
METHODOLOGY FOR ANALYZING PRECLINICAL EXPERIMENTS

By

TRAYMON EVERETT BEAVERS

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Statistics and Quantitative Biomedicine

Written under the direction of

Javier Cabrera

And approved by

 New Brunswick, New Jersey

May 2019

ii

ABSTRACT OF THE DISSERTATION

Methodology for Analyzing Preclinical Experiments

by TRAYMON EVERETT BEAVERS

Dissertation Director:

Javier Cabrera

The dissertation examines three distinct methodologies for analyzing data yielded from

preclinical experiments:

1) Big data has created new challenges for data analysis, particularly in the realm of

creating meaningful groups or clusters of data or classification. Clustering techniques,

such as K-means or hierarchical clustering, based on pairwise distances of 𝑁 objects, are

popular methods for performing exploratory analysis on large datasets such as these.

Unfortunately, these methods are not always possible to apply to big data due to memory

or time constraints generated by calculations of order 𝑁2. A work-around is to take a

random sample of the large dataset and perform the clustering technique with the reduced

dataset; however, this is not a foolproof solution since the structure of the dataset,

particularly at the edges of the dataset, is not guaranteed to be maintained. In this chapter

we will propose a new solution through the concept of “data nuggets”. These data

nuggets reduce a larger dataset into a small collection of nuggets of data, each containing

a center, weight, and a scale parameter. Once the data is re-expressed as data nuggets, we

may apply algorithms that compute standard statistical methods, such as principal

iii

components analysis (PCA), clustering, classification, etc. We apply the methodology of

data nuggets to the analysis of a dataset from flow cytometry in Biopharmaceutical

research. This was conducted by performing weighted PCA and weighted K-means

clustering on a dataset containing millions of observations (B-cells), and the objective

was to find clusters that characterize cells according to which proteins are active on their

surfaces. An R package was also developed to conduct these methods.

2) There are many cases in preclinical drug discovery when experiments are repeated but

not precisely replicated regarding treatment arms. Further, full datasets are not always

immediately accessible, leaving analysts to rely on summary measures such as sample

mean and standard error. If one is only interested in comparing two treatment arms at a

time, meta-analysis is a useful tool; however, when one applies this method they are

limited to only comparing two of the potentially numerous treatment arms at a time.

Further, information from experiments lacking these two treatment arms is not used.

Mixed treatment comparisons meta-analysis, also known as network meta-analysis, can

be used instead to compare all available treatment arms at once. This chapter will explain,

explore, and compare two frequentist methods that exist to apply network meta-analysis.

We focus on sets of experiments with designs typically found in preclinical experiments.

We also use simulations to compare network meta-analysis results to those given by

mixed-effect linear models for these types of experiments. An R package was also

developed to perform both methods of network meta-analysis.

3) Power calculations for hypothesis tests play a critical role in conducting both clinical

and non-clinical trials. Many programs exist to calculate the power for popular

hypothesis tests, such as Student's t-test for hypothesis tests analyzing continuous data or

iv

the log-rank test for hypothesis tests analyzing survival data. Calculating the power for

hypothesis tests analyzing ordinal categorical data can be much more complicated. For

data such as this, observations are given in the form of scores on a scale with a small

range, typically between three and five points. The data is assumed to be distributed

according to a multinomial distribution which can depend on many parameters. We

propose a simple yet effective method for defining alternative multinomial distributions

and performing power calculations by creating and shifting quantiles of the standard

normal distribution. We offer simulation results and apply the method to a dataset. An R

package was also developed to use this method.

v

ACKNOWLEDGEMENT

I would like to thank Dr. Javier Cabrera for his patience and guidance throughout my

entire graduate career. I would like to thank Dr. John Kolassa for blessing me with the

opportunity to earn a Ph.D. in statistics during his tenure as graduate director. I would

like to thank Dr. David Tyler for presenting me a firm foundation of knowledge in

statistics during my first two years as a graduate student throughout his many classes. I

would like to thank Dr. Mariusz Lubomirski for helping to provide proper context for

many of the ideas found in this dissertation. I would like to thank Dr. Gail Ferstandig

Arnold for providing with me the opportunity to be a part of the joint Quantitative

Biomedicine program. I would like to thank Davit Sargsyan for his assistance both

professionally as a fellow statistician and in general as a trusted friend and mentor.

Finally, I would like to thank Stephanie Beavers for always supplying me with the

strength, motivation, and unconditional love and support I needed to complete this

arduous task.

vi

TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION ... ii

ACKNOWLEDGEMENT .. v

LIST OF TABLES ... ix

LIST OF ILLUSTRATIONS .. x

INTRODUCTION .. 1

Chapter 1: Data Nuggets: A Method for Reducing Large Datasets While Preserving Data

Structure .. 3

1.1 Introduction ... 3

1.2 Review of Popular Clustering Methods .. 5

1.2.1 K-means Clustering ... 6

1.2.2 Hierarchical Clustering .. 8

1.2.3 Limitations for Large Datasets... 10

1.3 Data Nuggets ... 12

1.3.1 Weighted K-means Clustering for Data Nuggets .. 18

1.3.2 Data Nuggets vs. Support Points ... 23

1.4 Application to Preclinical Dataset .. 25

1.5 Discussion ... 29

Chapter 2: A New Understanding of Network Meta-Analysis Regarding Experiments

with Small Sample Sizes ... 32

vii

2.1 Introduction ... 32

2.2 Review of Two Frequentist Methods to Perform Network Meta-Analysis 34

2.2.1 Generalized Least Squares ... 37

2.2.2 Electrical Network Theory ... 44

2.3 A Comparison Between the GLS and ENT Methods ... 51

2.3.1 A Counterexample Where Methods Are Not Equivalent 52

2.3.2 Dataset for Which Methods Are Equivalent .. 58

2.3.3 Possible Method Equivalence Requirements ... 62

2.4 Simulation Results Comparing Network Meta-Analysis to Mixed-Effect Linear

Models... 64

2.4.1 Simulated Data with Moderately Low Sample Sizes 65

2.4.2 True Preclinical Data ... 68

2.5 Discussion ... 70

Chapter 3: Power and Sample Size Calculations for Designing Experiments with Ordinal

Categorical Responses with Small Range Scales ... 73

3.1 Introduction ... 73

3.2 Power Calculation for One Variable ... 74

3.3 Power Calculation for 𝑀 Uncorrelated Variables .. 79

3.4 Power Calculation for Pairs of Correlated Variables .. 86

3.4.1 Simulation to Assess the Bias of ξ ... 96

viii

3.5 Application to Preclinical Dataset .. 100

3.6 Discussion ... 106

Appendices .. 108

Appendix A: Selected R Code for Chapter 1 .. 108

Section 2.. 108

Section 3.. 109

Appendix B: Selected R Code for Chapter 2 .. 116

Section 3.. 116

Appendix C: Selected R Code for Chapter 3 .. 121

Section 2.. 121

Section 4.. 123

Appendix D: Publications ... 132

Bibliography ... 133

ix

LIST OF TABLES

Table 1: Correct Cluster Classification Simulation Results ... 22

Table 2: Individual Summary Measures Dataset .. 35

Table 3: Contrast Summary Measures .. 45

Table 4: Dataset A (Counterexample) .. 52

Table 5: Dataset B ... 58

Table 6: Bias Results .. 66

Table 7: Mean Squared Error Results ... 67

Table 8: 95% Confidence Interval Coverage Rate Results ... 67

Table 9: Bias Results .. 69

Table 10: Mean Squared Error Results ... 69

Table 11: 95% Confidence Interval Coverage Rate Results ... 69

Table 12: Contingency Table for Testing Compound A .. 76

Table 13: Contingency Table for Testing Compound B ... 82

Table 14: Contingency Table for Testing Compound C ... 89

Table 15: Relative Frequency Tables for Data from Initial Experiment 100

x

LIST OF ILLUSTRATIONS

Figure 1: K-means Clustering Example .. 8

Figure 2: Hierarchical Clustering Example .. 10

Figure 3: Comparing Density Plots for Random Sample and Data Nuggets 14

Figure 4: Comparing Density Plots for Original and Refined Data Nuggets 17

Figure 5: Quantile Bias Simulations Results .. 25

Figure 6: PCA Plots of Entire Dataset vs WPCA Plots of Data Nuggets 27

Figure 7: Weighted PCA Plots of Data Nuggets Separated Into 10 Clusters 28

Figure 8: Levels of Expression for Each Protein and Cluster Combination 29

Figure 9: Example Experiment Designs ... 32

Figure 10: Example Network Graph ... 36

Figure 11: Dataset A Experiment Designs.. 52

Figure 12: Dataset B Experiment Designs .. 59

Figure 13: Experiment Designs for Simulated Data ... 66

Figure 14: Experiment Designs for True Preclinical Data.. 68

Figure 15: Shifting Process for One Ordinal Categorical Variable 78

Figure 16: Correlation Estimation for 2 Ordinal Categorical Variables with 2 Levels 91

Figure 17: Shifting Process for a Pair of Correlated Ordinal Categorical Variables 95

Figure 18: Bias Results for Partition Configuration 1 .. 98

Figure 19: Bias Results for Partition Configuration 2 .. 99

Figure 20: Bias Results for Partition Configuration 3 .. 99

Figure 21:Generating 𝒑𝐴𝐵
𝑇 with ALGORITHM 10 ... 102

Figure 22: Generating 𝒑𝐶
𝑇 with ALGORITHM 1 .. 103

xi

Figure 23: Power Curves for Original Data .. 104

Figure 24: Power Curves for Adjusted Data ... 105

1

INTRODUCTION

In this dissertation we will examine three different methodologies for analyzing

data presented in preclinical drug discovery. The first chapter details a new algorithm

created to form representative data from large datasets. In this new era of “Big Data”,

large datasets are often initially analyzed using clustering methods such as K-means

clustering or hierarchical clustering after greatly reducing the dataset by drawing a

random sample. These random samples are not always capable of maintaining the overall

structure of the entire dataset, particularly at the edges of the data. We introduce a new

algorithm which reduces the dataset into “data nuggets” which are nuggets of data used to

describe the observations of the entire dataset. Then, weighted principal components can

be used to examine the structure of the reduced data and a weighted K-means clustering

algorithm can be used to form clusters of the data. We detail these algorithms, provide

simulation results comparing the effects of forming clusters of data nuggets using

weighted K-means clustering instead of K-means clustering, and apply the method to a

preclinical dataset from a pharmaceutical company.

The second chapter examines and compares two different frequentist methods for

conducting network meta-analysis. In the field of preclinical drug discovery many

compounds are compared in multiple experiments and this method can be very useful

since it combines the information from all experiments to produce effect size estimates.

This method can also deliver results pertaining to compound comparisons which were

never truly made using indirect evidence. Although these two methods are supposed to

produce equivalent results, we produce a counterexample created from preclinical drug

2

discovery data which shows otherwise. We also offer simulation results to assess the

effectiveness of the method.

The final chapter details a new method proposed for producing power calculations

and finding the optimal sample sizes necessary for conducting future experiments for

which all observations are given by ordinal categorical data where the ordinal scale

contains only a small range of values. In experiments such as these the data is assumed to

be distributed according to multinomial distribution which can depend on many

parameters. As such, generating alternatives by manipulating these parameters

haphazardly can prove to be an overwhelming task. The method proposed generates

alternatives by shifting the parameters in a uniform, controlled manner. We detail this

method, provide simulation results to assess its effectiveness, and apply the method to a

preclinical dataset.

3

Chapter 1: Data Nuggets: A Method for Reducing Large Datasets

While Preserving Data Structure

1.1 Introduction

Extremely large datasets, sometimes known as “Big Data”, are common in most

areas of research and business including the pharmaceutical industry (Srinivasan, 2018).

An example of how large datasets arise can be found in experiments where scientists are

interested in measuring the abundance of proteins that are expressed on the surface of

cells and they collect a sample of millions of cells to conduct the experiment. There are

many ways to measure the abundance of these proteins (Amaratunga, Cabrera, & Shkedy,

2014).

One such method is flow cytometry (Jahan-Tigh, Ryan, Obermoser, &

Schwarzenberger, 2012). Different antibodies which correspond to the proteins of interest

are chosen. Each of them labeled according to a distinct fluorescence. Cells are then

stained with these fluorescent antibodies and sent through a flow cytometer. In this flow

cytometer, cells flow toward a laser and when cells pass by the laser, they absorb the

laser’s energy and emit a wavelength of light specific to each antibody, and therefore

each protein. The level of expression of the proteins of interest on the surface of the cells

can then be measured. These experiments produce datasets which are very high in

dimension. Clustering techniques can be used to attempt to find interesting groups of

cells hidden within the data.

As a motivating example, suppose a drug is being developed to interact with T-

cells in the liver. As a starting point, the scientists in charge of the experiment want to

know the levels of expression of certain proteins. They perform the experiment with 10

4

million cells and use 10 different fluorescent antibodies to collect the levels of expression

for each protein the fluorescent antibody corresponds to for each cell. The goal of the

experiment is to find out if there are any groups of cells for which the level of expression

of any protein is very high or very low.

The most typical method would be to apply a clustering technique to the dataset,

such as K-means clustering or hierarchical clustering; however, a dataset as large as this

would require far too many resources, such as computational memory and time. We

propose a different method which instead reduces the 10 million data points into a

smaller collection of “data nuggets”. All the individual data points coalesce into many

data nuggets, while still retaining the structure of the data. After this a weighted form of

K-means clustering can be used to configure the data nuggets into various clusters.

Section 1.2 introduces notation and provides a brief overview of popular

clustering methods and the issues that arise when attempting to use them to cluster large

datasets. Section 1.3 describes the algorithm for creating data nuggets and the algorithm

for creating clusters using weighted K-means clustering. This section also provides

simulation results comparing the accuracy of K-means clustering to weighted K-means

clustering for clustering data nuggets generated from a dataset with binary variables and

compares data nuggets to the support points given by Mak and Joseph in (Mak & Joseph,

2018). Section 1.4 applies the algorithm to a dataset from a preclinical experiment.

Section 1.5 briefly describes a package created to use the method, and some future work

that could be done concerning this method.

5

1.2 Review of Popular Clustering Methods

We will introduce notation by generalizing our motivating example. Suppose the

scientists perform their experiment with N observations (T-cells), where N is in the

millions, and they are measuring the level of expression of P different proteins. Let 𝐗 be

the matrix containing the information pertaining to the levels of expression of each

protein for each cell so that:

𝐗 =

[

𝐱1

𝐱2

⋮
𝐱𝑁−1

𝐱𝑁]

=

[

𝑥11 𝑥12 ⋯ 𝑥1(𝑃−1) 𝑥1𝑃

𝑥12 𝑥22 ⋯ 𝑥2(𝑃−1) 𝑥2𝑃

⋮ ⋮ ⋱ ⋮ ⋮
𝑥(𝑁−1)1 𝑥(𝑁−1)2 ⋯ 𝑥(𝑁−1)(𝑃−1) 𝑥(𝑁−1)𝑃

𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁(𝑃−1) 𝑥𝑁𝑃]

Where 𝐱𝑛 is the row vector containing the cell surface marker levels for the 𝑛𝑡ℎ T-cell

and 𝑥𝑛𝑝 is the level of expression of protein p for the 𝑛𝑡ℎ T-cell, for 𝑛 = 1,2, . . . , 𝑁 and

𝑝 = 1,2, … , 𝑃.

Once again, the goal of the experiment is to find out if there are any groups of T-

cells for which any proteins show a high or low level of expression. We can search for

these groups by placing the T-cells into K different clusters and then finding out if any of

the proteins have a particularly weak or strong level of expression in any of the clusters.

The memory usage and computation needed is of the order of 𝑁2 (where 𝑁 is in the

millions or greater) for typical clustering techniques. In general, clustering is performed

in one of two ways: through K-means clustering or hierarchical clustering (Cabrera &

McDougall, 2002).

6

1.2.1 K-means Clustering

Arguably the most popular clustering technique is K-means clustering. K-means

clustering is applied by first initializing centers of the 𝐾 different clusters and then

minimizing the total within cluster sum of squares. Let 𝛍01,  𝛍02,   … ,  𝛍0𝐾 be the 𝐾

𝑃 × 1 vectors that are chosen to represent the initial centers of clusters 𝐿1, 𝐿2, … , 𝐿𝐾,

respectively. This can be done either by choosing 𝐾 observations from the dataset

(randomly or selected by the user) or by choosing 𝐾 random points in ℝ𝑃.

Next, all observations are assigned to whichever initial center is closest to it

according to some distance metric, typically Euclidean distance. Finally, the center of

each cluster is updated to by calculating the mean of all observations within the cluster

and replacing the current center of each cluster with these new means, 𝛍1,  𝛍2,   … ,  𝛍𝐾.

These steps are then repeated until the clusters reach a point where the total within cluster

sum of squares, given by:

∑ ∑(𝐱 − 𝛍𝑖)′(𝐱 − 𝛍𝑖)

𝐱∈𝐿𝑖

𝐾

𝑖=1

is minimized. The steps taken to reach this minimization of total within cluster sum of

squares depends on the algorithm being used (Morissette & Chartier, 2013).

Lloyd's algorithm attempts to minimize the total within cluster sum of squares by

reassigning observations to the closest cluster center and updating the cluster centers

thereafter (Lloyd, 1982). Forgy's algorithm works in the same manner as Lloyd’s

algorithm but the total within cluster sum of squares is calculated assuming the

7

observations are distributed according to a continuous probability distribution instead of a

discrete probability distribution (Forgy, 1965).

MacQueen's algorithm is also similar to LLoyd's algorithm, but instead of only

recalculating the centers after all the observations have been reassigned to the cluster

with the nearest center, this calculation is performed after every single reassignment

(MacQueen, 1967). The Hartigan & Wong algorithm's shares the same objective of

minimizing the total within cluster sum of squares; however, this algorithm will not

always assign observations to the cluster with the nearest center (Hartigan & Wong,

1979). Instead, sometimes observations will be reassigned to a cluster with a farther

center if doing so minimizes the total within cluster sum of squares. To accomplish this

feat, the Hartigan & Wong algorithm must store both the cluster with the closest center

and the cluster with the second closest center for each observation.

K-means clustering can be performed in R using the function kmeans (R Core

Team, 2018). The Hartigan & Wong algorithm is the default method for this function,

although the LLoyd, Forgy, and MacQueen algorithms are also available. An example of

a dataset clustered with K-means clustering using the Hartigan & Wong algorithm is

provided in Figure 1.

8

Figure 1: K-means Clustering Example

1.2.2 Hierarchical Clustering

Another popular method of clustering is hierarchical clustering. This method of

clustering can be applied in one of two ways: either agglomerative, where all

observations begin as their own cluster and then combine together to form the desired

number of clusters; or divisive, where all observations are assigned to the same cluster

and then split into the desired number of clusters (Rokach & Maimon, 2005).

The combining or dividing of clusters is done according to a measure of similarity

or dissimilarity, respectively, calculated using a distance metric. Once again, this distance

metric is usually Euclidean distance. There are three different styles of methods, each

determined by the way this measure is calculated.

Single-link clustering methods regard the distance between clusters Li and 𝐿𝑗 to

be equal to the shortest distance between any observation assigned to 𝐿𝑖 and any

9

observation assigned to 𝐿𝑗. Complete-link clustering methods regard the distance between

clusters 𝐿𝑖 and 𝐿𝑗 to be equal to the greatest distance between any observation assigned to

𝐿𝑖 and any observation assigned to 𝐿𝑗. Finally, Average-link clustering methods regard

the distance between clusters 𝐿𝑖 and 𝐿𝑗 to be equal to the average distance between any

observation assigned to 𝐿𝑖 and any observation assigned to 𝐿𝑗. Hierarchical clustering

produces a dendrogram, which can then be cut with either consideration for how many

clusters are desired or the desired level of similarity or dissimilarity according to the

dendrogram.

Hierarchical clustering can be performed in R using the function hclust. Since

these methods depend entirely on the distances between observations, the distance matrix

for the data matrix serves as input instead of the data matrix itself. An example of a

dataset clustered with hierarchical clustering is provided in Figure 2. The dendrogram

used to form the clusters was cut at the third split in order to have the same number of

clusters as the example with K-means clustering.

10

Figure 2: Hierarchical Clustering Example

1.2.3 Limitations for Large Datasets

Both methods of clustering have limitations for very large datasets. For K-means

clustering, the final cluster assignments heavily depend on the initial choice of cluster

centers (Ayramo & Karkkainen, 2006). A clear remedy for this is to choose multiple

initial cluster centers, conduct the algorithm of choice for each, and choose the results

which minimizes the total within cluster sum of squares. For datasets with a large number

of observations many initial centers may need to be attempted. For the LLoyd, Forgy, and

MacQueen algorithms the time cost is high in R, which may lead the user to sacrifice the

number of initial cluster centers they choose to evaluate.

On the other hand, the Hartigan & Wong algorithm may fail to finish running for

large datasets because the memory cost necessary to store the closest cluster assignment

and the second closest cluster assignment for each observation is too high. This is also the

11

case for hierarchical clustering methods which may not even have a chance to begin

because the distance matrix cannot be formed for datasets that are too large. More

specifically, the largest distance matrix R would be able to store is one derived from a

data matrix with 46,340 observations (since the most entries a matrix can have in R is

2,147,483,647), assuming the machine it is running on has enough memory space.

A common solution to this problem has been to retrieve a random sample of the

data and use a clustering algorithm on this reduced dataset. The intuition is that if the

sample is sufficiently large, the data structure of the sampled data should match the data

structure of the entire data. Unfortunately, this intuition does not always hold. Further,

since a distance matrix is needed for hierarchical clustering, the random sample may need

to be reduced to a very small amount of observations when compared to the entire

dataset.

Another possible solution is to reduce the large dataset to a set of only a few data

points which are chosen to represent the dataset as a whole. Gosh, Cabrera, et al.

introduce a notion of representative data with weights in (Ghosh, et al., 2016). Mak and

Joseph introduce a method for producing “Support Points” which together form a

representative dataset in (Mak & Joseph, 2018); however, support points are not suitable

to find clusters on the edges of the distribution where the density of points is much lower.

To avoid the time and memory constraints of using full datasets (or large random

samples), the pitfalls associated with massive data reduction, and the lack of focus on the

edges of the data structure, we propose using data nuggets.

12

1.3 Data Nuggets

In this section we will describe how to generate data nuggets from a large dataset.

The process of creating data nuggets is inspired by the idea of using a 𝑝-dimensional grid

that encompasses the entire dataset to partition the observations into 𝑀 equally sized

cells. The centers of these cells would form the data nugget centers, the amount of

observations from the dataset which exist in these cells would form the data nugget

weights, and the trace of the covariance matrices for the observations within each cell

would from the data nugget scales.

When both 𝑝 and 𝑀 are low this is a relatively simple feat, but when either 𝑝 or

𝑀 is large the amount of computational resources required becomes unrealistic. A more

feasible option would be to use observations already within the dataset as centers. This

can be done by choosing observations in the dataset which are as equally spaced apart as

possible. Then all the remaining observations are assigned to the data nugget they are

closest too according to a distance metric. We detail the algorithm to create data nuggets

below.

ALGORITHM 1: Create 𝑀 data nuggets given: X, an 𝑛 × 𝑝 data matrix; 𝑁, the number

of observations to randomly sample from X; 𝑀, the number of data nuggets to create; and

𝐷, a distance metric.

1. Randomly sample 𝑁 observations from X.

2. Create a distance matrix for these observations using the given distance metric 𝐷.

3. Find the smallest non-diagonal distance in the matrix. Label the observations with

this distance between them as 𝑦1 and 𝑦2.

13

4. Find the distance to the nearest neighbor of 𝑦1 excluding 𝑦2, 𝑑𝑦1
, and the distance of

the nearest neighbor of 𝑦2 excluding 𝑦1, 𝑑𝑦2
.

5. If 𝑑𝑦1
< 𝑑𝑦2

, remove 𝑦1 from the random sample. Otherwise remove 𝑦2 from the

random sample.

6. Create a new distance matrix with the remaining random sample.

7. Repeat steps 2 through 6 for 𝑁 − 𝑀 iterations. The observations in the random

sample of 𝑀 observations that remain are the centers of the data nuggets. Let data

nugget 𝑗 have center 𝐜𝑗 for 𝑗 = 1, 2, … ,𝑀.

8. For each 𝐱𝑖, 𝑖 = 1,2, … , 𝑛, assign 𝐱𝑖 to the data nugget such that 𝐷(𝐱𝑖, 𝑐𝑗) is

minimized over 𝑗. Let 𝑛𝑗 be the number of observations assigned to data nugget 𝑗,

and let 𝑊𝑗 = 𝑛𝑗 be the weight of data nugget 𝑗 for 𝑗 = 1,2, … ,𝑀.

9. Re-center all the data nuggets by choosing 𝐜𝑗 to be the mean of all the observations

assigned to data nugget 𝑗.

10. Finally, let 𝑆𝑗 = 𝑡𝑟 (𝐶𝑜𝑣(𝐗𝑗)) be the scale of data nugget 𝑗 when 𝑛𝑗 > 1, where 𝐗𝑗 is

the submatrix of observations from 𝐗 which belong to data nugget 𝑗. When 𝑛𝑗 = 1,

𝑆𝑗 = 0.

Figure 3 compares the amount of data structure maintained after reducing a

bivariate dataset of 15,601 to a simple random sample of 2,000 observations versus

reducing that same bivariate dataset to 2,000 data nuggets. This comparison is carried out

using density plots. The dataset is a mixture of data derived by sampling a large number

of observations from two independent standard normal distributions and combining these

observations with other observations which create a “smile” that is hidden inside the

14

random noise. This smile can only be observed by using a density plot. The data nuggets

were created by reducing a random sample of 10,000 observations from this dataset to

2,000 data nuggets using ALGORITHM 1 with Euclidean distance as the chosen

distance metric.

Figure 3: Comparing Density Plots for Random Sample and Data Nuggets

The density plots for the entire dataset and the random sample are created by

dividing the area of the original scatterplot into a 100 × 100 grid and counting the

number of observations in the dataset which fall inside each cell of the grid. The cells are

then colored on a gradient according to how many observations are in the cell. Cells with

15

a low number of observations produce cool colors like blue or light green while cells with

a higher number of observations produce hot colors such as yellow or orange.

The density plot for data nuggets is produced in a similar manner but with a slight

modification. Once again, the area of the original scatterplot is divided into a 100 × 100

grid. However, instead of using the number of data nuggets that exist within the cell, the

sum of the weights of the data nuggets that exist within the cell is used. Then the cells are

colored accordingly. The first row of plots is a scatterplot of the entire dataset of 15,601

observations beside its corresponding density plot. The lower left plot is the density plot

corresponding to a scatterplot of a random sample of 2,000 observations from the dataset.

The lower right plot is the density plot corresponding to a scatterplot of the 2,000 data

nuggets.

As shown in the figure, the density plot for the entire dataset clearly shows a thin

smile inside the ball of random noise. The density plot for the random sample faintly

produces the smile, but there are random gaps dispersed throughout the smile and the

tails of the smile are not recognizable. This density plot also produces a large amount of

random noise surrounding the smile. The density plot for the data nuggets shows a much

more distinct and visible smile. While there are still a few gaps in the smile, they are

more or less equally spaced. Further, the tails of the smile are clearly visible, and the

amount of random noise is much more concentrated around the smile, matching what is

seen in the density plot for the entire dataset.

