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Sparse signals can be recovered based on fewer samples than suggested by the

Nyquist Theorem. Those samples are obtained during a process referred to as sparse

sampling, which amounts to collecting random projections of the signal on some basis

functions. Using the collected projections, and under certain conditions, the sparse

signal can be estimated using a non-linear estimation process. The idea is to estimate a

vector with smallest number of non-zero entries, or equivalently find the least `0-norm

solution. In sparse signal recovery problems, `1-norm minimization is typically used as

relaxation of the more complex `0-norm minimization problem. Conditions for strong

equivalence between `0-norm and `1-norm include Mutual Coherence, Restricted Isome-

try Property (RIP), and Null Space Property (NSP). The Range Space Property (RSP)

provides the conditions under which the least `1-norm solution is equal to at most one

of the least `0-norm solutions. These conditions depend on the sensing matrix and the

support of the underlying sparse solution.
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The `1-norm minimization method has been applied successfully in many applica-

tions. However, `1-norm minimization method may not satisfy the RSP conditions. In

this thesis, we first address the problem of recovering sparse signals which arise in sce-

narios that do not satisfy the RSP conditions. For such cases we propose to formulate

and solve a weighted `1-norm minimization problem, in which the sensing matrix is

post-multiplied by a diagonal weight matrix. We show that by appropriately choosing

the weights, we can formulate an `1-norm minimization problem that satisfies the RSP,

even if the original problem does not. By solving the weighted problem we can obtain

the support of the original problem. We provide the conditions which the weights must

satisfy, for both noise free and noisy cases. Although those conditions involve infor-

mation about the support of the sparse vector, the class of good weights is very wide,

and in most cases encompasses a low-resolution estimate of the underlying vector, for

example, an estimate that is obtained via a simple method that does not encourage

sparsity.

The proposed weighted approach is applied to the problem of the Electroencephalog-

raphy (EEG) source localization, in which, the obtained measurements from sensors

distributed around the head are used to localize sources inside the brain. Assuming

sparse brain activity in response to simple tasks, one can formulate source localization

problem as a sparse signal recovery problem, in which the support of the sparse vector

is directly related to the coordinates of the sources inside the brain. However, the corre-

sponding basis matrix, referred to as the lead field matrix, has high mutual coherence,

and there is no guarantee that the corresponding least `1-norm solution will solve for

the actual locations. Developing reliable EEG source localization techniques has po-

tential applications in Brain Computer Interfaces (BCIs). Most of existing EEG-based

BCIs rely on the scalp recorded signals, but the poor spatial resolution of EEG limits

the number of actions to be discriminated. Source domain information can improve

the discrimination of actions, which motivates the application of source localization in

EEG-based BCIs. The proposed method, with weights equal to the Multiple Signal

Classification (MUSIC) estimate of the brain activity, is used in an experiment eliciting

auditory evoked potentials, and is shown to correctly localize brain activations.
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The main issue with `1-norm minimization approaches is that the global minimum

associated with `1-norm cost function may not coincide with the sparsest solution.

The Sparse Bayesian Learning (SBL) method has been shown to have shown tighter

approximation to the `0-norm function, and its global minimum for noise free case

coincide with the sparsest solution. In the second part of this thesis, we propose a

Weighted Sparse Bayesian Learning (WSBL). Unlike SBL, where all hyperparameter

priors follow Gamma distributions with identical parameters, in WSBL, the hyperpa-

rameters are Gamma distributed with distinct parameters. These parameters, guided

by some known weights, give more importance to some hyperparameters over others,

thus introducing more degrees of freedom to the problem and leading to better recovery

performance. The weights can be determined based on a low-resolution estimate of the

sparse vector, for example an estimate obtained via a method that does not encourage

sparsity. The choice of the MUSIC estimate as weight is analyzed. Unlike SBL, where

the hypeparameters are not bounded, in WSBL there is an upper bound; this make it

easy to select a threshold that distinguishes between zero and non-zero elements in the

recovered sparse vector, which helps the iterative recovery process converge faster. The-

oretical analysis based on variational approximation theory, and also simulation results

demonstrate that WSBL results in substantial improvement in terms of probability of

detection and probability of false alarm, as compared to SBL and support knowledge-

aided sparse Bayesian (BSN), especially in the low signal to noise ratio regime. The

performance of WSBL is evaluated for Direction of Arrival (DOA) in colocated Multiple

Input Multiple Output (MIMO) radar.

While WSBL exhibits substantial improvement over SBL, its performance depends

highly on MUSIC estimates, which may suffer when there is no adequate number of

snapshots, for example, in cases in which the structure of the sparse vector changes with

time. In the last part of this thesis, we propose Bernoulli Sparse Bayesian Learning

(BSBL), in which, a machine learning approach is used to estimate the probability of

each entry in the sparse vector to be non-zero. Unlike MUSIC, these probabilities are

estimated based on a single snapshot. In BSBL, each rate parameter, bi, is modeled

as a Bernoulli random variable, taking a high or a low value with probability pi and
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1 − pi, respectively. The probability pi is estimated based on the observation, and

a statistical model that describes how different rate parameters give rise to different

outputs; given the sensing matrix, a specific signal-to-noise ratio level, and the degree

of sparsity, the latter model can be obtained during a training phase. In particular,

a Gaussian Naive Bayesian Classifier (NBC) is used to assign each bi to the high or

low value class, corresponding to active or non-active elements of the sparse vector,

based on the computed probability. Based on the estimated rate parameters, BSBL

estimates the hyperparameters along the lines of SBL. The proposed approach shows

significant improvement in probability of detection and false alarm, as compared to

SBL-type methods at low Signal to Noise Ratio (SNR) and various sparsity levels.
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Chapter 1

Introduction

Sparse vector recovery problems arise in many applications including biomedical imag-

ing [1–5], and radars [6–11]. The goal there is to find the sparse vector with the

smallest number of non-zero entries that give rise to the observed vector. Mathemat-

ically, the problem is formulated as an `0-norm minimization problem. However, due

to the associated complexity [12], the relaxed `1-norm minimization problem is usually

solved instead. The solution of the `0-norm minimization problem coincides with that

of `1-norm minimization problem if certain conditions are satisfied, including the Re-

stricted Isometry Property (RIP) [13], the Null Space Property (NSP) [14], the Mutual

Coherence [15], or the Range Space Property (RSP) [16]. In practice, however, the

aforementioned conditions may not be met, in which case the least `1-norm solution is

not related to the sparsest solution. Re-weighted iterative approaches have also been

proposed for sparse vector estimation. In FOCal Underdetermined System Solver (FO-

CUSS) [17] a reweighted `2-norm minimization problem is solved, making use of initial

weights. Although FOCUSS has been shown to converge, it may converge to a local

minimum [17]. In [18], a reweighted iterative `1-norm algorithm for enhancing spar-

sity is proposed. However, no convergence guarantees are provided in [18]. For cases

in which the `1-norm minimization problem does not yield the least `0-norm solution,

a weighted approach was proposed in [2], which exploits available information, such

as a low resolution estimate of the sparse vector, to bias the solution and obtain the

underlying sparse vector. An alternative to the `1-norm minimization methods is FO-

CUSS [17], which minimizes the `p (with 0 ≤ p < 1) norm. Although this minimization

problem tends to the `0 minimization problem as p tends to 0, FOCUSS suffers from

local minima. Sparse signal recovery from overcomplete dictionaries has found many
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applications in signal processing domains [19]. In such applications, we seek to find a

solution that has minimum number of non-zero entries that best describe the obser-

vation. Finding such solution has been proved to be NP-hard problem [12]. Under

certain conditions, like Restricted Isometry Property (RIP) [13], Null Space Property

(NSP) [14], and Mutual Coherence [15], `1-norm problem is used to find such a solution.

Re-weighted recursive methods, namely, FOCUSS [20] and re-weighted `1-norm min-

imization [18], have also been proposed for sparse vector recovery. In FOCUSS, initial

low resolution estimate is used as weights, and at each iteration, minimum least-square

problem is solved. The weights are then updated according to the solution obtained in

the previous iteration. It has been shown that FOCUSS iteration converges. However,

due to multiple local minima, it may converge to a sub-optimal solution [19]. Also,

FOCUSS performance degrades in low SNR scenario [21,22]. The re-weighted `1-norm

approach [18] has also been proposed for enhancing sparsity of the final sparse esti-

mation. In this approach, a sparse signal estimate is obtained by solving a weighed

`1-norm minimization, and the weights are constructed according to the the previous

estimation of the sparse vector. The re-weighted `1-minimization approach suffers from

the local minima, and no convergence guarantee.

Greedy algorithms have also been proposed to reduce the complexity associated with

the `1-norm minimization. The most commonly greedy approaches include Matching

Pursuit (MP) [23], Orthogonal MP (OMP) [24], and Order Recursive MP (ORMP) [25].

In MP, the best bases that describe the observations are selected iteratively. In each

iteration, the most correlated basis with the residual vector is selected, and then, the

selected basis contribution is subtracted form the residual vector. The main issue with

MP is that the algorithm can selected the same basis at different iterations. This issue

has been addressed in OMP, where the residual is updated by projecting the observation

vector onto the subspace of the selected bases. This prevent the selection of the same

basis in different iterations. Another variant of OMP is ORMP. All greedy algorithms

select the basis using the correlation with the residual, which may suffer in cases of

correlated sources. For instance, in [25], degraded performance is observed in cases

of data that consists of closely spaced frequencies; for high resolution Discrete Fourier
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Transform dictionary matrix.

Another class of sparse vector recovery methods are the probabilistic approaches,

which can provide a tighter approximation to the `0-norm function, and its global

minimum for noise free case coincide with the sparsest solution. In these sparse vec-

tor recovery methods, the estimated sparse solution is obtained by maximizing the

Bayesian posterior using sparsity inducing priors [26–28]. In Sparse Bayesian Learning

(SBL), the entries of the sparse vector assumed to follow a Gaussian priors with distinct

variances. These variances are referred to as hyperparameters, which follow Gamma

distributions with shape parameter a and rate parameter b. These hyperparameters are

estimated by maximizing the marginal likelihood function. Due to the known property

of Expectation-Maximization, It was shown that SBL always converges [19]. SBL has

been used for classification [26], regression [26], and sparse basis selection [19]. In [29],

support knowledge-aided sparse Bayesian approach was proposed. In this approach,

erroneous prior knowledge of the support is assumed to be available. The rate param-

eters that belong to the erroneous support are modeled as random variables, which are

estimated with the hyperparameters. The rate parameters that do not belong to the er-

roneous support are assigned to low values. In [30], Multiple response Sparse Bayesian

Learning (MSBL) was proposed as an extension of SBL for cases of multiple snapshots.

In this approach, the sources are assumed to be stationary, and do no change across

the observed snapshots. When noise is present, SBL-based approaches estimate the

noise variance along with the hyperparameters. On the other hand, non-probabilistic

methods, such as Basis Pursuit De-Noising (BPDN) [31, 32], reweighted `1-norm [18],

and weighted `1-norm [2], assume the noise variance to be known in advance.

1.1 Contributions of the Dissertation

1.1.1 Weighted `1-norm Approach

For the weighted `1-norm approach, we address the problem of recovering sparse signals

by weighting the corresponding sensing matrix with a diagonal matrix. We show that

by appropriately choosing the weights, one can reformulate the `1-norm minimization
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to a problem that satisfies RSP conditions, even if the original problem does not. Using

this approach, we solve for a sparse vector with the same support as the underlying

sparse vector.

For the weighted `1-norm approach, we also provide conditions for the weights such

that the weighted `1-norm approach satisfies the RSP conditions. We first provide

conditions based on sufficient conditions for RSP, and then we relax the conditions to

include a wider class of weights.

Simulation results show that in practical scenarios in which one does not know

whether the RSP is met, using the proposed approach results is significantly improved

localization of the sparse signal. The proposed approach overcomes the difficulties

associated with `1-norm minimization in scenarios under which the conditions of strict

equivalence may not hold. Unlike the weighting method in [20] the proposed approach

has less sensitivity to noise, and it is less sensitive than greedy algorithms [23–25] in

scenarios with correlated sources.

The proposed method, with weights equal to the MUSIC estimate, is used in an

EEG experiment eliciting auditory evoked potentials to localize the brain activity. The

results show that the proposed approach can identify activities in the proximity of the

expected brain regions.

The results of this work have been published in

• A. Al Hilli, L. Najafizadeh and A. Petropulu, “EEG sparse source localization

via Range Space Rotation,” IEEE 6th International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, 2015, pp.

265-268.

• A. A. Hilli, L. Najafizadeh and A. Petropulu, “Sparse target scene reconstruc-

tion for SAR using range space rotation,” IEEE Radar Conference (RadarConf),

Philadelphia, PA, 2016, pp. 1-5.

• A. Al Hilli, L. Najafizadeh and A. P. Petropulu, “A Weighted Approach for Sparse

Signal Support Estimation with Application to EEG Source Localization,” in

IEEE Transactions on Signal Processing, vol. 65, no. 24, pp. 6551-6565, Dec.,
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2017.

1.1.2 Weighted Sparse Bayesian Learning

For the sparse Bayesian approach, we propose Weighted SBL (WSBL) for sparse sig-

nal recovery. Unlike SBL, where all hyperparameter priors follow the same distribu-

tions with the same parameters, in WSBL, the hyper-parameters have a distinct set

of parameters. This introduces more degrees of freedom of this optimization and thus

improves accuracy. These parameters act as weights, giving more importance to some

hyperparameters over others. The relative importance of the hyperparameters can

be determined based on a low-resolution estimate of the sparse vector, for example an

estimate obtained via a method that does not encourage sparsity.

Theoretical analysis based on variational approximation theory, and also simulation

results demonstrate that WSBL results in substantial improvement in terms of proba-

bility of detection and probability of false alarm, as compared to SBL, especially in the

low signal to noise ratio regime.

An important advantage of WSBL over SBL is that it makes it easy to select the

threshold that distinguishes between zero and non-zero elements in the recovered sparse

vector, which reduces the convergence time of WSBL as compared to SBL. Both WSBL

and SBL have the same complexity in the beginning of the iteration, and their complex-

ity reduces as more columns are excluded from the estimation. However, in WSBL, due

to the upper limit on the hyperparameters, the number of excluded columns is larger.

This results in faster convergence time for WSBL as compared to SBL, and as a result,

reduced complexity. We have validated theoretically the use of MUSIC as weights with

WSBL.

The proposed approach is a good candidate for target estimation in Multiple Input

Multiple Output (MIMO) radar, a technology that has received significant attention

recently. MIMO radars can achieve high resolution with fewer antennas as compared

to conventional radars. MIMO radar with millimeter wave technology is currently

being evaluated for applications in Advanced Driver Assistance Systems (ADAS), like

Automatic Emergency Breaking (AEB). With mm-wave technology, the range cell is
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small, thus, it is reasonable to expect that there is only a small number of targets in

the range cell, thus the target scene is sparse, and target estimation can be formulated

as a sparse signal recovery problem. The proposed WSBL is applied to estimate DOA

of targets for the colocated MIMO radar scenario, and its performance is compared to

well known Bayesian approaches.

The results of this work have been published in

• A. A. Hilli, L. Najafizadeh and A. Petropulu, “Weighted sparse Bayesian learning

(WSBL) for basis selection in linear underdetermined systems,” 4th International

Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar

and Remote Sensing (CoSeRa), Aachen, 2016, pp. 115-119.

• A. A. Hilli and A. Petropulu, “MIMO radar using sparse sensing: A weighted

sparse Bayesian learning (WSBL) approach,” 51st Asilomar Conference on Sig-

nals, Systems, and Computers, Pacific Grove, CA, 2017, pp. 80-84.

• A. A. Hilli, L. Najafizadeh and A. Petropulu, “Weighted Sparse Bayesian Learning

(WSBL) for Basis Selection in Linear Underdetermined Systems,” IEEE Trans-

action on Vehicular Technology, Under review.

1.1.3 Bernoulli Sparse Bayesian Learning (BSBL)

In the last part of this thesis, we propose the Bernoulli Sparse Bayesian Learning, in

which a machine learning approach is deployed to increase the probability of detection

rate. In Bernoulli Sparse Bayesian approach, an additional layer of random variables

have been added to increase the degree of freedom, thus increasing the accuracy of sparse

estimation. In this approach, the shape parameters are still assigned to low values,

while rate parameters bi is modeled as Bernoulli random variable with parameter pi;

the rate parameters are to be estimated along with the hyperparameters. The Bernoulli

parameters pi are estimated based on the observation vector. For a Gamma distributed

random variable, a high rate parameter makes the pdf more concentrated around zero,

corresponding to zero hyperparameter with higher probability, or equivalently to anon-

zero value in the corresponding entry of the sparse vector. Thus, the entry of x which
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has high pi belongs to the support of the final vector sparse estimate. Unlike WSBL,

pis can be estimated with low complexity.

