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ABSTRACT OF THE DISSERTATION

Dynamic Origin-Destination Estimation with Location-based Social Networking

Data: Exploring Urban Travel Demand Sensor

by

Wangsu Hu

Dissertation Director:

Peter J.Jin

The emergence of Transportation Big Data provides rich information for estimating

and predicting urban travel demand patterns. The traditional travel demand sen-

sors involve labor-intensive survey data, traffic detector data for assignment model

calibration, vehicle re-identification data from scattered Bluetooth, Wifi, or License

plate readers, or aggregated cellphone activity data used in existing dynamic Origin-

Destination estimation models or applications. With the growing number of mobile

devices with GPS units and improvement in WLT technologies, the Location-Based

Social Network (LBSN) data is an emerging travel demand data source. LBSN data

recorded check-in or tweeting activities of massive users at different points of inter-

ests (POIs). The wide-range of POIs ensure the dense coverage of the main urban

areas and the user-confirmed POI information provides the much-needed trip pur-

pose information not available in other data sources. Meanwhile, the LBSN data has

the advantages of passive secondary data collection usually not for the purpose of

travel surveys, and anonymization. Despite the above advantages, LBSN data is not

without its limitations for estimating urban travel demand, as well as dynamic OD

estimation for proactive urban congestion mitigation and operations. First, LBSN

can have a systematic temporal error for estimating travel demand. The LBSN ac-

tivities do not always mimic travel activities throughout the day. Second, LBSN data

includes a sampling bias for different population groups and venue types. Third, the
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stochastic nature of human activities, especially the POI arriving patterns are criti-

cal for travel demand estimation. The existing approaches to the LBSN-based travel

demand analysis have suffered from those limitations on deriving the dynamic travel

demand patterns.

Recent development in spatial-temporal characteristics provides the opportunities to

identify and quantify the correlation between LSBN-based travel activity and urban

travel demand pattern. In this dissertation, a novel set of travel demand models based

on the LBSN data is proposed and tested. The research starts with a comprehensive

review of the existing travel demand data collection methods and the travel demand

modeling. Then we introduce a profiling method to infer the functionality of city zones

based on the POI categorical distribution and local mobility patterns. By classifying

zones by these zone topics, we can now analyze interactions between zones of different

functionality. Thirdly, by conducting zonal time-of-day variation modeling on the

LBSN check-in arrivals, a new stochastic point process based trip arrivals estimation

is developed. The output is applied to the input of a temporal delay based trip

distribution model for deriving dynamic OD patterns. And the model calibration

and applications are also provided and discussed. The evaluation results illustrate

the promising benefits of applying LBSN Data in urban travel demand modeling.
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1 Introduction

Travel demand modeling is the attempt of estimating the number of vehicles or peo-

ple that will use a specific transportation facility. For instance, a travel demand

forecasting model may predict the number of vehicles passing through a planned tun-

nel during AM peak period of a weekday, the ridership on a transit route, or the

number of ships departing from and arriving at a seaport. Such prediction starts

with the collection of historical/current travel demand data collection, such as pop-

ulation, employment, trip rates, travel costs, etc., to develop a traffic demand model

for the desire situation. The result of travel demand modeling can be used for several

key purposes in transportation policy, planning, and engineering. For example, we

need the predicted numbers/arrival time/waiting time of the travelers to design a

public traffic infrastructure e.g., calculate the desire bus routes, the capacity of bus

station, and bus schedule. Meanwhile, the current technologies facilitate the access to

real-time data and big data to provide the opportunity to develop new algorithms to

improve the predictability and accuracy of the travel demand modeling. The existing

data sources for dynamic travel demand analysis can be classified in to three major

categories, flow calibration data, fixed-location vehicle identification data, and WLT

(Wireless Location Technologies) data. Flow data collected from traffic detectors

are first used to generate traffic information in the literature. The data requires a

baseline matrix, and the matrix is calibrated to reproduce the dynamic flow through

traffic assignment. Fixed-location vehicle identification data collected through Blue-

tooth readers [1], Electronic Toll Tag Readers [2], and License Plate Readers [3] can

identify vehicles at different locations. Through re-identification, the dynamic origin-

destination (OD) information of vehicles traveling within the covered areas or highway

system can then be detected [1]. The key issue with the fixed-location sensor data is

its limited geographical coverage and sampling rate. The WLT data use passive or

active wireless positioning signals to track user activities within the geographical cov-
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erage of cellular network. Analytic models are developed to directly convert cellphone

trajectories into dynamic travel time patterns and OD path flow patterns of mobile

phone users. The framework has achieved some success but with key limitations re-

lated to sampling bias and positioning errors [4]. These errors can lead to difficulty

in identifying location types therefore trip purposes. The trip purposes need to be

derived from analyzing recurrent trip patterns e.g. commuting patterns.

Origin-destination (OD) estimation is a key step in urban travel demand analysis. It

predicts the destination choices of travelers based on the zonal production and attrac-

tion abilities and the level of travel impedance between each OD pair [5]. The key to

accurate OD estimation is the accuracy of sensing the static or dynamic correlation

between origins and destinations [6]. Static OD estimation models estimate trip dis-

tribution within a targeted period (e.g. a normal workday) to capture the long-term

average trend of travel demand patterns; while dynamic OD estimation reveals not

only spatial but also temporal mobility patterns of travel demand. The increasing

popularity of social networking services (SNS) and location-based services (LBS) has

offered new opportunities for urban mobility patterns analysis. The combination of

SNS and LBS leads to a new type of social networking service, Location-based Social

Networking (LBSN) service. In LBSN, users can “check-in” with their LBS-enabled

mobile devices to a nearby “venue,” or point of interest (POI) to declare their arrivals.

Such information can be shared with friends and family, as well as with business own-

ers for potential discounts and promotions. Given the pre-registered location and POI

type information of venues, travelers’ trip arrivals are recorded with accurate loca-

tion and trip purpose information. When aggregated, such data can provide a new

secondary data source for the estimation of urban travel demand.
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1.1 Problem Statement

LBSN data are not generated for the purpose of travel survey, so the dataset does

have its limitations in urban mobility and travel demand estimation, as well as dy-

namic OD estimation for proactive urban congestion mitigation and operations [7, 8].

First, LBSN can have a systematic temporal error for estimating travel demand. The

LBSN activity does not always mimic travel activities throughout the day. LBSN

check-in activities tend to be more intensive during afternoons and evenings at social

recreational places, as opposed to during morning peak hours when commuters are

rushing against time to get to workplaces. The previous studies show that the check-in

arrival patterns need appropriate dynamic stochastic processing to infer the under-

lying trip arrival patterns [9, 10]. Second, LBSN data includes a sampling bias for

different population groups and venue types. Third, the stochastic nature of human

activities, especially the POI arriving patterns are critical for travel demand estima-

tion. In previous studies [11, 12], it was observed that the accurate estimation of

zonal departures and arrivals are critical in reducing the errors in the subsequent OD

estimation. Finally, the existing LBSN-based travel demand modeling only focus on

static or time-of-day OD estimation for planning applications. Such application does

not take full advantage of the high spatial-temporal resolution and large-scale cov-

erage of the LBSN data. Dynamic OD estimation, however, can potentially provide

valuable inputs to traffic operational applications such as the Active Transportation

Demand Management (ATDM) applications. Existing studies on the time-of-day OD

matrices were generated by aggregating the predicted trips over a targeted period

of time. The aggregation was to reveal a time-of-day urban travel demand pattern

rather than a time-dependent OD matrix.

There are several problems to be addressed in this proposal.

1. How can the real-time LBSN data benefit the dynamic OD estimation, especially
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compared to the existing travel demand data collection methods and models?

2. How can we handle the systematic error between LSBN-based travel activity and

urban travel demand pattern across different times of day and different locations?

3. How can we describe the stochastic nature of human activity over certain activity

types (e.g., shopping and dining)?

4. How can urban dynamic travel demand patterns be identified and quantified to

derive dynamic OD estimation using LBSN data?

1.2 Research Objectives and Scope of Work

To estimate the population activity patterns in urban areas from LBSN data, sev-

eral critical issues need to be addressed. First, the LBSN activity data needs to

be interpolated and expanded into the population activity patterns in urban areas.

For dynamic activity pattern estimation, such interpolation or expansion needs to be

conducted both spatially and temporally. Second, LBSN data includes sampling bias

over some population groups (e.g., income and education levels) and certain activity

types (e.g., shopping and dining). Third, the stochastic nature of human activities

needs to be addressed in the estimation model. To address those issues, stochastic

dynamic estimation models need to be considered and the calibration methods should

be carefully designed to reduce the impact of sampling bias.

The dynamic travel demand patterns can be characterized by zonal trip intensity

patterns and the dynamic OD flow patterns. The zonal trip intensity patterns can

be directly generated by aggregating the human activity pattern based on the re-

quired spatial resolution (e.g., POI, land use parcel, or Traffic Analysis Zone (TAZ)).

However, the estimation of dynamic OD flow patterns requires advanced modeling to

identify the spatial-temporal correlation among different zonal trip intensity changes.

The existing models, such as the gravity models and more recently the radiation mod-

els, have difficulties in dynamic OD estimation. Both models are developed for offline
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planning purposes and do not account for the variations and interactions between OD

flow patterns in different time intervals unless the model parameters are calibrated

at each time interval, which may not converge in time for dynamic demand pattern

estimation. In this study, to address those limitations, we propose a new approach

that estimates OD flows based on the spatial-temporal correlations of the activity in-

tensity changes at different locations (zones) at different time intervals. For example,

the drop of Twitter activities at work places and the increase of Foursquare check-in

activities at restaurants several time intervals later during lunch hours can be used

to estimate the number of trips made from work places to restaurants.

Based on the above status of current LBSN-based travel demand modeling research,

the objective of my research is as follows:

1. Bias reduction of social media data based travel demand modeling:

To apply the social media data for travel demand modeling, we first address the issue

of sampling bias of the LBSN user. It shows that not every traveler use LBSN service

and not every place report LBSN check-in activity at every time period. We first

explore the zonal urban functionality based on the local POI distribution and taxi

pick-up/drop-off pattern to quantify the relationship between zonal check-in arrival

and zonal trip arrival. Secondly, we applied a point process method to model the time-

of-day variation of trip arrival using check-in arrival. By doing so, we can address the

spatial and temporal bias for the social media data.

2. The zonal functionality profiling using POI data:

For zonal functionality profiling, we treat zonal functionality as a latent topic” variable

to discover from POI categorical density. By classifying zones by these zone topics,

we can now analyze interactions between zones of different functionality.

3. The zonal time-of-day (TOD) variations modeling of travel activity using LBSN

data:
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To estimate the travel demand patterns in urban areas from LBSN data, the LBSN

activity data needs to be interpolated and expanded into the population activity

patterns in urban areas. For dynamic travel demand TOD pattern, such interpolation

or expansion needs to be conducted both spatially and temporally. Meanwhile, LBSN

data includes sampling bias over some population groups (e.g., income and education

levels) and certain activity types (e.g., shopping and dining). A clustering model need

to be considered and the calibration methods should be carefully designed to reduce

the impact of sampling bias.

4. The dynamic trip arrival modeling using LBSN data:

The stochastic nature of human activities needs to be considered in urban travel

demand modeling, especially on trip arrival modeling. Trip arrivals can be considered

stochastic point processes where arrivals occur at random time intervals within a given

period. Based on the clustered and self-reinforcing characteristics of check-in arrivals

from LBSN data, a Hawkes process based state propagation model and a state-space

framework are introduced to model the stochastic arrival patterns with sampling

error feedback. The output can be used into a trip distribution model that applied

for dynamic OD estimation.

5. The dynamic demand-activity correlation modeling:

The existing models, such as the gravity models and more recently the radiation

models, have difficulties to derive the dynamic OD estimation. Both models are

developed for offline planning purposes and do not account for the variations and

interactions between OD flow patterns in different time intervals unless the model

parameters are calibrated at each time interval. They may not converge in time

for the urban dynamic travel demand pattern. In this study, a new approach that

estimates OD flows was proposed based on the spatial-temporal correlations of the

activity intensity changes at different locations (zones) and at different time intervals.
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Furthermore, the scope of my research is restrained by the following criteria.

1. Focus on traffic analysis zone (TAZ) level in travel demand estimation.

2. Focus on both weekday dynamic trip arrival estimation and dynamic OD estima-

tion.

3. Focus on LBSN check-in data provided by Foursquare and Geo-twitter service.

LBSN check-in data from other services are not considered.

4. Focus on mimicking the travel demand pattern reported from local transportation

planning agency. Other travel demand collection data sources are not considered as

the reference data.

5. Focus on modeling the trip arrival pattern and OD flow pattern of a mixed mode

of travel including private vehicle, taxi, and transit traffic.

1.3 Research Contributions

My research contributions are as follows:

1. Identify zonal urban functionality using POI categorical density distribution and

local mobility pattern.

2. Develop a new numerical simulation procedure for trip arrivals.

3. Develop a new spatial-temporal correlation modeling procedure for that considers

temporal delay and the daily recurrent patterns for LBSN check-in arrivals.

4. Develop a land-use based sampling method that has superior performance than

the previous LBSN-based travel demand estimation models.

5. Develop a new dynamic trip distribution model that incorporate time-varying

features based on the LBSN dataset. The generated OD patterns are at 15-min time

intervals for TAZ level to support targeted planning and operational applications.
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1.4 Organization of the Thesis

The research schematic diagram is given in Figure 1. Chapters of my proposal follow

the procedure of my research career. In Chapter 2, literature reviews of LBSN data

application are given. Also, the existing travel demand modeling is reviewed and

summarized. The proposed methodology includes four parts of zonal functionality

profiling, zonal time-of-day variation modeling, stochastic arrival pattern modeling,

and dynamic OD estimation, which are described in details in Chapter 3. For zonal

functionality profiling, in Chapter 3.2, I shall propose a topic modeling approach that

treat zonal functionality as a latent topic variable to discover from POI categorical

density and mobility patterns. For zonal time-of-day variation modeling, in Chapter

3.3, I shall propose a clustering approach for the intensity of trip arrivals by time and

by location. The comparison between the point-of-interest (POI) density and land use

types is also discussed. For stochastic arrival pattern modeling, in Chapter 3.4, I shall

simulate the trip arrivals under zonal time-of-day variation by introducing a stochastic

point process based state-space framework with sampling error feedback. Then, in

Chapter 3.5, the calibrated trip arrival estimation results are applied to the input of

a time-delay trip distribution model to derive the dynamic OD. The spatial-temporal

correlation analysis will be discussed. In Chapter 4, I shall focus on experimental

design including model calibration and model evaluation methods. Model calibration

includes both the parameters calibration of the dynamic trip arrivals/OD estimation

models such as thresholds and other basic model settings. All proposed algorithms

are also calibrated using the training dataset and tested against the same testing

datasets, which are completely different from the training dataset. And the results are

summarized and analyzed on their learning capabilities and also the transferability in

Chapter 5. And finally, in Chapter 6, the conclusion are drawn and recommendation

for application and deployment of the proposed dynamic OD estimation models will

be discussed.
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Figure 1: The Flowchart of the Proposed Research.
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2 Literature Review

2.1 An Overview of Travel Demand Modeling

The ever-increasing gap between travel demand and transportation system supply

causes serious congestion, safety, and environmental issues that spread from large

metropolitan areas to medium and smaller size cities and urban areas. In 2010, more

than 32,000 fatalities and 2.2 million injuries occurred in more than 5.4 million traffic

accidents [13]. According to the TTI Mobility Report [14], on average each U.S.

driver loses more than 34.4 hours every year due to traffic congestion. More than 3.9

billion gallons of fossil fuels are wasted in congestion, representing more than 28 of

U.S. greenhouse gas emissions and energy consumption [14]. Furthermore, under the

widespread budget and resource limitations, expanding the existing infrastructures

are no longer viable solutions in many densely populated urban areas. To alleviate the

ever-increasing urban congestion issues, transportation researchers and engineers have

started to develop the active traffic and demand management (ATDM) strategies [15].

ATDM applies proactive control strategies to effectively divert travel demand and

actively manages traffic network before congestion occur. However, ATDM strategies

rely on dynamic travel demand information rather than the supply-sided data (e.g.,

traffic speed, flow, and occupancy) available in existing traffic data sources. The

proposed study attempt to address this issue by developing Big Data analytic and

transportation models to convert the new data sources into dynamic demand-side

information. Such information can enable new ATDM applications that proactively

respond to dynamic demand changes so that traffic diversion and harmonization can

be executed even before the peak traffic arrives at traffic bottlenecks.

Travel demand modeling was first developed in the 1950s by the metropolitan areas

such as Chicago [16] and Detroit [17]. The modeling has followed the sequential

four-step model for the conventional urban transportation planning application. The
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four steps are trip generation, trip distribution, mode choice, and trip assignment.

Such structure of the four-step models was later expanded and applied to evaluate

the short, medium and long-term consequences of different design and policies [18].

The four-step modelling paradigm is a trip-based approach that uses the individual

person trip as the fundamental unit of analysis. The trip-based model that lead to the

tour-based scheme and evolved to activity-based model in which individual/household

level data is used to model individual/household level travel behavior [19].

