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In highway safety practice, the conventional approach to improving safety by 

implementing road safety treatments is to use deterministic crash modification factors 

(CMF). The problem with these crash modification factors is that they are actually 

indeterminate. They are based on estimates of the associations of various road 

geometry attributes with crash frequency, which are derived from models that can be 

affected by many methodological and data problems. And since the methods employed 

are largely dependent on the analyst’s discretion, results can vary quite widely. The 

areas of model specification and data are two areas that are very much subject to the 

analyst’s discretion. Specifying crash models wrongly (introducing specification error) 

and using data with availability and quality problems (introducing measurement error) 

can cause erroneous inferences to be made about the results of safety countermeasures 

that are applied to highway segments, compounding the problem of crash occurrences 

and potentially creating inefficiency in road safety spending. This problem is 
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exacerbated by the fact that they may be propagated as an industry standard through 

the existence of an expert manual. I have examined the specific specification error 

problem of omitted variable bias, where the associations of variables included in safety 

models are biased due to the omission of certain important variables, and the 

measurement error problems of data availability and quality. In examining these 

problems, I used a comparison method, where I compared the results of statistical 

models affected by the specification and measurement error problems to models where 

I have attempted to rectify the problems in order to see if there is an improvement in 

the results of the latter. My findings are mixed; results show no substantial change in 

the associations with crash frequency between models affected by specification and 

measurement error and models unaffected for certain variables and show notable 

change in association for other variables. I have also examined the implications of these 

problems in practice through interviews of safety practitioners and found that practical 

limitations preventing transportation agencies from addressing these problems exist. 
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Introduction 

Crash frequency is an established and frequently researched topic in 

transportation planning and engineering. One reason is that roadway crashes have a 

high social and economic impact. According to the National Highway Traffic Safety 

Administration (NHTSA), there were about 32,539 fatal crashes, 2.4 million injuries and 

6.3 million police-reported crashes in 2015 (NHTSA 2018). The economic cost of crashes 

in 2010 (the most recent year for cost data availability) was $242 billion (NHTSA 2018). It 

is as a result of this high cost of crashes that decisions made to alter highway geometry 

are backed by research, usually undertaken by engineering consultants. Typically, this 

research is based on statistical models that predict the ways in which changes made to 

various roadway attributes, such as the widening of lanes or the addition of roadway 

medians affect the frequency of crash occurrences.  

A wealth of studies examining the soundness of the methods used in making 

these predictions exists. Researchers have mostly given thought to the adequacy of 

different types of models, and to the nature of association, whether positive or 

negative, of some variables on crash frequency. The Highway Safety Manual (AASHTO 

2010a), published by the American Association of State Highway and Transportation 

Officials (AASHTO), is currently one of the most important publications based on this 

kind of research. Many state transportation agencies routinely use it for safety analysis 

and in determining how to alter common roadway geometric attributes in order to 

decrease crash occurrences. There are state mandates for the use of the HSM through 
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the Highway Safety Improvement Program (HSIP), under the Fixing America’s Surface 

Transportation Act.  The variables typically analyzed are geometric and traffic volume 

variables including lane width, roadway width, median width and type, shoulder width, 

horizontal curvature and annual average daily traffic (AADT). This wealth of analysis on 

the soundness of methods is in line with the general importance, and the high social and 

economic impact of crashes.  

Not as much emphasis however, has been given to the ways in which decision 

makers use this kind of analysis. In addition, the ways in which specification and 

measurement error cause indeterminacy and affect the inferences used in making 

safety decision-making is largely unexplored. In this dissertation study, I examine the 

ways in which expert recommendations, such as those that make up the Highway Safety 

Manual, are used in making decisions to alter highway attributes to improve road 

safety. I also examine the ways that specification and measurement error in crash 

frequency models affect these decisions. I assess the ways by which public servants in 

the legal system, specifically judges create legal precedent that set an unofficial 

mandate for the use of the Highway Safety Manual. In Street Level Bureaucracy (Lipsky, 

1980), street-level bureaucrats are described as executors of government policy who 

through the use of their discretion on a case-by-case basis also form policy. The sum of 

their individual responses add up to an agency behavior and in the case of the 

adjudication of injury liability cases, form an overall policy of the mandatory use of 

standards like the Highway Safety Manual. 
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Roadway design and conditions, vehicle attributes and human factors are 

thought to be important factors associated with the frequency of crashes. Studies that 

have examined the relative importance of these factors estimate human factors to be 

the main factor associated with about 90% of all crashes, with road and vehicle 

conditions being far less important (Petridou, E. 2000).  Much of this is attributed to risk 

taking behavior such as speeding (Evans,L. 1996, Treat, J.R. 1980, Sabey, B.E. 1975). 

Many of these studies have influenced the creation of policy to influence driver 

behavior as a solution to address the problem of crashes. These studies have mixed 

conclusions about the efficacy of policies targeting driver behavior, with the finding that 

drivers can sometimes compensate for reduced risk by increasing risk-taking behavior 

(Smeed 1949, Taylor 1964, Näätänen and Summala 1974, Wilde 1982). It is crucial for 

efforts to reduce the frequency of crashes to be informed by the fact that factors 

associated with crashes are not equally important. In my dissertation I argue that the 

conventional approach is to alter roadway design. While studies show that policies to 

alter driver behavior are not always effective, the relatively marginal influence of 

roadway design on crash frequency raises questions about the focus on roadway design 

countermeasures. 

An examination of safety decision-making and statistical errors affecting it 

In examining safety decision-making, I focus on the Highway Safety Manual 

(HSM) because it is increasingly becoming the standard manual for such decisions. The 

Highway Safety Manual (AASHTO 2010a), published by the American Association of 

State Highway and Transportation Officials (AASHTO) has created a new “expert” 
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paradigm in road safety decision-making, where the recommendations from the manual 

are given expert status by consultants and decision makers, and relied upon without 

much consideration for how they are derived. I discuss my reasons for this assertion in 

my literature review. The major issue with the HSM being conferred expert status is that 

it is possible that certain issues affecting the validity of findings, present in the process 

of model estimation, may result in the failure of road safety improvement decisions to 

yield expected results.  

One of the more important issues possibly affecting the validity of these results 

is the presence of model specification error. This specification error, especially if caused 

by the omission of contextual variables or variables that have to do with the location of 

crash occurrence, will serve to limit the transferability of findings from the Highway 

Safety Manual to other contexts and lead to erroneous inferences. This kind of 

specification error is known as omitted variable bias. I propose that the omission of 

contextual variables, including various kinds of demographic and economic variables 

causes omitted variable bias, since these variables are correlated with crash frequency, 

and one or more geometric variables. Another important issue that can affect the 

validity of findings is measurement error. In this case, certain practices in data collection 

and processing have introduced error into the dataset, such that the dataset is not quite 

representative of reality. To test these hypotheses, I have examined two datasets using 

statistical analysis, and carried out a study of how such statistical analyses are used 

through in-depth interviews of transportation professionals. 
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The first dataset used contains the roadway network of the state of 

Pennsylvania. This network consists of roads of six functional classifications. I first 

examined pavement width, lane count, median width, vehicle miles traveled and 

sinuosity for each functional classification. These were the link-based models since they 

contained only road geometry variables. I then re-examined the same road segments for 

the associations of those variables while including the contextual variables of population 

density, employment density, and median income on crash frequency. These were the 

combined models since they combined the road geometry variables with contextual 

variables. Differences in the results between the link-based model and the combined 

model are taken to be due to the omission of contextual variables in the link-based 

model, showing that such models suffer from an internal validity problem (Mitra, 

Washington 2012).  

This same procedure is repeated for another dataset of the roadway network of 

North Carolina to investigate the effect of using data with improved quality. I use data 

sourced from the Highway Safety Information System (HSIS), a database administered 

by the University of North Carolina Highway Safety Research Center, in partnership with 

the Federal Highways Administration (FHWA). I discuss the attributes of HSIS data that 

make it better than other data in detail in another section. For my North Carolina 

dataset, I analyze crashes using the same variables I used in my Pennsylvania dataset, 

along with the additional variables of age, precipitation and elevation. 
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Through my dissertation research, it is my goal to learn the benefits and 

challenges created by the emerging expert paradigm on road safety decision-making, 

with a specific look at how specification and measurement error impact it.  

Research Questions  

In this section I discuss the main research questions raised by my proposed 

research   topic. Each research question has a sub-set of more specific questions that 

points to the data and methodology required for addressing the main question.  

My first research question asks, “Is there evidence to point to specification and 

measurement error in crash frequency modeling”? The underlying assumption here is 

that specification error is introduced by analysts’ choice to omit contextual variables 

from model specifications. I discuss the underlying theory as well as empirical research 

that supports this assumption in my review of pertinent literature. To be able to answer 

this research question, specification error must be detectable. Therefore, certain follow-

up questions arise.   

One arising question is “to what extent can omitted variable bias be detected 

after accounting for various limitations to its detection?” Detection is complicated by 

the fact that the outcomes from one kind of specification error might be the same as the 

outcomes from another kind of specification or other statistical error. In the case of 

omitted variable bias, the problem of biased coefficients, may be the same outcome for 

the conditions of autocorrelation, incorrect functional form, and measurement error. 

Spatial correlation can adversely affect the precision of parameter estimates 

(Washington et al.,2010). When an incorrect functional form is used, the parameter 
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estimates for the explanatory variables will be biased (Lord, Mannering 2010). In the 

case of measurement error, there is an internal validity problem because the data has 

issues in representativeness. I therefore use methodology that can eliminate these 

sources of bias in my analyses.  

Data availability and quality are two other areas that can affect the inferences 

made from crash frequency studies. Another question to answer is then “how do data 

availability and quality affect the ability to make correct inferences from crash frequency 

analysis?” There are many known data availability and quality issues in crash frequency 

analysis and it is important to understand how they might affect inferences from crash 

frequency models, since measurement error diminishes internal validity. 

My second research question asks, “how might a better understanding of the 

impact of the problems of deterministic crash modification factors affect decision-

making to improve road safety?” This question naturally derives from my first research 

question because the ultimate goal of crash frequency analysis is to make informed 

highway safety decisions and implement treatments. This second research question 

focuses on the decision-making aspects of highway safety. I am mainly interested in four 

main questions in safety decision-making. The first is “how is the Highway Safety 

Manual used in road safety decision-making?” One of the overall goals of my research is 

to learn how specification and measurement error can affect decision-making. 

Understanding how decision-making occurs under the current expert paradigm created 

by the emergence of the Highway Safety Manual is an important starting point, since I 
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am proposing that such errors are introduced through the recommendations made by 

the Highway Safety Manual. The next question is “Are decision makers aware of possible 

problems associated with the use of the Highway Safety Manual?”  This question aims to 

discover the extent of the awareness of problems arising from use of the manual among 

transportation officials. I am specifically interested in their awareness of the problem of 

indeterminacy, caused by the introduction of specification and measurement error.  

Another question is “How are transportation officials accounting for the possible 

problems with the use of the Highway Safety Manual? It is also important to understand 

the level of importance that transportation officials place on the indeterminacy problem 

and what strategies they currently use to deal with it. The final question I considered is 

“How can better modeling practices gain ground?” This question aims to discover what 

the practical application of improved crash frequency modeling might be on road safety 

decision-making from the perspective of road safety decision makers. It is asking 

transportation officials and consultants to weigh the benefits of the Highway Safety 

Manual which include its authoritativeness and its simplification of decision-making, 

against an alternative that can minimize specification error and enhance the efficiency 

of road safety spending but is relatively more complex. The issue of efficiency in road 

safety spending is important as there is a limited amount of funds available for road 

safety improvements. Currently, the Fixing America’s Surface Transportation (FAST) Act 

has authorized an average of $2.3 billion annually between 2015 and 2020 for highway 
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safety improvement projects at state, municipal, and metropolitan planning 

organization levels (Federal Highway Administration 2016).  

Each chapter of analysis in my dissertation directly responds to these research 

questions. With my Pennsylvania study, I address the first research question on the 

presence of specification error, while my North Carolina study is an attempt to confirm 

the results from my Pennsylvania chapter, in addition to addressing my research 

question on measurement error. My final chapter of analysis covers the result of 

interviews I conducted in order to understand safety decision-making, and addresses my 

second research question. In the next section, I discuss literature pertinent to the above 

research questions. 

 



10 

 

    

 

Literature Review   

One of the key assumptions of my research topic is that specification and 

measurement errors are important problems that affect crash frequency analysis. This 

premise is crucial to the other important assumption that these specification and 

measurement errors impact road safety decision-making because they are transferred 

through the emerging expert paradigm that has been created by the publication of the 

Highway Safety Manual. The unquestioned application of the recommendations in the 

Highway Safety Manual is enabled by the nature of expert paradigms- they are usually 

readily applied because of their status as expert advice.  

In this literature review, I discuss the Highway Safety Manual generally and 

address such questions as the reasons for its publication, followed by a discussion on 

how it is creating an expert paradigm and the problems that expert paradigms in turn, 

create. I look at specific problems with the Highway Safety Manual, including problems 

with its positivist approach and some internal validity problems, both of which are 

exacerbated by its wide acceptance. I briefly discuss the reasons for its wide acceptance, 

followed by a discussion of how various states are using it. I then review several 

published crash frequency studies in order to illustrate how methods used in many 

studies, which are examples of the studies that the Highway Safety Manual sources its 

recommendations from, may be affected by specification and measurement error. 

Having shown that most crash frequency studies are potentially affected by specification 

error, and that application of the recommendations from the Highway Safety Manual 
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should be critically assessed because of their basis in such studies, I discuss the 

theoretical backings for the relevance of contextual variables, the omission of which 

causes specification error. Finally, I review several empirical safety studies that appear 

to substantiate this theoretical backing for the relevance of contextual variables by 

examining their correlation with crash frequency and end with a review of methods 

used in crash frequency analysis. 

 

The Highway Safety Manual and the emerging expert paradigm 

The American Association of State Highway and Transportation Officials 

(AASHTO) intended the Highway Safety Manual (HSM) as an optional guide for use by 

transportation agencies at all geographies, in making and implementing decisions 

towards the goal of increased highway safety. The Highway Safety Manual started out 

as a Transportation Research Board initiative, as several researchers identified a lack of 

emphasis on safety in transportation decision-making (Babar, Parkhill 2006). They saw 

this lack of safety emphasis as caused by the absence of a single authoritative document 

that could assist decision makers by filling a knowledge gap.  In other words, the 

problem that the researchers saw was that safety related decision-making in 

transportation was being forgone in favor of other transportation needs such as 

maintaining optimal road capacity. They believed that this problem was a result of the 

absence of a widely accepted source of expert knowledge that transportation officials 

could refer to, for making safety related decisions. Thus, the Highway Safety Manual, a 

collection of such expert knowledge, was published and a paradigm in which 
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transportation officials depend heavily on this expert knowledge is potentially emerging. 

Next, I discuss the theoretical backing for the notion that the Highway Safety Manual is 

being used as expert knowledge in highway safety decision-making or at least, has the 

potential and likelihood of being so. 

The Highway Safety Manual as Expert Knowledge 

I propose that expert knowledge is the body of what is known objectively or as 

fact, to the highest extent possible, and is both technical and authoritative. Its attribute 

of technicality implies the use of fact-based rationality to solve problems, while its 

attribute of authority implies its power to out-compete other kinds of knowledge with 

the potential to solve the same problem, by becoming the chosen alternative. In the 

case of expert knowledge in transportation analysis and decision-making, the technical 

attribute implies knowledge about how to determine capacity, safety, scheduling and 

how to design transportation systems for greater efficiency. The attribute of authority 

on the other hand, implies the potential of the knowledge or solution in question to be 

chosen from among other possible alternatives such as the discretionary knowledge of 

individual professionals. Mitchell (2002) discusses expert knowledge by drawing 

attention to the technical nature of such knowledge as the basis for its capability to 

solve problems, and its backing by the law as the basis for its influence over other 

alternatives. 

These attributes of technicality and authority are evident in the relationship seen 

between technical knowledge and legal backing in many fields. In most developed 

countries, everyday problem solving is regulated such that only experts- those who are 
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licensed professionals and have proven their technical knowledge and ability or 

expertise, can confer the solutions. A person who needs a home may not simply build a 

structure and live in it. There must be environmental and traffic impact analyses, 

approvals by public planning professionals and home inspections by licensed inspectors. 

Yet, even in the absence of a defined legal backing for any alternative solution to an 

existing problem, a single one of those alternatives in question may outcompete the 

others based on the influence of the person or people backing it.  

In a case study of Aarlborg, Denmark, Flyvbjerg (1988) examines a multi-modal 

transportation plan that city planners and engineers had put together through a process 

of rational planning. The plan faced strong opposition from commercial interest groups 

and was in danger of not being implemented. In opposition, these groups proposed an 

alternative which was based on far less rationality or technical knowledge but was 

backed by persons who were very influential in local politics and in the local economy. 

Flyvbjerg discusses this phenomenon as more common in reality than researchers and 

others who grapple with the issue of the power behind rationality tend to believe.  

The procedures put forward in the Highway Safety Manual are not legally 

required as the only way to assess highway safety or to make safety decisions. I argue 

however, that the dynamics between its capability to solve problems, based on 

technical knowledge, and the influence and authoritativeness of AASHTO, the publishing 

agency of the manual, will nevertheless position the Highway Safety Manual as the 

source of authoritative knowledge that transportation professionals and decision 
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makers will increasingly rely on. There is precedent to support this assertion. A similar 

manual also published by AASHTO- the Highway Capacity Manual (AASHTO 2011) is 

already established as an authoritative manual in conducting highway capacity related 

analyses and in making capacity related decisions. This is also true for AASHTO’s A Policy 

on the Geometric Design of Streets and Highways (Green Book) (AASHTO 2011). In the 

next section, I discuss certain important problems arising from the use of authoritative 

manuals as expert knowledge.  

The problem with an expert paradigm in highway safety 

There are certain problems with this expert paradigm created by the emergence 

of the Highway Safety Manual. The problems arise partly from the general nature of 

expert knowledge and partly from complications inherent to the procedures by which 

the Highway Safety Manual recommendations are derived.  

The positivist problem 

One problem with the general nature of expert knowledge is that it assumes that 

all problems can be solved through a positivist approach. It ignores the human or other 

factors that can complicate problems and make them untenable to one-size-fits-all 

solutions. Not much question about the applicability of the solution is raised. The fact 

that there may be several alternative forms of knowledge that might apply to a 

problem, and yet a single alternative is considered expert knowledge is reflective of the 

value of positivism, a value which can be true of certain solutions in some areas of study 

but certainly not in all. In Making Social Science Matter, Flyvbjerg (2001) refutes the 
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view of expert knowledge as somehow superior to other forms of knowledge about 

issues and the implications of issues that affect people and their societies. He argues 

that expert knowledge, which usually consists of facts about objects, is suited to solving 

problems about objects, since objects have a relatively static nature from context to 

context and are not influenced by the subjectivity of the observer. It is possible for the 

same observations to be made about such objects from context to context and observer 

to observer such that the positivist approach is possible and useful. It is questionable 

however, whether the field of highway safety is helped by the attempt to solve its 

problems by applying static technical knowledge to varying contexts that also involve 

the unpredictable element of human behavior.  

As a result of the factors of varying contexts and human behavior, highway 

safety certainly seems to be an area that is also suited to practical rationality rather than 

only technical rationality or expert knowledge. Practical rationality refers to knowledge 

based on experience and is more suitable for inquiry about problems faced by people 

and societies which are by nature, context sensitive and subject to observer 

interpretation. For this reason, positivism is not always important or possible. I argue 

that in transportation planning, technical knowledge is not sufficient to understand 

problems because the subject matter of transportation problems is not limited to 

infrastructure such as roads and rail, or operations such as mass transit, but necessarily 

includes people and society. As such practical rationality is also needed.  
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Internal validity problems  

A more specific problem with the Highway Safety Manual as expert knowledge 

in highway safety decision-making has to do with internal validity issues in the 

derivation of its recommendations. In the next few sections, I discuss some common 

internal validity problems in other transportation manuals, and then the problems of 

indeterminacy and transferability in the HSM. 

The Highway Safety Manual is not the first authoritative manual with internal 

validity issues in the fields of transportation planning or engineering. One of the most 

widely known U.S. based studies of this problem was conducted by Donald Shoup where 

he examined the parking requirement standards recommended by the Institute of 

Transportation Engineers (ITE) in their Parking Generation Manual. The central finding 

of Shoup’s study is that conventionally, parking requirements are decided based on 

factors that have little to do with transportation systems and modal share (Shoup 2005). 

They are instead based on factors such as square footage of buildings or employee 

counts which while being easier to measure, are not direct determinants of parking 

demand. Another problem he found was that while parking needs are contextually 

sensitive, the ITE recommendations are based on a very small sample of suburban 

contexts where driving is the main and sometimes virtually the only mode of 

transportation. The result is that using the ITE recommendations for more urban 

contexts means that parking will be oversupplied.  
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This internal validity problem is compounded by the fact that many of these 

guidelines are often codified into the municipal ordinances of many municipalities. This 

means that they become the standard, and the problems that they cause then become 

commonplace by proliferation from project to project. Shoup discusses how this occurs. 

Developers use parking generation rates codified by planners, who obtain these rates 

from other municipalities or from the Parking Generation Manual. The guidelines in the 

manual which were derived from suburban contexts during peak parking demand are 

then codified into municipal ordinances as minimum parking requirements (Shoup 

2005). The internal validity problems of the HSM can also be compounded, as in the 

case of the Parking Generation Manual if through certain processes, the use of the HSM 

becomes a requirement for highway safety projects at all levels.  

Liability and other reasons for codification of problematic standards 

There are several reasons why guidelines with internal validity issues might be 

codified into municipal ordinances or required for use in other ways. One of the main 

reasons is that research and analysis to come up with jurisdiction specific solutions is 

labor-intensive and costly. The simplest alternative to incurring such costs is to adopt 

standards like the Parking Generation Manual or the Highway Safety Manual (Urgo, 

Wilensky et al. 2010).  Another important reason is the fact that apart from standards 

developed by authoritative institutions such as ITE or AASHTO, there are no theories 

that are known in the planning discipline for the generation of solutions to problems like 
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parking that professionals can discretionarily apply to problems in their locale. Shoup 

explains that 

“…zoning codes throughout the country contain thousands of different parking 

requirements- the Ten Thousand Commandments of off-street parking. Planners 

set parking requirements almost as if they were physicians prescribing drugs, but 

they have no theory, no training, and often no data to help them. No textbook 

explains the theory of parking requirements because there is none.” (Shoup 

2005, pg. 26) 

 The absence of such a theory means that planners must depend on standards like the 

Parking Generation Manual.  

Liability is another very important reason why practitioners resort to standards. 

The legal system, which executes and creates government policy in court plays a role in 

setting precedent where the use of standards in transportation planning become 

unofficially mandated. A very good example of a standard that has historically protected 

localities from liability is AASHTO’s A Policy on Geometric Design of Highways and 

Streets (Green Book). Like the Green Book, the Highway Safety Manual, is an AASHTO 

publication. If the adoption of A Policy on Geometric Design of Highways and Streets as a 

standard in highway design was influenced by AASHTO’s status as an authoritative 

institution, then it is not unlikely that the Highway Safety Manual will benefit from the 

same influence.  The Green Book is currently a mandatory standard in practice, even 

though just like the Highway Safety Manual, AASHTO describes it as a set of optional 
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guidelines. It is practically a mandatory standard because it has been adopted by the 

Federal Highway Administration (FHWA) as one of the guidelines to be used for the 

design of projects that are to be part of the National Highway System. Such highways 

must conform to the standard therein (Urgo et al. 2010). In the next section, I discuss a 

few cases on the use of the Green Book from the state of California to illustrate this 

issue of liability. 

California municipalities are not bound by the use of design standards from the 

Green Book since they are not often concerned with the design of roads that are part of 

the National Highway System. This notwithstanding, they may demonstrate compliance 

with standards in the Green Book as a way of avoiding liability in the event of being 

named in lawsuits where the plaintiff is alleging injury due to a dangerous roadway 

condition, under the California Government Code Section 835. The California 

Government Code allows the use of design immunity for localities that have been sued 

for injuries due to dangerous road conditions under section 835. This means that if the 

municipality can show that the injury in the lawsuit is caused by a design that was based 

on a prescription in the standard followed (such as standards in AASHTO’s Green Book), 

then they can be eligible for protection from liability (Urgo et al. 2010).  

In a similar way, an ITE standard speed limit, set based on studies conducted by 

ITE was used in James v. New York State Bridge Authority to determine a judgement for 

the city due to immunity from having used this standard. The use of established 

standards in highway tort liability is not limited to municipalities. Typically, plaintiffs use 



20 

 

    

 

such standards as the Green Book in attempting to prove negligence on the part of the 

municipalities that an action is being brought against (Blaschke, Mason Jr. 1986).  

Tort liability is an important issue that highway authorities must take into 

consideration and even budget for in advance. As discussed above, highway authorities 

take it into consideration by designing highways according to established standards in 

such authoritative manuals as the Green Book or the Highway Capacity Manual, to be 

able to use design immunity since precedent shows that this is advantageous. In this 

way, just as was the case with the Green Book in California, an unofficial codification of 

the Highway Safety Manual can occur through precedent set by case law, as various 

locales proactively seek to protect themselves from liability, using design immunity.  

Indeterminacy and Transferability  

In this section, I discuss the first internal validity problem specific to the Highway 

Safety Manual. While it is an improvement from the conventional means of safety 

analysis, some researchers have found that the application of the procedure for safety 

analysis recommended in the Highway Safety Manual can introduce error due to its 

dependence on certain questionable assumptions. One of the problem areas that 

researchers have identified is the indeterminacy of crash modification factors (CMF).  

The Highway Safety Manual contains multipliers that users can apply to baseline 

crash frequency figures to estimate how specific safety treatments will increase or 

decrease the baseline crash frequency. For example, the baseline crash frequency of an 

intersection has been found to be about 12.37 crashes per year. The agency conducting 



21 

 

    

 

the assessment is interested in applying several treatments to the highway to increase 

safety. These safety treatments include adding a median, reducing the number of lanes 

and adding signals to the intersection. This agency will use CMFs from the Highway 

Safety Manual for those variables and apply it to the baseline crash frequency of 12.37. 

The result, say 8.54 crashes/year, is the new crash frequency figure that can be 

expected if these treatments are implemented. The Highway Safety Manual contains 

hundreds of these multipliers or crash modification factors for a wide range of safety 

treatments including lane additions and reductions, medians, lane or road width 

increases by crash type, and for urban and rural settings (AASHTO 2010b).  

Hauer et al (2012) argue that a foundational flaw in the way that CMFs are used 

in the Highway Safety Manual and other authoritative guides lies in the assumption that 

they are constants (determinate) that can be estimated as the weighted average of 

available research results, as opposed to random variables whose values can vary widely 

from context to context based on a range of circumstances that affect them. If they are 

the former, then their standard error, which is reported in the manual is important, but 

if they are the latter, the standard deviation of their distribution becomes important.   

For CMFs of treatment effects that vary widely across projects and contexts, 

using a weighted average CMF raises the question of transferability. Using the weighted 

average CMF or any one CMF chosen from such a case could result in erroneous safety 

predictions and inefficient decision-making. This means that while the idea of CMFs that 

can be transferred from past research to future scenarios may work for certain safety 
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treatments, there is no reason to suppose that this is a general case.  An illustration of 

an inference that can emerge from the application of erroneous CMFs from the HSM 

might be getting a crash frequency change from 12.37 crashes/year from the previous 

example to 5 crashes/year upon application of the safety treatments erroneously, when 

the actual change will only be a reduction to 9 crashes/year. Sacchi, Sayed et al (2014) 

also argue that point estimates for CMF are inadequate because safety treatment 

associations are continuous over time and should therefore reflect changes over time 

for countermeasure associations.    

I posit that a factor that further limits transferability of these Highway Safety 

Manual CMFs is the presence of specification error due to omitted variables in the 

models that they are based on. The Highway Safety Manual CMFs are derived through 

an averaging of CMFs found in published and other research, provided that the CMFs 

have a small enough standard error (Babar, Parkhill 2006). This means that whatever 

statistical biases affect the original research will also likely transfer over to the Highway 

Safety Manual CMFs. If CMFs are based on models that are affected by the 

indeterminacy problem I discussed above or omitted variable bias so that the 

associations of certain safety treatments are overestimated or wrongly estimated, then 

it is reasonable to expect that the CMFs may also overestimate the change from 

baseline crash frequency that occurs from the installation of a treatment.  

Most published crash frequency research estimate crash frequency parameters 

using models that exclude contextual variables. Some of the reasons for this include 
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convention in the transportation engineering field, the existence of models that can 

control for unobserved factors, data availability and quality issues and the 

methodological complexities of accounting for such contextual variables (Mitra, 

Washington 2012). This omission of contextual variables has been found to limit the 

transferability of the crash prediction procedure outlined in the Highway Safety Manual. 

The Highway Safety Manual acknowledges that factors that are unique to certain 

jurisdictions may affect crash frequency including such factors as climate, driver 

populations, animal populations and crash reporting procedures. It therefore 

recommends the use of a calibration factor, to calibrate the safety performance 

function, to ensure results that are accurate to that jurisdiction (AASHTO 2010, Vol 2, 

C.8). It also acknowledges that these calibration factors are only adequate to making the 

models suitable at the state-level but limited in making models accurate to the site 

level. The calibration factor can be obtained by taking the ratio of observed crashes 

from the locality in question, to predicted crashes from the HSM safety performance 

function. When the calibration factor is less than one, it is indicative of a lower crash 

frequency in the jurisdiction in question, as compared with the crash frequency of the 

sites used to generate the HSM safety performance function used. When it is greater 

than one, the opposite is true. In this way, it is expected that the jurisdictional factors 

that affect crash frequency are accounted for, and the resulting estimation is true to the 

jurisdiction. In the following section, I discuss some reasons why the calibration factors 
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may or may not actually account for the association of contextual variables adequately, 

even at state-level-jurisdiction.  

How HSM calibration factors might account for contextual variables.  

   The Highway Safety Manual discusses the inability of its predictive method to 

account for the ways in which contextual factors affect crash frequency as an important 

limitation. It says: 

“Driver Populations vary substantially from site to site in age distribution, years 

of driving experience, seat belt usage, alcohol usage, and other behavioral 

factors. The predictive method accounts for the statewide or community wide 

influence of these factors on crash frequencies through calibration, but not site-

specific variations in these factors, which may be substantial” (AASHTO, Vol 2, pg 

C-19). 

 

I discuss driver behavior theories and the ways in which contextual variables act as 

proxies which capture the associations of driver attribute and behavior on crash 

frequency in a later section. For now, it is important to note that the Highway Safety 

Manual implies that calibration factors cannot be expected to account for contextual 

variables, which may differ in value quite substantially from site to site. While the HSM 

mentions that calibration factors account for behavioral effects on a statewide level, it is 

the case that countermeasures are applied at a site-specific level, making it very 

important for crash frequency modeling to function adequately and yield results that 
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are as accurate as possible at the site level. I now go on to discuss some of the theory 

behind the HSM calibration procedure, as well as some research work assessing its 

adequacy in application. 

 Researchers examining the HSM calibration procedure have interpreted how the 

calibration factor works in theory as a re-estimation of the HSM safety performance 

function (SPF) intercept to what it would be if the SPF had been made based on the local 

jurisdiction’s data (Farid, Abdel-Aty et al. 2016, Sawalha, Sayed 2006). The application of 

such a calibration factor scales the base model to give estimations that are closer to 

those of crashes observed in the local jurisdiction. This works, if the contextual variables 

can be expected to affect variability in crash frequency alone but not the way that crash 

frequency changes with a geometric variable, for example, median width. Figure 1 

below illustrates this kind of change. 

Figure 1: Change in Crash Frequency with Change in Median Width 
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Assume that scenario y1 is the baseline SPF from the Highway Safety Manual, and 

Scenario y2 is this SPF after calibration to a specific jurisdiction. As shown in figure 1, the 

change in crash frequency as a result of a change in median width is the same in both 

scenarios. While crashes are higher in scenario y2, a unit change in median width still 

causes a change by two units in crash frequency. This diagram shows how the HSM 

calibration procedure scales the SPF to the local jurisdiction in question.  

