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In quantum scattering theory, one seeks to characterize the spectrum of and asymp-

totic evolution by an N -body Schrödinger Hamiltonian H. For instance, one may

prove asymptotic completeness, which states that an N -body system separates into

freely evolving subsystems, each of which is in a bound state.

The Mourre estimate E4(H)[H, iA]E4(H) ≥ θE4(H) has been an indispensable

tool in the analysis of N -body systems. It implies certain propagation estimates in-

cluding local decay estimates and minimal velocity bounds. These have been used to

analyze Hamiltonians p2 + V for a broad class of N -body potentials V .

In this dissertation, we extend the Mourre theory, the subsequent propagation

estimates, and the asymptotic completeness (for negative energy) to a Hamiltonian

H = p2 + |k|+ V designed to capture some aspects of the photoelectric effect. Modifi-

cations are needed; the necessary inequalities are achieved by examining the spectrum

and by using a different formula to compute commutators with |k|.
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Chapter 1

Introduction

1.1 Background

In a microscopic game of billiards, we’d like to be certain of all the possible ways the

game can end. But how?

More specifically, in quantum scattering theory, one investigates the long-time be-

havior of N -body quantum systems. Since its development in the 1920s, many advances

have been made in understanding the solutions to Schrödinger’s equation for N particles

interacting pairwise:

i
∂

∂t
ψ = Hψ

where ψ ∈ H = L2(R3N ) is a wavefunction on configuration space R3N and

H = −4+
∑
i 6=j

Vij

is a Schrödinger N -body Hamiltonian for some interaction potential functions Vij .

In 1951, Tosio Kato established the self-adjointness of these operators, placing them

in the realm of the abstract quantum theory developed by Von Neumann and others.

In particular, the dynamics of the solutions are given by a strongly continuous one-

parameter unitary group

ψt(x) = e−itHψ0(x)

Exactly what behavior these solutions could exhibit would remain an open question

for decades. In 1969, Ruelle showed that under certain modest conditions, the solution
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space could be divided into bound states ψ ∈ Hb, which are spanned by eigenfunctions

exhibiting the spatial decay property

lim
R→∞

‖(1− χBR(x))e−iHtψ‖ = 0

(where BR is the ball of radius R centered at the origin) and continuous-spectrum

states ψ ∈ Hc, which are orthogonal to the bound states and exhibit mean ergodic

decay

lim
t→∞

1

t

∫ t

0
‖χBR(x)e−iHsψ‖2ds = 0

where R ≥ 0 is arbitrary. This characterization would later be generalized by

Amrein, Georgescu, and Enss. One highly sought-after conjecture during this period

was asymptotic completeness. To state asymptotic completeness, we need the notion

of a scattering state. This can be easily understood with reference to a specific 3-body

problem.

Let H = L2(R6) be the configuration space of a restricted 3-body system, where

x ∈ R3 gives the coordinates of one particle, y ∈ R3 gives the coordinates of another

particle, and a particle of large mass stays fixed at the origin. The 3-body Hamiltonian

for this system can be expressed as

H = p2 + k2 + V12(x) + V13(y) + V23(x− y)

where the momentum p is the Fourier conjugate of x, k is the Fourier conjugate

of y, and Vij are potential functions. One expects that in a scattering situation, one

or two of these particles might go far away from the others, so their interaction would

become negligible. Thus, the dynamics would asymptotically become the dynamics of

one of the truncated Hamiltonians:

H(123) = H

H(12) = p2 + k2 + V12(x)
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H(13) = p2 + k2 + V13(y)

H(23) = p2 + k2 + V23(x− y)

H(0) = p2 + k2

where the cluster decompositions a ∈ {(123), (12), (13), (23), (0)} represent which

particles stay together asymptotically. Specifically, an outgoing scattering state can be

defined as a state ψ such that

lim
t→∞

e−iHtψ = lim
t→∞

∑
a

e−iHatφa

where the φa are essentially bound states of the resulting subsystems

φ(123) is an eigenfunction of H

φ(12) is an eigenfunction of H(12) = p2 + V(12)(x)

φ(13) is an eigenfunction of H(13)k2 + V(13)(y)

φ(23) is an eigenfunction of H(23)(p− k)2 + V(23)(x− y)

except for φ(0) which exhibits free dynamics, i.e. evolution by eitH0 . More accurately,

φa is a member of L2(xa)⊗Hbound(Ha), where xa is the position of the particle external

to the cluster and Hbound(Ha) is the subspace of bound states of Ha. There is a notion

of an incoming scattering state involving the limit as t→ −∞, and one can show that

the incoming scattering states are precisely the outgoing scattering states.

The conjecture of N -body asymptotic completeness states that every state is a linear

combination of a bound state and a scattering state. This offers a effective geometric

characterization of all solutions to the equation.

This conjecture was proven under certain assumptions (for example by Lavine in

1971 under the assumption of purely repulsive potentials), and then under very general

assumptions by Sigal and Soffer in 1987. The key to the proof of Sigal and Soffer is
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developing a microlocal positive commutator method to construct propagation observ-

ables that decay along the flow in classically forbidden regions of the phase space of the

N -body system.

Consider a Schrödinger Hamiltonian H, another self-adjoint operator A, and an

interval Ω in the continuous spectrum of H. Let EΩ(H) be the spectral projection

onto Ω. An abstract result due to Mourre in 1981 shows that (under some additional

assumptions required to make this statement well-defined), the Mourre inequality

EΩ(H)[H, iA]EΩ(H) ≥ αEΩ(H)

for some α > 0 implies that for any closed [a, b] ∈ Ω, there is a c0 ∈ R such that

(see [19])

sup
Re(z)∈[a,b],Im(z)6=0

‖|A+ i|−1(H − z)−1|A+ i|−1‖ ≤ c0

which in turn implies that (see [21])

∫ ∞
−∞
‖|A+ i|−1e−itHEΩ(H)ψ‖2dt . ‖ψ‖2

Thus there is a general framework for inequalities of this type from the Mourre

inequality, including local decay estimates of the form

∫ ∞
−∞
‖(x2 + 1)−µe−itHEΩ(H)ψ‖2dt . ‖ψ‖2

and minimal velocity estimates [22] of the form

∫ ∞
−∞
‖χ(0,ε)

((x2 + 1)

t

)
e−itHEΩ(H)ψ‖2dt . ‖ψ‖2

Once these types of propagation estimates are established, the game is to use them

to show that the part of e−itHψ that does not separate into freely evolving subsystems

(as in the statement of asymptotic completeness) converges to 0.

While these methods were successful for N -body Hamiltonians of the form p2 + V ,

they don’t immediately generalize to Hamiltonians with different kinetic parts, such as
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the relativistic
√
p2 +m2, without some extra work. Thus, for instance, asymptotic

completeness in the case of the photoelectric effect for the hydrogen atom (the scattering

of one proton, one electron, and N photons) remains open.

In 2002, Galtbayar, Jensen, and Yajima proved a Mourre estimate for a version of

the Nelson model of an atom restricted to less than two photons, but remarked that

the estimate achieved was insufficient to obtain the local decay estimates needed for a

proof of asymptotic completeness.

In 2016, Soffer proved maximal velocity estimates for the Hamiltonian |p| + V (x),

extending positive commutator estimates to this case with a singular symbol.

This dissertation establishes asymptotic completeness for the restricted 3-body prob-

lem with one proton, one electron, and one “photon”:

H = p2 + |k|+ V12(x) + V13(y) + V23(x− y)

under certain assumptions; specifically negative energy and spectral assumptions on

the subsystems.

1.2 Intuition for three massive particles

Here we will outline how the techniques discussed thus far work for the restricted three-

body Hamiltonian

H = p2 + k2 + V12(x) + V13(y) + V23(x− y)

It is enlightening to see what is exactly the same and what is genuinely a property

of the singular Hamiltonian of interest.

First, one needs to prove the Mourre estimate. There are several nice things about

the kinetic part of the Hamiltonian that make this process easy. One is that commu-

tators of p2 with functions ja(x, y) are nice, so it is quick to prove that [p2, ja(x, y)] is
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relatively H-compact for certain ja. These ja will arise as a partition of unity on con-

figuration space. Any kinetic part that is less nice or even singular may cause difficulty

here. Another is that the kinetic parts of each particle individually are the same, which

allows each cluster decomposition to be treated in the same way. Finally, something

special happens when the kinetic parts are all the same and all p2; when you treat the

(23) cluster, the external and internal momentum pa = p+ k and pa = p− k separate:

Ha = p2 + k2 + V23(x− y) =
1

4
(pa + pa)2 +

1

4
(pa − pa)2 + V23(xa)

=
1

2
(pa)

2 +
1

2
(pa)2 + V23(xa)

An important part of proving the Mourre estimate on this cluster is considering

what happens when you project onto the bound state of the subsystem:

1

2
(pa)

2 +
1

2
(pa)2 + V23(xa) ≈ 1

2
(pa)

2 + λ

When you cannot separate out the Hamiltonian of a subsystem, it is trickier to

balance the contribution of the external momentum pa and the contribution of the

subsystem’s energy λ to the positive commutator.

The proof of the Mourre estimate in this case can be found in e.g. [9]. The idea is

to first localize onto subsystems using a partition of unity
∑
j2
a = 1 so that one can

prove a Mourre estimate for each subsystem Ha separately. Then, one can consider each

value of the external momentum separately. When the external momentum is small,

then since the total energy is fixed away from threshold energies, one can use the fact

that the subsystem is on its continuous spectrum. When the total momentum is large,

one can exploit that to obtain a positive commutator.

The Mourre estimate is known to imply local decay estimates and minimal velocity

estimates, but specifically those involving the Mourre conjugate operator A. So to

obtain local decay instead in terms of the position X, one must prove e.g. Lemma 8.2

in [20], which depends on the structure of H.
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Once these auxiliary estimates are established, one wishes to prove the existence

of candidates for scattering states. This is established by proving the existence of

Deift-Simon wave operators

s− lim
t→±∞

eitHaja(x, y)e−itHPac(H)E4(H)

where Pac projects onto the absolutely continuous spectrum, and ja is part of a

partition of unity projecting onto a cone in configuration space where one would expect

evolution by Ha to propagate. Putting these together for each cluster decomposition a

yields an asymptotic decomposition into scattering states for any ψ in the continuous

spectrum of H. We call this asymptotic clustering, and asymptotic completeness follows

by an induction argument.

The choice of a configuration space partition of unity ja(x, y) could be substituted

for a phase space partition of unity ja(x, y)fa(p, k) or something else. However, for the

simple three-body Hamiltonian in question, these wave operators will do.

The existence of these wave operators is established using Cook’s method, where

the limiting quantity is expressed as an integral of a derivative. Thus we must prove

that the Heisenberg derivative

Dtja(X)ψ := [p2 + k2, ja] + Iaja

is integrable in time, where Ia is the external potential energy of the cluster de-

composition in question. Under certain assumptions on the potential, Iaja is easily

controlled by local decay. Moreover, since commutators [p2, ja] are nice, these terms

are also easily controlled by local decay. It is the difficulties arising from [|k|, ja] that

may necessitate a use of a phase space partition of unity or some additional assumptions

to prove asymptotic completeness for our singular Hamiltonian of interest.
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Chapter 2

Definitions and potential assumptions

Let R6
X = R3

x ⊕ R3
y be the configuration space for a restricted three-particle system,

where coordinates have been selected so that a first particle (a “proton”, treated as

having infinite mass) is at the origin, x is the position of the second particle (an “elec-

tron”), and y is the position of the third particle (a “photon”). Where X = (x, y)

represents a point in configuration space, we let P = (p, k) be the Fourier conjugate of

X, so that k is the momentum of the photon and p is the momentum of the electron.

We define the free Hamiltonian

H0 := p2 + |k|

as an operator on L2(R6
P ). The free Hamiltonian models the kinetic energies p2 and

|k| of the electron and of a photon, respectively. The proton is fixed at the origin

and so makes no contribution, and creation and annihilation of photons is ignored

in this simplified model. As a multiplier operator, H0 is self-adjoint on the domain

D(H0) := {ψ ∈ L2(R6) : H0ψ ∈ L2(R6)}. The graph norm on D(H0) is equivalent

to the weighted L2 norm with weight (1 + p4 + k2) dp dk. As such, the operator H0

is essentially self-adjoint on the dense set C∞0 (R6), the class of smooth functions with

compact support; this class is dense in the weighted space L2(R6
P ; (1 + p4 + k2) dp dk).

We introduce a three-body potential function V = V12(x) + V13(y) + V23(x − y),

where V12, V13, and V23 are functions on R3. V12 is the electron-proton interaction, V13

is the photon-proton interaction, and V23 is the electron-photon interaction. We define

the full Hamiltonian on L2(R6
X):
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H = H0 + V12(x) + V13(y) + V23(x− y)

We assume that the potentials satisfy the assumptions of the Kato-Rellich theorem

so that H is self-adjoint on D(H) = D(H0) and bounded below. In particular, we make

assumption (RB) below.

Next we define the five cluster decompositions

a ∈ {(xy0), (y)(x0), (x)(y0), (xy)(0), (x)(y)(0)}

These are used as indices for quantities representing the system in the following situ-

ations respectively: when all three particles are close together, when just the photon

is far away, when just the electron is far away, when the photon and electron are close

together but far away from the proton, and when all three particles are far apart. The

number of clusters for a particular decomposition is denoted #(a), e.g. #((x)(y0)) = 2.

When we are analyzing a particular cluster decomposition, it’s useful to have a

uniform notation to describe the internal and external cluster coordinates. We write

xa and pa for internal coordinates and xa and pa for external coordinates, e.g. for

a = (y)(x0) we write y = xa, x = xa, k = pa, and p = pa. The rest of the notation is

contained in this chart.

(xy0) (y)(x0) (x)(y0)

xa - y x

xa X x y

pa - k p

pa P p k

Ia(xa) V V12(x) V13(y)

Ia 0 V13(y) + V23(x− y) V12(x) + V23(x− y)
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(xy)(0) (x)(y)(0)

xa x+ y X

xa x− y -

pa p+ k P

pa p− k -

Ia(xa) V23(x− y) 0

Ia V12(x) + V13(y) V

The assumption (RB) is that the following operators are are relatively H0-bounded

with relative bound less than 1: for all partitions a,


Ia

xa · 5Ia

xa · 5(xa · 5Ia)

(RB)

One simple way to satisfy (RB) is to have each potential be smooth and decay at

infinity, although weaker conditions will suffice.

We define the truncated Hamiltonians Ha = H0 + Ia = H − Ia. These represent

the approximate energy of the system when it has separated into clusters in the manner

suggested by a, so we can neglect certain potentials. The Ia are the intercluster

potentials, and the Ia are the internal potentials.

We focus our attention on the three 2-cluster decompositions such that #(a) = 2.

For each of these cluster decompositions, the truncated Hamiltonians Ha can be written

as a direct integral (cf. [14]) over the reduced Hamiltonians Ha(s) defined below.

This is justified because Ha commutes with pa in each case. Essentially, we get to

identify pa with a number s.

H(y)(x0)(s) := p2 + |s| + V12(x) is an operator on L2(R3
x), so that H(y)(x0) =∫ ⊕

R3
s
H(y)(x0)(s) ds is an operator on L2(R6) =

∫ ⊕
R3
s
L2(R3

x) ds.

H(x)(y0)(s) = s2 + |k|+ V13(y) is an operator on L2(R3
y), so that
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H(x)(y0) =
∫ ⊕
R3
s
H(x)(y0)(s) ds is an operator on L2(R6) =

∫ ⊕
R3
s
L2(R3

y) ds.

H(xy)(0)(s) = 1
4(pa + s)2 + 1

2 |p
a − s| + V23(xa) is an operator on L2(R3

xa) so that

H(xy)(0) =
∫ ⊕
R3
s
H(xy)(0)(s) ds is an operator on L2(R6) =

∫ ⊕
R3
s
L2(R3

xa) ds.