Two natural questions arise regarding the generation of data nuggets: how large of

a random sample should be initially drawn, and how many data nuggets must be chosen

before a desirable set is retrieved? Regardless of the random sample size chosen, we

16

recommend creating enough data nuggets to reduce the random sample to 20% of its

original sample size. Next, check if the minimum distance between any two points is

large enough. What constitutes a large enough minimum distance is a subjective matter,

but the goal should always be to make sure that there are enough data nuggets to maintain

the shape of the structure of the data while also ensuring that there are not too many data

nuggets crowded in the center of the structure. If these two goals are not realized for a

selection of data nuggets, they can always be reduced further.

The data nuggets can also be refined according to the scale parameter and the

minimum number of observations that must be assigned to a data nugget. The purpose of

this method is to provide each data nugget with a more common level of variation. Data

nuggets are refined as detailed in the algorithm below.

ALGORITHM 2: Refine 𝑀 data nuggets given: 𝑆𝑡𝑜𝑙, a scale tolerance value; and 𝑚, the

minimum number of observations that a data nugget must contain as a result of this

algorithm.

1. Obtain the median of the nonzero scale parameters for the 𝑀 data nuggets, η.

2. Create 𝐵, a list of all data nuggets with scale parameters larger than 𝑆𝑡𝑜𝑙η.

3. For every data nugget 𝑗 ∈ 𝐵:

3.1. If data nugget 𝑗 contains greater than 2𝑚 observations, split data nugget 𝑗 into

two new data nuggets using K-means clustering.

3.2. If either of the two new data nuggets created in step 3.1 contain less than 𝑚

observations, delete these two data nuggets and retain data nugget 𝑗. Otherwise,

delete data nugget 𝑗 and remove data nugget 𝑗 from 𝐵.

17

4. Repeat steps 2 and 3 until 𝐵 is empty or step 3 is completed without any data nuggets

being removed from 𝐵.

Figure 4: Comparing Density Plots for Original and Refined Data Nuggets

Figure 4 shows the same “smile” dataset described above, this time comparing the

original 2,000 data nuggets refined to 2,562 data nuggets with scale tolerance value

𝑆𝑡𝑜𝑙 = 1 and minimum number of observations 𝑚  =  2 after using ALGORITHM 2. The

first row of plots is the scatterplot of the original 2,000 data nuggets beside its

corresponding density plot, and the second row of plots is the scatterplot of the refined

2,562 data nuggets beside its corresponding density plot. The density plot for the 2,562

18

data nuggets has a much more consistent smile with fewer gaps, and the ball of random

noise is slightly more concentrated around the smile.

After the data nuggets are created, modified versions of common statistical

techniques can be applied to them. In this chapter we explore weighted K-means

clustering and weighted principal component analysis. In both of these methods we

ignore the scale parameter of the data nuggets, and instead focus on using the weight

parameter. This is done because we believe that the internal variability of the data

nuggets is miniscule. This belief is formalized in PROPOSITION 1.

PROPOSITION 1: Let Σ be the sample covariance matrix for 𝑁 × 𝑃 data matrix 𝐗. Let

𝐗𝑘 be the collection of k data nuggets meant to form a representative dataset of 𝐗. Let

𝐒𝑘 = ∑ 𝑊𝑖𝐜𝑖𝐜𝑖
′𝑘

𝑖=1 . For large 𝑘, 𝑆𝑘 ≈ Σ.

 If PROPOSITION 1 is true, then given enough data nuggets the amount of

variability within the dataset is preserved when the dataset is reduced without accounting

for the individual amount of variability within each data nugget. As such, this variability

can be ignored when applying statistical techniques to the data nuggets.

1.3.1 Weighted K-means Clustering for Data Nuggets

We now introduce a weighted K-means clustering algorithm that can be used to

form clusters of these data nuggets. It is worth noting that other weighted K-means

clustering methods have been developed. An example is an algorithm that can be used for

analyzing social networks (Liu & Xu, 2014). This algorithm is designed for the purpose

of finding clusters of nodes in a social network where weights are assigned to the edges

19

that connect the nodes. The weights of the edges are described as the “intimacy” level

between the two nodes that the edge connects.

In our algorithm, the weights of each data nugget are a measure of how many

observations from the original dataset are contained in the data nugget. We describe a

method of weighted K-means clustering to form clusters of data nuggets with the

algorithm below.

ALGORITHM 3: Conduct weighted K-means to form clusters of data nuggets given: 𝑀

data nuggets; 𝐾, the number of clusters to be created; 𝐰, the 𝑀 × 1 vector containing the

weight of each data nugget; and 𝐷, a distance metric.

1. Choose 𝐾 data nuggets (randomly or user-selected) to be the initial cluster centers,

𝛍01,  𝛍02,   … ,  𝛍0𝐾, of 𝐾 clusters, 𝐿1, 𝐿2, … , 𝐿𝐾, respectively.

2. Assign each of the 𝑀 data nuggets to the cluster with the closest cluster center

according to distance metric 𝐷.

3. Recalculate the cluster centers 𝛍1,  𝛍2,   … ,  𝛍𝐾 as the mean of all the data nuggets

within clusters 𝐿1, 𝐿2, … , 𝐿𝐾, respectively.

4. For 𝑖 = 1, 2, … ,𝑀 data nuggets:

4.1. Retrieve the cluster assignment for data nugget 𝑖, 𝐿(𝑖), and the current total

weighted within cluster sum of squares, 𝑊(𝑖).

4.2. Reassign data nugget 𝑖 to every cluster in {𝐿1, 𝐿2, … , 𝐿𝐾} ∖ 𝐿(𝑖) and calculate the

total weighted within cluster sum of squares for each of the 𝐾 − 1 possible

reassignments, {𝑊1,𝑊2, … ,𝑊𝐾} ∖ 𝑊(𝑖), where 𝑊𝑘 is the total weighted within

20

cluster sum of squares when data nugget 𝑖 is assigned to cluster 𝐿𝑘 for 𝑘 =

 1,2, … , 𝐾 and 𝑘 ≠ (𝑖).

4.3. If 𝑊𝑘 = 𝑚𝑖𝑛({𝑊1,𝑊2, … ,𝑊𝐾}) < 𝑊(𝑖), reassign data nugget 𝑖 to cluster 𝐿𝑘 and

recalculate the cluster centers 𝛍1,  𝛍2,   … ,  𝛍𝐾 as the mean of all the data nuggets

within clusters 𝐿1, 𝐿2, … , 𝐿𝐾, respectively.

5. Repeat step 4 until step 4 is completed without executing step 4.3.

 The outcome of ALGORITHM 3 can be improved by repeating the algorithm

with multiple choices for the initial centers chosen in step 1. The clustering assignments

which minimize the total weighted within cluster sum of squares would then be chosen as

the clustering configuration. Further, it may take an extremely long time for the algorithm

to converge. As such, there could be a limit placed on the number of times step 4 is

executed before the algorithm ends.

 There could also be a threshold placed on the improvement of the total weighted

within cluster sum of squares before ending the algorithm. For example, if the 𝑊(𝑖) found

in step 4.2 is only 1016 greater than the 𝑊𝑘 found in step 4.3, this may be evidence that

ending the algorithm at this point will provide almost identical results to those that would

be yielded from convergence.

 To illustrate the usefulness of ALGORITHM 3 we conducted a simulation using

binary data. This simulated dataset is meant to mimic a list of 300,000 patients and

whether they suffer from a list of ten conditions. We separate the data into three clusters

based on the set of conditions these patients suffer from. Let 𝐿1, 𝐿2, and 𝐿3 represent the

three clusters. Let 𝑝 be the probability of having any condition. Let,

21

𝐱 =

(

𝑥𝟏

𝑥𝟐

𝑥𝟑

𝑥𝟒

𝑥𝟓

𝑥𝟔

𝑥𝟕

𝑥𝟖

𝑥𝟗

𝑥𝟏𝟎)

 𝐲 =

(

𝑦𝟏

𝑦𝟐

𝑦𝟑

𝑦𝟒

𝑦𝟓

𝑦𝟔

𝑦𝟕

𝑦𝟖

𝑦𝟗

𝑦𝟏𝟎)

 𝐳 =

(

𝑧𝟏

𝑧𝟐

𝑧𝟑

𝑧𝟒

𝑧𝟓

𝑧𝟔

𝑧𝟕

𝑧𝟖

𝑧𝟗

𝑧𝟏𝟎)

where 𝑥𝑖 ∼ 𝐵𝑖𝑛(1,1 − 𝑝) for 𝑖 = 1,2,3,4,5, 𝑥𝑖 ∼ 𝐵𝑖𝑛(1, 𝑝) for 𝑖 = 6,7,8,9,10, 𝑦𝑖 ∼

𝐵𝑖𝑛(1, 𝑝) for 𝑖 = 1,2,3,4,5, 𝑦𝑖 ∼ 𝐵𝑖𝑛(1,1 − 𝑝) for 𝑖 = 6,7,8,9,10, and 𝑧𝑖 ∼ 𝐵𝑖𝑛(1, 𝑝)

for 𝑖 = 1,2, … ,10. 𝐿1 is formed by sampling 100,000 observations of form 𝑥, 𝐿2 is

formed by sampling 100,000 observations of form 𝑦, and 𝐿3 is formed by sampling

100,000 observations of form 𝑧. These 300,000 observations are then placed together in a

dataset.

Since these observations are binary, there are at most 210 = 1024 possible unique

observations. Each of these observations will represent a data nugget, and the weight of

the data nugget is the number of times this data nugget appears in the dataset divided by

300,000.

Using the Hartigan &Wong algorithm for K-means clustering and the weighted K-

means clustering method given by ALGORITHM 3, we assign each data nugget to one

of three clusters. Next, for every observation in the original dataset, we append the cluster

assigned to its corresponding data nugget for each method. Finally, we find the

proportion of correct cluster assignments for every possible permutation of cluster

assignments and choose the cluster configuration which produces the best result for each

method.

22

We repeat this process for 100 iterations and find the mean proportion of data nuggets

correctly reassigned to their proper cluster for each method. We compare the two

methods for various choices of 𝑝. 5 random sets of centers are used to initialize the

algorithms for each iteration and the cluster configurations with the least within cluster

sum of squares and weighted within cluster sum of squares for the K-means clustering

method and the weighted K-means clustering method, respectively, are chosen. The

simulation results are given in Table 1.

Table 1: Correct Cluster Classification Simulation Results

It is clear to see that the weighted K-means algorithm outperforms the Hartigan-

Wong algorithm in terms of the mean proportion of correct reclassification. This provides

proper motivation to believe that using weighted K-means clustering to form clusters of

data nuggets provides better results than ignoring the weights and simply using K-means

clustering. As for choosing the best number of clusters, popular methods such as

constructing silhouettes (Rousseeuw, 1987) or calculating the gap statistic (Tibshirani,

Walther, & Hastie, 2001) are used to detect the optimal number of clusters. These

methods and others, can be updated to include information concerning the data nugget

weights.

23

1.3.2 Data Nuggets vs. Support Points

In section 1.2.3 we mentioned another method of producing representative data

called “Support Points” given by Mak and Joseph. The goal of data nuggets and support

points are the same on the surface: to create a small dataset that represents the large

dataset it comes from. That being said, the resulting representative datasets differ greatly

in terms of producing the correct quantiles corresponding to the highest and lowest

percentiles of the probability distributions they are meant to represent.

This is by design in the case of support points, since they are defined as a set of 𝑀

points in the dataset which has the best goodness of fit to the underlying distribution

governing the dataset in terms of energy distance as defined in (Székely & Rizzo, 2013).

This definition forces more observations to be chosen that exist near the center of the

data, ultimately forsaking observations that exist at the edge of the data.

Data nuggets on the other hand are designed to avoid this problem. Since the

algorithm that creates data nuggets chooses observations to delete based on how close

they are to other observations, observations on the edges of the data are safe from

elimination and are guaranteed to remain as a data nugget center. The information

concerning the fact that this observation is at the edge of the data is not lost—this

information is contained in the weight parameter of the data nugget.

We now produce the results of a simulation which examines this difference in a 1-

Dimensional setting. The simulation was conducted by randomly sampling 100,000

observations from a standard normal distribution. Let this random sample of observations

be 𝑧̂. 100 support points and 100 data nuggets are then created from 𝑧̂. The support points

were generated using the support package created by Mak (Mak S., 2018). The data

24

nuggets were generated with ALGORITHM 1 by choosing 𝐗 = 𝑧̂, 𝑁 = 1,000, 𝑀 =

100, and 𝐷 to be the Euclidean distance metric. The data nuggets are then ordered by

their centers in an ascending fashion.

We then compute the quantiles corresponding to the 95𝑡ℎ, 96𝑡ℎ, 97𝑡ℎ, 98𝑡ℎ and

99𝑡ℎ percentiles for each representative dataset. The quantiles for the support points are

calculated in the typical fashion; however, calculating the quantiles for the data nuggets

requires a more thoughtful process. First, a linear regression model is fit with the

cumulative sums of the data nugget weights (each divided by 100,000) as the predictor

variable and the data nugget centers as the response variable. Then, .95, .96, .97, .98, and

.99 are plugged into the resulting regression equation to produce the quantiles

corresponding to those percentiles for the data nuggets. Finally, the true quantiles for a

standard normal distribution are subtracted from the quantiles calculated for each method

to calculate the bias of each quantiles for each method.

This simulation was repeated for 1000 sets of 𝑧̂ and Figure 5 shows the results.

For each method, the box plots represent the distribution of quantile estimate bias for

each corresponding percentile. It is clear to see that support points perform poorly in

terms of bias compared to data nuggets for calculating the quantiles at the upper tail of

the normal distribution. Since the bias for the quantiles given by the data nuggets prove

consistent across the percentiles, there may be a simple correction constant that can be

applied to each quantile to eliminate the bias entirely.

25

Figure 5: Quantile Bias Simulations Results

1.4 Application to Preclinical Dataset

In this section we apply the method of creating data nuggets and clustering them

using weighted K-means clustering to a continuous dataset from a pharmaceutical

company. The data set consists of over 1 million observations. Each observation

corresponds to a B-cell and the columns correspond to the level of expression of nine

different proteins on the surface of these B-cells. We will label these proteins A through

I.

The scientists conducting the experiments are interested in knowing if there are

clusters of cells which express extremely high or low levels of expression of certain

proteins. High levels of expression of these proteins correspond to the activation of these

cells to perform certain functions. These functions can play an extremely vital role in

helping the immune system of the organism the cell belongs to.

26

We begin by taking a random sample of 10,000 observations from the dataset and

reducing this sample to 2,000 data nuggets using ALGORITHM 1. We then refined the

data nuggets using ALGORITHM 2 with scale tolerance value 𝑆𝑡𝑜𝑙 = 2 and minimum

number of observations 𝑚 = 2, which resulted in 3,577 data nuggets.

Pairwise combinations of the first, second, and third principal components of the

entire dataset are shown beside the same pairwise combinations of the first, second, and

third weighted principal components of the initial 2,000 data nuggets and the refined

3,577 data nuggets are given in Figure 6 for a comparison of the resulting data structures.

All principal components were found using the wpca function from the R package

aroma.light (Neuvial, Bengtsson, & Speed, 2010). Note that the weights entered for the

wpca function when creating the principal components for the entire dataset were all

equal to 1.

27

Figure 6: PCA Plots of Entire Dataset vs WPCA Plots of Data Nuggets

The principal components for the data nuggets were weighted according to the

weights of the data nuggets. The color of each data nugget corresponds to the weight of

the data nugget. Lighter green indicates a large weight while darker green indicates a low

28

weight. Observe how the structure of the data regarding the first three principal

components is moderately recovered with the original 2,000 data nuggets and strongly

recovered with the 3,577 refined data nuggets. Recall that the original dataset contains

over 1 million observations, so the fact that less than 1% of these observations can be

chosen and still produce a relatively strong representation of the structure of the data is

noteworthy.

Figure 7: Weighted PCA Plots of Data Nuggets Separated Into 10 Clusters

Next, we configure the data nuggets into 10 clusters using ALGORITHM 3 to

perform weighted K-means clustering. We use 10 initial centers and choose the cluster

configuration with the least weighted within cluster sum of squares. The pairwise

combinations of the first, second, and third weighted principal components of the 3,577

refined data nuggets separated into 10 clusters is shown in Figure 7. Finally, we created

box plots for each cluster which summarize the level of expression of the observations

29

within the cluster for each protein to search for whether any clusters show any visually

significant levels of expression of any proteins. These box plots are given in Figure 8.

Figure 8: Levels of Expression for Each Protein and Cluster Combination

While for proteins B, F, H, and I there is not much difference between the

clusters, there is a noticeable difference between clusters for the remaining proteins. The

cells in clusters 3, 4, and 8 show a high level of expression of protein A. Clusters 6 and 8

show a low level of expression of protein D and G, respectively. Cluster 3 shows a low

level of expression of protein C, although there is a high level of variability. Finally,

cluster 2 shows a high level of expression of protein E.

1.5 Discussion

We have detailed a method for reducing “Big Data” using data nuggets. We also

offer a weighted K-means algorithm to cluster these data nuggets and provide simulation

results which show that this algorithm outperforms the K-means clustering algorithm for

30

data nuggets yielded from binary data. We also displayed the distinction between data

nuggets and support points in the context of quantile bias at the tails of probability

distributions using a simulation, showing that there is a greater level of bias when these

quantiles are calculated with support points. Finally, we applied this method to a

preclinical dataset and presented the results.

The R package datanugget has been developed to incorporate the methods

described in this paper. It includes functions for generating, refining, and clustering data

nuggets using weighted K-means clustering. While the runtime for these functions are

slow in R, work could be done in the future to re-write the programs in the programming

language C. If this were done the runtimes would improve a drastic amount.

Future work could be done to show how well the data nuggets work when other

mainstream statistical techniques are applied. We have already shown how well data

nuggets can work when unsupervised methods such as principal components and

clustering are applied. Another unsupervised method of interest that could be applied is

projection pursuit (Friedman & Tukey, 1974). The efficacy of data nuggets could also be

observed in the context of supervised methods such as logistic regression and linear

regression.

In the case of logistic regression, the response for each data nugget would be the

number of “successful” and “unsuccessful” observations contained in the data nugget. In

the case of linear regression, the response for each data nugget would be the mean of the

responses of the observations contained in the data nugget and weighted least squares

regression could be applied. The weight of each data nugget (potentially combined with

31

the variance of the response variable for each data nugget) would be used as the weight in

the regression model.

An important area of improvement for this method would be to find the optimal

number of data nuggets. As the method currently stands the amount of subjective

calibration is undesirable. Simulations involving large classified continuous datasets

could also be created to determine how much better weighted K-means clustering

performs compared to K-means clustering of data nuggets in a continuous setting.

Another area of interest is showing that the results of the simulation in Section

1.3.2 hold for higher dimensions. Work could also be done to provide a correction for the

constant bias for estimating the quantiles with data nuggets. Research into asymptotic

results regarding how well the probability distribution can be returned through estimation

of the mean and covariance of data nuggets generated from a random sample of this

probability distribution as the number of data nuggets increases to infinity would be

useful as well.

32

Chapter 2: A New Understanding of Network Meta-Analysis

Regarding Experiments with Small Sample Sizes

2.1 Introduction

Often in the field of non-clinical discovery multiple experiments are conducted to

answer the same question using various experiment designs. For example, suppose a

pharmaceutical company is attempting to develop a drug to decrease the amount of white

blood cells (WBC's) in the liver. When the scientists assigned to this problem begin, they

develop compound B and compare it to the standard treatment, compound A. Not

satisfied with their results, they conduct seven more experiments; some with the same

design, some with a similar design, and others with an entirely different design. The

evolution of these experiment designs is shown in Figure 9.

Figure 9: Example Experiment Designs

Cases such as this where only a few experiments are performed to compare many

treatment arms using few observations per treatment arm are typical in preclinical drug

discovery. Finally, unwilling to publish the entire dataset for each experiment in their

reports, the scientists only publish a collection of summary measures: sample mean

33

amount of WBC's in the liver after treatment, the corresponding standard error, and the

sample size for each treatment arm in each experiment.

The most basic approach would be to fit a fixed effect or random effect meta-

analysis model to compare two treatment arms at a time to generate an effect size

estimate (Borenstein, 2009). The effect size estimate chosen depends on the type of data

collected (e.g. mean difference or sample mean difference for continuous data, log odds

ratio for binary data, etc.). Using this approach, results from experiments with the same

design or similar designs are combined to create an effect size estimate; however,

experiments with completely different designs cannot be used in the meta-analysis since

they do not have one (or perhaps either) of the treatment arms being compared.

Mixed treatment comparison meta-analysis, also known as network meta-analysis,

is a method used to generate effect size estimates given individual summary measures or

contrast summary measures, such as sample means or sample mean differences for

continuous responses, respectively, along with the standard error of these estimates

(Lumley, 2002). Using network meta-analysis we can generate results for all possible

treatment arm comparisons using the summary measures from all eight different

experiments.

Section 2.2 explains how to use two existing frequentist methods: generalized

least squares (GLS) (Lu, Welton, Higgins, White, & Ades, 2011); or electrical network

theory (ENT) (Rücker & Schwarzer, 2012), to conduct network meta-analysis. Section

2.3 provides two examples to demonstrate that the two methods are equivalent in some

cases but not equivalent in others. Section 2.4 provides results of simulations created to

assess how network meta-analysis using summary measures compares to mixed effects

34

linear models using full datasets. Section 2.5 discusses the implications of these

simulations, the R package created to conduct network meta-analysis, and some future

work that can be done in this area.

2.2 Review of Two Frequentist Methods to Perform Network Meta-Analysis

To illustrate how each method works we will continue with the fictional example

described in Section 2.1. First, we will introduce general notation. Let 𝑁 be the number

of experiments conducted, 𝐽 be the number of treatment arms, 𝐺 be the number of unique

experiment designs, and 𝑇𝑔, for 𝑔 ∈ {𝑔1, 𝑔2, … , 𝑔𝐺}, be the number of treatment arms in

design 𝑔. In this example we are working with continuous data, but these methods can

also be used to analyze summary measures yielded from experiments with binary data or

survival data (Schwarzer, Carpenter, & Rücker, 2015).

Let the triplet (𝑥̅𝑖𝑗 , 𝑠𝑖𝑗 , 𝑛𝑖𝑗) for 𝑖 = 1,2, … ,𝑁, 𝑗 = 1,2, … , 𝑝𝑖 be the sample mean,

standard error, and sample size for treatment arm 𝑗 in experiment 𝑖, where 𝑝𝑖 is the total

number of treatment arms in experiment 𝑖. Finally, let 𝐈𝑚 be the identity matrix with

dimension 𝑚 × 𝑚. Table 2 displays the data layout for individual summary measures.

For continuous data, every treatment arm has a true mean response associated

with it. For example, compound 𝐴 has the true mean response, θ𝐴. In other words, θ𝐴 is

the true mean amount of WBC's produced in the liver as a result of using compound 𝐴.

For any combination of two treatment arms, there exists an effect size parameter which

represents the difference between the true mean responses of these treatment arms. For

example, we say 𝑑𝐴𝐵 ≡ θ𝐴 − θ𝐵 is the effect size parameter for comparing compound 𝐴

to compound 𝐵.

35

Table 2: Individual Summary Measures Dataset

The goal of network meta-analysis is to estimate all (𝐽
2
) effect size parameters.

Note that these effect size parameters can be divided into two mutually exclusive sets:

direct comparisons, which are treatment arm comparisons that were observed in at least

one of the 𝑁 experiments (e.g. 𝐴 vs. 𝐵) and indirect comparisons, which are treatment

arm comparisons that were not observed in any of the 𝑁 experiments (e.g. 𝐶 vs. 𝐷).

There are two assumptions necessary for conducting network meta-analysis. First,

all the experiments used in the analysis are conducted independently of one another.

Second, any indirect comparison of treatment arms can be formed by using direct

comparisons. For example, 𝑑𝐵𝐶 ≡ θ𝐵 − θ𝐶 = (θ𝐴 − θ𝐶) − (θ𝐴 − θ𝐵) ≡ 𝑑𝐴𝐶 − 𝑑𝐴𝐵. This

is known as the transitivity assumption (Schwarzer, Carpenter, & Rücker, 2015). This is

also known as the assumption of consistency (Snedecor, Patel, & C. Cappeller, 2014).

For the transitivity assumption to be used, of the set of treatment arms being used

in the experiments must be “connected” in a specific way. This specification can be best

understood in the context of graph theory. If the collection of treatment arms used in the

36

𝑁 experiments is viewed as a set of vertices, 𝑉, and the collection of direct comparisons

is viewed as a set of edges, 𝐸, then a network graph, 𝐺 = (𝑉, 𝐸), can be created. All

edges correspond to an effect size parameter for the two vertices they connect. See Figure

10 for the network graph that would be created for this example. Further, a subgraph of 𝐺

is any graph 𝐺0 such that 𝐺0 = (𝑉0, 𝐸0) where 𝑉0 ⊂ 𝑉 and 𝐸0 ⊂ 𝐸.

Figure 10: Example Network Graph

Note that a graph 𝐺 = (𝑉, 𝐸) has |𝑉| vertices and |𝐸| edges. A spanning tree is a

subgraph formed by a collection of all |𝑉| vertices and |𝑉| − 1 edges such that all |𝑉|

vertices in the graph are connected by edges. It is a necessary condition that a spanning

tree can be formed in the network graph in order to employ network meta-analysis

(Valkenhoef, et al., 2012). In our example, a spanning tree is given by the subgraph

formed with all five vertices and the four edges attached to the 𝐴 vertex.

37

There are methods to check whether the transitivity assumption holds for all the

effect size estimates (Lu & Ades, 2006; Dias, Welton, Caldwell, Ades, & Hougaard,

2010; Jansen & Cope, 2012; White, Barrett, Jackson, & Higgins, 2012; Katsanos, 2014;

Lu & Ades, 2006). Additionally, there are methods to view how information and

evidence “flows” through the network of treatment arms to arrive at the final estimates

(König, Krahn, & Binder, 2013). It is worth noting that these models can be expanded to

use a random effect approach. This section of the paper will focus on defining the fixed

effect approach.

2.2.1 Generalized Least Squares

In our example, 𝐺 = 5 since there are five unique experiment designs:

{𝐴𝐵, 𝐴𝐵𝐶, 𝐵𝐷, 𝐴𝐶𝐸, 𝑎𝑛𝑑 𝐴𝐵𝐷}. For designs where 𝑇𝑔 = 2, meta-analysis is performed in

the typical fashion. We will show how experiments with design 𝐴𝐵 would be fit

according to a fixed effect meta-analysis model using individual summary measures (i.e.

the dataset type given in Table 2) to generate the initial effect size estimates and their

respective standard errors. Let 𝑑𝑖
𝑔

 and (𝑠𝑖
𝑔
)
2
 denote the sample mean difference and

pooled variance, respectively, of experiment 𝑖 with design 𝑔.

First the sample effect sizes, along with their pooled variances for all comparisons

within this design must be calculated:

𝑑1
𝐴𝐵 = 𝑥̅11 − 𝑥̅12, (𝑠1

𝐴𝐵)2 =
𝑛11𝑠11

2 + 𝑛12𝑠12
2

𝑛11 + 𝑛12

𝑑2
𝐴𝐵 = 𝑥̅21 − 𝑥̅22, (𝑠2

𝐴𝐵)2 =
𝑛21𝑠21

2 + 𝑛22𝑠22
2

𝑛21 + 𝑛22

38

Next the sample effect sizes are used in conjunction with their pooled variances to

provide a weighted effect size estimate and its respective variance. Let 𝑊𝑖
𝑔

 denote the

weight of experiment 𝑖 with design 𝑔.