Travel demand modeling techniques rely on understanding the travel behavior of

people and vehicles. Models are developed based on different levels data sources

such as household level, individual level, and regional level. The availability of high-

resolution data source provides promising potentials for developing advanced travel

demand modeling techniques. The socio-demographic and economic attributes of

people [20] can be collected passively and actively to model their travel behavior

at different locations and at a different time. The detailed travel diary of a sam-

ple of travelers is available to sense the traveling pattern of the whole population.

Meanwhile, such individual-level travel diary can be fed into both tour-based and

activity-based model for modeling the important travel attributes such as: (a) trip

purpose, (b) departure/arrival time, (c) mode of transport, (d) activity duration, (e)

activity location, (f) travel route, (g) party composition, and (h) traffic condition.

Table 1 summarizes the characteristics of the latest technology-based primary and

secondary data collection methods for travel demand modeling. Primary data col-

lection methods include GPS and smartphone-based travel survey. Secondary data

sources include Bluetooth, cell-phone location and location-based social networking

(LBSN) data.

Taxi is an important mode of transportation in urban areas, providing parking-free

traveling between the pick and drop-off locations. In NYC, taxis serve 172 million
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Table 1: Emerging versus Traditional Travel Demand Data Collection Methods.

Attributes Trad.
Survey
Method

GPS Bluetooth Smart
Phone
Survey

Cell
Phone
Signals

Social
Media

LBSN
Check-
in

Spatial
Resolution

Low Low Low High High High High

Temporal
Resolution

Low High High High High High High

Large-scale
Deploy-
ment

Yes No No No Yes Yes Yes

Survey/Data
Cost

High Medium Medium Medium Low Low Low

Survey
Needs

Yes Yes No Yes No No No

Social De-
mographic
Data

Yes No No Inferred No Yes Inferred

Origin-
Destination
Data

Yes Yes Yes Yes Yes Yes Inferred

Trip Chain Yes Yes Yes Yes Yes Inferred Inferred
Trip Pur-
pose Con-
firmation

Yes Limited Limited Yes Limited Inferred Yes

Mode Share Yes Inferred Inferred Yes Inferred Inferred Inferred
Arrival
Time Reso-
lution

Low High High High High High High

Arrival Lo-
cation Res-
olution

Low High Low Low High Medium High

Sampling
bias

Low Medium Medium Medium Medium Yes Yes

Privacy
Concern

No Medium No No No Medium Medium

Non-shaded Characteristics are based on NCHRP Report 735 Table D.2.
[21], and previous papers [22, 9].

trips in 2005 made up 11% of trips in the city [23]. According to the 2014 Taxi

Fact Book, the annual number of taxi trips has increased to 175 million, and the

system has transported 236 million passengers each year from 2008 through 2013.
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This demand consists of trips by residents, people who work in the city, tourists,

and individuals with disabilities. Modeling taxi demand is necessary to understand

how taxi trips are generated and distributed by time and location, and how people

choose taxis as their transportation mode. The literature related to taxis demand

modeling contributes to congestion effects, customer demand elasticity, policies and

regulations on taxi markets and taxi airport ground access. Yang [24] developed a

mathematical model to describe taxi movements together with normal traffic in a

congested road network. OD demand patterns and traffic assignment procedure for

the determination of zone-level taxi and normal traffic movements were discussed.

Veloso [25] analyzed taxi-GPS traces and visualize the spatiotemporal variation of

taxi services. The relationships between pickup and drop-off location and the waiting

time of vacant taxi were also discussed. When applied to the same dataset in this

study, research efforts contain urban dynamic [26], travel time variability [27], weather

impact on travel time [28], and travel time estimation for different OD pairs [29].

The emerging travel demand data sources can play a significant role to complement

the traditional data source that exhausts a large portion of the provided financial

resources for planning and operating the transport system. There exist two ways

of incorporating with those emerging data source. Researchers and engineers either

keep working on innovative approaches to temporally or/and spatially transferring

data and models [30] or indirectly imputing the required data from other readily

accessible data source [31].

New technologies, especially the LBS and social network technologies, also promote

innovations in collected travel demand information. Traditionally, travel demand in-

formation is collected through expensive and labor-intensive phone or home interview

survey methods that reflect only static travel demand patterns averaging over years.

In recent years, new travel demand data collection methodologies have emerged, such
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as GPS [32], cell phone [33], Bluetooth [1], and now the LBSN [10]. GPS-based meth-

ods distribute GPS-survey-enabled devices or applications to volunteers and record

their GPS trajectory and daily activities to collect reliable travel demand informa-

tion [32]. The wireless location technologies (WLT) available through cellular carriers

allow passive collection of cellphone positions by tracking wireless signal transition

events to identify movement in urban environments. Bluetooth detectors installed

at critical locations in a transportation network can also collect dynamic travel de-

mand information [1]. The LBSN-based travel demand analysis is facilitated by the

development of the LBS features enabled in smartphones and tablets and the rapid

expansion of social networks led by Facebook and Twitter. With billions of people

actively updating their personal activities online, the real-time travel patterns can

then be derived and lead to more accurate and higher-resolution estimation of ur-

ban travel demand than traditional methods. Recently, researchers began to conduct

data mining of social networking data to study the spatial pattern of cellphone user

behavior. Cheng et al. [34] studied human mobility patterns by analyzing social

networking data. The derivation of travel demand information, especially the trip

origin and destination information for urban travel, is explored by the investigator

team [11, 12, 9, 10]. The radiation model has also been used to model facility choice

for non-work trips [35] and, examines human mobility as part of a large-scale spatial-

transmission model for infectious [36].

In 1950s, the metropolitan areas like Chicago and Detroit in US first developed and

adopted travel demand modelling as the conventional four-step models. Since then,

the similar model structure has been used to evaluate the short, medium and long

term consequences of different design and policies. The four-step modelling paradigm,

which is a trip-based approach, lead to the tour-based scheme in which individual

level travel information is regarded for modelling purposes. The tour-based models

were later evolved to activity based model in which individual/household level data
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is used to model individual/household level travel attributes (Activity –based model,

eprime). Travel demand modelling techniques target modelling the mobility of people

and vehicles in cities to understand their travel behavior. Models are developed based

on individual level data sources, in which behavior of travelers is reflected, have been

argued to dominate aggregate level model in terms of policy appraisal [30].

The evolution of travel demand modelling techniques developed the need for high

resolution databases in which socio-demographic and economic attributes of people

are used to model their day-to-day travel behavior. Such data sources encompass

travel diary of a sample of people representing the population. Having access to

such an individual level travel diary is crucial to develop several components of the

advanced behavioral modelling frameworks like tour-based and activity-based.

Data is generally a valuable product which exhausts a large portion of the provided

financial resources for planning and operating the transport system. As a result, not

necessarily all metropolitan areas can afford collecting data on a monthly or yearly

basis. The has resulted in emergent of innovative approaches to temporally or/and

spatially transferring data and models [30] or indirectly imputing the required data

from other readily accessible data source [31].

Data for demand modelling has been collected using two major methods called: i)

revealed preference (RP) surveys and ii) stated preference (SP) surveys. [what is RP,

what is SP, what data is collected, what data collection method applied. For example,

survey can get counting data, in which GPS or roadside can collected]

2.2 Static and Dynamic OD Estimation

Origin-destination (OD) estimation plays a significant role in studying travel demand

pattern; it contains the static or dynamic OD trip patterns. This step develops a

matrix that displays trip makers’ origin and destinations and the number of trips
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between each OD pair. OD estimation models predict the best potential destina-

tion choices of travelers based on the zonal production and attraction abilities and

the level of travel impedance between each OD pair [5]. Therefore, sensing the cor-

relation between origins and destinations is significant to estimate and predict OD

patterns. A static OD model is to predict the trip distribution during a targeted time

period and do not consider the temporal footnote. Meanwhile, a dynamic OD model

contains time-series traffic counts for the static OD pairs. To support Transportation

Demand Management applications, dynamic OD estimation models are intended to

generate the dynamic travel demand estimation inputs. The dynamic OD estimation

models can be classified based on its data sources including flow calibration data,

vehicle re-identification data, and GPS survey data. First, one group of the dynamic

OD estimation model is derived from the time-series of flow calibration data. Flow

data collected from traffic detectors are first used to generate OD information in the

literature [37]. The data requires a baseline OD matrix, and the matrix is calibrated

to reproduce the dynamic flow through traffic assignment [38]. It explored the cor-

relation between the sequences of entrance flow volumes and the exit flow volumes

[6]. The problem can be solved by assuming knowledge of an assignment matrix that

defines the temporal and spatial relationships between the link flow and OD volumes

[39] or considering split parameters for input-output network relationships [40]. The

key of an accurate OD estimation is the accuracy of either the assignment matrix and

split parameters based on the intensive historical data.

An alternative dynamic OD estimation data source is the real-time vehicle identifi-

cation data from automatic vehicle identification (AVI) sensors. Such data collected

through Bluetooth readers [1], Electronic Toll Tag Readers [2], and License Plate

Readers [3] can identify vehicles at different locations. Through re-identification, the

dynamic OD information of vehicles traveling within the covered area or highway sys-

tems can then be detected [1]. The key issues with the fixed-location sensor data are
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the limited geographical coverage, sensor location density, and sampling rate. There

are two classes of research efforts defining the dynamic OD estimation problem: the

sample OD estimation of AVI tagged vehicle and the population OD estimation us-

ing the observed vehicle re-identification data. For AVI tagged vehicle OD demand

patterns, studies have developed from using the link-flow proportion matrices [41] to

path-flow proportion calculation [42]. For the population OD estimation, it focuses on

exploring the sampling rate in either market penetration rates or identification rates

that are time-dependent and location-dependent. Asakura et al. [43] applied the

least-squares model to estimate the OD demand, the spatial pattern of the identifica-

tion rate, and the investigated day-to-day OD variations. Zhou and Mahmassani [44]

introduced split fractions from AVI tagged vehicle observations and extracted trip

distribution information to estimate the population OD estimation using partially

observed AVI data.

As the third data source for the dynamic OD estimation, the GPS survey data can

have the direct measurement of OD flows with spatial-temporal information [45].

GPS survey-based data [32] can provide positioning information by recruiting travel-

ers to install in-vehicle traffic sensors or mobile applications that keep track of travel

activities. However, GPS survey still puts an intensive load on surveyees and re-

quire intensives to maintain large sample size and coverage. Similar to AVI data, the

GPS-enable devices can provide a fraction of the total number of vehicles, therefore,

generate partial information of the population OD flows. Analytic models are de-

veloped to convert trajectories of GPS-enable devices into dynamic OD patterns of

mobile phone users.

2.3 Social Media Application in Travel Demand Modeling

The capacity of social media platforms such as Facebook, Twitter, LinkedIn, Insta-

gram, Foursquare, and Yelp to provide information on household daily travel has been
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examined [46, 47]. Tass and Hong [48] presented a wide range of possible ways of using

geotagged social media to develop understanding of urban areas instead of using tradi-

tional ways of data collection. They categorized the opportunities i) for city planner,

ii) for small business owners and iii) for individuals. Social media platforms have a

feature known as location-based services, which enable people to share their activity

related choices (check-in) in their virtual social networks. Through location0based

services, users can share their activity locations when they visit restaurants, shopping

malls, movie theatres and so on. Location-based data has received increasing atten-

tion, for travel demand modelling as the data can provide further knowledge about

travel behaviors. However, the amount of check-in information using such services is

less than the geo-tagged associated ‘text’ data available on people’s posts on social

media platforms such as Twitter. However, the main challenge before using such rich

data is the significant noise existing in them which requires advanced text mining,

natural language processing and data mining techniques to extract useful information

that can be related to travel behavior of people [49]. Meanwhile, the activity location

can be derived from the location-based services, which enable people to share their

activity related choices (check-in) in their virtual social networks. The data is named

as Location-based Social Networking (LBSN) Data. For example, Foursquare, one

of the most popular LBSN services, records users’ check-in when they visit Point-

of-Interest named “venue”. The venue can be one restaurant, one shopping mall, or

even one bus route. Although the amount of check-in information using such services

is less than the geo-tagged associated “text” data. Such location information can

be accurately validated against the Foursquare POI database. Furthermore, it can

be categorized to generate a confirmed trip purpose information for travel behavior

study. We summarized the existing social media data application in travel demand

modeling based on the important travel attributes.

First, the trip purpose is one of the most essential travel attributes in travel demand
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modeling. It can be derived from social media data through either extracting infor-

mation about the purpose of the activity from the text of tweets or directly review

the POI categories of check-in arrivals. The former one required linguistic mining

techniques such as Latent Dirichlet Allocation (LDA) method is used widely in the

literature (Kosala and Adi 2012, Steiger, Albuquerque et al. 2015). The issue to

be addressed is the mismatch between the tweet content and the actual visit. For

example, one Twitter user may tweet about a POI such as one restaurant but not nec-

essarily meaning to have an outdoor recreational eating activity there. One solution

is to incorporate each tweet with the potential geolocation of the mentioned POI, it

can facilitate extracting the purpose of the trip. Similar to trip purpose identification,

mode choice can be determined using text mining and natural language processing

approaches. Other than looking at words used in a tweet, data sources from LBSN

services such as Yelp and Foursquare includes the categorized POI information based

on their archived POI database. Researchers and engineers can validate the check-in

arrivals’ location against the POI location to generate an accurate travel diary. Using

the hierarchy category of POIs, the trip purpose can be determined.

Second, determining arrival time, given the fact that tweets and check-in arrivals have

a time tag provides the departure time directly. One bias exists due to the fact that

an activity happening after or before the time the tweet or the check-in is posted.

Considering the travel route and traffic condition, the prediction significantly relies

on the individual’s usage frequency of social media services. Through analyzing each

location or the preceding and succeeding point of tweets and check-in arrivals, it is

possible to generate user’s traveling route, traffic condition, and travel time as the

same way GPS technology is applied.
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2.4 LBSN Application in Travel Demand Modeling

LBSN data has several key advantages as a secondary data source including the large

urban spatial and continuous temporal coverage, passive data collection, confirmed

trip purposes and locations, and anonymization. First, the LBSN data are self-

sustained data generated twenty-four hours a day and seven days a week. It involves

both the user interests in exploring new POIs and the business owner interests in

attracting and maintaining their customer base. Meanwhile, LBSN services have a

large-scale dynamically-maintained urban spatial coverage. Users’ check-in activity

types and timestamps are recorded in the LBSN platform. Users confirm their check-

in location with mobile devices or online posts with location tags. Each check-in is

linked to a Foursquare venue whose category is defined by venue owners with a three-

level Foursquare venue classification system. It can enable the LBSN check-in data to

be tightly copied with the trip purpose and land use type. Table 2 and Table 3 lists

the trip purposes and land use determined based on the Foursquare venue types. Such

extensive spatial-temporal coverage makes the LBSN data useful to understand and

model human activity behavior. Secondly, compared to the traditional data collection

methods, the LBSN data is a relatively low-cost secondary planning data source.

LBSN services are tightly integrated with personal smart mobile devices through

mobile applications. The only cost incurred is a data subscription fee. Finally, LBSN

service providers implemented a comprehensive privacy protection mechanism. The

privacy concern can be addressed through the hiding user ID in public check-in data,

POI side aggregation (i.e. only counts at business are posted) and the user consents

public information sharing (the Foursquare – Twitter bridge that allows the user to

share their Foursquare check-in through Twitter).
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Table 2: Trip Purpose Classification.

Type of visited location – Level 1 Trip purpose category
Arts & Entertainment, Food, Outdoors &
Recreation, Nightlife Spot

Recreation

College & University Education
Shop & Service Retail
Professional & Other Places Work
Travel & Transport Transport
Residence Home
Event Special event

Type of visited location – Level 2 (e.g. un-
der level 1 category “Outdoors & Recre-
ation”)

Trip purpose category

Athletics & Sports, Bathing Area, Bay,
Beach, Bike Trail, Botanical Garden,
Bridge, Campground, Canal Lock, Canal,
Castle. . .

Recreation

Type of visited location – Level 3 (e.g. un-
der level 1 category “Outdoors & Recre-
ation” and level 2 category “Athletics &
Sports”)

Trip purpose category

Badminton Court, Baseball Field, Basket-
ball Court, Bowling Green, Curling Ice,
Golf Course, Gym / Fitness Center. . .

Recreation

2.4.1 Existing Trip Arrival Estimation Models based on the LBSN Data

State-of-the-art approaches to predicting trip arrivals fall into three categories. First,

in [51], a hierarchical mixture model operates both on spatiotemporal and social

information, such as who are the user’s social connections, to infer the latent patterns

of individual weekly trips, user-specific trips and the trips that were not observed by

social media data. The topics of the activities were extracted from the identified trip

purpose of the check-in data. Based on the topic modeling, an individual activity
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Table 3: Foursquare Venue Classification.

Selected
venue in
NYC

Venue Type
– Level 3

Venue
Type –
Level 2

Venue Type
– Level 1

Trip
purpose
cate-
gory

Land use
category

West
End
Apart-
ments

Residential
Building
(Apartment
/ Condo)

Building Residence Residence
/ Recre-
ation

Residence

Time
Square

Shopping
Plaza

Plaza Shop & Ser-
vice

Retail /
Recre-
ation /
Work

Commercial
Use

Penn
Station

Station Train
Station

Travel &
Transport

Transport Transportation
/ Utility

Bellevue
Hospital
Center

Hospital Medical
Center

Professional
& Other
Places

Work /
Mainte-
nance

Public Facil-
ities and In-
stitutions

Central
Park

Park - Outdoors &
Recreation

RecreationOpen Space
& Recre-
ation

Icon
Parking

Parking - Professional
& Other
Places

- Parking

Characteristics are based on of New York City zoning and land use data [50]

arrival pattern can be predicted as a probability distribution.

P (al|w) =
K∑
j=

P (al|zl = k) ∗ P (zl = k|w) (1)

where K is all latent activity patterns represented by day of week, hour of day, and

activity categories (e.g. home, work, eating, entertainment, recreation, shopping,

social service or education). The latent variable zl is the an indicator of activity al

following a given activity arrival pattern k. For example, P (zl = k|w) would be,

given week w, the probability of an activity al following activity arrival pattern k.

P (al|zl = k) would be, given an activity al following activity arrival pattern k, the

probability that the individual has the activity al. The results can help to establish



23

the activity-based diaries and show the feasibility of using LBSN data to predict

human activity patterns.

Another alternative approach to modeling check-in arrivals is the radiation model

[52]. The radiation model was initially proposed to model mobility and migration

patterns [35]. It is applied to calculate the intensity of flow Tij from location i to

location j as the following.

Tij = Ti ∗
m ∗ n

(m+ poij) ∗ (m+ n+ poij)
(2)

where Ti is the total number of people that start their journey from location i, m and

n represent the population of location i and location j respectively, poij is the total

population in the circle of radius rij whose centroid is at i (the population of location

i and location j is excluded). Tij can indicate the OD flow between two locations.

McArdle et al. [52] explored the latent destination of individual movement using the

radiation model and LBSN check-in data. Tarasov et al. [53] extended the research

and combined the radiation model with social interaction between LBSN users that

can be inferred by the reciprocal following on Twitter. In [53], the probability of one

check-in arrival at the target location (venue i) is as the following.

P (i(t) = i|z(t) = So) =
m ∗ n(venue)

(m+ So) ∗ (m+ So+ n(venue)
(3)

where i(t) is the latent venue of user’s check-in arrival at time t, z(t) = So indicates

the check-in caused by social influence, and m denotes the number of check-ins made

at user’s work/home venue, and n is the number of check-ins made at venue i. The

venue with the biggest probability is returned as the predicted user location.

Third, the prediction of trip arrivals is the former step of the traditional trip dis-

tribution process that normally uses gravity modeling or regression modeling. The

check-in arrival data is combined with land use factors and social-demographic infor-
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mation to generate zonal trip production and zonal trip attraction. The trip arrivals

can be inferred as trip attraction, which is the input of trip distribution process. Jin

[12] converted the daily zonal LBSN check-ins into trip production and attraction fed

into a trip distribution model that applied the gravity model. The trip attraction

within a zone is a function of the LBSN check-in arrivals and the trip production

residual not accounted for by LBSN data. For specific trip purpose p at location i,

the estimated trip arrivals Ãi,p can be formulated as follows:

Ãi,p = ε ∗ xi,p +
xρi,p∑
i x

ρ
i,p

∗
∑
i

(ω − ε) ∗ xi,p (4)

where xi,p is the total check-ins at location i for trip purpose p, ρ is the power of

location factor, ω and ε are adjustment factors to zonal trip attraction and produc-

tion separately from Foursquare check-in counts, and
xρi,p∑
i x
ρ
i,p

redistributes the residual

based on the zonal check-in counts. The estimated trip attraction can be used as the

input of gravity model to generate the OD matrix.

2.4.2 Urban function

Urban function study is an important research topic for city planners and urban

designers to support decision making of city development. Early studies mainly rely

on classic theory and case-by-case survey for investigation. Goddard [54] revealed

functional regions within the central area of London by measuring the relationship

between the taxi flow patterns and the location of human activities. Yuan et al.

[55] applied a topic-modeling-based approach based on city-scale positioning data

to cluster the segmented regions into functional zones through discovering the users’

socioeconomic activities. Litman [56] examined ways to learn the relationship between

transportation decision and urban land use patterns including the impact on land

use for transportation facilities and the resulting economic, social and environment

impacts.
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A city consists of a variety of zones providing different functions to support diverse

demands of urban residents, such as working, recreation, and residence. Studying the

urban functions of city zones provides indispensable information which is useful in

solving many urban challenges, therefore plays a critical role in urban analytics. Re-

cent years, the advent of sensing technologies and mobile computing has accumulated

a variety of data related to human mobility in urban areas. As a result, data-driven

approaches have been increasingly applied to explore urban functions of cities.

While the literature has shown promising effectiveness of analyzing massive position-

ing data for urban exploration [57, 34], there are limited studies aiming to provide

an integrated and principled approach to the representation learning of city zones

in terms of urban functions. In this paper, we aim to propose an effective solution

to learn the distributed and low-dimensional embeddings of city zones. Zones with

similar urban functions are geometrically closer in the embedding space. Using zone

embeddings, we are able to identify functional regions of cities which consist of sev-

eral zones with similar functions. Furthermore, many analytic models can use these

extracted representations as enhanced inputs.

Urban function study is an important research topic for city planners and urban

designers in a long time for supporting decision making of city development. Early

studies mainly rely on classic theory, long-term observation, and case-by-case survey

for investigation. The work in [Goddard, 1970] surveys the taxi flow to analyze

complex linkage system exists in center of London to study the location of activities.

The work in [Putnam, 2001] discusses the change of community in a perspective of

people’s social interactions. More recently, a series of work [57, 58, 59] use large-scale

positioning data to perform data-driven urban function analysis.
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2.4.3 Trip Arrival and Stochastic Point Process Model

Trip arrivals can be considered stochastic point processes where arrivals occur at

random time intervals within a given period. The existing studies of check-in arrival

patterns reveal two key features. First, the time periods between consecutive check-

in arrivals are dependent. Check-in arrivals are “clustered” in time and one check-in

most likely “excited” the other check-ins afterward [60, 61]. Such characteristics

are in-line with the reasons for the thriving development of social networking. Social

relations among people who share similar interests, activities, backgrounds or real-life

connections bring great social bonding to the LBSN user activities [62]. Second, the

repeated behavior of check-ins can be captured by a self-reinforcing process reflected

in a user’s most recent behavior [63]. Recently, the above clustered and self-reinforcing

characteristics are found to be well-represented by a dynamic model called Hawkes

process. Hawkes [64] proposed a self-exciting process model. It was later found to be

accurate in modeling earthquake occurrence [65], birth process [66], financial markets

[67], seismology [68], and more recently social networks [61]. In Cho et al. [61], the

proposed Hawkes point process N for the check-in activities is formulated as follows:

λ(t) = µ+

∫ t

−∞
g(t− s)dN(τ) (5)

where (t) is the check-in rate function with respect to t, µ is the background rate of the

process N , s is the points at time occurring prior to time t, g is the excitation kernel

which parameterizes the self-exciting behavior, and τ is the time interval between two

trip arrivals.

The numerical simulation of Hawkes process uses Monte Carlo (MC) simulation due to

its various stochastic distributions of arrival times. MC simulation generates random

sequences of arrivals to reproduce the cumulative distribution function of the Hawkes

process. The thinning algorithm that was introduced by Ogata [69], was used to
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consider the case that the arrival rate decreases if no more points occur. Table 3

describes the notation used in the simulation. The detailed MC-based Hawkes process

simulation algorithm is as follows:

Table 4: Notation Description.

Variables Description
µ The minimum value of the arrival rate function
Λ∗t Values of a piecewise constant function such that λ(t|t1, t2, . . . , tn) ≤

Λ∗t for tn ≤ si ≤ t < si+1 ≤ tn+1

s The points at time occurring prior to time t
t Time step t ∈ T
T The simulation period
n The iteration index
θ The maximum jump size at each point
τ The time interval between two arrivals
U The random value generated from the predefined distribution

1) Set Λ∗0 = µ and put s0 = 0.

2) Generate U0 and put τ0 = −logU0
Λ∗

0

)).

3) If τ0 ≤ T then put t1 = τ0. Otherwise stop.

4) Set n1 = n2 = n3 = 0 and n4 = 1.

5) Set n3 equal to n3 + 1 and put Λ∗n3
= λ(tn4|t1, t2, t3, ..., tn4−1) + θ.

6) Set n2 equal to n2 + 1 and generate Un2 .

7) Set n1 equal to n1 + 1 and generate τn1 = −log(
Un2

Λ∗
n3

).

8) Put sn1 = sn1−1 + τn1 . If s(n1) > T , stop.

9) Set n2 equal to n2 + 1 and generate Un2 .

10) If Un2 ≤ λ(sn1|t1, t2, t3, ..., tn4−1), set n4 equal to n4 + 1, put tn4 = sn1 and go

to step 5.

11) Set n3 equal to n3 + 1, put Λ∗t = λ(sn1|t1, t2, t3, ..., tn4−1), and go to step 6.

To illustrate the characteristics of the activity patterns generated by the Hawkes

process, one sample profile of event arrivals is given by simulating a hypothetical

self-exciting point process in Figure 2. The excitation kernel g(t) takes the following
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Figure 2: One Sample Profile of Event Arrivals Generated by Hawkes Process.

exponential form:

g(t) = α ∗ exp(−β ∗ t) (6)

where α is a scaling factor for self-excitation α > 0 or self-decaying α < 0, and β is a

positive parameter describing the dependence of recent arrival events on future events.

With parameters µ = 0.025, α = 0.03, β = 0.8, the “clustering” feature at time is

observed and will be used to model demand pulses occurring at trip destinations.

2.4.4 Existing OD Estimation Models based on the LBSN Data

The existing approaches of LBSN-based OD estimation normally use gravity models

or regression models. The LBSN data is combined with land use factors and social-

demographic information to generate zonal trip production and attraction. Research

has been conducted to study the relationship between LBSN data based trips and

trip-based travel demand model trips. Jin et al. [12] used Foursquare check-in counts

to estimate the urban trip distribution for the city of Austin, Texas. The modeled

Origin-Destination matrix was evaluated against the ground truth OD data generated

by a trip-based trip distribution model from the planning agency. Yang et al. [22]

examined a gravity model to estimate an OD matrix of non-commuting trips based
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on Foursquare check-in data in the Chicago urban area. Another trip distribution

research study based on Twitter data was given by Gao et al. [70]. They were able

to detect the regional OD pairs on weekdays from geo-tagged Twitter data compared

with the commuting trips from survey data for the Greater Los Angeles metropolitan

area. The individual-based trajectory was extracted based on geo-tagged Twitter

data to build the peak-hour OD trips at TAZs. Such trips were aggregated at the

county level and compared with the survey data for validation regarding the weekday

mobility flows. Lee et al. [71] extended the OD estimation algorithm and validated the

Twitter-based trips with the four-step travel demand model trips. Regression models

with land use factors and social-geographic information were proposed to test the

correlations between Twitter-based ODs and traditional travel demand model ODs.

The contribution of one Twitter OD trip to the traditional travel demand model OD

trips was also discussed. All these research efforts focus on trip distribution of the

trip-based models.

2.5 Gravity Model

As the second step of the four-step model, trip distribution is crucial for travel de-

mand modeling. Trip attraction, trip production, and the friction function of the

relationship between origins and destinations are applied as the inputs to generate

the OD matrix as the output. It represents the travel demand patterns when changes

happened within the network. The assumption is about group trip making behavior

and the way this is influenced by external factors such as total trip ends and dis-

tance traveled [72]. One of the most popular trip distribution models is the gravity

model. It is developed by Casey [72] based on Newton’s gravitational law in the 1950s

and later widely adopted by statewide planning agencies in the US since 1970s. The
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gravity model was originally formulated as follows:

dod = k ∗ po ∗ pd
Dist2od

(7)

where dod is the number of trips between zones o and d, Po,Pd represent the popu-

lations at zones o and d respectively, Distod is the distance between o and d, and k

is a proportionality factor. Huff [73] developed the constrained model based on (1).

Meanwhile, travel time was applied to indicate the relationship between each ODs

rather than distance. Gravity models have been used also to allocate activities. The

most elementary form of such model is the residential component of the Lowry model

[74]:

dod = Ed ∗ f(cod) (8)

where dod is the number of workers who live at zones o and d, Ed is the number of

workplaces in zones d, and f(cod) represents the cost function. In this case, workplaces

and residences interact with each other to determine residential location. Subsequent

improvements of the model included the use of total trips with origin o and total trips

with destination d (Oo and Dd respectively) instead of populations and it was assumed

that modelling the effect of distance could be improved by using the generalized travel

cost between the zones cod:

dod = Ao ∗Bd ∗Oo ∗Dd ∗ f(cod) (9)

where Ao and Bd are two constants necessary to guarantee the satisfaction of the
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constraints on the totals of the trips generated and attracted from each zone:

N∑
d=1

dod = Oo

N∑
o=1

dod = Dd

Ao =
1∑N

d=1Bd ∗Dd ∗ f(cod)

Bd =
1∑N

o=1 Ao ∗Oo ∗ f(cod)

(10)

The equations for Ao and Bd are solved iteratively.

The gravity model is by far the most commonly used aggregate trip distribution

model. However, the gravity model has also been criticized: it does not use any

explicit individual behavioral theory, it assumes that all information lies in the con-

straints, its specification does not consider any perception attribute, and it uses an

aggregate calibration procedure. Furthermore, it is interesting to note that the Oo’s

and Dd’s are part of the trip generation process [75] and they need to be modeled

themselves, as they are a function of some other attributes. Finally, the gravity model

assumes knowledge of cost function that defines the spatial relationships between each

OD pairs using travel distance; however, it does not consider the time-of-day varia-

tion and may not cope with the spatial-temporal correlation to support dynamic OD

estimation.

2.6 Temporal Delay Correlation Model

The spatial-temporal correlation model has been extensively studied from three ap-

proaches in check-in data-based research. Firstly, studies applied collaborative fil-

tering techniques on check-in data [76, 77, 78]. These studies focused on measuring
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similarities between locations, such as the visit popularity of a geographic region, and

the hierarchical properties of geographic spaces. The user-based collaborative filtering

techniques have been extensively applied to support individual location recommenda-

tion applications. Secondly, the spatial influence modeling has been widely utilized to

improve spatial-temporal correlation analysis. These studies [79, 80, 81, 82] consider

spatial information of current locations and the travel distance of visited locations to

determine the travelers’ potential destination choice. Meanwhile, temporal influence

modeling has been widely used to identify the temporal periodic patterns of check-in

behaviors. Some research efforts [83, 84, 85] proposed discrete time slots, then sep-

arately modeled the temporal inuence for each slot based on collaborative filtering

techniques. Some research dynamically integrated both spatial and temporal inuence

models. Cho et al [63] proposed a time-aware Gaussian Mixture model combining

periodic short-range movements and sporadic long-distance travels. Wang et al [86]

provided a Regularity Conformity Heterogeneous (RCH) model to predict user loca-

tion at specific times, considering both regularity and conformity. Lian et al. [87]

incorporated temporal regularity into a Hidden Markov framework to predict regular

user locations. Finally, taking advantage of sequential patterns in human movement

[63], various sequential mining techniques [88, 86, 89] have been developed for loca-

tion predictions based on the sequential pattern of individual’s visit. Chong et al

explored Latent Dirichlet Allocation (LDA) topic models for venue prediction given

users’ history of other visited venues.

The accuracy of trip distribution modeling relies on the accurate representation of

the relationship between each OD pair. In gravity model, the cost function indicates

the travel impedance from one location to another. For dynamic OD estimation,

it required an advanced technology to cope with the spatial-temporal correlation.

Recently, the above characteristics are found to be well-represented by a called Pear-

son product-moment correlation coefficient. that the model was developed by Pearson
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(Pearson 1900) and was later found to be accurate in measuring the linear dependence

between two variables to capture the spatiotemporal dynamics of internet traffic [90].

In Bourke [91], when applied to a sample containing two arrays {X|x1, x2, ..., xn}

and {Y |y1, y2, ..., yn}, the Pearson product-moment correlation coefficient r can be

obtained as follows:

r =

∑
n(xi −mx) ∗ (yj −my)

σx ∗ σy
(11)

where xi and yj represents the ith and jth element of the array X and Y respectively,

m and σ are the mean value and stand deviation of the arrays respectively. r gives a

value between 1 and −1 inclusive, where 1 is total positive linear correlation, 0 is no

linear correlation, and −1 is total negative linear correlation.

Meanwhile, the LBSN data can passively collect the detailed trip arrival times-

tamp at the destination location, however, it does not provide the trip departure

timestamp. The time difference between two check-in arrivals can be regarded as a

time delay that separates the occurrence of two activities. As the critical input for

the dynamic OD estimation, it is needed to consider both the travel time and activity

duration to generate the time delay. Hamed and Mannering [92] made a hypothesis

that the travel time to the targeted activity and the duration of that activity are in-

terrelated; that is, travelers who travel greater distances to participate in a particular

activity are more likely to spend more time in that activity than those who travel

shorter distances. Bowman and Ben-Akiva [93] made the categorization of time of

day decision and destination choice of the primary activity as the explanatory vari-

ables in the activity duration estimation equation. Therefore, the activity duration

model can be expressed as a function of activity duration τad, travel time τad from

the last activity destination to the current activity destination and the activity type
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indicator AT for POI category.