In order to prove the Mourre estimate, we use an additional spectral assumption on

the reduced Hamiltonians H(xy)(0)(s) for the photon-electron cluster. Specifically, we

assume

H(xy)(0)(s) has no eigenvalues embedded in its continuous spectrum for any s ∈ R3

(SPEC)

and

For some θ > 0 the eigenfunctions of B(tv) satisfy (− pa

|pa|
· t) ≥ θ in expectation.

(SPEC2)

This is because eigenvalues can behave poorly as s varies, where the continuous

spectrum is concerned. Isolated eigenvalues, on the other hand, have a well-understood

structure (cf. [16]). It seems likely that one can remove the spectral assumptions on

the subsystem by proving appropriate Mourre estimates.

We define the subsystem Hamiltonians as

h(y)(x0) = H(y)(x0)(0) = p2 + V12(x)

h(x)(y0) = H(x)(y0)(0) = |k|+ V13(y)

h(xy)(0) = H(xy)(0)(0) =
1

4
(pa)2 +

1

2
|pa|+ V23(xa)

We further assume the following relative boundedness and compactness properties.
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

V13 and y · 5V13 are relatively |k|-compact as operators on L2(R3
y)

V13 and y · 5V13 have relative |k|-bound less than 1

V12 and x · 5V12 are relatively p2-compact as operators on L2(R3
x)

V12 and x · 5V12 have relative p2-bound bound less than 1

V23(xa) and xa · 5V23(xa) are relatively (pa + s)2-compact

as operators on L2(R3
xa) for all s ∈ R3

V23(xa) and xa · 5V23(xa) have relative (pa + s)2-bound

less than 1 for all s ∈ R3

(RC1)

These hold if, for instance, each potential function is continuous and decays at

infinity. The Kato-Rellich theorem and (RC1) imply that the reduced and subsystem

Hamiltonians are self-adjoint on their respective domains D(|k|), D(p2), and D((pa)2 +

|pa|).

The eigenvalues of the subsystem Hamiltonians, along with zero, form the set of

thresholds. The threshold energies are significant; if the entire system is given a

threshold energy, then a subsystem may form a bound state without any kinetic energy

left over to separate it from the remaining particle. This presents complications in

sections below.

2.1 Definitions involving commutators

Since we will frequently need to commute unbounded operators, but commutators of

unbounded operators are a priori only defined as quadratic forms, the following is

convenient. For self-adjoint operators H and A, it is known that if H satisfies the

C1(A) property (cf. [2]), then the commutator [H, iA] is well-defined and in fact the

virial theorem holds. For more, see Proposition II.1 of [19] and conditions (M) and

(M ′) from [11].
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Lemma 2.1 (Formal commutators are well defined). Suppose we have two (possibly

unbounded) self-adjoint operators H and A, where H is bounded below. A priori there

exists a quadratic form [H, iA]0 on D(H) ∩D(A). Suppose that [H, iA]0 evaluated on

a space S of test vectors agrees (on S) with the closed quadratic form associated with a

self-adjoint operator C defined on an operator domain D(C). Then, under the following

conditions:

eitA maps both D(H) and S into themselves. (FC1)

S ⊂ D(H) ∩D(A) (FC2)

S is a core for D(H) (FC3)

D(H) ⊂ D(C) (FC4)

We have that H is C1(A), [H, iA]0 is closeable, the self-adjoint operator associated

to its closure is C, and the virial theorem

〈ψ,Cψ〉 = 0 whenever ψ is an eigenvector of H.

holds.

We always write E4(H) for the spectral projection of the operator H onto the

interval 4 ⊂ R.

Definition 2.2 (Mourre estimate). Let H and A be self-adjoint operators on a Hilbert

space, let E ∈ R, and let α > 0. Suppose that H and A satisfy the hypotheses of Lemma

2.1, so that [H, iA] is a well-defined self-adjoint operator with domain containing D(H).

H is said to satisfy a Mourre estimate at E with conjugate operator A, constant α, and

width δ if there exists an open interval 4 = (E − δ, E + δ) and a compact operator K

such that

E4(H)[H, iA]E4(H) ≥ αE4(H) +K
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We define the Mourre conjugate operators

Aa :=
1

2
(pa · xa + xa · pa)

Aa :=
1

2
(pa · xa + xa · pa)

A := Aa +Aa =
1

2
(P ·X +X · P )

Since C∞0 (Rn) is invariant under dilations ψ(r) 7→ e−nt/2ψ(etr) and these form a

strongly continuous unitary group, all these operators (the generators of the unitary

dilation groups) are known to be essentially self-adjoint on their respective C∞0 spaces

(cf. Theorem VIII.10 of [21]).

Lemma 2.1 applies to our H and A, with S being the class of C∞0 functions. Con-

dition (FC1) is satisfied since the eitA are dilations, which map both L2(R6; (1 + k2 +

p4) dk dp) and C∞0 (R6) into themselves. Condition (FC2) is satisfied as well from el-

ementary properties of smooth functions with compact support. Condition (FC3) is

satisfied by the Kato-Rellich theorem; since S is a core for H0, S is also a core for H.

To show condition (FC4), we examine the formal commutator

C = 2p2 + |k| −
∑

#(a)=2

xa · 5Ia

From another application of Kato-Rellich, this has the same domain as H. Thus

the lemma applies, and [H, iA] is thought of as extending to the operator C. Similarly,

we may compute the commutators:

[Ha, iA] = 2p2 + |k| − xa · 5Ia for each a

[h(y)(x0), iA
a] = 2p2 − x · V12(x)

[h(x)(y0), iA
a] = |k| − y · V13(y)

[h(xy)(0), iA
a] =

1

2
(pa)2 +

1

2
|pa| − xa · V23(xa)

[H(xy)(0)(s), iA
a] =

1

2
(pa)2 +

1

2
pa · s+

1

2

(pa)2 − s · pa

|pa − s|
− xa · V23(xa)
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Since the constant involved in the Mourre estimate for our H depends on the dis-

tance from thresholds, before stating it we must describe the spectra of the subsystem

Hamiltonians. The subsystem Hamiltonians all satisfy a Mourre estimate at all nonzero

energies E (with conjugate operators sgn(E)Aa). The arguments are standard and use

little more than the functional calculus, all following ([19], Theorem I.1). Because of

this, we would like to use Mourre theory to conclude that eigenvalues of each ha may

only accumulate at 0, and each ha has no continuous singular spectrum. Moreover, since

the essential spectrum of each ha must be [0,∞) by Weyl’s theorem (using (RC1)), there

is no continuous spectrum below 0. But to draw these conclusions from the result in [19],

we need to verify also a condition on the second commutators. Self-adjoint operators

H and A are said to satisfy condition (2COMM) if

H and A satisfy the hypotheses of Lemma 2.1, and given the operator C extending

[H, iA], we have that the hypotheses are also satisfied by C and A, so that [C, iA]

extends to a a self-adjoint operator with domain containing D(H).

(2COMM)

Computing the second commutators

[[h(y)(x0), iA
a], iAa] = 4p2 + x · 5(x · 5V12(x))

[[h(x)(y0), iA
a], iAy] = |k|+ y · 5(y · 5V13(y))

[[h(xy)(0), iA
a], iAa] = (pa)2 +

1

2
|pa|+ xa · 5(xa · 5V23(xa))

we confirm that condition (2COMM) is satisfied in each case if we assume (RB2):



y · 5(y · 5V13(y)) has relative |k|-bound less than 1

x · 5(x · 5V12(x)) has relative p2-bound bound less than 1

xa · 5(xa · 5V23(xa)) has relative (pa)2 + 1
2 |p

a|-bound

less than 1

(RB2)
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and apply Kato-Rellich. Thus the conditions of Mourre’s paper [19] are satisfied,

and we may invoke the result that eigenvalues of each ha may only accumulate at 0,

and each ha has no continuous singular spectrum (the other part about Weyl’s theorem

holds irregardless). We can now use our understanding of the spectra.

For each of the 2-cluster decompositions a define

Ga = inf{{λ : λ eigenvalue of ha} ∪ {0}}

This is either an eigenvalue of ha or 0, because eigenvalues of ha may only accumulate

at 0. Then define d(E, a) to be

d(E, a) =



(E − sup{λ : λ zero or eigenvalue of ha , λ < E}) : E not

zero nor eigenvalue of ha , E > Ga

0 : E zero or eigenvalue of ha

b : E < Ga

where b can be any positive constant one wishes. Roughly speaking, d(E, a) is the

distance from E to the nearest eigenvalue of ha to the left of E. Then, let d(E) =

mina d(E, a). Then d(E) is, roughly, the distance from E to the nearest threshold of

any type to the left of E.

Finally we are in a position to state the first main theorem.

Theorem 2.3. Suppose that the potential functions satisfy (RB), (RB2), (RC1), and

(SPEC) and (SPEC2), as well as (RC2) below. Then for any ε > 0 and any nonthresh-

old energy E, the full Hamiltonian H satisfies a Mourre estimate at energy E with

conjugate operator A and constant α > 0.

The second main theorem is the statement of asymptotic completeness. The unitary

evolutions eitH and eitHa are all well-defined by the functional calculus. Following [22],

we say the evolution defined by H is asymptotically complete if it is asymptotically

clustering at all nonthreshold energies. That is, if for every nonthreshold energy E, there
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exists an interval 4 containing E so that whenever ψ ∈ ran(E4(H)) is orthogonal to

the eigenfunctions of H, there exists {φa}#(a)>1 such that

lim
t→∞
‖e−itHψ −

∑
#(a)>1

e−itHaφa‖ = 0

We prove asymptotic completeness under the additional assumptions of negative

energy, short range, and exponential decay of eigenfunctions.

Theorem 2.4. Suppose the potential functions satisfy the same assumptions as Theo-

rem 2.3, and (SR), and (FDE) below. Then, for every negative nonthreshold energy E,

there exists an interval 4 containing E so that whenever ψ ∈ ran(E4(H)) is orthogonal

to the eigenfunctions of H, there exists {φa}#(a)>1 such that

lim
t→∞
‖e−itHψ −

∑
#(a)>1

e−itHaφa‖ = 0

Due to the Kato-Rosenblum theorem, one can also add an arbitrary trace class

perturbation to H and retain the result. This should enable the study of models such

as in [10].

In Section 3 we prove Theorem 2.3. In section 4, the Mourre theory is used to prove

local decay and minimal velocity estimates. In Section 5, these prove Theorem 2.4.
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Chapter 3

Proof of the Mourre estimate

3.1 Configuration space partition of unity

We can break up the proof of the Mourre estimate for H into problems involving each

Ha by deploying a configuration space partition of unity (e.g. [9], but originally due

to Deift and Simon). We need functions {ja(x, y)}a on R6 satisfying the following

requirements:

•
∑

a j
2
a = 1 and each ja is C∞.

• Each ja is homogeneous of degree 0 outside of the unit ball; in particular, deriva-

tives of any ja of any order are relatively H0-compact since they decay in all

directions.

• The following multiplier operators are relatively H0-compact (and they remain so

if ja is replaced with any derivative of ja).


j(xy0)

Iaja

[Ia, iA]ja

(RC2)

In the case that the potentials are continuous and decaying in all directions, these

relative compactness properties can be achieved by selecting the partition of unity so

that all of the above functions decay in all directions in R6. The assumption (RC2) on

the potentials is that these operators are indeed relatively H0-compact for the ja thus

constructed. We proceed with the construction.
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It will suffice to construct ja that satisfy the following support conditions:

For some positive constants C0, . . . , C11

• j(x)(y0) is supported in {X = (x, y) ∈ R6 : |x| > C0|X|, |y| < C1|X|, |x − y| >

C2|X|}.

• j(y)(x0) is supported in {X = (x, y) ∈ R6 : |y| > C3|X|, |x| < C4|X|, |x − y| >

C5|X|}.

• j(xy)(0) is supported in {X = (x, y) ∈ R6 : |x| > C6|X|, |y| > C7|X|, |x − y| <

C8|X|.

• j(x)(y)(0) is supported in {X = (x, y) ∈ R6 : |x| > C9|X|, |y| > C10|X|, |x − y| >

C11|X|}

If these support conditions hold, then in the case that the potential functions are

smooth and decay in all directions in R3, all the functions in (RC2) indeed decay in all

directions in R6. We now construct such functions {ja}a. Define the following sets on

the unit sphere S5 ∈ R6:

U(x)(y0) := {X = (x, y) : |y| < 1

20
, |x| > 1

10
}

U(y)(x0) := {X = (x, y) : |x| < 1

20
, |y| > 1

10
}

U(xy)(0) := {X = (x, y) : |x| > 1

30
, |y| > 1

30
, |x− y| < 1

10
}

U(x)(y)(0) := {X = (x, y) : |x| > 1

30
, |y| > 1

30
|x− y| > 1

20
}

By the parallelogram law 2|X|2 = |x+ y|2 + |x− y|2 and the Pythagorean theorem

X2 = |x|2 + |y|2, these sets are nonempty and form an open cover of the unit sphere.

We are guaranteed the existence of a traditional partition of unity {χa}a subordinate to

the four sets in this open cover. By assuming homogeneity of degree 0, we can extend

these functions to a traditional partition of unity on R6 \ {0}.

We can also partition unity in R6 into two functions χ0 and χ1 with the following

properties: χ0 is supported entirely within the unit sphere, and χ1 is supported entirely

away from 0 while being equal to 1 outside the unit sphere.
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Now, we can define j̃(xy0) := χ0 and j̃a := χ1χa for the other clusters a. Then, by

declaring ja := j̃a/
√∑

a(j̃a)
2 we get the {ja}a with all the desired properties.

3.2 Breaking apart the main estimate

We claim that for any f ∈ C∞0 (R),

∑
a

f(H)[H, iA]f(H)j2
a = (compact operators)+

∑
#(a)>1

jaf(Ha)[Ha, iA]f(Ha)ja (3.1)

Fix an f ∈ C∞0 (R). The a = (xy0) term is compact; the proof is reserved for the

next section. Then, for each cluster decomposition a 6= (xy0), we can commute around

the associated term.

f(H)[H, iA]f(H)j2
a = f(H)[H, iA]f(H)j2

a − f(H)[H, iA]f(Ha)j
2
a

+ f(H)[H, iA]f(Ha)j
2
a − f(H)[H, iA]jaf(Ha)ja

+ f(H)[H, iA]jaf(Ha)ja − f(H)ja[H, iA]f(Ha)ja

+ f(H)ja[H, iA]f(Ha)ja − f(Ha)ja[H, iA]f(Ha)ja

+ f(Ha)ja[Ia, iA]f(Ha)ja + f(Ha)ja[Ha, iA]f(Ha)ja

− jaf(Ha)[Ha, iA]f(Ha)ja + jaf(Ha)[Ha, iA]f(Ha)ja

= f(H)[H, iA] (f(H)− f(Ha)) j
2
a + f(H)[H, iA][f(Ha), ja]ja

+ f(H)[[H, iA], ja]f(Ha)ja + (f(H)− f(Ha)) ja[H, iA]f(Ha)ja

+ f(Ha)ja[Ia, iA]f(Ha)ja + [f(Ha), ja][Ha, iA]f(Ha)ja

+ jaf(Ha)[Ha, iA]f(Ha)ja

This is an equality of bounded operators. The operator [Ia, iA] should be understood

not as a closure of a formal commutator [Ia, iA]0 in its own right, but rather as [H, iA]−

[Ha, iA] which is a self-adjoint operator having domain D(H).

It remains to show that all of these terms except for jaf(Ha)[Ha, iA]f(Ha)ja are

compact.



21

3.3 Compactness

We repeatedly apply the following basic tool (indeed this was already used to describe

some compactness properties of the partition of unity).

Lemma 3.1 (Elementary compactness lemma). Suppose that f(x) and g(p) are con-

tinuous functions Rn → C such that f(x) and g(p) decay at infinity. Then, f(x)g(p) is

a compact operator on L2(Rn).