𝑊𝑖
𝐴𝐵 =

1

(𝑠𝑖
𝐴𝐵)2

 for 𝑖 = 1,2

𝑑̂𝐴𝐵 =
𝑊1

𝐴𝐵𝑑1
𝐴𝐵 + 𝑊2

𝐴𝐵𝑑2
𝐴𝐵

𝑊1
𝐴𝐵 + 𝑊2

𝐴𝐵 , 𝑠𝑑̂𝐴𝐵

2 =
1

𝑊1
𝐴𝐵 + 𝑊2

𝐴𝐵

In general, for a collection of 𝑀 two arm experiments, all with the same design 𝑔,

the weighted effect size estimate and its variance is given by:

𝑑̂𝑔 =
∑ 𝑊𝑖

𝑔
𝑑𝑖

𝑔𝑀
𝑖=1

∑ 𝑊𝑖
𝑔𝑀

𝑖=1

, 𝑠𝑑̂𝑔

2 =
1

∑ 𝑊𝑖
𝑔𝑀

𝑖=1

For designs where 𝑇𝑔 > 2, meta-analysis is performed in an analogous fashion

with matrix multiplication to generate the weighted effect size estimates. We will now

show how experiments with design 𝐴𝐵𝐶 would be fit according to a fixed effect meta-

analysis model using the dataset type given in Table 2 to generate the effect size

estimates and their respective standard errors.

First a vector of size 𝑇𝑔 − 1 sample effect sizes must be generated with respect to

a treatment arm which we will denote as the baseline choice. This is done to ensure that

the design matrix in the linear model will be full rank (Lu, Welton, Higgins, White, &

Ades, 2011). This vector is meant to be analogous to the scalars produced in two arm

meta-analysis. This baseline choice can be any treatment arm in design 𝑔, but it will be

39

discussed in Section 2.3 how certain baseline choices can optimize the results with

respect to sum of squared errors (SSE).

Let 𝑑𝑖
𝑔

 be the vector of sample effect sizes for experiment 𝑖 with design 𝑔 with

respect to a baseline choice. Further, let 𝑑𝑖
𝑐1𝑐2 and (𝑠𝑖

𝑐1𝑐2)
2
 be the sample mean difference

and pooled variance, respectively, comparing treatment arm 𝑐1 to 𝑐2 in experiment 𝑖.

For our example, we will choose compound A to be the baseline choice, so our

vectors of sample effect sizes will all involve compound A:

𝐝3
𝐴𝐵𝐶 = (

𝑑3
𝐴𝐵

𝑑3
𝐴𝐶) = (

𝑥̅31 − 𝑥̅32

𝑥̅31 − 𝑥̅33
)

𝐝8
𝐴𝐵𝐶 = (

𝑑8
𝐴𝐵

𝑑8
𝐴𝐶) = (

𝑥̅81 − 𝑥̅82

𝑥̅81 − 𝑥̅83
)

Next, we create a covariance matrix meant to be analogous to the pooled variance

in two arm meta-analysis. Let 𝐕𝑖
𝑔

 denote the covariance matrix of experiment 𝑖 with

design 𝑔. This matrix is constructed by using the pooled variances of the sample mean

differences contained in 𝐝𝑖
𝑔

 along with the sample variance of the sample mean of the

treatment arm chosen as the baseline choice:

𝐕3
𝐴𝐵𝐶 = [

(𝑠3
𝐴𝐵)

2
𝑠31

2

𝑠31
2 (𝑠3

𝐴𝐶)
2] , 𝐕8

𝐴𝐵𝐶 = [
(𝑠8

𝐴𝐵)
2

𝑠81
2

𝑠81
2 (𝑠8

𝐴𝐶)
2]

where

(𝑠𝑖
𝐴𝐵)

2
=

𝑛𝑖1𝑠𝑖1
2 + 𝑛𝑖2𝑠𝑖2

2

𝑛𝑖1 + 𝑛𝑖2
, (𝑠𝑖

𝐴𝐶)
2

=
𝑛𝑖1𝑠𝑖1

2 + 𝑛𝑖3𝑠𝑖3
2

𝑛𝑖1 + 𝑛𝑖3
 for 𝑖 = 3,8

40

This formulation for the covariance matrix is based on asymptotic results given in

(Higgins & Whitehead, 1996). For small sample sizes we instead must assume that {θ𝐴,

θ𝐵, θ𝐶, θ𝐷, θ𝐸} are mutually independent, which is a reasonable assumption if the

treatment arms have no obvious relationship with each other.

To create the weight matrices, we simply invert the variance matrices. Let 𝑊𝑖
𝑔

denote the weight matrix of experiment 𝑖 with design 𝑔.

𝐖𝑖
𝐴𝐵𝐶 = (𝐕𝑖

𝐴𝐵𝐶)
−1

The weighted effect size estimate vector and its covariance matrix are calculated as

follows:

𝐝̂𝐴𝐵𝐶 = (𝐖𝐴𝐵𝐶)−1(𝐖3
𝐴𝐵𝐶𝐝3

𝐴𝐵𝐶 + 𝐖8
𝐴𝐵𝐶𝐝8

𝐴𝐵𝐶) = (
𝑑̂𝐴𝐵

𝑑̂AC

)

𝐕𝐴𝐵𝐶 = (𝐖𝐴𝐵𝐶)−1 = [
𝑠𝑑̂𝐴𝐵

2 𝐶𝑜𝑣̂(𝑑̂𝐴𝐵, 𝑑̂AC)

𝐶𝑜𝑣̂(𝑑̂𝐴𝐵, 𝑑̂AC) 𝑠𝑑̂𝐴𝐶

2]

where

𝐖𝐴𝐵𝐶 = 𝐖3
𝐴𝐵𝐶 + 𝐖8

𝐴𝐵𝐶

In general, for a collection of 𝑀 experiments with more than two arms, all with the same

design 𝑔, the weighted effect size estimate vector and its respective covariance matrix is

given by:

𝐝̂𝑔 = (𝐖𝑔)−1 ∑𝐖𝑖
𝑔
 𝐝𝑖

𝑔

𝑀

𝑖=1

, 𝐕𝑔 = (𝐖𝑔)−1

where

41

𝐖𝑔 = ∑𝐖𝑖
𝑔

𝑀

𝑖=1

Once the above steps are completed for all 𝐺 designs, all of the effect size

estimates must be combined into, 𝐲gls, a 𝑇 × 1 vector, and all of their respective

variances must be combined into, 𝐕gls, a 𝑇 × 𝑇 block diagonal matrix where 𝑇 =

∑ (𝑇𝑔 − 1)𝐺
𝑔=1 .

Continuing our example, we form 𝐲gls and 𝐕gls. Note that the effect size

estimates with centered dots in the subscript come from designs with more than two

treatment arms.

𝐲gls = (𝑑̂𝐴𝐵𝐝̂𝐴𝐵𝐶 , 𝑑̂𝐵𝐷 , 𝐝̂𝐴𝐶𝐸 , 𝐝̂𝐴𝐵𝐷)

𝐲gls = (𝑑̂𝐴𝐵, 𝑑̂𝐴𝐵⋅, 𝑑̂𝐴𝐶⋅, 𝑑̂𝐵𝐷 , 𝑑̂𝐴𝐶⋅⋅, 𝑑̂𝐴𝐸⋅⋅, 𝑑̂𝐴𝐵⋅⋅⋅, 𝑑̂𝐴𝐷⋅⋅⋅)
′

𝐕gls = (𝐖gls)−1 = diag (𝑠𝑑̂𝐴𝐵

2 , 𝐕𝐴𝐵𝐶 , 𝑠𝑑̂𝐵𝐷

2 , 𝐕𝐴𝐶𝐸 , 𝐕𝐴𝐵𝐷)

Next, we will begin forming the linear model that will be solved using the

generalized least squares solution. Let 𝐝 be the 𝑀 × 1 (𝑀 ≤ 𝑇) vector containing the

unique effect size parameters estimated in 𝐲gls. Continuing our example:

𝐝 = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐴𝐷 , 𝑑𝐴𝐸 , 𝑑𝐵𝐷)′

𝐝 is then decomposed into two sub-vectors: 𝐝b, a (𝐽 − 1) × 1 basic parameter vector

formed with the effect size parameters corresponding to a spanning tree in the network

graph, and 𝐝f, an (𝑀 − 𝐽 + 1) × 1 functional parameter vector formed with the

remaining effect size parameters.

42

𝐝 = (𝐝b, 𝐝f)
′

𝐝b = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐴𝐷 , 𝑑𝐴𝐸)′

𝐝f = (𝑑𝐵𝐷)′

The effect size parameters in the functional parameter vector are all linear combinations

of the effect size parameters in the basic parameter vector, as shown below for this

example:

𝐅𝐝b = [−1 0 1 0](

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐴𝐷

𝑑𝐴𝐸

) = (𝑑𝐵𝐷) = 𝐝f

Using 𝐹 in conjunction with 𝐈𝑗−1, 𝐝 can then be expressed as a linear combination of the

basic parameters:

𝐝 = (
𝐝b

𝐝f
) = (

𝐈𝑗−1

𝐅
)𝐝b = 𝐇𝐝b

The purpose of generating 𝐇 is to create the linear constraint that will be used in

conjunction with 𝐲gls and 𝐕gls to provide an estimate, 𝐝̂gls, which:

1. Provides the smallest sum of squared errors with respect to the weights by

minimizing ∑ (𝐝̂𝑔𝑘
− 𝐲𝑔𝑘

gls
)′𝑾𝑔𝑘

gls
(𝐝̂𝑔𝑘

− 𝐲𝑔𝑘

gls
)𝐺

𝑘=1 when 𝐝̂𝑔𝑘
= 𝐝̂𝑔𝑘

gls(∗)
, where 𝐲𝑔𝑘

gls
 and

𝐖𝑔𝑘

gls
 are the portions of 𝐲gls and 𝐖gls corresponding to design 𝑔𝑘, respectively, and

𝐝̂𝑔𝑘

gls(∗)
 is the portion of 𝐝̂gls containing the estimates of the effect size parameters

provided for design 𝑔𝑘.

2. Satisfies the linear constraint 𝐝 = 𝐇𝐝b.

43

 We now construct a linear model that will lead to an estimator which will satisfy

the above conditions. This linear model is given by:

𝐲gls = 𝐗𝐝b + 𝛜

where 𝛜 ∼ N𝑇(𝟎, 𝐕gls) and 𝐗 is a 𝑇 × (𝐽 − 1) design matrix that interacts with 𝐝b in such

a way that the effect size parameters in the resulting 𝑇 × 1 vector correspond with the

effect size parameter estimates given in 𝐲gls. Since 𝐇 contains all the linear combinations

for converting 𝐝b into any element of 𝐝, 𝐗 will be a matrix formed by vertically

concatenating rows of 𝐇. Let 𝐡i correspond to the 𝑖𝑡ℎ row of 𝐇. For our example:

𝐲gls =

(

𝑑̂𝐴𝐵

𝑑̂𝐴𝐵⋅

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐷

𝑑̂𝐴𝐶⋅⋅

𝑑̂𝐴𝐸⋅⋅

𝑑̂𝐴𝐵⋅⋅⋅

𝑑̂𝐴𝐷⋅⋅⋅)

=

[

1 0 0 0
1 0 0 0
0 1 0 0

−1 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0]

(

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐴𝐷

𝑑𝐴𝐸

) =

[

𝐡1

𝐡1

𝐡2

𝐡5

𝐡2

𝐡4

𝐡1

𝐡3]

(

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐴𝐷

𝑑𝐴𝐸

) = 𝐗𝐝b

Now that 𝐗 has been constructed, the estimates for the effect size parameters in 𝐝b can be

estimated by 𝐝̂b
gls

 which is given by:

𝐝̂b
gls

= (𝐗′𝐖gls𝐗)−1𝐗′𝐖gls𝐲gls =

(

𝑑̂𝐴𝐵
gls

𝑑̂𝐴𝐶
gls

𝑑̂𝐴𝐷
gls

𝑑̂𝐴𝐸
gls

)

Further, since this is the generalized least squares solution, we know 𝐝̂b
gls

 is the best

linear unbiased estimator for 𝐝b. Finally, since this estimate also satisfies the linear

44

constraint 𝐝 = 𝐇𝐝b, we receive the estimates for the effect size parameters in 𝐝 by

computing:

𝐝̂gls = 𝐇𝐝̂b
gls

=

(

𝑑̂𝐴𝐵
gls

𝑑̂𝐴𝐶
gls

𝑑̂𝐴𝐷
gls

𝑑̂𝐴𝐸
gls

𝑑̂𝐵𝐷
gls

)

It is an easy exercise to see that 𝔼(𝐝̂gls) = 𝐝 and Cov(𝐝̂gls) = 𝐇(𝐗′𝐖gls𝐗)
−𝟏

𝐇′.

The effect size estimates for all (𝐽
2
) possible comparisons can then be computed by using

linear combinations of the effect size estimates given in 𝐝̂gls. The variances for these

estimates can also be computed using Cov(𝐝̂gls). For example, the effect size estimate

and variance for comparing compound C to compound D is given by:

𝑑̂𝐶𝐷
gls

 = (0 − 1 1 0 0) 𝐝̂gls = 𝑑̂𝐴𝐶
gls

− 𝑑̂𝐴𝐷
gls

𝑉𝑎𝑟(d̂𝐶𝐷
gls

) = Var((0 − 1 1 0 0) 𝐝̂gls)

𝑉𝑎𝑟(d̂𝐶𝐷
gls

) = (0 − 1 1 0 0)′Cov(𝐝̂gls)(0 − 1 1 0 0)

𝑉𝑎𝑟(d̂𝐶𝐷
gls

) = Cov(𝐝̂gls)22 + Cov(𝐝̂gls)33 − 2Cov(𝐝̂gls)23

Var(d̂𝐶𝐷
gls

) = Var(d̂𝐴𝐶
gls

) + Var(d̂𝐴𝐷
gls

) − 2Cov(d̂𝐴𝐶
gls

, d̂𝐴𝐷
gls

)

2.2.2 Electrical Network Theory

We will now describe the electrical network theory (ENT) method of analysis.

This approach uses electrical networks as the theoretical foundation for generating

estimates as opposed to the linear regression techniques typically employed in statistics.

45

This method is motivated by the notion presented in (Bailey, 2007) that variances in

microarray experiments combine similar to resistances in electrical networks.

We will once again use our example to demonstrate how estimates are created;

however, the example dataset must be converted from an individual summary measures

dataset to a contrast summary measures dataset. In other words, the ENT method

generates estimates using data where treatment arm comparisons are already calculated as

opposed to the GLS method which requires data for each individual treatment arm.

Table 3: Contrast Summary Measures

In the case where summary measures are given as contrasts instead of individual

summary measures for each treatment arm, let the triplet (δ𝑖𝑗 , 𝑠δ𝑖𝑗
, 𝑛𝑖𝑗) for 𝑖 =

 1,2, … ,𝑁, 𝑗 = 1,2, …, (𝑝𝑖
2
) be the sample mean difference, pooled variance, and sample

size for the 𝑗𝑡ℎ comparison in experiment 𝑖. Table 3 displays the data layout for contrast

summary measures. Let 𝑝 = ∑ 𝑝𝑖
𝑁
𝑖=1 and 𝐲ent be the 𝑝 × 1 vector containing all the

sample mean differences.

46

The first step is to create 𝐁, the edge-vertex incidence matrix, a 𝑝 × 𝐽 matrix

where the 𝑝 rows represent the treatment arm comparisons being made in each

experiment and the 𝐽 columns represent the 𝐽 treatment arms. Further, let 𝐁𝑔 be the

(𝑇𝑔

2
) × 𝐽 matrix representing the portions of the edge-vertex incidence matrix

corresponding to an experiment with design 𝑔 for 𝑔 ∈ {𝑔1, 𝑔2, … , 𝑔𝐺}. For our example,

compounds A, B, C, D, and E correspond to columns 1,2,3,4, and 5, respectively, and the

following matrices are formed:

𝐁𝐴𝐵 = [1 −1 0 0 0], 𝐁𝐴𝐵𝐶 = [
1 −1 0 0 0
1 0 −1 0 0
0 1 −1 0 0

]

𝐁𝐵𝐷 = [0 1 0 −1 0], 𝐁𝐴𝐶𝐸 = [
1 0 −1 0 0
1 0 0 0 −1
0 0 1 0 −1

]

 𝐁𝐴𝐵𝐶 = [
1 −1 0 0 0
1 0 0 −1 0
0 1 0 −1 0

]

So that:

𝐁 =

[

𝐁𝐴𝐵

𝐁𝐴𝐵

𝐁𝐴𝐵𝐶

𝐁𝐵𝐷

𝐁𝐴𝐶𝐸

𝐁𝐴𝐵𝐷

𝐁𝐴𝐵𝐷

𝐁𝐴𝐵𝐶]

This edge-vertex incidence matrix is then used in conjunction with θtreat, a 𝐽 × 1

vector containing the 𝐽 treatment arms in the same order as they appear as the columns in

47

𝐵. For our example, θtreat = (θ𝐴, θ𝐵, θ𝐶 , θ𝐷 , θ𝐸)′. The effect size parameters are then

estimated according to the linear model below.

𝐲ent = 𝐁θtreat + 𝛜

(

𝛿11

𝛿21

𝛿31

𝛿32

𝛿33

⋮
𝛿81

𝛿82

𝛿83)

=

[

𝐁𝐴𝐵

𝐁𝐴𝐵

𝐁𝐴𝐵𝐶

⋮
𝐁𝐴𝐵𝐶]

(

θ𝐴

θ𝐵

θ𝐶

θ𝐷

θ𝐸)

+

(

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

⋮
ϵ16

ϵ17

ϵ18)

=

(

𝑑𝐴𝐵

𝑑𝐴𝐵

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐵𝐶

⋮
𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐵𝐶)

+

(

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

⋮
ϵ16

ϵ17

ϵ18)

where 𝛜 ∼ N𝑝(𝟎, 𝐕ent) and 𝐕ent is a diagonal covariance matrix. More specifically,

𝐕ent = (𝐖ent)−1, where 𝐖ent = diag(𝐖1, … ,𝐖N) is the weight matrix used for this

method. 𝐖𝑖 is a (𝑝𝑖
2
) × (𝑝𝑖

2
) diagonal matrix which contains the weight information

pertaining to experiment 𝑖. When 𝑝𝑖 = 2, 𝐖i is simply a scalar representing the inverse of

the pooled variance for the sample mean difference of the two treatment arms being

compared:

𝐖i =
1

𝑠δ𝑖1

2

When 𝑝𝑖 > 2,𝐖𝑖 has a more complicated derivation. Let 𝐁𝑔 be the (𝑇𝑔

2
) × (𝑇𝑔

2
)

sub edge-vertex incidence matrix pertaining to design 𝑔 for designs where 𝑇𝑔 > 2. 𝐁𝑔 is

simply 𝐁𝑔 where columns that do not have nonzero entries are removed. For our

example:

48

𝐁𝐴𝐵𝐶 = [
1 −1 0
1 0 −1
0 1 −1

] , 𝐁𝐴𝐶𝐸 = [
1 −1 0
1 0 −1
0 1 −1

] , 𝐁𝐴𝐵𝐷 = [
1 −1 0
1 0 −1
0 1 −1

]

Note that although the matrices appear to be the same, the columns in the matrices

represent different treatment arms. The columns in 𝐁𝐴𝐵𝐶 represent compounds A, B, and

C; the columns in 𝐁𝐴𝐶𝐸 represent compounds A, C, and E; and the columns in 𝐁𝐴𝐵𝐷

represent compounds A, B, and D.

The sub edge-vertex incidence matrices are then used in conjunction with 𝐕𝑖, the

(𝑝𝑖
2
) × (𝑝𝑖

2
) sub variance matrix pertaining to experiment 𝑖 for experiments where 𝑝𝑖 > 2.

𝐕𝑖 is a symmetric matric with 0 along the diagonal and entries (𝑞, 𝑟) contain the pooled

variance for the sample mean difference comparing the treatment arms in the 𝑞𝑡ℎ and 𝑟𝑡ℎ

columns of the sub edge-vertex incidence matrix. For our example:

𝐕3 = [

0 𝑠δ31

2 𝑠δ32

2

𝑠δ31

2 0 𝑠δ33

2

𝑠δ32

2 𝑠δ33

2 0

] , 𝐕5 = [

0 𝑠δ51

2 𝑠δ52

2

𝑠δ51

2 0 𝑠δ53

2

𝑠δ52

2 𝑠δ53

2 0

] , . . . , 𝐕8 = [

0 𝑠δ81

2 𝑠δ82

2

𝑠δ81

2 0 𝑠δ83

2

𝑠δ82

2 𝑠δ83

2 0

]

The next step is to form the 𝐋𝑖
+ matrix using the 𝐁𝑔 and 𝐕𝑖 matrices for each experiment 𝑖

with design 𝑔 where 𝑇𝑔 > 2.

𝐋𝑖
+ =

1

2𝑝𝑖
2 𝐁′𝑔𝐁𝑔𝐕𝑖𝐁′𝑔𝐁𝑔

To obtain the entries that will form the diagonal of 𝐖𝑖, 𝐋𝑖
+must be converted to 𝐋𝑖

using the Moore-Penrose pseudo-inverse (Albert, 1972). Let 𝐉𝑘 be a 𝑘 × 𝑘 matrix where

every entry is 1. For any 𝑘 × 𝑘 matrix 𝐀, let the Moore-Penrose pseudo-inverse of 𝐀, 𝐀+,

be defined as:

49

𝐀+ = (𝐀 −
1

𝑘
𝐉𝑘)

−1

−
1

𝑘
𝐉𝑘

Let 𝑙𝑖(𝑞,𝑟) be the (𝑞, 𝑟) entry of the matrix 𝐋𝑖. The inverse of the negative non-

diagonal elements of 𝐋𝑖 are meant to serve as “adjusted” variances to replace the pooled

variances found in the corresponding slot of 𝐕𝑖 by inflating them. This is done to adjust

for any within-experiment correlation between treatment arms that may be present. 𝐖𝑖

when 𝑝𝑖 > 2 is then given by:

𝐖𝑖 = 𝑑𝑖𝑎𝑔(−𝑙𝑖(𝑞,𝑟)) 𝑓𝑜𝑟 1 ≤ 𝑞 < 𝑟 ≤ 𝑝𝑖

For our examples, 𝐖𝑖 = 𝑑𝑖𝑎𝑔 ((−𝑙𝑖(1,2)), (−𝑙𝑖(1,3)), (−𝑙𝑖(2,3))) for 𝑖 =

 3, 5, 6, 7, 8 since 𝑝𝑖 = 3 for these experiments. Once 𝐖𝑖 has been formed for 𝑖 =

 1, … , 𝑁, 𝐖ent is formed and used with 𝐁 to create 𝐋 = 𝐁′𝐖ent𝐁. Next, we compute the

Moore-Penrose pseudo-inverse of 𝐋, 𝐋+. Finally, the estimates for the effect size

parameters in 𝐲ent are given by:

𝐲̂ent = 𝐁𝐋+𝐁′𝐖ent𝐲ent

(

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐶
ent

𝑑̂𝐵𝐶
ent

⋮
𝑑̂𝐴𝐵

ent

𝑑̂𝐴𝐶
ent

𝑑̂𝐵𝐶
ent)

= 𝐁𝐋+𝐁′𝐖ent

(

𝛿11

𝛿21

𝛿31

𝛿32

𝛿33

⋮
𝛿81

𝛿82

𝛿83)

𝐲̂ent contains the effect size parameter estimates for all the direct comparisons

available. Like the GLS method, the effect size parameter estimates for indirect

50

comparisons are computed using linear combinations of the estimates provided in 𝐲̂ent;

however, the variance of any effect size parameter estimate is computed differently.

Regardless of whether the effect size parameter estimate corresponds to a direct or

indirect comparison, the variance is computed as follows: the variance of the effect size

parameter estimate which compares the treatment arm associated with column 𝑖 in 𝐵 to

the treatment arm associated with column 𝑗 in 𝐵 is given by:

𝐋(𝑖𝑖)
+ + 𝐋(𝑗𝑗)

+ − 2𝐋(𝑖𝑗)
+

For our example the effect size estimate and variance for comparing compound C to

compound D is given by:

𝑉𝑎𝑟(𝐝̂𝐶𝐷
ent) = 𝐋(33)

+ + 𝐋(44)
+ − 2𝐋(34)

+

Note that unlike the effect size parameters estimated by 𝐝̂gls, 𝐲̂ent may contain

multiple (identical) estimates for the same parameter. Further, since a baseline choice

does not have to be made for all designs with more than two treatment arms to make sure

the design matrix is full rank, more effect size parameters can be immediately deduced.

For example, the ninth element of 𝐲̂ent contains an estimate for the effect size parameter

𝑑𝐶𝐸, while 𝐝̂gls will not contain an estimate for 𝑑𝐶𝐸 unless a different baseline choice

configuration is chosen.

Further, whether individual or contrast summary measures data is available will

influence which method should be used. In the case where individual summary measures

are available either method can be used since the conversion from individual to contrast

summary measures is a simple feat. When only contrast summary measures are available

one must use methods to impute the off-diagonal variances that will be placed in the

51

variance matrices to use the GLS method (Riley, 2009; Franchini, Dias, Ades, Jansen, &

Welton, 2012).

It should be noted that there is also plenty of literature detailing how to conduct

network meta-analysis with under a Bayesian framework (Lu & Ades, 2004; Dias,

Sutton, Ades, & Welton, 2013; Hong, et al., 2013). While these Bayesian methods are

useful, we will remain in the realm of the frequentist methods.

2.3 A Comparison Between the GLS and ENT Methods

Rücker and Schwarzer assert that the effect size parameter estimates and their

variances will be identical for both methods (Rücker & Schwarzer, 2014). This cannot be

correct because we have found a counterexample in the form of a dataset heavily based

on preclinical data for which the two methods are in fact not equivalent.

We will now apply the GLS method and the ENT method to two separate datasets

and provide the results for each. Each section will provide the data being used, the

computations of the basic matrices needed in each method, and the effect size parameter

estimates yielded from each method, all of which can be checked by the reader

independently to ensure total transparency.

For this section we will use Dataset A provided in Table 4. This dataset contains 3

different experiments (𝑁 = 3), two different designs (𝐺 = 2), and four different

treatment arms (𝐽 = 4). This experiment does not have a balanced design. While this

dataset may not seem ideal, it is heavily based on data from a pharmaceutical company.

See Figure 11 for the experiment design for this dataset.

52

2.3.1 A Counterexample Where Methods Are Not Equivalent

Table 4: Dataset A (Counterexample)

Figure 11: Dataset A Experiment Designs

We will begin by finding results with the GLS method using the individual

summary measures version of this dataset. The two designs are {𝐴𝐵, 𝐴𝐵𝐶𝐷}. For design

𝐴𝐵𝐶𝐷 we will choose our baseline choice to be Compound C. So 𝐲gls and 𝐕gls will be:

𝐲gls = (
𝑑̂𝐴𝐵

𝐝̂𝐴𝐵𝐶

) =

(

𝑑̂𝐴𝐵

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐶⋅

𝑑̂𝐶𝐷⋅)

= (

2.864
34.590
11.430

−16.310

)

𝐕gls = (𝐖gls)−1 = diag (𝑠𝑑̂𝐴𝐵

2 , 𝐕𝐴𝐵𝐶𝐷) = [

24.505 0 0 0
0 89.585 9.425 −9.425
0 9.425 20.053 −9.425
0 −9.425 −9.425 36.987

]

53

Note that the covariances for certain entries are negative. This is because the pair of

effect size parameters for which the covariance is being estimated have the baseline

treatment arm in a different comparitive positions. For example:

𝐶𝑜𝑣(𝑑𝐵𝐶 , 𝑑𝐶𝐷) = 𝐶𝑜𝑣(θ𝐵 − θ𝐶 , θ𝐶 − θ𝐷)

Cov(𝑑𝐵𝐶 , 𝑑𝐶𝐷) = Cov(θ𝐵, θ𝐶 − θ𝐷) + Cov(−θ𝐶 , θ𝐶 − θ𝐷)

Cov(𝑑𝐵𝐶 , 𝑑𝐶𝐷) = Cov(θ𝐵, θ𝐶) + Cov(θ𝐵, −θ𝐷) + Cov(−θ𝐶 , θ𝐶) + Cov(−θ𝐶 , −θ𝐷)

Cov(𝑑𝐵𝐶 , 𝑑𝐶𝐷) = −Var(θ𝐶)1

Our vector containing the effect size parameters is then 𝐝 = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐵𝐶 , 𝑑𝐶𝐷)′.

