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The dissertation examines three distinct methodologies for analyzing data yielded from 

preclinical experiments: 

 

1) Big data has created new challenges for data analysis, particularly in the realm of 

creating meaningful groups or clusters of data or classification. Clustering techniques, 

such as K-means or hierarchical clustering, based on pairwise distances of 𝑁 objects, are 

popular methods for performing exploratory analysis on large datasets such as these. 

Unfortunately, these methods are not always possible to apply to big data due to memory 

or time constraints generated by calculations of order 𝑁2. A work-around is to take a 

random sample of the large dataset and perform the clustering technique with the reduced 

dataset; however, this is not a foolproof solution since the structure of the dataset, 

particularly at the edges of the dataset, is not guaranteed to be maintained. In this chapter 

we will propose a new solution through the concept of “data nuggets”. These data 

nuggets reduce a larger dataset into a small collection of nuggets of data, each containing 

a center, weight, and a scale parameter. Once the data is re-expressed as data nuggets, we 

may apply algorithms that compute standard statistical methods, such as principal 
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components analysis (PCA), clustering, classification, etc. We apply the methodology of 

data nuggets to the analysis of a dataset from flow cytometry in Biopharmaceutical 

research. This was conducted by performing weighted PCA and weighted K-means 

clustering on a dataset containing millions of observations (B-cells), and the objective 

was to find clusters that characterize cells according to which proteins are active on their 

surfaces. An R package was also developed to conduct these methods. 

2) There are many cases in preclinical drug discovery when experiments are repeated but 

not precisely replicated regarding treatment arms. Further, full datasets are not always 

immediately accessible, leaving analysts to rely on summary measures such as sample 

mean and standard error. If one is only interested in comparing two treatment arms at a 

time, meta-analysis is a useful tool; however, when one applies this method they are 

limited to only comparing two of the potentially numerous treatment arms at a time. 

Further, information from experiments lacking these two treatment arms is not used. 

Mixed treatment comparisons meta-analysis, also known as network meta-analysis, can 

be used instead to compare all available treatment arms at once. This chapter will explain, 

explore, and compare two frequentist methods that exist to apply network meta-analysis. 

We focus on sets of experiments with designs typically found in preclinical experiments. 

We also use simulations to compare network meta-analysis results to those given by 

mixed-effect linear models for these types of experiments. An R package was also 

developed to perform both methods of network meta-analysis. 

3) Power calculations for hypothesis tests play a critical role in conducting both clinical 

and non-clinical trials. Many programs exist to calculate the power for popular 

hypothesis tests, such as Student's t-test for hypothesis tests analyzing continuous data or 
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the log-rank test for hypothesis tests analyzing survival data. Calculating the power for 

hypothesis tests analyzing ordinal categorical data can be much more complicated. For 

data such as this, observations are given in the form of scores on a scale with a small 

range, typically between three and five points. The data is assumed to be distributed 

according to a multinomial distribution which can depend on many parameters. We 

propose a simple yet effective method for defining alternative multinomial distributions 

and performing power calculations by creating and shifting quantiles of the standard 

normal distribution. We offer simulation results and apply the method to a dataset. An R 

package was also developed to use this method. 
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INTRODUCTION 

In this dissertation we will examine three different methodologies for analyzing 

data presented in preclinical drug discovery. The first chapter details a new algorithm 

created to form representative data from large datasets. In this new era of “Big Data”, 

large datasets are often initially analyzed using clustering methods such as K-means 

clustering or hierarchical clustering after greatly reducing the dataset by drawing a 

random sample. These random samples are not always capable of maintaining the overall 

structure of the entire dataset, particularly at the edges of the data. We introduce a new 

algorithm which reduces the dataset into “data nuggets” which are nuggets of data used to 

describe the observations of the entire dataset. Then, weighted principal components can 

be used to examine the structure of the reduced data and a weighted K-means clustering 

algorithm can be used to form clusters of the data. We detail these algorithms, provide 

simulation results comparing the effects of forming clusters of data nuggets using 

weighted K-means clustering instead of K-means clustering, and apply the method to a 

preclinical dataset from a pharmaceutical company. 

The second chapter examines and compares two different frequentist methods for 

conducting network meta-analysis. In the field of preclinical drug discovery many 

compounds are compared in multiple experiments and this method can be very useful 

since it combines the information from all experiments to produce effect size estimates. 

This method can also deliver results pertaining to compound comparisons which were 

never truly made using indirect evidence. Although these two methods are supposed to 

produce equivalent results, we produce a counterexample created from preclinical drug 
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discovery data which shows otherwise. We also offer simulation results to assess the 

effectiveness of the method. 

The final chapter details a new method proposed for producing power calculations 

and finding the optimal sample sizes necessary for conducting future experiments for 

which all observations are given by ordinal categorical data where the ordinal scale 

contains only a small range of values. In experiments such as these the data is assumed to 

be distributed according to multinomial distribution which can depend on many 

parameters. As such, generating alternatives by manipulating these parameters 

haphazardly can prove to be an overwhelming task. The method proposed generates 

alternatives by shifting the parameters in a uniform, controlled manner. We detail this 

method, provide simulation results to assess its effectiveness, and apply the method to a 

preclinical dataset. 

 

 

 

 

 

 

 

 

 

 



3 

 

 

 

Chapter 1: Data Nuggets: A Method for Reducing Large Datasets 

While Preserving Data Structure 

1.1 Introduction 

Extremely large datasets, sometimes known as “Big Data”, are common in most 

areas of research and business including the pharmaceutical industry (Srinivasan, 2018). 

An example of how large datasets arise can be found in experiments where scientists are 

interested in measuring the abundance of proteins that are expressed on the surface of 

cells and they collect a sample of millions of cells to conduct the experiment. There are 

many ways to measure the abundance of these proteins (Amaratunga, Cabrera, & Shkedy, 

2014).  

One such method is flow cytometry (Jahan-Tigh, Ryan, Obermoser, & 

Schwarzenberger, 2012). Different antibodies which correspond to the proteins of interest 

are chosen. Each of them labeled according to a distinct fluorescence. Cells are then 

stained with these fluorescent antibodies and sent through a flow cytometer. In this flow 

cytometer, cells flow toward a laser and when cells pass by the laser, they absorb the 

laser’s energy and emit a wavelength of light specific to each antibody, and therefore 

each protein. The level of expression of the proteins of interest on the surface of the cells 

can then be measured. These experiments produce datasets which are very high in 

dimension. Clustering techniques can be used to attempt to find interesting groups of 

cells hidden within the data. 

As a motivating example, suppose a drug is being developed to interact with T-

cells in the liver. As a starting point, the scientists in charge of the experiment want to 

know the levels of expression of certain proteins. They perform the experiment with 10 
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million cells and use 10 different fluorescent antibodies to collect the levels of expression 

for each protein the fluorescent antibody corresponds to for each cell. The goal of the 

experiment is to find out if there are any groups of cells for which the level of expression 

of any protein is very high or very low. 

The most typical method would be to apply a clustering technique to the dataset, 

such as K-means clustering or hierarchical clustering; however, a dataset as large as this 

would require far too many resources, such as computational memory and time. We 

propose a different method which instead reduces the 10 million data points into a 

smaller collection of “data nuggets”. All the individual data points coalesce into many 

data nuggets, while still retaining the structure of the data. After this a weighted form of 

K-means clustering can be used to configure the data nuggets into various clusters. 

Section 1.2 introduces notation and provides a brief overview of popular 

clustering methods and the issues that arise when attempting to use them to cluster large 

datasets. Section 1.3 describes the algorithm for creating data nuggets and the algorithm 

for creating clusters using weighted K-means clustering. This section also provides 

simulation results comparing the accuracy of K-means clustering to weighted K-means 

clustering for clustering data nuggets generated from a dataset with binary variables and 

compares data nuggets to the support points given by Mak and Joseph in (Mak & Joseph, 

2018). Section 1.4 applies the algorithm to a dataset from a preclinical experiment. 

Section 1.5 briefly describes a package created to use the method, and some future work 

that could be done concerning this method. 
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1.2 Review of Popular Clustering Methods 

We will introduce notation by generalizing our motivating example. Suppose the 

scientists perform their experiment with N observations (T-cells), where N is in the 

millions, and they are measuring the level of expression of P different proteins. Let 𝐗 be 

the matrix containing the information pertaining to the levels of expression of each 

protein for each cell so that: 

𝐗 =  

[
 
 
 
 

𝐱1

𝐱2

⋮
𝐱𝑁−1

𝐱𝑁 ]
 
 
 
 

=  

[
 
 
 
 

𝑥11 𝑥12 ⋯ 𝑥1(𝑃−1) 𝑥1𝑃

𝑥12 𝑥22 ⋯ 𝑥2(𝑃−1) 𝑥2𝑃

⋮ ⋮ ⋱ ⋮ ⋮
𝑥(𝑁−1)1 𝑥(𝑁−1)2 ⋯ 𝑥(𝑁−1)(𝑃−1) 𝑥(𝑁−1)𝑃

𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁(𝑃−1) 𝑥𝑁𝑃 ]
 
 
 
 

 

Where 𝐱𝑛 is the row vector containing the cell surface marker levels for the 𝑛𝑡ℎ T-cell 

and 𝑥𝑛𝑝 is the level of expression of protein p for the 𝑛𝑡ℎ T-cell, for 𝑛 = 1,2, . . . , 𝑁 and 

𝑝 = 1,2, … , 𝑃. 

Once again, the goal of the experiment is to find out if there are any groups of T-

cells for which any proteins show a high or low level of expression. We can search for 

these groups by placing the T-cells into K different clusters and then finding out if any of 

the proteins have a particularly weak or strong level of expression in any of the clusters. 

The memory usage and computation needed is of the order of 𝑁2 (where 𝑁 is in the 

millions or greater) for typical clustering techniques. In general, clustering is performed 

in one of two ways: through K-means clustering or hierarchical clustering (Cabrera & 

McDougall, 2002). 
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1.2.1 K-means Clustering 

Arguably the most popular clustering technique is K-means clustering. K-means 

clustering is applied by first initializing centers of the 𝐾 different clusters and then 

minimizing the total within cluster sum of squares. Let 𝛍01,  𝛍02,   … ,  𝛍0𝐾 be the 𝐾 

𝑃 × 1 vectors that are chosen to represent the initial centers of clusters 𝐿1, 𝐿2, … , 𝐿𝐾, 

respectively. This can be done either by choosing 𝐾 observations from the dataset 

(randomly or selected by the user) or by choosing 𝐾 random points in ℝ𝑃. 

Next, all observations are assigned to whichever initial center is closest to it 

according to some distance metric, typically Euclidean distance. Finally, the center of 

each cluster is updated to by calculating the mean of all observations within the cluster 

and replacing the current center of each cluster with these new means, 𝛍1,  𝛍2,   … ,  𝛍𝐾. 

These steps are then repeated until the clusters reach a point where the total within cluster 

sum of squares, given by:  

∑ ∑(𝐱 − 𝛍𝑖)′(𝐱 − 𝛍𝑖)

𝐱∈𝐿𝑖

𝐾

𝑖=1

 

is minimized. The steps taken to reach this minimization of total within cluster sum of 

squares depends on the algorithm being used (Morissette & Chartier, 2013).  

Lloyd's algorithm attempts to minimize the total within cluster sum of squares by 

reassigning observations to the closest cluster center and updating the cluster centers 

thereafter (Lloyd, 1982). Forgy's algorithm works in the same manner as Lloyd’s 

algorithm but the total within cluster sum of squares is calculated assuming the 
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observations are distributed according to a continuous probability distribution instead of a 

discrete probability distribution (Forgy, 1965). 

MacQueen's algorithm is also similar to LLoyd's algorithm, but instead of only 

recalculating the centers after all the observations have been reassigned to the cluster 

with the nearest center, this calculation is performed after every single reassignment 

(MacQueen, 1967). The Hartigan & Wong algorithm's shares the same objective of 

minimizing the total within cluster sum of squares; however, this algorithm will not 

always assign observations to the cluster with the nearest center (Hartigan & Wong, 

1979). Instead, sometimes observations will be reassigned to a cluster with a farther 

center if doing so minimizes the total within cluster sum of squares. To accomplish this 

feat, the Hartigan & Wong algorithm must store both the cluster with the closest center 

and the cluster with the second closest center for each observation. 

K-means clustering can be performed in R using the function kmeans (R Core 

Team, 2018). The Hartigan & Wong algorithm is the default method for this function, 

although the LLoyd, Forgy, and MacQueen algorithms are also available. An example of 

a dataset clustered with K-means clustering using the Hartigan & Wong algorithm is 

provided in Figure 1. 
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Figure 1: K-means Clustering Example 

1.2.2 Hierarchical Clustering 

Another popular method of clustering is hierarchical clustering. This method of 

clustering can be applied in one of two ways: either agglomerative, where all 

observations begin as their own cluster and then combine together to form the desired 

number of clusters; or divisive, where all observations are assigned to the same cluster 

and then split into the desired number of clusters (Rokach & Maimon, 2005). 

The combining or dividing of clusters is done according to a measure of similarity 

or dissimilarity, respectively, calculated using a distance metric. Once again, this distance 

metric is usually Euclidean distance. There are three different styles of methods, each 

determined by the way this measure is calculated.  

Single-link clustering methods regard the distance between clusters Li and 𝐿𝑗 to 

be equal to the shortest distance between any observation assigned to 𝐿𝑖 and any 
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observation assigned to 𝐿𝑗. Complete-link clustering methods regard the distance between 

clusters 𝐿𝑖 and 𝐿𝑗 to be equal to the greatest distance between any observation assigned to 

𝐿𝑖 and any observation assigned to 𝐿𝑗. Finally, Average-link clustering methods regard 

the distance between clusters 𝐿𝑖 and 𝐿𝑗 to be equal to the average distance between any 

observation assigned to 𝐿𝑖 and any observation assigned to 𝐿𝑗. Hierarchical clustering 

produces a dendrogram, which can then be cut with either consideration for how many 

clusters are desired or the desired level of similarity or dissimilarity according to the 

dendrogram. 

Hierarchical clustering can be performed in R using the function hclust. Since 

these methods depend entirely on the distances between observations, the distance matrix 

for the data matrix serves as input instead of the data matrix itself. An example of a 

dataset clustered with hierarchical clustering is provided in Figure 2. The dendrogram 

used to form the clusters was cut at the third split in order to have the same number of 

clusters as the example with K-means clustering. 
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Figure 2: Hierarchical Clustering Example 

1.2.3 Limitations for Large Datasets 

Both methods of clustering have limitations for very large datasets. For K-means 

clustering, the final cluster assignments heavily depend on the initial choice of cluster 

centers (Ayramo & Karkkainen, 2006). A clear remedy for this is to choose multiple 

initial cluster centers, conduct the algorithm of choice for each, and choose the results 

which minimizes the total within cluster sum of squares. For datasets with a large number 

of observations many initial centers may need to be attempted. For the LLoyd, Forgy, and 

MacQueen algorithms the time cost is high in R, which may lead the user to sacrifice the 

number of initial cluster centers they choose to evaluate. 

On the other hand, the Hartigan & Wong algorithm may fail to finish running for 

large datasets because the memory cost necessary to store the closest cluster assignment 

and the second closest cluster assignment for each observation is too high. This is also the 
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case for hierarchical clustering methods which may not even have a chance to begin 

because the distance matrix cannot be formed for datasets that are too large. More 

specifically, the largest distance matrix R would be able to store is one derived from a 

data matrix with 46,340 observations (since the most entries a matrix can have in R is 

2,147,483,647), assuming the machine it is running on has enough memory space.  

A common solution to this problem has been to retrieve a random sample of the 

data and use a clustering algorithm on this reduced dataset. The intuition is that if the 

sample is sufficiently large, the data structure of the sampled data should match the data 

structure of the entire data. Unfortunately, this intuition does not always hold. Further, 

since a distance matrix is needed for hierarchical clustering, the random sample may need 

to be reduced to a very small amount of observations when compared to the entire 

dataset.  

Another possible solution is to reduce the large dataset to a set of only a few data 

points which are chosen to represent the dataset as a whole. Gosh, Cabrera, et al. 

introduce a notion of representative data with weights in (Ghosh, et al., 2016). Mak and 

Joseph introduce a method for producing “Support Points” which together form a 

representative dataset in (Mak & Joseph, 2018); however, support points are not suitable 

to find clusters on the edges of the distribution where the density of points is much lower. 

To avoid the time and memory constraints of using full datasets (or large random 

samples), the pitfalls associated with massive data reduction, and the lack of focus on the 

edges of the data structure, we propose using data nuggets. 
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1.3 Data Nuggets 

In this section we will describe how to generate data nuggets from a large dataset. 

The process of creating data nuggets is inspired by the idea of using a 𝑝-dimensional grid 

that encompasses the entire dataset to partition the observations into 𝑀 equally sized 

cells. The centers of these cells would form the data nugget centers, the amount of 

observations from the dataset which exist in these cells would form the data nugget 

weights, and the trace of the covariance matrices for the observations within each cell 

would from the data nugget scales.  

When both 𝑝 and 𝑀 are low this is a relatively simple feat, but when either 𝑝 or 

𝑀 is large the amount of computational resources required becomes unrealistic. A more 

feasible option would be to use observations already within the dataset as centers. This 

can be done by choosing observations in the dataset which are as equally spaced apart as 

possible. Then all the remaining observations are assigned to the data nugget they are 

closest too according to a distance metric. We detail the algorithm to create data nuggets 

below. 

ALGORITHM 1: Create 𝑀 data nuggets given: X, an 𝑛 × 𝑝 data matrix; 𝑁, the number 

of observations to randomly sample from X; 𝑀, the number of data nuggets to create; and 

𝐷, a distance metric. 

1. Randomly sample 𝑁 observations from X. 

2. Create a distance matrix for these observations using the given distance metric 𝐷. 

3. Find the smallest non-diagonal distance in the matrix. Label the observations with 

this distance between them as 𝑦1 and 𝑦2. 
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4. Find the distance to the nearest neighbor of 𝑦1 excluding 𝑦2, 𝑑𝑦1
, and the distance of 

the nearest neighbor of 𝑦2 excluding 𝑦1, 𝑑𝑦2
. 

5. If 𝑑𝑦1
< 𝑑𝑦2

, remove 𝑦1 from the random sample. Otherwise remove 𝑦2 from the 

random sample. 

6. Create a new distance matrix with the remaining random sample. 

7. Repeat steps 2 through 6 for 𝑁 − 𝑀 iterations. The observations in the random 

sample of 𝑀 observations that remain are the centers of the data nuggets. Let data 

nugget 𝑗 have center 𝐜𝑗  for 𝑗 =  1, 2, … ,𝑀. 

8. For each 𝐱𝑖, 𝑖 =  1,2, … , 𝑛, assign 𝐱𝑖 to the data nugget such that 𝐷(𝐱𝑖, 𝑐𝑗) is 

minimized over 𝑗. Let 𝑛𝑗  be the number of observations assigned to data nugget 𝑗, 

and let 𝑊𝑗 = 𝑛𝑗  be the weight of data nugget 𝑗 for 𝑗 =  1,2, … ,𝑀. 

9. Re-center all the data nuggets by choosing 𝐜𝑗  to be the mean of all the observations 

assigned to data nugget 𝑗. 

10. Finally, let 𝑆𝑗 = 𝑡𝑟 (𝐶𝑜𝑣(𝐗𝑗)) be the scale of data nugget 𝑗 when 𝑛𝑗 > 1, where 𝐗𝑗 is 

the submatrix of observations from 𝐗 which belong to data nugget 𝑗. When 𝑛𝑗 = 1, 

𝑆𝑗 = 0. 

Figure 3 compares the amount of data structure maintained after reducing a 

bivariate dataset of 15,601 to a simple random sample of 2,000 observations versus 

reducing that same bivariate dataset to 2,000 data nuggets. This comparison is carried out 

using density plots. The dataset is a mixture of data derived by sampling a large number 

of observations from two independent standard normal distributions and combining these 

observations with other observations which create a “smile” that is hidden inside the 
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random noise. This smile can only be observed by using a density plot. The data nuggets 

were created by reducing a random sample of 10,000 observations from this dataset to 

2,000 data nuggets using ALGORITHM 1 with Euclidean distance as the chosen 

distance metric. 

 

 
Figure 3: Comparing Density Plots for Random Sample and Data Nuggets 

The density plots for the entire dataset and the random sample are created by 

dividing the area of the original scatterplot into a 100 × 100 grid and counting the 

number of observations in the dataset which fall inside each cell of the grid. The cells are 

then colored on a gradient according to how many observations are in the cell. Cells with 
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a low number of observations produce cool colors like blue or light green while cells with 

a higher number of observations produce hot colors such as yellow or orange. 

The density plot for data nuggets is produced in a similar manner but with a slight 

modification. Once again, the area of the original scatterplot is divided into a 100 × 100 

grid. However, instead of using the number of data nuggets that exist within the cell, the 

sum of the weights of the data nuggets that exist within the cell is used. Then the cells are 

colored accordingly. The first row of plots is a scatterplot of the entire dataset of 15,601 

observations beside its corresponding density plot. The lower left plot is the density plot 

corresponding to a scatterplot of a random sample of 2,000 observations from the dataset. 

The lower right plot is the density plot corresponding to a scatterplot of the 2,000 data 

nuggets.  

As shown in the figure, the density plot for the entire dataset clearly shows a thin 

smile inside the ball of random noise. The density plot for the random sample faintly 

produces the smile, but there are random gaps dispersed throughout the smile and the 

tails of the smile are not recognizable. This density plot also produces a large amount of 

random noise surrounding the smile. The density plot for the data nuggets shows a much 

more distinct and visible smile. While there are still a few gaps in the smile, they are 

more or less equally spaced. Further, the tails of the smile are clearly visible, and the 

amount of random noise is much more concentrated around the smile, matching what is 

seen in the density plot for the entire dataset. 

Two natural questions arise regarding the generation of data nuggets: how large of 

a random sample should be initially drawn, and how many data nuggets must be chosen 

before a desirable set is retrieved? Regardless of the random sample size chosen, we 
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recommend creating enough data nuggets to reduce the random sample to 20% of its 

original sample size. Next, check if the minimum distance between any two points is 

large enough. What constitutes a large enough minimum distance is a subjective matter, 

but the goal should always be to make sure that there are enough data nuggets to maintain 

the shape of the structure of the data while also ensuring that there are not too many data 

nuggets crowded in the center of the structure. If these two goals are not realized for a 

selection of data nuggets, they can always be reduced further. 

The data nuggets can also be refined according to the scale parameter and the 

minimum number of observations that must be assigned to a data nugget. The purpose of 

this method is to provide each data nugget with a more common level of variation. Data 

nuggets are refined as detailed in the algorithm below. 

ALGORITHM 2: Refine 𝑀 data nuggets given: 𝑆𝑡𝑜𝑙, a scale tolerance value; and 𝑚, the 

minimum number of observations that a data nugget must contain as a result of this 

algorithm. 

1. Obtain the median of the nonzero scale parameters for the 𝑀 data nuggets, η. 

2. Create 𝐵, a list of all data nuggets with scale parameters larger than 𝑆𝑡𝑜𝑙η. 

3. For every data nugget 𝑗 ∈ 𝐵: 

3.1. If data nugget 𝑗 contains greater than 2𝑚 observations, split data nugget 𝑗 into 

two new data nuggets using K-means clustering. 

3.2. If either of the two new data nuggets created in step 3.1 contain less than 𝑚 

observations, delete these two data nuggets and retain data nugget 𝑗. Otherwise, 

delete data nugget 𝑗 and remove data nugget 𝑗 from 𝐵. 
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4. Repeat steps 2 and 3 until 𝐵 is empty or step 3 is completed without any data nuggets 

being removed from 𝐵. 

 

 
Figure 4: Comparing Density Plots for Original and Refined Data Nuggets 

Figure 4 shows the same “smile” dataset described above, this time comparing the 

original 2,000 data nuggets refined to 2,562 data nuggets with scale tolerance value 

𝑆𝑡𝑜𝑙 = 1 and minimum number of observations 𝑚  =  2 after using ALGORITHM 2. The 

first row of plots is the scatterplot of the original 2,000 data nuggets beside its 

corresponding density plot, and the second row of plots is the scatterplot of the refined 

2,562 data nuggets beside its corresponding density plot. The density plot for the 2,562 
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data nuggets has a much more consistent smile with fewer gaps, and the ball of random 

noise is slightly more concentrated around the smile. 

After the data nuggets are created, modified versions of common statistical 

techniques can be applied to them. In this chapter we explore weighted K-means 

clustering and weighted principal component analysis. In both of these methods we 

ignore the scale parameter of the data nuggets, and instead focus on using the weight 

parameter. This is done because we believe that the internal variability of the data 

nuggets is miniscule. This belief is formalized in PROPOSITION 1.  

PROPOSITION 1: Let Σ be the sample covariance matrix for 𝑁 × 𝑃 data matrix 𝐗. Let 

𝐗𝑘 be the collection of k data nuggets meant to form a representative dataset of 𝐗. Let 

𝐒𝑘 = ∑ 𝑊𝑖𝐜𝑖𝐜𝑖
′𝑘

𝑖=1 . For large 𝑘, 𝑆𝑘 ≈ Σ. 

 If PROPOSITION 1 is true, then given enough data nuggets the amount of 

variability within the dataset is preserved when the dataset is reduced without accounting 

for the individual amount of variability within each data nugget. As such, this variability 

can be ignored when applying statistical techniques to the data nuggets. 

1.3.1 Weighted K-means Clustering for Data Nuggets 

We now introduce a weighted K-means clustering algorithm that can be used to 

form clusters of these data nuggets. It is worth noting that other weighted K-means 

clustering methods have been developed. An example is an algorithm that can be used for 

analyzing social networks (Liu & Xu, 2014). This algorithm is designed for the purpose 

of finding clusters of nodes in a social network where weights are assigned to the edges 
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that connect the nodes. The weights of the edges are described as the “intimacy” level 

between the two nodes that the edge connects.  

In our algorithm, the weights of each data nugget are a measure of how many 

observations from the original dataset are contained in the data nugget. We describe a 

method of weighted K-means clustering to form clusters of data nuggets with the 

algorithm below. 

ALGORITHM 3: Conduct weighted K-means to form clusters of data nuggets given: 𝑀 

data nuggets; 𝐾, the number of clusters to be created; 𝐰, the 𝑀 × 1 vector containing the 

weight of each data nugget; and 𝐷, a distance metric. 

1. Choose 𝐾 data nuggets (randomly or user-selected) to be the initial cluster centers, 

𝛍01,  𝛍02,   … ,  𝛍0𝐾, of 𝐾 clusters, 𝐿1, 𝐿2, … , 𝐿𝐾, respectively.  

2. Assign each of the 𝑀 data nuggets to the cluster with the closest cluster center 

according to distance metric 𝐷. 

3. Recalculate the cluster centers 𝛍1,  𝛍2,   … ,  𝛍𝐾 as the mean of all the data nuggets 

within clusters 𝐿1, 𝐿2, … , 𝐿𝐾, respectively. 

4. For 𝑖 =  1, 2, … ,𝑀 data nuggets: 

4.1.  Retrieve the cluster assignment for data nugget 𝑖, 𝐿(𝑖), and the current total 

weighted within cluster sum of squares, 𝑊(𝑖). 