The proof is omitted.

At this point, we fix a cluster decomposition a 6= (xy0). It is helpful to isolate the

following.

Lemma 3.2 (Some compactness). The following operators are compact for all decom-

positions a.

[f(Ha), ja] (3.2)

(f(H)− f(Ha)) ja (3.3)

f(H)[[H, iA], ja]f(Ha) (3.4)

ja[Ia, iA]f(Ha) (3.5)

Note that this completes the proof of (3.1). To prove these operators are compact,

it is convenient to replace the functions f with resolvents. To this end we prove:

Lemma 3.3 (Auxiliary compactness). The following operators are compact for all

decompositions a.

[
1

Ha + i
, ja] (3.6)(

1

H + i
− 1

Ha + i

)
ja (3.7)

1

H + i
[[H, iA], ja]

1

Ha + i
(3.8)

ja[Ia, iA]
1

Ha + i
(3.9)
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We start with the compactness of (3.6). We compute

1

Ha + i
ja − ja

1

Ha + i
=

1

Ha + i
ja(Ha + i)

1

Ha + i
− 1

Ha + i
(Ha + i)ja

1

Ha + i

=
1

Ha + i
(jaH0 −H0ja)

1

Ha + i

Since 1
Ha+i has range in D(H) and ja maps D(H) into itself, the above are equalities

of bounded operators. Since

1

Ha + i
(jaH0 −H0ja)

1

Ha + i

=
1

Ha + i
(H0 + i)

1

H0 + i
(jaH0 −H0ja)

1

H0 + i
(H0 + i)

1

Ha + i

and (H0 + i) 1
Ha+i is bounded by the potential assumptions, we just need to show

that the operator 1
H0+i (jaH0 −H0ja)

1
H0+i is compact. We obtain the following:

1

H0 + i
(jaH0 −H0ja)

1

H0 + i
=

1

H0 + i
2(5xja) · 5x

1

H0 + i
+

1

H0 + i
(4xja)

1

H0 + i

+
1

H0 + i
(ja|k| − |k|ja)

1

H0 + i

Since 1
H0+i(4xja) is compact by the fact that4xja decays in all directions, the term

1
H0+i(4xja)

1
H0+i is compact. Similarly, we have that 1

H0+i2( d
dx`
ja) is compact for ` ∈

{1, 2, 3}. Moreover, d
dx`

1
H0+i is bounded for ` ∈ {1, 2, 3}. Thus the term 1

H0+i2(5xja) ·

5x
1

H0+i is compact. We focus on the only remaining term, 1
H0+i (ja|k| − |k|ja) 1

H0+i ,

which takes more effort. We will use the ‘square root lemma’ |k| = 1
π

∫∞
0

s−
1
2

s+k2
k2ds.

We assert that for all Schwartz functions ψ(q, r):

1

H0 + i
(ja|k| − |k|ja)

1

H0 + i
ψ

=
1

π

∫ ∞
0

1

H0 + i

(
ja

s−
1
2

s+ k2
k2 − s−

1
2

s+ k2
k2ja

)
1

H0 + i
ψ ds

(3.10)
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We need only prove that for ψ Schwartz class, 1
π

∫∞
0

s−
1
2

s+k2
k2ψ ds as a L2(R6)-valued

integral converges to |k|ψ. It evidently converges pointwise to |k|ψ; one can check that

it is convergent as a Bochner integral.

For Schwartz ψ, we may apply ja,
s−1/2

s+k2
, and k2 in any order without encountering

domain issues, since each operator preserves the Schwartz class. Therefore on the

Schwartz class the following hold:

[ja, k
2] = (4yja) + 2(5yja) · 5y (3.11)

[ja,
s−

1
2

s+ k2
k2] = [ja,

s−
1
2

s+ k2
]k2 +

s−
1
2

s+ k2
[ja, k

2] (3.12)

[ja,
s−

1
2

s+ k2
] =

s−
1
2

s+ k2

s+ k2

s−
1
2

ja
s−

1
2

s+ k2
− s−

1
2

s+ k2
ja
s+ k2

s−
1
2

s−
1
2

s+ k2

= − s−
1
2

s+ k2
(s

1
2 )((4yja) + 2(5yja) · 5y)

s−
1
2

s+ k2
(3.13)

Therefore, combining (3.11)-(3.13) we obtain:

[ja,
s−

1
2

s+ k2
k2]

= − s−
1
2

s+ k2
(s

1
2 )((4yja) + 2(5yja) · 5y)

s−
1
2

s+ k2
k2 +

s−
1
2

s+ k2
((4yja) + 2(5yja) · 5y)

(3.14)

Moreover,

(2(5yja) · 5y) = 2[(5yja),5y] + 2(5y · (5yja))

= −2(4yja) + 2(ik · (5yja))

so that by (3.14)
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[ja,
s−

1
2

s+ k2
k2]

=
s−

1
2

s+ k2
(s

1
2 )((4yja)− 2(ik · (5yja)))

s−
1
2

s+ k2
k2 − s−

1
2

s+ k2
((4yja)− 2(ik · (5yja)))

(3.15)

Using (3.15), we can break up the integral in (3.10).

1

π

∫ ∞
0

1

H0 + i

(
ja

s−
1
2

s+ k2
k2 − s−

1
2

s+ k2
k2ja

)
1

H0 + i
ψ ds

=
1

π

∫ ∞
0

1

H0 + i

(
− s−

1
2

s+ k2
(4yja)

)
1

H0 + i
ψ ds

+
1

π

∫ ∞
0

1

H0 + i

(
s−

1
2

s+ k2
(2ik · (5yja))

)
1

H0 + i
ψ ds

+
1

π

∫ ∞
0

1

H0 + i

(
s−

1
2

s+ k2
(s

1
2 )(4yja)

s−
1
2

s+ k2
k2

)
1

H0 + i
ψ ds

+
1

π

∫ ∞
0

1

H0 + i

(
− s−

1
2

s+ k2
(s

1
2 )(2ik · (5yja))

s−
1
2

s+ k2
k2

)
1

H0 + i
ψ ds

Motivated by this, we compute the following operator norms for fixed s and show

that they are integrable functions of s on [0,∞).

‖ 1

H0 + i

s−
1
2

s+ k2
(4yja)

1

H0 + i
‖L2→L2 (3.16)

‖ 1

H0 + i

s−
1
2

s+ k2
(k · (5yja))

1

H0 + i
‖L2→L2 (3.17)

‖ 1

H0 + i

s−
1
2

s+ k2
(s

1
2 )(4yja)

s−
1
2

s+ k2
(k2)

1

H0 + i
‖L2→L2 (3.18)

‖ 1

H0 + i

s−
1
2

s+ k2
(s

1
2 )(k · (5yja))

s−
1
2

s+ k2
(k2)

1

H0 + i
‖L2→L2 (3.19)

This would mean that the operator-valued integral
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1

π

∫ ∞
0

1

H0 + i

(
ja

s−
1
2

s+ k2
k2 − s−

1
2

s+ k2
k2ja

)
1

H0 + i
ds (3.20)

converges in norm to a bounded operator L2(R6)→ L2(R6) ([4]). Then, by Lemma

3.1, each of the four operators in (3.16)-(3.19) is in fact a compact operator for almost

every s, so the integral (3.20) converges to a compact operator. Consequently, the

bounded operator 1
H0+i (ja|k| − |k|ja) 1

H0+i from (3.10) must extend uniquely from the

dense Schwartz class to be this compact operator. This will conclude the proof for (3.6).

So, we prove that each of the operator norms (3.16)−(3.19) are integrable functions

of s.

Consider the operator in (3.16). We have,

‖ 1

H0 + i

s−
1
2

s+ k2
(4yja)

1

H0 + i
‖L2→L2 ≤ ‖

s−
1
2

s+ k2
‖∞‖ 4y ja‖∞

. s−3/2

so at least this is integrable near s = ∞. Furthermore, we have for any 0 < ε < 1

and 0 < δ < 1 that

1

H0 + i

s−
1
2

s+ k2
(4yja)

1

H0 + i

=
1

H0 + i

(
s−

1
2

s+ k2
|k|1+ε

)(
1

|k|1+ε

1

(1 + |y|1+δ)

)(
(1 + |y|1+δ)(4yja)

) 1

H0 + i

as bounded operators. We fix (non-optimally) ε = 1
5 and δ = 2

5 . Evidently(
(1 + |y|1+δ)(4yja)

)
is a bounded operator, because4yja is homogeneous of degree −2.

By Hölder’s inequality, 1
(1+|y|1+δ) is a bounded operator taking L2(R3

y) into L10/9(R3
y).

Then by a Hardy-Littlewood-Sobolev estimate (Corollary 5.10 in [18]), 1
|k|6/5 is a bounded

operator taking L10/9(R3
y) into L2(R3

y). Since
(

1
|k|1+ε

1
(1+|y|1+δ)

)
is therefore a bounded
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operator L2(R3
y) 7→ L2(R3

y), it extends to a bounded operator on the tensor product

L2(R3
y ⊕ R3

z). Lastly, the operator norm

‖ s−
1
2

s+ k2
|k|6/5‖L2(R6)→L2(R6) = ‖ s−

1
2

s+ k2
|k|6/5‖∞ . s−9/10

so that

‖ 1

H0 + i

s−
1
2

s+ k2
(4yja)

1

H0 + i
‖L2(R6)→L2(R6) . s−9/10

Since the operator norm (3.16) is both . s−3/2 and . s−9/10, it is integrable in s.

Now we turn to (3.17). We have

‖ 1

H0 + i

s−
1
2

s+ k2
(−ik · (5yja))‖L2(R6)→L2(R6)

≤
3∑
`=1

‖ −ik`
i+ p2 + |k|

s−
1
2

s+ k2
(5yja)`‖L2(R6)→L2(R6)

≤
3∑
`=1

‖ −ik`
i+ p2 + |k|

‖L2(R6)→L2(R6)‖
s−

1
2

s+ k2
(
∂

∂y`
ja)‖L2(R6)→L2(R6)

≤
3∑
`=1

‖ −ik`
i+ p2 + |k|

‖L2(R6)→L2(R6)‖
s−

1
2

s+ k2
‖L∞(R6)‖(

∂

∂y`
ja)‖L∞(R6)

. s−3/2

Now we need to deal with s small. We obtain

‖ 1

i+ p2 + |k|
s−

1
2

s+ k2
(−ik · (5yja))‖L2(R6)→L2(R6)

≤
3∑
`=1

‖ 1

i+ p2 + |k|
s−

1
2 |k|

s+ k2
(−i k`
|k|

)(
∂

∂y`
ja)‖L2(R6)→L2(R6)

Now for each fixed x,

‖( ∂

∂y`
ja)ψ(x, y)‖L14/9(y) ≤ ‖(

∂

∂y`
ja)‖L7(y)‖ψ(x, y)‖L2(y) . ‖ψ(x, y)‖L2(y)
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with a constant that does not depend on x. The Fourier transform is bounded L14/9 →

L14/5. Since s−
1
2 |k|

s+k2
is an operator L14/5(y)→ L2(y) with operator norm ‖ s

− 1
2 |k|

s+k2
‖L7(k) .

s−11/14, the above operator norm L2(R6)→ L2(R6) is . s−11/14.

Thus (3.17) is also an integrable function of s. The proof that (3.18) and (3.19) are

integrable functions of s evidently reduces to the proofs for (3.16) and (3.17). Therefore

the integral in (3.20) converges to a compact operator, so (3.6) is compact.

Now we prove (3.7) is compact. By the second resolvent identity(
1

H + i
− 1

Ha + i

)
ja =

1

H + i
(Ia)

1

Ha + i
ja

This is valid since D(Ha) ⊂ D(Ia) by assumption. By commuting we get

=
1

H + i
Iaja

1

Ha + i
+

1

H + i
Ia[

1

Ha + i
, ja]

These terms are both bounded operators a priori so this is a straightforward equality of

bounded operators (We have 1
H+i (Ia) extending to a bounded operator by the relative

boundedness assumptions on the potential). The first term Iaja
1

Ha+i is compact because

of the relative compactness properties of our Iaja. The compactness of the second term

1
H+iIa[

1
Ha+i , ja] then reduces to compactness result (3.6).

Next, consider (3.8). By relative boundedness assumptions it suffices to prove

1
H0+i [[H, iA], ja]

1
H0+i is compact. This is equal to 1

H0+i [2p
2 + |k|, ja] 1

H0+i , which is

compact by the proof for (3.7).

Finally, consider (3.9). By relative boundedness assumptions, it suffices to prove

ja[Ia, iA] 1
H0+i is compact, which is true from the relative compactness properties of the

ja. This concludes the proof of Lemma 3.3, so we turn to the proof of Lemma 3.2.

If a subset F ⊆ C∞(R), the continuous functions vanishing at infinity, has the

following properties:

1. F contains resolvents 1
x+ξ for all ξ in some open set u ⊂ C.

2. F forms a vector space.
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3. F is closed under convergence in the L∞ norm.

Then F = C∞(R) (Appendix to ch. 3 in [6]).

Let F be the class of such functions f so that (3.2) is compact. We have proven

the first property in Lemma 3.3 (the choice of ξ = i was arbitrary), and the second

and third properties are evident. Since f was taken to be C∞0 in Lemma 3.1, this is

sufficient for (3.2).

Now let F be the class of such functions f so that (3.3) is compact. Again, we have

proven the first property, and the second and third properties are evident.

For (3.4) and (3.5), one can prove compactness by multiplying and dividing by

resolvents to reduce to (3.8) and (3.9).

Thus, we do indeed have the breaking apart of the main estimate as in (3.1).

3.4 The cluster (xy0)

Directly from the previous section we have that f(H)j(xy0) is compact:

f(H)j(xy0) = f(H)(H + i)
1

H + i
(H0 + i)

1

H0 + i
j(xy0)

which is compact since f(H)(H + i) is bounded, 1
H+i(H0 + i) is bounded, and

1
H0+ij(xy0) is compact by Lemma 3.1. Therefore j(xy0)f(H)[H, iA]f(H)j(xy0) is compact

as claimed in (3.1).

3.5 The cluster (x)(y)(0)

In this section, we fix a = (x)(y)(0), the cluster decomposition corresponding to free

dynamics.
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Lemma 3.4. Fix ε > 0 and an energy E 6= 0. Then there exists δ > 0 so that Ha

satisfies a Mourre estimate at E with conjugate operator A, width δ, and constant

α(x)(y)(0), where

α(x)(y)(0) =


E − ε : E > 0

c : E < 0

and c is any positive constant one wishes.

Proof for E < 0. Since E4(Ha) = 0 the desired operator inequality is trivial.

Proof for E > 0. Fix ε > 0. Pick δ < min(E, ε), and select 4 = (E − δ, E + δ). We

have

E4(Ha)[Ha, iA]E4(Ha) = E4(p2 + |k|)
(
2p2 + |k|

)
E4(p2 + |k|)

≥ (E − δ)E4(p2 + |k|)

≥ (E − ε)E4(p2 + |k|)

from the functional calculus.

3.6 The cluster (x)(y0)

In this section, fix a = (x)(y0), the cluster decomposition corresponding to the photon-

proton cluster. Our aim is to prove the following.

