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Abstract 

Attention-deficit/hyperactivity disorder (ADHD) poses debilitating impairments in the 

neurobehavioral systems governing reward learning and processing—key components 

involved in the control of motivated behaviors. Specifically, ADHD may rely on a system 

favoring cue-driven habits—rooted in the posterior putamen—over caudate and 

prefrontal cortex-driven goal-directed behaviors. Impaired motivational control may 

accompany corticostriatal dysfunction in ADHD (e.g., altered connectivity and striatal 

recruitment). A comprehensive investigation of habits is necessary to reveal potential 

motivational control irregularities that may be associated with ADHD. However, 

although contemporary tools enable the study of habit formation, examining existing 

habits and their disruption has not garnered comparable interest, necessitating the 

development of novel methods to capture well-learned habits. This dissertation discusses 
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the neurobehavioral mechanisms of habit formation in ADHD in Study 1, develops a 

novel Go/NoGo task that capitalizes on existing green-Go and red-NoGo associations to 

study well-learned habit expression and disruption in Study 2, and applies these new tools 

to investigate habit expression and disruption as a function of ADHD symptomology in 

Study 3. In Study 1, despite similarities in behavioral assays of habit formation across 

groups, adults with ADHD displayed corticostriatal connectivity abnormalities and the 

hyper-recruitment of the posterior putamen during reward learning, alluding to a neural 

signature of impaired top-down control. In Study 2, participants exhibited outcome-

insensitive habits when managing the Go/NoGo task, in that green-Go and red-NoGo 

associations elicited impairments in accuracy when incongruent with daily experiences. 

These habits were broken when participants were provided performance-tracking 

information paired with extrinsic reward, electing motivational enhancement via 

feedback as a candidate strategy for restoring goal-directed control. In Study 3, the novel 

task evoked well-learned habit expression and disruption independent of ADHD 

symptomology in the general population, although a modest association between 

hyperactivity and the prepotency to execute well-learned habits was evident. In sum, 

these studies suggest that ADHD presents corticostriatal abnormalities during 

motivational control, provide novel tools to better examine well-established habits and 

their disruption, and highlight the importance of investigating motivational systems in 

ADHD to better understanding its pathophysiology.
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Motivational Control in Attention-Deficit/Hyperactivity Disorder: 

A Neurobehavioral and Translational Account 

Chapter 1: Introduction 

 “…the future does not exist for me—only the present…”  

When colloquially asked about how attention-deficit/hyperactivity disorder 

(ADHD) affected their daily functioning, my study participants disclosed scenarios as 

heterogeneous as the diagnostic criteria of ADHD. Several stories in line with the name 

of the disorder involved lost keys, ruined dates, missed birthdays, and impulsive 

decisions resulting in great emotional and financial distress. The handpicked quote above, 

however, struck me as peculiar—the participant had inadvertently summarized years of 

research that links ADHD to reward-related deficits. These studies will be examined in 

detail throughout this dissertation to situate a relevant yet understudied research 

avenue—the motivational underpinnings of ADHD. The quote serves as a reminder for 

the real-world implications of my work, and represents the overarching question I have 

attempted to answer during my doctoral training: do the reward-related deficits in ADHD 

extend to impairments in motivation, and if so, can function be restored? In other words, 

can the future (e.g., the motivation to pursue goals) become relevant in ADHD? 

ADHD: a prevalent public health concern 

ADHD is a prevalent childhood onset disorder afflicting 3.4% of individuals 

across the globe (Fayyad et al., 2007). The disorder is most notably associated with 

debilitating symptoms of inattention and hyperactivity (American Psychiatric 

Association, 2013). These symptoms manifest as fidgeting and restlessness, difficulty 

organizing and managing tasks, struggling to follow directions at work and/or school, and 
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a degree of distractibility that significantly hinders daily activities (Barkley, 2005). 

ADHD shows pronounced comorbidities with a wide range of psychiatric illnesses, such 

as oppositional defiant disorder, conduct disorder, substance use disorder, generalized 

anxiety disorder, autism spectrum disorder, and depression (Steinhausen et al., 2006). 

Fifty-two percent of individuals with ADHD are documented to display at least one 

comorbidity, while 26.2% are expected to possess two or more comorbidities (Jensen and 

Steinhausen, 2015). Not only is this prevalent childhood-onset disorder devastating for 

affected children, ADHD is known to persist into adulthood in approximately 38% of 

cases (Kessler et al., 2005). Therefore, studying adults with ADHD is paramount for 

understanding the disorder’s mechanisms, and consequentially developing effective 

diagnostic and therapeutic strategies.  

In the search for translational insight, examining the neural systems underlying 

ADHD is essential. Neurobiological investigations of ADHD have revealed reward-

related abnormalities, illustrating that the disorder’s scope of impact extends beyond 

attention and hyperactivity (Castellanos and Tannock, 2002). The experiments in this 

dissertation will test the reach of the reward-related deficits associated with ADHD by 

targeting the control of motivated behaviors. In three studies, I examine the 

neurobehavioral mechanisms underlying motivational control in ADHD, develop a novel 

tool to study and remediate impairments in motivational control, and deploy this method 

to better understand these processes in the context of ADHD symptomology. 

Evidence of reward processing deficits in ADHD 

In addition to the detrimental manifestations of attentional and impulsive 

symptoms impacting work, academic achievement, and interpersonal relationships, 
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ADHD has also been associated with reward learning impairments (Johansen et al., 

2009). Several studies investigating cognitive function in children with ADHD have 

pinpointed difficulties adaptively processing reward (Douglas and Parry, 1983; Luman et 

al., 2008; Slusarek et al., 2001). Corroborating our participant’s excerpt, developmental 

research has highlighted maladaptive delay discounting, such that children with ADHD 

exhibit delay aversion that results in choosing small immediate rewards at the expense of 

larger delayed rewards (Antrop et al., 2006; Kuntsi et al., 2001; Sonuga-Barke et al., 

1992). Given the highly persistent nature of the disorder, these delay discounting 

abnormalities are also apparent in adults with ADHD (Kessler et al., 2005; Marx et al., 

2010; Marx, Höpcke, Berger, Wandschneider, & Herpertz, 2013). Overall, ADHD has 

been characterized by a wide array of reward-related behavioral deficits, ranging from 

processing to interacting with rewarding outcomes.  

ADHD and the brain’s reward circuitry 

The reward-related dysfunctions exhibited in ADHD are accompanied by 

abnormalities in the brain’s reward circuitry (Castellanos and Tannock, 2002). In brief, 

the brain’s reward circuitry regulates via cortico-striatal pathways the process of 

experiencing rewarding outcomes, learning from these rewards, and directing behaviors 

to maximize gain while minimizing loss (Daw et al., 2011; Delgado, 2007; Galvan et al., 

2005; Knutson et al., 2001). Aberrant reward processing is largely reflected in the ADHD 

brain as decreased striatal signals during reward anticipation and altered orbitofrontal 

cortex (OFC) activation at reward receipt (Furukawa et al., 2014; Plichta et al., 2009; 

Plichta and Scheres, 2014; Scheres et al., 2007; Ströhle et al., 2008). Wilbertz and 

colleagues have shown that medial OFC activity tracks reward magnitude in 
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neurotypicals (NT), yet there exists a neural signature of overvaluing smaller rewards and 

undervaluing larger rewards in ADHD (Wilbertz et al., 2012). ADHD has been 

associated with pronounced OFC activity during reward delivery (Ströhle et al., 2008; 

von Rhein et al., 2015), though conflicting findings have also been reported, with no 

group differences in OFC recruitment (Stoy et al., 2011). Independent of directionality in 

OFC activation, the prevailing conclusion is that reward sensitivity in this region shows 

atypicality (Cubillo et al., 2012; Edel et al., 2013; Ströhle et al., 2008; von Rhein et al., 

2015; Wilbertz et al., 2012), in cadence with the notion that ADHD is associated with a 

dysfunctional reward circuitry.  

The evidence for irregularities in the brain’s reward systems is further supported 

by studies examining neural connectivity and structural morphometry. ADHD is 

associated with heightened orbitofrontal-cingular communication (Tomasi and Volkow, 

2012), as well as volumetric reductions in the anterior cingulate region (Carmona et al., 

2005; Frodl and Skokauskas, 2012; Makris et al., 2007; Seidman et al., 2006, 2011). 

These cortical regions are imperative for adaptive reward processing and value-based 

decision making (Bush et al., 2002; Cole and Schneider, 2007). A basis for our 

motivational control stance on examining ADHD stems from such cortical anomalies. In 

short, ADHD’s neural irregularities allude to a compromise in reward-driven interactions 

with the environment.  

When discussing reward-related abnormalities, it is also worth considering 

ADHD’s diagnostic profile, which comprises inattentive, hyperactive, and combined 

presentations (American Psychiatric Association, 2013). In particular, a topic of debate 

has been reward signaling differences across presentations. For instance, the hyperactive 
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symptom presentation has been associated with diminished ventral striatal activity during 

reward anticipation (Scheres et al., 2007). Yet, another report documented no such 

differences, with comparable neural signaling across ADHD and NT groups (Stoy et al., 

2011). To further complicate the link between distinct presentations and neural signaling, 

researchers have later suggested that inattentiveness, not hyperactivity, is a key predictor 

of diminished ventral striatal signaling during reward anticipation (Edel et al., 2013). 

Extending presentation differences further, this study also reports hyper-responsiveness 

of the OFC during reward receipt in the combined presentation compared to the 

inattentive presentation. These inconsistencies in the neural signature of reward-related 

processes suggest that both inattentive and hyperactive domains may play a role in 

neurobehavioral systems in ADHD. Therefore, a symptom-based approach that can 

interrogate domain-specific contributions to potential deficits may be a valuable tool in 

examining this disorder. 

Neural systems of motivational control: habitual and goal-directed behaviors 

A critical region in the brain’s reward circuitry—the striatum—is consistently 

implicated in the execution of motivated behaviors (Balleine and O’Doherty, 2009; 

Delgado, 2007; Dolan and Dayan, 2013; Knowlton and Patterson, 2016). In brief, the 

striatum receives dopaminergic input from the midbrain during appetitive events 

(O’Doherty et al., 2004; Schultz, 1997), and via the pallidum and thalamus, 

bidirectionally communicates with the prefrontal and motor cortices to drive actions that 

predict desirable outcomes (Haber, 2003) (see Figure 1). The dorsomedial portion of the 

striatum, known as the caudate in humans, forms connections with the prefrontal cortex 

to drive goal-directed behaviors that are performed in congruence with the value of a 
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consequential reward (Tricomi et al., 2004; Yin et al., 2005a, 2005b). The dorsolateral 

part of the striatum, referred to as the putamen in humans, connects with the motor cortex 

and the supplementary motor area, driving habitual behaviors that are triggered by 

salient, preceding cues, rather than the value of the contingent outcomes (Tricomi et al., 

2009; Yin et al., 2004, 2006). The necessity of the prefrontal cortex and caudate for goal-

directed behaviors, and the posterior putamen for the execution of habits has been 

consistently reinforced in the literature. Namely, ventromedial prefrontal cortex (vmPFC) 

lesions have been linked to motivational control that’s dominated by outcome-insensitive 

habits (Reber et al., 2017). Multivariate pattern analyses of neural signals have 

pinpointed the vmPFC, dorsolateral PFC (dlPFC), and the caudate nucleus as regions that 

contrain response-outcome representations, while the posterior putamen has been shown 

to contain representations of stimulus-sensitive habits (McNamee et al., 2015).   

 

Figure 1. The corticostriatal pathways driving goal-directed and habitual control. Left: The posterior 
part of the putamen, highlighted in red, and the caudate nucleus, highlighted in blue. Right: A 
simplified schematic of the corticostriatal loops that regulate goal-directed and habitual control. Goal-
directed actions rely on connectivity between the prefrontal cortex and the caudate, whereas habitual 
actions are regulated by a network of putamen and motor regions. dlPFC: dorsolateral prefrontal 
cortex; vmPFC: ventromedial prefrontal cortex; SMA: supplementary motor area. Figure and figure 
legend adapted from Ceceli & Tricomi, 2018. 
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Potential motivational control deficits in ADHD 

Given the behavioral and neural reward processing deficits in ADHD, a 

fascinating yet elusive question remains: how is the motivational control of action that 

determines whether actions are habitual or goal-directed affected in this disorder? Indeed, 

the reward circuitry and motivational control literature rely on overlapping neural real 

estate, and ADHD is linked to functional and connectivity abnormalities in key 

corticostriatal regions (Costa Dias et al., 2013; Rosch et al., 2018; Tomasi and Volkow, 

2012; von Rhein et al., 2017). Investigations of striatal and prefrontal morphometry 

provide further support for the notion that ADHD may be characterized by motivational 

control-related discrepancies. These studies reveal significant global gray matter volume 

and dlPFC reduction, caudate compression, and putamen expansion in children with 

ADHD relative to NTs. (Carmona et al., 2005; Qiu et al., 2009). Similarly, analyses of 

adult brains reveal structural discrepancies that may result in impaired goal-directed 

control, as diminished prefrontal cortical thickness is observed in ADHD (Makris et al., 

2007).  

Providing further support for the notion that ADHD may be characterized by 

deficits in motivational control, affected individuals also exhibit trait motivation 

deficiencies, which have been associated with midbrain and striatal dysfunction 

pertaining to dopamine receptor and transporter availability (Volkow et al., 2009, 2011). 

Recent work that more closely relates to the habitual and goal-directed components of 

motivational control has focused on a rat model of ADHD—the Spontaneously 

Hypertensive rat (SHR) strain that possesses ADHD-like symptoms of impulsivity 

(Natsheh and Shiflett, 2015). In this study, the SHR strain exhibits a hyperactive habitual 
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control system favoring cue-driven habits over outcome-driven, goal-directed behaviors. 

This finding has been extended to suggest that the reliance on habits in the SHR strain 

may be due to an imbalance in dopaminergic receptor activation (Natsheh and Shiflett, 

2018), a conclusion that agrees with the finding that trait motivational impairments 

correlate with dopaminergic systems in ADHD (Volkow et al., 2011).  

These functional, neurochemical, and structural disparities in brain regions that 

comprise the reward and motivational control circuitry suggest that ADHD may also be a 

disorder of motivational control. Furthermore, it can be argued that such neurobiological 

evidence for corticostriatal dysfunction foreshadows disparities involving stimulus-

sensitivity, electing the posterior putamen and the prefrontal cortex key regions of 

interrogation. In Chapter 2, I posit that due to the strong neurobehavioral and 

neurochemical evidence for reward-related dysfunction, individuals with ADHD may be 

especially vulnerable to exhibiting maladaptive motivational control, potentially favoring 

putamen-driven habitual actions over deliberate, caudate and prefrontal cortex-driven, 

goal-directed execution. 

Tackling motivational control in humans 

To examine the neurobehavioral systems underlying motivational control in 

ADHD, we will need appropriate tools that successfully capture goal-directed and 

habitual processes. Habits are distinguished from goal-directed actions in that they are 

performed in response to a salient, triggering cue, without considering the outcome of 

this action (Dickinson and Balleine, 1994). Habits are thus ideal in instances where the 

agent needs to behave quickly (e.g., initiating the action of looking both ways before 

crossing the street, despite the absence of oncoming traffic). In contrast, goal-directed 
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behaviors require more cognitive resources, and are the product of value-based 

deliberation (e.g., choosing a restaurant for lunch) (Otto et al., 2013, 2015; Wood and 

Rünger, 2016). This intricate balance between the two components of motivational 

control, if compromised, may result in deleterious outcomes, such as sub-optimal 

decision making, and contribute to disorders of compulsion, such as obsessive-

compulsive disorder and addiction (Everitt and Robbins, 2005; Gillan et al., 2016; 

Griffiths et al., 2014). Therefore, capturing a comprehensive snapshot of motivational 

control is paramount for better understanding the magnitude of potential neurobehavioral 

anomalies in ADHD. Accordingly, I approach the study of habits and goal-directed 

behaviors from three perspectives: (1) the formation of habits, (2) the expression of well-

learned habits, and (3) the disruption of habits. 

Examining habit formation—a brief overview of the contemporary methods 

The motivational basis of habits and goal-directed actions have traditionally been 

studied using paradigms that introduce to subjects novel cue-action-outcome 

contingencies. One of the popular methods in detecting habits is the outcome-devaluation 

task where a primary or a secondary reward is devalued to test the behavior’s outcome-

sensitivity (Alvares et al., 2014, 2016; de Wit et al., 2012; Sjoerds et al., 2016; Tricomi et 

al., 2009). Another widely-used example is the sequential decision task, in which subjects 

respond to probabilistic multi-step associative sequences and recruit model-based (i.e., 

goal-directed; taking into account the cognitive model of the task environment) or model-

free (i.e., purportedly habitual; selecting sub-optimal actions that are based solely on 

history of reward receipt) strategies to maximize gain and minimize loss (Daw et al., 

2005). Additional tasks that capture different aspects of the habit experience have been 
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developed over the years, such as those that rely on stimulus pre-training for habit 

induction and contingency change for outcome-sensitivity testing (McKim et al., 2016). 

For a more detailed analysis of contemporary methods, please see (Ceceli and Tricomi, 

2018; Watson and de Wit, 2018). 

Studies that investigate the formation and expression of newly-developed habits 

are abundant in the literature, and the methods described above are all valid candidates 

for approaching habit formation in a clinical context. In Chapter 2, I tackle the first action 

step, the neurobehavioral mechanisms underlying motivational control in ADHD—

specifically, the corticostriatal processes involved in habit formation. To this end, I 

deploy an outcome-devaluation task using food rewards, which allows us to monitor the 

neural changes throughout the potential development of stimulus-sensitivity in ADHD. 

The gap in the literature: the expression of well-learned habits 

Thanks to the methods described above, we have amassed a vast library of 

knowledge regarding habits. However, these paradigms remain insufficient in critical 

aspects. For example, tasks based on outcome-devaluation and sequential decision-

making rely on the development of a newly-formed habit. This limitation renders our 

understanding of well-learned habits that are more representative of daily experiences 

disproportionately incomplete. In outcome devaluation paradigms, the cardinal test of 

habitual expression is an assessment of outcome-insensitivity. However, especially in 

studies involving food rewards, developing an outcome-insensitive habit relies on the 

over-training of a new cue-response-outcome association, subjective reports of selective 

satiety during the devaluation procedure, and assumptions of comparable food 

palatability (Tricomi et al., 2009). Not only is the experimental induction of habits 
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cumbersome, the resulting habits are weak associations that do not represent most real-

world scenarios, and only provide a platform that captures the shift from goal-directed to 

habitual control (i.e., habit formation). Thus, we are limited in our tools to investigate 

well-learned habit expression and disruption. This is concerning for the habit scientist, 

given that the study of habit disruption can inform interventions applied towards the 

restoration of a compromised motivational control system (Ceceli and Tricomi, 2018). 

To address this gap in the literature, in Chapter 3 I introduce our well-learned 

habit paradigm: a Go/NoGo task that capitalizes on the existing green-Go and red-NoGo 

associations that are assumed to be strengthened in a variety of contexts including traffic 

lights, signals of danger and safety, and childhood games, songs, and stories (Suskauer et 

al., 2008). In brief, this task assesses Go/NoGo performance when color-response 

mappings are congruent versus incongruent with daily experiences, exploiting the 

response bias that would potentially be triggered by familiar, congruent contingencies 

(i.e., green-Go, red-NoGo). Importantly, this approach permits the study of a well-

established association that is strong enough to produce a meaningful investigation of 

habit disruption. Thus, several issues that plague the typical habit paradigm are 

circumvented: (1) ecological validity: the task capitalizes on existing associations that do 

not need extensive training; (2) objective assessment of outcome-sensitivity: the task 

does not rely on subjective reports of selective satiety—instead, outcome-sensitivity is 

tested by changing Go and NoGo contingencies, and calculating accuracy impairments 

that can be attributed to prepotent, habit-like responses; (3) habit strength: the task 

captures strong S–R associations that are impervious to changes in the environment, 
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facilitating the study of manipulations that can be used to restore goal-directed 

performance in potentially compromised populations. 

Breaking the well-learned habit 

 Having situated the expression of well-learned habits in the framework of 

motivational control, a critical research question becomes apparent: how can these 

inflexible habits be disrupted? Because the driving force behind a habit is a salient 

stimulus dominating over outcome value, a candidate habit disruption strategy may 

involve amplifying the salience of the outcome. If the outcome representation can 

compete with the salience of the stimulus, the well-learned, stimulus-driven habits can be 

rendered flexible and goal-directed. In the context of my in-house Go/NoGo task, 

manipulations that allow the amplification of outcome value can be implemented into the 

task. If green-Go and red-NoGo associations are outcome-insensitive, in that performance 

is impaired when these contingencies are changed to reflect incongruent color-response 

associations, manipulations that prevent the incongruency-related impairments would 

mean an effective demonstration of habit disruption. 

A motivational problem may call for a motivational solution. If habits are 

dominating over goal-directed behaviors due to a weaker representation of outcome value 

during action execution (O’Doherty, 2016), boosting motivation and focusing on 

enhancing outcome representations may prove useful in restoring goal-directed, value-

driven control. Indeed, administering performance-based feedback (e.g., primary and 

secondary rewards) have been used extensively in enhancing behavioral performance 

(Kluger and DeNisi, 1996; Montague and Webber, 1965). Early investigations of 

performance-contingent feedback delivery (e.g., performance tracking information in the 
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form of a score or its combination with monetary incentives) successfully improved 

performance on a visual task (Montague and Webber, 1965). A combination of primary 

and secondary rewards (e.g., juice and monetary incentives) has improved goal-directed 

performance on a cued task-switching paradigm via motivational enhancement (Yee et 

al., 2016). The promise of a future reward contingent on performance has sufficed in 

improving performance during task-switching, and accelerating responses during a 

reaction time task with congruent and incongruent stimuli (Kleinsorge and Rinkenauer, 

2012; Zedelius et al., 2012). The beneficial effects of feedback, especially transient 

monetary incentives (i.e., increasing reward magnitudes from low to high across trials) 

have survived against paradigms designed to tax executive control and visual perception 

(Shen and Chun, 2011). Due to the effects of performance-contingent feedback acting on 

the engagement of top-down control systems during task-switching (Umemoto and 

Holroyd, 2015), performance tracking and performance-contingent rewards may be prime 

candidates for enhancing goal-directed motivational control. In Chapter 3, I extend the 

well-learned habit expression focus to include the restoration of goal-directed 

performance via performance-contingent feedback (e.g., intrinsic and extrinsic rewards 

that promote behavioral flexibility).  

Well-learned habit expression and disruption as a function of ADHD symptomology 

One of the primary motivators for developing our well-learned habit task is the 

possibility of revealing goal-directed control impairments in potentially compromised 

populations, and taking a translational step in the direction of restoring function. To 

examine well-learned habit expression and disruption in the context of ADHD 

symptomology in Chapter 4, I apply the novel Go/NoGo task to a large sample of 
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participants from the general population, from whom I acquire ADHD-related symptom 

severity information. This approach enables us to examine whether ADHD symptom 

severity in the general population can track habitual control and the disruption of habits, 

paving the way for translational research avenues towards developing interventional 

strategies to promote behavioral flexibility. Another advantage of our symptom-based 

approach involves mapping our dependent variables to observable behavioral 

anomalies—the core philosophy behind the Research Domain Criteria (RDoC) project 

(Insel et al., 2010). I assess habit-related processes in the context of ADHD-related 

symptoms such as inattentiveness and hyperactivity, in absence of disorder-based 

exclusion criteria. Thus, I am able to improve the approach from Chapter 2 (and the 

typical study examining pathology via disorder classifications) by ensuring that the 

results are generalizable to a wider audience, as opposed to a carefully filtered subset of 

the population that experiences ADHD in absence of the prevalent comorbidities 

(McGough et al., 2005). 

In sum, Chapter 2 tackles the neurobehavioral processes underlying ADHD and 

motivational control—specifically the formation of habits. Individuals with ADHD and 

matched NTs were scanned while they performed a reward-learning task and 

strengthened novel cue-action-outcome contingencies. This method investigated whether 

ADHD is associated with the proclivity to develop outcome-insensitive habits driven by 

altered cortical and striatal function in the brain. Next, in Chapter 3, I describe a task 

aimed to expand my scope of motivational control by employing more representative, 

well-learned habits that permit the study of habit disruption. To achieve this aim, I first 

developed and validated a novel Go/NoGo task that capitalizes on existing go and stop 
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habits elicited by green and red traffic lights. I then introduced a feedback-based 

manipulation that boosts motivation to disrupt the well-learned habits elicited by these 

stimuli. Lastly, in Chapter 4, I present a study on the process of well-learned habit 

expression and disruption as a function of ADHD symptom severity by applying the 

approach from Chapter 3 to a large sample of individuals from the general population. 
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Chapter 2: Investigating the neurobehavioral mechanisms underlying motivational 

control in ADHD  

Introduction 

Attention-deficit/hyperactivity disorder (ADHD) involves reward-related 

behavioral anomalies that significantly impair executive function and overall quality of 

life (Barkley, 1997; Castellanos and Tannock, 2002). ADHD is specifically associated 

with impaired reward learning (Johansen et al., 2009), difficulties adaptively processing 

rewards (Douglas and Parry, 1983; Luman Marjolein et al., 2008; Sethi et al., 2018; 

Slusarek et al., 2001), and heightened delay discounting (Antrop et al., 2006; Kessler et 

al., 2005a; Kuntsi et al., 2001; Marx et al., 2010, 2013; Sonuga-Barke et al., 1992). The 

cardinal symptom of impulsivity is a well-documented contributor to maladaptive 

reward-related behavioral rigidities such as addictions (Cunill et al., 2015; Urcelay and 

Dalley, 2012). We posit that these reward-related abnormalities may also drive 

aberrances in the neurobehavioral mechanisms underlying the control of motivated 

behaviors (i.e., striking an adaptive balance between cue-driven habits and outcome-

driven, goal-directed behaviors). 

A growing body of neurobiological evidence asserts that ADHD is also 

characterized by dysfunctions in the brain’s reward circuitry (Castellanos and Tannock, 

2002). This network of cortical (e.g., anterior cingulate cortex; ACC, ventromedial 

prefrontal cortex; vmPFC, orbitofrontal cortex; OFC) and sub-cortical (e.g., striatum, 

amygdala, and hippocampus) brain regions regulates the process of experiencing 

rewarding outcomes, learning from rewards, and directing behaviors to maximize gain 

while minimizing loss (Daw et al., 2011; Delgado, 2007; Galvan et al., 2005; Knutson et 

al., 2001). Compared to neurotypicals (NTs), individuals with ADHD exhibit 
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irregularities in reward-related neural processing, such as decreased striatal signals during 

the anticipation of a rewarding outcome, and increased orbitofrontal cortex activation at 

reward receipt (Furukawa et al., 2014; Plichta et al., 2009; Plichta and Scheres, 2014; 

Scheres et al., 2007; Ströhle et al., 2008).  

The compromised neural systems that regulate reward-related processes largely 

overlap with the corticostriatal circuits that also drive motivated behaviors. Motivated 

behaviors are posited to be either controlled by the pursuit of a desirable outcome (i.e., 

deliberate and goal-directed), or triggered by an antecedent stimulus regardless of the 

outcome (i.e., reflexive and habitual; Adams, 1982; Dickinson and Balleine, 1994). These 

components of motivational control have distinct neural representations. The dorsomedial 

portion of the striatum (i.e., caudate in humans) forms connections with the prefrontal 

cortex to drive goal-directed behaviors that are performed in congruence with the value 

of a consequential reward (Tricomi et al., 2004; Yin et al., 2005a, 2005b). The 

dorsolateral part of the striatum (i.e., putamen in humans) fosters connectivity with the 

motor cortex and the supplementary motor area, guiding cue-based habits that are 

triggered by salient, preceding stimuli, rather than by the value of contingent outcomes 

(Tricomi et al., 2009; Yin et al., 2004, 2006). ADHD is associated with functional 

abnormalities in these key motivation-related regions. Attentional and motivational 

deficits in ADHD are correlated with disruptions in the dopaminergic reward pathways 

along the midbrain and striatum (Volkow et al., 2009, 2011). Importantly, ADHD is 

consistently associated with irregular fronto-striatal connectivity (Costa Dias et al., 2013; 

Rosch et al., 2018; Tomasi and Volkow, 2012; von Rhein et al., 2017). ADHD’s potential 

motivational control abnormalities may present stimulus-sensitivity-related disparities, 
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making the posterior putamen and the prefrontal cortex candidates for aberrant signaling 

during associative learning and the strengthening of stimulus–response–outcome (S–R–

O) associations. In support of this hypothesis, recent investigations of a rat model of 

ADHD have reported habit-driven action control in the Spontaneously Hypertensive rat 

(SHR) strain that possesses ADHD-like symptoms of impulsivity (Natsheh and Shiflett, 

2015, 2018).  

To examine the neural systems guiding habitual and goal-directed behaviors in 

ADHD, we administered a free-operant reward learning paradigm adapted from Tricomi 

et al. (2009) to individuals with ADHD and matched NTs who underwent functional 

MRI. We interrogated an a priori posterior putamen region of interest (ROI) to reveal 

potential differences in neural processing following moderate, single-day S–R training in 

ADHD. We also used the posterior putamen as a seed region in a psychophysiological 

interaction (PPI) to detect potential abnormalities in corticostriatal connectivity. Lastly, 

we employed a whole brain analysis to further examine the neural signature of 

motivational control in ADHD following moderate S–R training. 

Materials and methods 

Participants 

A meta-analysis of studies investigating brain function in ADHD reports the 

average sample size per study as 28, including ADHD and neurotypical (NT) groups (Lei 

et al., 2015). Due to the heterogeneity in ADHD symptom severity and presentation 

(American Psychiatric Association, 2013; Ramtekkar et al., 2010), we increased our 

sample size to the upper range of the reviewed studies. Following the recruitment criteria 

outlined below, 25 adults with ADHD and 25 NTs matched on age, gender, handedness, 
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and working memory (WM) participated in the study (14 females and 11 males in each 

group; ADHD Mage = 22.32, SDage = 4.69; NT Mage = 21.48, SDage = 2.92, age range = 18-

35; five left-handed participants in each group). WM was assessed via the Digit Span 

subtest of Wechsler’s Adult Intelligence Scale (WAIS-IV; Wechsler, 2008). Independent 

samples t-tests were performed to ascertain that there were no significant group 

differences in age, t(48) = 0.76, p = .451, or WM, t(48) = 0.40, p = .694.  

 Informed consent was obtained from all participants per the ethical principles 

outlined on the Declaration of Helsinki (1964), and experimental protocols were 

approved by the Rutgers University Institutional Review Board. 

Study Inclusion Criteria 

Pre-interview screening 

Individuals interested in participating in the study were provided pre-screener 

questionnaires via email to determine eligibility using Qualtrics 

(http://www.qualtrics.com). MRI-safe individuals (i.e., those without claustrophobia or 

ferrous metal in or on their bodies) were invited to undergo psychiatric interview only if 

they confirmed the absence of the following exclusion criteria: (1) neuropsychiatric 

illnesses or history of head injuries, (2) disqualifying psychoactive medication use (i.e., 

previous use of non-ADHD medication with psychoactive properties such as 

antidepressants and anxiolytics), (3) active dieting behaviors or concerns of body weight, 

and (4) reservations about consuming large amounts of chocolate and cheese crackers. 

