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Migration of amoeboid cells is characterized by the formation of pseudopods, or 

extensions of the cell membrane which protrude outwards, bifurcate, and retract in a 

dynamic fashion. The study of the amoeboid morphology is immeasurably important, as 

many cells and processes within the body depend on pseudopod-based migration, such as 

the phagocytosing of foreign pathogens by immune cells, the extension of nerve axons 

during neural development, the repair of damaged connective tissue and skin by fibroblasts 

and epithelial cells, the migration of key progenitor cells during embryonic development, 

and the invasive propensity of cancer cells during metastasis. Amoeboid motility is a 

complex, multiscale process which involves extreme cell deformation, internalized and 

surface-bound biochemistry, and both cytoplasmic and extracellular fluid interactions. 

Additionally, cells are often immersed within a confining and complex heterogenous 
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environment known as the Extracellular Matrix (ECM). The ECM and cell are 

fundamentally coupled to one another, where membrane deformability, surface protein 

diffusivity, fluid viscosity, matrix porosity, pore size, and alignment can alter the behavior 

and dynamics of a cell. 

In this dissertation, a three-dimensional computational model is presented in which 

pseudopod-driven amoeboid migration is analyzed in various geometries, and under 

varying cell parameters. Models are developed for the cell membrane, pseudopod pattern 

generator, extracellular matrix geometry, and fluid-cell/fluid-obstacle coupling, after 

which a detailed analysis is performed. The approach is based on use of immersed-

boundary methods, which allow for seamless integration between the highly deformable 

cell, fluid, and arbitrarily-shaped extracellular geometry. Amoeboid swimming is first 

studied through an unbounded fluid domain, revealing effects caused through the alteration 

of membrane deformability, surface-protein diffusivity, and fluid viscosity. A regime 

change in cell dynamics, allowing the cell to transition from slow, random motion, to fast, 

persistent motion is observed in certain parameter ranges. Cell migration through various 

ECM geometries is then considered, where the influence of matrix porosity and obstacle 

size is added to the existing analysis. In addition to drastically altered behavior, interesting 

cell dynamics are seen due to cell-obstacle interactions. Finally, amoeboid locomotion is 

studied through an expanded assortment of ECM geometries, while a weak adhesion model 

characteristic of an amoeboid cell is adopted. In each case, a comprehensive study of cell 

behavior, pseudopod dynamics, and fluid field analysis is performed. The simulated cell is 

shown to be qualitatively similar in form to experiments, and quantitatively similar in 

regard to cell speed and dynamics. Insights into cell persistence, dynamics, and migration 
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speed are given. Overall, this model pushes the forefront of the three-dimensional 

computational modeling of amoeboid cells, revealing fascinating behaviors, trends, and 

dynamics. Its continued refinement has the potential to reveal further mechanisms of 

amoeboid migration and the influence of tissue geometry on its behavior. 
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Chapter 1 

Introduction 

 

1.1 Introduction 

Life, in all its forms and variations, can be abridged into one single fundamental 

element: the cell. Whether this cell is an independent single-celled organism, or a member 

of the greater multicellular-organism collective, the capability of cells to effectively 

migrate through their environment bears significant importance, be it for wound repair 

[24], disease [21] and infection fighting [22], neural development [47], or reproduction 

[23]. Within the field of cellular motility, a multitude of diverse migration tactics is on 

display, from the flagellar-based mode commonly sported by many bacteria [25], to the 

exotic contractile-driven blebbing mode seen in aggressive forms of cancer [20]. This 

work, however, will focus on “amoeboid” migration, a characterization given to highly 

deformable cells which rely on membrane extensions to migrate [26]. In the following 

subsections, key elements of cell locomotion which are required to understand the 

amoeboid migration morphology are discussed. 

1.2 The cell 

Eukaryotic cells are composed of a plasma membrane which separates a cell from its 

external environment. This membrane is constructed of a lipid bilayer as seen in Figure 

1.1, also containing copious amounts of proteins which exchange ions and molecules with 

the external environment, sense chemical signals, and interact with the substrate [47]. 