The proposed BSBL deploys machine learning approach to estimate the Bernoulli

random variable parameters. We propose to use Naive Bayes Classifier (NBC) to esti-

mate such parameters in a computationally efficient manner.

We show that MIMO radar DOA estimation, BSBL exhibits improved probability

of detection as compared to WSBL. WSBL performance degrades due to degradation

in MUSIC estimate for low SNR and increased number of targets. BSBL performance

depends on NBC, which can be trained to deal with low SNR cases, and increased

number of sources.

The results of this work have been published in

• A. A. Hilli, and A. Petropulu, “Bernoulli Sparse Bayesian Learning for Basis

Selection,” The 20th IEEE International Workshop on Signal Processing Advances

in Wireless Communications (SPAWC 2019), Under review.

1.2 Notation

Throughout the thesis we use bold face capital letters to denote matrices, bold face

small letters to denote column vectors, and normal small letters to denote scalars. We

use ≺ to represent element-wise less than, � to represent element-wise greater than,

� to represent element-wise greater than or equal, (.)† to represent the Moore-Penrose

pseudoinverse, (.)T to represent matrix transpose, and N(A) to represent the null

space of matrix A. xi is used to represent the i-th element of the vector x, ai is used to

represent the i-th column of a matrix A, and wij the (i, j) element of matrix W. ‖.‖p

is used to denote the p-norm of a vector, while |x| denotes a vector whose elements are

the absolute values of the corresponding elements of x.
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Chapter 2

A Weighted Approach for Sparse Signal Support

Estimation with Application to EEG Source Localization

2.1 Introduction

In sparse signal recovery problems one wishes to describe the observation, y, using

the smallest possible basis from a dictionary matrix, A, or equivalently, one seeks the

sparsest solution to the problem y = Ax. In order to avoid the complexity of the

underlying `0-norm minimization problem, one typically employs `1-norm minimiza-

tion, hoping that the two problems are strictly equivalent [33], i.e., there is a unique

least `0-norm solution (a unique sparsest solution), which coincides with the least `1-

norm solution. Conditions for strict equivalence include the mutual coherence [34],

the Restricted Isometry Property (RIP) [13], and the Null Space Property [14]. When

`1-norm minimization algorithms are used for sparse signal recovery [13, 34, 35], it is

implicitly assumed that the conditions for strict equivalence hold. However, in most

cases, either the conditions do not hold, or their validity cannot be easily confirmed. In

fact, only a few dictionary matrices have been proven to satisfy the strict equivalence

conditions [13, 36]. In real world scenarios, strict equivalence conditions may not be

satisfied, in which case the least `1-norm solution may not be related to the sparse

signal of interest.

The recently introduced Range-Space Property (RSP) and full rank property [33]

address the case in which the least `0-norm solution is not unique, and provide the con-

ditions for the least `1-norm solution to be equal to at most one of the sparsest solutions;

when this happens, the `1-norm minimization problem and the `0-norm problems are

Work supported in part by NSF under grant NSF ECCS 1408437.
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called equivalent. The RSP conditions depend on the sensing matrix and the support

of the underlying sparse solution.

Another approach for estimating a sparse vector encompasses re-weighted recur-

sive methods, most notably, the FOcal Underdetermined System Solver (FOCUSS)

method [20], and the re-weighted `1-norm minimization [18]. In FOCUSS, a low reso-

lution estimate of the sparse vector is used as an initial weight. In an iterative fashion,

FOCUSS solves a weighted minimum least-squares problem, using weights that are

proportional to the solution obtained during the previous iteration. Although the iter-

ation has been shown to converge, due to multiple local minima, it may converge to a

sub-optimal solution [19]. Also, FOCUSS performance degrades at low Signal-to-Noise

Ratio (SNR) [21,22]. The re-weighted `1-norm approach [18] is also iterative; in each it-

eration, a sparse signal estimate is obtained by solving a weighted `1-norm minimization

problem subject to various constraints, with the weights taken to be inversely propor-

tional to the absolute values of the signal estimate obtained in the previous iteration.

In addition to problems with local minima, there is no guarantee that the re-weighted

`1-norm approach will converge as the number of iterations increases. Conditions for

uniqueness of the weighted `0-norm problem are discussed in [37], where a recursive

approach to estimate the unique least `0-norm solution is proposed.

Greedy algorithms have also been proposed for sparse vector recovery, such as the

Matching Pursuit (MP) [23], the Orthogonal MP (OMP) [24], and the Order Recursive

MP (ORMP) [25]. The MP method constructs a basis that best represents the signal

by selecting columns out of the overcomplete basis matrix, A. The basis is constructed

one vector at a time. In the i-th iteration, the column that is most correlated with

the residual vector is selected and added to the basis; the residual vector is initially

set equal to the observation, and in each iteration is updated by subtracting from it

the contribution of the selected column in that iteration. In OMP [24], the estimate

of the sparse vector is updated by projecting the observation vector onto the subspace

of the selected columns. This avoids the selection of the same column in different

iterations, which can happen in MP. A variant of OMP is the Order Recursive Matching

Pursuit (ORMP) [23]. Since in all greedy algorithms column selection depends on
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the column correlation with the residual, the performance suffers in cases of highly

correlated sources. For instance, in [25], the authors show degraded performance in

cases of data consisting of closely spaced frequencies; and dictionary matrix constructed

from the rows of a high resolution Discrete Fourier Transform.

In this chapter, we address the problem of recovering sparse signals by weighting the

corresponding sensing matrix with a diagonal matrix. We show that by appropriately

choosing the weights, we can formulate an `1-norm minimization problem that satis-

fies the RSP, even if the original problem does not. By solving the weighted problem

we obtain the support of the original solution. We provide the conditions which the

weights must satisfy, for both the noise free and the noisy cases. We should emphasize

that like all existing weighted methods [18, 20], the proposed method does not provide

a precise construction of weights. Instead, our work shows analytically that there is a

large class of functions that qualify as good weights; these functions are related to a low

resolution estimate of the underlying sparse vector, for example, an estimate obtained

via a standard method that does not induce sparsity. It is worth mentioning that after

estimating the support, one can easily recover the signal by solving an overdetermined

system based on the observations and a matrix composed of the columns of the dic-

tionary matrix associated with the support. Simulation results show that in practical

scenarios in which one does not know whether the RSP is met, using the proposed

approach results are significantly improved localization of the sparse signal samples.

Simulation results show that the proposed method performs better than [20], and is

less sensitive than greedy algorithms [23–25] in scenarios with correlated sources.

As an example of application for the proposed approach, we focus on the Electroen-

cephalography (EEG) source localization problem, in which, measurements obtained by

sensors placed on the head are used to localize activations inside the brain. Assuming

sparse brain activity in response to simple tasks, source localization can be formulated

as a sparse signal recovery problem, where the support of the sparse vector is directly

related to the coordinates of the sources inside the brain. The challenge, however,

is that the corresponding basis matrix, referred to as the lead field matrix, has high

mutual coherence, based on which, there is no guarantee that the corresponding least
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`1-norm solution will lead to the actual sources. The proposed method, with weights

equal to the MUSIC estimate of the brain activity, is used in an experiment eliciting

auditory evoked potentials, and is shown to correctly localize brain activations.

The chapter is organized as follows. Section 2.2 reviews background theory on

sparse vector recovery. Section 2.3 presents the proposed approach. Section 2.4 shows

the simulation and experimental results of the application of the proposed approach in

EEG source localization, and Section 2.5 provides conclusion remarks.

2.2 Background theory on Sparse Signal Recovery

The sparsest solution of the underdetermined problem

y = Ax (2.1)

can be obtained by solving an `0-norm minimization problem, i.e.,

minimize
x

‖x‖0

subject to y = Ax.

(2.2)

However, since this is an NP-hard problem, its convex `1-norm relaxation is used instead

[34], [13], [35], i.e.,

minimize
x

‖x‖1

subject to y = Ax.

(2.3)

Under certain conditions, the problems (2.2) and (2.3) are strictly equivalent, i.e., there

is a unique least `0-norm solution that coincides with the least `1-norm solution [20],

[13, 14, 34]. Sometimes, (2.2) has several sparsest solutions, i.e., solutions with the

same number of non-zero elements but different support. When one of those sparsest

solutions coincides with the solution of (2.3), then, the problems of (2.3) and (2.2) are

referred to as equivalent [33]. The work in [33] provides a set of conditions for the least

`1-norm solution to be equal to a sparsest solution, and also shows that under those

conditions there is at most one such sparsest solution that satisfies the RSP conditions.

The conditions are given in the following theorem.
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Theorem 1. Let x ∈ Rn be a sparsest solution to (2.1). x is the least `1-norm solution

if and only if x satisfies both of the following conditions:

(i) Range Space Property (RSP): There exists a vector u such that

(a) u ∈ R(AT )

(b) ui = 1 xi > 0

(c) ui = −1 xi < 0

(d) |ui| < 1 xi = 0

(ii) Full Rank Property: The matrix [ AJ+ AJ− ] has full column rank, where

AJ+ and AJ− are matrices containing the columns of A associated with the positive

and negative elements of x, respectively [33].

Corollary 1 [33]: For any given underdetermined linear system, there exists at

most one sparsest solution satisfying the RSP [33].

2.3 The proposed approach

2.3.1 Noise-Free Sparse Vectors

As it was already mentioned, if the sensing matrix A in (2.1) does not satisfy the

strong equivalence conditions, there is no guarantee that the least `1-norm solution

will be equal to the underlying sparse vector x. In the following, we show that by

appropriately weighting the sensing matrix, we can formulate an `1-norm minimization

problem that satisfies the RSP, thus guaranteeing that its solution has the same support

with at most one of the sparsest solutions. By selecting the weights based on an estimate

obtained via a conventional method that does not encourage sparsity, we bias the `1-

norm minimization problem to produce a sparsest solution that has the same support

as the signal of interest.

A tool in showing the aforementioned result is a sufficient condition for Theorem 1

to hold. The sufficient condition is given in the following theorem, in the context of the

system of (2.1).

Theorem 2. If for a sparsest solution x it holds that
∣∣AT

J0(AT
Js)
†us
∣∣ ≺ 1 , then x
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equals the least `1-norm solution, where 1 is a vector of 1’s of appropriate size, AJs ,

[ AJ+ AJ− ], AJ0 contains the columns of A associated with zero values in x, and

us = [uTp uTn ]T where up and un are vectors of 1’s and −1’s corresponding to positive

and negative xis respectively.

Proof. See Appendix A.

Let W be a positive diagonal matrix, which is nonzero over the support of x, such

that x = Wq. In the following, when we use the term ”weight vector” we refer to the

vector containing the diagonal elements of W. Then (2.2) can be written as

minimize
q

‖Wq‖0

subject to y = AWq.

(2.4)

Since ‖Wq‖0 = ‖q‖0, we can write (2.4) as

minimize
q

‖q‖0

subject to y = AWq.

(2.5)

The corresponding `1-norm minimization problem becomes

minimize
q

‖q‖1

subject to y = AWq.

(2.6)

By solving the problem of (2.6), we will be able to determine the support of x, as x and

q have the same support. For the discussion below, we will assume that the observation

is a linear combination of independent columns of A.

Suppose that the problem of (2.3) does not satisfy the RSP. When formulating

the problem of (2.6), we can appropriately select W such that the solution of (2.6)

satisfies the condition in Theorem 2, and as such, the problem of (2.6) satisfies the

RSP. With the right W, and since based on Corollary 1 there is at most 1 sparsest

solution satisfying the RSP, the solution of (2.6) would have the same support as the

least `0-norm solution of (1).
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Substituting A with AW into the condition of Theorem 2, we get the following

sufficient condition for W:

|WJ0A
T
J0(AT

Js)
†W−1

Js us| ≺ 1, (2.7)

where WJ0 and WJs contain elements of W associated with zero and non-zero elements

of x, respectively.

Proposition 1: If we choose W such that (2.7) is satisfied on a sparsest solution q?,

then q? is the only sparsest solution that is equal to the solution of (2.6).

The proof follows directly from Corollary 1.

We should emphasize that the weighting matrix does not improve the coherence of

the sensing matrix, since multiplication with a diagonal matrix does not change the

matrix coherence. Instead, we can constrain the weighting matrix so that the weighted

problem satisfies the Range Space Property. By satisfying the RSP, the least `1-norm

solution will have the same support as at most one of the sparsest solutions of the

original `0-norm problem.

There are infinitely many choices for W that validate the condition in (2.7). In

this work, we propose to use as weight vector an estimate of the sparse vector obtained

by a method that does not encourage sparsity. We should note that `1-norm solution

would not be a good weight vector because most of its entries are zeros, and important

components of the true signal may have been lost. Suppose that a rough estimate of x

can be approximated as x̂, where

x̂j =
∑
i∈S
|xi|hi(j − i), (2.8)

where hi(j) is a Gaussian kernel with zero mean and variance σi, and S is the set of

indices in the support of the sparse vector. Let us set wj = x̂j . Then, (2.7) can be

written as

|WJ0A
T
J0(AT

Js)
†Uw−J | ≺ 1, (2.9)

where U is a diagonal matrix with diagonal entries equal to us, and w−J is a column

vector with entries equal to the reciprocal of diagonal entries of WJs. Based on the
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inequality |aTb| ≤ ‖a‖∞‖b‖1, and taking b = w−J , we can rewrite (2.9) as

‖(aTj (AT
Js)
†U)T ‖∞wjj

K∑
k=1

w−Jk < 1

‖(aTj (AT
Js)
†U)T ‖∞ <

1∑
i∈S wjj/|wii|

,

(2.10)

for all j /∈ S, where K represents the number of non-zero entries in x, aj represents the

column of the matrix A /∈ S, and wjj represent the j-th diagonal element of W.

The term ‖(aTJ0j(A
T
Js)
†U)T ‖∞ of (2.10) can be written as ‖(aTJ0jAJs(A

T
JsAJs)

−1U)T ‖∞

which is basically related to the coherence of the matrix A. Without the weights

(σi = 0), high coherence might prevent (2.10) from being valid. However, if σ 6= 0,

there would be weights to counteract the high coherence and make (2.10) valid.

2.3.2 A More Relaxed Condition on W

While (2.7) provides a sufficient condition for W in order for RSP to be satisfied, there

is a wider class ofweights that satisfy the RSP. Those can be found by exploiting a more

relaxed condition for matrices W that satisfy the RSP. To provide such condition, we

first rewrite the RSP conditions in an equivalent form, and then provide an upper limit

for the weights that meet the RSP.

Let x0 be a sparsest solution to (2.1). Based on the RSP, there should be a vector

v such that

(a) AT
Jsv = us

(b) |AT
J0v| ≺ 1,

(2.11)

with AJs, AJ0, and us as defined in Theorem 2.

If we assume that the number of non-zero entries in the sparse vector x0 is less than

the number of rows in A, (2.11-(a)) is an underdetermined system, and its solution can

be written as

v = (AT
Js)
†us +α, (2.12)

where α is a vector that belongs to the null space of AT
Js. Substituting (2.12) into

(2.11), we get

(a) |AT
J0(AT

Js)
†us + AT

J0α| ≺ 1

(b) α ∈ N(AT
Js),

(2.13)
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Note that the conditions in (2.13) are sufficient and necessary for x0 to be equal to the

least `1-norm solution. In other words, x0 equals the least `1-norm solution if and only

if the intersection of the set of vectors α that satisfy (2.13-(a)) with the null space of

AT
Js is a non-empty set. Finding such α can be done by solving the following convex

problem

minimize
α,ε

ε

subject to |AT
J0(AT

Js)
†us + AT

J0α| � 1ε

AT
Jsα = 0.

(2.14)

If the minimum ε is such that < 1, then the conditions in (2.13) are satisfied. Other-

wise, there is no α ∈ N(AT
Js) that satisfies (2.13-a). For the weighted approach, the

conditions of (2.13) can be rewritten as

(a) |WJ0A
T
J0(AT

Js)
†W−1

Js us + WJ0A
T
J0α| ≺ 1

(b) α ∈ N(AT
Js)

(2.15)

If the sufficient condition of Theorem 2 is not satisfied for the non-weighted `1-norm

problem (i.e., some of the elements in the vector
∣∣AT

J0(AT
Js)
†us
∣∣ have values larger than

or equal to 1), x0 can still be a solution to the `1-norm problem if there is a vector in the

null space of AT
Js that can meet (2.13-(a)). However, due to the high coherence between

the columns of A, many elements in vector
∣∣AT

J0(AT
Js)
†us
∣∣may have values greater than

1, and it could be impossible to find such an α (i.e., the intersection between the two

sets that are defined in ((2.13)-(a) and (b)) is the empty set). However, we can ensure

that the intersection of the sets defined in ((2.15)-(a) and (b)) is non-empty set by

choosing W such that ((2.15)-(a)) is satisfied for a vector α ∈ N(AT
Js). Next, we find

an upper limit for W that follows the model in (2.8), such that the conditions in (2.15)

are satisfied.