τad = f(τtr, AT ) (12)

2.7 Summary of LBSN-based Travel Demand Modeling

LBSN-based travel demand modeling relies on travel behavior modeling to sense

the travel demand pattern. In dynamic trip arrival modeling, depending on the

number of LBSN check-in arrivals, travel demand pattern can be decided spatially

and temporally with respect to zonal LBSN check-in arrival data. In dynamic trip

distribution modeling, the key is to identify a time-varying characteristic from the

LBSN check-in data for dynamic OD estimation.
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3 Proposed Methodology

3.1 Preliminary Definitions

Definition1.(Zonecorrelation). Given an origin zone and a destination zone, a zone

correlation is a quantity measuring the extent of interdependence between the origin’s

outflow and destination’s inflow.

Definition2.(Triparrival). For a zone at a time slot, trip arrivals are the number of

trip counts that arrived in this zone; aggregated arrivals can describe general human

mobility patterns.

Definition3.(Check−inarrival). For a zone at a time slot, check-in arrivals represent

the number of mobile users who visited a POI at this zone reported by check-in data.

3.2 Zonal Functionality Profiling

To infer the zonal functionality, we introduced M zonal types determined by analyzing

the POI distributions Di = {di,c}. First, we calculated the POI density di,c of each

POI category c at zone i:

pi,c =
numbers of POIc∈C

area of zone i
(13)

Secondly, we integrated the zonal human mobility events given the dataset of taxi

departure and arrival records. Each trip contains the passenger travel with the in-

formation of locations and timestamps for the departure and the arrival. From taxi

trips, we extract a set of time-of-day zonal human mobility distribution Hi = {hi,t},

where each zonal human mobility pattern hioutt,hiint includes the time-of-day taxi
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departures and arrivals from/at zone i calculated as follows:

hiint =
numbers of taxi trips departured from zone i at time t

daily taxi trips departured from zone i

hioutt =
numbers of taxi trips arrived at zone i at time t

daily taxi trips arrived at zone i

(14)

where each timeslot is converted from a timestamp to a < hourofday, dayofweek >

combination. The objective is to extract the distributed and low-dimensional embed-

dings {di,hi} of city zones based on the spatiotemporal human mobility patterns for

representing their urban functions in a city.

Using Latent Dirichlet allocation (LDA) method, we treat the zone functionalities

m ∈ {1, 2, ...,M} as the document topics, the zones as documents (each zonal POI

distribution Di and time-of-day human mobility patterns Hi as one documentation),

and POI categorical density di,c and time-of-day mobility patterns hi,t as words in

the documentation. Then the zone functionality can be uncovered from the POIs and

taxi trip dataset. We construct a hierarchical topic model following:

θi ∼ Dir(η1); zi,di,c,hi,t ∼Multinomial(θi);

ϕm ∼ Dir(η2);ωi,di,c,hi,t ∼Multinomial(ϕm)

(15)

where η1 and η2 are the prior Dirichlet parameters on the per-document topic distri-

bution and word distribution, θi represent the topic distribution for zone i, ϕm is the

word distribution for topic m, zi,di,c,hi,t and ωi,di,c,hi,t are the chosen topic and word

for zone i. Then the probability of POIs within one zone being covered by zone type
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m is:

Pro.(m|Pi) = (
∏
m

Pro.(ϕm|η2))(
∏
i

Pro.(θi|η1)

∏
c

Pro.(zi,di,c,hi,t|θi)Pro.(ωi,di,c,hi,t |ϕ1:M , zi,di,c,hi,t))

(16)

3.3 Zonal Time-Of-Day Variation Modeling

In a previous study [12], the research group identified that the accuracy of trip arrival

estimation is the key for the accurate estimation of OD matrices with LBSN data.

When considering the model used as equation (4), the concern of directly deriving such

a time-of-day model that is a daily model with parameter variations for different trip

purposes is the large set of parameters for different times of day. First, a zonal time-

of-day variation model is generalized from equation (4) by ignoring the production

residual balancing term
xρi,p∑
i x
ρ
i,p
∗
∑

i(ω − ε) ∗ xi,p. Meanwhile, we modify the static

parameter ω as the time-dependent one σp(t), which is built for different hours of the

day. Given 24 hours within a day, the proposed statistics model with 24 parameters

representing the TOD variations is as follows:

Ãi,p(t) = σp(t) ∗ xi,p(t) (17)

where Ãi,p(t) is the trip arrival estimation at location i for trip purpose p at time t,

x(i, p)(t)is the check-in counts at location i for trip purpose p at time t, and σp(t) is

the ratio of trip arrivals to Foursquare check-ins for trip purpose p at time t.

The analysis needs to solve the following equations for balancing the LBSN check-in
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activities and trip arrivals between time of day variations and zonal differences,

Min.
∑
i

abs(
∑
t

Ãi,p(t)− Ai,p) +
∑
t

abs(
∑
i

Ãi,p(t)− Ap(t)) (18)

Where Ãi,p(t)t is the estimated trip arrival at location i for trip purpose p at time t,

Ai,p is the reference trip arrival at location i for trip purpose p aggregated in one day,

and Ap(t) is the reference trip arrival for trip purpose p aggregated in studied area at

time t.

Two limitations exist in this model. First, the model may result in the need for cali-

brating as many parameter values σp(t) as the number of the TOD regimes. Second, a

model over-simplifies the relationship between LBSN check-in counts and trip arrivals

as proportional rather than as two correlated random point processes.

3.4 Dynamic Trip Arrival Modeling

The direct use of the Hawkes model will bring a static pattern across an entire day. To

capture the dynamic time-of-day trip arrival patterns, we propose a time-dependent

trip arrival estimation model as follows:

Ãi,p(t) = F (ÃHi,p, Ã
c
i,p, t, α, β, γ, δ) (19)

where F (ÃHi,p, Ã
c
i,p, t, α, β, γ, δ) is a function of the trip arrivals Ãi,pt at location i for

trip purpose p at time t, the estimated trip arrivals ÃHi,p through the Hawkes process

using the trip arrival estimation in the previous time interval (t−4t, t) at time t as

the input, the estimated trip arrivals through LBSN observation Ãci,p, and the set of

parameters (α, β, γ, δ) to be calibrated. The trip purpose p can be tied to one trip

purpose category in the origin-destination data of planning agencies. Each zonal trip

arrival is an event occurrence following the Hawkes point process where the arrival
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rate can be formulated similar to equation (4),

λ(t) = µ+
∑
s:s<t

g(t− s) (20)

where s represents the points at time occurring prior to the check-in arrivals time

t. The trip arrival rate from the previous time interval is applied as the background

rate µ in the adaptive point process model. The excitation kernel g(t) takes the

same exponential form shown in equation (6). Therefore, the arrival rate function of

Hawkes process λi,p(t) for check-ins at location i with trip purpose p at time t takes

the following form:

λi,p(t) = µi,p(t−4t) + α ∗
∑
s:s<t

exp(−β ∗ (t− s))

µi,p(t−4t) =
Ãi,p(t−4t)
4t

(21)

where µi,p(t − 4t) is the trip arrival rate from the previous time interval between

t−4t and t at location i for trip purpose p. Considering the case at one location for

one trip purpose, the standard MC algorithm for the Hawkes process is then modified

accordingly to simulate the proposed adaptive process as follows.

1) Set Λ∗0 = µ and s0 = t = 0.

2) Generate an exponential random number τ0 with the mean arrival rate 1/Λ∗0.

3) Put t = t+ τ If t > T, stop; otherwise, set s1 = t

4) Set n1 = n2 = n3 = 0 and n4 = 1.

5) Set n3 = n3 + 1and put Λ∗n3
= λ(t|t1, t2, t3, ..., tn4−1) + θ

6) Set n2 = n2 + 1 and generate a standard uniform random number Un2

7) Set n1 = n1 + 1 and generate an exponential random number τn1 with mean

arrival rate 1/λk

8) Put sn1 = sn1−1 + τn1 . If sn1 > T , stop;
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9) Set n1 = n1 + 1 and generate a standard uniform random number Un2

10) If Un2 ≤ λ(sn1|t1, t2, t3, ..., tn−1)/Λ∗n3
, set n4 = n4 + 1, tn4 = sn1 and go to step

5

11) Otherwise, set n3 = n3 + 1, put Λ∗t = λ(sn1|t1, t2, t3, ..., tn4−1) and go to step

6.

12) All the sn1 are the arrival times wanted.

The modifications compared with the origin Hawkes process simulation algorithm are

as follows:

Step 2, we use the mean arrival rate of previous time interval as the initial value of

arrival rate function Λ∗0 = µ to generate the first arrival time t = t+ τ in current time

interval.

Step (5), we remove the maximum jump size θ for the generation of Λ since we use

the mean arrival rate to avoid extreme value of τ .

Step (6), U was generated as a standard uniform random number.

After the simulation, the number of trip arrivals estimated through the Hawkes pro-

cess between time intervals t and t+4t can then be calculated by

ÃHi,p(t) =

∫ t+4t

−∞
λi,p(τ)dτ (22)

where ÃHi,p(t) is the trip arrival estimation through the Hawkes process at location i for

trip purpose p at time t, and τ is the estimated sequence of arrival times. Given the

TOD variations in daily demand fluctuation, the above models are built for different

hours of day. Within each hour, the proposed Hawkes process model simulates all

actual trip arrivals. To reduce the number of Hawkes models to be calibrated, hours

of day with similar characteristics will be further clustered into groups that share the

same Hawkes process parameters.
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The LBSN check-ins are only a fraction of the total actual arrivals. To formulate such

an “observation” process, we propose a model that describes how actual arrivals are

captured by LBSN check-in counts. To account for potential sources of the sampling

bias, we introduce a clustering analysis to build the zonal LBSN check-ins observation

model as follows.

Ãci,p(t) = G(xi,p(t), t) (23)

where G(xi,p(t), t) is a function of the trip arrival estimation through LBSN check-ins

observation xi,p(t) at location i for trip purpose p at time t, the number of check-

in arrivals xi,p(t) observed at location i for trip purpose p at time t, and the set of

parameters to be calibrated. The equation can be expanded as follows:

Ãci,p(t) = γp(t) ∗ xi,p(t) (24)

Where γp(t) is the converting factor of Foursquare check-in counts to actual trip

arrivals for trip purpose p at time t.

Compared to the equation (13), the proposed models introduce the potential to use

different point process techniques for different regimes and improves the accuracy

and resolution of the estimation. However, to reduce the number of parameters to

be calibrated, we introduce a time of day clustering and recalibration process. First,

the model for each hour of a day is calibrated separately against the planning trip

arrivals statistics. Then, hours of day with parameters, i.e. similar sampling bias

characteristics, are grouped together and recalibrated to share the same parameter

set. An objective function is introduced to find the optimal clustering based on the

initial individual hour-of-day model calibration.
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Figure 3: Block Diagram Representation of the State-space Equations.

Min.abs(
h ∗ (γ(t|t ∈ H)− γp(t))2

(γp(t)− γH,p)2
− 1)+

abs(

∑
i xi,p(t) ∗ γ(t|t ∈ H, p)∑

t

∑
i xi,p(t) ∗ γ(t|t ∈ H, p)

−
∑

iAi,p(t)∑
t

∑
iAi,p(t)

) (25)

where H is the index of clusters, h represents the number of TOD regimes (hours

of day) in cluster H, γH,p denotes the mean of scaling factor with respect to TOD

regime t,
∑

i xi,p(t) and
∑

iAi,p(t) denotes the hourly check-in arrivals statistics and

the CAMPO data for hourly trip arrivals in the study TAZs respectively.

The proposed model works in a two-step process following the state-space framework.

The observation equation converts the number of LBSN check-ins into the number

of trip arrivals. The state equation uses the estimated trip arrivals through the

Hawkes process in the previous time interval ÃHi,p) and the feedback from the estimated

trip arrivals through LBSN check-in observation in the current time interval Ãci,p) to

estimate trip arrivals in the new time interval. Figure 3 shows the state-space

framework of the proposed Hawkes process model.
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3.5 Dynamic Origin-Destination Estimation

The PPMC analysis was applied to measure the similarity between check-in arrival

patterns at two locations. Let vectors oi and dj represents check-in arrival sequence

that consist of a set of check-in arrivals {X|xti, xt+1
i , ..., xt+wi } and {Y |yti , yt+1

i , ..., yt+wi }.

The oi and dj are normalized as follows.

f ti (w) =
(oti(w)−mo)

σo

f sj (w) =
(dsj(w)−md)

σd

(26)

where t is the time slot and s = t + τ indicates the time slot after the time delay

τ , w is the selected sequence length which represents the daily recurrent patterns of

check-in arrivals, m and σ are the mean and standard deviation of the corresponding

sequences respectively. The equation of computing time delay correlation coefficient

takes the following form similar to equation (3).

rtsij = f ti (w) ∗ f sj (w) (27)

where rtsij is a vector that contains (2 ∗ w − 1) elements and s = t + τ indicates

the time slot after the time delay τ . The correlation vector rtsij for OD pair ij at

different time delays τ can be used to identify the most likely OD flow potentials.

The activity duration may vary according to the individual activities and the travel

time. Regarding equation (2), the total time delay τ and the duration of activity is

represented by the multivariate regression equation of the following form:

τ = τtr + τad

τad = a+ b ∗ AT + c ∗ τtr
(28)
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where τtr is the travel time from location i to location j, τad is the activity duration

that represents the dwelling time at the check-in arrival location, AT is the vector

of activity type indicator for different venue types of the check-in arrivals, and a, b, c

are parameters needs to be calibrated. Furthermore, the model considered both

the positive and negative correlations. The positive correlation indicates the check-in

arrival patterns at destination may replicate the ones at origin after a time delay. The

negative correlation is considered to indicate the potential OD flow when the check-in

arrivals’ reduction at the origin may contribute to one increase at the destination.

When the correlation is calculated between a sequence and a lagged version of itself, an

autocorrelation will be produced. A high correlation coefficient indicates a periodicity

of check-in arrivals’ pattern within the location in the corresponding time interval.

The autocorrelation coefficient is computed as follows.

rtsii = f ti (w) ∗ f si (w) (29)

Therefore, the PPMC modeling procedure is to generate the correlation matrix as

follows.

Table 5: Notation Description.

Variables Description
i,j Location index
s,t The time slot index
τ The time delay value based on the sum of the travel time

between the origin and destination locations and the activity
duration

oi, dj The check-in arrival sequence at location i and at location j
T The experiment time period
N The total number of TAZs
r The correlation coefficient vector

1) set i = 1 as origin location number, j = 1 as destination location number,

t = 1.

2) If i > N , stop; otherwise set τ as the time delay and set s = t+ τ
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3) Put vector oi = {xti, xt+1
i , ..., xt+wi } and vector dj = {xsi , xs+1

i , ..., xs+wi }.

4) If i = j, Generate auto correlation coefficient rtsii with mean and stand deviation

of sequence; Otherwise, generate correlation coefficient vector rtsij with mean and stand

deviation of sequence.

5) If j > N , set i = 1 + i, j = 1 and go to step (2); otherwise, set j = 1 + j and

go to step (2).

6) All the r are the coefficients wanted.

The modifications compared with the origin Pearson product-moment correlation

algorithm are as follows:

Step (1), we add the timestamp index t to indicate that the model involves a dynamic

estimation.

Step (2), we add the time delay value τ to represent that the comparison is between

the different time-of-day trip patterns.

Step (3), we add the length value w of selected sequence that considers the daily

recurrent patterns of check-in arrivals.

Consider both the mixture of the HPSS formulation and PPMC coefficient, we jointly

predicted dynamic OD flow patterns by incorporating the predicted dynamic trip

arrivals Ati,A
d
j and PPMC coefficient rcctdij as follow.

Prtdij =
AtiA

d
jg(rcctdij )∑

j A
d
jg(rcctdij )

(30)

where Prtdij stands for the probability of a trip made from zone i at time slot t to zone

j at time slot d, Ati are predicted trip arrivals of zone i at time t, and g(rcctdij ) is the

travel cost function which considers the PPMC coefficient.

Given the reference OD flow matrix F = {fij} , we sample N =
∑

i,j fij trips following

the predicted probability Prtdij and different types of constraints to generate the OD

flow matrix F̃ = {f̃ij}. We consider four different types of constraints of the proposed
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joint PPMC-GM model:

Unconstrained model (UM). The only constraint of UM is to ensure the total number

of predicted trips Ñ =
∑

i,j,t,d f̃
td
ij is equal to the total number of trips N in the

reference data. The N trips are randomly sampled from the multinomial distribution.

Multinomial(N, (Prtdij )) (31)

Singly-production-constrained model (PCM). PCM is to ensure the total number of

predicted origin zone’s trips Oi =
∑

j fij is preserved. For each origin zone i, the Oi

trips are randomly sampled from the multinomial distribution.