Existing directly below the plasma membrane is the cell cortex, or a concentrated three-
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dimensional network of actin filaments which determines cell shape and plays key roles in 

migration [45]. Inside the cell is the cytoplasm, a viscoelastic combination of a gel-like 

fluid known as the cytosol, organelles, and other compounds, such as nutrients and 

proteins. The last major component of the cell is the cytoskeleton, a composition of actin 

fibers, intermediate filaments, and microtubules which aid in cell adhesion and migration, 

resisting mechanical stress, and organelle transport [56]. For modeling purposes, the 

complexities of a cell can be simplified as a viscous drop enveloped by a zero-thickness 

membrane. 

 

Figure 1.1: Fluid mosaic model of a cell’s plasma membrane showing various proteins 

embedded in the lipid bilayer [45]. Image taken from Figure 2.48 of The Cell: A Molecular 

Approach by Geoffrey M. Cooper © 2000. Reproduced with permission of the Licensor 

through PLSclear. 
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1.3 The Extracellular Matrix (ECM) 

Estimates of the average number of cells present within the human body are on the 

order of tens of trillions [38], with each cell given a predetermined biological role. The 

body is not simply composed of cells however. There also exists a porous and heterogenous 

structure (Figure 1.2) composed of macromolecules and other elements known as the 

Extracellular Matrix (ECM). The ECM acts like a scaffold, providing cells with a structure 

to adhere to and function on [39]. Additionally, the ECM is capable of influencing cell 

behavior through chemical signaling [37] or mechanical stimulation [36], effectively 

changing the way a cell behaves or expresses certain genes. These characteristics elucidate 

the very strong coupling between a cell and its environment, presenting a complex 

challenge to model. Of further interest are the ECM properties, and subsequent cell 

behaviors that arise based on scaffold geometry, and proportion and composition of ECM 

components. Bone, for instance, has a significantly different extracellular matrix compared 

to that of connective tissue [40]. In general, the ECM is composed of five major 

components which are discussed below [49]: collagen, elastin, proteoglycans, hyaluronan, 

and adhesive glycoproteins. 

1.3.1 Collagen 

Highly abundant within the human body, fibroblast-generated collagen is readily used 

as a structural component within the extracellular matrix. Rod-shaped molecules of type I 

collagen approximately three-hundred nanometers long aggregate to form fibrils [47]. 

Fibrils themselves can associate to form larger collagen fibers, which can reach several 

micrometers in diameter and length [45]. Combinations of the various isoforms and 

associations of collagen can produce very distinct tissues. Tendons, for instance, are almost 
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completely constructed of aligned bundles of densely-packed collagen, while bone is 

formed from layers of collagen fibrils implanted in calcium phosphate crystals for rigidity 

[47]. A tissue sample containing collagen fibers with varying orientations is shown in 

Figure 1.3. While fibrils and fibers are extremely common in the body, other variants of 

collagen, such as the type IV group, can produce dense sheets known as the basal lamina 

[49], which serves as a support structure for nerve and muscle cells in addition to epithelia. 

Collagen should be considered when modeling the ECM, since it is a primary structural 

component. 

 

Figure 1.2: Amoeboid migration of a T lymphocyte through a 3D collagen matrix after 

staining with calcein-AM, and imaged by confocal time-lapse reflection and fluorescence 

microscopy [53]. Time elapsed is displayed in seconds. Asterisk (*) shows cell leading 

edge, while white and black arrowheads show pseudopod extension and uropod, 

respectively. Scale bar, 10 𝜇𝑚. Reprinted from The Journal of Leukocyte Biology, P. 

Friedl, S. Borgmann, and E.-B. Bröcker, Amoeboid leukocyte crawling through 

extracellular matrix: lessons from the Dictyostelium paradigm of cell movement, 70, 2001; 

Permission given by John Wiley and Sons.  
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Figure 1.3: A transmission electron micrograph of the mid-dermal section of a 15 day-old 

chick embryo [77]. Collagen fibril bundles are arranged in an orthogonal manner with a 

fibroblast cell visible. Reprinted from the Journal of Structural Biology, 106:1, C. Ploetz, 

E. I. Zycband, and D. E. Birk, Collagen fibril assembly and deposition in the developing 

dermis: Segmental deposition in extracellular compartments, 73-81, 1991 with permission 

from Elsevier.  