Individuals who had received an ADHD diagnosis less than 12 months prior to the 

interview session were also restricted from participating in the study. 
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Psychiatric interview 

All participants underwent a psychiatric interview session performed under the 

supervision of a clinician. Because most ADHD medications have a duration of action 

and half-life shorter than 12 hours (Kolar et al., 2008), individuals with ADHD were 

instructed to refrain from medication use for at least 24 hours prior to psychiatric 

assessment. During the psychiatric interview, measures assessing impulsivity via 

Barratt’s Impulsiveness Scale (BIS; Patton et al., 1995), ADHD symptom severity via 

ADHD Self-Report Scale (ASRS; Kessler et al., 2005), medication history, and working 

memory via WAIS-IV Digit Span were administered to detect individual differences for 

correlational analyses. The medication history variable served as an index of 

pharmacological treatment exposure and was scaled in months. Due to the snacks to be 

provided during the fMRI scan session, the Eating Attitudes Test 26 (EAT-26; Garner et 

al., 1982) was administered to screen for maladaptive eating attitudes predictive of eating 

disorders. Participants with an EAT-26 score of 20 or above were excluded from the 

remainder of the study. 

We followed the diagnostic criteria from Mini International Neuropsychiatric 

Interview 6.0 (MINI) Plus: Adult ADHD module (Sheehan et al., 1998) to confirm 

ADHD diagnoses, and the MINI 6.0 to rule out co-morbid psychiatric disorders (Sheehan 

et al., 1998). The psychiatric illnesses that served as exclusion criteria are as follows: 

major depressive disorder, manic-depressive disorder, generalized anxiety disorder, 

agoraphobia, social phobia, obsessive-compulsive disorder, post-traumatic stress 

disorder, alcohol and substance dependence/abuse, psychotic disorders, mood disorders 

with psychotic features, anorexia nervosa, bulimia nervosa, and antisocial personality 
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disorder. Participants were cleared for the MRI scan only if they were deemed free of 

psychiatric illness per MINI criteria, and above the clinical threshold of ADHD 

manifestation per the MINI Plus: ADHD module criteria. 

MRI scan session 

Following the psychiatric interview, qualifying participants were scheduled for 

the fMRI scan. Participants were instructed to fast for at least 4 hours prior to the scan 

session to increase the desirability of the snacks to be used as rewards throughout the 

study. Participants with ADHD were instructed to refrain from taking ADHD medication 

for at least 36 hours before the scan to prevent the acute effects of these medications from 

affecting the results.  

Experimental paradigm 

E-prime (Psychology Software Tools, Pittsburgh, PA) was used for stimulus 

presentation and response collection. Prior to entering the MRI scanner, we collected 

subjective pleasantness ratings for each snack to be used during the free-operant task. 

Specifically, because the task involved rewarding actions with M&M (Mars, McLean, 

VA) and Goldfish cracker (Pepperidge Farm, Norwalk, CT) outcomes, participants were 

asked how pleasant they would find eating an M&M and a Goldfish cracker on a scale of 

0 to 5.  

Next, after completing a brief practice session outside of the scanner, participants 

underwent a free-operant task with food rewards during fMRI, similar to Tricomi et al. 

(2009). In this paradigm, two “task” fractals predicted differential snack outcomes 

contingent on button press responses, such that index and middle finger button presses 

produced either M&M or Goldfish outcomes. A third fractal was used to indicate 
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unrewarded rest trials, for which participants refrained from making any response. 

Specifically, participants were informed that fractal images would be presented 

throughout the experiment, and a schematic above each fractal would indicate which 

button was activated for response collection for that fractal. Participants were instructed 

that during each trial in which a fractal was presented with an active button, they could 

respond via button presses as often as desired to earn the associated snacks, and that they 

should pay attention to the fractal–response–snack associations. Each active button 

response produced either a gray circle (50 ms) or a snack image corresponding to the 

snack earned (1 s) below the fractal. Rewards were administered on a random interval 

reinforcement schedule (RI-10), meaning each second, a participant had a 0.1 probability 

of earning a reward following a button press. Thus, a reward became available on average 

every 10 seconds, and was collected upon the first response executed by the participant 

following its availability (see Figure 2 for task structure). This RI reinforcement schedule 

has been shown to be conducive to developing outcome-insensitivity when compared to 

fixed or variable-ratio reward delivery (Baum, 1993; Knowlton and Patterson, 2016). The 

fractal–button and button–snack associations were counterbalanced across subjects. The 

responses towards task fractals were self-paced, and fractal onset and offset indicated the 

start and end of each trial. Twelve task (six of each fractal, randomly varying durations of 

20, 30, or 40 seconds) and eight rest trials (20 seconds) comprised each 8-minute run. 
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Participants underwent a moderate amount of training (six runs) and were then taken out 

of the MRI scanner for the outcome-devaluation procedure.  

 Snack earnings accumulated throughout the task were given to participants at a 

ratio of 4 images to 1 snack to prevent satiety. One of the snack outcomes was then made 

available to the participant until it was no longer pleasant, effectively diminishing its 

value. Specifically, the participant was instructed to consume the snack until it was no 

longer pleasant. The experimenter remained in the room with the participant during the 

devaluation procedure. The snack chosen for selective satiety was counterbalanced across 

subjects. Post-devaluation subjective ratings of snack pleasantness were collected to 

ensure that the now-devalued snack outcome was perceived as less valuable compared to 

the pre-training ratings. The experimenter offered more of the snack to the participant if 

 

Figure 2. Free-operant task structure. Participants were trained under a RI-10 reinforcement schedule 

using two distinct S–R–O associations. Fractal stimuli were paired with a yellow schematic that served 

as an indicator of the active button. A reward was made available on average every 10 seconds. 

Participants were trained for six runs while undergoing fMRI, then taken out of the scanner to complete 

a devaluation procedure. Following the devaluation of one of two snacks, we placed participants in the 

scanner again, and tested in extinction whether they persistently responded to the stimulus that 

predicted the now-devalued reward, indicating outcome-insensitivity. 
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these ratings did not decrease from their pre-training responses. Following successful 

devaluation, participants re-entered the fMRI context and underwent an identical free-

operant task, but unbeknownst to them, the trials were no longer rewarded. This three-

minute extinction stage allowed us to determine whether button presses were outcome-

sensitive. For instance, diminished button press responses to the fractal associated with 

the now-devalued snack would indicate outcome-driven behavior, as the participant’s 

response rate slows down in accordance with the outcome value. In contrast, a persistent 

response rate to the stimulus predictive of the devalued snack would indicate stimulus-

driven performance, as the participant responds at a similar rate regardless of snack 

value. The extinction test was unrewarded to prevent newly acquired rewards from 

affecting the outcome-sensitivity measures, and took place during fMRI to provide 

similar training and testing contexts. 

FMRI data acquisition 

A 3 Tesla Siemens Trio (Erlangen, Germany) MRI scanner with a 12-channel 

phased array coil was used to acquire structural and functional brain images at the 

Rutgers University Brain Imaging Center (RUBIC). High-resolution T1-weighted 

structural images at isotropic 1mm voxel dimensions were obtained using a 

Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence. Forty-one T2*-

weighted echo-planar image slices were obtained for blood oxygenation level dependent 

(BOLD) signal analyses using the following parameters in an interleaved order of 

acquisition: 3 mm isotropic voxels, TR: 2500 ms TE: 30 ms, field of view: 192 mm x 192 

mm, flip angle: 90°). We acquired brain images at a 30° oblique orientation to the 

anterior commissure – posterior commissure axis to improve signal-to-noise ratio, 
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particularly in the ventral prefrontal cortex region that is most susceptible to signal 

dropout (Deichmann et al., 2003). 

Data analysis 

Behavioral data analysis 

To determine whether ADHD and NT groups exhibited differential motivational 

control in response to outcome devaluation, we performed a mixed-design ANOVA with 

the dependent variable (DV) as the change in response rate (ΔResponse_Rate) between 

training and extinction (extinction minus training responses per second), Stimulus Value 

(valued, devalued) as a within-subjects, and Group (ADHD, NT) as a between-subjects 

factor. Post-hoc t-tests were used to confirm whether ΔResponse_Rate to valued and 

devalued stimuli were significantly different in each group. Pleasantness rating 

comparisons between pre-training and post-extinction stages were performed using 

paired-samples t-tests to ensure that the outcome-devaluation procedure was successful in 

diminishing the subjective value of the devalued snack. 

Although we matched ADHD and NT groups on a variety of individual difference 

measures (i.e., demographics and WM capacity), we also aimed to further examine our 

sample’s diagnostic profile. We performed a multiple regression analysis with 

Devalued_ΔResponse_Rate as an index of behavioral flexibility. We used symptom 

severity scores obtained via the ASRS survey, impulsivity scores via BIS, WM via Digit 

Span, and treatment history as indexed by years of medication use as regressors to detect 

relationships with devaluation-related changes in response rate to the devalued cue 

(Devalued_ΔResponse_Rate) in the ADHD group. A similar model using only the 

Symptom, Impulsivity, and WM variables as regressors were used with NT data to 
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determine whether sub-clinical ADHD symptom severity, impulsivity, and WM predicts 

behavioral flexibility in the NT sample. This analysis served as an exploration of 

individual variability within our sample, and these variables’ potential links to 

motivational control.  

FMRI data analysis 

We used FSL (version 5.0; http://www.fmrib.ox.ac.uk/fsl) for fMRI data pre-

processing and analysis. We skull-stripped brain images to eliminate non-brain matter 

from analyses and employed FMRIB's Linear Image Registration Tool (FLIRT) to 

spatially transform our functional and structural images to the Montreal Neurological 

Institute (MNI) template (Jenkinson & Smith, 2001). We accounted for subject 

movement via FSL’s MCFLIRT (Jenkinson & Smith, 2001; Jenkinson et al., 2002) and 

extracted six motion parameters to be included as regressors of no interest in the general 

linear model (GLM). Additionally, we identified volumes that showed spikes in 

translation and rotation parameters when compared to a reference volume. These outliers 

were determined by a typical boxplot threshold (75th percentile + 1.5 * interquartile 

range) using fsl_motion_outliers and regressed out in the GLM. This algorithm removed 

an average of 5.8% of the volumes in each run (range: 1%-16.7%). Following this outlier 

removal procedure, no substantial volume-to-volume movement remained, in that 

maximum displacement was below the voxel dimensions (mean motion: 0.33 mm; 

maximum motion: 1.26). Importantly, neither the number of spikes in movement, t(295) 

= -0.52, p = .600, nor the volume to volume displacement, t(48) = -0.64, p = 525, was 

significantly different across ADHD and NT groups. The BOLD data we acquired in an 

interleaved order were slice-time corrected and spatially smoothed using a 5 mm full 
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width at half maximum Gaussian smoothing kernel, and a high-pass filter cutoff of 100 s 

was applied to ignore extraneous signal from the imaging context. Three runs (ADHD = 

2, NT = 1) were discarded due to data corruption, and the GLM was altered accordingly 

for these participants’ analyses. These three runs were in the middle of their respective 

scan sessions, such that the analyses aimed at deriving late and early S–R activation 

estimates were unaffected. 

We generated parameter estimates from the pre-processed data for each subject 

using a GLM approach. “Task” onset and “rest” onset were captured via 1-second events 

at each trial, and a “reward” regressor was captured as a 1-second event at reward receipt. 

We did not include extinction scan data in the GLM, as these brief scans do not provide 

sufficient power for fMRI data analysis. Therefore, all analyses of neural data inform 

processes involved in moderate S–R learning, but not devaluation or extinction. These 

task, rest, and reward regressors, their temporal derivatives, along with the six motion 

parameters and motion outlier timeseries were convolved with a canonical hemodynamic 

response function (HRF). Linear contrasts of task versus rest onset were computed in 

each run to selectively determine stimulus-evoked activation patterns. Each subject’s 

first-level parameter estimates were entered into a fixed-effects model to generate 

subject-level “early,” “mid,” and “late” regressors (two runs in each bin), denoting the 

stage of S–R learning during the free-operant task. These learning phase regressors were 

parametrically weighed (-1, 0, 1 as early, mid, and late) and used in the group-level 

region of interest (ROI), psychophysiological interaction (PPI), and whole-brain analyses 

outlined below. 
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ROI analysis: posterior putamen and stimulus-sensitivity 

Due to the strong a priori hypothesis centered on the role of the posterior putamen 

in driving stimulus-sensitivity, we created 5 mm-radius spherical anatomical masks of 

left and right putamen (±33, -24, 0) using MNI coordinates obtained from a previous 

study employing the same free-operant task (Tricomi et al., 2009). We extracted percent 

signal change values from this posterior putamen seed region in each subject’s early, mid, 

and late stage, task versus rest contrast image using FSL’s Featquery tool. We performed 

a repeated measures ANOVA using Time (early, mid, late) as a within-subjects, and 

Group (ADHD, NT) as a between-subjects factor to detect posterior putamen activation 

differences across groups as a function of training length (i.e., a Group x Time 

interaction). Given the incremental recruitment of the posterior putamen over the course 

of extended S–R training in the general population (Tricomi et al., 2009), a similar 

pattern over moderate training in the ADHD group would suggest an accelerated 

recruitment of this region closely associated with stimulus-sensitivity. 

To further examine our sample’s diagnostic profile in the context of stimulus-

sensitivity-related neural signaling, we also performed a multiple regression analysis to 

reveal potential associations between treatment history, ADHD symptom severity, 

impulsivity, and working memory (WM) capacity on posterior-putamen activity in each 

group. The regressors Medication, Symptom, Impulsivity, and WM were used to predict 

percent signal change in the posterior putamen ROI over the course of training in the 

ADHD group. The regression was repeated for the NT group without the inclusion of the 

Medication variable. This set of analyses served as an exploration of individual 
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variability within our sample, and these variables’ potential links to motivational control-

related striatal signaling. 

Psychophysiological interaction: posterior putamen functional connectivity 

 In a PPI analysis, we used our a priori posterior putamen region as a seed to 

identify target brain areas that exhibited functional connectivity as a result of moderate 

S–R training (Friston et al., 1997). This approach permitted us to assert whether 

corticostriatal discrepancies across ADHD and NT groups exist over the course of 

moderate S–R learning. We concatenated our task and rest regressors into a single time 

course, weighed task as 1 and rest as -1 to create a “psychological” regressor which was 

convolved with an HRF. We also included this regressor’s temporal derivative in the 

GLM. Next, we extracted timeseries information from our anatomically extracted 5-mm 

left posterior putamen mask, which was transformed into each subject’s functional space, 

to create a “physiological” regressor. Using these two regressors, we derived a “PPI” 

(i.e., interaction of psychological and physiological time courses) regressor in our design 

matrix, Lastly, we also included in our PPI GLM regressors representing all other events 

throughout the fMRI scan: an HRF-convolved regressor that weighed the task and rest 

events equally (i.e., as they would be represented in the whole-brain GLM), an HRF-

convolved reward regressor for reward receipt events, and motion outlier parameters. 

This method allowed us to estimate target brain regions that exhibited task-based 

coupling with the posterior putamen seed, while ruling out regions that may evoke 

continuous, non-task-specific coupling, such as anatomical connectivity (O’Reilly et al., 

2012).  
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The second-level analysis, as outlined in the FMRI Data Analysis section above, 

aggregated the first two runs to derive “early”, the middle two runs to derive “mid”, and 

the last two runs to derive “late” run regressors at the subject level. We assigned 

parametric weights to these regressors (-1, 0, 1), and performed linear contrasts of the 

resulting statistical maps to calculate late versus early activation patterns in each 

participant. For the group-level estimation of moderate S–R learning-related functional 

connectivity (ADHD versus NT group contrast), we entered these maps into a mixed-

effects model using FLAME 1 & 2 (FMRIB's Local Analysis of Mixed Effects), which 

performs Markov Chain Monte Carlo simulations to improve variance estimation and 

permit population inferences (Beckmann et al., 2003). We employed a cluster defining 

threshold of p < .005, corrected to a cluster extent threshold of p < .05 (greater than 207 

contiguous voxels to constitute a significant cluster). 

Whole-brain GLM 

 To identify brain regions involved in moderate S–R training in ADHD, we 

derived parametrically weighed early, mid, and late training phase activation maps from 

each participant and entered them into a mixed-effects model using FLAME 1 & 2, with 

a cluster defining threshold of p < .005, corrected to a cluster extent threshold of p < .05 

(greater than 302 contiguous voxels to constitute a significant cluster). These stimulus-

driven statistical maps denoted which brain regions were significantly active over the 

course of moderate S–R learning, and allowed for ADHD versus NT contrasts for group-

level comparisons to elucidate potential differences in the ADHD brain. 
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Results 

Sample profile 

The ADHD group scored significantly higher in measures of impulsivity, t(48) = -

3.81, p < .001, and symptom severity, t(48) = -13.44, p < .001 (see Table 1 for details). 

Eighteen adults with ADHD were currently medicated, 4 were previously medicated, and 

3 were medication-naïve. Eight adults with ADHD received some form of psychological 

therapy from a clinician; 5 of these individuals underwent cognitive-behavioral therapy. 

The NT group reported no history of medication use or psychological therapy. 

Table 1. Study sample profile. 

 ADHD NT sig. 

Age (SD) 22.32 (4.69) 21.48 (2.92) p = .451 

Sex F=11, M=14 F = 11, M=14 individually matched 

Handedness R=20, L=5 R=20, L=5 individually matched 

Working Memory: Digit Span (SD) 28.16 (3.86) 27.60 (5.93) p = .694 

Impulsivity: BIS (SD) 75.92 (5.89) 69.40 (6.19) < 0.001 

Symptom Severity: ASRS (SD) 45.76 (9.01) 14.24 (7.51) < 0.001 

 

Figure 3. Response rate pre-devaluation (Training) and post-devaluation (Extinction). ADHD and NT 

groups exhibit similar sensitivity to outcome value. Behavioral similarities here suggest that both 

groups maintained goal-directed control (i.e., diminished responses to the devalued stimulus at 

extinction). Error bars depict standard error of the mean. Swarm plot points represent data from 

individual subjects. 
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Behavioral results 

We did not find a significant difference in outcome-sensitivity across ADHD and 

NT groups. The mixed-design ANOVA of ΔResponse_Rate revealed no main effect of 

Group, F(1,48) = 0.24, p = .629, ηp
2 < .01, a main effect of Stimulus Value, F(1,48) = 

10.76, p = .002, ηp
2 = .06, and no Group * Stimulus Value interaction, F(1,48) = 0.02, p = 

.876, ηp
2 < .01, suggesting that the ADHD and NT groups did not differ in devaluation 

sensitivity and both performed in a goal-directed manner (see Figure 3). Pre- versus post-

devaluation comparison of pleasantness ratings confirmed that across all participants, the 

devaluation procedure successfully diminished the subjective value of the devalued 

snack, t(46) = 16.00, p < .001. 

We performed a multiple regression analysis in our ADHD group data, using the 

variables Symptom, Impulsivity, Working Memory and Medication to predict our 

subject-level measure of outcome sensitivity, Devalued_ΔResponse_Rate. None of these 

regressors significantly predicted outcome-sensitivity as assessed by 

Devalued_ΔResponse_Rate (all p-values > .291). Similarly, when this regression analysis 

was repeated in our NT group data to detect individual differences in sub-clinical ADHD 

symptom severity, impulsivity, and working memory, no regressor significantly predicted 

outcome-sensitivity (all p-values > .161). These results suggest that individual variability 

in our sample’s diagnostic profile did not significantly contribute to behavioral flexibility. 

FMRI results 

ROI analysis: posterior putamen and stimulus-sensitivity 

 The posterior putamen has been shown to play a role in stimulus-sensitivity in the 

general population over extended (i.e., 3-day) S–R training (Tricomi et al., 2009). We 
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tested whether ADHD is associated with an accelerated recruitment of the posterior 

putamen as a result of single-day moderate training via a mixed-design ANOVA. We 

extracted BOLD data from a posterior putamen mask (Figure 4A) and used the percent 

signal change as DV, Group as a between-subjects, and Time as a within-subjects factor. 

In the left posterior putamen, we found no main effect of Group, F(1,48) = 0.20, p = .657, 

ηp
2 < .01, no main effect of Time,  F(2,96) = 0.73, p = .482, ηp

2 = .01, but a significant 

Group * Time interaction, F(2,96) = 5.35, p = .006, ηp
2 = .10 (Figure 4B), suggesting that 

the ADHD group exhibits heightened posterior putamen activity as a function of training 

length. In the right posterior putamen, we did not find a significant main effect of Group, 

F(1,48) = 0.25, p = .618, ηp
2 < .01, no main effect of Time,  F(2,  96) = 0.1  1, p = .897, 

 

Figure 4. Posterior putamen ROI activity as a function of training length. A: We extracted left and right 

posterior putamen ROIs using coordinates from a previous study that associated this region with 

tracking stimulus-sensitivity. Percent change in BOLD signal is depicted from both hemispheres at 

MNI coordinates: ±33, -24, 0. B: Left posterior putamen significantly increases in activity as a function 

of S–R training length in ADHD (p = .006). C: No significant Group * Time interaction observed in the 

right posterior putamen ROI (p = .257). 
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ηp
2 < .01, and no significant Group * Time interaction, F(2,96) = 1.38, p = .257, ηp

2 = .03  

(Figure 4C).  The heightened recruitment of the left posterior putamen in the ADHD 

group may be due to ADHD being associated with an early onset of stimulus-sensitivity-

related neural signaling, whereas this process may come online with more S–R training in 

the general population.  

  We performed a multiple regression using the late versus early contrast percent 

signal change derived from the parametrically weighed S–R training parameters (-1 0 1 

as early, mid, late). We used this left posterior putamen ROI signal change as DV, and 

individual difference measures of medication history, symptom severity, impulsivity, and 

WM as regressors. In the ADHD group, we found no associations between any of these 

regressors and the percent signal change extracted from our left posterior putamen ROI 

(all p-values > .452). Similarly in our NT group, we found no associations between these 

regressors and left posterior putamen activity following moderate S–R training (all p-

values > .207). These results suggest that posterior putamen activation over the course of 

S–R training was not affected by individual variability in our sample’s diagnostic profile. 
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Psychophysiological interaction: posterior putamen functional connectivity 

 Considering the reward circuitry irregularities in ADHD (Castellanos and 

Tannock, 2002), we hypothesized that corticostriatal communication may be impaired 

during associative learning in ADHD. We performed a PPI analysis using our posterior 

putamen ROI—a striatal sub-region that has been regarded to play a key role in stimulus-

sensitivity—as a seed and searched for areas that exhibited significant task-related 

coupling. We found that over the course of moderate S–R training, the posterior putamen 

fostered diminishing functional connectivity with the prefrontal cortex in the ADHD 

group when compared to the NT; namely in the dorsal anterior cingulate cortex (dACC) 

and in the medial prefrontal cortex (mPFC; see Figure 5. For the specific coordinates of 

clusters and local maxima associated with the PPI, see Appendix, Supplemental Table 1.  

 

Figure 5. PPI analysis reveals corticostriatal connectivity differences in ADHD. A: We found 

diminished task-onset-related functional connectivity between the posterior putamen seed (in blue)—a 

striatal region that’s been associated with tracking stimulus-sensitivity—and the dACC/mPFC (in warm 

colors) over the course of S–R learning. These prefrontal areas are known to be involved in error 

detection, reward value tracking, and goal-directed control. B: Peak voxels from this PPI analysis show 

decreased strength in corticostriatal connectivity in the ADHD group compared to NTs. Contrast 

depicted: task versus rest onset, late versus early phase; early, mid, and late training phases weighed as 

parametric regressors [-1 0 1]. Contrast values are derived from a 3 mm mask of peak activation (MNI 

coordinates: 8, 50, 16). 
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Whole-brain GLM 

 We performed a whole-brain analysis using the GLM approach to identify regions 

that drive stimulus-sensitivity following moderate S–R learning in ADHD. Specifically, 

we calculated a linear contrast of task versus rest onset to extract stimulus-sensitivity-

related activity, then parametrically weighed the early, mid, and late stages of training (as 

-1 0 1, respectively) to examine stimulus-sensitivity over the course of moderate S–R 

learning. Lastly, we performed a group-level contrast of ADHD versus NT group to 

distinguish ADHD-specific stimulus-sensitivity-related brain activity following learning 

(see Figure 6). We found significant clusters in the posterior putamen, opercular/insular 

cortex, and the hippocampus that selectively activated in the ADHD group. The posterior 

putamen region that survived our thresholding parameters overlaps with our a priori ROI, 

 

Figure 6. Whole brain analysis of cue-sensitivity over the course of moderate S–R learning in ADHD. 
Significant clusters in the posterior putamen, opercular/insular cortex, and the hippocampus survived 

our group-level comparisons of training-related cue-sensitivity activity. Clusters were defined using a 

Z-threshold > 2.58 (p < .005), corrected to the cluster extent threshold of p < .05. Numbers above brain 

slices indicate MNI coordinates. Post. Put: posterior putamen, Operc: operculum, Hipp: hippocampus. 
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which was based on Tricomi et al. (2009). For specific coordinates of clusters and local 

maxima associated with the whole-brain analysis, see Appendix, Supplemental Table 1. 

Discussion 

 We investigated the neural signature of motivational control in ADHD by 

moderately training S–R associations during fMRI. This approach allowed us to identify 

corticostriatal abnormalities associated with the stimulus- and outcome-driven control of 

action in ADHD, interrogating the neural mechanisms underlying motivation-related 

processes. Namely, despite the intact goal-directed control following moderate S–R 

training in ADHD, we found an early recruitment of a striatal sub-region that has been 

associated with the execution of stimulus-sensitive behaviors (i.e., posterior putamen). 

We also revealed the posterior putamen’s deficient connectivity with the prefrontal cortex 

in our ADHD sample. Additionally, our findings allude to a hippocampal process that 

could potentially be compensating for the corticostriatal abnormalities in order to 

maintain goal-directed control. 

 In the general population, the posterior putamen has been reported to show 

increased activation following over-training in a similar reward-learning paradigm 

(Tricomi et al., 2009). Here, we show that despite behavioral similarities across groups 

indicating outcome-sensitive, goal-directed control, an early recruitment of this posterior 

putamen region is evident in ADHD. The neural signature found in the ADHD group 

following a single-day’s exposure to the S–R–O associations is similar to the over-trained 

participants in the report by Tricomi and colleagues (2009).  

The prefrontal cortex—namely the dACC and vmPFC—are regarded as playing 

major roles in goal-directed control. These fronto-cingular areas have been identified as 
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components of the brain’s cognitive control network (Cole and Schneider, 2007; 

MacDonald et al., 2000). An aberrance in this system may relinquish control in motivated 

behaviors to render them automatic and habitual (Otto et al., 2015; Poldrack et al., 2005; 

Verbruggen and Logan, 2009). Our PPI results reveal a diminished functional 

connectivity between the posterior putamen sub-region of the striatum and the 

dACC/mPFC. Given the dACC’s role in cognitive control (MacDonald et al., 2000), error 

detection (Garavan et al., 2002; Polli et al., 2005), and reward-based decision making 

(Bush et al., 2002), its altered connectivity with the striatum following moderate S–R 

training may be indicative of sub-optimal neural processing that underlies value-driven 

action execution in ADHD. Along with the vmPFC—a prefrontal sub-region that is 

associated with value-tracking and inhibition/reversal learning (Smith et al., 2010; Zhang 

et al., 2016), the dACC’s abnormal connectivity with the posterior putamen in ADHD 

may be an important biomarker for potential aberrances in value-based decision making 

and goal-directed control. 

ADHD has been previously linked to ACC dysfunctions. Dampened inhibitory 

control-related ACC activity has been reported in adults with ADHD (Schneider et al., 

2010). Structural abnormalities have also been documented, as ADHD is associated with 

volumetric reductions in the anterior cingulate region (Carmona et al., 2005; Frodl and 

Skokauskas, 2012; Makris et al., 2007; Seidman et al., 2006, 2011). Healthy individuals 

foster an antiphasic connectivity between task-positive (e.g., the cognitive control 

network including the dACC) and task-negative (e.g., the default mode network—a set of 

brain regions that coactivate in task-negative contexts) areas (Cole et al., 2014). 

However, adults with ADHD have been documented to display an impairment in this 
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functional connectivity between cognitive control and default mode regions, possibly 

driving the attentional lapses associated with the disorder (Castellanos et al., 2008). 

Children with ADHD, on the other hand, display heightened fronto-cingular connectivity 

patterns, in that the orbitofrontal cortex—a region associated with salience attribution and 

reward representations (Schultz et al., 2000; Sescousse et al., 2010)—fosters increased 

connectivity with the dACC (Tomasi and Volkow, 2012). This reward-related irregular 

connectivity may manifest as motivational deficits in ADHD, such as unfavorable value-

based decision making. Our finding of a diminished corticostriatal connectivity—

specifically, the communication between the posterior putamen and the dACC, may 

similarly allude to motivational impairments. The dACC is an important node for 

attentional processes such as response monitoring and selection (Bush et al., 1999; 

Camille et al., 2011). A compromised connection between regions driving stimulus-

sensitivity, such as the posterior putamen, and response selection, such as the dACC, may 

produce action execution that is biased towards salient, triggering stimuli rather than 

towards outcome value. 

Interestingly, we also see evidence for a hyper-recruitment of the hippocampus at 

task-onset following moderate S–R training in ADHD. The hippocampus is regarded as 

integral for declarative learning, and especially critical for contextual memory (Chun and 

Phelps, 1999; Greene et al., 2007). Possibly, the fractals in each trial may also provide 

contextual information, in that the indicators above the fractal that signal the active 

button may take on the properties of a stimulus, and the fractal may serve as a context in 

which the stimulus signals a response-contingent reward. The ADHD-specific 

hippocampal activation may therefore relate to the contextual information provided by 
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the fractals, which may be aiding in the maintenance of an outcome-driven behavioral 

profile despite the corticostriatal abnormalities. An interesting avenue for future research 

may be to further dissociate the potential hippocampal compensatory mechanisms that 

underlie aberrant prefrontal and striatal control systems. 

 Our whole brain analysis yielded stimulus-related activations in the 

opercular/insular region following moderate S–R learning. The insular recruitment in the 

late stage of S–R learning may be related to its role in the maintenance of rigid behaviors. 

The insula plays a critical role in addiction maintenance, in that damage to the insula 

predicts addiction disruption (Naqvi et al., 2007; Naqvi and Bechara, 2010). Thus, the 

insula may be an important player in developing rigid actions that eventually become 

outcome-insensitive habits. Future investigations of the insula and associative learning in 

ADHD can further elucidate the necessity of this region in executing stimulus-dependent 

actions. Furthermore, particular sub-regions of the insular and opercular cortex have been 

implicated in gustatory processes—even those involving the imagined taste of a stimulus 

(Barrós-Loscertales et al., 2012; Veldhuizen et al., 2007). The pronounced opercular 

activity in ADHD may be evoked by the enhanced encoding of the fractal cue as a 

contextual marker that predicts food rewards. Indeed, the coordinates that were 

associated with these processes in previous research overlap with our opercular and 

insular activation patterns (Barrós-Loscertales et al., 2012; Veldhuizen et al., 2007). 

Possibly, the food reward-associated fractal cues evoke gustatory processes more 

strongly in the ADHD group compared to NT.  

 Our devaluation procedure resulted in comparable sensitivity to the value of the 

outcome in both groups, suggesting the maintenance of goal-directed control across the 
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board. Although moderately training novel S–R–O associations was effective in 

identifying atypical brain function during reward learning, these behavioral similarities 

suggest that a direct investigation of habitual control in ADHD may require prolonged S–

R training, or tasks that capture well-learned habits that do not rely on the traditional 

measures of devaluation sensitivity (Ceceli et al., submitted). Nonetheless, the neural 

findings reported in this study do not depend on devaluation or the extinction test, as we 

focused on the neural signature of moderate S–R learning during the training phase. Any 

heterogeneity in participants’ behavioral sensitivity to devaluation is independent from 

the late stage training—the period of interest for neural calculations of associative 

learning strength. The corticostriatal abnormalities reported here are evident when the S–

R–O associations in both groups should have moderately strengthened in late training.  