4.2. Reassign data nugget 𝑖 to every cluster in {𝐿1, 𝐿2, … , 𝐿𝐾} ∖ 𝐿(𝑖) and calculate the 

total weighted within cluster sum of squares for each of the 𝐾 − 1 possible 

reassignments, {𝑊1,𝑊2, … ,𝑊𝐾} ∖ 𝑊(𝑖), where 𝑊𝑘 is the total weighted within 
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cluster sum of squares when data nugget 𝑖 is assigned to cluster 𝐿𝑘 for 𝑘 =

 1,2, … , 𝐾 and 𝑘 ≠ (𝑖). 

4.3. If 𝑊𝑘 = 𝑚𝑖𝑛({𝑊1,𝑊2, … ,𝑊𝐾}) < 𝑊(𝑖), reassign data nugget 𝑖 to cluster 𝐿𝑘 and 

recalculate the cluster centers 𝛍1,  𝛍2,   … ,  𝛍𝐾 as the mean of all the data nuggets 

within clusters 𝐿1, 𝐿2, … , 𝐿𝐾, respectively. 

5. Repeat step 4 until step 4 is completed without executing step 4.3. 

 The outcome of ALGORITHM 3 can be improved by repeating the algorithm 

with multiple choices for the initial centers chosen in step 1. The clustering assignments 

which minimize the total weighted within cluster sum of squares would then be chosen as 

the clustering configuration. Further, it may take an extremely long time for the algorithm 

to converge. As such, there could be a limit placed on the number of times step 4 is 

executed before the algorithm ends.  

 There could also be a threshold placed on the improvement of the total weighted 

within cluster sum of squares before ending the algorithm. For example, if the 𝑊(𝑖) found 

in step 4.2 is only 1016 greater than the 𝑊𝑘 found in step 4.3, this may be evidence that 

ending the algorithm at this point will provide almost identical results to those that would 

be yielded from convergence. 

 To illustrate the usefulness of ALGORITHM 3 we conducted a simulation using 

binary data. This simulated dataset is meant to mimic a list of 300,000 patients and 

whether they suffer from a list of ten conditions. We separate the data into three clusters 

based on the set of conditions these patients suffer from. Let 𝐿1, 𝐿2, and 𝐿3 represent the 

three clusters. Let 𝑝 be the probability of having any condition. Let, 
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where 𝑥𝑖 ∼ 𝐵𝑖𝑛(1,1 − 𝑝) for 𝑖 =  1,2,3,4,5, 𝑥𝑖 ∼ 𝐵𝑖𝑛(1, 𝑝) for 𝑖 =  6,7,8,9,10, 𝑦𝑖 ∼

𝐵𝑖𝑛(1, 𝑝) for 𝑖 =  1,2,3,4,5, 𝑦𝑖 ∼ 𝐵𝑖𝑛(1,1 − 𝑝) for 𝑖 =  6,7,8,9,10, and 𝑧𝑖 ∼ 𝐵𝑖𝑛(1, 𝑝) 

for 𝑖 =  1,2, … ,10. 𝐿1 is formed by sampling 100,000 observations of form 𝑥, 𝐿2 is 

formed by sampling 100,000 observations of form 𝑦, and 𝐿3 is formed by sampling 

100,000 observations of form 𝑧. These 300,000 observations are then placed together in a 

dataset. 

Since these observations are binary, there are at most 210 = 1024 possible unique 

observations. Each of these observations will represent a data nugget, and the weight of 

the data nugget is the number of times this data nugget appears in the dataset divided by 

300,000.  

Using the Hartigan &Wong algorithm for K-means clustering and the weighted K-

means clustering method given by ALGORITHM 3, we assign each data nugget to one 

of three clusters. Next, for every observation in the original dataset, we append the cluster 

assigned to its corresponding data nugget for each method. Finally, we find the 

proportion of correct cluster assignments for every possible permutation of cluster 

assignments and choose the cluster configuration which produces the best result for each 

method. 
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We repeat this process for 100 iterations and find the mean proportion of data nuggets 

correctly reassigned to their proper cluster for each method. We compare the two 

methods for various choices of 𝑝. 5 random sets of centers are used to initialize the 

algorithms for each iteration and the cluster configurations with the least within cluster 

sum of squares and weighted within cluster sum of squares for the K-means clustering 

method and the weighted K-means clustering method, respectively, are chosen. The 

simulation results are given in Table 1. 

 

Table 1: Correct Cluster Classification Simulation Results 

It is clear to see that the weighted K-means algorithm outperforms the Hartigan-

Wong algorithm in terms of the mean proportion of correct reclassification. This provides 

proper motivation to believe that using weighted K-means clustering to form clusters of 

data nuggets provides better results than ignoring the weights and simply using K-means 

clustering. As for choosing the best number of clusters, popular methods such as 

constructing silhouettes (Rousseeuw, 1987) or calculating the gap statistic (Tibshirani, 

Walther, & Hastie, 2001) are used to detect the optimal number of clusters. These 

methods and others, can be updated to include information concerning the data nugget 

weights. 
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1.3.2 Data Nuggets vs. Support Points 

In section 1.2.3 we mentioned another method of producing representative data 

called “Support Points” given by Mak and Joseph. The goal of data nuggets and support 

points are the same on the surface: to create a small dataset that represents the large 

dataset it comes from. That being said, the resulting representative datasets differ greatly 

in terms of producing the correct quantiles corresponding to the highest and lowest 

percentiles of the probability distributions they are meant to represent. 

This is by design in the case of support points, since they are defined as a set of 𝑀 

points in the dataset which has the best goodness of fit to the underlying distribution 

governing the dataset in terms of energy distance as defined in (Székely & Rizzo, 2013). 

This definition forces more observations to be chosen that exist near the center of the 

data, ultimately forsaking observations that exist at the edge of the data. 

Data nuggets on the other hand are designed to avoid this problem. Since the 

algorithm that creates data nuggets chooses observations to delete based on how close 

they are to other observations, observations on the edges of the data are safe from 

elimination and are guaranteed to remain as a data nugget center. The information 

concerning the fact that this observation is at the edge of the data is not lost—this 

information is contained in the weight parameter of the data nugget. 

We now produce the results of a simulation which examines this difference in a 1-

Dimensional setting. The simulation was conducted by randomly sampling 100,000 

observations from a standard normal distribution. Let this random sample of observations 

be 𝑧̂. 100 support points and 100 data nuggets are then created from 𝑧̂. The support points 

were generated using the support package created by Mak (Mak S., 2018). The data 
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nuggets were generated with ALGORITHM 1 by choosing 𝐗 = 𝑧̂, 𝑁 = 1,000, 𝑀 =

100, and 𝐷 to be the Euclidean distance metric. The data nuggets are then ordered by 

their centers in an ascending fashion. 

We then compute the quantiles corresponding to the 95𝑡ℎ, 96𝑡ℎ, 97𝑡ℎ, 98𝑡ℎ and 

99𝑡ℎ percentiles for each representative dataset. The quantiles for the support points are 

calculated in the typical fashion; however, calculating the quantiles for the data nuggets 

requires a more thoughtful process. First, a linear regression model is fit with the 

cumulative sums of the data nugget weights (each divided by 100,000) as the predictor 

variable and the data nugget centers as the response variable. Then, .95, .96, .97, .98, and 

.99 are plugged into the resulting regression equation to produce the quantiles 

corresponding to those percentiles for the data nuggets. Finally, the true quantiles for a 

standard normal distribution are subtracted from the quantiles calculated for each method 

to calculate the bias of each quantiles for each method. 

This simulation was repeated for 1000 sets of 𝑧̂ and Figure 5 shows the results. 

For each method, the box plots represent the distribution of quantile estimate bias for 

each corresponding percentile. It is clear to see that support points perform poorly in 

terms of bias compared to data nuggets for calculating the quantiles at the upper tail of 

the normal distribution. Since the bias for the quantiles given by the data nuggets prove 

consistent across the percentiles, there may be a simple correction constant that can be 

applied to each quantile to eliminate the bias entirely. 
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Figure 5: Quantile Bias Simulations Results 

1.4 Application to Preclinical Dataset 

In this section we apply the method of creating data nuggets and clustering them 

using weighted K-means clustering to a continuous dataset from a pharmaceutical 

company. The data set consists of over 1 million observations. Each observation 

corresponds to a B-cell and the columns correspond to the level of expression of nine 

different proteins on the surface of these B-cells. We will label these proteins A through 

I.  

The scientists conducting the experiments are interested in knowing if there are 

clusters of cells which express extremely high or low levels of expression of certain 

proteins. High levels of expression of these proteins correspond to the activation of these 

cells to perform certain functions. These functions can play an extremely vital role in 

helping the immune system of the organism the cell belongs to. 
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We begin by taking a random sample of 10,000 observations from the dataset and 

reducing this sample to 2,000 data nuggets using ALGORITHM 1. We then refined the 

data nuggets using ALGORITHM 2 with scale tolerance value 𝑆𝑡𝑜𝑙 = 2 and minimum 

number of observations 𝑚 =  2, which resulted in 3,577 data nuggets.   

Pairwise combinations of the first, second, and third principal components of the 

entire dataset are shown beside the same pairwise combinations of the first, second, and 

third weighted principal components of the initial 2,000 data nuggets and the refined 

3,577 data nuggets are given in Figure 6 for a comparison of the resulting data structures. 

All principal components were found using the wpca function from the R package 

aroma.light  (Neuvial, Bengtsson, & Speed, 2010). Note that the weights entered for the 

wpca function when creating the principal components for the entire dataset were all 

equal to 1. 
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Figure 6: PCA Plots of Entire Dataset vs WPCA Plots of Data Nuggets 

The principal components for the data nuggets were weighted according to the 

weights of the data nuggets. The color of each data nugget corresponds to the weight of 

the data nugget. Lighter green indicates a large weight while darker green indicates a low 
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weight. Observe how the structure of the data regarding the first three principal 

components is moderately recovered with the original 2,000 data nuggets and strongly 

recovered with the 3,577 refined data nuggets. Recall that the original dataset contains 

over 1 million observations, so the fact that less than 1% of these observations can be 

chosen and still produce a relatively strong representation of the structure of the data is 

noteworthy.  

 

Figure 7: Weighted PCA Plots of Data Nuggets Separated Into 10 Clusters 

Next, we configure the data nuggets into 10 clusters using ALGORITHM 3 to 

perform weighted K-means clustering. We use 10 initial centers and choose the cluster 

configuration with the least weighted within cluster sum of squares. The pairwise 

combinations of the first, second, and third weighted principal components of the 3,577 

refined data nuggets separated into 10 clusters is shown in Figure 7. Finally, we created 

box plots for each cluster which summarize the level of expression of the observations 
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within the cluster for each protein to search for whether any clusters show any visually 

significant levels of expression of any proteins. These box plots are given in Figure 8. 

 

Figure 8: Levels of Expression for Each Protein and Cluster Combination 

While for proteins B, F, H, and I there is not much difference between the 

clusters, there is a noticeable difference between clusters for the remaining proteins. The 

cells in clusters 3, 4, and 8 show a high level of expression of protein A. Clusters 6 and 8 

show a low level of expression of protein D and G, respectively. Cluster 3 shows a low 

level of expression of protein C, although there is a high level of variability. Finally, 

cluster 2 shows a high level of expression of protein E. 

1.5 Discussion 

We have detailed a method for reducing “Big Data” using data nuggets. We also 

offer a weighted K-means algorithm to cluster these data nuggets and provide simulation 

results which show that this algorithm outperforms the K-means clustering algorithm for 
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data nuggets yielded from binary data. We also displayed the distinction between data 

nuggets and support points in the context of quantile bias at the tails of probability 

distributions using a simulation, showing that there is a greater level of bias when these 

quantiles are calculated with support points. Finally, we applied this method to a 

preclinical dataset and presented the results. 

The R package datanugget has been developed to incorporate the methods 

described in this paper. It includes functions for generating, refining, and clustering data 

nuggets using weighted K-means clustering. While the runtime for these functions are 

slow in R, work could be done in the future to re-write the programs in the programming 

language C. If this were done the runtimes would improve a drastic amount. 

Future work could be done to show how well the data nuggets work when other 

mainstream statistical techniques are applied. We have already shown how well data 

nuggets can work when unsupervised methods such as principal components and 

clustering are applied. Another unsupervised method of interest that could be applied is 

projection pursuit (Friedman & Tukey, 1974). The efficacy of data nuggets could also be 

observed in the context of supervised methods such as logistic regression and linear 

regression.  

In the case of logistic regression, the response for each data nugget would be the 

number of “successful” and “unsuccessful” observations contained in the data nugget. In 

the case of linear regression, the response for each data nugget would be the mean of the 

responses of the observations contained in the data nugget and weighted least squares 

regression could be applied. The weight of each data nugget (potentially combined with 
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the variance of the response variable for each data nugget) would be used as the weight in 

the regression model. 

An important area of improvement for this method would be to find the optimal 

number of data nuggets. As the method currently stands the amount of subjective 

calibration is undesirable. Simulations involving large classified continuous datasets 

could also be created to determine how much better weighted K-means clustering 

performs compared to K-means clustering of data nuggets in a continuous setting. 

Another area of interest is showing that the results of the simulation in Section 

1.3.2 hold for higher dimensions. Work could also be done to provide a correction for the 

constant bias for estimating the quantiles with data nuggets. Research into asymptotic 

results regarding how well the probability distribution can be returned through estimation 

of the mean and covariance of data nuggets generated from a random sample of this 

probability distribution as the number of data nuggets increases to infinity would be 

useful as well.  
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Chapter 2: A New Understanding of Network Meta-Analysis 

Regarding Experiments with Small Sample Sizes 

2.1 Introduction 

Often in the field of non-clinical discovery multiple experiments are conducted to 

answer the same question using various experiment designs. For example, suppose a 

pharmaceutical company is attempting to develop a drug to decrease the amount of white 

blood cells (WBC's) in the liver. When the scientists assigned to this problem begin, they 

develop compound B and compare it to the standard treatment, compound A. Not 

satisfied with their results, they conduct seven more experiments; some with the same 

design, some with a similar design, and others with an entirely different design. The 

evolution of these experiment designs is shown in Figure 9.  

 

Figure 9: Example Experiment Designs 

Cases such as this where only a few experiments are performed to compare many 

treatment arms using few observations per treatment arm are typical in preclinical drug 

discovery. Finally, unwilling to publish the entire dataset for each experiment in their 

reports, the scientists only publish a collection of summary measures: sample mean 
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amount of WBC's in the liver after treatment, the corresponding standard error, and the 

sample size for each treatment arm in each experiment.  

The most basic approach would be to fit a fixed effect or random effect meta-

analysis model to compare two treatment arms at a time to generate an effect size 

estimate (Borenstein, 2009). The effect size estimate chosen depends on the type of data 

collected (e.g. mean difference or sample mean difference for continuous data, log odds 

ratio for binary data, etc.). Using this approach, results from experiments with the same 

design or similar designs are combined to create an effect size estimate; however, 

experiments with completely different designs cannot be used in the meta-analysis since 

they do not have one (or perhaps either) of the treatment arms being compared. 

Mixed treatment comparison meta-analysis, also known as network meta-analysis, 

is a method used to generate effect size estimates given individual summary measures or 

contrast summary measures, such as sample means or sample mean differences for 

continuous responses, respectively, along with the standard error of these estimates 

(Lumley, 2002). Using network meta-analysis we can generate results for all possible 

treatment arm comparisons using the summary measures from all eight different 

experiments. 

Section 2.2 explains how to use two existing frequentist methods: generalized 

least squares (GLS) (Lu, Welton, Higgins, White, & Ades, 2011); or electrical network 

theory (ENT) (Rücker & Schwarzer, 2012), to conduct network meta-analysis. Section 

2.3 provides two examples to demonstrate that the two methods are equivalent in some 

cases but not equivalent in others. Section 2.4 provides results of simulations created to 

assess how network meta-analysis using summary measures compares to mixed effects 
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linear models using full datasets. Section 2.5 discusses the implications of these 

simulations, the R package created to conduct network meta-analysis, and some future 

work that can be done in this area. 

2.2 Review of Two Frequentist Methods to Perform Network Meta-Analysis 

To illustrate how each method works we will continue with the fictional example 

described in Section 2.1. First, we will introduce general notation. Let 𝑁 be the number 

of experiments conducted, 𝐽 be the number of treatment arms, 𝐺 be the number of unique 

experiment designs, and 𝑇𝑔, for 𝑔 ∈ {𝑔1, 𝑔2, … , 𝑔𝐺}, be the number of treatment arms in 

design 𝑔. In this example we are working with continuous data, but these methods can 

also be used to analyze summary measures yielded from experiments with binary data or 

survival data (Schwarzer, Carpenter, & Rücker, 2015). 

Let the triplet (𝑥̅𝑖𝑗 , 𝑠𝑖𝑗 , 𝑛𝑖𝑗) for 𝑖 =  1,2, … ,𝑁, 𝑗 = 1,2, … , 𝑝𝑖 be the sample mean, 

standard error, and sample size for treatment arm 𝑗 in experiment 𝑖, where 𝑝𝑖 is the total 

number of treatment arms in experiment 𝑖. Finally, let 𝐈𝑚 be the identity matrix with 

dimension 𝑚 × 𝑚. Table 2 displays the data layout for individual summary measures. 

For continuous data, every treatment arm has a true mean response associated 

with it. For example, compound 𝐴 has the true mean response, θ𝐴. In other words, θ𝐴 is 

the true mean amount of WBC's produced in the liver as a result of using compound 𝐴. 

For any combination of two treatment arms, there exists an effect size parameter which 

represents the difference between the true mean responses of these treatment arms. For 

example, we say 𝑑𝐴𝐵 ≡ θ𝐴 − θ𝐵 is the effect size parameter for comparing compound 𝐴 

to compound 𝐵. 
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Table 2: Individual Summary Measures Dataset 

The goal of network meta-analysis is to estimate all (𝐽
2
) effect size parameters. 

Note that these effect size parameters can be divided into two mutually exclusive sets: 

direct comparisons, which are treatment arm comparisons that were observed in at least 

one of the 𝑁 experiments (e.g. 𝐴 vs. 𝐵) and indirect comparisons, which are treatment 

arm comparisons that were not observed in any of the 𝑁 experiments (e.g. 𝐶 vs. 𝐷). 

There are two assumptions necessary for conducting network meta-analysis. First, 

all the experiments used in the analysis are conducted independently of one another. 

Second, any indirect comparison of treatment arms can be formed by using direct 

comparisons. For example, 𝑑𝐵𝐶 ≡ θ𝐵 − θ𝐶 = (θ𝐴 − θ𝐶) − (θ𝐴 − θ𝐵) ≡ 𝑑𝐴𝐶 − 𝑑𝐴𝐵. This 

is known as the transitivity assumption (Schwarzer, Carpenter, & Rücker, 2015). This is 

also known as the assumption of consistency (Snedecor, Patel, & C. Cappeller, 2014). 

For the transitivity assumption to be used, of the set of treatment arms being used 

in the experiments must be “connected” in a specific way. This specification can be best 

understood in the context of graph theory. If the collection of treatment arms used in the 
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𝑁 experiments is viewed as a set of vertices, 𝑉, and the collection of direct comparisons 

is viewed as a set of edges, 𝐸, then a network graph, 𝐺 = (𝑉, 𝐸), can be created. All 

edges correspond to an effect size parameter for the two vertices they connect. See Figure 

10 for the network graph that would be created for this example. Further, a subgraph of 𝐺 

is any graph 𝐺0 such that 𝐺0 = (𝑉0, 𝐸0) where 𝑉0 ⊂ 𝑉 and 𝐸0 ⊂ 𝐸. 

 

Figure 10: Example Network Graph 

Note that a graph 𝐺 = (𝑉, 𝐸) has |𝑉| vertices and |𝐸| edges. A spanning tree is a 

subgraph formed by a collection of all |𝑉| vertices and |𝑉| − 1 edges such that all |𝑉| 

vertices in the graph are connected by edges. It is a necessary condition that a spanning 

tree can be formed in the network graph in order to employ network meta-analysis 

(Valkenhoef, et al., 2012). In our example, a spanning tree is given by the subgraph 

formed with all five vertices and the four edges attached to the 𝐴 vertex. 
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There are methods to check whether the transitivity assumption holds for all the 

effect size estimates (Lu & Ades, 2006; Dias, Welton, Caldwell, Ades, & Hougaard, 

2010; Jansen & Cope, 2012; White, Barrett, Jackson, & Higgins, 2012; Katsanos, 2014; 

Lu & Ades, 2006). Additionally, there are methods to view how information and 

evidence “flows” through the network of treatment arms to arrive at the final estimates  

(König, Krahn, & Binder, 2013). It is worth noting that these models can be expanded to 

use a random effect approach. This section of the paper will focus on defining the fixed 

effect approach. 

2.2.1 Generalized Least Squares 

In our example, 𝐺 =  5 since there are five unique experiment designs: 

{𝐴𝐵, 𝐴𝐵𝐶, 𝐵𝐷, 𝐴𝐶𝐸, 𝑎𝑛𝑑 𝐴𝐵𝐷}. For designs where 𝑇𝑔 = 2, meta-analysis is performed in 

the typical fashion. We will show how experiments with design 𝐴𝐵 would be fit 

according to a fixed effect meta-analysis model using individual summary measures (i.e. 

the dataset type given in Table 2) to generate the initial effect size estimates and their 

respective standard errors. Let 𝑑𝑖
𝑔

 and (𝑠𝑖
𝑔
)
2
 denote the sample mean difference and 

pooled variance, respectively, of experiment 𝑖 with design 𝑔.  

First the sample effect sizes, along with their pooled variances for all comparisons 

within this design must be calculated: 

𝑑1
𝐴𝐵 = 𝑥̅11 − 𝑥̅12, (𝑠1

𝐴𝐵)2 =
𝑛11𝑠11

2 + 𝑛12𝑠12
2

𝑛11 + 𝑛12
 

𝑑2
𝐴𝐵 = 𝑥̅21 − 𝑥̅22, (𝑠2

𝐴𝐵)2 =
𝑛21𝑠21

2 + 𝑛22𝑠22
2

𝑛21 + 𝑛22
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Next the sample effect sizes are used in conjunction with their pooled variances to 

provide a weighted effect size estimate and its respective variance.  Let 𝑊𝑖
𝑔

 denote the 

weight of experiment 𝑖 with design 𝑔. 

𝑊𝑖
𝐴𝐵 =

1

(𝑠𝑖
𝐴𝐵)2

  for  𝑖 = 1,2 

𝑑̂𝐴𝐵 =
𝑊1

𝐴𝐵𝑑1
𝐴𝐵 + 𝑊2

𝐴𝐵𝑑2
𝐴𝐵

𝑊1
𝐴𝐵 + 𝑊2

𝐴𝐵 , 𝑠𝑑̂𝐴𝐵

2 =
1

𝑊1
𝐴𝐵 + 𝑊2

𝐴𝐵 

In general, for a collection of 𝑀 two arm experiments, all with the same design 𝑔, 

the weighted effect size estimate and its variance is given by: 

𝑑̂𝑔 =
∑ 𝑊𝑖

𝑔
𝑑𝑖

𝑔𝑀
𝑖=1

∑ 𝑊𝑖
𝑔𝑀

𝑖=1

, 𝑠𝑑̂𝑔

2 =
1

∑ 𝑊𝑖
𝑔𝑀

𝑖=1

 

For designs where 𝑇𝑔 > 2, meta-analysis is performed in an analogous fashion 

with matrix multiplication to generate the weighted effect size estimates. We will now 

show how experiments with design 𝐴𝐵𝐶 would be fit according to a fixed effect meta-

analysis model using the dataset type given in Table 2 to generate the effect size 

estimates and their respective standard errors. 

First a vector of size 𝑇𝑔 − 1 sample effect sizes must be generated with respect to 

a treatment arm which we will denote as the baseline choice. This is done to ensure that 

the design matrix in the linear model will be full rank (Lu, Welton, Higgins, White, & 

Ades, 2011). This vector is meant to be analogous to the scalars produced in two arm 

meta-analysis. This baseline choice can be any treatment arm in design 𝑔, but it will be 
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discussed in Section 2.3 how certain baseline choices can optimize the results with 

respect to sum of squared errors (SSE). 

Let 𝑑𝑖
𝑔

 be the vector of sample effect sizes for experiment 𝑖 with design 𝑔 with 

respect to a baseline choice. Further, let 𝑑𝑖
𝑐1𝑐2 and (𝑠𝑖

𝑐1𝑐2)
2
 be the sample mean difference 

and pooled variance, respectively, comparing treatment arm 𝑐1 to 𝑐2 in experiment 𝑖. 

For our example, we will choose compound A to be the baseline choice, so our 

vectors of sample effect sizes will all involve compound A: 

𝐝3
𝐴𝐵𝐶  =  (

𝑑3
𝐴𝐵

𝑑3
𝐴𝐶)  =  (

𝑥̅31 − 𝑥̅32

𝑥̅31 − 𝑥̅33
) 

𝐝8
𝐴𝐵𝐶  =  (

𝑑8
𝐴𝐵

𝑑8
𝐴𝐶)  =  (

𝑥̅81 − 𝑥̅82

𝑥̅81 − 𝑥̅83
) 

Next, we create a covariance matrix meant to be analogous to the pooled variance 

in two arm meta-analysis. Let 𝐕𝑖
𝑔

 denote the covariance matrix of experiment 𝑖 with 

design 𝑔. This matrix is constructed by using the pooled variances of the sample mean 

differences contained in 𝐝𝑖
𝑔

 along with the sample variance of the sample mean of the 

treatment arm chosen as the baseline choice: 

𝐕3
𝐴𝐵𝐶 = [

(𝑠3
𝐴𝐵)

2
𝑠31

2

𝑠31
2 (𝑠3

𝐴𝐶)
2] , 𝐕8

𝐴𝐵𝐶 = [
(𝑠8

𝐴𝐵)
2

𝑠81
2

𝑠81
2 (𝑠8

𝐴𝐶)
2] 

where 

(𝑠𝑖
𝐴𝐵)

2
=

𝑛𝑖1𝑠𝑖1
2 + 𝑛𝑖2𝑠𝑖2

2

𝑛𝑖1 + 𝑛𝑖2
, (𝑠𝑖

𝐴𝐶)
2

=
𝑛𝑖1𝑠𝑖1

2 + 𝑛𝑖3𝑠𝑖3
2

𝑛𝑖1 + 𝑛𝑖3
   for  𝑖 = 3,8 
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This formulation for the covariance matrix is based on asymptotic results given in 

(Higgins & Whitehead, 1996). For small sample sizes we instead must assume that {θ𝐴, 

θ𝐵, θ𝐶, θ𝐷, θ𝐸} are mutually independent, which is a reasonable assumption if the 

treatment arms have no obvious relationship with each other. 

To create the weight matrices, we simply invert the variance matrices. Let 𝑊𝑖
𝑔

 

denote the weight matrix of experiment 𝑖 with design 𝑔. 

