied element-wise to their argument, then the expected proportion of observa-

tions containing missing values is π1.

Proof. Let Mi be a random variable with value 1 if observation i, i = 1, 2, . . . , n contains

missing values and value 0 otherwise, and let Sn =
∑n

i=1Mi. Trivially, the data set will

include an expected proportion of π1 observations with missing values if

E[Sn] = nπ1 (C.2)

Now, Mi, i = 1, 2, . . . , n, are Bernoulli distributed with parameter π1,i, and are independent

of each other since d̃i, and consequently π1,i, i = 1, 2, . . . , n, are independent. Therefore, Sn
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is Poisson Binomial distributed with parameters π1,1, π1,2, . . . , π1,n and E[Sn] =
∑n

i=1 π1,i.

Therefore we can write:

E[Sn] =
n∑
i=1

eγ
T d̃i+δ

∗

eγT d̃i+δ∗ + 1

=
n∑
i=1

1

e−(γT d̃i+δ∗)

= eT
[
e[−(D̃γ+δ∗e)] + e

]−1
. (C.3)

The RHS of (C.2) is the sum of n monotone increasing functions of δ, each with range

[0, 1], and is therefore also a monotone increasing function, with range [0, n]. Equating the

RHS of (C.2) to the RHS of (C.3) yields an equation with at most one solution, due to the

monotonicity of (C.3). This equation, moreover, always has a solution, since the range of

(C.2) is a subset of the range of (C.3), which proves the theorem.
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