 ADHD is a highly prevalent disorder, and the wide range of reward-related 

irregularities warrants a closer examination of neurobehavioral mechanisms. We 

contribute to the growing neurobiological evidence for reward- and motivation-related 

dysfunctions in ADHD by highlighting key corticostriatal abnormalities affecting the 

posterior putamen, dACC, and mPFC during motivational control. Importantly, the 

atypical neural signaling related to motivational processes may indicate an ADHD 

endophenotype. Research on habits and goals in ADHD is imperative to better elucidate 

the neurobehavioral systems of habitual control, and ultimately advance our 

understanding of ADHD’s neural anomalies to identify biomarkers in this debilitating 

disorder.  
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 Chapter 3: Demonstrating and disrupting the execution of well-learned 

habits (submitted) 

Introduction 

When categorizing motivated behaviors, habits are distinguished from goal-

directed actions in that they are performed reflexively in response to a triggering cue, 

without consideration of the consequences (Dickinson and Balleine, 1994). These 

habitual behaviors are less cognitively taxing than their goal-directed counterparts, 

allowing for their utilization in instances where the resource-consuming reflection of 

potential outcomes may not be ideal (Otto et al., 2013, 2015; Wood and Rünger, 2016). 

For example, looking both ways before crossing a street is an action best elicited 

habitually, and ideally should persist despite the absence of oncoming traffic. In contrast, 

the optimal motivational control system for commuting to a new destination would be 

outcome-reliant, reflective, and thus resource-consuming goal-directed performance. 

For decades, the motivational bases of behavioral control (i.e., goal-directed and 

habitual actions) have been investigated in rodent models. In a typical study examining 

habitual control, a neutral stimulus (e.g., a visual cue, or the context of the chamber) 

signals hungry rats to press a lever in pursuit of a food outcome. This behavioral training 

period is often followed by a devaluation procedure—the rat is allowed free-access to the 

food, promoting satiation and diminishing the food’s value (hence the term devaluation). 

In a subsequent, unrewarded, extinction phase, the experimenter can then assess whether 

the trained lever-press action is flexible and goal-directed (i.e., strong responses when 

animal is hungry but diminished responses when satiated), or rigid and habitual (i.e., 

persistent responses regardless of satiation) (Adams and Dickinson, 1981). Generally, 

over-training of the stimulus–response–outcome association tends to render actions 
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habitual. Thus, an over-trained rat persists in pressing the lever despite a diminished 

value in outcome, suggesting that the actions are driven by the preceding cue or the 

chamber context. In contrast, value-driven goal-directed control survives following 

moderate experience with the stimulus–response–outcome chain (Adams, 1982). 

Motivational control testing in humans has followed suit with similar operant 

conditioning paradigms, in which a primary or a secondary reward is devalued to 

determine whether actions are cue or value driven (Alvares et al., 2014, 2016; de Wit et 

al., 2012; Sjoerds et al., 2016; Tricomi et al., 2009; Valentin et al., 2007). Another 

widely-used example is the sequential decision task, in which subjects respond to 

probabilistic multi-step associative sequences and recruit model-based (i.e., goal-

directed; taking into account the cognitive model of the task environment) or model-free 

(i.e., similar to habits; actions based solely on history of reward receipt) strategies to 

maximize gain and minimize loss (Daw et al., 2005). 

These methods have undoubtedly contributed a great deal to our understanding of 

habits; however, such paradigms are limited in critical aspects. First, in contemporary 

paradigms, including those based on outcome-devaluation and sequential decision-

making, the agent must develop a newly formed habit. Accordingly, the tools at our 

disposal facilitate the study of novel, lab-developed habits, while leaving incomplete our 

understanding of well-learned habits that are more representative of daily experiences. 

For example, especially in outcome-devaluation tasks involving valued and devalued 

food rewards, testing whether a behavior is habitual relies on several critical factors. The 

demonstration of a habit may depend on successful over-training of a new cue–response–

outcome association that develops a strong enough link between the cue and the response 
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to guide behavior (Tricomi et al., 2009). Furthermore, the effectiveness of the devaluation 

procedure where a food outcome is selectively fed to diminish its value may become 

problematic in humans for reasons not encountered in rats, such as demand 

characteristics, and hesitation to eat copious amounts of junk food in a potentially 

socially intimidating lab setting. Lastly, the experimenter makes assumptions of 

comparable food palatability, in that the subject must value the food options similarly 

prior to selective devaluation for any value-based manipulation to be effective (Tricomi 

et al., 2009). These lab-generated habits are also arduous to develop via over-training, 

especially in expensive neuroimaging contexts. More importantly, the strength of the 

trained habit would be insufficient for a meaningful investigation of the habit-breaking 

process, in that even multi-day training is often measured in minutes to hours (McKim et 

al., 2016; Tricomi et al., 2009). Thus, the current tools provide a costly platform that only 

captures the unidirectional shift from goal-directed to habitual control (Ceceli and 

Tricomi, 2018). In other words, although these novel, lab-created associations permit the 

study of habit formation and execution, we are limited in our tools to investigate habit 

disruption with similar efficacy. 

Despite tremendous efforts directed towards understanding habit formation and 

expression, a wider gap in the literature remains regarding the breaking of habits. 

Accessing the shift from habitual to goal-directed control may ultimately facilitate 

interventions that remediate rigid and maladaptive behaviors, yet we are not currently 

methodologically equipped to tackle this translational research avenue with a rich toolkit. 

Accordingly, we propose that developing a novel habit from an action–outcome 

contingency is not a pre-requisite for studying the motivational basis for habits, but that 
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an existing, more robust habit could be examined in the lab with less effort. An effective 

approach may involve using salient cues that elicit well-established, habit-like behaviors 

that are impervious to their consequences. For instance, the colors red and green have 

highly specific “stop” and “go” associations, possibly strengthened in a variety of 

contexts including traffic lights, visual signals of danger and safety, and childhood 

games, songs, and stories (Suskauer et al., 2008). The familiar red–stop and green–go 

contingencies have previously been transformed into Go/NoGo tasks to assess response 

inhibition via perseverative errors (i.e., NoGo accuracy) (Mostofsky et al., 2003; Naito 

and Matsumura, 1996; Suskauer et al., 2008). Similarly, we can test for behavioral 

rigidity by assessing performance when these contingencies are congruent with daily 

experiences versus when adjusted to reflect outcomes incongruent with most real-world 

scenarios. Thus, instead of devaluing the palatability of a primary reward, we render a 

well-learned association inappropriate for optimal task performance. The agent must 

override a prepotent red stimulus–stop response with an incongruent green stimulus–stop 

response to achieve the intended, correct outcome. A more pronounced accuracy 

impairment when managing incongruencies within this well-learned color-response 

mapping, compared to changes in a newly-acquired mapping, would permit us to 

conclude that these familiar stimuli evoke outcome-insensitive actions, the hallmark of 

habitual behavior. Upon establishing that these familiar stimuli elicit habitual control, we 

can then provide the platform to study habit disruption by testing manipulations that 

protect against mapping-related performance impairments–essentially preventing habitual 

control. The motivational control framework identifies habits as cue-dependent, and goal-

directed behaviors as those contingent on the outcome (Dickinson and Balleine, 1994). 
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Accordingly, a previously goal-directed behavior is rendered habitual when the 

associative strength of the stimulus–response component governs actions, rendering the 

outcome inessential for action execution. A promising strategy for restoring goal-directed 

control may be via boosting the salience of the outcome—for instance, by enhancing the 

link between the response and outcome.  

Providing opportunities for performance tracking and administering other forms 

of performance-based feedback (e.g., primary and secondary rewards) have been used 

extensively in enhancing behavioral output (Kluger and DeNisi, 1996; Montague and 

Webber, 1965). For instance, the delivery of performance tracking information combined 

with a monetary reward successfully improved performance on a visual task (Montague 

and Webber, 1965). A combination of primary and secondary rewards (e.g., juice and 

monetary incentives) has also been documented to improve goal-directed performance on 

a cued task-switching paradigm via motivational enhancement (Yee et al., 2016). The 

promise of a future reward contingent on performance has sufficed in improving 

performance during task-switching, and accelerating responses during a reaction time 

task with congruent and incongruent stimuli (Kleinsorge and Rinkenauer, 2012; Zedelius 

et al., 2012). Furthermore, trial-by-trial, transient monetary incentives (i.e., increasing 

reward magnitudes from low to high across trials) have served as salient performance 

boosters in tasks that taxed executive control, as well as visual perception (Shen and 

Chun, 2011). Taken together with the finding that performance-contingent monetary 

rewards engage top-down control on task-switching (Umemoto and Holroyd, 2015), 

performance tracking and performance-contingent rewards may be prime candidates for 

enhancing goal-directed behavioral control. Thus, we propose that boosting motivation 
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via performance-contingent feedback (e.g., intrinsic and extrinsic rewards that promote 

task performance improvements) may serve as a useful tool in restoring flexibility in 

otherwise rigid behaviors.  

To achieve the goal of demonstrating and breaking a well-established habit, we 

introduce in Experiment 1 our novel Go/NoGo task that capitalizes on the familiar 

Green–Go, Red–NoGo associations people typically develop throughout the course of 

their lives. If the red–stop and green–go associations are well-learned, outcome-

insensitive habits, there should be within-subject decrements in performance on an 

incongruent mapping of color to response (green–stop, red–go) compared to the well-

learned congruent mapping (red–stop, green–go). In comparison, there should be no such 

within-subject differences between conditions involving novel color–response mappings 

(e.g. blue–stop, purple–go vs. purple–stop, blue–go). That is, if participants are 

responding habitually, they should be more likely to make errors of commission (i.e., 

responding to a cue when instructed to withhold responding), than if they are responding 

in a goal-directed manner. Then, in Experiments 2 and 3, we explore strategies to disrupt 

these well-learned habits by amplifying the salience of the action outcomes. Specifically, 

we use cumulative performance-contingent feedback to disrupt the incongruency-related 

impairment—which would restore goal-directed control in the face of habit-eliciting 

stimuli by reducing outcome-insensitive responses. 
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Experiment 1 

Methods 

Participants 

We recruited 50 undergraduate 

students (32 female, 18 male 

participants; Mage=20.28, SDage=2.96) 

from the Rutgers University-Newark 

campus for course credit. All subjects 

provided informed consent. Study 

protocols were approved by the Rutgers 

University Institutional Review Board. 

Participants were excluded if they 

reported having color-blindness. 

Materials and Procedures 

Participants were administered 

the Barratt Impulsivity Scale (BIS) 

(Patton et al., 1995), and randomly 

assigned to one of two stimulus type 

conditions (Familiar or Novel stimuli). 

They underwent a Go/NoGo task in which either Green and Red (Familiar condition) or 

Purple and Blue (Novel condition) traffic lights comprised Go and NoGo signals. 

Participants were instructed to respond as quickly and accurately to these stimuli as 

possible using the keyboard. A second phase followed in which the color-response 

 

Figure 7. Go/NoGo task with familiar and novel 
lights. Participants are assigned to Familiar or Novel 

conditions. In the Familiar condition, subjects 

complete two phases: one where green signals Go 

and red signals NoGo (“congruent” mapping) and 

one where red signals Go and green signals NoGo 

(“incongruent” mapping). In the Novel condition, 

participants complete two similar phases, but the 

colors are blue and purple, for which there should be 

no strong pre-existing associations with “stop” and 

“go” responses. We predicted more commission 

errors in the Familiar condition for incongruent than 

congruent mappings, indicating outcome 

insensitivity, with no such within-subject 

differences expected in the Novel condition. Phase 

orders were counterbalanced across subjects. 
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contingencies were swapped (see Figure 7). Note that in the Familiar condition, the 

Green-Go/Red–NoGo mapping was considered “congruent” with associations in 

everyday life, while the Red–Go/Green–NoGo mapping was considered “incongruent.” 

We assumed that the Novel stimuli have no well-established Go or NoGo associations in 

daily life. The order in which participants underwent the two phases of the task was 

counterbalanced to ensure that the results could not be attributed to a specific order of 

managing the contingencies. Thus, we were able to examine the rigidity of our Familiar 

behavioral contingencies hypothesized to elicit outcome-insensitive responses in relation 

to a Novel stimulus set. An exit survey with demographic information concluded the 

study (see Figure 8 for a schematic of the experimental design).  

Each phase comprised 100 Go and 20 NoGo trials (5:1 Go-NoGo ratio). The 

Go/NoGo stimuli remained onscreen for 400 milliseconds (ms), and each response 

produced a brief “correct” or “incorrect” text slide that offset after 400 ms. Go responses 

 

Figure 8. Experiment 1 design. Participants complete an impulsivity survey, then undergo either the 
Familiar or the Novel conditions of the Go/NoGo task. Participants perform both color-response 
mapping phases, and the order in which these contingencies are managed is counterbalanced across 
participants. A demographic survey concludes the experiment. 



 50 
 

 
 

had to be performed before stimulus offset to be registered as correct. The inter-trial 

intervals varied randomly between 1200 and 2400 ms to ensure engagement with the 

task. All participants completed a brief practice session (six correct Go or NoGo 

responses) using the same stimuli as the first phase. This practice session was conducted 

with the experimenter present to ensure the comprehension of instructions. 

If these familiar associations elicit habitual, cue-driven behavioral control, 

subjects undergoing the Go/NoGo task in the Familiar condition should experience a 

significant impairment in NoGo accuracy when incongruent with lifelong experiences 

(Green–NoGo). Accordingly, because the Novel condition stimuli are not characteristic 

of strong Go or NoGo signals, participants should show similar performance levels for 

both color–response mappings, illustrating the flexibility of responses executed towards 

the novel stimuli. 

Data Analysis 

Because the high ratio of Go to NoGo signals was expected to produce pre-potent 

Go responses, NoGo accuracy served as the primary measure of interest. As a secondary 

measure of outcome-sensitivity, identical analyses were performed using Go accuracy as 

dependent variable (DV). A mixed ANOVA with a DV of NoGo accuracy, Condition 

(Familiar or Novel stimulus conditions) as a between-subjects factor, and Mapping 

(congruent or incongruent mapping in the Familiar, and arbitrary color–response 

mapping in the Novel condition) as a within-subjects factor, was performed using Age, 

Gender, and Impulsivity (BIS score) as covariates. Post-hoc t-tests were employed to 

detect mapping-related differences in both conditions. We also performed a confirmatory 

omnibus test containing information from both conditions—a hierarchical multiple 
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regression to test the predictive strength of the Condition variable on mapping-related 

impairment. We summarize these omnibus regression data below, but refer readers to the 

Appendix for details (Supplemental Tables 2 and 3). 

To determine sample size for our study, we performed an a priori power analysis 

using the effect size from an existing study examining Go/NoGo contingency change 

(Finn et al., 1999). A within-group comparison of commission errors due to contingency 

change—one similar to the primary analyses reported above—determined that 12 

participants would be needed per group to reach 80% statistical power. We adjusted this 

sample size in accordance with our two between-subjects factors that yielded four groups, 

(two Condition levels and two Order levels – that is, the counterbalanced orders in which 

participants completed the two phases of the task), warranting a sample size of 50.  

Results 

Primary index of outcome-sensitivity: NoGo accuracy 

 To examine whether condition (Familiar or Novel) predicted outcome-sensitivity, 

we performed a repeated measures ANOVA using NoGo accuracy as DV, Condition as a 

between-subjects factor, Mapping as a within-subjects factor, controlling for Age, 

Gender, and Impulsivity as covariates. We found no main effect of Condition, F(1,45) = 

0.99, p = .325, ηp
2 = .02, or Mapping, F(1,45) = 0.10, p = .748, ηp

2 < .01. but as evident 

in Figure 9, we found a significant Condition x Mapping interaction. F(1,45) = 8.65, p = 

.005, ηp
2 = .16. Post-hoc paired-samples t-tests further revealed a significant difference in 

NoGo accuracy in the Familiar condition, t(24) = 3.53, p = .002, suggesting that the 

incongruent “Green–NoGo” association elicits more errors of commission, indicative of 

outcome-insensitive, habitual control. Contingency change yielded no differences in 
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errors of commission between phases in the Novel condition, supporting the labile nature 

of newly learned associations, t(24) = -0.88, p = .387.  

The omnibus regression test 

confirmed the significant effect of Condition. 

When controlling for participants’ age, 

gender, and self-reported impulsivity, the 

inclusion of the Condition regressor in the 

hierarchical multiple regression model 

explained an additional 15.5% of the variance 

in outcome-sensitivity: βCondition = -0.40, p = 

.006, ΔR2 = .15, indicating differential 

outcome-sensitivity across Familiar and 

Novel conditions. The details of this omnibus 

regression test and beta weights of all model parameters can be found in the Appendix 

(Supplemental Table 2).  

Secondary index of outcome-sensitivity: Go accuracy 

A mixed-design ANOVA controlling for Age, Gender, and Impulsivity as 

covariates, using Go accuracy as DV revealed no main effect of Condition, F(1,45) = 

0.19, p = .667, ηp
2 < .01, or Mapping, F(1,45) = 2.93, p = 0.094, ηp

2 = .06, but a 

Condition x Mapping interaction at F(1,44) = 3.93, p = .054, ηp
2 = .08 (Figure 10). Post-

hoc paired-samples t-tests suggested a Go accuracy impairment only in the Familiar 

condition, t(24) = 3.10, p = .005, whereas no mapping-related Go impairment was 

observed in the Novel condition, t(24) = 0.28, p = .785. 

 

Figure 9. Familiar stimuli elicit mapping-
related impairments in NoGo accuracy. 
Subjects make significantly more errors of 

commission when the NoGo signal is red 

compared to green. There is no difference in 

accuracy in the Novel condition when the 

NoGo signal is purple vs. blue. Condition x 

Mapping interaction: p = .005. Error bars 

depict standard error of mean (SEM). Color of 

bars reflects NoGo stimulus colors.  
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The omnibus regression test also confirmed the role played by Condition on our 

secondary assay of outcome-sensitivity, Go 

accuracy. Controlling for participants’ age, 

gender, and impulsivity scores, the inclusion 

of the Condition regressor significantly 

predicted mapping-related Go accuracy 

changes: βCondition = -0.27, ΔR2 = .07, p = 

.049 (see Supplemental Table 3 in the 

Appendix for details).  

These Go accuracy data lend support 

to the hypothesis that while red and green 

stimuli are rigid and habitual in triggering stop/go actions, blue and purple stimuli are not 

strongly associated with behavioral significance, in that they are labile and sensitive to 

the changes in action-outcome contingencies.  

Discussion 

This experiment demonstrates that habitual behavior that capitalizes on existing, 

non-lab-derived associations, can be demonstrated in the lab. By using the strong links 

between the green–go and red–stop associations in a Go/NoGo task, we were able to 

quantify the degree of flexibility to well-stamped in cue–response–outcome associations. 

Importantly, our results suggest that responses are more outcome-insensitive (i.e., 

habitual) when the stimulus meanings are congruent with our experiences with traffic 

lights in daily life (i.e., when a traffic light indicating “stop” is red, rather than green, 

blue or purple).  We note that incongruency-related impairments alone are not enough to 

 

Figure 10. Familiar stimuli elicit mapping-
related impairments in Go accuracy. Subjects 
perform worse when the Go signal is red 
compared to green. No such differences are 
seen in the Novel condition, when Go signal is 
blue vs. purple. Condition x Mapping 
interaction: p = .054. Error bars depict standard 
error of mean. Color of bars reflects Go 
stimulus colors. 
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conclude that a response is habitual; rather this conclusion must be verified by a 

comparison of the habitual associations (i.e., green–go, red–stop) with the novel control 

condition Go/NoGo associations (i.e., purple–go, blue–stop). Specifically, these red and 

green light stimuli triggered outcome-insensitive actions as evidenced by an accuracy 

impairment when Go and NoGo contingencies were incongruent with their well-

established meanings outside of the lab. In contrast, the novel purple–go and blue–stop 

contingencies are not well-established in one’s daily experiences, and their associative 

strength is limited to the participant’s brief experience in the lab. Therefore, compared to 

the familiar stimuli, the actions evoked by the novel stimuli are more flexible to 

contingency changes, as reflected by similar NoGo and Go accuracy scores for blue vs. 

purple. 

Assessing motivational control, which attributes the source of one’s actions to 

either a preceding cue or its consequences, has long relied on experimental manipulations 

of outcome value. Rodent and human studies employing outcome-devaluation procedures 

of food rewards have depended on the subjects’ comparable palatability of the foods used 

in the research, as well as the development of an outcome-insensitive habit via over-

training of these action-outcome contingencies (Dickinson et al., 1995; Tricomi et al., 

2009). Other researchers have made use of the instructed devaluation of outcomes, and 

computational investigations of choice strategy categorizations of model-based and 

model-free performance (Sjoerds et al., 2016). Although tremendously effective in their 

own avenues, a common area outside of the reach of these tasks is well-learned habits 

that better represent real world scenarios.  
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Our Go/NoGo task with familiar and novel stimuli provides new possibilities in 

studying habits. We demonstrate habits in a lab setting using stimuli that do not require 

lengthy training sessions to develop strong stimulus–response associations. This time- 

and cost-effective paradigm can serve as an especially useful tool in studying habits in 

expensive neuroimaging contexts. Perhaps more importantly, taking advantage of well 

stamped-in cue–response associations to study habits promises to contribute to 

translational science via new research avenues. For instance, although contemporary 

paradigms have proved fruitful in studying the formation and expression of habits, the 

nature of the tasks do not facilitate the investigation of habit disruption. Novel 

associations that have become outcome-insensitive following limited, lab-specific 

experience may not be rigid enough to represent real-world behaviors, and breaking these 

weak habits may not be translationally valuable. 

We attempt the breaking of well-learned habits in Experiment 2, in which we 

boost motivation via cumulative performance feedback prior to contingency reversal. 

Because the motivational control framework attributes habits to be driven by antecedent 

cues and goal-directed actions to be guided by resulting outcomes, we hypothesized that 

amplifying the salience of the outcome may promote goal-directed performance at the 

expense of habitual control, thus aiding in breaking the well-learned habit. 

Experiment 2 

Methods 

Participants 

We recruited 100 undergraduate students (67 female and 33 male participants; 

MAge=20.26, SDAge=3.05) from the Rutgers University-Newark campus. All participants 
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provided informed consent and received course credit for their participation. Study 

protocols were approved by the Rutgers University Institutional Review Board. 

Participants were excluded if they reported having color-blindness. 

Procedures 

For the Go/NoGo task, participants were randomly assigned to a Feedback Group 

or No Feedback Group, and within each group, participants were randomly assigned to 

either Novel or Familiar condition, as in Experiment 1. 

Feedback Group. After completing the BIS, participants underwent a similar 

Go/NoGo task to the one described in Experiment 1. Accordingly, each phase comprised 

100 Go and 20 NoGo trials (5:1 Go–NoGo ratio). As reported in Experiment 1, all stimuli 

remained on the screen for 400 ms, and responses produced brief feedback slides 

consisting of “correct” or “incorrect” that offset after 400 ms. Go responses had to be 

performed before stimulus offset to be registered as correct. The inter-trial intervals 

varied randomly between 1200 and 2400 ms to ensure engagement with the task. All 

subjects completed a brief practice session (six correct Go or NoGo responses) using the 

same stimuli that comprised the task. This practice session was conducted with the 

experimenter present to ensure the comprehension of instructions. 

In the Familiar condition, participants were instructed to “Go” on green traffic 

light stimuli as quickly and accurately as possible, and withhold responses to the red 

traffic light. Next, a cumulative performance feedback manipulation followed, in which 

we displayed subjects’ percent NoGo accuracy scores on the screen. Participants were 

informed that the percentage score reflected their performance thus far (they were not 

informed that the score only reflected NoGo accuracy), and in the next phase of the task, 
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the Go and NoGo signals would be reversed, such that they would need to make a 

response as quickly and accurately as possible to the red traffic light, and refrain from 

responding to the green traffic light. Identical feedback and task instructions were 

provided to the participants in the Novel condition regarding the change in contingencies 

of the purple–Go and blue–NoGo associations. It should be reiterated that Experiment 1’s 

results suggest differential impairments across Familiar and Novel conditions regardless 

of the order in which phases were completed. Therefore, unlike Experiment 1, the phase 

orders in Experiment 2 were not counterbalanced, in that all participants in the Familiar 

condition underwent the congruent (Green–Go, Red–NoGo) mappings first, followed by 

the incongruent mappings; all participants in the Novel condition underwent the Purple–

Go, Blue–NoGo mapping first, and these mappings were reversed in the second phase. 

This change in experimental protocol enabled rendering the congruent contingency as 

baseline for participants in the Familiar group, and testing whether the presence of a mid-

experiment performance manipulation affected subsequent incongruent task performance. 

An exit survey consisting of demographic questions concluded the experiment (see 

Figure 11 for a schematic of the experimental design).  

No Feedback Group. Participants in the No Feedback group underwent the same 

procedures as the Feedback group, except that no cumulative performance feedback was 

provided at any point. This No Feedback group served as a control condition for the 

Feedback group, as well as an internal replication of Experiment 1.  

Data analysis 

To examine the role of Feedback, mixed-design ANOVAs with NoGo accuracy as 

DV, Feedback as a between-subjects and Mapping as a within-subjects factor were 
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performed for each Condition, using the controlled variables Age, Gender, and 

Impulsivity as covariates. Post-hoc t-tests were carried out to examine mapping-related 

accuracy differences in both Feedback groups. As a secondary measure of outcome-

sensitivity, identical analyses were performed using Go accuracy as a dependent variable. 

Building from Experiment 1, we performed a confirmatory omnibus hierarchical 

multiple regression to test the predictive strength of the Condition and Feedback variables 

on mapping-related impairment. The summary of the omnibus regression test is reported 

below, and its details can be found in the Appendix (Supplemental Tables 4 and 5). 

We performed a power analysis using the effect size of the Condition x Mapping 

interaction in Experiment 1 (ηp
2 = .16) and determined that a sample of 12 participants 

per group would be sufficient to reach 80% statistical power to detect the effect of 

differential accuracy rates due to Condition. We opted for this interaction value for our 

 

Figure 11. Experiment 2 design. Participants complete an impulsivity survey, then undergo either the 
Familiar or the Novel conditions of the Go/NoGo task. Similar to Experiment 1, participants perform 
both color-response mapping phases; however, half of the participants in each condition receive 
cumulative performance feedback following the first color-response mapping phase. A demographic 
survey concludes the experiment. %: performance feedback. 



 59 
 

 
 

investigation of the role of feedback, because we wanted our feedback-related assertions 

to be grounded in predictions of a replicated effect of habitual performance to familiar, 

and goal-directed performance to novel stimuli. To further increase statistical power due 

to the addition of a Feedback group per condition, we increased our sample size to 25 per 

group—a total of 100 undergraduate students. 

Results 

Primary index of outcome-sensitivity: NoGo accuracy 

We hypothesized that performance feedback may be a salient factor that can 

potentially restore goal-directed control when managing well-established associations. 

However, cumulative performance feedback did not break the habits elicited by these 

familiar stimuli. We performed a mixed-design ANOVA using NoGo accuracy as DV, 

and Age, Gender, and Impulsivity as covariates. We found no main effect of Feedback, 

F(1,45) = 0.08, p = .778, ηp
2 <.01, or Mapping, F(1,45) = 1.96, p = .169, ηp

2 = .04, and 

we also found that no significant Feedback x Mapping interaction exists : F(1,45) = 0.08, 

p = .776, ηp
2 < .01 (see Figure 12; for corroborating regressions, see Appendix, 

 

Figure 12. Performance feedback does not significantly disrupt well-established habits. (A) In the 

Familiar condition, both Feedback and No Feedback groups suffer an incongruency-related impairment 

(p = .776) in NoGo accuracy. (B) NoGo accuracy in the Novel condition is not significantly improved 

by performance feedback (sig. interaction of p = .033, non-sig. post-hoc t-tests: p > .05). Error bars 

denote SEM. Color of bars reflects NoGo stimulus colors. 
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Supplemental Table 4). Post-hoc t-tests revealed significant incongruency-related 

impairments in both Feedback, t(24) = 2.72, p = .012, and No Feedback, t(24) = 3.16, p = 

.004, groups, indicating that cumulative performance feedback did not prevent habitual 

control from dominating in the Familiar condition. Although we were unable to break 

habits as hypothesized here, our findings lend support to the rigidity of these well-learned 

associations that persevere in the face of an otherwise salient motivational manipulation, 

performance feedback (Deci, 1971; Harackiewlcz, 1979).  

We performed a similar ANOVA to determine whether cumulative performance 

tracking improved goal-directed control of novel associations. As seen in Figure 12, we 

did not find a main effect of Feedback, F(1,45) = 0.40, p = .528, ηp
2 < .01, or Mapping, 

F(1,45) = 0.60, p = .442, ηp
2 = .01, yet found a Feedback x Mapping interaction on NoGo 

accuracy in the Novel Condition when controlling for Age, Gender, and Impulsivity as 

covariates: F(1,45) = 4.84, p = .033, ηp
2 = .10.  In sum, these results suggest that 

performance feedback alone may not be a salient enough manipulation to restore goal-

directed control.  

Secondary index of outcome-sensitivity: Go accuracy  

We performed a mixed-design ANOVA of the Familiar condition data using Go 

accuracy as DV, Feedback as a between-, and Mapping as a within-subjects factor, with 

Age, Gender, and Impulsivity as covariates. We found no significant main effect of 

Feedback F(1,45) = 0.10, p = .751, ηp
2 < .01, or  Mapping, F(1,45) = 0.14, p = .705, ηp

2 < 

.01, but found a significant Feedback x Mapping interaction: F(1,45) = 4.73, p = .035, ηp
2 

= .09 (Figure 13), suggesting that Go accuracy was affected differentially by performance 

feedback. Post-hoc paired-samples t-tests of Go accuracy across phases yielded evidence 



 61 
 

 
 

for an incongruency-related impairment in the No-Feedback group, t(24) = 3.22, p = 

.004), but not in the Feedback group, t(24) = 1.14, p = .265. Indeed, the omnibus 

hierarchical regression model attributes Condition and Feedback regressors a significant 

role in predicting Go accuracy change (βCondition = -0.32, p = .001, βFeedback = 0.28, p = 

.003; ΔR2 = .18; see Appendix, Supplemental Table 5).  

Despite the significant Feedback regressor in the omnibus test, we did not observe 

a significant improvement effect due to cumulative performance feedback in the Novel 

condition Go accuracy results. A mixed-design ANOVA using Go accuracy as DV, 

Feedback as the between-, and Mapping as the within-subjects factor, with Age, Gender, 

and Impulsivity as covariates revealed no significant main effect of Feedback, F(1,45) = 

3.53, p = .067, ηp
2 = .07, or Mapping, F(1,45) = 3.14, p = .083, ηp

2 = .06, and no 

significant Feedback x Mapping interaction: F(1,45) = 2.56, p = .117, ηp
2 = .05 (Figure 

13). Post-hoc paired-samples t-tests suggest an improvement effect only in the Feedback 

group: t(24) = -2.39, p = .025 with feedback, t(24) = 0.32, p = .749 without feedback. 

Given the lack of significant Feedback x Mapping interaction in the Novel condition, we 

 

Figure 13. Performance feedback protects against habitual Go actions. (A) When participants received 

cumulative feedback on their performance, the Go accuracy impairment otherwise observed without 

feedback was prevented when managing Familiar stimuli (Feedback x Mapping interaction p = .035). 

(B) Performance feedback did not significantly improve Go accuracy in the Novel condition (Feedback 

x Mapping interaction p = .117). Error bars denote SEM. Color of bars reflects Go stimulus colors.  
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refrain from speculating further about the effect of cumulative performance feedback on 

goal-directed Go responses. 

Discussion 

In sum, we report that cumulative performance feedback is not sufficient to 

disrupt the well-learned habits elicited by the familiar stimuli used in our task. However, 

supplementary analyses using accessory measures of behavioral control (i.e., familiar Go 

accuracy), suggest that feedback may be a useful tool in enhancing behavioral flexibility. 

Therefore, these patterns warrant further examination of feedback to disrupt habitual 

control.  

We conclude that cumulative performance feedback was not salient enough to 

break habits according to our primary analyses, yet our findings were valuable in two 

ways. First, the validity of our Go/NoGo task using well-learned associations to study 

habits relies on the rigidity of these green–go and red–stop associations. The persistent 

habitual control exhibited here despite the delivery of performance feedback lends 

credence to the associative strength of our familiar stimuli. Next, given the modest signs 

of performance improvement due to the presentation of performance information, early 

reports of combined (i.e., performance tracking and monetary incentives) feedback’s 

positive effects on performance, and the beneficial effects of performance-contingent 

feedback on behavioral flexibility (Kleinsorge and Rinkenauer, 2012; Montague and 

Webber, 1965; Shen and Chun, 2011; Yee et al., 2016; Zedelius et al., 2012), we were 

motivated to enhance the salience of the provided feedback to break well-learned habits. 

In Experiment 3, we further amplified the salience of the outcome by pairing 

performance-contingent cumulative feedback with a bonus monetary reward prior to 
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changing Go and NoGo contingencies. We studied the effects of monetary and 

cumulative performance feedback on Go/NoGo task performance, and whether this 

amplification of outcome salience resulted in the breaking of a well-learned habit, and 

improvement of novel, goal-directed performance. 

Experiment 3 

Methods 

Participants 

To test the effects of dual feedback, we recruited the same number of participants 

for Experiment 3 as in Experiment 2. One-hundred participants (76 female, 24 male 

participants; Mage=19.74, SDage=2.79) from the Rutgers University-Newark 

undergraduate research subject pool were recruited for course credit. All participants 

provided informed consent. Study protocols were approved by the Rutgers University 

Institutional Review Board. Participants were excluded if they reported having color-

blindness. 

Procedures 

The promising but insufficient effect of cumulative performance feedback on the 

motivational control of action motivated us to examine the combined effect of 

performance and monetary input. Thus, we implemented in our mid-experiment 

performance feedback manipulation a cash bonus. Experimental procedures were 

identical to those described in Experiment 2, with the addition of awarding participants in 

the Feedback group a surprise $5 cash bonus before the change in Go/NoGo 

contingencies. 
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After completing BIS, participants underwent a similar Go/NoGo task to the one 

described in Experiment 2, where they were randomly assigned to Feedback and No 

Feedback groups, and Familiar and Novel conditions. As in Experiment 2, each phase 

comprised 100 Go and 20 NoGo trials (5:1 Go–NoGo ratio), and the stimuli remained on 

the screen for 400 ms. Go and NoGo responses (or lack thereof) produced brief feedback 

slides consisting of “correct” or “incorrect” that offset after 400 ms. Go responses had to 

be performed before stimulus offset to be registered as correct. The inter-trial intervals 

varied randomly between 1200 and 2400 ms to ensure engagement with the task. All 

participants completed a brief practice session prior to the task, similar to the previous 

two experiments. 

Identical to Experiment 2, in the Familiar condition’s first phase, participants 

were instructed to “Go” on green traffic light stimuli as quickly and accurately as 

possible, and “NoGo” on red traffic light stimuli. Next, a monetary and cumulative 

performance feedback manipulation followed, in which we displayed participants’ 

cumulative NoGo accuracy as a percentage score on the screen. Participants were 

informed that the percentage score reflected their performance thus far. Additionally, 

unique to Experiment 3, the experimenter left the room, and returned briefly after with a 

$5 bill, and informed the participant that this money was earned because of performance 

thus far in the task. Unbeknownst to the participants, the cash bonus was not actually 

contingent on performance. The participant was then informed that the Go and NoGo 

signals would be reversed, such that they would need to make a response as quickly and 

accurately as possible to the red traffic light, and refrain from responding to the green 

traffic light. Identical performance and monetary feedback information and reversal 



 65 
 

 
 

instructions were provided to the participants in the Novel condition regarding the 

reversal of purple–Go and blue–NoGo responses. An exit survey containing demographic 

questions concluded the experiment (see Figure 14 for a schematic of the experimental 

design). 

Participants in the No Feedback group underwent the same procedures as the 

Feedback group, except for the feedback manipulation, in that participants received no 

cumulative performance or monetary feedback.  

Data analysis 

To reveal the potential effect of dual feedback on motivational control, we 

performed mixed-design ANOVAs with NoGo accuracy as DV, Feedback as a between- 

and Mapping as a within-subjects factor for each Condition, using the Age, Gender, and 

Impulsivity variables as covariates. Post-hoc paired-samples t-tests were carried out when 

necessary to examine mapping-related accuracy differences in both Feedback groups. As 

 

Figure 14. Experiment 3 design. Participants complete an impulsivity survey, then undergo either the 
Familiar or the Novel conditions of the Go/NoGo task. Similar to Experiment 1, participants perform 
both color-response mapping phases; however, half of the participants in each condition receive 
cumulative performance feedback paired with a $5 bonus following the first color-response mapping 
phase. A demographic survey concludes the experiment. % + $: performance and monetary feedback). 
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a supplemental measure of outcome-sensitivity, identical tests were performed using Go 

accuracy as DV. Identical to Experiment 2, we performed a confirmatory omnibus 

hierarchical multiple regression to test the predictive strength of the Condition and 

Feedback variables on outcome-sensitivity. The summary of the omnibus regression test 

are reported below, and the details can be found in the Appendix (Supplemental Tables 6 

and 7). 

Results 

Primary index of outcome-sensitivity: NoGo accuracy 

We tested the role of dual feedback in disrupting habitual control to familiar 

stimuli by performing a mixed-design repeated measures ANOVA on data from the 

Familiar condition, using NoGo accuracy as the dependent variable. We found no main 

effect of Feedback, F(1,45) = 0.75, p = .390, ηp
2 = .10, or Mapping, F(1,45) = 1.51, p = 

.225, ηp
2 = .03, but found a significant Feedback x Mapping interaction when controlling 

for Age, Gender, and Impulsivity: F(1,45) = 5.24, p = .027, ηp
2 = .10 (see Figure 15). 

This interaction suggests differential impairment based on the availability of cumulative 

 

Figure 15. Monetary and performance feedback disrupt habits while improving goal-directed 
performance to newly-learned stimuli. (A) Providing performance and monetary feedback prevents the 

incongruency-related impairment normally indicative of habitual control (Feedback x Mapping 

interaction: p = .027). (B) Dual feedback also improves goal-directed control of novel associations 

significantly (Feedback x Mapping interaction: p = .038). Error bars denote SEM. Color of bars reflects 

NoGo stimulus colors. 
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performance and monetary feedback, such that the lack of feedback when managing 

familiar stimuli resulted in a significantly larger incongruency-related decrement in 

NoGo accuracy. Post-hoc t-tests confirmed a significant impairment in the No-Feedback 

group, t(24) = 5.25, p < .001, replicating our findings from Experiments 1 and 2, but no 

significant effect in the Feedback group t(24) = 1.92, p = .067.  

To understand whether dual feedback enhanced goal-directed performance to 

newly-learned associations, we performed similar analyses on the Novel condition data. 

The mixed-design ANOVA, when controlling for Age, Gender, and Impulsivity as 

covariates, yielded no main effect of Feedback, F(1,45) = 0.10, p = .756, ηp
2 < .01, or 

Mapping, F(1,45) = 0.42, p = .522, ηp
2 = .01; however, we found a significant Feedback x 

Mapping interaction on NoGo accuracy in the Novel condition: F(1,45) = 4.55, p = .038, 

ηp
2 = .09 (Figure 15). Post-hoc t-tests revealed significant improvement of NoGo 

accuracy in the Feedback group, t(24) = -2.32, p = .029, which was not observed in the 

No-Feedback group, t(24) = 0.08, p = .938. 

Consistent with these significant Feedback x Mapping interactions in both 

Familiar and Novel conditions, our omnibus hierarchical regression model revealed 

Condition and Feedback regressors to be significant predictors of outcome-sensitivity. 

Combined, Condition and Feedback explained 26.6% of the variance in mapping-related 

NoGo accuracy change (βCondition = -0.43, p < .001, βFeedback = 0.28, p = .003; ΔR2 = .27). 

These data suggest that the differential mapping-related NoGo impairment observed in 

Experiment 2 was replicated in Experiment 3, and importantly, that dual feedback is able 

to significantly predict improvements in performance. The entirety of the omnibus test 

can be found in the Appendix (Supplemental Table 6). 
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Secondary index of outcome-sensitivity: Go accuracy 

As a supplementary assay of behavioral control, we analyzed Go accuracy using 

similar statistical procedures. We input Go accuracy as a dependent variable, Feedback as 

a between-, and Mapping as a within-subjects factor, with Age, Gender, and Impulsivity 

as covariates into a mixed-design ANOVA. For the Familiar condition, we found no 

significant main effect of Feedback F(1,45) = 2.36, p = .131, ηp
2 = .05, a significant main 

effect of Mapping, F(1,45) = 4.15, p = .048, ηp
2 = .08, but no significant Feedback x 

Mapping interaction: F(1,45) = 2.52, p = .119, ηp
2 = .05 (Figure 16), suggesting that Go 

accuracy was not significantly affected by dual feedback in the Familiar condition. 

However, post-hoc paired-samples t-tests revealed incongruency-related impairments in 

Go actions specific to the No Feedback group: t(24) = 2.58, p = .017 without feedback vs. 

t(24) = 0.10, p = .925 with dual feedback. Given the lack of interaction, we refrain from 

asserting that dual feedback disrupts habitual Go actions—our secondary assay of 

outcome-sensitivity. 

We then tested the effect of dual feedback on Go accuracy in the Novel condition 

to determine whether our enhanced feedback manipulation improved goal-directed 

 

Figure 16. Dual feedback improves goal-directed Go accuracy. (A) Dual feedback did not have a 

significant effect on the incongruency-related Go accuracy impairment when managing well-learned 

cues (p = .119). (B) Dual feedback improved goal-directed Go responses to novel associations (p = 

.012). Error bars denote SEM. Color of bars reflects Go stimulus colors.  
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control when managing the contingency changes in newly-learned associations. We 

performed a mixed-design repeated measures ANOVA using Go accuracy as DV, 

Feedback as the between-, and Mapping as the within-subjects factor, with Age, Gender, 

and Impulsivity as covariates. This ANOVA yielded a significant main effect of 

Feedback, F(1,45) = 5.49, p = .024, ηp
2 = .11, and no significant effect of Mapping, 

F(1,45) = 0.49, p = .488, ηp
2 = .01; however, it revealed a significant Feedback x 

Mapping interaction: F(1,45) = 6.93, p = .012, ηp
2 = .13 (see Figure 16). Post-hoc t-tests 

of each Feedback group confirms that monetary incentives paired with cumulative 

performance feedback significantly improved newly-learned Go associations that are 

executed by the goal-directed system: t(24) = -4.86, p < .001 with dual feedback, t(24) = -

0.51, p = .616 with no feedback.  

Our omnibus hierarchical regression model reveals that Condition and Feedback 

regressors significantly predict mapping-related Go accuracy changes. These regressors 

in sum account for 21% of the variance in the DV (βCondition = -.36, p < .001, βFeedback = 

.28, p = .004; ΔR2 = .21). These values suggest that Go accuracy is selectively impaired 

in the Familiar condition, and Feedback is able to promote goal-directed Go actions. Due 

to the non-significant Condition x Mapping interaction in the Familiar condition data, we 

restrict the scope of our dual feedback assertions on Go accuracy to the Novel condition. 

Details of the omnibus regression can be found in the Appendix (Supplemental Table 7).  

Discussion 

Collectively, our Experiment 3 findings suggest that a global motivational boost 

involving amplified performance and monetary feedback produces a habit-breaking effect 

that restores goal-directed control. Without feedback, we observe a significant 



 70 
 

 
 

impairment in NoGo and Go accuracy when familiar green and red light stimuli demand 

responses incongruent with daily experiences. We find that this outcome-insensitive habit 

(i.e., inflexible, cue-driven behavior that persists despite the outcome) of the green–go 

and red–stop actions is disrupted when participants are provided dual feedback, such that 

the significant incongruency-related NoGo impairment otherwise seen without feedback 

is prevented. Moreover, our dual feedback manipulation also improves goal-directed 

control when managing newly-learned associations, as evidenced by significant 

enhancements to NoGo and Go performance in the Novel group. Possibly, cumulative 

performance feedback may be enhancing intrinsic motivation. The percentage score may 

provide individuals the opportunity to track task performance improvements, potentially 

boosting motivation to improve task-competence (Ryan and Deci, 2000). Paired with the 

extrinsic reward of a monetary bonus, the dual feedback provided in our experiment may 

be producing a global increase in motivation, resulting in more deliberate control of 

otherwise inflexible behaviors.  

Importantly, the beneficial effect of such feedback generalizes to more flexible 

goal-directed performance, as we observe a significant improvement in NoGo and Go 

accuracy scores to novel blue–go and purple–stop contingencies when participants are 

provided dual feedback. Without feedback, we find no mapping-related difference in 

accuracy to novel stimuli, serving as support for the flexible nature of these newly-

learned associations that can readily be reassigned per changes in one’s environment. 

These findings identify dual feedback as a powerful predictor of motivational control 

enhancement. 
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General Discussion 

In a three-experiment study, we introduce a novel Go/NoGo task that capitalizes 

on familiar, well stamped-in associations of red–stop and green–go to elicit habitual 

control, and establish dual feedback (i.e., monetary reward paired with cumulative 

performance tracking) as an effective basis for intervention to break these well-learned 

habits to restore goal-directed control. We also report enhanced goal-directed, novel 

learning due to dual feedback, lending support to the effectiveness and scope of our 

performance enhancing feedback manipulation. 

Accordingly, an important goal of our study was to establish our paradigm as a 

tool that captures real-world habits. In Experiment 1, we demonstrated the rigidity of the 

familiar green–go and red–stop contingencies compared to the newly-learned, flexible 

associations. The outcome-insensitive responses elicited by the familiar stimuli were 

reflected by a significant mapping-related impairment not observed when participants 

managed novel stimuli. We then tested the strength of the habits evoked in our paradigm 

by introducing a motivation-based intervention: cumulative performance feedback. This 

type of feedback was not successful in preventing habitual control, supporting the notion 

that these existing habits are rigid enough to prevail even in the face of a motivational 

intervention. Nonetheless, performance feedback was able to produce promising results 

via secondary assays of behavioral flexibility. Namely, the prevention of habitual “Go” 

actions motivated the augmentation of our feedback manipulation to amplify its effect on 

motivational control. In Experiment 3, our combined delivery of performance and 

monetary feedback prevented the mapping-related impairment that is the result of a habit-

dominated action control system, while significantly improving goal-directed control. In 
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sum, we demonstrated well-existing habits, tested the limits of their associative strength, 

and provided the foundation for better understanding the restoration of goal-directed 

control. 

Many habit paradigms that emulate the outcome-insensitive nature of habits have 

in common a shortcoming that limits generalizability to the typical habit experience: 

difficulty capturing well-learned habits in the lab that can provide a platform for studying 

habit disruption. Habit strength is limited by the participants’ brief exposure to 

experimental paradigms, and targeting these behaviors that are rendered inflexible in the 

lab may not be representative of habits encountered in the real world (Ceceli and 

Tricomi, 2018). Perhaps due to these difficulties, well-learned habits and habit disruption 

research have been relatively better-represented in field experiments compared to the 

laboratory setting. For example, several field studies have examined the efficacy of 

interventions to change various presentations of daily habits , such as recycling and 

snacking habits (Adriaanse et al., 2009, 2011; Holland et al., 2006). However, recent 

efforts to bridge lab and field experiments have shown promising results. Although not an 

experiment of habit disruption, in a recent report, the slips-of-action task in the lab was 

examined alongside a more ecologically-relevant representation of habits—namely the 

habit of using one’s house keys. In this study, participants demonstrated an outcome-

insensitive habit by making key choice errors, such that they persisted in choosing the 

incorrect key following a change in key covers. The attentional underpinnings of this 

behavior significantly correlated with slips of action performance, underlining the 

importance of focusing on well-established behaviors for an improved empirical 

approach to habit research (Linnebank et al., 2018). 
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One strategy that has proven beneficial in tackling habit change is implementation 

intentions, which provides individuals with an if-then plan (i.e., “if X happens, I will do 

Y”; or in a lab task, “if I see stimulus X, I will press Y”)—an aide to override unwanted 

or inflexible behaviors (Gollwitzer, 1999). In the lab, implementation intentions have 

produced promising results, albeit with limited efficacy in disrupting strong habits. For 

instance, Webb and colleagues trained participants for five days on a target detection 

task, and successfully disrupted this lab-automated association using implementation 

intentions. However, this planning strategy did not break unwanted smoking habits, 

lending credence to the idea that the experimental resources at our disposal may not be 

sufficient in effectively stopping well-established habits (Webb et al., 2009). Although 

this study approached habitual control from an attentional rather than a value-driven 

perspective, parallel evidence from the motivational control literature has recently been 

reported. In another lab study, Verhoeven et al. employed planning strategies within a 

single experimental session to reduce action slips in an outcome-devaluation task 

(Verhoeven et al., 2017). Implementation intentions were more effective than goal-

intentions (an outcome-based planning strategy, such as “I will not press for outcome X”) 

in reducing action slips when managing abstract images as outcomes, suggesting that 

implementation intentions may serve as a promising strategy in studying habit 

disruption—however, effective paradigms to demonstrate well-learned, outcome-

insensitive habits, and an intervention to disrupt them are needed. In our study, we 

developed a task that allowed us to directly capture ecologically significant, well-

established habits via the familiar green–go and red–stop associations. We present our 

Go/NoGo task with familiar and novel stimuli as a strong candidate for demonstrating 
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habitual behaviors—bridging the success of field studies with the rigor and controllability 

of lab experimentation. We also illustrate that a salient feedback-based intervention may 

be utilized to shift cue-driven performance to become value-driven, laying the foundation 

to translational applications.  

Our work also asserts that the use of familiar stimuli may circumvent the 

obstacles of training length and stimulus–response strength in habit research—an 

important step in improving paradigms to foster effective habit disruption strategies. A 

few prior studies have considered a similar approach. In a study investigating habits in 

substance use disorder, McKim and colleagues induced stimulus familiarity by pre-

training a set of stimuli, and tested the strength of the familiar versus novel stimulus sets 

on a subsequent day via the reversal of a sub-set of these contingencies (McKim et al., 

2016). They found that compared to healthy controls, individuals with substance use 

disorder performed better in well-learned stimulus–response execution, yet exhibited 

impairments in managing contingency reversal. In cadence with these findings, our study 

reveals that when managing contingencies that have been well-established throughout 

development—beyond an experimental pre-training stage—the recruitment of the habit 

system may also be evident in healthy individuals. Similarly, developmental and clinical 

researchers have used familiar green and red stimuli in Go/NoGo tasks with children 

suffering from attention-deficit/hyperactivity disorder, as well as healthy adults to reduce 

task demands, and justified their decision by identifying these colors as having 

developmental relevance (Mostofsky et al., 2003; Suskauer et al., 2008). These prior 

reports highlight the utility of capitalizing on existing associations when examining 

habits, especially for clinical examinations of behavioral rigidity. The current report 
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contributes further by introducing a task that requires minimal familiarity training, and by 

the inclusion of a motivational strategy to disrupt the familiarity-driven outcome-

insensitivity. These contributions may be especially useful for optimizing costly fMRI 

designs, and benefit future translational neuroscience work that aims to reveal the neural 

bases of habit disruption. 

The science of habits is a domain with direct clinical applications. The treatment 

of habit-based pathologies (e.g., obsessive-compulsive disorder) are within the scope of 

the habit literature, yet our field’s disproportionate focus on the formation of rigid 

behaviors, rather than overcoming well-formed habits, limits the translational impact of 

our research (Griffiths et al., 2014). Indeed, several studies have highlighted the habitual 

aspects of various clinical disorders, as well as their underlying neural mechanisms (e.g., 

Alvares et al., 2014, 2016; Banca et al., 2015; Delorme et al., 2016; Gillan et al., 2015; 

McKim et al., 2016; Morris et al., 2015; Reiter et al., 2016; Sjoerds et al., 2013). 

Researchers have further employed neurotransmitter depletion to emulate the 

biochemical profiles of psychopathologies to detect action control deficits (de Wit et al., 

2012; Worbe et al., 2015, 2016). Sub-clinical symptom presentation has also been 

investigated from the perspective of action control (Dietrich et al., 2016; Hogarth et al., 

2012; Morris et al., 2017; Snorrason et al., 2016). Furthermore, the multi-faceted role of 

stress in dictating motivated behaviors has been extensively demonstrated under acute, 

chronic, interaction of acute and chronic, and pharmacologically induced stress hormone 

reactivity (Radenbach et al., 2015; Schwabe et al., 2008, 2012; Schwabe and Wolf, 2009, 

2010, 2011; Soares et al., 2012; Taylor et al., 2014). Therefore, although researchers have 

characterized numerous contexts in which habits are prevalent, interventions that restore 
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goal-directed motivational control have not been examined with similar vigor. As we 

demonstrate the habit-breaking effects of pairing monetary reward with cumulative 

performance feedback to amplify the salience of goals, we highlight the need for research 

avenues that not only identify goal-directed control deficits in clinical disorders, but work 

toward restoring these deficits to improve treatment strategies and quality of life.  

Conclusions 

The disproportionate focus on habit formation and expression in the literature 

motivated us to direct our efforts to an area of habit research less-explored: habit 

disruption. Although much research now confirms the habitual aspects of various 

pathologies, studies examining the restoration of these behavioral rigidities are relatively 

scarce. Here, we introduce a task that allows us to examine a more complete signature of 

motivational control by capturing well-learned habits and newly-learned goal-directed 

behaviors, as well as the possibility to test manipulations that may restore deliberate 

control. This method may be especially beneficial for understanding the neural markers 

of motivational control in healthy and compromised populations, as it capitalizes on 

existing associations that do not require extended lab-training. We also underline the 

efficacy of feedback in disrupting well-learned habits and promoting outcome-driven, 

goal-directed behaviors. This motivation-based manipulation may further inform the 

mechanisms underlying the habit disruption process—a translationally valuable research 

domain with direct clinical relevance. 
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Chapter 4: Investigating well-learned habits and their disruption as a function of 

ADHD symptom severity (submitted) 

Introduction 

Individuals with attention deficit-hyperactivity disorder (ADHD) are known to 

exhibit cognitive impairments that span domains of attention and impulsivity (American 

Psychiatric Association, 2013). These hallmark symptoms are often accompanied by 

executive control irregularities, such as diminished inhibitory control and excessive 

distractibility that interfere with daily functioning (Willcutt et al., 2005). Additionally, 

behavioral and neurobiological reports have highlighted reward-related abnormalities in 

ADHD, in that individuals with ADHD display impairments in learning from, interacting 

with, and processing rewards (Castellanos and Tannock, 2002). Children and adults with 

ADHD present heightened delay aversion, such that they choose immediate, less valuable 

rewards over delayed yet larger rewards (Antrop et al., 2006; Kessler et al., 2005a; Marx 

et al., 2013; Sonuga-Barke et al., 1992). In addition to such examples of suboptimal 

decision-making, individuals with ADHD also exhibit abnormal reward-related neural 

processing in the brain’s reward circuitry, such as decreased signaling in the ventral 

striatum during reward anticipation, and atypical orbitofrontal cortex (OFC) activity 

during reward delivery  (Furukawa et al., 2014; Plichta and Scheres, 2014; Ströhle et al., 

2008; von Rhein et al., 2015; Wilbertz et al., 2012). The affected regions of the brain that 

regulate reward anticipation and processing (i.e., the striatum and prefrontal cortex), are 

also known as integral areas for executing motivated behaviors (Balleine and O’Doherty, 

2009; O’Doherty, 2016). These neurobehavioral dysfunctions in ADHD, when taken 

together with the cardinal presentations of inattention and impulsivity, suggest potential 

disparities in the control of motivated behaviors that have yet to be elucidated.  
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The motivational account of behavioral control posits that our actions can be 

either goal-directed, as in, performed deliberately in pursuit of a desirable outcome, or 

habitual, as in, triggered in response to a salient cue regardless of outcome value 

(Dickinson and Balleine, 1994). These components of motivational control have distinct 

neural signatures, such that the prefrontal cortex and caudate are known to be imperative 

for the execution of goal-directed behaviors, while cue-based habitual control is largely 

associated with the putamen and motor cortex (Haber, 2003; O’Doherty et al., 2004; 

Tricomi et al., 2009). Interestingly, a compelling body of work documents functional and 

structural abnormalities in ADHD when compared to neurotypicals (NTs) in these brain 

regions, suggesting a compromised corticostriatal system that could be indicative of 

motivational control deficits. For example, ADHD is associated with reduced gray matter 

volume in the caudate, expansion of the posterior putamen, and aberrant connectivity in 

the ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) (Costa 

Dias et al., 2013; Frodl and Skokauskas, 2012; Norman et al., 2016; Qiu et al., 2009; 

Rosch et al., 2018; von Rhein et al., 2017). Studies in rodents have suggested that a rat 

model of ADHD, the spontaneously hypertensive rat, exhibits a habit-dominated 

motivational control system, in that these rats that possess ADHD-like symptoms also 

display outcome-insensitive behavioral patterns (i.e., pressing a lever that predicts a food 

outcome to which the rat is sated) (Natsheh and Shiflett, 2015). Neural evidence suggests 

that this behavioral deficit is linked to imbalances in dopamine receptor activation, 

supporting the idea that abnormalities in the striatal systems may also manifest as an 

over-reliance on habitual control in ADHD (Natsheh and Shiflett, 2018). 
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 If ADHD is indeed associated with enhanced habitual control that favors 

outcome-insensitive behaviors, the next logical and translationally valuable step would be 

to identify strategies that can overcome this behavioral deficit. For instance, 

performance-contingent feedback is a frequently employed tool that has been shown to 

improve behavioral output (Kluger and DeNisi, 1996; Montague and Webber, 1965). The 

positive effects of feedback in the form of performance-tracking information, as well as 

primary and secondary incentives, have been well-documented in the cognitive flexibility 

domain—namely using task-switching paradigms. Indeed, even the promise of a future 

performance-contingent reward has been shown to amplify task-switching performance 

(Yee et al., 2016). Importantly, performance-contingent monetary feedback is associated 

with the engagement of top-down control of task-switching processes (Umemoto and 

Holroyd, 2015). Taken together, we believe that the benefits of feedback on behavioral 

output and control over actions may carry over to the restoration of goal-directed 

behaviors in ADHD. In support of this hypothesis, we have previously demonstrated the 

beneficial effects of feedback on the motivational control of action (Ceceli et al., 

submitted). 

 Tackling the expression of habits and the restoration of goal-directed behaviors in 

potentially compromised populations may involve overcoming the methodological 

limitations of the traditional habit paradigm. A meaningful assessment of habit 

expression and disruption may require access to rigid habits with a strong association 

between the triggering stimulus and the behavioral response. Therefore, instead of relying 

on labile, newly-learned habits that have been the subject of inquiry in most 

investigations of motivational control (Ceceli and Tricomi, 2018), it may be more 
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effective to study habit expression and disruption via well-learned, existing S–R 

associations that do not require extensive training in the laboratory (Ceceli et al., 

submitted).  

To this end, we developed a Go/NoGo task that capitalizes on familiar green and 

red traffic light stimuli that activate existing stimulus–response associations (Ceceli et al., 

submitted). If green-Go and red-NoGo associations are habit-driven, an incongruent 

Go/NoGo mapping (green-NoGo, red-Go) should produce significant decrements in 

accuracy. Importantly, Go/NoGo mappings that involve novel stimuli with no significant 

behavioral representations (i.e., blue and purple light stimuli) should evoke no mapping-

related performance impairments. If ADHD is associated with heightened habitual 

control, symptom severity might track the mapping-related impairments elicited by the 

familiar Go/NoGo stimuli (e.g., higher symptom severity scores should predict 

heightened errors of commission—response execution when instructed to withhold). 

Furthermore, if performance and monetary feedback are effective in restoring goal-

directed control, this dual feedback delivery should protect against the mapping-related 

accuracy impairment, preventing the increase in commission errors when Go and NoGo 

associations are incongruent with daily experiences. Similarly, such a disruption in habits 

may also be correlated to ADHD symptom severity, such that a more severe presentation 

of ADHD symptoms may be less affected by the beneficial effects of feedback. 

Alternatively, if feedback is a salient enough motivator, highly symptomatic individuals 

may also benefit from our feedback manipulation, resulting in habit disruption across the 

board. To reveal whether ADHD is associated with habitual control, and whether a habit-

dominated motivational control system may be remediated, we administered our well-
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learned habit task over the course of two days on a large sample from the general 

population, from whom we collected ADHD-related symptomology information. On the 

first day, we examined the execution of well-learned habits in our sample, and on the 

second day, we introduced our motivational enhancement manipulation—a combined 

delivery of performance information and monetary feedback—to restore goal-directed 

control. Importantly, per our pre-registered analysis plan (document URL: 

https://osf.io/fjcbw), we used ADHD-related measures to detect whether symptoms of the 

disorder tracked well-learned habit expression and disruption. 

Methods 

Participants 

To determine the sample size for our study, we performed an a priori power 

analysis on data from an existing study that examined inhibitory control capacity and 

ADHD-related symptoms (Wodushek and Neumann, 2003). In this study, healthy adults 

were categorized into high vs. low ADHD symptom groups for inhibitory control 

comparisons. We extracted effect sizes from the correlations between inhibitory control 

and non-verbal inattention in both symptom severity groups, and averaged the two 

resulting projected sample sizes. The averaged sample size needed to reach 80% 

statistical power was determined to be 105. We recruited 106 participants to make up for 

one participant’s corrupted data. Thus, 106 undergraduate students (79 female, 27 male; 

Mage = 20.23, SDage = 4.07) from the Rutgers University-Newark campus participated for 

course credit. Informed consent was provided by all subjects per Declaration of Helsinki 

human subject protection guidelines. The Rutgers University Institutional Review Board 

approved study protocols. Participants were excluded from participation for self-reported 
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color-blindness. Two participants' data were excluded from analyses due to attrition 

(n=1) and data corruption (n=1). Thus, the statistical analyses were performed on the 

remaining 104 participants (77 female, 27 male participants; Mage = 20.20, SDage = 4.10).    

Materials and procedures 

Participants performed Go/NoGo 

tasks adapted from Ceceli et al. 

(submitted) over two days. On day one, 

all participants underwent Go/NoGo 

tasks with familiar green and red traffic 

light stimuli (Familiar condition), and 

novel blue and purple traffic light 

stimuli (Novel condition) as Go and 

NoGo signals. Participants were 

instructed to respond as quickly and 

accurately to these stimuli as possible 

using the keyboard. A second phase 

followed in each Condition 

(Familiar/Novel), where the color-

response mappings were swapped (see 

Figure 17). In the Familiar condition, 

the Green-Go/Red–NoGo color-

response mapping was considered 

“congruent” with daily experiences, while the Red–Go/Green–NoGo mapping was 

 

Figure 17. Go/NoGo task with familiar and novel 
lights. Participants undergo both Familiar and Novel 

conditions. In the Familiar condition, participants 

complete two phases: one in which green represents 

Go and red represents NoGo (“congruent” 

mapping), and one in which red represents Go and 

green represents NoGo (“incongruent” mapping). In 

the Novel condition, participants complete two 

similar phases, but the colors are blue and purple, 

for which we assume no strong pre-existing 

associations with go/stop responses. We predicted 

more commission errors in the Familiar condition 

for incongruent than congruent mappings, indicating 

outcome insensitivity, with no such within-subject 

differences expected in the Novel condition. Phase 

and Condition orders were counterbalanced across 

subjects. 
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considered “incongruent”, in that it required the participant to override the well-

established go and stop meanings of these stimuli. The Novel condition stimuli, however, 

are assumed to have no well-established Go or NoGo associations in daily life, in that the 

swapping of the color-response mappings should not require overriding associations that 

have been well-established. If familiar associations elicit habitual, cue-driven behavioral 

control, participants should experience a significant impairment in NoGo accuracy when 

green is mapped with NoGo. In the Novel condition, participants should perform 

similarly when managing either color-response mapping due to blue and purple not being 

strongly associated with Go/NoGo signals, reflecting goal-directed performance. We 

counterbalanced the order in which participants underwent the two phases within each 

Condition to ensure that our results were not due to a specific order of managing color-

response contingencies. We also counterbalanced the order in which participants 

underwent the Familiar and Novel conditions. Lastly, participants completed the Adult 

ADHD Self-Report Scale (ASRS), a two-part survey that captures inattentive and 

hyperactive symptom manifestation associated with ADHD (Kessler et al., 2005b), and a 

demographic survey, concluding day one’s procedures. 

 Day two was completed within three days of day one and examined the potential 

habit-disrupting effect of a motivational enhancement. On day two, all participants 

underwent the Familiar condition of the Go/NoGo task, completing the “congruent” 

color-mapping first. Next, we induced motivational enhancement via the delivery of 

cumulative performance feedback and a monetary incentive. Specifically, participants’ 

cumulative task performance was displayed as a percentage score on the screen. 

Additionally, the experimenter briefly left the room, returning shortly after with a $5 cash 
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bonus. The participants were informed that the $5 bonus was due to their performance on 

the task. The participants were then instructed to perform the “incongruent” color-

mapping of the Familiar condition, and were informed that they may receive another 

performance-contingent cash bonus afterwards. Unbeknownst to the participants, the 

mid-session cash bonus was not actually contingent on performance. We did not 

counterbalance color-mapping of Go/NoGo contingencies on day two to render the 

congruent color-mapping performance as baseline. Thus, we were able to test whether the 

presence of a mid-experiment motivational manipulation affected subsequent incongruent 

color-mapping performance (i.e., overriding the green-Go/red-NoGo habit). Lastly, 

 

Figure 18. Experimental design. Day 1: all participants undergo the Familiar and the Novel conditions 
of the Go/NoGo task, completing both color-response mappings within each condition. We 
counterbalance the order in which the Familiar and Novel conditions, and the color-response mapping 
phases are managed. Participants complete ADHD, demographic, and driving experience related 
measures to conclude the session. Day 2: all participants return to complete the Familiar condition of 
the Go/NoGo task. Participants first manage the color-response contingencies that are congruent with 
their daily experiences, and are provided cumulative performance feedback paired with a $5 bonus. 
Participants then complete the color-response contingencies that are incongruent with their daily 
experiences. Completion of the COHS survey concludes the study. 
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participants completed the Creature of Habit Survey (COHS) (Ersche, Lim, Ward, 

Robbins & Stochi, 2017), quantifying the frequency of daily habitual tendencies, and a 

brief post-experiment questionnaire (see Figure 18 for a schematic of the experimental 

design).  

In each phase, there was a 5:1 Go/NoGo ratio, with 100 Go and 20 NoGo trials. 

Each Go/NoGo stimulus remained on the screen for 400 ms. Participants were required to 

respond to Go signals before the offset of the stimulus for a correct response. After offset, 

each response produced a brief “correct” or “incorrect” text slide. To ensure engagement 

with the task, inter-trial intervals varied randomly between 1200 and 2400 ms. 

Participants completed a practice session prior to each Condition, which consisted of six 

correct Go or NoGo responses using that condition’s stimuli. The experimenter remained 

present to ensure the instructions were understood during the practice sessions.   

Data analysis 

We pre-registered our task procedures and analyses prior to data collection via the 

Open Science Framework project registration portal (document URL: https://osf.io/fjcbw, 

see the Appendix for a copy of the report). Analyses that were not outlined in our pre-

registration document are marked as exploratory below. Data analysis was performed 

using the nlme package in R (version 3.5.1). 

We used NoGo accuracy as our primary measure of outcome-sensitivity, as the 

high NoGo to Go ratio was hypothesized to produce pre-potent Go responses. As a 

secondary measure of outcome-sensitivity, we also performed all analyses using Go 

accuracy to supplement our assertions of differential outcome-sensitivity across Familiar 

and Novel conditions, and reveal the potential role of ADHD symptom severity in 
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contributing to outcome-sensitivity. Participants with standardized residuals less than -3.3 

and greater than 3.3 were identified as outliers (Tabachnick and Fidell, 2007). Analyses 

excluding outliers are reported if data removal produces substantial changes in results 

(i.e., changes in statistical significance of any regressor). 

ADHD symptom severity and well-learned habits 

 We performed an omnibus regression test to discern the contributions of symptom 

severity on outcome-sensitivity within Familiar and Novel condition data collected on 

day 1. We used ΔNoGo_Accuracy (i.e., change in NoGo accuracy scores across 

mappings) as our dependent variable (DV) to measure the within-subject mapping-related 

change in accuracy. A greater mapping-related impairment represents greater outcome-

insensitivity (e.g., heightened difficulty overriding a color-response mapping). In a 

hierarchical structure, we first input the regressors Age, Gender, Condition_Order (order 

in which participants underwent Familiar and Novel conditions), Phase_Order (order in 

which participants underwent color-response mappings within each Condition), and 

Driving (each participant’s experience driving, scaled in months), with Subject as a 

random factor into a linear mixed model. This model extracted the predictive strength of 

each of these controlled variables on outcome-sensitivity. In the next hierarchical step, 

we added the regressors ASRS_Inattentive (part A of the ASRS measure capturing 

symptoms of inattention), ASRS_Hyperactive (part B of the ASRS measure capturing 

symptoms of hyperactivity), and ASRS_Total (parts A and B aggregated to derive a 

composite score of ADHD symptom severity). Because our sample included six 

participants who had received ADHD diagnoses, we also input a Diagnosis regressor to 

determine whether clinical manifestation of ADHD—albeit in a small proportion of 



 87 
 

 
 

participants—affects outcome-sensitivity. We used COHS scores as a regressor to find 

potential correlations with tendency to behave habitually in daily life and outcome-

sensitivity in our task. These regressors served to explain the main effects of each 

individual difference measure on outcome-sensitivity. In the third step of the hierarchical 

model, we input Condition (Familiar/Novel) as a regressor to specifically detect whether 

participants exhibited differential outcome-sensitivity across Familiar and Novel 

conditions. A significant contribution of this variable would confirm that the familiar red 

and green stimuli indeed elicit outcome-insensitive, habitual control, while the novel 

stimuli are labile, and thus controlled by goal-directed processes. We performed post-hoc 

t-tests of NoGo accuracy between phases in each Condition to ascertain differential 

mapping-related impairment across Familiar and Novel conditions. Lastly, because of our 

specific focus on the influence of ADHD symptomology on habitual control, we also 

entered all individual difference measures’ interactions with Condition as regressors (e.g., 

ADHD_Inattentive x Condition) into step four of the model. Thus, we were able to 

distinguish the effects of each variable on outcome-sensitivity across Familiar and Novel 

conditions. 

 In brief, we expected the controlled demographic and counterbalancing variables 

(Age, Gender, Driving, Condition_Order, and Phase_Order) to be trivial in predicting 

outcome-sensitivity. We did not expect the Driving regressor to play a significant role in 

altering outcome-sensitivity, as we expect our well-learned habit task to capture well-

established associations that extend beyond experience with these color-response 

mappings in a traffic context. We input both main effect and interaction regressors related 

to individual differences in ADHD symptomology and daily habitual tendencies to reveal 
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potential associations with outcome-sensitivity. This way, we were able to inquire 

whether these individual difference regressors yielded strong associations with global 

outcome-sensitivity (i.e., main effects predicting mapping-related impairments 

independent of stimulus familiarity), and further interrogate whether such an association 

existed with well-learned habit expression in particular (i.e., ADHD-related measure x 

Condition interaction predicting an effect on outcome-sensitivity differentially across 

Familiar/Novel conditions). We also expected Condition to serve as a significant 

predictor in driving outcome-sensitivity, as the Familiar condition stimuli should 

selectively elicit outcome-insensitive habits, while the Novel condition stimuli should 

have no such effect on behavior. 

ADHD symptom severity and habit disruption 

 We have previously shown the habit-disrupting effect of cumulative performance 

and monetary feedback (Ceceli et al., submitted). Here, we test via another omnibus 

regression whether ADHD symptom severity predicts habit disruption success. We 

performed a similar linear mixed model on the aggregate of Familiar data across two 

days, encompassing performance to the Familiar stimuli with and without feedback. We 

input our controlled variables of Age, Gender, Driving, Condition_Order, and 

Phase_Order, with Subject as a random factor into the first step. Our model similarly 

included ASRS_Inattentive, ASRS_Hyperactive, ASRS_Total, Diagnosis, and COHS in 

the second step to detect the main effects of individual differences on outcome-

sensitivity. In the third step, our regression included a Feedback regressor that coded the 

availability of the mid-experiment dual-feedback manipulation. Because this analysis was 

performed only on the Familiar condition data (the Novel condition was not administered 
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on the second day with feedback), we included no Condition regressor. Lastly, we 

included in step 4 our individual difference measures’ interactions with Feedback as 

regressors (e.g., ASRS_Inattentive x Feedback) to examine habit disruption per variations 

in ADHD-related behaviors and daily habitual tendencies. 

 Similar to our previous omnibus regression, we expected trivial contribution from 

our controlled variables, but a significant contribution from the Feedback regressor, as 

the delivery of dual feedback should disrupt the well-learned habit. We expected that 

symptom severity may affect outcome-sensitivity globally (significant main effects of 

individual difference measures), but also differentially across Feedback sessions (e.g, 

significant contribution of ADHD_Inattentive x Feedback). Additionally, we identified 

an alternative hypothesis—the possibility of habit disruption across the board (pre-

registration document, Hypothesis 2b_alt). We expected no directionality in subtypes 

governing outcome-sensitivity (as in, inattentiveness or hyperactivity specifically driving 

habits), but we do note that if either subtype plays a major role in driving motivational 

control in the previous omnibus regression detecting the role of symptom severity on 

habitual control, that same subtype should predict habit disruption. We expected the 

frequency of habitual tendencies in daily life, as assayed by COHS, to yield a negative 

correlation with habit disruption (i.e., a significant COHS x Feedback result). 

Supplementary index of outcome-sensitivity: Go accuracy 

We used Go accuracy as a supplemental measure of outcome-sensitivity. Thus, 

we repeated all mixed models that examined ΔNoGo_Accuracy using ΔGo_Accuracy as 

DV. 
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Exploratory analyses: Go RT and individual difference measures 

 We extended our analyses beyond the pre-registered plans and explored the 

potential correlations between Go reaction time (RT) and our individual difference 

measures of symptom severity (ASRS_Inattentive and ASRS_Hyperactive) and daily 

habitual tendencies (COHS). These variables were entered into a correlation matrix, and 

Pearson’s r values were corrected for multiple comparisons using the Holm–Bonferroni 

method. Specifically, we expected a negative correlation between RT and our individual 

difference measures. Most notably, we expected such an association between RT and 

ASRS_Hyperactive, which would suggest quicker familiar Go actions to be associated 

with pronounced hyperactivity. 

Results 

 The summary of our sample’s demographic and individual difference measure 

profile can be found in Table 2. First order correlations involving the primary individual 

difference measures (i.e., ASRS_Inattentive, ASRS_Hyperactive, COHS) and measures 

of outcome sensitivity (i.e., ΔNoGo_Accuracy and ΔGo_Accuracy) can be found in the 

Appendix, Supplemental Table 8. 

Table 2. Descriptive statistics of sample profile. 

Variable Mean SD Range 

Age 20.20 4.10 18–45 

Driving experience 31.77 50.05 0–324 

ASRS_Inattentive 15.86 5.42 4–28 

ASRS_Hyperactive 13.08 5.17 0–25 

ASRS_Total 28.77 9.30 5–50 

COHS 99.03 13.74 67–131 

Note: N = 104 (77 females, 37 males). Age measured in years, driving experience measured in months. SD 

= standard deviation. 
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ADHD symptom severity and well-learned habits 

 We performed a linear mixed 

model using ΔNoGo_Accuracy as the DV 

and Subject as a random factor to 

determine whether ADHD symptom 

severity significantly predicts outcome-

sensitivity in our well-learned habit task 

(see Table 3). Our proposed model did 

not meet the assumptions of non-

multicollinearity, in that three pairs of 

fixed factors were highly correlated with 

each other (for the associated Variance 

Inflation Factors, see the Appendix, 

Supplemental Table 9). Thus, we report 

the analyses as registered in the Supplement, and report below an adjusted model that 

meets the assumptions of multicollinearity, normality and homoscedasticity. Specifically, 

we revised our model to remove the regressors Age, Condition_Order, and ASRS_Total 

to prevent multicollinearity with the regressors Driving, Phase_Order, and 

ASRS_Inattentive/Hyperactive that are more crucial for our hypotheses.  

Standard within-group residuals were within -3.3 and 3.3; thus no participants 

were identified as outliers (Tabachnick and Fidell, 2007). In the first step of our 

hierarchical mixed model, contrary to our hypothesis, Gender significantly predicted 

outcome-sensitivity, βGender -0.15, p = .036, in that female participants displayed 

 

Figure 19. Familiar stimuli elicit incongruency-
related impairments in NoGo accuracy. 
Participants exhibit outcome-insensitivity when 

managing familiar stimuli with color-response 

mappings that are incongruent with their daily 

experiences (p < .001). Newly-learned Go/NoGo 

signals evoke no significant change in NoGo 

accuracy regardless of color-response mapping, 

indicating intact goal-directed performance (p = 

.279). The differential habit expression effect 

across Conditions depicted here is independent 

from ADHD symptom severity (see Table 3 for 

individual difference measure contributions to 

habit expression). Color of bars reflects NoGo 

stimulus colors. 
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significantly worse mapping-related impairments. Neither Driving experience nor the 

counterbalancing variable, Phase_Order, predicted outcome-sensitivity (ps > .252), model 

R2= 0.03. In the second step of the model, we added the individual difference measures of 

ADHD symptom severity, clinical ADHD diagnosis, and frequency of habitual 

tendencies in daily life (COHS). We found no main effects of individual difference 

measures on outcome-sensitivity (all ps > .548). The log likelihood estimate derived by 

comparing first and second steps of our model yielded no significant global (as in, non-

Condition specific) contribution attributable to the ASRS_Inattentive, 

ASRS_Hyperactive, Diagnosis, and COHS regressors, χ2(4) = 0.70, p = .952, R2= 0.03, 

ΔR2 < 0.01. In the third step, we entered the Condition regressor, which significantly 

improved the predictive strength of the model, χ2(1) = 21.53, p < .001, R2= 0.13, ΔR2 = 

0.10, βCondition = 0.31, t(103) = 4.66,  p < .001, meaning outcome-sensitivity was 

differentially affected by whether participants managed the Familiar or Novel versions of 

the task. Post-hoc t-tests confirmed that mapping-related NoGo accuracy impairments 

were evident only when managing Go/NoGo contingencies in the Familiar condition, 

t(103) = 5.33, p < .001, while performance in the Novel condition was comparable 

regardless of color-mapping associations, t(103) = -1.09, p = .279 (see Figure 19). In the 

fourth step of the model, we input the interaction of each individual difference regressor 

with Condition to detect their potentially differential effects on outcome-sensitivity 

across Familiar and Novel conditions, but found no significant contribution from any 

ADHD-related or daily habit frequency variable (all ps > .085,  χ2(4) = 6.19, p = .186, 

R2= 0.15, ΔR2 = 0.03). These results suggest that our sample exhibited outcome-

insensitive well-learned habits across the board, but the degree of habitual control as 
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assessed by change in NoGo accuracy was not significantly related to ADHD symptom 

severity. 

Table 3. Hierarchical Mixed Model of ADHD Symptomology and Habit Expression: 
ΔNoGo_Accuracy. 

Variable VIF β t sig. 

Model 1     
Gender 1.01 -.15 (.07) -2.13 .036 
Phase_Order 1.01 -.01 (.07) -0.09 .931 
Driving 1.00 .08 (.07) 1.15 .252 
Model 2     
Gender 1.08 -.14 (.07) -2.00 .049 
Phase_Order 1.04 -.01 (.07) -0.15 .877 
Driving 1.30 .08 (.08) 1.08 .283 
ASRS_Inattentive 1.62 -.01 (.09) -0.08 .939 
ASRS_Hyperactive 1.71 .05 (.09) 0.54 .591 
Diagnosis 1.30 .01 (.08) 0.14 .891 
COHS 1.06 -.04 (.07) -0.60 .548 
Model 3     

Gender 1.08 -.14 (.07) -2.10 .039 
Phase_Order 1.04 -.01 (.07) -0.16 .871 
Driving 1.30 .09 (.08) 1.13 .260 
ASRS_Inattentive 1.62 -.01 (.08) -0.08 .936 
ASRS_Hyperactive 1.71 .05 (.09) 0.57 .573 

Diagnosis 1.30 .01 (.08) 0.14 .885 

COHS 1.06 -.04 (.07) -0.63 .528 

Condition 1 .31 (.07) 4.66 <.001 
Model 4     
Gender 1.08 -.14 (.07) -2.11 .039 
Phase_Order 1.04 -.01 (.07) -0.16 .871 
Driving 1.30 .09 (.08) 1.14 .260 
ASRS_Inattentive 3.17 -.01 (.08) -0.08 .936 
ASRS_Hyperactive 3.31 .05 (.09) 0.57 .573 
Diagnosis 2.35 .01 (.08) 0.14 .885 
COHS 2.12 -.04 (.07) -0.64 .528 
Condition 64.79 .31 (.07) 4.68 <.001 
ASRS_Inattentive x Condition 16.51 -.02 (.08) -0.29 .774 
ASRS_Hyperactive x Condition 13.60 -.05 (.08) -0.56 .575 
Diagnosis x Condition 2.16 .10 (.07) 1.51 .134 
COHS x Condition 57.37 .12 (.07) 1.74 .085 

Model Comparisons 

 

 

 

 

 

Note: Top layer of table depicts all regressors included in the hierarchical model. Standard errors are 

given in parentheses. Bottom layer of table, Model Comparisons, depicts the predictive strength of 

Model R2 Log likel. χ2 χ2 sig. ΔR2 

Model 1 .03 79.53    
Model 2 .03 79.87 0.70 .952 <.01 
Model 3 .13 90.64 21.53 <.001 .10 

Model 4 .15 93.73 6.19 .186 .03 
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each model, as compared to its previous step. VIF = Variance Inflation Factor. Log likel. = Log 

likelihood. Significant p-values depicted in bold typeface. 

ADHD symptom severity and habit disruption 

 Similarly, we altered our pre-

registered model to prevent 

multicollinearity, and performed a linear 

mixed model to examine the link between 

ADHD symptomology and habit 

disruption (see Table 4). The pre-

registered analysis that violated 

assumptions of non-multicollinearity can 

be found in the Appendix, Supplemental 

Table 10. In our corrected model, we input 

Gender, Phase_Order, and Driving 

experience into step one, where none 

significantly predicted outcome-sensitivity 

(all ps > .142), model R2= 0.01. In step two, we added ASRS_Inattentive, 

ASRS_Hyperactive, Diagnosis, and COHS into the model, and found that none of these 

regressors yielded main effects on outcome-sensitivity (all ps > .162), and they did not 

significantly improve the predictive strength of the model, χ2(4) = 3.19, p = .526, R2= 

0.03, ΔR2 = 0.01. We input Feedback as a regressor in step three, which contributed 

significantly to predicting outcome-sensitivity, βFeedback = -0.28, t(103) = -4.13, p < .001, 

and rendered the model a significant predictor of ΔNoGo_Accuracy,  χ2(1) = 17.10, p < 

.001, R2= 0.11, ΔR2 = 0.08. We performed post-hoc paired-samples t-tests to confirm the 

 

Figure 20. Dual monetary/performance feedback 
prevents the incongruency-related impairments in 
NoGo accuracy, breaking the habit. Participants 

exhibit no incongruency-related NoGo accuracy 

impairments after receiving cumulative 

performance and monetary feedback (p = 616). 

Without this feedback integration, participants 

exhibit a significant impairment in NoGo 

accuracy when the color-response mappings are 

incongruent with daily experiences (p < .001). 

The habit disruption effect of feedback is 

independent of ADHD symptom severity (see 

Table 4 for individual difference measure 

contributions to habit disruption). Color of bars 

reflects NoGo stimulus colors. 
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beneficial effect of dual feedback. We found that a significant NoGo accuracy 

impairment was evident in absence of dual feedback, t(103) = 5.33, p < .001, whereas the 

delivery of feedback yielded no significant accuracy impairments, t(103) = -0.50, p = 

.616 (see Figure 20). No individual difference measures’ interaction regressor in step four 

significantly predicted outcome-sensitivity (all ps > .391, χ2(4) = 1.56, p = .815, R2= 0.11, 

ΔR2 = 0.01. These results suggest that the delivery of dual feedback indeed had a 

protective effect on outcome-sensitivity when managing familiar stimuli, albeit 

independent of ADHD symptom severity.  

Table 4. Hierarchical Mixed Model of ADHD Symptomology and Habit Disruption: 
ΔNoGo_Accuracy. 

Variable VIF β t sig. 

Model 1     
Gender 1.01 .04 (.07) 0.60 .553 
Phase_Order 1.01 .10 (.07) 1.48 .142 
Driving 1.00 -.02 (.07) -0.28 .779 
Model 2     
Gender 1.08 .04 (.07) 0.62 .537 
Phase_Order 1.04 .09 (.07) 1.25 .215 
Driving 1.30 .02 (.08) 0.24 .807 
ASRS_Inattentive 1.62 -.06 (.09) -0.69 .491 
ASRS_Hyperactive 1.71 .10 (.09) 1.12 .263 
Diagnosis 1.30 -.05 (.08) -0.61 .542 
COHS 1.06 -.10 (.07) -1.41 .162 
Model 3     

Gender 1.08 .04 (.07) 0.64 .521 
Phase_Order 1.04 .09 (.07) 1.30 .198 
Driving 1.30 .02 (.08) 0.25 .799 
ASRS_Inattentive 1.62 -.06 (.08) -0.72 .474 
ASRS_Hyperactive 1.71 .10 (.09) 1.17 .245 

Diagnosis 1.30 -.05 (.08) -0.64 .526 

COHS 1.06 -.10 (.07) -1.47 .146 

Feedback 1 -.28 (.07) -4.13 <.001 
Model 4     
Gender 1.08 .04 (.07) 0.64 .525 
Phase_Order 1.04 .09 (.07) 1.28 .202 
Driving 1.30 .02 (.08) 0.25 .801 
ASRS_Inattentive 3.15 -.06 (.08) -0.71 .478 
ASRS_Hyperactive 3.29 .10 (.09) 1.16 .250 
Diagnosis 2.34 -.05 (.08) -0.63 .530 
COHS 2.10 -.10 (.07) -1.45 .150 
Feedback 64.79 -.28 (.07) -4.12 <.001 
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ASRS_Inattentive x Feedback 16.49 .05 (.08) 0.62 .539 
ASRS_Hyperactive x Feedback 13.58 -.01 (.08) -0.16 .869 
Diagnosis x Feedback 2.14 .02 (.07) 0.24 .811 
COHS x Feedback 57.35 .06 (.07) -0.86 .391 

Model Comparisons 
 

 

 

 

 

Note: Top layer of table depicts all regressors included in the hierarchical model. Standard errors are 

given in parentheses. Bottom layer of table, Model Comparisons, depicts the predictive strength of each 

model, as compared to its previous step. VIF = Variance Inflation Factor. Log likel. = Log likelihood. 

Significant p-values depicted in bold typeface. 

Supplementary analysis of ADHD symptom severity and well-learned habits 

 We performed identical analyses 

using ΔGo_Accuracy as DV and Subject as 

a random factor to capture the potential 

association between ADHD symptomology 

and a supplemental assay of outcome-

sensitivity (see Table 5; see Appendix, 

Supplemental Table 11 for uncorrected 

model). Two participants’ data were 

identified as outliers. Due to changes in 

statistical significance following outlier 

correction, we report our outlier-removed 

dataset below, highlighting any change in 

statistical significance due to outlier 

correction. Neither Gender, Phase_Order, or 

Driving experience predicted 

Model R2 Log likel. χ2 χ2 sig. ΔR2 

Model 1 .01 72.53    
Model 2 .03 74.13 3.19 .526 .01 
Model 3 .11 82.68 17.10 <.001 .08 

Model 4 .11 83.46 1.56 .815 .01 

 

Figure 21. Familiar stimuli elicit incongruency-
related impairments in Go accuracy. Analysis 

of our supplementary index of outcome-

sensitivity, Go accuracy, yields evidence of 

habitual Go actions when managing familiar 

stimuli with color-response mappings that are 

incongruent with daily experiences (p < .001). 

In contrast, newly-learned Go/NoGo 

contingencies evoke no significant change in 

Go accuracy regardless of color-response 

mapping, indicating intact goal-directed 

performance (p = .445). The differential habit 

expression effect across Conditions depicted 

here is independent from ADHD symptom 

severity (see Table 5 for individual difference 

measure contributions to habit expression). 

Color of bars reflects Go stimulus colors. 
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ΔGo_Accuracy (all ps > .323), model R2= 0.01. In step two, the Diagnosis regressor, 

which codes for the presence of a clinical ADHD diagnosis, made a significant 

contribution, βDiagnosis = 0.17, t(94) = 2.11, p = .038 (without outlier correction: βDiagnosis = 

0.14, t(96) = 1.80, p = .076). Specifically, the presence of a diagnosis predicted more 

flexible Go actions. No other step two regressor significantly predicted ΔGo_Accuracy 

(all ps > .259) The step two model was not significantly improved from step one, χ2(4) = 

5.56, p = .235, R2= 0.04, ΔR2 = 0.03. The Condition regressor in step three served as a 

significant predictor, βCondition = 0.14, t(101) = 2.07, p = .010, improving the predictive 

strength of the model, χ2(1) = 4.44, p = .035, R2= 0.06, ΔR2 = 0.02. Paired-samples t-tests 

revealed a significant Go accuracy impairment in the Familiar condition, t(101) = 3.80, p 

< .001, but not the Novel condition, t(101) = -0.77, p = .445 (see Figure 21). Lastly in 

step four, other than Diagnosis x Condition, βDiagnosis x Condition = 0.19, t(97) = 2.71, p = 

.008, no individual difference measures significantly predicted ΔGo_Accuracy across the 

Familiar and Novel conditions (all other interaction ps > .125, χ2(4) = 10.43, p = .034, 

R2= 0.10, ΔR2 = 0.05). Because we only had six individuals with an ADHD diagnosis, we 

refrain from further interpretations of the contribution of the Diagnosis regressor. These 

results suggest that Go accuracy is differentially affected by whether familiar or novel 

stimuli serve as Go/NoGo signals, and a significant impairment is evident when familiar 

contingencies are incongruent with daily experiences. However, the habitual Go actions 

elicited by our familiar stimuli are independent of ADHD symptom severity. 

Table 5. Hierarchical Mixed Model of ADHD Symptomology and Habit Expression: 
ΔGo_Accuracy. 

Variable VIF β t sig. 

Model 1     
Gender 1.01 <.01 (.07) -0.01 .997 
Phase_Order 1.01 .07 (.07) 0.99 .323 
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Driving 1.00 .06 (.07) 0.88 .383 
Model 2     
Gender 1.08 .02 (.07) 0.34 .731 
Phase_Order 1.04 .08 (.07) 1.13 .260 
Driving 1.30 -.01 (.08) -0.23 .815 
ASRS_Inattentive 1.59 .02 (.09) 0.22 .828 
ASRS_Hyperactive 1.66 -.03 (.09) -0.39 .699 
Diagnosis 1.30 .17 (.08) 2.11 .038 
COHS 1.06 -.03 (.07) -0.41 .681 
Model 3     

Gender 1.09 .02 (.07) 0.35 .729 
Phase_Order 1.04 .08 (.07) 1.14 .256 
Driving 1.30 -.02 (.08) -0.24 .813 
ASRS_Inattentive 1.59 .02 (.09) 0.22 .826 
ASRS_Hyperactive 1.66 -.03 (.09) -0.39 .696 

Diagnosis 1.30 .17 (.08) 2.13 .036 

COHS 1.06 -.03 (.07) -0.42 .678 

Condition 1 .14 (.07) 2.07 .041 
Model 4     
Gender 1.09 .02 (.07) 0.35 .729 
Phase_Order 1.04 .08 (.07) 1.16 .256 
Driving 1.30 -.02 (.08) -0.24 .813 
ASRS_Inattentive 3.11 .02 (.09) 0.22 .826 
ASRS_Hyperactive 3.23 -.03 (.09) -0.40 .696 
Diagnosis 2.35 .17 (.08) 2.16 .036 
COHS 2.12 -.03 (.07) -0.42 .678 
Condition 65.83 .14 (.07) 2.10 .038 
ASRS_Inattentive x Condition 16.65 -.08 (.08) -0.95 .343 
ASRS_Hyperactive x Condition 13.71 .04 (.09) 0.53 .599 
Diagnosis x Condition 2.16 .19 (.07) 2.71 .008 

COHS x Condition 57.08 .11 (.07) 1.55 .125 

Model Comparisons 

 

 

 

 

 

 
Note: Top layer of table depicts all regressors included in the hierarchical model. Standard errors are 

given in parentheses. Model Comparisons layer depicts the predictive strength of each model, as compared 

to its previous step. VIF = Variance Inflation Factor. Log likel. = Log likelihood. Significant p-values 

depicted in bold typeface. Analyses have been outlier corrected, with resulting deviations highlighted in the 

text. 

Supplementary analysis of ADHD symptom severity and habit disruption  

 We investigated habit disruption via mapping-related changes in Go accuracy 

using a similar mixed model (see Table 6). Our multicollinearity-corrected model 

identified two outliers (see Appendix, Supplemental Table 12 for uncorrected model). 

We report outlier-removed results below, accompanied by any changes in statistical 

Model R2 Log likel. χ2 χ2 sig. ΔR2 

Model 1 .01 218.44    

Model 2 .04 221.22 5.56 .235 .03 

Model 3 .06 223.44 4.44 .035 .02 

Model 4 .10 228.65 10.40 .034 .05 
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significance following outlier correction. In 

step one of the mixed model, no controlled 

regressors predicted ΔGo_Accuracy (all ps 

> .093), model R2=.02. In step two, COHS 

was a near significant variable, βCOHS = -

0.14, t(94) = -1.95, p = .054 (without outlier-

correction: βCOHS = -0.08, t(96) = -1.05, p = 

.296), suggesting that a higher frequency of 

daily habits may predict more outcome-

insensitive Go actions. Otherwise, no 

individual difference regressor served as a 

significant predictor of ΔGo_Accuracy (all 

other ps = .149), although the inclusion of 

step two regressors resulted in the 

Phase_Order variable to yield a near-

significant p-value, p = .066. Step two regressors in aggregate yielded only a near-

significant contribution on the DV, χ2(4) = 8.56, p < .073, R2= 0.06, ΔR2 = 0.04. In step 

three, the Feedback regressor significantly predicted outcome-sensitivity as indexed by 

ΔGo_Accuracy, βFeedback = -0.26, t(101) = -4.07, p < .001, improving the predictive 

strength of the model, χ2(1) = 16.01, p < .001, R2= 0.13, ΔR2 = 0.07. This finding suggests 

that outcome-sensitivity as assessed by ΔGo_Accuracy is differentially impacted 

depending on the availability of dual feedback. Indeed, a post-hoc paired-samples t-test 

confirms a significant impairment in Go accuracy when no feedback is delivered, t(103) 

 

Figure 22. Dual monetary/performance 
feedback prevents the incongruency-related 
impairments in Go accuracy, breaking the 
habit. Similar to our NoGo accuracy results, 

analyses of the outcome-sensitivity measure of 

Go accuracy yield evidence for habit disruption 

due to cumulative performance and monetary 

feedback delivery. Participants exhibit no 

incongruency-related Go accuracy impairments 

after receiving dual feedback (p = .573). 

Without this feedback integration, participants 

exhibit a significant impairment in Go accuracy 

when the color-response mappings are 

incongruent with daily experiences (p < .001). 

The habit disruption effect of feedback is 

independent of ADHD symptom severity (see 

Table 6 for individual difference measure 

contributions to habit disruption). Color of bars 

reflects Go stimulus colors. 
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= 3.85, p < .001, whereas with feedback, no such impairment is evident, t(103) = -0.56, p 

= .573 (see Figure 22). In step four, we found that COHS x Feedback significantly 

predicted habit disruption, βCOHS x Feedback = -.16, t(97) = -2.46, p = .016 (without outlier-

correction: p = .120), suggesting that an increased daily habit frequency predicts a 

reduction in the beneficial effects of dual feedback in restoring goal-directed control. No 

other individual difference x Feedback regressor predicted habit disruption (all ps > .188, 

χ2(4) = 9.70, p = .046, R2= 0.16, ΔR2 = 0.04. Similar to our primary measure of outcome-

sensitivity using NoGo accuracy, the protective effect of dual feedback on Go accuracy 

was independent from ADHD symptomology. However, we do observe a significant 

association between habitual tendencies in daily life and a difficulty in suppressing a 

well-learned habit. 

Table 6. Hierarchical Mixed Model of ADHD Symptomology and Habit Disruption: 
ΔGo_Accuracy. 

Variable VIF β t sig. 

Model 1     
Gender 1.02 -.03 (.07) -0.41 .684 
Phase_Order 1.02 .12 (.07) 1.69 .093 
Driving 1.00 -.03 (.07) -0.49 .623 
Model 2     
Gender 1.09 -.03 (.07) -0.41 .679 
Phase_Order 1.04 .13 (.07) 1.86 .066 
Driving 1.30 -.05 (.08) -0.63 .529 
ASRS_Inattentive 1.59 .02 (.09) 0.27 .788 
ASRS_Hyperactive 1.66 -.14 (.09) -1.57 .121 
Diagnosis 1.30 -.04 (.08) -0.53 .598 
COHS 1.06 -.14 (.07) -1.95 .054 
Model 3     

Gender 1.09 -.03 (.07) -0.42 .678 
Phase_Order 1.04 .13 (.07) 1.87 .065 
Driving 1.30 -.05 (.08) -0.63 .527 
ASRS_Inattentive 1.59 .02 (.09) 0.27 .787 
ASRS_Hyperactive 1.66 -.14 (.09) -1.57 .119 

Diagnosis 1.30 -.04 (.08) -0.53 .596 

COHS 1.06 -.14 (.07) -1.96 .053 

Feedback 1 -.26 (.06) -4.07 <.001 
Model 4     
Gender 1.09 -.03 (.07) -0.41 .681 
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Phase_Order 1.04 .13 (.07) 1.85 .068 
Driving 1.30 -.05 (.08) -0.62 .531 
ASRS_Inattentive 3.11 .02 (.09) 0.27 .789 
ASRS_Hyperactive 3.23 -.14 (.09) -1.56 .123 
Diagnosis 2.35 -.04 (.08) -0.53 .600 
COHS 2.12 -.14 (.07) -1.94 .056 
Feedback 65.83 -.26 (.06) -4.22 <.001 
ASRS_Inattentive x Feedback 16.65 .10 (.08) 1.33 .188 
ASRS_Hyperactive x Feedback 13.71 -.07 (.08) -0.83 .410 
Diagnosis x Feedback 2.16 <.01 (.06) 0.02 .984 
COHS x Feedback 57.08 -.16 (.06) -2.46 .016 

Model Comparisons 
 

 

 

 

 

Note: Top layer of table depicts all regressors included in the hierarchical model. Standard errors are 

given in parentheses. Model Comparisons layer depicts the predictive strength of each model, as compared 

to its previous step. VIF = Variance Inflation Factor. Log likel. = Log likelihood. Significant p-values 

depicted in bold typeface. Analyses have been outlier corrected, with resulting deviations highlighted in the 

text. 

Model R2 Log likel. χ2 χ2 sig. ΔR2 

Model 1 .02 336.38    

Model 2 .06 340.66 8.56 .730 .04 

Model 3 .13 348.66 16.01 <.001 .07 

Model 4 .16 353.52 9.70 .046 .04 
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Exploratory analyses: Go RT and individual difference measures 

  We explored the potential 

association between prepotency to respond 

to the familiar Go stimulus and our 

individual difference measures of ADHD 

symptom severity (ASRS_Inattentive and 

ASRS_Hyperactive) and daily habit 

frequency (COHS). We reasoned that 

hyperactive individuals may exhibit a more 

pronounced prepotency to respond to Go 

stimuli, thus we were especially interested 

in the hyperactivity scale’s association with 

RT. As hypothesized, we found a 

significant negative correlation between Go 

RT to the familiar green-Go color-response 

mapping and ASRS_Hyperactive, r = -.25, p = .030, Holm–Bonferroni corrected (Figure 

23), suggesting that higher hyperactivity scores are associated with faster Go responses. 

This relationship between hyperactivity and response latency was not apparent when the 

Go signal was incongruent with lifelong experiences (red-Go r = -.05, p = 1, Holm–

Bonferroni corrected), or when the Novel condition stimuli served as the Go signal 

(purple-Go r = -.12, p = .630; blue-Go r = -.10, p = .770, Holm–Bonferroni corrected). 

The association between familiar Go RT and ASRS_Hyperactive may suggest that 

individuals high in hyperactive symptoms may be exhibiting abnormally pronounced 

prepotency to stimuli that evoke habitual control. 

 

Figure 23. Hyperactivity symptom severity is 
negatively correlated with green-Go RT. 
Participants exhibit a significant negative 

correlation between hyperactivity symptoms 

and RT when responding to the familiar Go 

stimulus that is hypothesized to elicit 

prepotency. In other words, participants who 

score higher in hyperactivity make quicker Go 

responses when the contingencies are congruent 

with their daily representations. Pearson’s r = -

.25, p = .030, corrected for multiple 

comparisons using the Holm–Bonferroni 

method. 
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Discussion 

 The neurobehavioral evidence of atypical reward-related processes in ADHD, and 

the scarcity of strategies to restore potential behavioral rigidities, motivated us to 

examine the expression and disruption of well-learned habits as a function of ADHD 

symptom severity. To this end, we collected ADHD symptom severity metrics from a 

wide sample of participants in the general population and administered our Go/NoGo task 

that capitalizes on familiar green-Go/red-NoGo associations. Importantly, our 

incorporation of a motivational enhancement manipulation (i.e., cumulative performance 

and monetary feedback) permitted the study of habit expression and disruption. Our 

results replicate our recent documentation of familiar Go/NoGo stimuli evoking rigid 

habitual control, which is also rendered more flexible (i.e., goal-directed) with 

motivational enhancement (Ceceli et al., submitted). However, we found only modest 

support for the hypothesis of ADHD symptomology tracking behavioral rigidity and 

habit disruption. No measure of ADHD significantly predicted outcome-insensitivity as 

assayed by color-response mapping-related NoGo or Go accuracy impairments. Our 

exploratory analyses, however, supported our hypothesis of a significant association 

between pre-potency of habitual Go actions (i.e., familiar green-Go RT) and 

hyperactivity presentation. Furthermore, although not directly associated with ADHD, we 

also found a link between the frequency of habitual tendencies in daily life and habit 

disruption as indexed by our supplementary measure of outcome-sensitivity: mapping-

related Go accuracy impairments. This significant association between daily habit 

frequency and difficulty breaking well-learned Go associations lends further credence to 

the idea that the familiar associations we capitalize on are indeed related to well-

established, ecologically relevant habits. 
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 In both scientific reports and diagnostic criteria, ADHD is characterized by 

pronounced deficits in inhibitory control (American Psychiatric Association, 2013; 

Wodka et al., 2007). When taken together with the reward-related irregularities, we 

posited that ADHD may also be associated with an impaired motivational control system 

favoring habits over goal-directed behaviors. Our results do not support this hypothesis 

with our primary analyses, which could be due to a few key factors.  

First, our study recruited participants from the general population and obtained a 

normal distribution of ADHD-related symptom severity, such that most participants in 

our sample did not reach the clinical threshold for an ADHD diagnosis. This approach 

contextualizes any potential ADHD-related impairment in motivational processes to a 

wider audience, thus expanding the applicability of our research. Consequentially, we are 

unable to sufficiently represent those who are most debilitated by the symptoms in 

question: individuals who meet the clinical threshold for ADHD. Any potential ADHD-

related effect may therefore be weakened by the large proportion of individuals who 

present symptoms below the clinical threshold at magnitudes that do not impair daily 

functioning. Indeed, a study that recruited adults from the general population to examine 

ADHD symptomology-related inhibitory control disparities found only a modest 

association between symptom severity and Go/NoGo task accuracy with 440 participants 

(Polner et al., 2015). A study with a larger sample size (n = 1156) obtained from the 

general population pinpointed Go/NoGo impairments due to high ADHD-like symptoms, 

though these effects were sensitive to variations in task structure (e.g., speed and reward 

structure) (Kuntsi et al., 2009). Taken together with our results, although the ADHD–

Go/NoGo impairment association is well-documented in clinical presentations of ADHD, 
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symptom-based approaches may not be sensitive to such effects in the general 

population. Nonetheless, although there may be disorder-specific factors playing a role in 

behavioral flexibility that are undetected here, we had reasoned that sampling 

indiscriminately—that is, without diagnostic cutoffs—could expand the generalizability 

of potential symptom-related anomalies to the public.   

 An alternative explanation for the absence of a strong link between motivational 

control and ADHD symptomology is the notion that individuals with ADHD-like 

symptoms may also have compensatory mechanisms that promote adaptive behavioral 

output. For instance, despite the strong evidence of response inhibition deficits in ADHD, 

attention compensation supported by parietal brain activity has been documented, 

resulting in comparable Go/NoGo task performance (Dillo et al., 2010). Brain maturation 

is another candidate for behavioral similarities in ADHD and NT populations. ADHD is 

associated with a delayed maturation of the prefrontal cortex (Shaw et al., 2007), a region 

that is critical for error detection, reversal learning, and conflict monitoring. These 

processes are crucial for optimal Go/NoGo task performance (Garavan et al., 2002; 

Zhang et al., 2016), especially one involving changes to color-response mappings. 

Accordingly, adults with ADHD may produce signs of intact Go/NoGo performance due 

to the maturations in prefrontal regions, compensating for potential impairments that may 

have been evident with a less mature cortex (Carmona et al., 2012). Another potential 

compensatory mechanism may be driven by ADHD medications that act on the brain’s 

dopaminergic systems. We did not ascertain whether our participants—with or without 

ADHD—were taking ADHD medication. Methylphenidate, for instance, has been 

reported to enhance executive function in individuals with ADHD, as well as in NTs 
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(Linssen et al., 2014; Moeller et al., 2014; Schweitzer et al., 2004). These beneficial 

effects of ADHD medication on executive function have also been shown to extend 

beyond methylphenidate (Hosenbocus and Chahal, 2012). Our sample of adults with 

varying degrees of ADHD-related symptoms may be recruiting similar compensatory 

mechanisms that aid in maintaining goal-directed control. Future research that captures 

developmental and pharmacological aspects of ADHD and goal-directed control may 

elucidate which of these mechanisms plays a critical role in adaptive motivational 

control. 

 We reasoned that because hyperactive ADHD presentation is associated with the 

number of impulsivity-related items endorsed on the ASRS (Kessler et al., 2005b), 

participants exhibiting high hyperactivity may execute quicker, impulsive Go actions. 

Our green-Go RT data supported our hypothesis, in that hyperactivity scores correlated 

with quicker responses to the well-learned habit eliciting stimulus. It should be noted that 

this finding was the result of an exploratory analysis. Nonetheless, our finding of a 

significant response latency and hyperactivity association bridges the fields of motivation 

and ADHD. Impulsivity, a core element of the hyperactive presentation of ADHD, is also 

associated with reflexive behaviors to cues and heightened variability in response latency 

(Kirkeby and Robinson, 2005). The heightened pre-potency to respond to habitual cues 

tracked by our hyperactivity scale may suggest an overlap in the motivational and 

inhibitory mechanisms underlying hyperactivity in ADHD, potentially explaining the 

lapses in behavioral output that result in higher RT and accuracy variability (Kirkeby and 

Robinson, 2005; Tamm et al., 2012). In other words, if hyperactivity predicts quicker 

responses to well-learned stimuli and high RT variability, this effect may be due to 
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motivational and motor processes that are activated depending on past experience with 

the cue at hand. Future research will be imperative in effectively dissociating the 

motivational, attentional, and inhibitory processes that underlie response latency 

variability in ADHD. 

Conclusions 

 ADHD is a heterogenous psychiatric condition with debilitating consequences to 

behavior, neural processing, and well-being. In this study, we aimed to reveal the 

potential irregularities in managing well-learned habits by sampling symptom severity 

information from the general population. Although we did not find a strong association 

between motivational control deficits and ADHD-related symptoms, our data replicate a 

previous report of well-learned habit expression and disruption, and allude to a link 

between hyperactivity and pre-potency to respond to well-learned Go stimuli. Taken 

together with previous reports of compensatory mechanisms aiding in Go/NoGo task 

performance in ADHD, delay in cortical maturation in ADHD yielding differential 

inhibitory processes across children and adults, and our sample largely comprising 

subclinical ADHD presentations, a full understanding of the potential link between 

ADHD and motivational control may require a neurobehavioral and developmental 

approach. 
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Chapter 5: General Discussion and Implications 

ADHD is a multi-faceted disorder with hallmark symptoms of inattentiveness and 

hyperactivity (American Psychiatric Association, 2013). The disorder is also known to 

exhibit aberrant response inhibition, reward processing, pronounced impulsivity, and 

deficits in working memory (Banca et al., 2015; Barkley, 1997; Castellanos & Tannock, 

2002; Holmes et al., 2010; Kuntsi et al., 2001; Modesto-Lowe et al., 2013; Schachar et 

al., 1993, 1993; Suskauer, Simmonds, Fotedar, et al., 2008; Wilbertz et al., 2012). 

Considering that the dysfunctional reward circuitry observed in ADHD results in aberrant 

reward processing and maladaptive interactions with the environment (Castellanos and 

Tannock, 2002), I set out to reveal in this dissertation whether the neurobehavioral 

systems regulating the control of motivated behaviors were compromised.  

 Three studies aimed to reveal the processes underlying the formation, expression, 

and disruption of habits in ADHD. In the first study (Chapter 2), despite behavioral 

similarities, an atypical neural signature of motivational control in ADHD was evident, 

marked by diminished corticostriatal communication, and an early recruitment of the 

posterior putamen region that is associated with stimulus-sensitivity (McNamee et al., 

2015; Tricomi et al., 2009). The second study (Chapter 3) focused on the expression and 

disruption of well-learned habits, and introduced a novel paradigm that capitalizes on 

well-established, ecologically valid representations of habitual behavior. This study also 

highlighted the beneficial effects of performance information and extrinsic rewards on 

motivational control by utilizing them to restore goal-directed control. Lastly, the third 

study (Chapter 4) applied a novel paradigm and feedback manipulation to a large sample 

from the general population to study well-learned habit expression and disruption as a 
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function of ADHD symptomology. This task elicited outcome-insensitive habits, and the 

feedback manipulation restored goal-directed control, albeit both independent of ADHD 

symptom severity. However, a modest link between habitual action execution prepotency 

(i.e., habitual Go action latency) and degree of hyperactivity was evident. In sum, these 

studies achieve three major goals: (1) highlighting the necessity of a motivational 

approach in empirical inquiries of ADHD by uncovering neural anomalies that may be 

precursors to behavioral rigidities, (2) providing the field the ability to capture a 

comprehensive snapshot of motivational control via well-learned habits, and (3) 

introducing motivational enhancement as a key strategy for restoring goal-directed 

control—a finding not only important for ADHD, but a variety of clinical disorders that 

exhibit reward-related impairments. 

Habits in the context of ADHD 

 Throughout this dissertation, I tested using neural and behavioral tools whether 

individuals with ADHD had a proclivity to favor habits over goal-directed behaviors. 

Although the neural and behavioral manifestations are not in complete agreement with 

each other, an interesting “big picture” question remains: if ADHD should indeed present 

over-reliance on habitual control, what would this mean outside of the laboratory? 

As reported in Chapters 2 and 4, ADHD presents an altered neural signature of 

top-down control, and hyperactivity may play a role in promoting habit execution. These 

findings allude to the notion that individuals with pronounced impulsivity may have 

difficulties controlling their goal-directed actions. This idea is supported by the 

prevalence of habit-related disorders that co-occur with ADHD, such as obsessive-

compulsive and substance use (e.g., alcohol and stimulants) disorders (Downey et al., 



 110 
 

 
 

1997; McGough et al., 2005; Shekim et al., 1990). Like obsessive-compulsive disorder, 

addiction has been theorized to be a disorder of compulsivity (Everitt and Robbins, 2016; 

Griffiths et al., 2014). Specifically, Pavlovian and operant associations between drug 

cues, emotional and behavioral responses (e.g., craving and drug use), and the 

consequences of these S–R chains (e.g., euphoria) are strengthened to amplify the 

salience of triggering cues and contexts, eventually leading to compulsive drug use 

(Everitt and Robbins, 2005, 2016; Griffiths et al., 2014). While certain components of 

addiction may surely be goal-directed in nature (e.g., various nefarious acts committed by 

individuals in pursuit of acquiring drugs), research towards understanding the habitual 

aspects of addiction can inform translational endeavors, such as how to control cue-

induced urges and maintain cessation goals. Indeed, even active smokers often report 

being unaware of their decision to smoke or having reached for a cigarette (Ikard et al., 

1969). Those who are long-time quitters, as in individuals with cessation goals that 

conflict with a nicotine rush outcome, continue to experience cue-induced craving (Jager, 

2003), supporting the notion that habit-like responses of craving and reaching for a 

cigarette upon cue prevail despite conflicting goals, or values associated with the 

outcome. In the context of ADHD, the development of compulsive, cue-sensitive 

processes may be pronounced, perhaps contributing to the prevalence of relevant 

comorbidities. 

Potential contributors to ADHD’s atypical neural signaling 

 If ADHD is marked by diminished corticostriatal signaling that can be a precursor 

to behavioral anomalies, what could be driving this irregularity? Chapter 2 found that 

compared to NTs, individuals with ADHD exhibited dampened signaling between the 
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dACC/mPFC and posterior putamen at cue onset following moderate S–R learning, as 

well as heightened posterior putamen recruitment. These regions have strong associations 

with value- and cue-based decision making and tracking reward value (Bush et al., 2002; 

Camille et al., 2011; O’Doherty, 2016; Smith et al., 2010; Zhang et al., 2016). A 

candidate mechanism underlying the corticostriatal abnormalities in the context of 

motivational control may be the utilization of cognitive resources, for which the 

prefrontal cortex is instrumental (Braver et al., 1997; Curtis and D’Esposito, 2003; 

Sawaguchi and Goldman-Rakic, 1991). Goal-directed control is known to be closely 

associated with working memory, in that individuals with higher cognitive resources in 

this domain are protected against factors that should otherwise render their behaviors 

habitual, such as stress (Otto et al., 2013; Quaedflieg et al., 2019). Furthermore, goal-

directed control is incrementally recruited throughout development, possibly as a result of 

the expansion of cognitive resources and prefrontal maturation (Ceceli and Tricomi, 

2018; Decker et al., 2016). In contrast, ADHD is associated with delayed prefrontal 

maturation, in that children with and without ADHD have differential slopes of neural 

development, potentially relating to delays in adaptive goal-directed control (Shaw et al., 

2007). Further interrogations of habit formation and expression as a function of age can 

better inform these ideas and potentially bolster the cognitive resources hypothesis of 

motivational control in ADHD. 

Neural correlates of well-learned habits and their disruption 

 Pioneering work in the late 20th century dissociating the habitual and goal-

directed components of motivational control has spawned a vast literature of basic and 

applied studies of habits (Adams, 1982; Adams and Dickinson, 1981; Dickinson, 1985; 
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Dickinson and Balleine, 1994). The field has greatly benefited from the examinations of 

habit induction—indeed, the behavioral and neural shift from newly-acquired goal-

directed behaviors to stimulus-triggered habits has been reliably mapped (Balleine and 

O’Doherty, 2009; Knowlton and Patterson, 2016; Yin and Knowlton, 2006). The 

prevalence of habit-based control has also been revealed in a variety of psychiatric 

disorders (Everitt et al., 2001; Griffiths et al., 2014). With that said, the studies in this 

dissertation were largely motivated by the disproportionate representation of habit 

formation versus the ecologically-relevant representations and disruptions of habits in the 

literature. For instance, habitual control has been demonstrated widely, even in horses 

and fruit flies (Brembs, 2011; Lansade et al., 2017), yet to the best of my knowledge, no 

study has examined the neural systems underlying the breaking of a habit. This 

dissertation has only scratched the surface of the processes underlying habit disruption. 

The neural correlates of habit disruption, for example, can have paramount implications 

for targeting effective treatment strategies for habit-based pathologies.  

Candidate neural systems regulating the habit breaking process may overlap with 

regions involving cognitive control and goal-directed performance. Chapters 3 and 4 

discussed well-learned habit disruption by reversing congruent color-response mappings 

to render them incongruent, such that participants needed to override their learned habit-

like actions for optimal goal-directed performance. Possibly, the neural investigations of 

reversal learning may inform speculations about the habit breaking process. In a typical 

reversal learning paradigm, two cue–outcome (or cue–response–outcome, if the paradigm 

involves an instrumental response) contingencies are eventually reversed, and 

behavioral/physiological assays are used to detect reversal learning ability (Ghahremani 



 113 
 

 
 

et al., 2010; Schiller et al., 2008; Zhang et al., 2016). Although the contingency change 

approach in Chapters 3 and 4 differs from reversal learning, in that participants 

undergoing the well-learned habit task are explicitly informed of the change in Go/NoGo 

contingencies, it is possible that these systems share neural circuitry. For instance, 

reversal learning in these studies have been associated with vmPFC, OFC and dACC 

activation—prefrontal regions that are also involved in the top-down control of motivated 

behaviors and cognitive control (Balleine and O’Doherty, 2009; Cole and Schneider, 

2007; MacDonald et al., 2000).  

An alternative explanation for the restoration of goal-directed behaviors may be 

the habit formation process occurring in reverse. If during habit formation, caudate and 

prefrontal cortex-regulated, outcome-driven processes shift towards putamen and motor 

cortex control and rely on triggering cues (Balleine and O’Doherty, 2009; Haber, 2003), 

perhaps restoring goal-directed control involves the reemergence of caudate and 

prefrontal cortex involvement during action control. Take, for example, the transcranial 

magnetic stimulation (TMS) of the lateral PFC and the its deleterious effects on model-

based strategies and motor sequence learning (Desrochers et al., 2015; Smittenaar et al., 

2013). Consider, also, the inactivation of the dorsomedial striatum (caudate) and the 

subsequent impairment in goal-directed control (Yin et al., 2005a), as well as dorsolateral 

striatum (putamen) lesions in rodents disrupting habit formation (Yin et al., 2004). 

Together, these studies suggest that perhaps increased involvement from the prefrontal 

cortex and caudate (or decreased involvement from the putamen) may foster goal-

directed control. Future examinations of prefrontal function and amplification of 

prefrontal neuronal activity (possibly via transcranial direct current stimulation, or 
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TDCS) may reveal whether this region is essential in disrupting habits and restoring goal-

directed control. This perspective is especially promising, considering that TDCS of the 

lateral PFC has been successfully used in enhancing working memory, and in a 

randomized clinical trial, alleviating cue-induced nicotine cravings (Fregni et al., 2005, 

2008).  

Lastly, these hypotheses involving the neural systems of habit disruption are also 

relevant for ADHD. Chapter 2 reports increased hippocampal activity following 

moderate S–R learning at cue onset in the ADHD group. Possibly, ADHD may be 

associated with declarative, hippocampal influences that aid in maintaining goal-directed 

performance, especially given the diminished corticostriatal connectivity. The lack of a 

priori declarative predictions limits such interpretations, although targeting the 

hippocampus to better understand ADHD’s potential compensatory systems in future 

research may yield interesting findings. Such projects can also motivate similar 

examinations of behavioral flexibility in other disorders that exhibit corticostriatal 

irregularities (e.g., major depressive disorder and bipolar disorder; Satterthwaite et al., 

2015). 

Feedback as a tool to overcome habits 

 Chapters 3 and 4 introduce motivational enhancement as a powerful tool in 

restoring goal-directed control. Specifically, providing performance tracking information 

paired with a monetary incentive, possibly by amplifying the salience of a goal (e.g., task 

proficiency or maximizing monetary gain), induced behavioral flexibility. When further 

unpacked, Chapter 3, Experiment 2 reports that performance feedback alone is not 

successful in disrupting habits, and only modestly affects outcome-sensitivity. However, 



 115 
 

 
 

evidence in Chapter 3, Experiment 3 suggests that the delivery of dual feedback is indeed 

successful. Performance information provided a baseline score of task performance for 

individuals, and possibly, only those who were intrinsically motivated (i.e., motivated by 

self-related reasons, such as task-competence and interest) benefited from the feedback. 

The significant improvement effect seen in Chapter 3, Experiment 3 may be the product 

of a global motivational boost, in that the delivery of dual feedback benefited both 

intrinsically and extrinsically motivated individuals. Specifically, dual feedback 

contained rewards that could be perceived as intrinsic (e.g., performance information that 

can be used towards tracking task competence) or extrinsic (e.g., money). However, it 

remains unknown whether monetary incentives alone could disrupt habits. This is a 

particularly interesting question for motivation researchers, as extrinsic rewards have 

been known to undermine intrinsic motivation, in that someone who is intrinsically 

motivated to perform a task may be negatively affected by receiving extrinsic rewards, 

diminishing self-generated motivation (Miller, 1988; Ryan and Deci, 2000). An 

alternative account posits that when reinforcement is indeed rewarding, contingent on 

task performance and not merely engaging in the task, and attainable, extrinsic rewards 

may not necessarily have a detrimental effect on intrinsic motivation (Dickinson, 1989). 

Examining the effects of monetary incentives in isolation, with measures that capture 

individual differences in motivation, can test whether either of these accounts provide 

more insight into the habit disruption process. Particularly, such an investigation can 

probe whether degree of habit disruption relies on type of motivation and reward.  

Additionally, the reported effect of habit disruption may be relevant for 

remediating compulsive behaviors in the clinical setting. The motivational enhancement 
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manipulation via dual feedback shows significant overlap with feedback-based treatments 

of various disorders. For instance, contingency management (CM) is a therapeutic tool 

that capitalizes on similar motivational processes. During CM-based treatment, the 

patient is reinforced for performing desirable behaviors (i.e., substance use cessation, 

healthy eating, etc.), akin to models of operant conditioning (Prendergast et al., 2006). 

This method of behavioral therapy has yielded significant abstinence effects in the 

treatment of alcohol (Petry et al., 2000), cocaine (Epstein et al., 2003), and opioid abuse 

(Petry and Carroll, 2013; Petry and Martin, 2002). These beneficial effects also extend 

beyond abstinence therapy, as CM has also been documented to improve obesity 

treatment and the promotion of fitness goals (Volpp et al., 2008; Weinstock et al., 2008). 

Given that both CM and our motivational enhancement manipulations rely on inducing 

behavioral change via feedback, the approach in Chapters 3 and 4 may be useful in 

providing a mechanistic insight into these processes. Specifically, I asserted in these 

studies that dual feedback reactivates outcome representations in otherwise stimulus-

dependent behaviors. Further work in this domain of habit disruption via motivational 

enhancement can supplement CM and other feedback-driven clinical practices by testing 

the underlying mechanisms of motivation in driving treatment efficacy (e.g., the neural 

correlates of habit disruption and its sustainability). 

Thinking beyond disorder classifications 

 The three studies in this dissertation tackled habit formation, expression, and 

disruption in ADHD using two distinct approaches: the typical disorder classification 

method using the DSM (American Psychiatric Association, 2013), and a symptom-based 

method that captures behavioral manifestations in relation to symptom severity.  
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Chapter 2 assessed ADHD strictly per DSM guidelines and excluded participants 

with psychiatric comorbidities and non-ADHD-related medication regimens. 

Additionally, individuals with ADHD were demographically matched to their NT 

counterparts. Such a strict disorder classification approach serves several advantages. 

First, it ensured that the results can be attributed specifically to disparities in ADHD, 

minimizing the influence of other psychiatric illnesses. Second, this study attempted to 

capture the neurobehavioral systems of ADHD in absence of transient or enduring effects 

of non-ADHD related psychoactive medication use. Lastly, having closely matched 

ADHD and NT participants, behavioral and neural contrasts were performed with 

confidence, minimizing age, gender, and working memory-related confound effects.  

Despite these advantages, participant selection based on stringent disorder 

classifications and exclusion criteria yields difficulties in research. For example, ADHD 

often manifests alongside other psychiatric disorders (McGough et al., 2005). It can be 

reasoned that among these excluded comorbidities, such as substance use and obsessive-

compulsive disorder, there may be overlooked components that contribute to reward and 

motivation-related processes in ADHD. Importantly, with prevalence rates as high as 

50% (Jensen and Steinhausen, 2015; McGough et al., 2005), a snapshot of ADHD that 

excludes comorbidities and their respective psychoactive treatment regimens may be 

unlike the real-world manifestation of the disorder. Such discrepancies between 

laboratory samples and the population at large may introduce two major issues. First, if 

the effect of interest (e.g., habit formation in ADHD) is related to the presence of a 

comorbid disorder, these effects may not be observable due to the stringent exclusion 

procedures. Second, the effects that stem from such recruitment protocols may weaken 
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the generalizability of the research, where the study sample does not sufficiently 

represent the clinical population (Sharp et al., 2016). 

In concordance with the disadvantages of the typical disorder classification 

method outlined here, Chapter 4 approached the expression and disruption of habits in 

ADHD by borrowing from the National Institute of Mental Health’s RDoC initiative. The 

core principles of RDoC are centered on measuring symptom dimensions, agnostic of 

DSM guidelines for any particular disorder (Insel et al., 2010). For instance, RDoC 

utilizes matrices of systems and levels of analysis. These matrices quantify domains such 

as positive valence (e.g., reward valuation, prediction error, etc.) via varying levels of 

analyses (e.g., behavior, molecular, genetic, etc.; Insel et al., 2010; Sharp et al., 2016). 

Chapter 4 presents a study in which a large sample from the general population was 

recruited, in absence of DSM’s disorder categorization guidelines or any strict exclusion 

criteria. Continuous variables were employed to measure symptoms of inattention and 

hyperactivity, along with demographic information serving as controlled variables that 

can also contribute to explaining variability in behavior across the sample. Thus, this 

study was able to improve the generalizability of the findings, as any association reported 

in the results would be representative of the general population, and not a case of ADHD 

that occurs in isolation of other factors. 

Limitations and future directions 

 Although the studies in this dissertation examined habits using multiple 

modalities (e.g., behavior, survey, brain activity) and perspectives (e.g., habit formation, 

expression, disruption), these efforts could be improved and extended in several ways.  
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In Chapter 2, individuals with ADHD exhibited dampened functional connectivity 

between the dACC and posterior putamen, and heightened posterior putamen activity as a 

function of S–R training. Although this study captured corticostriatal alterations in 

ADHD, these differences in brain function and connectivity did not accompany 

behavioral effects. Specifically, the ADHD group did not exhibit pronounced habit 

formation (i.e., the development of outcome-insensitivity). As mentioned in the 

“Thinking beyond disorder classifications” section, disorders of compulsivity that are 

often comorbid with ADHD may be driving potential habit effects. Because participants 

with other psychiatric diagnoses were excluded, the potential contribution of 

comorbidities on habit formation remains an open question. Furthermore, a 

developmental approach may also provide an explanation for the null behavioral findings. 