𝐖𝑖
𝐴𝐵𝐶 = (𝐕𝑖

𝐴𝐵𝐶)
−1

 

The weighted effect size estimate vector and its covariance matrix are calculated as 

follows: 

𝐝̂𝐴𝐵𝐶 = (𝐖𝐴𝐵𝐶)−1(𝐖3
𝐴𝐵𝐶𝐝3

𝐴𝐵𝐶 + 𝐖8
𝐴𝐵𝐶𝐝8

𝐴𝐵𝐶) = (
𝑑̂𝐴𝐵

𝑑̂AC

)  

𝐕𝐴𝐵𝐶 = (𝐖𝐴𝐵𝐶)−1 = [
𝑠𝑑̂𝐴𝐵

2 𝐶𝑜𝑣̂(𝑑̂𝐴𝐵, 𝑑̂AC)

𝐶𝑜𝑣̂(𝑑̂𝐴𝐵, 𝑑̂AC) 𝑠𝑑̂𝐴𝐶

2 ] 

where 

𝐖𝐴𝐵𝐶 = 𝐖3
𝐴𝐵𝐶 + 𝐖8

𝐴𝐵𝐶 

In general, for a collection of 𝑀 experiments with more than two arms, all with the same 

design 𝑔, the weighted effect size estimate vector and its respective covariance matrix is 

given by: 

𝐝̂𝑔 = (𝐖𝑔)−1 ∑𝐖𝑖
𝑔
 𝐝𝑖

𝑔

𝑀

𝑖=1

, 𝐕𝑔 = (𝐖𝑔)−1 

where 



41 

 

 

 

𝐖𝑔 = ∑𝐖𝑖
𝑔

𝑀

𝑖=1

 

Once the above steps are completed for all 𝐺 designs, all of the effect size 

estimates must be combined into, 𝐲gls, a 𝑇 × 1 vector, and all of their respective 

variances must be combined into, 𝐕gls, a 𝑇 × 𝑇 block diagonal matrix where 𝑇 =

∑ (𝑇𝑔 − 1)𝐺
𝑔=1 .  

Continuing our example, we form 𝐲gls and 𝐕gls. Note that the effect size 

estimates with centered dots in the subscript come from designs with more than two 

treatment arms. 

𝐲gls = (𝑑̂𝐴𝐵𝐝̂𝐴𝐵𝐶 , 𝑑̂𝐵𝐷 , 𝐝̂𝐴𝐶𝐸 , 𝐝̂𝐴𝐵𝐷) 

𝐲gls = (𝑑̂𝐴𝐵, 𝑑̂𝐴𝐵⋅, 𝑑̂𝐴𝐶⋅, 𝑑̂𝐵𝐷 , 𝑑̂𝐴𝐶⋅⋅, 𝑑̂𝐴𝐸⋅⋅, 𝑑̂𝐴𝐵⋅⋅⋅, 𝑑̂𝐴𝐷⋅⋅⋅)
′
 

𝐕gls = (𝐖gls)−1 = diag (𝑠𝑑̂𝐴𝐵

2 , 𝐕𝐴𝐵𝐶 , 𝑠𝑑̂𝐵𝐷

2 , 𝐕𝐴𝐶𝐸 , 𝐕𝐴𝐵𝐷) 

Next, we will begin forming the linear model that will be solved using the 

generalized least squares solution. Let 𝐝 be the 𝑀 × 1 (𝑀 ≤ 𝑇) vector containing the 

unique effect size parameters estimated in 𝐲gls. Continuing our example: 

𝐝 = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐴𝐷 , 𝑑𝐴𝐸 , 𝑑𝐵𝐷)′ 

𝐝 is then decomposed into two sub-vectors: 𝐝b, a (𝐽 − 1) × 1 basic parameter vector 

formed with the effect size parameters corresponding to a spanning tree in the network 

graph, and 𝐝f, an (𝑀 − 𝐽 + 1) × 1 functional parameter vector formed with the 

remaining effect size parameters.  
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𝐝 = (𝐝b, 𝐝f)
′ 

𝐝b = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐴𝐷 , 𝑑𝐴𝐸)′ 

𝐝f = (𝑑𝐵𝐷)′ 

The effect size parameters in the functional parameter vector are all linear combinations 

of the effect size parameters in the basic parameter vector, as shown below for this 

example: 

𝐅𝐝b = [−1 0 1 0](

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐴𝐷

𝑑𝐴𝐸

) = (𝑑𝐵𝐷) = 𝐝f 

Using 𝐹 in conjunction with 𝐈𝑗−1, 𝐝 can then be expressed as a linear combination of the 

basic parameters: 

𝐝 = (
𝐝b

𝐝f
) = (

𝐈𝑗−1

𝐅
)𝐝b = 𝐇𝐝b 

The purpose of generating 𝐇 is to create the linear constraint that will be used in 

conjunction with 𝐲gls and 𝐕gls to provide an estimate, 𝐝̂gls, which: 

1. Provides the smallest sum of squared errors with respect to the weights by 

minimizing ∑ (𝐝̂𝑔𝑘
−  𝐲𝑔𝑘

gls
)′𝑾𝑔𝑘

gls
(𝐝̂𝑔𝑘

−  𝐲𝑔𝑘

gls
)𝐺

𝑘=1  when 𝐝̂𝑔𝑘
= 𝐝̂𝑔𝑘

gls(∗)
, where 𝐲𝑔𝑘

gls
 and 

𝐖𝑔𝑘

gls
  are the portions of 𝐲gls and 𝐖gls corresponding to design 𝑔𝑘, respectively, and 

𝐝̂𝑔𝑘

gls(∗)
 is the portion of 𝐝̂gls containing the estimates of the effect size parameters 

provided for design 𝑔𝑘. 

2. Satisfies the linear constraint 𝐝 = 𝐇𝐝b. 
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 We now construct a linear model that will lead to an estimator which will satisfy 

the above conditions. This linear model is given by: 

𝐲gls = 𝐗𝐝b + 𝛜 

where 𝛜 ∼ N𝑇(𝟎, 𝐕gls) and 𝐗 is a 𝑇 × (𝐽 − 1) design matrix that interacts with 𝐝b in such 

a way that the effect size parameters in the resulting 𝑇 × 1 vector correspond with the 

effect size parameter estimates given in 𝐲gls. Since 𝐇 contains all the linear combinations 

for converting 𝐝b into any element of 𝐝, 𝐗 will be a matrix formed by vertically 

concatenating rows of 𝐇. Let 𝐡i correspond to the 𝑖𝑡ℎ row of 𝐇. For our example: 

𝐲gls =

(

 
 
 
 
 
 
 

𝑑̂𝐴𝐵

𝑑̂𝐴𝐵⋅

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐷

𝑑̂𝐴𝐶⋅⋅

𝑑̂𝐴𝐸⋅⋅

𝑑̂𝐴𝐵⋅⋅⋅

𝑑̂𝐴𝐷⋅⋅⋅)

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

1 0 0 0
1 0 0 0
0 1 0 0

−1 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0]

 
 
 
 
 
 
 

(

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐴𝐷

𝑑𝐴𝐸

) =

[
 
 
 
 
 
 
 
𝐡1

𝐡1

𝐡2

𝐡5

𝐡2

𝐡4

𝐡1

𝐡3]
 
 
 
 
 
 
 

(

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐴𝐷

𝑑𝐴𝐸

) = 𝐗𝐝b 

Now that 𝐗 has been constructed, the estimates for the effect size parameters in 𝐝b can be 

estimated by 𝐝̂b
gls

 which is given by: 

𝐝̂b
gls

= (𝐗′𝐖gls𝐗)−1𝐗′𝐖gls𝐲gls =

(

  
 

𝑑̂𝐴𝐵
gls

𝑑̂𝐴𝐶
gls

𝑑̂𝐴𝐷
gls

𝑑̂𝐴𝐸
gls

)

  
 

 

Further, since this is the generalized least squares solution, we know 𝐝̂b
gls

 is the best 

linear unbiased estimator for 𝐝b. Finally, since this estimate also satisfies the linear 
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constraint 𝐝 = 𝐇𝐝b, we receive the estimates for the effect size parameters in 𝐝 by 

computing: 

𝐝̂gls = 𝐇𝐝̂b
gls

=

(

 
 
 
 

𝑑̂𝐴𝐵
gls

𝑑̂𝐴𝐶
gls

𝑑̂𝐴𝐷
gls

𝑑̂𝐴𝐸
gls

𝑑̂𝐵𝐷
gls

)

 
 
 
 

 

It is an easy exercise to see that 𝔼(𝐝̂gls) = 𝐝 and Cov(𝐝̂gls) = 𝐇(𝐗′𝐖gls𝐗)
−𝟏

𝐇′. 

The effect size estimates for all (𝐽
2
) possible comparisons can then be computed by using 

linear combinations of the effect size estimates given in  𝐝̂gls. The variances for these 

estimates can also be computed using Cov(𝐝̂gls). For example, the effect size estimate 

and variance for comparing compound C to compound D is given by: 

𝑑̂𝐶𝐷
gls

 = (0 − 1 1 0 0) 𝐝̂gls  = 𝑑̂𝐴𝐶
gls

− 𝑑̂𝐴𝐷
gls

  

𝑉𝑎𝑟(d̂𝐶𝐷
gls

)  = Var((0 − 1 1 0 0) 𝐝̂gls)  

𝑉𝑎𝑟(d̂𝐶𝐷
gls

)  = (0 − 1 1 0 0)′Cov(𝐝̂gls)(0 − 1 1 0 0) 

𝑉𝑎𝑟(d̂𝐶𝐷
gls

)  = Cov(𝐝̂gls)22  +  Cov(𝐝̂gls)33  −  2Cov(𝐝̂gls)23 

Var(d̂𝐶𝐷
gls

)  = Var(d̂𝐴𝐶
gls

)  +  Var(d̂𝐴𝐷
gls

)  −  2Cov(d̂𝐴𝐶
gls

, d̂𝐴𝐷
gls

) 

2.2.2 Electrical Network Theory 

We will now describe the electrical network theory (ENT) method of analysis. 

This approach uses electrical networks as the theoretical foundation for generating 

estimates as opposed to the linear regression techniques typically employed in statistics. 
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This method is motivated by the notion presented in (Bailey, 2007) that variances in 

microarray experiments combine similar to resistances in electrical networks.  

We will once again use our example to demonstrate how estimates are created; 

however, the example dataset must be converted from an individual summary measures 

dataset to a contrast summary measures dataset. In other words, the ENT method 

generates estimates using data where treatment arm comparisons are already calculated as 

opposed to the GLS method which requires data for each individual treatment arm. 

 

Table 3: Contrast Summary Measures 

In the case where summary measures are given as contrasts instead of individual 

summary measures for each treatment arm, let the triplet (δ𝑖𝑗 , 𝑠δ𝑖𝑗
, 𝑛𝑖𝑗) for 𝑖 =

 1,2, … ,𝑁, 𝑗 =  1,2, …, (𝑝𝑖
2
) be the sample mean difference, pooled variance, and sample 

size for the 𝑗𝑡ℎ comparison in experiment 𝑖. Table 3 displays the data layout for contrast 

summary measures. Let 𝑝 = ∑ 𝑝𝑖
𝑁
𝑖=1  and 𝐲ent be the 𝑝 × 1 vector containing all the 

sample mean differences. 
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The first step is to create 𝐁, the edge-vertex incidence matrix, a 𝑝 × 𝐽 matrix 

where the 𝑝 rows represent the treatment arm comparisons being made in each 

experiment and the 𝐽 columns represent the 𝐽 treatment arms. Further, let 𝐁𝑔 be the 

(𝑇𝑔

2
) × 𝐽 matrix representing the portions of the edge-vertex incidence matrix 

corresponding to an experiment with design 𝑔 for 𝑔 ∈ {𝑔1, 𝑔2, … , 𝑔𝐺}. For our example, 

compounds A, B, C, D, and E correspond to columns 1,2,3,4, and 5, respectively, and the 

following matrices are formed: 

𝐁𝐴𝐵 = [1 −1 0 0 0], 𝐁𝐴𝐵𝐶 = [
1 −1 0 0 0
1 0 −1 0 0
0 1 −1 0 0

] 

𝐁𝐵𝐷 = [0 1 0 −1 0], 𝐁𝐴𝐶𝐸 = [
1 0 −1 0 0
1 0 0 0 −1
0 0 1 0 −1

] 

 𝐁𝐴𝐵𝐶 = [
1 −1 0 0 0
1 0 0 −1 0
0 1 0 −1 0

] 

So that: 

𝐁 =

[
 
 
 
 
 
 
 
𝐁𝐴𝐵

𝐁𝐴𝐵

𝐁𝐴𝐵𝐶

𝐁𝐵𝐷

𝐁𝐴𝐶𝐸

𝐁𝐴𝐵𝐷

𝐁𝐴𝐵𝐷

𝐁𝐴𝐵𝐶 ]
 
 
 
 
 
 
 

 

This edge-vertex incidence matrix is then used in conjunction with θtreat, a 𝐽 × 1 

vector containing the 𝐽 treatment arms in the same order as they appear as the columns in 
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𝐵. For our example, θtreat = (θ𝐴, θ𝐵, θ𝐶 , θ𝐷 , θ𝐸)′. The effect size parameters are then 

estimated according to the linear model below. 

𝐲ent = 𝐁θtreat + 𝛜 

(

 
 
 
 
 
 
 

𝛿11

𝛿21

𝛿31

𝛿32

𝛿33

⋮
𝛿81

𝛿82

𝛿83)

 
 
 
 
 
 
 

=

[
 
 
 
 
𝐁𝐴𝐵

𝐁𝐴𝐵

𝐁𝐴𝐵𝐶

⋮
𝐁𝐴𝐵𝐶]

 
 
 
 

(

 
 

θ𝐴

θ𝐵

θ𝐶

θ𝐷

θ𝐸)

 
 

+

(

 
 
 
 
 
 

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

⋮
ϵ16

ϵ17

ϵ18)

 
 
 
 
 
 

=

(

 
 
 
 
 
 
 

𝑑𝐴𝐵

𝑑𝐴𝐵

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐵𝐶

⋮
𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐵𝐶)

 
 
 
 
 
 
 

+

(

 
 
 
 
 
 

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

⋮
ϵ16

ϵ17

ϵ18)

 
 
 
 
 
 

 

where 𝛜 ∼ N𝑝(𝟎, 𝐕ent) and 𝐕ent is a diagonal covariance matrix. More specifically, 

𝐕ent = (𝐖ent)−1, where 𝐖ent = diag(𝐖1, … ,𝐖N) is the weight matrix used for this 

method. 𝐖𝑖 is a (𝑝𝑖
2
) × (𝑝𝑖

2
) diagonal matrix which contains the weight information 

pertaining to experiment 𝑖. When 𝑝𝑖 = 2, 𝐖i is simply a scalar representing the inverse of 

the pooled variance for the sample mean difference of the two treatment arms being 

compared: 

𝐖i =
1

𝑠δ𝑖1

2  

When 𝑝𝑖 > 2,𝐖𝑖 has a more complicated derivation. Let 𝐁𝑔 be the (𝑇𝑔

2
) × (𝑇𝑔

2
) 

sub edge-vertex incidence matrix pertaining to design 𝑔 for designs where 𝑇𝑔 > 2. 𝐁𝑔 is 

simply 𝐁𝑔 where columns that do not have nonzero entries are removed. For our 

example: 
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𝐁𝐴𝐵𝐶 = [
1 −1 0
1 0 −1
0 1 −1

] , 𝐁𝐴𝐶𝐸 = [
1 −1 0
1 0 −1
0 1 −1

] , 𝐁𝐴𝐵𝐷 = [
1 −1 0
1 0 −1
0 1 −1

]  

Note that although the matrices appear to be the same, the columns in the matrices 

represent different treatment arms. The columns in 𝐁𝐴𝐵𝐶 represent compounds A, B, and 

C; the columns in 𝐁𝐴𝐶𝐸 represent compounds A, C, and E; and the columns in 𝐁𝐴𝐵𝐷 

represent compounds A, B, and D. 

The sub edge-vertex incidence matrices are then used in conjunction with 𝐕𝑖, the 

(𝑝𝑖
2
) × (𝑝𝑖

2
) sub variance matrix pertaining to experiment 𝑖 for experiments where 𝑝𝑖 > 2. 

𝐕𝑖 is a symmetric matric with 0 along the diagonal and entries (𝑞, 𝑟) contain the pooled 

variance for the sample mean difference comparing the treatment arms in the 𝑞𝑡ℎ and 𝑟𝑡ℎ 

columns of the sub edge-vertex incidence matrix. For our example: 

𝐕3 = [

0 𝑠δ31

2 𝑠δ32

2

𝑠δ31

2 0 𝑠δ33

2

𝑠δ32

2 𝑠δ33

2 0

] , 𝐕5 = [

0 𝑠δ51

2 𝑠δ52

2

𝑠δ51

2 0 𝑠δ53

2

𝑠δ52

2 𝑠δ53

2 0

] , . . . , 𝐕8 = [

0 𝑠δ81

2 𝑠δ82

2

𝑠δ81

2 0 𝑠δ83

2

𝑠δ82

2 𝑠δ83

2 0

] 

The next step is to form the 𝐋𝑖
+ matrix using the 𝐁𝑔 and 𝐕𝑖 matrices for each experiment 𝑖 

with design 𝑔 where 𝑇𝑔 > 2. 

𝐋𝑖
+ =

1

2𝑝𝑖
2 𝐁′𝑔𝐁𝑔𝐕𝑖𝐁′𝑔𝐁𝑔 

To obtain the entries that will form the diagonal of 𝐖𝑖, 𝐋𝑖
+must be converted to 𝐋𝑖 

using the Moore-Penrose pseudo-inverse (Albert, 1972). Let 𝐉𝑘 be a 𝑘 × 𝑘 matrix where 

every entry is 1. For any 𝑘 × 𝑘 matrix 𝐀, let the Moore-Penrose pseudo-inverse of 𝐀, 𝐀+, 

be defined as: 
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𝐀+ = (𝐀 −
1

𝑘
𝐉𝑘)

−1

−
1

𝑘
𝐉𝑘 

Let 𝑙𝑖(𝑞,𝑟) be the (𝑞, 𝑟) entry of the matrix 𝐋𝑖. The inverse of the negative non-

diagonal elements of 𝐋𝑖 are meant to serve as “adjusted” variances to replace the pooled 

variances found in the corresponding slot of 𝐕𝑖 by inflating them. This is done to adjust 

for any within-experiment correlation between treatment arms that may be present. 𝐖𝑖 

when 𝑝𝑖 > 2 is then given by: 

𝐖𝑖  = 𝑑𝑖𝑎𝑔(−𝑙𝑖(𝑞,𝑟)) 𝑓𝑜𝑟  1 ≤  𝑞 <  𝑟 ≤  𝑝𝑖 

For our examples, 𝐖𝑖 = 𝑑𝑖𝑎𝑔 ((−𝑙𝑖(1,2)), (−𝑙𝑖(1,3)), (−𝑙𝑖(2,3))) for 𝑖 =

 3, 5, 6, 7, 8 since 𝑝𝑖 = 3 for these experiments. Once 𝐖𝑖 has been formed for 𝑖 =

 1, … , 𝑁, 𝐖ent is formed and used with 𝐁 to create 𝐋 = 𝐁′𝐖ent𝐁. Next, we compute the 

Moore-Penrose pseudo-inverse of 𝐋, 𝐋+. Finally, the estimates for the effect size 

parameters in 𝐲ent are given by: 

𝐲̂ent = 𝐁𝐋+𝐁′𝐖ent𝐲ent 

(

 
 
 
 
 
 
 
 

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐶
ent

𝑑̂𝐵𝐶
ent

⋮
𝑑̂𝐴𝐵

ent

𝑑̂𝐴𝐶
ent

𝑑̂𝐵𝐶
ent)

 
 
 
 
 
 
 
 

= 𝐁𝐋+𝐁′𝐖ent

(

 
 
 
 
 
 
 

𝛿11

𝛿21

𝛿31

𝛿32

𝛿33

⋮
𝛿81

𝛿82

𝛿83)

 
 
 
 
 
 
 

 

𝐲̂ent contains the effect size parameter estimates for all the direct comparisons 

available. Like the GLS method, the effect size parameter estimates for indirect 
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comparisons are computed using linear combinations of the estimates provided in 𝐲̂ent; 

however, the variance of any effect size parameter estimate is computed differently. 

Regardless of whether the effect size parameter estimate corresponds to a direct or 

indirect comparison, the variance is computed as follows: the variance of the effect size 

parameter estimate which compares the treatment arm associated with column 𝑖 in 𝐵 to 

the treatment arm associated with column 𝑗 in 𝐵 is given by: 

𝐋(𝑖𝑖)
+ + 𝐋(𝑗𝑗)

+ − 2𝐋(𝑖𝑗)
+  

For our example the effect size estimate and variance for comparing compound C to 

compound D is given by: 

𝑉𝑎𝑟(𝐝̂𝐶𝐷
ent) = 𝐋(33)

+ + 𝐋(44)
+ − 2𝐋(34)

+  

Note that unlike the effect size parameters estimated by 𝐝̂gls, 𝐲̂ent may contain 

multiple (identical) estimates for the same parameter. Further, since a baseline choice 

does not have to be made for all designs with more than two treatment arms to make sure 

the design matrix is full rank, more effect size parameters can be immediately deduced. 

For example, the ninth element of 𝐲̂ent contains an estimate for the effect size parameter 

𝑑𝐶𝐸, while 𝐝̂gls will not contain an estimate for 𝑑𝐶𝐸 unless a different baseline choice 

configuration is chosen.  

Further, whether individual or contrast summary measures data is available will 

influence which method should be used. In the case where individual summary measures 

are available either method can be used since the conversion from individual to contrast 

summary measures is a simple feat. When only contrast summary measures are available 

one must use methods to impute the off-diagonal variances that will be placed in the 



51 

 

 

 

variance matrices to use the GLS method (Riley, 2009; Franchini, Dias, Ades, Jansen, & 

Welton, 2012). 

It should be noted that there is also plenty of literature detailing how to conduct 

network meta-analysis with under a Bayesian framework (Lu & Ades, 2004; Dias, 

Sutton, Ades, & Welton, 2013; Hong, et al., 2013). While these Bayesian methods are 

useful, we will remain in the realm of the frequentist methods.  

2.3 A Comparison Between the GLS and ENT Methods 

Rücker and Schwarzer assert that the effect size parameter estimates and their 

variances will be identical for both methods (Rücker & Schwarzer, 2014). This cannot be 

correct because we have found a counterexample in the form of a dataset heavily based 

on preclinical data for which the two methods are in fact not equivalent.  

We will now apply the GLS method and the ENT method to two separate datasets 

and provide the results for each. Each section will provide the data being used, the 

computations of the basic matrices needed in each method, and the effect size parameter 

estimates yielded from each method, all of which can be checked by the reader 

independently to ensure total transparency. 

For this section we will use Dataset A provided in Table 4. This dataset contains 3 

different experiments (𝑁 = 3), two different designs (𝐺 = 2), and four different 

treatment arms (𝐽 = 4). This experiment does not have a balanced design. While this 

dataset may not seem ideal, it is heavily based on data from a pharmaceutical company. 

See Figure 11 for the experiment design for this dataset.  



52 

 

 

 

2.3.1 A Counterexample Where Methods Are Not Equivalent 

 

Table 4: Dataset A (Counterexample) 

 

Figure 11: Dataset A Experiment Designs 

We will begin by finding results with the GLS method using the individual 

summary measures version of this dataset. The two designs are {𝐴𝐵, 𝐴𝐵𝐶𝐷}. For design 

𝐴𝐵𝐶𝐷 we will choose our baseline choice to be Compound C. So 𝐲gls and 𝐕gls will be: 

𝐲gls = (
𝑑̂𝐴𝐵

𝐝̂𝐴𝐵𝐶

) =

(

 
 

𝑑̂𝐴𝐵

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐶⋅

𝑑̂𝐶𝐷⋅)

 
 

= (

2.864
34.590
11.430

−16.310

) 

𝐕gls = (𝐖gls)−1 = diag (𝑠𝑑̂𝐴𝐵

2 , 𝐕𝐴𝐵𝐶𝐷) = [

24.505 0 0 0
0 89.585 9.425 −9.425
0 9.425 20.053 −9.425
0 −9.425 −9.425 36.987

] 
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Note that the covariances for certain entries are negative. This is because the pair of 

effect size parameters for which the covariance is being estimated have the baseline 

treatment arm in a different comparitive positions. For example: 

𝐶𝑜𝑣(𝑑𝐵𝐶 , 𝑑𝐶𝐷) = 𝐶𝑜𝑣(θ𝐵 − θ𝐶 , θ𝐶 − θ𝐷) 

Cov(𝑑𝐵𝐶 , 𝑑𝐶𝐷) = Cov(θ𝐵, θ𝐶 − θ𝐷) + Cov(−θ𝐶 , θ𝐶 − θ𝐷) 

Cov(𝑑𝐵𝐶 , 𝑑𝐶𝐷) = Cov(θ𝐵, θ𝐶) + Cov(θ𝐵, −θ𝐷) + Cov(−θ𝐶 , θ𝐶) + Cov(−θ𝐶 , −θ𝐷) 

Cov(𝑑𝐵𝐶 , 𝑑𝐶𝐷) = −Var(θ𝐶)1 

Our vector containing the effect size parameters is then 𝐝 = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐵𝐶 , 𝑑𝐶𝐷)′. 

Further, we will choose 𝐝b = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐶𝐷)′ to be our basic parameter vector and 𝐝f =

(𝑑𝐵𝐶)′ to be our functional parameter vector. As such: 

𝐝 = (
𝐝b

𝐝f
) = [

1 0 0
0 1 0

−1 1 0
0 0 1

] 𝐝b = 𝐇𝐝b 

so that 

𝐲gls =

(

 
 

𝑑̂𝐴𝐵

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐶⋅

𝑑̂𝐶𝐷⋅)

 
 

= [

1 0 0
0 1 0

−1 1 0
0 0 1

](

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐶𝐷

) = [

𝐡1

𝐡2

𝐡3

𝐡4

] (

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐶𝐷

) = 𝐗𝐝b 

and finally 

                                                 
1 To reach this result we assume that {θ𝐴, θ𝐵, θ𝐶 , θ𝐷} are mutually independent as mentioned earlier in 

section 2.2.1. 
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𝐝̂gls =

(

  
 

𝑑̂𝐴𝐵
gls

𝑑̂𝐴𝐶
gls

𝑑̂𝐵𝐶
gls

𝑑̂𝐶𝐷
gls

)

  
 

= 𝐇(𝐗′𝐖gls𝐗)−1𝐗′𝐖gls𝐲gls = (

7.178
20.479
13.301

−16.310

) 

The effect size parameter estimates for the remaining direct comparisons are calculated 

by taking linear combinations of 𝐝̂gls. Specifically, they are given by 𝑑̂𝐴𝐶
gls

= 4.169 and 

𝑑̂𝐵𝐷
gls

= −3.009. 