This however is not sufficient, if the contextual variables that the calibration factors are 

supposed to account for can be expected to also affect the change in crash frequency as 

a result of a change in a geometric variable. This is illustrated in scenarios y3 and y4. In 

y3, the intercept of the model is increased from 1 to 2, as in y2, but the coefficient of 

the median width variable is now 1 from its initial value of 2. This yields a one-unit 

change in crash frequency as a result of a one-unit change in median width instead of a 

two unit change in crash frequency as a result of a one unit change in median width 

from the y1 and y2 scenarios. A more drastic example is shown by scenario y4, where 

the relationship becomes negative. A one-unit change in median width still yields a two-

unit change in crash frequency but in the opposite direction. In other words, median 

width is now seen to have a negative association with crash frequency. The underlying 

assumption whereby recalibration to the y2 scenario from the y1 scenario occurs, is that 

the geometric variables have the correct relationship with crash frequency with respect 

to magnitude and especially direction of association in the first place. As I have 
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previously hypothesized, this may not be a correct assumption if omitted variable bias is 

a factor. 

             Several published studies have attempted to address the question of whether a 

calibration of the HSM SPF is enough to make it transferable. Sawalha and Sayed (2006) 

propose that recalibrating the model constant accounts for most factors not included as 

independent variables in the model. While this may be true, it most likely does not 

include factors that can cause omitted variable bias, since their association is not 

included in the constant but in the associations of the independent variables, causing 

them to be biased. 

               On the other hand, the study cautions that recalibrating the model constant 

cannot be sufficient, because the model shape or overdispersion parameter should also 

be considered (Sawalha and Sayed, 2006). This is based on the fact that different 

datasets have different shape or overdispersion parameters. The assumption that the 

overdispersion parameter of a model will be the same as that of the local jurisdiction it 

is transferred to therefore questionable. The shape or overdispersion parameter is 

important because it affects precision. The higher the parameter or the greater the 

dispersion in the data, the lower the precision of the SPF and the lower the 

overdispersion parameter, the higher the precision and reliability of the SPF (AASHTO 

2010). Cunto et al (2015) suggest that the use of calibration alone is insufficient and 

using other functional forms or explanatory variables may also be needed to improve 

the performance of the HSM predictive methods.  
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              From this discussion, it can be seen that calibration of the model constant alone 

may not be sufficient for adequate transferability. Several researchers have pointed out 

other components of SPFs that need to be considered when being transferred to other 

jurisdictions. I posit in my research, that omitted variable bias caused by the omission of 

contextual variables might be another factor that should be taken into consideration for 

transferability.  

Support for the transferability of the HSM calibration factors  

                One way to find out if scaling the HSM SPFs using a calibration factor is 

adequate enough for transferability is to apply said SPF and calibration factor to a local 

jurisdiction. Cunto et al (2015) carried out such a validation procedure to assess the 

transferability of the HSM SPFs to urban roads in Fortaleza City, Brazil. They obtained a 

calibration factor by dividing observed crashes by crashes predicted using the HSM SPFs, 

for a sample of signalized and unsignalized intersections. They then applied this derived 

calibration factor to predicted crashes for separate samples of signalized and 

unsignalized intersections. The results show predicted crashes to be very close in value 

to observed crashes for both the calibration and the validation samples for signalized 

intersections with very similar results for the mean absolute deviance and mean 

absolute percentage error for each sample’s predictive performance. The results for the 

unsignalized intersections were similar but showed that prediction did not perform as 

well as it did for the signalized intersection samples. 
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               An assessment of the cumulative residual plot, which is a common way to check 

the fit of a model, showed that the SPF, even with the calibration factor applied did not 

fit the data in the validation samples well for both the signalized and unsignalized 

intersection groups. The same finding was made when scatter plots showing crashes 

observed and predicted for the validation samples were assessed. Several other studies 

have been carried out for various US states, to assess the transferability of the HSM 

SPFs, with many seeing mixed results and recommending the use of local SPFs instead of 

the calibrated HSM SPFs including Maryland (Shin, Dadvar et al. 2015), Utah (Brimley, 

Saito et al. 2012), Louisiana (Sun, Li et al. 2006), and Alabama (Mehta, Lou 2013). The 

HSM safety performance function was found to overestimate crashes in Maryland, with 

the recommendation for locally-developed calibration factors where possible. The 

Louisiana study found better transferability from the HSM with negligible differences 

between observed crashes and crashes predicted using the HSM predictive method. 

Abdel-Aty et al (2016) also explore the transferability of SPFs using pooled data from a 

number of states and found that SPFs using pooled data from two to three states such 

as the HSM SPFs have better transferability than SPFs that do not.  

                  These studies at the very least, show that the use of calibration factors does 

not necessarily address the issue of the applicability of the HSM models to local 

contexts. In the next section, I briefly review existing mandates in certain states, for the 

use of the Highway Safety Manual in conducting safety analysis, after which I review a 

number of crash frequency studies in order to illustrate the commonality of omitting 
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contextual variables, as well as the wide range of variability of safety treatment 

associations.  

 

The expert paradigm in practice; State mandates for the use of the Highway Safety 

Manual  

I discussed above, the various reasons including labor and research cost, lack of 

theory, and liability as reasons why standards like the Highway Safety Manual may 

become codified or required. This codification or requirement is an issue because it 

causes the standards to be used quite extensively even though they can be quite 

problematic. In the case of the Highway Safety Manual, the problems I discussed above 

include indeterminacy, transferability, and the fact that practical rationality is ignored. 

In this sub-section, I discuss several examples of states that have made the use of the 

HSM a legal requirement, in the last decade since its publication.  

Most of these states have created this mandate for the funding of highway 

safety projects through the Highway Safety Improvement Program (HSIP) under the 

FAST Act. The Fixing America’s Surface Transportation Act was signed into law by 

President Obama in 2015 to secure long-term funding for surface transportation. The 

HSIP program under the FAST Act is a continuation from previous transportation 

legislation and sets aside about $2.2 billion per year over the 5 fiscal years from 2016 to 

2020 for spending on the improvement of highway safety (LDOTD 2012a). The FHWA 

has made it a requirement that state highway safety projects that will be funded by this 
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program are to be aligned with the strategic highway safety plan of the various states 

and must address a specific highway safety problem. Since these state Strategic 

Highway Safety Plans are required to be data-driven and involve countermeasure 

analysis, the Highway Safety Manual becomes very useful since it prescribes and 

provides detailed guidelines, data and other resources that facilitate just this kind of 

analysis. In addition to this, there are specific questions about whether a state has used 

the Highway Safety Manual and how it has used it, in the state annual reports that 

FHWA requires states to submit for the HSIP program. In addition to this, the FHWA lists 

the HSM as one of the tools available for safety analysis under the HSIP, along with a 

recommendation for its use: 

“The Highway Safety Manual (HSM) provides practitioners with the best factual 

information and tools to facilitate roadway design and operational decisions 

based on explicit consideration of the safety consequences.  The HSM serves as a 

resource for information related to the fundamentals of road safety, road safety 

management processes, predictive methods, and CMFs.  The road safety 

management process outlined in the HSM aligns very closely with the HSIP 

process.  Related to the HSIP, the HSM guides safety practitioners in several 

applications, including:  identifying sites with potential for safety improvement, 

identification of contributing factors and potential countermeasures; economic 

appraisals and prioritization of projects; and evaluation of implemented 

improvements.” (LDOTD 2012a) 
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While this does not constitute an explicitly stated requirement for the use of the 

Highway Safety Manual, this requirement for a specific kind of data-driven analysis, as 

well as the recommendation of, and questions about the HSM use make its requirement 

strongly implicit.  

The state of New Jersey has been apportioned $57 million annually in HSIP 

funding. At least one state transportation agency in New Jersey has already mandated 

the use of the Highway Safety Manual- the North Jersey Transportation Planning 

Authority (NJTPA). NJTPA currently has two programs, under which county roads, local 

roads, and high-risk rural roadways are funded towards the implementation of small-

scale safety treatments. These programs are the Local Safety Program, and the High-Risk 

Rural Roads Program. Under these programs, project sponsors are required to complete 

HSM calculations (FHWA 2017). It is stipulated in the New Jersey HSIP manual that the 

HSM must be used in performing safety analysis, after which the calculations performed 

according to its guidelines are to be reviewed by FHWA, NJDOT and NJTPA 

representatives for accuracy before successful submission of applications for funding.  

The state of North Carolina dedicated $50 million of state funds reimbursable 

through HSIP funding, for highway safety improvement projects in 2015. For the same 

period, $89.7 million in HSIP funding were programmed and $77.8 million were 

obligated (LDOTD 2012a). In North Carolina, HSIP funds are centrally administered, in 

partnership with Metropolitan Planning Organizations which may be sponsors of 
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highway safety projects. Although the HSM is used in safety analysis in the state of 

North Carolina, there is no explicitly stated requirement for its use that can be found in 

any state safety analysis manuals.  

The Virginia Department of Transportation (VDOT) administers the state 

Highway Safety Improvement Program, through various government agencies, 

municipalities, organizations, citizen groups or private individuals that may act as 

sponsors for safety improvement projects (LDOTD 2012a). Virginia currently has an 

apportionment of approximately $54 million for highway and non-motorized safety 

improvements. While there is no explicitly stated requirement for the use of the HSM in 

safety analysis for the state of Virginia, the state provides its own safety analysis tool 

which includes state-specific highway safety performance functions based on 

methodology outlined in the Highway Safety Manual. It allows agencies to perform 

network screening and prioritization of crash locations for safety treatment 

implementation and to select appropriate countermeasures, all heavily informed by 

standards and procedures from the HSM. This means that all state transportation 

organizations or municipalities proposing safety projects for HSIP funding in the state of 

Virginia will invariably use this HSM-based method.  

The state of Louisiana has an apportionment of about $65 million per year in 

HSIP funding. HSIP funds and projects are administered under the Louisiana Department 

of Transportation and Development (DOTD) through various metropolitan planning 

organizations and other transportation agencies that may sponsor safety projects. The 
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DOTD maintains a database of Louisiana-specific data and calibration factors needed for 

carrying out safety analysis according to the methods prescribed in the Highway Safety 

Manual. Projects that are to be eligible for Louisiana HSIP funding are encouraged to 

quantify the safety benefit of their proposed safety treatment in dollars, using steps 

outlined in the Highway Safety Manual. In addition to prescriptions from the Louisiana 

DOTD for the use of guidelines in the Highway Safety Manual, the DOTD also has a 

Louisiana Highway Safety Manual Implementation Plan. Under this HSM 

implementation plan, the DOTD has identified the goal of conducting training courses to 

“ensure the integration of the HSM into daily project planning, programming and 

engineering activities” (LDOTD 2012b). Also, under this plan, the DOTD has identified 

the goal of adopting the HSM as the guideline for DOTD project safety analysis. As with 

several other states discussed above, while there is no explicit requirement for HSM 

use, the stated expectations outlined by the DOTD regarding eligibility for HSIP funding 

for safety projects strongly imply that use of the HSM is in fact a requirement. In 

addition to this, the DOTD even provides a quick-lookup sheet that makes it possible to 

check what HSM chapters and applications pertain to the various stages in safety project 

implementation for HSIP funds in the state of Louisiana (LDOTD 2012a). 

Under the Washington Highway Safety Improvement Program, approximately 

$78.9 million has been programmed for HSIP project funding, while approximately $44.8 

million has been obligated. Like the state of Louisiana, the Washington State 

Department of Transportation (WSDOT) also implements highway design through its 
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own state specific design manual. Recently, WSDOT incorporated the Highway Safety 

Manual methods into their WSDOT Design Manual (WSDOT 2012).  

So far in this literature review, I have made a case against the uncritical use of 

the Highway Safety Manual due to it positivist and internal validity problems and 

discussed the exacerbation of these problems through the widespread use of the HSM, 

as such use becomes a requirement through an expert paradigm. I review theory and 

empirical studies surrounding the specific internal validity issues of specification and 

measurement error, in the next section. 

 

 

A review of crash frequency studies with potential specification and measurement error 

The studies I discuss in this section are examples of studies that model crash 

frequency using only road geometry variables. I highlight them to illustrate the fact that 

this kind of modeling is conventional in crash frequency research. This convention needs 

re-examination because the omission of contextual variables contributes to the problem 

of indeterminacy of crash modification factors, which in turn, limits their transferability. 

 I examined several studies that looked at the associations of lane and road 

widening on crash frequency. All the studies I examined that included lane and 

pavement width variables found negative associations, with values ranging from -0.42 to 

-0.09. Abdel-Aty and Radwan (2000) examined the associations of traffic volume, road 

segment length, horizontal curvature, shoulder width, median width, lane width and 

number of lanes, and urban or rural location on crash frequency. Labi (2011) examined 
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the associations of lane width, shoulder width, pavement surface friction, vertical and 

horizontal alignment on crash frequency on rural two-lane roads in Indiana. Council and 

Stewart (1999) examined the association of rural road conversion from two to four 

lanes. They also studied the associations of the additional variables of traffic volume, 

shoulder width and road width. Garnowski and Manner (2011) examine the associations 

of segment length, horizontal curvature, vertical curvature, lane width, traffic volume, 

and quantity of truck traffic on crash frequency for German autobahn connectors. None 

of these studies examined any specific contextual variables although some of the 

associations of some contextual variables such as population density might be captured 

in a dummy variable like urban or rural location, which Abdel-Aty and Radwan included.  

The range of associations from -0.42 to -0.09 is also quite large and gives substance to 

the indeterminacy arguments discussed above. 

For the treatment variable of lane count however, I found the range of 

associations to be smaller than that for lane and road width. A study that examined 

urban arterials in Vancouver, BC found a positive association with crash frequency, with 

a coefficient of 0.085 (Sawalha, Sayed 2001). Sawalha and Sayed examined segment 

length, traffic volume, number of lanes, number of bus stops per kilometer, median 

type, land use type and percentage of arterial roadway along which parking is allowed 

as control variables. Zeng and Huang (2014) examined urban roadways in Florida and 

also found and positive association with a coefficient of 0.167. They examined the 

control variables of segment length, traffic volume, and number of lanes.   
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Traffic volume had a wide range of coefficient values in the studies I examined, 

with the lowest coefficient being 0.24 (Zeng & Huang, 2014) and the highest being 1.18 

(Council & Stewart, 1999). Both the Zeng and Huang and the Council and Stewart 

studies examined only geometric variables in addition to traffic volume.  

The range of shoulder width coefficients was also relatively low compared with the 

range for some of the other variables I discussed previously. The Sawalha and Sayed 

study found a negative association of magnitude 0.15 (Sawalha & Sayed, 2001) while 

another study which examined Washington state principal arterials found a negative 

association of magnitude 0.30 (Milton, Mannering 1998). In addition to shoulder width, 

this study examined the variables of segment length, horizontal curvature, and vertical 

curvature.  

I examined two studies that looked at the association of median width. One was 

a study by Malyshkina and Mannering (2010), and the other was the Abdel-Aty and 

Radwan study I previously discussed. The Abdel-Aty study found a negative association 

of magnitude 0.024 which was not statistically significant and the Malyshkina and 

Mannering study found a positive association of 0.905. This was the highest range for 

the coefficients of any variable with the signs showing opposing directions of 

association, although one of the coefficients was not significant. The Malyshkina and 

Mannering study examined the variables for segment length, the curvature of the 

sharpest horizontal curve found on the roadway segment, interior highway shoulder 

indicator, and median width indicator. 
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Crash frequency in the above studies was modeled using various combinations of 

geometric variables based on the analyst’s discretion. This of course, affects the 

coefficients of the variables specified, and in turn, the inferences made from these 

models. Along with the nature of the coefficients, and the problem of contextual 

variable omission, this also contributes to the problem of indeterminacy. In the Highway 

Safety Manual, crash modification factors are derived from a combination of studies 

that use different variable specifications for the crash frequency models.  

In the next section, I discuss theory and empirical studies that point to the 

importance of contextual variables. The focus on geometric variables and the 

corresponding unexplored effects of omitting contextual variables seen in studies like 

the ones I discussed above, is inconsistent with what driver behavior models indicate 

and what empirical research on the associations of contextual variables with crash 

frequency shows. In general, these driver behavior models and empirical research show 

that contextual variables are important determinants of crash occurrence.  
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A review of theories of driver behavior  

In examining safety research, it is important to consider the human factor for 

several reasons. The most obvious reason is that driver behavior is known to be a causal 

factor for crash occurrence. Another reason is that many researchers believe that 

behavioral changes in reaction to road safety modifications can have such an impact as 

to reverse the improved safety effects of the modification although there is no 

agreement on the extent of this reversal (Smeed 1949). This means that knowing how 

drivers behave ordinarily and more specifically, in reaction to road design modifications 

is important to assessing the effects of any modification. Many theories about driver 

behavior exist.   

One of the earliest studies that examined the ways in which driver behavior changes 

was published in 1964 and found that drivers respond to riskier situations and adjust 

factors such as speed to account for such a perceived risk (Taylor 1964). Taylor theorized 

that drivers act to maintain a certain level of arousal, as indicated by the driver’s 

galvanic skin response (GSR) which is inversely related to the response reaction such as 

speed adjustment. Taylor’s study formed the basis upon which Wilde (1982) developed 

his risk homeostasis theory. Wilde argued that drivers arrive at a level of acceptable risk 

of being involved in a crash that is the result of weighing that risk against benefits such 

as covering a certain distance in less time through adjusting speed. To illustrate, this 

means that a driver that is perceiving relatively low risk might respond by increasing 

driving speed to achieve more distance or save time and conversely when perceiving 

relatively higher risk, might respond by decreasing driving speed, thus covering less 
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distance in the same amount of time. The implication is that safety treatments to roads 

might not be as effective as transportation agencies might expect if drivers increase risk 

taking behavior to garner the benefit of increased mobility, in response to the perceived 

reduced risk brought about by the safety treatments. Therefore, if drivers act to 

maintain the same target risk and adjust risk taking behavior up or down to achieve the 

target, more effective policies may be to change the target risk, as opposed to adjusting 

road conditions. Methods to change drivers’ target risk might be through education and 

safety campaigns.   

Another theory that continues to be debated by researchers is the zero-risk 

theory posited by Näätänen and Summala (1974). Näätänen and Summala argue that 

perception of risk is not a direct factor in drivers’ decision-making and that what is 

instead key to driver behavior is motivation. Motivation can be described as the 

prioritization of such goals as are secondary to the primary goal of arriving at a 

destination, for instance, the goal of expending the minimum energy possible in taking a 

trip or doing so in as little time as possible or doing so in such a way as to create an 

exciting experience. Summala (1988) discusses the implications of this theory for road 

safety as indicating the need to control drivers’ ability to carry out their motivations for 

instance, using speed control.   

There is also the rule-based model proposed by Michon (1985). Michon saw 

cognitive driver behavior as consisting of a hierarchy of three levels, including the 

strategic level, the tactical level and the operational level, between which the driver 
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actively makes decisions for execution. He saw these categories as occurring 

concurrently as the driver switches from one level to another in response to the driving 

conditions that arise. The strategic level might involve all planning towards certain goals 

for instance avoiding congested roads, the tactical might involve maneuvers towards 

negotiating driving conditions such as driving through curves or passing and the 

operational involves automated actions including braking and steering. Michon sees this 

rule based model as more capable of practical relevance for improving safety policy 

based on its suitability for analysis through computational frameworks (Michon 1985, 

Noland 2013).  

Task difficulty homeostasis, a theory put forward by Fuller (2005) takes a 

departure from the theories I discussed above by proposing that it is not a given level of 

risk or motivation that drivers aim to remain at, but a certain level of task difficulty 

(Fuller, 2005). Therefore, a driver might adjust speed by driving more slowly when 

carrying out tasks that have a higher level of difficulty such as attempting to merge from 

an entry ramp into fast moving traffic or turning through a sharp bend on the road. 

Fuller argues that task difficulty may differ between drivers since factors such as their 

differential capabilities based on experience, familiarity, age, impairment and other 

attributes not limited to these will vary from person to person. Fuller later included the 

association of perceived risk to this theory, as the risk allostasis theory. He proposed 

that a driver will seek to maintain a certain level of risk, in addition to seeking to 
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maintain a certain level of task difficulty based on the driving circumstances and the 

driver’s capability (Fuller, 2008).   

All the above theories represent ideas on how the psychological makeup of 

drivers affect their driving behavior and are more comprehensively examined by Ranney 

(1994) in his review of driver behavior models. Wilde proposes that risk is the major 

mental preoccupation of drivers while the other theories discuss motivation or drivers’ 

responses to their capability to carry out certain driving tasks as the main factor. These 

theories are collectively called cognitive or psychological models of driver behavior and 

differ from economic models. In the latter, the driver is an economic being that 

rationally weighs the costs against the benefits of certain actions in order to come to the 

most favorable decision, for instance, a driver that weighs the gains of reducing trip time 

against the cost of the increased potential for crash frequency (Hedlund 2000).    

Risk compensation, put forward by Peltzman (1975) is one such theory. Peltzman 

argued that in response to safety regulation to mitigate risk, drivers will respond in such 

a way as to reduce or negate the mitigating effect of the safety regulation. The logic was 

that drivers would respond to increases in vehicle safety such as regulation, by trading 

off the increased safety for time savings through faster driving, which Peltzman termed 

“driving intensity”. The results of econometric analysis that Peltzman carried out led him 

to conclude that such government regulation was counterproductive as there was no 

effect on overall traffic fatalities, largely due to increases in pedestrian fatalities.  
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Other researchers have approached this idea of risk compensation by basing it in 

the microeconomic theory of utility. Utility is the total amount of satisfaction that can 

be derived from a good or a service. Since it cannot be measured directly, the 

preference for a good or service over another as indicated by perhaps the willingness to 

pay is used to measure utility. Both O’Neill (1977) and Blomquist (1986) estimated utility 

maximization equations to describe how drivers maximize travel utility by making trade-

offs between safety and travel time through speed adjustment. Noland (2013) also 

proposed a utility maximization function, but based the utility of travel on the price of 

travel, travel time, the driver capability, in-vehicle activities that may cause distractions, 

and risk. Noland argues that many of the proposals in the other theories can be brought 

together such as in his utility maximization function, to reflect the many trade-offs that 

drivers might make based on varying perception and capabilities.   

The state of theories in the safety literature on driver behavior is such that there 

is both convergence and differentiation. They converge upon the relevance of driver 

attributes in determining driver behavior that may contribute to crash occurrence. For 

instance, Wilde’s risk homeostasis theory indicates the importance of target risk, the 

zero-risk theory indicates the importance of motivation and task difficulty homeostasis 

highlights the importance of willingness and capability to undertake difficult tasks. 

Target risk, motivation and capability are all dependent on driver attributes which may 

include gender, age, income and other demographic or socioeconomic attributes.  
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In the next sub-section, I discuss some research that links some of these 

attributes with the likelihood of crash occurrence. While these theories differ on what 

specific factor is important, they exist side by side largely without consensus on which is 

“correct” and should thereby be the basis for the formation of safety policy. This might 

appear to be a problematic state of affairs since progress is often assumed to be largely 

dependent on a known “way forward”. To an extent, some progress has already been 

made, for example, in the area of risk compensation. While the debate sparked by 

Peltzman’s initial proposal of risk compensation did not yield any changes to the 

development and implementation of Federal Motor Vehicle Safety Standards (FMVSS)1, 

it introduced the issue of risk compensation as a reality that implies the need for a more 

comprehensive assessment of the potential externalities of safety policy (Hedlund, 

2000).  

This condition is also quite normal in fields such as economics, urban planning 

and other social sciences. In Making Social Science Matter, Flyvbjerg (2001) discusses 

this ability of social science theories to exist side by side as a major differentiating factor 

from theories in the natural science which are incrementally developed, such that each 

subsequent theory must either build upon or refute a prior theory.  

  

                                                       

1 FMVSS were a series of regulations to implement safety standards in newly manufacture motor vehicles, 

mandated by the National Highway Traffic Safety Administration in 1968.  
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A review of empirical safety research with contextual variables  

These theories and their convergence upon the important role played by driver 

attributes, support the argument that researchers should account for contextual 

variables in safety research and in understanding the associations of safety policy on 

crash frequency, since contextual variables can serve as indicators of driver attributes. 

The underlying assumption that researchers who have incorporated contextual variables 

into their analyses have based their studies on is that certain driver behavior patterns 

can be accounted for by the use of variables that represent such behaviors. For 

example, with respect to the attribute of age, one concern is that younger drivers may 

not have the experience required to navigate difficult situations, especially when under 

stress, or may be prone to distracted driving, or excessive driving speed (Chen, Baker et 

al. 2006, Klauer, Dingus et al. 2006, Deery 1999, Clarke, Ward et al. 2006). This driver 

behavior pattern can be accounted for, by including age variables in statistical models. If 

the underlying assumption is correct, roadways in localities that have a relatively larger 

proportion of younger drivers should show a statistically significant difference in crash 

frequency from those with smaller proportions.  

This same theory can be applied to the effects of other contextually differentiated 

attributes. Noland (2013), presents some other logical hypothetical behavioral scenarios 

exploring driver responses to road engineering and design policies and to changes in 

driving conditions as a result of weather, variations in driver behavior by age and 

experience of driver, and driver behavior on congested roads that help show the 

relevance of contextual variables. With respect to the attribute of congestion, some 
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studies show that congestion and traffic calming designs common to urban areas can 

help to decrease crash severity and that sprawl is associated with higher risk of crash 

frequency (Ewing, Schieber et al. 2003, Ewing, Dumbaugh 2009). 

One study found that trip time, trip cost, and driver characteristics such as 

gender, family status, driving experience and annual family income were important 

factors in determining driver choices between various transportation alternatives with 

the goal of crash risk reduction. The researchers found that married males with more 

driving experience and higher annual family income showed greater resistance to 

reducing their crash risk by choosing a safer transport mode alternative if the option in 

question increased trip time or trip cost than married females (Yannis, Kanellopoulou et 

al. 2005). Attributes like marriage or family status, and annual income are contextually 

differentiated attributes in that they differ by location. Data for these attributes are also 

readily available and easily used in statistical models.  

Another study examined risk taking behavior including the tendency to exceed 

speed limits, to follow the rules for passing and keeping a safe driving distance, the 

tendency to drive distractedly and conditional capability of the driver, defined as the  

personal state of the driver at the time of driving including such conditions as energetic 

or fatigued. The researchers report that subjective risk perception, which affects driver 

behavior and the likelihood of crash occurrence, differs by various demographic or 

socioeconomic factors including gender, income, household size and driving experience 

(Machado-León, de Oña et al. 2016).     
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Several studies have examined the effects of various contextual variables on 

crash frequency using statistical models. One study modeled the associations of 

population density, employment density, average annual daily traffic density, % Hispanic 

population, and land use variables such as % vacant land, and % commercial, residential 

and industrial land uses on pedestrian collision density as the dependent variable. The 

findings were that population density, and certain land uses have significant effects  on 

pedestrian collisions (Loukaitou-Sideris, Sung et al. 2007). Another study found that 

socioeconomic status was an important variable affecting crashes involving pedestrians, 

with pedestrian crash likelihood being about 2.7 times greater in poorer neighborhoods 

(Graham, Glaister 2003). A more recent study, also focusing on pedestrian casualties 

found that the median household income in an area was a more important variable 

affecting pedestrian casualties than motor-vehicle casualties (Noland, Klein et al. 2013, 

Noland 2013). This study supports the findings of an earlier study that also examined 

various localities with different income levels among other poverty measures, as 

indicated by the index of multiple deprivation (Noland, Quddus 2004).   

In addition to the existing theory that supports the argument that contextual variables 

have relevance in safety research, these empirical studies show not just the presence of 

the effect but the magnitude of contextual variable associations with crash frequency. 

Together, they provide a strong argument for including such variables in safety research 

and yet, only one study to date has examined the effect of omitting contextual variables 

on parameter estimates. This study examined the associations of traffic volume, along 
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with proximity to drinking establishments and proximity to schools, on crashes occurring 

at road intersections (Mitra, Washington 2012). The researchers found that the 

parameters for the model that omitted the contextual variables were overestimated by 

up to 40% of their value in the model that included contextual variables. To my 

knowledge, no study has examined the effect of the omission of contextual variables in 

models that estimate crash frequency for road segments.   

There is some rationale for the focus of crash frequency studies on road 

geometry despite strong theoretical and empirical support for their relevance. In the 

next sub-sections, I examine this rationale and review the methods used in crash 

frequency research. 

Policy measures to alter driver behavior 

One reason for the focus of safety improvement efforts on roadway design, despite the 

established importance of driver attributes and contextual factors, might be that the 

results of driver targeted policies have not been completely positive. A number of 

studies have demonstrated the effect of safety reversal from risk compensation 

(Peltzman 1975) in the area of policies to increase safety through the incorporation of 

airbags in vehicles and mandatory use of seat belts (Peterson et al. 1995, Sen 2001). 

Certain studies have found significant impacts of policies that mandate seat belt use on 

safety (Loeb 2001, Coehn and Einav 2003) while others found little evidence of this 

(Derrig et al. 2002, Garbacz 1991, Harvey and Durbin 1986). Policies to reduce the legal 

drinking age have been found to be somewhat effective (Asch  and Levy 1990,  
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Carpenter and Stehr 2008). Despite the mixed results, studies that investigate the 

associations between contextual variables and crash frequency are still relevant, 

because driver attributes, which contextual variable serve as proxies for, are thought to 

be the main factor causing around 90% of crashes.  

 

A review of estimation methods used in safety analysis   

The model type most frequently used by researchers in analyzing crash 

frequency data is the negative binomial or poisson-gamma model. One reason is that 

crash frequency data is count data, and cannot be adequately estimated using ordinary 

least squares regression, since the assumption of normality is not met. Another reason 

is that the negative binomial model is one of the simpler models to estimate and can 

appropriately account for over-dispersion, which is a condition that describes a data 

distribution where the variance exceeds the mean. Using models that cannot deal with 

over-dispersion results in biased parameter estimates (Lord & Mannering, 2010). In Lord 

and Mannering’s 2010 review of methodological alternatives used in the analysis of 

crash-frequency data, they examined about 103 studies published between 1984 and 

2010. Of the 16 statistical methods used in the studies, the negative binomial model was 

the most used with 30 studies. The next most frequently used were 

bivariate/multivariate models which were used in 16 studies, and random effects model 

which was used in 13 studies. 10 studies used both zero-inflated poisson models and 

negative binomial models, bringing the total number of studies in which the negative 
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binomial model was used to 40. All other models used such as the poisson, poisson 

lognormal, negative multinomial, random parameters and hierarchical/multilevel 

models were used in only 2 to 5 of the 103 studies that Lord and Mannering reviewed.  

The negative binomial model is however not without its own short comings. One 

problem is that it is not capable of accounting for under-dispersion, but this is not an 

important issue for crash frequency data since the data has a far greater tendency to be 

over-dispersed (Lord & Mannering, 2010). Another problem is the data requirements.  

Many model types, including the negative binomial model are prone to error when the 

sample size is small (Lord, Mannering 2010) and many states simply do not collect the 

quantity and quality of data that is required for this kind of analysis (Mitra & 

Washington, 2012).  

There are also problems to do with modeling spatial data. It is reasonable to expect that 

spatial correlation is an issue with studies that analyze contextual variables since spatial 

entities such as blocks, or block groups may be affected by the same unobserved effects 

(Lord & Mannering, 2010). Some researchers that have examined the association of 

contextual variables on crash frequency have addressed this by re-estimating models in 

their studies using models that account for spatial correlation and comparing them with 

the initial estimation where spatial correlation was not accounted for (Noland et al., 

2013).   