Multinomial(Oi,

∑
t,d Pr

td
ij∑

j,t,d Pr
td
ij

) (32)

Singly-attraction-constrained model (ACM). ACM is to ensure the total number of

predicted destination zone’s trips dj =
∑

i fij is preserved. For each destination zone

j, the Dj trips are randomly sampled from the multinomial distribution.

Multinomial(Dj,

∑
t,d Pr

td
ij∑

i,t,d Pr
td
ij

) (33)

Doubly-constrained model (DCM). DCM is to ensure the number of both origin’s and

destination zone’s trips is preserved. For each origin zone i and destination zone j,

the N trips are randomly sampled from the multinomial distribution.

f̃ tdij = BiBjPr
td
ij ;

∑
j,t,d

f̃ tdij = Oi;
∑
i,t,d

f̃ tdij = Dj; (34)

Multinomial(N,

∑
t,d f̃

td
ij∑

i,j,t,d f̃
td
ij

) (35)

where B is the calibrated balancing factors with the Iterative Proportional Fitting

procedure.
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Figure 4: Block Diagram Representation of the Time-delay-correlation Gravity
Model.

Finally, the predicted dynamic OD flows are aggregated based on the modelled zone

functions of origin and destination zones for each OD pair and the time of day. Figure

4 shows the two-stage framework of the proposed methodology.
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4 Experimental Design

The experimental design includes the detailed design for model validation, calibration,

and evaluation.

4.1 Performance Measures

The performance measure includes two parts. First, we predicted the dynamic trip ar-

rivals and compared the result of the spatial and temporal pattern with the reference

data. The reference data contains the zonal trip arrivals derived from OD matrices

and the time-of-day factor. Based on existing trip arrival estimation and machine

learning literature, there are several important performance measures. These mea-

sures are critical in the optimization procedure for model parameters during valida-

tion, calibration and evaluation procedure. We used two common objective functions,

including the Root Mean Square Error (RMSE) (Pohlmann and Friedrich 2013) and

the Mean Absolute Error (MAE) between the estimated and agency trip arrivals to

conduct geospatial and statistical performance comparisons statistically and while

working with the RMSE to indicate the variation in the errors. Since the overall

performance of models may have issues with the high variance of a small percentage

of the high trip arrival counts, the MOEs were generated based on the trip arrival

counts with different levels (e.g. 10000 trips per day with 1000 RMSE value versus

10 trips per day with 1 RMSE value).

The two indicators are defined as follows:

RMSE =

√∑
i(Āi − Ai)2

Ilevel

MAE =

∑
i abs(Āi − Ai)

Ilevel

(36)
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Where Ilevel is the number of Traffic Analysis Zones in the study area with respect

to the level of zonal trip arrival counts.

Given the calibrated result of dynamic trip arrival estimation, we predicted the

dynamic OD and compared the result of the spatial and temporal pattern with the

reference data. We compared our proposed approach with the following baseline

methods.

Normalized Gravity Model with exponential distance decay (NGravExp). In this

popular form of the gravity model, the probability of a trip between zone i and zone

j is proportional to the outflow of the origin zone Oi and the inflow of the destination

zone Dj, and is inversely proportional to the travel cost costij between the two zones,

which is modeled with an exponential distance decay function:

Prij =
OiDjg(costij)∑
j Djg(costij)

; f(costij) = exp(−βdistanceij) (37)

Normalized Gravity Model with power distance decay (NGravPow). Unlike the

NGravExp model, the NGravPow considers travel cost modeled with a power dis-

tance decay function:

Prij =
OiDjg(costij)∑
j Djg(costij)

; f(costij) = (distanceij)
−β (38)

Schneider Intervening Opportunity Model (Schneider). In this model, the probability

of a trip from zone i to zone j is proportional to the outflow of the origin zone and

to the conditional probability that a traveler departure from zone i with outflow Oi

is attracted to zone j, given that there are Sij populations in between:

Prij =
exp(−βSij)− exp(−β(Sij +Oi))∑
j exp(−βSij)− exp(−β(Sij +Oi))

(39)

Radiation Model (Rad). Simini et al. [35] reformulated the intervening opportuni-ties
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model in terms of radiation and absorption processes:

Prij =
OiDj

(Oi + Sij)(Oi +Dj + Sij)
(40)

We used Mean Absolute Error (MAE), Normalized Root Mean Square Error (NRMSE),

and Coincidence Ratios (CR) as metrics to evaluate the performance of zonal OD es-

timation:

MAE =

∑
i,j abs(fij − f̃ij)∑

i,j 1
(41)

NRMSE =

∑
i,j abs(fij − f̃ij)2∑

i,j fij
(42)

CR =

∑
kmin(t̃ldistancek , tldistancek)∑
kmin(t̃ldistancek , tldistancek)

(43)

where tldistancek represents the percentage of trips in interval k of trip length distance,

CR measures the common area of the trip length distribution for the predicted and

ground truth OD matrices. The result takes the value in [0, 1]. When CR = 0, two

distributions are completely different; while CR = 1, two distributions are identical.

4.2 Data Source and Preliminary Analysis

In order to test the proposed algorithms, the City of Austin, Texas and the Manhat-

tan Island of the New York City were selected as the study area. As the LBSN data

can provide detailed census-level data, the proposed model was applied to explore the

TAZ-aggregated travel demand patterns in two study areas. For the City of Austin,

Texas, we obtained the Geographic Information System (GIS) data of TAZ, land use

patterns in the Austin area, and the personal daily trip data including OD matrices

and TOD factors from Capital Area Metropolitan Planning Organization (CAMPO).
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We collected approximate one-year Foursquare check-in data from February 26th,

2010 to January 21st, 2011, which is posted, on Twitter. The GIS data of TAZ

boundaries are used to identify the TAZ ID for each Foursquare venue. As illustrated

in Figure 2, a total of 730 CAMPO TAZs located in the study area. The CAMPO

OD matrix data include the estimated daily trip tables for 17 detailed trip purposes.

Six trip purpose categories are used in this study, including home-based work trips

(direct/strategic/complex), home-based non-work retail, home-based non-work oth-

ers, and non-home based work. The TOD factors used by CAMPO to generate TOD

OD matrices from daily trip OD are used as reference data for the observation model

calibration in the dynamic trip arrival estimation model.

When permitted, the check-ins may include spatial-temporal information demonstrat-

ing where and when the check-ins are generated. The individual activity types are

categorized by the restarted venue, type of check-in records. Foursquare records users’

arrival at their POIs whose location types are given in comprehensive three-level clas-

sifications (Li et al., 2013). Therefore, various kinds of trip purposes are identified

regarding the POI location types. Since each type has its own spatial and temporal

distribution within the urban area, such confirmation allows researchers to compare

the impact of different destination type to the model estimation. The URL of a

check-in refers to the restarted venue that contains its geographic information. In

this study, we focus on the check-ins regarding three particular trip purposes: work

trips, retail trips and recreation trips as shown in Table 6.

Table 6: Trip arrival category classification based on Foursquare venue types.

Trip purpose cate-
gory

Foursquare venue types

Work trips Professional building, business distinct, and other work-
related places

Retail trips Shopping, grocery activity, and other retail-related places
Recreation trips Food, entertainment, and other recreation-related places
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Figure 5: Spatial-temporal Distribution of the LBSN Check-in Arrivals.

Preliminary analysis is conducted on the spatial-temporal characteristics of the check-

in patterns in Austin, Texas. Locations of the 124,611 check-ins are collected in the

experiment, and are plotted in Figure 5(a). A heat map representing the check-

in densities at each TAZ is shown in Figure 5(b). The check-ins are most densely

distributed at the airport, downtown and north-central area of the city. To illustrate

the temporal characteristics of Foursquare check-ins, we aggregated check-in counts

within one downtown TAZ for each hour in a day in Figure 5(c). It is observed that

the peaks of check-in counts do not necessarily coincide with regular AM/PM peak

hours. This further indicates the need for the observation equations to reduce the

sampling bias at different time periods by LBSN data.

For the Manhattan Island of New York City, The proposed model is evaluated based

on LBSN check-in data and NYMTC OD data. LBSN check-in data can be aggre-
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gated by different spatial schemes such as census tracts, TAZs, and neighborhood. In

this experiment, LBSN is aggregated by TAZ specified in the NYMTC OD matrices.

The model input includes the venue-level LBSN check-in data during the weekdays

between August 1st, 2016 and March 31st, 2017. Each check-in arrival record con-

tains the venue ID with confirmed location and venue types and the timestamp of

the arrival. The venue types are structured in a comprehensive three-level classifica-

tion system defined by Foursquare with the first level including 10 categories, second

level with 100 categories, and the third level consisting of more than 250 categories.

To avoid overfitting, we choose the first level that has the number of levels similar

to the trip purpose categories used by NYMTC. Excluding the “event” category, a

total of 10 venue categories are considered including “Nightlife Spot”, “Food”, “Shop

& Service”, “College & University”, “Arts & Entertainment”, “Travel & Transport”,

“Professional & Other Places”, “Outdoors & Recreation”, “Residence”, and “Event”.

Meanwhile, the shape of NYMTC TAZs are used to determine the TAZ ID for each

venue. The reference data includes the 2017 weekday OD matrices and TOD fac-

tors of personal daily trips from NYMTC. To estimating the dwelling time at the

destinations, two datasets, a geo-tagged twitter dataset and the typical travel time

profiles from Google Traffic are used. The geo-tagged twitter data provides trip chain

information since all geo-tagged activities can be linked together with a Twitter user

ID. The typical travel time profiles provide an estimation of the route travel time

between ODs. Both datasets are used to initialize the parameters in a dwelling time

estimation model.

The LBSN check-in data and the reference OD matrix are separated into two datasets

for model calibration and evaluation, respectively. The calibration dataset contains

randomly-selected 50 TAZs out of the 318 TAZs in Manhattan. Then the calibrated

parameters were applied to evaluate all 318 TAZs in the evaluation. The original 50

TAZs are included to ensure complete visualization and analysis of the full mobility
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pattern in Manhattan.

Preliminary analysis is first conducted on the spatial and temporal characteristics of

the check-in arrival patterns in Manhattan Island. Locations of the 892,970 check-

in arrivals were collected in the experiment, and are plotted in Figure 1. A heat

map representing the zonal daily trips from both reference data and the LBSN data

is shown. The check-in arrivals are most densely distributed in the central park,

Midtown, and lower Manhattan area of the city while few observed in the ring area

of Central Park and Upper Manhattan area. Meanwhile, hourly check-in counts were

aggregated to illustrate the time-of-day variation of check-in arrivals. It is observed

that the peaks of check-in counts do not necessarily coincide with regular AM/PM

peak hours. The results indicate the need for reducing the spatial and temporal

systematic error of the LBSN data.

In the second stage, some initial parameter values are obtained for Equation (2)

with a special LBSN dataset. One limitation of the Foursquare data is the lack of

dwelling time information at the venues. This can leads to a poor estimation of the

activity duration and causing error in estimating the actual time lapse between two

consecutive destinations. To address this problem, we used a particular category

of the LBSN data from the “Foursquare – Twitter bridge” as analyzed in (Hasan

and Ukkusuri, 2014). Through Foursquare-Twitter bridge, users consent to not only

letting a check-in counted towards the venue check-in counts but also to posting their

arrivals on Twitter with Geo-tags. One such geo-tagged twitter data contains the

same details as one Foursquare check-in data but also comes with the Twitter User

ID. The temporal difference between two consecutive check-ins of one user is then

used to obtain the sum of the activity duration at the first venue location and the

travel time between those two venues. The automobile (e.g., Taxi and Uber), transit,

and walking travel time information can be extracted from google map API based on
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the spatial locations of two check-ins. To simplify the model, only the shortest travel

time from different modes are used in the dwelling time estimation. We collected

around 20,000 geo-tagged tweets to generate OD pairs of different trip purposes and

at different time of day. Each check-in arrival records were sorted by the arrival

time during the whole day. Meanwhile, users may or may not always check-in at all

venue locations. To decide if two check-in arrivals are most likely to be consecutive

destinations, we applied the empirical four-hour threshold found in [70] for the OD

estimation in the Greater Los Angeles metropolitan area. That is, if a person made

two check-in arrivals at different locations within 4 hours, it is considered to be one

OD-trip. The latitudes and longitudes of the Geotags are used to generate the travel

time between origin and destination locations for one OD-trip through Google Map.

Based on equation (2), travel time and activity type are the independent variables and

the activity duration is the dependent variable. The initial parameters of the equation

(2) are then obtained through multivariate linear regression. Those parameters will

be further calibrated in the next step with other model parameters.

Figure 6 depicts some preliminary analysis of the spatial and temporal characteristics

of the check-in arrival patterns in Manhattan. The spatial distribution of Foursquare

venues studied in the experiment is plotted in Figure 6(a). The venues are most

densely distributed in the Midtown and Lower Manhattan area of the city while

sparsely in the ring area of Central Park and Upper Manhattan area. A heat map

representing the zonal daily arrivals from both reference data is shown in Figure 2b.

Meanwhile, we selected five venue categories to show the time-of-day variation of the

check-in arrival frequency. In Figure 6(b), it is observed that the peaks of check-

in arrivals do coincide with regular AM/PM peak hours of urban travel demand

pattern. The results indicate the potential of using check-in arrival to represent

the urban travel demand. Figure 6(c) shows the demographic characteristics of

foursquare users regarding gender and age. The Foursquare user’s information comes
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Figure 6: Spatial-Temporal Distribution and Demographic Distribution of the Ob-
tained LBSN Check-in Data.

from the worldwide statistics of Foursquare users in 2015. It can be observed that the

demographic distribution of Foursquare users generally matches that of the general

population. Some inconsistencies can be found among population groups under 17

years old and greater than 55 years old. These population groups may have less

number of trips made and miles traveled than the other population groups.

As one critical role in the proposed time-delay correlation model, activity duration

estimation is to determine the potential time-of-day correlated OD pairs. We collected

around 20k check-in arrival records, which posted in Tweet, to generate individual

trajectory data. Such data then was applied to extract the OD pairs within the study

area. Each check-in arrival records were sorted by the arrival time during the whole

day. In essence, if a person made two check-in arrivals at different locations within

4 hours, it is considered to be one OD-trip. The latitude and longitude information

is used to generate the travel time between origin and destination locations for one

OD-trip through Google Map.
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4.3 Model Calibration

The model calibration was conducted in two stages. First, the proposed Hawkes

process based trip arrival estimation model was calibrated against the reference trip

arrivals data and TOD factors from the reference dataset. Secondly, the proposed

time-delay-correlation gravity model was compared with reference OD data from.

In each model calibration stage, the genetic algorithm is used to obtain the optimal

model parameters, and the objective function is to minimize the MAE (Mean Absolute

Error) between the modeled and reference data. The genetic algorithm (GA) is a

search heuristic that mimics the process of natural selection (Deb, Pratap et al.

2002). By mimicking the evolution process in nature, GA applies “mutation” and

“crossover” to the initial population and select the best “offspring” in each generation.

Such repetition stops when a relative optimal that satisfies the termination condition

is reached.

The experiment consists of two components of the dynamic trip arrival estimation

and dynamic OD estimation. As the calibrated trip arrivals will be fed into the trip

distribution modeling to generate the OD matrices, it expects that an accurate trip

arrival estimation leads to an accurate OD estimation. Therefore, we focus on testing

the algorithm of dynamic trip arrival estimation only in the City of Austin, Texas

and testing the algorithm of dynamic OD estimation in Manhattan Island of New

York City.

For the City of Austin, Texas, the trip arrivals from CAMPO OD matrices are aggre-

gated into matrices for work trips (home and non-home based), retail trips (home-

based) and recreation trips (home-based and non-home-based) respectively. To guide

the GA optimization, a specially designed objective function is used to 1) avoid giving

too much weight to TAZs with high check-in frequencies, and 2) efficiently account

for TAZs with low check-in frequencies without numerical overflows. By filtering the
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TAZs with null check-in occurrence, we use the Angle of Difference (AOD) value

as the fitness value of our models. It is an indicator of the similarity between the

calibrated results and CAMPO data, which is defined as follows:

AOD =

∑I
i abs(π/4− atan2(Āi, Ai))

I
(44)

where Āi and Ai are the calibrated trip arrival estimation from the proposed model

and the CAMPO trip arrivals for location i respectively, atan2(x, y) is the four-

quadrant inverse tangent function of a point (x, y) which will return zero degree if

Āi = 0, and I is the number of Traffic Analysis Zones. AOD is a straightforward

way of describing the deviations. It gives the number of degrees by which the average

data points deviated from the y = x line. When AOD is close to zero, the (Āi, Ai)

pair is close to the y = x line, thus the model output is similar to the agency OD.

Table 7 shows the description of parameters used in the baseline statistics model

and proposed Hawkes process model. Figure 7, Figure 8, and Figure 9 provide the

model calibration results from the genetic optimization for all work trips, retail trips,

and recreation trips models. The proposed Hawkes process models outperform the

baseline statistics model with fewer parameters: 8 in the proposed Hawkes process

model versus 24 in the baseline statistics model.

Table 7: Notation Description.