Next we will use the contrast summary measures version of the dataset and use 

the ENT method to generate results. First recall that 𝐲̂ent is the 8 × 1 vector containing 

all of the sample mean differences. Next we will form the edge-vertex incidence matrix, 

𝐵. Compounds A, B, C, and D will correspond to columns 1, 2, 3, and 4 of 𝐵, 

respectively, and the following matrices are formed. So: 

𝐁𝐴𝐵 = [1 −1 0 0], 𝐁𝐴𝐵𝐶𝐷 = 

[
 
 
 
 
 
1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1]

 
 
 
 
 

 

so that 

𝐁 = [
𝐁𝐴𝐵

𝐁𝐴𝐵

𝐁𝐴𝐵𝐶𝐷

] 

and 

𝐲ent = 𝐁θtreat + 𝛜 
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(

 
 
 
 
 
 

𝛿11

𝛿21

𝛿31

𝛿32

𝛿33

𝛿34

𝛿35

𝛿36)

 
 
 
 
 
 

= [
𝐁𝐴𝐵

𝐁𝐴𝐵

𝐁𝐴𝐵𝐶𝐷

](

θ𝐴

θ𝐵

θ𝐶

θ𝐷

) +

(

 
 
 
 
 

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

ϵ7

ϵ8)

 
 
 
 
 

=

(

 
 
 
 
 
 

𝑑𝐴𝐵

𝑑𝐴𝐵

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐴𝐷

𝑑𝐵𝐶

𝑑𝐵𝐷

𝑑𝐶𝐷)

 
 
 
 
 
 

+

(

 
 
 
 
 

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

ϵ7

ϵ8)

 
 
 
 
 

 

Since design 𝐴𝐵𝐶𝐷 has four treatment arms we must form a sub edge-vertex incidence 

matrix 𝐁𝐴𝐵𝐶𝐷. 

𝐁𝐴𝐵𝐶𝐷 = 

[
 
 
 
 
 
1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1]

 
 
 
 
 

 

Next we form a sub variance matrix 𝐕3 for experiment 3 since this experiment has design 

𝐴𝐵𝐶𝐷. 

𝐕3 = [

0 91.575 89.585 119.595
91.575 0 20.053 38.190
89.585 20.053 0 36.987
119.595 38.190 36.987 0

] 

Next, we compute 𝐋3
+ and form 𝐖3 for experiment 3. We will leave this process 

for the reader to complete. Finally, with these computations completed we can now form 

𝐖ent, which is given by: 

𝐖ent = 𝑑𝑖𝑎𝑔(0.005,0.035,0.005,0.007,−𝟎. 𝟎𝟎𝟎𝟐, 0.039,0.15,0.016) 

Finally, after computing  𝐋 = 𝐁′𝐖ent𝐁, we arrive at the result: 
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(

 
 
 
 
 
 
 

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐶
ent

𝑑̂𝐴𝐷
ent

𝑑̂𝐵𝐶
ent

𝑑̂𝐵𝐷
ent

𝑑̂𝐶𝐷
ent)

 
 
 
 
 
 
 

= 𝐁𝐋+𝐁′𝐖ent

(

 
 
 
 
 
 

𝛿11

𝛿21

𝛿31

𝛿32

𝛿33

𝛿34

𝛿35

𝛿36)

 
 
 
 
 
 

=

(

 
 
 
 
 

7.149
7.149
7.149
20.506
3.158
13.357
−3.991
−17.348)

 
 
 
 
 

  

Here it is seen that  𝑑̂𝑐1𝑐2

gls
≠ 𝑑̂𝑐1𝑐2

ent  for every possible choice of 𝑐1 and 𝑐2. In other 

words, the effect size parameter estimates for each method are not equivalent. We leave it 

to the reader to confirm that the variances for all of the effect size parameter estimates are 

not equivalent. 

There are a few things that should be noted here. First, the SSE for the GLS 

method results is less than the SSE for the ENT method results. This is not surprising 

since the estimator provided by the GLS method is the best unbiased linear estimator in 

terms of SSE. This is why it is so important that the ENT method provides equivalent 

results, which in this example it does not.  

Second, different results for the GLS method are possible depending on the 

baseline choice we use for calculating the initial fixed effects estimates for design 𝐴𝐵𝐶𝐷. 

This is because when the baseline choice is compound A or compound B, the effect size 

parameter vector for design 𝐴𝐵𝐶𝐷 includes 𝑑𝐴𝐵, which is then used in conjunction with 

the effect size parameter for design 𝐴𝐵 to create 𝑑̂𝐴𝐵
gls

. On the other hand, when the 

baseline choice is compound C or compound D, the effect size parameter vector for 

design 𝐴𝐵𝐶𝐷 does not include 𝑑𝐴𝐵, so 𝑑̂𝐴𝐵
gls

 is formed with the information from 

experiments with design 𝐴𝐵 only. 
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Lu et. al insist that the final results for the GLS method are invariant to the 

baseline choice for designs with more than two treatment arms (Lu, Welton, Higgins, 

White, & Ades, 2011). We invite readers to apply the GLS method to Dataset A for every 

other baseline choice to see that this is not true. We calculated the GLS estimates for 

every choice, and used Compound C as the baseline choice because this estimate had the 

smallest SSE. Also, none of the estimates generated with different baseline choices for 

the GLS method yielded equivalent estimates to the ENT method.   

Third, note that one of the weights in 𝐖ent has been bolded. The weights 

calculated for the ENT method for experiments with more than two treatment arms 

should all be positive according to (Schwarzer, Carpenter, & Rücker, 2015). This is 

because they are always supposed to be retrieved as the negative non-diagonal entries 

from 𝐋i
+ for experiments with more than two treatment arms. In our example, one of the 

non-diagonal entries from 𝐋3
+ is not negative and leads to the weight -0.0002. This means 

that this dataset is not compatible with the theoretical framework that the ENT method 

uses. As such, the ENT method should not be used for this dataset. 

All of these items together show that for this particular dataset, not only are the 

GLS and ENT methods not equivalent, but the GLS method is better both in practical 

terms since it minimizes the SSE by construction, and theoretically since the ENT 

method produces negative weights. As such, the original GLS method should be used 

whenever possible; however, in Section 2.3.3 we offer potential conditions for when the 

two methods may be used interchangably. 

Of course, since the the baseline choices for experiments with more than two 

treatment arms determine what the final results for the GLS method will be, this method 
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should be further optimized as well by choosing the baseline choice which minimizes the 

SSE of the final effect size parameter estimates. In the next section we present a dataset 

for which the methods are equivalent. 

2.3.2 Dataset for Which Methods Are Equivalent 

For this section we will use Dataset B given in Table 5. This dataset contains six 

different experiments (𝑁 = 6), three different designs (𝐺 = 3), and three different 

treatment arms (𝐽 = 3). Each experiment has a balanced design and they all have the 

same sample size (𝑛𝑖𝑗 = 10, 𝑓𝑜𝑟 𝑖 = 1,… ,6, 𝑗 = 1,… , 𝑝𝑖). This dataset was simulated 

by the author. See Figure 12 for the experiment design for this dataset. 

 

Table 5: Dataset B 
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Figure 12: Dataset B Experiment Designs 

We will begin by finding results with the GLS method using the individual 

summary measures version of this dataset. The three designs are {𝐴𝐵𝐶, 𝐵𝐶, 𝐴𝐵}. For 

design 𝐴𝐵𝐶 we will choose our baseline choice to be Compound 𝐴. So 𝐲gls and 𝐕gls will 

be: 

𝐲gls = (

𝐝̂𝐴𝐵𝐶

𝑑̂𝐵𝐶

𝑑̂𝐴𝐵

) =

(

 
 

𝑑̂𝐴𝐵⋅

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐶

𝑑̂𝐴𝐵 )

 
 

= (

−4.798
−13.148
−5.339
−5.311

) 

𝐕gls = (𝐖gls)−1 = diag (𝐕𝐴𝐵𝐶𝐷, 𝑠𝑑̂𝐴𝐵

2 , 𝑠𝑑̂𝐵𝐶

2 ) = [

0.037 0.017 0 0
0.017 0.051 0 0

0 0 0.100 0
0 0 0 0.190

] 

Our vector containing the effect size parameters is then 𝐝 = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐵𝐶)′. 

Further, we will choose 𝐝b = (𝑑𝐴𝐵, 𝑑𝐴𝐶)′ to be our basic parameter vector and 𝑑f =

(𝐝𝐵𝐶)′ to be our functional parameter vector. As such: 
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𝐝 = (
𝐝b

𝐝f
) = [

1 0
0 1

−1 1
] 𝐝b = 𝐇𝐝b 

so that  

𝐲gls =

(

 
 

𝑑̂𝐴𝐵⋅

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐶

𝑑̂𝐴𝐵 )

 
 

= [

1 0
0 1

−1 1
1 0

] (
𝑑𝐴𝐵

𝑑𝐴𝐶
) = [

𝐡1

𝐡2

𝐡3

𝐡1

] (
𝑑𝐴𝐵

𝑑𝐴𝐶
) = 𝐗𝐝b 

and finally 

𝐝̂gls = (

𝑑̂𝐴𝐵
gls

𝑑̂𝐴𝐶
gls

𝑑̂𝐵𝐶
gls

) = 𝐇(𝐗′𝐖gls𝐗)−1𝐗′𝐖gls𝐲gls = (
−5.206
−12.505
−7.299

) 

Now we will use the contrast summary measures version of the dataset and use 

the ENT method to generate results. First recall that 𝐲ent is the 12 × 1 vector containing 

all the sample mean differences. Next, we will form the edge-vertex incidence matrix, 𝐁. 

Compounds A, B, and C will correspond to columns 1, 2, and 3, respectively, and the 

following matrices are formed. So: 

𝐁𝐴𝐵𝐶 = [
1 −1 0
1 0 −1
0 1 −1

] , 𝐁𝐵𝐶 = [0 1 −1], 𝐁𝐴𝐵 = [1 −1 0]  

so that  

𝐁 =

[
 
 
 
 
 
𝐁𝐴𝐵𝐶

𝐁𝐴𝐵𝐶

𝐁𝐵𝐶

𝐁𝐴𝐵

𝐁𝐵𝐶

𝐁𝐴𝐵𝐶]
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and 

𝐲ent = 𝐁θtreat + 𝛜 

(

 
 
 
 

𝛿11

𝛿12

𝛿13

⋮
𝛿61

𝛿62

𝛿63)

 
 
 
 

= [
𝐁𝐴𝐵𝐶

⋮
𝐁𝐴𝐵𝐶

] (

θ𝐴

θ𝐵

θ𝐶

) +

(

 
 
 
 

ϵ1

ϵ2

ϵ3

⋮
ϵ10

ϵ11

ϵ12)

 
 
 
 

=

(

 
 
 
 

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐵𝐶

⋮
𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐵𝐶)

 
 
 
 

+

(

 
 
 
 

ϵ1

ϵ2

ϵ3

⋮
ϵ10

ϵ11

ϵ12)

 
 
 
 

 

Since design 𝐴𝐵𝐶 has three treatment arms we must form a sub edge-vertex incidence 

matrix 𝐵𝐴𝐵𝐶. 

𝐁𝐴𝐵𝐶 = [
1 −1 0
1 0 −1
0 1 −1

] 

Next, we form a sub variance matrix 𝐕𝑖 for each experiment with design 𝐴𝐵𝐶 

(𝑖 = 1,2,6). 

𝐕1 = [
0 0.141 0.142

0.141 0 0.159
0.142 0.159 0

] , 𝐕2 = [
0 0.085 0.134

0.085 0 0.137
0.134 0.137 0

],  

𝐕6 = [
0 0.122 0.194

0.122 0 0.202
0.194 0.202 0

] 

Finally, we compute 𝐋𝑖
+ and form 𝐖𝑖 for each experiment with design 𝐴𝐵𝐶 

(𝑖 = 1,2,6). We will leave this process for the reader to complete. Finally, with these 

computations completed we can now form 𝐖ent, given by: 

𝐖ent =  𝑑𝑖𝑎𝑔(4.894, 4.823, 3.988, 9.529, . . . , 6.007, 6.677, 3.183, 2.795) 
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A few entries have been omitted, but the reader can confirm that all entries of 𝐖ent are 

non-negative. Finally, after computing  𝐋 = 𝐁′𝐖ent𝐁, we arrive at the result: 

(

 
 
 
 
 

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐶
ent

𝑑̂BC
ent

⋮
𝑑̂𝐴𝐵

ent

𝑑̂𝐴𝐶
ent

𝑑̂𝐵𝐶
ent)

 
 
 
 
 

= 𝐁𝐋+𝐁′𝐖ent

(

 
 
 
 

𝛿11

𝛿31

𝛿32

⋮
𝛿34

𝛿35

𝛿36)

 
 
 
 

=

(

 
 
 
 

−5.206
−12.505
−7.299

⋮
−5.206
−12.505
−7.299 )

 
 
 
 

 

Here it is seen that 𝑑̂𝑐1𝑐2
ent = 𝑑̂𝑐1𝑐2

ent  for every possible choice of 𝑐1 and 𝑐2. In other 

words, the effect size parameter estimates for each method are equivalent. We leave it to 

the reader to confirm that the variances for all the effect size parameter estimates are also 

the same. 

2.3.3 Possible Method Equivalence Requirements 

We now propose conditions for which the datasets may be equivalent. We believe 

an important condition for the methods to be equivalent is that the weights generated for 

the electrical network theory method be positive. This is because in the theoretical 

framework for which the method is based on, the weights should always be positive. 

Negative weights are directly connected to how consistent variances are in the 

network. In Dataset A, note that the variances for any initial effect size estimate including 

treatment arm A in a contrast summary measures dataset will be much higher than the 

variances for effect size estimates which do not.  

Note that this fact alone does not in essence violate the theoretical assumptions 

necessary since the method assumes each effect size parameter estimate will have a 
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distinct variance. Still, it does ultimately play a role in producing a negative weight in 

𝐖ent which violates the underlying theoretical framework. As such, in order to be sure 

that the methods are equivalent, the variances should appear to be consistent. Further, 

after analysis is conducted, 𝐖ent should not contain any negative entries. 

Another factor that may control whether the methods will yield equivalent results 

is the amount of experiments with similar designs. In Dataset A there is only one 

experiment with the multi-arm design 𝐴𝐵𝐶𝐷 whereas in Dataset B there are three 

experiments with the multi-arm design 𝐴𝐵𝐶. Further, in the Dataset A there was only one 

experiment that contained treatment arms 𝐶 and 𝐷. Even when the designs are distinct, 

each experiment in Dataset B has at least one treatment arm in common with another 

experiment.  

This high level of inconsistency in variances can be common in preclinical 

experiments with few experiments and many treatment arms, each with only a few 

subjects. More so, these preclinical experiments can also have wildly different designs as 

they develop new compounds to test and stop testing old compounds that have been 

deemed inefficient. Both of these qualities lead us to suggest that if analysts desire to use 

network meta-analysis on this type of data, the generalized least squares method should 

be used. 

There may be other conditions governing whether the methods will be equivalent 

that have not been discovered. As such, the generalized least squares method of network 

meta-analysis should be used whenever possible to ensure the most optimal results in 

terms of SSE. 
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2.4 Simulation Results Comparing Network Meta-Analysis to Mixed-Effect 

Linear Models 

In this section we provide simulation results which compare the GLS method of 

network meta-analysis to mixed-effects linear models. We simulated data by using 

datasets from two different sets of experiments. The dataset used in Section 2.4.1 is 

artificial data that was simulated by the author, and the dataset used in Section 2.4.2 is the 

data from a set of non-clinical experiments from a pharmaceutical company. 

To begin, we fit a mixed-effects linear model with treatment arm as a fixed effect 

and experiment as a random effect. We then find the predicted values and the residuals, 

𝐲̂ = (𝑦̂11, 𝑦̂12, … , 𝑦̂𝑀𝑛𝑀
)
′
 and 𝛆 = (ε11, ε12, … , ε𝑀𝑛𝑀

)
′
, respectively, for each dataset. 

This model will contain the “true” coefficients that each method should be estimating. 

Then we create the simulated datasets, 𝐲boot and 𝐲norm. 𝐲boot is created by 

adding residuals to the elements of 𝐲̂ by bootstrapping elements of 𝛆. 𝐲norm is created by 

adding residuals to the elements of 𝐲̂ by randomly sampling from N(0, σ𝛆
2), where σ𝛆 is 

the standard deviation of 𝛆. We then used both methods 1000 times to create and analyze 

data.  

In each simulation, we compare the GLS method of network meta-analysis and 

mixed effects linear model by assessing the bias, mean squared error, and 95% 

confidence interval coverage rate for each individual estimate. It is well known that 

random effects meta-analysis models perform better than fixed effects meta-analysis 

models. As such, the pooled random effects model given is used to generate estimates for 

the GLS method instead of the fixed effects estimates described in Section 2.2.1. This 
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model uses the heterogeneity estimate 𝜏̂𝑝𝑜𝑜𝑙𝑒𝑑
2  as defined in (Lu, Welton, Higgins, White, 

& Ades, 2011). 

2.4.1 Simulated Data with Moderately Low Sample Sizes 

In this section we explore the simulation results with moderately low sample sizes 

which would be relatively high in the context of preclinical trials for each experiment, 

decide indirect comparisons are of interest, and ensure that all experiment designs are 

represented more than once. The dataset for this section was simulated by the author.  

The data was created according to the following simulation model: 

𝑦𝑖𝑗𝑘 ∼ 𝑁(μ𝑖𝑗, 3); μ𝑖𝑗 ∼ N(θ𝑗 , 0.5)  for  𝑖 = 1,2, … ,𝑁;  𝑗 ∈ 𝒜;  𝑘 = 1,2, … , 𝑛𝑖𝑗 

where 

• μ𝑖𝑗 is the true mean response for treatment arm 𝑗 in experiment 𝑖 

• θ𝑗 is the true mean response for treatment arm 𝑗, 𝑁 is the number of experiments 

• 𝒜 is the set of possible treatment arms 

• 𝑛𝑖𝑗 is the number of subjects receiving treatment arm 𝑗 in experiment 𝑖 

 So 𝑦𝑖𝑗𝑘 is the response for subject 𝑘 in experiment 𝑖 after receiving treatment arm 

𝑗. Note that μ𝑖𝑗 is randomly sampled from a normal distribution with θ𝑗 at the center to 

reflect the heterogeneity that is often present between different experiments. For the 

dataset we simulated, 𝑁 = 8,𝒜 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, θ𝐴 = 10, θ𝐵 = 8,…θ𝐸 = 0, and 𝑛𝑖𝑗 =

50 for every combination of 𝑖 and 𝑗 defined by the experiment designs given in Figure 

13. 
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Figure 13: Experiment Designs for Simulated Data 

Below are multiple tables providing the simulation results for the coefficients 

comparing the difference between the treatment arms 𝐴, 𝐵, 𝐶, and 𝐷 to treatment arm 𝐸. 

Table 6 compares the bias, Table 7 compares the mean squared error, and Table 8 

compares the 95% confidence interval for the different methods for each type of 

simulated dataset. Note that this is only a handful of the effect size estimates given by the 

network meta-analysis and three correspond to indirect comparisons. 

According to the simulation results, the absolute value of the bias for the network 

meta-analysis results is less than the absolute value of the bias for the mixed effects linear 

model results for at least one type of data simulation for every effect size parameter. 

 

Table 6: Bias Results 
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Table 7: Mean Squared Error Results 

 

Table 8: 95% Confidence Interval Coverage Rate Results 

The mean squared error for the network meta-analysis results is greater than the 

mean squared error for both data simulation types for every effect size parameter, which 

suggests that there is more volatility for network meta-analysis estimates than mixed 

effect linear model estimates. The 95% confidence interval coverage rate for the network 

meta-analysis results is greater than the 95% confidence interval coverage rate for the 

mixed effects linear model results for the bootstrap type of data simulation for all but one 

effect size parameter (𝑑𝐵𝐸). 

Note that the effect size parameter estimates corresponding to indirect 

comparisons (𝑑𝐴𝐸 , 𝑑𝐵𝐸 , 𝑑𝐷𝐸) from the network meta-analysis results suffer in particular 

compared to mixed effects linear model results. Still, in terms of bias and 95% 

confidence interval coverage rate they perform just as well as 𝑑𝐶𝐸, an effect size 

parameter corresponding to a direct comparison.  
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2.4.2 True Preclinical Data 

The dataset for this section involves four non-clinical experiments that were 

conducted independently in 2015. The goal of these experiments was to determine if any 

of the developed compounds (Compounds B, C, D, E, F, and G) provided a statistically 

significant increase in a desired response mechanism according to a pre-specified metric 

compared to a compound serving as a negative control (Compound A). See Figure 14 for 

the experiment design for this dataset. 

 

Figure 14: Experiment Designs for True Preclinical Data 

Below are multiple tables providing the simulation results for the coefficients 

comparing the difference between the Compounds B, C, D, E, F, and G to Compound A. 

Table 9 compares the bias, Table 10 compares the mean squared error, and Table 11 

compares the 95% confidence interval for the different methods for each type of 

simulated dataset. Note that this is only a handful of the effect size estimates given by 

network meta-analysis and they are all direct comparisons. 
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Table 9: Bias Results 

 

Table 10: Mean Squared Error Results 

 

Table 11: 95% Confidence Interval Coverage Rate Results 

It is worth noting that although the set of experiments used in this simulation each 

had balanced designs, they all suffered from very small sample sizes. Experiments 1, 2, 

and 3 each only had three subjects per treatment arm, and Experiment 4 only had five 

different subjects per treatment arm. Also, in this experiment the goal was to generate 

estimates for a set of effect size parameters which were all direct comparisons. Finally, 

each time a new experiment was conducted the designs were completely changed. 
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According to the simulation results, the absolute value of the bias for the network 

meta-analysis results is less than the absolute value of the bias for the mixed effects linear 

model results for at least one type of data simulation for every effect size parameter. This 

suggests that network meta-analysis does a better job of returning the point estimate on 

average than mixed effects linear models.  

The mean squared error for the network meta-analysis results is greater than the 

mean squared error for the mixed effects linear model results for both data simulation 

types for all but one effect size parameter (𝑑𝐵𝐴), which suggests that there is a higher 

level of volatility in the estimates provided by network meta-analysis when compared to 

the mixed effects linear model estimates.  

This is further demonstrated by the fact that the 95% confidence interval coverage 

rate for the network meta-analysis results is less than the 95% confidence interval 

coverage rate for the mixed effects linear model for both types of data simulation for all 

but one effect size parameter (𝑑𝐺𝐴). This lack of coverage may be a cause for concern 

and cast doubt on the utility of the method for this type of dataset. 

2.5 Discussion 

We have described in rigorous detail the steps for conducting two different 

methods of mixed treatment comparisons meta-analysis, more succinctly dubbed network 

meta-analysis, as well as compared them in the context of datasets with small sample 

sizes which are often typical in preclinical data.  

  We have demonstrated that while for some datasets, the electrical network 

theory method proposed in (Rücker & Schwarzer, 2012) is equivalent to the generalized 
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least squares method given in (Lu, Welton, Higgins, White, & Ades, 2011), there exists a 

class of datasets such that the two methods are not equivalent. As such, the generalized 

least squares method, along with the correct set of baseline choices to ensure SSE 

minimization, should be used instead whenever possible.  

We have developed the R package NMA which contains functions for conducting 

the generalized least squares method and finding the set of baseline choices which 

minimizes the SSE. The function which conducts network meta-analysis also allows the 

user to choose the electrical network theory method, which is already currently available 

in the R package netmeta developed by Rücker et al. (Rücker, Schwarzer, Krahn, & 

König, 2018). There are also functions in the package which provide the graphical 

interpretation of the treatment arms in the network as well as a forest plot which allows 

for comparisons of the final estimates yielded from the network meta-analysis. Currently, 

netmeta is the only package in R which performs network meta-analysis within a 

frequentist framework (Neupane, et al., 2014). Consequently, NMA is currently the only 

R package that allows for performing network meta-analysis using the generalized least 

squares method. 

Finally, we provided simulation results which showed that with the correct design 

of experiments, network meta-analysis using only summary measures provides similar 

results to mixed effects linear models using every data point in terms of bias and 

coverage rate. While mixed effects linear models provide noticeably better results in 

terms of mean squared error, the increase in variance of the estimates is to be expected 

since the reduction from an entire dataset to its summary measures results in a loss of 

information. This should intuitively lead to more uncertainty in the estimates.  
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More work can be done for finding the specific class of data for which the GLS 

and ENT methods are not equivalent. Methods could also be developed to determine 

precisely when a given set of experiments include variances which are not consistent 

enough for the GLS and ENT method to produce equivalent results. Finally, more 

simulations can be created to study how the results fare for binary or survival outcomes 

for the type of sets of experiments generated in preclinical environment. 
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Chapter 3: Power and Sample Size Calculations for Designing 

Experiments with Ordinal Categorical Responses with Small 

Range Scales 

3.1 Introduction 

Power calculations for hypothesis tests are a crucial part of designing both clinical 

and non-clinical trials (Amaratunga, 1999). Scientists rely heavily on the results from 

these calculations to decide the number of subjects they will collect for experiments. 

Since there is typically a higher cost, monetary or otherwise, for conducting experiments 

for large sample sizes, there is an interest in choosing a small number of subjects; 

however, the ability for most hypothesis tests to detect a statistically significant 

difference in treatment effect can depend heavily on the sample size. As such, the method 

for calculating power to determine the optimal sample size must be carefully chosen.  

In experiments with ordinal categorical data, the data are assumed to follow a 

multinomial distribution with a probability assigned to each category. As a motivating 

example, suppose that scientists at a pharmaceutical company are attempting to develop a 

drug for reducing pain. According to the pain metric developed by the scientists, any 

subject's pain falls into one of three categories: 1 is no pain, 2 is mild pain, and 3 is 

extreme pain. The scientists have completed a drug they plan to test, Compound A. They 

will deem the compound successful for a patient if their pain score is reduced by at least 

one point. Finally, they would like to be able to ensure that they collect a large enough 

number of subjects so that the hypothesis test used to analyze the data has at least 90% 

power. 
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In this paper we explore a method for calculating power for experiments such as 

these where there are between three and five different ordinal categories. This method 

creates and shifts the quantiles of a standard normal distribution to define alternative 

multinomial distributions. In Section 3.2 we explain the method in the context of the 

motivating example. Section 3.2 expands the method by adding multiple types of 

uncorrelated ordinal categorical variables. Section 3.4 expands the method further by 

introducing correlation between pairs of ordinal categorical variables, as well as the 

derivation of a new estimator to estimate this correlation. This section also offers 

simulation results comparing this new correlation estimator, ξ, to Spearman's ρ and 

Kendall's τ in terms of bias. Section 3.5 applies the method to the dataset provided by a 

pharmaceutical company which served as the motivation for developing this method. 

Section 3.6 discusses this new method of power calculation and how it may be expanded 

further. This section also describes an R package that has been developed to apply the 

method. 

3.2 Power Calculation for One Variable 

Continuing our motivating example, suppose the scientists conducting the 

experiment have already taken an initial sample of 𝑁0 subjects and recorded their pain 

scores to obtain an estimate of how much pain subjects experience when left untreated. 

Let 𝑛𝑘 be the number of subjects that exhibit a pain score of 𝑘 for 𝑘 =  1,2,3. The 

scientists plan to use the outcome yielded from this initial sample to help design a future 

experiment. 

We will assume that this future experiment will be randomized with a balanced 

design. 𝑁 subjects will be assigned to the “Placebo” group (Group 𝑃) and receive a 



75 

 

 

 

placebo as their treatment and 𝑁 subjects will be assigned to the “Treatment” group 

(Group 𝑇) to recieve Compound A as their treatment. 𝑁 will be chosen to achieve the 

amount of power desired by the scientists. 

Let 𝐱 = (𝐱𝑃, 𝐱𝑇)′ = (𝑥1
𝑃, … , 𝑥𝑁

𝑃 , 𝑥1
𝑇 , … , 𝑥𝑁

𝑇)′ where 𝑥𝑖
𝐺  is the pain score for subject 

𝑖 in group 𝐺 prior to receiving a treatment. We then assume, 

𝑥𝑖
𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩)  for  𝑖 = 1,2, … ,𝑁;  𝐺 ∈ {𝑃, 𝑇} 

where 𝐩 = (𝑝1, 𝑝2, 𝑝3)
′ and 𝑝𝑘 =

𝑛𝑘

𝑁0
, the relative frequency of subjects achieving pain 

score 𝑘 in the initial sample for 𝑘 =  1,2,3. 