Further, we will choose 𝐝b = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐶𝐷)′ to be our basic parameter vector and 𝐝f =

(𝑑𝐵𝐶)′ to be our functional parameter vector. As such:

𝐝 = (
𝐝b

𝐝f
) = [

1 0 0
0 1 0

−1 1 0
0 0 1

] 𝐝b = 𝐇𝐝b

so that

𝐲gls =

(

𝑑̂𝐴𝐵

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐶⋅

𝑑̂𝐶𝐷⋅)

= [

1 0 0
0 1 0

−1 1 0
0 0 1

](

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐶𝐷

) = [

𝐡1

𝐡2

𝐡3

𝐡4

] (

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐶𝐷

) = 𝐗𝐝b

and finally

1 To reach this result we assume that {θ𝐴, θ𝐵, θ𝐶 , θ𝐷} are mutually independent as mentioned earlier in

section 2.2.1.

54

𝐝̂gls =

(

𝑑̂𝐴𝐵
gls

𝑑̂𝐴𝐶
gls

𝑑̂𝐵𝐶
gls

𝑑̂𝐶𝐷
gls

)

= 𝐇(𝐗′𝐖gls𝐗)−1𝐗′𝐖gls𝐲gls = (

7.178
20.479
13.301

−16.310

)

The effect size parameter estimates for the remaining direct comparisons are calculated

by taking linear combinations of 𝐝̂gls. Specifically, they are given by 𝑑̂𝐴𝐶
gls

= 4.169 and

𝑑̂𝐵𝐷
gls

= −3.009.

Next we will use the contrast summary measures version of the dataset and use

the ENT method to generate results. First recall that 𝐲̂ent is the 8 × 1 vector containing

all of the sample mean differences. Next we will form the edge-vertex incidence matrix,

𝐵. Compounds A, B, C, and D will correspond to columns 1, 2, 3, and 4 of 𝐵,

respectively, and the following matrices are formed. So:

𝐁𝐴𝐵 = [1 −1 0 0], 𝐁𝐴𝐵𝐶𝐷 =

[

1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1]

so that

𝐁 = [
𝐁𝐴𝐵

𝐁𝐴𝐵

𝐁𝐴𝐵𝐶𝐷

]

and

𝐲ent = 𝐁θtreat + 𝛜

55

(

𝛿11

𝛿21

𝛿31

𝛿32

𝛿33

𝛿34

𝛿35

𝛿36)

= [
𝐁𝐴𝐵

𝐁𝐴𝐵

𝐁𝐴𝐵𝐶𝐷

](

θ𝐴

θ𝐵

θ𝐶

θ𝐷

) +

(

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

ϵ7

ϵ8)

=

(

𝑑𝐴𝐵

𝑑𝐴𝐵

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐴𝐷

𝑑𝐵𝐶

𝑑𝐵𝐷

𝑑𝐶𝐷)

+

(

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

ϵ7

ϵ8)

Since design 𝐴𝐵𝐶𝐷 has four treatment arms we must form a sub edge-vertex incidence

matrix 𝐁𝐴𝐵𝐶𝐷.

𝐁𝐴𝐵𝐶𝐷 =

[

1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1]

Next we form a sub variance matrix 𝐕3 for experiment 3 since this experiment has design

𝐴𝐵𝐶𝐷.

𝐕3 = [

0 91.575 89.585 119.595
91.575 0 20.053 38.190
89.585 20.053 0 36.987
119.595 38.190 36.987 0

]

Next, we compute 𝐋3
+ and form 𝐖3 for experiment 3. We will leave this process

for the reader to complete. Finally, with these computations completed we can now form

𝐖ent, which is given by:

𝐖ent = 𝑑𝑖𝑎𝑔(0.005,0.035,0.005,0.007,−𝟎. 𝟎𝟎𝟎𝟐, 0.039,0.15,0.016)

Finally, after computing 𝐋 = 𝐁′𝐖ent𝐁, we arrive at the result:

56

(

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐶
ent

𝑑̂𝐴𝐷
ent

𝑑̂𝐵𝐶
ent

𝑑̂𝐵𝐷
ent

𝑑̂𝐶𝐷
ent)

= 𝐁𝐋+𝐁′𝐖ent

(

𝛿11

𝛿21

𝛿31

𝛿32

𝛿33

𝛿34

𝛿35

𝛿36)

=

(

7.149
7.149
7.149
20.506
3.158
13.357
−3.991
−17.348)

Here it is seen that 𝑑̂𝑐1𝑐2

gls
≠ 𝑑̂𝑐1𝑐2

ent for every possible choice of 𝑐1 and 𝑐2. In other

words, the effect size parameter estimates for each method are not equivalent. We leave it

to the reader to confirm that the variances for all of the effect size parameter estimates are

not equivalent.

There are a few things that should be noted here. First, the SSE for the GLS

method results is less than the SSE for the ENT method results. This is not surprising

since the estimator provided by the GLS method is the best unbiased linear estimator in

terms of SSE. This is why it is so important that the ENT method provides equivalent

results, which in this example it does not.

Second, different results for the GLS method are possible depending on the

baseline choice we use for calculating the initial fixed effects estimates for design 𝐴𝐵𝐶𝐷.

This is because when the baseline choice is compound A or compound B, the effect size

parameter vector for design 𝐴𝐵𝐶𝐷 includes 𝑑𝐴𝐵, which is then used in conjunction with

the effect size parameter for design 𝐴𝐵 to create 𝑑̂𝐴𝐵
gls

. On the other hand, when the

baseline choice is compound C or compound D, the effect size parameter vector for

design 𝐴𝐵𝐶𝐷 does not include 𝑑𝐴𝐵, so 𝑑̂𝐴𝐵
gls

 is formed with the information from

experiments with design 𝐴𝐵 only.

57

Lu et. al insist that the final results for the GLS method are invariant to the

baseline choice for designs with more than two treatment arms (Lu, Welton, Higgins,

White, & Ades, 2011). We invite readers to apply the GLS method to Dataset A for every

other baseline choice to see that this is not true. We calculated the GLS estimates for

every choice, and used Compound C as the baseline choice because this estimate had the

smallest SSE. Also, none of the estimates generated with different baseline choices for

the GLS method yielded equivalent estimates to the ENT method.

Third, note that one of the weights in 𝐖ent has been bolded. The weights

calculated for the ENT method for experiments with more than two treatment arms

should all be positive according to (Schwarzer, Carpenter, & Rücker, 2015). This is

because they are always supposed to be retrieved as the negative non-diagonal entries

from 𝐋i
+ for experiments with more than two treatment arms. In our example, one of the

non-diagonal entries from 𝐋3
+ is not negative and leads to the weight -0.0002. This means

that this dataset is not compatible with the theoretical framework that the ENT method

uses. As such, the ENT method should not be used for this dataset.

All of these items together show that for this particular dataset, not only are the

GLS and ENT methods not equivalent, but the GLS method is better both in practical

terms since it minimizes the SSE by construction, and theoretically since the ENT

method produces negative weights. As such, the original GLS method should be used

whenever possible; however, in Section 2.3.3 we offer potential conditions for when the

two methods may be used interchangably.

Of course, since the the baseline choices for experiments with more than two

treatment arms determine what the final results for the GLS method will be, this method

58

should be further optimized as well by choosing the baseline choice which minimizes the

SSE of the final effect size parameter estimates. In the next section we present a dataset

for which the methods are equivalent.

2.3.2 Dataset for Which Methods Are Equivalent

For this section we will use Dataset B given in Table 5. This dataset contains six

different experiments (𝑁 = 6), three different designs (𝐺 = 3), and three different

treatment arms (𝐽 = 3). Each experiment has a balanced design and they all have the

same sample size (𝑛𝑖𝑗 = 10, 𝑓𝑜𝑟 𝑖 = 1,… ,6, 𝑗 = 1,… , 𝑝𝑖). This dataset was simulated

by the author. See Figure 12 for the experiment design for this dataset.

Table 5: Dataset B

59

Figure 12: Dataset B Experiment Designs

We will begin by finding results with the GLS method using the individual

summary measures version of this dataset. The three designs are {𝐴𝐵𝐶, 𝐵𝐶, 𝐴𝐵}. For

design 𝐴𝐵𝐶 we will choose our baseline choice to be Compound 𝐴. So 𝐲gls and 𝐕gls will

be:

𝐲gls = (

𝐝̂𝐴𝐵𝐶

𝑑̂𝐵𝐶

𝑑̂𝐴𝐵

) =

(

𝑑̂𝐴𝐵⋅

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐶

𝑑̂𝐴𝐵)

= (

−4.798
−13.148
−5.339
−5.311

)

𝐕gls = (𝐖gls)−1 = diag (𝐕𝐴𝐵𝐶𝐷, 𝑠𝑑̂𝐴𝐵

2 , 𝑠𝑑̂𝐵𝐶

2) = [

0.037 0.017 0 0
0.017 0.051 0 0

0 0 0.100 0
0 0 0 0.190

]

Our vector containing the effect size parameters is then 𝐝 = (𝑑𝐴𝐵, 𝑑𝐴𝐶 , 𝑑𝐵𝐶)′.

Further, we will choose 𝐝b = (𝑑𝐴𝐵, 𝑑𝐴𝐶)′ to be our basic parameter vector and 𝑑f =

(𝐝𝐵𝐶)′ to be our functional parameter vector. As such:

60

𝐝 = (
𝐝b

𝐝f
) = [

1 0
0 1

−1 1
] 𝐝b = 𝐇𝐝b

so that

𝐲gls =

(

𝑑̂𝐴𝐵⋅

𝑑̂𝐴𝐶⋅

𝑑̂𝐵𝐶

𝑑̂𝐴𝐵)

= [

1 0
0 1

−1 1
1 0

] (
𝑑𝐴𝐵

𝑑𝐴𝐶
) = [

𝐡1

𝐡2

𝐡3

𝐡1

] (
𝑑𝐴𝐵

𝑑𝐴𝐶
) = 𝐗𝐝b

and finally

𝐝̂gls = (

𝑑̂𝐴𝐵
gls

𝑑̂𝐴𝐶
gls

𝑑̂𝐵𝐶
gls

) = 𝐇(𝐗′𝐖gls𝐗)−1𝐗′𝐖gls𝐲gls = (
−5.206
−12.505
−7.299

)

Now we will use the contrast summary measures version of the dataset and use

the ENT method to generate results. First recall that 𝐲ent is the 12 × 1 vector containing

all the sample mean differences. Next, we will form the edge-vertex incidence matrix, 𝐁.

Compounds A, B, and C will correspond to columns 1, 2, and 3, respectively, and the

following matrices are formed. So:

𝐁𝐴𝐵𝐶 = [
1 −1 0
1 0 −1
0 1 −1

] , 𝐁𝐵𝐶 = [0 1 −1], 𝐁𝐴𝐵 = [1 −1 0]

so that

𝐁 =

[

𝐁𝐴𝐵𝐶

𝐁𝐴𝐵𝐶

𝐁𝐵𝐶

𝐁𝐴𝐵

𝐁𝐵𝐶

𝐁𝐴𝐵𝐶]

61

and

𝐲ent = 𝐁θtreat + 𝛜

(

𝛿11

𝛿12

𝛿13

⋮
𝛿61

𝛿62

𝛿63)

= [
𝐁𝐴𝐵𝐶

⋮
𝐁𝐴𝐵𝐶

] (

θ𝐴

θ𝐵

θ𝐶

) +

(

ϵ1

ϵ2

ϵ3

⋮
ϵ10

ϵ11

ϵ12)

=

(

𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐵𝐶

⋮
𝑑𝐴𝐵

𝑑𝐴𝐶

𝑑𝐵𝐶)

+

(

ϵ1

ϵ2

ϵ3

⋮
ϵ10

ϵ11

ϵ12)

Since design 𝐴𝐵𝐶 has three treatment arms we must form a sub edge-vertex incidence

matrix 𝐵𝐴𝐵𝐶.

𝐁𝐴𝐵𝐶 = [
1 −1 0
1 0 −1
0 1 −1

]

Next, we form a sub variance matrix 𝐕𝑖 for each experiment with design 𝐴𝐵𝐶

(𝑖 = 1,2,6).

𝐕1 = [
0 0.141 0.142

0.141 0 0.159
0.142 0.159 0

] , 𝐕2 = [
0 0.085 0.134

0.085 0 0.137
0.134 0.137 0

],

𝐕6 = [
0 0.122 0.194

0.122 0 0.202
0.194 0.202 0

]

Finally, we compute 𝐋𝑖
+ and form 𝐖𝑖 for each experiment with design 𝐴𝐵𝐶

(𝑖 = 1,2,6). We will leave this process for the reader to complete. Finally, with these

computations completed we can now form 𝐖ent, given by:

𝐖ent = 𝑑𝑖𝑎𝑔(4.894, 4.823, 3.988, 9.529, . . . , 6.007, 6.677, 3.183, 2.795)

62

A few entries have been omitted, but the reader can confirm that all entries of 𝐖ent are

non-negative. Finally, after computing 𝐋 = 𝐁′𝐖ent𝐁, we arrive at the result:

(

𝑑̂𝐴𝐵
ent

𝑑̂𝐴𝐶
ent

𝑑̂BC
ent

⋮
𝑑̂𝐴𝐵

ent

𝑑̂𝐴𝐶
ent

𝑑̂𝐵𝐶
ent)

= 𝐁𝐋+𝐁′𝐖ent

(

𝛿11

𝛿31

𝛿32

⋮
𝛿34

𝛿35

𝛿36)

=

(

−5.206
−12.505
−7.299

⋮
−5.206
−12.505
−7.299)

Here it is seen that 𝑑̂𝑐1𝑐2
ent = 𝑑̂𝑐1𝑐2

ent for every possible choice of 𝑐1 and 𝑐2. In other

words, the effect size parameter estimates for each method are equivalent. We leave it to

the reader to confirm that the variances for all the effect size parameter estimates are also

the same.

2.3.3 Possible Method Equivalence Requirements

We now propose conditions for which the datasets may be equivalent. We believe

an important condition for the methods to be equivalent is that the weights generated for

the electrical network theory method be positive. This is because in the theoretical

framework for which the method is based on, the weights should always be positive.

Negative weights are directly connected to how consistent variances are in the

network. In Dataset A, note that the variances for any initial effect size estimate including

treatment arm A in a contrast summary measures dataset will be much higher than the

variances for effect size estimates which do not.

Note that this fact alone does not in essence violate the theoretical assumptions

necessary since the method assumes each effect size parameter estimate will have a

63

distinct variance. Still, it does ultimately play a role in producing a negative weight in

𝐖ent which violates the underlying theoretical framework. As such, in order to be sure

that the methods are equivalent, the variances should appear to be consistent. Further,

after analysis is conducted, 𝐖ent should not contain any negative entries.

Another factor that may control whether the methods will yield equivalent results

is the amount of experiments with similar designs. In Dataset A there is only one

experiment with the multi-arm design 𝐴𝐵𝐶𝐷 whereas in Dataset B there are three

experiments with the multi-arm design 𝐴𝐵𝐶. Further, in the Dataset A there was only one

experiment that contained treatment arms 𝐶 and 𝐷. Even when the designs are distinct,

each experiment in Dataset B has at least one treatment arm in common with another

experiment.

This high level of inconsistency in variances can be common in preclinical

experiments with few experiments and many treatment arms, each with only a few

subjects. More so, these preclinical experiments can also have wildly different designs as

they develop new compounds to test and stop testing old compounds that have been

deemed inefficient. Both of these qualities lead us to suggest that if analysts desire to use

network meta-analysis on this type of data, the generalized least squares method should

be used.

There may be other conditions governing whether the methods will be equivalent

that have not been discovered. As such, the generalized least squares method of network

meta-analysis should be used whenever possible to ensure the most optimal results in

terms of SSE.

64

2.4 Simulation Results Comparing Network Meta-Analysis to Mixed-Effect

Linear Models

In this section we provide simulation results which compare the GLS method of

network meta-analysis to mixed-effects linear models. We simulated data by using

datasets from two different sets of experiments. The dataset used in Section 2.4.1 is

artificial data that was simulated by the author, and the dataset used in Section 2.4.2 is the

data from a set of non-clinical experiments from a pharmaceutical company.

To begin, we fit a mixed-effects linear model with treatment arm as a fixed effect

and experiment as a random effect. We then find the predicted values and the residuals,

𝐲̂ = (𝑦̂11, 𝑦̂12, … , 𝑦̂𝑀𝑛𝑀
)
′
 and 𝛆 = (ε11, ε12, … , ε𝑀𝑛𝑀

)
′
, respectively, for each dataset.

This model will contain the “true” coefficients that each method should be estimating.

Then we create the simulated datasets, 𝐲boot and 𝐲norm. 𝐲boot is created by

adding residuals to the elements of 𝐲̂ by bootstrapping elements of 𝛆. 𝐲norm is created by

adding residuals to the elements of 𝐲̂ by randomly sampling from N(0, σ𝛆
2), where σ𝛆 is

the standard deviation of 𝛆. We then used both methods 1000 times to create and analyze

data.

In each simulation, we compare the GLS method of network meta-analysis and

mixed effects linear model by assessing the bias, mean squared error, and 95%

confidence interval coverage rate for each individual estimate. It is well known that

random effects meta-analysis models perform better than fixed effects meta-analysis

models. As such, the pooled random effects model given is used to generate estimates for

the GLS method instead of the fixed effects estimates described in Section 2.2.1. This

65

model uses the heterogeneity estimate 𝜏̂𝑝𝑜𝑜𝑙𝑒𝑑
2 as defined in (Lu, Welton, Higgins, White,

& Ades, 2011).

2.4.1 Simulated Data with Moderately Low Sample Sizes

In this section we explore the simulation results with moderately low sample sizes

which would be relatively high in the context of preclinical trials for each experiment,

decide indirect comparisons are of interest, and ensure that all experiment designs are

represented more than once. The dataset for this section was simulated by the author.

The data was created according to the following simulation model:

𝑦𝑖𝑗𝑘 ∼ 𝑁(μ𝑖𝑗, 3); μ𝑖𝑗 ∼ N(θ𝑗 , 0.5) for 𝑖 = 1,2, … ,𝑁; 𝑗 ∈ 𝒜; 𝑘 = 1,2, … , 𝑛𝑖𝑗

where

• μ𝑖𝑗 is the true mean response for treatment arm 𝑗 in experiment 𝑖

• θ𝑗 is the true mean response for treatment arm 𝑗, 𝑁 is the number of experiments

• 𝒜 is the set of possible treatment arms

• 𝑛𝑖𝑗 is the number of subjects receiving treatment arm 𝑗 in experiment 𝑖

 So 𝑦𝑖𝑗𝑘 is the response for subject 𝑘 in experiment 𝑖 after receiving treatment arm

𝑗. Note that μ𝑖𝑗 is randomly sampled from a normal distribution with θ𝑗 at the center to

reflect the heterogeneity that is often present between different experiments. For the

dataset we simulated, 𝑁 = 8,𝒜 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, θ𝐴 = 10, θ𝐵 = 8,…θ𝐸 = 0, and 𝑛𝑖𝑗 =

50 for every combination of 𝑖 and 𝑗 defined by the experiment designs given in Figure

13.

66

Figure 13: Experiment Designs for Simulated Data

Below are multiple tables providing the simulation results for the coefficients

comparing the difference between the treatment arms 𝐴, 𝐵, 𝐶, and 𝐷 to treatment arm 𝐸.

Table 6 compares the bias, Table 7 compares the mean squared error, and Table 8

compares the 95% confidence interval for the different methods for each type of

simulated dataset. Note that this is only a handful of the effect size estimates given by the

network meta-analysis and three correspond to indirect comparisons.

According to the simulation results, the absolute value of the bias for the network

meta-analysis results is less than the absolute value of the bias for the mixed effects linear

model results for at least one type of data simulation for every effect size parameter.

Table 6: Bias Results

67

Table 7: Mean Squared Error Results

Table 8: 95% Confidence Interval Coverage Rate Results

The mean squared error for the network meta-analysis results is greater than the

mean squared error for both data simulation types for every effect size parameter, which

suggests that there is more volatility for network meta-analysis estimates than mixed

effect linear model estimates. The 95% confidence interval coverage rate for the network

meta-analysis results is greater than the 95% confidence interval coverage rate for the

mixed effects linear model results for the bootstrap type of data simulation for all but one

effect size parameter (𝑑𝐵𝐸).

Note that the effect size parameter estimates corresponding to indirect

comparisons (𝑑𝐴𝐸 , 𝑑𝐵𝐸 , 𝑑𝐷𝐸) from the network meta-analysis results suffer in particular

compared to mixed effects linear model results. Still, in terms of bias and 95%

confidence interval coverage rate they perform just as well as 𝑑𝐶𝐸, an effect size

parameter corresponding to a direct comparison.

68

2.4.2 True Preclinical Data

The dataset for this section involves four non-clinical experiments that were

conducted independently in 2015. The goal of these experiments was to determine if any

of the developed compounds (Compounds B, C, D, E, F, and G) provided a statistically

significant increase in a desired response mechanism according to a pre-specified metric

compared to a compound serving as a negative control (Compound A). See Figure 14 for

the experiment design for this dataset.

Figure 14: Experiment Designs for True Preclinical Data

Below are multiple tables providing the simulation results for the coefficients

comparing the difference between the Compounds B, C, D, E, F, and G to Compound A.

Table 9 compares the bias, Table 10 compares the mean squared error, and Table 11

compares the 95% confidence interval for the different methods for each type of

simulated dataset. Note that this is only a handful of the effect size estimates given by

network meta-analysis and they are all direct comparisons.

69

Table 9: Bias Results

Table 10: Mean Squared Error Results

Table 11: 95% Confidence Interval Coverage Rate Results

It is worth noting that although the set of experiments used in this simulation each

had balanced designs, they all suffered from very small sample sizes. Experiments 1, 2,

and 3 each only had three subjects per treatment arm, and Experiment 4 only had five

different subjects per treatment arm. Also, in this experiment the goal was to generate

estimates for a set of effect size parameters which were all direct comparisons. Finally,

each time a new experiment was conducted the designs were completely changed.

70

According to the simulation results, the absolute value of the bias for the network

meta-analysis results is less than the absolute value of the bias for the mixed effects linear

model results for at least one type of data simulation for every effect size parameter. This

suggests that network meta-analysis does a better job of returning the point estimate on

average than mixed effects linear models.

The mean squared error for the network meta-analysis results is greater than the

mean squared error for the mixed effects linear model results for both data simulation

types for all but one effect size parameter (𝑑𝐵𝐴), which suggests that there is a higher

level of volatility in the estimates provided by network meta-analysis when compared to

the mixed effects linear model estimates.

This is further demonstrated by the fact that the 95% confidence interval coverage

rate for the network meta-analysis results is less than the 95% confidence interval

coverage rate for the mixed effects linear model for both types of data simulation for all

but one effect size parameter (𝑑𝐺𝐴). This lack of coverage may be a cause for concern

and cast doubt on the utility of the method for this type of dataset.

2.5 Discussion

We have described in rigorous detail the steps for conducting two different

methods of mixed treatment comparisons meta-analysis, more succinctly dubbed network

meta-analysis, as well as compared them in the context of datasets with small sample

sizes which are often typical in preclinical data.

 We have demonstrated that while for some datasets, the electrical network

theory method proposed in (Rücker & Schwarzer, 2012) is equivalent to the generalized

71

least squares method given in (Lu, Welton, Higgins, White, & Ades, 2011), there exists a

class of datasets such that the two methods are not equivalent. As such, the generalized

least squares method, along with the correct set of baseline choices to ensure SSE

minimization, should be used instead whenever possible.

We have developed the R package NMA which contains functions for conducting

the generalized least squares method and finding the set of baseline choices which

minimizes the SSE. The function which conducts network meta-analysis also allows the

user to choose the electrical network theory method, which is already currently available

in the R package netmeta developed by Rücker et al. (Rücker, Schwarzer, Krahn, &

König, 2018). There are also functions in the package which provide the graphical

interpretation of the treatment arms in the network as well as a forest plot which allows

for comparisons of the final estimates yielded from the network meta-analysis. Currently,

netmeta is the only package in R which performs network meta-analysis within a

frequentist framework (Neupane, et al., 2014). Consequently, NMA is currently the only

R package that allows for performing network meta-analysis using the generalized least

squares method.

Finally, we provided simulation results which showed that with the correct design

of experiments, network meta-analysis using only summary measures provides similar

results to mixed effects linear models using every data point in terms of bias and

coverage rate. While mixed effects linear models provide noticeably better results in

terms of mean squared error, the increase in variance of the estimates is to be expected

since the reduction from an entire dataset to its summary measures results in a loss of

information. This should intuitively lead to more uncertainty in the estimates.

72

More work can be done for finding the specific class of data for which the GLS

and ENT methods are not equivalent. Methods could also be developed to determine

precisely when a given set of experiments include variances which are not consistent

enough for the GLS and ENT method to produce equivalent results. Finally, more

simulations can be created to study how the results fare for binary or survival outcomes

for the type of sets of experiments generated in preclinical environment.

73

Chapter 3: Power and Sample Size Calculations for Designing

Experiments with Ordinal Categorical Responses with Small

Range Scales

3.1 Introduction

Power calculations for hypothesis tests are a crucial part of designing both clinical

and non-clinical trials (Amaratunga, 1999). Scientists rely heavily on the results from

these calculations to decide the number of subjects they will collect for experiments.

Since there is typically a higher cost, monetary or otherwise, for conducting experiments

for large sample sizes, there is an interest in choosing a small number of subjects;

however, the ability for most hypothesis tests to detect a statistically significant

difference in treatment effect can depend heavily on the sample size. As such, the method

for calculating power to determine the optimal sample size must be carefully chosen.

In experiments with ordinal categorical data, the data are assumed to follow a

multinomial distribution with a probability assigned to each category. As a motivating

example, suppose that scientists at a pharmaceutical company are attempting to develop a

drug for reducing pain. According to the pain metric developed by the scientists, any

subject's pain falls into one of three categories: 1 is no pain, 2 is mild pain, and 3 is

extreme pain. The scientists have completed a drug they plan to test, Compound A. They

will deem the compound successful for a patient if their pain score is reduced by at least

one point. Finally, they would like to be able to ensure that they collect a large enough

number of subjects so that the hypothesis test used to analyze the data has at least 90%

power.

74

In this paper we explore a method for calculating power for experiments such as

these where there are between three and five different ordinal categories. This method

creates and shifts the quantiles of a standard normal distribution to define alternative

multinomial distributions. In Section 3.2 we explain the method in the context of the

motivating example. Section 3.2 expands the method by adding multiple types of

uncorrelated ordinal categorical variables. Section 3.4 expands the method further by

introducing correlation between pairs of ordinal categorical variables, as well as the

derivation of a new estimator to estimate this correlation. This section also offers

simulation results comparing this new correlation estimator, ξ, to Spearman's ρ and

Kendall's τ in terms of bias. Section 3.5 applies the method to the dataset provided by a

pharmaceutical company which served as the motivation for developing this method.