Following the model in (2.8), the problem can be recast as selecting the maximum

σ such that there is an intersection between the sets of αs that satisfy (2.15)-a and
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(2.15)-b. This can be done by solving the following optimization problem

maximize
α,σ

σ

subject to |WJ0A
T
J0(AT

Js)
†W−1

Js us + WJ0A
T
J0α| ≺ 1

AT
Jsα = 0

wJ0i =
∑
i∈S
|xi|hi(j − i), ∀j /∈ S,

(2.16)

where hi(j) is as defined in (2.8). We can solve (2.16) via an iterative approach as

follows. We first choose a large value for σ, and find α such that the distance between

the two sets defined in the first and second constraints in (2.16) is minimum. Based on

that α, we can construct the maximum weights such that the first constraint in (2.16)

is satisfied. The maximum weights can be used to estimate σ such that the weights in

the third constraint in (2.16) are smaller than the maximum weights. The process is

repeated by finding another α with minimum distance between the two set defined in

the first and second constraints in (2.16) using the new weights. The iteration stops

when the distance is zero.

Remark The above approach does not provide a practical way to construct the

weights, as it uses information about the sparse signal support. However, by finding

the limit for the weights, one can see that the class of weights that satisfy the conditions

in (2.15) is wide. A low-resolution estimate of the true sparse vector would probably

fall in that class, and thus make the weighted `1-norm problem satisfy the RSP, even if

the original non-weighted `1-norm problem does not satisfy the RSP. This is illustrated

in the following simulations.

Matrix A (64 × 2898) was constructed using a realistic head model obtained from

BrainStorm software [38]; the matrix models the relationship between the EEG channel

readings and the source distribution inside the brain. The number of non-zero entries

in the sparse vector was set to 4. The non-zero indices were assigned randomly, and the

corresponding non-zero elements were drawn from a Gaussian distribution with mean

1 and standard deviation 5. In order to simulate a weighting matrix obtained based on

a blurred version of the sparse vector, the diagonal weighting matrix was constructed

according to (2.8) with σi = σ , for i = 1, ..., 4 , and we considered (σ = 1, 2, .., 7) and
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Figure 2.1: (a) Original source vector. (b) Least `1-norm solution. (c) Weights corre-
sponding to σ = 1, ..., 7. (d) Least `1-norm solution of the weighted problem obtained
with any of the weights shown in (c). (e) Weights for (σ = 8) (green). The blue line
shows the upper bound on the weights, found by solving Eq. (2.16) (f) Weighted least
`1-norm solution with the weights equal to the green curve in (e); this is an incorrect
solution, arising because the weights exceed the upper bounds (see red circles in Fig.
1-e)
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( σ = 8 ). Figs. 2.1-a, 2.1-b, and 2.1-d show the true sparse signal, the least `1-norm

estimate, and the weighted least `1-norm estimate using one of the weights shown in

Fig. 2.1-c, respectively. Fig. 2.1-e shows the upper bound on the weights, obtained by

solving (2.16) iteratively, while Fig. 2.1-f shows the weighted least `1-norm estimate for

the weights of Fig. 2.1-e (i.e. σ = 8). One can see from Fig. 2.1-d that the weighted

solution correctly estimates the support of the original vector for a large class of weights

(Fig. 2.1-c), as long as the weights fall below the upper limits shown in Fig. 2.1-e (blue

curves). Of course, at some point, when the support mismatch is large, i.e., σ = 8, the

estimate deteriorates, as can be seen in Fig. 2.1-f.

2.3.3 Noisy Sparse Vector

To account for noise in the observations, we will minimize an objective function that is

a tradeoff between ‖q‖1 and the fitting error ‖y −AWq‖2, i.e.,

minimize
q

h‖q‖1 + ‖y −AWq‖2, (2.17)

where h is the regularization parameter. Let us first consider the case of the non-

weighted problem corresponding to (2.17), i.e.,

minimize
x

h‖x‖1 + ‖y −Ax‖2, (2.18)

Assuming that Slater’s and the strict complementary conditions hold, we give the fol-

lowing theorem.

Theorem 3. x? is a solution to the problem of (2.18) if and only if there is u such

that
(a) ui = h if x?i > 0

(b) ui = −h if x?i < 0

(c) |ui| < h if x?i = 0

(d) u = AT y−Ax?

‖y−Ax?‖2

Proof. See Appendix B.

With Theorem 3, we can now state the effect of the weighting matrix W on the

solution by the following theorem.
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Theorem 4. In the context of the problem of (2.17), let wii be the weight associated

with qi. If we choose wii <
h
‖ai‖2 , then qi = 0, where ai is the column of A associated

with qi.

Proof. See Appendix C.

Theorem 4 suggests that, instead of solving the original problem, one can solve

a reduced dimensionality problem by setting the entries in q that satisfy Theorem 4

condition to zero, and only solve for entries that do not satisfy the condition in Theorem

4. This will result in reducing the memory usage and calculation time when solving the

problem in (2.17).

Here, we will give another interpretation of the condition in Theorem 4. Define the

dual problem of primal problem in (2.18) as

maximize
λ1,λ2,λ3

yTλ3

Subject to ATλ3 + λ1 = 1h (19.1)

ATλ3 − λ2 = −1h (19.2)

λ1 � 0,λ2 � 0, ‖λ3‖2 ≤ 1.

(2.19)

Let λ?3 be the solution to the dual variable associated with the objective function of the

problem defined in (2.19). Theorem 4 states that for x?i = 0, λ?3 should lie between the

two hyperplanes, defined as aTi λ
?
3 = h and aTi λ

?
3 = −h, and for |x?i | > 0, λ?3 should lie

on one of the hyperplanes that has the same sign as xi.

Next, we study the effect of the weighting matrix W on the solution of (2.18). The

constraints of the dual problem of (2.17) can be rewritten as

‖wiiaTi λ
?
3‖∞ ≤ h

‖λ?3‖2 ≤ 1.
(2.20)

By assigning wii to small values, the distance between the two hyperplanes increases,

and there might be no intersection of the two hyperplanes with the second norm of λ?3.

When we assign high values for wii, the distance between the corresponding hyperplanes

decreases, making these hyperplanes intersect with the second norm of λ?3.
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Figure 2.2: Solution space of λ3 ∈ R2 in the non-weighted problem. Solid and dashed
lines represent the hyperplanes associated with positive and negative h, respectively.
Red, blue, and green lines are the hyperplanes associated with the first, second, and
the third columns of A, respectively.
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Figure 2.3: Solution space of λ3 ∈ R2 for the weighted problem. Solid and dashed lines
represent the hyperplanes associated with positive and negative h respectively. Red,
blue, and green lines are the hyperplanes associated with the first, second, and the third
columns of A, respectively.
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The above discussion is illustrated in Fig. 2.2 for a non-weighted case, and in Fig.

2.3 for the weighted case. In this example, we chose

A =

0.5377 −2.2588 0.3188

1.8339 0.8622 −1.3077

,

and x0 =
[
1 0 0

]T
. White noise was added to the output with signal to noise ratio

(SNR) equal to 15 dB, and h was set to 0.5. In Fig. 2.2, the two hyperplanes associated

with each column of A are plotted, with the solid line representing the hyperplane

associated with positive h, dashed line the hyperplane associated with negative h. The

red, blue, and green lines are the hyperplanes associated with the first, second, and

third columns of A, respectively. The blue circle represents the second norm of λ?3.

As shown in Fig. 2.2, the value of λ?3 will be the point of intersection of the green

and red lines with the λ?3 norm curve. The solution for λ?3 in this case indicates that

x?3 will be zero, while x?1 and x?2 will not be zero. Indeed, the optimal solution is

x? =
[
1.0209 0.0511 0

]T
. Fig. 2.3 represents the solution of problem (2.17) with the

same settings as in the above example, and for W = diag
[
3 0.2 0.2

]
. As shown in

Fig. 2.3, the solution for λ?3 will be the intersection of the red hyperplanes with the unit

norm circle. The solution in this case indicates that the second and third entries of x?

will be zero, and only the first entry of x? will be non-zero. Thus, x? =
[
0.34 0 0

]T
.

The weighted approach is better in the sense that it has the real support of the actual

sparse vector, while the non-weighted solution shows two active entries.

The distance between the two hyperplanes wiia
T
i λ

?
3 = h and wiia

T
i λ

?
3 = −h equals

2h
wii‖ai‖2 . Based on the above discussion, by making the distance between these hyper-

planes larger than two, and because ‖λ?3‖2 ≤ 1, there will be no intersection between the

unit norm ball and the above hyperplanes, which coincides with the result of Theorem

4.

The main result that can be concluded from the weighted noisy case is that by

assigning high values to wiis corresponding to xis that are expected to be non-zero, and

small values to wiis corresponding to xis that are expected to be zero, the solution to

(2.17) will favor the solution q that has the same support as the underlying vector x0.
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2.4 Application to EEG Sparse Source Localization

In this section, we apply the proposed approach to the problem of EEG source local-

ization. EEG is a relatively inexpensive non-invasive neuroimaging technique, offering

a window into the human brain function by measuring the electrical potentials over

the scalp, which are reflective of the underlying neural activity. Compared to other

non-invasive neuroimaging techniques, such as Functional Magnetic Resonance Imaging

(fMRI), EEG offers superior temporal resolution, and hence continues to be an attrac-

tive imaging tool in several domains including basic neuroscience research [39–41], clin-

ical neuroscience [42–44], and brain computer interfaces (BCIs) [45–48]. EEG however,

suffers from the problem of poor spatial resolution due to volume conduction effect [49].

The signals recorded by EEG electrodes on the scalp surface represent a weighted sum

of the electrical activity of the underlying neurons. As such, EEG recordings do not

directly identify the location of sources in the brain.

Developing reliable EEG source localization techniques has been of great interest

to the neuroscience and clinical communities, because of their potential in enabling an

imaging tool with high accuracy in both the temporal and spatial domains. For exam-

ple, EEG source localization could have important applications in noninvasive BCIs.

The majority of existing EEG-based BCIs use information from the scalp-recorded sig-

nals (e.g. event-related desynchronization/synchronization (ERD/ERS)) for extracting

features to distinguish actions [50]. Due to the poor spatial resolution of EEG, the de-

gree of freedom of these BCIs has been limited to discriminating a small number (e.g.

6) of very “distinct” classes of actions [48], [51], [52], and as the number of classes

increases, the classification performance degrades. This issue has been a major chal-

lenge for EEG-based BCIs, as in a realistic setting, more than few degrees of freedom are

needed. Recent work [53], demonstrating improvement in the accuracy of discriminat-

ing several actions based on source domain as compared to sensor domain information,

further motivates the application of source localization in EEG-based BCIs.

To date, several algorithms with different a priori constraints on sources have been

proposed to solve the ill-posed inverse problem for EEG source localization [54, 55].
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In MUltiple Signal Classification (MUSIC) [56, 57], Minimum Variance Beamforming

(MVB) [58,59], and Linearly Constrained Minimum Variance (LCMV) methods [60,61],

second order statistics are used to localize the sources. However, it is hard to obtain

good estimates of those statistics, due to the non-stationarity of the data. For instance,

in MVB, the number of statistically independent snapshots should be at least three

times the number of channels to achieve stable source localization estimates [61], which

would be a problem for systems with large number of channels.

Another approach of source localization methods is the class that fits the observa-

tions to a linear system model. The small number of obtained recordings at a given

time, as compared to the internal mesh size of the brain [62] makes the source esti-

mation problem underdetermined with infinitely many solutions [54]. Assuming that

at a given time a small number of sources inside the brain are active above a certain

threshold, the source localization problem can be formulated as a sparse signal recovery

problem. EEG source localization methods that exploit the sparsity of x include `1-

norm minimization [63–66], FOCUSS [20], MP [23], ORMP [23], and Source Deflated

Matching Pursuit (SDMP) [67].

As already mentioned in Section slowromancapii@, strong equivalence conditions

should be satisfied in order to use the `1-norm minimization for sparse EEG source

localization. However, when using a realistic head model to construct the lead field

matrix, these conditions may not be met, thus rendering the solution of `1-norm based

methods possibly irrelevant. On the other hand, the problem of low SNR related to

EEG source localization and the problem of local minimum can affect the performance

of FOCUSS in correctly estimating the location of sources. Also, in all the greedy

algorithms (i.e., MP, ORMP, and SDMP), the sparsity level should be known in ad-

vance, which is unrealistic in the EEG scenario. Further, the high correlation among

the columns of the lead field matrix, as will be discussed in the following, represents

another challenge for the greedy methods.
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Figure 2.4: Histogram of normalized cross correlation of the columns of a realistic lead
field matrix.

2.4.1 Model Description

The current-based dipole model [68], in which the active sources are modeled as dipoles

was adopted here. By segmenting the cortex into m nodes, a dipole vector, called the

lead field vector (LFV), is assigned to each node. With n number of electrodes on the

scalp, at given time instant t, the EEG model can be described as

y(t) = Ax(t) + no(t), (2.21)

where y(t) ∈ Rn represents the electrode readings at time instant t, x(t) ∈ R3m denotes

the dipole source vector at time instant t, A ∈ Rn×3m is the lead field matrix and

no(t) ∈ Rn denotes the noise vector. It is clear that the system described by (2.21) is

underdetermined, i.e., for the same electrode readings y(t), infinite solutions for x(t)

can be obtained.

The coherence histogram of the lead field matrix, obtained by the BrainStorm [38]

toolbox, is shown in Fig. 2.4 (the diagonal elements are excluded). From the figure,

one can see that approximately 15 % of the columns exhibit a correlation factor greater

than 0.7, which indicates that there is no guarantee that the least `1-norm solution will

coincide with the sparsest source vector. Also, from Fig. 2.4, one can see that there are

vectors with correlation factor greater than 0.8, which violates the RIP condition [13],

requiring that all k subsets columns should behave like orthonormal columns; k here

represents the number of non-zero entries of the sparsest solution. Following the above
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discussion, it is obvious that the lead field matrix does not satisfy the strong equivalence

conditions described in Section slowromancapi@.

2.4.2 Simulation Setup

A 3-shell realistically-shaped head model (Colin27) [69], provided by the Brainstrom

software package [38], was used to represent the geometry of the brain. The electrical

conductivity for the cortex, skull, and scalp was set to 1.0 S/m, 1
80 S/m, and 1.0 S/m,

respectively.

The EEG is believed to be mainly generated by the inhibitory and excitatory post-

synaptic potentials of cortical pyramidal nerve cells, which are spatially aligned per-

pendicular to the cortical surface [70]. Therefore, we only considered the cortex as the

source space. While the activities from deep brain activations are generally believed

to be poorly represented in EEG signals, if similar to [22], the model for relating mea-

surements and sources can be approximated as linear and instantaneous, the proposed

approach can also localize the sources if appropriate weights satisfying the conditions

mentioned previously are used.

The cortex was divided into 966 grid points such that the mean distance between

two grid points was 5 mm. 64 electrodes, following the International 10− 10 system of

EEG sensor placement, were positioned in the sensor space. The lead field matrix was

accordingly constructed [71]. This head model was used in both the construction of

the forward model (calculating the electrode potentials in the sensor space from active

dipoles in the source space), as well as in solving the inverse problem (reconstructing

activity in the source space from electrode potentials in the sensor space). To simulate

active sources, dipoles were modeled as sinusoidal signals with frequencies in the range

of [6 − 30] Hz. White noise was added to the observations obtained from the forward

model. Our results and simulations are obtained on a single snapshot, so they do not

depend on whether the sources are temporally independent of each other. However,

obtaining the weighting matrix via the MUSIC method does exploit time correlations.

Of course, one could use other methods to obtain the weighting matrix.

The inverse problem was solved using the proposed approach, the non-weighted
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approach (i.e., (2.18)), FOCUSS, ORMP and MUSIC. To construct the weighting ma-

trix W for the proposed approach, and also initialize FOCUSS, MUSIC was employed.

If otherwise stated, 50 snapshots were used to estimate this matrix; this number of

snapshots was selected because it resulted in comparable performance between MU-

SIC, FOCUUSS, and the proposed approach (see Fig. 2.9) for the case of 2 sources,

15 dB SNR, and 4 cm minimum distance between sources. Various conditions were

considered (e.g. variable SNR, different number of sources). For each condition, 1000

Monte Carlo trials were performed, where in each trial, the locations of sources were

chosen at random. For the case of multiple sources, the distance between active sources

was kept to be greater than a predefined value, to ensure no overlap between estimated

sources.

To evaluate the performance of different algorithms, the “success rate” was used as

the performance metric. For k sources, we declared an estimation to be successful if

the distance between the locations of the k largest estimated sources and the locations

of the actual sources was less than a predefined threshold value (d). The success rate

was defined as the ratio of the number of properly estimated source locations and the

total number of sources. The selection of values for d was done along the lines of [67].

Considering that in our head model the mean distance between two grid points is 0.5

cm, setting d to 1 cm, will allow estimates located one grid point away from the true

source to be considered as successful estimates. Note that if d is increased, the success

rate from all algorithms is expected to increase, since a larger area around the true

sources would qualify as correct estimation.