Lemma 3.5. Fix ε > 0 and an energy E 6= 0 not an eigenvalue of the subsystem

Hamiltonian ha. Then there exists δ > 0 so that Ha satisfies a Mourre estimate at E

with conjugate operator A, width δ, and constant α(x)(y0), where

α(x)(y0) =


min(2d(E, a)− ε, E − ε) : E > 0

2d(E, a)− ε : E < 0

The strategy of proof is to consider each value of the electron’s relative momentum r

separately. Because r commutes with the operator [Ha, iA], we can defined the fibered

commutator
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[Ha, iA](s) := 2s2 + |k| − y · 5V13(y)

which is a self-adjoint operator on L2(R3
y) by Kato-Rellich. We can then write as a

direct integral:

E4(Ha)[Ha, iA]E4(Ha)

= E4(p2 + |k|+ V13(y))
(
2p2 + |k| − y · 5yV13(y)

)
E4(p2 + |k|+ V13(y))

=

∫ ⊕
R3
s

E4(s2 + |k|+ V13(y))
(
2s2 + |k| − y · 5yV13(y)

)
E4(s2 + |k|+ V13(y))ds

=

∫ ⊕
R3
s

E4(Ha(s))[Ha, iA](s)E4(Ha(s))ds

It is then sufficient to prove a uniform Mourre estimate on each fiber. For fibers

where the relative momentum s is large, the positive contribution to the commutator

comes from 2s2. For fibers where the relative momentum is small, we rely on the energy

E being away from thresholds for the positive contribution. With this in mind, we prove

Lemma 3.6 and Lemma 3.7, which show that the remaining terms are small.

Lemma 3.6. Fix ε > 0, an energy E 6= 0 not an eigenvalue of the subsystem Hamil-

tonian ha, and a value of s0 6= 0. Then there exists δ > 0 and an open set U ⊂ R3

containing s0 so that for all s ∈ U , letting 4 = (E − δ, E + δ):

E4(Ha(s))[ha, iA
a]E4(Ha(s)) ≥ −εE4(Ha(s))

Proof. Fix ε, E and s0 as above. We may select δ0 > 0 so that for40 = (E−δ0, E+δ0):

E40(Ha(s0))[ha, iA
a]E40(Ha(s0)) ≥ − ε

4
E40(Ha(s0)) +K (3.21)

where K is a compact operator. To see why, we break up into three cases. First, if

E − s2
0 is a negative eigenvalue of ha, then choose δ0 so small that 40 − s2

0 contains no

continuous spectrum of ha. Then by the virial theorem for [ha, iA
a] we have
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E4(Ha(s0))[ha, iA
a]E4(Ha(s0))

= E4(s2
0 + |k|+ V13(y))[ha, iA

a]E4(s2
0 + |k|+ V13(y))

= E4−s20(ha)[ha, iA
a]E4−s20(ha)

= 0

Second, if E − s2
0 is negative but in the resolvent set of ha, we can pick δ0 so small

that 40 − s2
0 contains no spectrum of ha at all, and the desired estimate (3.21) follows

because the projections E4−s20(ha) are zero. Third, if E − s2
0 is nonnegative, we can

take 0 < δ0 < E − s2
0 + ε

4 . Then we compute

E40(Ha(s0))[ha, iA
a]E40(Ha(s0))

= E40(s2
0 + |k|+ V13(y))

(
|k| − y · 5V13(y)

)
E40(s2

0 + |k|+ V13(y))

= E40−s20(|k|+ V13(y))

(
|k| − y · 5V13(y)

)
E40−s20(|k|+ V13(y))

= E40−s20(|k|+ V13(y))

(
|k|+ V13(y)

)
E40−s20(|k|+ V13(y))

+ E40−s20(|k|+ V13(y))

(
− V13(y)− y · 5V13(y)

)
E40−s20(|k|+ V13(y))

= (E − s2
0 −

ε

4
)E40−s20(|k|+ V13(y)) +K

≥ − ε
4
E40(Ha(s0)) +K

by using the functional calculus, where

K = E40−s20(ha)

(
− V13(y)− y · 5V13(y)

)
E4−s20(ha)

is compact. Thus we can always find δ0 so that (3.21) holds. All that remains is to

prove Lemma 3.6 is to remove the compact K. For another proof in this vein, see (Eqn.

(3.4) in [9]).



32

Fix such a δ0 as in (3.21). We write e.g. Epp40(Ha(s0)) := Epp(Ha(s0))E40(Ha(s0)),

where Epp(Ha(s0)) represents the projection onto the pure point spectrum. The next

claim is that we have:

E40(Ha(s0))[ha, iA
a]E40(Ha(s0))

≥ − ε
2
E40(Ha(s0)) + (1− Epp40(Ha(s0)))K1(1− Epp40(Ha(s0))) (3.22)

for some compact K1. Assuming (3.22), then we could select δ1 so small that for

41 = (E − δ1, E + δ1), we could multiply both sides of the above by E41(Ha(s0)) and

use

(E41(Ha(s0))− Epp41(Ha(s0)))K1(E41(Ha(s0))− Epp41(Ha(s0))) ≥ − ε
2
E41(Ha(s0))

to conclude that:

E41(Ha(s0))[ha, iA
a]E41(Ha(s0)) ≥ −εE41(Ha(s0)) (3.23)

Then we would select δ = δ1/2 and define U := {s ∈ R3 : s2
0 − δ < s2 < s2

0 + δ}.

This would give us the conclusion of the lemma, letting 4 = (E − δ, E + δ); for any

s ∈ U , we could prove the desired inequality by taking (3.23) and multiplying on both

sides by E4−s2(ha). This is due to the fact that as defined, 4− s2 ⊂ 41 − s2
0 for any

s ∈ U . So it remains to show (3.22).

Since K is compact, we may select a finite-dimensional projection F with range

contained in that of E40pp(Ha(s0)) so that

‖(1− F )K(1− F )− (1− E40pp(Ha(s0)))K(1− E40pp(Ha(s0)))‖ ≤ ε

2

Then, from multiplying (3.21) on both sides by (1− F ), we obtain

(E40(Ha(s0))− F )[ha, iA
a](E40(Ha(s0))− F )

≥ − ε
4

(E40pp(Ha(s0))− F ) + (1− F )K(1− F )
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By using the property by which F was obtained, we glean from this that

(E40(Ha(s0))− F )[ha, iA
a](E40(Ha(s0))− F )

≥ − ε
2

(E40pp(Ha(s0))− F ) + (1− E40pp(Ha(s0)))K(1− E40pp(Ha(s0)))

We can multiply out the left-hand side of the above, and apply the virial theorem

to get

E40(Ha(s0))[ha, iA
a]E40(Ha(s0))− C∗F − F ∗C

≥ − ε
2

(E40pp(Ha(s0))− F ) + (1− E40pp(Ha(s0))K(1− E40pp(Ha(s0))

where we have let C = F [ha, iA
a]E40(Ha(s0))(1−E40pp(Ha(s0))). To obtain (3.22)

from this is a matter of showing that for some compact K2,

C∗F + F ∗C ≥ (1− E40pp)K2(1− E40pp) +
ε

2
F ∗F

Yet this follows from

C∗F + F ∗C ≥ −(
2

ε
C∗C +

ε

2
F ∗F )

letting K2 = −2
εC
∗C. So let K1 = (1 − E40pp)(K + K2)(1 − E40pp). Note that it

doesn’t matter how K1 depends on ε, because of the discussion surrounding (3.22) and

(3.23). That completes the analysis.

We will also use the following.

Lemma 3.7. Fix ε > 0, an energy E 6= 0 not an eigenvalue of the subsystem Hamil-

tonian ha, and a value of s0 6= 0 so that E − s2
0 is not an eigenvalue of ha. Then

there exists δ > 0 and an open set U ⊂ R3 containing s0 so that for all s ∈ U , letting

4 = (E − δ, E + δ):
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E4(Ha(s))(−V13(y)− y · 5V13(y))E4(Ha(s)) ≥ −εE4(Ha(s))

Proof. Fix ε, E, and s0 as above. Then there is a width δ0 > 0 so that (E−δ0−s2
0, E+

δ0 − s2
0) contains no eigenvalues of ha. Then, there exists δ1 ≤ δ0 small enough so that

for 41 = (E − δ1, E + δ1):

E41(s2
0 + |k|+ V13(y)(−V13(y)− y · 5V13(y))E41(s2

0 + |k|+ V13(y))

≥ −εE41(s2
0 + |k|+ V13(y))

We select δ = δ1/2, and let U := {s ∈ R3 : s2
0 − δ < s2 < s2

0 + δ}. As before, this

concludes the proof.

These two lemmas give us sufficient control over the junk terms in the fibered

commutator [Ha, iA](s), so we can now attack it.

Lemma 3.8. Fix ε > 0, an energy E 6= 0 not an eigenvalue of the subsystem Hamilto-

nian ha and a value s0 ∈ R3. Then there exists δ > 0 and an open set U containing s0

so that for all s ∈ U , letting 4 = (E − δ, E + δ) we have:

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ α(x)(y0)E4(Ha(s))

Note that the dependence on ε comes from the way α(x)(y0) was defined.

For the proof, we fix ε, E and s0 as above. Select δ0 so that 40 = [E − δ0, E + δ0]

does not contain 0 or any thresholds, and also so δ0 < ε/2. Then select τ > 0 so that

[E− δ0− t, E+ δ0− t] does not contain 0 or any thresholds for 0 ≤ t ≤ τ . Furthermore

τ can be selected so τ ≥ d(E, a) − ε. The choice of τ serves to separate our analysis

into ‘small external momentum’ and ‘large external momentum’.

We handle the cases of E < 0 and E > 0 separately.
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Proof for E < 0. Consider the small-momentum case, s2
0 ≤ τ . Then, the projection

E40(Ha(s0)) is evidently zero. We may select δ = δ0/2 and U := {s ∈ R3 : s2
0 − δ <

s2 < s2
0 + δ}. Then for all s ∈ U , letting 4 = (E − δ, E + δ):

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ (2τ − ε)E4(Ha(s))

for all s ∈ U , since the projections E4(Ha(s)) are zero for all such s, so we may

have in fact any constant we wish (in place of 2τ − ε).

Now consider the large-momentum case, s2
0 ≥ τ . By Lemma 3.6, we may select

δ < δ0 and U containing s0 so that for all s ∈ U , letting 4 = (E − δ, E + δ):

E4(Ha(s))[ha, iA
a]E4(Ha(s)) ≥ −εE4(Ha(s))

Then, we have

E4(Ha(s))[Ha, iA](s)E4(Ha(s))

= E4(Ha(s))

(
2s2 + [ha, iA

a]

)
E4(Ha(s))

≥ 2τE4(Ha(s))− εE4(Ha(s))

≥ (2τ − ε)E4(Ha(s))

for all s ∈ U .

So, for any fiber s0: there exists δ > 0 and a U containing s0 so that for all s ∈ U ,

letting 4 = (E − δ, E + δ):

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ (2τ − ε)E4(Ha(s))

≥ (2d(E, a)− 3ε)E4(Ha(s))
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where the last line holds because τ ≥ d(E, a) − ε. By a renaming of ε we have our

conclusion.

Proof for E > 0. Consider the small-momentum case, s2
0 ≤ τ . By Lemma 3.7, we may

select δ < δ0 and U containing s0 so that for all s ∈ U , letting 4 = (E − δ, E + δ):

E4(Ha(s))(−V13(y)− y · 5V13(y))E4(Ha(s)) ≥ −
ε

2
E4(Ha(s))

Then, we have

E4(Ha(s))[Ha, iA](s)E4(Ha(s))

= E4(Ha(s))

(
2s2 + |k|+ V13(y)− V13(y)− y · 5V13(y)

)
E4(Ha(s))

≥ (E − δ0)E4(Ha(s)) + E4(Ha(s))

(
− V13(y)− y · 5V13(y)

)
E4(Ha(s))

≥ (E − δ0 −
ε

2
)E4(Ha(s))

≥ (E − ε)E4(Ha(s))

for all s ∈ U , where the second-to-last step is by the functional calculus..

The large-momentum case for E > 0 is handled the same way as the large-momentum

case for E < 0; the same estimate with constant (2τ − ε) holds.

So, for any fiber s2
0: there exists a δ > 0 and a U containing s0 so that for all s ∈ U ,

letting 4 = (E − δ, E + δ):

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ min(E − ε, 2τ − ε)E4(Ha(s))

≥ min(E − ε, 2d(E, a)− 3ε)E4(Ha(s))

where the last line holds because τ ≥ d(E, a) − ε. By a renaming of ε we have our

conclusion.
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Now we can proceed with the proof of Lemma 3.5.

Proof. Fix ε > 0 and an energy E. If E < Ga, then by taking δ small enough, the

projections E4(Ha) are zero and the conclusion is trivial, so we may assume E ≥ Ga.

Let M be a number so that M >> E −Ga. Take the compact set {s ∈ R3 : s2 ≤ M}

and use Lemma 3.8 to cover it with sets Ui, so that there exists a δi > 0 so that for

each s ∈ Ui, taking 4i = (E − δi, E + δi):

E4i(Ha(s))[Ha, iA](s)E4i(Ha(s)) ≥ α(x)(y0)E4i(Ha(s))

Extract a finite subcover and let δ be the minimum over the finite collection of δi

associated to the subcover. It is then the case that for all s such that s2 ≤ M , taking

4 = (E − δ, E + δ):

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ α(x)(y0)E4(Ha(s))

Since the projections are 0 when s2 > E − Ga, the above inequality is also true

for s2 > M . We conclude that the inequality holds for all s ∈ R3. Thus we have an

inequality on the whole direct integral

∫ ⊕
R3
s

E4(Ha(s))[Ha, iA](s)E4(Ha(s))ds ≥ α(x)(y0)

∫ ⊕
R3
s

E4(Ha(s))ds

which is exactly Lemma 3.5.

3.7 The cluster (y)(x0)

In what follows, fix a = (y)(x0), the cluster decomposition corresponding to the photon-

proton cluster. The analysis is much the same as the previous cluster but is outlined

for the sake of completeness. Our aim is to prove the following.

Lemma 3.9. Fix ε > 0 and an energy E 6= 0 not an eigenvalue of the subsystem

Hamiltonian ha. Then there exists δ > 0 so that Ha satisfies a Mourre estimate at E

with conjugate operator A, width δ, and constant α(y)(x0), where
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α(y)(x0) =


min(d(E, a)− ε, E − ε) : E > 0

d(E, a)− ε : E < 0

Because q commutes with the operator [Ha, iA], we can define the fibered commu-

tator

[Ha, iA](s) = |s|+ 2p2 − x · 5V12(x)

and then writing as a direct integral:

E4(Ha)[Ha, iA]E4(Ha)

= E4(p2 + |k|+ V12(x))
(
2p2 + |k| − x · 5V12(x)

)
E4(p2 + |k|+ V12(x))

=

∫ ⊕
R3
s

E4(|s|+ p2 + V12(x))
(
|s|+ 2p2 − x · 5V12(x)

)
E4(|s|+ p2 + V12(x))ds

=

∫ ⊕
R3
s

E4(Ha(s))[Ha, iA](s)E4(Ha(s))ds

It will be sufficient to prove a Mourre estimate of each fiber. The positive contribu-

tion will come from |s| for large values of s, and from the energy E being nonthreshold

for small values of s. Lemmas 3.10 and 3.11 show that the remaining terms are small.

Lemma 3.10. Fix ε > 0, an energy E 6= 0 not an eigenvalue of the subsystem Hamil-

tonian ha, and a value of s0 6= 0, there exists δ = δ(s0, ε) > 0 and and open set U ⊂ R3

containing s0 so that for all s ∈ U , letting 4 = (E − δ, E + δ):

E4(Ha(s))[ha, iA
a]E4(Ha(s)) ≥ −εE4(Ha(s))

Proof. Fix ε, E, and s0 as above. We may select δ0 > 0 so that for40 = (E−δ0, E+δ0):

E40(Ha(s0))[ha, iA
a]E40(Ha(s0)) ≥ − ε

4
E40(Ha(s0)) +K (3.24)



39

where K is a compact operator. To see why, break up into three cases. If E−|s0| is a

negative eigenvalue of ha, then choose δ0 so small that 40−|s0| contains no continuous

spectrum of ha. Then by the virial theorem for [ha, iA
a], we have

E40(Ha(s0))[ha, iA
a]E40(Ha(s0)) = 0

Second, if E− |s0| is negative but in the resolvent set of ha, we can pick δ0 so small

that 40 − |s0| contains no spectrum of ha at all, whereby the desired estimate (3.24)

follows because the projections E40(Ha(s0)) are zero. Third, if40−|s0| is nonnegative,

we can take 0 ≤ δ0 < E − |s0|+ ε
4 . Then we compute

E40(Ha(s0))[ha, iA
a]E40(Ha(s0))

= E40−|s0|(p
2 + V12(x))

(
p2 + V12(x)

)
E40−|s0|(p

2 + V12(x))

+ E40−|s0|(p
2 + V12(x))

(
− V12(x)− x · 5V12(x)

)
E40−|s0|(p

2 + V12(x))

≥ (E − |s0| −
ε

4
)E40−|s0|(p

2 + V12(x)) +K

≥ − ε
4
E40−|s0|(p

2 + V12(x)) +K

by using the functional calculus, where

K = E40−|s0|(ha)

(
− V12(x)− x · 5V12(x)

)
E40−|s0|(ha)

is compact. Thus we can always find δ0 so that (3.24) holds. It remains to remove the

compact K.