Section 3.6 discusses this new method of power calculation and how it may be expanded

further. This section also describes an R package that has been developed to apply the

method.

3.2 Power Calculation for One Variable

Continuing our motivating example, suppose the scientists conducting the

experiment have already taken an initial sample of 𝑁0 subjects and recorded their pain

scores to obtain an estimate of how much pain subjects experience when left untreated.

Let 𝑛𝑘 be the number of subjects that exhibit a pain score of 𝑘 for 𝑘 = 1,2,3. The

scientists plan to use the outcome yielded from this initial sample to help design a future

experiment.

We will assume that this future experiment will be randomized with a balanced

design. 𝑁 subjects will be assigned to the “Placebo” group (Group 𝑃) and receive a

75

placebo as their treatment and 𝑁 subjects will be assigned to the “Treatment” group

(Group 𝑇) to recieve Compound A as their treatment. 𝑁 will be chosen to achieve the

amount of power desired by the scientists.

Let 𝐱 = (𝐱𝑃, 𝐱𝑇)′ = (𝑥1
𝑃, … , 𝑥𝑁

𝑃 , 𝑥1
𝑇 , … , 𝑥𝑁

𝑇)′ where 𝑥𝑖
𝐺 is the pain score for subject

𝑖 in group 𝐺 prior to receiving a treatment. We then assume,

𝑥𝑖
𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩) for 𝑖 = 1,2, … ,𝑁; 𝐺 ∈ {𝑃, 𝑇}

where 𝐩 = (𝑝1, 𝑝2, 𝑝3)
′ and 𝑝𝑘 =

𝑛𝑘

𝑁0
, the relative frequency of subjects achieving pain

score 𝑘 in the initial sample for 𝑘 = 1,2,3.

After receiving treatment, pain scores are recorded again to create the 𝐲 =

(𝐲𝑃, 𝐲𝑇)′ = (𝑦1
𝑃, … , 𝑦𝑁

𝑃, 𝑦1
𝑇 , … , 𝑦𝑁

𝑇)′ where 𝑦𝑖
𝐺 is the pain score for subject 𝑖 in group 𝐺

after receiving the treatment for group 𝐺. We then further assume,

𝑦𝑖
𝑃 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩) for 𝑖 = 1,2, … ,𝑁

𝑦𝑖
𝑇 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑇) for 𝑖 = 1,2, … ,𝑁

Note that the probability parameter for group 𝑃 remains the same because we are

assuming the placebo will have no effect on the probability of achieving any particular

pain score. On the other hand, the probability parameter for group 𝑇 has been changed to

𝐩𝑇 because we are assuming that Compound A will have some effect on the probability

of achieving any particular pain score. Specifically, the probability for patients achieving

higher scores decreases and the probability for patients achieving lower scores increases

after receiving treatment with Compound A.

76

Let 𝐝 = 𝐱 − 𝐲 so that 𝐝 contains the change in pain score for all 2𝑁 subjects.

Recall that Compound A is considered successful for a subject if their pain score is

reduced by at least one point; let this be the “success” condition. The subjects are then

stratified into a contingency table with cells based upon two factors: the treatment group

and whether the success condition is satisfied. The table that would be created for our

motivating example is shown by Table 12. Let 𝟙(𝒜) be the indicator function so that

𝟙(𝒜) = 1 when 𝒜 is true and 𝟙(𝒜) = 0 otherwise.

Table 12: Contingency Table for Testing Compound A

We then use Fisher's exact test to discover if there is a statistically significant

difference between the placebo and Compound A according to the success condition

(Fisher, 1935). As such, our power calculation method is based on the results yielded

from simulating data according to our assumptions and using Fisher's exact test to

analyze the simulated data for many iterations, and then dubbing the proportion of times

the hypothesis test rejected the null hypothesis as our power for the hypothesis test.

The most important aspect of simulating data in this manner is how to choose 𝐩𝑇,

the probability parameter for group 𝑇. Each element of 𝐩𝑇 can range from 0 to 1 in

various ways. Without a concise, uniform way to choose this parameter the possibilities

can be overwhelming.

77

We propose choosing 𝐩𝑇 by shifting the elements of 𝐩 in a uniform, controlled

manner using the standard normal distribution. This proposition was inspired by the

probit model (Bliss, 1934). The algorithm for shifting the probability vector for one

ordinal categorical variable is described in ALGORITHM 4. We also illustrate the

shifting process in Figure 15. Let 𝑍 ∼ 𝑁(0,1).

ALGORITHM 4: Generate 𝐩𝑇 given initial probability vector parameter 𝐩 and shift δ.

1. Divide the area under the probability density function for a standard normal

distribution into 𝐾 portions using vertical lines 𝑞0, 𝑞1, 𝑞2, … , 𝑞𝐾. These lines divide

the probability density function so that the portion which lies between 𝑞𝑘−1 and 𝑞𝑘

has 𝑝𝑘 area under the curve for 𝑘 = 1,2, … , 𝐾. More specifically, 𝑞𝑘 is a vertical line

that intersects the x-axis at (𝑄𝑘, 0) where 𝑄𝑘 satisfies 𝑃(𝑄𝑘−1 < 𝑍 < 𝑄𝑘) = 𝑝𝑘. Note

that 𝑄0 = −∞ and 𝑄𝐾 = ∞.

2. Uniformly shift all the vertical lines with δ to create new vertical lines, 𝑞𝑘
′ , which

intersect the x-axis at (𝑄𝑘 + δ, 0).

3. The area under the curve which lies between vertical lines 𝑞𝑘−1
′ and 𝑞𝑘

′ corresponds to

𝑝𝑘
𝑇, the hypothesized probability that a subject which has received treatment will

achieve level 𝑘. This is also the 𝑘𝑡ℎ element of 𝐩𝑇.

Note that each individual quantile 𝑄𝑘 + 𝛿 could also be shifted additionally by

some γ𝑘. In the simplest setting which we provide above, we set γ𝑘 = 0 for 𝑘 =

 1, 2, … , 𝐾.

78

Figure 15: Shifting Process for One Ordinal Categorical Variable

The 𝐩𝑇 generated by δ is then used to simulate the data for the power

calculations. By varying the sample size 𝑁 and shift δ, power curves for a particular

79

success condition can be generated. The algorithm for calculating power for any

combination of 𝑁, 𝐩, δ, and success condition 𝑆 is given in ALGORITHM 5.

ALGORITHM 5: Perform power calculations for one ordered categorical variable given

sample size 𝑁, initial probability parameter 𝐩, quantile shift δ, success condition 𝑆, and

number of iterations 𝑢.

1. Draw 2𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩) to simulate 𝐱 = (𝐱𝑃, 𝐱𝑇)′.

2. Conduct ALGORITHM 4 with δ and 𝑝 to generate 𝐩𝑇.

3. Draw 𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩) and draw 𝑁 random observations

from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑇) to simulate 𝐲𝑃 and 𝐲𝑇, respectively. Then form 𝐲 = (𝐲𝑃 , 𝐲𝑇)′.

4. Calculate 𝐝 = 𝐱 − 𝐲 and form a contingency table stratified by success condition 𝑆

and treatment group.

5. Conduct Fisher's exact test.

6. Perform steps 1 through 5 for 𝑢 iterations. The power for (𝑁, δ, 𝐩, 𝑆) is given by the

proportion of iterations where Fisher's exact test rejects the null hypothesis.

 Sometimes in experiments such as these there are multiple ordered categorical

variables that are being analyzed together. A natural extension of this method should be

able to take this into account. The next section does so under the assumption that these

variables are all uncorrelated.

3.3 Power Calculation for 𝑀 Uncorrelated Variables

This method can also be applied for multiple uncorrelated variables. As a

motivating example for this section, suppose the scientists are developing another drug to

reduce pain in three independent and mutually exclusive sections of subjects' bodies:

80

head, upper body, and lower body. The drug they have completed and plan to test is

Compound B.

To test the efficacy of this new compound, they are conducting a new experiment

where a pain score is assigned to each body section, so 𝑀 = 3. The scores are then added

to produce a total pain score. Note that the number of levels for each variable do not

necessarily have to be the same, but for simplicity every section of the body in this

experiment will have the same possible pain scores as in the example given in Section 2.

The goal of Compound B is to reduce pain in all three sections of the body as

much as possible. As such, Compound B is considered successful for a subject if their

total pain score is reduced by at least two points and there is a reduction in pain for at

least two different body sections. Success is defined this way to ensure that compound B

is not deemed effective if it only reduces pain in one section of the body, even if that

reduction is by a significant amount.

Once again, the scientists have taken an initial sample of 𝑁0 subjects and recorded

their pain scores for each body section to obtain an estimate of how much pain each

subject experiences at each body section. Let 𝑛𝑚𝑘 be the number of subjects with pain

score 𝑘 at body section 𝑚 for 𝑘 = 1,2,3 and 𝑚 ∈ {𝐻, 𝑈, 𝐿 } where 𝐻 corresponds to a

subject's head, 𝑈 to their upper body, and 𝐿 to their lower body.

This future experiment will also be randomized with a balanced design so that 𝑁

subjects are assigned to Group 𝑃 and will receive a placebo and 𝑁 subjects are assigned

to group 𝑇 and will receive Compound B. Let 𝐗 be given by:

81

𝐗 = [𝐱𝟏 𝐱𝟐 𝐱𝟑] = [
𝐱𝟏

𝑃 𝐱𝟐
𝑃 𝐱𝟑

𝑃

𝐱𝟏
𝑇 𝐱𝟐

𝑇 𝐱𝟑
𝑇] =

[

𝑥𝐻𝟏

𝑃 𝑥𝑈𝟏
𝑃 𝑥𝐿𝟏

𝑃

⋮ ⋮ ⋮
𝑥𝐻𝑁

𝑃 𝑥𝑈𝑁
𝑃 𝑥𝐿𝑁

𝑃

⋮ ⋮ ⋮
𝑥𝐻𝟏

𝑇 𝑥𝑈1
𝑇 𝑥𝐿𝟏

𝑇

⋮ ⋮ ⋮
𝑥𝐻𝑁

𝑇 𝑥𝑈𝑁
𝑇 𝑥𝐿𝑁

𝑇]

where 𝑥𝑚𝑖
𝐺 is the pain score for subject 𝑖 at body section 𝑚 in group 𝐺 prior to receiving

any treatment. We then assume:

𝑥𝑚𝑖
𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚) for 𝑚 ∈ {𝐻, 𝑈, 𝐿}; 𝑖 = 1,2, … ,𝑁; 𝐺 ∈ {𝑃, 𝑇}

where 𝐩𝑚 = (𝑝𝑚1, 𝑝𝑚2, 𝑝𝑚3)
′ and 𝑝𝑚𝑘 =

𝑛𝑚𝑘

𝑁0
, the relative frequency of subjects

achieving pain score 𝑘 at body section 𝑚 in the initial sample for 𝑘 = 1,2,3; 𝑚 ∈

{𝐻, 𝑈, 𝐿 }. After receiving treatment, pain scores are recorded again to create 𝐘 which is

given by:

𝐘 = [𝐲𝟏 𝐲𝟐 𝐲𝟑] = [
𝐲𝟏

𝑃 𝐲𝟐
𝑃 𝐲𝟑

𝑃

𝐲𝟏
𝑇 𝐲𝟐

𝑇 𝐲𝟑
𝑇] =

[

𝑦𝐻𝟏

𝑃 𝑦𝑈𝟏
𝑃 𝑦𝐿𝟏

𝑃

⋮ ⋮ ⋮
𝑦𝐻𝑁

𝑃 𝑦𝑈𝑁
𝑃 𝑦𝐿𝑁

𝑃

⋮ ⋮ ⋮
𝑦𝐻𝟏

𝑇 𝑦𝑈1
𝑇 𝑦𝐿𝟏

𝑇

⋮ ⋮ ⋮
𝑦𝐻𝑁

𝑇 𝑦𝑈𝑁
𝑇 𝑦𝐿𝑁

𝑇]

Where 𝑦𝑚𝑖
𝐺 is the pain score at body portion 𝑚 for subject 𝑖 in group 𝐺 after

receiving the treatment for group 𝐺. We then further assume,

𝑦𝑚𝑖
𝑃 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚) for 𝑖 = 1,2, … ,𝑁; 𝑚 ∈ {𝐻, 𝑈, 𝐿}

𝑦𝑚𝑖
𝑇 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚

𝑇) 𝑓or 𝑖 = 1,2, … ,𝑁; 𝑚 ∈ {𝐻, 𝑈, 𝐿}

82

Let 𝐃 = 𝐗 − 𝐘 so that 𝐃 contains the change in pain score for all three sections of

the body for all 2𝑁 subjects. Further, let 𝐃 be given by:

𝐃 =

[

𝐝𝟏

𝑃

⋮
𝐝𝑁

𝑃

𝐝𝟏
𝑇

⋮
𝐝𝑁

𝑇]

=

[

𝑑𝐻𝟏

𝑃 𝑑𝑈𝟏
𝑃 𝑑𝐿𝟏

𝑃

⋮ ⋮ ⋮
𝑑𝐻𝑁

𝑃 𝑑𝑈𝑁
𝑃 𝑑𝐿𝑁

𝑃

⋮ ⋮ ⋮
𝑑𝐻𝟏

𝑇 𝑑𝑈1
𝑇 𝑑𝐿𝟏

𝑇

⋮ ⋮ ⋮
𝑑𝐻𝑁

𝑇 𝑑𝑈𝑁
𝑇 𝑑𝐿𝑁

𝑇]

where 𝑑𝑖
𝐺 is the 1 × 3 vector containing the change in pain score for all three sections of

the body for subject 𝑖 in group 𝐺 and 𝑑𝑚𝑖
𝐺 is the change in pain score at body section 𝑚

for subject 𝑖 in group 𝐺.

Recall that the compound is considered successful for a subject if their pain score

is reduced by at least two points and there is a reduction in pain for at least two different

body sections. The subjects are then once stratified into a contingency table. Let 𝐜 be a

3 × 1 vector with 1 in every entry. The table that would be created is shown by Table 13.

Table 13: Contingency Table for Testing Compound B

where

𝑎 = ∑𝟙(𝑐′𝑑𝑖
𝑃 ≥ 2 ∩ (𝑑𝑚𝑖

𝑃 ≥ 1 ∩ 𝑑𝑙𝑖
𝑃 ≥ 1),𝑚 ≠ 𝑙)

𝑁

𝑖=1

83

𝑏 = ∑𝟙(𝑐′𝑑𝑖
𝑃 < 2 ∪ (𝑑𝑚𝑖

𝑃 = 0 ∩ 𝑑𝑙𝑖
𝑃 = 0),𝑚 ≠ 𝑙)

𝑁

𝑖=1

𝑐 = ∑𝟙(𝑐′𝑑𝑖
𝑇 ≥ 2 ∩ (𝑑𝑚𝑖

𝑇 ≥ 1 ∩ 𝑑𝑙𝑖
𝑇 ≥ 1),𝑚 ≠ 𝑙)

𝑁

𝑖=1

𝑑 = ∑𝟙(𝑐′𝑑𝑖
𝑇 < 2 ∪ (𝑑𝑚𝑖

𝑇 = 0 ∩ 𝑑𝑙𝑖
𝑇 = 0),𝑚 ≠ 𝑙)

𝑁

𝑖=1

After this contingency table is created, we use Fisher's exact test to discover if

there is a statistically significant difference between the placebo and Compound B

according to the success condition. Once again, the most important part of simulating the

data to perform the power calculation is generating 𝐩𝑚
𝑇 for every body section 𝑚.

Similar to what is done for one ordinal categorical variable, we propose shifting

the elements of each probability vector parameter using independent normal distributions.

We are assuming that the normal distributions used for shifting the vectors are

independent because we have assumed that the variables are uncorrelated. Let 𝐴 =

{𝑚1, 𝑚2, … ,𝑚𝑀} be a set of 𝑀 ordinal categorical variables, each with 𝐾1, 𝐾2, … , 𝐾𝑀

levels, respectively. The algorithm for shifting the probability vector for 𝑀 ordinal

categorical variables is described in ALGORITHM 6.

ALGORITHM 6: Generate 𝑝𝑚
𝑇 given initial probability vector parameters 𝑝𝑚 and shifts

δ𝑚 for all 𝑚 ∈ 𝐴.

For 𝑙 = 1,2, … ,𝑀:

84

1. Divide the area under the probability density function for a standard normal

distribution into 𝐾𝑙 portions using vertical lines 𝑞𝑙0, 𝑞𝑙1, 𝑞𝑙2, … , 𝑞𝑙𝐾𝑙
. These lines will

divide the probability density function so that the portion which lies between 𝑞𝑙(𝑘−1)

and 𝑞𝑙𝑘 has 𝑝𝑚𝑙𝑘 area under the curve for 𝑘 = 1,2, … , 𝐾𝑙. More specifically, 𝑞𝑙𝑘 is a

vertical line that intersects the x-axis at (𝑄𝑙𝑘, 0) where 𝑄𝑙𝑘 satisfies 𝑃(𝑄𝑙(𝑘−1) < 𝑍 <

𝑄𝑙𝑘) = 𝑝𝑚𝑙𝑘. Note that 𝑄𝑙0 = −∞ and 𝑄𝑙𝐾𝑙
= ∞.

2. Uniformly shift all the vertical lines with δ𝑚𝑙
 to create new vertical lines, 𝑞𝑙𝑘

′ , which

intersect the x-axis at (𝑄𝑙𝑘 + δ, 0).

3. The area under the curve which lies between vertical lines 𝑞𝑙(𝑘−1)
′ and 𝑞𝑙𝑘

′

corresponds to 𝑝𝑚𝑙𝑘
𝑇 , the hypothesized probability that a subject which has received

treatment will achieve level 𝑘 for variable 𝑚𝑙. This is also the 𝑘𝑡ℎ element of 𝐩𝑚𝑙
𝑇 .

Once again, it should be noted that each individual quantile for each ordinal

categorical variable 𝑚𝑙, 𝑄𝑙𝑘 + δ𝑙 could also be shifted additionally by some γ𝑙𝑘. In the

simplest setting which we provide above, we set γ𝑙𝑘 = 0 for 𝑘 = 1, 2, … , 𝐾; 𝑙 =

 1, 2, … 𝑀.

The 𝐩𝑚
𝑇 generated by δ𝑚 for all 𝑚 ∈ 𝐴 is then used to simulate the data for the power

calculations. The algorithm for calculating power for any combination of 𝑁,

(𝐩𝑚1
, … , 𝐩𝑚𝑀

), (δ𝑚1
, … , δ𝑚𝑀

), and success condition 𝑆 is given in ALGORITHM 7.

ALGORITHM 7: Perform power calculations for 𝑀 ordinal categorical variables. Given

sample size 𝑁, initial probability vector parameters (𝐩𝑚1
, … , 𝐩𝑚𝑀

), shifts

(δ𝑚1
, … , δ𝑚𝑀

), success condition 𝑆, and number of iterations 𝑢.

85

1. Draw 2𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚) to simulate 𝐱𝑚 = (𝐱𝑚
𝑃 , 𝐱𝑚

𝑇)′ for

all 𝑚 ∈ 𝐴. Then form 𝑋.

2. Conduct ALGORITHM 6 with (δ𝑚1
, … , δ𝑚𝑀

) and (𝐩𝑚1
, … , 𝐩𝑚𝑀

) to generate

(𝐩𝑚1
𝑇 , … , 𝐩𝑚𝑀

𝑇).

3. Draw 𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚) and draw 𝑁 random observations

from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚
𝑇) to simulate 𝐲𝑚

𝑃 and 𝐲𝑚
𝑇 , respectively for all 𝑚 ∈ 𝐴. Then form

𝐲𝑚 = (𝐲𝑚
𝑃 , 𝐲𝑚

𝑇)′ for all 𝑚 ∈ 𝐴. Then finally form 𝐘.

4. Calculate 𝐃 = 𝐗 − 𝐘 and form a contingency table stratified by success condition 𝑆

and treatment group.

5. Conduct Fisher's exact test.

6. Perform steps 1 through 5 for 𝑢 iterations and the power for

(𝑁, δ𝑚1
, … , δ𝑚𝑀

, 𝐩𝑚1
, … , 𝐩𝑚𝑀

, 𝑆) is given by the proportion of iterations where

Fisher's exact test rejects the null hypothesis.

 Naturally, the more variables included the more computationally intensive this

shifting process becomes. Nevertheless, this enables one to easily customize the

hypothesized effectiveness of the drug of interest for each variable. For example, if the

scientists believe that Compound B will be more effective in reducing pain in a subject's

head than their lower body, they could choose the shifts so that δ𝐿 < δ𝐻 .

As more variables are added, believing that they are all uncorrelated may become

too strong of an assumption. As such, the method should be extended to allow for

correlation among variables to influence the probability vector parameter after applying

the shifts. The next section examines this extension.

86

3.4 Power Calculation for Pairs of Correlated Variables

Finally, this method can be applied for pairs of correlated ordinal categorical

variables. In our final motivating example, suppose the scientists are developing yet

another drug to reduce pain in the upper and lower sections of the body only. Also, for

this experiment they are assuming that there is some amount of correlation between the

amount of pain experienced in the upper body and the amount of pain experienced in the

lower body. The drug they have completed and plan to test is Compound C.

To test the efficacy of this new compound, they are conducting a new experiment

where a pain score is assigned to the upper and lower body sections and the scores are

then added to produce a total pain score. Once again, although it is not necessary, for

simplicity both variables will have the same possible pain scores as in the example given

in Section 3.2.

The goal of Compound C is to reduce pain in these two sections of the body as

much as possible. As such, Compound C is considered successful for a subject if the pain

score for each section of the body is reduced by at least one point.

Once again, the scientists have taken an initial sample of 𝑁0 subjects and recorded

their pain scores for each body section to obtain an estimate of how much pain each

subject experiences at each body section before any treatment is administered. Let 𝑛𝑗𝑘 be

the number of subjects with pain score 𝑗 at their upper body and pain score 𝑘 at their

lower body for 𝑗 = 1,2,3 and 𝑘 = 1,2,3.

Note that this notation is different from the notation found in Section 3. In this

section we are examining the scores for each section simultaneously rather than

87

individually for each subject. This is because we are assuming that the pain scores for the

two sections of the body are correlated,

The new experiment will once again be randomized with a balanced design so

that 𝑁 subjects are assigned to Group 𝑃 and will receive a placebo and 𝑁 subjects are

assigned to Group 𝑇 and will receive Compound C. Let 𝑋 be given by:

𝐗 = [𝐗
𝑃

𝐗𝑇] =

[

𝐱𝟏

𝑃

⋮
𝐱𝑁

𝑃

𝐱𝟏
𝑇

⋮
𝐱𝑁

𝑇]

=

[

(𝑥𝑈𝟏

𝑃 , 𝑥𝐿𝟏
𝑃)

⋮
(𝑥𝑈𝑁

𝑃 , 𝑥𝐿𝑵
𝑃)

(𝑥𝑈𝟏
𝑇 , 𝑥𝐿𝟏

𝑇)
⋮

(𝑥𝑈𝑁
𝑇 , 𝑥𝐿𝑵

𝑇)]

where (𝑥𝑈𝑖
𝐺 , 𝑥𝐿𝑖

𝐺) is the pair of pain scores for subject 𝑖 in group 𝐺 prior to receiving any

treatment. The first entry is the pain score for the upper body and the second entry is the

pain score for the lower body. We then assume:

𝑥𝑖
𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑈𝐿) for 𝑖 = 1,2, … ,𝑁; 𝐺 ∈ {𝑃, 𝑇}

where 𝐩𝑈𝐿 = (𝑝11, 𝑝12, … , 𝑝33)
′ and 𝑝𝑗𝑘 =

𝑛𝑗𝑘

𝑁0
, the relative frequency of subjects

achieving pain score 𝑗 in the upper body and pain score 𝑘 in the lower body for 𝑗 =

1,2,3; 𝑘 = 1,2,3. In this formation of the distribution, each multinomial bin corresponds

to a possible pair of pain scores. After receiving the treatment, pain scores are recorded

again to create 𝑌 which is given by:

𝐘 = [𝐘
𝑃

𝐘𝑇] =

[

𝐲𝟏

𝑃

⋮
𝐲𝑁

𝑃

𝐲𝟏
𝑇

⋮
𝐲𝑁

𝑇]

=

[

(𝑦𝑈𝟏

𝑃 , 𝑦𝐿𝟏
𝑃)

⋮
(𝑦𝑈𝑁

𝑃 , 𝑦𝐿𝑵
𝑃)

(𝑦𝑈𝟏
𝑇 , 𝑦𝐿𝟏

𝑇)
⋮

(𝑦𝑈𝑁
𝑇 , 𝑦𝐿𝑵

𝑇)]

88

where (𝑦𝑈𝑖
𝐺 , 𝑦𝐿𝑖

𝐺) is the pair of pain scores for subject 𝑖 in group 𝐺 prior to receiving the

treatment for group 𝐺. The first entry is the pain score for the upper body and the second

entry is the pain score for the lower body. We then further assume,

𝑦𝑖
𝑃 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑈𝐿) for 𝑖 = 1,2, … ,𝑁

𝑦𝑖
𝑇 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑈𝐿

𝑇) for 𝑖 = 1,2, … ,𝑁

Let 𝐃 contain the change in pain score for both sections of the body for all 2𝑁

subjects, so that 𝐃 is given by:

𝐃 = [𝐃
𝑃

𝐃𝑇] =

[

𝐝𝟏

𝑃

⋮
𝐝𝑁

𝑃

𝐝𝟏
𝑇

⋮
𝐝𝑁

𝑇]

=

[

(𝑑𝑈𝟏

𝑃 , 𝑑𝐿𝟏
𝑃)

⋮
(𝑑𝑈𝑁

𝑃 , 𝑑𝐿𝑵
𝑃)

(𝑑𝑈𝟏
𝑇 , 𝑑𝐿𝟏

𝑇)
⋮

(𝑑𝑈𝑁
𝑇 , 𝑑𝐿𝑵

𝑇)]

=

[

(𝑥𝑈𝟏

𝑃 − 𝑦𝑈𝟏
𝑃 , 𝑥𝐿𝟏

𝑃 − 𝑦𝐿𝟏
𝑃)

⋮
(𝑥𝑈𝑁

𝑃 − 𝑦𝑈𝑁
𝑃 , 𝑥𝐿𝑁

𝑃 − 𝑦𝐿𝑁
𝑃)

(𝑥𝑈𝟏
𝑇 − 𝑦𝑈𝟏

𝑇 , 𝑥𝐿𝟏
𝑇 − 𝑦𝐿𝟏

𝑇)
⋮

(𝑥𝑈𝑁
𝑇 − 𝑦𝑈𝑁

𝑇 , 𝑥𝐿𝑁
𝑇 − 𝑦𝐿𝑁

𝑇)]

where 𝑑𝑖
𝐺 is the pair of the difference in pain scores for both sections of the body for

subject 𝑖 in group 𝐺 and 𝑑𝑚𝑖
𝐺 is the change in pain score at body section 𝑚 for subject 𝑖 in

group 𝐺.

Recall that the compound is considered successful for a subject if there is a

reduction in pain for at least two different body sections. The subjects are once again

stratified into a contingency table based on this success condition. The table that would

be created is shown by Table 14.

89

Table 14: Contingency Table for Testing Compound C

where

𝑎 = ∑𝟙(𝑑𝑚𝑖
𝑃 ≠ 0 ∀𝑚 ∈ {𝑈, 𝐿})

𝑁

𝑖=1

𝑏 = ∑𝟙(∃𝑚 ∈ {𝑈, 𝐿} 𝑠. 𝑡. 𝑑𝑚𝑖
𝑃 ≠ 0)

𝑁

𝑖=1

𝑐 = ∑𝟙(𝑑𝑚𝑖
𝑇 ≠ 0 ∀𝑚 ∈ {𝑈, 𝐿})

𝑁

𝑖=1

𝑑 = ∑𝟙(∃𝑚 ∈ {𝑈, 𝐿} 𝑠. 𝑡. 𝑑𝑚𝑖
𝑇 ≠ 0)

𝑁

𝑖=1

After this contingency table is created, we use Fisher's exact test to discover if

there is a statistically significant difference between the placebo and Compound C

according to the success condition. Once again, the most important part of simulating the

data to perform the power calculation is generating 𝐩𝑈𝐿
𝑇 .

As noted earlier, the scientists expect that there may be some correlation between

upper body and lower body pain scores. As such, they would like to estimate this

correlation and factor it into the power calculations. As opposed to using typical

correlation estimators such as Spearman's ρ (Spearman, 1904) or Kendall's τ (Kendall,

90

1938), we propose estimating the correlation using a partition of a bivariate normal

distribution. We will name this correlation estimator ξ.

To motivate this approach, we will first alter the experiment so that upper body

and lower body pain scores each have only two different possible pain scores instead of

three. Therefore, there are only four possible combinations of outcomes:

{1,1}, {1,2}, {2,1}, and {2,2}, and we can assume each patient follows the distribution:

𝑥𝑖
𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑈𝐿) for 𝑖 = 1,2, … ,𝑁; 𝐺 ∈ {𝑃, 𝑇}

where 𝐩𝑈𝐿 = (𝑝11, 𝑝12, 𝑝21, 𝑝22)
′ and 𝑝𝑗𝑘 =

𝑛𝑗𝑘

𝑁0
, the relative frequency of subjects

achieving pain score 𝑗 in the upper body and pain score 𝑘 in the lower body for 𝑗 =

 1,2; 𝑘 = 1,2.

We now define the estimation of the correlation between two ordinal categorical

variables using a partition of a bivariate normal distribution in ALGORITHM 8. Figure

16 illustrates this estimating process.

ALGORITHM 8: Estimate ξ, the correlation between two ordinal categorical variables

(𝑋1, 𝑋2) which each have two levels, given initial probability parameter 𝐩𝑋1𝑋2
=

(𝑝11, 𝑝12, 𝑝21, 𝑝22)
′.

1. Let the marginal probabilities for variable 𝑋1 and 𝑋2 be 𝐩1 = (𝑝1⋅, 𝑝2⋅)
′ and 𝐩2 =

(𝑝⋅1, 𝑝⋅2)
′, respectively, where 𝑝𝑖⋅ = ∑ 𝑝𝑖𝑗

2
𝑗=1 and 𝑝⋅𝑗 = ∑ 𝑝𝑖𝑗

2
𝑖=1 .

2. Divide the volume under the probability density function for the standard bivariate

normal distribution into four portions by following the steps below:

91

2.1. Place 𝑞11, a vertical line that divides the area into left and right portions, so that

the left portion has 𝑝1⋅ volume under the curve and the right portion has 𝑝2⋅

volume under the curve. More specifically, 𝑞11 is a vertical line that intersects

the x-axis at (𝑄11, 0) where 𝑄11 satisfies 𝑃(𝑍 < 𝑄11) = 𝑝1⋅.

2.2. Place 𝑞21, a horizontal line that splits the area into upper and lower portions, is

placed so that the lower portion has 𝑝⋅1 volume under the curve and the upper

portion has 𝑝⋅2 volume under the curve. More specifically, 𝑞21 is a horizontal line

that intersects the y-axis at (0, 𝑄21) where 𝑄21 satisfies 𝑃(𝑍 < 𝑄21) = 𝑝⋅1.

3. Finally, the correlation, 𝜉, is estimated for a bivariate normal distribution with mean

vector (0,0)′ and marginal variances of 1 so that the squared difference of the volume

under the curve and the true relative frequency for each section is minimized.

Figure 16: Correlation Estimation for 2 Ordinal Categorical Variables with 2 Levels

92

Referring to Figure 16, the volume under the curve that is above section 𝑘1𝑘2 will

correspond closely with the relative frequency observed in the initial experiment that

each section represents after ξ is estimated.

Now let us return to the original example where each of the variables has three

different levels in order to show how the estimation process is modified when pairs of

variables have an arbitrary number of levels. This algorithm for performing this adjusted

estimation process is given by ALGORITHM 9.

ALGORITHM 9: Calculate ξ, an estimation of the correlation between two ordinal

categorical variables (𝑋1, 𝑋2) which each have 𝐾1 and 𝐾2 levels, respectively, given

initial probability parameter 𝐩𝑋1𝑋2
= (𝑝11, 𝑝12, … , 𝑝(𝐾1−1)𝐾2

, 𝑝𝐾1𝐾2
)
′
.

1. Let the marginal probabilities for variable 𝑋1 and 𝑋2 be 𝐩1 = (𝑝1⋅, 𝑝2⋅, … , 𝑝𝐾1⋅)
′
 and

𝐩2 = (𝑝⋅1, 𝑝⋅2, … , 𝑝⋅𝐾2
)
′
, respectively, where 𝑝𝑖⋅ = ∑ 𝑝𝑖𝑗

𝐾1
𝑗=1 and 𝑝⋅𝑗 = ∑ 𝑝𝑖𝑗

𝐾2
𝑖=1 .

2. Divide the volume under the probability density function for the standard bivariate

normal distribution into 𝐾1𝐾2 portions by following the steps below:

2.1. Place vertical lines 𝑞10, 𝑞11, 𝑞12, … , 𝑞1𝐾1
 which divide the area into 𝐾1 rectangles

extending infinitely with respect to the y-axis, so that the rectangle which lies

between 𝑞1(𝑘−1) and 𝑞1𝑘 has 𝑝𝑘⋅ volume under the curve. More specifically, 𝑞1𝑘

is a vertical line that intersects the x-axis at (𝑄1𝑘, 0) where 𝑄1𝑘 satisfies

𝑃(𝑄1(𝑘−1) < 𝑍 < 𝑄1𝑘) = 𝑝𝑘⋅. Note that 𝑄10 = −∞ and 𝑄1𝐾1
= ∞.

2.2. Place horizontal lines 𝑞20, 𝑞21, 𝑞22, … , 𝑞2𝐾2
 which split the area into 𝐾2 rectangles

extending infinitely with respect to the x-axis, so that the rectangle which lies

between 𝑞2(𝑘−1) and 𝑞2𝑘 has 𝑝⋅𝑘 volume under the curve. More specifically, 𝑞2𝑘

93

is a vertical line that intersects the x-axis at (𝑄2𝑘, 0) where 𝑄2𝑘 satisfies

𝑃(𝑄2(𝑘−1)𝑍 < 𝑄2𝑘) = 𝑝⋅𝑘. Note that 𝑄20 = −∞ and 𝑄2𝐾2
= ∞.

3. Finally, the correlation, 𝜉, is estimated for a bivariate normal distribution with mean

vector (0,0)′ and marginal variances of 1 so that the squared difference of the volume

under the curve and the true relative frequency for each section is minimized.

 If any of the relative frequencies for a pair of scores are close to 0 this may not be

effective. This is because it may not be possible to find a correlation which would create

a bivariate normal distribution with the probabilities close to the relative frequencies for

the corresponding portions. A skewed bivariate normal distribution may be more

effective for cases such as these (Azzalini & Valle, 1996; Arslan, 2015). A bivariate t

distribution could also be used (Kotz & Nadarajah, 2004).

 Let 𝑚1 and 𝑚2 be two ordinal categorical variables. Once the correlation is

estimated between 𝑚1 and 𝑚2 with ALGORITHM 9, we must generate 𝐩𝑚1𝑚2
𝑇 . The

algorithm for shifting the probability vector for a pair of correlated ordinal categorical

variables is described in ALGORITHM 10. Like the previous shifting processes, shifts

δ1 and δ2 move the dividers uniformly, which then changes the probabilities within each

section of the bivariate normal distribution accordingly. The new probabilities are then

used to form 𝐩𝑚1𝑚2
𝑇 . This shifting process is illustrated in Figure 17.

ALGORITHM 10: Generate 𝐩𝑚1𝑚2
𝑇 given initial probability vector parameter 𝐩𝑚1𝑚2

and shifts δ𝑚1
 and δ𝑚2

.

94

1. Use ALGORITHM 9 to divide the area under the probability density function into

𝐾1 ∗ 𝐾2 sections, where 𝐾1 and 𝐾2 are the number of levels of variables 𝑚1 and 𝑚2,

respectively.

2. For 𝑙 = 0,1, … , 𝐾1, shift vertical line 𝑞1𝑙 with 𝛿𝑚1
 to create a new vertical line, 𝑞1𝑙

′ ,

which intersects the x-axis at (𝑄1𝑙 + 𝛿1, 0). Recall 𝑄10 = −∞ and 𝑄1𝐾1
= ∞.

3. For 𝑙 = 0,1, … , 𝐾2, shift horizontal line 𝑞2𝑙 with 𝛿𝑚2
 to create a new horizontal line,

𝑞2𝑙
′ , which intersects the x-axis at (𝑄2𝑙 + 𝛿2, 0). Recall 𝑄20 = −∞ and 𝑄2𝐾2

= ∞.

4. The volume under the probability density function which lies within the vertical lines

𝑞1(𝑘1−1)
′ and 𝑞1𝑘1

′ and the horizontal lines 𝑞2(𝑘2−1)
′ and 𝑞2𝑘2

′ corresponds to 𝑝𝑘1𝑘2

𝑇 , the

hypothesized probability that a subject which has received treatment will achieve

level 𝑘1 for variable 𝑚1 and 𝑘2 for variable 𝑚2. This is also the 𝑟𝑡ℎ element of

𝐩𝑚1𝑚2
𝑇 where 𝑟 = 𝐾1 ∗ (𝑘1 − 1) + 𝑘2.

Once again, it should be noted that each individual quantile for each variable 𝑚𝑙,

𝑄𝑙𝑘 + δ𝑙 could also be shifted additionally by some γ𝑙𝑘. In the simplest setting which we

provide above, we set γ𝑙𝑘 = 0 for 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1, 2.

The 𝑝𝑚1𝑚2
𝑇 generated by δ𝑚1

 and δ𝑚2
 is then used to simulate the data for the

power calculations. The algorithm for calculating power for any combination of 𝑁,

𝑝𝑚1𝑚2
, (δ𝑚1

, δ𝑚2
), and success condition 𝑆 is given in ALGORITHM 11.

95

Figure 17: Shifting Process for a Pair of Correlated Ordinal Categorical Variables

ALGORITHM 11: Perform power calculations for two ordinal categorical variables

given sample size 𝑁, initial probability vector parameter 𝑝𝑚1𝑚2
, shifts (δ𝑚1

, δ𝑚2
),

success condition 𝑆, and number of iterations 𝑢.

96

1. Draw 2𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝒑𝒎𝟏𝒎𝟐
) to simulate 𝑿 = (𝑿𝑷, 𝑿𝑻)′.

2. Conduct ALGORITHM 10 with (𝛿𝑚1
, 𝛿𝑚2

) and 𝐩𝑚1𝑚2
 to generate 𝐩𝑚1𝑚2

𝑇 .

3. Draw 𝑁 random observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚1𝑚2
) and draw 𝑁 random

observations from 𝑀𝑢𝑙𝑡𝑖(1, 𝐩𝑚1𝑚2
𝑇) to simulate 𝐘P and 𝐘𝑇, respectively. Then form

𝐘 = (𝐘𝑃, 𝐘𝑇)′.

4. Calculate 𝐃 = 𝐗 − 𝐘 and form a contingency table stratified by success condition 𝑆

and treatment group.

5. Conduct Fisher's exact test.

6. Perform steps 1 through 5 for 𝑢 iterations and the power for (𝑁, 𝐩𝑚1𝑚2
, 𝛿𝑚1

, 𝛿𝑚2
, 𝑆)

is given by the proportion of iterations where Fisher's exact test rejects the null

hypothesis.

Like ALGORITHM 7, as the number of possible levels for each variable rises so

will the computational intensity. Before assuming any two pairs of variables are

correlated, we suggest using the Chi-Square Test for Independence (Pearson, 1900). If

the conclusion of this test is to reject the notion that the two variables are independent,

then proceed with the method described in this section. Otherwise use the method

described in Section 3.3. Section 4.3 details a simulation created to assess this bias of ξ

and provides the results for a few cases.

3.4.1 Simulation to Assess the Bias of ξ

We used simulations to investigate the bias of ξ and compare it to the bias of

Spearman's ρ and Kendall's τ. This was done by creating a partition of observations

generated from a bivariate normal distribution with a “true” correlation estimate so that

97

each portion of the partition represents a pair of ordinal categorical variables. This

simulation is given by Simulation 1.

SIMULATION 1: Given the true correlation, ρ𝑡𝑟𝑢𝑒, between two ordinal categorical

variables which each have 𝐾1 and 𝐾2 levels, respectively, generated by a partition of a

bivariate normal distribution, estimate the bias of ξ, Spearman's ρ, and Kendall's τ.

1. Choose Γ11, … , Γ1𝐾1
 and Γ21, … , Γ2𝐾2

 to be the values which create the vertical and

horizontal lines, respectively, which will divide the flat area under the probability

density function of a bivariate normal distribution into 𝐾1 ∗ 𝐾2 portions and create the

partition.

2. Draw 𝑁 observations from a bivariate normal distribution with mean vector (0,0)′,

marginal variances of 1, and correlation 𝜌𝑡𝑟𝑢𝑒.

3. Create a relative frequency table by counting how many of the 𝑁 observations fall

into each of the 𝐾1 ∗ 𝐾2 sections created by Γ11, … , Γ1𝐾1
 and Γ21, … , Γ2𝐾2

 and dividing

these counts by 𝑁.

4. Calculate 𝜉 (using ALGORITHM 9), Spearman's 𝜌, and Kendall's 𝜏 for the relative

frequency table created in step 3. Then calculate the bias of each: 𝑏1 = 𝜌true − 𝜉,

𝑏2 = 𝜌true − 𝜌, and 𝑏3 = 𝜌true − 𝜏.

5. Repeat steps 1 through 4 for 1000 iterations and the mean of the 1000 𝑏1's, 𝑏2's, 𝑏3's

created in step 4 provides the estimated bias for 𝜉, Spearman's 𝜌, and Kendall's 𝜏,

respectively.

We chose three partition configurations for the bivariate normal distribution. Partition

configuration 1 divides the probability distribution function into four portions with equal

98

probability when the correlation between the two variables is 0. Partition configuration 2

divides the probability distribution function into nine portions with equal probability

when the correlation between the two variables is 0. Partition configuration 3 divides the

probability distribution function into twelve portions as shown in the first plot in Figure

21 with probabilities matching the second relative frequency table in Table 15.

For each partition configuration we vary the true correlation and estimate the bias for

four different sample sizes. Figure 18, Figure 19, and Figure 20 give the bias results for

each estimator for each partition configuration.

Figure 18: Bias Results for Partition Configuration 1

99

Figure 19: Bias Results for Partition Configuration 2

Figure 20: Bias Results for Partition Configuration 3

While there is certainly evidence of bias for ξ, when compared to the bias of both

Spearman's ρ and Kendall's τ it appears minimal. Aside from when the correlation is near

0, ξ performes volumes better than the other two estimators in terms of bias.

100

3.5 Application to Preclinical Dataset

In this section we apply the method to a dataset provided to the author by a

pharmaceutical company. In this experiment, a new compound is being designed to curb

the effects of a disease. 55 subjects with this disease were assigned an “affliction” score

which ranges from 0-8. This score is used to describe the amount of suffering the disease

is causing for the subject and is composed of three subscores: subscore A which ranges

from 0-2, subscore B which ranges from 0-3, and subscore C which ranges from 0-3.

Table 15 gives the relative frequency table for the collected data.

Table 15: Relative Frequency Tables for Data from Initial Experiment

The objective of the compound is to decrease the affliction score for subjects and

the compound is considered successful if the affliction score is reduced by at least two

points and at least two subscores are reduced by at least one point. Let this be the success

condition 𝑆. Before conducting the future experiment to decide whether to move forward

with the compound, the scientists in charge of the experiment need to know how large of

101

a sample size is necessary to guarantee 90% power to detect the desired affliction score

improvement.

After performing some preliminary analysis, some correlation between subscores

A and B is discovered according to Spearman's ρ (−0.273) and Kendall's τ (−0.260). As

such, ALGORITHM 4 is used to shift the probability vector parameter for subscore C

using a standard normal distribution and ALGORITHM 10 is used to shift probability

vector parameter for pairs of subscore A and subscore B using a bivariate normal

distribution with correlation estimated by ξ (−0.302).

Let 𝐩𝐴𝐵 = (0.01,0.01,0.01,0.01,0.01,0.01,0.14,0.12,0.01,0.17,0.32,0.19)′ and

𝐩𝐶 = (0.01,0.79,0.18,0.02)′. Note that the data has been adjusted to eliminate relative

frequencies of 0. See Figure 21 and Figure 22 for a visual representation of how 𝐩𝐴𝐵
𝑇 and

𝐩𝐶
𝑇, respectively, are generated.

Note that in the second graph of Figure 21, the volume under the curve over the

area of section 𝑘1𝑘2 corresponds to 𝑝𝑘1𝑘2

𝑇 in 𝐩𝐴𝐵
𝑇 . Further, in the second graph of Figure

22, the area under the curve of the 𝑘𝑡ℎ portion corresponds to 𝑝𝑘
𝑇 in 𝒑𝐶

𝑇.

An amalgamation of ALGORITHM 5 and ALGORITHM 11 is used to perform

the power calculations by choosing combinations of 𝑁, (δ𝐴, δ𝐵, δ𝐶), and the success

condition 𝑆. Figure 23 show the power curves for sample sizes (per treatment arm) 20 to

60 and various choices of (δ𝐴, δ𝐵 , δ𝐶). The scientists believe that the compound will not

have a large effect on subscore C so δ𝐶 has been kept low for all shift configurations;

however, δ𝐴 and δ𝐵 have been allowed to range between 1 and 1.5 because the scientists

believe that the compound will have the most effect on subscores A and B.

102

Figure 21:Generating 𝒑𝐴𝐵
𝑇 with ALGORITHM 10

103

Figure 22: Generating 𝒑𝐶
𝑇 with ALGORITHM 1

The power curves demonstrate that Fisher's exact test will have the desired power

at some sample size for all nine configurations of (δ𝐴, δ𝐵, δ𝐶). For the alternative

multinomial distribution corresponding to the least conservative configuration,

104

(1.5,1.5,0.5), a sample size of 23 per treatment arm would be needed to achieve at least

90% power; for the most conservative configuration (1,1,0.5), a sample size of 51 per

treatment arm would be needed. Considering all configurations, a sample size of 30 to 40

subjects per treatment arm should be used to guarantee at least 90% power.

Figure 23: Power Curves for Original Data

The power curves demonstrate that Fisher's exact test will have the desired power

at some sample size for all nine configurations of (δ𝐴, δ𝐵, δ𝐶). For the alternative

multinomial distribution corresponding to the least conservative configuration,

(1.5,1.5,0.5), a sample size of 23 per treatment arm would be needed to achieve at least

90% power; for the most conservative configuration (1,1,0.5), a sample size of 51 per

treatment arm would be needed. Considering all configurations, a sample size of 30 to 40

subjects per treatment arm should be used to guarantee at least 90% power.

105

We also performed the power calculations again under less favorable conditions.

In the original data, it was clear that many of the subjects were achieving very high

scores prior to treatment. We adjusted the data to assess how many subjects would be

needed if fewer subjects achieved very high scores in the initial sample. Once again, an

amalgamation of ALGORITHM 5 and ALGORITHM 11 are used and Figure 24 show

the power curves for sample sizes 20 to 60 and various choices of (δ𝐴, δ𝐵 , δ𝐶).

Figure 24: Power Curves for Adjusted Data

Once again, the power curves demonstrate that Fisher's exact test will have the

desired power at some sample size for all nine configurations of (δ𝐴, δ𝐵 , δ𝐶). For the

alternative multinomial distribution corresponding to the least conservative configuration,

(1.5,1.5,0.5), a sample size of 32 per treatment arm would be needed to achieve at least

90% power; for the most conservative configuration (1,1,0.5), a sample size of 54 per

treatment arm would be needed.

106

Considering all configurations, a sample size of 35 to 45 subjects per treatment

arm should be used to guarantee at least 90% power. Intuitively this makes sense,

because if the subject's scores aren't initially very high it will be hard to reduce them by a

considerable amount. As such, more subjects would be necessary to detect a treatment

effect.

3.6 Discussion

We have described a method that can be used to avoid the overwhelming prospect

of performing power calculations for hypothesis tests analyzing ordinal categorical data

with small range scales. Instead of haphazardly manipulating the different entries in the

probability vector parameter, we have proposed a method which shifts these entries in a

uniform manner by creating and shifting the quantiles of a standard normal distribution

for a single ordinal categorical variable or multiple uncorrelated ordinal categorical

variables. We expanded it further for pairs of correlated ordinal categorical variables by

applying the same concepts using a bivariate normal distribution.

We have also introduced ξ, a new estimator for estimating the correlation of

ordinal categorical variables using a partition of a bivariate normal distribution. We

assessed this estimator in terms of bias and compared it to other common estimators for

measuring correlation among pairs of ordinal categorical variables. Finally, we applied

the method to a dataset and delivered some results.

Note that this power calculation method could also be used for other hypothesis

tests which analyze contingency tables such as the Chi-Square Test of Homogeneity. The

R package multinorm has been developed to perform these power calculations with

different hypothesis tests.

107

Future work can be done by possibly extending the methods described in Section

4 to work for three or more correlated categorical variables using a multivariate normal

distribution. Work could also be done to determine the precise computational cost that

arises from adding more variables and/or levels. Finally, it might be useful to see how

this method can work for categorical variables with no discernable order, as well as the

utility of the method when the scale range is increased.

108

Appendices

Appendix A: Selected R Code for Chapter 1

Section 2

load packages
library(mvtnorm)
library(ggplot2)

create data of random observations
sim.data = rmvnorm(5000,
 mean = rep(0,5),
 sigma = diag(5:1))

create cluster configuration for Kmeans
K.cl = kmeans(sim.data,
 centers = 3,
 iter.max = 10,
 nstart = 5)

retrieve principal components
PC.data = as.data.frame(princomp(sim.data)$scores)

duplicate principal components
PC.data = rbind.data.frame(PC.data,
 PC.data)

retrieve cluster configurations
PC.data[, "Cluster"] = factor(c(rep(0,nrow(PC.data)/2),
 K.cl$cluster))

split the data into two sections
PC.data[, "Type"] = factor(c(rep("Original Data",nrow(PC.data)/2),
 rep("Clustered Data",nrow(PC.data)/2)),
 levels = c("Original Data",
 "Clustered Data"))

create plot of kmeans clustering configurations
ggplot(data = PC.data,
 aes(x = Comp.1,
 y = Comp.2,
 color = Cluster)) +
 facet_wrap(~Type) +
 geom_point() +
 scale_color_manual(values = c("black",
 "red",
 "blue",
 "limegreen")) +
 scale_x_continuous("") +
 scale_y_continuous("") +
 guides(color = FALSE) +
 theme_gray(base_size = 18) +
 theme(plot.title = element_text(hjust = 0.5),
 element_blank(),
 axis.ticks.x = element_blank(),
 axis.text.x = element_blank(),
 axis.ticks.y = element_blank(),
 axis.text.y = element_blank())

create distance matrix for
sim.dist = dist(sim.data)

create three clusters with hierarchical clustering
H.cl = hclust(sim.dist)
clusterCut = cutree(H.cl, 3)

retrieve cluster configurations
PC.data[, "Cluster"] = factor(c(rep(0,nrow(PC.data)/2),
 clusterCut))

create plot for hierarchical clustering
ggplot(data = PC.data,

109

 aes(x = Comp.1,
 y = Comp.2,
 color = Cluster)) +
 facet_wrap(~Type) +
 geom_point() +
 scale_color_manual(values = c("black",
 "red",
 "blue",
 "limegreen")) +
 scale_x_continuous("") +
 scale_y_continuous("") +
 guides(color = FALSE) +
 theme_gray(base_size = 18) +
 theme(plot.title = element_text(hjust = 0.5),
 element_blank(),
 axis.ticks.x = element_blank(),
 axis.text.x = element_blank(),
 axis.ticks.y = element_blank(),
 axis.text.y = element_blank())

Section 3

load packages
library(ggplot2)
library(parallel)
library(doSNOW)
library(support)

load functions
source("datanugget Package/create DN.R")
source("datanugget Package/create DN2.R")
source("datanugget Package/refine DN.R")
source("datanugget Package/WKmeans.R")
source("functions/density plot.R")

set seed for replication
set.seed(103092)

create x for noise data
x = rnorm(15000)

create y for noise data
y = rnorm(15000)

create noise data
noise.data = cbind(x,y)

create smile data
smile.data = cbind(seq(-1.5,1.5,0.005),
 .25*(seq(-1.5,1.5,0.005))^2-0.5)

give column names to the data
colnames(noise.data) = c("X","Y")
colnames(smile.data) = c("X","Y")

create entire dataset
original.data = rbind.data.frame(noise.data,
 smile.data)

retrieve random sample of 2000 observations
random.sample.data = original.data[sample(1:nrow(original.data),2000),]

generate data nuggets
for.DN = create.DN(x = original.data,
 RS.num = 10000,
 DN.num = 2000)

retrieve data nuggets
DN.information = for.DN$`Data Nuggets`

create matrix for original data nuggets density plot
DN.z = matrix(0,
 nrow = 100,
 ncol = 100)

DN.zx = seq(length = 101,
 from = min(DN.information[, 2]),
 to = max(DN.information[, 2]))

110

DN.zy = seq(length = 101,
 from = min(DN.information[, 3]),
 to = max(DN.information[, 3]))

for(i in 1:100){

 for(j in 1:100){

 DN.z[i,j] = sum(DN.information[DN.information[, 2] > DN.zx[i] &
 DN.information[, 2] < DN.zx[i+1] &
 DN.information[, 3] > DN.zy[j] &
 DN.information[, 3] < DN.zy[j+1], "Weight"])

 }

}

create top row of Figure 3 plots
par(mfrow = c(1,2),
 mar = c(0,0,0,0) + 0.5)

plot(original.data[,1],
 original.data[,2],
 # ylim = c(min(original.data[, 2]) + 1,
 # max(original.data[, 2]) + 1),
 xaxt = "n",
 yaxt = "n",
 xlab = "",
 ylab = "")

density.plot(original.data[,1],
 original.data[,2],
 100,
 100)

create bottom row of Figure 3 plots
density.plot(random.sample.data[, 1],
 random.sample.data[, 2],
 100,
 100)

image(z = DN.z,
 x = DN.zx,
 y = DN.zy,
 xlab = "",
 ylab = "",
 col = topo.colors(100),
 xaxt = "n",
 yaxt = "n")

create refined data nuggets
for.DN2 = refine.DN(x = original.data,
 DN = for.DN,
 scale.tol = 1,
 min.nugget.size = 2)

retrieve refined data nuggets
DN.information2 = for.DN2$`Data Nuggets`

create matrix for refined data nuggets density plot
DN2.z = matrix(0,
 nrow = 100,
 ncol = 100)

DN2.zx = seq(length = 101,
 from = min(DN.information2[, 2]),
 to = max(DN.information2[, 2]))

DN2.zy = seq(length = 101,
 from = min(DN.information2[, 3]),
 to = max(DN.information2[, 3]))

for(i in 1:100){

 for(j in 1:100){

 DN2.z[i,j] = sum(DN.information2[DN.information2[, 2] > DN2.zx[i] &
 DN.information2[, 2] < DN2.zx[i+1] &
 DN.information2[, 3] > DN2.zy[j] &

111

 DN.information2[, 3] < DN2.zy[j+1], "Weight"])

 }

}

create top row of Figure 4 plots
plot(DN.information[,2],
 DN.information[,3],
 # ylim = c(min(original.data[, 2]) + 1,
 # max(original.data[, 2]) + 1),
 #col = plot.colors,
 #pch = plot.shapes,
 xaxt = "n",
 yaxt = "n",
 xlab = "",
 ylab = "")

image(z = DN.z,
 x = DN.z x,
 y = DN.z y,
 xlab = "",
 ylab = "",
 col = topo.colors(100),
 xaxt = "n",
 yaxt = "n")

create bottom row of Figure 4 Plots
plot(DN.information2[,2],
 DN.information2[,3],
 # ylim = c(min(original.data[, 2]) + 1,
 # max(original.data[, 2]) + 1),
 xaxt = "n",
 yaxt = "n",
 xlab = "",
 ylab = "")

image(z = DN.z,
 x = DN.zx,
 y = DN.zy,
 xlab = "",
 ylab = "",
 col = topo.colors(100),
 xaxt = "n",
 yaxt = "n")

binary data nuggets simulation ####

set the number of iterations
iteration.num = 100

retrieve the number of cores
no.cores = detectCores() - 1

create list of probabilities
probs = seq(.8,.9,0.02)

cycle through the list of probabilities
for (m in probs){

 # create the cluster for parallel processing
 cl = makeCluster(no.cores)

 # engage the cluster for parallel processing
 registerDoSNOW(cl)

 system.time({

 # initialize progress bar
 pb = txtProgressBar(min = 0, max = iteration.num)

 # update the progress bar
 progress = function(n){setTxtProgressBar(pb, n)}
 opts = list(progress = progress)

 # initalize probabilities for layers of data
 p1 = m
 p2 = 1-p1

 # create sample size

112

 n = 100000

 # perform simulation
 results = foreach(i = 1:iteration.num,
 .combine = rbind,
 .options.snow = opts) %dopar%

 {

 # set seed for replication
 set.seed(i)

 # create left layer of 1st cluster of data (5 zeros)
 m1 = array(sample(0:1,
 n*5,
 prob = c(p1,1-p1),
 rep = T),
 dim = c(n,5))

 # create right layer of 1st cluster of data (5 ones)
 m2 = array(sample(0:1,
 n*5,
 prob = c(p2,1-p2),
 rep = T),
 dim = c(n,5))

 # create left layer of 2nd cluster of data (5 ones)
 m3 = array(sample(0:1,
 n*5,
 prob = c(p2,1-p2),
 rep = T),
 dim = c(n,5))

 # create right layer of 2nd cluster of data (5 zeros)
 m4 = array(sample(0:1,
 n*5,
 prob = c(p1,1-p1),
 rep = T),
 dim = c(n,5))

 # create 3rd cluster of data (10 ones)
 m5 = array(sample(0:1,
 n*10,
 prob = c(p2,1-p2),
 rep = T),
 dim = c(n,10))

 # create simulated data
 sim.data = as.data.frame(rbind(cbind(m1,m2),
 cbind(m3,m4),
 m5))

 # assign the true clusters
 sim.data[, "Cluster"] = rep(1:3,
 each = 100000)

 # convert the data to a data frame
 sim.data = as.data.frame(sim.data)

 # find the unique rows of the data
 unique.rows = unique(sim.data[, 1:10])

 # initialize the data nugget data
 DN.info = data.frame(Data.Nugget = 1:nrow(unique.rows))

 # make the data nuggets the unique rows
 DN.info[, 2:11] = as.matrix(unique.rows)

 # give the data nuggets colum names
 colnames(DN.info) = c("Data Nugget",
 paste("Center",
 1:10,
 sep = ""))

 # assign data nuggets to the original data
 DN.assignments = apply(X = as.matrix(sim.data[, 1:10]),
 MARGIN = 1,
 FUN = function(input){

113

return(which(colSums(t(as.matrix(DN.info[, 2:11])) == input) == 10))

 })

 # find the weights of the data nuggets
 DN.info[, "Weight"] = table(DN.assignments)/nrow(sim.data)

 # find the k means cluster configuration
 Kmeans.results = kmeans(x = DN.info[, 2:11],
 centers = 3,
 nstart = 5,
 iter.max = 10)

 # find the weighted k means cluster configuration
 WKmeans.results = WKmeans(dataset = DN.info[, 2:11],
 k = 3,
 obs.weights = DN.info[, "Weight"],
 num.init = 5,
 K = 10)

 # create a matrix of possible permutations clusters
 perm.matrix = rbind(c(1,2,3),
 c(1,3,2),
 c(2,1,3),
 c(2,3,1),
 c(3,1,2),
 c(3,2,1))

 # initialize the vector holding the correct classifications for
each permutation
 correct.Kmeans = rep(0,6)
 correct.WKmeans = rep(0,6)

 # cycle through the permutations
 for (j in 1:6){

 # reassign the k means clusters according to the current
permutation
 new.Kmeans.cluster = Kmeans.results$cluster + 3
 new.Kmeans.cluster[new.Kmeans.cluster == 4] = perm.matrix[j,
][1]
 new.Kmeans.cluster[new.Kmeans.cluster == 5] = perm.matrix[j,
][2]
 new.Kmeans.cluster[new.Kmeans.cluster == 6] = perm.matrix[j,
][3]

 # reassign the weighted k means clusters according to the
current permutation
 new.WKmeans.cluster = WKmeans.results$`Cluster Assignments` + 3
 new.WKmeans.cluster[new.WKmeans.cluster == 4] = perm.matrix[j,
][1]
 new.WKmeans.cluster[new.WKmeans.cluster == 5] = perm.matrix[j,
][2]
 new.WKmeans.cluster[new.WKmeans.cluster == 6] = perm.matrix[j,
][3]

 # append the current cluster assignments for each method to the
data nuggets
 DN.info[, "Kmeans.Cluster"] = new.Kmeans.cluster
 DN.info[, "WKmeans.Cluster"] = new.WKmeans.cluster

 # append each observation of the original data with its data
nugget assignment
 sim.data[, "DN Assignment"] = DN.assignments

 # append the current cluster assignments to each observation
 # according to their assigned data nugget
 sim.data[, "DN.Kmeans.Cluster"] = DN.info[DN.assignments,
"Kmeans.Cluster"]
 sim.data[, "DN.WKmeans.Cluster"] = DN.info[DN.assignments,
"WKmeans.Cluster"]

 # find the correct classifications for the k means method
 correct.Kmeans[j] = mean(sim.data[, "Cluster"] ==
 sim.data[, "DN.Kmeans.Cluster"])

 # find the correct classifications for the weighted k means
method
 correct.WKmeans[j] = mean(sim.data[, "Cluster"] ==
 sim.data[, "DN.WKmeans.Cluster"])

114

 }

 # retrieve the best percentage of correct classification for each
method
 best.correct.Kmeans = max(correct.Kmeans)
 best.correct.WKmeans = max(correct.WKmeans)

 # create the results for this iteration
 iteration.result = c(i,
 best.correct.Kmeans,
 best.correct.WKmeans)

 # return the results for this iterations
 return(iteration.result)

 }

 # stop the cluster
 stopCluster(cl)

 })

 # find the average percentage of correct classification for each method
 results2 = colMeans(results)[2:3]

 # find the average percentage of correct classification for each method for this
probability
 results2 = colMeans(results)[2:5]

 # print the results for this probability
 print(results2)

quantile bias simulation ####

set the number of iterations
num.iterations = 1000

initialize the vector of estimated quantiles for each method
est.q.DN = NULL
est.q.SP = NULL

cycle through the iterations
for (i in 1:num.iterations){

 # set seed for reproducibility
 set.seed(i)

 # sample 100000 observations from a random distribution
 x = rnorm(100000)

 # generate the support points
 SP = sp(100,
 1,
 ini = as.matrix(x))$sp

 # generate data nuggets
 for.DN = create.DN2(x = x,
 RS.num = 1000,
 DN.num = 100)

 # extract data nuggets
 DN.info = for.DN$`Data Nuggets`

 # order data nuggets
 DN.info = DN.info[order(DN.info[, "Center1"]),]

 # extract data nugget centers and weights
 DN.centers = DN.info[, "Center1"]
 DN.weights = DN.info[, "Weight"]/length(x)

 # create true probabilities for quantile values
 true.p = seq(.95,.99,.01)

 # calculate the estimated quantiles according to the support point method
 est.q.SP = cbind(est.q.SP,
 quantile(SP,
 true.p))

 # calculate the estimated quantiles according to the data nuggets method
 est.q.DN = cbind(est.q.DN,

115

 approx(cumsum(DN.weights),
 DN.centers,
 true.p)$y)

}

find the bias for each iteration/percentile combination
SP.Bias = t(est.q.SP-qnorm(true.p))
DN.Bias = t(est.q.DN-qnorm(true.p))

initialize the the vector that will store the bias results
SP.Bias.vec = SP.Bias[, 1]
DN.Bias.vec = DN.Bias[, 1]

cycle through the percentiles
for (i in 95:99){

 SP.Bias.vec = c(SP.Bias.vec,
 SP.Bias[, i])

 DN.Bias.vec = c(DN.Bias.vec,
 DN.Bias[, i])

}

form the boxplot data
BP.data = data.frame(Percentile = c(rep(paste(c(95:99),
 "%",
 sep = ""),
 each = num.iterations),
 rep(paste(c(95:99),
 "%",
 sep = ""),
 each = num.iterations)),
 Method = c(rep("Support Points", 5*num.iterations),
 rep("Data Nuggets", 5*num.iterations)),
 Bias = c(SP.Bias.vec,
 DN.Bias.vec))

factor the method variable
BP.data[, "Method"] = factor(BP.data[, "Method"],
 levels = unique(BP.data[, "Method"]))

create the boxplot
ggplot(BP.data,
 aes(x = Percentile,
 y = Bias)) +
 facet_wrap(~Method) +
 geom_boxplot() +
 scale_y_continuous("Quantile Estimate Bias") +
 geom_hline(yintercept = 0,
 col = "green",
 linetype = "dashed") +
 ggtitle("Quantile Estimate Bias for Upper 5% of Normal Distribution") +
 theme_gray(base_size = 18) +
 theme(plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5))

116

Appendix B: Selected R Code for Chapter 2

Section 3

load the NMA Function
source("NMA Package/NMA Function.R")

create the Moore-Penrose Inverse Function
MP.inv = function(X){

 return(solve(X - matrix(1,ncol(X),ncol(X))/ncol(X)) +
 matrix(1,ncol(X),ncol(X))/ncol(X))

}

Code for dataset A ####

load Dataset A
Dataset.A = read.csv("data/Dataset A.csv")

fit GLS method (baseline Trt. C)
NMA.fit = NMA.function(contrast = FALSE,
 dataset = Dataset.B,
 check.netmeta = FALSE,
 method = "Regression",
 baseline.choices = c(1,3))

retrieve the contrast summary measures
contrast.data = NMA.fit$`Contrast Data`

Code for GLS checkpoints for Dataset A ####

Calculate numbers for design AB ####

retrieve sample mean differences, standard errors, and weights
d.AB.1 = contrast.data[1,1]
s.AB.1 = contrast.data[1,2]
W.AB.1 = 1/(s.AB.1)^2
d.AB.2 = contrast.data[2,1]
s.AB.2 = contrast.data[2,2]
W.AB.2 = 1/(s.AB.2)^2

calculate effect size estimate and standard error squared
d.hat.AB = (d.AB.1*W.AB.1 + d.AB.2*W.AB.2)/(W.AB.1 + W.AB.2)
s2.d.hat.AB.1 = 1/(W.AB.1 + W.AB.2)

calculate effect size estimate and standard error squared
d.hat.AB = (d.AB.1*W.AB.1 + d.AB.2*W.AB.2)/(W.AB.1 + W.AB.2)
s2.d.hat.AB.1 = 1/(W.AB.1 + W.AB.2)

Calculate numbers for design ABCD ####

create sample mean difference vectors, covariance matrices, and weight matrices
(baseline Trt. C)
d.ABCD.1 = c(contrast.data[4,1],
 contrast.data[6,1],
 contrast.data[8,1])

V.ABCD.1 = matrix(c(contrast.data[4,2],Dataset.B[7,2],Dataset.B[7,2],
 Dataset.B[7,2],contrast.data[6,2],Dataset.B[7,2],
 Dataset.B[7,2],Dataset.B[7,2],contrast.data[8,2])^2,
 nrow = 3,
 byrow = TRUE)

V.ABCD.1[3,2] = -V.ABCD.1[3,2]
V.ABCD.1[2,3] = -V.ABCD.1[2,3]
V.ABCD.1[3,1] = -V.ABCD.1[3,1]
V.ABCD.1[1,3] = -V.ABCD.1[1,3]

W.ABCD.1 = solve(V.ABCD.1)

Calculate the effect size estimate vector, covariance matrix, and weight matrix ####
W.ABCD = W.ABCD.1
d.hat.ABCD = solve(W.ABCD)%*%(W.ABCD.1%*%d.ABCD.1)
V.ABCD = solve(W.ABCD)

117

combine all effect size estimates into one vector
y.gls = c(d.hat.AB,
 d.hat.ABCD)

create variance and weight matrix for initial estimates
V.gls = matrix(0,
 nrow = 4,
 ncol = 4)

V.gls[1,1] = s2.d.hat.AB.1
V.gls[2:4,2:4] = V.ABCD

W.gls = solve(V.gls)

Calculate the GLS fixed effects estimates ####

create H matrix
H = matrix(c(1,0,0,
 0,1,0,
 -1,1,0,
 0,0,1),
 byrow = TRUE,
 nrow = 4)

create X matrix
X = H

calculate the GLS effect size estimates and the associated covariance matrix
d.hat.gls = H%*%solve(t(X)%*%W.gls%*%X)%*%t(X)%*%W.gls%*%y.gls

Code for ENT checkpoints for Dataset A ####

retrieve the sample mean differences from the contrast data
y.ent = contrast.data[, 1]

create the sub edge-vertex incidence matrix for design AB
B.AB = c(1,-1,0,0)

create the sub edge-vertex incidence matrix for design ABCD
B.ABCD = matrix(c(1,-1,0,0,
 1,0,-1,0,
 1,0,-0,-1,
 0,1,-1,0,
 0,1,0,-1,
 0,0,1,-1),
 nrow = 6,
 byrow = TRUE)

create the edge-vertex incidence matrix
B = rbind(B.AB,
 B.AB,
 B.ABCD)

create the sub variance matrices for experiments with design ABCD
V1 = matrix(c(0,contrast.data[3,2],contrast.data[4,2],contrast.data[5,2],
 contrast.data[3,2],0,contrast.data[6,2],contrast.data[7,2],
 contrast.data[4,2],contrast.data[6,2],0,contrast.data[8,2],
 contrast.data[5,2],contrast.data[7,2],contrast.data[8,2],0)^2,
 byrow = TRUE,
 nrow = 4)

create the Lplus matrices for experiments with design ABCD
L1.plus = (-1/(2*(4^2)))*t(B.ABCD)%*%B.ABCD%*%V1%*%t(B.ABCD)%*%B.ABCD

create the L matrices for experiments with design ABCD
L1 = MP.inv(L1.plus)

retrieve the weights for experiments with design ABCD
W1 = -c(L1[1,2],L1[1,3],L1[1,4],L1[2,3],L1[2,4],L1[3,4])

create the weight matrix
W.ent = diag(c(1/(contrast.data[1:2,2])^2,W1))

create L matrix
L = t(B)%*%W.ent%*%B

create Lplus matrix
L.plus = MP.inv(L)

118

create effect size estimate vector
d.hat.ent = B%*%L.plus%*%t(B)%*%W.ent%*%y.ent

Code for dataset B ####

load Dataset B
Dataset.B = read.csv("data/Dataset B.csv")

fit GLS method (baseline Trt.A)
NMA.fit = NMA.function(contrast = FALSE,
 dataset = Dataset.A,
 check.netmeta = FALSE,
 method = "Regression")

contrast.data = NMA.fit$`Contrast Data`

Code for GLS checkpoints for Dataset A ####

Calculate numbers for design AB ####

retrieve sample mean differences, standard errors, and weights
d.AB.1 = contrast.data[8,1]
s.AB.1 = contrast.data[8,2]
W.AB.1 = 1/(s.AB.1)^2

calculate effect size estimate and standard error squared
d.hat.AB = d.AB.1*W.AB.1/W.AB.1
s2.d.hat.AB.1 = 1/W.AB.1

Calculate numbers for design BC ####

retrieve sample mean differences, standard errors, and weights
d.BC.1 = contrast.data[7,1]
s.BC.1 = contrast.data[7,2]
W.BC.1 = 1/(s.BC.1)^2
d.BC.2 = contrast.data[9,1]
s.BC.2 = contrast.data[9,2]
W.BC.2 = 1/(s.BC.2)^2

calculate effect size estimate and standard error squared
d.hat.BC = (d.BC.1*W.BC.1 + d.BC.2*W.BC.2)/(W.BC.1 + W.BC.2)
s2.d.hat.BC.1 = 1/(W.BC.1 + W.BC.2)

Calculate numbers for design ABC ####

create sample mean difference vectors, covariance matrices, and weight matrices
(baseline Trt. A)
d.ABC.1 = c(contrast.data[1,1], contrast.data[2,1])

V.ABC.1 = matrix(c(contrast.data[1,2],Dataset.A[1,2],
 Dataset.A[1,2],contrast.data[2,2])^2,
 nrow = 2,
 byrow = TRUE)

W.ABC.1 = solve(V.ABC.1)

d.ABC.2 = c(contrast.data[4,1], contrast.data[5,1])

V.ABC.2 = matrix(c(contrast.data[4,2],Dataset.A[4,2],
 Dataset.A[4,2],contrast.data[5,2])^2,
 nrow = 2,
 byrow = TRUE)

W.ABC.2 = solve(V.ABC.2)

d.ABC.3 = c(contrast.data[10,1], contrast.data[11,1])

V.ABC.3 = matrix(c(contrast.data[10,2],Dataset.A[13,2],
 Dataset.A[13,2],contrast.data[11,2])^2,
 nrow = 2,
 byrow = TRUE)

W.ABC.3 = solve(V.ABC.3)

Calculate the effect size estimate vector, covariance matrix, and weight matrix ####
W.ABC = W.ABC.1 + W.ABC.2 + W.ABC.3
d.hat.ABC = solve(W.ABC)%*%(W.ABC.1%*%d.ABC.1 + W.ABC.2%*%d.ABC.2 + W.ABC.3%*%d.ABC.3)
V.ABC = solve(W.ABC)

combine all effect size estimates into one vector

119

y.gls = c(d.hat.ABC,
 d.hat.BC,
 d.hat.AB)

create variance and weight matrix for intitial estimates
V.gls = matrix(0,
 nrow = 4,
 ncol = 4)

V.gls[1:2,1:2] = V.ABC
V.gls[3,3] = s2.d.hat.BC.1
V.gls[4,4] = s2.d.hat.AB.1

W.gls = solve(V.gls)

Calculate and check the GLS fixed effects estimates ####

create H matrix
H = matrix(c(1,0,
 0,1,
 -1,1),
 byrow = TRUE,
 nrow = 3)

create X matrix
X = matrix(c(1,0,
 0,1,
 -1,1,
 1,0),
 byrow = TRUE,
 nrow = 4)

calculate the GLS effect size estimates and the associated covariance matrix
d.hat.gls = H%*%solve(t(X)%*%W.gls%*%X)%*%t(X)%*%W.gls%*%y.gls

Code for ENT checkpoints for Dataset A ####

retrieve the sample mean differences from the contrast data
y.ent = contrast.data[, 1]

create the sub edge-vertex incidence matrix for design ABC
B.ABC = matrix(c(1,-1,0,
 1,0,-1,
 0,1,-1),
 nrow = 3,
 byrow = TRUE)

create the sub edge-vertex incidence matrix for design BC
B.BC = c(0,1,-1)

create the sub edge-vertex incidence matrix for design AB
B.AB = c(1,-1,0)

create the edge-vertex incidence matrix
B = rbind(B.ABC,
 B.ABC,
 B.BC,
 B.AB,
 B.BC,
 B.ABC)

create the sub variance matrices for experiments with design ABC
V1 = matrix(c(0,contrast.data[1,2],contrast.data[2,2],
 contrast.data[1,2],0,contrast.data[3,2],
 contrast.data[2,2],contrast.data[3,2],0)^2,
 byrow = TRUE,
 nrow = 3)

V2 = matrix(c(0,contrast.data[4,2],contrast.data[5,2],
 contrast.data[4,2],0,contrast.data[6,2],
 contrast.data[5,2],contrast.data[6,2],0)^2,
 byrow = TRUE,
 nrow = 3)

V3 = matrix(c(0,contrast.data[10,2],contrast.data[11,2],
 contrast.data[10,2],0,contrast.data[12,2],
 contrast.data[11,2],contrast.data[12,2],0)^2,
 byrow = TRUE,
 nrow = 3)

create the Lplus matrices for experiments with design ABC

120

L1.plus = (-1/(2*(3^2)))*t(B.ABC)%*%B.ABC%*%V1%*%t(B.ABC)%*%B.ABC
L2.plus = (-1/(2*(3^2)))*t(B.ABC)%*%B.ABC%*%V2%*%t(B.ABC)%*%B.ABC
L3.plus = (-1/(2*(3^2)))*t(B.ABC)%*%B.ABC%*%V3%*%t(B.ABC)%*%B.ABC

create the L matrices for experiments with design ABC
L1 = MP.inv(L1.plus)
L2 = MP.inv(L2.plus)
L3 = MP.inv(L3.plus)

retrieve the weights for experiments with design ABC
W1 = -c(L1[1,2],L1[1,3],L1[2,3])
W2 = -c(L2[1,2],L2[1,3],L2[2,3])
W3 = -c(L3[1,2],L3[1,3],L3[2,3])

create the weight matrix
W.ent = diag(c(W1,W2,1/(contrast.data[7:9,2])^2,W3))

create L matrix
L = t(B)%*%W.ent%*%B

create Lplus matrix
L.plus = MP.inv(L)

create effect size estimate vector
d.hat.ent = B%*%L.plus%*%t(B)%*%W.ent%*%y.ent

121

Appendix C: Selected R Code for Chapter 3

Section 2

load packages
library(ggplot2)

Create data for first plot of Figure 15 ####

assign probabilities
p1 = .1
p2 = .55
p3 = .35

create data
prob.plot.data = data.frame(x = c(-1.65,
 mean(c(qnorm(p1),qnorm(p1+p2))),
 1.65),
 y = 0.065)

quant.plot.data = data.frame(x = c(qnorm(p1),
 qnorm(p1+p2))-0.15,
 y = 0.45)

Create first plot for Figure 15 ####
ggplot(data = data.frame(X = 0),
 aes(x = X)) +
 stat_function(fun = dnorm,
 args = list(mean = 0, sd = 1)) +
 scale_x_continuous("",
 limits = c(-3.5,3.5),
 breaks = -3:3) +
 scale_y_continuous("",
 limits = c(0,.475)) +
 stat_function(fun = dnorm,
 xlim = c(-3.5, qnorm(p1)),
 geom = "area",
 fill = "green",
 color = "black") +
 stat_function(fun = dnorm,
 xlim = c(qnorm(p1), qnorm(p1+p2)),
 geom = "area",
 fill = "yellow",
 color = "black") +
 stat_function(fun = dnorm,
 xlim = c(qnorm(p1+p2), 3.5),
 geom = "area",
 fill = "red",
 color = "black") +
 geom_vline(xintercept = c(qnorm(p1),
 qnorm(p1+p2)),
 size = 1) +
 geom_hline(yintercept = 0,
 size = 0.25) +
 geom_point(aes(x = qnorm(p1),
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = qnorm(p1+p2),
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_text(data = prob.plot.data,
 aes(x = x,
 y = y),
 label = c(expression(p["1"]),
 expression(p["2"]),
 expression(p["3"])),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(data = quant.plot.data,
 aes(x = x,
 y = y),
 label = c(expression(q["1"]),
 expression(q["2"])),
 size = 10,
 inherit.aes = FALSE) +

122

 geom_text(x = qnorm(p1)+.35,
 y = .02,
 label = expression("("*Q[1]*",0)"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = qnorm(p1+p2)+.35,
 y = .02,
 label = expression("("*Q[2]*",0)"),
 size = 10,
 inherit.aes = FALSE) +
 ggtitle("Initial Pain Score Distribution",
 subtitle = "Before Treatment with Compound A") +
 theme(text = element_text(size = 28),
 plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank())

Create data for second plot of Figure 15 ####

assign delta
delta.data = 0.6

create data
prob.plot.data2 = data.frame(x = c(-1.65,
 mean(c(qnorm(p1),qnorm(p1+p2))) + delta.data,
 1.65),
 y = 0.065)

quant.plot.data2 = data.frame(x = c(qnorm(p1),
 qnorm(p1+p2)) + delta.data - 0.15,
 y = 0.45)

create second plot of Figure 15 ####
ggplot(data = data.frame(X = 0),
 aes(x = X)) +
 stat_function(fun = dnorm,
 args = list(mean = 0, sd = 1)) +
 scale_x_continuous("",
 limits = c(-3.5,3.5),
 breaks = -3:3) +
 scale_y_continuous("",
 limits = c(0,.475)) +
 stat_function(fun = dnorm,
 xlim = c(-3.5, qnorm(p1) + delta.data),
 geom = "area",
 fill = "green",
 color = "black") +
 stat_function(fun = dnorm,
 xlim = c(qnorm(p1), qnorm(p1+p2)) + delta.data,
 geom = "area",
 fill = "yellow",
 color = "black") +
 stat_function(fun = dnorm,
 xlim = c(qnorm(p1+p2) + delta.data, 3.5),
 geom = "area",
 fill = "red",
 color = "black") +
 geom_vline(xintercept = c(qnorm(p1),
 qnorm(p1+p2)) + delta.data,
 size = 1) +
 geom_hline(yintercept = 0,
 size = 0.25) +
 geom_point(aes(x = qnorm(p1) + delta.data,
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = qnorm(p1+p2) + delta.data,
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_text(data = prob.plot.data2,
 aes(x = x,
 y = y),
 label = c(expression(p["1"]^"T"),
 expression(p["2"]^"T"),
 expression(p["3"]^"T")),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(data = quant.plot.data2,
 aes(x = x,

123

 y = y),
 label = c(expression(q["1"]^"'"),
 expression(q["2"]^"'")),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = qnorm(p1) + delta.data + .4,
 y = .02,
 label = expression("("*Q[1]*"+"*delta*",0)"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = qnorm(p1+p2) + delta.data + .4,
 y = .02,
 label = expression("("*Q[2]*"+"*delta*",0)"),
 size = 10,
 inherit.aes = FALSE) +
 ggtitle("Hypothesized Pain Score Distribution",
 subtitle = "After Treatment with Compound A") +
 theme(text = element_text(size = 28),
 plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank())

Section 4

load packages
library(ggplot2)
library(data.table)

load functions
source("multinorm Package/corr est.R")
source("multinorm Package/create exp cells.R")
source("multinorm Package/create obs cells.R")
source("functions/pre gen stats.R")
source("functions/gen stats.R")

Create plot for Figure 16 ####

Create data ####
tmp.table = create.exp.cells(rho = 0,
 v.cuts = -1,
 h.cuts = -1.5)

retrieve the data for creating the sections
polydata = corr.est3(rho = 0,
 prob.obs = tmp.table)

convert the infinity values

initialize the data for geom_polygon
polydata2 = data.frame(ID = rep(1:nrow(polydata), each = 4),
 fill.value = rep(paste(polydata[,2],
 polydata[,3],
 sep = ""), each = 4),
 X.coord = 0,
 Y.coord = 0,
 X.center = 0,
 Y.center = 0)

cycle through the sections
for (i in 1:nrow(polydata)){

 # retrieve the information for this section
 section.info = as.numeric(polydata[i,4:7])

 # retrieve the X coordinates for this section
 polydata2[(1+4*(i-1)):(4*i), 3] = c(section.info[1],
 section.info[3],
 section.info[3],
 section.info[1])

 # retrieve the Y coordinates for this section
 polydata2[(1+4*(i-1)):(4*i), 4] = c(section.info[2],
 section.info[2],
 section.info[4],
 section.info[4])

 # convert infinities to 4 for calculating center

124

 section.info[which(section.info == -Inf)] = -4
 section.info[which(section.info == Inf)] = 4

 # retrieve the X center
 polydata2[(1+4*(i-1)):(4*i), 5] = mean(c(section.info[1],
 section.info[3]))

 # retrieve the Y center
 polydata2[(1+4*(i-1)):(4*i), 6] = mean(c(section.info[2],
 section.info[4]))

}

retrieve the horizontal and vertical dividers
v.dashed = unique(polydata[, 4])[-1]
h.dashed = unique(polydata[, 5])[-length(unique(polydata[, 5]))]

create plot ####
ggplot(data = data.frame(X = 0),
 aes(x = X)) +
 scale_x_continuous("",
 limits = c(-4,4)) +
 scale_y_continuous("",
 limits = c(-4,4)) +
 geom_polygon(data = polydata2,
 aes(x = X.coord,
 y = Y.coord,
 fill = fill.value),
 inherit.aes = FALSE) +
 scale_fill_manual("",
 values = c("green",
 rep("yellow",2),
 "orange")) +
 geom_text(data = polydata2,
 aes(x = X.center,
 y = Y.center,
 label = fill.value),
 size = 10) +
 geom_vline(xintercept = v.dashed[1],
 size = 1,
 linetype = "dashed") +
 geom_hline(yintercept = h.dashed[1],
 size = 1,
 linetype = "dashed") +
 geom_vline(xintercept = 0,
 size = 1) +
 geom_hline(yintercept = 0,
 size = 1) +
 geom_point(aes(x = v.dashed[1],
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = 0,
 y = h.dashed[1]),
 size = 5,
 inherit.aes = FALSE) +
 geom_text(x = 3.9,
 y = -.25,
 label = expression(X[1]),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = .15,
 y = 3.9,
 label = expression(X[2]),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -1.2,
 y = 2,
 label = expression(q[11]),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = 3,
 y = -1.7,
 label = expression(q[21]),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -.6,
 y = .4,
 label = expression("("*Q[11]*",0)"),
 size = 10,
 inherit.aes = FALSE) +

125

 geom_text(x = .4,
 y = -1.1,
 label = expression("(0,"*Q[21]*")"),
 size = 10,
 inherit.aes = FALSE) +
 ggtitle("Bivariate Distribution Layout",
 subtitle = "2 Levels For Each Variable") +
 theme(text = element_text(size = 28),
 plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
 axis.text.x = element_blank(),
 axis.ticks.x = element_blank(),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 legend.position = "none")

Create top plot for Figure 17 ####
Create data ####

tmp.table = create.exp.cells(rho = 0,
 v.cuts = c(-2, .75),
 h.cuts = c(-1.75,1))

retrieve the data for creating the sections
polydata = corr.est3(rho = 0,
 prob.obs = tmp.table)

convert the infinity values

initialize the data for geom_polygon
polydata2 = data.frame(ID = rep(1:nrow(polydata), each = 4),
 fill.value = rep(paste(polydata[,2],
 polydata[,3],
 sep = ""), each = 4),
 X.coord = 0,
 Y.coord = 0,
 X.center = 0,
 Y.center = 0)

cycle through the sections
for (i in 1:nrow(polydata)){

 # retrieve the information for this section
 section.info = as.numeric(polydata[i,4:7])

 # retrieve the X coordinates for this section
 polydata2[(1+4*(i-1)):(4*i), 3] = c(section.info[1],
 section.info[3],
 section.info[3],
 section.info[1])

 # retrieve the Y coordinates for this section
 polydata2[(1+4*(i-1)):(4*i), 4] = c(section.info[2],
 section.info[2],
 section.info[4],
 section.info[4])

 # convert infinities to 4 for calculating center
 section.info[which(section.info == -Inf)] = -4
 section.info[which(section.info == Inf)] = 4

 # retrieve the X center
 polydata2[(1+4*(i-1)):(4*i), 5] = mean(c(section.info[1],
 section.info[3]))

 # retrieve the Y center
 polydata2[(1+4*(i-1)):(4*i), 6] = mean(c(section.info[2],
 section.info[4]))

}

retrieve the horizontal and vertical dividers
v.dashed = unique(polydata[, 4])[-1]
h.dashed = unique(polydata[, 5])[-length(unique(polydata[, 5]))]

Create plot ####
ggplot(data = data.frame(X = 0),
 aes(x = X)) +
 scale_x_continuous("",
 limits = c(-4,4)) +
 scale_y_continuous("",

126

 limits = c(-4,4)) +
 geom_polygon(data = polydata2,
 aes(x = X.coord,
 y = Y.coord,
 fill = fill.value),
 inherit.aes = FALSE) +
 scale_fill_manual("",
 values = c("green",
 "yellow",
 "orange",
 rep("yellow",2),
 "orange",
 rep("orange",2),
 "red")) +
 geom_text(data = polydata2,
 aes(x = X.center,
 y = Y.center,
 label = fill.value),
 size = 10) +
 geom_vline(xintercept = v.dashed[1],
 size = 1,
 linetype = "dashed") +
 geom_vline(xintercept = v.dashed[2],
 size = 1,
 linetype = "dashed") +
 geom_hline(yintercept = h.dashed[1],
 size = 1,
 linetype = "dashed") +
 geom_hline(yintercept = h.dashed[2],
 size = 1,
 linetype = "dashed") +
 geom_vline(xintercept = 0,
 size = 1) +
 geom_hline(yintercept = 0,
 size = 1) +
 geom_point(aes(x = -2,
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = .75,
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = 0,
 y = -1.75),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = 0,
 y = 1),
 size = 5,
 inherit.aes = FALSE) +
 geom_text(x = 3.9,
 y = -.25,
 label = "U",
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = .15,
 y = 3.9,
 label = "L",
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -2.2,
 y = 2.5,
 label = expression(q[11]),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = .55,
 y = 2.5,
 label = expression(q[12]),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = 3,
 y = -1.95,
 label = expression(q[21]),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = 3,
 y = .8,
 label = expression(q[22]),
 size = 10,
 inherit.aes = FALSE) +

127

 geom_text(x = -1.6,
 y = .35,
 label = expression("("*Q[11]*",0)"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = 1.15,
 y = .35,
 label = expression("("*Q[12]*",0)"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -.4,
 y = -1.35,
 label = expression("(0,"*Q[21]*")"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -.4,
 y = 1.35,
 label = expression("(0,"*Q[22]*")"),
 size = 10,
 inherit.aes = FALSE) +
 ggtitle("Upper and Lower Pain Score Distribution",
 subtitle = "Before Treatment with Compound C") +
 theme(text = element_text(size = 28),
 plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
 axis.text.x = element_blank(),
 axis.ticks.x = element_blank(),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 legend.position = "none")

Create bottom plot for Figure 17 ####
Create data ####

delta.data = c(.75,1)

tmp.table = create.exp.cells(rho = 0,
 v.cuts = c(-2, .75) + delta.data[1],
 h.cuts = c(-1.75,1) + delta.data[2])

retrieve the data for creating the sections
polydata = corr.est3(rho = 0,
 prob.obs = tmp.table)

initialize the data for geom_polygon
polydata2 = data.frame(ID = rep(1:nrow(polydata), each = 4),
 fill.value = rep(paste(polydata[,2],
 polydata[,3],
 sep = ""), each = 4),
 X.coord = 0,
 Y.coord = 0,
 X.center = 0,
 Y.center = 0)

cycle through the sections
for (i in 1:nrow(polydata)){

 # retrieve the information for this section
 section.info = as.numeric(polydata[i,4:7])

 # retrieve the X coordinates for this section
 polydata2[(1+4*(i-1)):(4*i), 3] = c(section.info[1],
 section.info[3],
 section.info[3],
 section.info[1])

 # retrieve the Y coordinates for this section
 polydata2[(1+4*(i-1)):(4*i), 4] = c(section.info[2],
 section.info[2],
 section.info[4],
 section.info[4])

 # convert infinities to 4 for calculating center
 section.info[which(section.info == -Inf)] = -4
 section.info[which(section.info == Inf)] = 4

 # retrieve the X center
 polydata2[(1+4*(i-1)):(4*i), 5] = mean(c(section.info[1],
 section.info[3]))

 # retrieve the Y center

128

 polydata2[(1+4*(i-1)):(4*i), 6] = mean(c(section.info[2],
 section.info[4]))

}

retrieve the horizontal and vertical dividers
v.dashed = unique(polydata[, 4])[-1]
h.dashed = unique(polydata[, 5])[-length(unique(polydata[, 5]))]

Create plot ####
ggplot(data = data.frame(X = 0),
 aes(x = X)) +
 scale_x_continuous("",
 limits = c(-4,4)) +
 scale_y_continuous("",
 limits = c(-4,4)) +
 geom_polygon(data = polydata2,
 aes(x = X.coord,
 y = Y.coord,
 fill = fill.value),
 inherit.aes = FALSE) +
 scale_fill_manual("",
 values = c("green",
 "yellow",
 "orange",
 rep("yellow",2),
 "orange",
 rep("orange",2),
 "red")) +
 geom_text(data = polydata2,
 aes(x = X.center,
 y = Y.center,
 label = fill.value),
 size = 10) +
 geom_vline(xintercept = v.dashed[1],
 size = 1,
 linetype = "dashed") +
 geom_vline(xintercept = v.dashed[2],
 size = 1,
 linetype = "dashed") +
 geom_hline(yintercept = h.dashed[1],
 size = 1,
 linetype = "dashed") +
 geom_hline(yintercept = h.dashed[2],
 size = 1,
 linetype = "dashed") +
 geom_vline(xintercept = 0,
 size = 1) +
 geom_hline(yintercept = 0,
 size = 1) +
 geom_point(aes(x = v.dashed[1],
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = v.dashed[2],
 y = 0),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = 0,
 y = h.dashed[1]),
 size = 5,
 inherit.aes = FALSE) +
 geom_point(aes(x = 0,
 y = h.dashed[2]),
 size = 5,
 inherit.aes = FALSE) +
 geom_text(x = 3.9,
 y = -.25,
 label = "U",
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = .15,
 y = 3.9,
 label = "L",
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -2.2 + delta.data[1],
 y = 2.5,
 label = expression(q[11]^"'"),
 size = 10,
 inherit.aes = FALSE) +

129

 geom_text(x = .55 + delta.data[1],
 y = 2.5,
 label = expression(q[12]^"'"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = 3,
 y = -1.95 + delta.data[2] -.15,
 label = expression(q[21]^"'"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = 3,
 y = .8 + delta.data[2] -.15,
 label = expression(q[22]^"'"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -1.85,
 y = .35,
 label = expression("("*Q[11]*"+"*delta["U"]*",0)"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = .9,
 y = .35,
 label = expression("("*Q[12]*"+"*delta["U"]*",0)"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -.55,
 y = -1.1,
 label = expression("(0,"*Q[21]*"+"*delta["L"]*")"),
 size = 10,
 inherit.aes = FALSE) +
 geom_text(x = -.55,
 y = 1.65,
 label = expression("(0,"*Q[22]*"+"*delta["L"]*")"),
 size = 10,
 inherit.aes = FALSE) +
 ggtitle("Hypothesized Upper and Lower Pain Score Distribution",
 subtitle = "After Treatment with Compound C") +
 theme(text = element_text(size = 28),
 plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
 axis.text.x = element_blank(),
 axis.ticks.x = element_blank(),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 legend.position = "none")

create the vector of sample sizes
SS.sim.vec = seq(20,50,10)

create the vector of true rhos
rho.sim.vec = seq(-.99,.99,.01)

initialize the graph data
graph.data3 = data.frame(True.Rho = rep(rho.sim.vec, each = length(SS.sim.vec)),
 Sample.Size = rep(SS.sim.vec, length(rho.sim.vec)),
 Rho1.Bias = 0,
 Rho2.Bias = 0,
 Rho3.Bias = 0)

set number of iterations
num.iterations = 1000

1st configuration ####
v.cuts = 0
h.cuts = 0

conduct simulation for configuration 1
for (rhos in rho.sim.vec){

 for (SS in SS.sim.vec){

 tmp.index = which(graph.data3[, "True.Rho"] == rhos & graph.data3[, "Sample.Size"] ==
SS)

 tmp.stats = gen.stats(iterations = num.iterations,
 N = SS,
 true.rho = rhos,
 v.cuts = v.cuts,
 h.cuts = h.cuts,
 no.cores = 7)

130

 graph.data3[tmp.index, "Rho1.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho1
Bias", "Statistic"])
 graph.data3[tmp.index, "Rho2.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho2
Bias", "Statistic"])
 graph.data3[tmp.index, "Rho3.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho3
Bias", "Statistic"])

 }

}

reconfigure data for graphing
for.bind1 = graph.data3[, 1:3]
for.bind2 = graph.data3[, c(1:2,4)]
for.bind3 = graph.data3[, c(1:2,5)]

colnames(for.bind1)[3] = "Bias"
colnames(for.bind2)[3] = "Bias"
colnames(for.bind3)[3] = "Bias"

graph.data4 = rbind.data.frame(for.bind1,
 for.bind2,
 for.bind3)

graph.data4[, "Estimator"] = rep(c("Xi",
 "Spearman",
 "Kendall"),
 each = nrow(for.bind1))

graph.data4[, "Estimator"] = factor(graph.data4[, "Estimator"],
 levels = unique(graph.data4[, "Estimator"]))

graph.data4[, "Sample.Size.Label"] = paste("N = ",
 graph.data4[, "Sample.Size"],
 sep = "")

create Figure 18
ggplot(data = graph.data4,
 aes(x = True.Rho,
 y = Bias,
 color = Estimator)) +
 facet_wrap(~ Sample.Size.Label,
 nrow = 3) +
 geom_line() +
 geom_hline(yintercept = 0,
 color = "green",
 linetype = "dashed") +
 scale_x_continuous("True Correlation") +
 scale_y_continuous("Bias") +
 scale_color_manual(bquote("Estimator"),
 values = c("blue",
 "red",
 "magenta"),
 labels = c(expression(xi*" "),
 expression("Spearman's "*rho*" "),
 expression("Kendall's "*tau)),
 guide = guide_legend(title.position = "top",
 ncol = 3,
 keywidth = .25,
 default.unit = "inch",
 override.aes = list(size = 2))) +
 ggtitle("Estimator Bias for Partition Configuration 1") +
 theme(text = element_text(size = 28),
 plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
 legend.title = element_blank(),
 legend.position = "top")

conduct simulation for configuration 2
for (rhos in rho.sim.vec){

 for (SS in SS.sim.vec){

 tmp.index = which(graph.data3[, "True.Rho"] == rhos & graph.data3[, "Sample.Size"] ==
SS)

 tmp.stats = gen.stats(iterations = num.iterations,
 N = SS,
 true.rho = rhos,
 v.cuts = v.cuts,

131

 h.cuts = h.cuts,
 no.cores = 7)

 graph.data3[tmp.index, "Rho1.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho1
Bias", "Statistic"])
 graph.data3[tmp.index, "Rho2.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho2
Bias", "Statistic"])
 graph.data3[tmp.index, "Rho3.Bias"] = mean(tmp.stats[tmp.stats[, "Group"] == "Rho3
Bias", "Statistic"])

 }

}

reconfigure data for graphing
for.bind1 = graph.data3[, 1:3]
for.bind2 = graph.data3[, c(1:2,4)]
for.bind3 = graph.data3[, c(1:2,5)]

colnames(for.bind1)[3] = "Bias"
colnames(for.bind2)[3] = "Bias"
colnames(for.bind3)[3] = "Bias"

graph.data4 = rbind.data.frame(for.bind1,
 for.bind2,
 for.bind3)

graph.data4[, "Estimator"] = rep(c("Xi",
 "Spearman",
 "Kendall"),
 each = nrow(for.bind1))

graph.data4[, "Estimator"] = factor(graph.data4[, "Estimator"],
 levels = unique(graph.data4[, "Estimator"]))

graph.data4[, "Sample.Size.Label"] = paste("N = ",
 graph.data4[, "Sample.Size"],
 sep = "")

create Figure 19
ggplot(data = graph.data4,
 aes(x = True.Rho,
 y = Bias,
 color = Estimator)) +
 facet_wrap(~ Sample.Size.Label,
 nrow = 3) +
 geom_line() +
 geom_hline(yintercept = 0,
 color = "green",
 linetype = "dashed") +
 scale_x_continuous("True Correlation") +
 scale_y_continuous("Bias") +
 scale_color_manual("",
 values = c("blue",
 "red",
 "magenta"),
 labels = c(expression(xi*" "),
 expression("Spearman's "*rho*" "),
 expression("Kendall's "*tau)),
 guide = guide_legend(title.position = "top",
 ncol = 3,
 keywidth = .25,
 default.unit = "inch",
 override.aes = list(size = 2))) +
 ggtitle("Estimator Bias for Partition Configuration 2") +
 theme(text = element_text(size = 28),
 plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
 legend.title = element_blank(),
 legend.position = "top")

132

Appendix D: Publications

1. Data Nuggets: A Method for Reducing Large Datasets While Maintaining Data

Structure. Also developing package. (In Preparation, 2019)

2. A New Understanding of Network Meta-Analysis Regarding Experiments with

Small Sample Sizes. Also developing package. (In Preparation, 2019)

3. Determining Adequate Sample Sizes for Analyzing Ordinal Categorical Data with

Small Range Scales. Also developing package. (In Preparation, 2019)

4. (2019) Cuccurullo S, Fleming T, (et.al. including Beavers, T). Impact of a Stroke

Recovery Program Integrating Modified Cardiac Rehabilitation on All-cause

Mortality, Cardiovascular Performance and Overall Function (Accepted to

American Journal of Physical Medicine & Rehabilitation pending minor

revisions)

5. (2019) Barbayannis G, Chiu I, (et.al. including Beavers, T). Relation Between

Statewide Hospital Performance Reports on Myocardial Infarction and

Cardiovascular Outcomes (Submitted to American Journal of Cardiology)

133

Bibliography

1. Albert, A. (1972). Regression and the Moore-Penrose pseudoinverse. New York:

Academic Press.

2. Amaratunga, D. (1999). Searching for the Right Sample Size. The American

Statistician, 52-55.

3. Amaratunga, D., Cabrera, J., & Shkedy, Z. (2014). Exploration and analysis of

DNA microarray and other high dimensional data. Hoboken, New Jersey: John

Wiley & Sons.

4. Arslan, O. (2015). Variance-mean mixture of the multivariate skew normal

distribution. Statistical Papers, 353-378.

5. Ayramo, S., & Karkkainen, T. (2006). Introduction to partitioning-based cluster

analysis methods with a robust example. Reports of the Department of

Mathematical Information Technology; Series C: Software and Computational

Engineering, 1-36.

6. Azzalini, A., & Valle, A. D. (1996). The Multivariate Skew-Normal Distribution.

Biometrika, 715-726.

7. Bailey, R. (2007). Designs for two‐colour microarray experiments. Journal of the

Royal Statistical Society: Series C (Applied Statistics), 365–394.

8. Bliss, C. (1934). The Method of Probits. Science, 38–39.

9. Borenstein, M. (2009). Introduction to meta-analysis. Chichester, West Sussex,

U.K.: John Wiley & Sons.

134

10. Cabrera, J., & McDougall, A. (2002). Statistical Consulting. New York, NY:

Springer.

11. Dias, S., Sutton, A. J., Ades, A. E., & Welton, N. J. (2013). Evidence Synthesis

for Decision Making 2: A Generalized Linear Modeling Framework for Pairwise

and Network Meta-analysis of Randomized Controlled Trials. Medical Decision

Making, 607-617.

12. Dias, S., Welton, N. J., Caldwell, D. M., Ades, A. E., & Hougaard, P. (2010).

Checking consistency in mixed treatment comparison meta‐analysis. Statistics in

Medicine, 932-944.

13. Fisher, R. A. (1935). The Design of Experiments, Second Edition. Edinburgh:

Oliver and Boyd.

14. Forgy, E. (1965). Cluster analysis of multivariate data: efficiency vs.

interpretability of classification. Biometrics, 768.

15. Franchini, A., Dias, S., Ades, A., Jansen, J., & Welton, N. (2012). Accounting for

correlation in network meta-analysis with multi-arm trials. Research Synthesis

Methods, 142-160.

16. Friedman, J., & Tukey, J. (1974). A Projection Pursuit Algorithm for Exploratory

Data Analysis. IEEE Transactions on Computers, 881-890.

17. Ghosh, D., Cabrera, J., Adam, T., Aggarwal, R., Levounis, P., & Adam, N.

(2016). Comorbidity Patterns and its Impact on Health Outcomes: Two-way

Clustering Analysis. IEEE Transactions on Big Data.

135

18. Hartigan, J., & Wong, M. (1979). AS136 A K-means clustering algorithm.

Applied Statistics, 90.

19. Higgins, J., & Whitehead, A. (1996). BORROWING STRENGTH FROM

EXTERNAL TRIALS IN A META‐ANALYSIS. Statistics in Medicine, 2733–

2749.

20. Hong, H., Carlin, B. P., Shamliyan, T. A., Wyman, J. F., Ramakrishnan, R.,

Sainfort, F., & Kane, R. L. (2013). Comparing Bayesian and Frequentist

Approaches for Multiple Outcome Mixed Treatment Comparisons. Medical

Decision Making, 702-714.

21. Jahan-Tigh, R. R., Ryan, C., Obermoser, G., & Schwarzenberger, K. (2012). Flow

Cytometry. Journal of Investigative Dermatology, 1-6.

22. Jansen, J. P., & Cope, S. (2012). Meta-regression models to address heterogeneity

and inconsistency in network meta-analysis of survival outcomes. Jansen, Jeroen

P ; Cope, Shannon.

23. Katsanos, K. (2014). Appraising Inconsistency Between Direct and Indirect

Estimates. In Biondi-Zoccai G, Network Meta-Analysis: Evidence Synthesis with

Mixed Treatment Comparison (pp. 191–210). Hauppauge, NY: Nova Science

Publishers.

24. Kendall, M. (1938). A New Measure of Rank Correlation. Biometrika, 81–93.

136

25. König, J., Krahn, U., & Binder, H. (2013). Visualizing the flow of evidence in

network meta‐analysis and characterizing mixed treatment comparisons. Statistics

in Medicine, 5414-5429.

26. Kotz, S., & Nadarajah, S. (2004). Multivariate T-Distributions and Their

Applications. Cambridge: Cambridge University Press.

27. Liu, J., & Xu, S. (2014). Applied research of weighted K-means algorithm in

social networks. Applied Mechanics and Materials, 286–290.

28. Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on

Information Theory, 129–137.

29. Lu, G., & Ades, A. E. (2004). Combination of direct and indirect evidence in

mixed treatment comparisons. Statistics in Medicine, 3105-3124.

30. Lu, G., & Ades, A. E. (2006). Assessing Evidence Inconsistency in Mixed

Treatment Comparisons. Journal of the American Statistical Association, 447-

459.

31. Lu, G., Welton, N., Higgins, J., White, I., & Ades, A. (2011). Linear inference for

mixed treatment comparison meta-analysis: A two-stage approach. Research

Synthesis Methods, 43–60.

32. Lumley, T. (2002). Network meta‐analysis for indirect treatment comparisons.

Statistics in Medicine, 2313–2324.

137

33. MacQueen, J. (1967). Some methods for classification and analysis of

multivariate observations. Proceedings of the Fifth Berkeley Symposium On

Mathematical Statistics and Probabilities, 281-296.

34. Mak, S. (2018). support: Support Points. R package version 0.1.2.

35. Mak, S., & Joseph, V. (2018). Support points. Annals of Statistics, 2562–2592.

36. Morissette, L., & Chartier, S. (2013). The k-means clustering technique: General

considerations and implementation in Mathematica. Tutorials in Quantitative

Methods for Psychology, 15–24.

37. Neupane, B., Richer, D., Bonner, A., Kibret, T., Beyene, J., & Neupane, B.

(2014). Network meta-analysis using R: a review of currently available automated

packages. PloS One.

38. Neuvial, P., Bengtsson, H., & Speed, T. P. (2010). TumorBoost: Normalization of

allele-specific tumor copy numbers from a single pair of tumor-normal

genotyping microarrays. BMC Bioinformatics, 245.

39. Pearson, K. (1900). On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it can be

reasonably supposed to have arisen from random sampling. Philosophical

Magazine, 157-175.

40. R Core Team (2018). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/.

138

41. Riley, R. (2009). Multivariate meta-analysis: the effect of ignoring within-study

correlation. Journal of the Royal Statistical Society: Series A (Statistics in

Society), 789–811.

42. Rokach, L., & Maimon, O. (2005). Data mining and knowledge discovery

handbook. Boston, MA: Springer US.

43. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied

Mathematics, 53-65.

44. Rücker, G., & Schwarzer, G. (2012). Network meta-analysis, electrical networks

and graph theory. Research Synthesis Methods, 312–324.

45. Rücker, G., & Schwarzer, G. (2014). Reduce dimension or reduce weights?

Comparing two approaches to multi‐arm studies in network meta‐analysis.

Statistics in Medicine, 4353–4369.

46. Rücker, G., Schwarzer, G., Krahn, U., & König, J. (2018). netmeta: Network

Meta-Analysis using Frequentist Methods. R package version 0.9-8.

47. Schwarzer, G., Carpenter, J., & Rücker, G. (2015). Meta-analysis with R. Cham,

Switzerland: Springer.

48. Snedecor, S. J., Patel, D. A., & C. Cappeller, J. (2014). Chapter 2. From Pairwise

To Network Meta-Analyses. In G. Biondi-Zoccai, Network Meta-Analysis:

Evidence Synthesis with Mixed Treatment Comparison (pp. 21-41). Hauppauge,

NY: Nova Science Publishers.

139

49. Spearman, C. (1904). The Proof and Measurement of Association between Two

Things. American Journal of Psychology, 72–101.

50. Srinivasan, S. (2018). Guide to Big Data Applications. Springer International

Publishing.

51. Székely, G. J., & Rizzo, M. L. (2013). Energy statistics: A class of statistics based

on distances. Journal Of Statistical Planning And Inference, 1249–1272.

52. Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of

clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 411-423.

53. Valkenhoef, G., Lu, G., Brock, B., Hillege, H., Ades, A., & Welton, N. (2012).

Automating network meta-analysis. Research Synthesis Methods, 285-299.

54. White, I. R., Barrett, J. K., Jackson, D., & Higgins, J. P. (2012). Consistency and

inconsistency in network meta‐analysis: model estimation using multivariate

meta‐regression. Research Synthesis Methods, 111-125.