2.4.3 Simulation Results

In this section, we present simulation results to demonstrate the performance of the

proposed method and compare it against existing sparse signal recovery methods [54].

Note that, given our grid size and d = 1 cm, for any two sources to be resolvable, the

distance between them should be larger than 2 cm. In our simulations, we considered

an additional 2 cm inter-source to ensure that there are no interference between sources.
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Single Trial Simulation Results

The purpose of this simulation is to demonstrate the local minima problem and residual

interference that are associated with FOCUSS and ORMP, respectively. In single trial

simulations, two sources were considered at random locations with 4 cm minimum

distance between them. The SNR was set to 25 dB. High SNR was selected here in

order to reduce the effects of noise on the performance of FOCUSS estimation. Fig. 2.5

shows the results. As can be seen from Fig. 2.5-b, the estimation obtained by the non-

weighted approach contains additional sources that do not correspond to real sources

(Fig. 2.5-a). The estimate of ORMP (Fig. 2.5-d) suffers from residual interference [67].

Fig. 2.5-e and -f, show respectively the estimated vector by FOCUSS and the proposed

approach, using the weights of Fig. 2.5-c. Although the weights assign high values

to the support of the underlying sparse vector, the estimate via FOCUSS shows false

active sources, due to the local minima problem. Fig. 2.5-f shows the estimate obtained

via the proposed approach; one can see that, as compared to ORMP and FOCUSS, a

more accurate estimation of sources is obtained.

Monte-Carlo Simulation Results

Fig. 2.6 shows the performance of the proposed approach, FOCUSS, ORMP, non-

weighted, and MUSIC versus SNR for the case of two sources, where the minimum

distance between the sources equals 4 cm. One can see that the proposed approach is

more robust than the other methods. At SNR of 0 dB, the success rate for the proposed

method is 80%, while for FOCUSS is 30%. The low success rate for FOCUSS at low

SNR is because of its iterative procedure which involves finding the inverse of AW.

This process is sensitive to noise due to the ill-posed lead field matrix A [22].

Figs. 2.7 and 2.8 compare the performance of all five algorithms for different number

of sources at SNR of 10 dB, with the minimum distance between the sources set to 4

cm, and 8 cm, respectively. While the proposed approach offers superior performance

as compared to others when the number of sources is smaller than 5, as the number

of sources increases, the performance of all algorithms degrades. Comparing Figs. 2.7

and 2.8, it can be seen that as the distance between sources increases, the performance
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Figure 2.5: (a) The original source vector (2 sources, 25 dB SNR, and 4 cm mini-
mum distance). (b) Estimate obtained from the non-weighted approach. (c) Estimate
obtained from MUSIC shown in log scale. (d) Estimate obtained from ORMP. (e)
Estimate obtained from FOCUSS. (f) Estimate obtained from the proposed approach.
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improves. This could be due to the fact that distant sources correspond to the columns

of the lead field matrix that are less correlated.

Fig. 2.9 shows the success rate of the proposed approach, FOCUSS, and MUSIC

for the case of two sources and SNR of 15 dB, when different number of snapshots are

used to construct the weighting matrix. One can see that as the number of snapshots

decreases, the success rate of all approaches degrades, with the proposed approach per-

forming better than FOCUSS. The performance degradation is due to the degradation

in MUSIC estimate used to construct the weighting matrix.

Table 2.1: Performance Comparison of the proposed approach with other Methods. For
each scenario, 1000 Monte Carlo trials for 2 sources at SNR=10 dB are considered.

Method
Average

Processing Time (sec)
Success Rate (%)

for Low Coherence A
Success Rate (%)

for Signal in the range of (0.5-50)Hz
MUSIC 0.0725 100 88.78
FOCUSS 1.4296 100 86.84

Proposed Approach 1.991 100 97.24
ORMP 0.1229 100 75.5

Non-weighted 1.9270 93.27 31.9

In the case of a sensing matrix with low coherence, the performance of the proposed

approach will be similar to the other methods. To demonstrate this, we performed a

simulation for two sources, SNR of 10 dB, and a Gaussian matrix (the mutual coherence

was 0.578) as the dictionary matrix. The results are summarized in Table I, third

column. the above simulations we considered signals as dipoles with frequencies in the

range of [6− 30] Hz. To see the effect of the frequency range, here, we also consider a

scenario where the frequency range for signal generation is [0.5 − 50] Hz. The results,

summarized in Table I, last column, are similar to those of Fig. 2.6 for SNR of 10 dB,

suggesting that the choice of frequency range for generating signals does not affect the

performance of the localization algorithms.

To compare the computational complexity of different approaches in terms of average

processing time per trial, 1000 Monte Carlo trials for the case of 2 sources, and SNR of

10 dB were conducted. The results are shown in Table I. The `1-norm-based approaches

(both weighted and non-weighted) as compared to FOCUSS, MUSIC, and ORMP, are

more computationally intensive, as expected.
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Figure 2.6: Success rate of the proposed approach, FOCUSS, ORMP, non-weighted,
and MUSIC for the case of two sources as a function of SNR. The minimum distance
between sources was set to be 4 cm.

2.4.4 Experimental Results

We also examined the performance of the proposed approach in solving the source

localization problem, using real EEG data. EEG experiment for eliciting auditory

evoked potentials (AEPs) [67] was conducted with one volunteer, who provided his

written informed consent. The stimulus was a pure tone of 1000 Hz with duration of

40 ms, that was presented to the left ear of the participant. The paradigm consisted of

1092 trials with inter stimulus interval (ISI) of 760 ms. Brain activities were recorded

using a 64-channel EEG system (Brain Products, Germany) with 1 kHz sampling rate.

Preprocessing was performed using EEGLAB [72]. Recorded signals were first down-

sampled to 256 Hz to reduce the processing time when performing independent com-

ponent analysis (ICA) for the artifact removal step. EEG recordings were bandpass

filtered between 0.5 Hz and 100 Hz with a notch filter at 60 Hz. Bad channels were

identified (five channels: FP1, FP2, AF7, FT9, and FT7), and their corresponding

signals were replaced with the average of the signals from their neighboring channels.

ICA was then employed to remove the artifacts (e.g. eyeblinks). The covariance matrix

was estimated using the samples that correspond to 50 ms before the stimuli, and was

used for whitening the data. Epochs were extracted and then averaged across trials.
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Figure 2.7: Success rate of the proposed approach, FOCUSS, ORMP, non-weighted, and
MUSIC as a function of number of sources. SNR was set at 10 dB, and the minimum
distance between sources was set to be 4 cm.

It has been reported that the most relevant components associated with the auditory

experiments are P50 and N100 [73]. The Event related potential (ERP) waveforms for

all channels are shown in Fig. 2.10 (filtered down to 30 Hz for display) where both

P50 and N100 components can be identified. This result is aligned with what has been

reported in other EEG studies [74–76]. While here the results for N100 are presented,

the localization can also be performed for P50 or other ERPs of interest.

To estimate the location of activities related to N100, the segment [100 − 132] ms

from ERP was selected. Since the exact location of sources are unknown, to compare the

performance of different localization methods, we take a qualitative approach [77], with

reference to the existing knowledge about the expected active regions corresponding to

N100. As reported in [67, 78], for this task and at N100, activations in both left and

right primary auditory cortices are expected to occur.

To construct the weighting matrix W, for the proposed approach and for initializing

FOCUSS, MUSIC with 8 snapshots (about 32 ms) was used. The number of sources

(sparsity level) for ORMP was restricted to 10. For each localization method, the

inverse problem was solved at each sample over the duration of [100 − 132] ms, and

the average of the estimated sources across all time samples was obtained. Top, right

and left views of the cortex, indicating the estimated locations of active sources based
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Figure 2.8: Success rate of the proposed approach, FOCUSS, ORMP, non-weighted, and
MUSIC as a function of number of sources. SNR was set at 10 dB, and the minimum
distance between sources was set to be 8 cm.

10 20 30 40 50

Number of Snapshots

20

30

40

50

60

70

80

90

100

S
u

c
c

e
s

s
 R

a
te

 (
%

)

Proposed Approach

FOCUSS

MUSIC

Figure 2.9: Success rate of the proposed approach, FOCUSS and MUSIC for the case
of two sources and SNR of 15 dB, for different number of snapshots used to construct
the weighting matrix.
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Figure 2.10: ERP in response to an auditory task for all 64 channels.

on the proposed approach, FOCUSS, and ORMP are shown in Figs. 2.11, 2.12, and

2.13, respectively. The proximity of the locations of the primary auditory cortices is

also shown in Figs. 2.11-2.13 via black circles. The proposed approach identifies active

sources in both left and right auditory cortices. This result is aligned with previous

fMRI studies [79]. Few active sources are also identified in other regions of the brain.

Brain activations related to N100, located outside the auditory cortex, have also been

reported in previous studies [67], [80]. FOCUSS shows activations near the temporal

lobes, as well as several other regions in the brain. Deviation from the expected active

regions in FOCUSS could be due to the local minima problem that associated with

FOCUSS or the low SNR [62]. Previous studies have shown variations in features

of auditory-based ERPs (e.g. amplitude of N100) for different individuals [74]. The

observed low SNR could therefore, be due to the fact that the obtained ERP is from

one subject. Due to high coherence possessed by the realistic lead field matrix, the

performance of ORMP is expected to be degraded. This is also observed in Fig. 2.13,

where ORMP fails to localize active sources in expected regions.

2.5 Conclusions

A weighting approach for sparse signal support estimation has been presented. We

have shown that by appropriately selecting the weights, we can formulate an `1-norm

minimization problem that satisfies the RSP, even if the original problem does not

satisfy the RSP. Conditions on the weights for both noise free and noisy cases have
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(a) (b) (c)

Figure 2.11: Estimated location of sources in the cortex via the proposed approach, a)
top view, b) right view, and c) left view.

(a) (b) (c)

Figure 2.12: Estimated location of sources in the cortex via FOCUSS, a) top view, b)
right view, and c) left view.

(a) (b) (c)

Figure 2.13: Estimated location of sources in the cortex via ORMP, a) top view, b)
right view, and c) left view.
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been provided. Although those conditions involve information about the support of the

sparse vector, the class of good weights is very wide, and in most cases encompasses

estimates obtained via a conventional method that does not encourage sparsity. Simu-

lation results have shown that in practical scenarios, using the proposed approach with

weights constructed based on estimate obtained via a conventional method that does

not encourage sparsity, results in significantly improved localization of the sparse signal

samples as compared to directly applying `1-norm minimization. As an application

example, we applied the proposed approach to the EEG source localization problem.

Simulated and real EEG data have been considered and the proposed approach was

applied using MUSIC as an estimate to construct the weights. The impact of SNR and

number of active sources on the performance of the proposed approach have been stud-

ied through Monte Carlo simulations, and the results have been compared with those

of FOCUSS, ORMP and the non-weighted approach. The proposed approach appears

to be more robust in terms of SNR as compared to FOCUSS, and in terms of SNR and

the number of sources as compared to ORMP and non-weighted approach. Using EEG

data, we have also qualitatively evaluated the performance of the proposed approach

in localizing active sources within primary auditory cortices that are responsible for

auditory N100. While for the purpose of validation here we had experimental data

from one subject, our future work will involve the inclusion of more subjects.
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Chapter 3

Weighted Sparse Bayesian Learning (WSBL) for Basis

Selection in Linear Underdetermined Systems

3.1 Introduction

Sparse vector recovery problems arise in many applications including biomedical imag-

ing [1–5], and radars [6–11]. The goal there is to find the sparse vector with the

smallest number of non-zero entries that give rise to the observed vector. Mathemat-

ically, the problem is formulated as an `0-norm minimization problem. However, due

to the associated complexity [12], the relaxed `1-norm minimization problem is usually

solved instead. The solution of the `0-norm minimization problem coincides with that

of `1-norm minimization problem if certain conditions are satisfied, including the Re-

stricted Isometry Property (RIP) [13], the Null Space Property (NSP) [14], the Mutual

Coherence [15], or the Range Space Property (RSP) [16]. In practice, however, the

aforementioned conditions may not be met, in which case the least `1-norm solution is

not related to the sparsest solution. Re-weighted iterative approaches have also been

proposed for sparse vector estimation. In FOCal Underdetermined System Solver (FO-

CUSS) [17] a reweighted `2-norm minimization problem is solved, making use of initial

weights. Although FOCUSS has been shown to converge, it may converge to a local

minimum [17]. In [18], a reweighted iterative `1-norm algorithm for enhancing spar-

sity is proposed. However, no convergence guarantees are provided in [18]. For cases

in which the `1-norm minimization problem does not yield the least `0-norm solution,

a weighted approach was proposed in [2], which exploits available information, such

as a low resolution estimate of the sparse vector, to bias the solution and obtain the

The work was supported by NSF under grant ECCS 1408437.
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underlying sparse vector.

Another class of sparse vector recovery methods are the probabilistic approaches, in

which the estimated sparse solution is obtained by maximizing the Bayesian posterior

using sparsity inducing priors [26–28]. In Sparse Bayesian Learning (SBL), Gaussian

priors with distinct variances, called hyperparameters, are assigned to the entries of

the sparse vector. These hyperparameters are assumed to follow Gamma distribution

with shape parameter a and rate parameter b. These variances are estimated by max-

imizing the marginal likelihood function. Unlike [18], it was shown that SBL always

converges [19], thanks to the well known properties of Expectation-Maximization. SBL

has been proposed for classification [26], regression [26], and sparse basis selection [19].

In [29], support knowledge-aided sparse Bayesian approach was proposed for applica-

tions where erroneous prior knowledge of the support is available. Depending on the

erroneous support, different update rules are assigned to the corresponding parameters

bis. The bis that belong to the erroneous support are considered as random variables,

and their corresponding parameters bis are estimated along with the hyperparameters.

Low values are assigned to bis that do not belong to the erroneous support. All

the above aforementioned methods rely on a single snapshot for sparse vector recov-

ery. In [30], Multiple response Sparse Bayesian Learning (MSBL) was proposed as an

extension to SBL for multiple snapshots case, in which a sparse vector is recovered as-

suming stationary sources across the snapshots. When noise is present, SBL estimates

the noise variance as well as the hyperparameters. On the other hand, non-probabilistic

methods, such as Basis Pursuit De-Noising (BPDN) [31, 32], reweighted `1-norm [18],

and weighted `1-norm [2], assume the noise variance to be known in advance.

Here, we propose Weighted SBL (WSBL) for sparse signal recovery, which relies

on a single snapshot. Unlike SBL, where all hyperparameter priors follow the Gamma

distributions with the same parameters, in WSBL, the hyper-parameters have a distinct

set of parameters. This introduces more degrees of freedom of this optimization and

thus improves accuracy. These parameters act as weights, giving more importance to

some hyperparameters over others. The relative importance of the hyperparameters

can be determined based on a low-resolution estimate of the sparse vector, for example
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an estimate obtained via a method that does not encourage sparsity. The choice of the

MUltiple SIgnal Classification (MUSIC) estimate as weight are analyzed. An important

advantage of WSBL is that it makes it easy to select the threshold that distinguishes

between zero and non-zero elements in the recovered sparse vector, which reduces the

convergence time of WSBL.

Theoretical analysis based on variational approximation theory, and also simulation

results demonstrate that WSBL results in substantial improvement in terms of proba-

bility of detection and probability of false alarm, as compared to SBL, especially in the

low signal to noise ratio regime. Our work is different than [29] in the following points.

First, in our approach, the values of bis are constant through out the entire estimation

process, which is in contrast to the work in [29], where the values of bis that belong to

the support are re-estimated in each iteration. Also, in our approach, both parameters

ais and bis are assigned different values depending on the weight vector, while in [29],

only bis that belong to the support are assigned different values for different entries.

The proposed approach is a good candidate for target estimation in Multiple Input

Multiple Output (MIMO) radar, a technology that has received noticeable attention

in recent years, for achieving high resolution with fewer antennas as compared to con-

ventional radars [81, 82]. MIMO radar with millimeter wave technology is currently

being evaluated for applications in Advanced Driver Assistance Systems (ADAS), like

Automatic Emergency Breaking (AEB) [83]. With mm-wave technology, the range cell

is small, thus, it is reasonable to expect that there is only a small number of targets

in the range cell. In other words, the target scene is sparse, and target estimation can

be formulated as a sparse signal recovery problem. The proposed WSBL is applied to

estimate DOA of targets for the colocated MIMO radar scenario, and its performance

is compared to well known Bayesian approaches.

Preliminary results of this work appeared in [84]. Here, in addition to the results

of [84], we provide theoretical analysis to justify the performance improvement of WSBL

as compared to SBL, especially in the low SNR regime. Also, we provide an upper limit

on the hyperparameters, which makes it easier to select a threshold for distinguishing

between zero and non-zero elements in the recovered sparse vector. Also, we validate
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the use of MUSIC [56] estimate as a weight vector for the proposed approach. Finally,

we present results for applying the proposed approach for a Multiple Input Multiple

Output (MIMO) radar scenario. The contributions of our work can be summarized

as improving the performance of sparse vector recovery, achieving faster convergence

time, and robustness in noise as verified by both theoretical analysis and simulations.