ParametersDescription
α A scaling factor for self-excitation (α¿0) or self-decaying (α¡0)
β A positive parameter describing the dependence of recent arrival

events on future events
γ, σ The converting factor of Foursquare check-ins to trip arrivals
δ A positive parameter for the selected percentage of trip arrivals es-

timated through the LBSN check-ins observation

For Manhattan Island of New York City, in each model calibration stage, the genetic

algorithm is used to obtain the optimal model parameters, and the objective function
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Figure 7: Model Calibration Results for the Baseline Statistics Model.
(The logarithm values of parameter σ with respect to base 10 are used due to the

high range of the parameter value).
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Figure 8: Model Calibration Results for the Proposed Hawkes Process Model .
(The logarithm values of parameter γ with respect to base 10 are used due to the

high range of the parameter value)
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Figure 9: MOEs for the Baseline Statistic Models and the Proposed Hawkes Process
Models.
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is to minimize the MAE (Mean Absolute Error) between the modeled and reference

data. Table 8 listed the model calibration results. It is found that when the length

of selected sequence equals to 14, the model performs better according to the overall

MAE and CR values. The reason may be related to the mechanism of Pearson

product-moment correlation analysis which is the comparison between two sequences.

Under 1 min resolution of the data feed, the longer a sequence selected, the larger

noise may be brought into the correlation analysis.

The estimation result of activity duration using multivariate regression model was

shown in Table 9. When p − value > 0.05, there is no strong evidence to indi-

cate that the variable is statistically significant. From the test results, variables for

activity types Event and Travel&Transport contained coefficients found to be in-

significant based on its P-value. Such variables may not be considered in the activity

duration estimation model. Meanwhile, the positive sign of coefficient for variables

Traveltimetoandfromactivity indicates that people may stay longer at one location

where he/she spent a long time traveling to. It responded to the hypothesis proposed

by [92]. Regarding the magnitude of coefficient value, we found that activity type

Arts&Entertainment and Professional&OtherP laces contains the longest activity

duration and activity type College&University and Residence contains the shortest

activity duration. After filtering out the insignificant activity type indicator of linear

regression equation (10) for activity duration estimation, eight different activity types

are considered to estimate the activity duration.
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Table 8: Model Calibration Results for the Dynamic OD Estimation Model.

Notation description Parameter Value
Hawkes equations (4 ∼ 5) α −0.5 (hour of day: 1 ∼

5, 20 ∼ 24); 0.3 (hour of day:
6 ∼ 10, 12, 15 ∼ 19); 0.1
(hour of day: 11, 13 ∼ 14)

β 4 (hour of day: 1 ∼
3, 15, 23 ∼ 24); 7.6 (hour of
day: 4 ∼ 5, 10 ∼ 14, 16 ∼ 22);
34 (hour of day: 6 ∼ 9)

γ 0.8
δ 0.5

Selected sequence length (min)
in time-delay-correlation equa-
tions (6 ∼ 8, 11)

w 14

The constant of linear regression
equation (10) for activity duration
estimation

a 5.22

Coefficients for activity type indi-
cator of linear regression equation
(10) for activity duration estima-
tion

b(AT) 78.54 (Food); 58.89 (Pro-
fessional & Other Places);
104.47 (Arts & Entertain-
ment); 82.26 (Nightlife Spot);
60.06 (Shop & Service); 90.12
(Outdoors & Recreation);
64.22 (Residence); 68.89
(College & University)

Coefficients for travel time of lin-
ear regression equation (10) for ac-
tivity duration estimation

c 0.84

Threshold coefficient of indicator
function (14 ∼ 15) for determi-
nant of the potential correlated
OD pairs

rthreshold 0.71

MOE for trip arrival estimation MAE 23.1
MOE for time-of-day OD matrices
comparison

MAE 5.2

MOE for trip length distribution
comparison

CR 0.86
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Table 9: Regression analysis result of activity duration.

Variable Coefficient value P-value
Constant 6.87 #N/A
Travel time to and from activity
(min)

0.68 0.00

Activity type indicator (if 1, other
0)
Food 78.54 0.00
Travel & Transport 73.77 > 0.05
Professional & Other Places 158.89 0.00
Arts & Entertainment 104.47 0.00
Nightlife Spot 82.26 0.00
Shop & Service 80.06 0.00
Outdoors & Recreation 90.12 0.00
Residence 64.22 0.00
College & University 68.89 0.00
Event 93.22 > 0.05

Note: Dependent variable is the activity duration (in minutes).
Number of observations = 24812 and the system R2 = 0.650.

5 Experiment Results

5.1 Evaluation Result for the Dynamic Trip Arrival Estima-

tion of the City of Austin, Texas

5.1.1 Temporal Trip Arrival Patterns Comparison

For the dynamic trip arrival estimation of City of Austin, Texas, we review the

predicted spatial-temporal pattern. First, we compared the calibrated models and

CAMPO trip arrivals matrix by examining the temporal distribution of estimated

trip arrivals based on the proposed model. The predicted trip arrivals patterns within

each hour are used to plot the temporal distribution of estimated trip arrivals. Figure

10 shows the calibrated results from the genetic algorithm for all three Hawkes process

models.

As shown in Figure 5.1, the predicted TOD variations from the proposed Hawkes pro-
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Figure 10: The Time-of-day Distribution of the Estimated Trip Arrivals.

cess models are similar to those reflected in the CAMPO data. The predicted patterns

from the proposed model match well with the time-of-day variations indicated in the

empirical time-of-day factors from CAMPO with only a slight inconsistency during

the early hours of AM and PM peak (work trips), the midday (retail trips), and the

evening (recreation trips). Each model reproduces the trip arrivals trend of particular

trip type. For work trips, there are two distinct peaks during the AM/PM periods

and relatively few trips during the midday and nighttime. For retail trips, the first

peak happens around noon when people from work places conduct shopping trips

during their lunch breaks. Furthermore, the retail trips reach another peak in the

early evening when people shop for groceries and other items. Finally, the recreation

trips have an average distribution from late morning to midnight.

The statistical test also was applied over the course of the day as shown in Table 10.

The paired t-test is conducted for comparing one-on-one temporal trip arrivals for

each hour of the day. The hourly trip arrivals during one day of the total TAZs for
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each selected trip purpose has been aggregated into 24 observations. The hypothesis

is that there is zero estimation error for the hourly trip arrivals within the overall

study area for each selected trip types between the model results and the observed trip

arrivals from the CAMPO data. The t-value and P-value from the tests demonstrate

that we do not reject the null hypothesis.

Table 10: Statistical Test Results for Hourly Trip Arrival Estimation.

t-Test:
Paired Two
Sample for
Means

Work
Trips

Retail
Trips

Recreation
Trips

Indicator CAMPO Hawkes CAMPO Hawkes CAMPO Hawkes
Mean 4.2E+04 4.1E+04 3.7E+04 3.6E+04 2.9E+04 2.9E+04
Variance 2.4E+09 1.9E+09 9.9E+08 9.1E+08 3.4E+08 3.1E+08
Observations 24 24 24
Pearson
Correlation

0.98 0.97 0.99

Hypothesized
Mean Differ-
ence

0 0 0

Df 23 23 23
t Stat 0.51 1.14 0.74
P (T <= t)
one-tail

0.31 0.13 0.23

t Critical
one-tail

1.71 1.71 1.71

P (T <= t)
two-tail

0.62 0.27 0.47

t Critical
two-tail

2.07 2.07 2.07

5.1.2 Spatial Trip Arrivals Pattern Comparison

The model evaluation of spatial trip arrival estimation is shown in Figure 11. The

angle between the trend line of the result and line “y=x” can illustrate how well

the model output matches the CAMPO data. The close scattering of points to the

y=x line represents the accurate estimation of zonal trip arrivals. The horizontal
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axis represents the design trip arrivals for each zone that used the sorted Zone ID as

the value, while the vertical axis is the calibrated result for the corresponding zones.

Due to the high variations of the zonal trip arrival estimates among 738 TAZs, we

selected the X-Y plot of the modeled result versus CAMPO data to indicate estimation

accuracy. The coordinates of each dot in the diagram display the calibrated trip

arrivals for zone i, which is defined as follows:

(x, y) = (i, i ∗ (Āi/Ai) (45)

Furthermore, in the color scale for the density of dots distribution used, the darker

color indicates the higher density. The comparison points of the proposed Hawkes

models distribute more closely to the y=x line which is consistent with lower AOD

value. More distant points can be found from the baseline model plots than the

Hawkes process model plots. Additionally, the proposed model has better coverage

for all three types of trip estimation. The baseline plots display greater error of null

estimation as there are more dots along the line “y=0”. It is found that those points

with large deviations are usually residential areas where few check-in activities occur.

This demonstrates the need for bias reduction across different types of venues. A

regression analysis has been conducted in each model result. An R2 indicator was

used to indicate the Pearson correlation between the reference data and the modeled

result. The regression line and the equation have shown that the proposed model

outperforms the baseline model for three selected trip purpose.

Figures 12 describe trip arrival estimation within the involved TAZs regarding the

City of Austin’s land use classification. We have identified five area types: CBD, ur-

ban intense, urban residential, suburban residential, and rural area. Figure 13, 14, 15

compare the geospatial patterns of zonal trip arrivals with grayscale showing the es-

timated trip arrivals within each TAZ. The color scale highlights where the model
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Figure 11: Zonal Trip Arrivals Pattern Comparison.
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Figure 12: Comparison of Estimation Results for Work, Retail, and Recreation Trips.

overestimates or underestimates the number of trip arrivals. Five land use types

are indicated by five different line fill symbols. The estimated trip arrivals from the

proposed model share the more consistent spatial pattern reflected in the CAMPO

data. Figure 12 indicates that the overall performance of the proposed Hawkes pro-

cess model is better than the one of the baseline statistics model. Furthermore,

Table 11 indicates that we do not reject the null hypothesis for zonal trip estimation

comparison between estimated result and observed data.

In Figure 13, the underestimation of work trips can be found for the baseline model in

the suburban area indicating compensation needed for residential trips. The spatial

pattern of work trips around the downtown area estimated by the Hawkes model

shows a close resemblance to that of the CAMPO data.

For the retail trips pattern indicated in Figure 14, both models experience high

observations at many industrial locations, which shows the limitation of Foursquare

data. So there is a need for a more detailed bias reduction process towards urban and

suburban employment centers though the Hawkes process model does provide larger

coverage than the baseline statistics model.

As shown in Figure 15, the proposed model also outperforms the baseline model

in the estimation of recreation trip arrivals regarding the similarity of the spatial

patterns in the CAMPO data.
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Figure 13: Daily Zonal Trip Arrivals Heat Maps for Work Trips.

Figure 14: Daily Zonal Trip Arrivals Heat Maps for Retail Trips.
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Figure 15: Daily Zonal Trip Arrivals Heat Maps for Recreatiion Trips.

Similar to Table 10, the paired t-test had also been conducted to compare the dif-

ference between paired means of the spatial distribution. The statistical test applied

to the study area was conducted using the paired t-test for comparing one-on-one

spatial trip arrivals within each TAZ. The daily trip arrivals of each TAZ for each

selected trip purpose has been aggregated into 738 observations. The hypothesis is

that there is zero estimation error for the daily zonal trip arrivals between the model

results and the observed trip arrivals from the OD data for each selected trip type.

Similar to the regression analysis on Figure 11, the zeros values in both the reference

and estimated data have been removed to satisfy the assumption of the paired t-test.

As shown in Table 10, the t-value and P-value from the tests demonstrate that we do

not reject the null hypothesis.
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Table 11: Statistical Test Results for Zonal Trip Arrival Estimation.

t-Test:
Paired Two
Sample for
Means

Work
Trips

Retail
Trips

Recreation
Trips

Indicator CAMPO Hawkes CAMPO Hawkes CAMPO Hawkes
Mean 1252.05 825.60 1629.26 1444.47 970.52 1226.55
Variance 3.9E+06 3.6E+06 5.9E+06 3.6E+06 1.4E+06 5.1E+06
Observations 643 643 461 461 698 698
Pearson
Correlation

0.67 0.62 0.55

Hypothesized
Mean Differ-
ence

0 0 0

Df 642 460 697
t Stat 6.80 2.03 -3.34
P (T <= t)
one-tail

1.2E-11 0.02 4.4E-04

t Critical
one-tail

1.65 1.65 1.65

P (T <= t)
two-tail

2.3E-11 0.04 8.8E-04

t Critical
two-tail

1.96 1.97 1.96

5.1.3 Dynamic Trip Arrival Patterns Generation

To further illustrate the potentials of the proposed model in generating dynamic trip

patterns, the temporal travel arrival patterns estimated by the proposed model were

analyzed in Figure 16, 17, 18, 19. The pattern fits well with the expected daily

activities in the Austin area. We used a bar diagram and color maps to describe both

temporal and spatial characteristics of the trip arrivals inferred by LBSN data.

Figure 16 shows the different trends regarding three trip types. First, for all three

trip types, trip intensity during the nighttime is less than that during the daytime.

The activity level reaches a minimum between 0:00 to 4:00. Second, work trips are

captured during the AM peak and PM peak for commuting activities. For retail trips,

most of the daily trips began in the late morning. Finally, while the first activity peak



73

Figure 16: The Bi-hourly Trip Arrival Pattern.

of recreation trips can be found around 10:00 to 14:00, a noon activity peak is also

observed, which is consistent with lunch times. Another activity peak is found around

18:00 to 20:00, when most dining, shopping, and entertainment activities may often

occur.

Figure 17 shows the temporal zonal trip arrivals for work trips. We combined those

time windows that share the similar spatial variation in the study area. For example,

among the three different time intervals of 22:00-24:00, 0:00-2:00, 2:00-4:00, few work

trips were observed due to the regular pattern of commuting activities. The mean

value of zonal trip arrivals among the above time windows was generated to repre-

sent the zonal characters. For work trips, we found the AM peak and PM peak for

commuting activities in the downtown areas and industrial locations in the west.

Consistent with the temporal pattern observed from the bar chart in Figure 18, for

retail trips, most daily trips began in the late morning in the downtown area and

specific shopping mall locations in the north and west. On the other hand, few trip

arrivals were observed in the east, where most of the city’s wetlands and agricultural

areas are found. Moreover, the variation of the retail trips’ demand fits the regular
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Figure 17: Temporal Zonal Trip Arrivals Heat Map for Work Trips.
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Figure 18: Temporal Zonal Trip Arrivals Heat Map for Retail Trips.

opening hours of the retail services in the urban area.

For recreation trips, Foursquare data exhibits good coverage for the nighttime ac-

tivities in the City of Austin. In Figure 19, two dining activity peaks are observed

around noon and in the evening. The time periods coincide with the lunch and din-

ner rush times when people leave their morning and afternoon activities’ locations for

dining or entertainment places. Meanwhile, some residual travel can also be observed

between 22:00 to 24:00, indicating the times people are returning home from their

late night activities.
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Figure 19: Temporal Zonal Trip Arrivals Heat Map for Recreation Trips.

5.2 Evaluation Result for the Dynamic OD Estimation of

Manhattan Island of NYC

5.2.1 Zonal Functionality Profiling

To uncover the zone functions, 5 latent zone types based on the POIs and taxi datasets

were generated as shown in Table 1. It can be found that the POIs such as “Shop &

Service” and “Food” had a relatively high rank within different topics compared to

other POI categories. This reflects the fact that most trips reported by POI check-ins

are discretionary trips such as social/recreational activities. Meanwhile, the human

mobility pattern reflected by the taxi pickup and dropoff data contributed to generate

different topic. Five land use types guided by the New York City zoning and land

use data [50] were selected as zonal type labels: “Commercial-Retail”, “Commercial-

Work”, “Residence”, “Transportation Hub”, and “Open Space”. We mapped out in

Fig.5a the distribution of zonal types. The zonal types discovered indeed resemble the
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Table 12: Zonal Topic Classification.
Topic 1 Prob. Topic 2 Prob. Topic 3 Prob. Topic 4 Prob. Topic 5 Prob.
S 0.315 S 0.201 S 0.114 S 0.222 F 0.218
Sa9(D) 0.187 Mo09(D) 0.180 R 0.113 F 0.216 S 0.211
N 0.121 Th12(D) 0.160 Fr21(D) 0.113 Tu08(P) 0.122 N 0.201
F 0.098 Tu09(D) 0.156 Mo08(P) 0.112 T 0.121 A 0.195
Sa13(D) 0.080 F 0.134 Mo09(P) 0.112 Tu08(D) 0.084 O 0.178
We08(D) 0.077 N 0.104 Tu11(D) 0.109 Sa11(P) 0.044 Sa16(D) 0.017
We20(P) 0.067 P 0.038 F 0.108 A 0.019 C 0.017
Commercial-Retail Transportation Hub Residence Open Space Commercial-Work

S-Shop & Service; N-Nightlife Spot; T-Travel & Transport; F-Food; R-Residence; A-Art &
Entertainment; P- Professional & Other Building; O- Outdoor & Recreation; C- College &
University; DDHH(D) – day-of-week time-of-day taxi drop-offs; DDHH(A) – Day-of-week
time-of-day taxi pickups.

functional diversity of Manhattan’s census tracts: commercial-work area for “Finan-

cial District”, open space area “Central Park”, and Transportation Hub area “Penn

Station”.