 

1.3.2 Elastin 

Like collagen, elastic fibers are also synthesized by fibroblasts and can be found 

throughout the body. Composed of fibrillin microfibrils and a crosslinked elastin core, 

these resilient fibers act like springs, reversing deformation in elastic tissues such as the 
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heart and lungs, blood vessels, skin, and bladder [49]. The importance of elastin can also 

be seen in old age, since elastic fibers are no longer created past adolescence, contributing 

to skin wrinkling and lack of resilience [47]. The physical mechanism behind elastic fibers 

is thought to be a change in entropy due to random coiling, with low-entropy stretched 

fibers shortening to a high-entropy state when relieved of stress [47].  

1.3.3 Proteoglycans and Hyaluronan 

Glycosaminoglycans, or GAGs, are long polysaccharide chains formed by repeating 

disaccharide sugar units [45]. All vertebrate cells are known to synthesize GAGs, which 

are generated from cell modifications to proteoglycan proteins and secreted into the 

extracellular matrix [46]. Due to their polar nature, GAGs are highly attractive to water, 

and are therefore thought to act as elastic water-trapping space fillers, attracting over fifty 

times their weight in water [41]. This ability allows GAGs to act as viscous lubricants 

within tissues [42] in addition to providing mechanical properties in cartilage and serving 

to inhibit the migration of microorganisms [48]. Hyaluronan, formerly known as 

hyaluronic acid, is considered separately from the other glycosaminoglycans due to its 

formation in the plasma membrane as opposed to other GAGs [44]. Furthermore, 

hyaluronan is considerably larger in size, estimated to exceed twenty-thousand 

disaccharide components, totaling more than twenty micrometers in length [47]. 

Unsurprisingly, due to the complexity in GAG synthesis, a degree of variability exists 

within the final properties of each chain [43]. This gives the fluid within the extracellular 

matrix locally heterogenous properties. 
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1.3.4 Adhesive Glycoproteins 

Within the extracellular matrix, various types of cells are involved in a constant state 

of interaction with each other in addition to interactions with the common matrix 

macromolecules [45]. Adhesive glycoproteins are the “glue” that establishes these physical 

connections. Fibronectin, for instance, has bonding sites for cells, collagen, and 

proteoglycans in addition to crosslinking sites for other fibronectin proteins [47]. As a 

result, fibronectin plays an important role in extracellular matrix construction.  

1.4 Biological Mechanisms of Cell Migration 

Cellular locomotion is often an essential characteristic of many single- and multi-

cellular organisms. The complexity of a motile cell may vary, from the simple case of a 

bacterium searching for food, to the complicated choreography required for a metastatic 

tumor cell to navigate through connective tissue. And while an untold diversity among 

methods of cellular locomotion exists, the purpose of this work is to model amoeboid 

migration by means of membrane protrusions. Under the standard model of cell migration, 

displacement occurs due to cycles of anterior membrane extension, subsequent anterior 

bond formation with a substrate, and finally, a posterior membrane contraction resulting in 

broken adhesive bonds in the rear and a net cell displacement [45]. The combination of 

protrusion, adhesion, and contraction is not exclusively required however. Cells have been 

observed migrating purely by protrusion [57,58] or contraction [12,20], or without the need 

for adhesion [50,57] demonstrating the capacity of strategies by which cells can migrate 

[63]. In an amoeboid cell, protrusive force is generated by growth of crosslinked actin 

filaments, contractile force is achieved through myosin motor proteins, and adhesion, while 

dispensable, is generally accomplished through integrins. 
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1.4.1 Actin 

Actin is present inside a cell either in the form of unpolymerized G-actin monomers, 

or polymerized F-actin filaments approximately seven nanometers in diameter and up to 

several micrometers in length [45]. When perturbed by some stimulus, a complex cascade 

of events occurs, which results in actin being polymerized. Rho-family guanosine 

triphosphatases (GTPases) are activated, which themselves activate WASP/SCAR proteins 

resulting the nucleation of new actin filaments by the Arp2/3 complex [47]. Filaments can 

then be crosslinked to strengthen actin networks as seen in Figure 1.4, or bundled to form 

microvilli. Growing filaments form directly under the plasma membrane of the leading 

edge with piconewton-sized forces, thereby generating a membrane protrusion also known 

as a pseudopod [54]. