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ABSTRACT OF THE THESIS

Real-time imaging and automated segmentation of

cartilage from 2D ultrasound images.

by Prajna Ramesh Desai

Thesis Director: Ilker Hacihaliloglu

Knee osteoarthritis (OA), a chronic joint condition, occurs when the cartilage cush-

ion between the knee joints degrades over the age. The progression of OA is deter-

mined based on the cartilage degradation, therefore, cartilage thickness is an important

measure for diagnosis and classification of OA. Currently, magnetic resonance imaging

(MRI) is used as the gold standard imaging modality for the diagnosis of OA. However,

the routine clinical monitoring using MRI is limited as MRI is expensive, has high scan-

ning time, and limited accessibility. Recently, ultrasound (US) has shown its sensitivity

to evaluate the cartilage changes. US provides cost-effective, and real time imaging of

knee joint thus making it a potential alternative to MRI for routine clinical monitor-

ing of cartilage degeneration. However, low contrast, speckle noise, signal attenuation,

shadow artifacts, and being a user dependent imaging modality have prohibited the

widespread use of this imaging modality for diagnosing OA. Various studies have been

conducted to show the potential of US for routine clinical monitoring of OA. However,

the studies were only focused on qualitative assessment of US cartilage image and the

cartilage thickness was computed manually. This thesis, presents a fully automated

cartilage segmentation and thickness computation from enhanced 2D US knee cartilage

images.
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The proposed framework consists of: (1) cartilage image enhancement, (2) bone sur-

face segmentation for seed initialization, (3) seed-based cartilage segmentation, and (4)

automatic cartilage thickness measurement. Local phase image features, by designing

various bandpass quadrature filters, are extracted for enhancing the cartilage image,

and bone surfaces. The segmentation of enhanced bone surfaces is achieved using a

dynamic programming approach. The extracted bone surfaces are marked as an initial

seeds for region based segmentation algorithms. Cartilage segmentation is evaluated

using random walker (RW), watershed, and graph-cut methods. During the final step

the segmented cartilage regions are used to compute mean cartilage thickness.

The qualitative and quantitative validations are performed on 200 2D scans obtained

from ten healthy volunteers. Validation against expert manual segmentation achieved

mean dice similarity coefficient (DSC) of 0.90, 0.86, and 0.84 for RW, watershed, and

graph-cut respectively. The computed mean cartilage thickness ranged from 1.90 to

5.66 mm with the average value of 2.95 ±0.66mm. The Bland-Altman plots are used

to compare the mean thickness error among different type of segmentation algorithm.

This study presents a, fully automated US cartilage segmentation approach for

cartilage segmentation. Presented results show the potential of US for imaging cartilage.

The work will be invaluable for all future studies investigating US as an alternative

imaging modality in OA research with a specific focus on cartilage.
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Chapter 1

Introduction

1.1 Thesis Motivation

Knee osteoarthritis (OA), the most common wear and tear disease of the knee joint [1,2],

occurs when the cartilage between the joint degrades due to various reasons such as

growing age, obesity, inflammation [3], gender, race/ethnicity [4], physical activity,

bone density, joint laxity, genetics [5–7], or metabolic syndromes [8]. OA is classified as

primary or secondary based on the stage of joint damage. Primary OA occurs without

any cause whereas secondary OA occurs due to trauma, infection or metabolic changes.

Globally, OA is ranked fifth among all the disabilities [9] affecting approximately 10

percent of population over 60 years of age [10, 11]. In the United States around 30.8

million adults are suffering due to OA [12–17]. Knee OA is also associated with and

increased number of other chronic conditions such as obesity (90%), depression(30%),

hypertension(40%), and diabetes(15%) [18,19].

In addition to affecting the quality of life, OA has been a major economic burden

on people [13, 20–22]. Study [23], has reported that OA was the major cause of work

loss and affected more than 20 million individuals costing more than $100 billion annu-

ally to the United States economy. OA results in more than 25% of health care visits

contributing more than $27 billion in health care expenditures annually [15,21]. Even-

tually, most of the OA patients, around 54% of require total knee replacement (TKR)

and the rate of TKR procedures in United States has doubled for overall population

and tripled for individuals aged between 45 to 64 [24]. The average cost of a TKR

procedure ranges from $20,293 to $26,388 [20].
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1.2 Knee cartilage anatomy

The knee joint is covered with white, smooth, fibrous connective tissue cartilage know

as articular cartilage which covers the bone and protects the bone surface from rubbing

each other and gives mechanical support the knee joint. The articular cartilage covers

ends of the femur, the top of the tibia, and the back of the patella. The medial meniscus

and lateral meniscus which are attached to the tibia from inside and outside of the knee

respectively acts as the shock absorbent cushions. Figure 1.1a shows the cartilage of

the knee (the figures were generated using https://mindthegraph.com/).

(a) (b)

Figure 1.1: Knee cartilage anatomy. (a) Cartilage of the knee. (b) OA knee joint

The cartilage degradation occurs at the articulating surface and spreads to subchon-

dral space. The degradation leads to the clustering, and clonal expansion of chondro-

cytes, osteophyte formation or bone spur formation around the joints. The cartilage

loss results in pain which can arise from diseased tissue joint, synovium or from articular

structure, functional limitation, and affecting the quality of life. The affected articu-

lar cartilage produces nerve growth factors that sensitizes local pain fibers resulting in

chronic pain. Figure 1.1b shows the OA knee joint with degraded articular cartilage

and bone spurs.

The OA can be treated using pharmacological interventions, supportive or educa-

tional intervention, non-pharmacological interventions, and surgical interventions. The
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surgical intervention includes microfacture, chondrocyte implantation, arthroscopy and

debridement, joint replacement, joint fusion, or using soft tissue grafts [25,26].

1.3 Diagnosis of osteoarthritis

Early diagnosis of OA is very important for better understanding of disease progres-

sion and planning for treatment. This section will review various imaging modalities

available for OA diagnosis and monitoring. Traditionally, OA has been diagnosed using

planar X-ray radiography by measuring narrowing of the joint space width (JSW), or

visualizing osteophyte [27,28]. Recent development in other imaging modalities such as

magnetic resonance imaging (MRI), ultrasound (US), and optical coherence tomogra-

phy (OCT) have enhanced OA diagnosis and management through better visualization

of cartilage-bone interface and soft tissue depiction.

1.3.1 X-Ray Radiography

X-ray radiographs are used to understand the structural changes and disease progression

in routine clinical practice [27–31]. The knee joint is imaged using extended knee that

is bilateral antero-posterior image with weight bearing on both knees in full extension.

But due to lack of reproducibility, recently a new approach has been proposed where

the radiographs are acquired using various degree of knee flexion for better visualization

of intra-articular cartilage [32, 33]. Bony features, osteophyte formation, subchondral

sclerosis, and cysts can be visualized from collected radiographic data. Evaluation of

the joint space width (JSW) is obtained using these anatomical features. Osteophyte

and joint space narrowing (JSN) are the two important consideration for assessment

of OA. The early phase of OA is predicted using osteophyte whereas severity of OA is

assessed using JSN.

The severity of OA is estimated using Kellgren-Lawrence (KL) grading system [34–

37]. KL classifies each radiographs into one of five grades ranging from 0 to 4 as none

to severe. The KL grade of 0, depicts normal knee with no radiographic features of

OA whereas, grade 1 is defined as doubtful JSN but possible osteophyte. Grade 2
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indicates definite osteophyte and possible JSN. Multiple osteophyte, definite JSN, bone

deformity, and sclerosis forms grade 3, and grade 4 is defined by large osteophyte,

marked JSN, and severe sclerosis. Table 1.1 summarizes the KL grading system for the

assessment of knee OA.

Table 1.1: Summary of KL grading system for assessment of OA

KL Grade Complexity Definition

0 None No changes

1 Doubtful Doubtful JSN and possible osteophyte

2 Minimal Definite osteophyte and possible JSN

3 Moderate Multiple osteophyte, definite JSN

sclerosis, and possible bone deformation

4 Severe Large osteophyte, severe JSN, and sclerosis

definite bone deformation

Traditionally, JSW is computed using manual methods but recent studies are fo-

cused on semiautomatic and automated evaluation of JSW [30, 38]. The KL grading

system is limited due to linear changes appearing over the period of time. The short-

coming of using X-ray is that it is insensitive to the cartilage degradation, and lacks

the soft tissue depiction. In [39], it was shown that significant number of individuals

had cartilage loss diagnosed on MRI scans even though there was no prominent JSN

using radiographs. The study showed that radiographic progression was 91% specific

but only 23% sensitive to the cartilage loss. [39]. Finally, being exposed to ionizing

radiation is also another important healthy consideration for X-ray imaging.

1.3.2 Magnetic resonance imaging

Currently, MRI is used as the gold standard for early detection of knee OA. The study

[39], showed the prominence of MRI over radiographic assessment. MR images are

useful in both morphological and pathological evaluation of OA. Various MR imaging

techniques are used to visualize cartilage such as spin echo (SE), fast-spin echo (FSE),
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fat suspension or suppressed technique, 2D proton density-weighted or T2 weighted

fat suppressed FSE based on the contrast of the image, and Delayed Gadolinium-

Enhanced MRI (dGEMRIC) [40–46]. 2D proton density-weighted techniques is widely

used in clinical setting to achieve higher contrast between cartilage and subchondral

bone [43]. The progression of OA is evaluated using various factors like changes in

subchondral bone composition, bone marrow edema like lesion (BML’s), subchondral

cysts , subchondral bone attrition, and cartilage integrity [47–50]. Various studies have

shown the correlation between BML’s and OA progression [51–53] and subchondral

bone attrition is found in individuals with advanced or severe OA.

The quantitative assessment of cartilage is computed using cartilage volume but

its shown that the volume alone could not differentiate between healthy and diseased

cartilage as individuals with large bones have larger cartilage volume. Therefore, car-

tilage thickness is used to evaluate disease progression. Various semiautomatic and

automatic frameworks are proposed to segment the cartilage region and compute the

thickness from MR images [54–57]. Several semi quantitative morphological grading

system such as whole organ MRI score [58], knee OA scoring system [59], and Boston

Leeds OA knee scores [60] are used to evaluate knee joint. Even though MRI has shown

its validity for disease progression, its use in routine clinical monitoring is limited as

getting MRI scan is expensive which costs around $2000 to $3000 for a scan, high

scanning time, no real time evaluation, and limited accessibility.

1.3.3 Optical coherence tomography

Recently, OCT has shown its validity for diagnosis of OA [61–64]. OCT is a novel

imaging technology which is capable of near real time acquisition of image at high res-

olution of 4-15 µm. OCT is incorporated with arthroscopes to generate cross-sectional

images of articular cartilage. The OCT cartilage evaluation is associated with the colla-

gen orientation. Normal articular cartilage exhibits birefringence that can be detected

using light microscopy due to collagen orientation. A healthy cartilage is sensitive to

the polarization of incident light of OCT and thus the cartilage birefringence could
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be evaluated using this property. The studies [61, 64] have shown that OCT is sensi-

tive to the collagen structural changes caused due to degradation. Loss of polarization

and collagen disorientation are important markers that are observed prior to cartilage

degradation and fibrillation. The main limitation of using OCT is its invasive procedure

required to access the cartilage surface and high user dependency.

1.3.4 Ultrasound

Recently, US has shown its validity to detect the cartilage degradation [65–73] making

it possible alternative imaging for the routine clinical monitoring of knee OA. The study

[74–76] showed that US is capable of detecting synovial pathologies such as hypertrophy,

presence of synovial fluid, and vascularity. US allows non-invasive evaluation of cartilage

with higher sensitivity and specificity compared to X-ray radiography [77]. In [78],

the results showed that knee synovitis detected by US was correlated with advanced

radiographic OA.

Compared to radiography, US lacks ionizing radiations, can be used for multi-planar

image acquisition, is portable, easily accessible, allows dynamic assessment of moving

structure with real time data analysis, and less expensive as compared to other imaging

modalities [67]. The important benefit of using US over radiography includes detection

of soft-tissue structure and potential to detect small structural lesions [67, 68]. US is

able to evaluate patella-femoral joint including Hoffa pad and anterior femoral surface,

periatricular cyst lesions, medial, and lateral joint line which depicts osteophytes and

the meniscus. The literature review on validity of US for early detection of knee OA is

presented in next section.

1.4 Literature review

Various studies have showed the validity of US for the measurement of cartilage thick-

ness for the early diagnosis of knee OA [79–86]. The studies focused on comparing US

data with that of MRI and tried to analyze the sensitivity and accuracy of US to detect

the cartilage changes.
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The study conducted by Kazam and his team [79], investigated the validity of US

femoral cartilage thickness evaluation for routine clinical monitoring of OA. For the

study, the 2D femoral articular cartilage were acquired from 20 OA knee (6 women,

and 3 men), and 20 healthy knee (7 women, and 3 men). The cartilage thickness were

computed manually drawing a line between the cartilage bone interface and the synovial

space on original B-mode US images from lateral, central and medial cartilage regions

over the duration of three months. The 2D US images were evaluated for cartilage

visualization, grading, presence or absence of cartilage calcification, and presence of

bony irregularities. The obtained results showed the US can be used as an alternative

imaging modality for MRI to identify abnormalities in patients with knee pain.

In [81], Schmitz and his colleagues, conducted a study to understand the relationship

between MRI and US in the medial femoral condyle region. For this study, the mean

cartilage thickness were measured from left medial femoral cartilage via T1 weighted

MRI images. US scans were acquired from left knee using 10 MHz linear transducer with

knee placed in 90deg of flexion to acquire cartilage images from transverse, anterior,

posterior, and middle medial femoral regions. Ten healthy women and nine healthy

men with height, body weight, and age ranging from 1.66 to 1.8 m, 59.5 to 79.1 kg,

21.6 to 21.7 among women and men respectively were enrolled in the study. The

results from this study indicated that the cartilage thickness measured manually from

drawing line between bone surface and cartilage interface from transverse US were

positively correlated with posterior and MRI measurements. The middle and posterior

longitudinal US measures were correlated with their respective MRI regions. The results

showed the potential and validity of US as a viable clinical tool to assess the relative

cartilage thickness from medial and posterior medial femoral regions.

The study conducted by Saarakkala and colleagues [82], focused on investigating the

diagnostic performance of US to detect and grade the changes of articular cartilage using

arthroscopic as the gold standard. For the study, the knee scan was performed on forty

adult patients with knee fully flexed at 120deg from medial and lateral femoral condyle,

and the sulcus of femoral condyle followed by knee arthroscopy. The manually measured

cartilage thickness were marked based on the grading system generated based on the
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cartilage degradation. Table 1.2 refers to the grading standard used to characterize the

OA condition as normal to severe. Reported sensitivity, positive and negative predictive

values were 83%, 88-100%, and 24-46% respectively. The specificity measurements were

greatly significant at femoral sulcus and lateral condyle. The results indicated that the

correlation of severe grade cartilage changes between US and arthroscopy varied from

significant to insignificant. There was high correlation value at sulcus region followed

by medial and lateral condyle. The study concludes that US is a strong indicator for

cartilage degeneration and is a promising technique that can be used for screening the

degenerating cartilage thickness. Figure 1.2 shows the various US images with the

proposed grading condition.

Table 1.2: Summary of proposed grading system for assessment of US knee cartilage

thickness

Grade Complexity Definition

0 Normal US shows a sharp hyperechoic

anterior and posterior interface

1 Mild degenerative changes Loss of normal sharpness of cartilage interface

2A Moderate degenerative changes Less than 50% loss of cartilage

causing local thinning

2B Moderate More than 50% but less than 100% loss of cartilage

causing local thinning

3 Severe 100% local loss of cartilage tissue

Harkey and colleagues [83], focused their study to determine the magnitude of medial

femoral cartilage deformation detected by US followed by walking, and running in

twenty-five healthy individuals. For the study, medial femoral cartilage thickness were
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Figure 1.2: US based cartilage degradation grades. Reprinted from [82] with permission

from Elsevier.

measured manually before and after three separate thirty minute loading conditions

that were conducted on different days separated by one week. In controlled condition,

the subject was asked to remain seated for thirty minutes in a long sit position with

knee flexed at 140deg. For running and walking, the subjects ran/walked on treadmill

at self selected speed for thirty minutes. The cartilage deformation were computed as a

percentage change from pre to post loading condition in each case. The result indicated

that the deformation was evident between loaded condition i.e., after running and

walking compared to controlled condition. These measured thickness demonstrated the

sensitivity and reliability of US imaging modality for quantifying cartilage deformation.

The most recent studies are focused on enhancement and automated segmentation

of US knee cartilage for better assessment of cartilage thickness. Hossain and col-

leagues [84], proposed a new histogram equalization (HE) method, multipurpose beta
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optimized recursive bi-histogram equalization (MBORBHE), for contrast enhancement

of US knee cartilage scans. The advantage of proposed method is that, it considers

three different aspects such as brightness, contrast, and preservation of details whereas

the traditional HE methods consider only contrast in order to minimize the artifacts

for better visualization of the image. The aim of proposed enhancement method is to

detect the separation point for segmenting histogram to achieve better brightness and

preserve the details of the image. The qualitative and quantitative analyses were done

using signal to noise ratio (SNR = 12.37 dB), structure similarity index measurement

(0.8735), entropy (5.8831), and mean shift (mean value almost equal to original image

value) on scans acquired from twenty healthy subjects.

In [85], Faisal and team proposed a new segmentation and thickness computational

approach for 2D US knee cartilage. The locally statistical level set method (LSLSM)

was applied to locate the cartilage boundary to segment the cartilage region. The

segmentation results were validated with other level set methods such as local Gaussian

distribution fitting (LGDF) model, and locally weighted K-means variational level set

(WKVLS). The normal distance method was used to measure the cartilage thickness.

For the study, the US images were acquired from ten healthy subjects placing knee in

supine position fully flexed at 120deg. The qualitative and quantitative analysis was

computed on 80 data sets. The qualitative results indicate significant agreement with

Cohen’s κ coefficient of 0.73. The quantitative assessments were computed using DSC

and Hausdorff distance and average values of 0.91±0.01, and 6.21±0.59 was achieved

respectively. The measured average cartilage thickness ranged from 1.35 to 2.42 mm.

The results indicated the robustness of LSLSM method for cartilage segmentation but

it includes two user interactions for initial contour initialization for cartilage boundary

detection and extraction of cartilage regions from the surrounding soft tissue.

1.5 Problem statement

The degeneration of cartilage is observed as, the changes in cartilage thickness over

the time. Therefore, segmentation is necessary task to provide direct and accurate

measure of cartilage thickness from 2D US knee cartilage. Figure 1.3.a shows the
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femoral condylar cartilage region in US image which is depicted as a hypoechoic band

between cartilage bone interface and cartilage-soft tissue interface. Segmenting the

cartilage region from the 2D US knee cartilage image is difficult due to the presence of

surrounding soft tissues.

Figure 1.3: (a) In vivo US image depicting femoral condylar articular cartilage. (b)

Incorrect positioning of US transducer with respect to image plane showing poor image

quality.

Furthermore, due to user dependability of US while acquiring the scans (1.3.b),

speckle noise and intensity in homogeneity occurs in the acquired image. The low

contrast and speckle noise reduces the image quality, and image interpretation thus

complicating the segmentation process in the 2D US knee cartilage images.

Due to these limitations, US has not become a standard of care imaging modality

for cartilage imaging for diagnosis of OA. Robust and accurate computational methods

are required in order to extract the clinically important features from the collected US

data.
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1.6 Objective

The main objective of this thesis is to develop fully automated 2D US knee cartilage

segmentation methods as an initial step for screening and quantification of cartilage de-

generation. Ultimately our research is intended to advance the larger goal of developing

a framework where 2D and 3D ultrasound can be used of diagnosis and monitoring of

OA in the knee region.

The specific aims of thesis are listed below:

1. To develop an intensity invariant image enhancement method to address the low

contrast and speckle noise in 2D US knee cartilage images.

2. To develop a fully automated cartilage US image segmentation and thickness

computation method.

These outcomes achieved in this work will help us in the future design, development,

and evaluation of a US-based cartilage degeneration system which could provide a

potential alternative to MRI as an initial screening method.

1.7 Scope of the work

The scope of this work includes:

1. The enhancement, segmentation, and thickness computation of the knee cartilage

are performed in 2D US image.

2. The performance of the presented method are validated using qualitative and

quantitative evaluation metrics.

3. The performance of the presented method is compared to other existing methods

in the attempt of enhancement and segmentation of the 2D US knee cartilage.
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Chapter 2

Knee imaging using ultrasound, challenges

This section presents an overview of ultrasound (US) imaging of the knee, typical prob-

lems associated with US, and the importance of local phase information for processing

US data.

2.1 Bone surface and cartilage appearance in ultrasound

The normal US knee image consists of uniformly distributed bone profile, monotonous

echogenicity of articular cartilage, and presence of soft tissues. The articular cartilage

appears as a thick band of low intensity dark pixels between the soft tissue-cartilage

and cartilage-bone interfaces. Figure 2.1, shows the hypoechoic band of cartilage region

surrounded by the two hyperechoic or high intensity contours on either of the side.

The healthy bone profile in 2D B-mode US image is indicated by the high intensities

or bright pixels same as soft tissue interfaces. The bone surfaces appear to be blurred

and has some thickness associated with it (Figure 2.1). The introduced response thick-

ness depends on the positioning and inclination of US transducer with respect to the

imaging plane [1]. The response thickness is directly associated with the inclination,

that is, higher inclination produces higher response thickness.

2.2 Ultrasound imaging artifacts

US imaging is an essential part of clinical routine offering real-time imaging of patient

anatomy. In the last decades advances in US transducer and system development have

led to a substantial improvement of US image quality and to an ever increasing use in

clinical practice. However, US signal attenuation, high level of speckle noise, limited
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Figure 2.1: B-mode knee US image depicting cartilage region (shown with white ar-

rows), femoral bone surface (shown with red arrows) and soft tissue interfaces (shown

with yellow arrows).

FOV, and shadow artifacts are still unavoidable, and continue to challenge in the field

of medical image computing. In this section, we are discussing the effect of speckle

noise, shadow artifacts, and user dependency on the quality of 2D US knee image to

visualize cartilage region.

2.2.1 Speckle noise

The speckle noise, also known as ‘coherent interference artifact’ exhibits granular ap-

pearance of various size, and intensities [2,3]. In US, the sound wave is triggered at the

region of interest and the US waves that returns to the transducer is measured. The

US image is formed based on the strength of received pulse. When the US wave hits

the tissue or any structure that are of a size comparable to the US wavelength, then

the signal undergoes scattering or reflection based on the location. Depending on the

phase of the signal, the overall US signal undergoes constructive or destructive interfer-

ence resulting in increase or decrease in US signal energy that are received back to the

transducer. The superposition of these scattered echoes coming with random phases

and amplitude interfere with each other constructively or destructively, creating high
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Figure 2.2: Speckle appearance in 2D US knee cartilage image for different US machine

setting.

gray level of intensity of a bright(hyper echoic) and dark (hypo echoic) spots known as

speckles [4]. They are more granular at low acoustic frequency than at a high frequency.

The speckle noise is dependent on the phase sensitivity of a transducer, the total number

of scattered beams, and their density, the distance between objects and the transducer,

and the transducer acoustic frequency used to acquire the image [5]. Figure 2.2 shows

the speckle noise in US knee cartilage image. The speckle noise produces poor image

quality, including reduced spatial and contrast resolution . [2, 4]
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Table 2.1: Speed of sound and acoustic impedance of different tissues and organs

Medium Speed of sound c (m/s) Impedance Z (106 Rayls)

Air 330 0.0004

Water 1480 1.48

Lung 600 0.18

Liver 1555 1.65

Fat 1460 1.34

Muscle 1600 1.71

Kidney 1565 1.63

Bone 4080 7.8

2.2.2 Bone shadow artifact

As discussed in section 2.2, the US image is formed from the signals returned to the

transducer. The US wave propagation through any homogeneous medium is character-

ized by acoustic impedance Z, [6]. which describes the resistance encountered by US

waves as it passes through the tissue and medium. The impedance difference between

transducer and tissue can cause significant reflection of the emitted signal. When the

US signal hits a high impedance structure, the amplitude of the incident signal de-

creases, and te echoes returning from structure beyond the high impedance structure

will also deteriorates. The low intensity hypoechoic band that appears due to highly

attenuation structure is called as shadowing. As shown in Table 2.1, bone has highest

impedance value compared to other organ tissues. Most of the US signals are absorbed

by the bone surfaces, therefore, very less energy is available for the generation of sec-

ondary reflections [7]. The associated shadow appears to be more anechoic and clean

shadow [8]. Figure 2.3, shows the uniform low intensity bone shadow region beneath

the high intensity bone surface.
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Figure 2.3: B-mode knee US image depicting shadowing (arrows) .

2.2.3 Manual data collection using hand held ultrasound transducer

The quality of acquired US image depends on the placement of transducer at specific

plane to view the region of interest. The positioning and inclination angle of the

transducer can introduce human error by reflecting additional cartilage thickness in the

image. Figure 2.4 shows the quality of US image acquired due to proper and incorrect

positioning of the transducer with respect to the imaging surface.

Figure 2.4: US dependency on placement and positioning of transducer by the user:

(a) Correct alignment of US transducer. (b) Incorrect alignment of US transducer

introducing missing bone boundary denoted by red arrows.
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Due to above mentioned problems, manual segmentation and thickness measure-

ment of cartilage region from the US images may introduce additional user dependent

artifacts. The inaccurate localization of femoral surface while measuring cartilage thick-

ness manually may add up several millimeters of additional thickness thus reporting

inaccurate values.

2.3 Local phase image features

Local phase image features are crucial for analyzing the images, as they contribute

to the visual appearance of the image [9]. The phase of image contains edge and

detail information, which can be used to extract the features in an image. Figure 2.5,

shows the qualitative analysis of importance of phase information for analyzing the

image. The image is reconstructed using the phase and magnitude computed using the

Fourier transform of the two images. The figure indicates that the dominant feature

in the reconstructed image corresponds to the phase information of the image that was

combined.

The importance of phase information for feature extraction was demonstrated by

[10]. In [10], they proposed local energy model to detect the phase based features from

the image. The proposed method showed that, in the image, the prominent features

were found where the Fourier components were in maximal phase. Recently, there have

been few studies, who successfully demonstrated the use of local phase image features

to process US images for soft tissues, and to enhance the bone surface in US image for

detecting the fracture. [11–18]. The local phase information is extracted by filtering

the US data in frequency domain using band-pass quadrature filters [19].
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Figure 2.5: Importance of phase information. (a) B-mode US image of knee cartilage.

(b) B-mode US knee cartilage image acquired by changing the US transducer position.

(c) Image reconstructed by phase information from (a), and magnitude from (b). (d)

Image reconstructed by phase information from (b), and magnitude from (a).
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Chapter 3

Methods

This chapter presents the enhancement and region based segmentation algorithms pro-

posed to address the limitation in assessing the knee cartilage from US images. The

definitions of qualitative and quantitative metrics is explained further in this chapter.

The proposed framework consists of four main sub processes: cartilage image en-

hancement, femoral bone extraction for automated seed initialization, cartilage seg-

mentation using region based algorithms and mean thickness computation. The seed

initialization process is shown in dotted box which includes localization and extraction

of bone surface using local phase image filtering (Figure 3.1).

Figure 3.1: Flowchart of the proposed method
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3.1 Cartilage image enhancement

The main objective of image enhancement is to enhance the given input image so that

the output of the enhancement is suitable to the specific application. Enhancement of

the image takes place in contrast, edges, and boundaries based on the required output.

Enhancement will not increase the original information content of the data instead, it

will increase the dynamic range of specific features as chosen.

The traditional approaches to enhance 2D US image based on intensity variant

methods such as thresholding, gradient based methods have shown significant limita-

tions due to non-uniform intensity across the images [1–3]. In US image, the soft tissue,

and bone surfaces are denoted as high intensity values, therefore, using intensity variant

methods would enhance the soft tissue interface as well, which could hinder the segmen-

tation of bone-cartilage region. The use of local phase features allows the enhancement

of bone surfaces in the image irrespective of intensity variations and contribute towards

the appearance of the image. As discussed in section 2.3, the image phase information is

an important consideration for the interpretation of visual appearance or features in an

image. For local phase filtering, the Log-Gabor filters are used as they offer orientation

selectivity [4].

The Log-Gabor filter is a symmetry based filter which indicates even and odd re-

sponse of Fourier transform (FT). In 2D US images, the bone surface appears to be

blurred with non-uniform intensity throughout the bone surface. The US shows ridge

like edges at the bone boundaries, therefore, we look for ridge like features to enhance

the bone regions for enhancing the 2D US images. The 2D Log-Gabor filter function is

defined as [5],

G(ω, φ) = exp[− (log(ω/ω0))
2

2(log(k/ω0))2
+

(φ− φ0)2

2σφ
] (3.1)

Here, σφ = ∆φ/s evaluates the angular bandwidth ∆Ω as, ∆Ω = 2 × σφ
√

2× log2.

∆φ denotes the angular separation between neighboring orientation. In 2D Log-Gabor

filter, the radial component controls the frequency of band of the filter response and the

angular component controls the orientation of the filter response. When the orientation
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of the Log-Gabor filter is in phase with orientation of bone surface, it allows for the

enhancement of bone features from the US images while suppressing the other soft

tissue interfaces and US artifacts.

Let I(x) be the signal to be analyzed and M e
s (x) = real(F−1(G(ω))) and Mo

s (x) =

imag(G(ω)) denoting even and odd response of Log-Gabor filters then, the local am-

plitude As(x) and local phase φs(x) at given filter scale s is computed as,

es(x) = I(x) ∗M e
s (x); os(x) = Mo

s (x)

As(x) =
√
es(x)2 + os(x)2; φs(x) = arctan(os(x)/es(x))

(3.2)

Based on equation 3.2, the local phase information for 2D image is will result in the

response of the even filters (ers(x, y)) and odd filter (ors(x, y)), local phase based image

feature descriptor is constructed as the difference of these responses over a number of

scales as, [6]

USE(x, y) =

∑
r

∑
s[[ers(x, y)− ors(x, y)]− Tr]∑

r

∑
s

√
e2rs(x, y)− o2rs(x, y) + ε

. (3.3)

Where, e(x, y) and o(x, y) represents the Log-Gabor even and odd symmetry filter re-

sponse on input B-mode US image US(x,y). The r and s represents the filter orientation

and the scale, ε is a constant used to avoid division by zero and Tr is a noise dependent

threshold calculated as a specific number κ of standard deviation (σ) and the mean (µ)

of the local energy distribution due to noise as, T = µ+ κσ.

Since the enhancement is based on the local phased based feature, it is independent

of US machine settings. Figure 3.2 shows the enhanced USE(x, y) image, where the

bone-cartilage region is enhanced compared to the original B-mode US image. The

enhanced image is used as an input to automated bone surface segmentation which is

explained in next section.
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Figure 3.2: In vivo US image enhancement: Column (a) In vivo B-mode US image

US(x, y). Column (b) Enhanced US image USE(x, y).

3.2 Automated seed initialization

The selection of initial seed points are crucial step for image segmentation, as the overall

performance of the algorithm is dependent on the initial seeds. The seeds can be selected
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either manually or automatically. But for effective and accurate analysis of an image,

the process should involve least human interactions. While selecting the initial seed

points, we should note that, the selected seed pixels must be similar to its neighboring

pixels to allow for region growing, at least one seed pixel should be generated for every

region in the image, and seeds of different neighboring regions should not be connected

to each other [7]. In the proposed framework, automatically extracted femoral bone

surface is used as the initial seed for the region based segmentation algorithm. This

section presents the automated extraction of bone surface using local phase features,

and signal transmission maps.

3.2.1 Bone feature enhancement

As mentioned in earlier section, US scan profile is correlated with the orientation of the

transducer and appears ridge like edges along the scan lines. To localize and extract the

bone surface they are further enhanced using three different local phase features specif-

ically local phase tensor(LPT (x, y)), local weighted mean phase angle (LwPA(x, y))

and local phase energy (LPE(x, y)).

The LPT (x, y) is computed using gradient energy tensor (GET) for simultaneous

analysis of local phase and orientation [8]. The GET filter response is defined as,

GET (USDB(x, y)) = Teven + Todd =

GET11 GET12

GET21 GET22

 (3.4)

In the above equation, Teven and Todd represents the symmetric and asymmetric filter

responses Which are calculated as,

Teven = [H(USDB(x, y))][H(USDB(x, y))]T , (3.5)

Todd = −0.5× ([∇USDB(x, y)][∇∇2USDB(x, y)]T + [∇∇2USDB(x, y)]∇USDB(x, y)]T ).

(3.6)

Here theH,∇ and∇2 denotes the Hessian, Gradient and Laplacian operations. USDB(x, y)

is a distance weighted band-pass filtered US image which allows masking of soft tissue



35

interfaces that are closer to the transducer surface and allows to visualize the bone

surfaces that are located deeper in the image. Using even and odd symmetry responses

of Log-Gabor filter, The LPT (x, y) is determined as,

LPT (x, y) =
√
T 2
even + T 2

odd × cos(φ) (3.7)

In the above equation, φ represents the instantaneous phase obtained from the filter

responses [9].

The LPE(x, y) and LwPA(x, y) are computed to provide more bone surface repre-

sentation with less soft tissue interface. These two local features are calculated using

monogenic signal (USM (x, y)) [10], which is determined using Riesz filter, whose Fourier

domain representation is given as,

H1(u1, u2) =
u1√
u21 + u22

H2(u1, u2) =
u2√
u21 + u22

(3.8)

The USM (x, y) is formed by using band pass filtered LPT (x, y) and Riesz component

as,

USM (x, y) = [LPTB(x, y), LPTB(x, y)× h1(x, y), LPTB(x, y)× h2(x, y)]. (3.9)

Here, h1(x, y) and h2(x, y) represents the spatial domain response of Riesz filter. The

α-scale space derivative quadrature filters (ASSD) is used for band pass filtering of

LPT (x, y), as they have shown better edge detection on US images. The ASSD filter

component is defined as [11]:

ASSD(ω) =

ncωaexp(−(σω)2α) ω ≥ 0

0 otherwise
(3.10)

where, a represents the derivative parameter which is chosen to be a > 1 to satisfy the

DC condition. nc is the normalization constant and σ is the filter α-scale parameter.

The LPE(x, y) and LwPA(x, y) are constructed as,
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LPE(x, y) =
∑
sc

|USM1(x, y)| −
√
US2

M2(x, y) + US3
M2(x, y) (3.11)

LwPA(x, y) = arctan

∑
sc USM1(x, y)√∑

sc US
2
M1 +

∑
sc US

2
M2(x, y)

(3.12)

Where, sc represents the number of scales. The LPE(x, y) denotes the underlying shape

of bone boundary and LwPA(x, y) preserves all structural details of US image. The

final local phase bone image (LP (x, y)) is obtained by combining all the three phase

features as, LP (x, y) = LPT (x, y) × LPE(x, y) × LwPA(x, y). The combination of

the three phase feature images results in the suppression of soft tissue interfaces while

keeping the bone surfaces more compact and localized (Figure 3.3). The enhanced

image LP (x, y) image is used for enhancement and extraction of bone shadow regions.

3.2.2 Bone shadow enhancement

The bone shadow region enhancement is based on confidence map (CM) approach

using LP (x, y) image [9]. The framework, is modeled using US signal scattering and

attenuation information which are combined as,

CMLP (x, y) = USA(x, y)BSE(x, y) + (1− USA(x, y))ρ. (3.13)

Here CMLP (x, y) represents the CM image using [12], USA(x, y) is US signal transmis-

sion map, ρ is an echogenicity constant of surrounding tissue and BSE(x, y) is enhanced

bone shadow image. The USA(x, y) is minimized using below function as,

λ

2
||USA(x, y)− CMLP (x, y)||22 +

∑
j∈x
||Wjo(Dj ∗ USA(x, y))||1 (3.14)

Here, o represents element-wise multiplication, x is an index set and ∗ is convolu-

tion operator. Wj is a weighting matrix calculated as Wj(x, y) = exp(−|Dj(x, y) ∗

CMLP (x, y)|2). Dj is computed using higher order differential filters which enhances

bone features in local regions while suppressing image noise. The BSE(x, y) is com-

puted using USA(x, y) as,
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Figure 3.3: Local phase based bone surface enhancement. (a) Input original B-mode US

image US(x, y). (b) Enhanced US image USE(x, y). (c) Local phase tensor LPT (x, y)

image. (d) Local phase energy LPE(x, y) image. (e) Local weighted mean phase angle

LwPA(x, y) image. (f) Local phase LP (x, y) image.

BSE(x, y) = [(CMLP (x, y)− ρ)/[max(USA(x, y), ε)]δ] + ρ (3.15)

Here δ is tissue attenuation coefficient, and ε is a constant used to avoid the divide by

zero. The BSE(x, y) and LP (x, y) images are used during the bone surface segmenta-

tion method which is explained in the next section.
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3.2.3 Bone surface extraction

The bone surface is segmented by assuming that for each scan line in US image, we

have only one pixel that belongs to the bone surface [6]. The bone localization de-

noted as, BL(s) is obtained by minimizing the cost function that is composed of in-

ternal energy(Eint(x, y)) and external energy (Eext(x, y)). The Eint(x, y) is determined

by masking LP (x, y) image with BSE(x, y) which provides the probability map and

Eext(x, y) is achieved by dividing the US image into three regions marked as bone re-

gion, bone less region and the region between the two i.e., jump region which are defined

as,

Eext(i, j) =


ν||dBLds ||

2 + ξ||d2BL
ds2
||2 + ς Bone region

JumpCost Jump region

νD2
1 + ξD2

2 Boneless region

(3.16)

Here, ν and ξ are weights of smoothness and curvature and ς is a negative scalar to

ensure the bone connectivity. BL(s) is minimized using local-phase based image guided

dynamic programming as,

BLmin(i, j) = Eint(i, j) +mink[BLmin(k, j − 1) + Eext(k, j)], (3.17)

Here, BLmin(i, j) denotes the minimum cost function moving from first column to

the pixel in the ith row and jth column and the k represents the row index of the

image. Figure 3.4 shows enhanced bone shadow image, where the overlying soft tissues

above the bone surface is represented with uniform intensity, and the shadow region is

represented with low intensity depicting low probability value that the signal reaching

back to the transducer imaging array. The BSE(x, y) shows clear transition from soft

tissue interface to bone surface by depicting a sharp intensity change between two

interfaces.
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Figure 3.4: Bone surface segmentation (a) Enhanced bone shadow image BSE(x,y)

(low intensity is denoted with blue, and high intensity is denoted with dark red color

coding). (b) Bone probability image. (c) Regions showing bone, boneless, and jump.

(d) Segmented bone surface overlaid on original B-mode US image

3.3 Cartilage segmentation

The main objective of image segmentation is to gather information for an easy analysis

of features in the image. A good segmentation will provide early disease diagnosis

and better clinical planning. There are several image segmentation techniques such as

threshold, boundary based, region based and hybrid techniques and among them region

based technique is widely used for the improved convergence and robustness [13]. The

region based technique uses homogeneity property of the region i.e., all the neighboring

pixels within one region have similar value or belongs to a specific region. The overall

idea is to split an image into region of maximum homogeneity [14–17]. The selection

of homogeneity criteria is important for segmentation performance. The user imposes

hard constraints for segmentation by defining pixels as seeds that form the part of the

region of interest (object) and background.

In this work, the cartilage segmentation is evaluated using RW, watershed and

graph-cut methods for as they have shown better performance with prior shape knowl-

edge. Watershed is widely used in medical image segmentation because of its ease

of use, lower computing time and complete division of image with low contrast and

weak boundaries. The segmented results provide closed contours thus eliminating



40

the post processing such as contour joining [18–22]. RW segmentation is advanta-

geous over non-smoothness of the boundaries(metrication error), preference for shorter

boundaries(shrinking bias), boundary length regularization and number of initial seeds

[17, 23–25]. The graph-cuts are gaining its importance in image segmentation due to

its good accuracy and performance [26–28].

3.3.1 Random walker image segmentation

In RW, the input image is represented as the graph G = (V,E) where V corresponds

to pixels and E are the edges connecting each pair of adjacent pixels [23]. The edges

are weighted based on the pixel intensities and gradient values such that the edge with

the highest gradient value is weighted more. The weighted function wij is given as,

wij = exp(− β(gi − gj)2), ∀(i,j) = 1, N ; ij (3.18)

Where gi and gj are the pixel intensities at each pixel vi and vj , and β is a constant.

The user labels pixels as foreground and background then each unlabeled pixel release a

random walk, which is classified based on the probability values of each unlabeled pixel

reaching to the labeled pixel. The probability for each unlabeled pixel xU is calculated

as,

(LU + γIU )xU = −BTxs + γλ (3.19)

Where L represents the Laplacian of the graph, I is the identity matrix a, x is the

probability vector of each pixel, λ is an optional vector of prior probabilities weighted

by γ and U, S denotes unlabeled and labeled seeds.

3.3.2 Watershed image segmentation

In watershed algorithm, the gray image is transformed as a topographic relief. The

objective of watershed transform is to find the ‘catchment basins’ and ‘watershed ridge

lines’ which divides the neighboring catchment basin in the image [21]. In traditional

watershed algorithm, a hole is punched in each local minima of the relief and the entire

topography is flooded from below of the relief by letting the water through the hole

rising at the uniform rate. When the rising water in catchment basin is about to merge,
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a dam is built around the basin to stop the merging. These dam boundaries corresponds

to the divide lines of watershed.

A marker controlled watershed algorithm is an enhancement of the traditional wa-

tershed algorithm which defines a marker and a segmentation function for efficient

segmentation of objects with boundaries expressed as ridges. The markers are placed

as an internal (foreground) associated with the region of interest and external marker

(background) associated with the backgrounds. In traditional watershed, the catchment

basin of image function f is defined as Xhmax obtained after the recursion of following

function,

Xhmin
= Thmin

(f)

Xh+1 = MINh+1 ∪ IZTh+1(f)(Xh), hmin ≤ h < hmax

(3.20)

Where Th is the threshold, MINh is the union of all regional minima. In marker based

watershed, we impose minima to the image function f at specific locations denoted as

Markers (M). The new image function g is defined as,

g(p) =

hmin−1 if p ∈Mf(p) otherwise
(3.21)

Here p represents the pixel coordinates and hmin−1 represents a new value dedicated

for initial markers and the new recursion function is given as,

Xhmin−1
= Thmin−1

(g)

Xh+1 = IZTh+1(g)(Xh), hmin−1 ≤ h < hmax

(3.22)

3.3.3 Graph-cut image segmentation

The graph-cut segmentation algorithm [26] is similar to the RW, where the input 2D

image is represented as an undirected graph G = (V,E), which is defined as the set

of nodes and set of undirected edges (E), where each pair of the connected node is

represented by a single edge e = p, q ∈ E The graph consists of two special terminal

nodes S(source) and T (sink) that represents the foreground and background labels.

Each edge e ∈ E is assigned a non-negative weight we. The cut divides the nodes

between the terminals where, s− t is a subset of edges C ∈ E such that the terminal S
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and T get separated as, G = (V,E/C). The cost of cut is given as the sum of weights

on edges , which is represented as

|C| =
∑
e∈C

we (3.23)

3.3.4 Seed initialization

The ideal seed points for region based segmentation methods must lie inside the region,

and should be near the center of the region of interest. The distance from the foreground

seed pixel to its neighboring pixels should be small enough to allow continuous growing.

The automatically extracted bone surfaces are used as initial seeds for the cartilage

segmentation algorithm. For the RW segmentation algorithm, the background seeds

were initialized by translating the automated segmented bone surfaces 4.7 mm towards

the bone shadow region and 4.7 mm towards the soft tissue region above the cartilage.

Foreground regions were initialized by translating the bone surface 1.1 mm towards

the US transducer inside the cartilage region. For watershed algorithm, the internal

markers were initialized with the translation of 1.4 mm and the external marker were

initialized on the localized bone surface and with the translation of 5.5 mm above the

cartilage region. For the graph-cut algorithm, the foreground seeds were marked by

translating the bone surface by 1.18 mm and background seeds with the translation

of 4.4 mm above and below the cartilage region. Figure 3.5 shows the initial seed

placement for the segmentation algorithm.
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Figure 3.5: Seed Initialization on enhanced US image (Red: Foreground seeds, Green:

background seeds): (a) Foreground and background seeds RW segmentation algorithm.

(b) Internal and external markers for watershed algorithm. (c) Foreground and back-

ground seeds for graph-cut algorithm.

3.4 Cartilage thickness measurement

Accurate and precise measurement of cartilage thickness is an important tool for devel-

opment of new methods for earlier diagnosis of OA. Traditionally, the cartilage thickness

is measured manually by drawing a line between the cartilage region and synovial space.

Various approaches have been proposed for automatic measurement of cartilage thick-

ness from MRI knee scans [29–36]. In [29], the thickness is defined using Euclidean

distance between bone cartilage interface and cartilage-synovium interface. In another

approach, Laplace’s equation is used where the top and bottom surfaces are set to fixed

potentials. The Laplace equation is solved for cartilage volume to obtain a scalar field

that divides the cartilage into sub-layers. The cartilage thickness is defined by length

of streamlines that connect points on inter and outer interfaces of the cartilage. In [31],

the thickness is computed using deformable models. Here the thickness is evaluated at

every node of the surface mesh of the cartilage. Here, [33] the thickness was measured

using proximity method to compute the shortest distance from each point on a given

surface to the closest point on the opposing surface. The most common approach is

defining the thickness as the distance between two points where the normal vector in

a central axis intersects the upper and lower surfaces [35]. This method determines
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the thickness distribution throughout the surface independent of section location and

orientation. In normal vector method, each cartilage plate is defined as different object,

surface-to-surface measurements are generated by forcing the normal vectors of oppo-

site sides to be almost anti-parallel to each other. This leads to the artifacts to edges

of cartilage plates.

In this framework, the cartilage thickness was computed using Euclidean distance

map from the segmented image. The distance values corresponding to the automatically

extracted cartilage boundary are averaged for the final thickness calculation. This

analysis was repeated for the manually segmented and all automatically segmented

cartilage regions during quantitative validation. Figure 3.6 shows example distance

map image, and the extracted cartilage boundary used during thickness calculation.

Figure 3.6: Cartilage thickness measurement: (a) Manual thickness measurement using

ten anatomical landmarks shown with yellow arrows. (b) Automatically segmented

cartilage. (c) Distance map obtained from the segmented image shown in (b), Red

pixels denote the cartilage boundary.

The distance is computed at each pixel from the segmented results and the aver-

age cartilage thickness is reported. Measured thickness were compared to manually

measured thickness using Bland-Altman plots.
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3.5 Data Acquisition

The written consent was obtained prior to US scan for total 200 2D images from 10

healthy volunteers. The scans were acquired using 14-5 MHz linear US transducer with

a depth setting of 3.5 cm. During the scan, the knee was positioned at 90◦ of flexion,

and US transducer was placed transversely in line with the medial and femoral condyle

above the superior edge of the patella (Figure 3.7). Different scans of cartilage were

obtained from both left and right knee joints. The results of the proposed framework

were validated using dice similarity coefficient (DSC) against the manually segmented

image by an expert. The proposed method was implemented in MATLAB R2017a

software package and run on a 3.40 GHz Intel CoreTM i7-4770 CPU, 16 GB RAM

windows PC. For bone shadow enhancement, λ=2 and tissue echogenicity constant ρ

was chosen as 90% of the maximum intensity value of CMLP (x, y). η=2, β=90 and

γ=0.03 were set as constant to obtain CM(x, y) and CMLP (x, y). For bone localization,

ν=50, ξ=100, ς=0.15, Jumpcost=0.8, D1 = D2 =1 were set as constant values.

Figure 3.7: Participant setup and US probe positioning.
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3.6 Quantitative analysis

The quality of segmentation results can be interpreted using quantitative measurements

to validate its accuracy and reproducibility. The quantitative evaluation is done to

evaluate following segmentation effects [38].

Under segmentation: Two or more regions of the foreground object is represented

by a single region in the segmentation result.

Over segmentation: A region of the interest or foreground object is represented by

two or more regions in the segmentation result.

The quantitative measurement of automated segmented results with ground truth

segmentation data that were manually generated are evaluated using 2×2 decision ma-

trix [39]. The decision matrix defines the term true positive (TP), true negative (TN),

false positive (FP) and false negative (FP). Table 3.1 refers to the definition of decision

matrix terms.

Table 3.1: Summary of decision matrix terms and their definitions

Value Definition

TP Pixels correctly detected as foreground

FP Pixels falsely detected as foreground

TN Pixels correctly detected as background

FN Pixels falsely detected as background

Recall and precision are two important measures to validate segmentation algo-

rithms as they are sensitive to under and over segmentation [38]. Recall indicates the

proportion of boundary pixels in the ground truth that are successfully detected by

the segmentation algorithm. Whereas precision evaluates the proportion of boundary

pixels in the automatic segmentation that corresponds to the boundary pixels in the

ground truth results. The precision and recall are computed as [38],

Precision =
TP

TP + FP
(3.24)
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Recall =
TP

TP + FN
(3.25)

Lower precision value indicates over segmentation and lower recall value indicates under

segmentation. The comparison of ground truth and segmentation algorithm can yield

higher values of precision and recall if the boundaries of both segmentation results agree

in location and level of details. Sometimes, the higher recall value might consider false

positive and high precision value might miss some true annotations, therefore, the two

measurements are combined to form a single unit known as F-score which is defined as

the harmonic mean of precision and recall as,

F − score =
2.P ricision.Recall

Pricision+Recall
(3.26)

3.6.1 Dice similarity coefficient

Dice similarity coefficient (DSC) measures similarity between the resulting and expected

data sets. Let A be the resulting data set and B be the expected or ground truth data,

then DSC is calculated as [40],

Dice(A,B) = 2.
|A ∩B|
|A|+ |B|

(3.27)

DSC computes spatial over index and reproducibility validation metric for two image

sets. The value of DSC ranges from 0 to 1, indicating no spatial overlap to complete

overlap between two sets of binary segmentation results.

3.6.2 Bland-Altman plots

Bland-Altman (B&A) plots also known as difference plots is a method of data plot-

ting used in analyzing or correlating the agreement between two methods measuring

same parameters [41]. B&A describes quantitative measurements by studying the mean

difference and constructing limits of agreements with in 95% of the differences of the

second method. The B&A is a scatter plot XY, where X axis shows the average of the

both quantitative measure and Y axis shows the difference between the two measure-

ments.
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Chapter 4

Results and Discussion

In this chapter, results and their interpretations on the cartilage segmentation and

thickness computation from 2D US images are presented. In section 4.1, results and

discussion on cartilage segmentation and thickness evaluation from enhanced B-mode

US images using different region based segmentation algorithms are provided. The

segmentation results are evaluated using DSC, precision, recall, and F-score metrics.

Both qualitative, and quantitative evaluations are performed to compare the seg-

mentation results obtained by algorithms and performed manually by an expert on 200

data sets. The cartilage thickness measurement on a set of segmented images using

proximity method is evaluated.

4.1 Cartilage segmentation

In this section, a comparison of different region based segmentation algorithms on en-

hanced B-mode US image and original B-mode US image is provided. In this framework,

segmentation results were evaluated from RW, watershed, and graph-cut segmentation

algorithms.

4.1.1 Cartilage segmentation qualitative results

The qualitative results of automatically extracted cartilage region using enhanced US

image as input to the segmentation algorithm is shown in Figure 4.1, and Figure 4.2.

The segmentation results depicts clear visualization of cartilage region from 2D US im-

age. All the three segmentation algorithms yield satisfying results, while RW obtained

results are better than watershed, and graph-cut.
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Figure 4.1: Qualitative results showing segmented cartilage from enhanced US image:

Automatically segmented cartilage overlaid on the manual segmentation ( Red: False

negative, Cyan: False positive, White: Manually segmented cartilage): (a) Manual

segmentation overlaid on RW. (b) Manual segmentation overlaid on watershed. (c)

Manual segmentation overlaid on graph-cut. Segmented cartilage region overlaid on

original B-mode US: (d) RW segmented cartilage overlaid on B-mode US. (e) Watershed

segmented cartilage overlaid on B-mode US. (f) graph-cut segmented cartilage overlaid

on B-mode US.

The qualitative results of automatically extracted cartilage region from original B-

mode US images are shown in Figure 4.3. The qualitative results indicate, all the three

segmentation algorithms yield the over segmentation of cartilage from the image and

there is segmentation leak near the edges.

The qualitative results indicates the improved segmentation quality when using

enhanced US image as an input to the segmentation methods.
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Figure 4.2: Segmented cartilage region overlaid on original B-mode US: Column (a)

original B-mode US image. Column (b) Manually segmented cartilage overlaid on

B-mode US. Column (c) RW segmented cartilage overlaid on B-mode US. Column

(d) Watershed segmented cartilage overlaid on B-mode US. Column (e) Graph-cut

segmented cartilage overlaid on B-mode US.

4.1.2 Cartilage segmentation quantitative results

The total computational time for segmentation using RW, watershed, and graph-cut are

11.08, 10.53, and 11.51 seconds respectively. Quantitative analysis were computed from

the manual outline and the segmented cartilage region from total data sets of 200 images

using DSC, precision, recall, and F-score metrics. Figure 4.4a, illustrate a quantitative

comparison of RW, watershed, and graph-cut segmentation results validated using DSC

values over the total data sets of 200 images using enhanced US images as an input

to the segmentation methods. The figure shows, the computed DSC values ranged

between 0.82 and 0.93, 0.70 and 0.93, and 0.76 and 0.89 for RW, watershed, and graph-

cut respectively. The higher value of DSC metric indicates that the two comparing

segmentation results have a good agreement in size and location, which correspond to
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Figure 4.3: Qualitative results of cartilage segmentation on original B-mode US: Manual

segmented cartilage overlaid on the automatically segmented by using ( Red: False

negative, Cyan: False positive, White: Manually segmented cartilage): (a) RW. (b)

Watershed. (c) Graph-cut. Segmented cartilage region overlaid on original B-mode

US: (d) RW segmented cartilage overlaid on B-mode US. (e) Watershed segmented

cartilage overlaid on B-mode US. (f) graph-cut segmented cartilage overlaid on B-mode

US.

more accurate segmentation results.

The mean and standard deviation of DSC, precision, recall, and F-score values for

all the three methods over the total data sets of 200 images are summarized in Table

4.1, the mean DSC values were 0.90, 0.86, and 0.84 for RW, watershed, and graph-

cut respectively. The table illustrates the satisfactory segmentation outcomes for all

available data sets. The table indicates that RW segmentation algorithm, obtained

higher average value for DSC metric for all available data sets than watershed and

graph-cut.
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Figure 4.4: Dice similarity coefficient plots for comparison of segmentation algorithm

with respect to manual segmentation. (a) DSC measures for different methods over a

set of 200 B-mode US images evaluated using enhanced US images. (b) DSC measures

for different methods over a set of 200 B-mode US images evaluated using original

B-mode US images.

Table 4.1: Quantitative analysis using enhanced B-mode US images as the input to the

segmentation methods.

Methods DSC Precision Recall F-score

Mean ± SD

RW 0.90 ±0.01 0.88 0.92 0.90

Watershed 0.86 ± 0.04 0.82 0.91 0.86

Graph-cut 0.84 ± 0.03 0.81 0.87 0.84

The DSC values decreased to 0.79, 0.65, and 0.76 for RW, watershed, and graph-cut

respectively when using original B-mode US images as an input to the segmentation

methods (Table 4.2). The lower precision, and recall values indicates that the segmen-

tation algorithm has returned less relevant values compared to the enhanced US images.

Figure 4.4b, shows the distribution of DSC for segmentation algorithms over 200 orig-

inal B-mode image. Investigating the plot, we can see that the region between image

index values 90-200 have low DSC results due to the low contrast cartilage present in
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the collected data (Figure 4.5). By comparing the quantitative analysis presented in

Table 4.1 and 4.2, we can say that the cartilage segmentation using enhanced US im-

ages as an input to the segmentation method yields better accuracy, since our proposed

enhancement method is intensity invariant, and it results in the enhancement of these

low contrast scans and improves the segmentation accuracy for those scans.

Table 4.2: Quantitative analysis using original B-mode US images as the input to the

segmentation methods.

Methods DSC Precision Recall F-score

Mean ± SD

RW 0.79 ± 0.1 0.80 0.80 0.79

Watershed 0.65 ± 0.2 0.59 0.79 0.66

Graph-cut 0.76± 0.09 0.72 0.82 0.76

Figure 4.5: Example input images with poor DSC results. Top row shows the low

contrast input images used in segmenting cartilage. Bottom row shows the enhanced

cartilage bone surface used to evaluate segmentation result.
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4.2 Cartilage thickness computation

The measured cartilage thickness ranged from 1.9 to 5.6. Table 4.3 shows the mean

and standard deviation of average cartilage thickness obtained by manual measurement,

automated measurement on segmented results obtained by manual, RW, watershed, and

graph-cut methods. The results indicated by Table 4.3 shows the robustness of RW

segmentation algorithm, to accurately locate and segment the cartilage region from the

2D US knee cartilage images. Quantitative results also indicate that there is a 0.15

mm difference between the thickness measurements obtained using manual landmark

selection and manual segmentation. This is due to variation in manual measurements,

which is expected as manual labeling of US data being an error prone procedure.

Table 4.3: Cartilage thickness measurement.

Method Image Mean ± SD (mm)

Manual measurement Original B-mode 2.95 ± 0.66

Automated measurement Manual Segmentation 3.1 ± 0.68

RW 3.14 ± 0.46

Watershed 3.23 ± 1.21

Graph-cut 3.78 ± 0.35

The computed cartilage thickness measured by proximity method on segmented

results obtained by RW, watershed, and graph-cut was compared using Bland-Altman

(B/A) plots with the results obtained by manual thickness measurement on original

B-mode US images. Figure 4.6, shows the B/A plots for thickness comparison between

manually computed thickness and thickness computed on segmentation results obtained

from RW, watershed, and graph-cuts. The mean error or the difference between the

manual landmark thickness calculation all the pairs of thickness computations were

-0.15 mm (±0.11 mm), -0.18 mm (±0.45 mm), -0.28 mm (±1.36 mm), and -0.83 mm

(± 0.49 mm) for the manual segmentation, RW, watershed, and graph-cut methods

respectively. The lower mean value depicts that there is no significant ply between the
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two methods. The B/A plot indicates that most of the measured thickness difference

lie within 95% limit of agreement i.e., 0.071 to -0.37, 0.69 to -1.07, 2.38 to -2.95,

and 0.14 to -1.80 for manual/manual segmented, manual/RW, manual/watershed, and

manual/graph-cut pair.

Figure 4.6: Bland-Altman plots for thickness comparison obtained by manual outline

and thickness obtained using segmented cartilage region.

4.3 Discussion

The orientation of the transducer with respect to the imaged cartilage plane affects the

appearance of the collected cartilage scans. The inclination of transducer may produce

reduced contrast in the cartilage image, high levels of speckle noise, and limited visu-

alization of bone surface. In this thesis, the 2D US knee cartilage were segmented with
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and without enhancement. Without enhancement, the region based segmentation algo-

rithm fails to properly distinguish the cartilage region from other surrounding tissues.