5.2.2 Dynamic Travel Demand Estimation

Regarding the trip arrival patterns, the predicted trip arrivals from HPSS formulation

were aggregated hourly to generate the trip arrival patterns in Figure 20 blue bar

indicates the ground truth temporal distribution of trip arrival over the study area;

yellow bar indicates the predicted one. The calibrated results show that the predicted

trip arrival patterns from the proposed model match well with the ground truth

time-of-day trip arrival under the aggregation of 318 total zones. There are two

distinct peaks during the AM/PM periods and relatively few trips during the midday

and nighttime. Meanwhile, an average distribution can be found during the lunch

break. Furthermore, given the high variations of trips among 318 total zones, we plot

the modeled result versus the ground truth data to visualize estimation accuracy.

Each dot represents the reference value as x coordinate and the predicted value as

y coordinate. The regression line has a slope of 0.66 and the R2 = 0.80 under

statistically significant level P = 0.00.
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Figure 20: Model Performance of Trip Arrival Estimation.
(a) blue bar indicates the reference temporal distribution of trip arrival frequency

over the study area; yellow bar indicates the the predicted one. (b) Regression
analysis for the zonal trip arrival prediction over the entire day. each dot represents

the reference value as x coordinate and the predicted value as y coordinate.

5.2.3 Correlation Composition Analysis

For the dynamic OD estimation in Manhattan Island of New York City, one example

of the correlation analysis between check-in arrivals among TAZs is firstly illustrated

in Figure 21. The 60-min sequence of check-in arrivals collected from one commercial

area containing “Time Square” was selected. Its 14-min correlated sequence (shown

as the red curve) was used as one comparison sequence applied correlation analysis.

Three scenarios of compared sequences of check-in arrivals at origin locations collected

from one transportation area containing “Penn Station”, one residential area, and one

open space area containing “Central Park”(shown as the blue curve) was sorted by

the time delay value. The first scenario represents a strong positive correlation with

0.96 coefficient value and 24-min time delay. The sequence of check-in arrivals at the

destination location was to replicate the sequence at the origin location. It may be

expected that the AM commuting trips arrived in the commercial area contain one

stop located in the transportation hub in the early period. The second scenario shows

a strong negative correlation with -0.79 coefficient value and 25-min time delay. The

check-in arrivals’ reduction at the origin location contributed to one increased at the

destination location. People were leaving their home for the day time activities. It

generated a decreasing trip intensity locally and an increasing outflow to the destina-
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Figure 21: Correlation Composition Profile.

tion. Finally, the correlation of the check-in arrival sequence between the selected OD

pairs was lower than the calibrated threshold value in the third scenario. Therefore,

no correlation was considered between two locations.

5.2.4 OD Flow Patterns Comparison

Two indicators of the model performance were applied for OD estimation including

OD flow patterns and the regression analysis. First, the TAZ-level daily OD flow

patterns are evaluated. Figure 22 compares the OD flow patterns between the

modeled OD matrix and the NYMTC OD matrix. Each grid (i, j) in the diagram

displays the adjusted OD flow intensity Iij from TAZ i to TAZ j defined as the

following.

Iij = log10
T̄ij∑

i

∑
j T̄ij

(46)

where Iij was colored based on the value. Dark color represents high OD flow, and
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light color suggests low OD flow. Meanwhile, the relative error was applied to be

the measure of effectiveness to evaluate the model’s fitness. The color scale highlights

where the model overestimates (relative error ¿0) or underestimates (relative error ¡0)

the number of OD trips. It can be found that the model exhibits higher estimation

error within the higher 200 TAZs which are the ring area surrounding area “Central

Park”. The functional diversity in Manhattan Island consequences particular travel

demand patterns of areas such as business district for “Financial District”, recreation

area “Central Park”, and residential area in “Upper East & West Side”. While those

higher 200 TAZs share the similarity of relatively large size and various functional

characteristics (e.g. resident, school, work, recreation). It suggests the model may

need to consider the land use based travel demand modeling for the mixed functional-

ity within one TAZ. In general, the above comparisons indicate significant similarity

between the OD matrix generated from the model and the NYMTC OD matrix. Fur-

thermore, one regression analysis was conducted under the daily OD trips. Due to

the high variations of trips among the total of 318 ∗ 318 ∗ 96 OD pairs, we selected

the X-Y plot of the modeled result versus the reference data to indicate estimation

accuracy. A color scale for the density of dots distribution was used. The darker

color indicates the higher density. An R2 indicator was used to indicate the Pearson

correlation between the reference data and the modeled result. The regression line

and the equation have shown that the proposed model has a promising potential of

high-resolution dynamic OD estimation.

Furthermore, the daily OD flow patterns generated by the proposed model against

four baseline models were evaluated as shown in Figure 23. As the performance of

five OD estimation models is presented under four different constraints, a total 20

model-constraint combinations were explored. In Figure 4a c, the MAE and NRMSE

metrics indicate the zonal trip count differences between the ground truth and pre-

dicted OD matrices, while CR measures the similarity of trip length distribution
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Figure 22: OD Flow Patterns Comparison.
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Figure 23: Performance of OD estimation.

curve between the ground truth and predicted OD flow patterns. Since the constraint

models contain a sampling step from the multinomial distribution, we consider the

average metrics over 100 runs of the OD estimation. We observed that the OD esti-

mation model with a singly-constrained model (ACM/PCM) is better for estimating

the zonal OD trip counts, while the doubly-constrained model (DCM) better predicts

trip length distribution. Globally, the result obtained with the proposed PPMC-GM

model achieves the lowest MAE/NRMSE value and the highest CR value. We also

report the average trip length distribution curve in Figure 4d. As the different per-

formance indicator gives the different best combination of the OD estimation model

and constraint model, we refer to the best constrained OD estimation model when

mentioning the model in trip length distribution curve. The result shows that the

proposed model outperforms the baseline models in term of the consistency with the

ground truth trip length distribution.
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The trip length distribution curves are the same as those defined for calculating the

coincidence ratio, whose curves can illustrate how well the model output matches

the ground truth data. Along with the predicted daily trips, the predicted trips

within each hour are used to plot the temporal distribution of estimated OD matrix.

Figure 24, 25 demonstrates the comparison results between the survey and predicted

trips. Relatively consistent matching can be observed, although, the modeled data

slightly underestimates the number of trips in the early morning. The traffic diary

of taxi service performs less recurrent flow and more stochastic OD pairs during that

period. Figure 24, 25 illustrates the cumulative trip length distributions. It can

be observed that the trips predicted by the proposed time delay model accumulate

faster for shorter trips than the ground truth trips. In general, the two curves follow

the same paths and data points are located within proximity to one another in both

plots, demonstrating the feasibility of the proposed method.

5.2.5 Land Use based Time-of-day OD Flow Patterns Generation

Since agency travel demand data only have uniform sets of time-of-day factors for each

trip purpose, it cannot provide the time-of-day pattern for each land-use type. The

proposed model has the capability of evaluating the time-of-day patterns among OD

pairs of different land-use types. In the first application, the predicted time-of-day

zonal travel demand patterns are analyzed between OD pairs of several different land

use types. There are a total of 8 different non-vacant lane-use types in Manhattan,

NYC (Zola) as shown in Figure 26. Four land-use types are analyzed including the

residential area (R), the transportation hub area (TH), the open space area (OS), and

the commercial area. The commercial area type is further divided into commercial-

retail area (CR) and commercial-workplace area (CW) types.

Figure 26 reveals the dynamic OD patterns among 18 different land-use type combi-

nations originated from the six selected zones representing five different zonal land-use
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Figure 24: Trip length distributions.
(0 : 00 ∼ 12 : 00)
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Figure 25: Trip length distributions.
(12 : 00 ∼ 24 : 00)
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Figure 26: Sample distribution of time-of-day OD flow patterns between TAZs.

types. The following analysis will evaluate different “outflow” patterns from those

land-use types:

• Residential area: TAZ 81 is selected as one typical residential (R) area to ex-

plore its inflow and outflow pattern from/to other TAZs during the weekday.

A morning peak period can be observed for the outflow to the commercial-

workplace (CW) and to the transportation hub (TH) area that can respond to

the morning commuting activities. The most notable difference between R-CW

and R-TH OD pairs is the time delay between the peak of the R-CW trips

compared with that of the R-CW trips. This is consistent with the transit stop

during commuters’ trip from his/her home to the office. Meanwhile, the out-

flows to the commercial-retail (CR) area and open space (OS) area increase into

the day starting from the later morning period. This is consistent with typical

starting time of those trips avoiding rush hours. Finally, for R-CR trips, an-

other two fluctuations can be observed in mid-afternoon and evening for those

late afternoon shoppers and dinnertime activities.

• Commercial-retail area: TAZ 110 contains a major landmark “Time Square”
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in a commercial area. Trip patterns originate from this TAZ are analyzed

for different destination land-use types. For CR-R trips, it shows that the

model did capture the peaks indicating the home-returning activities before

and after dinnertime. Meanwhile, travelers leaving the nightlife spots and other

recreational attractions within the targeted TAZ also generated significant late-

night outflow trips to the residential area. For CR-TH trips, the afternoon

peak to the transportation hub area are observed coinciding with afternoon

commuting activities. For CR-OS trips, it keeps an average rate during the

daytime then decrease when entering the night.

• Commercial-workplace area: TAZ 5 is one of the TAZs located in the Financial

District of Manhattan. It contains workplaces along the “Wall Street”. This

TAZ represents a typical commercial-workplace area. The outflow patterns

clearly show the peak of CW-R trips happens in the PM period. Meanwhile,

for CW-TH trips, an evening peak indicates the use of transportation facilities

for home-returning activities. Finally, a lunch-time peak can be seen for CW-

OS trips. This may be the results of people resting in the nearby open space

area and recreational area during the lunch breaks.

• TAZs containing Transportation Hubs: TAZ 309 and TAZ 96 contains Port

Authority Bus Terminal (PABT) and Penn Station respectively. Both are rep-

resentative areas with transportation hubs. For TH-CW trips, an AM peak

is captured by the model indicating the commuting activities to workplace ar-

eas. For TH-R trips, a PM peak is also observed related to the home-returning

activities to residential areas. TH-CR trips include multiple peaks consistent

with late morning, late afternoon, and evening retail rush hours. It is noticeable

that the hours are not aligned with the morning and afternoon commuting rush

hours since the travelers mostly consist of casual travelers and tourists. TH-OS
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trips reach their peaks during the late afternoon and evening periods consistent

with touring and recreational activities at e.g. Central Park areas.

• Open space area: TAZ 177 is fully occupied by the “Central Park” classified

as open space. The outflow patterns indicate an early PM peak. This peak

may be explained as the office-returning activities caused by the CW-OS trips

during the lunch break. Meanwhile, the model captures the evening peaks for

both OS-TH and OS-R trips reflecting the home-returning activities. The OS-

CR trips exhibit high flow during most of the morning and early afternoon and

another peak around dinner time. This partially reflects the touring trip chains

such as visiting retails shops after visiting central park area.

Similar to the trip length distribution analysis, the zonal OD flow patterns are also

evaluated within each hour. The zonal flow pattern can be regarded as the visualiza-

tion of the O-D matrices. We aggregate the trip distribution of neighborhoods that

share the same land use labels. With the association of the origin and the destination

of each trajectory to the related neighborhoods, the dynamic urban displacements can

be explored by considering their semantics. As Table 4 describes the involved neigh-

borhoods regarding the land use classification of Manhattan Island of NYC, four land

use labels are selected to introduce the time-of-day trip distribution variation among

different land use area: residential, commercial, manufacturing and open space. The

semantic OD matrix of the four land use categories is built. A chord diagram is used

to visualize the Semantic OD matrix. Figure 27, 28 shows hourly trip distribution

pattern from 0:00 to 24:00.

As shown in Figure 8, the time of day variation pattern of trip distribution fits

well with the expected daily activities in the Manhattan area. First, during the

AM peak, the working trips from residential areas to commercial and manufacturing

areas is observed. It shows that the relevance of trajectories from residential areas

to commercial and manufacturing areas is considerable in AM peak. Furthermore,
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Figure 27: Chord diagrams of semantic Origin-Destination Matrix of taxi trip trajec-
tories with time of day variation.

(0 : 00 ∼ 12 : 00)
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Figure 28: Chord diagrams of semantic Origin-Destination Matrix of taxi trip trajec-
tories with time of day variation.

(12 : 00 ∼ 24 : 00)
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such relevance of these trajectories drops starting from lunch time. The trend reaches

its minimum during the night time for the trips from commercial and manufacturing

area to the residential area indicating people returning home from their late night

activities. Another noon activity peak is found for open space area, which is consistent

with lunch times.

5.2.6 Day-of-week time-of-day OD flow patterns analysis

Travel demand data from planning agencies mostly represents a typical workday and

can only use time-of-day factors to derive some information regarding the time-of-

day patterns but not Day-of-week patterns. In this analysis, the average hourly trip

counts in the dynamic OD matrices generated by the proposed model are aggregated

for six different periods in Figure 29 including 1) Early Morning (1-6am), AM Peak

(7-10am), AM off-peak (10am-12pm), Noon (12pm-1pm), PM Peak (4pm-6pm), Mid-

night (11pm-1am)). These periods focus on periods when dominant trip types can be

identified for empirical analysis (e.g. commuting trip during peak hours, lunch and

leisure trip during noon). The heat maps of the average hourly trip counts for each

period are shown as for different days of week in Figure ( 30, 30). Foursquare data

from July 11, 2016 to July 15, 2016 are used in this study.

In Figure 8a, the general trip counts over the study area is aggregated at different

day-of-week time-of-day period. Some interesting OD flow patterns are as follows:

• In early morning period, the predicted patterns capture the differences between

weekdays and weekend. It reflects more home-return activities related to peo-

ple’s late-night travel in weekends.

• The patterns in AM Peak/off-peak period shows the increase and then reduction

in weekday commuting activities.

• In Noon and PM Peak period, there is no significant difference between day-of-
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Figure 29: Day-of-week variation of OD flow patterns between TAZs and TAZ ID
distribution.

week patterns.

• The predicted patterns during midnight period vary among different weekdays

and weekends. The midnight activities reach a minimum on Monday. A gradual

increase of midnight trips within the study area for the rest of the weekdays.

Friday seeks the peak activity patterns among all weekdays reflecting people’s

leisure activities for Friday nights. For weekends, the midnight activity reach the

maximum on Saturday while having a significant decrease on Sunday indicating

people’s reduced travel activities to better prepare for the start the weekdays.

Figure 8b shows the zonal indexes used to determine OD matrices. The financial

district is around zone 10-40, Time Square area is around Zone 110 and the Central

Park area is around zone 180. One special zone is the zone containing Port Authority

Bus Terminal (Zone 309) which is the last zonal index for special consideration.

Figure ( 30, 30) shows the time of day variations of OD patterns in each day of the

week. Each individual figure shows a 318-by-318 OD matrix of the hourly average

pattern during a period of day on a day of week. Each row of subplots shows the time

periods from the same day of the week, and each column indicates a different period
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Figure 30: Day-of-week time-of-day variation of OD flow patterns between TAZs
during weekdays.
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Figure 31: Day-of-week time-of-day variation of OD flow patterns between TAZs
during weekends.

of day. The color scale of each day of week are kept the same for better comparison

of the relative patterns. As the overall fluctuation among each day of weeks can be

found in Figure 29(a), Figure ( 30, 30) mostly shows the spatial-temporal pattern

variations. Due to the sparsity of each hourly OD matrix (e.g. over 90% of OD pairs

contain 0 trip count during early morning on Monday) for better visualization to

identify hotspots, the visual OD matrix is processed by two steps.

• Logarithm normalization: the base-10 logarithm is applied to the percentage of

the trip count for each OD pair over total trips to normalize the scale due to

the high variations of OD trip percentages.

• Spatial smoothing: for each grid, we applied the average value of OD matrix

elements around the grid (e.g., 10*10 window) to magnify the concentration

patterns of “hot” activity zones to address the sparsity issue. The color schemes

will show high OD trip concentration with darker red color and lighter blue for

low OD trip concentration.