After receiving treatment, pain scores are recorded again to create the 𝐲 =

(𝐲𝑃, 𝐲𝑇)′ = (𝑦1
𝑃, … , 𝑦𝑁

𝑃, 𝑦1
𝑇 , … , 𝑦𝑁

𝑇)′ where 𝑦𝑖
𝐺 is the pain score for subject 𝑖 in group 𝐺 

after receiving the treatment for group 𝐺. We then further assume, 

𝑦𝑖
𝑃 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩) for 𝑖 = 1,2, … ,𝑁 

𝑦𝑖
𝑇 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑇)  for  𝑖 = 1,2, … ,𝑁 

Note that the probability parameter for group 𝑃 remains the same because we are 

assuming the placebo will have no effect on the probability of achieving any particular 

pain score. On the other hand, the probability parameter for group 𝑇 has been changed to 

𝐩𝑇 because we are assuming that Compound A will have some effect on the probability 

of achieving any particular pain score. Specifically, the probability for patients achieving 

higher scores decreases and the probability for patients achieving lower scores increases 

after receiving treatment with Compound A. 
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Let 𝐝 = 𝐱 − 𝐲 so that 𝐝 contains the change in pain score for all 2𝑁 subjects. 

Recall that Compound A is considered successful for a subject if their pain score is 

reduced by at least one point; let this be the “success” condition. The subjects are then 

stratified into a contingency table with cells based upon two factors: the treatment group 

and whether the success condition is satisfied. The table that would be created for our 

motivating example is shown by Table 12. Let 𝟙(𝒜) be the indicator function so that 

𝟙(𝒜) = 1 when 𝒜 is true and 𝟙(𝒜) = 0 otherwise.  

 

Table 12: Contingency Table for Testing Compound A 

We then use Fisher's exact test to discover if there is a statistically significant 

difference between the placebo and Compound A according to the success condition 

(Fisher, 1935). As such, our power calculation method is based on the results yielded 

from simulating data according to our assumptions and using Fisher's exact test to 

analyze the simulated data for many iterations, and then dubbing the proportion of times 

the hypothesis test rejected the null hypothesis as our power for the hypothesis test. 

The most important aspect of simulating data in this manner is how to choose 𝐩𝑇, 

the probability parameter for group 𝑇. Each element of 𝐩𝑇 can range from 0 to 1 in 

various ways. Without a concise, uniform way to choose this parameter the possibilities 

can be overwhelming.  
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We propose choosing 𝐩𝑇 by shifting the elements of 𝐩 in a uniform, controlled 

manner using the standard normal distribution. This proposition was inspired by the 

probit model (Bliss, 1934). The algorithm for shifting the probability vector for one 

ordinal categorical variable is described in ALGORITHM 4. We also illustrate the 

shifting process in Figure 15. Let 𝑍 ∼ 𝑁(0,1). 

ALGORITHM 4: Generate 𝐩𝑇 given initial probability vector parameter 𝐩 and shift δ.  

1. Divide the area under the probability density function for a standard normal 

distribution into 𝐾 portions using vertical lines 𝑞0, 𝑞1, 𝑞2, … , 𝑞𝐾. These lines divide 

the probability density function so that the portion which lies between 𝑞𝑘−1 and 𝑞𝑘 

has 𝑝𝑘 area under the curve for 𝑘 =  1,2, … , 𝐾. More specifically, 𝑞𝑘 is a vertical line 

that intersects the x-axis at (𝑄𝑘, 0) where 𝑄𝑘 satisfies 𝑃(𝑄𝑘−1 < 𝑍 < 𝑄𝑘) = 𝑝𝑘. Note 

that 𝑄0 = −∞ and 𝑄𝐾 = ∞. 

2. Uniformly shift all the vertical lines with δ to create new vertical lines, 𝑞𝑘
′ , which 

intersect the x-axis at (𝑄𝑘 + δ, 0). 

3. The area under the curve which lies between vertical lines 𝑞𝑘−1
′  and 𝑞𝑘

′  corresponds to 

𝑝𝑘
𝑇, the hypothesized probability that a subject which has received treatment will 

achieve level 𝑘. This is also the 𝑘𝑡ℎ element of 𝐩𝑇. 

Note that each individual quantile 𝑄𝑘 + 𝛿 could also be shifted additionally by 

some γ𝑘. In the simplest setting which we provide above, we set γ𝑘 = 0 for 𝑘 =

 1, 2, … , 𝐾.  
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Figure 15: Shifting Process for One Ordinal Categorical Variable 

The 𝐩𝑇 generated by δ is then used to simulate the data for the power 

calculations. By varying the sample size 𝑁 and shift δ, power curves for a particular 
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success condition can be generated. The algorithm for calculating power for any 

combination of 𝑁, 𝐩, δ, and success condition 𝑆 is given in ALGORITHM 5. 

ALGORITHM 5: Perform power calculations for one ordered categorical variable given 

sample size 𝑁, initial probability parameter 𝐩, quantile shift δ, success condition 𝑆, and 

number of iterations 𝑢. 

1. Draw 2𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩) to simulate 𝐱 = (𝐱𝑃, 𝐱𝑇)′. 

2. Conduct ALGORITHM 4 with δ and 𝑝 to generate 𝐩𝑇. 

3. Draw 𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩) and draw 𝑁 random observations 

from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑇) to simulate 𝐲𝑃 and 𝐲𝑇, respectively. Then form 𝐲 = (𝐲𝑃 , 𝐲𝑇)′. 

4. Calculate 𝐝 = 𝐱 − 𝐲 and form a contingency table stratified by success condition 𝑆 

and treatment group. 

5. Conduct Fisher's exact test. 

6. Perform steps 1 through 5 for 𝑢 iterations. The power for (𝑁, δ, 𝐩, 𝑆) is given by the 

proportion of iterations where Fisher's exact test rejects the null hypothesis. 

 Sometimes in experiments such as these there are multiple ordered categorical 

variables that are being analyzed together. A natural extension of this method should be 

able to take this into account. The next section does so under the assumption that these 

variables are all uncorrelated. 

3.3 Power Calculation for 𝑀 Uncorrelated Variables 

This method can also be applied for multiple uncorrelated variables. As a 

motivating example for this section, suppose the scientists are developing another drug to 

reduce pain in three independent and mutually exclusive sections of subjects' bodies: 
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head, upper body, and lower body. The drug they have completed and plan to test is 

Compound B.  

To test the efficacy of this new compound, they are conducting a new experiment 

where a pain score is assigned to each body section, so 𝑀 = 3. The scores are then added 

to produce a total pain score. Note that the number of levels for each variable do not 

necessarily have to be the same, but for simplicity every section of the body in this 

experiment will have the same possible pain scores as in the example given in Section 2.  

The goal of Compound B is to reduce pain in all three sections of the body as 

much as possible. As such, Compound B is considered successful for a subject if their 

total pain score is reduced by at least two points and there is a reduction in pain for at 

least two different body sections. Success is defined this way to ensure that compound B 

is not deemed effective if it only reduces pain in one section of the body, even if that 

reduction is by a significant amount. 

Once again, the scientists have taken an initial sample of 𝑁0 subjects and recorded 

their pain scores for each body section to obtain an estimate of how much pain each 

subject experiences at each body section. Let 𝑛𝑚𝑘 be the number of subjects with pain 

score 𝑘 at body section 𝑚 for 𝑘 =  1,2,3 and 𝑚 ∈ {𝐻, 𝑈, 𝐿 } where 𝐻 corresponds to a 

subject's head, 𝑈 to their upper body, and 𝐿 to their lower body.  

This future experiment will also be randomized with a balanced design so that 𝑁 

subjects are assigned to Group 𝑃 and will receive a placebo and 𝑁 subjects are assigned 

to group 𝑇 and will receive Compound B. Let 𝐗 be given by: 
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𝐗 = [𝐱𝟏 𝐱𝟐 𝐱𝟑] = [
𝐱𝟏

𝑃 𝐱𝟐
𝑃 𝐱𝟑

𝑃

𝐱𝟏
𝑇 𝐱𝟐

𝑇 𝐱𝟑
𝑇] =

[
 
 
 
 
 
 
𝑥𝐻𝟏

𝑃 𝑥𝑈𝟏
𝑃 𝑥𝐿𝟏

𝑃

⋮ ⋮ ⋮
𝑥𝐻𝑁

𝑃 𝑥𝑈𝑁
𝑃 𝑥𝐿𝑁

𝑃

⋮ ⋮ ⋮
𝑥𝐻𝟏

𝑇 𝑥𝑈1
𝑇 𝑥𝐿𝟏

𝑇

⋮ ⋮ ⋮
𝑥𝐻𝑁

𝑇 𝑥𝑈𝑁
𝑇 𝑥𝐿𝑁

𝑇 ]
 
 
 
 
 
 

 

where 𝑥𝑚𝑖
𝐺  is the pain score for subject 𝑖 at body section 𝑚 in group 𝐺 prior to receiving 

any treatment. We then assume: 

𝑥𝑚𝑖
𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚)  for  𝑚 ∈ {𝐻, 𝑈, 𝐿};   𝑖 = 1,2, … ,𝑁;  𝐺 ∈ {𝑃, 𝑇} 

where 𝐩𝑚 = (𝑝𝑚1, 𝑝𝑚2, 𝑝𝑚3)
′ and 𝑝𝑚𝑘 =

𝑛𝑚𝑘

𝑁0
, the relative frequency of subjects 

achieving pain score 𝑘 at body section 𝑚 in the initial sample for 𝑘 =  1,2,3;  𝑚 ∈

{𝐻, 𝑈, 𝐿 }. After receiving treatment, pain scores are recorded again to create 𝐘 which is 

given by: 

𝐘 = [𝐲𝟏 𝐲𝟐 𝐲𝟑] = [
𝐲𝟏

𝑃 𝐲𝟐
𝑃 𝐲𝟑

𝑃

𝐲𝟏
𝑇 𝐲𝟐

𝑇 𝐲𝟑
𝑇] =

[
 
 
 
 
 
 
𝑦𝐻𝟏

𝑃 𝑦𝑈𝟏
𝑃 𝑦𝐿𝟏

𝑃

⋮ ⋮ ⋮
𝑦𝐻𝑁

𝑃 𝑦𝑈𝑁
𝑃 𝑦𝐿𝑁

𝑃

⋮ ⋮ ⋮
𝑦𝐻𝟏

𝑇 𝑦𝑈1
𝑇 𝑦𝐿𝟏

𝑇

⋮ ⋮ ⋮
𝑦𝐻𝑁

𝑇 𝑦𝑈𝑁
𝑇 𝑦𝐿𝑁

𝑇 ]
 
 
 
 
 
 

 

Where 𝑦𝑚𝑖
𝐺  is the pain score at body portion 𝑚 for subject 𝑖 in group 𝐺 after 

receiving the treatment for group 𝐺. We then further assume, 

𝑦𝑚𝑖
𝑃 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚)  for  𝑖 = 1,2, … ,𝑁;  𝑚 ∈ {𝐻, 𝑈, 𝐿} 

𝑦𝑚𝑖
𝑇 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚

𝑇 )  𝑓or  𝑖 = 1,2, … ,𝑁;   𝑚 ∈ {𝐻, 𝑈, 𝐿} 
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Let 𝐃 = 𝐗 − 𝐘 so that 𝐃 contains the change in pain score for all three sections of 

the body for all 2𝑁 subjects. Further, let 𝐃 be given by: 

𝐃 =

[
 
 
 
 
 
𝐝𝟏

𝑃

⋮
𝐝𝑁

𝑃

𝐝𝟏
𝑇

⋮
𝐝𝑁

𝑇 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑑𝐻𝟏

𝑃 𝑑𝑈𝟏
𝑃 𝑑𝐿𝟏

𝑃

⋮ ⋮ ⋮
𝑑𝐻𝑁

𝑃 𝑑𝑈𝑁
𝑃 𝑑𝐿𝑁

𝑃

⋮ ⋮ ⋮
𝑑𝐻𝟏

𝑇 𝑑𝑈1
𝑇 𝑑𝐿𝟏

𝑇

⋮ ⋮ ⋮
𝑑𝐻𝑁

𝑇 𝑑𝑈𝑁
𝑇 𝑑𝐿𝑁

𝑇 ]
 
 
 
 
 
 

 

where 𝑑𝑖
𝐺  is the 1 × 3 vector containing the change in pain score for all three sections of 

the body for subject 𝑖 in group 𝐺 and 𝑑𝑚𝑖
𝐺  is the change in pain score at body section 𝑚 

for subject 𝑖 in group 𝐺. 

Recall that the compound is considered successful for a subject if their pain score 

is reduced by at least two points and there is a reduction in pain for at least two different 

body sections. The subjects are then once stratified into a contingency table. Let 𝐜 be a 

3 × 1 vector with 1 in every entry. The table that would be created is shown by Table 13. 

 

Table 13: Contingency Table for Testing Compound B 

where 

𝑎 = ∑𝟙(𝑐′𝑑𝑖
𝑃 ≥ 2 ∩ (𝑑𝑚𝑖

𝑃 ≥ 1 ∩ 𝑑𝑙𝑖
𝑃 ≥ 1),𝑚 ≠ 𝑙)

𝑁

𝑖=1
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𝑏 = ∑𝟙(𝑐′𝑑𝑖
𝑃 < 2 ∪ (𝑑𝑚𝑖

𝑃 = 0 ∩ 𝑑𝑙𝑖
𝑃 = 0),𝑚 ≠ 𝑙)

𝑁

𝑖=1

 

𝑐 = ∑𝟙(𝑐′𝑑𝑖
𝑇 ≥ 2 ∩ (𝑑𝑚𝑖

𝑇 ≥ 1 ∩ 𝑑𝑙𝑖
𝑇 ≥ 1),𝑚 ≠ 𝑙)

𝑁

𝑖=1

 

𝑑 = ∑𝟙(𝑐′𝑑𝑖
𝑇 < 2 ∪ (𝑑𝑚𝑖

𝑇 = 0 ∩ 𝑑𝑙𝑖
𝑇 = 0),𝑚 ≠ 𝑙)

𝑁

𝑖=1

 

After this contingency table is created, we use Fisher's exact test to discover if 

there is a statistically significant difference between the placebo and Compound B 

according to the success condition. Once again, the most important part of simulating the 

data to perform the power calculation is generating 𝐩𝑚
𝑇  for every body section 𝑚.  

Similar to what is done for one ordinal categorical variable, we propose shifting 

the elements of each probability vector parameter using independent normal distributions. 

We are assuming that the normal distributions used for shifting the vectors are 

independent because we have assumed that the variables are uncorrelated. Let 𝐴 =

{𝑚1, 𝑚2, … ,𝑚𝑀} be a set of 𝑀 ordinal categorical variables, each with 𝐾1, 𝐾2, … , 𝐾𝑀 

levels, respectively. The algorithm for shifting the probability vector for 𝑀 ordinal 

categorical variables is described in ALGORITHM 6.  

ALGORITHM 6: Generate 𝑝𝑚
𝑇  given initial probability vector parameters 𝑝𝑚 and shifts 

δ𝑚 for all 𝑚 ∈ 𝐴. 

For 𝑙 =  1,2, … ,𝑀: 
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1. Divide the area under the probability density function for a standard normal 

distribution into 𝐾𝑙 portions using vertical lines 𝑞𝑙0, 𝑞𝑙1, 𝑞𝑙2, … , 𝑞𝑙𝐾𝑙
. These lines will 

divide the probability density function so that the portion which lies between 𝑞𝑙(𝑘−1) 

and 𝑞𝑙𝑘 has 𝑝𝑚𝑙𝑘 area under the curve for 𝑘 = 1,2, … , 𝐾𝑙. More specifically, 𝑞𝑙𝑘 is a 

vertical line that intersects the x-axis at (𝑄𝑙𝑘, 0) where 𝑄𝑙𝑘 satisfies 𝑃(𝑄𝑙(𝑘−1) < 𝑍 <

𝑄𝑙𝑘) = 𝑝𝑚𝑙𝑘. Note that 𝑄𝑙0 = −∞ and 𝑄𝑙𝐾𝑙
= ∞. 

2. Uniformly shift all the vertical lines with δ𝑚𝑙
 to create new vertical lines, 𝑞𝑙𝑘

′ , which 

intersect the x-axis at (𝑄𝑙𝑘 + δ, 0). 

3. The area under the curve which lies between vertical lines 𝑞𝑙(𝑘−1)
′  and 𝑞𝑙𝑘

′  

corresponds to 𝑝𝑚𝑙𝑘
𝑇 , the hypothesized probability that a subject which has received 

treatment will achieve level 𝑘 for variable 𝑚𝑙. This is also the 𝑘𝑡ℎ element of 𝐩𝑚𝑙
𝑇 . 

Once again, it should be noted that each individual quantile for each ordinal 

categorical variable 𝑚𝑙, 𝑄𝑙𝑘 + δ𝑙 could also be shifted additionally by some γ𝑙𝑘. In the 

simplest setting which we provide above, we set γ𝑙𝑘 = 0 for 𝑘 =  1, 2, … , 𝐾;  𝑙 =

 1, 2, …  𝑀.  

The 𝐩𝑚
𝑇  generated by δ𝑚 for all 𝑚 ∈ 𝐴 is then used to simulate the data for the power 

calculations. The algorithm for calculating power for any combination of 𝑁, 

(𝐩𝑚1
, … , 𝐩𝑚𝑀

), (δ𝑚1
, … , δ𝑚𝑀

), and success condition 𝑆 is given in ALGORITHM 7. 

ALGORITHM 7: Perform power calculations for 𝑀 ordinal categorical variables. Given 

sample size 𝑁, initial probability vector parameters (𝐩𝑚1
, … , 𝐩𝑚𝑀

), shifts 

(δ𝑚1
, … , δ𝑚𝑀

), success condition 𝑆, and number of iterations 𝑢. 
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1. Draw 2𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚) to simulate 𝐱𝑚 = (𝐱𝑚
𝑃 , 𝐱𝑚

𝑇 )′ for 

all 𝑚 ∈ 𝐴. Then form 𝑋. 

2. Conduct ALGORITHM 6 with (δ𝑚1
, … , δ𝑚𝑀

) and (𝐩𝑚1
, … , 𝐩𝑚𝑀

) to generate 

(𝐩𝑚1
𝑇 , … , 𝐩𝑚𝑀

𝑇 ). 

3. Draw 𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚) and draw 𝑁 random observations 

from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚
𝑇 ) to simulate 𝐲𝑚

𝑃  and 𝐲𝑚
𝑇 , respectively for all 𝑚 ∈ 𝐴. Then form 

𝐲𝑚 = (𝐲𝑚
𝑃 , 𝐲𝑚

𝑇 )′ for all 𝑚 ∈ 𝐴. Then finally form 𝐘. 

4. Calculate 𝐃 = 𝐗 − 𝐘 and form a contingency table stratified by success condition 𝑆 

and treatment group. 

5. Conduct Fisher's exact test. 

6. Perform steps 1 through 5 for 𝑢 iterations and the power for 

(𝑁, δ𝑚1
, … , δ𝑚𝑀

, 𝐩𝑚1
, … , 𝐩𝑚𝑀

, 𝑆) is given by the proportion of iterations where 

Fisher's exact test rejects the null hypothesis. 

 Naturally, the more variables included the more computationally intensive this 

shifting process becomes. Nevertheless, this enables one to easily customize the 

hypothesized effectiveness of the drug of interest for each variable. For example, if the 

scientists believe that Compound B will be more effective in reducing pain in a subject's 

head than their lower body, they could choose the shifts so that δ𝐿 < δ𝐻 . 

As more variables are added, believing that they are all uncorrelated may become 

too strong of an assumption. As such, the method should be extended to allow for 

correlation among variables to influence the probability vector parameter after applying 

the shifts. The next section examines this extension. 
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3.4 Power Calculation for Pairs of Correlated Variables 

Finally, this method can be applied for pairs of correlated ordinal categorical 

variables. In our final motivating example, suppose the scientists are developing yet 

another drug to reduce pain in the upper and lower sections of the body only. Also, for 

this experiment they are assuming that there is some amount of correlation between the 

amount of pain experienced in the upper body and the amount of pain experienced in the 

lower body. The drug they have completed and plan to test is Compound C. 

To test the efficacy of this new compound, they are conducting a new experiment 

where a pain score is assigned to the upper and lower body sections and the scores are 

then added to produce a total pain score. Once again, although it is not necessary, for 

simplicity both variables will have the same possible pain scores as in the example given 

in Section 3.2. 

The goal of Compound C is to reduce pain in these two sections of the body as 

much as possible. As such, Compound C is considered successful for a subject if the pain 

score for each section of the body is reduced by at least one point. 

Once again, the scientists have taken an initial sample of 𝑁0 subjects and recorded 

their pain scores for each body section to obtain an estimate of how much pain each 

subject experiences at each body section before any treatment is administered. Let 𝑛𝑗𝑘 be 

the number of subjects with pain score 𝑗 at their upper body and pain score 𝑘 at their 

lower body for 𝑗 =  1,2,3 and 𝑘 =  1,2,3.  

Note that this notation is different from the notation found in Section 3. In this 

section we are examining the scores for each section simultaneously rather than 
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individually for each subject. This is because we are assuming that the pain scores for the 

two sections of the body are correlated, 

The new experiment will once again be randomized with a balanced design so 

that 𝑁 subjects are assigned to Group 𝑃 and will receive a placebo and 𝑁 subjects are 

assigned to Group 𝑇 and will receive Compound C. Let 𝑋 be given by: 

𝐗 = [𝐗
𝑃

𝐗𝑇] =

[
 
 
 
 
 
𝐱𝟏

𝑃

⋮
𝐱𝑁

𝑃

𝐱𝟏
𝑇

⋮
𝐱𝑁

𝑇 ]
 
 
 
 
 

=

[
 
 
 
 
 
(𝑥𝑈𝟏

𝑃 , 𝑥𝐿𝟏
𝑃 )

⋮
(𝑥𝑈𝑁

𝑃 , 𝑥𝐿𝑵
𝑃 )

(𝑥𝑈𝟏
𝑇 , 𝑥𝐿𝟏

𝑇 )
⋮

(𝑥𝑈𝑁
𝑇 , 𝑥𝐿𝑵

𝑇 )]
 
 
 
 
 

 

where (𝑥𝑈𝑖
𝐺 , 𝑥𝐿𝑖

𝐺 ) is the pair of pain scores for subject 𝑖 in group 𝐺 prior to receiving any 

treatment. The first entry is the pain score for the upper body and the second entry is the 

pain score for the lower body. We then assume: 

𝑥𝑖
𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑈𝐿)  for 𝑖 = 1,2, … ,𝑁;  𝐺 ∈ {𝑃, 𝑇} 

where 𝐩𝑈𝐿 = (𝑝11, 𝑝12, … , 𝑝33)
′ and 𝑝𝑗𝑘 =

𝑛𝑗𝑘

𝑁0
, the relative frequency of subjects 

achieving pain score 𝑗 in the upper body and pain score 𝑘 in the lower body for 𝑗 =

1,2,3;  𝑘 = 1,2,3. In this formation of the distribution, each multinomial bin corresponds 

to a possible pair of pain scores. After receiving the treatment, pain scores are recorded 

again to create 𝑌 which is given by: 

𝐘 = [𝐘
𝑃

𝐘𝑇] =

[
 
 
 
 
 
𝐲𝟏

𝑃

⋮
𝐲𝑁

𝑃

𝐲𝟏
𝑇

⋮
𝐲𝑁

𝑇]
 
 
 
 
 

=

[
 
 
 
 
 
(𝑦𝑈𝟏

𝑃 , 𝑦𝐿𝟏
𝑃 )

⋮
(𝑦𝑈𝑁

𝑃 , 𝑦𝐿𝑵
𝑃 )

(𝑦𝑈𝟏
𝑇 , 𝑦𝐿𝟏

𝑇 )
⋮

(𝑦𝑈𝑁
𝑇 , 𝑦𝐿𝑵

𝑇 )]
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where (𝑦𝑈𝑖
𝐺 , 𝑦𝐿𝑖

𝐺 ) is the pair of pain scores for subject 𝑖 in group 𝐺 prior to receiving the 

treatment for group 𝐺. The first entry is the pain score for the upper body and the second 

entry is the pain score for the lower body. We then further assume, 

𝑦𝑖
𝑃 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑈𝐿)  for  𝑖 = 1,2, … ,𝑁 

𝑦𝑖
𝑇 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑈𝐿

𝑇 )  for  𝑖 = 1,2, … ,𝑁 

Let 𝐃 contain the change in pain score for both sections of the body for all 2𝑁 

subjects, so that 𝐃 is given by: 

𝐃 = [𝐃
𝑃

𝐃𝑇] =

[
 
 
 
 
 
𝐝𝟏

𝑃

⋮
𝐝𝑁

𝑃

𝐝𝟏
𝑇

⋮
𝐝𝑁

𝑇 ]
 
 
 
 
 

=

[
 
 
 
 
 
(𝑑𝑈𝟏

𝑃 , 𝑑𝐿𝟏
𝑃 )

⋮
(𝑑𝑈𝑁

𝑃 , 𝑑𝐿𝑵
𝑃 )

(𝑑𝑈𝟏
𝑇 , 𝑑𝐿𝟏

𝑇 )
⋮

(𝑑𝑈𝑁
𝑇 , 𝑑𝐿𝑵

𝑇 )]
 
 
 
 
 

=

[
 
 
 
 
 
(𝑥𝑈𝟏

𝑃 − 𝑦𝑈𝟏
𝑃 , 𝑥𝐿𝟏

𝑃 − 𝑦𝐿𝟏
𝑃 )

⋮
(𝑥𝑈𝑁

𝑃 − 𝑦𝑈𝑁
𝑃 , 𝑥𝐿𝑁

𝑃 − 𝑦𝐿𝑁
𝑃 )

(𝑥𝑈𝟏
𝑇 − 𝑦𝑈𝟏

𝑇 , 𝑥𝐿𝟏
𝑇 − 𝑦𝐿𝟏

𝑇 )
⋮

(𝑥𝑈𝑁
𝑇 − 𝑦𝑈𝑁

𝑇 , 𝑥𝐿𝑁
𝑇 − 𝑦𝐿𝑁

𝑇 )]
 
 
 
 
 

 

where 𝑑𝑖
𝐺  is the pair of the difference in pain scores for both sections of the body for 

subject 𝑖 in group 𝐺 and 𝑑𝑚𝑖
𝐺  is the change in pain score at body section 𝑚 for subject 𝑖 in 

group 𝐺. 