The use of intensity invariant cartilage US image enhancement addresses the limitation

of previously proposed intensity and gradient dependent enhancement methods.

In this thesis, the segmentation results from RW, watershed, and graph-cuts are

evaluated. The qualitative and quantitative analysis indicates that among the three,

RW shows more robustness and accurate results compared to expert manual segmen-

tation. The performance of segmentation are evaluated using precision and recall. The

lower recall value indicates under segmentation and lower precision value indicates over

segmentation. Therefore, it is desired to have higher values for both precision and

recall. RW segmentation algorithm has achieved 0.83 and 0.91 average precision and

recall value which indicates that the segmentation algorithm has returned most relevant

cartilage information. The comparison result of Bland-Altman plots thickness compu-

tation plot shows better agreement between thickness measured by RW segmentation

results and manual measurement.

The validity of proposed method is compared with previously proposed MBORBHE

cartilage enhancement method [2]. The histogram equalization based approach ad-

dressed the limitation of traditional HE by preserving the information of brightness

shift, detail loss, and proper contrast enhancement, However, the framework also en-

hanced the soft tissue interface that is present in the 2D US image. Figure 4.7 shows

the enhancement of cartilage region using proposed local phased feature method and

MBORBHE. From the figure, it is evident that in HE based method, the soft tissues

are enhanced greatly while in proposed method we can see a clear visualization of

cartilage-bone interface.
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Figure 4.7: 2D US image enhancement. (a) original B-mode US image. (b) MBORBHE

enhanced US image. (c) Proposed local phase based enhanced US image.

The HE enhanced US images were used to segment the cartilage. But the extracted

bone surfaces were not continuous, due to the noise present in the image. The initial

seeds for region based segmentation algorithm are shown in Figure 4.8. The broken

seeds, failed to segment the cartilage region from 2D US images.

Figure 4.8: Seed Initialization on HE based enhanced US image (Red: Foreground seeds,

Green: background seeds): (a) Foreground and background seeds RW segmentation

algorithm. (b) Internal and external markers for watershed algorithm. (c) Foreground

and background seeds for graph-cut algorithm.

In [3], the author proposed a segmentation algorithm using The locally statisti-

cal level set method (LSLSM). The obtained results showed the robustness of LSLSM

method for cartilage segmentation. However, the method includes two user interactions
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for initial contour initialization for cartilage boundary detection and extraction of carti-

lage regions from the surrounding soft tissue. The total computational time for LSLSM

based segmentation algorithm was 13 seconds which is high for real time assessment.

The comparison with other previously proposed method indicate that, the frame-

work presented in this thesis has potential application in determining cartilage degen-

eration.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

The cartilage segmentation and thickness computation method for the 2-D ultrasound

images have been presented in this thesis. The performance of cartilage segmentation

and thickness computation method have been evaluated qualitatively and quantita-

tively.

The 2D US knee cartilage segmentation using region based segmentation algorithms

on local phase feature based enhanced US images have been proposed. The local phase

cartilage enhancement is based on intensity invariant method which is used to enhance

the cartilage-bone interface by suppressing the surrounding soft tissue interfaces. The

enhanced cartilage images are used to aromatically extract the bone surface using US

signal transmission maps and dynamic programming approach. The extracted bone

surfaces are marked as initial seeds for the region based segmentation algorithm. The

segmentation results from RW, watershed, and graph-cuts are evaluated and the qual-

itative and quantitative results are analyzed using DSC, precision, recall, and F-score

metrics. The cartilage thickness is computed from segmented results using proxim-

ity approach. The thickness measured using each segmentation approach is compared

to manually measured cartilage thickness using Bland-Altman plots. The framework

presented in this thesis successfully addressed the limitation of US imaging modality

in terms of low contrast and speckle noise and making US a valid modality for early

screening and routine clinical monitoring of OA.

The segmentation results were computed using RW, watershed, and graph-cuts from

US knee cartilage indicated that, the RW yielded better results than watershed and

graph-cuts. The overall statistics of evaluation metrics of DSC, precision, recall, and
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F-score indicates that RW has a consistent and good quality of segmentation results for

the overall data set of images. The computed cartilage thickness on segmented cartilage

indicates the agility, reproducibility, and agreement of the segmentation algorithm in

segmenting various cartilage thickness.

The possibility of cartilage segmentation and thickness computation from 2D US

knee images using proposed method directs the potential application of the method for

the assessment and analysis knee cartilage degradation in US images. The proposed

method can be used to evaluate cartilage degeneration by assessing cartilage thick-

ness quantified over a particular time duration by comparing the cartilage thickness at

certain time interval to have a better treatment plan to treat long term OA.

5.2 Limitations

The important consideration for the proposed cartilage segmentation using region based

algorithm is the placement of initial seeds. The segmentation algorithm is sensitive to

the initial seeds, here the seeds are placed based on prior knowledge of cartilage shape.

Therefore, selecting an accurate and optimized placement of seeds. In this experiment,

no OA images have been used for the segmentation, therefore, a rigorous analysis is

needed on OA knee cartilage scans. The average computational time for the framework

is 11 sec, which can cause delay in real time processing. The future work will include

optimization of framework, to decrease the processing time.

5.3 Future work

The presented framework in this thesis can be extended to various studies for early

detection and classification of OA as described below.

5.3.1 Assessment of degree of cartilage degeneration

The proposed method has shown its validity to effectively measure the cartilage thick-

ness. The computed cartilage thickness is useful to classify the cartilage as normal, and

pathological OA cartilage using expert knowledge. We can generate cartilage grading
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system for OA, based on the degree of degeneration as normal to severe. The change

in cartilage thickness ca be assessed over the time at a certain time interval. As OA is

slow progressive disease, cartilage degradation might occur after a long time therefore,

monitoring the occurrence need follow up scans over time.

5.3.2 Assessment of tracked ultrasound volume for increased field of

view

The 2D US knee cartilage segmentation and thickness computation are limited to a

specific plane of view obtained by the 2-D ultrasound probe. The field of view (FOV)

of US depends on the transducer width. To increase the FOV, and to have better

visualization of cartilage region through medial and lateral condyle, we can use tracked

volume. This provides the visualization of cartilage from axial, lateral, and sagittal

plane. The segmented results can be used to reconstruct 3D model of cartilage.

5.3.3 Assessment of ultrasound image using deep learning segmenta-

tion algorithm

The proposed work can be extended to segment the US knee images using deep learning

algorithms on more data sets collected from subjects with different age group, gender,

including OA knee images.

5.3.4 Comparison of cartilage thickness between ultrasound and mag-

netic resonance imaging

There is no proper comparison available between the cartilage thickness measured using

US and MRI. This study can be extended to compare the cartilage thickness measured

using proposed method with that of cartilage thickness computed from MRI. The com-

parison results can indicate the accuracy and validity of US for screening knee OA.



67

List of publications

1. Prajna Ramesh Desai and Ilker Hacihaliloglu, “Enhancement and automated seg-

mentation of ultrasound knee cartilage for early diagnosis of knee osteoarthritis,”

in Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium

on. IEEE, 2018, pp. 1471-1474



68

Appendix A: Ethics approval letter



69



70



7/26/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 1/6

ELSEVIER LICENSE
 TERMS AND CONDITIONS

Jul 26, 2018

 
This Agreement between Ms. Prajna Desai ("You") and Elsevier ("Elsevier") consists of
your license details and the terms and conditions provided by Elsevier and Copyright
Clearance Center.

License Number 4396591444346

License date Jul 26, 2018

Licensed Content Publisher Elsevier

Licensed Content Publication Osteoarthritis and Cartilage

Licensed Content Title Diagnostic performance of knee ultrasonography for detecting
degenerative changes of articular cartilage

Licensed Content Author S. Saarakkala,P. Waris,V. Waris,I. Tarkiainen,E. Karvanen,J.
Aarnio,J.M. Koski

Licensed Content Date May 1, 2012

Licensed Content Volume 20

Licensed Content Issue 5

Licensed Content Pages 6

Start Page 376

End Page 381

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of
figures/tables/illustrations

1

Format electronic

Are you the author of this
Elsevier article?

No

Will you be translating? No

Original figure numbers Figure 2

Title of your
thesis/dissertation

Enhancement and automated segmentation of ultrasound knee
cartilage for early diagnosis of knee osteoarthritis

Expected completion date Aug 2018

Estimated size (number of
pages)

70

Requestor Location Ms. Prajna Desai
 5 McEvoy R

  
 
EDISON, NJ 08837

 United States
 Attn: Ms. Prajna Desai

Publisher Tax ID 98-0397604

Total 0.00 USD

Terms and Conditions

71

Appendix B: Elsevier license for Figure 1.2