Finally, another methodological issue that potentially complicates and limits 

research on the associations of contextual variables on crash frequency is the issue of 
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geographic units in determining values for the contextual variables analyzed. In the body 

of research work where spatial aggregation of spatial variables occurs, there is no 

general theory to base the scale of aggregation on. In other words, there is no general 

theory that can guide how a variable such as median income may be assigned to a road 

segment so that the association of median income on crash frequency can be 

determined. One hypothetical method can be to assign the average median income for 

instance, of all the block groups, if this is the chosen geographic unit, within a distance 

of a quarter mile, or a half mile to the road segment in question. The question that then 

arises is whether the scale of the influence of median income on the road segment in 

question is in fact a quarter mile or a half mile, or something else. There is also the 

question of whether this assumed scale varies by the specific spatial variable. This 

problem is known as the modifiable areal unit problem (MAUP). It points to the 

modifiable nature of geographical units of analysis based on analyst discretion and is 

often done in a relatively arbitrary fashion (Pietrzak 2014). This problem can introduce 

measurement error because there is no way to ascertain whether or not the chosen 

scale of aggregation accounts for the entire variable effect being studied or accounts for 

other variable effects not being studied. This is an important issue because parameter 

estimates will change based on the scale chosen and the wrong scale will mean that 

these estimates are biased (Openshaw 1984).    

A number of researchers have examined the issue of modifiable geographical 

units in the analysis of transportation data. Abdel-Aty et al gives a review of some of the 
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research work done to examine how modifiable geographic units affect parameter 

estimate variability (Abdel-Aty, Lee et al. 2013). In the absence of a generally accepted 

theory or set of guidelines for choosing an appropriate geographic scale of analysis, 

many researchers routinely use various units in their analysis, including traffic analysis 

zones (TAZ), census tracts, census block groups and census blocks depending on data 

availability. This will affect the inferences made, and can lead to internal validity 

problems if the chosen scale is not appropriate for the variable of interest. There is 

some research that has compared parameter estimate variability and model goodness 

of fit from one geographic scale of analysis to another. One study concluded that the 

effects of variability in scale is unpredictable for multivariate analysis but may be 

predictable for bivariate analysis (Fotheringham, Wong 1991). Another study examined 

variability across traffic analysis zones, census block groups and census tracts for the 

dependent variables of total crashes, severe crashes and pedestrian crashes and found 

that there was variability in the significance of the parameter estimates across the 

various geographic zones but not in the direction of association (Abdel-Aty et al., 2013). 

The direction of association remained unchanged as long as the variables maintained 

significance across the models with varying geographical units.  

An important problem from the use of aggregate data is ecological fallacy. 

Ecological models use aggregate data, and ecological fallacy is the misinterpretation of 

relationships seen at aggregate level as affecting individual cases (Freedman 1997). In 

crash studies, an ecological fallacy would be interpreting a positive association between 
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lane count for instance, and crash frequency as being true of individual sites. Depending 

on the dataset, this may or may not be true. Despite this important issue, ecological 

models are still widely used in crash studies because they can be a powerful tool for 

making inferences, as long as the correct interpretation is made. The value of using 

aggregate data in ecological models is that when both the inferences and their 

interpretation are correct, generalization is possible, and much can be understood 

about many cases as opposed to a single case. In the field of transportation, ecological 

models are used because aggregate data is easier to obtain than data on individuals (an 

individual level model would also need individual level data on those not involved in 

crashes). Making correct inferences from ecological models is dependent on having 

prior and detailed knowledge of the dataset and the way that it was aggregated (Davis, 

G.A. 2004). 

A note on variable choice 

Also important to the question of methods used in assessing variable 

associations is the issue of model specification. Some of the crash frequency studies I 

reviewed specified roadway width, shoulder and median width, segment length, lane 

width and lane count, as explanatory variables. Most specified a combination of a 

smaller subset of these variables. Roadway width, shoulder and median width, segment 

length, lane width and lane count appear to be by far, the most commonly specified 

variables, perhaps because it is easier to obtain data for these variables than other 

variables. Horizontal curvature on the other hand, is reported in many studies as being a 
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limiting factor on model specification because curvature data is difficult to obtain or 

tedious to measure. In addition to the more commonly specified variables of roadway 

width, shoulder and median width, segment length, lane width and lane count, some 

studies specify a variety of traffic composition variables. They include percent small-

vehicle composition (Chiou, Fu 2013) and percent truck composition (Garnowski, 

Manner 2011, Milton, Mannering 1998). A few include weather related variables 

(Shankar, Mannering et al. 1995), and indicators for the presence of and variables for 

roadway lighting, quantity of driveways, pedestrian crossings and bus stops, parking, 

and pavement quality (Sawalha, Sayed 2001, Labi 2011, Malyshkina, Mannering 2010).  

A number of important factors determine the combination of variables used in 

estimating crash frequency. Data is one of the most important limiting factors. Studies 

are limited to the assessment of variables for which data is available. This can in turn, 

create methodological limitations, such as the introduction of omitted variable bias 

among others, into the study. Irrespective of this, data availability is one reason why a 

study may limit the variables included to AADT and a few other variables even if 

theoretically, it makes sense to include other variables.  

Having a theoretical basis is also an important determining factor for model 

composition. A study might reasonably exclude a certain variable because no theoretical 

basis can be found to include it, even when other studies have included such a variable. 

Again, this is dependent on analyst discretion and can cause models specifics to vary 

widely across studies.  
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Methodological reasons include the need to avoid multicollinearity, which can 

create large variances, rendering variable parameters meaningless. One of the affected 

variables will usually be dropped from the model as a solution to the problem of 

multicollinearity. Most studies will have to consider these issues.  

The reason for including contextual variables in this study is because theory 

suggests their importance to crash frequency, and the likelihood of creating statistical 

errors when such variables are left out. Data availability plays an important role in the 

choice of contextual variables included. Data is more easily available for such contextual 

variables as percent residential, commercial, industrial and other types of land use 

variables, population and population density, employment, income, proximity to various 

destinations of interest such as schools, bars or transit access points. In both studies 

included in this dissertation, the presence of multicollinearity with the inclusion of 

certain variables limited the contextual variables included to population density, 

employment density and median income, since population density tended to be 

multicollinear with population, and employment density tended to be multicollinear 

with percent commercial land use.   

Another factor that determines the choice of contextual variables are the causal 

theories that the operationalization of these variables are based on. Driver motivations 

and attributes such as proficiency, risk-taking tendency, the need to maintain a certain 

level of mental engagement or task difficulty can be theoretically operationalized as 

variables that can be specified in crash frequency models. While a number of studies 
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have examined the associations of such contextual variables in crash models, there are 

no studies to my knowledge that assess the measure to which these variables have 

correctly operationalized driver attributes. One of the most commonly explored 

relationships is between the driver attribute of proficiency and age. Chen, Baker et al. 

(2006) Klauer, Dingus et al. (2006), Deery (1999), Clarke, Ward et al. (2006) are some 

examples of studies that use age with the assumption that it is representative of driver 

experience or proficiency. Place attributes can be more easily operationalized because 

many are measured quantitatively. For example, sprawled neighborhoods can be 

expected to have lower population density while dense urban cores have higher 

population density. Some studies exploring such place-based contextual variables 

include Ewing, Schieber et al. (2003), and Ewing, Dumbaugh (2009). Another study, 

speculating that married individuals may be more risk averse because of their family 

responsibilities found a negative association between being married and crashes 

(Yannis, Kanellopoulou et al. 2005). Without an established method of making the link 

between driver and place-based attributes and the contextual variables explored, 

analysts must base their choice of contextual variables on theory and this choice will in 

turn affect results and contribute to indeterminacy. 

 In the above sections, I have discussed the problem that my research is focused 

on, and the questions that this problem poses. I have examined pertinent literature that 

help de-mystify these questions and their implications and discussed methods typically 
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used in similar research. In the next and final section before I discuss the research 

carried out, I briefly touch on the significance of my research and expected findings. 
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Expected Findings and Research Significance 

The following is a discussion of my expected findings and the significance of this 

dissertation study. 

Specification error and spatial autocorrelation 

I expect that my research results will show coefficient value change of considerable 

magnitude for some road related variables, and possibly also show change of direction 

of association as a result of including formerly omitted variables, thereby indicating the 

presence of specification error in the models where such variables are excluded. I also 

expect that the test for the presence of spatial autocorrelation will show that it is a 

factor causing bias in my dataset for the simple reason that the road segments and 

block groups I analyze, are all located within close proximity to one other. 

I expect also to find that certain geometric and traffic volume variables are more 

substantially affected by the omission of certain contextual variables than others. This 

has some significance for understanding the relationship between certain geometric and 

traffic volume variables and certain contextual variables. Having such an understanding 

might enable decision makers and transportation professionals to exercise more control 

over road design in diverse environments towards better road safety performance.  

One other finding that may emerge is the relative importance of specification 

error compared to other conditions that cause bias, in modeling. One such condition I 

discussed is spatial correlation.  
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Data issues: 

I expect to find that data availability and quality are significant limitations 

affecting the validity of results. Road safety research depends to a large extent on data 

collected by public agencies from first responders and such datasets are known to have 

significant amounts of missing data. One specific case of this is seen in police reports 

from crashes involving only property damage. This limits the number of observations 

that can be analyzed as well as introduces systematic error if the observations that are 

excluded from the analysis are not random.  

Research Significance: 

The findings that result from my analyses will be significant in certain important ways. 

My research will show the importance of the problem of indeterminacy arising from 

specification error and analyst research methods, to sound research practices and to 

safe-guarding lives and property on our roads. My research will also show how variables 

might be differentially affected by specification error. This could lead to better road 

safety decision results if variables known to be more impacted by specification error are 

treated with caution.  

A more practical interpretation of the amount of bias is what it means in terms of 

dollars spent or spent inefficiently. It could mean errors made in capital project 

budgeting for localities. For instance, a municipality might have expected to spend 

approximately $24,000 in increasing the number of lanes of a road segment from 2 to 3 

lanes, expecting that it would result in 1.56 less crashes, when it would result in only 

0.352 less crashes. This means that while the expectation was that crashes would 
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diminish by 156%, they would in reality, diminish only by 35.2%, a substantially smaller 

reduction than was expected. This municipality under-budgeted for the amount of 

funding that was actually needed to achieve the goal of crash reduction that was initially 

set. This kind of error can give the perception of inefficient spending since the measures 

taken did not yield the expected results. The outcomes could be worse in cases where 

specification error from omitting contextual variables causes the direction of association 

of the variables in question to be wrongly indicated.    

Another important contribution of my research might be to further the ongoing 

conversations on the adequacy of current procedures in the research and practice of 

crash frequency reduction. I mentioned earlier that only one other research work has 

examined the adequacy of specifying crash reduction models with only road geometry 

and traffic volume related variables. By all indications, this kind of model specification is 

virtually the standard in research today and may also be standard in practice. Furthering 

the conversation about its adequacy can lead to methodological improvements in the 

future. 
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Crash Frequency Analysis for Pennsylvania State Roads 

In this chapter I examine the hypothesis that there is specification error in crash 

frequency models that exclude contextual variables, using a dataset of Pennsylvania 

roadways. This section addresses a part of my first research question: “is there evidence 

to point to specification and measurement error in crash frequency modeling?”  

I discussed previously that one of the issues with the Highway Safety Manual as 

expert knowledge is that its recommendations are based on statistical modeling 

processes known to introduce errors that limit its use across contexts or its 

transferability. This well documented transferability issue points to the importance of 

contextual factors affecting crash frequency, even though the specific issue of how 

contextual factors are important to model specification has largely been unexplored. 

This issue of model specification with contextual factors is important for gaining an 

understanding of the nature of the errors that affect inferences from crash models, 

especially those inferences that will guide road safety decisions. In the next few 

paragraphs, I discuss data for crash frequency analysis in general as well as a more 

specific discussion of my Pennsylvania dataset. 
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Data 

I chose Pennsylvania for my analysis because data was readily available from the 

Pennsylvania Department of Transportation (PENNDOT 2017). I carried out my analysis 

using three main data sub-sets including crash frequency data, road attribute data, and 

place attribute data (contextual variables). Road attribute data is typically immediately 

usable for regression analysis since each crash observation has only one possible value 

for the corresponding road attribute in question. For instance, the road attributes 

corresponding to crash X will be the attributes of the road segment where crash X 

occurred. This is in line with the assumption that the road attributes at point X are 

factors that are associated with crash X. I obtained a total of 112,502 road segments 

that consisted of both rural and urban interstates, principal arterials, minor arterials, 

collectors, local access roads and interchange ramps. Table 1 below shows a summary of 

the dataset by road type: 
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Table 1: Summary of Pennsylvania road network: 

 Number of segments % of Total Total length (miles) 

Interstates 7,580 6.74% 3490.20 

Principal Arterials 17,859 15.87% 7384.22 

Minor Arterials 21,551 19.16% 9233.49 

Collectors 45,843 40.75% 20203.72 

Local Access Roads 18,965 16.86% 8598.36 

Interchange Ramps 704 0.63% 229.30 

Total 112,502 100% 49139.28 
PennDOT Pennsylvania State Roads 2015 data 

There were approximately 50,000 miles of roadway in the Pennsylvania dataset, with 

most of the roads being collectors, principal arterials, minor arterials and local roads. I 

obtained the dataset as a shapefile from PennDOT, with the roads already divided up as 

segments.  

The geometric attributes analyzed were already appended to the shapefile. They 

included pavement width, lane count, median width, segment length and average 

annual daily traffic. Certain variables used in my dataset were derived from these 

original variables. The first was vehicle miles traveled which I derived by multiplying 

segment length and annual average daily traffic (AADT). The other was sinuosity, a 

measure of curvature, which I obtained by running a function in ArcGIS that was a ratio 

of the straight-line distance between the start and end points of a road segment to the 

actual length of the segment (ESRI 2011). A sinuosity value of close to one means that 

the segment was relatively straight, while a value closer to zero indicates a curvy road 

segment. Table 2 shows the distribution of these variables along with the total crashes 

dependent variable. 
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Table 2: Distribution of Total Crashes & Geometric Variable 

Variable Mean Standard Deviation 

Total Crashes 7.89 13.63 

Total Width 23.43 7.01 

Lane Count 1.99 .36 

Median Width 10.77 70.01 

Annual Vehicle Miles Traveled 2172.50 4064.38 

Sinuosity .96 .09 
(PENNDOT 2017) 

For each road segment I analyzed, there was an average of 7.9 crashes, with a standard 

deviation of 13.6. Most segments were two lane roads with an average total width of 23 

feet. Just as in the typical count model, my main dependent variable, crashes, is 

overdispersed, making the use of the negative binomial model appropriate.  

I obtained crash frequency data from PennDOT for the years 2009 to 2013. Five-year 

data blocks are typically used in order to have a large enough dataset for analysis, since 

crashes are rare in general. As can be seen from Table 3, the vast majority of the crashes 

that occurred in this period were either property damage or injury crashes. Crashes with 

fatalities were relatively rare.  

Table 3: Summary of Crash Types, 2009 - 2013 

Crash Type Frequency 

Crashes with only property damage 418,490 

Crashes with injuries 464,052 

Crashes with fatalities 7,964 

Other Crashes 2,507 

Total crashes 887,999 
(PENNDOT 2017) 

The final subset of data that I needed to conduct my crash frequency analysis for 

this dataset was contextual data. I discussed theory as the basis for specifying 

contextual variables in crash models in my literature review. Place-based variables 
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which are often quantitatively measured are easily included in crash studies. Population 

density and employment density, which both measure the extent of sprawl or lack 

thereof have been used in past studies including Ewing, Schieber et al. (2003), and 

Ewing, Dumbaugh (2009), and are also specified in my crash models for both my 

Pennsylvania and North Carolina datasets. Median income, has been found to have a 

strong association with crash frequency with one study finding that males with higher 

incomes were more likely to be involved in crashes (Yannis, Kanellopoulou et al. 2005). I 

also specify median income in my models. 

Contextual data requires more processing than road geometry data before it can 

be used in regression analysis along with geometric variables. For road geometry 

variables, the value of the variable in question, on the specific road segment on which 

the crash occurred is important. For contextual variables on the other hand, conditions 

beyond the immediate vicinity of the crash are important because such attributes have 

a wide area of influence. Take population density for example, which is measured as the 

population per geographic unit (people per square mile in a block group, city or state). 

Data available for population density spans more than the immediate vicinity of a crash 

frequency since the segment is located in a block group, city or state. It is also 

reasonable to assume that in addition to the block group in which the crash occurred, 

other block groups located in close proximity to the crash location are important factors 

since driver behavior is not localized to block groups.  
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In order to account for the associations of several block groups on a specific road 

segment, an aggregation of the attribute by the block groups in question is necessary. 

Mitra and Washington (2012) used a summation of totals from all block groups within a 

certain distance of crash locations for their chosen contextual variables including 

number of schools and number of drinking establishments as their method of 

aggregation. For my variables, I used average of block group data. 

 I obtained my contextual data using block groups as my unit of observation. I 

then attributed my contextual variables to road segments by assigning the average 

value of the variable in question, for each block group found within a quarter mile of a 

road segment to that road segment. For example, if there are three block groups within 

a quarter mile radius of a road segment, each with a population density value of 200, 

350 and 400 people per square mile, then the population density value assigned to that 

road segment would be 316.7 people per square mile. In this way, road segments can 

have not just geometric attributes, but contextual as well. This is where the MAUP issue 

discussed previously comes in. There is currently no recommended method of 

aggregation and researchers must therefore address this issue based on their individual 

judgement.  

I obtained contextual data from the US Census Bureau, for median income, 

population, and employment at the block group level and for the years between 2009 

and 2013. The employment data consists of employment totals by block group in terms 

of work destination. I used employment at work destination rather than just the number 
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of those employed by block group because the former has a greater significance for 

transportation, since it entails commutes to work. At the time of analysis, Pennsylvania 

had a total of 9740 block groups. The actual variables accounted for in the models were 

average median income, population density by square mile and employment density by 

square mile.  

Table 4: Distribution of Contextual Variables 

Variable Mean Standard Deviation 

Median Income 54,468.03 27,536.76 

Population 131.58 95.25 

Employment 569.42 1459.70 
(US Census Bureau ) 

 The choice of variables to specify in my crash frequency models is an important 

issue I discussed in my literature review. In order to explore the adequacy of the 

variable combination that I use in my models, I checked their correlations. The results 

are presented in Table 5 below. None of the variables have particularly high 

correlations, except population density and employment density, which have a 

correlation of 0.85. This high positive correlation between population density and 

employment density is most likely indicative of the tendency of businesses to locate 

where there are concentrations of residential land uses, in order to easily access human 

capital.  
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Table 5: Variable Correlations 

 
Pavement 

Width 
Lane 

Count 
Median 

Width 
Vehicle 

Miles 
Traveled 

Sinuosity Population 
Density 

Employment 
Density 

Median 
Income 

Pavement Width 1 
       

Lane Count 0.4896 1 
      

Median Width 0.2138 0.1137 1 
     

Vehicle Miles Traveled 0.4295 0.1869 0.4215 1 
    

Sinuosity 0.1803 0.246 0.0851 0.093 1 
   

Population Density 0.4433 -0.0088 0.0622 0.3256 0.0183 1 
  

Employment Density 0.4464 -0.0393 0.1441 0.4247 -0.0044 0.8524 1 
 

Median Income -0.074 -0.0162 0.0218 0.1532 -0.0081 0.0685 0.0694 1 

 

Since population density and employment density have a high correlation, there are 

concerns about multicollinearity. To further explore this, I calculated the variance 

inflation factors of my variables (VIF) (Table 6). While this is more appropriate for 

ordinary least squares regression, it can still be used to determine the degree of 

multicollinearity between variables intended for specification in non-linear models. The 

VIF for population density and employment density are higher than those for the other 

variables, but still quite far from raising concerns of multicollinearity affecting the 

results. As such, I included both variables for all the models in this dataset. 
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Table 6: Variable Inflation Factors 

Variable VIF 1/VIF 
   

Pavement Width 2.05 0.48781 

Lane Count 1.53 0.65416 

Median Width 1.24 0.80682 

Vehicle Miles Traveled 1.63 0.61535 

Sinuosity 1.08 0.92989 

Population Density 3.84 0.26015 

Employment Density 4.19 0.2389 

Median Income 1.06 0.94219 
   

Mean VIF 2.08 
 

 

  



70 

 

    

 

Methods 

The topic of methods used for detecting omitted variable bias has been given 

some attention by a number of researchers. Washington et al (2011) discuss some of 

the complexities of detecting omitted variable bias in non-linear count models. One 

complexity arises from the fact that the indicators that can be used to detect omitted 

variable bias, are also indicative of other conditions that can lead to erroneous 

inferences. Bias in parameter estimates is one such indicator since it is not only the 

result of omitted variable bias, but also of over-dispersion, among other problems (Lord, 

Mannering 2010). Over-dispersion is commonly dealt with by using negative binomial 

regression since it accounts for this condition, unlike Poisson models. This means that if 

a negative binomial model is used in analyzing crash frequency, it is reasonable to 

assume that over-dispersion is not a factor causing bias in the independent variable 

parameters and any bias seen can be attributed to other reasons such as omitted 

variables, if there is a strong enough theory to indicate that omitted variables might be 

the issue.  

Another condition that can affect the accuracy of coefficients is spatial 

correlation. It should also be accounted for in order to adequately isolate the bias of 

parameter estimates due to specification error arising from omitted variables. This is 

because the presence of spatial correlation can cause imprecise parameter estimates 

(Lord, Mannering 2010). This means that the best way to detect omitted variable bias is 

to eliminate other possible explanations for biased parameter estimates. I am therefore 

interested in testing whether there is a change of considerable magnitude in the 
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coefficients of the variables of interest, or a change in the direction of association, when 

compared to their associations in more fully specified models. I am also interested in 

seeing the degree to which the change persists when spatial correlation is controlled 

for.  

I carried out two main procedures for detecting omitted variable bias. In the first 

procedure, I compared the associations of geometric variables on crash frequency in 

models where contextual variables are included (combined models) to their associations 

in models where contextual variables are excluded (link-based models). Mitra and 

Washington (2012) use this method in detecting the associations of omitting the 

contextual variables of proximity to drinking establishments, and proximity to schools, 

among other contextual variables, on two traffic volume variables. Based on the theory 

that the associations of omitted variables are captured in the associations of specified 

variables, associations of greater magnitude seen in the link-based models when 

compared with the combined models may be indicative of omitted variable bias.  

In the second procedure, my goal is to be able to confidently conclude that any 

bias seen is from the omission of contextual variables. I use the negative binomial 

regression, which uses maximum likelihood estimation (MLE) to specify these models 

initially, and then re-estimate with negative binomial conditional autoregressive models 

using CrimeStat software (Levine, Lord et al. 2010) so as to be able to detect and 

minimize the effect of spatial correlation. It is important to account for spatial 

correlation because spatial entities such as road segments, blocks or block groups can 
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be affected by the same unobserved effects (Lord & Mannering, 2010). These models 

use Markov Chain Monte Carlo estimation (MCMC), a Bayesian estimation technique. 

This has the added advantage of producing a credible interval that shows with a 

specified confidence level (e.g. 95%) the range of values that the correct estimate lies 

within. I then compared the coefficients of the variables specified with the omission of 

contextual variables against the coefficients in the models where contextual variables 

were included in the re-estimated models to see if there is still a significant difference in 

the magnitude or direction of associations. This step helps narrow down the source of 

any bias found to the omission of contextual variables. Since using MCMC models takes 

care of more conditions that may confound inferences made from my results, I present 

and discuss the MCMC models here, while also touching briefly on the MLE models, and 

displaying them in appendix B.  
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Results and Discussion 

I carried out the analysis in three stages. First, I modeled the associations of the 

contextual variables, along with 5 variables for road density by functional classification. 

The purpose of this part of the analysis is to be able to compare these baseline 

associations of contextual variables with the associations of the same variables when 

specified in models where road geometry variables are included. In the second stage, I 

modeled the associations of just the road variables on crash frequency (link-based 

models), so as to be able to compare their associations in these link-based models 

against their associations in combined models where they are specified alongside 

contextual variables (combined models).  This final stage of modeling, where both the 

road geometry and contextual variables are specified was the third stage of the analysis. 

There were three main dependent variables specified for all the models in the three 

stages. They were total crashes, fatal and major injury crashes, and fatal and all injury 

crashes. Fatal and major injury crashes are those for which a fatality or an injury which 

caused temporary or permanent incapacitation were recorded. Fatal and all injury 

crashes are those for which a fatality or any severity of injury was recorded.  

All the model results displayed are numbered in sequence. When discussed in 

the text, they appear with the same labels used when displayed as tables, as well as 

another label in parenthesis that shows whether they are spatial (S), link-based (L) or 

combined models (C), MCMC or MLE models, and the dependent variable of the model 

represented by a code of 1, 2 or 3. The dependent variables are represented by 1 for 

total crashes, 2 for fatal and major injury crashes, and 3 for fatal and injury crashes. To 
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illustrate, a model label of L-MCMC-1 means that the model is a link-based MCMC 

model, with total crashes as the dependent variable. A model label of C-MLE-2 means 

that the model is a combined MLE model with fatal and major injury crashes as the 

dependent variable.  

Crash frequency analysis for entire Pennsylvania road network 

Previously, I made the case that using negative binomial conditional 

autoregressive models is a better way to model this kind of data, rather than simply 

using negative binomial models. I therefore present and analyze the results of the 

negative binomial conditional autoregressive models (MCMC) in this section, while 

showing the results for the negative binomial models (MLE) in the appendix.  

Table 7: Spatial MCMC Models (Entire network) 

 Model 1  
(S-MCMC-1) 

   Model 2 
(S-MCMC-2) 

   

 
 

Crashes 
 

t-stat 
2.5th 

Percent. 
97.5th 

Percent. 
Fatal & 

Major Injury 
Crashes 

t-stat 
2.5th 

Percent. 
97.5th 

Percent. 

Population density (ln) -0.457 -58.468 -0.532 -0.381 -0.536 -45.289 -0.651 -0.422 

Employment density (ln) 0.217 48.318 0.173 0.260 0.124 17.853 0.058 0.191 

Median income (ln) 0.081 7.870 -0.024 0.177 0.065 4.742 -0.073 0.193 

Interstates density (ln) 0.366 9.537 0.016 0.761 0.274 5.502 -0.206 0.760 

Principal density (ln) 0.096 7.593 -0.026 0.218 0.084 4.363 -0.102 0.269 

Minor arterials density (ln) 0.040 3.287 -0.078 0.160 0.003 0.151 -0.190 0.195 

Collectors density (ln) -0.004 -0.328 -0.126 0.118 -0.045 -2.210 -0.241 0.151 

Local roads density (ln) -0.004 -0.100 -0.393 0.423 0.028 0.486 -0.535 0.582 

Constant 4.330 36.375 3.233 5.533 1.934 12.636 0.482 3.484 

Spatial Correlation (phi) -0.011 -5.306 -0.032 0.009 -0.041 -7.992 -0.096 0.000 

Observations 9740       9740       

Df 9729 
   

9729    

Log likelihood -49289.6       -18363.4       
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Table 8: Spatial MCMC Models (Fatal Injury Crashes, Entire network) 

 Model 3 
(S-MCMC-3) 

   

FATAL & INJURY CRASHES Coefficient t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Population Density (ln) -0.419 -51.341 -0.498 -0.340 

Employment Density (ln) 0.205 45.810 0.162 0.248 

Median Income (ln) 0.032 2.935 -0.080 0.134 

Interstates density (ln) 0.464 12.391 0.123 0.848 

Principal arterials density (ln) 0.165 12.810 0.041 0.291 

Minor arterials density (ln) 0.097 7.692 -0.025 0.219 

Collectors density (ln) 0.048 3.764 -0.076 0.173 

Local roads density ( ln) 0.042 1.008 -0.344 0.462 

Constant 4.023 31.605 2.855 5.314 

Spatial Correlation (phi) -0.010 -4.478 -0.030 0.011 

Observations 9740       

Df 9729 
   

Log likelihood -43358.8       

 

Table 7 and Table 8 show the effects of the contextual variables for population density, 

employment density and median income, along with the variables for road density for 

each functional classification, on total crashes, fatal and major injury crashes and fatal 

and injury crashes. In all three models in Table 7 and Table 8, population density has 

negative associations, in line with the Ewing, et al. (2003), and Ewing and Dumbaugh 

(2009) studies that show that sprawl is associated with a higher risk of crash occurrence. 

Employment density has positive association in all three models. This might be 

indicative of office parks or campuses and other such land uses which tend to be located 

along fast-moving highways, and feature less density and pedestrian activity. Median 

income shows positive associations through all three models, but with relatively low 

significance levels. 



76 

 

    

 

Table 9 shows the results for the total crashes, fatal and major injury crashes and 

fatal and injury crashes models specified with only geometric variables, and then with 

both geometric and contextual variables. While all the other models displayed in this 

section are MCMC models, the Table 9 models below are MLE models. The reason I 

display these results is that I ran into some difficulties using CrimeStat to estimate the 

MCMC models potentially because of their complexity. In this case, each model had 

between five and eight variables with 112,502 observations and the models did not 

converge after 120 hours of running. 
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Table 9: Negative Binomial Models with Geometric Variables and then with all Variables 

 

Interestingly, the population density coefficients change direction of association 

compared to all three models in Table 7 and Table 8 where they are specified without 

geometric and traffic volume variables, to Model 5 (C-MLE-1), Model 7 (C-MLE-2) and 

Model 9 (C-MLE-3) in Table 9 where both groups of variables are specified. Median 

income also undergoes a similar change, having a negative association in both models 

  Model 4 
(L-MLE-1) 

Model 5 
(C-MLE-1) 

Model 6 
(L-MLE-2) 

Model 7 
(C-MLE-2) 

Model 8 
(L-MLE-3) 

Model 9 
(C-MLE-3) 

VARIABLES Crashes  Crashes  Fatal & Major 
Injury Crashes 

Fatal & 
Major Injury 

Crashes 

Fatal & Injury 
Crashes 

Fatal & Injury 
Crashes 

Total width (ln) 1.538*** 0.465*** 0.598*** 0.189*** 1.688*** 0.485***  
(0.0156) (0.0190) (0.0319) (0.0359) (0.0177) (0.0200) 

Lane count (ln) -1.597*** -0.352*** -0.400*** -0.00872 -1.632*** -0.345***  
(0.0297) (0.0347) (0.0629) (0.0657) (0.0338) (0.0368) 

Median width (ln) -0.103*** -0.0947*** -0.123*** -0.118*** -0.116*** -0.118***  
(0.00264) (0.00349) (0.00626) (0.00719) (0.00299) (0.00396) 

Vmt (ln) 0.595*** 0.516*** 0.550*** 0.535*** 0.594*** 0.517***  
(0.00255) (0.00555) (0.00658) (0.00719) (0.00304) (0.00560) 

Sinuosity (ln) -0.344*** -0.115* 0.0356 0.169 -0.222*** 0.0714  
(0.0479) (0.0615) (0.128) (0.128) (0.0576) (0.0645) 

Median income (ln) 
 

0.0249*** 
 

-0.201*** 
 

-0.0938***   
(0.00926) 

 
(0.0149) 

 
(0.00886) 

Population density (sq 
mi, ln) 

 
0.125*** 

 
0.102*** 

 
0.162*** 

  
(0.00478) 

 
(0.00975) 

 
(0.00522) 

Employment density (sq 
mi, ln) 

 
0.163*** 

 
0.0156** 

 
0.153*** 

Constant -5.555*** -4.451*** -7.210*** -4.506*** -6.878*** -4.233***  
(0.0494) (0.116) (0.117) (0.201) (0.0576) (0.115)  

-0.266*** -0.583*** -0.530*** -0.629*** -0.110*** -0.456***  
(0.00573) (0.00803) (0.0347) (0.0382) (0.00655) (0.00882) 

Observations 112,502 112,502 112,502 112,502 112,502 112,502 

Log likelihood -295940 -284501 -62074 -61738 -236163 -226538 

Ll Constant Only -339565 -339565 -69493 -69493 -272339 -272339 

LR Chi2 87251 132864 14837 14145 72353 103928 

Pseudo_R2 0.128 0.162 0.107 0.112 0.133 0.168 

Standard errors in parentheses 
    

*** p<0.01, ** p<0.05, * p<0.1 
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Model 7 (C-MLE-2) and Model 9 (C-MLE-3) in Table 9 where they are specified with 

geometric and traffic volume variables, but a positive association when specified 

without, in Model 1 (S-MCMC-1) , Model 2, and Model 3 of Table 7 and Table 8. These 

results may be indicative of omitted variable bias in the Table 7 and Table 8 models 

where geometric variables are excluded. One important caveat to note is that Model 1 

(S-MCMC-1), Model 2, and Model 3 are not strictly comparable to Model 5 (C-MLE-1), 

Model 7 (C-MLE-2) and Model 9 (C-MLE-3) because the former models had 9740 

observations, whereas the latter models had 112,502 observations.  The contextual 

variables used in Model 5 (C-MLE-1), Model 7 (C-MLE-2) and Model 9 (C-MLE-3) were 

aggregated by distance and assigned to the 112,502 road segments, as described in the 

Methods section, and as such, are not entirely in the same form as the contextual 

variables in Model 1 (S-MCMC-1), Model 2, and Model 3. These results, especially the 

change in direction of the coefficients of population density and median income, show 

how various modeling decisions such as the decision to model only contextual variables, 

only linked based variables, or to combine both kinds of variables, can affect results and 

in turn support certain road safety decisions over others. The method an analyst 

chooses has a direct effect on the results obtained.  