Recall that the compound is considered successful for a subject if there is a 

reduction in pain for at least two different body sections. The subjects are once again 

stratified into a contingency table based on this success condition. The table that would 

be created is shown by Table 14. 
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Table 14: Contingency Table for Testing Compound C 

where 

𝑎 = ∑𝟙(𝑑𝑚𝑖
𝑃 ≠ 0 ∀𝑚 ∈ {𝑈, 𝐿})

𝑁

𝑖=1

 

𝑏 = ∑𝟙(∃𝑚 ∈ {𝑈, 𝐿} 𝑠. 𝑡.  𝑑𝑚𝑖
𝑃 ≠ 0)

𝑁

𝑖=1

 

𝑐 = ∑𝟙(𝑑𝑚𝑖
𝑇 ≠ 0 ∀𝑚 ∈ {𝑈, 𝐿})

𝑁

𝑖=1

 

𝑑 = ∑𝟙(∃𝑚 ∈ {𝑈, 𝐿} 𝑠. 𝑡. 𝑑𝑚𝑖
𝑇 ≠ 0)

𝑁

𝑖=1

 

After this contingency table is created, we use Fisher's exact test to discover if 

there is a statistically significant difference between the placebo and Compound C 

according to the success condition. Once again, the most important part of simulating the 

data to perform the power calculation is generating 𝐩𝑈𝐿
𝑇 .  

As noted earlier, the scientists expect that there may be some correlation between 

upper body and lower body pain scores. As such, they would like to estimate this 

correlation and factor it into the power calculations. As opposed to using typical 

correlation estimators such as Spearman's ρ (Spearman, 1904) or Kendall's τ (Kendall, 
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1938), we propose estimating the correlation using a partition of a bivariate normal 

distribution. We will name this correlation estimator ξ. 

To motivate this approach, we will first alter the experiment so that upper body 

and lower body pain scores each have only two different possible pain scores instead of 

three. Therefore, there are only four possible combinations of outcomes: 

{1,1}, {1,2}, {2,1}, and {2,2}, and we can assume each patient follows the distribution: 

𝑥𝑖
𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑈𝐿)  for  𝑖 = 1,2, … ,𝑁;  𝐺 ∈ {𝑃, 𝑇} 

where 𝐩𝑈𝐿 = (𝑝11, 𝑝12, 𝑝21, 𝑝22)
′ and 𝑝𝑗𝑘 =

𝑛𝑗𝑘

𝑁0
, the relative frequency of subjects 

achieving pain score 𝑗 in the upper body and pain score 𝑘 in the lower body for 𝑗 =

 1,2;  𝑘 =  1,2. 

We now define the estimation of the correlation between two ordinal categorical 

variables using a partition of a bivariate normal distribution in ALGORITHM 8. Figure 

16 illustrates this estimating process. 

ALGORITHM 8: Estimate ξ, the correlation between two ordinal categorical variables 

(𝑋1, 𝑋2) which each have two levels, given initial probability parameter 𝐩𝑋1𝑋2
=

(𝑝11, 𝑝12, 𝑝21, 𝑝22)
′. 

1. Let the marginal probabilities for variable 𝑋1 and 𝑋2 be 𝐩1 = (𝑝1⋅, 𝑝2⋅)
′ and 𝐩2 =

(𝑝⋅1, 𝑝⋅2)
′, respectively, where 𝑝𝑖⋅ = ∑ 𝑝𝑖𝑗

2
𝑗=1  and 𝑝⋅𝑗 = ∑ 𝑝𝑖𝑗

2
𝑖=1 . 

2. Divide the volume under the probability density function for the standard bivariate 

normal distribution into four portions by following the steps below: 
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2.1. Place 𝑞11, a vertical line that divides the area into left and right portions, so that 

the left portion has 𝑝1⋅ volume under the curve and the right portion has 𝑝2⋅ 

volume under the curve. More specifically, 𝑞11 is a vertical line that intersects 

the x-axis at (𝑄11, 0) where 𝑄11 satisfies 𝑃(𝑍 < 𝑄11) = 𝑝1⋅. 

2.2. Place 𝑞21, a horizontal line that splits the area into upper and lower portions, is 

placed so that the lower portion has 𝑝⋅1 volume under the curve and the upper 

portion has 𝑝⋅2 volume under the curve. More specifically, 𝑞21 is a horizontal line 

that intersects the y-axis at (0, 𝑄21) where 𝑄21 satisfies 𝑃(𝑍 < 𝑄21) = 𝑝⋅1. 

3. Finally, the correlation, 𝜉, is estimated for a bivariate normal distribution with mean 

vector (0,0)′ and marginal variances of 1 so that the squared difference of the volume 

under the curve and the true relative frequency for each section is minimized. 

 

Figure 16: Correlation Estimation for 2 Ordinal Categorical Variables with 2 Levels 
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Referring to Figure 16, the volume under the curve that is above section 𝑘1𝑘2 will 

correspond closely with the relative frequency observed in the initial experiment that 

each section represents after ξ is estimated. 

Now let us return to the original example where each of the variables has three 

different levels in order to show how the estimation process is modified when pairs of 

variables have an arbitrary number of levels. This algorithm for performing this adjusted 

estimation process is given by ALGORITHM 9. 

ALGORITHM 9: Calculate ξ, an estimation of the correlation between two ordinal 

categorical variables (𝑋1, 𝑋2) which each have 𝐾1 and 𝐾2 levels, respectively, given 

initial probability parameter 𝐩𝑋1𝑋2
= (𝑝11, 𝑝12, … , 𝑝(𝐾1−1)𝐾2

, 𝑝𝐾1𝐾2
)
′
. 

1. Let the marginal probabilities for variable 𝑋1 and 𝑋2 be 𝐩1 = (𝑝1⋅, 𝑝2⋅, … , 𝑝𝐾1⋅)
′
 and 

𝐩2 = (𝑝⋅1, 𝑝⋅2, … , 𝑝⋅𝐾2
)
′
, respectively, where 𝑝𝑖⋅ = ∑ 𝑝𝑖𝑗

𝐾1
𝑗=1  and 𝑝⋅𝑗 = ∑ 𝑝𝑖𝑗

𝐾2
𝑖=1 . 

2. Divide the volume under the probability density function for the standard bivariate 

normal distribution into 𝐾1𝐾2 portions by following the steps below: 

2.1. Place vertical lines 𝑞10, 𝑞11, 𝑞12, … , 𝑞1𝐾1
 which divide the area into 𝐾1 rectangles 

extending infinitely with respect to the y-axis, so that the rectangle which lies 

between 𝑞1(𝑘−1) and 𝑞1𝑘 has 𝑝𝑘⋅ volume under the curve. More specifically, 𝑞1𝑘 

is a vertical line that intersects the x-axis at (𝑄1𝑘, 0) where 𝑄1𝑘 satisfies 

𝑃(𝑄1(𝑘−1) < 𝑍 < 𝑄1𝑘) = 𝑝𝑘⋅. Note that 𝑄10 = −∞ and 𝑄1𝐾1
= ∞. 

2.2. Place horizontal lines 𝑞20, 𝑞21, 𝑞22, … , 𝑞2𝐾2
 which split the area into 𝐾2 rectangles 

extending infinitely with respect to the x-axis, so that the rectangle which lies 

between 𝑞2(𝑘−1) and 𝑞2𝑘 has 𝑝⋅𝑘 volume under the curve. More specifically, 𝑞2𝑘 
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is a vertical line that intersects the x-axis at (𝑄2𝑘, 0) where 𝑄2𝑘 satisfies 

𝑃(𝑄2(𝑘−1)𝑍 < 𝑄2𝑘) = 𝑝⋅𝑘. Note that 𝑄20 = −∞ and 𝑄2𝐾2
= ∞. 

3. Finally, the correlation, 𝜉, is estimated for a bivariate normal distribution with mean 

vector (0,0)′ and marginal variances of 1 so that the squared difference of the volume 

under the curve and the true relative frequency for each section is minimized. 

 If any of the relative frequencies for a pair of scores are close to 0 this may not be 

effective. This is because it may not be possible to find a correlation which would create 

a bivariate normal distribution with the probabilities close to the relative frequencies for 

the corresponding portions. A skewed bivariate normal distribution may be more 

effective for cases such as these (Azzalini & Valle, 1996; Arslan, 2015). A bivariate t 

distribution could also be used (Kotz & Nadarajah, 2004).  

 Let 𝑚1 and 𝑚2 be two ordinal categorical variables. Once the correlation is 

estimated between 𝑚1 and 𝑚2 with ALGORITHM 9, we must generate 𝐩𝑚1𝑚2
𝑇 . The 

algorithm for shifting the probability vector for a pair of correlated ordinal categorical 

variables is described in ALGORITHM 10. Like the previous shifting processes, shifts 

δ1 and δ2 move the dividers uniformly, which then changes the probabilities within each 

section of the bivariate normal distribution accordingly. The new probabilities are then 

used to form 𝐩𝑚1𝑚2
𝑇 . This shifting process is illustrated in Figure 17. 

ALGORITHM 10: Generate 𝐩𝑚1𝑚2
𝑇  given initial probability vector parameter 𝐩𝑚1𝑚2

 

and shifts δ𝑚1
 and δ𝑚2

. 
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1. Use ALGORITHM 9 to divide the area under the probability density function into 

𝐾1 ∗ 𝐾2 sections, where 𝐾1 and 𝐾2 are the number of levels of variables 𝑚1 and 𝑚2, 

respectively.  

2. For 𝑙 = 0,1, … , 𝐾1, shift vertical line 𝑞1𝑙 with 𝛿𝑚1
 to create a new vertical line, 𝑞1𝑙

′ , 

which intersects the x-axis at (𝑄1𝑙 + 𝛿1, 0). Recall 𝑄10 = −∞ and 𝑄1𝐾1
= ∞. 

3. For 𝑙 = 0,1, … , 𝐾2, shift horizontal line 𝑞2𝑙 with 𝛿𝑚2
 to create a new horizontal line, 

𝑞2𝑙
′ , which intersects the x-axis at (𝑄2𝑙 + 𝛿2, 0). Recall 𝑄20 = −∞ and 𝑄2𝐾2

= ∞. 

4. The volume under the probability density function which lies within the vertical lines 

𝑞1(𝑘1−1)
′  and 𝑞1𝑘1

′  and the horizontal lines 𝑞2(𝑘2−1)
′  and 𝑞2𝑘2

′  corresponds to 𝑝𝑘1𝑘2

𝑇 , the 

hypothesized probability that a subject which has received treatment will achieve 

level 𝑘1 for variable 𝑚1 and 𝑘2 for variable 𝑚2. This is also the 𝑟𝑡ℎ element of 

𝐩𝑚1𝑚2
𝑇  where 𝑟 = 𝐾1 ∗ (𝑘1 − 1) + 𝑘2. 

Once again, it should be noted that each individual quantile for each variable 𝑚𝑙, 

𝑄𝑙𝑘 + δ𝑙 could also be shifted additionally by some γ𝑙𝑘. In the simplest setting which we 

provide above, we set γ𝑙𝑘 = 0 for 𝑘 =  1, 2, … , 𝐾, 𝑙 =  1, 2.  

The 𝑝𝑚1𝑚2
𝑇  generated by δ𝑚1

 and δ𝑚2
 is then used to simulate the data for the 

power calculations. The algorithm for calculating power for any combination of 𝑁, 

𝑝𝑚1𝑚2
, (δ𝑚1

, δ𝑚2
), and success condition 𝑆 is given in ALGORITHM 11. 
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Figure 17: Shifting Process for a Pair of Correlated Ordinal Categorical Variables 

ALGORITHM 11: Perform power calculations for two ordinal categorical variables 

given sample size 𝑁, initial probability vector parameter 𝑝𝑚1𝑚2
, shifts (δ𝑚1

, δ𝑚2
), 

success condition 𝑆, and number of iterations 𝑢. 
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1. Draw 2𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝒑𝒎𝟏𝒎𝟐
) to simulate 𝑿 = (𝑿𝑷, 𝑿𝑻)′. 

2. Conduct ALGORITHM 10 with (𝛿𝑚1
, 𝛿𝑚2

) and 𝐩𝑚1𝑚2
 to generate 𝐩𝑚1𝑚2

𝑇 . 

3. Draw 𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚1𝑚2
) and draw 𝑁 random 

observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚1𝑚2
𝑇 ) to simulate 𝐘P and 𝐘𝑇, respectively. Then form 

𝐘 = (𝐘𝑃, 𝐘𝑇)′. 

4. Calculate 𝐃 = 𝐗 − 𝐘 and form a contingency table stratified by success condition 𝑆 

and treatment group. 

5. Conduct Fisher's exact test. 

6. Perform steps 1 through 5 for 𝑢 iterations and the power for (𝑁, 𝐩𝑚1𝑚2
, 𝛿𝑚1

, 𝛿𝑚2
, 𝑆) 

is given by the proportion of iterations where Fisher's exact test rejects the null 

hypothesis. 

Like ALGORITHM 7, as the number of possible levels for each variable rises so 

will the computational intensity. Before assuming any two pairs of variables are 

correlated, we suggest using the Chi-Square Test for Independence (Pearson, 1900). If 

the conclusion of this test is to reject the notion that the two variables are independent, 

then proceed with the method described in this section. Otherwise use the method 

described in Section 3.3. Section 4.3 details a simulation created to assess this bias of ξ 

and provides the results for a few cases. 

3.4.1 Simulation to Assess the Bias of ξ 

We used simulations to investigate the bias of ξ and compare it to the bias of 

Spearman's ρ and Kendall's τ. This was done by creating a partition of observations 

generated from a bivariate normal distribution with a “true” correlation estimate so that 
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each portion of the partition represents a pair of ordinal categorical variables. This 

simulation is given by Simulation 1. 

SIMULATION 1: Given the true correlation, ρ𝑡𝑟𝑢𝑒, between two ordinal categorical 

variables which each have 𝐾1 and 𝐾2 levels, respectively, generated by a partition of a 

bivariate normal distribution, estimate the bias of ξ, Spearman's ρ, and Kendall's τ. 

1. Choose Γ11, … , Γ1𝐾1
 and Γ21, … , Γ2𝐾2

 to be the values which create the vertical and 

horizontal lines, respectively, which will divide the flat area under the probability 

density function of a bivariate normal distribution into 𝐾1 ∗ 𝐾2 portions and create the 

partition. 

2. Draw 𝑁 observations from a bivariate normal distribution with mean vector (0,0)′, 

marginal variances of 1, and correlation 𝜌𝑡𝑟𝑢𝑒. 

3. Create a relative frequency table by counting how many of the 𝑁 observations fall 

into each of the 𝐾1 ∗ 𝐾2 sections created by Γ11, … , Γ1𝐾1
 and Γ21, … , Γ2𝐾2

 and dividing 

these counts by 𝑁. 

4. Calculate 𝜉 (using ALGORITHM 9), Spearman's 𝜌, and Kendall's 𝜏 for the relative 

frequency table created in step 3. Then calculate the bias of each: 𝑏1 = 𝜌true − 𝜉, 

𝑏2 = 𝜌true − 𝜌, and 𝑏3 = 𝜌true − 𝜏. 

5. Repeat steps 1 through 4 for 1000 iterations and the mean of the 1000 𝑏1's, 𝑏2's, 𝑏3's 

created in step 4 provides the estimated bias for 𝜉, Spearman's 𝜌, and Kendall's 𝜏, 

respectively. 

We chose three partition configurations for the bivariate normal distribution. Partition 

configuration 1 divides the probability distribution function into four portions with equal 
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probability when the correlation between the two variables is 0. Partition configuration 2 

divides the probability distribution function into nine portions with equal probability 

when the correlation between the two variables is 0. Partition configuration 3 divides the 

probability distribution function into twelve portions as shown in the first plot in Figure 

21 with probabilities matching the second relative frequency table in Table 15. 

For each partition configuration we vary the true correlation and estimate the bias for 

four different sample sizes. Figure 18, Figure 19, and Figure 20 give the bias results for 

each estimator for each partition configuration. 

 

Figure 18: Bias Results for Partition Configuration 1 
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Figure 19: Bias Results for Partition Configuration 2 

 

Figure 20: Bias Results for Partition Configuration 3 

While there is certainly evidence of bias for ξ, when compared to the bias of both 

Spearman's ρ and Kendall's τ it appears minimal. Aside from when the correlation is near 

0, ξ performes volumes better than the other two estimators in terms of bias. 
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3.5 Application to Preclinical Dataset 

In this section we apply the method to a dataset provided to the author by a 

pharmaceutical company. In this experiment, a new compound is being designed to curb 

the effects of a disease. 55 subjects with this disease were assigned an “affliction” score 

which ranges from 0-8. This score is used to describe the amount of suffering the disease 

is causing for the subject and is composed of three subscores: subscore A which ranges 

from 0-2, subscore B which ranges from 0-3, and subscore C which ranges from 0-3. 

Table 15 gives the relative frequency table for the collected data. 

 

Table 15: Relative Frequency Tables for Data from Initial Experiment 

The objective of the compound is to decrease the affliction score for subjects and 

the compound is considered successful if the affliction score is reduced by at least two 

points and at least two subscores are reduced by at least one point. Let this be the success 

condition 𝑆. Before conducting the future experiment to decide whether to move forward 

with the compound, the scientists in charge of the experiment need to know how large of 
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a sample size is necessary to guarantee 90% power to detect the desired affliction score 

improvement. 

After performing some preliminary analysis, some correlation between subscores 

A and B is discovered according to Spearman's ρ (−0.273) and Kendall's τ (−0.260). As 

such, ALGORITHM 4 is used to shift the probability vector parameter for subscore C 

using a standard normal distribution and ALGORITHM 10 is used to shift probability 

vector parameter for pairs of subscore A and subscore B using a bivariate normal 

distribution with correlation estimated by ξ (−0.302). 

Let 𝐩𝐴𝐵 = (0.01,0.01,0.01,0.01,0.01,0.01,0.14,0.12,0.01,0.17,0.32,0.19)′ and 

𝐩𝐶 = (0.01,0.79,0.18,0.02)′. Note that the data has been adjusted to eliminate relative 

frequencies of 0. See Figure 21 and Figure 22 for a visual representation of how 𝐩𝐴𝐵
𝑇  and 

𝐩𝐶
𝑇, respectively, are generated. 

Note that in the second graph of Figure 21, the volume under the curve over the 

area of section 𝑘1𝑘2 corresponds to 𝑝𝑘1𝑘2

𝑇  in 𝐩𝐴𝐵
𝑇 . Further, in the second graph of Figure 

22, the area under the curve of the 𝑘𝑡ℎ portion corresponds to 𝑝𝑘
𝑇 in 𝒑𝐶

𝑇. 

An amalgamation of ALGORITHM 5 and ALGORITHM 11 is used to perform 

the power calculations by choosing combinations of 𝑁, (δ𝐴, δ𝐵, δ𝐶), and the success 

condition 𝑆. Figure 23 show the power curves for sample sizes (per treatment arm) 20 to 

60 and various choices of (δ𝐴, δ𝐵 , δ𝐶). The scientists believe that the compound will not 

have a large effect on subscore C so δ𝐶  has been kept low for all shift configurations; 

however, δ𝐴 and δ𝐵 have been allowed to range between 1 and 1.5 because the scientists 

believe that the compound will have the most effect on subscores A and B. 
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Figure 21:Generating 𝒑𝐴𝐵
𝑇  with ALGORITHM 10 
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Figure 22: Generating 𝒑𝐶
𝑇 with ALGORITHM 1 

The power curves demonstrate that Fisher's exact test will have the desired power 

at some sample size for all nine configurations of (δ𝐴, δ𝐵, δ𝐶). For the alternative 

multinomial distribution corresponding to the least conservative configuration, 
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(1.5,1.5,0.5), a sample size of 23 per treatment arm would be needed to achieve at least 

90% power; for the most conservative configuration (1,1,0.5), a sample size of 51 per 

treatment arm would be needed. Considering all configurations, a sample size of 30 to 40 

subjects per treatment arm should be used to guarantee at least 90% power. 

 

Figure 23: Power Curves for Original Data 

The power curves demonstrate that Fisher's exact test will have the desired power 

at some sample size for all nine configurations of (δ𝐴, δ𝐵, δ𝐶). For the alternative 

multinomial distribution corresponding to the least conservative configuration, 

(1.5,1.5,0.5), a sample size of 23 per treatment arm would be needed to achieve at least 

90% power; for the most conservative configuration (1,1,0.5), a sample size of 51 per 

treatment arm would be needed. Considering all configurations, a sample size of 30 to 40 

subjects per treatment arm should be used to guarantee at least 90% power. 
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We also performed the power calculations again under less favorable conditions. 

In the original data, it was clear that many of the subjects were achieving very high 

scores prior to treatment. We adjusted the data to assess how many subjects would be 

needed if fewer subjects achieved very high scores in the initial sample. Once again, an 

amalgamation of ALGORITHM 5 and ALGORITHM 11 are used and Figure 24 show 

the power curves for sample sizes 20 to 60 and various choices of (δ𝐴, δ𝐵 , δ𝐶). 

 

Figure 24: Power Curves for Adjusted Data 

Once again, the power curves demonstrate that Fisher's exact test will have the 

desired power at some sample size for all nine configurations of (δ𝐴, δ𝐵 , δ𝐶). For the 

alternative multinomial distribution corresponding to the least conservative configuration, 

(1.5,1.5,0.5), a sample size of 32 per treatment arm would be needed to achieve at least 

90% power; for the most conservative configuration (1,1,0.5), a sample size of 54 per 

treatment arm would be needed.  
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Considering all configurations, a sample size of 35 to 45 subjects per treatment 

arm should be used to guarantee at least 90% power. Intuitively this makes sense, 

because if the subject's scores aren't initially very high it will be hard to reduce them by a 

considerable amount. As such, more subjects would be necessary to detect a treatment 

effect. 

3.6 Discussion 

We have described a method that can be used to avoid the overwhelming prospect 

of performing power calculations for hypothesis tests analyzing ordinal categorical data 

with small range scales. Instead of haphazardly manipulating the different entries in the 

probability vector parameter, we have proposed a method which shifts these entries in a 

uniform manner by creating and shifting the quantiles of a standard normal distribution 

for a single ordinal categorical variable or multiple uncorrelated ordinal categorical 

variables. We expanded it further for pairs of correlated ordinal categorical variables by 

applying the same concepts using a bivariate normal distribution.  

We have also introduced ξ, a new estimator for estimating the correlation of 

ordinal categorical variables using a partition of a bivariate normal distribution. We 

assessed this estimator in terms of bias and compared it to other common estimators for 

measuring correlation among pairs of ordinal categorical variables. Finally, we applied 

the method to a dataset and delivered some results.  

Note that this power calculation method could also be used for other hypothesis 

tests which analyze contingency tables such as the Chi-Square Test of Homogeneity. The 

R package multinorm has been developed to perform these power calculations with 

different hypothesis tests. 



107 

 

 

 

Future work can be done by possibly extending the methods described in Section 

4 to work for three or more correlated categorical variables using a multivariate normal 

distribution. Work could also be done to determine the precise computational cost that 

arises from adding more variables and/or levels. Finally, it might be useful to see how 

this method can work for categorical variables with no discernable order, as well as the 

utility of the method when the scale range is increased. 
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Appendices 

Appendix A: Selected R Code for Chapter 1 

Section 2 

# load packages 
library(mvtnorm) 
library(ggplot2) 
 
# create data of random observations 
sim.data = rmvnorm(5000, 
                   mean = rep(0,5), 
                   sigma = diag(5:1)) 
 
# create cluster configuration for Kmeans 
K.cl = kmeans(sim.data, 
                centers = 3, 
                iter.max = 10, 
                nstart = 5) 
 
 
# retrieve principal components 
PC.data = as.data.frame(princomp(sim.data)$scores) 
 
# duplicate principal components 
PC.data = rbind.data.frame(PC.data, 
                           PC.data) 
 
# retrieve cluster configurations 
PC.data[, "Cluster"] = factor(c(rep(0,nrow(PC.data)/2), 
                                K.cl$cluster)) 
 
# split the data into two sections 
PC.data[, "Type"] = factor(c(rep("Original Data",nrow(PC.data)/2), 
                             rep("Clustered Data",nrow(PC.data)/2)), 
                           levels = c("Original Data", 
                                      "Clustered Data")) 
 
# create plot of kmeans clustering configurations 
ggplot(data = PC.data, 
       aes(x = Comp.1, 
           y = Comp.2, 
           color = Cluster)) + 
  facet_wrap(~Type) + 
  geom_point() + 
  scale_color_manual(values = c("black", 
                                "red", 
                                "blue", 
                                "limegreen")) + 
  scale_x_continuous("") + 
  scale_y_continuous("") + 
  guides(color = FALSE) +  
  theme_gray(base_size = 18) + 
  theme(plot.title = element_text(hjust = 0.5), 
        element_blank(), 
        axis.ticks.x = element_blank(), 
        axis.text.x = element_blank(), 
        axis.ticks.y = element_blank(), 
        axis.text.y = element_blank()) 
 
# create distance matrix for  
sim.dist = dist(sim.data) 
 
# create three clusters with hierarchical clustering 
H.cl = hclust(sim.dist) 
clusterCut = cutree(H.cl, 3) 
 
# retrieve cluster configurations 
PC.data[, "Cluster"] = factor(c(rep(0,nrow(PC.data)/2), 
                                clusterCut)) 
 
# create plot for hierarchical clustering 
ggplot(data = PC.data, 
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       aes(x = Comp.1, 
           y = Comp.2, 
           color = Cluster)) + 
  facet_wrap(~Type) + 
  geom_point() + 
  scale_color_manual(values = c("black", 
                                "red", 
                                "blue", 
                                "limegreen")) + 
  scale_x_continuous("") + 
  scale_y_continuous("") + 
  guides(color = FALSE) +  
  theme_gray(base_size = 18) + 
  theme(plot.title = element_text(hjust = 0.5), 
        element_blank(), 
        axis.ticks.x = element_blank(), 
        axis.text.x = element_blank(), 
        axis.ticks.y = element_blank(), 
        axis.text.y = element_blank()) 
 
 

Section 3 

# load packages 
library(ggplot2) 
library(parallel) 
library(doSNOW) 
library(support) 
 
# load functions 
source("datanugget Package/create DN.R") 
source("datanugget Package/create DN2.R") 
source("datanugget Package/refine DN.R") 
source("datanugget Package/WKmeans.R") 
source("functions/density plot.R") 
 
# set seed for replication 
set.seed(103092) 
 
# create x for noise data 
x = rnorm(15000) 
 
# create y for noise data 
y = rnorm(15000) 
 
# create noise data 
noise.data = cbind(x,y) 
 
# create smile data 
smile.data = cbind(seq(-1.5,1.5,0.005), 
                   .25*(seq(-1.5,1.5,0.005))^2-0.5) 
 
# give column names to the data 
colnames(noise.data) = c("X","Y") 
colnames(smile.data) = c("X","Y") 
 
# create entire dataset 
original.data = rbind.data.frame(noise.data, 
                                 smile.data) 
 
# retrieve random sample of 2000 observations 
random.sample.data = original.data[sample(1:nrow(original.data),2000), ] 
 
# generate data nuggets 
for.DN = create.DN(x = original.data, 
                   RS.num = 10000, 
                   DN.num = 2000) 
 
# retrieve data nuggets 
DN.information = for.DN$`Data Nuggets` 
 
# create matrix for original data nuggets density plot 
DN.z = matrix(0, 
              nrow = 100, 
              ncol = 100) 
 
DN.zx = seq(length = 101, 
            from = min(DN.information[, 2]), 
            to = max(DN.information[, 2])) 



110 

 

 

 

 
DN.zy = seq(length = 101, 
            from = min(DN.information[, 3]), 
            to = max(DN.information[, 3])) 
 
for(i in 1:100){ 
   
  for(j in 1:100){ 
   
    DN.z[i,j] = sum(DN.information[DN.information[, 2] > DN.zx[i] & 
                                 DN.information[, 2] < DN.zx[i+1] & 
                                 DN.information[, 3] > DN.zy[j] & 
                                 DN.information[, 3] < DN.zy[j+1], "Weight"]) 
     