Due to the delayed cortical maturation seen in ADHD (Shaw et al., 2007), it may be the 

case that adults with ADHD (especially high functioning individuals in a predominantly 

collegiate sample) have neurally disparate, yet behaviorally intact motivational control. 

The developmental trajectory of motivational control in ADHD is an especially 

fascinating avenue of research. Goal-directed control has been documented to improve 

throughout development in the general population (Decker et al., 2016), and an aberrance 

in this process in ADHD would provide new insights into the lifespan of the disorder. 

Lastly, an alternative explanation for the behavioral similarities across ADHD and NT 

groups is that the induction of outcome devaluation via selective satiety of a food reward 

may not be the optimal approach to examine habits in humans. The devaluation paradigm 

relies on subjective reports of selective satiety, and may be susceptible to demand 



 120 
 

 
 

characteristics. Although extensively employed in rodents, it might not be capturing the 

human habit experience with similar efficacy (Ceceli and Tricomi, 2018).   

 Chapter 3 and 4 utilized a novel paradigm that capitalized on existing associations 

to demonstrate and disrupt well-learned habits. I compared participants’ behavioral 

flexibility to changes in Go and NoGo contingencies when managing familiar (green-Go, 

red-NoGo) or novel (purple-Go, blue-NoGo) color-response mappings. Because green 

and red should have strong associations with Go and NoGo behaviors, managing these 

signals when they are incongruent with daily experiences should produce outcome-

insensitive, habit-like behaviors, in relation to the novel stimuli that presumably have no 

strong behavioral associations. Thus, the task relies on whether these visual stimuli elicit 

differences in action execution. Importantly, the stimuli are solely distinguished by color 

(see the Appendix, Supplemental Figure 1), in that a difficulty in identifying perceptually 

similar colors would complicate the interpretation of the findings. Chapter 3 deployed a 

between-subject design, in that two independent samples managed the red/green and 

blue/purple) task stimuli. Although this design would ensure that participants did not 

mistake red for any other color (since red would only be seen by the group undergoing 

the task with familiar stimuli), it does not account for potential similarities between 

purple and blue. To ensure that participants successfully distinguished these potentially 

similar colors (i.e., discerning red, blue, and purple), I administered a color 

discrimination task comprising the stimuli in the well-learned habit task (see the 

Appendix, Supplemental Figure 2). The details of this manipulation check can be found 

in the Appendix, Chapter 5 Supplement. In brief, participants were able to identify the 
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colors in question with similar accuracy, suggesting that the effects we report in Chapters 

3 and 4 are not related to difficulties in identifying the task stimuli. 

Conclusions 

 Neurobiological evidence suggests that ADHD is associated with reward-related 

deficits, as well as impairments in motivation that are tracked by assays of dopaminergic 

function in the brain (Castellanos and Tannock, 2002; Volkow et al., 2011). This 

dissertation examined whether ADHD was also associated with neurobehavioral 

abnormalities during the control of motivated behaviors. This approach contributes to the 

literature by highlighting corticostriatal alterations that may serve as ADHD 

endophenotypes. I also developed novel tools to demonstrate and disrupt habits that are 

suitable for examining not only ADHD, but a variety of disorders that exhibit reward-

related symptoms. In sum, this work bolsters motivation as an important target for 

elucidating ADHD’s pathophysiology, and may foster translational research to improve 

treatment strategies in clinical contexts—namely in remediating maladaptively rigid 

behaviors.   
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Appendix 

Chapter 2 Supplement 

Supplemental Table 1. Activation clusters and local maxima within contrasts (Task > 
Rest onset, Late > Early phase). 

    MNI coordinates (mm)  

Cluster index Brain region labels (Hemisphere) 
Cluster size 

in voxels 
Z-stat x y z  

PPI analysis, NT > ADHD  

1 Paracingulate gyrus (R) 804 3.65 8 50 16  

 Anterior cingulate gyrus (R)  3.57 6 44 10  

 Anterior cingulate gyrus (L)  3.47 -10 40 10  

 Superior frontal gyrus (L)  3.15 -2 52 24  

 Paracingulate gyrus (L)  3.09 -2 46 28  

 Frontal pole (R)  2.75 2 66 16  

Whole-brain analysis, ADHD > NT  

1 Hippocampus (L) 838 4.02 -12 -14 -20  

 Posterior parahippocampal gyrus (L)   4.00 -14 -34 -20  

 Anterior parahippocampal gyrus (L)  3.76 -12 -16 -24  

 Posterior temporal fusiform cortex (L)  3.64 -30 -38 -18  

 Brain stem (R)  3.60 6 -26 -34  

 Cerebellum (L)  3.42 -8 -38 -16  

 Posterior putamen (L)  3.09 -32 -26 0  

2 Central opercular cortex (L) 749 4.01 -46 -12 18  

 Insular cortex (L)  3.50 -38 2 -8  

 Precentral gyrus (L)  3.48 -62 2 8  

 Postcentral gyrus (L)  3.19 -58 -14 18  

 Temporal pole (L)  3.10 -38 4 -26  

 Planum polare (L)  3.02 -46 -8 0  

 Parahippocampal gyrus (L)  2.80 -30 -4 -28  

Local maxima within each cluster with Z-stat values greater than the cluster-defining threshold of 2.58 (p 

< .005, corrected to p < .05). When analyses yield multiple local maxima that belong to the same 

anatomical region, the coordinates depicted correspond to the activation with the higher Z-stat value. The 

Harvard-Oxford and Montreal Neurological Institute (MNI) Structural Atlases were used to map 

coordinates to their corresponding brain region labels. PPI: psychophysiological interaction, ADHD: 

attention-deficit/hyperactivity disorder, NT: neurotypical, L: left hemisphere (negative coordinates on the 

x-plane), R: right hemisphere (positive coordinates on the x-plane). Voxel dimensions: isotropic 3 mm. 

Chapter 3 Supplement 

Experiment 1 – Omnibus regression to confirm mapping-related accuracy impairment 

Primary measure of outcome-sensitivity: NoGo accuracy 
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We derived a ΔNoGo_Accuracy (i.e., change in NoGo accuracy scores across 

mappings) DV to quantify the mapping-related impairment for each subject. This 

ΔNoGo_Accuracy variable serves as the primary measure of outcome-sensitivity, in that 

a greater impairment represents greater outcome-insensitivity. Specifically, difficulty 

overriding the Familiar Red–NoGo association for the Green–NoGo association indicates 

a cue-driven habit. In contrast, we would not expect a pronounced ΔNoGo_Accuracy 

value when participants manage Novel NoGo contingencies (i.e., blue–NoGo and purple–

NoGo should yield similar accuracy scores).  Participants with DV standardized residual 

values below -3.3 and above +3.3 were identified as outliers (Tabachnick & Fidell, 

2007). In such cases, we performed identical analyses without outlier participants to 

verify robustness of findings, but only report these excluded analyses if outliers produced 

substantial changes in statistical significance.  

We employed a hierarchical multiple regression model to extract the predictive 

strength of the between-group Condition variable while controlling for age, gender, order 

of mapping phase (i.e., whether a subject completed a particular color-response mapping 

first), and impulsivity. We entered the controlled Age, Gender, Order, and Impulsivity 

regressors into the first, and the Condition regressor of interest into the second step of the 

model. Therefore, our hierarchical multiple regression model yielded an R2 change value 

(ΔR2) for Condition, determining whether mapping-related impairments are predicted 

specifically by Condition (i.e., contingency change in Familiar versus Novel stimuli). We 

also derived the corresponding Fchange value, which compares the predictive strength of 

the variables in the second step of the model with those in the first step (i.e., confirming 

whether ΔR2 reflects a significant change in the model’s predictive strength).  
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The regression model met the assumptions of normality and homoscedasticity. 

Multicollinearity tests produced negligible Variance Inflation Factors (VIF), confirming 

linearity assumptions of the regression (VIF for all variables < 1.09). Model 1, a linear 

combination of the controlled variables of Age, Gender, Order, and Impulsivity, did not 

significantly predict outcome-sensitivity: F(4,45) = 0.46, p = .767, and only explained 

4% of the variance in ΔNoGo_Accuracy (R2 = .04). Additionally, no controlled regressor 

independently predicted a change in ΔNoGo_Accuracy (all β coefficient p’s. > .05). In 

the second step of the regression, the inclusion of Condition as a regressor explained an 

additional 15.5% of the variance in outcome-sensitivity: βCondition = -.40, ΔR2 = .15,  

Fchange (1,44) = 8.47, p = .006—a significant contribution. Thus, the addition of the 

significant Condition regressor rendered the entirety of Model 2 a near-significant 

predictor of outcome-sensitivity, despite the null contributions from Age, Gender, Order, 

and Impulsivity: F(5,44) = 2.12, p = .081 (see Supplementary Table 2). 

Supplemental Table 2. Summary of the Hierarchical Multiple Regression Model for 
Outcome-Insensitivity as Assayed by ΔNoGo_Accuracy. 

Variable Toler. VIF B SE β t sig. 

Model 1        
Age .98 1.02 0.57 0.82 .10 0.69 .493 
Gender .97 1.04 -2.69 5.08 -.08 -0.53 .599 
Impulsivity .93 1.07 -0.25 0.35 -.11 -0.71 .483 
Order .96 1.04 3.12 4.88 .95 0.64 .527 
Model 2        
Age .97 1.03 0.34 0.77 .06 0.44 .662 
Gender .96 1.05 -1.30 4.73 -.04 -0.27 .784 
Impulsivity .93 1.08 -0.33 0.33 -.14 -0.99 .326 
Order .96 1.04 2.88 4.52 .09 0.64 .527 
Condition .98 1.02 -13.06 4.50 -.40** -2.91 .006 

 

Model Summary Statistics  

Model R2 F F sig. ΔR2 Fchange Fchange sig. 

Model 1 .04 0.46 .767    
Model 2 .19 2.12 .081 .15 8.47 .006 

Note: Top layer of table depicts all regressors included in the hierarchical model and their respective 

statistics. Bottom layer of table, Model Summary Statistics, depicts the predictive strength of each model. 
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Delta R2 (ΔR2) and corresponding Fchange values denote the specific improvement of Model 2 over Model 1 

in predicting the dependent variable. Toler. = Tolerance; VIF = Variance Inflation Factor. Significant p-

values (alpha = .05) depicted in bold typeface. 

These results also suggest that the differential mapping-related impairment 

observed across Familiar and Novel conditions is not due to the order in which 

participants managed color-response mappings. The Order variable did not significantly 

predict ΔNoGo_Accuracy in our model (β = .09, p = .527). We found no interaction 

between factors of Order and Mapping in NoGo accuracy as a result of the repeated 

measures ANOVA: F(1,48) = 0.35, p = .555, ηp
2 < .01. We performed the same ANOVA 

separately in Familiar and Novel conditions and observed no significant interactions in 

either group (p’s > .05).  

Secondary measure of outcome-sensitivity: Go accuracy 

We performed an identical omnibus regression using ΔGo_Accuracy as DV—the 

secondary assay of outcome-sensitivity. The regression model met the assumptions of 

normality and homoscedasticity. Multicollinearity tests produced negligible Variance 

Inflation Factors (VIF), confirming the assumption of linearity in the regression model 

(VIF for all variables < 1.09).  

Collectively, the linear combination of Age, Gender, Order, and Impulsivity did 

not significantly predict mapping-related impairments in Go accuracy: F(4,45) = 2.18, p 

= .087. As depicted in Supplementary Table 3, closer examination of the individual 

regressors revealed a significant role played by Age, such that older participants suffered 

a greater mapping-related Go accuracy impairment: βAge = -.31, p = .027. The inclusion 

of the Condition regressor significantly improved the predictive strength of the model in 

step 2: βCondition = -.27, ΔR2 = .07, Fchange(1,44) = 4.10, p = .049, and the significant 
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contribution of Age remained: βAge = -.34, p = .014. Although age was a significant 

predictor of change in Go accuracy, because we had no a priori hypothesis, and the 

correlational direction of this relationship varied across conditions (Familiar Condition 

Pearson’s r = .43; Novel Condition Pearson’s r = -.70), we refrain from further age-

related speculation. 

Supplemental Table 3. Summary of the Hierarchical Multiple Regression Model for 
Outcome-Insensitivity as Assayed by ΔGo_Accuracy. 

Variable Toler. VIF B SE β t sig. 

Model 1        
Age .98 1.02 -0.60 0.26 -.31 -2.29* .027 

Gender .97 1.04 1.83 1.61 .16 1.14 .261 
Impulsivity .93 1.07 -0.02 0.11 -.03 -0.20 .843 
Order .96 1.04 -2.02 1.55 -.18 -1.30 .199 
Model 2        
Age .97 1.03 -0.65 0.25 -.34* -2.56 .014 

Gender .96 1.05 2.15 1.56 .19 1.38 .176 
Impulsivity .93 1.08 -0.04 0.11 -.05 -0.37 .716 
Order .96 1.04 -2.07 1.50 -.19 -1.38 .174 
Condition .98 1.02 -3.01 1.49 -.27** -2.03 .049 

 

Model Summary Statistics  

Model R2 F F sig. ΔR2 Fchange Fchange sig. 

Model 1 .16 2.18 .087    
Model 2 .23 2.68 .034 .07 4.10 .049 

Note: Top layer of table depicts all regressors included in the hierarchical model and their respective 

statistics. Bottom layer of table, Model Summary Statistics, depicts the predictive strength of each model. 

Delta R2 (ΔR2) and corresponding Fchange values denote the specific improvement of Model 2 over Model 1 

in predicting the dependent variable. Toler. = Tolerance; VIF = Variance Inflation Factor. Significant p-

values (alpha = .05) depicted in bold typeface. 

Similar to our primary assay of outcome-sensitivity, change in Go accuracy was 

not due to the order in which participants managed color-response mappings (βOrder = -

.19, p = .174). There was no significant Order x Mapping interaction in Go accuracy: 

F(1,48) = 2.26, p = .140, ηp
2 = .04. We performed the same ANOVA separately in 

Familiar and Novel conditions and observed no significant interactions in either group 

(p’s > .05). 
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Experiment 2 – Omnibus regression to illustrate mapping-related impairment while 

testing the effect of cumulative performance feedback  

Primary measure of outcome-sensitivity: NoGo accuracy 

Similar to Experiment 1, we derived a ΔNoGo_Accuracy DV to quantify the 

mapping-related impairment for each participant as the primary assay of outcome-

sensitivity. We employed a hierarchical multiple regression model to extract the 

predictive strengths of the between-group regressors, Condition and Feedback, while 

controlling for age, gender, and impulsivity. The resulting ΔR2 value for the contributions 

of Condition and Feedback determined whether mapping-related impairments are 

predicted specifically by Condition (i.e., Familiar versus Novel stimuli), and whether the 

cumulative performance feedback manipulation plays a role in affecting motivational 

control. A corresponding Fchange value was derived to confirm whether ΔR2 reflects a 

significant change in the model’s predictive strength. Participants with DV standardized 

residual values below -3.3 and above 3.3 were identified as outliers (Tabachnick & 

Fidell, 2007). In such cases, we performed identical analyses without outlier participants 

to verify robustness of findings, but only report these excluded analyses if outliers 

produced substantial changes in statistical significance. 

The regression model met the assumptions of normality and homoscedasticity. 

Multicollinearity tests produced negligible Variance Inflation Factors (VIF), confirming 

the assumption of linearity in the regression model (VIF for all variables < 1.04; see 

Supplementary Table 4). 

Model 1, a linear combination of the controlled variables Age, Gender, and 

Impulsivity, did not significantly predict outcome-sensitivity: F(3,96) = 0.18, p = .91, and 
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only explained 0.6% of the variance in ΔNoGo_Accuracy. Additionally, no controlled 

regressor independently predicted a change in ΔNoGo_Accuracy (all β coefficient p’s. > 

.05; see Supplementary Table 4). In the second step of the regression, the inclusion of the 

Condition and Feedback regressors explained an additional 14.5% of the variance in 

outcome-sensitivity: βCondition = -.34, p = .001, βFeedback = .18, p = .07, ΔR2 = .14, Fchange 

(2,94) = 8.03, p = .001—rendering the entirety of Model 2 a significant predictor of 

outcome-sensitivity: F(5,94) = 3.34, p = .008 (see Supplementary Table 4).  

Supplemental Table 4. Summary of the Hierarchical Multiple Regression Model for 
Outcome-Insensitivity as Assayed by ΔNoGo_Accuracy. 

Variable Toler. VIF B SE β t sig. 

Model 1        
Age .99 1.01 -0.31 0.58 -.05 -0.54 .590 
Gender .98 1.02 -0.31 3.75 -.01 -0.08 .935 
Impulsivity .98 1.02 0.13 0.27 .05 0.48 .633 
Model 2        
Age .98 1.02 -0.54 0.54 -.09 -1.00 .319 
Gender .96 1.04 1.10 3.53 .03 0.31 .756 
Impulsivity .98 1.02 0.17 0.25 .06 0.68 .497 
Condition .98 1.02 -11.74 3.29 -.34** -3.57 .001 

Feedback .99 1.01 6.06 3.28 .18 1.85 .067 

 

Model Summary Statistics  

Model R2 F F sig. ΔR2 Fchange Fchange sig. 

Model 1 .01 0.18 .910    
Model 2 .15 3.34 .008 .14 8.03 .001 

Note: Top layer of table depicts all regressors included in the hierarchical model and their respective 

statistics. Bottom layer of table, Model Summary Statistics, depicts the predictive strength of each model. 

Delta R2 (ΔR2) and corresponding Fchange values denote the specific improvement of Model 2 over Model 1 

in predicting the dependent variable. Toler. = Tolerance; VIF = Variance Inflation Factor. Significant p-

values (alpha = .05) depicted in bold typeface. 

We hypothesized that performance feedback may be a salient factor that can 

potentially restore goal-directed control when managing these well-established 

associations. However, cumulative performance feedback did not break the habits elicited 

by these familiar stimuli. As seen in the hierarchical multiple regression model, although 

Condition yielded differential mapping-related NoGo accuracy changes across familiar 
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and novel conditions, the Feedback regressor was not a significant predictor of outcome-

sensitivity. 

Secondary measure of outcome-insensitivity: ΔGo_Accuracy 

We performed an identical omnibus hierarchical regression using ΔGo_Accuracy, 

which serves as our secondary measure of outcome-sensitivity. The regression model met 

the assumptions of normality and homoscedasticity. Multicollinearity tests produced 

negligible VIFs, confirming the assumption of linearity in the regression model (VIF for 

all variables < 1.04; see Supplementary Table 5). Two participants were identified as 

outliers due to a standardized residual values falling outside the predetermined range 

(Tabachnick & Fidell, 2007). Identical analyses without outlier data produced no 

substantial changes in the statistical findings below. 

 Collectively, the linear combination of Age, Gender, and Impulsivity did not 

significantly predict mapping-related change in Go accuracy: F(3,96) = 0.31, p = .81. As 

depicted in Supplementary Table 5, closer examination of the individual regressors 

revealed no significant role played by any of the controlled variables in Model 1 (all β 

coefficient p’s. > .05; see Supplementary Table 5). In the second step of the regression, 

the inclusion of the Condition and Feedback regressors explained an additional 17.7% of 

the variance in Go accuracy impairment: βCondition = -.32, p = .001, βFeedback = .28, p = 

.003, ΔR2 = .18, Fchange(2,94) = 10.23, p < .001—rendering Model 2 a significant 

predictor of ΔGo_Accuracy: F(5,94) = 4.32, p = .001 (see Supplementary Table 5).  

Supplemental Table 5. Summary of the Hierarchical Multiple Regression Model for 
Outcome-Insensitivity as Assayed by ΔGo_Accuracy. 

Variable Toler. VIF B SE β t sig. 

Model 1        
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Age .99 1.01 -0.11 0.21 -.54 -0.54 .591 
Gender .98 1.02 -1.00 1.38 -.07 -0.73 .469 
Impulsivity .98 1.02 -0.05 0.10 -.05 -0.53 .600 
Model 2        
Age .98 1.02 -0.22 0.20 -.11 -1.13 .261 
Gender .96 1.04 -0.51 1.27 -.04 -0.40 .692 
Impulsivity .98 1.02 -0.04 0.09 -.04 -0.43 .670 
Condition .98 1.02 -4.03 1.19 -.32** -3.39 .001 

Feedback .99 1.01 3.59 1.18 .28** 3.03 .003 

 

Model Summary Statistics  

Model R2 F F sig. ΔR2 Fchange Fchange sig. 

Model 1 .01 0.31 .815    
Model 2 .18 4.32 .001 .18 10.23 <.001 

Note: Top layer of table depicts all regressors included in the hierarchical model and their respective 

statistics. Bottom layer of table, Model Summary Statistics, depicts the predictive strength of each model. 

Delta R2 (ΔR2) and corresponding Fchange values denote the specific improvement of Model 2 over Model 1 

in predicting the dependent variable. Toler. = Tolerance; VIF = Variance Inflation Factor. Significant p-

values (alpha = .05) depicted in bold typeface. 

Although these hierarchical regression results regarding ΔGo_Accuracy suggest 

that cumulative performance feedback has significant predictive strength, the mixed-

design ANOVAs in the main text confirm that cumulative performance feedback has a 

significant effect on Go actions only in the Familiar condition.  

Experiment 3 – Omnibus regression to illustrate mapping-related impairment while 

testing the effect of dual feedback—cumulative performance and monetary feedback 

To detect the potential habit-disrupting effects of dual feedback (i.e., paired 

monetary and cumulative performance feedback), we employed a hierarchical multiple 

regression model to extract the predictive strengths of the between-group regressors, 

Condition and Feedback, while controlling for age, gender, and impulsivity. We entered 

the controlled Age, Gender, and Impulsivity regressors into the first, and Condition and 

Feedback regressors of interest into the second step of the model to yield an R2 change 

(ΔR2) value that quantifies the contributions of Condition and Feedback. This allowed us 

to confirm whether mapping-related impairments are predicted specifically by Condition 
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(i.e., Familiar versus Novel stimuli), and whether dual feedback affected motivational 

control. A corresponding Fchange value was derived to confirm whether ΔR2 reflects a 

significant change in the model’s predictive strength. Participants with DV standardized 

residual values below -3.3 and above 3.3 were identified as outliers (Tabachnick & 

Fidell, 2007). In such cases, we performed identical analyses without outlier participants 

to verify robustness of findings, but only report these excluded analyses if outliers 

produced substantial changes in statistical significance. 

The regression model met the assumptions of normality and homoscedasticity. 

Multicollinearity tests produced negligible Variance Inflation Factors (VIF), confirming 

linearity assumptions in the regression (VIF for all variables < 1.15; see Supplementary 

Table 6).  

As hypothesized, Model 1, a linear combination of the controlled variables Age, 

Gender, and Impulsivity, did not significantly predict outcome-sensitivity: F(3,96) = 

0.12, p = .95, and only explained 0.4% of the variance in ΔNoGo_Accuracy (R2 = .004). 

Additionally, none of these regressors independently predicted ΔNoGo_Accuracy (all β 

coefficient p’s > .05; see Supplementary Table 6). In the second step of the regression, 

the inclusion of the Condition and Feedback regressors explained an additional 26.6% of 

the variance in outcome-sensitivity: βCondition = -.43, p < .001, βFeedback = .28, p = .003, 

ΔR2 = .27, Fchange(2,94) = 17.16, p < .001—rendering Model 2 a significant predictor of 

outcome-sensitivity: F(5,94) = 6.96, p < .001 (see Supplementary Table 6).  

Supplemental Table 6. Summary of the Hierarchical Multiple Regression Model for 
Outcome-Insensitivity as Assayed by ΔNoGo_Accuracy. 

Variable Toler. VIF B SE β t sig. 

Model 1        
Age .97 1.03 0.16 0.57 .03 0.29 .775 
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Gender .99 1.00 1.31 3.69 .04 0.35 .724 
Impulsivity .97 1.03 0.09 0.22 .04 0.40 .692 
Model 2        
Age .94 1.06 0.24 0.50 .04 0.48 .635 
Gender .87 1.14 0.14 3.41 .004 0.04 .968 
Impulsivity .91 1.09 0.01 0.20 .01 0.08 .939 
Condition .92 1.08 -13.42 2.83 -.43*** -4.74 <.001 

Feedback .89 1.13 8.76 2.89 .28** 3.03 .003 

 

Model Summary Statistics  

Model R2 F F sig. ΔR2 Fchange Fchange sig. 

Model 1 .004 0.12 .950    

Model 2 .52 6.96 <.001 .27 17.16 <.001 

Note: Top layer of table depicts all regressors included in the hierarchical model and their respective 

statistics. Bottom layer of table, Model Summary Statistics, depicts the predictive strength of each model. 

Delta R2 (ΔR2) and corresponding Fchange values denote the specific improvement of Model 2 over Model 1 

in predicting the dependent variable. Toler. = Tolerance; VIF = Variance Inflation Factor. Significant p-

values (alpha = .05) depicted in bold typeface. 

As hypothesized, the delivery of cumulative performance and monetary feedback 

disrupted habits (i.e., prevent a significant incongruency-related impairment in NoGo 

accuracy to familiar lights) and improved goal-directed control (i.e., significantly 

increase NoGo accuracy to novel stimuli). In other words, these regression data suggest 

that the differential mapping-related NoGo impairment is replicated in Experiment 3, in 

that the stimulus condition predicts changes in accuracy, and importantly, dual feedback 

is able to significantly predict improvements in performance. 

Secondary index of outcome-sensitivity: Go Accuracy 

We performed identical regression analyses using ΔGo_Accuracy as DV. The 

regression model met the assumptions of normality and homoscedasticity. 

Multicollinearity tests produced negligible VIFs, confirming the assumption of linearity 

in the regression model (VIF for all variables < 1.15). One participant was identified as 

an outlier due to a standardized residual value less than -3.3 (Tabachnick & Fidell, 2007). 
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Identical analyses without the outlier data produced no substantial changes in the 

statistical findings reported below; distinctions are specified where relevant. 

Collectively, the linear combination of Age, Gender, and Impulsivity did not 

significantly predict mapping-related impairments in Go accuracy: F(3,96) = 1.67, p = 

.18. As depicted in Supplementary Table 7, Model 1 only explained 5% of the variance 

(R2 = .05), and of all the controlled variables in Model 1, only the Impulsivity variable 

significantly predicted ΔGo_Accuracy: βImpulsivity = .21, p = .04 (all other β coefficient 

p’s. > .05). In the second step of our regression model, the inclusion of the Condition and 

Feedback regressors explained an additional 21.7% of the variance in Go accuracy 

impairment: βCondition = -.36, p < .001, βFeedback = .28, p = .004, ΔR2 = .21, Fchange(2,94) = 

13.11, p < .001—rendering Model 2 a significant predictor of ΔGo_Accuracy: F(5,94) = 

6.50, p < .001 (see Supplementary Table 7). The predictive strength of the Impulsivity 

variable diminished below significance in Model 2 (βImpulsivity = .17, p = .07). When 

reanalyzed without outlier data, Impulsivity did not predict ΔGo_Accuracy in either 

model (both p’s > .05). Given its lack of significant contributions in Experiments 1 and 2, 

and sensitivity to outlier correction in Experiment 3, we refrain from speculating further 

regarding the robustness of Impulsivity as a predictor. 

Supplemental Table 7. Summary of the Hierarchical Multiple Regression Model for 
Outcome-Insensitivity as Assayed by ΔGo_Accuracy. 

Variable Toler. VIF B SE β t sig. 

Model 1        
Age .97 1.03 0.18 0.21 .09 0.87 .384 
Gender .99 1.00 0.78 1.36 .06 0.57 .569 
Impulsivity .97 1.03 0.17 0.08 .21* 2.06 .042 

Model 2        
Age .94 1.06 0.20 0.19 .09 1.03 .306 
Gender .87 1.14 0.55 1.30 .04 0.42 .673 
Impulsivity .91 1.09 0.14 0.08 .17 1.84 .069 
Condition .92 1.08 -4.22 1.08 -.36*** -3.92 <.001 
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Feedback .89 1.13 3.25 1.10 .28** 2.95 .004 

 

Model Summary Statistics  

Model R2 F F sig. ΔR2 Fchange Fchange sig. 

Model 1 .05 1.67 .178    
Model 2 .26 6.50 <.001 .21 13.11 <.001 

Note: Top layer of table depicts all regressors included in the hierarchical model and their respective 

statistics. Bottom layer of table, Model Summary Statistics, depicts the predictive strength of each model. 

Delta (Δ) values denote the specific improvement of Model 2 over Model 1 in predicting the dependent 

variable. Toler. = Tolerance; VIF = Variance Inflation Factor. Significant p-values (alpha = .05) depicted 

in bold typeface. 

The significant Condition and Feedback regressors indicate that like Experiments 

1 and 2, Condition (Familiar vs. Novel) differentially yields changes in Go accuracy, and 

Feedback has a significant improvement effect on Go accuracy. It should be noted that 

our mixed-design ANOVAs (reported in the main text) reveal a significant feedback 

effect on Go actions only in the Novel condition. We can thus conclude that dual 

feedback does not significantly disrupt Go habits, though it does significantly promote 

goal-directed Go actions. 

Chapter 4 Supplement 

We uploaded a pre-registration document to Open Science Framework (OSF; 

https://osf.io) prior to data collection. Barring formatting adjustments, the report below is 

an unaltered transcript of the planned analyses that can be found on the OSF repository 

(document URL: https://osf.io/fjcbw). 

A. Hypotheses 

Description of essential elements 

H1a: Participants will exhibit significant NoGo accuracy impairments when managing 

Go and NoGo signals that are incongruent with the well-established green-go and red-

stop associations (Day 1). 
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H1b: Participants will exhibit flexible performance when managing novel associations, 

in that NoGo accuracy will be comparable across phases in which purple and blue 

Go/NoGo signals are presented (Day 1). 

H1c: Participants high in ADHD symptom severity, as assayed by ADHD Self Report 

Scale (ASRS) will exhibit stronger habitual control, as identified by a greater 

congruency-related impairment when managing familiar stimuli on Day 1. 

H1c_alt: Alternatively, ADHD symptom severity of either “inattentive” or “hyperactive” 

subtypes may specifically predict habitual control. To examine the role of each subtype, 

participants will be assigned “inattentive” and “hyperactive” subtype scores, derived 

from Parts A and B of the ASRS survey.  

• We have bi-directional hypotheses regarding these subtype variables, in that both 

inattentive and hyperactive presentations of ADHD may render actions habitual 

(e.g., hyperactive individuals may indiscriminately respond to Go and NoGo 

stimuli, and inattentive individuals may have difficulty discriminating Go and 

NoGo responses due to difficulties attending to the changes in new task 

demands).  

H1d: The driving experience scale will not yield significant correlations with behavioral 

flexibility as assayed by NoGo accuracy difference across phases (Day 1). 

H1e: Order of stimulus block presentation (Familiar block first vs. Novel block first on 

Day 1) or order of phase presentation (Congruent phase first vs. incongruent phase first) 

will not differentially affect NoGo accuracy differences (Day 1). 
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H2a: Participants will exhibit habit disruption following dual feedback (i.e., cumulative 

performance paired with monetary feedback) receipt on Day 2, such that feedback receipt 

will serve as a buffer against the significant NoGo accuracy impairment (Day 2). 

H2b: Participants high in ADHD symptom severity will benefit less from dual feedback 

receipt on Day 2, showing heightened NoGo accuracy impairments as a function of 

ASRS score. 

• Similar to H1c_alt, inattentive or hyperactive subtypes may also predict the 

degree to which dual feedback restores goal-directed control. If H1c_alt reveals 

subtype-specific results, we expect the same subtype that drives habitual control 

in the No-Feedback condition to predict accuracy impairment in the Feedback 

condition. 