The chapter is organized as follows. In Section 3.2 we discuss some background on

SBL, as proposed in [26] and [19]. Section 3.3 proposes the WSBL approach, discusses

an important property on the weight vector associated with the values of hyperpa-

rameters after convergence, and discusses use of MUSIC estimate as a weight vector

in WSBL. Section 3.4 extends the results for the complex case scenario. Section 3.5

discusses the SBL performance at low signal to noise ratio (SNR), and Section 3.6 uses

variational approximation theory to explain why WSBL outperforms SBL. Section 3.7

presents simulation results, while Section 3.8 provides concluding remarks.

3.2 Background Theory

Consider the linear underdetermined system

y = Ax + n, (3.1)

with the elements of n ∈ Rm being independent identically distributed (i.i.d.), zero-

mean, Gaussian, with variance σ2; A an m× n dictionary matrix with n >> m; x ∈

Rn the sparse vector to be estimated; and y ∈ Rm the vector of observations. The

probability density function (pdf) of y given x and σ2 is

p(y | x, σ2) = (2πσ2)−m/2 exp(− 1

2σ2
‖y −Ax‖22). (3.2)

Assuming that the entries of x are i.i.d. Gaussian N (0, α−1
i ), the conditional pdf of x

equals

p(x |α) =

n∏
i=1

(αi
2π

)1/2
exp

(
−x2

iαi
2

)
, (3.3)

where α is a column vector, whose entries, αis, are referred to as the hyperparameters

[19,26]. The values of αis are the reciprocal of the corresponding variances of xis. When
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αi is high, the distribution of the corresponding xi is highly concentrated around zero,

giving high probability for xi to be zero.

On taking the αis to be i.i.d Gamma-distributed with parameters a and b [26], the

pdf of α is

p(α) =
n∏
i=1

Gamma(αi; a, b), (3.4)

with Gamma(α; a, b) = Γ(a)−1baαa−1e−bα, and Γ(a) =
∫∞

0 ta−1e−tdt. The Gamma dis-

tribution parameters a and b are referred to as shape and rate parameters, respectively.

For small a, the Gamma pdf is concentrated around zero, while for large a, the Gamma

pdf is concentrated around its mode, i.e., a−1
b . The parameter b influences the shape of

the pdf; a larger b has the effect of compressing the pdf, while a smaller b expands the

pdf. On also taking σ−2 to be Gamma distributed with parameters c and d, [26] i.e.,

p(σ−2) = Gamma(σ−2; c, d), (3.5)

the posteriori pdf p(x,α, σ2 | y) can be written as

p(x,α, σ2 | y) = p(x | y,α, σ2)p(α, σ2 | y). (3.6)

According to [26], the p(x|y,α, σ2) is Gaussian distributed with mean µ and covariance

matrix Σ equal to

µ = σ−2ΣATy, (3.7)

Σ = (σ−2ATA + F)−1, (3.8)

where F = diag(α1, α2, ..., αn). Following the same approximation as in [26], p(α, σ2 |y)

is approximated by a delta function at its mode. This approximation decomposes the

problem of maximizing (3.6) into two distinct problems: maximizing p(α, σ2 | y) with

respect to α and σ2, and maximizing p(x |y,α, σ2) with respect to µ and Σ using (3.7)

and (3.8).

Regarding the first problem, it holds that [26]

p(α, σ2 | y) ∝ p(y |α, σ2)p(α)p(σ2), (3.9)
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where α and σ2 are assumed to be independent, and p(y |α, σ2) is Gaussian with mean

zero, and covariance matrix (σ2I + AF−1AT )−1. An iterative approach can be used to

estimate the values of α and σ2 that maximize (3.9). For α, differentiating (3.9) with

respect to log(αi), and equating to zero, the new value of αi can be written as

α
(new)
i =

1 + 2a

µ2
i + Σii + 2b

. (3.10)

For σ2, differentiating with respect to log(σ−2) and equating to zero, the update rule

for σ2 can be written as

(σ2)(new) =
‖y −Aµ‖22 + 2d

N −
∑n

i=1 γi + 2c
. (3.11)

with γi = 1−αiΣii. In summary, the maximization of (3.6) is implemented by updating

the posterior covariance and the mean via (3.7) and (3.8), and then updating the values

of α and σ by applying (3.10) and (3.11). The above procedure continues until a

convergence criterion is satisfied [26].

To better explain the sparse nature of the estimated vector via SBL, let us find

the pdf of xi by averaging out hyperparameter αi, i.e., p(xi) =
∫
p(xi | αi)p(αi)dαi. If

a = b ≈ 0, the result of the previous integration is an improper distribution, that is

inversely proportional to |xi| [19,26]. Such distribution induces sparsity, as it is highly

peaked at zero.

In the Bayesian Sparse recovery approach, the αis influence the basis selection in

the estimation of the sparse vector x. In SBL, it was shown in [26] that after conver-

gence, most of the αis tend to have very large values. This implies that the variance

of p(xi | y,α, σ2) is highly peaked at zero, which corresponds to xi = 0 with high

probability.

SBL, by default assumes that all the entries of x have equal probabilities to belong to

the support of the underlying estimated sparse vector. However, in some applications,

some rough estimate of the underlying sparse vector is available. In the next section,

we show how one can use such available estimate to differentially treat the entries of x,

which is the basis of our proposed approach.



43

0 10 20 30 40 50 60 70 80 90 100

n

10
-2

10
0

10
2

10
4

10
6

lo
g

(α
(n

))

0 20 40 60 80 100

n

10
-1

10
0

10
1

10
2

10
3

lo
g
(α

(n
))

(a) (b)

Figure 3.1: Hyperparameters after convergence in (a) SBL and (b) WSBL. The red lines
represent the actual support oFf the original sparse vector. The yellow line represent the
theoretical upper limit of the hyperparameters in WSBL.

3.3 The Proposed Weighted SBL (WSBL) Approach

For the proposed approach, we still consider the αis to be independent, Gamma dis-

tributed, but with parameters ai and bi. Thus, the pdf of α equals

p(α) =
n∏
i=1

Gamma(αi | ai; bi). (3.12)

The posterior pdf p(x,α, σ2 |y) can also be described as in (3.6), where p(x|y,α, σ2)

is a Gaussian distribution with mean µ and covariance matrix Σ as in (3.7) and (3.8),

respectively. Along the lines of SBL [26], we approximate p(α, σ2 |y) as a delta function

at its mode. Then, the problem of maximizing p(x,α, σ2 | y) can be redefined as that

of maximizing (3.9), with p(α) as given in (3.12). On differentiating (3.9) with respect

to log(αi), and equating to zero we get the following update rule

α
(new)
i =

1 + 2ai
µ2
i + Σii + 2bi

. (3.13)

Suppose that we have a coarse estimate w, that has large values along the support

of x, and low but nonzero values elsewhere. On assigning ai = 1
wi

, and bi = wi, if

wi is large, the corresponding distribution of αi is highly peaked at zero. Thus, the

corresponding xi is nonzero with high probability. On the other hand, if wi is small, the

distribution of the corresponding αi peaks around its mode, and thus the corresponding

xi is zero with high probability. We refer to the proposed approach as Weighted SBL
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(WSBL). The estimation of α, σ2, and x is achieved in an iterative manner. Initially,

the hyperparameters are assigned to values less than the threshold η. In each itera-

tion, the values of α, σ2 are updated using (3.13) and (3.11), respectively. Using the

updated α and σ2, Σ and µ are updated by applying (3.8) and (3.7), respectively. The

hyperparameters with values greater than η are excluded from the next iteration, and

their corresponding xis are set to zero, i.e., αi is compared to a threshold η, and if

1 + 2/wi
µ2
i + Σii + 2wi

> η, (3.14)

then the corresponding xi is set to zero in future iterations.

3.3.1 About the Weight Vector

Here, we discuss an important property of the weight vector w, associated with the

proposed WSBL approach, which is related to the final values of αis after convergence.

Given the weights vector w, the αis are bounded from above, as described in the

following proposition.

Proposition 1. Let wis be the smallest entry in w. After convergence of WSBL, the

αis are bounded as follows:

0 ≤ αi ≤
wis + 2

2w2
is

(3.15)

Proof : Since µ2
i and Σii are always positive, one can see from (3.13) that the largest

value of αi is smaller than 1+2ai
2bi

. By construction, we have ai = 1
wi

and bi = wi.

Substituting ai and bi in 1+2ai
2bi

, we get wi+2
2w2

i
. The maximum value of αi is attained

when wi = wis, which proves the proposition. �

The upper bound of αi makes it easier to set a threshold η for differentiating between

zero and non-zero entries in x, i.e., we can select η ∈ (0, wis+2
2w2

is
) and decide that xi = 0

if αi > η, or xi 6= 0 if αi < η. On the other hand, in SBL, the values of αs are not

bounded, making it difficult to choose such a threshold. The threshold plays a big role

in the final estimate, since all αis greater than the threshold are excluded from the final

estimation, and considered as zeros in x [26]. We should emphasize that in Proposition

1, we assumed that the minimum of w is greater than zero. In other words, we should
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use a weight vector that is not sparse. For weights that have zeros in their entries, one

can add a constant to the weight vector to avoid the problem of zero minimum entry

of w.

In the following, we illustrate via an example the values of the hyperparameters

after convergence of SBL and WSBL. In the example, matrix A is constructed to have

entries taken from zero mean and unit variance Gaussian distribution. The vector x

has three randomly selected non-zero entries, all equal to 4. Additive white Gaussian

noise is added to Ax with 10 dB SNR. The weight vector w is constructed by assigning

the value of 0.1 or 1 corresponding to zero and non-zero values of x. Fig. 3.1 (a)

shows the SBL hyperparameters (in logarithmic scale) after convergence. One can see

from the figure that the hyperparameters can take any value, and there is theoretically

no upper bound on how large each αi is. There is also high variance among the αis

with high values, corresponding to zero xis. Fig. 3.1 (b) shows the hyperparameters

of WSBL after convergence. One can see that in this case, the are either concentrated

around 1/w2
is (equivalently, the corresponding xis are 0), or around 0 (equivalently, the

corresponding xis are nonzero). This behavior makes picking a threshold to differentiate

between zero and nonzero values of αis much easier than in SBL. In the next section,

we discuss the using of MUSIC estimate as a weight vector, and provide an approach

for setting the value of the threshold η.

3.3.2 Selection of MUSIC as a Weight

In the previous subsection, we mentioned that a coarse estimate of the underlying

vector can be used as a weight vector. In this subsection, we study the use of MUSIC

estimate as the weight vector. In general, the MUSIC estimate of x contains large

values corresponding to the support of x and small values elsewhere. In the following,

we study the behavior of the estimate outside the support of x, and also provide a

method to determine the threshold η in (3.14).

MUSIC [56] is a subspace estimation method, initially proposed for Direction Of

Arrival (DOA) estimation in sensor array processing. Recently, MUSIC has been used

for sparse vector support estimation [85] in the context of the problem of (3.1). In
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particular, sparse vector support recovery can be seen as a special case of the DOA

problem with discretized DOA angle space [85]. Given a set of snapshot observations,

MUSIC estimates the signal subspace using eigendecomposition of the covariance matrix

of the observations. The eigenvectors corresponding to the smallest m− k eigenvalues

represent the noise subspace, where k is the sparsity level of the sparse vector. Since

the columns of A that correspond to the support of x span the same subspace as the

signal subspace of the covariance matrix, their projections to the noise subspace will be

almost zero. Based on that idea, the MUSIC estimate of xi is defined as

x̂i =
1

‖ENai‖22
=

1

‖(I−As(AT
s As)−1AT

s )ai‖22
, (3.16)

where i = 1, 2, ...,m, EN represents the noise subspace, As represents a matrix with

normalized columns from A that belong to the support of x, and ai is ith unit length

column of A. Therefore, on plotting the x̂i versus i, a peak at i = m will indicate that

x̂m belongs to the support of x.

For a Gaussian matrix A, the statistics of the distribution of the denominator in

(3.16) are stated in the following proposition.

Proposition 2. Consider (3.1), and assume that the entries of A are distributed as

N(0, 1
m). Let As be a matrix containing the columns of A that correspond to the support

of x, and let k be the sparsity level of x. Define the approximate distance between the

signal subspace and the column ai as

t , ‖(I−AsA
T
s )ai‖22, (3.17)

where ai is a column of A that does not correspond to the support of x. The random

variable t has the following mean and variance:

E{t} =
k +m2 −mk + k2

m2
≈ 1− k

m
. (3.18)

Var{t} = 2m

(
k +m2 −mk + k2

m3

)2

. (3.19)

Proof. See Appendix A.
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The above proposition indicates that when m is large, the approximate distance

for all ais that do not belong to the support of x has low variance. This allows one

to approximate x̂i in (3.16) as the reciprocal of the expected value of t. Also, the

approximate distance between the columns ai that do not correspond to the support of

the sparse vector and the signal subspace has values around 1, indicating that x̂is for

those columns are around 1. Also, one can easily show that the approximate distance is

small (around 0) for all ais that belong to the support of x, which corresponds to large

values of x̂i for those columns. This suggests that MUSIC is a good weight vector for

the proposed WSBL. Further, it results in no weight entries that have values close to

zero.

The expected value and the variance of t along with Chebyshevs inequality can be

used to set the threshold η. From Chebyshevs inequality [86] we have

p(|t− (1− k

m
)| ≥ pi) ≤

s2

p2
i

, (3.20)

where s is the variance as defined in (3.19), and pi is a scalar. Eq. (3.20) can be

decomposed as the sum of two probabilities

p(t ≥ 1− k

m
+ pi) + p(t ≤ 1− k

m
− pi) ≤

s2

p2
i

. (3.21)

Since we are interested in the second probability in (3.21) as it represents a smaller

distance to the signal subspace (or a larger response in MUSIC), we can ignore the first

term in (3.21) to get an upper bound of probability of interest, and rewrite (3.21) as

p(t ≤ 1− k

m
− pi) ≤

s2

p2
i

= pth. (3.22)

On setting pth to a specific probability, we can find the value of pi, which can then

be used to find an upper limit for η as

1 + 2(1− k
m − pi)

µ2
i + Σii + 2/(1− k

m − pi)
> η. (3.23)

Since µ2
i and Σii are both positive, we can drop them to get an upper limit of the

threshold η, as follows

1 + 2(1− k
m − pi)

2/(1− k
m − pi)

= ηmax > η. (3.24)
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Equation (3.24) gives an upper limit for η such that with probability pth, the distance

between a column that does not belong to the support of the underlying signal and the

signal subspace is less than 1− k
m − pi.

One can see that calculating ηmax requires the sparsity level. However, ηmax does not

change significantly for different values of k when k is small. For instance, when m = 64

and pth = 0.004, the difference between ηmax for k = 1 and k = 10 is small (around

0.0574). Here, we choose the threshold based on our experience with simulations, i.e.,

we take it to the average of ηmax for different values of k, multiplied by a scalar that is

less than one. One can choose that threshold to maximize the probability of detection,

or minimizing the probability of false alarm. At this point we do not have a way to

compute the optimal threshold, and hope to address this issue in our future work

Using the above observation, WSBL algorithm can be summarized as shown in

Algorithm 1.

Algorithm 1: WSBL Estimation

Input : The weight vector w, m, and pth
Output: The estimated vector x

1 Calculate ηav as the average of ηmax for different values of k
2 Set η = 0.9ηav
3 Calculate µ and Σ using (3.7) and (3.8), respectively
4 Calculate αi and σ2 using (3.13) and (3.11), respectively. If the convergence

criterion is satisfied, go to step 5, otherwise go to step 3
5 Set x = µ

3.4 Extension to the complex case

In many signal processing scenarios, the use of complex dictionary matrices, responses,

and signals is crucial. in this section, we extended the proposed approach to accommo-

date with complex numbers scenarios. To apply WSBL to the case of complex numbers,

one can parameterize complex entries systems in (3.1) into a real entries system as fol-

lows [87,88]

ŷ = Âx̂ + n̂, (3.25)
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where

ŷ =

<(y)

=(y)

 , n̂ =

<(n)

=(n)

 , x̂ =

<(x)

=(x)

 ,
Â =

<(A) −=(A)

=(A) <(A)

 ,
(3.26)

where ŷ ∈ R2m, n̂ ∈ R2m, Â ∈ R2m×2n, x̂ ∈ R2n, <(x) represents the real part of

complex number x, and =(x) represents the imaginary part of a complex number x.

Using the above representation, and following the same approach as we did in the real

case, the update rules in this case is similar to the rules for the real case.

One should note that since the complex number system is parametarized into a real

system, all the aforementioned propositions are still valid for complex number systems.

3.5 SBL at low Signal to Noise Ratio scenarios

In this section we study the SBL performance under low signal to noise ratio environ-

ment.

The SBL basis selection is based on choosing hyperparameters that maximize the

probability of y being observed; y is an m-dimensional vector, following a Gaussian

model [26]. To study the SBL performance under low SNR, we view the observation

vector as a Gaussian process, i.e., p(y) = N (0,C), where C can be expressed as [26]

C = σ2I +
n∑
i=1

α−1
i aia

T
i . (3.27)

Changing αi affects the size and the shape of the Gaussian distribution, while changing

σ affects only the size of that distribution.

In SBL, σ2 and αi are estimated so that they make the observed vector most prob-

able. This corresponds to aligning the Gaussian distribution to the observation vector,

giving higher probability of selection (assigning low values) to those vectors ais that

are aligned to the output vector. On the other hand, ais that are not well aligned to

the observation vector will have lower probabilities to be selected as descriptor basis for

the observation vector. This can be clearly observed when the estimated sparse vector
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µ is written as

µ =
[
I− σ−2F−1ATA(I + σ−2F−1ATA)−1

]
σ−2F−1ATy. (3.28)

In (3.28), the term inside the square brackets, depends on the mutual coherence of the

dictionary matrix ATA and the priors F−1. The remaining terms in (3.28) depend on

the priors and the correlation between the observed vector and the columns of A. If

we assign equal prior probabilities, the most correlated columns in A will have higher

probabilities to be selected as non-zero entries in the final estimation. This points to a

problem for the case of low signal to noise ratio, as in that case, the deviation from the

actual noise free observation may be large such that the actual vector may not be the

most correlated with the observation. The above discussion is illustrated in Fig. 3.2

(a), with sensing matrix A =

1 1 0 −1

0 1 1 1

, x =
[
0 1 0 0

]T
, and SNR equal to

20 dB. The red circle represents the actual noise free observation, while the black circle

represents the observation after additive noise. Each arrow represents one column from

the sensing matrix A. One can see that the two dimensional Gaussian distribution is

oriented such that it is aligned to the observation vector, and in this case, it gives large

contribution to the second column from the matrix A by assigning low value to the

corresponding αi. The estimated vector after convergence is
[
0.21 0.85 0 0

]T
. Fig.

3.2 (b) shows the case for the same scenario, but SNR equal to 5 dB. As expected,

when the SNR is low, the observation vector (black circle) deviates from the noise free

observation (red circle). Aligning the Gaussian distribution in the direction of the noisy

observation will not reflect the actual solution. In this case, the solution gives to the

first column in A the largest contribution for describing the observation, and to the

second column a small contribution (note that the second column represents the actual

solution). The estimated sparse vector after convergence is
[
1.19 0.17 0 0

]T
.

For the weighted approach, we assign different parameters ai and bi to the Gamma

distribution that describes the priors of αi. To understand the effect of assigning dif-

ferent parameters, we need to introduce the variational approximation to SBL, which

is discussed in the next Section.
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(a) (b)

Figure 3.2: Contour of Gaussian distribution p(y) after convergence in SBL for (a) SNR = 20
dB, and (b) SNR = 5. The red circle represents the actual noise free observation, while the
black circle represents the observation after additive noise.

3.6 Variational Approximation of p(x)

In [19], it was shown that the SBL is a variational approximation, which selects the

model that is the most probable to describe the observed vector. Also, the analysis of

why we get a sparse solution from such approximation was also discussed in [19]. In this

section, we use variational approximation theory to express p(xi) in its dual form, and

introduce variational parameters for the proposed WSBL, which will help us explain

the substantial improvement of WSBL as compared to SBL, especially at low SNRs.

The general framework of variational approximation relies on representing a con-

vex function in its dual form [19]. Suppose that f(x) is a convex function, the dual

representation of f(x) is

f(x) = supλ(λx− f∗(λ)), (3.29)

where f∗(λ) is the conjugate function of f(x), defined as

f∗(λ) = maxx(λx− f(x)). (3.30)

Eq. (3.29) can be written as

f(x) ≥ λx− f∗(λ), (3.31)

for all λ. Eq. (3.31) represents a lower bound for f(x).
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On setting gi = α−1
i , p(xi) can be written as

p(xi) =

∫
p(xi | gi)p(gi)dgi = C(b+

x2
i

2
)−(a+0.5), (3.32)

with C = baΓ(a+0.5)√
2πΓ(a)

. One can see that as a and b approach zero, the pdf in (3.32)

encourages sparsity due to its small tail and sharp peak at the origin. In (3.32), substi-

tuting x2
i with v, and taking the log, we get (for intermediate steps, please see Appendix

E)

f(v) = log(C)− (a+ .5)log(b+
v

2
), (3.33)

where f(v) = log(p(v)), which is convex in v. Taking the dual of (3.33), substituting

back v with x2
i , and taking the exponent, we get

p(xi) ≥
23 a−1 ba Γ

(
a+ 1

2

)2
e
−w2+2 b−g−2 a g

2 g

ga+ 1
2 π Γ (2 a) (2 a+ 1)a+ 1

2

. (3.34)

Eq. (3.34) holds with equality when gi =
x2i +2b
1+2a . This can be easily checked by dif-

ferentiating w.r.t. gi, and equating to zero. In that case, the corresponding xi equals

xi = ±
√
gi(1 + 2a)− 2b. (3.35)

In SBL, if we take a = b ≈ 0, we can rewrite (3.35) as xi = ±√gi, which gives

no limit to how small gi can be. On the other hand, when we assign ai = 1/wi, and

bi = wi, (3.35) can be written as xi = ±
√
gi(1 + 2ai)− 2bi). Since we expect xi to be

real, the quantity under the square root should be non negative, which corresponds to

gi ≥ 2bi
1+2ai

, from which we have a lower limit for gi. In WSBL, large wi corresponds

to small ai and large bi. In this case, gi ≥ 2bi
1+2ai

≈ 2bi = 2wi, which forces gi to be

large when wi is large. This effectively increases the contribution of the corresponding

column in the matrix A in (3.27), even when there is a large deviation from the actual

noise free observation due to low SNR; and therefore, increasing the performance of

WSBL under low SNR scenarios. The above discussion is shown in Figs. 3.3 (a) and

(b) for the same scenario as described in Section slowromancapiii@. One can see that

the Gaussian distributions are oriented towards the noise free observation (red circles)

for both 20 dB and 5 dB SNRs, due to the high contribution of the second column of
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(a) (b)

Figure 3.3: Contour of Gaussian distribution p(y) after convergence in WSBL for (a) SNR =
20 dB, and (b) SNR = 5. The red circle represents the actual noise free observation, while the
black circle represents the observation after additive noise.

the matrix A. The high contribution of the second column of A is due to the lower

bound of the corresponding hyperparameter g2. On the other hand, when wi is small,

one can see that αi = 1
gi
≤ 1+2wi

−1

2wi
≈ 1

w2
i
, which gives an upper limit of the value

of αi when wi is small. This upper limit simplifies the selection of the threshold that

distinguishes between zero and non-zero entries in x, as discussed previously in Section

slowromancapiii@.

Figs. 3.4 and 3.6 show p(xi)s (red curve) and its variational approximation (green

curve) when a = b ≈ 0, after convergence, for the examples presented in Section

slowromancapiii@, and for SNR = 20, and 5 dB, respectively. One can see that p(xi)

represents an upper limit of the variational approximation. From p(xi)s, it is clear that

all the entries have the same distributions, which indicates that they have the same

chance to be non-zero in the final estimation.

Figs. 3.5 and 3.7 show the pdf p(xi)s (red curve) and its variational approximation

(green curve) when a = w−1
i and b = wi, after convergence, with SNR = 20 and 5

dB, respectively. One can see that p(xi) represents an upper limit of the variational

approximation. Due to the fact that the choice of parameters ai and bi differ in each

distribution, there is a different upper limit for each αi, which is small (corresponds to

non-zero xi) when wi is large. Also, from p(xi)s, one can see that p(x2) has a wider

range, which suggests that there is a higher probability for the second entry to be
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Figure 3.4: Variational Approximation of the example in Section slowromancapiii@ with SNR=
20 dB after convergence, when a = b ≈ 0. Plots (a), (b), (c), and (d) represent the distribution
of p(xi) (red curve), and its variational approximation (green curve) for i = 1, 2, 3, and 4,
respectively.

non-zero as compared to the other entries.

To summarize, WSBL outperforms SBL in low SNR scenarios due to the effect of

the weights, which give more importance to some hyperparameters, by making them

more probable to be selected as basis in describing the observations.

3.7 Simulation Results

In this section, we present simulation results for the proposed WSBL, and compare its

performance with SBL, Sparse Bayesian Support knowledge (BSN) that is proposed

in [29], and MSBL that is proposed in [30]. BSN uses a partly erroneous knowledge

of the support to estimate the sparse vector, while MSBL uses multiple snapshots to

improve the final estimation of the sparse vector, assuming stationary sources across all
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Figure 3.5: Variational Approximation of the example in Section slowromancapiii@ with SNR=
20 dB after convergence, when ai = w−1

i , and bi = wi, where w = [0.1 1 0.1 0.1]T . Plots (a), (b),
(c), and (d) represent the distribution of p(xi) (red curve), and its variational approximation
(green curve) for i = 1, 2, 3, and 4, respectively.
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Figure 3.6: Variational Approximation of the example in Section slowromancapiii@ with SNR=
5 dB after convergence, when a = b ≈ 0. Plots (a), (b), (c), and (d) represent the distribution
of p(xi) (red curve), and its variational approximation (green curve) for i = 1, 2, 3, and 4,
respectively.
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Figure 3.7: Variational Approximation of the example in Section slowromancapiii@ with SNR=
5 dB after convergence, when ai = w−1

i , and bi = wi, where w = [0.1 1 0.1 0.1]T . Plots (a), (b),
(c), and (d) represent the distribution of p(xi) (red curve), and its variational approximation
(green curve) for i = 1, 2, 3, and 4, respectively.
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snapshots. Two applications will be presented in this section, sparse vector recovery for

Gaussian dictionary matrices, and MIMO radar Direction Of Arrival (DOA) estimation.

3.7.1 Sparse vector recovery for Gaussian Dictionary Matrices

In the first simulation, a dictionary matrix of size 64×100 was constructed with entries

following Gaussian distribution with zero mean and unit variance. A sparse vector

with sparsity k = 3 was constructed, and the observations were obtained according to

(3.1) with SNR of 0 dB. The weights were constructed using the MUSIC solution (see

eq. (3.16)), which assumed the availability of 5 snapshots, and that the sources were

in the same positions across snapshot. For BSN, we set the support to be the set of

entries in the weight vector that have values 5% bigger than the reciprocal of (3.18);

this simulates on average an erroneous support set with cardinality of 20. The MSBL

estimation was based on the snapshots that were used for MUSIC estimation. Fig. 3.8

shows the actual sparse signal, the weights, and the final estimation results by SBL,

BSN, MSBL, and WSBL. One can see that WSBL successfully estimates the location

of the non-zero elements, while SBL and BSN do not perform well at such low SNR.

While MSBL retrieves the actual sources, it also yields some false sources. It can be

observed that the weights (MUSIC estimate) for most of the entries that do not belong

to the support of the sparse signal have values that are close to 1
1− k

m

= 1.05, which

supports our analysis of Section slowromancapiii@ (i.e., the reciprocal of (3.18)) .

Monte Carlo simulations with 1000 trials were also performed. In each trial, a

dictionary matrix A of size 64 × 100 was constructed with entries following a zero

mean and unit variance Gaussian distribution. k indices were randomly selected as

the support of the sparse vector x; the corresponding nonzero values were taken from

a Gaussian distribution of mean 5 and standard deviation of 0.25. Observations were

obtained according to (3.1) with SNR of 5 dB, and 0 dB. We exclude simulations for

higher SNRs, due to the similar performances among different approaches. In each trial,

the MUSIC solution based on 10 snapshots was used as the weight vector in WSBL.

The Receiver Operating Characteristics (ROC) curve, average energy leakage, and mean

squared error were used to compare performances among MUSIC, SBL, BSN, MSBL,
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Figure 3.8: Single trial simulation with SNR= 0 dB after convergence. (a) The actual sparse
vector. (b) Weights used in WSBL. (c) SBL estimate. (d) SBN estimate. (e) MSBL estimate.
(f) WSBL estimate.
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and WSBL. For ROC, successful estimation was declared if all the non-zero entries

were successfully estimated. The average energy leakage was used to measure sources

activity outside the true support of the sparse vector, while mean squared error was

used to indicate how far the estimated sparse vector from the real one. Energy leakage

was calculated by finding the second norm of the entries of the estimated vector that

do not belong to the true support of the underlying sparse vector as follows. Let S be

the set of true support indices of the sparse vector and S̄ its complement. Let x̂i and xi

be the estimated and real sparse vectors at Monte Carlo iteration i, respectively. For

M Monte Carlo trails, average leakage energy is defined as

Eleakage =
1

M

M∑
i=1

‖x̂iS̄‖2, (3.36)

while average mean square error is defined as

Eerror =
1

M

M∑
i=1

‖xi − x̂i‖22. (3.37)

The average energy leakage provides an indication of the existence of false sources, and

their strength in the estimated vector. For WSBL, the threshold η was set to be slightly

less than ηmax corresponding to pth = 0.004 (see eq. (3.24)), while for SBL η was set

to 1000. For BSN, the support was estimated as the case of single trial simulation

discussed above. Figs. 3.9, 3.10, and 3.11 show the ROC curves for MUSIC, SBL,

BSN, and WSBL for k = 3, 4 and 5 sources, at 5 dB, and 0 dB SNR, using Algorithm

1. One can see that, while SBL and BSN perform well in high and medium SNR,

their performance degrades rapidly as the SNR decreases. WSBL and MSBL show

identical performance under different scenarios. It can also be observed that WSBL

clearly improves on the MUSIC estimate (used also as the weight vector), and exhibits

robustness at low SNR. Increasing the number of snapshots would probably improve

the MUSIC estimate, however, in a nonstationary signal scenario it may not be possible

to use many snapshots, as will be shown in the third set of simulations below.

Also, it can be observed from Fig. 3.12 that WSBL exhibit the least average leakage

energy among all approaches for different SNRs and different sparsity levels. Table

slowromancapi@ shows the mean square error of WSBL, SBL, BSN, and MSBL for
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Figure 3.9: ROC curves for sparsity level of k = 3, and a) SNR=5 dB, b) SNR=0 dB.
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Figure 3.10: ROC curves for sparsity level of k = 4, and a) SNR=5 dB, b) SNR=0 dB.
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Figure 3.11: ROC curves for sparsity level of k = 5, and a) SNR=5 dB, b) SNR=0 dB.
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Figure 3.12: Leakage Energy for different SNRs, and a) k = 3, b) k = 4, c) k = 5.

different sparsity levels and different SNRs. One can see that WSBL shows the least

mean square error among all the other approaches for all scenarios.

In the third simulations set, we consider the same simulation settings as the second

simulations set, except we consider non-stationary sources. The sparse sources were

generated such that they changed their support in each snapshot. The performance

for all approaches was evaluated by comparing the estimated and the actual sparse

vector based on the first snapshot. Figs. 3.13, and 3.14 show the ROC for different

number of sources with different SNRs. As expected, the performance of SBL and BSN

does not change, as their estimations are obtained based on a single snapshot. On the

other hand, we see that the performance of MUSIC is degraded rapidly, due to the

non-stationary sources. While both MSBL and WSBL degrade as the SNR decreases,

WSBL appears to be more robust. Table slowromancapii@ shows the mean square error

for WSBL, SBL, SBN, and MSBL, for different sparsity level and different SNRs. As

expected, the mean squared errors for SBL and BSN are similar to the errors in Table

slowromancapi@. We also see an increase in the error for both WSBL and MSBL due

to the non-stationarity of the sources, and we notice that WSBL shows less error as

compared to MSBL. Also, Fig. 3.15 shows that WSBL has the least average leakage

energy as compared to all approaches for different scenarios.

We also compare the complexity of each approach in terms of the average time

required for convergence. Table slowromancapiii@ shows the average time over all

Monte Carlo simulations that were performed as discussed above. As expected, MSBL

involved higher complexity, as it processes all snapshots as a matrix of size n×Msnap
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Table 3.1: Mean-square Error for SBL, SBN, MSBL and WSBL for Different Scenarios,
1000 Monte Carlo Trials

WSBL SBL BSN MSBL

k
SNR

10 5 0 10 5 0 10 5 0 10 5 0

3 0.2 0.66 3.26 10.82 35.62 102.68 12.12 39.25 118.32 1.66 5.12 16.44
4 0.37 1.35 8.29 14.95 47.26 145.46 16.63 51.64 168.06 2.38 7.53 24.03
5 0.62 2.56 17.39 20.29 63.63 187.98 21.62 69.41 217.51 3.29 10.6 33.53
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Figure 3.13: ROC curves for sparsity level of k = 3 non-stationary sources, and a) SNR=5

dB, b) SNR=0 dB.

to find the final estimate, where Msnap is the number of snapshots. WSBL provides

the least complexity among all the approaches. Both WSBL and SBL involve the same

complexity in the beginning of the iteration, while the complexity of each iteration

reduces as column are excluded from the estimation. For WSBL, the number of excluded

columns is larger due to the upper limit on the hyperparameters, which leads to faster

convergence, and thus lower overall complexity.