   
  } 
     
} 
 
# create top row of Figure 3 plots 
par(mfrow = c(1,2), 
    mar = c(0,0,0,0) + 0.5) 
 
plot(original.data[,1], 
     original.data[,2], 
     # ylim = c(min(original.data[, 2]) + 1, 
     #          max(original.data[, 2]) + 1), 
     xaxt = "n", 
     yaxt = "n", 
     xlab = "", 
     ylab = "") 
 
density.plot(original.data[,1], 
             original.data[,2], 
             100, 
             100) 
 
# create bottom row of Figure 3 plots 
density.plot(random.sample.data[, 1], 
             random.sample.data[, 2], 
             100, 
             100) 
 
image(z = DN.z, 
      x = DN.zx, 
      y = DN.zy, 
      xlab = "", 
      ylab = "",  
      col = topo.colors(100), 
      xaxt = "n", 
      yaxt = "n")   
 
# create refined data nuggets 
for.DN2 = refine.DN(x = original.data, 
                    DN = for.DN,  
                    scale.tol = 1, 
                    min.nugget.size = 2) 
 
# retrieve refined data nuggets 
DN.information2 = for.DN2$`Data Nuggets` 
 
# create matrix for refined data nuggets density plot 
DN2.z = matrix(0, 
               nrow = 100, 
               ncol = 100) 
 
DN2.zx = seq(length = 101, 
             from = min(DN.information2[, 2]), 
             to = max(DN.information2[, 2])) 
 
DN2.zy = seq(length = 101, 
             from = min(DN.information2[, 3]), 
             to = max(DN.information2[, 3])) 
 
for(i in 1:100){ 
   
  for(j in 1:100){ 
     
    DN2.z[i,j] = sum(DN.information2[DN.information2[, 2] > DN2.zx[i] & 
                                       DN.information2[, 2] < DN2.zx[i+1] & 
                                       DN.information2[, 3] > DN2.zy[j] & 
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                                       DN.information2[, 3] < DN2.zy[j+1], "Weight"]) 
     
     
  } 
   
} 
 
# create top row of Figure 4 plots 
plot(DN.information[,2], 
     DN.information[,3], 
     # ylim = c(min(original.data[, 2]) + 1, 
     #          max(original.data[, 2]) + 1), 
     #col = plot.colors, 
     #pch = plot.shapes, 
     xaxt = "n", 
     yaxt = "n", 
     xlab = "", 
     ylab = "") 
 
image(z = DN.z, 
      x = DN.z x, 
      y = DN.z y, 
      xlab = "", 
      ylab = "",  
      col = topo.colors(100), 
      xaxt = "n", 
      yaxt = "n") 
 
# create bottom row of Figure 4 Plots 
plot(DN.information2[,2], 
     DN.information2[,3], 
     # ylim = c(min(original.data[, 2]) + 1, 
     #          max(original.data[, 2]) + 1), 
     xaxt = "n", 
     yaxt = "n", 
     xlab = "", 
     ylab = "") 
 
image(z = DN.z, 
      x = DN.zx, 
      y = DN.zy, 
      xlab = "", 
      ylab = "",  
      col = topo.colors(100), 
      xaxt = "n", 
      yaxt = "n") 
 
# binary data nuggets simulation #### 
 
# set the number of iterations 
iteration.num = 100 
 
# retrieve the number of cores 
no.cores = detectCores() - 1 
 
# create list of probabilities 
probs = seq(.8,.9,0.02) 
 
# cycle through the list of probabilities 
for (m in probs){ 
   
  # create the cluster for parallel processing 
  cl = makeCluster(no.cores) 
   
  # engage the cluster for parallel processing 
  registerDoSNOW(cl) 
   
  system.time({ 
     
    # initialize progress bar 
    pb = txtProgressBar(min = 0, max = iteration.num) 
     
    # update the progress bar 
    progress = function(n){setTxtProgressBar(pb, n)} 
    opts = list(progress = progress) 
     
    # initalize probabilities for layers of data 
    p1 = m  
    p2 = 1-p1 
     
    # create sample size 
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    n = 100000 
     
    # perform simulation 
    results = foreach(i = 1:iteration.num,  
                      .combine = rbind, 
                      .options.snow = opts)  %dopar% 
       
                      { 
                         
                        # set seed for replication 
                        set.seed(i) 
                         
                        # create left layer of 1st cluster of data (5 zeros) 
                        m1 = array(sample(0:1, 
                                          n*5, 
                                          prob = c(p1,1-p1), 
                                          rep = T), 
                                   dim = c(n,5)) 
                         
                        # create right layer of 1st cluster of data (5 ones) 
                        m2 = array(sample(0:1, 
                                          n*5, 
                                          prob = c(p2,1-p2), 
                                          rep = T), 
                                   dim = c(n,5)) 
                         
                        # create left layer of 2nd cluster of data (5 ones) 
                        m3 = array(sample(0:1, 
                                          n*5, 
                                          prob = c(p2,1-p2), 
                                          rep = T), 
                                   dim = c(n,5)) 
                         
                        # create right layer of 2nd cluster of data (5 zeros) 
                        m4 = array(sample(0:1, 
                                          n*5, 
                                          prob = c(p1,1-p1), 
                                          rep = T), 
                                   dim = c(n,5)) 
                         
                         
                        # create 3rd cluster of data (10 ones) 
                        m5 = array(sample(0:1, 
                                          n*10, 
                                          prob = c(p2,1-p2), 
                                          rep = T), 
                                   dim = c(n,10)) 
                         
                        # create simulated data 
                        sim.data = as.data.frame(rbind(cbind(m1,m2), 
                                                       cbind(m3,m4), 
                                                       m5)) 
                         
                        # assign the true clusters 
                        sim.data[, "Cluster"] = rep(1:3, 
                                                    each = 100000) 
                         
                        # convert the data to a data frame 
                        sim.data = as.data.frame(sim.data) 
                         
                        # find the unique rows of the data 
                        unique.rows = unique(sim.data[, 1:10]) 
                         
                        # initialize the data nugget data 
                        DN.info = data.frame(Data.Nugget = 1:nrow(unique.rows)) 
                         
                        # make the data nuggets the unique rows 
                        DN.info[, 2:11] = as.matrix(unique.rows) 
                         
                        # give the data nuggets colum names 
                        colnames(DN.info) = c("Data Nugget", 
                                              paste("Center", 
                                                    1:10, 
                                                    sep = "")) 
                         
                        # assign data nuggets to the original data 
                        DN.assignments = apply(X = as.matrix(sim.data[, 1:10]), 
                                               MARGIN = 1, 
                                               FUN = function(input){ 
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return(which(colSums(t(as.matrix(DN.info[, 2:11])) == input) == 10)) 
                                                  
                                               })  
                         
                        # find the weights of the data nuggets 
                        DN.info[, "Weight"] = table(DN.assignments)/nrow(sim.data) 
                         
                        # find the k means cluster configuration 
                        Kmeans.results = kmeans(x = DN.info[, 2:11],  
                                                centers = 3, 
                                                nstart = 5, 
                                                iter.max = 10) 
                         
                        # find the weighted k means cluster configuration 
                        WKmeans.results = WKmeans(dataset = DN.info[, 2:11],  
                                                  k = 3, 
                                                  obs.weights = DN.info[, "Weight"],  
                                                  num.init = 5,  
                                                  K = 10) 
                         
                        # create a matrix of possible permutations clusters 
                        perm.matrix = rbind(c(1,2,3), 
                                            c(1,3,2), 
                                            c(2,1,3), 
                                            c(2,3,1), 
                                            c(3,1,2), 
                                            c(3,2,1)) 
                         
                        # initialize the vector holding the correct classifications for 
each permutation 
                        correct.Kmeans = rep(0,6) 
                        correct.WKmeans = rep(0,6) 
                         
                        # cycle through the permutations 
                        for (j in 1:6){ 
                           
                          # reassign the k means clusters according to the current 
permutation 
                          new.Kmeans.cluster = Kmeans.results$cluster + 3 
                          new.Kmeans.cluster[new.Kmeans.cluster == 4] = perm.matrix[j, 
][1] 
                          new.Kmeans.cluster[new.Kmeans.cluster == 5] = perm.matrix[j, 
][2] 
                          new.Kmeans.cluster[new.Kmeans.cluster == 6] = perm.matrix[j, 
][3] 
                           
                          # reassign the weighted k means clusters according to the 
current permutation 
                          new.WKmeans.cluster = WKmeans.results$`Cluster Assignments` + 3 
                          new.WKmeans.cluster[new.WKmeans.cluster == 4] = perm.matrix[j, 
][1] 
                          new.WKmeans.cluster[new.WKmeans.cluster == 5] = perm.matrix[j, 
][2] 
                          new.WKmeans.cluster[new.WKmeans.cluster == 6] = perm.matrix[j, 
][3] 
                           
                          # append the current cluster assignments for each method to the 
data nuggets 
                          DN.info[, "Kmeans.Cluster"] = new.Kmeans.cluster 
                          DN.info[, "WKmeans.Cluster"] = new.WKmeans.cluster 
                           
                          # append each observation of the original data with its data 
nugget assignment 
                          sim.data[, "DN Assignment"] = DN.assignments 
                           
                          # append the current cluster assignments to each observation 
                          # according to their assigned data nugget 
                          sim.data[, "DN.Kmeans.Cluster"] = DN.info[DN.assignments, 
"Kmeans.Cluster"] 
                          sim.data[, "DN.WKmeans.Cluster"] = DN.info[DN.assignments, 
"WKmeans.Cluster"] 
                           
                          # find the correct classifications for the k means method 
                          correct.Kmeans[j] = mean(sim.data[, "Cluster"] ==  
                                                     sim.data[, "DN.Kmeans.Cluster"]) 
                           
                          # find the correct classifications for the weighted k means 
method 
                          correct.WKmeans[j] = mean(sim.data[, "Cluster"] ==  
                                                      sim.data[, "DN.WKmeans.Cluster"]) 
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                        } 
                         
                        # retrieve the best percentage of correct classification for each 
method 
                        best.correct.Kmeans = max(correct.Kmeans) 
                        best.correct.WKmeans = max(correct.WKmeans) 
                         
                        # create the results for this iteration 
                        iteration.result = c(i, 
                                             best.correct.Kmeans, 
                                             best.correct.WKmeans) 
                         
                        # return the results for this iterations 
                        return(iteration.result) 
                         
                      } 
     
    # stop the cluster 
    stopCluster(cl)   
     
  }) 
 
  # find the average percentage of correct classification for each method 
  results2 = colMeans(results)[2:3] 
 
  # find the average percentage of correct classification for each method for this 
probability 
  results2 = colMeans(results)[2:5] 
   
  # print the results for this probability 
  print(results2) 
 
# quantile bias simulation #### 
 
# set the number of iterations 
num.iterations = 1000 
 
# initialize the vector of estimated quantiles for each method  
est.q.DN = NULL 
est.q.SP = NULL 
 
# cycle through the iterations 
for (i in 1:num.iterations){ 
   
  # set seed for reproducibility 
  set.seed(i) 
   
  # sample 100000 observations from a random distribution 
  x = rnorm(100000) 
   
  # generate the support points 
  SP = sp(100, 
          1, 
          ini = as.matrix(x))$sp 
   
  # generate data nuggets 
  for.DN = create.DN2(x = x, 
                      RS.num = 1000, 
                      DN.num = 100) 
   
  # extract data nuggets 
  DN.info = for.DN$`Data Nuggets` 
   
  # order data nuggets 
  DN.info = DN.info[order(DN.info[, "Center1"]), ] 
   
  # extract data nugget centers and weights 
  DN.centers = DN.info[, "Center1"] 
  DN.weights = DN.info[, "Weight"]/length(x) 
   
  # create true probabilities for quantile values 
  true.p = seq(.95,.99,.01) 
   
  # calculate the estimated quantiles according to the support point method 
  est.q.SP = cbind(est.q.SP, 
                   quantile(SP, 
                            true.p)) 
   
  # calculate the estimated quantiles according to the data nuggets method 
  est.q.DN = cbind(est.q.DN, 
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                   approx(cumsum(DN.weights), 
                          DN.centers, 
                          true.p)$y) 
   
} 
 
# find the bias for each iteration/percentile combination 
SP.Bias = t(est.q.SP-qnorm(true.p)) 
DN.Bias = t(est.q.DN-qnorm(true.p)) 
 
# initialize the the vector that will store the bias results 
SP.Bias.vec = SP.Bias[, 1] 
DN.Bias.vec = DN.Bias[, 1] 
 
# cycle through the percentiles 
for (i in 95:99){ 
   
  SP.Bias.vec = c(SP.Bias.vec, 
                  SP.Bias[, i]) 
   
  DN.Bias.vec = c(DN.Bias.vec, 
                  DN.Bias[, i]) 
   
} 
 
# form the boxplot data 
BP.data = data.frame(Percentile = c(rep(paste(c(95:99), 
                                              "%", 
                                              sep = ""), 
                                        each = num.iterations), 
                                    rep(paste(c(95:99), 
                                              "%", 
                                              sep = ""), 
                                        each = num.iterations)), 
                     Method = c(rep("Support Points", 5*num.iterations), 
                                rep("Data Nuggets", 5*num.iterations)), 
                     Bias = c(SP.Bias.vec, 
                              DN.Bias.vec)) 
 
# factor the method variable 
BP.data[, "Method"] = factor(BP.data[, "Method"], 
                             levels = unique(BP.data[, "Method"])) 
 
# create the boxplot 
ggplot(BP.data, 
       aes(x = Percentile, 
           y = Bias)) + 
  facet_wrap(~Method) + 
  geom_boxplot() + 
  scale_y_continuous("Quantile Estimate Bias") + 
  geom_hline(yintercept = 0, 
             col = "green", 
             linetype = "dashed") + 
  ggtitle("Quantile Estimate Bias for Upper 5% of Normal Distribution") + 
  theme_gray(base_size = 18) + 
  theme(plot.title = element_text(hjust = 0.5), 
        plot.subtitle = element_text(hjust = 0.5)) 
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Appendix B: Selected R Code for Chapter 2 

Section 3 

# load the NMA Function 
source("NMA Package/NMA Function.R") 
 
# create the Moore-Penrose Inverse Function 
MP.inv = function(X){ 
 
  return(solve(X - matrix(1,ncol(X),ncol(X))/ncol(X)) +  
           matrix(1,ncol(X),ncol(X))/ncol(X)) 
 
} 
 
# Code for dataset A #### 
 
# load Dataset A 
Dataset.A = read.csv("data/Dataset A.csv") 
 
 
# fit GLS method (baseline Trt. C) 
NMA.fit = NMA.function(contrast = FALSE,  
                       dataset = Dataset.B,  
                       check.netmeta = FALSE, 
                       method = "Regression", 
                       baseline.choices = c(1,3)) 
 
 
# retrieve the contrast summary measures 
contrast.data = NMA.fit$`Contrast Data` 
 
# Code for GLS checkpoints for Dataset A #### 
 
# Calculate numbers for design AB #### 
 
# retrieve sample mean differences, standard errors, and weights 
d.AB.1 = contrast.data[1,1] 
s.AB.1 = contrast.data[1,2] 
W.AB.1 = 1/(s.AB.1)^2 
d.AB.2 = contrast.data[2,1] 
s.AB.2 = contrast.data[2,2] 
W.AB.2 = 1/(s.AB.2)^2 
 
# calculate effect size estimate and standard error squared 
d.hat.AB = (d.AB.1*W.AB.1 + d.AB.2*W.AB.2)/(W.AB.1 + W.AB.2) 
s2.d.hat.AB.1 = 1/(W.AB.1 + W.AB.2) 
 
# calculate effect size estimate and standard error squared 
d.hat.AB = (d.AB.1*W.AB.1 + d.AB.2*W.AB.2)/(W.AB.1 + W.AB.2) 
s2.d.hat.AB.1 = 1/(W.AB.1 + W.AB.2) 
 
# Calculate numbers for design ABCD #### 
 
# create sample mean difference vectors, covariance matrices, and weight matrices 
(baseline Trt. C) 
d.ABCD.1 = c(contrast.data[4,1],  
             contrast.data[6,1], 
             contrast.data[8,1]) 
 
V.ABCD.1 = matrix(c(contrast.data[4,2],Dataset.B[7,2],Dataset.B[7,2], 
                    Dataset.B[7,2],contrast.data[6,2],Dataset.B[7,2], 
                    Dataset.B[7,2],Dataset.B[7,2],contrast.data[8,2])^2, 
                  nrow = 3, 
                  byrow = TRUE) 
 
V.ABCD.1[3,2] = -V.ABCD.1[3,2] 
V.ABCD.1[2,3] = -V.ABCD.1[2,3] 
V.ABCD.1[3,1] = -V.ABCD.1[3,1] 
V.ABCD.1[1,3] = -V.ABCD.1[1,3] 
 
W.ABCD.1 = solve(V.ABCD.1) 
 
# Calculate the effect size estimate vector, covariance matrix, and weight matrix #### 
W.ABCD = W.ABCD.1 
d.hat.ABCD = solve(W.ABCD)%*%(W.ABCD.1%*%d.ABCD.1) 
V.ABCD = solve(W.ABCD) 
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# combine all effect size estimates into one vector 
y.gls = c(d.hat.AB, 
          d.hat.ABCD) 
 
# create variance and weight matrix for initial estimates 
V.gls = matrix(0, 
               nrow = 4, 
               ncol = 4) 
 
V.gls[1,1] = s2.d.hat.AB.1 
V.gls[2:4,2:4] = V.ABCD 
 
W.gls = solve(V.gls) 
 
# Calculate the GLS fixed effects estimates #### 
 
# create H matrix 
H = matrix(c(1,0,0, 
             0,1,0, 
             -1,1,0, 
             0,0,1), 
           byrow = TRUE, 
           nrow = 4) 
 
# create X matrix 
X = H 
 
# calculate the GLS effect size estimates and the associated covariance matrix 
d.hat.gls = H%*%solve(t(X)%*%W.gls%*%X)%*%t(X)%*%W.gls%*%y.gls 
 
# Code for ENT checkpoints for Dataset A #### 
 
# retrieve the sample mean differences from the contrast data 
y.ent = contrast.data[, 1] 
 
# create the sub edge-vertex incidence matrix for design AB  
B.AB = c(1,-1,0,0) 
 
# create the sub edge-vertex incidence matrix for design ABCD  
B.ABCD = matrix(c(1,-1,0,0, 
                  1,0,-1,0, 
                  1,0,-0,-1, 
                  0,1,-1,0, 
                  0,1,0,-1, 
                  0,0,1,-1), 
                nrow = 6, 
                byrow = TRUE) 
 
# create the edge-vertex incidence matrix 
B = rbind(B.AB, 
          B.AB, 
          B.ABCD) 
 
# create the sub variance matrices for experiments with design ABCD 
V1 = matrix(c(0,contrast.data[3,2],contrast.data[4,2],contrast.data[5,2], 
              contrast.data[3,2],0,contrast.data[6,2],contrast.data[7,2], 
              contrast.data[4,2],contrast.data[6,2],0,contrast.data[8,2], 
              contrast.data[5,2],contrast.data[7,2],contrast.data[8,2],0)^2, 
            byrow = TRUE, 
            nrow = 4) 
 
# create the Lplus matrices for experiments with design ABCD 
L1.plus = (-1/(2*(4^2)))*t(B.ABCD)%*%B.ABCD%*%V1%*%t(B.ABCD)%*%B.ABCD 
 
# create the L matrices for experiments with design ABCD 
L1 = MP.inv(L1.plus) 
 
# retrieve the weights for experiments with design ABCD 
W1 = -c(L1[1,2],L1[1,3],L1[1,4],L1[2,3],L1[2,4],L1[3,4]) 
 
# create the weight matrix 
W.ent = diag(c(1/(contrast.data[1:2,2])^2,W1)) 
 
# create L matrix 
L = t(B)%*%W.ent%*%B 
 
# create Lplus matrix 
L.plus = MP.inv(L) 
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# create effect size estimate vector 
d.hat.ent = B%*%L.plus%*%t(B)%*%W.ent%*%y.ent 
 
# Code for dataset B #### 
 
# load Dataset B 
Dataset.B = read.csv("data/Dataset B.csv") 
 
# fit GLS method (baseline Trt.A) 
NMA.fit = NMA.function(contrast = FALSE,  
                       dataset = Dataset.A,  
                       check.netmeta = FALSE, 
                       method = "Regression") 
 
contrast.data = NMA.fit$`Contrast Data` 
 
# Code for GLS checkpoints for Dataset A #### 
 
# Calculate numbers for design AB #### 
 
# retrieve sample mean differences, standard errors, and weights 
d.AB.1 = contrast.data[8,1] 
s.AB.1 = contrast.data[8,2] 
W.AB.1 = 1/(s.AB.1)^2 
 
# calculate effect size estimate and standard error squared 
d.hat.AB = d.AB.1*W.AB.1/W.AB.1 
s2.d.hat.AB.1 = 1/W.AB.1 
 
# Calculate numbers for design BC #### 
 
# retrieve sample mean differences, standard errors, and weights 
d.BC.1 = contrast.data[7,1] 
s.BC.1 = contrast.data[7,2] 
W.BC.1 = 1/(s.BC.1)^2 
d.BC.2 = contrast.data[9,1] 
s.BC.2 = contrast.data[9,2] 
W.BC.2 = 1/(s.BC.2)^2 
 
# calculate effect size estimate and standard error squared 
d.hat.BC = (d.BC.1*W.BC.1 + d.BC.2*W.BC.2)/(W.BC.1 + W.BC.2) 
s2.d.hat.BC.1 = 1/(W.BC.1 + W.BC.2) 
 
# Calculate numbers for design ABC #### 
 
# create sample mean difference vectors, covariance matrices, and weight matrices 
(baseline Trt. A) 
d.ABC.1 = c(contrast.data[1,1], contrast.data[2,1]) 
 
V.ABC.1 = matrix(c(contrast.data[1,2],Dataset.A[1,2], 
                   Dataset.A[1,2],contrast.data[2,2])^2, 
                 nrow = 2, 
                 byrow = TRUE) 
 
W.ABC.1 = solve(V.ABC.1) 
 
d.ABC.2 = c(contrast.data[4,1], contrast.data[5,1]) 
 
V.ABC.2 = matrix(c(contrast.data[4,2],Dataset.A[4,2], 
                   Dataset.A[4,2],contrast.data[5,2])^2, 
                 nrow = 2, 
                 byrow = TRUE) 
 
W.ABC.2 = solve(V.ABC.2) 
 
d.ABC.3 = c(contrast.data[10,1], contrast.data[11,1]) 
 
V.ABC.3 = matrix(c(contrast.data[10,2],Dataset.A[13,2], 
                   Dataset.A[13,2],contrast.data[11,2])^2, 
                 nrow = 2, 
                 byrow = TRUE) 
 
W.ABC.3 = solve(V.ABC.3) 
 
# Calculate the effect size estimate vector, covariance matrix, and weight matrix #### 
W.ABC = W.ABC.1 + W.ABC.2 + W.ABC.3 
d.hat.ABC = solve(W.ABC)%*%(W.ABC.1%*%d.ABC.1 + W.ABC.2%*%d.ABC.2 + W.ABC.3%*%d.ABC.3) 
V.ABC = solve(W.ABC) 
 
# combine all effect size estimates into one vector 
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y.gls = c(d.hat.ABC, 
          d.hat.BC, 
          d.hat.AB) 
 
# create variance and weight matrix for intitial estimates 
V.gls = matrix(0, 
               nrow = 4, 
               ncol = 4) 
 
V.gls[1:2,1:2] = V.ABC 
V.gls[3,3] = s2.d.hat.BC.1 
V.gls[4,4] = s2.d.hat.AB.1 
 
W.gls = solve(V.gls) 
 
# Calculate and check the GLS fixed effects estimates #### 
 
# create H matrix 
H = matrix(c(1,0, 
             0,1, 
             -1,1), 
           byrow = TRUE, 
           nrow = 3) 
 
# create X matrix 
X = matrix(c(1,0, 
             0,1, 
             -1,1, 
             1,0), 
           byrow = TRUE, 
           nrow = 4) 
 
# calculate the GLS effect size estimates and the associated covariance matrix 
d.hat.gls = H%*%solve(t(X)%*%W.gls%*%X)%*%t(X)%*%W.gls%*%y.gls 
 
# Code for ENT checkpoints for Dataset A #### 
 
# retrieve the sample mean differences from the contrast data 
y.ent = contrast.data[, 1] 
 
# create the sub edge-vertex incidence matrix for design ABC  
B.ABC = matrix(c(1,-1,0, 
                 1,0,-1, 
                 0,1,-1), 
               nrow = 3, 
               byrow = TRUE) 
 
# create the sub edge-vertex incidence matrix for design BC  
B.BC = c(0,1,-1) 
 
# create the sub edge-vertex incidence matrix for design AB  
B.AB = c(1,-1,0) 
 
# create the edge-vertex incidence matrix 
B = rbind(B.ABC, 
          B.ABC, 
          B.BC, 
          B.AB, 
          B.BC, 
          B.ABC) 
 
# create the sub variance matrices for experiments with design ABC 
V1 = matrix(c(0,contrast.data[1,2],contrast.data[2,2], 
              contrast.data[1,2],0,contrast.data[3,2], 
              contrast.data[2,2],contrast.data[3,2],0)^2, 
            byrow = TRUE, 
            nrow = 3) 
 
V2 = matrix(c(0,contrast.data[4,2],contrast.data[5,2], 
              contrast.data[4,2],0,contrast.data[6,2], 
              contrast.data[5,2],contrast.data[6,2],0)^2, 
            byrow = TRUE, 
            nrow = 3) 
 
V3 = matrix(c(0,contrast.data[10,2],contrast.data[11,2], 
              contrast.data[10,2],0,contrast.data[12,2], 
              contrast.data[11,2],contrast.data[12,2],0)^2, 
            byrow = TRUE, 
            nrow = 3) 
 
# create the Lplus matrices for experiments with design ABC 
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L1.plus = (-1/(2*(3^2)))*t(B.ABC)%*%B.ABC%*%V1%*%t(B.ABC)%*%B.ABC 
L2.plus = (-1/(2*(3^2)))*t(B.ABC)%*%B.ABC%*%V2%*%t(B.ABC)%*%B.ABC 
L3.plus = (-1/(2*(3^2)))*t(B.ABC)%*%B.ABC%*%V3%*%t(B.ABC)%*%B.ABC 
 
# create the L matrices for experiments with design ABC 
L1 = MP.inv(L1.plus) 
L2 = MP.inv(L2.plus) 
L3 = MP.inv(L3.plus) 
 
# retrieve the weights for experiments with design ABC 
W1 = -c(L1[1,2],L1[1,3],L1[2,3]) 
W2 = -c(L2[1,2],L2[1,3],L2[2,3]) 
W3 = -c(L3[1,2],L3[1,3],L3[2,3]) 
 
# create the weight matrix 
W.ent = diag(c(W1,W2,1/(contrast.data[7:9,2])^2,W3)) 
 
# create L matrix 
L = t(B)%*%W.ent%*%B 
 
# create Lplus matrix 
L.plus = MP.inv(L) 
 
# create effect size estimate vector 
d.hat.ent = B%*%L.plus%*%t(B)%*%W.ent%*%y.ent 
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Appendix C: Selected R Code for Chapter 3 