H2b_alt: Alternatively, participants high in ADHD symptom severity may benefit 

similarly from dual feedback receipt, rendering dual feedback a salient enough 

manipulation to restore motivational control even in most-affected participants. 

B. Methods 

Description of essential elements 

Design 

IVs:  

• Stimulus (Familiar, Novel; within-subject design) 

• Phase (Congruent, Incongruent; within-subject design) 

DVs: 

• NoGo accuracy (errors of commission; main DV of interest) 
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• Go accuracy (errors of omission; exploratory DV) 

Covariates and controlled variables 

• ASRS (continuous survey measure; main covariate of interest) 

o Inattentive subtype score (alternative hypothesis testing) 

o Hyperactive subtype score (alternative hypothesis testing) 

• Order_Block (Familiar_First vs. Novel_First; between-subject design) 

• Order_Phase (Congruent_First vs. Incongruent_First; between-subject design) 

• Driving experience scale (continuous scale – months of driving experience; 

controlled variable) 

• Patient (Patient, Non-patient; categorical variable of interest for possible 

exploratory analyses) 

Planned sample 

• Exclusion criteria: color-blindness, experience with previous versions of 

experiment 

• Recruitment: undergraduate research subject pool; participation for course credit; 

study advertisement via online subject pool portal; may recruit paid ADHD 

patients previously in lab subject database for additional patient vs. non-patient 

analyses 

• We performed a power analysis on data from (Wodushek & Neumann, 2003) – a 

study in which healthy adults are categorized into high vs. low ADHD symptom 

groups for inhibitory control comparisons. We extracted effect sizes from 

correlations between inhibitory control and non-verbal inattention in both 

symptom severity groups, and averaged the two resulting projected sample sizes. 
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The averaged sample size needed to reach 80% statistical power was determined 

to be 105.  

• Data collection will terminate upon reaching n=105 (regardless of day 2 attrition 

rates; day 2 analyses will be performed using available data). 

Exclusion criteria 

• Trials with reaction times <100 milliseconds (Luce, 1991) 

• Standardized residual values outside the -3.3 – 3.3 range (Tabachnick & Fidell, 

2007) will be classified as outliers, and analyses excluding these participants will 

be reported if data removal causes significant changes in results. 

• Self-reported color-blindness will disqualify participants from partaking in study. 

Procedure 

• Day 1 – sequence of experimental events: 

o Informed consent 

o Go/NoGo task instructions 

o Block 1: Familiar or Novel block (order counterbalanced across 

participants) 

 Phase 1: Congruent or Incongruent phase (order counterbalanced 

across participants) 

 Contingency reversal instructions 

 Phase 2: same stimulus set as Phase 1, except Go/NoGo 

contingencies are reversed 

o Block 2: Familiar or Novel block (depending on previous block presented) 
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 Phase 1: Congruent or Incongruent phase (order counterbalanced 

across participants) 

 Contingency reversal instructions 

 Phase 2: same stimulus set as Phase 1, except Go/NoGo 

contingencies are reversed 

o Surveys: ASRS and Driving Experience Scale administration 

• Day 2 

o Go/NoGo task instruction 

o Familiar block 

 Phase 1: Congruent contingencies (Red-NoGo, Green: Go) 

 Dual feedback receipt  

 Contingency reversal instructions 

 Phase 2: Incongruent contingencies (Red:Go, Green:NoGo) 

o Demographic survey, The Creature of Habit Scale (COHS; used in 

exploratory analysis below), debriefing 

Additional manipulation description:  

• Stimulus block and phase order counterbalanced across participants.  

• Dual feedback manipulation: occurs on Day 2, following Phase 1:  

o Experimenter reveals cumulative performance feedback on screen, leaves 

room and returns with performance dependent cash bonus with possibility 

to earn more following next phase (bonus not performance dependent, 

unbeknownst to participant). 
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C. Analysis plan 

Confirmatory analyses: H1a through H1e: omnibus test encompassing all H1 predictions 

Relevant IVs:  

• Stimulus (Familiar, Novel) 

Relevant DVs:  

• NoGo Accuracy Difference (Incongruent minus Congruent Phase NoGo 

Accuracy; primary DV of interest) and  

• Go Accuracy Difference (similar transformation as NoGo Accuracy Difference; 

exploratory DV) 

Covariates and controlled variables of interest:  

• ASRS (main covariate of interest, with inattentive and hyperactive sub-scores for 

alternative hypothesis testing);  

• Age,  

• Gender,  

• Block_Order (Familiar_First, Novel_First),  

• Phase_Order (Congruent_First, Incongruent_First),  

• Driving Experience 

Statistical technique:  

• Hierarchical multiple regression  

o (Controlled variables entered into step 1, ASRS entered into step 2, 

Stimulus entered into step 3). 
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• Analyses will be repeated with inattentive and hyperactive ASRS sub-scores used 

as main covariate of interest for alternative hypothesis testing. 

Rationale:  

• Stimulus variable determines whether accuracy impairment is specific to the 

Familiar stimulus set.  

• NoGo accuracy difference DV ensures the analyses captures behavioral flexibility 

based on congruency-related impairments.  

• Order variables rule out order effects based on block or phase presentation (e.g., 

training effects) 

• ASRS allows for symptom severity and behavioral flexibility hypothesis testing. 

o Inattentive and hyperactive sub-scores will permit testing whether 

symptom severity specific to these subtypes drives potential behavioral 

control differences. 

• Driving experience as controllable variable ensures effects do not rely on 

exposure to stimuli solely in a traffic-context (as in, familiar stimuli have well-

learned associations that extend beyond driving). 

• Demographic variables used to rule out behavioral flexibility variability based on 

age and gender of participants. 

Confirmatory analyses: H2a-H2b_alt: 

Relevant IVs:  

• Feedback (Feedback, No Feedback) 

Relevant DVs:  



 162 
 

 
 

• NoGo Accuracy Difference (Incongruent minus Congruent Phase NoGo 

Accuracy; primary DV of interest)  

• Go Accuracy (exploratory DV) 

Covariates and controlled variables of interest:  

• ASRS (main covariate of interest), ASRS subtype score (used in identical 

analyses if H1c_alt yields subtype-specific information) 

• Age,  

• Gender,  

• Block_Order (Familiar_First, Novel_First),  

• Phase_Order (Congruent_First, Incongruent_First),  

• Driving Experience  

Statistical technique:  

• Hierarchical multiple regression  

o (Controlled variables entered into step 1, ASRS and Patient entered into 

step 2, Feedback entered into step 3). 

 If H1c_alt is confirmed, analyses will be repeated with the ASRS 

sub-score (inattentive or hyperactive) predictive of accuracy 

impairment in the No-Feedback condition as main covariate of 

interest for alternative hypothesis testing. 

Rationale:  

• Feedback variable determines whether accuracy impairment is specific to the No 

Feedback condition, potentially illustrating that Feedback prevents habitual 

control.  
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• NoGo accuracy difference DV ensures the analyses captures behavioral flexibility 

based on congruency-related impairments.  

• Order variables rule out order effects based on block or phase presentation (e.g., 

training effects) of day 1 events on day 2 performance. 

• ASRS allows for symptom severity and behavioral flexibility hypothesis testing. 

• Subtype-specific ASRS sub-scores will permit testing whether symptom severity 

specific to these subtypes drives potential behavioral control differences in the 

Feedback condition. 

• Driving experience as controllable variable ensures effects do not rely on 

exposure to stimuli solely in a traffic-context (as in, familiar stimuli have well-

learned associations that extend beyond driving). 

• Demographic variables used to rule out behavioral flexibility variability based on 

age and gender of participants. 

Planned exploratory analyses: 

• Identical analyses will be performed using Go Accuracy Difference DV to further 

explore behavioral flexibility. 

• Go accuracy is used as a supplemental DV due to the high Go:NoGo ratio, 

expected to promote pre-potent Go responses resulting in high Go accuracy at the 

expense of relatively lower NoGo accuracy. 

• Patient vs. Non-patient analyses 

o ADHD patients may be recruited to: (a) supplement existing dataset with 

higher ASRS scores for a more complete range of symptom severity, 

and/or (b) allow clinical vs. sub-clinical ADHD presentation comparisons 
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of behavioral flexibility. ADHD patient vs. non-patient status will be 

entered as a categorical variable of interest into the hierarchical regression 

models. 

o Patients are predicted to exhibit heightened habitual control (pronounced 

NoGo accuracy difference scores) and to benefit less from dual feedback 

receipt (significant impairment in NoGo accuracy following contingency 

reversal on day 2). 

o Alternatively, patients may also exhibit habit disruption following 

feedback receipt on day 2, serving as an indicator of the efficacy of dual 

feedback in restoring goal-directed control even in patients with clinical 

presentations. 

• The Creature of Habit Scale (COHS) may be administered depending on time left 

in session, attrition, and previously collected survey data availability (i.e., if not 

able to acquire responses in the lab, responses in the pre-screen survey completed 

by participants at the time of subject pool registration prior to study participation 

may be used). COHS will be entered into a correlational matrix with Familiar 

NoGo accuracy difference (incongruent minus congruent) and ASRS score. Thus, 

we will examine whether habitual tendencies in daily life correlate with habitual 

control as assayed by congruency-related accuracy impairment in the Familiar 

condition, as well as ADHD symptom severity. 

o We expect COHS score to be positively correlated with Familiar NoGo 

Accuracy Difference, such that higher COHS scores will predict 
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heightened habitual control (i.e., positive correlation as indicated by a 

significant Pearson’s r value.). 

o We expect COHS score to significantly correlate with ADHD symptom 

severity (i.e., positive correlation as indicated by a significant Pearson’s r 

value.) 

Recommended elements 

• The method of missing data handling: pairwise deletion (day 2 attrition will not 

eliminate day 1 data) 

• Go and NoGo accuracy scores will be transformed into difference scores for 

regression analyses 

• Outliers will be removed from dataset and data will be re-analyzed. If no 

substantial difference in outlier-included vs. excluded analyses exists, full dataset 

will be used for reporting results. Otherwise, outlier-removed version will be 

reported with a description of the deviations occurring due to the outliers. 

• Post-hoc ANOVAs and t-tests will be performed where relevant following 

hierarchical regression models. 

o A repeated measures ANOVA using Stimulus as IV, NoGo Accuracy as 

DV, Age, Gender, Block_Order, Phase_Order, Driving Experience, and 

ASRS as covariates. 

o Paired samples t-test across congruent and incongruent phases within each 

stimulus block (Familiar and Novel) 

• Identical analyses using Go accuracy as DV. 
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Answer the following final questions: 

Has data collection begun for this project?  

• No, data collection has not begun 

The (estimated) start and end dates for this project are (optional): 9/2018 – 05/2019 

Any additional comments before I pre-register this project (optional):  

• For H1b, we expect Novel stimuli to elicit flexible behavioral control, in that no 

significant impairment occurs as a result of contingency change. This null result 

ensures that the significant accuracy impairment expected in H1a is indeed due to 

the Familiar stimulus set. We will confirm the role of stimulus sets by entering 

Stimulus as a variable in our hierarchical regression model, and as explained 

above, determine via post-hoc ANOVA and t-tests whether Novel or Familiar 

stimulus sets elicit accuracy impairments. 

• For H1d and H1e, we expect the Driving Experience Scale, Order of run and 

block, and demographic variables to yield null results, in that we will use them as 

controlled variables in our regression model to rule out contextual (Driving), 

training (Order), and age/gender (demographic) related effects. 

• For H2a and H2b_alt, we expect dual feedback receipt to restore goal-directed 

control, resulting in participants to perform flexibly following contingency 

change. Although this hypothesis expects a non-significant difference of accuracy 

across phases, it permits the interrogation of the role of Feedback in affecting 

behavioral control. The null result in the Feedback condition ensures that the 

significant accuracy impairment on Day 1 without feedback is indeed due to the 
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lack of feedback. We will test the significance of Feedback as a candidate for 

restoring behavioral control by entering it into our hierarchical regression model, 

and confirm its role via post-hoc ANOVA and t-tests, as explained above.  

Chapter 4 Supplement (continued) 

Supplemental Table 8. First order correlations between accuracy and individual 
difference measures. 

Variable ΔNoGo_Accuracy ΔGo_Accuracy 

ASRS_Inattentive r = .05, p = .96 r = .10, p = .63 

ASRS_Hyperactive r = .07, p = .96 r = -.06, p = .63 

COHS r = -.15, p = .41 r = -.19, p = .17 

Note: p-values have been corrected for multiple comparisons using the Holm-Bonferroni method for each 

dependent variable. 

Our pre-registered hierarchical mixed models did not meet the assumption of 

multicollinearity due to high correlations between the following regressors: Age and 

Driving; Phase_Order and Condition_Order; ASRS_Total and 

ASRS_Inattentive/Hyperactive. We removed the redundant regressors from our analyses 

(i.e., Age, Condition_Order, and ASRS_Total) that were not integral for our hypotheses 

to meet the assumption of multicollinearity, and included these corrected analyses in the 

text. We report below the complete, multicollinear set of regressors for consistency with 

the pre-registration document. Because of the potentially inflated regression coefficients 

due to multicollinearity, we refrain from speculating on significant effects in these 

analyses, and refer readers to the corrected models included in the main text. 
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Supplemental Table 9. Hierarchical Mixed Model of ADHD Symptomology and Habit 
Expression: ΔNoGo_Accuracy (As Pre-registered). 

Variable VIF β t sig. 

Model 1     
Age 6.77 -.25 (.18) -1.42 .160 
Gender 1.10 -.11 (.07) -1.49 .140 
Phase_Order 3.98 .17 (.14) 1.27 .206 
Condition_Order 4.11 -.21 (.14) -1.53 .130 
Driving 6.71 .32 (.18) 1.79 .077 
Model 2     
Age 7.21 -.27 (.19) -1.46 .167 
Gender 1.21 -.09 (.08) -1.24 .220 
Phase_Order 4.21 .17 (.14) 1.24 .218 
Condition_Order 4.36 -.22 (.14) -1.52 .131 
Driving 6.99 .33 (.18) 1.79 .077 
ASRS_Inattentive 9.00 -.05 (.21) -0.23 .822 
ASRS_Hyperactive 8.74 .02 (.20) 0.08 .934 
ASRS_Total 23.53 .03 (.34) 0.10 .917 
Diagnosis 1.33 .03 (.08) 0.40 .692 
COHS 1.08 -.06 (.07) -0.77 .442 
Model 3     

Age 7.21 -.27 (.18) -1.54 .128 
Gender 1.21 -.09 (.07) -1.30 .197 
Phase_Order 4.21 .17 (.13) 1.30 .196 
Condition_Order 4.36 -.22 (.14) -1.60 .113 
Driving 6.99 .33 (.17) 1.88 .063 
ASRS_Inattentive 9.00 -.05 (.20) -0.24 .813 
ASRS_Hyperactive 8.74 .02 (.19) 0.09 .931 
ASRS_Total 23.53 .03 (.32) 0.11 .913 
Diagnosis 1.33 .03 (.08) 0.42 .677 
COHS 1.08 -.06 (.07) -0.81 .419 
Condition 1 .31 (.07) 4.68 <.001 

Model 4     
Age 7.21 -.27 (.18) -1.55 .126 
Gender 1.21 -.09 (.07) -1.31 .194 
Phase_Order 4.21 .18 (.13) 1.31 .193 
Condition_Order 4.36 -.22 (.14) -1.61 .111 
Driving 6.99 .33 (.17) 1.89 .062 
ASRS_Inattentive 17.56 -.05 (.20) -0.24 .812 
ASRS_Hyperactive 17.22 .02 (.19) 0.09 .931 
ASRS_Total 46.31 .03 (.32) 0.11 .912 
Diagnosis 2.38 .03 (.08) 0.42 .675 
COHS 2.13 -.06 (.07) -0.82 .417 
Condition 64.97 .31 (.07) 4.70 <.001 

ASRS_Inattentive x Condition 91.11 .17 (.19) 0.89 .376 
ASRS_Hyperactive x Condition 71.66 .15 (.19) 0.76 .448 
ASRS_Total x Condition 265.78 -.35(.31) -1.12 .265 
Diagnosis x Condition 2.16 .10 (.07) 1.54 .126 
COHS x Condition 57.37 .12 (.07) 1.74 .085 
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Model Comparisons 
 

 

 

 

 

Note: Top layer of table depicts all regressors included in the hierarchical model. Standard errors are 

given in parentheses. Bottom layer of table, Model Comparisons, depicts the predictive strength of each 

model, as compared to its previous step. VIF = Variance Inflation Factor. Log likel. = Log likelihood. 

Significant p-values depicted in bold typeface. 

  

Model R2 Log likel. χ2 χ2 sig. ΔR2 

Model 1 .05 81.55    
Model 2 .05 81.99 0.89 .971 <.01 
Model 3 .15 92.99 22.00 <.001 .10 

Model 4 .18 96.83 7.69 .174 .03 
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Supplemental Table 10. Hierarchical Mixed Model of ADHD Symptomology and Habit 
Disruption: ΔNoGo_Accuracy (As Pre-registered). 

Variable VIF β t sig. 

Model 1     
Age 6.77 .29 (.18) 1.61 .111 
Gender 1.10 .04 (.07) 0.60 .550 
Phase_Order 3.98 .30 (.14) 2.20 .030 

Condition_Order 4.11 -.23 (.14) -1.67 .098 
Driving 6.71 -.28 (.18) -1.54 .126 
Model 2     
Age 7.21 .32 (.18) 1.72 .088 
Gender 1.21 .05 (.08) 0.62 .537 
Phase_Order 4.21 .30 (.14) 2.14 .035 
Condition_Order 4.36 -.25 (.14) -1.71 .091 
Driving 6.99 -.26 (.18) -1.45 .151 
ASRS_Inattentive 9.00 .05 (.21) 0.24 .809 
ASRS_Hyperactive 8.74 .28 (.20) 1.37 .174 
ASRS_Total 23.53 -.27 (.33) -0.80 .423 
Diagnosis 1.33 -.04 (.08) -0.53 .595 
COHS 1.08 -.08 (.07) -1.18 .239 
Model 3     

Age 7.21 .32 (.18) 1.80 .076 
Gender 1.21 .05 (.07) 0.65 .520 
Phase_Order 4.21 .30 (.14) 2.23 .028 
Condition_Order 4.36 -.25 (.14) -1.78 .078 
Driving 6.99 -.26 (.17) -1.51 .135 
ASRS_Inattentive 9.00 .05 (.20) 0.25 .801 
ASRS_Hyperactive 8.74 .28 (.20) 1.43 .157 
ASRS_Total 23.53 -.27 (.32) -0.84 .404 
Diagnosis 1.33 -.04 (.08) -0.55 .580 
COHS 1.08 -.08 (.07) -1.23 .221 
Feedback 1 -.28 (.07) -4.18 <.001 

Model 4     
Age 7.21 .32 (.18) 1.79 .076 
Gender 1.21 .05 (.07) 0.64 .521 
Phase_Order 4.21 .30 (.14) 2.22 .029 
Condition_Order 4.36 -.25 (.14) -1.78 .079 
Driving 6.99 -.26 (.18) -1.50 .136 
ASRS_Inattentive 17.56 .05 (.20) 0.25 .802 
ASRS_Hyperactive 17.22 .28 (.20) 1.42 .158 
ASRS_Total 46.31 -.27 (.32) -0.84 .405 
Diagnosis 2.38 -.04 (.08) -0.55 .581 
COHS 2.13 -.08 (.07) -1.23 .222 
Feedback 64.97 -.28 (.07) -4.17 <.001 

ASRS_Inattentive x Feedback 91.11 -.23 (.19) -1.20 .232 
ASRS_Hyperactive x Feedback 71.66 -.30 (.19) -1.53 .128 
ASRS_Total x Feedback 265.78 .52 (.32) 1.62 .108 
Diagnosis x Feedback 2.16 .01 (.07) 0.21 .837 
COHS x Feedback 57.37 -.06 (.07) -0.87 .388 
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Model Comparisons 
 

 

 

 

 

Note: Top layer of table depicts all regressors included in the hierarchical model. Standard errors are 

given in parentheses. Bottom layer of table, Model Comparisons, depicts the predictive strength of each 

model, as compared to its previous step. VIF = Variance Inflation Factor. Log likel. = Log likelihood. 

Significant p-values depicted in bold typeface. 

  

Model R2 Log likel. χ2 χ2 sig. ΔR2 

Model 1 .04 75.55    
Model 2 .06 77.72 4.35 .501 .02 
Model 3 .14 86.58 17.73 <.001 .08 

Model 4 .16 88.82 4.47 .484 .02 
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Supplemental Table 11. Hierarchical Mixed Model of ADHD Symptomology and Habit 
Expression: ΔGo_Accuracy (As Pre-registered). 

Variable VIF β t sig. 

Model 1     
Age 6.77 -.07 (.18) -0.41 .686 
Gender 1.10 .03 (.07) 0.39 .693 
Phase_Order 3.98 .04 (.14) 0.31 .756 
Condition_Order 4.11 -.01 (.14) -0.07 .941 
Driving 6.71 .12 (.18) 0.66 .512 
Model 2     
Age 7.21 -.19 (.19) -1.04 .301 
Gender 1.21 .08 (.08) 1.06 .291 
Phase_Order 4.21 .05 (.14) 0.39 .697 
Condition_Order 4.36 -.04 (.14) -0.29 .773 
Driving 6.99 .15 (.18) 0.81 .421 
ASRS_Inattentive 9.00 -.47 (.21) -2.25 .027 

ASRS_Hyperactive 8.74 -.48 (.20) -2.37 .020 

ASRS_Total 23.53 .78 (.33) 2.33 .022 

Diagnosis 1.33 .15 (.08) 1.85 .067 
COHS 1.08 -.06 (.07) -0.85 .397 
Model 3     

Age 7.21 -.19 (.18) -1.05 .294 
Gender 1.21 .08 (.07) 1.08 .284 
Phase_Order 4.21 .05 (.14) 0.40 .692 
Condition_Order 4.36 -.04 (.14) -0.29 .770 
Driving 6.99 .15 (.18) 0.82 .414 
ASRS_Inattentive 9.00 -.47 (.20) -2.28 .025 

ASRS_Hyperactive 8.74 -.48 (.20) -2.41 .018 

ASRS_Total 23.53 .78 (.33) 2.37 .020 

Diagnosis 1.33 .15 (.08) 1.88 .063 
COHS 1.08 -.06 (.07) -0.86 .390 
Condition 1 .18 (.07) 2.64 <.009 

Model 4     
Age 7.21 -.19 (.18) -1.06 .290 
Gender 1.21 .08 (.07) 1.08 .281 
Phase_Order 4.21 .05 (.14) 0.40 .690 
Condition_Order 4.36 -.04 (.14) -0.30 .768 
Driving 6.99 .15 (.18) 0.83 .410 
ASRS_Inattentive 17.56 -.47 (.20) -2.29 .024 
ASRS_Hyperactive 17.22 -.48 (.20) -2.42 .017 
ASRS_Total 46.31 .78 (.33) 2.38 .019 
Diagnosis 2.38 .15 (.08) 1.89 .061 
COHS 2.13 -.06 (.07) -0.87 .386 
Condition 64.97 .18 (.07) 2.66 <.009 

ASRS_Inattentive x Condition 91.11 -.22 (.20) -1.09 .279 
ASRS_Hyperactive x Condition 71.66 -.02 (.20) -0.12 .906 
ASRS_Total x Condition 265.78 .14 (.32) 0.43 .666 
Diagnosis x Condition 2.16 .15 (.07) 2.19 .031 

COHS x Condition 57.37 .05 (.07) 0.77 .442 
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Model Comparisons 
 

 

 

 

 

Note: Top layer of table depicts all regressors included in the hierarchical model. Standard errors are 

given in parentheses. Bottom layer of table, Model Comparisons, depicts the predictive strength of each 

model, as compared to its previous step. VIF = Variance Inflation Factor. Log likel. = Log likelihood. 

Significant p-values depicted in bold typeface. 

  

Model R2 Log likel. χ2 χ2 sig. ΔR2 

Model 1 .01 195.33    
Model 2 .06 201.12 11.59 .041 .05 

Model 3 .09 204.76 7.28 .007 .03 

odel 4 .13 208.98 8.44 .133 .04 



 174 
 

 
 

Supplemental Table 12. Hierarchical Mixed Model of ADHD Symptomology and Habit 
Disruption: ΔGo_Accuracy (As Pre-registered). 

Variable VIF β t sig. 

Model 1     
Age 6.77 -.06 (.18) -0.33 .737 
Gender 1.10 .01 (.07) 0.09 .928 
Phase_Order 3.98 .36 (.14) 2.54 .012 

Condition_Order 4.11 -.26 (.14) -1.83 .071 
Driving 6.71 .03 (.18) 0.18 .855 
Model 2     
Age 7.21 -.16 (.18) -0.89 .377 
Gender 1.21 .01 (.07) 0.20 .845 
Phase_Order 4.21 .34 (.14) 2.44 .016 
Condition_Order 4.36 -.25 (.14) -1.73 .086 
Driving 6.99 .11 (.18) 0.60 .550 
ASRS_Inattentive 9.00 -.23 (.21) -1.13 .261 
ASRS_Hyperactive 8.74 -.42 (.20) -2.07 .041 

ASRS_Total 23.53 -.52 (.33) 1.57 .120 
Diagnosis 1.33 -.02 (.08) -0.30 .766 
COHS 1.08 -.08 (.07) -1.17 .245 
Model 3     

Age 7.21 -.16 (.18) -0.89 .377 
Gender 1.21 .01 (.08) 0.20 .845 
Phase_Order 4.21 .34 (.14) 2.44 .016 
Condition_Order 4.36 -.25 (.14) -1.73 .086 
Driving 6.99 .11 (.18) 0.60 .550 
ASRS_Inattentive 9.00 -.23 (.21) -1.13 .261 
ASRS_Hyperactive 8.74 -.42 (.20) -2.07 .041 

ASRS_Total 23.53 -.52 (.33) 1.57 .121 
Diagnosis 1.33 -.02 (.08) -0.30 .766 
COHS 1.08 -.08 (.07) -1.17 .245 
Feedback 1 -.24 (.06) -3.70 <.001 

Model 4     
Age 7.21 -.16 (.19) -0.88 .383 
Gender 1.21 .01 (.08) 0.19 .847 
Phase_Order 4.21 .34 (.14) 2.40 .018 
Condition_Order 4.36 -.25 (.15) -1.71 .090 
Driving 6.99 .11 (.18) 0.59 .556 
ASRS_Inattentive 17.56 -.23 (.21) -1.12 .267 
ASRS_Hyperactive 17.22 -.42 (.21) -2.04 .044 

ASRS_Total 46.31 -.52 (.34) 1.55 .125 
Diagnosis 2.38 -.02 (.08) -0.29 .769 
COHS 2.13 -.08 (.07) -1.15 .251 
Feedback 64.97 -.24 (.06) -3.84 <.001 

ASRS_Inattentive x Feedback 91.11 -.12 (.18) -0.68 .496 
ASRS_Hyperactive x Feedback 71.66 -.34 (.18) -1.86 .065 
ASRS_Total x Feedback 265.78 .48 (.30) 1.62 .107 
Diagnosis x Feedback 2.16 <-.01 (.06) <-0.01 .996 
COHS x Feedback 57.37 -.10 (.06) -1.57 .120 

  



 175 
 

 
 

Model Comparisons 
 

 

 

 

 

Note: Top layer of table depicts all regressors included in the hierarchical model. Standard errors are 

given in parentheses. Bottom layer of table, Model Comparisons, depicts the predictive strength of each 

model, as compared to its previous step. VIF = Variance Inflation Factor. Log likel. = Log likelihood. 

Significant p-values depicted in bold typeface. 

  

Model R2 Log likel. χ2 χ2 sig. ΔR2 

Model 1 .04 318.23    
Model 2 .07 321.76 7.06 .216 .03 
Model 3 .13 328.57 13.63 <.001 .06 

Model 4 .16 333.64 10.13 .072 .04 
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Chapter 5 Supplement 

 In Chapters 3 and 4, we found that colors 

with existing Go and NoGo associations (red-stop, 

green-go) elicited outcome-insensitive actions, 

while newly learned Go/NoGo associations 

(purple-go, blue-stop) were labile. A potential 

concern could be that because purple is located 

between red and blue on the color wheel, these 

perceptually similar color stimuli may be difficult 

to discern (see Supplemental Figure 1). Ideally, a 

yellow stimulus that renders all four colors 

comparably distant on the color wheel could circumvent such an issue. However, yellow 

may also be associated with ambiguous representations, as it commonly serves as a signal 

for “caution” and “slow”. Alternatively, ascertaining that the blue and purple stimuli are 

comparably discernible would solidify the notion that the outcome-insensitivity effect is 

driven not by perceptual differences, but differences in stimulus-response strength. 

 To this end, we created a color 

discrimination paradigm to further validate the 

well-learned habit task utilized in Chapters 3 and 

4. Participants underwent a color identification 

task, which consisted of the traffic light stimuli 

from our well-learned habit task (n = 24). 

Participants were instructed to identify the color 

 

Supplemental Figure 1. Task stimuli 
superimposed onto the color wheel. 
Hex color codes for select pixels in 
each traffic light stimuli are as follows: 
Red: #ff0000, Purple: #d12fdf, Blue: 
#1d47f5, Green: #03d547. Color wheel 
adapted from color-hex 
(https://www.color-hex.com/color-
wheel/). 

 

Supplemental Figure 2. Color 
discrimination task. Participants 
identify stimulus colors using index and 
middle fingers. A legend mapping each 
color to a button remains on the screen 
throughout the experiment. 
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that was displayed in each trial as quickly and accurately as possible. In each trial, a 

traffic light stimulus appeared, and participants used one of the four response options to 

select the corresponding color before stimulus offset. Each stimulus remained on the 

screen for 800 ms. We reasoned that because the Go/NoGo task demanded two color-

response mappings at a time with a 400 ms response window, a color discrimination task 

with four color-response mappings in each trial would warrant an 800 ms response 

window. Similar to the Go/NoGo task, an inter-trial interval randomly varying between 

1200 and 2400 ms separated each trial. The colors were mapped to Z, X, N, and M on the 

keyboard, and participants used their index and middle fingers to select their responses. A 

color-button mapping legend remained at the bottom of the screen throughout the 

experiment, and these mappings were counterbalanced across subjects (see Supplemental 

Figure 2). The task comprised 80 trials (20 of each color).  

 The color discrimination performance of our participants is depicted in 

Supplemental Figure 3. We aimed to reveal whether red, blue, and purple stimuli were 

comparably distinct, in that participants identified 

these colors with similar accuracy. We performed a 

one-way repeated-measures ANOVA across all 

four colors, and post-hoc t-tests between colors of 

interest. We found a significant difference in color 

discrimination between all four stimuli per our 

ANOVA results, F(3,69) = 4.10, p = .010. 

However, post-hoc t-tests showed that there is no 

significant difference in color discrimination 

 

Supplemental Figure 3. Color 
discrimination performance. We found 
no significant differences in color 
discrimination performance between 
the stimuli that were thought to be 
perceptually similar, in that participants 
did not differ in performance between 
blue and purple (p = .287), or red and 
purple (p = .284). p.c.: proportion 
correct. 
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between blue and purple, t(23) = -1.09, p = .287, or red and purple, t(23) = 1.10, p = .284. 

Possibly, the significant ANOVA is driven by the identification of the green stimulus. It 

should be noted that discrimination performance for all colors is well above chance. The 

green stimulus elicited the lowest discrimination performance at 74.6% correctly 

identified, compared to chance performance of 25%. Given the comparable performance 

between the stimuli of interest (purple-red and blue-purple), we can conclude that our 

results in Chapter 3 and 4 are not due to a difficulty in discerning these colors.  

 