Table 3.2: Mean-square Error for SBL,SBN, MSBL and WSBL for non-stationary sources,
1000 Monte Carlo Trials

WSBL SBL BSN MSBL

k
SNR

10 5 0 10 5 0 10 5 0 10 5 0

3 0.31 1.15 7.87 10.78 35.47 106.4 12.1 37.75 122.06 3.04 8.91 26.45
4 0.61 2.45 17.91 15.15 47.7 145.47 16.36 52.68 167.55 5.34 14.55 42.93
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Figure 3.14: ROC curves for sparsity level of k = 4 non-stationary sources, and a) SNR=5

dB, b) SNR=0 dB.
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Figure 3.15: Leakage Energy for different SNRs, and a) k = 3, b) k = 4.

Table 3.3: Average time of convergence in seconds

WSBL SBL BSN MSBL

0.001039394 0.04345625 0.082087879 1.225569697
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Figure 3.16: Radar geometry

3.7.2 MIMO Radar DOA Estimation

We now consider the problem of estimating DOA of colocated MIMO radar setup.

First, we discuss the signal model of MIMO radar that we used in this chapter, and

then present the simulation results.

MIMO radar signal model

We follow the signal model for MIMO radar that is described in [6], and is also shown in

Fig. 3.16. Let Nt, and Nr represent the number of transmitters and receivers, respec-

tively. The transmitters and receivers are randomly distributed within a circle of radius

r. Let θi represent the azimuth angle of target i, the polar coordinates of the lth re-

ceiver/transmitter is r
r/t
l , α

r/t
l with respect to the circle origin of transmitters/receivers.

Also, let us define v(θi) as

v(θi) = [ej2π/λη
t
1(θi) . . . e

j2π/ληtNt
(θi)], (3.38)

where λ represents the carrier wavelength, and η
r/t
l is the projected distance of the lth

transmitters/receiver on the θi axis, i.e.,

η
r/t
l (θi) = r

r/t
l cos(θi − αr/tl ). (3.39)
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On the transmitter side, define the matrix S to be the transmitted samples from all

transmitters, i.e., S = [s1[0] . . . sNt [(L− 1)]], where si[m] is a signal of length L that is

transmitted from ith transmitter. Dividing the DOA space into different grid points,

the received signal at the lth receiver can be described as [6]

zl = Ψlx + nl, (3.40)

where

Ψl = [ej2π/λη
r
l (θ1)Sv(θ1) . . . ej2π/λη

r
l (θn)Sv(θn)], (3.41)

where θi corresponds to the ith grid point, and x is a vector of length n. Each entry in x

corresponds to the existence or the absence of a target at a specific grid point. Assuming

small number of targets exist in the scene of interest, a small subset of samples at each

receiver can be used to estimate targets’ DOAs. One way to obtain such subset is by

taking random projections of the received samples at each receiver, i.e.,

rl = Φlzl = ΦlΨlx + ñl, (3.42)

with Φ represent a zero-mean Gaussian random matrix with unit variance. Each re-

ceiver then forward these samples to the fusion center which combines the outputs from

Nr receivers, and formulates the problem as

r = [rT1 . . . r
T
Nr

]T = Ax + n, (3.43)

where A = [(Φ1Ψ1)T . . . (ΦnΨn)T ]T .

Simulation results

Here, we present simulation results for the proposed WSBL, and compare its perfor-

mance with SBL, BSN, MUSIC, and MSBL for a colocated MIMO radar scenario. Here,

we only include low SNR scenario, because of the comparable performances among dif-

ferent approaches in higher SNR scenarios.

We simulated a MIMO radar which contains number of transmitter/receiver of 10

and 7, respectively. The carrier frequency was set to 5 GHz, the transmitters and

receivers were distributed uniformly at random inside a circle of radius 10 m, and
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the transmitters sent 10 orthogonal waveforms. The distance between the center of

the transmitter/receiver region and the target scene was 10 Km. In this simulation,

uniformly discretized angle space that ranges between −90o to 90o was considered with

1o step. Random projections from each receiver were taken by multiplying the received

samples with a zero mean, unit variance random Gaussian matrix of size (15 × 512).

These sets of samples were used to estimate DOA of the targets. We compared the

performance of the proposed approach with MUSIC, SBL, BSN, and MSBL

Monte Carlo simulations with 1000 trials were performed for the MIMO system

described above. In each trial, k targets were randomly distributed around the scene of

interest. At the receivers, the reflected signals due to these targets were collected, and

additive white Gaussian noise was added to the received signals with SNR equals to 0

dB. MUSIC was used to estimate the target angles. For MUSIC, the snapshots matrix

was constructed based on the received signals from Nr receivers, i.e., 7 snapshots were

used for MUSIC estimation. The estimation from MUSIC was also used as a weight

vector for the proposed WSBL. For BSN, The erroneous support setting is similar to

the case of Gaussian matrix simulations. The snapshots that were used for MUSIC

were also used for MSBL.

Fig. 3.17 shows the ROC curves for MUSIC, SBL, WSBL, BSN, and MSBL, for

k = 2, 3 and 4 sources, and 0 dB SNR. One can see that the performances of SBL and

BSN degrade rapidly with the increase of the number of targets in such low SNR. On

the other hand, one can easily notice the inferior performance of MUSIC and MSBL.

The poor performances of MSBL and MUSIC can be explained as follows. Due to the

compression performed, the snapshots used in both MUSIC and MSBL are effectively

the received signals multiplied by the compression matrix. As multiple snapshots are

required by both MUSIC and MSBL, and due to the different compression of each

snapshot, each snapshot has a different steering vector. Thus, effectively, the targets

appear as non-stationary for both MUSIC and MSBL. This explains the poor perfor-

mances of MSBL and MUSIC in the MIMO radar scenario. The low performance of

MSBL is because MSBL misses one of the actual targets and/or detects false targets.

This increases the probability of false alarm, and decreases the probability of detection.
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Figure 3.17: ROC curves for SNR = 0 dB and a) k = 2 ,b) k = 3 , c) k = 4 for colocated
MIMO radar with 10 transmitters and 7 receivers.

This dramatically affects the performance of MSBL. MUSIC on the other hand is not

a sparse recovery method, so even if MUSIC misses some targets, the probability of de-

tection can not be zero. This explains why there is a slight increase in the performance

of MUSIC as compared to MSBL. Also, WSBL shows robustness with the increase of

the number of sources, as compared to SBL and BSN. Although MUSIC provide as

rather poor estimate of the solution, it provides a good enough weight for WSBL to

achieve significantly better estimation performance than SBL and BSN.

3.8 Conclusion

We have proposed the Weighted Sparse Bayesian Learning approach which relies on

a single snapshot for sparse signal recovery. In WSBL, the hyper-parameters have a

distinct set of parameters, which introduces more degrees of freedom of this optimization

and thus improves the accuracy. An approximation of the underlying sparse vector,

obtained for example via a method that does not encourage sparsity, can be used to

determine the relative importance of the hyperparameters. Theoretical and simulation

results have shown that by exploiting available coarse estimate of the sparse vector

results in significant improvement in probability of detection, and probability of false

alarm, especially at low SNR scenarios, as compared to SBL and BSN. The proposed

approach also exhibits the least overall complexity in terms of convergence time among

all the other approaches. Also, we have shown that the MUSIC estimate can be used

effectively as a weight vector. In contrast to MSBL, the proposed approach has shown

more robustness in estimating non-stationary sources under low SNR environments
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for limited number of sources. WSBL has also demonstrated the least average leakage

energy among all the other approaches in all scenarios. WSBL has also shown robustness

in estimating DOA of targets in MIMO radar under low SNR as the number of targets

increases.
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Chapter 4

Bernoulli Sparse Bayesian Learning for Basis Selection

4.1 Introduction

As shown in the previous chapters, the weighted approach invokes substantial improve-

ment over the non-weighted approach. MUSIC was used as a weight vector in the

previous works. However, multiple snapshots requirement in MUSIC may impose a

problems in systems when stationary sources across snapshots is not guaranteed. Here,

we propose to model the rate parameters as Bernoulli random variables. The Bernoulli

parameters are estimated based on the observations. The parameters that are used

(along with the observations) to estimate the Bernoulli parameters are estimated offline

using machine learning approach. We name the proposed approach as Bernoulli Sparse

Bayesian Learning (BSBL). BSBL assigns a low or high value to the rate parameter of

the Gamma pdf corresponding to each element of the sparse vector; a large rate param-

eter makes the Gamma pdf more concentrated around zero, and correspondingly, the

entry of the sparse vector non-zero. Distinct rate parameter assignment guides BSBL

to choose the true support of the corresponding sparse vector.

The chapter is organized as follows. Section 4.2 presents the proposed Bernoulli

Sparse Bayesian Learning approach, Section 4.3 discusses an approach to find the

Bernoulli random variable parameters for the proposed BSBL approach. Section 4.4

presents simulation results, while Section 4.5 provides concluding remarks.

4.2 The Proposed BSBL Approach

Consider the linear system

y = Ax + n (4.1)
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where n ∈ Rm is white Gaussian noise with zero mean and variance σ2, A ∈ Rm×n

represents a dictionary matrix, x ∈ Rn is a sparse vector, and y ∈ Rm represents the

observation vector. The probability density function (pdf) of y given x and σ2 equals

p(y | x, σ2) = (2πσ2)−m/2 exp(− 1

2σ2
‖y −Ax‖22). (4.2)

Assuming that the entries in x are identically independent Gaussian distributed with

zero mean, and the variance of ith entry in x, xi, is α−1
i , the conditional pdf of x given

α is [26]

p(x |α) =

n∏
i=1

(αi
2π

)1/2
exp

(
−x2

iαi
2

)
, (4.3)

where α =
[
α1 α2 ... αn

]T
is the vector of hyperparameters. For a large αi, the

corresponding xi has small variance, and since the mean of xi is zero, xi has high

probability of being zero. In SBL [26], the entries of α are assumed to be independent

Gamma-distributed with parameters a (shape) and b (rate). The parameter σ−2 is also

assumed to follow a Gamma distribution with parameters d and e, which are usually set

to zero [26]. In SBL, all αis are assumed to be identically distributed with parameters

a, b, which are fixed to very small values [26]. The performance of SBL degrades in low

SNR scenarios [89].

In WSBL [89], each αi is assumed to be distributed with different parameters, ai, bi;

those parameters are computed based a coarse estimate of the sparse vector. While

improved performance as compared to SBL was reported in low SNR scenarios [89],

obtaining a coarse estimate involves additional complexity.

Different than SBL and WSBL, here we assume that we have knowledge of some

prior probability that the xi is non-zero. This guides BSBL to choose the true support

of the sparse vector. Estimation of these probabilities depends on a set of parameters

that can be estimated offline using an empirical approach. Given the set of estimated

parameters, prior probabilities can be obtained efficiently. Estimating the set of pa-

rameters and prior probabilities will be discussed in section slowromancapiii@. Using

estimated prior probabilities, BSBL assigns low or high values to the rate parameters

of the α random variables. The higher the rate parameter of the Gamma distributed

random variable, the more the pdf is concentrated around zero, which corresponds to a
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higher probability that the corresponding xi is non-zero. In a nutshell, BSBL chooses

the most probable hyperparameters (α,b, σ2) that best describe the observation vector

and the prior probabilities.

Let us assume that a vector p =
[
p1 p2 . . . pn

]T
is available, where pi is the

probability that xi is non-zero. Using such information, we treat the rate parameter,

bi, of each αi as Bernoulli random variable, taking values c or 0 with probability pi and

1 − pi, respectively, where c is some positive scalar. The rate random variable will be

estimated along with the hyperparameters. We name this approach Bernoulli Sparse

Bayesian Learning (BSBL). One should note that the higher the rate parameter b the

more concentrated the Gamma pdf is around zero, which makes the corresponding

αi most probably zero, or equivalently, the corresponding xi non-zero. As we will

discuss in the next section, the required parameters used to estimate the vector p are

estimated empirically offline, and the complexity associated with estimating p from

these parameters is low.

Let us assume that the hyperparameters α given b are still independent Gamma

distributed, i.e.,

p(α | b) =

n∏
i=1

Gamma(αi; a, bi), (4.4)

where bis are independent Bernoulli random variables, and b =
[
b1 b2 . . . bn

]T
. The

posterior pdf can be rewritten as

p(x,α, σ2,b | y) = p(x | y,α, σ2)p(α, σ2,b | y), (4.5)

with p(x |y,α, σ2) following Gaussian distribution with mean µ and covariance matrix

Σ [26], given as

µ = σ−2ΣATy, (4.6)

Σ = (σ−2AAT + F)−1, (4.7)

where F = diag(α1, α2, ..., αn). On approximating p(α, σ2,b | y) as a delta function at

its mode [26], maximizing (4.5) can be decomposed into two distinct maximization prob-

lems. In the first problem, we estimate α,b and σ2 that maximize p(α, σ2,b | y). The
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estimated parameters from the first problem are then used to maximize p(x | y,α, σ2)

using (4.6) and (4.7). For p(α, σ2,b | y), it holds that

p(α, σ2,b | y) ∝ p(y |α, σ2)p(α | b)p(σ2)p(b), (4.8)

where p(b) =
∏n
i=1 p(bi). Taking the log of (4.8), and ignoring terms independent of

α, σ and b, we obtain the following objective function:

L = −1

2
log|σ2I + AF−1AT | − 1

2
yT (σ2I + AF−1AT )−1y

+a
n∑
i=1

logbi + (a− 1)
n∑
i=1

logαi −
n∑
i=1

biαi +
n∑
i=1

bi
c

log(pi)

+

n∑
i=1

(1− bi
c

)log(1− pi)

(4.9)

where I is the identity matrix of appropriate size. Note that p(σ2) has disappeared

from the objective function above because of the zero values of the constants d and e.

An iterative approach can be invoked to find the values of α, σ2 and b that maximize

(4.9). For α, differentiating with respect to αi, and equating to zero, we get

α
(new)
i =

1 + 2a

µ2
i + Σii + 2bi

(4.10)

where µi represents the ith entry in µ, and Σii represents the ith diagonal entry in Σ.

Differentiating with respect to σ2, and equating to zero, we get

(σ2)(new) =
‖y −Aµ‖22
m−

∑n
i=1 γi

, (4.11)

with γi = 1− αiΣii. For bi, let us first define the loss function Lb associated with b by

collecting all terms that have bis in (4.9), i.e.,

Lb =
n∑
i=1

Lbi =
n∑
i=1

−biαi +
bi
c

log(pi) + (1− bi
c

)log(1− pi). (4.12)

We need to choose a combination of bis such that (4.12) is maximized, with each entry

bi ∈ {0, c}. Following the independence assumption among bis, maximizing (4.12) can

be recast as maximizing each Lbi . In this sense, the values of bis is chosen as follows

bi =


0 log(1− pi) > log(pi)− cαi

c log(1− pi) < log(pi)− cαi.
(4.13)
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BSBL can be summarized as follows. First, estimate µ, Σ, using (4.6), (4.7), respec-

tively. Then update α, σ2, and b using (4.10), (4.11), and (4.13). The aforementioned

procedure is repeated until some convergence criterion is satisfied. After convergence,

the estimated sparse vector is µ.

The above analysis considers the case of real dictionary matrix and observations.

The above results can be easily extended to the complex number dictionary matrix and

observations by following the same approach described in Section 3.4.

4.3 On estimating the prior probability vector p using training data

As mentioned in the previous section, the proposed BSBL needs the prior probabilities

of each xi to be active (non-zero). In this section, we provide a training method to

estimate p based on an observation vector y. We propose to use a Gaussian Naive

Bayesian Classifier (NBC) [90] to obtain p. The NBC classifier takes as feature vector

the observation vector, and provides the probability distribution of the two classes ”c”

and ”0”. We implement n distinct classifiers, one for each entry of the sparse vector.

Before using NBC, we need to first train NBC using a training set. The training

set can be constructed by generating M sparse vectors and their corresponding ob-

servations using (4.1), for the given sensing matrix, a specific sparsity level (k) and

specific Signal to Noise Ratio (SNR). The M observations are then used to train the

n NBC classifiers. Following the Independence assumption among observation vec-

tor entries assumed in NBC, and assuming that p(yk | bi = c) = N (µbi=ck , σbi=ck ) and

p(yk | bi = 0) = N (µbi=0
k , σbi=0

k ), where N (µ, σ) is the Gaussian kernel with µ mean

and σ standard deviation, the M observations can be used offline to estimate the pa-

rameters µbi=ck , µbi=0
k , σbi=ck , and σbi=ck . These parameters are then used to find the

probability that each entry in x is active/non-active for any observation vector. The

trained classifiers are then used to obtain p as follows. Given the observation y, we

obtain probability of each element to be active/non-active for each entry in x by apply-

ing y at the input of all n NBCs. p then represents the probabilities that each entry

in x is active. The obtained probability vector p is then used in BSBL for the sparse

estimation.
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Figure 4.1: ROC curves for SNR = 0 dB, and a) k = 3, b) k = 4, c) k = 5.

While the NBC can also provide an estimate of the sparse vector x, we here use

only the probabilities of active classes. As it will be seen in the simulations Section,

the BSBL estimate with the p produced by NBC is significantly better that the NBC

estimate for the same number of observations.

4.4 Simulation Results

In this section, we present simulations results of the proposed BSBL applied to target

angle estimation in a MIMO radar scenario, and comparisons to SBL [19], and WSBL

with weights based on the MUSIC estimate [89]. The model described in Section 3.7 is

used in the following simulations.

A MIMO radar with number of transmitters/receivers of 10 and 7, respectively, and

with carrier frequency of 5 GHz was simulated. The transmitters and receivers were

distributed uniformly within a circle of 10 m. The distance between the targets scene

and the center of the circle containing the radar antennas was 10 Km. 10 Orthogonal

waveforms from the transmitters were transmitted. The angle space considered in all

simulations was between −90o to 90o, and the range was uniformly discretized with

0.667o step. The number of samples received in each receiver was 512 samples. At each

receiver, 15 random projections were extracted by multiplying the received samples

with a random Gaussian matrix of mean 0 and unit valiance. These samples were then

forwarded to the fusion center. We compared the performance of the proposed approach

with SBL, and WSBL.
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Monte Carlo simulations with 100 trials were performed for the MIMO radar de-

scribed above. In each trial, k targets were randomly distributed in the angle space,

and the reflections from these targets were collected at the radar receivers. Additive

white Gaussian noise at SNR of 0 dB was added to the received samples at each re-

ceiver. We should note that for SNR greater than 0 dB the performance of all different

approaches is similar. The MUSIC estimate used in WSBL was obtained based on

multiple snapshots of the radar antennas, i.e., 15 snapshots. The priors and likelihood

parameters that were used to obtain the probability vector p were estimated using

M = 2500 observations, with sparsity level k = 5 and SNR = 0 dB. For BSBL, the

positive scalar c was set to 0.1 in all simulations. We also tried different values for

c without big difference in BSBL performance, which may indicate that the value of c

has no big impact on the final estimation. Receiver Operating Characteristics (ROC)

curves were used to compare the performances of BSBL, SBL, and WSBL. Detection

was declared when all the targets were detected successfully.

Finding a high value for pi gives us a good hint that xi belongs to the support of the

sparse vector. However, this by itself does not provide a good estimate of the sparse

vector support. To illustrate this point, we constructed a sparse vector by assigning 1s

to xi’s corresponding to pi > 0.5, and setting the rest to zero. We refer to this approach

as the NBC approach and use it to show how much BSBL improves over it.

Fig. 4.1 shows ROC curves for k = 3, 4, and 5, and for SNR = 0 dB. One can see

that SBL, WSBL, and BSBL result in comparable performance for k = 3. Also, there

is a slight degradation of WSBL performance for k = 4 as compared to BSBL, while

we see degraded performance of SBL. One can also see the substantial improvement in

performance of BSBL for k = 5 case in comparison to SBL and WSBL. Also, one can

see the improvement of BSBL over the NBC approach.

Although one would have done more training to improve the probabilities pi, and

thus improve the Classifier approach, this would increase the involved complexity as-

sociated with NBCs training. It appears that the proposed approach can make up for

the lack of a large amount of training samples.
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4.5 Conclusions

Bernoulli Sparse Bayesian Learning for basis selection has been proposed. The rate

parameters of the hyperparameters are modeled as a Bernoulli random variables, and

are estimated along with the hyperparameters. The parameters of the Bernoulli random

variables are obtained based on the observation and also training data. The proposed

approach exhibits improved performance as compared to SBL and WSBL for low SNR

and different levels of sparisty.
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Chapter 5

Conclusions and Future Works

In this dissertation, we have demonstrated the use of an estimate of the sparse vector

to improve the sparse vector recovery. Also, we have demonstrated the use of machine

learning approaches to effectively enhance sparse vector recovery. For the weighted `1-

norm minimization problem, we have shown that the RSP conditions can be satisfied

for the weighted approach by appropriately assigning weights, even if the original non-

weighted approach does not satisfy the RSP conditions. Conditions on the weights

have also been provided. Monte Carlo simulations have shown improved success rate as

compared to widely used sparse vector recovery approaches. We also have evaluated the

proposed approach performance in localizing active sources in an auditory experiment

from EEG recordings. The proposed approach has successfully localized the active

sources within the proximity of primary auditory cortex.

WSBL has also been proposed, in which the hyperparameters have a distinct set of

parameters. These parameters are assigned using a coarse estimate of the underlying

sparse vector. Using of MUSIC estimate with WSBL has been validated analytically,

and we have shown through simulations the substantial improvement in ROC curves

in low SNR cases as compared to SBL-based approaches. WSBL has been applied

to compressed sensing MIMO radar DOA estimation, and has shown robustness in

estimating DOA of targets under low SNR as the number of targets increases.

Bernoulli Sparse Bayesian Learning (BSBL) has also been proposed. In BSBL, the

rate parameters of the hyperparameters are modelled as Bernoulli random variables,

and are estimated with the hyperparameters. Machine learning approach has been used

to estimate the parameters of Bernoulli random variables. We have applied BSBL on

compressed sensing MIMO radar to estimate targets’ DOAs. BSBL has shown enhanced
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detection rate as compared to WSBL that uses MUSIC as weights in low SNR scenarios

for different sparsity levels.

Initiated by the research proposed in this thesis, we would like also to provide a few

future research directions as follows:

1. In Chapters 1 and 2, the use of MUSIC as a weight vector is demonstrated. The

use of different estimations as weights is important to explore and can shed the

light on the effects of different weights on the performance proposed approach

in estimating the sparse solution. An example of such weights is the Spectral

estimations, which have been used extensively in Phase Retrieval applications.

2. Regarding EEG source localization, we assume throughout the simulations that

the active sources lie on the grid points. One approach is to consider the estima-

tion of off-grid sources by using linear Taylor approximation of the off-grid sources

using the neighboring grid points. This can find applications in BCIs, clinical ne-

oroscience for epilepsy researches, and cognitive neuroscience to understand the

brain functionality associated with complex tasks.

3. In WSBL and BSBL, we only consider on-grid targets only. However, in practice,

the targets may not be exactly lie on one of the predefined grid points. One can

consider expanding this approach to estimate off-grid targets’ DOAs. This in turn

increases the accuracy of the estimated targets’ DOAs.

4. Fast SBL has been shown to have a lower complexity as compared to SBL. Along

this, one could consider to extend WSBL and BSBL to Fast WSBL, and Fast

BSBL, respectively. For this, one can consider a trade-off between the basis

corresponds to the largest decrease in the loss functions of WSBL and BSBL, and

the corresponding assigned weight in WSBL or the estimated Bernoulli parameters

in BSBL. Decreasing complexity is important in applications where processing

time is crucial, such Automotive Radar Systems.

5. In BSBL, we consider the use of NBCs to estimate the parameters of the Bernoulli



80

random variables. One can consider to deploy more sophisticated machine learn-

ing approaches and deep learning to improve the probability of detection rate

for lower SNRs and larger number of targets. The trade off between the number

of training samples, training time, and processing time should be considered in

deciding the machine learning approach utilized with BSBL.
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Appendix A

Proof of Theorem 2

To prove Theorem 2 we will prove its contrapositive, i.e., we will show that if a solution

does not satisfy Theorem 1, then
∣∣AT

J0(AT
Js)
†us
∣∣ � 1.

Let x satisfy the RSP conditions (a),(b), and (c) except condition (d) of Theo-

rem 1(i). On defining v such that ATv = us, the aforementioned conditions can be

rewritten as

AT
J+v = 1,AT

J−v = −1,
∣∣AT

J0v
∣∣ � 1. (A.1)

Let us group together the first and second conditions in (A.1) to form the system

AT
Jsv = us, where AJs =

[
AJ+ AJ−

]
, and us =

[
1T −1T

]T
. This is an under-

determined system, whose least square solution equals vls = (AT
Js)
†us. Substituting

vls in
∣∣AT

J0v
∣∣ � 1, we get |AT

J0(AT
Js)
†us| � 1, which completes the proof.
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Appendix B

Proof of Theorem 3

First, we prove the necessary condition. Define x?p and x?n to be vectors containing the

positive and negative entries of x? respectively, i.e.,

x?pi =


x?i x?i > 0

0 x?i ≤ 0

, and x?ni =


−x?i x?i < 0

0 x?i ≥ 0

.

Then x? = x?p− x?n and ‖x?‖1 = 1Tx?p + 1Tx?n. The problem of (2.18) can be rewritten

as

minimize
xn,xp,v,t

h1Txp + h1Txn + t

Subject to xp � 0,xn � 0

t ≥ ‖v‖2,v = y −Axp + Axn,

(B.1)

with a solution x? = x?p − x?n. The Lagrangian of (B.1) is

L = h1Txp + h1Txn + t− λT1 xp − λT2 xn

−α(t− ‖v‖2) + λT3 (y −Axp + Axn − v),

(B.2)

and the corresponding dual problem as defined in (2.19). On denoting with v?, λ?1,

λ?2, and λ?3 the solution to (2.19), and based on the strict complementary slackness, we

have that λ?1i = 0 when x?pi > 0, and λ?2i = 0 when x?ni > 0. From the complementary

slackness and the constraints (19.1) and (19.2) in (2.19), we get

aTpiλ
?
3 = h when x?i > 0

aTniλ
?
3 = −h when x?i < 0,

(B.3)

where api and ani are the columns of A associated with positive and negative elements

of x?, respectively.
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By adding and subtracting (19.2) and (19.2) in (2.19), we get

ATλ?3 =
λ?2 − λ?1

2
(C3)

λ?1 + λ?2 = 2h1. (C4)

(B.4)

For zero x?pi and x?ni, λ
?
1i and λ?2i are non-zero. From (C4) of (B.4), we have that

0 < λ?1i < 2h and 0 < λ?2i < 2h, which implies that

−2h < λ?2i − λ?1i < 2h when x?i = 0. (B.5)

Combining (B.5) and (C3) in (B.4), we get

−h < āTi λ3 < h when x?i = 0, (B.6)

where āi is any column associated with zero entry in x?.

For proving statement (d) in this theorem, we use Slater’s condition, i.e.,

yTλ?3 = h1Tx?p + h1Tx?n + ‖v?‖2. (B.7)

Since y = Ax?p −Ax?n + v?, we can rewrite (B.7) as follows

(ATλ?3 − h1)Tx?p − (ATλ?3 + h1)Tx?n + λ?T3 v? = ‖v?‖2. (B.8)

The first two terms in (B.8) are always zero. This is because, from (B.3), for non-zero

x?p and x?n, ATλ?3 − h1 and ATλ?3 + h1 are zeros. Also, these terms are zero when x?p

and x?n are zeros. This implies that

λ?3
Tv? = ‖v?‖2 =⇒ λ?3 =

v?

‖v?‖2
=

y −Ax?

‖y −Ax?‖2
. (B.9)

So, indeed, there is a u = ATλ?3 ∈ R(AT ) such that when x? is a solution to (2.18), we

have that
(a) ui = h if x?i > 0

(b) ui = −h if x?i < 0

(c) |ui| < h if xi = 0

(d) u = AT y−Ax?

‖y−Ax?‖2 .
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Next, we will prove the sufficient condition, i.e., if for a given x?, we have λ?3 such

that

λ?3 =
y −Ax?

‖y −Ax?‖2
,


ui = aTi λ

?
3 = h if x?i > 0

ui = aTi λ
?
3 = −h if x?i < 0

|aTi λ
?
3| < h if x?i = 0

, (B.10)

then x? is a solution to (2.18). Assume that x̂ 6= x? is the solution to (2.18). Then, it

should hold that h‖x̂‖1 + ‖y −Ax̂‖2 < h‖x?‖1 + ‖y −Ax?‖2. Also, from the necessary

condition of this theorem, we should have

aTi λ̂3 = h if x̂i > 0

aTi λ̂3 = −h if x̂i < 0

|aTi λ̂3| < h if x̂i = 0

λ̂3 = y−Ax̂
‖y−Ax̂‖2 ,

(B.11)

Following the assumption of Slater’s condition, and since the dual problem should

attend its maximum at λ̂3 and v̂ = y −Ax̂, we should have that

yT v̂
‖v̂‖2 > yT v?

‖v?‖2

⇒ (Ax̂ + v̂)T v̂
‖v̂‖2 > (Ax? + v?)T v?

‖v?‖2

⇒ h‖x̂‖1 + ‖y −Ax̂‖2 > h‖x?‖1 + ‖y −Ax?‖2,

(B.12)

which contradicts the first assumption requiring that h‖x̂‖1 + ‖y −Ax̂‖2 < h‖x?‖1 + ‖y −Ax?‖2.

This implies that x̂ is not the solution to the problem of (2.18).
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Appendix C

Proof of Theorem 4

From condition (c) of Theorem 3, if we choose wii such that |wiiaTi λ
?
3| < h, with λ?3

represents the solution of the dual variable of the problem define in (2.19), then qi = 0.

Starting from condition (c) of Theorem 3, we have that

wii|aTi λ
?
3| < h

⇒ wii <
h

|aT
i λ?

3|
,

(C.1)

and since aTi λ
?
3 ≤ ‖ai‖2‖λ?3‖2 = ‖ai‖2, we get

wii <
h

‖ai‖2
⇒ qi = 0. (C.2)
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Appendix D

Proof of Proposition 2

The denominator of (3.16) can be rewritten in terms of the signal subspace ES as

‖(I−ESET
S )ai‖22. (D.1)

On assuming that the signal subspace ES is spanned by the set of columns that belong to

the support of the underlying sparse signal, the denominator in (D.1) can be rewritten

as

‖ET
Nai‖22 = ‖(I−As(A

T
s As)

−1AT
s )ai‖22, (D.2)

where As is the matrix with columns that belong to the support of the sparse signal.

On assuming low mutual coherence among the columns in As, one can approximate

(AT
s As)

−1 as the identity matrix, thus getting

‖ET
Nai‖22 = ‖(I−AsA

T
s )ai‖22 = t. (D.3)

Let us assume that matrix A has independent random entries, each distributed as

N(0, 1
m) [13]. Then, the diagonal elements of AsA

T
s follow Chi-square distribution with

k degrees of freedom, with mean of k
m and variance 2k

m2 . Also, the off diagonal elements

follow Gamma-variance distribution with mean zero, and variance k
m2 . The identity

matrix inside the parenthesis of (D.3) has no effect on the statistics of the off diagonal

elements of (AsA
T
s ), and it only affects the mean of the diagonal entries. The mean of

the diagonal entires of (I−AT
s As) is 1− k

m2 .

Multiplication of (I −AT
s As) with ai results in a vector with independent entries,

and each entry is the sum of m random variables. Via the Central Limit Theorem,

the resulting random variable can be approximated as a Gaussian with zero mean and

variance k+m2−mk+k2

m3 . On invoking the basic result related to the expected length

square of a random Gaussian vector [91], completes the proof.
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Appendix E

Variational Approximation of p(x)

In this Appendix, we show the intermediate steps to obtain the result of (3.33). Starting

with (3.32), Substituting x2
i with v, and taking the log, the conjugate function p∗(λ)

can be found using

p∗(λ) = maxv

(
λv − log(C) + (a+ .5)[log(b+

v

2
)]
)
. (E.1)

Differentiating (E.1) w.r.t. v, and equating to zero, we get

u = −2 b− a+ 0.5

λ
. (E.2)

Substituting (E.2) into (E.1), we get

p∗(λ) = −log


√

2 ba Γ
(
a+ 1

2

)
2
√
π Γ (a)

(
−a+ 1

2
2λ

)a+ 1
2

− λ
(

2 b+
a+ 1

2

λ

)
. (E.3)

Observing that f(v) is monotonically decreasing function, we only need to consider

λ ≤ 0 for maximization of (2.11). Using the monotonically increasing transformation

λ = −1
2gi

, we have

p(v) = maxgi≥0log

 √
2 ba Γ

(
a+ 1

2

)
2
√
π Γ (a)

(gi (a+ 1
2))

2

a+ 1
2

−
v

gi
−

2 b− gi
(
a+ 1

2

)
gi

.

(E.4)

Taking the exponent of both sides of (E.4), substituting x2
i with v, we get

p(xi) = maxgi≥0
23 a−1 ba Γ

(
a+ 1

2

)2
e
−w2+2 b−g−2 a g

2 g

ga+ 1
2 π Γ (2 a) (2 a+ 1)a+ 1

2

. (E.5)
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