Fix such a δ0 as in (3.24). We claim that

E40(Ha(s0))[ha, iA
a]E40(Ha(s0))

≥ − ε
2
E40(Ha(s0)) + (1− Epp40(Ha(s0)))K1(1− Epp40(Ha(s0))) (3.25)
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for some compact K1. Assuming (3.25), we could then select δ1 so small that for

41 = (E − δ1, E + δ1), we could multiply both sies of the above by E41(Ha(s0)) and

use

(E41(Ha(s0))− Epp41(Ha(s0)))K1(E41(Ha(s0))− Epp41(Ha(s0))) ≥ − ε
2
E41(Ha(s0))

to conclude that

E41(Ha(s0))[ha(y), iAa]E41(Ha(s0)) ≥ −εE41(Ha(s0)) (3.26)

Then we would select δ = δ1/2 and define U =: {s ∈ R3 : |s0| − δ < |s| < |s0| + δ.

This would give us the conclusion of the lemma, letting 4 = (E − δ, E + δ); for any

s ∈ U , we could prove the desired inequality by taking (3.26) and multiplying on both

sides by E4−|s|(ha). So it remains to show (3.25). But this follows from the same

argument as the proof of (3.22) from the previous section.

We will also use the following.

Lemma 3.11. Fix ε > 0, an energy E 6= 0 not an eigenvalue of the subsystem Hamil-

tonian ha, and a value of s0 6= 0 so that E − |s0| is not an eigenvalue of ha. Then

there exists δ > 0 and an open set U containing s0 so that for all s0 ∈ U , letting

4 = (E − δ, E + δ):

E4(Ha(s)) + (−V12(x)− x · 5V12(x))E4((Ha(s)) ≥ −εE4((Ha(s))

Proof. Fix ε, E, and s0 as above. Then there is a width δ0 > 0 so that (E − δ0 −

|s0|, E + δ0 − |s0|) contains no eigenvalues of ha. Then, there exists δ1 ≤ δ0 so that for

41 = (E − δ1, E + δ1):

E41(|s|+ p2 + V12(x) + (−V12(x)− x · 5V12(x))E41(|s|+ p2 + V12(x))

≥ −εE41(p2 + |s|+ V12(x))

We select δ = δ1/2, and let U = {s ∈ R3 : |s0| − δ < |s| < |s0|+ δ}.
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Lemma 3.12. Fix ε > 0, an energy E 6= 0 not an eigenvalue of the subsystem Hamil-

tonian ha, and a value of s0 6= 0. Then there exists a δ > 0 and an open set U ⊂ R3

containing s0 so that for all s ∈ U , letting 4 = (E − δ, E + δ):

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ α(y)(x0)E4(Ha(s))

Fix ε > 0, E, and s0 as above. Select δ0 so that40 = [E−δ0, E+δ0] does not contain

0 or any thresholds, and also so δ0ε/2. Then select τ > 0 so that [E− δ0− t, E+ δ0− t]

does not contain 0 or any thresholds for 0 ≤ t ≤ τ . Furthermore τ can be selected to

be ≥ d(E, a)− ε.

We handle the cases of E < 0 and E > 0 separately.

Proof for E < 0. Now consider E < 0.

Consider |s0| ≤ τ . The projection E40(Ha(s0)) is evidently 0. We may select

δ = δ0 and U := {s ∈ R3 : |s0| − δ < |s| < |s0| − δ}. Then for all s ∈ U , letting

4 = (E − δ, E+δ):

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ (τ − ε)E4(Ha(s))

since the projections E4(Ha(s)) are zero for all such s so we may have any constant

we wish (in place of (τ − ε)).

Now consider |s0| ≥ τ . By Lemma 3.10, we may select δ < δ0 and U containing s0

so that for all s ∈ U , letting 4 = (E − δ, E + δ):

E4(Ha(s))[ha, iA
a]E4(Ha(s)) ≥ −εE4(Ha(s))

Then, we have
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E4(Ha(s))[Ha, iA](s)E4(Ha(s)) = E4(Ha(s))

(
|s|+ [ha, iA

a]

)
E4(Ha(s))

≥ τE4(Ha(s))− εE4(Ha(s))

= (τ − ε)E4(Ha(s))

for all s ∈ U .

So, for any fiber s0: there exists a U containing s0 so that for all s ∈ U , letting

4 = (E − δ, E + δ):

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ (τ − ε)E4(Ha(s))

≥ (d(E, a)− 2ε)E4(Ha(s))

where the last line holds because τ ≥ d(E, a) − ε. By a renaming of ε we have our

conclusion.

Proof for E > 0. Consider s0 ≤ τ . By Lemma 3.11, we may select δ < δ0 and U

containing s0 so that for all s ∈ U , letting 4 = (E − δ, E + δ):

E4(Ha(s))(−V12(x)− x · 5V12(x))E4(Ha(s)) ≥ −
ε

2
E4(Ha(s))

Then, we have
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E4(Ha(s))[Ha, iA](s)E4(Ha(s))

= E4(Ha(s))

(
2p2 + |s|+ V12(x)− V12(x)− x · 5V12(x)

)
E4(Ha(s))

≥ (E − δ0)E4(Ha(s)) + E4(Ha(s))

(
− V12(x)− x · 5V12(x)

)
E4(Ha(s))

≥ (E − δ0 −
ε

2
)E4(Ha(s))

≥ (E − ε)E4(Ha(s))

for all s ∈ U .

The case |s0| ≥ τ for E > 0 is handled in the same way as the for E < 0; the same

estimate with constant (τ − ε) holds.

So, for any fiber s0: there exists a δ > 0 and a U containing s0 so that for all s ∈ U ,

letting 4 = (E − δ, E + δ):

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ min(τ − ε, E − ε)E4(Ha(s))

≥ min(d(E, a)− 2ε, E − ε)E4(Ha(s))

By a renaming of ε we have our conclusion.

Using this, the proof of Lemma 3.9 is the same as the proof of Lemma 3.5.

3.8 The cluster (xy)(0)

In what follows, fix a = (xy)(0), the cluster decomposition corresponding to the

electron-photon cluster. We aim to prove the following.

Lemma 3.13. Fix ε > 0 and an energy E 6= 0 not an eigenvalue of the subsystem

Hamiltonian ha = 1
4(pa)2 + 1

2 |p
a| + V23(xa). Then there exists a δ > 0 so that Ha

satisfies a Mourre estimate at E with conjugate operator A, width δ, and constant

α(xy)(0) > 0.
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As done for the other 2-cluster decompositions, we can write the commutator

[Ha, iA] as a direct integral over the fibered commutators

[H, iA](s) =
1

2
(pa + s)2 +

1

2
|pa − s| − xa · V23(xa)

We note that s does not separate out from the fibered commutators, which means

that the positive commutator estimate in the large s case will require a different strategy

than for the other decompositions (The small s case will again exploit the choice of E

away from thresholds). This different strategy requires us to know a little more about

the spectrum of Ha(s).

Lemma 3.14 (The spectrum of H(xy)(0)(s)). Under the spectral assumptions (SPEC)

and (SPEC2) the continuous spectrum of Ha(s) is [minpa(1
4(pa + s)2 + 1

2 |p
a − s|),∞),

and the eigenvalues of Ha(s) below that are isolated, increasing as |s| increases.

Proof. The essential spectrum of Ha(s) is contained in [minpa(1
4(pa+s)2 + 1

2 |p
a−s|),∞)

by Weyl’s theorem. This minimum can be computed as

min
pa

(
1

4
(pa + s)2 +

1

2
|pa − s|) =


s2 : |s| ≤ 1

2

|s| − 1
4 : |s| > 1

2

By the assumption (SPEC), the essential spectrum is exactly the absolutely con-

tinuous spectrum; there are no eigenvalues of Ha(s) in the continuous spectrum region

[minpa(1
4(pa + s)2 + 1

2 |p
a − s|),∞). We concern ourselves now with the eigenvalues.

The operator Ha(s) is unitarily equivalent to the operator B(s) := 1
4(pa + 2s)2 +

1
2 |p

a|+ V23(xa). The unitary equivalence is given by U(s) := e−isp
a
, so that

U(−s)Ha(s)U(s) = B(s)

Thus Ha(s) and B(s) have the same spectrum for any choice of s.

Pick a unit vector v ∈ R3. We consider the family of operators B(tv) for t ∈ R.

These form a self-adjoint holomorphic family of operators in the sense of Kato.
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Specifically, fix a domain D0 ∈ C symmetric with respect to the real axis. We have

that B(tv) is a closed, densely defined operator for all t ∈ D0. As a function of t, B(tv)

is holomorphic for t ∈ D0, and B(t̄v) = B(tv)∗. We know it is holomorphic because we

can compute its derivatives (either in the weak sense or strong sense):

dB(tv)

dt
= 2t+ pa · v

Because this is a holomorphic family of operators, its isolated eigenvalues and their

eigenvectors can be thought of as varying holomorphically in a certain sense. Fix an

isolated eigenvalue λ0 of B(0). We know from the Mourre estimate that all eigenvalues

below 0 are simple and do not accumulate, so we can draw a curve Γ around λ0 that

is entirely contained in the resolvent set and encloses no other points of the spectrum

of B(0). It is then known that for small t, all eigenvalues of B(tv) inside Γ can be

described by a function λ(t) that is analytic in a region about t = 0, satisfies λ(0) = λ0,

and gives a real eigenvalue of Ha(tv) for each real t in its domain- also there are no

other eigenvalues of B(tv) for any small enough t in the interior of Γ. Even better,

there exists at least one analytic family of real-valued eigenvectors ψt(p
a) for λ(t), as

long as this family λ(t) continues to exist.

We want to compute λ(t) for t > 0. What follows is an application of the Feynman-

Hellman theorem.

dλ(t)

dt
=

d

dt
〈ψt, B(tv)ψt〉

= 〈ψt,
dB(tv)

dt
ψt〉+ 〈dψt

dt
,B(tv)ψt〉+ 〈ψt, B(tv)

dψt
dt
〉

= 〈ψt,
dB(tv)

dt
ψt〉+ λ(t)

d

dt
〈ψt, ψt〉

= 〈ψt,
dB(tv)

dt
ψt〉

= 〈ψt, (2t+ pa · v)ψt〉
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Due to the virial theorem that

[B(tv), xa] =
1

2
(pa) + tv +

1

2

pa

|pa|
= 0

on eigenfunctions, this is where we obtain a nice sufficient condition on the eigenfunc-

tions of B(s), that is easily checked if eigenfunctions are known.

For some θ > 0 the eigenfunctions of B(tv) satisfy (− pa

|pa|
· v) ≥ θ in expectation.

(SPEC2)

There is reason to believe such a condition holds, but we will assume this for our

purposes.

Then λ(t) ≥ θt+ λ0.

While the function λ(t) may not exist for all t, this process can be analytically

continued as long as λ(t) remains below the continuous spectrum of B(tv). Here is

why: suppose that λ(t0) is below the continuous spectrum of B(tv), and we can define

an operator B((t−t0)v) and compute its derivatives in the same way. So the spectrum of

Ha(tv) below the continuous spectrum consists only of eigenvalues that move upwards

as tv moves away from the origin.

At this point we have everything we need to handle the E < 0 case.

Proof of Lemma 3.13 for E < 0. Fix ε and E < 0 as in the lemma. We may select δ so

small that (E − δ, E + δ) contains no eigenvalues of ha, and also so that δ ≤ ε
2 . Fix τ

so small that 4 = (E − δ, E + δ) contains no eigenvalues of Ha(s) for |s| ≤ τ .

Consider the small-momentum case, |s| ≤ τ . We have E4(Ha(s)) = 0 for all such

s,

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ (θτ)E4(Ha(s))

Since the projections were 0, we could have put any constant where θτ is.
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Now consider the large momentum case, |s| ≥ τ . We know that for all such s,

E4(Ha(s)) is a (possibly zero) projection onto a finite-dimensional subspace of the

pure point spectrum of Ha(s). Because of this, we can make use of the virial theorem

(specifically, that [Ha(s), iA
a] = 0 on eigenvectors of Ha(s)).

E4(Ha(s))[Ha, iA](s)E4(Ha(s))

= E4(Ha(s))[Ha, iA](s)E4(Ha(s))

= E4(Ha(s)) ([Ha, iA](s)− [Ha(s), iA
a])E4(Ha(s))

= E4(Ha(s))

(
1

2
s2 +

1

2
s · pa +

1

2

s2 − s · pa

|s− pa|

)
E4(Ha(s))

= E4(Ha(s)) (s · 5sHa(s))E4(Ha(s))

≥ θ|s|E4(Ha(s))

≥ θτE4(Ha(s))

where second-to-last last inequality comes from the Feynman-Hellman theorem.

Finally, we have

Then the following is immediate:

E∆(Ha)[Ha, iA]E∆(Ha) =

∫ ⊕
s∈R3

E∆(Ha(s))[Ha, iA](s)E∆(Ha(s))ds

≥
∫ ⊕
s∈R3

θτE4(Ha(s))ds

= θτE4(Ha)

By a renaming of ε we have the conclusion.

To attack the E > 0 case, we will need to be more judicious in our selection of width

δ for different fibers s. As a result, we need to make a covering argument over R3
s. First

we prove what we need for individual s.



48

Lemma 3.15. Fix ε > 0, an energy E > 0 (which is not an eigenvalue of the subsystem

Hamiltonian ha), and a choice of s ∈ R3. Then there there exists δ = δ(s) > 0 so that,

taking 4 = (E − δ, E + δ), we have:

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ α(xy)(0)E4(Ha(s))

Proof. Fix ε and E > 0 as in the lemma. We may select δ0 so small that (E−δ0, E+δ0)

contains no eigenvalues of ha, and also that δ0 <
ε
2 . Fix τ so small that 40 = (E −

δ0, E + δ0) contains no eigenvalues of Ha(s) for |s| ≤ τ .

Consider the small-momentum case, |s| ≤ τ . On these fibers:

E40(Ha(s))[Ha, iA](s)E40(Ha(s))

= E40(Ha(s))

(
1

4
(pa + s)2 +Ha(s)− V23(xa)− xa · 5V23(xa)

)
E40(Ha(s))

≥ (E − δ0)E40(Ha(s)) + E40(Ha(s))KE40(Ha(s))

by the functional calculus, where K = −V23(xa)− xa ·5V23(xa) is relatively Ha(s)-

compact. Since 40 contains no eigenvalues of Ha(s), E4(Ha(s)) → 0 in the strong

operator topology as 4 ↘ 0. Therefore E4(Ha(s))KE4(Ha(s)) → 0 in norm as

4 ↘ 0. So, by choosing δ1 ≤ δ0 small enough, and letting 41 = (E − δ1, E + δ1), we

can ensure that

E41(Ha(s))[Ha, iA](s)E41(Ha(s)) ≥ (E − δ0)E41(Ha(s))−
ε

2
E41(Ha(s))

and therefore that

E41(Ha(s))[Ha, iA](s)E41(Ha(s)) ≥ (E − ε)E41(Ha(s))
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This is all we need to do in our analysis of fibers |s| ≤ τ .

Now we consider the large-momentum case, |s| ≥ τ . We need to be very careful in

selecting the width, to satisfy a whole host of auxiliary inequalities. Let δ2 < δ0 be so

small that, letting 42 = (E − δ2, E + δ2):

‖
(
E42(Ha(s))− E42pp(Ha(s))

)
K
(
E42(Ha(s))− E42pp(Ha(s))

)
‖ ≤ ε

4
(3.27)

where K = −xa − xa · 5V23(xa) is relatively Ha(s)-compact.

Because E42(Ha(s))KE42(Ha(s)) is compact, we may select a finite-dimensional

projection F so that

‖
(
E42(Ha(s))− E42pp(Ha(s))

)
K
(
E42(Ha(s))− E42pp(Ha(s))

)
−
(
E42(Ha(s))− F

)
K
(
E42(Ha(s))− F

)
‖ ≤ ε

4
(3.28)

Now define C := F [Ha, iA](s)(E42(Ha(s))− E4pp(Ha(s))). Evidently

K1 = −ε−1C∗C is a compact operator. If we select δ3 < δ2 small enough small

enough, then letting 43 = (E − δ3, E + δ3), we have:

‖
(
E43(Ha(s))− E43pp(Ha(s))

)
K1

(
E43(Ha(s))− E43pp(Ha(s))

)
‖ ≤ ε (3.29)

From the same argument as the E < 0 case, we have that

E40pp(Ha(s))[Ha, iA](s)E40pp(Ha(s)) ≥ θτE40pp(Ha(s)) (3.30)

Moreover, we can compute

E42(Ha(s))[Ha, iA](s)E42(Ha(s))

= E42(Ha(s))

(
1

4
(pa + s)2 +Ha(s) +K

)
E42(Ha(s))

≥ (E − δ0)E42(Ha(s)) + E42(Ha(s))KE42(Ha(s)) (3.31)
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where K = −V23(xa)−xa ·5sV23(xa) is Ha(s)-compact. We can multiply both sides

of (3.31) on the left and right by (1− F ) to obtain

(E42(Ha(s))− F )[H, iA](s)(E42(Ha(s))− F )

≥ (E − δ0)(E42(Ha(s))− F ) + (E42(Ha(s))− F )K(E42(Ha(s))− F )

Then we use (3.27) and (3.28):

(E42(Ha(s))− F )[H, iA](s)(E42(Ha(s))− F )

≥ (E − δ0)(E42(Ha(s))− F )− ε

2
(3.32)

Additionally:

2F [Ha, iA](s)F − E42pp(Ha(s))[Ha, iA](s)F − F [Ha, iA](s)E42pp(Ha(s))

= (E42pp(Ha(s))− F )[Ha, iA](s)(E42pp(Ha(s))− F ) + F [Ha, iA](s)F

− E42pp(Ha(s))[Ha, iA](s)E42pp(Ha(s))

= s · (4λ(s))(E42pp(Ha(s))− F ) + s · (4λ(s))F − s · (4λ(s))E42pp(Ha(s))

= 0

Therefore

(E42(Ha(s))− F )[Ha, iA](s)F + F [Ha, iA](s)(E42(Ha(s))− F )

=
(
E42(Ha(s))− E42pp(Ha(s))

)
[Ha, iA](s)F

+ F [Ha, iA](s)
(
E42(Ha(s))− E42pp(Ha(s))

) (3.33)

since the difference between the left hand side and the right hand side was just

calculated to be zero.
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From the inequality (ε−1/2C + ε1/2F )∗(ε−1/2C + ε1/2F ) ≥ 0 we obtain

(
E42(Ha(s))− E42pp(Ha(s))

)
[Ha, iA](s)F

+ F [Ha, iA](s)
(
E42(Ha(s))− E42pp(Ha(s))

)
≥ −εF +

(
E42(Ha(s))− E42pp(Ha(s))

)
K1

(
E42(Ha(s))− E42pp(Ha(s))

)

but then, applying (3.33) to this, we can substitute out the left-hand side:

(E42(Ha(s))− F )[Ha, iA](s)F + F [Ha, iA](s)(E42(Ha(s))− F )

≥ −εF +
(
E42(Ha(s))− E42pp(Ha(s))

)
K1

(
E42(Ha(s))− E42pp(Ha(s))

) (3.34)

We are ready to tackle the main estimate. We have

E42(Ha(s))[Ha, iA](s)E42(Ha(s))

= F [Ha, iA](s)F

+ (E42(Ha(s))− F )[Ha, iA](s)F

+ F [Ha, iA](s)(E42(Ha(s))− F )

+ (E42(Ha(s))− F )[Ha, iA](s)(E42(Ha(s))− F )

Applying (3.30) to the first term, (3.32) to the last term, and (3.34) to the middle

two terms:

≥ θτF + (E − δ0)(E42(Ha(s))− F )− ε

2
− εF

+
(
E42(Ha(s))− E42pp(Ha(s))

)
K1

(
E42(Ha(s))− E42pp(Ha(s))

)
≥ min(θτ, E − δ0)E42(Ha(s))−

ε

2

+
(
E42(Ha(s))− E42pp(Ha(s))

)
K1

(
E42(Ha(s))− E42pp(Ha(s))

)



52

Multiplying on both sides by E43pp(Ha(s)) and using (3.29):

≥
(

min(θτ, E − ε)− ε
)
E43pp(Ha(s))

The conclusion follows by a renaming of ε.

Building on the inequality for individual fibers s, we can find a single width that

works for all fibers, thus finishing the analysis for this cluster.

Proof of Lemma 3.13 for E > 0. Fix ε and E > 0 as in the lemma. Fix any s0 ∈ R3.

By Lemma 3.15, there exists δ0 so that letting 40 = (E − δ − 0, E + δ − 0):

E40(Ha(s0))[Ha, iA](s0)E40(Ha(s0)) ≥ α(xy)(0)E40(Ha(s0))

Let f be a smoothed version of E4. First we prove that f(Ha(s)) is norm continuous

in s at s0. For simplicity we write

F (s) :=
(
pa · (s− s0) + (s2 − s0)2 + (|pa − s| − |pa − s0|)

)
in what follows.

f(Ha(s))− f(Ha(s0))

=

∫
f̂(λ)eiλHa(s)

∫ λ

0
e−irHa(s)

(
Ha(s)−Ha(s0)

)
e−irHa(s0)dr dλ

≈
∫
f̂(λ)eiλHa(s)

∫ λ

0
e−irHa(s)

(
F (s)

)
e−irHa(s0)dr dλ

≈
∫
f̂(λ)eiλHa(s) Ha(s)

Ha(s) + i

∫ λ

0
e−irHa(s)

(
F (s)

)
e−irHa(s0)dr dλ

+

∫
f̂(λ)eiλHa(s) i

Ha(s) + i

∫ λ

0
e−irHa(s)

(
F (s)

)
e−irHa(s0)dr dλ

The latter of these integrals converges to 0 in norm as s→ s0 because

i

Ha(s) + i

(
pa · (s− s0) + (s2 − s0)2 + (|pa − s| − |pa − s0|)

)
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converges to 0 uniformly as s→ 0. We investigate the former, rewriting it as

∫
f̂(λ)

d

dλ

(
eiλHa(s)

) −i
Ha(s) + i

∫ λ

0
e−irHa(s)

(
F (s)

)
e−irHa(s0)dr dλ

Applying integration by parts, this is equal to

∫
f̂ ′(λ)eiλHa(s) −i

Ha(s) + i

∫ λ

0
e−irHa(s)

(
F (s)

)
e−irHa(s0)dr dλ

+

∫
f̂(λ)

−i
Ha(s) + i

e−irHa(s)
(
F (s)

)
e−iλHa(s0)dλ

both of which converge to 0 in norm as s → s0. Therefore f(Ha(s)) is norm

continuous at s = s0.

Since additionally f(Ha(s0))[H, iA](s)F (Ha(s0)) is norm continuous in s by a sim-

ilar argument, it follows by a 3ε argument that f(Ha(s))[H, iA](s)F (Ha(s)) is norm

continuous.

Since this works for any f ∈ C∞ supported in 40, we fix such an f that is equal to

1 on a smaller interval (E − δ, E + δ) = 4 ⊂ 40. Let U be an open set containing s0

so that for all s ∈ U , we have

‖f(Ha(s))[Ha, iA](s)f(Ha(s))− f(Ha(s0))[Ha, iA](s0)f(Ha(s0))‖ ≤ ε

and ‖f(Ha(s0))− f(Ha(s))‖ ≤ ε

Then, since

E40(Ha(s0))[Ha, iA](s0)E40(Ha(s0)) ≥ α(xy)(0)E40(Ha(s0))

we have that, by multiplying:

f(Ha(s0))[Ha, iA](s0)f(Ha(s0)) ≥ α(xy)(0)f(Ha(s0))
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And then for all s ∈ U , we must have

f(Ha(s))[Ha, iA](s)f(Ha(s)) ≥ α(xy)(0)f(Ha(s))− 2ε

Finally, multiplying through by E4(Ha(s)) and renaming the constant:

E4(Ha(s))[Ha, iA](s)E4(Ha(s)) ≥ α(xy)(0)E4(Ha(s))

Therefore given any ε, an energy E > 0 not an eigenvalue of the subsystem Hamilto-

nian ha, and a value of s0 6= 0, there exists δ > 0 and an open set U ∈ R3 containing s0

so that for all s ∈ U , letting 4 = (E−δ, E+δ), the above Mourre estimate holds. Thus

the same covering argument as in the proof of Lemma 3.5 works, and by a renaming of

ε we have our conclusion.

3.8.1 An informal argument for assumption (SPEC2)

Here is why (SPEC2) should be a good assumption, at least for certain potentials.

Letting gε be a smoothed version approximating the Mourre conjugate operator 1
2
pa

|pa| ·

xa+(sym.) (for instance, replace pa

|pa| with pa

((pa)2+ε)1/2
). Then, on eigenfunctions of B(s),

we have that [B(s), igε] = 0 by the virial theorem. Written out, this approximately says

that

pa

|pa|
·
(1

2
pa + s+

1

2

pa

|pa|

)
+ [gε, V23] = 0

Notice that if [gε, V23] > 0 then we have our conclusion (SPEC2). Furthermore, the

above can be approximately rewritten

−s · p
a

|pa|
= [B(0), igε]

So it suffices to determine if [B(0), igε] is positive. Any state can be broken down

into an eigenstate of B(0) and a continuous spectrum state of B(0). The eigenstate

satisfies [B(0), igε] = 0 in expectation by the virial theorem, so it remains to consider if
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[B(0), igε] > 0 on continuous spectrum states of B(0). One may expect this to be true

because B(0) = Ha(0) = 1
4(pa)2 + 1

2 |p
a|+ V23.

3.9 Completing the Mourre estimate

Proof. Given a nonzero, nonthreshold energy E we may select a single δ small enough

to invoke lemmas 3.4, 3.5, 3.9, and 3.13. We can select ε so small that all the constants

αa are positive. Then we can select a C∞0 function f that is 0 outside of (E − δ, E + δ)

and is equal to 1 on a smaller interval 4 containing E. We employ the localization

Lemma 3.1 using this f :

∑
a

f(H)[H, iA]f(H) = (compact operators) +
∑

a6=(xy0)

jaf(Ha)[Ha, iA]f(Ha)ja

≥
∑

a6=(xy0)

αajaf(Ha)ja + (compact operators)

≥ ( min
a6=(xy0)

αa)f(H)2 + (compact operators)

This last step is by e.g. Lemma 4.20 in [6]. Multiplying on both sides by E4(H)

concludes the proof of Theorem 2.3.

In order to invoke Mourre’s result, we check that H and A also satisfy (2COMM).

Since D(C) = D(H), a computation using Lemma 2.1 reveals that [C, iA] extends to

4p2 + |k|+ x · 5(x · 5V12(x)) + y · 5(y · 5V13) + V23(x− y) · 5((x− y) · 5V23(x− y))

, which is a bounded operator on D(H) by Kato-Rellich and the potential assumptions

(RB2). Therefore by [19] or Theorem 1.1 in [20], we have that the point spectrum of H

consists of simple eigenvalues which only may accumulate at thresholds, and that there

is no singular continuous spectrum.
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Chapter 4

Local decay and minimal velocity estimates

4.1 Local decay

A major consequence of the Mourre estimate is local decay estimates. An abstract

result originally due to Mourre can be found in ([20], Thm 7.8), which we recreate here.

Lemma 4.1. Suppose that H, H0, and A are three self-adjoint operators so that

D(H) = D(H0) and H and H0 are both bounded from below. Assume that hypotheses

(FC1)-(FC4) and (2COMM) hold for H and A. Moreover, assume that (FC1)-(FC4)

hold for H0 and A so that [H0, iA] extends to an operator defined on D(H). Finally,

assume that the core of test vectors S used to define the operator [H0, iA] is mapped

into itself by A. Then, let 4 be an interval in which a Mourre estimate holds for H

with conjugate operator A, so that 4 does not contain any eigenvalues of A. We have

sup
0<ε<1

‖(|A|+ 1)−µ(H − λ− iε)−1(|A|+ 1)−µ‖ <∞

for any fixed µ > 1
2 , where this holds uniformly as λ runs through compact subsets

of 4.

Since these extra conditions hold under our assumptions, we are able to invoke this

lemma for our H, H0, and A. Next, this estimate can be modified to remove the

reference to the operator A and instead say something about the position X. Define

the notation 〈X〉 :=
√
X2 + 1. Specifically, we want to prove that for any interval 4

where the Mourre estimate holds for H,

sup
0<ε<1

‖〈X〉−µ(H − λ− iε)−1〈X〉−µ‖ <∞ (4.1)
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for any fixed µ > 1
2 , where this holds uniformly as λ runs through compact subsets

of 4. The main fact used to perform this swap is that

(|A|+ 1)µ(H + i)−1〈X〉−µ (4.2)

is a bounded operator for any 0 ≤ µ ≤ 1. Assuming (4.2) is indeed bounded

for any 0 ≤ µ ≤ 1, we proceed to prove (4.1). Let L2
µ be the weighted L2 space

{f ∈ L2(R6) : 〈X〉µf ∈ L2(R6)}. Then (4.1) is equivalent to saying that (H −λ− iε)−1

is bounded from L2
µ to L2

−µ uniformly as λ and ε vary over the required sets. Since

(H−λ−iε)−1 = (H+i)−1 +(ξ+i)−1(H+i)−2 +(ξ+i)2(H+i)−1(H−λ−iε)−1(H+i)−1

(where ξ = λ + iε) it remains to show that (H + i)−1(H − λ − iε)−1(H + i)−1 is

bounded from L2
µ to L2

−µ uniformly as λ and ε vary over the required sets. But for this

we can rewrite

〈X〉−µ(H + i)−1(H − λ− iε)−1(H + i)−1〈X〉−µ =

T ∗
(

(|A|+ 1)−µ(H − λ− iε)−1(|A|+ 1)−µ
)
T

where T =
(

(|A|+ 1)µ(H + i)−1〈X〉−µ
)

and then using (4.2) and Lemma 4.1 gives

us (4.1). It remains to prove that (4.2) is bounded for any µ > 1
2 . Without loss of

generality we may assume also that µ ≤ 1. In fact, we will prove that (4.2) is bounded

for µ = 0 and for µ = 1, and then use Stein’s interpolation theorem for analytic families

of operators in order to draw the conclusion. The case µ = 0 is evident. We consider

the case µ = 1. We need only bound

(P ·X)(H + i)−1〈X〉−1

The equalities that follow come from restricting our attention to the dense domain

of Schwartz functions.



58

(P ·X)(H + i)−1〈X〉−1 = S1 + S2

where

S1 = (P (H + i)−1) · (X〈X〉−1)

which is bounded, and

S2 = P · [X, (H + i)−1]〈X〉−1

= P ·
(

(H + i)−1[H0, X](H + i)−1
)
〈X〉−1

= P ·
(

(H + i)−1(−2ip,−2i
k

|k|
)(H + i)−1

)
〈X〉−1

which is also bounded (thinking of (−2ip,−2i k|k|) as a vector in C6, so the dot

product makes sense). Since (4.2) is then shown to be bounded for all required µ, we

have the desired estimate (4.1).

An operator B on L2(R6) is said to be H-smooth if for all φ ∈ L2(R6), we have

e−itH ∈ D(B) a.e. t and

∫ ∞
−∞
‖Be−itHφ‖2dt . ‖φ‖2 (4.3)

We say B is H-smooth on Ω if BEΩ(H) is H-smooth.

This can be interpreted as the observable B decaying along the flow. By the general

theory ([21], Theorems XIII.25 and XIII.30), the estimate (4.1) implies that for any

interval Ω not containing eigenvalues or thresholds of H, 〈X〉−µ is H-smooth on Ω for

any µ > 1
2 . This fact is ‘local decay’.
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4.2 Minimal velocity estimates

Another important consequence of the Mourre estimate is minimal velocity estimates,

which we use in what follows. In all that follows, we write F (S) to signify a smoothed

characteristic function of the set defined by S in configuration space. It is known (cf.

[27]) that the Mourre estimate implies the following:

Lemma 4.2. For all ψ such that the right-hand side makes sense, and t sufficiently

far from 0, we have

‖F (
A

|t|
< b)e−iHtE4(H)ψ‖ . |t|−5/4(‖ψ‖2 + ‖|A|5/4ψ‖2)

1
2 (4.4)

where 4 is any interval in the continuous spectrum of H, and b is any constant less

than θ (the constant appearing in the Mourre estimate for that interval). The exponent

5
4 is not optimal.

Proof. The estimate (4.4) follows immediately from the Mourre estimate and the ab-

stract theory in [27]. The constant −5/4 is not the best attainable, but it’s sufficient

for our purposes.

The goal is to swap out the reference to the auxiliary operator A with a reference

to x. To this end, we will prove:

Lemma 4.3. For all ψ such that the right-hand side of (4.4) makes sense, we have

lim
t→±∞

F (
X2

|t|2−ε
< δ)e−iHtE4(H)ψ = 0 (MV)

where 0 < ε << 2 is a small positive constant, 4 is any interval in the continuous

spectrum of H, and δ is any positive constant less than θ (the constant appearing in the

Mourre estimate for 4).

We need to take a few steps before we can prove this. The operator F ( X
2

t2−ε < δ)

can be written as

F (
A

|t|
< b)F (

X2

|t|2−ε
< δ) + F (

A

|t|
≥ b)F (

X2

|t|2−ε
< δ)
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Since

‖F (
A

|t|
< b)F (

X2

|t|2−ε
< δ)e−iHtE4(H)ψ‖ . |t|−5/4(‖ψ‖2 + ‖|A|5/4ψ‖2)

1
2

by (4.4), it will be sufficient to prove that

‖F (
A

|t|
≥ b)F (

X2

|t|2−ε
< δ)e−iHtE4(H)ψ‖ . |t|−ε‖ψ‖

For expedience of notation, define the following:

F1 := F (
X2

|t|2−ε
< δ)

F2(A) := F (
A

|t|
≥ b)

g := g(H)

where g is a smoothed version of the energy cutoff function E4 so that g(H)E4(H) =

E4(H).

Ã := F1gAgF1

F2(Ã) := F (
Ã

|t|
≥ b)

Thus, the thing to be estimated is:

‖F2(A)F1e
−iHtE4(H)ψ‖

Ensuing computations are much simplified by understanding some commutators of these

operators. Here, s is a constant, and O(|t|n) represents an operator with norm bounded

by a constant times |t|n.

Lemma 4.4.

[
A

t
, F1] = O(|t|−1) (4.5)

[
A

|t|
, g] = O(|t|−1) (4.6)

[e−is
A
t , F1g] = e−is

A
t sO(|t|−1) (4.7)
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[g,X] = O(1) (4.8)

H[g,X] = O(1) (4.9)

F1g
A

|t|
= O(t−ε/2) (4.10)

Proof. For (4.5)

[
A

t
, F1] ≈ X2

|t|3−ε
F ′(

X2

|t|2−ε
< δ) = O(|t|−1)

For (4.6), by e.g. Lemma 4.12 in [6] [A, g] is bounded, so

[
A

|t|
, g] = O(t−1)

Then (4.7) follows from (4.5) and (4.6) applied to the Fourier transform formula:

[e−is
A
t , F1g] ≈ e−is

A
t

∫ s

0
eir

A
t [
A

t
, F1g]eir

A
t dr

For (4.8), we compute as follows.

[g(H), X] ≈
∫ ∞
−∞

ĝ(λ)eiλH
∫ λ

0
e−isH [H,X]eisH ds dλ

Now, [H,x] = 2p+ k
|k| . Since k

|k| is bounded after all, we may focus our analysis on

p. It remains to estimate:

∫ ∞
−∞

ĝ(λ)eiλH
∫ λ

0
e−isHpeisH ds dλ

It suffices to bound

∫ ∞
−∞

ĝ(λ)
( d
dλ
eiλH

) 1

H + i

∫ λ

0
e−isHpeisH ds dλ

because the difference between this and the desired expression is bounded. Inte-

grating by parts, we find that this equals

∫ ∞
−∞

ĝ′(λ)eiλH
1

H + i

∫ λ

0
e−isHpeisH ds dλ

+

∫ ∞
−∞

ĝ(λ)
1

H + i
peiλH dλ
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which is certainly bounded.

For (4.9)

[g(H), X]H ≈
∫ ∞
−∞

ĝ(λ)
d

dλ
(eiλH)

∫ λ

0
e−isH [H,X]eisH ds dλ

Integrating by parts, we find that this equals

∫
(ĝ′)eiλH

∫ λ

0
e−isH [X,H]eisHds dλ

+

∫
ĝ[X,H]eiλHdλ

The former term can be handled by the same technique used to prove (4.8) bounded.

The latter term is equal to

(2p+
k

|k|
)g(H)

which is bounded.

For (4.10), it suffices to prove

F1g
X · P
|t|

= O(|t|−ε/2) (4.11)

We write

F1g
X · P
|t|

=
1

|t|
F1gX(H + i) · 1

H + i
P

=
1

|t|
F1[g,X](H + i) · 1

H + i
P

+
X

|t|
F1(g)(H + i) · 1

H + i
P

The latter term is O(t−ε/2), so we estimate the former. It suffices to prove that

[g,X](H + i) is bounded, but we have already done this.
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Note that Ã
t therefore decays in time. Therefore F2(Ã) actually equals 0 for suf-

ficiently large t. So to estimate ‖F2(A)F1e
−iHtE4(H)ψ‖, it is sufficient to estimate

‖
(
F2(Ã)− F2(A)

)
F1e
−iHtE4(H)ψ‖.

Next, we prove the localization lemma.

Lemma 4.5. ‖F2(A)F1E4(H)‖ → 0 as t→∞.

Proof. It’s sufficient to prove that

lim
t→∞
‖
(
F2(Ã)− F2(A)

)
F1gE4(H)e−iHtψ‖ = 0

We (formally) express F2 using a Fourier transform:

(
F2(Ã)− F2(A)

)
(F1g)

≈
∫
F̂2(λ)

(
e−iλÃ/t − e−iλA/t

)
dλ (F1g)

=

∫
F̂2(λ)e−iλÃ/t

∫ λ

0
eiλÃ/t

(Ã
t
− A

t

)
e−iλA/t ds dλ (F1g)

=

∫
F̂2(λ)e−iλÃ/t

∫ λ

0
eisÃ/t

(Ã
t
− A

t

)
[e−isA/t, (F1g)] ds dλ

+

∫
F̂2(λ)e−iλÃ/t

∫ λ

0
eisÃ/t

(Ã
t
− A

t

)
(F1g)e−isA/t ds dλ

=

∫
F̂2(λ)e−iλÃ/t

∫ λ

0
eisÃ/t

(Ã
t
− A

t

)
e−isA/tsO(|t|−1) ds dλ

+

∫
F̂2(λ)e−iλÃ/t

∫ λ

0
eisÃ/t

(Ã
t
− A

t

)
(F1g)e−isA/t ds dλ

The first integral converges to an operator that is O(|t|−1) (applying integration by

parts once to the inner integral). The second integral is shown to also converges to an

operator that is O(t−ε/2) by (4.10).

Now, (MV) is an immediate corollary of the localization lemma 4.5.



64

Chapter 5

Asymptotic completeness

5.1 Existence of the wave operators

In this section our aim is to prove existence of a collection of Deift-Simon wave operators

arising from operators {Fa : #(a) = 2} that form a partition of unity. Let 4 be an

interval not containing eigenvalues or thresholds of H, such that 4 < 0. Let δ > 0 be

selected (based on 4) to make the minimal velocity estimates hold. Then, let δ′ > 0

and δ′′ > 0 be constants so that δ′′ >> δ′ and δ := δ′′ + δ′. Let 0 < ε << 1
2 . We define

time-dependent partitions of unity for each #(a) = 2 using smoothed characteristic

functions F by

Fa = F (
(xa)2

|t|2−ε
< δ′) (5.1)

Then, we define the wave operators as the strong limits

Ω±a := s− lim
t→±∞

Wa(t) (5.2)

where

Wa(t) := E4(Ha)e
iHatFae

−iHtE4(H) (5.3)

The objective is to prove that the strong limits Ω±a exist. This is accomplished by

Cook’s method (cf. Theorem XI.4 in [21]):

Lemma 5.1. Suppose there is a set D of wavefunctions ψ dense in the absolutely

continuous spectrum of H so that for each ψ ∈ D, there exists a T > 0 so that
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∫
|t|>T

∥∥∥E4(Ha)e
iHat

(
IaFa +

d

dt
Fa + [H0, Fa]

)
e−iHtE4(H)ψ

∥∥∥dt <∞ (5.4)

Then the strong limits Ω±a exist.

Proof. Since Wa(t)ψ is strongly differentiable and

W ′a(t)ψ ≈ E4(Ha)e
iHat

(
IaFa +

d

dt
Fa + [H0, Fa]

)
e−iHtE4(H)ψ (5.5)

for t > s > T ,

‖Wa(t)ψ −Wa(s)ψ‖ ≤
∫ s

t
‖W ′a(u)ψ‖du (5.6)

and by assumption this can be made arbitrarily small by choice of T , we have that

Wa(t) is Cauchy at t → ±∞. Since Wa(t) constitute a uniformly bounded family of

operators, the existence of limits on a dense set implies existence of the strong limits.

Therefore our goal is to prove

Lemma 5.2. Let ψ be a wavefunction such that (‖ψ‖2 + ‖|A|5/4ψ‖2)
1
2 < ∞. There

exists a T > 0 so that

∫
|t|>T

∥∥∥E4(Ha)e
iHat

(
IaFa +

d

dt
Fa + [H0, Fa]

)
e−iHtE4(H)ψ

∥∥∥dt <∞
and therefore the strong limits Ω±a exist.

The necessary facts for the proof of Lemma 5.2 are the minimal velocity estimate

(MV)), the short range assumptions for #(a) = 2:

‖F (
(xa)2

|t|2−ε
> c)Ia‖ converges to 0 as t→ ±∞ and is integrable over t away from 0

(SR)

where c > 0 is any constant, and fast decay of the eigenfunctions for #(a) = 2:
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E4(Ha)〈xa〉4 is a bounded operator.

E(Ha)Ia〈X〉µ is bounded for some µ > 1

(FDE)

where 4 is an interval below 0. The fast decay of the eigenfunctions is where we are

using the negativity of4; the above energy cutoffs are then projections onto eigenvalues

of subsystems, so (FDE) merely alleges that these eigenfunctions decay rapidly.

We proceed by considering the three terms IaFa,
d
dtFa, and [H0, Fa] in separate

lemmas.

Lemma 5.3. Let ψ be a wavefunction such that (‖ψ‖2 + ‖|A|5/4ψ‖2)
1
2 < ∞. There

exists a T > 0 so that∫
|t|>T

∥∥∥E4(Ha)e
iHat

(
IaFa

)
e−iHtE4(H)ψ

∥∥∥dt <∞
Proof. By the fast decay of eigenfunctions (FDE) it suffices to prove that

‖〈X〉−(1+ε)e−iHtE4(H)ψ‖ (5.7)

is integrable in t away from 0, for arbitrary ε > 0. So it is sufficient to see if

‖〈X〉−(1+ε)F (
A

|t|
< b)E4(H)e−iHtψ‖ (5.8)

‖〈X〉−(1+ε)F (
A

|t|
> b)E4(H)e−iHtψ‖ (5.9)

are both integrable in t. Evidently (5.8) is integrable in t, from Lemma 4.2. Then

(5.9) is proven integrable in t as follows.

We can prove ‖〈X〉−(α)F ( A|t| > b)E4(H)‖ is O(|t|−α) for α = 1, 2 and then use

complex interpolation to conclude. We write

‖〈X〉−αF (
A

|t|
> b)E4(H)‖ . 1

|t|α
‖〈X〉−αF (

A

|t|
> b)AαE4(H)‖
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Since the difference between 1
2(tanh(b− A

|t|)+1) and F ( A|t| > b) decays fast at infinity

and therefore (1

2
(tanh(b− A

|t|
) + 1)− F (

A

|t|
> b)

)
Aα

is bounded, it is sufficient to prove that

‖〈X〉−α 1

2

(
tanh(b− A

|t|
) + 1

)
AαE4(H)‖

is bounded. We let F3 = F3(A) = 1
2

(
tanh(b− A

|t|) + 1
)
. Take the expression Aα and

commute all the P to the right and all the X to the left (the canonical commutation

relations make sure the commutator terms are even nicer, so we need only estimate

the result after commuting). Then since < P >α E4(H) is bounded, it is sufficient to

prove

‖〈X〉−αF3X
α‖

is a bounded operator. In what follows we use the fact that F3 is analytic in a strip

of width greater than 2 and containing the real line.

〈X〉−αF3X
α = (bounded) + [〈X〉−α, F3]Xα

= 〈X〉−α[Xα, F3]

≈ 〈X〉−α
∫ ∫ λ

0
eisA/t[Xα,

A

|t|
]e−isA/t ds eiλA/tF̂3(λ) dλ

Then, since [Xα, A] ≈ Xα,

≈ 〈X〉−α
∫ ∫ λ

0
eisA/t

Xα

|t|
e−isA/t ds eiλA/tF̂3(λ) dλ



68

Using next the fact that e
−s A|t| are dilations,

≈ 〈X〉−α
∫ ∫ λ

0
eαs/t

Xα

|t|
ds eiλA/tF̂3(λ) dλ

≈ 〈X〉−α
∫

(eαλ/t − 1)Xα eiλA/tF̂3(λ) dλ

≈ (bounded) ·
∫

(eαλ/t − 1) eiλA/tF̂3(λ) dλ

≈ F3(A+ αi)− F3(A)

This is bounded, so using Stein’s interpolation theorem, we get the desired result.

Next we consider the terms in Lemma 5.2 containing d
dtFa.

Lemma 5.4. Let ψ be a wavefunction. There exists a T > 0 so that∫
|t|>T

∥∥∥E4(Ha)e
iHat

(
d

dt
Fa

)
e−iHtE4(H)ψ

∥∥∥dt <∞
Proof. This term is a constant multiple of (xa)2

|t|3−εF
′( (xa)2

|t|2−ε < δ′). Since from (FDE)

E4(Ha) is a bounded operator times 〈xa〉−4, the term

‖E4(Ha)

(
(xa)2

|t|3−ε
F ′(

(xa)2

|t|2−ε
< δ′)

)
e−iHtE4(H)ψ‖

decays in t at least as fast as |t|−(5−2ε) (and so is integrable). This is because

F ′( (xa)2

|t|2−ε < δ′) is supported only on the configuration space region where (xa)2 ≈

|t|2−ε.

Finally, we consider the terms in Lemma 5.2 containing [H0, Fa]. We split this up

into the easier term [p2, Fa] and the term of interest, [|k|, Fa].

Lemma 5.5. Let ψ be a wavefunction. There exists a T > 0 so that∫
|t|>T

∥∥∥E4(Ha)e
iHat[p2, Fa]e

−iHtE4(H)ψ
∥∥∥dt <∞
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Proof. This term is nonzero for the 2-clusters a = (y)(x0) and a = (xy)(0). For these,

computing the commutator, we need only estimate the following to be integrable in t.

‖E4(Ha)

(
p · F ′( (xa)2

|t|2−ε
< δ′)

2xa

|t|2−ε

)
e−iHtE4(H)ψ‖

‖E4(Ha)

(
F ′′(

(xa)2

|t|2−ε
< δ′))

4(xa)2

|t|2(2−ε)

)
e−iHtE4(H)ψ‖

‖E4(Ha)

(
F ′(

(xa)2

|t|2−ε
< δ′)

2

|t|2−ε

)
e−iHtE4(H)ψ‖

They are indeed integrable by by (FDE) and, once again, the ability to exchange

(xa) for t.

Finally, we consider the term containing [|k|, Fa]. This is only nonzero for the 2-

clusters (x)(y0) and (xy)(0). For simplicity of notation we write out the proof only for

(x)(y0) but it is the same for (xy)(0), replacing references with x or y with references

to (x+ y) and (x− y) respectively.

Lemma 5.6. Let ψ be a wavefunction. There exists a T > 0 so that∫
|t|>T

∥∥∥E4(Ha)e
iHat[|k|, Fa]e−iHtE4(H)ψ

∥∥∥dt <∞
The approach here is to use the square root expression for |k|. We build up to this

with a series of lemmas.

Lemma 5.7. The following operator-valued integral converges in norm to a bounded

operator. ∫ ∞
0
〈y〉−4 s

−1/2

s+ k2
ds

Proof. We have that 〈y〉−4 is a bounded operator, and

‖ s
−1/2

s+ k2
‖op ≈ s−3/2

so the integrand has sufficient decay near s =∞. To estimate the integrand near s = 0,

we use Hardy-Littlewood-Sobolev (where 6/5 is a non-optimal choice):

〈y〉−4 s
−1/2

s+ k2
= 〈y〉−4 1

|k|6/5
|k|6/5 s

−1/2

s+ k2
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Since 〈y〉−6/5 1
|k|6/5 is a bounded operator on L2(R3) and ‖|k|6/5 s−1/2

s+k2
‖op . s−9/10, we

have our conclusion.

Lemma 5.8. The following operator-valued integrals converge to bounded operators.∫ ∞
0
〈y〉−4 s

−1/2

s+ k2
2y · qE4(H)ds (5.10)

∫ ∞
0
〈y〉−4 s

−1/2

s+ k2
y2E4(H)ds (5.11)∫ ∞

0
〈y〉−4 s

−1/2

s+ k2
E4(H)ds (5.12)∫ ∞

0
〈y〉−4 s

−1/2

s+ k2
2y · k k2

s+ k2
E4(H)ds (5.13)∫ ∞

0
〈y〉−4 s

−1/2

s+ k2

(
y2
) k2

s+ k2
E4(H)ds (5.14)∫ ∞

0
〈y〉−4 s

−1/2

s+ k2

k2

s+ k2
E4(H)ds (5.15)

Proof. In all cases, commute all y all the way to the left and use Hardy-Littlewood-

Sobolev if necessary, as in the proof of Lemma 5.7.

Lemma 5.9. The following operator-valued integrals converge to bounded operators,

which are integrable in t near t =∞.∫ ∞
0
〈y〉−4 s

−1/2

s+ k2
F ′(

y2

|t|2−ε
< δ′)

2y

|t|2−ε
· kE4(H)ds (5.16)

∫ ∞
0
〈y〉−4 s

−1/2

s+ k2

(
F ′′(

y2

|t|2−ε
< δ′)

4y2

|t|2(2−ε) + F ′(
y2

|t|2−ε
< δ′)

2

|t|2−ε

)
E4(H)ds (5.17)

∫ ∞
0
〈y〉−4 s

−1/2

s+ k2
F ′(

y2

|t|2−ε
< δ′)

2y

|t|2−ε
· k k2

s+ k2
E4(H)ds (5.18)∫ ∞

0
〈y〉−4 s

−1/2

s+ k2

(
F ′′(

y2

|t|2−ε
< δ′)

4y2

|t|2(2−ε) + F ′(
y2

|t|2−ε
< δ′)

2

|t|2−ε

)
k2

s+ k2
E4(H)ds

(5.19)

Proof. Applying Lemma 5.8 and the fact that F ′( y2

|t|2−ε < δ′) 1
|t|2−ε and F ′′( y2

|t|2−ε <

δ′) 1
|t|2(2−ε) are bounded operators that are integrable in t near t =∞, this is immediate.
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Lemma 5.10. The following operator-valued integral converges to a bounded operator

that is integrable in t near t =∞.∫ ∞
0
〈y〉−4[

s−1/2

s+ k2
k2, F (

y2

|t|2−ε
< δ′)]E4(H)ds

Proof. Expanding this commutator, we get several terms as in (5.16)-(5.19).

Finally, the proof of Lemma 5.6 arrives.

Proof. Since E4(Ha) is a bounded operator times 〈y〉−4 and we can use the square-root

representation of |k|, Lemma 5.6 is a corollary of 5.10.

And now we have accounted for all the terms in Lemma 5.2, so we have proven this

as well.

The next goal is to show that the energy cutoffs E4(Ha) appearing on the left hand

side of Wa(t) can be removed and the existence of the wave operator still holds. Define

the following operators W̃a(t) for #(a) = 2 by

W̃a(t) := eiHatFae
−iHtE4(H) (5.20)

Lemma 5.11. Let ψ be a wavefunction such that (‖ψ‖2 + ‖|A|5/4ψ‖2)
1
2 < ∞. The

following limits exist for #(a) = 2:

lim
t→±∞

W̃aψ (5.21)

Once this is established, then because such ψ form a dense set, it is immediate that

the strong limits

s− lim
t→±∞

eiHatFae
−iHtE4(H)

exist. That is the fact that we will use in the proof of asymptotic completeness.

Proof. It is sufficient to show that

lim
t→±∞

χ(Ha)e
iHatFae

−iHtf(H)ψ (5.22)
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exists, where χ(Ha) is a smoothed version of (1−E4(H)) and f(H) is a smoothed

version of E4(H), so that these two functions have disjoint support and 4 contained

in the support of f . This in mind, one wishes to estimate

eiHat[χ(Ha), Fa]e
−iHtf(H)ψ (5.23)

eiHatFa

(
χ(Ha)− χ(H)

)
e−iHtf(H)ψ (5.24)

and show that these converge to 0 as t→∞; this is sufficient to prove Lemma 5.11.

We can estimate (5.23) via

[χ(Ha), Fa]f(H) =∫
χ̂(λ)e−iHaλ

∫ λ

0
eiHas[H0, Fa]e

−iHasds dλ f(H)

By the same estimates used to prove Lemma (5.5) and Lemma (5.6), [H0, Fa]f(H)

is bounded with norm converging to 0 in t. While we lack the use of (FDE) in this case,

note that this estimate is strictly easier to prove because we only need convergence to

0 in t, not integrability in t.

Similarly, we estimate (5.24) via

eiHatFa

(
χ(Ha)− χ(H)

)
f(H)e−iHtf(H)ψ

= eiHatFa

∫ ∫ λ

0
e−iHasIaf(H)eiHs ds χ̂(λ)e−iλH dλ e−iHtf(H)ψ

= eiHat
∫ ∫ λ

0
[Fa, e

−iHas]Iaf(H)eiHs ds χ̂(λ)e−iλH dλ e−iHtf(H)ψ

+ eiHat
∫ ∫ λ

0
e−iHasFaIaf(H)eiHs ds χ̂(λ)e−iλH dλ e−iHtf(H)ψ
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Since Iaf(H) is bounded, and [Fa, e
−iHas] = e−iHas

∫ s
0 e

iHar[H0, Fa]e
−iHardr dλ, the

analysis of the first integral reduces to the same estimates as for (5.23). It remains to

estimate

eiHat
∫ ∫ λ

0
e−iHasFaIaf(H)eiHs ds χ̂(λ)e−iλH dλ e−iHtf(H)ψ (5.25)

We write

FaIaf(H)

=

(
F (

(xa)2

|t|2−ε
< δ′)F (

(xa)
2

|t|2−ε
> δ′′)

)
Iaf(H)

+

(
F (

(xa)2

|t|2−ε
< δ′)F (

(xa)
2

|t|2−ε
< δ′′)

)
Iaf(H)

(5.26)

The latter term is taken care of by the minimal velocity estimate; the term(
F ( (xa)2

|t|2−ε < δ′)F ( (xa)2

|t|2−ε < δ′′)
)

has phase space support in X2 < δ|t|2−ε, so commut-

ing this out to the right gives a term that decays in time. The former term is taken

care of by the short range assumption (SR).

We have proven the existence of the wave operators that we need, and are now in a

position to prove asymptotic clustering at energy E.

5.2 Proof of the theorem

Given a state ψ, we define φa := limt→±∞ W̃a(t)ψ.

We are ready to prove Theorem 2. Let ψ be a state on the range of E4(H).

Following [22], we write:
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e−iHtψ =
∑

#(a)=2

Fae
−iHtψ + rem.

=
∑

#(a)=2

e−iHatW̃a(t)ψ + rem.

where rem. converges to 0 in t. Taking limits, we arrive at the statement of the

theorem. It remains to show that the remainder does indeed converge to 0 for a dense

set of ψ.

rem. = (1− F (
x2

|t|2−ε
< δ′)− F (

y2

|t|2−ε
< δ′)− F (

(x− y)2

|t|2−ε
< δ′))e−iHtE4(H)ψ

By minimal velocity it is free to add:

rem. = (1− F (
x2

|t|2−ε
< δ′)F (

y2

|t|2−ε
> δ′′)− F (

y2

|t|2−ε
< δ′)F (

x2

|t|2−ε
> δ′′)

− F (
(x− y)2

|t|2−ε
< δ′)F (

(x+ y)2

|t|2−ε
> δ′′))e−iHtE4(H)ψ

since the rest converges to 0 in t. Note the operator

T := (1− F (
x2

|t|2−ε
< δ′)F (

y2

|t|2−ε
> δ′′)− F (

y2

|t|2−ε
< δ′)F (

x2

|t|2−ε
> δ′′)

−F (
(x− y)2

|t|2−ε
< δ′)F (

(x+ y)2

|t|2−ε
> δ′′))

is supported in the phase space region where x2 > δ′|t|2−ε, y2 > δ′|t|2−ε, and (x−y)2 >

δ′|t|2−ε.

We may write

rem. = T
(
E4(H)− E4(H0)

)
e−iHtE4(H)ψ
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because we are projecting onto negative energy. Due to the phase space support of

T , this converges to 0 by the same reasoning following (5.24). This concludes the proof.
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[11] V. Georgescu and C. Gérard. On the virial theorem in quantum mechanics. Com-
munications in Mathematical Physics, 208(2):275–281, Dec 1999.

[12] V. Georgescu, C. Gérard, and J.S. Møller. Spectral theory of massless pauli-fierz
models. Communications in Mathematical Physics, 249(1):29–78, Jul 2004.

[13] Christian Grard. The Mourre estimate for regular dispersive systems. Annales de
lInstitut Henri Poincar. Physique Thorique, 54, 01 1991.



77

[14] Christian Grard and Izabella Laba. Multiparticle quantum scattering in constant
magnetic fields. Mathematical surveys and monographs ; v. 90. American Mathe-
matical Society, Providence, R.I, 2002.

[15] W. Hunziker, I. M. Sigal, and A. Soffer. Minimal Escape Velocities. arXiv e-prints,
pages math–ph/0002013, Feb 2000.

[16] Tosio Kat. Perturbation theory for linear operators. Grundlehren der mathema-
tischen Wissenschaften ; 132. Springer-Verlag, Berlin, 2nd corr. print. of the 2nd
ed. edition, 1984.

[17] Alexander Komech. On wave theory of the photoeffect. arXiv e-prints, page
arXiv:1206.3680, Jun 2012.

[18] Elliott H. Lieb and Michael Loss. Analysis. Graduate studies in mathematics ; v.
14. American Mathematical Society, Providence, RI, 2nd ed. edition, 2001.

[19] E. Mourre. Absence of singular continuous spectrum for certain self-adjoint oper-
ators. Communications in Mathematical Physics, 78(3):391,408, 1981-01.

[20] P. Perry, I. M. Sigal, and B. Simon. Absence of singular continuous spectrum
in n-body quantum systems. Bulletin of the American Mathematical Society,
3(3):1019,1023, 1980.

[21] Michael Reed and B. Simon. Methods of modern mathematical physics I-IV. Aca-
demic Press, New York, rev. and enl. ed. edition, 1980.

[22] I. M. Sigal and A. Soffer. The n-particle scattering problem: Asymptotic com-
pleteness for short-range systems. Annals of Mathematics, 126(1):35–108, 1987.

[23] I. M. Sigal and A. Soffer. Long-range many-body scattering. Inventiones mathe-
maticae, 99(1):115–143, Dec 1990.

[24] I. M. Sigal and A. Soffer. Asymptotic completeness for n ≤ 4 particle systems with
the coulomb-type interactions. Duke Math. J., 71(1):243–298, 07 1993.

[25] I. M. Sigal, A. Soffer, and L. Zielinski. On the spectral properties of hamiltonians
without conservation of the particle number. Journal of Mathematical Physics,
43(4):1844–1855, 2002.

[26] I.M. Sigal. On long-range scattering. Duke Mathematical Journal, 60(2):473,496,
1990.

[27] Israel Michael Sigal and Avy Soffer. Local decay and propagation estimates for
time-dependent and time-independent hamiltonians. Preprint, 04 2019.

[28] Barry Simon. A comprehensive course in analysis. American Mathematical Soci-
ety, Providence, Rhode Island, 2015.

[29] Avy Soffer. Monotonic Local Decay Estimates. arXiv e-prints, page
arXiv:1110.6549, Oct 2011.

[30] Avy Soffer. Dynamics and scattering of a massless particle. Journal of Functional
Analysis, 271(5):1043 – 1086, 2016.



78

[31] Gerald Teschl. Mathematical methods in quantum mechanics : with applications
to Schrodinger operators. Graduate studies in mathematics ; v. 99. American
Mathematical Society, Providence, R.I, 2009.

[32] L. Zielinski. Wave operators of Deift-Simon type for a class of Schrodinger evolu-
tions. i. Mat. Fiz. Anal. Geom., pages 169–213, 1996.

[33] Lech Zielinski. Dispersive charge transfer model with long-range quantum inter-
actions. Journal of Mathematical Analysis and Applications, 217(1):43 – 71, 1998.


	Abstract
	Acknowledgements
	Dedication
	Introduction
	Background
	Intuition for three massive particles

	Definitions and potential assumptions
	Definitions involving commutators

	Proof of the Mourre estimate
	Configuration space partition of unity
	Breaking apart the main estimate
	Compactness
	The cluster (xy0)
	The cluster (x)(y)(0)
	The cluster (x)(y0)
	The cluster (y)(x0)
	The cluster (xy)(0)
	Completing the Mourre estimate

	Local decay and minimal velocity estimates
	Local decay
	Minimal velocity estimates

	Asymptotic completeness
	Existence of the wave operators
	Proof of the theorem

	References