The corresponding MLE models to Model 1 (S-MCMC-1), Model 2, and Model 3 

are displayed in Table 47, in Appendix B. In comparing Model 1 (S-MCMC-1), Model 2, 

and Model 3 with the Table 47 models, I found that the results largely remained the 

same across all the dependent variables, for all the independent variables.  
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In Table 9, all the coefficients for the six models displayed are statistically 

significant, except for sinuosity in Model 6 (L-MLE-2), both lane count and sinuosity in 

Model 7 (C-MLE-2), and sinuosity in Model 9 (C-MLE-3). Interestingly, while the 

coefficient for lane count was statistically significant at the 95% confidence level in 

Model 6 (L-MLE-2), it decreased considerably in magnitude and lost statistical 

significance with the addition of contextual variables in Model 7 (C-MLE-2). A similar 

change occurred with the sinuosity coefficient, in addition to a change in its direction of 

association from Model 8 (L-MLE-3) to Model 9 (C-MLE-3).  

The first research question is whether there is specification error in models that 

omit contextual variables. At first glance, the modeling results show that the coefficients 

for the geometric variables decrease in magnitude when contextual variables are added, 

as can be seen in Table 9. These results would appear to indicate the presence of 

omitted variable bias in the geometric and traffic volume coefficients of Model 4 (L-

MLE-1), Model 6 (L-MLE-2), and Model 8 (L-MLE-3) since omitted variable bias can be 

indicated by inflated coefficient magnitudes (such coefficients carry the effects of 

variables that are omitted). More indicative of this condition are the lane count 

coefficient in Model 7 (C-MLE-2), and sinuosity in Model 9 (C-MLE-3), which also both 

lose significance upon the addition of contextual variables to the models and change 

direction of association in the case of the sinuosity variable in Model 9 (C-MLE-3). Again, 

the absence of contextual variables may be responsible for the initial appearance of 
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significance of lane count and sinuosity, and the initial direction of association of 

sinuosity. The results of these models have therefore not refuted my hypothesis. 

Another factor that points to better specification in the combined models, 

compared with the link-based models in Table 9 is the Pseudo R2 measure of fit. All 

three combined models show higher Pseudo R2 values than their link-based model 

counterparts. While the results of the model comparisons generally indicate the 

presence of omitted variable bias, there is still the possibility that some of the bias seen 

is due to another factor such as spatial correlation. As I was unable to run corresponding 

MCMC models for the Table 9 models, I test this possibility in later sections of this 

chapter. 

 

Crash frequency analysis for Pennsylvania principal arterials  

The next stage of my analysis is to see if for my link-based and combined MLE 

models, there is a problem with spatial correlation by using conditional autoregressive 

models. Since I was unable to run conditional autoregressive models using the entire 

dataset, I chose to run the models based on subsets. I ran the models at this stage by 

the functional classifications of the roads being analyzed, so that for each dependent 

variable, there were multiple models for each functional classification. Not all functional 

classifications had enough crash occurrences per road segment for the MCMC models to 

run successfully. This is another documented issue with CrimeStat software  (Levine 

2013b, Levine 2013a). I was able to successfully run MCMC models for the two 
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functional classifications of principal arterials (functional class B) and local roads 

(functional class E). The results are displayed below, while the MLE model results are 

displayed in the appendix. 

Table 10:  Total Crashes MCMC Models with only Principal Arterials (FC B) 

  
Model 10 

(L-MCMC-1) 
    

Model 11 
(C-MCMC-1) 

    

CRASHES Coefficient t-stat 
2.5th 

Percentile 
97.5th 

Percentile 
Coefficient t-stat 

2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) 1.209 34.56 0.754 1.67 0.426 13.865 0.021 0.831 

Lane count (ln) -0.488 -7.656 -1.324 0.344 0.211 3.876 -0.505 0.928 

Median width (ln) -0.113 -23.48 -0.175 -0.049 -0.11 -26.528 -0.163 -0.055 

VMT (ln) 0.406 60.485 0.318 0.493 0.362 59.08 0.281 0.442 

Sinuosity (ln) 0.078 0.715 -1.415 1.45 0.582 6.177 -0.689 1.791 

Median income (ln)       0.034 2.417 -0.158 0.217 

Population density (sq mi, ln)     0.225 25.861 0.111 0.34 

Employment density (sq mi, ln)       0.142 25.181 0.068 0.216 

Constant -3.935 -37.589 -5.288 -2.548 -4.338 -23.424 -6.74 -1.849 

Spatial Correlation (Phi) -0.08 -11.3 -0.179 -0.009 -0.027 -8.376 -0.07 0.011 

Observations 17859       17859       

Df 17851 
   

17848 
   

Log likelihood -63680       -60285       
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Table 11: Fatal & Major Injury Crashes MCMC Models with only Principal Arterials (FC B) 

 

Table 12: Fatal & Injury Crashes MCMC Models with only Principal Arterials (FC B) 

  Model 14 
(L-MCMC-3) 

    Model 15 
(C-MCMC-3) 

    

FATAL & INJURY 
CRASHES 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) 1.42 37.965 0.937 1.919 0.407 11.694 -0.043 0.858 

Lane count (ln) -0.529 -7.843 -1.414 0.355 0.278 4.668 -0.498 1.048 

Median width (ln) -0.164 -29.652 -0.236 -0.091 -0.136 -28.909 -0.196 -0.074 

VMT (ln) 0.422 53.267 0.318 0.525 0.367 50.691 0.273 0.461 

Sinuosity (ln) 0.432 3.419 -1.265 2.07 1.107 9.646 -0.383 2.598 

Median income (ln) 
   

-0.013 -0.851 -0.221 0.19 

Population density (sq mi, ln) 
  

0.225 22.49 0.095 0.355 

Employment density (sq mi, ln) 
  

0.189 29.195 0.105 0.273 

Constant -5.538 -46.742 -7.08 -3.984 -5.11 -24.272 -7.868 -2.304 

Observations 17859 
   

17859 
   

Df 17851 
   

17848 
   

Log likelihood -53375 
   

-50084 
   

 

  Model 12 
(L-MCMC-2) 

    Model 13 
(C-MCMC-2) 

    

FATAL & MAJOR INJURY 
CRASHES 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) 0.721 11.869 -0.076 1.475 0.341 5.49 -0.514 1.152 

Lane count (ln) -0.014 -0.119 -1.498 1.606 0.097 0.869 -1.349 1.599 

Median width (ln) -0.005 -0.095 -0.312 0.751 -0.149 -14.39 -0.288 -0.017 

VMT (ln) 0.434 24.204 0.197 0.646 0.47 30.571 0.276 0.681 

Sinuosity (ln) 0.878 2.919 -2.62 5.002 1.171 4.346 -2.073 4.933 

Median income (ln)         -0.251 -8.422 -0.643 0.113 

Population density (sq mi, ln)       0.161 8.925 -0.074 0.399 

Employment density (sq mi, ln)       0.023 1.906 -0.133 0.18 

Constant -8.036 -21.67 -13.377 -4.493 -4.672 -12.11 -9.488 0.394 

Spatial Correlation (Phi) -8.029 -4.403 -37.24 -0.038 -0.188 -12 -0.395 -0.031 

Observations 17859       17859       

Df 17851       17848       

Log likelihood -73376       -14792       
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In comparing the link-based models for total crashes, fatal and major injury 

crashes, and fatal and injury crashes, which are Model 10 (L-MCMC-1), Model 12 (L-

MCMC-2), and Model 14 (L-MCMC-3) respectively, to their corresponding combined 

models which are Model 11 (C-MCMC-1), Model 13 (C-MCMC-2), and Model 15 (C-

MCMC-3), a number of noteworthy changes are present. First is that compared with 

Table 9, the reduction in magnitude of geometric variables from the link-based models 

to the combined models is less consistent. For example, from Model 10 (L-MCMC-1) to 

Model 11 (C-MCMC-1), median width does not change in coefficient magnitude, and the 

sinuosity coefficient actually increases from 0.078 to 0.582. From Model 12 (L-MCMC-2) 

to Model 13 (C-MCMC-2), the lane count coefficient increases by a relatively large 

magnitude, from 0.014 to 0.097, while the sinuosity coefficient increases from 0.878 to 

1.171. In addition to this, the expected reduction in magnitude from the link-based 

model coefficients to the combined model coefficients is not really seen when 

comparing Model 12 (L-MCMC-2) to Model 13 (C-MCMC-2), except in the total width 

variable. All the geometric variable coefficients unexpectedly show an increase in 

magnitude, with the exception of total width. For most of these geometric variables, the 

increases in magnitude are not large. From Model 14 (L-MCMC-3) to Model 15 (C-

MCMC-3), the sinuosity coefficient increases. One reason why there is consistent 

increase in magnitude of geometric variable coefficients from Model 12 (L-MCMC-2) to 

Model 13 (C-MCMC-2) may be because of the zero-inflated nature of the fatal and major 

injury variable, which can cause problems in modeling. The fatal and major injury 
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variable can be described as zero-inflated because the vast majority of observations 

have zero values for fatal and major injuries. This means that accidents involving 

fatalities or major injuries were rare. The problem with this is that there is not enough 

observations of fatal or major injuries to model results that are stable  (Levine 2013b, 

Levine 2013a). Aside from these exceptions, there is generally a reduction in coefficient 

magnitude from the link-based to the combined models for the other two dependent 

variables. Increases in magnitude of the geometric variables may also be indicative of an 

interaction between a contextual variable and these variables. I explore possible 

variable interactions in the next chapter.  

Another change of note is that the lane count coefficient consistently changes 

direction of association, from Model 10 (L-MCMC-1) to Model 11 (C-MCMC-1), Model 12 

(L-MCMC-2) to Model 13 (C-MCMC-2) and Model 14 (L-MCMC-3) to Model 15 (C-

MCMC-3). While only Model 12 (L-MCMC-2) to Model 13 (C-MCMC-2) shows an 

increase in magnitude, Model 10 (L-MCMC-1) to Model 11 (C-MCMC-1) and Model 14 

(L-MCMC-3) to Model 15 (C-MCMC-3) show magnitude reductions and changes from a 

negative association with crash frequency to a positive association with crash frequency. 

The change in direction of association of lane count, from negative to positive from all 

three link-based models to their corresponding combined models agrees with Sawalha, 

Sayed (2001). This change in direction from the link-based to the combined models 

suggests that increasing the number of lanes on principal arterials in the Pennsylvania 

roadway system, is actually associated with more crash occurrences, contrary to what 
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would be the assumption, when inferring from models that have excluded contextual 

variables and that this may not be a general association, applying specifically to principal 

arterials. This finding has implications for both methodology and theory in crash 

frequency studies. It appears to underscore the importance of specifying crash 

frequency models with contextual variables as well as highlights the error in the 

assumption of sound inferences from generalizing between differing contexts such as 

road types, urban versus rural and from one locality to another.  

The spatial correlation coefficient is found to be significant in both Model 10 (L-

MCMC-1) and Model 11 (C-MCMC-1), with a large reduction in magnitude in Model 11 

(C-MCMC-1), indicating that spatial correlation has been accounted for in this model, to 

a notable degree, when compared with Model 10 (L-MCMC-1).  

In examining the corresponding MLE models ( 

Table 48, appendix B), there are no notable changes in magnitude or direction of 

association of the geometric variables that were not seen in the MCMC models (Model 

10 (L-MCMC-1) through Model 15 (C-MCMC-3)), suggesting that spatial correlation is 

not a significant issue and potentially ruling this out as the cause of any bias first seen in 

the MLE models.  Comparing from Model 10 (L-MCMC-1) however, the sinuosity 

coefficient gains significance in Model 45 (L-MLE-1) in  

Table 48. This could be an indication that in predicting total crashes on principal 

arterials for Pennsylvania state roads, sinuosity is not actually a significant variable, but 
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only appears to be so, due to the influence of spatial correlation. Again, my hypothesis 

that the omission of spatial variables is the cause of the bias seen is not refuted. 

Comparing the models for fatal and major injury crashes in Table 11 (Model 12 

(L-MCMC-2) and Model 13 (C-MCMC-2)), with their corresponding MLE models (Model 

47 and Model 48), again there are not many important changes. For the link-based 

models, there are no notable changes from Model 47 (L-MLE-2) to Model 12 (L-MCMC-

2). The exception is the median width coefficient which loses significance from Model 47 

(L-MLE-2) to Model 12 (L-MCMC-2) and reduces notably in magnitude. In comparing 

Model 48 (C-MLE-2) to Model 13 (C-MCMC-2), the lane count coefficient loses 

significance. Finally, for the fatal and injury crashes, comparing Model 49 (L-MLE-3) and 

Model 50 (C-MLE-3) to Model 14 (L-MCMC-3) and Model 15 (C-MCMC-3) in Table 12 

also shows no important changes from the MLE models to the MCMC models, except for 

the loss of significance of the median income coefficient from Model 50 (C-MLE-3) to 

Model 15 (C-MCMC-3).  

While maximum likelihood methods show significance at a certain confidence 

level, Bayesian methods like the MCMC estimations I carry out using CrimeStat include a 

credible interval, which shows the range of coefficient estimates that the correct 

estimate is within, to a certain probability level. This means that for example, if the 

result shows a 95% credible interval, there is a 95% probability that the correct 

coefficient is in that range. This is very useful, because it makes it possible to see at a 

glance, what variables are not well suited to deriving CMFs, due to the wide range of 
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their credible intervals. Several variables in both Model 10 (L-MCMC-1) and Model 11 

(C-MCMC-1) have very wide credible intervals, some ranging from negative values on 

their lower limit to positive on their upper limit. This illustrates the point made earlier 

about the fact that point estimates such as those prescribed as part of the Highway 

Safety Manual can be misleading.   
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Crash frequency analysis for Pennsylvania local roads 

The following are the results for local roads (functional class E). It is useful to 

observe changes between link-based and combined models for this road classification as 

well, to see if the results seen for principal arterials are similar and to explore the ways 

in which they might differ.  

Table 13: Total Crashes MCMC Models [Local Roads (FCE)] 

 
Model 16 

(L-MCMC-1) 

  
Model 17 

(C-MCMC-1) 

  

CRASHES Coeff.  t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff.  t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) 1.746 23.626 0.772 2.796 1.401 19.906 0.455 2.275 

Lane count (ln) -2.224 -10.717 -4.925 0.397 -1.245 -5.776 -3.845 1.549 

Median width (ln) -0.287 -20.735 -0.472 -0.093 -0.224 -17.619 -0.392 -0.050 

VMT (ln) 0.772 96.166 0.663 0.884 0.658 79.382 0.547 0.770 

Sinuosity (ln) -2.053 -8.466 -5.337 1.181 -1.070 -4.862 -3.969 1.751 

Median income (ln) 
    

0.260 9.029 -0.113 0.627 

Population density (sq mi, ln) 
   

0.055 3.247 -0.173 0.287 

Employment density (sq mi, ln) 
   

0.136 15.335 0.018 0.256 

Constant -5.394 -19.876 -8.832 -1.634 -8.853 -24.141 -13.312 -4.377 

Spatial Correlation (Phi) -0.031 -8.057 -0.090 0.015 -0.056 -9.232 -0.148 0.009 

Observations 18965 
   

18965 
   

Df 18957 
   

18954 
   

Log likelihood -29509 
   

-28955 
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Table 14: Fatal & Major Injury Crashes MCMC Models [Local Roads (FCE)] 

 
Model 18 

(L-MCMC-2) 

  
Model 19 

(C-MCMC-2) 

  

FATAL & MAJOR INJURY Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff.  t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) 0.560 4.561 -0.964 2.159 1.433 7.950 -0.936 3.685 

Lane count (ln) -3.870 -10.080 -8.876 0.776 -0.922 -1.552 -8.798 6.356 

Median width (ln) -0.267 -8.147 -0.734 0.159 -0.611 -7.947 -1.719 0.314 

VMT (ln) 0.693 33.350 0.428 0.991 0.715 25.888 0.374 1.121 

Sinuosity (ln) 2.043 3.474 -5.128 9.534 2.589 3.704 -5.703 11.716 

Median income (ln) 
    

-0.477 -7.475 -1.234 0.242 

Population density (sq mi, ln) 
   

0.118 1.865 -0.697 0.996 

Employment density (sq mi, ln) 
   

-0.020 -0.640 -0.465 0.394 

Constant -5.407 -10.898 -11.329 0.882 -7.262 -9.140 -16.515 1.789 

Spatial Correlation (Phi) -0.056 -7.348 -0.185 0.025 -5.640 -6.050 -18.846 0.014 

Observations 18965 
   

18965 
   

Df 18957 
   

18954 
   

Log likelihood -5227.4 
   

-14226 
   

 

 

Table 15: Fatal & Injury Crashes MCMC Models [Local Roads (FCE)] 

 
Model 20 

(L-MCMC-3) 

  
Model 21 

(C-MCMC-3) 

  

FATAL & INJURY CRASHES Coeff.  t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff.  t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) 1.569 19.276 0.518 2.636 1.264 15.919 0.240 2.320 

Lane count (ln) -3.222 -13.628 -6.213 -0.234 -2.192 -9.805 -5.080 0.585 

Median width (ln) -0.308 -18.509 -0.530 -0.078 -0.322 -20.181 -0.535 -0.104 

VMT (ln) 0.770 79.392 0.643 0.905 0.697 67.083 0.561 0.843 

Sinuosity (ln) -1.078 -3.818 -4.722 2.657 -0.366 -1.304 -3.980 3.373 

Median income (ln) 
    

-0.012 -0.361 -0.424 0.374 

Population density (sq mi, ln) 
   

0.102 4.973 -0.175 0.377 

Employment density (sq mi, ln) 
   

0.097 8.838 -0.051 0.244 

Constant -5.110 -16.145 -9.098 -1.015 -5.847 -14.489 -10.544 -0.819 

Spatial Correlation (Phi) -0.042 -8.797 -0.116 0.011 -0.037 -7.686 -0.115 0.015 

Observations 18965 
   

18965 
   

Df 18957 
   

18954 
   

Log likelihood -21417 
   

-21187 
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A comparison of the variable coefficients in Table 13, Table 14, and Table 15, 

from the link-based MCMC models (Model 16 (L-MCMC-1), Model 18 (L-MCMC-2), and 

Model 20 (L-MCMC-3)), to the combined MCMC models (Model 17 (C-MCMC-1), Model 

19 (C-MCMC-2), and Model 21 (C-MCMC-3)) shows that the magnitude reduction from 

the link-based models to the combined models is more consistent than in the principal 

arterial models, but still not as consistent as in the models with the entire road network. 

All the geometric variable coefficients in Model 16 (L-MCMC-1) decreased in magnitude 

in Model 17 (C-MCMC-1), but in the fatal and major injury models (Table 14), all the 

geometric variable coefficients except lane count, increase in magnitude from Model 18 

(L-MCMC-2) to Model 19 (C-MCMC-2). This increase in coefficient magnitude from link-

based to combined model was also seen in the fatal and major injury models for 

principal arterials (Table 11), supporting my theory that it occurs due to the zero-

inflated nature of the fatal and major injury dependent variable. In the fatal and injury 

models (Table 15), again all the coefficients decrease in magnitude from Model 20 (L-

MCMC-3) to Model 21 (C-MCMC-3), except for the median width variable which has a 

very negligible increase of 0.014.  

In the local road models, there is no change in direction of coefficients from the 

link-based models to the combined models. The negative association of lane count with 

crash frequency occurs with local roads, just as in the models that included the entire 

road network (Table 9). This means that the positive association of lane count on crash 
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frequency is not universal to all road types since it was seen only in the models for 

principal arterial roads.  

Notably, in the combined MCMC Model 21 (C-MCMC-3) (fatal and injury 

models), sinuosity is not found to be significant, and in the combined MCMC Model 19 

(C-MCMC-2) (fatal and major injury models), lane count is not found to be significant. All 

the geometric variable coefficients in the total crashes models are significant. The 

significance of sinuosity in Model 21 (C-MCMC-3) and lane count in Model 19 (C-MCMC-

2) may have been affected by the fact that the fatal and major injury and the fatal and 

injury models have more observations with zero crash occurrences. The other similarity 

between the loss of significance in Model 19 (C-MCMC-2) and in Model 21 (C-MCMC-3) 

besides their exclusion of property-damage crashes is that they are both combined 

models. In their corresponding link-based models (Model 18 (L-MCMC-2) and Model 20 

(L-MCMC-3)), lane count and sinuosity respectively have significant coefficients. A 

similar result is seen in Table 9 (lane count loses significance from Model 6 (L-MLE-2) to 

Model 7 (C-MLE-2), and sinuosity loses significance from Model 8 (L-MLE-3) to Model 9 

(C-MLE-3)), but not in  

Table 48, suggesting the relative unimportance of lane count to fatal and major 

injury crashes, and sinuosity to fatal and injury crashes in the Pennsylvania road network 

, with the exception of principal arterials.  

 The results for the corresponding MLE models are displayed in Table 49 in 

appendix B. For the total crashes models, when comparing the MCMC models (Model 16 
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(L-MCMC-1) and Model 17 (C-MCMC-1)) with the MLE models (Model 51 and Model 52), 

it is immediately apparent that the variables remain quite consistent. Pavement width, 

and vehicle miles traveled had positive and significant associations with crashes in both 

the link-based MLE model, and in the link-based MCMC model. Lane count, median 

width and sinuosity had negative and significant associations in both models. For the 

combined MLE and MCMC models, pavement width, lane count, median width, vehicle 

miles traveled, and sinuosity have significance and the same direction of association 

seen in the link-based models. Population density, employment density, and median 

income, did not change direction of association or lose significance from the MLE 

combined model to the MCMC combined model. These results indicate that spatial 

correlation is not an important factor in any bias seen in the MLE models. All five 

geometric variables did have reductions in magnitude of association from the link-based 

models compared to the combined models, indicating some bias in their coefficients, 

though not as much bias as is indicated by a change in direction of association, as seen 

in the models with only principal arterials, and in the models with the entire road 

network. The negative association of lane count on crashes is contrary to the finding 

made by Sawalha, Sayed (2001).  
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Conclusions 

 The goal of this chapter was to address my first research question. It asks 

whether there is evidence for specification error in crash frequency modeling, brought 

about by the omission of contextual variables. In addressing this question, I have 

examined the magnitude, direction and significance of the coefficients for geometric 

variables specified in MLE and MCMC models, and the magnitude, direction and 

significance of the coefficients of the same variables specified along with contextual 

variables (combined models). I examined these coefficients first for the entire road 

network, then for just principal arterials in the road network and finally for just local 

roads in the network. I specified models for total crashes, crashes with fatalities and 

only major injuries, and then for crashes with fatalities and any kind of injury. In 

addition to this, I looked at other indicators that I derived from examining the above 

models. They include the pseudo R2 measure of fit of the MLE models, and the spatial 

correlation coefficient (Phi) of the MCMC models. 

The point of the linked based MLE models is to see if the geometric variables 

show a reduction in magnitude or a change in direction or significance of their 

coefficients when the link-based models are compared with the combined MLE models. 

For the MCMC models I also examine changes seen from the MLE link-based to the MLE 

combined models, and whether they are present when MCMC link-based models are 

compared with MCMC combined models. The result of the ability to confirm the MLE 

models with the MCMC models is the indication that any bias seen in the link-based 

models are not a result of spatial correlation. Another way to say this is that the ability 
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to confirm the MLE model results will increase confidence in the conclusion that there is 

specification error in models that exclude contextual variables. 

 In the first set of models, based on the entire road network (Table 9), the vast 

majority of geometric variables show a decrease in magnitude of effect on all 

dependent variables.  

Table 16: Total Crashes Summary (Entire Network) 

 
Model 4  
(L-MLE-1) 

Model 5  
(C-MLE-1) 

Pavement width + sig + sig ↓ 

Lane count - sig - sig ↓ 

Median width - sig - sig ↓ 

Vehicle miles traveled + sig + sig ↓ 

Sinuosity - sig - sig ↓ 

Population density 
  

+ sig 
 

Employment density 
  

+ sig 
 

Median income 
  

+ sig 
 

+: Direction of association   Sig:  Significant   ↓ Direction of change    
“ns”: not significant at 95% confidence level 

 

Table 17: Fatal & Major Injury Crashes Summary (Entire Network) 

 
Model 6 
(L-MLE-2) 

Model 7 
(C-MLE-2) 

Pavement width + sig + sig ↓ 

Lane count - sig - sig ↓ 

Median width - sig - sig ↓ 

Vehicle miles traveled + sig + sig ↓ 

Sinuosity + ns + 
 

↑ 

Population density 
  

+ sig 
 

Employment density 
  

+ sig 
 

Median income 
  

- sig 
 

+: Direction of association   Sig:  Significant   ↓ Direction of change    
“ns”: not significant at 95% confidence level 

 

 

 

 



95 

 

    

 

Table 18: Fatal & Injury Crashes Summary (Entire Network) 

 
Model 8  
(L-MLE-3) 

Model 9  
(C-MLE-3) 

Pavement width + sig + sig ↓ 

Lane count - sig - sig ↓ 

Median width - sig - sig 
 

Vehicle miles traveled + sig + sig ↓ 

Sinuosity - sig + ns ↓ 

Population density 
  

+ sig 
 

Employment density 
  

+ sig 
 

Median income 
  

- sig 
 

+: Direction of association   Sig:  Significant   ↓ Direction of change   
 “ns”: not significant at 95% confidence level 

 

The only exception was sinuosity in the fatal and major injury crashes model 

which showed an increase but with an insignificant coefficient. Virtually all the 

coefficients were significant except sinuosity in the fatal and major injury crashes 

models, lane count in the combined MLE model and sinuosity in the combined MLE 

model for fatal and all injury crashes. For all the combined MLE models in this set, there 

were slightly higher pseudo R2 values than their corresponding link-based models.  I was 

not able to produce results for the MCMC models for this set because CrimeStat failed 

to run them even after 120 hours of attempting. This may be due to the combination of 

a large amount of observations and many variables. As a work- around, I ran the models 

by functional classification groups.  

In the second set of MLE models- principal arterials in the Pennsylvania road network ( 

Table 48), the majority of the geometric variables saw a decrease in magnitude 

of association for all three dependent variables.  
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Table 19: Total Crashes Summary (Principal Arterials) 

 Model 45 
(L-MLE-1) 

  Model 46 
 (C-MLE-1) 

 Model 10 
(L-MCMC-1) 

 Model 11 
(C-MCMC-1) 

Pavement width + sig  + sig ↓  + sig  + sig ↓ 

Lane count - sig  + sig ↓  - sig  + sig ↓ 

Median width - sig  - sig 
 

 - sig  - sig  

Vehicle miles traveled + sig  + sig ↓  + sig  + sig ↓ 

Sinuosity + sig  + sig ↑  + ns  + sig ↑ 

Population density 
  

 + sig 
 

 
  

 + sig  

Employment density 
  

 + sig 
 

 
  

 + sig  

Median income 
  

 + 
  

 
  

 + sig  
+: Direction of association   Sig:  Significant   ↓ Direction of change   

 “ns”: not significant at 95% confidence level 
 

Table 20: Fatal & Major Injury Crashes (Principal Arterials) 

 
Model 47  
(L-MLE-2) 

 Model 48 
(C-MLE-2) 

 Model 12  
(L-MCMC-2) 

 Model 13 
(C-MCMC-2) 

Pavement width + sig  + sig ↓  + sig  + sig ↓ 

Lane count - ns  + sig ↑  - ns  + ns ↑ 

Median width - sig  - sig ↓  - ns  - sig ↑ 

Vehicle miles traveled + sig  + sig 
 

 + sig  + sig 
 

Sinuosity + sig  + sig ↑  + sig  + sig ↑ 

Population density 
  

 + sig 
 

 
  

 + sig 
 

Employment density 
  

 + ns 
 

 
  

 + ns 
 

Median income 
  

 - sig 
 

 
  

 - sig 
 

+: Direction of association   Sig:  Significant   ↓ Direction of change    
“ns”: not significant at 95% confidence level 

 

Table 21: Fatal & Injury Crashes (Principal Arterials) 

 
Model 49 
 (L-MLE-3) 

 Model 50  
(C-MLE-3) 

 Model 14  
(L-MCMC-3) 

 Model 15  
(C-MCMC-3) 

Pavement width + sig  + sig ↓  + sig  + sig ↓ 

Lane count - sig  + sig ↓  - sig  + sig ↓ 

Median width - sig  - sig 
 

 - sig  - sig 
 

Vehicle miles traveled + sig  + sig 
 

 + sig  + sig 
 

Sinuosity + sig  + sig ↑  + sig  + sig ↑ 

Population density 
  

 + sig 
 

 
  

 + sig 
 

Employment density 
  

 + sig 
 

 
  

 + sig 
 

Median income 
  

 - sig 
 

 
  

 - 
  

+: Direction of association   Sig:  Significant   ↓ Direction of change    
“ns”: not significant at 95% confidence level 
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The exceptions are again sinuosity for all the three dependent variables, and 

lane count for fatal and major injury crashes. All coefficients were significant except for 

lane count in the MLE link-based fatal and major injury crashes model, which gained 

significance in the MLE combined model. In all three MLE models, lane count changed 

direction of association from negative in the link-based models to positive in the 

combined models. The MCMC models (Table 10, Table 11, and Table 12) largely 

replicate these results, except on a few points. In the fatal and major injury MCMC 

models (Table 11), lane count is not significant in either the link-based or the combined 

model. Median width is also not significant in the link-based model and increases in 

magnitude in the combined MCMC model.  The improvement in the pseudo R2 measure 

of fit in the combined MLE models for all three dependent variables is larger than the 

improvement seen in the models with the entire road network. The largest was by 

almost 6% in the fatal and injury model followed by the total crashes model. 

In the local roads models, the vast majority of geometric variables for all three 

dependent variables decreased in magnitude of association with the exception of  

Table 22: Total Crashes Summary (Local Roads) 

 
Model 51  
(L-MLE-1) 

Model 52 
 (C-MLE-1) 

Model 16  
(L-MCMC-1) 

Model 17  
(C-MCMC-1) 

Pavement width + sig + sig ↓ + sig + sig ↓ 

Lane count - sig - sig ↓ - sig - sig ↓ 

Median width - sig - sig ↓ - sig - sig ↓ 

Vehicle miles traveled + sig + sig ↓ + sig + sig ↓ 

Sinuosity - sig - sig ↓ - sig - sig ↓ 

Population density 
  

+ sig 
   

+ sig 
 

Employment density 
  

+ sig 
   

+ sig 
 

Median income 
  

+ 
    

+ sig 
 

+: Direction of association   Sig:  Significant   ↓ Direction of change  “ns”: not significant at 95% confidence level 
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Table 23: Fatal & Major Injury Crashes Summary (Local Roads) 

 
Model 53  
(L-MLE-2) 

Model 54  
(C-MLE-2) 

Model 18  
(L-MCMC-2) 

Model 19  
(C-MCMC-2) 

Pavement width + sig + sig ↓ + sig + sig ↑ 

Lane count - sig - sig 
 

- sig - ns ↓ 

Median width - sig - sig 
 

- sig - sig ↓ 

Vehicle miles traveled + sig + sig 
 

+ sig + sig 
 

Sinuosity + ns + ns ↓ + sig + sig 
 

Population density 
  

- ns 
   

+ ns 
 

Employment density 
  

+ ns 
   

- ns 
 

Median income 
  

- sig 
   

- sig 
 

+: Direction of association   Sig:  Significant   ↓ Direction of change    
“ns”: not significant at 95% confidence level 

 

Table 24: Fatal & Injury Crashes (Local Roads) 

 
Model 55  
(L-MLE-3) 

Model 56  
(C-MLE-3) 

Model 20  
(L-MCMC-3) 

Model 21  
(C-MCMC-3) 

Pavement width + sig + sig ↓ + sig + sig ↓ 

Lane count - sig - sig ↓ - sig - sig ↓ 

Median width - sig - sig 
 

- sig - sig 
 

Vehicle miles traveled + sig + sig ↓ + sig + sig ↓ 

Sinuosity - sig - ns ↓ - sig - ns ↓ 

Population density 
  

+ sig 
   

+ sig 
 

Employment density 
  

+ sig 
   

+ sig 
 

Median income 
  

+ ns 
   

- 
  

+: Direction of association   Sig:  Significant   ↓ Direction of change    
“ns”: not significant at 95% confidence level 

 

pavement width in the fatal and major injury MCMC model (Table 14), which increased 

in magnitude. Sinuosity in the fatal and major injury MLE combined and link-based 

models (Model 53 and Model 54) did not have significance, or in the fatal and injury 

combined MLE model (Model 56). Notably, lane count, the only variable to have 

changed in direction of association (in the principal arterial models, from negative to 

positive), is negatively correlated with the dependent variables as was the case in the 

models with the entire road network. The MCMC models (Table 13, Table 14, and Table 
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15), largely confirm the results from the MLE models (Table 49), sinuosity gains 

significance in both the link-based and combined fatal and major injury models, but 

remains insignificant in the combined fatal and injury model. There were small 

improvements in the pseudo R2 measure of fit of the combined MLE models over the 

link-based MLE models.   

Data quality is an issue in this dataset. I address this issue of data quality in more 

depth in the next chapter. It is however important to note that this issue should be kept 

in mind while interpreting model results, since not all data for dependent or 

independent variables are equal in quality. An example is the total crashes dependent 

variable. Property damage crashes, which tend to be under-reported to a large degree 

are a constituent of total crashes, but not of fatal and major injury crashes. Property 

damage crashes are frequently under-reported because of their relative unimportance, 

compared to crashes with fatalities and major injuries. Fatal and major injury data tends 

to be of better quality than total crashes data (Scribner 1994). 

On the whole, the re-estimation of the associations of the various variables on 

crashes, fatal and major injury crashes, and fatal and all injury crashes, using negative 

binomial autoregressive models so as to be able to control for spatial correlation 

indicates that the biases seen in the link-based models of the initial estimation are not 

due to spatial correlation. This means that both overdispersion and spatial correlation 

have been eliminated as possible explanations and the hypothesis that omitted variable 

bias is a problem affecting conventional crash prediction models is supported for 
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principal arterials and local roads in the Pennsylvania road system, although the support 

is strongest for principal arterials, since these models had changes in direction of 

association of at least one geometric variable in the combined models. 
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Crash Frequency Analysis for North Carolina State Roads  

In this chapter, I visit the question of the impact of measurement error on 

statistical inferences made from crash frequency prediction, using a dataset containing 

the attributes of North Carolina roads. By measurement error, I am referring to the 

introduction of erroneous data through the methods of analysis chosen by the 

researcher. When analysts are faced with data availability and quality problems, they 

must work around it in their analysis, and it is in this process that a source of 

measurement error can be introduced. For this chapter, I examine the impact of 

measurement error introduced through a process of estimating AADT for observations 

without AADT data and show how indeterminacy can be caused by the research 

methods chosen. I compare the results from a crash frequency analysis carried out using 

a dataset with observed AADT data (“observed” because it was calculated from 

observed hourly traffic volume data) for all road segments in the dataset, with the 

results of a crash frequency analysis carried out using a dataset for which some of the 

observations, chosen randomly, have AADT data estimated. These estimations were 

made from those observations with observed AADT data. As discussed above, estimated 

AADT is assumed to contain some error because it is not actually observed, but is only 

the “best guess” from what has actually been observed. My goal is to assess the impact 

of “erroneous” AADT (AADT data with measurement error) on inferences. Comparisons 

made between these two sets of results can inform knowledge on the impact of 

measurement error. 
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Measurement error is another significant factor that can lead to erroneous road 

safety decision-making. Measurement error denotes errors introduced into a dataset 

during measurement or data collection. It is collecting or measuring data such that what 

is assumed to be collected is not exactly what has been collected. These errors can be 

introduced through mistakes made in the data collection process as a result of human 

error or faulty data collection equipment or may be unavoidable due to uncertainty. For 

example, samples always contain some measurement error since they cannot be an 

exact representation of the population being studied. Measurement error is a problem 

of internal validity (Washington et al. 2011). A known source of measurement error in 

crash frequency data arises from the mis-identification of persons involved in crashes as 

pedestrians, for example, the characterization of a driver who has exited the vehicle 

temporarily as a pedestrian. This and other similar errors that diminish data quality are 

common in crash data collection. 

In addition to data quality, data availability is another significant problem. In 

crash datasets, certain variables are more prone to data availability issues than others. 

Annual Average Daily Traffic (AADT) data is one such variable. A true AADT calculation is 

an average of all hourly traffic counts for the duration of a year (FHWA 2014). This is a 

very costly and time intensive undertaking, and as such, hourly data is commonly not 

collected for all road segments within a road network, and what is collected is often 

affected by inaccuracy (FHWA 2014), thereby increasing unavailability since erroneous 

data is often disposed of. This means that AADT can only be calculated for a limited 
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number of roads and must be used with caution. It also means that AADT must be 

extrapolated or estimated for the segments for which it has not already been calculated 

from hourly traffic volume data.  

Data quality and availability are research method issues. This is because the 

analyst must find ways to render the data useful for analysis, despite any quality or 

availability issues. To illustrate the data quality and availability problems in crash 

frequency research, I will briefly discuss some of the methods used in practice to 

calculate AADT. There are several methods commonly used in AADT calculation from 

hourly traffic data. There is the simple averaging method which is simply an average of 

hourly traffic volume data for 365 days. This method is not often used because of the 

quantity of data required. The most commonly used method is the AASHTO method 

which uses 84 averages (12 months times 7 days of week) to account for month and 

daily variability. All that is required is average daily traffic data for each day of any week 

(they do not necessarily have to be the same week) for the given month. This means 

that only 1 weekday average for each day (as opposed to four averaged for each day, 

since each day occurs approximately four times in a month), is needed to come up with 

the 84 averages required for the AADT calculation (7 weekdays times 12 months e.g. 

Monday average times twelve months). This obviously does not take all hourly data into 

account and results are therefore not precise. Exacerbating this issue is the fact that this 

method underestimates and overestimates the average, because it assumes 4-week 
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months, even though some months consist of 28, 29, 30 or 31 days. In other words, 

there are still quality and availability issues with the AADT calculation.  

In addition to the problem of biased AADT data, there is the problem of missing 

AADT data. AADT data is usually not available for all segments or all roads in a road 

network. Since traffic volume data is often not collected for all roads in a dataset due to 

cost and time limitations as well as data collection errors, many crash datasets have a 

large amount of observations with missing AADT data. This means that AADT data for 

road segments that have not been collected must be extrapolated or estimated from 

segments for which the calculation has been done from hourly data. The process of 

estimating or extrapolating AADT data then introduces measurement error because the 

AADT values attributed to segments for which no observations were made are only 

estimations and will deviate from what the actual observed value would be, to various 

degrees.  

An FHWA study assessed the impact of missing data in the calculation of AADT 

from hourly traffic data. The bias found as a result was very small for the commonly 

used AASHTO method. The study found a bias of 0.30% when 60 days’ (the largest 

number of days’ worth of missing data tested in the study) worth of data is missing 

(FHWA 2014). This 16% missing data seems substantial enough to yield more than a 

.30% bias. While this bias is small, the fact that AADT might still need to be estimated 

from calculated AADT (which necessarily introduces error) means that the error is 

compounded. 



105 

 

    

 

Data and Methods 

In carrying out these analyses for North Carolina highways, I use Highway Safety 

Information System (HSIS) data. The HSIS is a database developed by the University of 

North Carolina Highway Safety Research Center (HRSC) in partnership with the Federal 

Highway Administration (FHWA), using data already collected by participating states, 

but processed centrally for the purpose of enabling research towards the goal of 

improving highway safety (FHWA 2016). They collect and clean road safety related data 

for the states of California, North Carolina, Illinois, Ohio, Maine, Utah, Michigan, 

Washington and Minnesota. HSIS data is collected in two main groups- crash data 

(which contains data for the vehicles involved as well as the occupants), and roadway 

data, which contains data for the road segments on which the crash occurred. Each data 

group has several variables further identifying the crash frequency such as number of 

vehicles, type of vehicle, type of crash, etc. I use HSIS data for my North Carolina dataset 

because it is assumed to be of better quality than most other crash datasets. Below is a 

description of HSIS by the FHWA. 

“FHWA conducts extensive quality control checks on the data it receives from 

States. Each year, HSIS analysts examine new data files and compare them to the 

previous year’s data. Then they develop metrics to measure differences in the 

data. If more than a very small difference is found between the values of a given 

year and the previous year, the analysts check the variable to understand the 

difference. The goal is uniformity and consistency year after year.” (Fitzgerald 

2014) 
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The reason why HSIS data is likely to be of better quality than DOT data is that it 

is re-processed centrally at HSIS labs as described above (FHWA 2016), after collection 

by police departments and subsequent processing by state Departments of 

Transportation (at which point it has already undergone some level of correction or 

cleaning). It is important for my starting point in this analysis to be with data that is as 

clean as possible to isolate the association of measurement error arising from the use of 

estimated AADT. If there are other sources of measurement error, it would be difficult 

to know what the specific association of erroneous AADT data is. It is reasonable to 

assume that two levels of processing will result in better data.  

In the same way and for the same reasons as in my Pennsylvania study, I analyze 

the data in three steps. The first was to model crash frequency on only contextual 

variables, with block groups as the unit of observation. In the next step, I modeled 

crashes on only geometric variables in link-based models, and in the final step, I 

modeled crashes on both geometric and contextual variables in combined models. I 

carry out these three steps for both my dataset with observed AADT and my dataset 

with estimated AADT for three dependent variables: crashes, fatal and incapacitating 

injury crashes, and fatal and injury crashes. Note that AADT is not actually a variable in 

my models but is used to calculate the vehicle miles traveled variable. 

In the previous chapter I made the case that using negative binomial conditional 

autoregressive models, is the correct way to model this kind of data, rather than simply 
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using negative binomial models. This is in order to account for spatial correlation which 

can be a significant issue in crash datasets, especially when contextual variables are 

involved. The results of the analyses carried out using my Pennsylvania dataset show 

that the MLE model results were closely replicated by the MCMC models. I therefore 

present and analyze only the results of the negative binomial conditional autoregressive 

models (MCMC) in this section, while including the results of the negative binomial 

models in the appendix. 

My North Carolina analysis also uses the same data types as my Pennsylvania 

study. Again, I examined crash frequency data, road geometry data and contextual data. 

I used a road network shapefile which I obtained from the North Carolina Department of 

Transportation (NCDOT), containing 340,181 road segments, including interstates, 

principal arterials, minor arterials, collectors, local roads and ramps. The following is a 

summary of the road network dataset. 

Table 25: Summary of North Carolina Road Network 

 Number of segments % of Total Total length (miles) 

Interstates 8,178 2.40% 1208.40 

Principal Arterials 39,615 11.65% 4020.09 

Minor Arterials 41,017 12.06% 5290.97 

Collectors 68,653 20.18% 16805.32 

Local Access Roads 182,718 53.71% 51512.79 

Total 340,181 100.00% 78837.57 
(NCDOT 2016) 

I chose to perform my analyses on interstate highways. The main reason was 

that this was the functional classification of North Carolina roads that had the least 

skewed distribution of crashes. Table 26 below shows the distribution of crashes by road 
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functional classification. Most functional classes had around 50% or a higher proportion 

of their road segments without any crashes at all. This was an important factor to 

consider because it affected the ability to estimate MCMC models, since the software I 

used (CrimeStat) is severely limited when the dependent variable is very skewed. This 

problem is noted in the CrimeStat software documentation. MCMC models are not 

appropriate for data with highly skewed dependent variables because this condition 

may cause the models to fail to converge (Levine 2013b, Levine 2013a). I decided to 

focus on interstate highways so as to use MCMC models for my estimations, since they 

account for spatial correlation. 

Table 26: Distribution of Crash Occurrences by Road Functional Classification 

 
Segments with 0 Crashes Total Segments % with 0 Crashes 

Interstates 2,375 8,178 29.04% 

Principal Arterials 15,416 39,615 38.91% 

Minor Arterials 16,462 41,017 40.13% 

Collectors  28,629 68,653 41.70% 

Local Roads  128,796 182,718 70.49% 

 

There were 1208 miles and 8178 segments of interstate highway in the dataset, 

of which 8071 had observed AADT data. The geometric variables used in my models 

were from the HSIS North Carolina database. They were pavement width, lane count, 

median width, shoulder width, and AADT. I again used sinuosity as my measure of 

curvature and obtained it using the same ArcGIS function used in my Pennsylvania 

dataset (ESRI 2011). I also calculated vehicle miles traveled by taking the product of 

AADT and segment length. 
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                 I obtained crash frequency data from the Highway Safety Information System 

(HSIS) for the years 2009 to 2013. As in the Pennsylvania study, 5-year data blocks are 

used so that crash data is large enough to analyze. Table 27 below summarizes the kinds 

of crashes that occurred on North Carolina interstates in this period.  

Table 27: Summary of Crash Types, 2009- 2013 

Crash Type Frequency 

Crashes with property damage only 69,022 

Crashes with injuries 21,909 

Crashes with fatalities 893 

Total crashes 91,824 
(FHWA 2016) 

Again, just like in the Pennsylvania dataset, the vast majority of crashes were property 

damage only crashes.  

             Table 28 below shows geometric variable distributions for interstate highways. 

Contrary to what might be expected since interstates tend to be designed according to 

uniform standards, there is substantial variance for total width and median width.  

Table 28: Distribution of Geometric Variables for Interstates 

Variable Mean Standard Deviation 

Total Width 80.16 31.83 

Lane Count 5.07 1.53 

Median Width 50.19 61.70 

Shoulder Width 10.57 2.89 

Vehicle Miles Traveled 7282.24 14014.66 

Sinuosity 0.999 0.0083 
(FHWA 2016) 

Unlike the data for the other variables which I obtained from the HSIS database, 

contextual data for the North Carolina study was obtained from the US Census Bureau, 

since the HSIS database is not a source of contextual data. I obtained data for median 
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income, population, and employment at the block group level and for the years 

between 2009 and 2013. The employment data consists of employment totals by block 

group in terms of work location. At the time of analysis, North Carolina had a total of 

6155 block groups. Table 29 below shows a summary of the variable values. Both 

population density and employment density were overdispersed- the standard deviation 

of their distributions are higher than the mean.  

Table 29: Distribution of Contextual Variables 

Variable Mean Standard Deviation 

Median Income 47,717.58 25,668.94 

Population Density 94.08 137.86 

Employment Density 716.77 3158.43 
Sources: United States Census Bureau 
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Results and Discussion 

In this section, I discuss results from models estimated using observed AADT and 

models run using estimated AADT for some observations. 

Models with Observed AADT data 

All Crashes 

Table 30 and Table 31 contain models for which the observations had only AADT 

that was observed and therefore supplied from the data source.  This observed AADT 

was used to calculate the vehicle miles traveled variable. Table 30 shows the negative 

binomial autoregressive model of crashes on contextual variables only, Table 31 shows 

the same model type for crashes on geometric variables (link-based models) and for 

crashes on all variables (combined models). For labeling the models, I continue the 

sequence I used in the previous chapter. When discussed in the text, the models appear 

with the same labels used when displayed as tables, as well as another label in 

parenthesis that shows whether they are spatial (S), link-based (L) or combined models 

(C), MCMC or MLE models, and the dependent variable of the model represented by a 

code of 1, 2 or 3. The dependent variables are represented by 1 for total crashes, 2 for 

fatal and incapacitating injury crashes, and 3 for fatal and injury crashes. 
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Table 30: Negative Binomial Autoregressive Model with only Contextual Variables (Observed AADT): 

 Model 22  
(S-MCMC-1) 

   

CRASHES Coeff. t-stat 2.5th Percentile 97.5th Percentile 

Population Density (ln) -0.343 -27.950 -0.367 -0.319 

Employment Density (ln) 0.136 16.253 0.120 0.152 

Median Income (ln) 0.071 7.228 0.053 0.091 

Interstate Density (ln) 1.408 18.902 1.263 1.554 

Principal Arterials Density (ln) 0.812 20.051 0.733 0.892 

Minor Arterials Density (ln) 0.562 14.957 0.489 0.636 

Collectors Density (ln) 0.263 6.198 0.179 0.346 

Local Roads Density (ln) 0.224 8.740 0.173 0.275 

Constant 4.415 39.592 4.184 4.623 

Spatial Correlation (phi) -0.001 -1.414 -0.003 0.000 

Observations 6155 
   

Df 6144 
   

Log likelihood -37543.520 
   

 

Model 22 (S-MCMC-1) models the effects of the contextual variables only, while 

accounting for the densities of principal arterial highways, minor arterials, collectors and 

local roads for all North Carolina block groups. Population density has a negative 

association with crashes, while employment density and median income have positive 

associations. All the contextual variable coefficients were found to be significant. This 

was also true for their associations in my Pennsylvania dataset, for the spatial model 

with the entire road network (Model 1 (S-MCMC-1)). The population density association 

with crashes is in line with Ewing, Schieber et al. (2003), Ewing, Dumbaugh (2009) and 
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Zhou, Sisiopiku (1997), which found that population density is associated with a lower 

risk of crash occurrence. Since this is the result of just one model, as opposed to a 

commonality across several models, the positive association between median income 

and crashes could be a result of model-specific unseen errors and illustrates the 

problem with indeterminacy in the estimates of crash frequency models. 

 

Table 31: MCMC Models (link-based and combined) (Observed AADT) 

  Model 23 
(L-MCMC-1) 

    Model 24 
(C-MCMC-1) 

    

CRASHES Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) -0.139 -2.396 -0.648 0.377 -0.161 -2.754 -0.681 0.356 

Lane count (ln) 1.293 13.705 0.457 2.128 0.601 6.202 -0.255 1.453 

Median width (ln) -0.100 -6.651 -0.233 0.032 -0.096 -6.422 -0.228 0.035 

Shoulder width (ln) -0.058 -1.428 -0.429 0.288 0.039 1.019 -0.306 0.362 

VMT (ln) 0.683 64.950 0.592 0.778 0.677 64.594 0.587 0.771 

Sinuosity (ln) -7.803 -2.619 -31.542 15.973 -7.846 -2.703 -31.093 16.163 

Median income (ln)     -0.009 -0.398 -0.222 0.182 

Population density (sq mi, ln)    0.059 2.518 -0.146 0.260 

Employment density (sq mi, ln)  
  

0.149 10.903 0.029 0.270 

Constant 0.694 0.335 -15.819 17.178 0.872 0.433 -15.889 16.966 

Spatial Correlation 
(phi) 

-0.038 -4.849 -0.108 0.026 -0.006 -0.983 -0.065 0.038 

         

Observations 8071    8071    

Df 8062    8059 
   

Log likelihood -23311.8   -23059.4 
  

 

Comparing Model 23 (L-MCMC-1) and Model 24 (C-MCMC-1) shows the changes 

that occur from the link-based model to the combined model due to the addition of the 

contextual variables of population density, employment density, and median income. All 

8071 interstate segments with observed AADT data were used in these models.  
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Table 31 show a good deal of stability between the link-based and the combined 

models for the variables of total width, median width, vehicle miles traveled, and 

sinuosity. For these four variables, the coefficient magnitudes are approximately the 

same between Model 23 (L-MCMC-1) and Model 24 (C-MCMC-1) for example, total 

width goes from -0.14 to -0.16, median width goes from -0.1 to -0.1, vehicle miles 

traveled from 0.68 to 0.68, and sinuosity from -7.8 to -7.9. The negative association of 

total width on crash frequency is consistent with the other studies I examined, including 

Abdel-Aty and Radwan (2000), Labi (2011), Council and Stewart (1999), and Garnowski 

and Manner (2011). The positive association of vehicle miles traveled (VMT) shows 

consistency with the traffic volume associations seen in other studies I examined with 

the lowest in the range being 0.24 (Zeng & Huang, 2014) and the highest being 1.18 

(Council & Stewart, 1999). The positive associations of lane count on crash frequency 

seen in both Model 23 (L-MCMC-1) and Model 24 (C-MCMC-1) are consistent with the 

results of other studies I examined including Sawalha and Sayed (2001), and Zeng and 

Huang (2014), although both studies showed much smaller coefficients for lane count 

with 0.085 and 0.17 respectively. 

Shoulder width changes direction of association from negative in Model 23 (L-

MCMC-1) to positive in Model 24 (C-MCMC-1). I examined two studies for shoulder 

width, with both showing negative associations of -0.15 and -0.30 (Sawalha & Sayed, 

2001) and (Milton, Mannering 1998)), consistent only with the shoulder width 

coefficient in Model 24 (C-MCMC-1). It is interesting that Model 24 (C-MCMC-1) and not 
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Model 23 (L-MCMC-1), should be more consistent with the outside studies, since they 

did not include contextual variables in their models. Median income and population 

density take on the opposite direction of association in Model 24 (C-MCMC-1) from their 

previous direction in Model 22 (S-MCMC-1), while employment density does not change 

from its positive association. 

 

Fatal & Incapacitating Injury Crashes 

Table 32 below shows the crash frequency models for fatal and incapacitating 

injury crashes, using only observed AADT data for all observations. Model 25 (L-MCMC-

2) is the link-based negative binomial autoregressive model for fatal and incapacitating 

injury crashes, Model 26 (C-MCMC-2) is the combined negative binomial autoregressive 

model for fatal and incapacitating injury crashes. 
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Table 32: MCMC Models (link-based and combined) (Observed AADT) 

  Model 25 
(L-MCMC-2) 

    Model 26 
(C-MCMC-2) 

    

FATAL & 
INCAPACITATING 
INJURY CRASHES 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) -0.504 -6.545 -1.128 0.100 0.050 0.692 -0.574 0.615 

Lane count (ln) 0.243 1.503 -1.019 1.511 -0.275 -1.952 -1.390 0.913 

Median width (ln) 0.023 0.615 -0.298 0.345 0.129 3.246 -0.218 0.449 

Shoulder width (ln) 0.160 1.757 -0.528 0.911 0.203 2.162 -0.559 0.991 

VMT (ln) 0.747 33.137 0.565 0.955 0.749 32.290 0.566 0.958 

Sinuosity (ln) 5.885 10.405 1.417 10.281 -7.377 -16.712 -10.897 -3.542 

Median income (ln)     -0.016 -0.645 -0.212 0.210 

Population density (sq mi, ln)    0.059 0.189 4.084 -0.226 

Employment density (sq mi, ln)  
  

0.149 -0.095 -3.373 -0.333 

Constant -11.618 -30.037 -14.453 -8.630 -4.482 -15.393 -6.842 -2.100 

Spatial Correlation 
(phi) 

-0.031 -4.766 -0.099 0.013 -0.023 -3.332 -0.090 0.021 

         

Observations 8071    8071    

Df 8062    8059 
   

Log likelihood -2448.51   -2474.35 
  

 

All the geometric variable coefficients increase in magnitude from Model 25 (L-

MCMC-2) to Model 26 (C-MCMC-2), except total width. Lane count and vehicle miles 

traveled did not increase substantially.  

Three variables changed direction of association in Model 26 (C-MCMC-2). Total 

width became positive, while lane count and sinuosity became negative. Median width 

and shoulder width became significant in Model 26 (C-MCMC-2). Pavement width, lane 

count, shoulder width, and median width are not very much in line with the directions 

of association found in the prior studies I examined. Both Wu et al. (2015) and Kononov 

et al. (2008) found a negative association for pavement width, while Kononov et. Al. 

found a positive association for lane count for crashes with fatalities and any level of 
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injury (Wu et al. 2015, Kononov et al. 2008). Both Harwood (2000) et. al. and Haleem et. 

al. (2012) found a negative association for shoulder width. Alluri et. al. (2012) found a 

negative association for median width.  
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Fatal and Injury Crashes 

Table 33 below shows the crash frequency models for fatal and all injury crashes, using 

only observed AADT for all observations. Model 27 (L-MCMC-3) is the link-based 

negative binomial autoregressive model for fatal and injury crashes, while Model 28 (C-

MCMC-3) is the combined negative binomial autoregressive model for fatal and injury 

crashes. 

 

Table 33: MCMC Models (link-based and combined) (Observed AADT) 

  Model 27 
(L-MCMC-3) 

    Model 28 
(C-MCMC-3) 

    

FATAL & INJURY 
CRASHES 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) -0.120 -1.994 -0.632 0.424 -0.172 -3.017 -0.658 0.340 

Lane count (ln) 1.081 11.356 0.240 1.900 0.348 3.640 -0.484 1.191 

Median width (ln) -0.116 -6.917 -0.263 0.029 -0.071 -4.447 -0.213 0.070 

Shoulder width (ln) -0.097 -2.290 -0.473 0.267 0.001 0.020 -0.336 0.327 

VMT (ln) 0.709 63.176 0.612 0.807 0.696 63.671 0.601 0.794 

Sinuosity (ln) -1.111 -0.970 -10.225 7.746 -2.800 -2.627 -11.597 5.490 

Median income (ln)     -0.054 -2.203 -0.277 0.144 

Population density (sq mi, ln)    0.059 0.139 6.060 -0.062 

Employment density (sq mi, ln)  
  

0.149 0.132 9.557 0.010 

Constant -5.112 -6.383 -11.459 1.232 -3.403 -4.655 -9.209 2.610 

Spatial Correlation 
(phi) 

-0.036 -6.282 -0.091 0.007 -0.024 -3.445 -0.099 0.023 

         

Observations 8071    8071    

Df 8062    8059 
   

Log likelihood -14313.87   -14096.28 
  

 

All the variable coefficients decrease in magnitude from Model 27 (L-MCMC-3)  to 

Model 28 (C-MCMC-3) except for sinuosity and total width. The increase in the total 

width coefficient is not substantial. All the variable coefficients remain the same in 
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direction of association in Model 28 (C-MCMC-3), except for shoulder width which 

becomes positive. Shoulder width also becomes insignificant in Model 28 (C-MCMC-3). 

Wu et al. found a negative association for pavement width, while Kononov et. al. found 

a positive association for lane count for crashes with fatalities and any level of injury 

(Wu et al. 2015, Kononov et al. 2008), both in line with pavement width and lane count 

in Model 28 (C-MCMC-3). Both Harwood et. al. and Haleem et. al. found a negative 

association for shoulder width (Haleem, Gan et al. 2012, Harwood, Council et al. 2000) 

contrary to the direction of the shoulder width coefficient in Model 28, which was not 

statistically significant. Alluri et. al. found negative association for median width (Alluri, 

Ogle 2012), in line with Model 28 (C-MCMC-3).  
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Models with Estimated AADT data 

All Crashes 

In the previous sections, I discussed the results of models run using observed 

AADT. In the next few sections, I estimate AADT for 30% of the observations, chosen at 

random, using the remaining 70% or 5650 observations from the total 8071. The choice 

to explore the effect of using estimated AADT data for 30% of the dataset was not 

completely arbitrary. This 30% represents a third of the dataset, and the extent to which 

this relatively small proportion of the dataset has a substantial impact on inferences will 

be an indication of the importance of the problem of measurement error introduced by 

analyst methods of dealing with data problems. Table 34 below shows the results of this 

estimation.  

Table 34: OLS estimation of AADT using 70% of AADT observations 

  

VARIABLES AADT 

Population 32.36***  
(1.934) 

Employment 1.778***  
(0.108) 

Pavement Width 144.8***  
(14.06) 

Lane Count 10,259***  
(313.8) 

Constant -24,095***  
(1,289)   

Observations 5,650 

R-squared 0.537 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 



121 

 

    

 

The AADT estimation using population, employment, pavement width and lane count as 

the independent variables resulted in a 53.7% R2, meaning that the model explains 

53.7% of the variation in the data. This is a moderately good fit.  

The parameters from this model were then used to predict AADT for the remaining 30% 

for which AADT was assumed to be missing. As some of the variables used in the AADT 

estimation were also used in the crash models, I added the error terms in the crash 

models as well, as seen in the Table 35 models below. Table 35 shows the negative 

binomial autoregressive model of crashes for both link-based and combined models, or 

Model 29 (L-MCMC-1) and Model 30 (C-MCMC-1) respectively. 

 

Table 35: Negative Binomial Autoregressive Models with Estimated AADT (link-based and combined) 

  Model 29 
(L-MCMC-1) 

    Model 30 
(C-MCMC-1) 

    

CRASHES Coeff.  t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff.  t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) -0.095 -1.631 -0.601 0.414 -0.256 -4.587 -0.736 0.234 

Lane count (ln) 1.243 13.983 0.458 2.015 0.634 6.704 -0.203 1.454 

Median width (ln) -0.104 -7.198 -0.232 0.022 -0.078 -5.151 -0.211 0.052 

Shoulder width (ln) 0.018 0.468 -0.331 0.349 -0.083 -2.186 -0.427 0.243 

VMT (ln) 0.654 63.844 0.564 0.746 0.641 62.027 0.553 0.735 

Sinuosity (ln) -18.221 -13.173 -28.964 -6.909 7.226 5.095 -3.588 18.336 

Residuals (AADT) 1.20E-05 14.325 5.00E-06 1.90E-05 8.00E-06 9.439 1.00E-06 1.50E-05 

Median income (ln)     0.057 2.572 -0.137 0.247 

Population density (sq mi, ln)     0.019 0.831 -0.179 0.215 

Employment density (sq mi, 
ln) 

    
0.163 12.214 0.048 0.281 

Constant 7.814 8.100 -0.160 15.225 -9.344 -9.561 -17.054 -1.691 

Spatial Correlation (phi) -0.006 -1.412 -0.050 0.028 0.000 -0.057 -0.049 0.041 

Observations 8071    8071    

Df 8061    8058    

Log likelihood -23438.37   -23192.53   
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 Lane count, median width, VMT, and sinuosity decreased in magnitude in Model 

30 (C-MCMC-1), when compared with their values in Model 29 (L-MCMC-1), while total 

width and shoulder width increased. While most variables did not change their direction 

of association, shoulder width became negative, and sinuosity became positive in Model 

30 (C-MCMC-1). Total width and median width were negative in both models, while lane 

count, and VMT were positive in both models. Two variables, total width and shoulder 

width were not significant in Model 29 (L-MCMC-1), but became significant in Model 30 

(C-MCMC-1). The negative association of total width was also seen in Abdel-Aty and 

Radwan (2000), Labi (2011), Council and Stewart (1999), and Garnowski and Manner 

(2011). The positive association of VMT was consistent with Zeng & Huang (2014) and 

Council & Stewart (1999) and that of lane count was consistent with Sawalha and Sayed 

(2001), and Zeng and Huang (2014). The negative association of shoulder width in 

Model 30 (C-MCMC-1) was consistent with the Sawalha & Sayed (2001) and (Milton, 

Mannering 1998) studies. The studies I examined for median width found opposite 

associations. Abdel-Aty (2000) found a negative association, agreeing with my results, 

while Malyshkina and Mannering (2010) found a positive association. In general, my 

results agree with the other crash frequency studies I examined, even for the combined 

model (Model 30 (C-MCMC-1)). This implies that measurement error from the omission 

of contextual variables is not an issue.  