Table 13 summarizes the TAZs and activity types with significant activity concen-

tration in the identified patterns in Figure 9 and 10 (enclosed by Black boxes). Those
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Table 13: Zonal distributions of identified empirical patterns.
Pattern Origin TAZs

(Area)
Destination
TAZs (Area)

ODs with Peak Con-
centration

Activity Types

1 20 ∼ 150 (Fi-
nancial District,
Midtown)

1 150 (Lower
Manhattan,
Midtown)

96 (Penn Station) to
77 (Midtown), 108
to [110, 120] (Mid-
town), 22 (Financial
District) to [80,100]
(Midtown)

Early morning
nightlife

2 1 ∼ 200 (Lower
Manhattan,
Midtown, Upper
East Side, Upper
West Side)

1 ∼ 200 (Lower
Manhattan,
Midtown, Upper
East Side, Upper
West Side)

[90, 150] (Penn Sta-
tion, Midtown) to
5 (Wall Street), 96
(Penn Station) to
[110, 120] (Midtown)

Commuting trips

3 1 ∼ 200 (Lower
Manhattan,
Midtown, Upper
East Side, Upper
West Side)

1 ∼ 200 (Lower
Manhattan,
Midtown, Upper
East Side, Upper
West Side)

[90, 150] (Penn Sta-
tion, Midtown) to
5 (Wall Street), 96
(Penn Station) to
[110, 120] (Midtown)

Commuting
trips, tourism,
shopping, and
recreational trips

4 1 ∼ 200 (Lower
Manhattan,
Midtown, Upper
East Side, Up-
per West Side,
Central Park)

1 ∼ 200 (Lower
Manhattan,
Midtown, Upper
East Side, Up-
per West Side,
Central Park)

22 (Financial Dis-
trict) to 22, 120
(Midtown) to 177
(Central Park)

Lunch, mid-day
activities

5 20 ∼ 230 (Fi-
nancial District,
Midtown, Upper
East Side, Upper
West Side, Cen-
tral Park)

20 ∼ 230 (Fi-
nancial District,
Midtown, Upper
East Side, Upper
West Side, Cen-
tral Park)

22 (Financial Dis-
trict) to 22, 120
(Midtown) to 120, 22
to 120, 120 to 20

Commuting
trips, retail and
recreational
activities

6 20 ∼ 150 (Fi-
nancial District,
Midtown)

1 ∼ 230 (Lower
Manhattan,
Midtown, Upper
East Side, Up-
per West Side,
Central Park)

22 (Financial Dis-
trict) to 96 (Penn
Station), 120 (Mid-
town) to 96, 22 to 120

Nightlife activity

7 309 (Port Au-
thority Bus Ter-
minal)

20 ∼ 160 (Fi-
nancial District,
Midtown)

110 (Time Square) to
309 (Port Authority
Bus Terminal)

Commuting
trips, retail and
recreational
activities
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empirical patterns are further analyzed as follows.

• Empirical Pattern 1 (EP1): the early morning night activity returning pattern.

For the early morning period, we observed a gradual increasing pattern of ac-

tivity concentration from Monday to Sunday reflecting the returning trips from

late-night activities. Such trips are highly-concentrated in the Midtown area

of the city during weekdays and has spread out among both Lower Manhattan

and Midtown area of the city during weekends.

• Empirical Pattern 2 (EP2): the AM peak commuting pattern. Activity con-

centration during AM Peak period on weekdays mostly occur in the Midtown

area, Lower Manhattan area, Upper East and Upper West Side areas surround-

ing Central Park. The region contains workplace venues, retail venues, and

transportation hubs, which are often the final or intermediate destinations of

the commuting trips. Furthermore, although the general activity concentra-

tion during the same period on weekends is low, region surrounding TAZ 100

still attracted high number of trips since it contains the transportation hub

(ex. Pen Station in TAZ 96) and retail center (ex. Time Square in TAZ 110).

Furthermore, other areas such as TAZs 180 to 210 also contain high zonal trip

concentration as origin and destinations. These areas are around central park

area with high concentration of tourism and weekend recreational attractions

(museums, shopping, and parks), hotels, and residential places.

• Empirical Pattern 3 (EP3): the AM off-peak recreational pattern. For AM

off-peak among weekdays, the EP3 seems to have similar patterns as EP2 of

AM peak period but with more spread activity concentrations in OD matrix.

It should be noted that the similar patterns do not necessarily indicates that

the actual number of trips during AM peak period are similar to the actual

number of trips during AM off-peak period. Due to the time pressure of com-
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muting trips, travelers are less likely to participate in social network activities

therefore may not be as well captured as those off-peak trips. Reducing the

bias from those “silent trips” not indicated by LBSN will be part of our future

work. The OD concentration patterns during AM off-peak are similar show-

ing persistent tourism, shopping, and recreational activities among the general

areas of Port Authority Bus Terminal, Time Square and Central Park. The

concentration patterns during weekends shrinked to the Time Square patterns

indicating reduced outdoor activities around central park area.

• Empirical Pattern 4 (EP4): Noon lunch break patterns. For the noon period,

the OD concentration pattern occurs among Financial District and Midtown ar-

eas indicating popular lunch and coffee break locations during workdays. During

the weekends, the OD concentration pattern slightly scatters showing different

destination choices for lunch and mid-day activities during weekends. The most

concentrated areas located inside Midtown and Central Park area of the city.

• Empirical Pattern 5 (EP5): PM peak-hour commuting patterns. The PM peak-

hour pattern EP shows a symmetric distribution of high OD trip concentrations

among TAZs including financial district area, Midtown area, and Central Park

area. Even though the total amount of trips are different as shown in Figure

8, the weekdays and weekends share similar peak concentration locations. This

similarity can be explained from two aspects. On one hand, the mixed land-

use patterns in the areas ensures relative persistent travel demand in those

peak areas. One the other hand, there are significant and consistent amount

of tourism, shopping, and recreational travel making those peak concentration

areas hotspots throughout the week. Such observations shed lights on the lasting

congestion problem throughout weekdays and weekends in these areas.

• Empirical Pattern 6 (EP6): the midnight nightlife activity pattern. Com-
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pared with the early morning patterns (EP1), the full span of nightlife activity

hotspots can be observed. Many locations are consistent with those shown in

EP1 but the EP6 also have additional peaks which may be party and club

locations with earlier closing times.

• Empirical Pattern 7 (EP7): transportation hub pattern. A special analysis is

conducted for Zone 309 that contains the Port Authority Bus Terminal (PABT).

We give this zone the highest number so that all EP7s can be observed at right

edge of the diagrams. It is observed that the AM and PM peaks during workdays

have the highest intensity. But throughout the daytime period, the terminal is

quite busy handling trips originated from and destined to all over Manhattan

areas. It is also interesting to observe that the origin zone with the highest

concentration comes from TAZs around ID 100 in the Midtown area of the City

where the Time Square, Fifth Avenue shopping areas are located as the direct

points of interests around the PABT.

5.2.7 Transferability of the Proposed Travel Demand Model

The proposed models have been deployed at two different cities (New York City and

the City of Austin) and at different spatial aggregation levels (Census-tract-level and

neighborhood-level) to evaluate the ability of these models to predict travel behavior

in different areas. The parameters of the proposed models are not dependent on a

particular location and therefore have the potential for transferability then reduce the

cost of conducting transportation studies. For an empirical evaluation, a trip arrival

estimation model on the City of Austin is transferred to New York City using the

proposed approaches. One significant finding is a better model performance of travel

demand modeling for New York City data compared to the City of Austin data.

One reason is the functional diversity in New York City consequences particular

travel demand patterns of areas such as business district for “Financial District”
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area, recreation area “Central Park”, and residential area in “Upper East & West

Side”. Within each area, local TAZs share the similarity of zonal size and functional

characteristics (e.g. resident, school, work, recreation). In general, the results of

two experiments conducted at two cities indicate that the potential transferability of

social media data based travel demand models can be realized.
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6 Conclusion and Future Works

6.1 Summary of Chapters

Chapter 1 introduces the background information of travel demand modeling, OD

estimation and the roles of LBSN data in the travel demand data collection, the

objectives, and scope of research and major research contributions are also presented.

Chapter 2 is the literature review. It includes the review of travel demand modeling

and the research findings of LBSN application in trip arrival estimation and OD

estimation. The potentials of a stochastic point process, gravity model, and temporal

correlation analysis are also discussed.

Chapter 3 presents the methodology. The methodology includes three parts: the

zonal time-of-day variation modeling, Hawkes process trip arrival estimation and the

temporal correlation based gravity model.

Chapter 4 discusses the experiment design. Several important performance measures

are introduced and clearly defined. The data source and data processing procedure

are described. An experiment is conducted for the year 2010 in the City of Austin,

Texas and the year 2016 in Manhattan Island of NYC. The detailed procedures for

trip arrival estimation and dynamic OD estimation are illustrated in details. The

evaluation criteria for the proposed algorithms are also presented in details.

Chapter 5 introduces the calibration result and evaluation result. The model applica-

tion is divided into two parts, the dynamic trip arrivals, the dynamic OD estimation.

Chapter 6 conclude the research efforts and direction of future works.



101

6.2 Conclusion Remarks

For dynamic trip arrival estimation, compared to the baseline model, the proposed

Hawkes process based state-space model can better simulate the arriving process and

reduce the LBSN sampling error both temporally in a day and also categorically

among different trip purposes. The results indicate the unique potential of LBSN

data for studying dynamic trip arrival patterns. The proposed model outperforms

the simple statistical model in reproducing both the temporal and spatial patterns

of trip arrivals indicated by CAMPO data. A finer resolution, temporal evaluation

of the spatial pattern also reveals the consistency between estimated patterns and

daily human activity trends. For dynamic OD estimation, the proposed TDC gravity

model explores the time-delay correlation coefficient in the friction factor function

and the temporal zonal correlation for time-dependent trip distribution. The pro-

posed TDC gravity model was applied to the dataset that only contains the LBSN

trip arrival information by adapting the activity duration modeling. The proposed

model is applied to the LBSN data collected from the Foursquare platform in the

Manhattan area. The evaluation shows promising results with low MAE and MAPE

when the results are aggregated to be compared with agency OD and time of day fac-

tors from NYMTC. Furthermore, several empirical insights are obtained by analyzing

the dynamic OD patterns for different land use types.

6.3 Future Work

Future research of modeling dynamic travel demand patterns will focus on four ma-

jor directions. First, in the current study, only three types of trips are studied. The

temporal and spatial distribution of trip arrivals may vary for different trip purposes.

While the LBSN data do show the ability to reproduce trip arrival patterns for in-

dividual trip purposes, the sampling bias caused by different spatial, temporal, land

user, and LBSN check-in behavioral factors need a more detailed process to reduce
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estimation bias. The second direction is to integrate the LBSN data more tightly

with the trip-based and activity-based modeling process in order to explore better

its potential in addressing the data and calibration needs of prevailing travel demand

and activity models. Third, some empirical studies need to be conducted to vali-

date people’s check-in behaviors with respect to their actual arrival and departure

time and their willingness to check-in at different times of day and at different types

of venues. The check-ins’ time has the potential for inconsistency with respect to

actual arrival time. People may check-in early before they actually arrive at their

destinations. Since the LBSN check-in data is a user-posted data that contains the

activity record from the social networking users. The discrepancies between check-in

and general travel characteristics need to be considered for the sampling bias of travel

demand estimation. Finally, as one major component of the mode of travel in urban

traffic, taxi dataset, especially Uber/Lyft datasets, need to be discovered to develop

a more comprehensive model of urban travel demand patterns.
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[1] J. Barceló, L. Montero, L. Marqués, and C. Carmona, “Travel time forecasting
and dynamic origin-destination estimation for freeways based on bluetooth traf-
fic monitoring,” Transportation Research Record: Journal of the Transportation
Research Board, no. 2175, pp. 19–27, 2010.

[2] V. Vaze, C. Antoniou, Y. Wen, and M. Ben-Akiva, “Calibration of dynamic
traffic assignment models with point-to-point traffic surveillance,” Transporta-
tion Research Record: Journal of the Transportation Research Board, no. 2090,
pp. 1–9, 2009.

[3] P. G. Michalopoulos, “Vehicle detection video through image processing: the
autoscope system,” IEEE Transactions on vehicular technology, vol. 40, no. 1,
pp. 21–29, 1991.

[4] Z. Qiu, P. Cheng, J. Jin, and B. Ran, “Cellular probe technology applied in ad-
vanced traveller information system,” World Review of Intermodal Transporta-
tion Research, vol. 2, no. 2-3, pp. 247–260, 2009.

[5] L. de Grange, E. Fernández, and J. de Cea, “A consolidated model of trip distri-
bution,” Transportation Research Part E: Logistics and Transportation Review,
vol. 46, no. 1, pp. 61–75, 2010.

[6] M. Cremer and H. Keller, “A new class of dynamic methods for the identifica-
tion of origin-destination flows,” Transportation Research Part B: Methodologi-
cal, vol. 21, no. 2, pp. 117–132, 1987.

[7] N. Zheng, R. A. Waraich, K. W. Axhausen, and N. Geroliminis, “A dynamic
cordon pricing scheme combining the macroscopic fundamental diagram and an
agent-based traffic model,” Transportation Research Part A: Policy and Practice,
vol. 46, no. 8, pp. 1291–1303, 2012.

[8] L. Neudorff and K. McCabe, “Active traffic management (atm) feasibility and
screening guide,” tech. rep., 2015.

[9] N. W. Hu and P. J. Jin, “Dynamic trip attraction estimation with location
based social network data balancing between time of day variations and zonal
differences.,” ISPRS Annals of Photogrammetry, Remote Sensing & Spatial In-
formation Sciences, 2015.

[10] W. Hu and P. J. Jin, “An adaptive hawkes process formulation for estimating
time-of-day zonal trip arrivals with location-based social networking check-in
data,” Transportation Research Part C: Emerging Technologies, vol. 79, pp. 136–
155, 2017.

[11] P. J. Jin, F. Yang, M. Cebelak, B. Ran, and C. Walton, “Urban travel demand
analysis for austin tx usa using location-based social networking data,” in TRB
92nd Annual Meeting Compendium of Papers, 2013.



104

[12] P. J. Jin, M. Cebelak, F. Yang, J. Zhang, C. M. Walton, and B. Ran, “Location-
based social networking data: Exploration into use of doubly constrained grav-
ity model for origin–destination estimation,” Transportation Research Record,
vol. 2430, no. 1, pp. 72–82, 2014.

[13] F. H. Association et al., “Highway statistics series,” 2013.

[14] T. Lomax, D. Schrank, and B. Eisele, “Inconsistent traffic conditions forcing
texas commuters to allow even more extra time,” Urban Mobility Information,
2013.

[15] E. Schreffler, “Integrating active traffic and travel demand management: A holis-
tic approach to congestion management,” report, 2011.

[16] A. Black, “The chicago area transportation study: A case study of rational
planning,” Journal of Planning Education and Research, vol. 10, no. 1, pp. 27–
37, 1990.

[17] J. D. Carroll, Spatial interaction and the urban-metropolitan regional description.
1955.

[18] M. G. McNally, “The four step model,” 2000.

[19] D. Ettema, Activity-based travel demand modeling. Technische Universiteit Eind-
hoven, 1996.

[20] K. W. Axhausen and T. Gärling, “Activity-based approaches to travel analy-
sis: conceptual frameworks, models, and research problems,” Transport reviews,
vol. 12, no. 4, pp. 323–341, 1992.

[21] R. Schiffer, “Nchrp report 735: Long-distance and rural travel transferable pa-
rameters for statewide travel forecasting models,” Transportation Research Board
of the National Academies, Washington, DC, 2012.

[22] F. Yang, P. J. Jin, X. Wan, R. Li, and B. Ran, “Dynamic origin-destination
travel demand estimation using location based social networking data,” tech.
rep., 2014.

[23] B. Schaller, “Entry controls in taxi regulation: Implications of us and canadian
experience for taxi regulation and deregulation,” Transport policy, vol. 14, no. 6,
pp. 490–506, 2007.

[24] K. Wong, S. C. Wong, and H. Yang, “Modeling urban taxi services in congested
road networks with elastic demand,” Transportation Research Part B: Method-
ological, vol. 35, no. 9, pp. 819–842, 2001.

[25] M. Veloso, S. Phithakkitnukoon, and C. Bento, “Urban mobility study using
taxi traces,” in Proceedings of the 2011 international workshop on Trajectory
data mining and analysis, pp. 23–30, ACM, 2011.



105

[26] X. Zhan, X. Qian, and S. V. Ukkusuri, “Measuring the efficiency of urban taxi
service system,” UrbComb’14, 2014.

[27] E. F. Morgul, K. Ozbay, S. Iyer, and J. Holguin-Veras, “Commercial vehicle
travel time estimation in urban networks using gps data from multiple sources,”
in 92nd Annual Meeting of the Transportation Research Board, Washington, DC,
2013.

[28] M. A. Yazici, C. Kamga, and A. Singhal, “A big data driven model for taxi
drivers’ airport pick-up decisions in new york city,” in Big Data, 2013 IEEE
International Conference on, pp. 37–44, IEEE, 2013.

[29] X. Zhan, S. Hasan, S. V. Ukkusuri, and C. Kamga, “Urban link travel time
estimation using large-scale taxi data with partial information,” Transportation
Research Part C: Emerging Technologies, vol. 33, pp. 37–49, 2013.

[30] T. H. Rashidi, A. Mohammadian, and F. S. Koppelman, “Modeling interde-
pendencies between vehicle transaction, residential relocation and job change,”
Transportation, vol. 38, no. 6, p. 909, 2011.

[31] E. Miller, M. Lee-Gosselin, K. HABIB, C. Morency, M. Roorda, and A. Shalaby,
“Changing practices in data collection on the movement of people,” 2014.

[32] J. Wolf, R. Guensler, and W. Bachman, “Elimination of the travel diary: Ex-
periment to derive trip purpose from global positioning system travel data,”
Transportation Research Record: Journal of the Transportation Research Board,
no. 1768, pp. 125–134, 2001.

[33] N. Caceres, J. Wideberg, and F. Benitez, “Deriving origin–destination data from
a mobile phone network,” IET Intelligent Transport Systems, vol. 1, no. 1, pp. 15–
26, 2007.

[34] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui, “Exploring millions of footprints
in location sharing services.,” ICWSM, vol. 2011, pp. 81–88, 2011.
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