Section 2 

# load packages 
library(ggplot2) 
 
# Create data for first plot of Figure 15 #### 
 
# assign probabilities 
p1 = .1 
p2 = .55 
p3 = .35 
 
# create data 
prob.plot.data = data.frame(x = c(-1.65, 
                                  mean(c(qnorm(p1),qnorm(p1+p2))), 
                                  1.65), 
                            y = 0.065) 
 
quant.plot.data = data.frame(x = c(qnorm(p1), 
                                   qnorm(p1+p2))-0.15, 
                             y = 0.45) 
 
# Create first plot for Figure 15 #### 
ggplot(data = data.frame(X = 0), 
       aes(x = X)) + 
  stat_function(fun = dnorm, 
                args = list(mean = 0, sd = 1)) + 
  scale_x_continuous("", 
                     limits = c(-3.5,3.5), 
                     breaks = -3:3) + 
  scale_y_continuous("", 
                     limits = c(0,.475)) + 
  stat_function(fun = dnorm,  
                xlim = c(-3.5, qnorm(p1)), 
                geom = "area",  
                fill = "green", 
                color = "black") + 
  stat_function(fun = dnorm,  
                xlim = c(qnorm(p1), qnorm(p1+p2)), 
                geom = "area",  
                fill = "yellow", 
                color = "black") + 
  stat_function(fun = dnorm,  
                xlim = c(qnorm(p1+p2), 3.5), 
                geom = "area",  
                fill = "red", 
                color = "black") + 
  geom_vline(xintercept = c(qnorm(p1),  
                            qnorm(p1+p2)), 
             size = 1) + 
  geom_hline(yintercept = 0, 
             size = 0.25) + 
  geom_point(aes(x = qnorm(p1), 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = qnorm(p1+p2), 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_text(data = prob.plot.data, 
            aes(x = x, 
                y = y), 
            label = c(expression(p["1"]), 
                      expression(p["2"]), 
                      expression(p["3"])), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(data = quant.plot.data, 
            aes(x = x, 
                y = y), 
            label = c(expression(q["1"]), 
                      expression(q["2"])), 
            size = 10, 
            inherit.aes = FALSE) + 
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  geom_text(x = qnorm(p1)+.35, 
            y = .02, 
            label = expression("("*Q[1]*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = qnorm(p1+p2)+.35, 
            y = .02, 
            label = expression("("*Q[2]*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
  ggtitle("Initial Pain Score Distribution", 
          subtitle = "Before Treatment with Compound A") + 
  theme(text = element_text(size = 28), 
        plot.title = element_text(hjust = 0.5), 
        plot.subtitle = element_text(hjust = 0.5), 
        axis.text.y = element_blank(), 
        axis.ticks.y = element_blank()) 
 
# Create data for second plot of Figure 15 #### 
 
# assign delta 
delta.data = 0.6 
 
# create data 
prob.plot.data2 = data.frame(x = c(-1.65, 
                                   mean(c(qnorm(p1),qnorm(p1+p2))) + delta.data, 
                                   1.65), 
                             y = 0.065) 
 
quant.plot.data2 = data.frame(x = c(qnorm(p1), 
                                    qnorm(p1+p2)) + delta.data - 0.15, 
                              y = 0.45) 
 
# create second plot of Figure 15 #### 
ggplot(data = data.frame(X = 0), 
       aes(x = X)) + 
  stat_function(fun = dnorm, 
                args = list(mean = 0, sd = 1)) + 
  scale_x_continuous("", 
                     limits = c(-3.5,3.5), 
                     breaks = -3:3) + 
  scale_y_continuous("", 
                     limits = c(0,.475)) + 
  stat_function(fun = dnorm,  
                xlim = c(-3.5, qnorm(p1) + delta.data), 
                geom = "area",  
                fill = "green", 
                color = "black") + 
  stat_function(fun = dnorm,  
                xlim = c(qnorm(p1), qnorm(p1+p2)) + delta.data, 
                geom = "area",  
                fill = "yellow", 
                color = "black") + 
  stat_function(fun = dnorm,  
                xlim = c(qnorm(p1+p2) + delta.data, 3.5), 
                geom = "area",  
                fill = "red", 
                color = "black") + 
  geom_vline(xintercept = c(qnorm(p1),  
                            qnorm(p1+p2)) + delta.data, 
             size = 1) + 
  geom_hline(yintercept = 0, 
             size = 0.25) + 
  geom_point(aes(x = qnorm(p1) + delta.data, 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = qnorm(p1+p2) + delta.data, 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_text(data = prob.plot.data2, 
            aes(x = x, 
                y = y), 
            label = c(expression(p["1"]^"T"), 
                      expression(p["2"]^"T"), 
                      expression(p["3"]^"T")), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(data = quant.plot.data2, 
            aes(x = x, 
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                y = y), 
            label = c(expression(q["1"]^"'"), 
                      expression(q["2"]^"'")), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = qnorm(p1) + delta.data + .4, 
            y = .02, 
            label = expression("("*Q[1]*"+"*delta*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = qnorm(p1+p2) + delta.data + .4, 
            y = .02, 
            label = expression("("*Q[2]*"+"*delta*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
  ggtitle("Hypothesized Pain Score Distribution", 
          subtitle = "After Treatment with Compound A") + 
  theme(text = element_text(size = 28), 
        plot.title = element_text(hjust = 0.5), 
        plot.subtitle = element_text(hjust = 0.5), 
        axis.text.y = element_blank(), 
        axis.ticks.y = element_blank()) 
 

Section 4 

# load packages 
library(ggplot2) 
library(data.table) 
 
# load functions 
source("multinorm Package/corr est.R") 
source("multinorm Package/create exp cells.R") 
source("multinorm Package/create obs cells.R") 
source("functions/pre gen stats.R") 
source("functions/gen stats.R") 
 
 
# Create plot for Figure 16 #### 
 
# Create data #### 
tmp.table = create.exp.cells(rho = 0, 
                             v.cuts = -1,  
                             h.cuts = -1.5) 
 
# retrieve the data for creating the sections 
polydata = corr.est3(rho = 0, 
                     prob.obs = tmp.table) 
 
# convert the infinity values 
 
# initialize the data for geom_polygon 
polydata2 = data.frame(ID = rep(1:nrow(polydata), each = 4), 
                       fill.value = rep(paste(polydata[,2], 
                                              polydata[,3], 
                                              sep = ""), each = 4), 
                       X.coord = 0, 
                       Y.coord = 0, 
                       X.center = 0, 
                       Y.center = 0) 
 
# cycle through the sections 
for (i in 1:nrow(polydata)){ 
   
  # retrieve the information for this section 
  section.info = as.numeric(polydata[i,4:7]) 
   
  # retrieve the X coordinates for this section 
  polydata2[(1+4*(i-1)):(4*i), 3] = c(section.info[1], 
                                      section.info[3], 
                                      section.info[3], 
                                      section.info[1]) 
   
  # retrieve the Y coordinates for this section 
  polydata2[(1+4*(i-1)):(4*i), 4] = c(section.info[2], 
                                      section.info[2], 
                                      section.info[4], 
                                      section.info[4]) 
   
  # convert infinities to 4 for calculating center 
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  section.info[which(section.info == -Inf)] = -4   
  section.info[which(section.info == Inf)] = 4 
   
  # retrieve the X center 
  polydata2[(1+4*(i-1)):(4*i), 5] = mean(c(section.info[1], 
                                           section.info[3])) 
   
  # retrieve the Y center   
  polydata2[(1+4*(i-1)):(4*i), 6] = mean(c(section.info[2], 
                                           section.info[4])) 
   
} 
 
# retrieve the horizontal and vertical dividers 
v.dashed = unique(polydata[, 4])[-1] 
h.dashed = unique(polydata[, 5])[-length(unique(polydata[, 5]))] 
 
# create plot #### 
ggplot(data = data.frame(X = 0), 
       aes(x = X)) + 
  scale_x_continuous("", 
                     limits = c(-4,4)) + 
  scale_y_continuous("", 
                     limits = c(-4,4)) + 
  geom_polygon(data = polydata2, 
               aes(x = X.coord,  
                   y = Y.coord, 
                   fill = fill.value), 
               inherit.aes = FALSE) + 
  scale_fill_manual("", 
                    values = c("green", 
                               rep("yellow",2), 
                               "orange")) + 
  geom_text(data = polydata2, 
            aes(x = X.center, 
                y = Y.center, 
                label = fill.value), 
            size = 10) + 
  geom_vline(xintercept = v.dashed[1], 
             size = 1, 
             linetype = "dashed") + 
  geom_hline(yintercept = h.dashed[1], 
             size = 1, 
             linetype = "dashed") + 
  geom_vline(xintercept = 0, 
             size = 1) + 
  geom_hline(yintercept = 0, 
             size = 1) + 
  geom_point(aes(x = v.dashed[1], 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = 0, 
                 y = h.dashed[1]), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_text(x = 3.9, 
            y = -.25, 
            label = expression(X[1]), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = .15, 
            y = 3.9, 
            label = expression(X[2]), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -1.2, 
            y = 2, 
            label = expression(q[11]), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = 3, 
            y = -1.7, 
            label = expression(q[21]), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -.6, 
            y = .4, 
            label = expression("("*Q[11]*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
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  geom_text(x = .4, 
            y = -1.1, 
            label = expression("(0,"*Q[21]*")"), 
            size = 10, 
            inherit.aes = FALSE) + 
  ggtitle("Bivariate Distribution Layout", 
          subtitle = "2 Levels For Each Variable") + 
  theme(text = element_text(size = 28), 
        plot.title = element_text(hjust = 0.5), 
        plot.subtitle = element_text(hjust = 0.5), 
        axis.text.x = element_blank(), 
        axis.ticks.x = element_blank(), 
        axis.text.y = element_blank(), 
        axis.ticks.y = element_blank(), 
        legend.position = "none") 
 
# Create top plot for Figure 17 #### 
# Create data #### 
 
tmp.table = create.exp.cells(rho = 0, 
                             v.cuts = c(-2, .75),  
                             h.cuts = c(-1.75,1)) 
 
# retrieve the data for creating the sections 
polydata = corr.est3(rho = 0, 
                     prob.obs = tmp.table) 
 
# convert the infinity values 
 
# initialize the data for geom_polygon 
polydata2 = data.frame(ID = rep(1:nrow(polydata), each = 4), 
                       fill.value = rep(paste(polydata[,2], 
                                              polydata[,3], 
                                              sep = ""), each = 4), 
                       X.coord = 0, 
                       Y.coord = 0, 
                       X.center = 0, 
                       Y.center = 0) 
 
# cycle through the sections 
for (i in 1:nrow(polydata)){ 
   
  # retrieve the information for this section 
  section.info = as.numeric(polydata[i,4:7]) 
   
  # retrieve the X coordinates for this section 
  polydata2[(1+4*(i-1)):(4*i), 3] = c(section.info[1], 
                                      section.info[3], 
                                      section.info[3], 
                                      section.info[1]) 
   
  # retrieve the Y coordinates for this section 
  polydata2[(1+4*(i-1)):(4*i), 4] = c(section.info[2], 
                                      section.info[2], 
                                      section.info[4], 
                                      section.info[4]) 
   
  # convert infinities to 4 for calculating center 
  section.info[which(section.info == -Inf)] = -4   
  section.info[which(section.info == Inf)] = 4 
   
  # retrieve the X center 
  polydata2[(1+4*(i-1)):(4*i), 5] = mean(c(section.info[1], 
                                           section.info[3])) 
   
  # retrieve the Y center   
  polydata2[(1+4*(i-1)):(4*i), 6] = mean(c(section.info[2], 
                                           section.info[4])) 
   
} 
 
# retrieve the horizontal and vertical dividers 
v.dashed = unique(polydata[, 4])[-1] 
h.dashed = unique(polydata[, 5])[-length(unique(polydata[, 5]))] 
 
# Create plot #### 
ggplot(data = data.frame(X = 0), 
       aes(x = X)) + 
  scale_x_continuous("", 
                     limits = c(-4,4)) + 
  scale_y_continuous("", 
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                     limits = c(-4,4)) + 
  geom_polygon(data = polydata2, 
               aes(x = X.coord,  
                   y = Y.coord, 
                   fill = fill.value), 
               inherit.aes = FALSE) + 
  scale_fill_manual("", 
                    values = c("green", 
                               "yellow", 
                               "orange", 
                               rep("yellow",2), 
                               "orange", 
                               rep("orange",2), 
                               "red")) + 
  geom_text(data = polydata2, 
            aes(x = X.center, 
                y = Y.center, 
                label = fill.value), 
            size = 10) + 
  geom_vline(xintercept = v.dashed[1], 
             size = 1, 
             linetype = "dashed") + 
  geom_vline(xintercept = v.dashed[2], 
             size = 1, 
             linetype = "dashed") + 
  geom_hline(yintercept = h.dashed[1], 
             size = 1, 
             linetype = "dashed") + 
  geom_hline(yintercept = h.dashed[2], 
             size = 1, 
             linetype = "dashed") + 
  geom_vline(xintercept = 0, 
             size = 1) + 
  geom_hline(yintercept = 0, 
             size = 1) + 
  geom_point(aes(x = -2, 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = .75, 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = 0, 
                 y = -1.75), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = 0, 
                 y = 1), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_text(x = 3.9, 
            y = -.25, 
            label = "U", 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = .15, 
            y = 3.9, 
            label = "L", 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -2.2, 
            y = 2.5, 
            label = expression(q[11]), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = .55, 
            y = 2.5, 
            label = expression(q[12]), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = 3, 
            y = -1.95, 
            label = expression(q[21]), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = 3, 
            y = .8, 
            label = expression(q[22]), 
            size = 10, 
            inherit.aes = FALSE) + 
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  geom_text(x = -1.6, 
            y = .35, 
            label = expression("("*Q[11]*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = 1.15, 
            y = .35, 
            label = expression("("*Q[12]*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -.4, 
            y = -1.35, 
            label = expression("(0,"*Q[21]*")"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -.4, 
            y = 1.35, 
            label = expression("(0,"*Q[22]*")"), 
            size = 10, 
            inherit.aes = FALSE) + 
  ggtitle("Upper and Lower Pain Score Distribution", 
          subtitle = "Before Treatment with Compound C") + 
  theme(text = element_text(size = 28), 
        plot.title = element_text(hjust = 0.5), 
        plot.subtitle = element_text(hjust = 0.5), 
        axis.text.x = element_blank(), 
        axis.ticks.x = element_blank(), 
        axis.text.y = element_blank(), 
        axis.ticks.y = element_blank(), 
        legend.position = "none") 
 
# Create bottom plot for Figure 17 #### 
# Create data #### 
 
delta.data = c(.75,1) 
 
tmp.table = create.exp.cells(rho = 0, 
                             v.cuts = c(-2, .75) + delta.data[1],  
                             h.cuts = c(-1.75,1) + delta.data[2]) 
 
# retrieve the data for creating the sections 
polydata = corr.est3(rho = 0, 
                     prob.obs = tmp.table) 
 
# initialize the data for geom_polygon 
polydata2 = data.frame(ID = rep(1:nrow(polydata), each = 4), 
                       fill.value = rep(paste(polydata[,2], 
                                              polydata[,3], 
                                              sep = ""), each = 4), 
                       X.coord = 0, 
                       Y.coord = 0, 
                       X.center = 0, 
                       Y.center = 0) 
 
# cycle through the sections 
for (i in 1:nrow(polydata)){ 
   
  # retrieve the information for this section 
  section.info = as.numeric(polydata[i,4:7]) 
   
  # retrieve the X coordinates for this section 
  polydata2[(1+4*(i-1)):(4*i), 3] = c(section.info[1], 
                                      section.info[3], 
                                      section.info[3], 
                                      section.info[1]) 
   
  # retrieve the Y coordinates for this section 
  polydata2[(1+4*(i-1)):(4*i), 4] = c(section.info[2], 
                                      section.info[2], 
                                      section.info[4], 
                                      section.info[4]) 
   
  # convert infinities to 4 for calculating center 
  section.info[which(section.info == -Inf)] = -4   
  section.info[which(section.info == Inf)] = 4 
   
  # retrieve the X center 
  polydata2[(1+4*(i-1)):(4*i), 5] = mean(c(section.info[1], 
                                           section.info[3])) 
   
  # retrieve the Y center   
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  polydata2[(1+4*(i-1)):(4*i), 6] = mean(c(section.info[2], 
                                           section.info[4])) 
   
} 
 
# retrieve the horizontal and vertical dividers 
v.dashed = unique(polydata[, 4])[-1] 
h.dashed = unique(polydata[, 5])[-length(unique(polydata[, 5]))] 
 
# Create plot #### 
ggplot(data = data.frame(X = 0), 
       aes(x = X)) + 
  scale_x_continuous("", 
                     limits = c(-4,4)) + 
  scale_y_continuous("", 
                     limits = c(-4,4)) + 
  geom_polygon(data = polydata2, 
               aes(x = X.coord,  
                   y = Y.coord, 
                   fill = fill.value), 
               inherit.aes = FALSE) + 
  scale_fill_manual("", 
                    values = c("green", 
                               "yellow", 
                               "orange", 
                               rep("yellow",2), 
                               "orange", 
                               rep("orange",2), 
                               "red")) + 
  geom_text(data = polydata2, 
            aes(x = X.center, 
                y = Y.center, 
                label = fill.value), 
            size = 10) + 
  geom_vline(xintercept = v.dashed[1], 
             size = 1, 
             linetype = "dashed") + 
  geom_vline(xintercept = v.dashed[2], 
             size = 1, 
             linetype = "dashed") + 
  geom_hline(yintercept = h.dashed[1], 
             size = 1, 
             linetype = "dashed") + 
  geom_hline(yintercept = h.dashed[2], 
             size = 1, 
             linetype = "dashed") + 
  geom_vline(xintercept = 0, 
             size = 1) + 
  geom_hline(yintercept = 0, 
             size = 1) + 
  geom_point(aes(x = v.dashed[1], 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = v.dashed[2], 
                 y = 0), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = 0, 
                 y = h.dashed[1]), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_point(aes(x = 0, 
                 y = h.dashed[2]), 
             size = 5, 
             inherit.aes = FALSE) + 
  geom_text(x = 3.9, 
            y = -.25, 
            label = "U", 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = .15, 
            y = 3.9, 
            label = "L", 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -2.2 + delta.data[1], 
            y = 2.5, 
            label = expression(q[11]^"'"), 
            size = 10, 
            inherit.aes = FALSE) + 
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  geom_text(x = .55  + delta.data[1], 
            y = 2.5, 
            label = expression(q[12]^"'"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = 3, 
            y = -1.95 + delta.data[2] -.15, 
            label = expression(q[21]^"'"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = 3, 
            y = .8 + delta.data[2] -.15, 
            label = expression(q[22]^"'"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -1.85, 
            y = .35, 
            label = expression("("*Q[11]*"+"*delta["U"]*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = .9, 
            y = .35, 
            label = expression("("*Q[12]*"+"*delta["U"]*",0)"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -.55, 
            y = -1.1, 
            label = expression("(0,"*Q[21]*"+"*delta["L"]*")"), 
            size = 10, 
            inherit.aes = FALSE) + 
  geom_text(x = -.55, 
            y = 1.65, 
            label = expression("(0,"*Q[22]*"+"*delta["L"]*")"), 
            size = 10, 
            inherit.aes = FALSE) + 
  ggtitle("Hypothesized Upper and Lower Pain Score Distribution", 
          subtitle = "After Treatment with Compound C") + 
  theme(text = element_text(size = 28), 
        plot.title = element_text(hjust = 0.5), 
        plot.subtitle = element_text(hjust = 0.5), 
        axis.text.x = element_blank(), 
        axis.ticks.x = element_blank(), 
        axis.text.y = element_blank(), 
        axis.ticks.y = element_blank(), 
        legend.position = "none") 
 
# create the vector of sample sizes 
SS.sim.vec = seq(20,50,10) 
 
# create the vector of true rhos 
rho.sim.vec = seq(-.99,.99,.01) 
 
# initialize the graph data 
graph.data3 = data.frame(True.Rho = rep(rho.sim.vec, each = length(SS.sim.vec)), 
                         Sample.Size = rep(SS.sim.vec, length(rho.sim.vec)), 
                         Rho1.Bias = 0, 
                         Rho2.Bias = 0, 
                         Rho3.Bias = 0) 
 
 
# set number of iterations 
num.iterations = 1000 
 
# 1st configuration #### 
v.cuts = 0 
h.cuts = 0 
 
# conduct simulation for configuration 1 
for (rhos in rho.sim.vec){ 
   
  for (SS in SS.sim.vec){ 
     
    tmp.index = which(graph.data3[, "True.Rho"] == rhos & graph.data3[, "Sample.Size"] == 
SS) 
     
    tmp.stats = gen.stats(iterations = num.iterations, 
                          N = SS, 
                          true.rho = rhos, 
                          v.cuts = v.cuts, 
                          h.cuts = h.cuts, 
                          no.cores = 7) 
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    graph.data3[tmp.index, "Rho1.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho1 
Bias", "Statistic"]) 
    graph.data3[tmp.index, "Rho2.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho2 
Bias", "Statistic"]) 
    graph.data3[tmp.index, "Rho3.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho3 
Bias", "Statistic"]) 
     
  } 
   
} 
 
# reconfigure data for graphing 
for.bind1 = graph.data3[, 1:3] 
for.bind2 = graph.data3[, c(1:2,4)] 
for.bind3 = graph.data3[, c(1:2,5)] 
 
colnames(for.bind1)[3] = "Bias" 
colnames(for.bind2)[3] = "Bias" 
colnames(for.bind3)[3] = "Bias" 
 
graph.data4 = rbind.data.frame(for.bind1, 
                               for.bind2, 
                               for.bind3) 
 
graph.data4[, "Estimator"] = rep(c("Xi", 
                                   "Spearman", 
                                   "Kendall"),  
                                 each = nrow(for.bind1)) 
 
graph.data4[, "Estimator"] = factor(graph.data4[, "Estimator"], 
                                    levels = unique(graph.data4[, "Estimator"])) 
 
graph.data4[, "Sample.Size.Label"] = paste("N = ", 
                                           graph.data4[, "Sample.Size"], 
                                           sep = "") 
 
# create Figure 18 
ggplot(data = graph.data4, 
       aes(x = True.Rho, 
           y = Bias, 
           color = Estimator)) + 
  facet_wrap(~ Sample.Size.Label, 
             nrow = 3) + 
  geom_line() + 
  geom_hline(yintercept = 0,  
             color = "green", 
             linetype = "dashed") + 
  scale_x_continuous("True Correlation") + 
  scale_y_continuous("Bias") + 
  scale_color_manual(bquote("Estimator"), 
                     values = c("blue", 
                                "red", 
                                "magenta"),  
                     labels = c(expression(xi*"    "), 
                                expression("Spearman's "*rho*"    "), 
                                expression("Kendall's "*tau)), 
                     guide = guide_legend(title.position = "top", 
                                          ncol = 3, 
                                          keywidth = .25, 
                                          default.unit = "inch", 
                                          override.aes = list(size = 2))) + 
  ggtitle("Estimator Bias for Partition Configuration 1") + 
  theme(text = element_text(size = 28), 
        plot.title = element_text(hjust = 0.5), 
        plot.subtitle = element_text(hjust = 0.5), 
        legend.title = element_blank(), 
        legend.position = "top") 
 
# conduct simulation for configuration 2 
for (rhos in rho.sim.vec){ 
   
  for (SS in SS.sim.vec){ 
     
    tmp.index = which(graph.data3[, "True.Rho"] == rhos & graph.data3[, "Sample.Size"] == 
SS) 
     
    tmp.stats = gen.stats(iterations = num.iterations, 
                          N = SS, 
                          true.rho = rhos, 
                          v.cuts = v.cuts, 
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                          h.cuts = h.cuts, 
                          no.cores = 7) 
 
    graph.data3[tmp.index, "Rho1.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho1 
Bias", "Statistic"]) 
    graph.data3[tmp.index, "Rho2.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho2 
Bias", "Statistic"]) 
    graph.data3[tmp.index, "Rho3.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho3 
Bias", "Statistic"]) 
     
  } 
   
} 
 
# reconfigure data for graphing 
for.bind1 = graph.data3[, 1:3] 
for.bind2 = graph.data3[, c(1:2,4)] 
for.bind3 = graph.data3[, c(1:2,5)] 
 
colnames(for.bind1)[3] = "Bias" 
colnames(for.bind2)[3] = "Bias" 
colnames(for.bind3)[3] = "Bias" 
 
graph.data4 = rbind.data.frame(for.bind1, 
                               for.bind2, 
                               for.bind3) 
 
graph.data4[, "Estimator"] = rep(c("Xi", 
                                   "Spearman", 
                                   "Kendall"),  
                                 each = nrow(for.bind1)) 
 
graph.data4[, "Estimator"] = factor(graph.data4[, "Estimator"], 
                                    levels = unique(graph.data4[, "Estimator"])) 
 
graph.data4[, "Sample.Size.Label"] = paste("N = ", 
                                           graph.data4[, "Sample.Size"], 
                                           sep = "") 
 
# create Figure 19 
ggplot(data = graph.data4, 
       aes(x = True.Rho, 
           y = Bias, 
           color = Estimator)) + 
  facet_wrap(~ Sample.Size.Label, 
             nrow = 3) + 
  geom_line() + 
  geom_hline(yintercept = 0,  
             color = "green", 
             linetype = "dashed") + 
  scale_x_continuous("True Correlation") + 
  scale_y_continuous("Bias") + 
  scale_color_manual("", 
                     values = c("blue", 
                                "red", 
                                "magenta"),  
                     labels = c(expression(xi*"    "), 
                                expression("Spearman's "*rho*"    "), 
                                expression("Kendall's "*tau)), 
                     guide = guide_legend(title.position = "top", 
                                          ncol = 3, 
                                          keywidth = .25, 
                                          default.unit = "inch", 
                                          override.aes = list(size = 2))) + 
  ggtitle("Estimator Bias for Partition Configuration 2") + 
  theme(text = element_text(size = 28), 
        plot.title = element_text(hjust = 0.5), 
        plot.subtitle = element_text(hjust = 0.5), 
        legend.title = element_blank(), 
        legend.position = "top") 
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Appendix D: Publications 

1. Data Nuggets: A Method for Reducing Large Datasets While Maintaining Data 

Structure. Also developing package. (In Preparation, 2019) 

2. A New Understanding of Network Meta-Analysis Regarding Experiments with 

Small Sample Sizes. Also developing package. (In Preparation, 2019) 

3. Determining Adequate Sample Sizes for Analyzing Ordinal Categorical Data with 

Small Range Scales. Also developing package. (In Preparation, 2019)  

4. (2019) Cuccurullo S, Fleming T, (et.al. including Beavers, T). Impact of a Stroke 

Recovery Program Integrating Modified Cardiac Rehabilitation on All-cause 

Mortality, Cardiovascular Performance and Overall Function (Accepted to 

American Journal of Physical Medicine & Rehabilitation pending minor 

revisions) 

5. (2019) Barbayannis G, Chiu I, (et.al. including Beavers, T). Relation Between 

Statewide Hospital Performance Reports on Myocardial Infarction and 

Cardiovascular Outcomes (Submitted to American Journal of Cardiology) 
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