Again, the goal of this re-estimation of crash frequency, using estimated AADT is 

to compare the results with the models where only observed AADT was used, to assess 
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how measurement error can affect the inferences made. The key thing is to note how 

substantial the differences are. Seeing a substantial difference in the associations will 

show that data availability and quality issues can have a far-reaching effect on 

inferences made. In comparing Model 30 (C-MCMC-1), which uses estimated AADT for 

30% of the dataset, with Model 24 (C-MCMC-1), which uses observed AADT only, there 

are some substantial differences. Shoulder width and sinuosity, which were positive and 

negative respectively in Model 24 (C-MCMC-1), changes direction of association to 

negative for shoulder width, and positive for sinuosity in Model 30 (C-MCMC-1). While 

only shoulder width is insignificant in Model 24 (C-MCMC-1), both shoulder width and 

sinuosity are significant in Model 30 (C-MCMC-1). These results show that using 

estimated data, for even just a small proportion of the dataset (a third) can result in very 

different results and highlights the impact of data quality and availability. Using 

estimated AADT as in Model 30 (C-MCMC-1), the inference is that shoulder width has a 

negative association with crashes, while sinuosity has a positive association. The 

inference is the exact opposite when using observed AADT as in Model 24 (C-MCMC-1).  

These results raise the important question of how data quality may affect the 

reliability of the inferences that can be drawn about the associations of geometric 

variables on crash frequency. This is an important question because these inferences 

form the basis of plans to implement road safety design changes. Safety treatments, as 

much as possible, should not be applied based on inferred associations that might in 

reality have no significance, or show the wrong direction due to bias. 
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Fatal & Incapacitating Injury Crashes 

Table 36 below shows the crash frequency models for fatal and incapacitating injury 

crashes, using estimated AADT for 30% of the observations. Model 31 (L-MCMC-2) is the 

link-based negative binomial autoregressive model for fatal and incapacitating injury 

crashes, while Model 32 (C-MCMC-2) is the combined negative binomial autoregressive 

model for fatal and incapacitating injury crashes. 

 

Table 36: Negative Binomial Autoregressive Models (link-based and combined) (Estimated AADT) 

  Model 31 
(L-MCMC-2) 

    Model 32 
(C-MCMC-2) 

    

FATAL & 
INCAPACITATING 
INJURY CRASHES  

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) -0.204 -1.973 -1.067 0.628 -0.229 -2.552 -0.965 0.477 

Lane count (ln) 0.394 2.274 -1.108 1.882 0.034 0.185 -1.482 1.516 

Median width (ln) 0.115 2.525 -0.257 0.520 0.149 3.457 -0.208 0.534 

Shoulder width (ln) 0.075 0.800 -0.664 0.899 0.122 1.210 -0.712 1.036 

VMT (ln) 0.751 29.154 0.540 0.976 0.712 27.035 0.499 0.939 

Sinuosity (ln) -6.504 -9.574 -11.417 -0.626 -21.417 -30.099 -27.049 -15.788 

Residuals (AADT) 4.30E-06 2.316 -1.20E-05 2.10E-05 6.20E-06 3.13 -1.10E-05 2.40E-05 

Median income (ln)     -0.152 -3.747 -0.455 0.190 

Population density (sq mi, ln)    0.113 2.171 -0.360 0.561 

Employment density (sq mi, ln)    -0.034 -1.088 -0.303 0.233 

Constant -4.888 -9.824 -8.860 -1.205 7.687 14.780 3.749 11.461 

Spatial Correlation 
(phi) 

-0.041 -5.536 -0.114 0.009 -0.010 -1.859 -0.066 0.027 

Observations 8071    8071    

Df 8061    8058    

Log likelihood -2481.25   -2493.45   

 

There is a lot of stability between Model 31 (L-MCMC-2) and Model 32 (C-MCMC-2). All 

the geometric variables remain unaffected in direction of association when they are 

specified with contextual variables in Model 32 (C-MCMC-2). Most of the geometric 
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variables, except for lane count and sinuosity did not change very much in magnitude of 

association in Model 32 (C-MCMC-2). Again, this does not support my hypothesis, which 

is that geometric variable coefficients are affected by bias when they are specified 

without contextual variables. This was not the case when the fatal & incapacitating 

injury models using only observed AADT were compared (Model 25 (L-MCMC-2) and 

Model 26 (C-MCMC-2).  

Comparing the combined model for fatal & incapacitating injury crashes using observed 

AADT (Model 26 (C-MCMC-2)), with the corresponding model using 30% estimated 

AADT Model 32 (C-MCMC-2), the impact of using estimated data becomes more 

apparent. Two variables switch direction of association from (Model 26 (C-MCMC-2) 

which uses observed AADT to Model 32 (C-MCMC-2) which uses some estimated AADT. 

Total width becomes negative and gains significance, while lane count becomes positive 

and remains insignificant in Model 32 (C-MCMC-2). While shoulder width does not 

change direction between those two models, it becomes insignificant in Model 32 (C-

MCMC-2).  
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Fatal & Injury Crashes 

Table 37 below shows the crash frequency models for fatal and injury crashes, using 

estimated AADT for 30% of the observations. Model 33 (L-MCMC-3) is the link-based 

negative binomial autoregressive model for fatal and injury crashes, while Model 34 (C-

MCMC-3) is the combined negative binomial autoregressive model for fatal and injury 

crashes. 

 

Table 37: Negative Binomial Autoregressive Models (link-based and combined) (Estimated AADT) 

  Model 33 
(L-MCMC-3) 

    Model 34 
(C-MCMC-3) 

    

FATAL & INJURY 
CRASHES 

Coeff.  t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) -0.295 -4.739 -0.847 0.266 -0.307 -4.943 -0.848 0.261 

Lane count (ln) 1.287 13.123 0.405 2.150 0.661 6.641 -0.207 1.553 

Median width (ln) -0.100 -5.721 -0.255 0.055 -0.069 -4.045 -0.219 0.082 

Shoulder width (ln) -0.062 -1.481 -0.439 0.300 -0.037 -0.893 -0.403 0.322 

VMT (ln) 0.644 55.667 0.544 0.748 0.651 58.416 0.555 0.752 

Sinuosity (ln) 6.384 4.488 -4.259 17.869 8.789 6.771 -1.098 19.523 

Residuals (AADT) 1.10E-05 12.893 4.00E-06 1.90E-05 7.4E-6 8.497 0 1.50E-05 

Median income (ln)     -0.027 -1.113 -0.243 0.182 

Population density (sq mi, ln)    0.075 3.178 -0.134 0.282 

Employment density (sq mi, ln)   0.149 10.394 0.024 0.276 

Constant -9.571 -9.612 -17.547 -2.049 -11.116 -12.634 -18.406 -4.464 

Spatial Correlation 
(phi) 

-0.012 -2.614 -0.062 0.022 -0.023 -3.713 -0.083 0.021 

Observations 8071    8071    

Df 8061    8058    

Log likelihood -14331.67   -14148.95 
 

  

 

None of the geometric variable coefficients in Model 33 (L-MCMC-3) change direction of 

association in Model 34 (C-MCMC-3). There is also not much change in magnitude of 
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association between these two models. This does not support my hypothesis which is 

that the absence of contextual variables in crash frequency models introduces statistical 

errors that can be indicated by bias in the geometric variable coefficients. This was also 

the case for the fatal and major injuries models when the link-based model was 

compared with the combined model for estimated AADT. This was not found to be the 

case for the total crashes models. 

The comparison between the combined fatal & injury model using observed AADT 

(Model 28 (C-MCMC-3)) with the combined fatal & injury model using estimated AADT 

Model 34 (C-MCMC-3) does indicate that measurement error can be impactful. While 

most geometric variables have the same direction of association, and show only small 

variations in magnitude of association, shoulder width becomes negative, and sinuosity 

becomes positive in Model 34 (C-MCMC-3).  
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Conclusions 

The goal of this chapter was to explore the impact of data quality and availability on 

crash frequency models. To do this, I ran crash frequency models with geometric and 

contextual variables, using a dataset with AADT generated from observed hourly traffic 

volume data. I then ran these models again using a dataset for which AADT data for a 

randomly chosen 30% of the observations was assumed to be missing, and therefore 

estimated from observed AADT. The rationale here is that estimated AADT will have 

some error since it is a deviation from whatever the true value would be. I compared 

results from the models with only observed AADT to the results from the models with 

30% estimated AADT. The differences which are due to the errors in the estimation, can 

be indicative of the consequence of measurement error. It shows how data quality and 

availability can impact crash frequency modeling, and in turn, impact the decisions that 

are made based on these models. The following are summary tables of these 

comparisons between the combined models with observed AADT and the combined 

models with estimated AADT for the dependent variables of total crashes, fatal and 

incapacitating injury crashes and fatal and injury crashes.  

 

 

 

 

 



129 

 

    

 

Table 38: Summary of total crashes models 

 
Model 24 (C-MCMC-1)  Model 30 (C-MCMC-1)  
(Observed AADT)  (Estimated AADT) 

Total width (ln) ↑ - sig  ↑ - sig 

Lane count (ln) ↓ + sig  ↓ + sig 

Median width (ln) ↓ - sig  ↓ - sig 

Shoulder width (ln) ↓ + ns  ↑ - sig 

VMT (ln) ↓ + sig  ↓ + sig 

Sinuosity (ln) ↑ - sig  ↓ + sig 

Median income (ln) 
 

- ns  
 

+ sig 

Population density (sq mi, ln) 
 

+ sig  
 

+ ns 

Employment density (sq mi, ln) 
 

+ sig  
 

+ sig 

 

The summary tables show two columns for each model. The first column shows the 

change in magnitude of association from the corresponding link-based model. For 

example, Table 38 (total crashes) shows that total width and sinuosity increased in 

magnitude in Model 24 (C-MCMC-1) from Model 23 (L-MCMC-1), which is not shown 

here. The individual magnitude changes for each variable is not very important because 

for most of the variables the changes in magnitude are very small.  The second column 

for Model 24 (C-MCMC-1) which was run using observed AADT, is more important 

because it shows the direction of association of the model, and will be compared to the 

second column of the corresponding estimated AADT model, Model 30 (C-MCMC-1).  

For the total crashes models (Model 24 and Model 30), three variables change direction 

of association. Shoulder width takes on a negative association, while sinuosity and 

median income both take on a positive association in Model 30 (C-MCMC-1) which is 

specified with estimated AADT.  
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Table 39: Summary of fatal and incapacitating injury crashes models 

Model 26 (C-MCMC-2)  Model 32 (C-MCMC-2) 
 

(Observed AADT)  (Estimated AADT) 

Total width (ln) ↓ + ns  ↑ - sig 

Lane count (ln) ↑ - ns  ↓ + ns 

Median width (ln) ↑ + sig  ↑ + sig 

Shoulder width (ln) ↑ + sig  ↑ + ns 

VMT (ln) ↑ + sig  ↓ + sig 

Sinuosity (ln) ↑ - sig  ↑ - sig 

Median income (ln) 
 

- ns  
 

- sig 

Population density (sq mi, ln) 
 

+ ns  
 

+ sig 

Employment density (sq mi, ln) 
 

+ ns  
 

- ns 

 

For the fatal and incapacitating injury crashes models, Model 26 (C-MCMC-2) and Model 

32 (C-MCMC-2), total width and lane count change direction of association. Total width 

takes on a negative association, and lane count takes on a positive association with 

crash frequency in Model 32 which is specified with estimated AADT.  

Table 40: Summary of fatal and injury crashes models 

Model 28 (C-MCMC-3  Model 34 (C-MCMC-3) 
 

(Observed AADT)  (Estimated AADT) 

Total width (ln) ↑ - sig  ↑ - sig 

Lane count (ln) ↓ + sig  ↓ + sig 

Median width (ln) ↓ - sig  ↓ - sig 

Shoulder width (ln) ↓ + ns  ↓ - ns 

VMT (ln) ↓ + sig  ↑ + sig 

Sinuosity (ln) ↑ - sig  ↑ + sig 

Median income (ln) 
 

- sig  
 

- ns 

Population density (sq mi, ln) 
 

+ ns  
 

+ sig 

Employment density (sq mi, ln) 
 

+ ns  
 

+ sig 
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For the fatal and injury models, Model 28 (C-MCMC-3) and Model 34 (C-MCMC-3), 

shoulder width and sinuosity change direction of association, with shoulder width taking 

on a negative association, and sinuosity taking on a positive association with crash 

frequency. For each of the three dependent variables, the effect of re-running the 

models using estimated AADT was to change the direction of association of the 

coefficients of roughly one-third of the geometric variables specified.  

An FHWA study assessed the impact of missing hourly data on AADT estimation.  

The study estimated bias by comparing AADT estimates with no missing days, to 

estimates with 1 to 60 missing days. The maximum bias found was 0.30%, for their 

dataset with 60 days-worth of missing data (Krile, Robert 2014). This is obviously a very 

negligible amount of bias, showing that missing data (16% of the data is missing) may 

not have a large impact on AADT estimation.  My results, which assume a larger 

proportion of the dataset is missing (30%), show the opposite- that missing data can be 

quite impactful. Figure 2 below shows the results from the FHWA study.  
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Figure 2: FHWA study findings on the impact of missing hour data 

Days 
Excluded 

Method 1- Simple Averaging Method 2- AASHTO Method 3- AASHTO Adjusted 

 
Median 
Percent Bias 

% Increase 
on Method 2 
%Bias CI 

Median 
Percent Bias 

95% CI on % 
Bias 

Median 
Percent Bias 

% Increase on 
Method 2 
%Bias CI 

1 0.00 3.07 -0.05 (-0.42, 0.25) 0.00 -23.86 

3 0.00 25.54 -0.05 (-0.57, 0.42) 0.00 -8.81 

7 0.00 27.44 -0.04 (-0.86, 0.68) 0.00 -5.10 

14 0.02 22.79 -0.04 (-1.38, 1.17) 0.00 -1.07 

All But 7 -0.03 0.00 -0.03 (-2.24, 1.99) 0.00 0.74 

30 day -0.11 86.75 -0.08 (-1.30, 1.06) -0.02 1.03 

60 day -0.39 43.79 -0.30 (-3.60, 2.53) -0.26 -0.97 

2 x 30 day -0.17 82.41 -0.13 (-1.88, 1.57) -0.07 0.97 

 

The results of my study show the impact of a slightly different kind of data availability 

issue- missing AADT data (as opposed to missing hourly traffic volume data, which is 

used to calculate AADT). In both instances, AADT must be calculated, but in my study, 

the estimation of AADT from observed AADT which has been calculated from hourly 

data and potentially impacted by data availability issues may further bias results. In 

other words, being able to have AADT data for all road segments in a road network 

might involve using biased AADT data calculated from hourly observations to estimate 

missing AADT (which inadvertently can only be done with some error). Crash frequency 
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analysis subsequently carried out using such data can result in significant bias with 

coefficients showing opposite directions of associations than they would show with 

observed AADT data, as seen in the model comparisons in Table 38,  

Table 39, and Table 40 . The only other choice is to not perform crash frequency analysis 

for those roads for which there is no observed AADT data.  
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Adding More Contextual Variables: Age, Precipitation and Elevation 

All Crashes 

In my literature review, I discussed some empirical research carried out to 

investigate the associations of other contextual variables such as age of the population, 

and weather on crash occurrences. A number of studies found that younger drivers are 

associated with higher crash risk because of their relative inexperience or high risk-

taking tendency (Chen et al. 2006, Klauer et al. 2006, Deery 1999, Clarke et al. 2006). 

The association of precipitation to increase crash risk is also well documented 

(Eisenberg, Warner 2004, Strong, Ye et al. 2010). In this section, I show the results of 

some additional estimates using my North Carolina dataset with age, precipitation and 

elevation variables. I use my North Carolina dataset for this additional analysis because 

North Carolina has a somewhat varied landscape, being landlocked on its western end, 

with the ocean to its east.  

I used elevation data and 30-year average precipitation data obtained from the 

Oregon State University PRISM Climate database (Oregon State University 2018). The 

elevation range for North Carolina is from 0 to 1575 feet above sea level, while the 30-

year average annual precipitation range is from 928 to 2205 inches. I geocoded 

precipitation data by appending the precipitation attributes to the North Carolina block 

group that was under each precipitation zone. One limitation of using 30-year average 

precipitation data is that it does not account for variation over a 30-year period, 

although it will account for variation between wet and drier climates. It is more a 
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measure of climate than it is of weather, since it doesn’t take seasonal variation into 

account.  I looked at two age variables- the proportion of the population age sixty-five 

and up (%65-up), and the proportion of those between ages 18-24 (%18-24). The range 

for those age 65 and up was from 0 to 14.5%, and that of those ages 18-24 was from 0 – 

50.6%.  

Table 41: Negative Binomial Autoregressive Models with Observed AADT (Contextual Variables) 

Model 35 (S-MCMC-1) 

CRASHES Coeff. t-stat 2.5th Percentile 97.5th Percentile 

Population Density (ln) -0.39 -31.89 -0.42 -0.37 

Employment Density (ln) 0.15 18.54 0.13 0.16 

Median Income (ln) 0.13 13.42 0.11 0.15 

% Age 18-24 (ln) 0.32 11.32 0.26 0.37 

% 65 and UP (ln) -0.30 -9.47 -0.36 -0.24 

Precipitation (ln) 0.17 0.97 -0.09 0.41 

Elevation (ln) -0.05 -4.48 -0.07 -0.03 

Interstate Density (ln) 1.41 19.15 1.27 1.56 

Principal Arterials Density (ln) 0.80 20.20 0.72 0.88 

Minor Arterials Density (ln) 0.60 16.18 0.53 0.67 

Collectors Density (ln) 0.29 6.97 0.21 0.38 

Local Roads Density (ln) 10.25 9.68 0.20 0.30 

Constant 2.96 2.29 1.18 4.92 

Spatial Correlation (phi) 0.00 -1.53 0.00 0.00 

Observations 6155 
   

Df 6140 
   

Log likelihood -37393.9 
   

 

Model 35 (S-MCMC-1) shows the results of the spatial model, with the additional 

variables on total crashes for all North Carolina block-groups. All variables have 

significant associations except precipitation.  Population density, employment density 
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and median income have the same direction of associations as in Model 22 (S-MCMC-1), 

where they are specified also with observed AADT, but without the additional variables.  

There is also not a great deal of variation in the magnitudes of association of these 

variables with the population density, employment density and median income 

coefficients at -0.39, 0.15 and 0.13 respectively in Model 35 (S-MCMC-1), compared 

with -0.34, 0.13, and 0.07 respectively in Model 22 (S-MCMC-1). The addition of the age, 

precipitation and elevation variables does not alter the model very much. The age 

variable %18-24 does have a positive association with total crashes, while %65-up has a 

negative association with total crashes. These results may be indicative of the 18-24 age 

group’s relative driving inexperience (Chen et al. 2006, Klauer et al. 2006, Deery 1999, 

Clarke et al. 2006). The negative association of %65-up may be indicative of a low risk-

taking tendency among seniors. Precipitation, while not significant has a positive 

association with total crashes, in line with Eisenberg, Warner (2004).  
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Table 42: Negative Binomial Autoregressive Models with Observed AADT (Combined Model) 

Model 36 (C-MCMC-1) 

CRASHES Coeff. t-stat 2.5th 
Percentile 

97.5th Percentile 

Total width (ln) -0.115 -2.159 -0.586 0.362 

Lane count (ln) 0.568 6.227 -0.219 1.374 

Median width (ln) -0.081 -5.559 -0.210 0.046 

Shoulder width (ln) -0.048 -1.270 -0.385 0.274 

VMT (ln) 0.696 69.311 0.610 0.787 

Sinuosity (ln) -9.483 -8.045 -18.664 -0.212 

Median income (ln) 0.069 3.061 -0.132 0.266 

Population density (sq mi, ln) 0.156 11.894 0.042 0.272 

Employment density (sq mi, ln) -0.036 -1.554 -0.244 0.162 

% Age 18-24 (ln) 0.257 5.182 -0.177 0.695 

% Age 65 up (ln) 0.171 2.895 -0.346 0.692 

Precipitation (ln) -0.055 -0.412 -1.097 0.927 

Elevation (ln) -0.174 -9.151 -0.343 -0.008 

Constant 2.934 3.042 -4.491 10.359 

Spatial Correlation (Phi) -0.003 -0.608 -0.048 0.037 

Observations 8071 
   

Df 8055 
   

Log likelihood -23112.83 
   

 

Model 36 (C-MCMC-1) shows the results of the combined model with the additional 

variables. The geometric variables have the same direction of association as those in 

Model 24 (C-MCMC-1), where they are specified also with observed AADT but without 

the additional variables. The exception is shoulder width which has a positive 

association with total crashes in Model 24 (C-MCMC-1), but a negative association with 

total crashes in Model 36 (C-MCMC-1). The negative association in the latter model is 

consistent with Sawalha & Sayed (2001) and (Milton, Mannering 1998). There is not 
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much variation between the coefficient magnitudes either, for the geometric variables 

when these two models are compared. This implies that the addition of the age, 

precipitation and elevation variables does not have a great impact on the previous 

models. The contextual variables of median income, population density and 

employment density do however vary somewhat between the two models. In Model 36 

(C-MCMC-1), both median income and population density have positive associations 

while employment density has a negative association. In Model 24 (C-MCMC-1), median 

income has a negative association, while population and employment density have 

positive associations with total crashes. Therefore, of the three main contextual 

variables, only population density did not change direction of association upon the 

addition of the age, precipitation and elevation variables. Also unlike in the spatial 

model, %65-up has a positive association with crashes, while precipitation and elevation 

have negative associations. 
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Fatal & Incapacitating Injury Crashes 

Model 37 (C-MCMC-2) 

FATAL & INCAPACITATING INJURY CRASHES Coeff. t-stat 2.5th 
Percentile 

97.5th 
Percentile 

Total width (ln) -0.072 -0.747 -0.873 0.693 

Lane count (ln) -0.152 -0.906 -1.573 1.120 

Median width (ln) 0.096 2.152 -0.260 0.474 

Shoulder width (ln) 0.053 0.513 -0.759 0.957 

VMT (ln) 0.762 31.405 0.557 0.971 

Sinuosity (ln) 6.990 9.793 1.862 12.868 

Median income (ln) 0.001 0.030 -0.264 0.255 

Population density (sq mi, ln) 0.096 1.849 -0.342 0.527 

Employment density (sq mi, ln) 0.000 -0.009 -0.255 0.255 

% Age 18-24 (ln) -0.204 -1.577 -1.325 0.951 

% Age 65 up (ln) 0.245 1.845 -0.926 1.415 

Precipitation (ln) -0.645 -10.229 -1.104 -0.151 

Elevation (ln) 0.004 0.088 -0.344 0.342 

Constant -9.740 -20.011 -13.501 -6.221 

Spatial Correlation (Phi) -0.022 -3.054 -0.096 0.025 

Observations 8071 
   

Df 8055 
   

Log likelihood -2478.16 
   

 

Model 37 (C-MCMC-2) shows the results of the combined model for fatal and 

incapacitating injury crashes with the additional variables. Almost all the geometric 

variables have the same direction of association as those in Model 26 (C-MCMC-2), 

where they are specified also with observed AADT but without the additional variables. 

The exceptions are total width which takes on a negative association, and sinuosity 

which takes on a positive association in Model 37 (C-MCMC-2). The negative association 

of total width is consistent with the Wu, Han et al. (2015) study. This implies that the 
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addition of the age, precipitation and elevation variables does not have a great impact 

on the model. The contextual variables of median income, population density and 

employment density do however vary somewhat between the two models. In Model 37 

(C-MCMC-2), median income takes on a positive association, while population and 

employment density do not change in direction of association. In this model, %18-24 has 

a negative association and %65-up has a positive association. Precipitation has a 

negative association, and elevation, a positive association.  
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Fatal & Injury Crashes 

Model 38 (C-MCMC-3) 

FATAL & INJURY CRASHES Coeff. t-stat 2.5th 
Percentile 

97.5th Percentile 

Total width (ln) -0.353 -5.757 -0.888 0.198 

Lane count (ln) 0.600 5.964 -0.287 1.488 

Median width (ln) -0.026 -1.536 -0.175 0.124 

Shoulder width (ln) -0.046 -1.117 -0.415 0.318 

VMT (ln) 0.696 61.425 0.598 0.798 

Sinuosity (ln) -9.902 -7.832 -19.592 0.483 

Median income (ln) -0.024 -0.870 -0.258 0.223 

Population density (sq mi, ln) 0.110 4.507 -0.108 0.326 

Employment density (sq mi, ln) 0.144 9.925 0.016 0.271 

% Age 18-24 (ln) 0.090 1.612 -0.404 0.587 

% Age 65 up (ln) 0.042 0.650 -0.538 0.623 

Precipitation (ln) -0.135 -1.114 -1.142 0.742 

Elevation (ln) -0.052 -2.436 -0.241 0.137 

Constant 2.618 2.728 -4.755 10.016 

Spatial Correlation (Phi) -0.015 -2.779 -0.075 0.023 

Observations 8071 
   

Df 8055 
   

Log likelihood -14069.67 
   

 

Model 38 (C-MCMC-3) shows the results of the combined model with the additional 

variables for fatal and injury crashes. Almost all the geometric variables have the same 

direction of association as those in Model 28 (C-MCMC-3), where they are specified also 

with observed AADT but without the additional variables. The exception is shoulder 

width which has a positive association with crashes in Model 28 (C-MCMC-3), but a 

negative association in Model 38 (C-MCMC-3). This negative association is consistent 

with both Haleem et al. (2012), and Harwood et al. (2000). There is not much variation 
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between the coefficient magnitudes for the geometric variables when these two models 

are compared. This implies that the addition of the age, precipitation and elevation 

variables does not have a great impact on the model. The contextual variables of 

median income, population density and employment density also do not vary between 

the two models in direction of association. The age variables have positive associations 

while precipitation and elevation have negative associations. The addition of elevation, 

precipitation and the age variables yielded meaningful change in the model coefficients. 

At least one variable in each model changed direction of association. These results 

underscore the problem of indeterminacy arising from different model specifications.  
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Possible Variable Interactions 

 In the previous chapter, I found that with certain models, for example, Model 26 

(C-MCMC-2), variables like sinuosity, lane count median and shoulder width increased in 

magnitude in combined models, when compared to the corresponding link-based 

model, Model 25 (L-MCMC-2). This also happened to a much smaller degree and with 

far fewer variables in Model 24. Many crash frequency studies have found strong 

interactions between various road characteristics in their datasets (Wang, Simandl et al. 

2016). I discussed that one possible reason for this could be interactions between these 

variables and some contextual variables. In this section I explore four possible 

interactions for interstates and principal arterials. I explored interactions between 

pavement width and population density, pavement width and elevation, lane count and 

%65-up, lane count and %18-24, and finally, sinuosity and %65-up. The following table 

shows the correlations between these variables. 

Table 43: Correlations between potentially interacting variables 

 
Pavement  

Width 
Population 

Density 
Elevation Lane 

Count 
%65-up %18-24 Sinuosity 

Pavement Width 1.00 
      

Population Density 0.21 1.00 
     

Elevation -0.18 0.04 1.00 
    

Lane Count 0.62 0.29 -0.09 1.00 
   

%65-up -0.24 -0.30 0.29 -0.22 1.00 
  

%18-24 0.14 0.25 -0.08 0.23 -0.15 1.00 
 

Sinuosity 0.06 0.02 -0.14 0.03 -0.05 0.03 1.00 
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 Pavement width and population density may have a relationship because roads 

tend to be narrower when going through dense city centers with high population 

density, although the correlation coefficient shown in Table 43 is not very high. 

Pavement width and elevation also do not correlate very highly, but may have a 

relationship as roads going through hills tend not to be wide. Lane count and %65-up 

may interact to increase the likelihood of crashes, and the same may be said for lane 

count and %18-24. Lane count does not correlate very highly with either age variable. 

Since all these interactions involve contextual variables, I ran regressions for 

combined models as opposed to link-based models, with total crashes as the dependent 

variable. Model 39 shows the results for the MLE model with the pavement width-

population density interaction for interstates. 
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Table 44: Interaction of Population Density with Pavement Width (Interstates) 

 Model 39 

VARIABLES Crashes  

Total width (ln) -.350***  
(0.085) 

Lane count (ln) .693***  
(0.137) 

Median width (ln) -.071*** 

 (0.024) 

Shoulder width (ln) -0.076  
(0.062) 

Vehicle Miles Traveled (ln) .632***  
(0.013) 

Sinuosity (ln) -5.589***  
(2.120) 

Median income (ln) .0118  
(0.020) 

Employment density (sq mi, ln) .154***  
(0.014) 

Moderate Population Density  -.054  
(0.559) 

High Population Density  -.693  
(0.646) 

Moderate Population Density* Pavement Width  .014  
(0.131) 

High Population Density * Pavement Width  0.215  
(0.146) 

Constant 0.476  
(1.496) 

 
 

Observations 8,178 

Log likelihood -23035.4 

Ll Constant Only -25648 

LR Chi2 4627 

Pseudo_R2 0.128 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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For Model 39, I categorized the population density variable into 3 levels, for low-

density, moderate-density and high-density. The low-density category was between 0 

and 30 people per square mile, the moderate-density category was between 30 and 80 

people per square mile, and the high-density category was 80 people per square mile 

and higher. The low-density category was the reference category for this model. The 

results show that none of the population density categories had significant associations 

with total crashes. The same was true for the interaction of these two categories with 

pavement width. 

None of the other interactions I explored for the age, elevation, lane and 

sinuosity variables had any significant associations with total crashes. Results are shown 

in the appendix.  
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Table 45: Interaction of Population Density with Pavement Width (Principal Arterials) 

  Model 40  

VARIABLES Crashes 

    

Total Width (ln) -0.330***  
(0.0525) 

Lane count (ln) 0.726***  
(0.0724) 

Median Width (ln) -0.130***  
(0.00822) 

Shoulder Width (ln) -0.0780***  
(0.0132) 

Vehicle Miles Traveled (ln) 0.552***  
(0.0142) 

Sinuosity (ln) -6.745***  
(1.269) 

Median Income (ln) 0.0223  
(0.0144) 

Employment Density (ln) 0.162***  
(0.00845) 

Moderate Population Density -0.297  
(0.247) 

High Population Density  -1.005***  
(0.228) 

Moderate Population Density * Total Width (ln) 0.106*  
(0.0636) 

High Population Density * Total Width (ln) 0.339***  
(0.0574) 

Constant 1.740*  
(0.934)   

Observations 39,615 

Log likelihood -93400 

Ll Constant Only -102361 

LR Chi2 6711 

Pseudo_R2 0.0875 

Robust standard errors in parentheses 
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*** p<0.01, ** p<0.05, * p<0.1 
 

 

Model 40 above shows the results for the principal arterial MLE model with the 

pavement width-population density interaction. I categorized population density for 

principal arterials in the same way I categorized population density in the dataset with 

just interstate highways. For Model 40, the low-density category was between 0 and 30 

people per square mile, the moderate-density category was between 30 and 80 people 

per square mile, and the high-density category was 80 people per square mile and 

higher. The low-density category was the reference category for this model. The first 

thing to note is that all the geometric variable coefficients have the expected direction 

of association. Total width, shoulder width, median width and sinuosity have negative 

associations with total crashes, while lane count and vehicle miles traveled have a 

positive association. The negative association of total width with crash frequency is 

consistent with Abdel-Aty and Radwan (2000), Labi (2011), Council and Stewart (1999), 

and Garnowski and Manner (2011). The positive association of vehicle miles traveled 

(VMT) is consistent with Zeng & Huang (2014) and Council & Stewart (1999). The 

positive association of lane count is consistent with Sawalha and Sayed (2001), and Zeng 

and Huang (2014). The positive association of shoulder width is consistent with Sawalha 

& Sayed (2001) and (Milton, Mannering 1998).  

One reason for exploring interactions between certain variables was to see if the 

unexpected increase in magnitude of geometric variables in certain combined models, 
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when compared with their corresponding link-based model was as a result of 

unexplored variable interactions. An example is seen in the comparison between the 

link-based and combined models for total crashes using observed AADT- Model 24 (C-

MCMC-1) and Model 23 (L-MCMC-1).  Another important finding from the Model 40 

results above, is that compared with Model 23 (L-MCMC-1), is that this unexpected 

increase in magnitude is actually more pronounced, with the exception of vehicle miles 

traveled and sinuosity. This means that while the interactions in Model 40 are 

somewhat significant, they are not the reason for the unexpected increase in coefficient 

magnitude. Also, only one population density category is significant at the 99% 

confidence level. This raises the question of whether population density is actually 

interacting with total width at all.  
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Table 46: Interaction of %18-24 with Lane Count (Principal Arterials) 

  Model 41  

VARIABLES Crashes 

    

Total Width (ln) -0.176***  
(0.0410) 

Lane Count (ln) 0.470***  
(0.0920) 

Median Width (ln) -0.132***  
(0.00800) 

Shoulder Width (ln) -0.0827***  
(0.0132) 

Vehicle Miles Traveled (ln) 0.552***  
(0.0141) 

Sinuosity (ln) -7.312***  
(1.307) 

%18to24 (ln)_moderate -0.344**  
(0.147) 

%18to24(ln)_high -0.576***  
(0.151) 

%18to24 (ln)_moderate * Lane count (ln) 0.311***  
(0.0956) 

%18to24(ln)_high * Lane count (ln) 0.520***  
(0.0974) 

Median Income (ln) 0.00863  
(0.0159) 

Population Density (ln) 0.0989***  
(0.0189) 

Employment Density (ln) 0.146***  
(0.0114) 

Constant 1.827*  
(0.967)   

Observations 39,615 

Log likelihood -93393 

Ll Constant Only -102361 

LR Chi2 6626 

Pseudo_R2 0.0876 

Robust standard errors in parentheses 
 

*** p<0.01, ** p<0.05, * p<0.1 
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In Model 41 above, %18-24 has been interacted with lane count. The reference category 

is %18-24 of under 1%, and consists of 15,033 observations. The next category (%18-

24_moderate) denotes a composition of between 1% and 1.5% of those age 18 to 24 

and consists of 11,762 observations.  The last category (%18-24_high) denotes a 

composition of 1.5% or higher and consists of 12,820 observations. Both Model 41 and 

Model 40 show increases in the magnitude of the geometric variables, as was seen in 

Model 24 (C-MCMC-1) which was specified without any variable interactions when 

compared with the link-based counterpart- Model 23 (L-MCMC-1). This also means that 

the interactions explored in  Model 40 and Model 41 are not the reasons for the 

increases seen in the geometric variable coefficients. The geometric variables in  Model 

41 have the expected directions of association and are consistent with outside studies. 

The two categories of %18-24 show a negative association with total crashes which is 

unexpected. Their interactions with lane count on the other hand, show positive 

associations, with %18-24_high having a higher magnitude of association than %18-

24_high. This means that having a higher percentage of people age 18-24 increases total 

crashes multiplicatively.  

 

Conclusions 

 In this chapter, I examined measurement error in my North Carolina dataset, by 

comparing the results of models run with observed AADT data with results for models 

run with estimated AADT data. The data subset with the estimated AADT can be 
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compared with datasets that are affected by measurement error, because as an 

estimate or “best guess” of AADT for each road segment, it deviates from what the 

actual AADT would be if observed, to an unknown degree. Inferences made about the 

differences in the results can be useful in gaining an understanding of the potential of 

analyst data processing decisions to introduce measurement error and in turn, influence 

inferences from crash frequency models, and the road safety decisions that they inform. 

The results showed that data quality and availability issues can impact variable 

coefficients to the extent of changing the direction of association from what they would 

be should data quality and availability issues be absent. In practice, variables that go 

into crash frequency models for the determination of safety treatments can be 

produced or updated frequently or occasionally. Each update is an opportunity for data 

processing to be evaluated to control the potential to introduce measurement error and 

address the problem of indeterminacy of crash modification factors.  

In this chapter, I also examine the impact of adding more contextual variables 

that are not commonly looked at in crash frequency research, and finally, I examine the 

possibility of variable interactions. The impact of adding the new contextual variables of 

precipitation, elevation, %18-24 and %65-up on the geometric variables was found to be 

minimal, although these variables had significant associations with total crashes. The 

implication is that there is some benefit to specifying these additional variables. In 

exploring interactions, I found that there were no interactions for interstates, but that 

there were interactions between lane count and %18-24 for principal arterials. An 
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important conclusion from this chapter is that the results show that data quality and 

data processing decisions have a large impact on model outcomes.   
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Safety Decision-making 

The previous sections examined specification and measurement errors in crash 

frequency models. I used two datasets, one from Pennsylvania and one from North 

Carolina to estimate link-based models (with only geometric variables) and combined 

models (with both geometric and contextual variables). My findings indicate that 

models specified without contextual variables are affected by specification error, as 

indicated by the changes in coefficient value of the geometric variables. The coefficients 

of most of the geometric variables reduced in magnitude upon the addition of 

contextual variables to the models, and the coefficients of some geometric variables 

changed in direction. Similar changes occurred when I ran models using a dataset with 

only observed AADT data, and compared it with results from models I ran using a 

dataset with some of the AADT data estimated by linear regression. My findings showed 

the importance of data quality and availability to crash frequency models.  

My second research question addresses the use of these models in decision-

making by agencies that are concerned with highway safety. It asks, “How might a 

better understanding of the impact of error in the Highway Safety Manual affect 

decision-making to improve road safety?”  The perspective of road safety decision 

makers is key to addressing this research question. Since this question concerns the 

human experience regarding the subjective issue of how a thing can be used, it is best 

addressed using qualitative research methods. I discussed the importance of this 
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question in my problem statement by explaining how road safety decisions impact crash 

related fatalities and the efficiency of public spending.   

Since I make the case that much of the modeling that undergirds this decision-

making is done through using the Highway Safety Manual, I will start by re-introducing 

the HSM. The Highway Safety Manual is a publication of the American Association of 

State Highway and Transportation Officials (AASHTO), with the intention of providing an 

optional guide for use in making and implementing road safety decisions. It is AASHTO’s 

answer to the absence of a single authoritative document in road safety decision-

making (Babar, Parkhill 2006). The Parking Generation Manual published by the Institute 

of Transportation Engineers does the same thing for parking, AASHTO’s Highway 

Capacity Manual for highway capacity problems and AASHTO’s A Policy on Geometric 

Design of Highways and Streets (Green Book) for highway design.  

The Highway Safety Manual is published in three volumes. The first covers 

mainly systematic analysis, including network screening, diagnosis, and introduces 

countermeasure selection, economic appraisal, project prioritization and evaluation. 

The second volume covers the predictive method for rural and other two-lane roads, 

rural multi-lane roads, and urban and suburban arterials. The third volume specifies the 

crash modification factors for road segments, intersections, and other parts of road 

networks.  

In my literature review, I examined the problems associated with using the 

Highway Safety Manual, including the well documented problems of indeterminacy and 
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non-transferability. The crash modification factors, which are derived from the 

coefficients of the variables regressed on crashes in crash frequency models are treated 

as being determinate, as opposed to being random variables with values that vary 

widely (Hauer et. al., 2012). The transferability problem treats the crash modification 

factors as generally applying to different contexts with superficial similarities, for 

example, a single crash modification factor for rural two-lane roads is expected to apply 

to safety analysis on rural two-lane roads in both Iowa and Pennsylvania. In my 

research, I hypothesized that in addition to these two related problems, the omission of 

contextual variables from crash frequency models, and the presence of measurement 

error in data used for these models, serve to further limit the inferential capability of 

these models from which the crash modification factors are derived. It is my goal to 

understand how decisions are made using resources like the Highway Safety Manual, so 

as to be able to determine the ways in which these problems are transferred to road 

safety decision-making outcomes.  

In order to better understand how specification and measurement errors affect 

decision-making, I asked the following questions: 

a. How is the Highway Safety Manual used in road safety decision-making? 

b. Are decision makers aware of possible problems associated with the use 

of the Highway Safety Manual?  

c. How do transportation officials account for the possible problems with 

the use of the Highway Safety Manual? 
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d. How can better modeling practices gain ground? 

I address these questions by analyzing answers from interviews I conducted of 

transportation officials. I also participated in a roundtable discussion organized by 

NJDOT’s Statewide Traffic Records Coordinating Committee (STRCC), with about 28 

public agency practitioners in attendance. After having conducted a number of 

interviews and observing that the responses to the questions did not vary, I determined 

that it was not necessary or even helpful to conduct my analysis of the interview 

responses using qualitative analysis software. I conducted one-on-one interviews with 

four practitioners from public agencies and three practitioners from private 

establishments. In selecting interview participants, I used a combination of purposeful 

sampling and snowball sampling. I sought participants at the Transportation Research 

Board Annual Meeting. A number of participants recruited from this source pointed me 

out to some of their colleagues from public agencies and private enterprises who they 

believed would be suitable as participants. The public agencies were mostly state 

Departments of Transportation and the private establishments were mainly consultancy 

firms that carry out safety analysis for public agencies. I determined the number of 

interviews to use for my analysis by allowing my data to reach saturation, which is the 

point at which I found that there was no new information surfacing.  

While I expected to find that many transportation agencies use the Highway 

Safety Manual in the way intended by AASHTO, I found from my analysis of interviewee 

responses, that this was not the case. The method intended by AASHTO starts with the 
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application of local traffic volume values to the appropriate safety performance function 

supplied in the HSM in order to determine a baseline crash figure, and then applying a 

crash modification factor also supplied in the HSM to this baseline crash figure in order 

to determine the association of a specific safety treatment.  Certain entities did not use 

statistical analysis at all (Interviewee E. 2017), and some only used the CMFs from the 

HSM, and applied it to their own safety performance functions (Interviewee E. 2017). I 

also expected that the transportation agencies are using the HSM did so without 

addressing such issues as the omission of contextual variables. One reason for this is 

because the Highway Safety Manual itself does not give any treatment to this problem, 

even though it is mentioned in passing (AASHTO, Vol 2, pg C-19). Since the HSM, which 

is considered expert and authoritative knowledge in highway safety does not treat this 

issue, it is likely to be assumed by transportation agencies to be a non-issue, especially 

with uncritical use of the HSM. I discuss these findings in more detail in the following 

sections.  

Findings 

The use of the Highway Safety Manual in practice. 

Here, I address the question of how various agencies, public and private, use the 

HSM in road safety decision-making. The use of statistical modeling, and more 

specifically, the Highway Safety Manual (HSM) by agencies and private consultants 

depends on a number of factors. As mentioned before, the use of statistical modeling is 

not explicitly a requirement for any state (Babar, Parkhill 2006) and as such I wanted to 
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understand how standardization in highway safety practice could be achieved in spite of 

this. Most respondents believed that as a result of not being a requirement, the use and 

results from the Highway Safety Manual can vary widely (Interviewee A. 2017, 

Interviewee C. 2017, Interviewee D. 2017).   

I gathered from all respondents that one of the most important factors affecting 

how the HSM is used is the nature of the project. Some projects might primarily be 

safety projects, while others might be projects undertaken mainly for the purpose of 

capacity or other non-safety related improvements, for which assessing safety is only 

one of several components (Interviewee D. 2017).  When the former is the case, the 

entity carrying out the analysis is most likely experienced in carrying out statistical 

modeling or accustomed to having it done by a partnering research establishment. This 

means that when safety needs to be assessed, it is likely to be done using statistical 

modeling methods. When the latter is the case however, safety may be assessed using 

generally less advanced methods than statistical modeling. One method that I found is 

used by one of the private establishments I interviewed is the examination of the 

number of crashes in the study period by mile post (Interviewee D. 2017). This method 

allows for the qualitative assessment of possible explanatory factors by examining the 

physical and contextual attributes of the place and time of the crash frequency 

(Interviewee D. 2017). An example of this might be examining the curvature or median 

width on a segment that has been identified to be characterized by fifty crashes in the 

given year, compared with another segment with only five crashes.  
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One participant discussed expertise as another important factor that determines the 

use and extent of statistical modeling for safety assessment (Interviewee E. 2017). This 

includes expertise with using and interpreting statistical models. According to this 

respondent, many state agencies partner with universities or outsource safety analysis 

to private consultants to get around this problem with internal expertise (Interviewee E. 

2017). 

Uniformity in the procedure used in assessment and implementation was another 

factor mentioned by a respondent that can affect the use of statistical modeling, and 

the use of the Highway Safety Manual in particular (Interviewee B. 2017). The Highway 

Safety Manual does not provide SPFs and guidelines for all road types and all contexts. 

This means that the HSM is limited in its applicability to entire road networks (AASHTO 

2010a). The outcome is that within road networks, there will be certain portions of the 

network for which a different method might be required for safety analysis. This raises 

many questions for consistency of results and the ability to compare across such 

portions of the network and as such, agencies may often hesitate to use the HSM for 

safety planning across entire road networks (Interviewee E. 2017). 

To the more specific question of whether or not an agency uses the Highway Safety 

Manual in its statistical modeling, I learned from at least one agency that the potential 

of the project to win federal funding is a factor (Interviewee E. 2017).  

 To the question of how the Highway Safety Manual is actually used, most 

respondents addressed in accordance with my expectation. They use the HSM safety 
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performance functions and crash modification factors primarily for countermeasure 

assessment (Interviews. 2017). This means that for each of their localities, they obtain 

traffic volume data, which they plug into the HSM baseline safety performance function, 

and then apply the applicable crash modification factor in order to determine the best 

safety treatment, from a number of identified alternatives, is best for achieving the goal 

of safety. This predictive method, along with the collection of crash modification factors 

are the most frequently used part of the HSM, even though some agencies also use the 

network screening procedure to determine what parts of their road network require the 

most attention (Interviewee E. 2017).  

In summary, I found that the primary objective of the project, the availability of 

statistical expertise, the ability to use the Highway Safety Manual network-wide, and 

the funding source were all factors determining the use of the HSM. These factors 

should not be seen as the only factors determining the use of the HSM, but should 

instead be seen as an itemization of the most common factors I encountered while 

interviewing transportation agencies.  

Availability of expertise is one of the identified needs that the Highway Safety 

Manual was published to address (AASHTO 2010a). It is therefore interesting that 

several interviewees mentioned this as a factor affecting whether or not transportation 

agencies use the HSM. While the HSM was published so that transportation agencies 

could use it as a guide in the statistical analysis of crashes, it limits its own use because it 

requires an understanding of statistical models. FHWA runs several training programs in 
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the use of the HSM in response to this need (AASHTO 2013). The Highway Safety 

Manual does help to reduce the burden of needed expertise since the local jurisdiction 

need not come up with its own safety performance functions, or crash modification 

factors. I discuss findings as to whether or not the HSM meets the overall goal of putting 

statistical analysis within reach of practitioners in the Gains and Challenges section 

below. Another important question about the limited expertise to carry out statistical 

safety analysis is whether or not the non-statistical methods used instead are rigorous 

enough in making sound safety assessments. 

Gains made through the use of the Highway Safety Manual 

The question of possible problems or challenges with the use of the HSM, and the 

awareness of problems such as the potential for erroneous inferences due to 

specification error is addressed in the next section. In this section, I discuss the gains 

made as an important preface.  

One of the most important gains discussed by respondents that the emergence of 

the Highway Safety Manual has brought about is the extension of the analytic and policy 

making capabilities of public and private transportation agencies with limited expertise 

in safety analysis (Interviewee E. 2017). Since the publication of the Highway Safety 

Manual, the number of public road safety agencies that carry out statistical modeling 

for safety analysis is on the rise (Interviewee E. 2017). A related gain to the extension of 

the analytic capability of transportation agencies is the improvement of methods used. 

Methods undergirded by the use of statistical modeling have proven to be superior to 
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methods of safety analysis that utilize averages, rates and other relatively simple forms 

of analysis since they avoid the problem of regression to the mean (LDOTD 2012a). One 

important gain accrued from the use of the HSM is therefore the improvement of safety 

analysis from previous methods. While this is an improvement, there are still issues with 

the quality of analysis that the HSM allows, since the findings of both my studies using 

Pennsylvania and North Carolina data show that the omission of contextual variables 

can adversely affect crash models and the inferences made from them. There are also 

the issues of indeterminacy and transferability.  

A related gain is the issue of scale. At least one state transportation agency I 

interviewed stated that the publication of the HSM allowed their agency to carry out 

larger scale capital projects (Interviewee E. 2017). This particular agency had plenty of 

experience using statistical analysis already, but for spot treatments within their state’s 

road network, and for a limited variety of safety treatment types. They carried out these 

kinds of safety improvements using internally developed crash modification factors, 

which due to the cost and effort required, necessarily limited the number of CMFs that 

could be developed.  

Another important gain for agencies is the potential for carrying out safety analysis 

with increased confidence about the safety outcomes of road improvement projects 

(Interviews. 2017), and for obtaining federal funding (Interviewee E. 2017). Carrying out 

large scale safety projects became possible with the emergence of the Highway Safety 

Manual, since there are now hundreds of crash modification factors formerly 
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unavailable for these kinds of analysis. In addition to this, it became possible to 

implement these projects in a defensible way, since the HSM crash modification factors 

were developed by an authoritative agency, using large amounts of data, and tested 

both internally and externally. In other words, the Highway Safety Manual is also used 

by agencies for defending the need for funding for capital projects, since the fact that it 

is backed by a well-known and authoritative organization with a presumably high level 

of research rigor, adds to the credibility of HSM-based projects. There is also the fact 

that the precursor to the FAST Act, SAFETEA-LU, which established the Highway Safety 

Improvement Program, required states to develop a Strategic Highway Safety Plan 

(SHSP) that was to be data driven and involve countermeasure analysis, as a 

requirement for receiving federal funding (Federal Highway Administration 2005). Both 

the Highway Safety Improvement Program and its requirement for the development of 

an SHSP continue under the FAST Act. 

The extension of analytic capabilities through the Highway Safety Manual is 

primarily through its safety performance functions and crash modification factors. In 

providing safety performance functions and crash modification factors for various road 

and safety treatment types, the Highway Safety Manual allows agencies to conduct 

safety analysis more easily, using these ready-to-apply but necessary elements of 

statistical safety analysis. Safety performance functions are very technical, and their 

development requires a knowledge of statistics, as well as a large variety and amount of 
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data. These skill and data limitations are significant enough to preclude the use of 

statistical analysis at the agency level.  

Challenges created by the use of the Highway Safety Manual 

Several interviewees cited data availability and quality issues as significant 

challenges to the use of the HSM  (Interviewee D. 2017). First is the issue of the data 

requirements necessitated by the use of the Highway Safety Manual. While the 

Highway Safety Manual provides crash modification factors, each jurisdiction using 

them must apply them to their own traffic volume and road geometry data. This makes 

data an important precursor to the use of the HSM. Even without the use of the HSM, 

the maintenance of applicable data is an important part of safety analysis (Ogle 2007). 

At the federal government level, guidelines are in place to create uniformity and 

compliance with data collection through the Model Minimum Uniform Crash Criteria 

(MMUCC) for crash data (NHTSA 2008), the Model Inventory of Roadway Elements 

(MIRE) for roadway data and the National EMS Information System (NEMSIS) for crash 

victim data (Council, Harkey et al. 2007). Collecting crash data, especially based on any 

of these guidelines is a very labor intensive and costly undertaking, making this a barrier 

to the use of data-driven and statistical safety analysis. The cost of owning and 

maintaining data collection or measurement equipment such as GPS devices is a 

practical example of such a limitation. These factors have negatively impacted the 

quantity and quality of data collected. For example, in many states, the crash reporting 

thresholds are very high, so that many property damage crashes are not reported 
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(Council, Harkey 2006). This makes using the dependent variable of total crashes yield 

less accurate results than using crashes with fatalities as a dependent variable.  

As seen in the North Carolina and Pennsylvania datasets, traffic volume data is 

often not available for all segments of all roads, due to the cost and labor required to 

collect it. For an agency that is accustomed to less sophisticated methods of safety 

analysis, this data requirement can be a limitation to the use of statistical modeling, 

even with the Highway Safety Manual as a guide (Interviewee E. 2017).  

Another data issue is related to the problem of crash thresholds. Crash 

thresholds are lower property damage value limits that are used to determine what 

automobile crashes are reported in the statewide repository of automobile crashes that 

state Departments of Transportation collect. In many states, reported crash totals for 

various portions of the road network do not reflect the actual crash totals because some 

crashes do not reach the established thresholds in value (Interviewee E. 2017). 

Thresholds vary widely by states, for example, four states have a $0 threshold, 

mandating that all crash occurrences be reported, one state has a $100 threshold, 10 

states have a $500 threshold, 20 states have a $1000 threshold, and two states have 

$2000 and $3000 crash thresholds (NJDOT 2017). It is reported that in some states, up 

to 20% of crash occurrences are not reported because they are deemed to fall below 

the crash threshold by the responding officer (NJDOT 2017).  

Data issues are further complicated by the difficulty of collecting crash site data 

(Council, Harkey 2006). When a police officer arrives at the site of a crash occurrence, 
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they are met with many time-sensitive needs. They will need to collect locational data, 

often including street names, physical descriptions and the geographic coordinates or 

mile posts of the crash occurrence. They will also need to collect names, license, 

registration and insurance information of the drivers involved in the crash, assuming 

there are no injuries or fatalities that need to be attended to. They will need to call for 

the removal of disabled vehicles, or for assistance in managing traffic flow in the event 

that the crash has caused an obstruction, or for emergency vehicles in the event that 

there are injuries or fatalities from the crash. In addition to performing as many of these 

tasks as needed, the police officer or officers will need to prioritize them in order of 

importance, so that it will be possible to carry out as many of them that are needed as 

possible. This is very challenging, and the difficulty often leads to the failure to collect 

the right kind, quality and amount of data, especially when there are more pressing 

needs like ensuring the provision of medical assistance in the case of an injury 

(Interviewee E. 2017).  

Other problems such as the technological requirements of collecting data 

present challenges for safety improvement analysis came up in discussion with 

respondents. An example is in the collection of geographic coordinates for crash 

occurrences, which requires the use of devices enabled for geographic positioning 

(Interviewee E. 2017). Some police departments are equipped with such devices while 

others are not. 
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While the Highway Safety Manual has the benefit of extending the expertise and 

statistical analysis of transportation agencies, it can also in the same vein, limit it. 

Dependence on a publication like the Highway Safety Manual can reduce the motivation 

to truly understand the workings behind the processes being used, since it can be used 

by plugging in the ready-to-apply statistical elements it contains and results can easily 

be interpreted using guidelines in the HSM (Interviewee E. 2017). This means that it 

becomes easy to be unaware of adjustments that need to be made when new findings 

about methodology emerge, since publications like the Highway Safety Manual cannot 

be updated at the pace by which the research industry puts out findings in peer 

reviewed journals. The Highway Safety Manual was published in 2010, and since then, a 

vast amount of research produced by independent researchers exploring the validity 

and applicability of the HSM’s recommendation has emerged with the potential to 

greatly improve safety outcomes for projects where safety treatments were 

implemented based on the use of the Highway Safety Manual. This means that an 

agency with the right knowledge and expertise could have procedures in place that are 

more advanced than those recommended by the Highway Safety Manual, making it 

potentially outdated for their purposes (Interviewee E. 2017).  

Varying crash thresholds can present an internal validity problem. Much of the 

research that informed the crash modification factors in the Highway Safety Manual are 

based in states that have high thresholds for reporting crashes. This means that the 

models used in estimating these CMF, have more zero-crash road segments than in 
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actuality, since many crashes are not reported (crashes with property damage values 

below the reporting threshold are not reported).  The CMF are thus likely to be affected 

by any bias introduced due to the assumption of more zero crash occurrences than 

there would have been in reality. Applying such crash modification factors to various 

jurisdictions which in turn, have differing thresholds than those used in the research 

that undergirds the Highway Safety Manual SPFs will in turn yield bias. This problem of 

crash reporting thresholds is a difficult one because these thresholds exist for a 

defensible reason. They exist because of the limited time and resources that challenge 

the collection of data at the crash site.  

Awareness and response to the specification error problem 

Having discussed gains and problems of using the HSM, as well as the awareness 

of the specification error problem, I address the responses of transportation 

professionals in this section. It was my finding that the problem of specification error 

due to the omission of contextual variables was not a high priority issue for many public 

or private agencies. One respondent acknowledged the potential and need to improve 

statistical models for crash analysis, with the caveat that the knowledge and skills of 

practitioners could be a limiting factor, creating the need to keep models as simple as 

possible, with regards to methodological considerations such as model type and model 

specification (Interviewee E. 2017). The above-discussed problem of data availability is 

another factor affecting the use of models that include contextual variables.  
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Another respondent questioned the importance of accuracy. Many state 

agencies use the Highway Safety Manual to make comparisons between two or more 

safety countermeasures that are being considered for implementation. For many state 

agencies, several sites within the road network vie for limited safety funds for the 

implementation of adequate safety treatments. Models showing the associations of 

safety treatments at the various sites are compared and the site showing the highest 

level of crash reduction due to a specific safety treatment is usually chosen from among 

the alternatives for safety treatment implementation (Interviewee E. 2017). This raises 

the question of the importance of accuracy, if an agency is implementing the safety 

treatment that yields the highest crash reduction out of several safety treatment 

options, versus implementing a safety treatment in response to a targeted safety issue. 

The issue of limiting the complexity of statistical models is tied to the goal of using 

models as forecasting tools instead of as inferential tools. Agencies are not motivated to 

spend time, effort and funding on collecting data for variables that they cannot act on 

(Interviewee E. 2017). This means collecting data for primarily geometric variables and 

not so much for contextual variables since action can be taken on design changes to 

such variables as median, pavement, and shoulder width, lane count and curvature for 

road segments if the models forecast such changes to be effective at reducing crashes. 

In the face of limited time and resources, the importance of avoiding bias by including 

contextual variables seems like a mere theoretical exercise that cannot be justified. 
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On the issue of the importance of accuracy when comparing the relative efficacy of 

alternative safety treatments, the assumption is that the models showing the crash 

reduction effects of the various alternatives being considered are comparable. If this 

assumption is true, then the bias found in the various model alternatives may be 

expected to be the same, as opposed to potentially yielding different effects on crash 

frequency. On the other hand, if the bias is different, then it is possible that the crash 

reduction effects may be affected, and the wrong conclusions drawn from a 

comparison. For instance, it is possible that an agency is considering making safety 

improvements on two different portions of a road network but will eventually choose 

only one location, due to limited funding. The choice will often be based on the 

magnitude of crash reduction that can be expected at each of those sites. Theoretically, 

even if the safety treatments being considered at those sites are different, e.g. site A is 

being assessed for a median barrier installation and site B is being assessed for a 

reduction in number of lanes, it should be possible to compare results, if the right 

variables have been specified and controlled for. Where specification error comes into 

play here and potentially complicates comparability, is where omitted variables may 

differentially affect safety performance functions. This is most clearly seen in the case of 

interaction terms in safety performance functions. For instance, if the contextual 

variable of median income has been omitted from both site A and site B functions, and 

it is known to interact with the lane count variable, but not with the median width 

variable, then the site A SPF has been adequately specified, while the site B SPF has not, 
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meaning that comparison between the crash reduction in site A and B will yield some 

problematic inferences.  

While I did not find interactions between the variables I explored in my North 

Carolina dataset, many crash frequency studies have explored and found interactions 

suggesting that in many cases, road characteristics are not simply additive (Wang et al. 

2016). Even without the potential for interaction between omitted and specified 

variables, the fact that a variable such as median income might be different for site A 

and site B will mean that its omission will have differential effects on the site A and B 

SPFs, rendering them less comparable. An agency could be choosing the less optimal 

alternative for implementation.  

Evaluation of road safety decisions based on the Highway Safety Manual 

Safety project evaluation is important for addressing the question of how better 

modeling practices can gain ground. As part of the Highway Safety Manual road safety 

management process, the evaluation of the effectiveness of implemented safety treatments 

is recommended. The HSM contains guidelines for three main observational methods. They 

include the observational before/after studies (naïve), observational before/after using the 

Empirical Bayes method and observational studies using the comparison group method. 

There are also guidelines for conducting experimental before/after studies (AASHTO 2010c).  

Not many of the agencies I interviewed had carried out evaluations of their statistical 

modeling based on the Highway Safety Manual guidelines. Some respondents discussed 

time as a limiting factor, stating that not enough time had elapsed since their adoption of 
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HSM guidelines through safety design implementation, for evaluation to take place 

(Interviewee E. 2017). One respondent was very experienced in carrying out evaluations, as 

a system was already in place prior to their adoption of the HSM (Interviewee E. 2017). In 

addition to using the HSM to forecast the safety effects of future projects, this agency uses 

the HSM for evaluation as an added dimension to various kinds of before-after 

observational studies including naïve before and after analysis, Empirical Bayes before and 

after analysis, and comparison group before and after analysis.  

In a naïve before and after study, the evaluation is carried out by taking the ratio of the 

value of the performance measure, for instance, crash frequency in the after period, to its 

value in the before period. A key assumption is that the performance measure will not have 

changed during the after period from its before period value, without the implementation 

of the countermeasure (FHWA 2011). This assumption is obviously an oversimplification 

since factors such as traffic volume growth, and better vehicle safety design can cause the 

performance measure to change as well. This ratio of the after-period performance 

measure to the before-period performance measure can be used to determine crash 

reduction factors. 

As mentioned above, this is an overly simplistic way to calculate crash modification 

factors, since it assumes that a change in crashes seen in the after-period is due only to the 

safety design implementation. An Empirical Bayes before and after analysis can be used to 

obtain more defensible findings on the impact of a safety countermeasure (FHWA 2011). In 

calculating a crash modification factor this way, the CMF is taken as a ratio of the observed 
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crashes in the after-period, to the crashes in the after period, assuming no treatment was 

implemented. This number of crashes, assuming no treatment in the after period is 

calculated by dividing the predicted crashes assuming treatment in the after period 

(obtained using a safety performance function) by the predicted crashes assuming no 

treatment in the after period, and then multiplying by the crashes in the before period 

(which is a function of observed and predicted crashes in the before period).   

In the case of comparison group before and after studies, the crash modification factor 

is obtained by calculating the ratio of the averaged observed crashes for the project sites in 

the after period to the average observed crashes for the control sites in the after period. 

The North Carolina Department of Transportation is one agency with some experience 

in carrying out evaluations, with publicly available evaluation reports. Currently, over a 

thousand completed evaluations can be found online (NCDOT 2017). A quick perusal reveals 

that most of these evaluations have been carried out using the naïve before and after 

method, which does not incorporate safety performance functions into its assessment. In 

other words, even though a specific site and specific countermeasure may have been 

selected using statistical analysis and more specifically, SPFs, there is no post-

countermeasure implementation assessment of such SPFs. There is a foregone assumption 

of the soundness of SPF use in the forecasting stage where a site and a specific 

countermeasure is chosen, and the focus is then on assessing the degree of 

countermeasure success or lack thereof through the comparison of the pre-

countermeasure observed crash totals to the post-countermeasure observed crash totals. 
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Using the Empirical Bayes method however, can begin to assess the SPF used in forecasting, 

because this method incorporates predicted crashes into its calculation of the 

countermeasure crash modification factor.  

One method that researchers have used to evaluate the Highway Safety Manual 

SPFs is through the process of model validation. I discussed a study by Cunto et al (2015) in 

the literature review section that outlined this process. The aim of the study was to 

specifically assess the applicability of the SFPs in a real life context, or the SPFs 

transferability. The study used comparison groups to carry out the evaluation. The authors 

used the calibration group to come up with a complete safety performance function that 

included a crash modification factor for the presence of roadway lighting and a calibration 

factor (derived by taking the ratio of observed crashes to predicted crashes for the 

calibration sample) for the adjustment of the model parameters to the local jurisdiction 

being studied, which was Fortaleza, Brazil. The same crash modification factor derived from 

the HSM, and the calculated calibration factor were then applied to the validation sample in 

order to assess how much in line the predicted crashes were, with the observed crashes 

from the validation sample. The results showed the validation to have been unsuccessful, 

leading the study authors to conclude that a combination of other variables or other model 

forms might have worked better to improve the crash predictions (Cunto et al, 2015). The 

HSM recommends a similar procedure that derives calibration factors by comparing 

predicted crashes to observed crashes. The Cunto et al, (2015) study takes it a step further, 

by testing the derived calibration factors against a sample with known observed crashes. I 
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discuss the Cunto et al, (2015) method in my literature review. This kind of evaluation is 

necessary because it allows an agency to know whether or not the safety analysis methods 

they are using are adequate, or in need of modification.  

 

Summary of findings  

The following is a summary of the findings from my interviews about road safety 

decision-making and how specification and measurement error affect it. This summary 

is based on my research question of how safety decisions are made using inferences 

from safety models.  

1. The Highway Safety Manual is used to expand analytic capacity beyond the use 

of simple analytic methods that may introduce such bias as regression to the 

mean, for more statistically sound inferences and potentially improved decision-

making. 

2. It is used as a forecasting tool, for the estimation of expected crashes that any 

particular safety design improvement might yield.  

3. It is used in the evaluation of implemented safety design improvements, in 

conjunction with, and in addition to other methods such as naïve before-after 

and Empirical Bayes before-after safety evaluations.  

4. It is used in building defensible cases for garnering federal and other public 

funding for capital projects.  
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5. Data requirements, particularly for traffic volume and observed crashes can be a 

problem for agencies, who often don’t collect traffic volume data on all their 

roads.  

6. The requirement for the application of calibration factors to the safety 

performance functions in the forecasting stage, can be a deterrent to use 

because data collection can prove to be an expensive effort, in addition to the 

fact that it can have varying levels of success or lack thereof, in making the safety 

performance functions better fitted to the local jurisdiction. 

7. The specific problem of omitted variable bias is not necessarily a priority for 

many agencies at this moment. Some agencies acknowledged this as a possibility 

but expressed some confidence that the use of calibration factors will account 

for it. Other agencies expressed the need to keep safety performance functions 

as simple as possible, and the cost in time, money and efforts to collect more 

data in response to this problem are limiting factors. 

8. The range of transportation agency response to the possibility of specification 

error from omitted variable bias is from reliance on calibration factors, to no 

response.  

9. Most professionals interviewed believe that improvements can be best made in 

the area of data collection and expertise.  
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Conclusions 

This dissertation research addresses the problem of indeterminacy in the methods used 

in crash frequency modelling, and in the crash modification factors they inform, due to 

omitted variable bias and data problems. The issue of indeterminacy has been 

previously addressed in crash frequency studies. The nature of crash modification 

factors has been examined by a number of researchers, and there is some consensus 

that they are not constants, even though they are treated as such in the Highway Safety 

Manual. The issue of the omission of spatial factors, leading to the problem of omitted 

variable bias is however largely unexamined. In addition to examining this problem, I 

also address the issue of methodological complexities that arise in the process of 

accounting for spatial factors. These methodological complexities can introduce other 

problems into the models, and they show that a lot of indeterminacy comes from 

analyst research decisions in circumnavigating such complexities. Some examples of 

these decisions include the following: 

- What level of geography should the spatial variables be based on (zonal, census 

tract, census block group etc.). This is also known as the modifiable areal unit 

problem. 

- Do all spatial factors affect crashes occurring on road segments at the same level 

of geography? 

- What combination of spatial variables should be specified in models? This is also 

a valid question for models specifying only geometric variables. 



179 

 

    

 

- What is the best way to treat missing data? Methods commonly include 

estimating from observations with data or dropping all observations with missing 

data. Each option affects outcomes in a different way. 

- Should interactions be explored? The Highway Safety Manual uses crash 

modification factors from studies which mostly leave out possible interactions.  

Finally, I examined the question of how indeterminacy affects decision making.  

The research questions I investigated include the question of specification and 

measurement error in crash frequency models, the impact of data availability and 

quality problems on the ability to make correct inferences, and the impact of awareness 

of these indeterminacy problems on decision making at the transportation agency level.  

 In order to determine if specification and measurement error are important 

factors affecting road safety decision-making, I examined the results of crash frequency 

analyses using two different datasets from Pennsylvania and North Carolina. I also 

conducted qualitative interviews of transportation professionals working for both public 

and private entities. For the both datasets, I compared models specified with only 

geometric variables (link-based models) with models specified with both geometric 

variables and contextual variables (combined models) in order to determine the effect 

of the presence of those contextual variables on the geometric variables. In the second 

dataset, I also compared models with observed traffic volume data, with models with 

estimated traffic volume data, in order to determine how important measurement error 
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is. Finally, using qualitative interviews, I explored the ways by which transportation 

agencies use inferences from crash frequency analysis in road safety decision-making. 

For my Pennsylvania dataset, I first examined crash frequency models using the 

entire network. I then modeled subsets of the data- principal arterial highways and local 

roads. I also modeled each subset with the negative binomial regression (MLE), and then 

with conditional autoregressive models (MCMC), using Crimestat, to control for any 

possible spatial autocorrelation.  

For my North Carolina dataset, I used only interstate highways because most of 

the functional classification groups of highways were skewed towards zero crash 

occurrences, and interstates were least affected by this problem. I explored the issue of 

data availability in this dataset using AADT. AADT is typically not collected for all roads in 

any dataset and as such is the most likely variable to be affected by data availability 

issues. I carried out the research in two stages, the first stage was with 8071 

observations, all with data for observed AADT, and the second stage with 8071, but with 

30% of the observations with AADT estimated. For each stage, I ran negative binomial 

models, and then ran conditional autoregressive models to account for spatial 

autocorrelation. I compared these two stages in order to see if there is any effect from 

the use of estimated AADT.  

Following this, I explored the impact of specifying more spatial variables. In 

addition to the previously studied variables of population and employment density and 

median income, I explored the impacts of elevation, precipitation and two age variables- 
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the proportion of people between ages 18 and 24 (%18-24) and the proportion of 

people 65 and older (%65-up). Finally, I explored the impact of accounting for possible 

interactions between certain variables including interactions between pavement width 

and population density, pavement width and elevation, lane count and %65-up, lane 

count and %18-24, and finally, sinuosity and %65-up. 

In the last chapter of analysis, I interviewed several public and private 

transportation agency practitioners in order to assess the level of awareness of the 

problem of indeterminacy, and their approach to making the best possible safety 

decisions, despite this problem. I carried out a series of one-on-one interviews, and also 

attended a safety workshop. 

 From the first set of analyses in the Pennsylvania dataset (MLE models with the 

entire road network), all the combined models showed decreases in the magnitudes of 

the geometric variables, when compared to the link-based models, except for sinuosity 

in the fatal and incapacitating injury model, which showed a small increase. None of the 

geometric variables in the combined models show a change in the direction of 

association except for sinuosity in the fatal and injury model which changes from a 

negative association in the link-based model to a positive association in the combined 

model. Since my hypothesis is that the omission of spatial variables causes bias that is 

reflected as decreased magnitudes of association, or as changes in the direction of 

association in the geometric variables when specified in models with spatial variables, 

my conclusion for this first set of analysis is that my hypothesis is not disproved.  
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For the second set of analyses for my Pennsylvania dataset where I modelled the three 

dependent variables using only principal arterials, the majority of the geometric 

variables decreased in magnitude of association, except sinuosity in all three MCMC 

models, and lane count and median width in the fatal and major injury crashes model. 

For all three dependent variables, lane count changes direction of effect from negative 

in the link-based model to positive in the combined model. The reduction in magnitude 

of effect generally seen in most of the geometric variables and the change in direction 

of effect in the lane count variable, support my hypothesis of specification error from 

the omission of spatial variables. The reduction in magnitude of association and the 

change in direction of lane count were almost exactly replicated by the MLE models. 

Finally, for the third set of analysis (local roads) for the Pennsylvania dataset, the 

majority of the geometric variables decreased in magnitude of association, but no 

variables changed direction of association.   

All three sets of analyses support my hypothesis that specification error from the 

omission of spatial variables is a problem in crash frequency models. The bias seen in 

crash frequency models will vary based on the model specification, thereby resulting in 

indeterminate crash modification factors. The analyses in my Pennsylvania chapter 

show how analyst decisions on model specification contributes to indeterminacy. 

For the North Carolina dataset, I again ran link-based models and combined 

models to examine the specification error problem. In addition to this, I examined the 

impact of measurement error, by simulating missing AADT data and replacing the 
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missing data with estimated AADT for 30% of the observations I modeled. The models 

with estimated AADT were compared with the models with 100% observed AADT. The 

results showed that there were substantial differences. The total crashes model showed 

different directions of magnitude change for several variables when the estimated AADT 

model was compared with the observed AADT model. It also showed opposite 

directions of effect for shoulder width, and for sinuosity in the estimated AADT model 

when compared with the observed AADT model.  

In the fatal and major injury crashes models, the direction of magnitude change 

in the model with observed AADT was also not consistent with that of the estimated 

AADT model. Several variables showed increases, and others showed decreases. Total 

width and lane count also show completely different directions of association (total 

width is positive in the observed AADT model and negative in the estimated AADT 

model, and lane count is negative in the observed AADT model and positive in the 

estimated AADT model. In the fatal and injury models, the same variables- shoulder 

width and sinuosity have different directions of association between the observed AADT 

and estimated AADT models, just as was seen in the total crashes model. There is more 

consistency between these two models for the fatal and injury crashes model in terms 

of direction of change in magnitude of association than for any other dependent 

variable in the dataset. These results largely show how widely crash modification factors 

can be impacted, even when just a small proportion (in this case 30%) of the dataset is 

affected by measurement error introduced through analyst methods. 
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To further assess the issue of indeterminacy due to analyst decisions, I examined the 

combined model with estimated AADT with elevation, precipitation, the proportion of 

people between ages 18 and 24 (%18-24) and the proportion of people 65 years and 

over (%65up). An average of two variables per model changed direction of association 

for all three models when compared with the corresponding model without the 

additional variables. In the total crashes model, shoulder width changed to a positive 

association, in the fatal and incapacitating injury crashes model, total width takes on a 

negative association, and sinuosity takes on a positive association. For the fatal and 

injury model, shoulder width changes to a positive association, as was seen in the total 

crashes model.  The results from my North Carolina study showed that analyst methods 

of addressing data availability problems can contribute to indeterminacy. 

In the final section of my North Carolina study, I examined the possible 

interactions between different sets of geometric and contextual variables. I examined 

possible interactions between pavement width and population density, pavement width 

and elevation, lane count and %65-up, lane count and %18-24, and sinuosity and %65-

up for interstate highways. None of these combinations showed any interactions. To 

further explore the possibility of interactions, I examined the population density-

pavement width combination, using only principal arterials. The results showed that 

there may be some interaction. The interaction terms are significant, with the high 

population density-total width interaction significant at the 99% level, and the moderate 

population density-total width significant at the 90% level. I also examined a possible 
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interaction between %18-24 and lane count. All the interaction terms for this 

combination were significant at the 99% level. The coefficients of the moderate and 

high categories of %18-24 suggests that a higher composition of people aged 18-24 

interacts with lane count to increase crash frequency.  

The main goal of my dissertation study has been to explore the impact of indeterminacy 

on highway safety decision making. I examined this indeterminacy problem by 

investigating the impact of context and of research method decisions. The results of my 

research show how the coefficients of crash frequency models can easily change 

direction of association with crash frequency with different variable specifications. This 

is important because the combination of variables that models are specified with is 

dependent on the analyst decisions. While there are variables that are commonly 

specified across studies, the exact combination of variables specified always differ. 

Factors such as data availability play an important role in a researcher’s decision about 

model specification. My results also show that it is possible that these models are 

typically under-specified because they omit contextual variables which have been 

shown to be strongly associated with crash frequency in a number of studies. I also 

found that data availability problems not only determine what variables a researcher 

specifies in a crash frequency model, they also determine the representativeness of 

variables that are included. Certain variables like AADT are considered important to 

models such that when there are data availability problems for these variables, it is no 

longer a question of whether to omit or include the variable, but a question of how to 
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best estimate missing data for inclusion in crash frequency models. My results show that 

the methods employed in estimating these variables can also have a substantial 

contribution to the indeterminacy of crash modification factors. The overall implication 

of my results is that highway safety improvement, using crash modification factors that 

have not been locally estimated is a black box, since many decisions that have been key 

determinants of the crash modification factors are unknown. It is therefore impossible 

to know where errors have been introduced or how far reaching the errors are. Locally 

developed crash modification factors may not be any less erroneous than those 

developed with the goal of transferability to various geographies. They however have 

the advantage of traceable errors, since the research method decisions can be more 

easily deciphered. Knowing the research methods decisions also makes it possible to 

cumulatively improve upon methodology. 

My dissertation has relevance for research, and for highway safety practice. It revisits 

old questions surrounding the usefulness and feasibility of standardized practice and the 

capacity of research to enable standardization. Standardization serves to facilitate 

practice by reducing the need to carry out certain processes, for example, the 

substitution of crash modification factors from the Highway Safety Manual in theory, 

removes the need for localities to develop their own crash modification factors. It also 

reduces the time and money cost associated with various methods for assessing safety, 

including developing local crash modification factors. My research has however shown 

that this goal of standardization depends on the nature of the input (in this case crash 
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modification factors) and the nature of the research used to determine the input (crash 

frequency modeling). My research is directly relevant to the question of the adequacy of 

crash modeling research to the standardization of highway safety decision making. The 

overall importance lies in the high cost that crashes have on safety and on safety 

spending. With thousands of fatalities, millions of injuries and billions spent in improving 

safety, this cost is very high.  

 My dissertation research points to a number of interesting future research 

directions. One possible direction would be to explore the impact of the source of data 

on indeterminacy. Traditional means for data collection are subject to time and effort 

limitations. For example, police officers who collect crash related data such as geocoded 

location of crashes, number of fatalities or injuries, pedestrian involvement, are limited 

by time, the capability of measurement and recording equipment such as GPS devices, 

and human error. On the other hand, the use of more advanced means that are typically 

used in the collection of big data, for example, the use of cell phone data to determine 

traffic volume, or average speed, may significantly improve the representativeness the 

data used in crash frequency modeling.  

My findings point to a few policy recommendations. One recommendation is to 

review the criteria for qualifying safety projects for federal funding. Many states 

currently have mandates for the use of the Highway Safety Manual for safety projects, 

through their Highway Safety Improvement Programs (HSIP). This means that these 

state agencies must use the Highway Safety Manual for safety improvement projects, to 
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qualify for federal funding. These mandates do not of course preclude the development 

of local safety performance functions by state transportation agencies, but they can 

have the effect of discouraging it. This is because transportation agencies depend on 

federal funding for the implementation of many safety projects. A review of these 

mandates is important for the purpose of ensuring that the use of local safety 

performance functions does not prevent access to federal funding for safety projects. 

Another policy recommendation is a more uniform collection of data on key variables 

such as traffic volume through the use of emerging data collection methods such as 

satellite or personal device positioning.  
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Appendix 

Appendix A: Interview Guide 

I have identified 4 questions that arise from the research question and form the 

basis for the interview questions I used in gaining the perspectives of the 

decision makers and consultants.  

1. How is the Highway Safety Manual used in road safety decision-making? 

Some interview questions to help address this question might be: 

i. How does your agency use statistical modeling in road safety 

decision-making? 

ii. Is statistical modeling a required procedure in road safety 

decision-making for your jurisdiction? (if so, by whom?) 

iii. What tools, resources or manuals has your agency used 

besides the Highway Safety Manual for statistical modeling? 

iv. How does your agency incorporate the use of the Highway 

Safety Manual as part of its decision-making process? 

v. How long has your agency, or consultants working with your 

agency, used the Highway Safety Manual in predicting crash 

frequency? 

vi. What are some gains made to your processes by the use of 

the Highway Safety Manual? 
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vii. What are some of the challenges created that have emerged 

through the use of the Highway Safety Manual? 

 

2. Are decision makers aware of possible problems associated with the use of 

the Highway Safety Manual? Some interview questions might be: 

i. What other general problems arise in making decisions about 

road geometry modifications? 

ii. How would you rank these general problems and the 

challenges created by the Highway Safety Manual? 

iii. What is your view of the effectiveness of the road safety 

decisions your agency has made in the past 10 years?  

iv. What is the basis for your view? (e.g. technical basis such as 

CBA, post-project evaluation or other) 

v. How important is possible specification or measurement error 

to realizing the expected safety associations pertaining to a 

specific road safety modification? 

vi. How important is possible specification or measurement error 

to efficient spending on safety modifications? 

 

3. How are transportation officials accounting for the possible problems with 

the use of the Highway Safety Manual? Some interview questions might be: 
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i. In what ways are the processes you have in place designed to 

account for the impact of safety data quality problems? (This 

question assumes a consciousness of possible data issues 

typically found in data used in modeling crash frequency) 

ii. In what ways are the processes you have in place designed to 

minimize the impact of specification and measurement error? 

(This question assumes the agency is conscious of possible 

specification and measurement error problems from the HSM. 

It is irrelevant if the agency is not aware of this or other 

sources of specification or measurement error in its 

procedures). 

 

4. How can better modeling practices gain ground? Some interview questions 

might be: 

i. How important is decision-making backed by an institutional 

authority, such as is the case with decision-making based on 

the Highway Safety Manual recommendations? 

ii. How important is the relative simplicity that the Highway 

Safety Manual offers? 
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iii. What is the potential of modeling procedures that account for 

specification error to be widely used in place of the Highway 

Safety Manual?  
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Appendix B: Pennsylvania Study MLE Models 

Table 47:  Spatial MLE Models (Entire network) 

 Model 42 Model 43 Model 44 

VARIABLES Crashes Fatal & Major 
Injury Crashes 

Fatal & Injury 
Crashes 

Population density (sq mi, ln) -0.448*** -0.547*** -0.425***  
(0.0109) (0.0143) (0.0110) 

Employment density (sq mi, ln) 0.212*** 0.132*** 0.203***  
(0.00581) (0.00787) (0.00602) 

Median income (ln) 0.0434* 0.0646** 0.0129 

 (0.0252) (0.0258) (0.0211) 

Interstates density (ln) 0.343*** 0.261*** 0.370***  
(0.0397) (0.0463) (0.0383) 

Principal arterials density (ln) 0.0834*** 0.0917*** 0.167***  
(0.0174) (0.0239) (0.0167) 

Minor arterials density (ln) 0.0200 0.0166 0.100***  
(0.0165) (0.0233) (0.0159) 

Collectors density (ln) -0.00971 -0.0400* 0.0516***  
(0.0162) (0.0240) (0.0158) 

Local access roads density (ln) 0.00591 0.0825 0.0809*  
(0.0410) (0.0525) (0.0416) 

Interchange ramps density (ln) 0.449** 0.285 0.573***  
(0.208) (0.203) (0.218) 

Constant 4.730*** 1.960*** 4.254***  
(0.278) (0.285) (0.236)  

-0.708*** -0.764*** -0.673***  
(0.0166) (0.0364) (0.0166)     

Observations 9,740 9,740 9,740 

Log likelihood -49266 -18321 -43342 

Ll Constant Only -51691 -20472 -45266 

LR Chi2 3617 4110 2414 

Pseudo_R2 0.0469 0.105 0.0425 

Robust standard errors in parentheses 
  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 48: MLE Models with only Principal Arterial Roads (FC B) 

  Model 45 Model 46 Model 47 Model 48 Model 49 Model 50 

VARIABLES Crashes Crashes Fatal & 
Major Injury 

Crashes 

Fatal & Major 
Injury 

Crashes 

Fatal & 
Injury 

Crashes 

Fatal & 
Injury 

Crashes 

Total width (ln) 1.182*** 0.362*** 0.781*** 0.315*** 1.431*** 0.451***  
(0.0330) (0.0362) (0.0595) (0.0640) (0.0371) (0.0375) 

Lane count (ln) -0.527*** 0.257*** -0.0310 0.361*** -0.599*** 0.256***  
(0.0580) (0.0666) (0.109) (0.109) (0.0652) (0.0693) 

Median width (ln) -0.103*** -0.103*** -0.131*** -0.124*** -0.121*** -0.130***  
(0.00463) (0.00533) (0.00959) (0.0107) (0.00523) (0.00615) 

VMT (ln) 0.389*** 0.354*** 0.417*** 0.402*** 0.390*** 0.355***  
(0.00640) (0.0107) (0.0147) (0.0155) (0.00755) (0.0109) 

Sinuosity (ln) 0.213** 0.576*** 0.461** 0.633*** 0.379*** 0.830***  
(0.0985) (0.0880) (0.207) (0.171) (0.115) (0.108) 

Median income (ln) 
 

0.00514 
 

-0.166*** 
 

-0.0750***   
(0.0179) 

 
(0.0211) 

 
(0.0169) 

Population density (sq mi, ln) 0.180*** 
 

0.168*** 
 

0.226***   
(0.00968) 

 
(0.0182) 

 
(0.0105) 

Employment density (sq mi, ln) 0.176*** 
 

0.0181 
 

0.174***   
(0.00656) 

 
(0.0119) 

 
(0.00715) 

Constant -3.795*** -3.801*** -6.921*** -4.814*** -5.254*** -4.196***  
(0.0985) (0.223) (0.206) (0.303) (0.114) (0.218)  

-0.135*** -0.558*** -0.465*** -0.635*** 0.0578*** -0.413***  
(0.0114) (0.0142) (0.0587) (0.0669) (0.0125) (0.0157)        

Observations 17,859 17,859 17,859 17,859 17,859 17,859 

Log likelihood -63640 -60209 -14589 -14387 -53281 -50022 

Ll Constant Only -66634 -66634 -15420 -15420 -56002 -56002 

LR Chi2 5988 14896 1663 1893 5441 14249 

Pseudo_R2 0.0449 0.0964 0.0539 0.0670 0.0486 0.107 

Standard errors in parentheses 
     

*** p<0.01, ** p<0.05, * p<0.1 
     

 

 

Table 49: MLE Models with only Local Roads (FC E) 

  Model 51 Model 52 Model 53 Model 54 Model 55 Model 56 
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VARIABLES Crashes Crashes Fatal & 
Major Injury 

Crashes 

Fatal & 
Major 
Injury 

Crashes 

Fatal & 
Injury 

Crashes 

Fatal & Injury 
Crashes 

Total width (ln) 1.675*** 1.178*** 0.835*** 0.767*** 1.569*** 1.114***  
(0.0727) (0.0820) (0.194) (0.186) (0.0868) (0.0924) 

Lane count (ln) -2.897*** -1.737*** -2.373*** -2.314*** -3.034*** -1.991***  
(0.181) (0.228) (0.434) (0.469) (0.214) (0.247) 

Median width (ln) -0.242*** -0.214*** -0.255*** -0.266*** -0.299*** -0.279***  
(0.0123) (0.0145) (0.0299) (0.0308) (0.0143) (0.0184) 

VMT (ln) 0.728*** 0.631*** 0.666*** 0.686*** 0.742*** 0.659***  
(0.00760) (0.00995) (0.0220) (0.0250) (0.00929) (0.0112) 

Sinuosity (ln) -0.691*** -0.474** 0.107 0.0389 -0.446** -0.206  
(0.177) (0.236) (0.548) (0.459) (0.224) (0.223) 

Median income (ln) 
 

0.238*** 
 

-0.446*** 
 

0.00473   
(0.0390) 

 
(0.0996) 

 
(0.0444) 

Population density (sq mi, ln) 0.0761*** 
 

-0.0308 
 

0.0884***   
(0.0172) 

 
(0.0427) 

 
(0.0201) 

Employment density (sq mi, ln) 0.147*** 
 

0.0266 
 

0.124***   
(0.00911) 

 
(0.0246) 

 
(0.0108) 

Constant -5.056*** -7.689*** -6.289*** -1.337 -5.502*** -5.643***  
(0.250) (0.526) (0.630) (1.353) (0.296) (0.584)  

-0.360*** -0.485*** -0.124 -0.175 -0.305*** -0.406***  
(0.0231) (0.0290) (0.137) (0.142) (0.0304) (0.0370) 

Observations 18,965 18,965 18,965 18,965 18,965 18,965 

Log likelihood -29337 -28842 -5137 -5125 -21299 -21063 

Ll Constant Only -35382 -35382 -5899 -5899 -25859 -25859 

LR Chi2 12091 15002 1525 1691 9119 10998 

Pseudo_R2 0.171 0.185 0.129 0.131 0.176 0.185 

Standard errors in parentheses      

*** p<0.01, ** p<0.05, * p<0.1      
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Appendix C: North Carolina Study 

Table 50: MLE Models (Spatial variables only) 

VARIABLES Total 
Crashes 

Fatal and 
Incapacitating 

Injury 
Crashes 

Fatal and 
Injury 

Crashes 

Population Density (ln) -0.342*** -0.327*** -0.492***  
(0.0200) (0.0183) (0.0158) 

Employment Density (ln) 0.136*** 0.126*** 0.0324***  
(0.0133) (0.0119) (0.0101) 

Median Income (ln) 0.0723*** 0.101*** 0.146***  
(0.0280) (0.0269) (0.0258) 

Interstate Density (ln) 1.406*** 1.238*** 0.859***  
(0.0686) (0.0630) (0.0676) 

Principal Arterials Density (ln) 0.811*** 0.864*** 0.653***  
(0.0461) (0.0432) (0.0443) 

Minor Arterials Density (ln) 0.562*** 0.536*** 0.300***  
(0.0445) (0.0407) (0.0407) 

Collectors Density (ln) 0.262*** 0.281*** 0.264***  
(0.0446) (0.0406) (0.0441) 

Local Roads Density (ln) 0.224*** 0.227*** 0.326***  
(0.0252) (0.0238) (0.0281) 

Constant 4.398*** 2.908*** 0.399  
(0.294) (0.286) (0.272)     

Observations 6,155 6,155 6,155 

Log likelihood -37543 -30203 -12211 

Ll Constant Only -38443 -31148 -13332 

LR Chi2 1157 1212 1960 

Pseudo_R2 0.0234 0.0304 0.0840 

Robust standard errors in parentheses 
 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 51: MLE Link-based and Combined Models (Observed AADT) 

VARIABLES Crashes Crashes Fatal & 
Incapacitating 

Injury 
Crashes 

Fatal & 
Incapacitating 

Injury 
Crashes 

Fatal & 
Injury 

Crashes 

Fatal & 
Injury 

Crashes 

Pavement Width (ln) -0.205*** -0.247*** -0.167 -0.179 -0.226*** -0.273***  
(0.0542) (0.0703) (0.130) (0.125) (0.0595) (0.0714) 

Median Width (ln) -0.124*** -0.0828*** 0.0550 0.0487 -0.101*** -0.0518**  
(0.0139) (0.0237) (0.0419) (0.0435) (0.0160) (0.0234) 

Shoulder Width (ln) -0.104*** -0.0486 -0.143 -0.147 -0.175*** -0.107  
(0.0350) (0.0632) (0.0885) (0.0953) (0.0376) (0.0675) 

Lanes (ln) 1.360*** 0.681*** -0.0802 -0.0316 1.252*** 0.576***  
(0.0864) (0.137) (0.203) (0.220) (0.0938) (0.134) 

Sinuosity (ln) 3.090 -5.680*** -1.900 -1.247 3.351 -5.369**  
(3.172) (2.058) (3.518) (3.375) (3.102) (2.255) 

Vehicle Miles Traveled (ln) 0.650*** 0.641*** 0.724*** 0.729*** 0.656*** 0.647***  
(0.00930) (0.0130) (0.0260) (0.0302) (0.0108) (0.0136) 

Population Density (ln) 
 

0.0278 
 

0.0555 
 

0.101***   
(0.0289) 

 
(0.0510) 

 
(0.0257) 

Employment Density (ln) 
 

0.170*** 
 

-0.0456 
 

0.149***   
(0.0160) 

 
(0.0286) 

 
(0.0148) 

Median Income (ln) 
 

0.0134 
 

-0.101*** 
 

-0.0153   
(0.0220) 

 
(0.0315) 

 
(0.0198) 

Constant -6.172*** -0.107 -6.102** -5.477** -7.436*** -1.290  
(2.203) (1.453) (2.467) (2.402) (2.157) (1.604) 

Observations 8,071 8,071 8,071 8,071 8,071 8,071 

Log likelihood -23251 -23010 -2420 -2416 -14249 -14020 

Ll Constant Only -25510 -25510 -2892 -2892 -16185 -16185 

LR Chi2 4518 4646 943.2 675.5 3872 3943 

Pseudo_R2 0.0886 0.0980 0.163 0.165 0.120 0.134 

Standard errors in parentheses 
      

*** p<0.01, ** p<0.05, * p<0.1 
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Table 52: MLE Link-based and Combined Models (Estimated AADT) 

VARIABLES Total 
Crashes 

Total 
Crashes 

Fatal & 
Incapacitating 

Injury 
Crashes 

Fatal & 
Incapacitating 

Injury 
Crashes 

Fatal & 
Injury 

Crashes 

Fatal & 
Injury 

Crashes 

Pavement Width (ln) -0.206*** -0.248*** -0.179 -0.193 -0.241*** -0.285***  
(0.0548) (0.0701) (0.131) (0.126) (0.0596) (0.0707) 

Median Width (ln) -0.121*** -0.0812*** 0.0514 0.0469 -0.0965*** -0.0520**  
(0.0141) (0.0234) (0.0418) (0.0431) (0.0161) (0.0230) 

Shoulder Width (ln) -0.0806** -0.0364 -0.139 -0.140 -0.149*** -0.0954  
(0.0353) (0.0682) (0.0885) (0.0948) (0.0378) (0.0712) 

Lanes (ln) 1.380*** 0.705*** -0.0614 -0.0538 1.288*** 0.617***  
(0.0870) (0.138) (0.204) (0.222) (0.0939) (0.134) 

Sinuosity (ln) -1.074 -8.214*** -2.373 -1.992 -0.966 -7.877***  
(3.571) (2.435) (3.609) (3.482) (3.445) (2.663) 

VMT (ln) 0.601*** 0.608*** 0.705*** 0.710*** 0.604*** 0.612***  
(0.00955) (0.0133) (0.0267) (0.0311) (0.0109) (0.0140) 

Residuals 1.07e-
05*** 

6.74e-
06*** 

2.76e-06 2.47e-06 1.13e-
05*** 

7.49e-
06***  

(7.56e-07) (1.12e-06) (1.73e-06) (1.75e-06) (7.94e-07) (1.05e-06) 

Population Density (ln) 
 

0.0217 
 

0.0583 
 

0.0832***   
(0.0290) 

 
(0.0538) 

 
(0.0264) 

Employment Density (ln) 
 

0.170*** 
 

-0.0342 
 

0.152***   
(0.0159) 

 
(0.0289) 

 
(0.0149) 

Median Income (ln) 
 

0.0249 
 

-0.102*** 
 

0.00193   
(0.0207) 

 
(0.0337) 

 
(0.0191) 

Constant -3.011 1.728 -5.596** -4.781* -4.123* 0.533  
(2.480) (1.720) (2.540) (2.477) (2.395) (1.890) 

Observations 8,071 8,071 8,071 8,071 8,071 8,071 

Log likelihood -23328 -23109 -2436 -2432 -14293 -14088 

Ll Constant Only -25510 -25510 -2892 -2892 -16185 -16185 

LR Chi2 4363 4404 911.5 677.3 3785 3755 

Pseudo_R2 0.0855 0.0941 0.158 0.159 0.117 0.130 

Standard errors in parentheses 
      

*** p<0.01, ** p<0.05, * p<0.1 
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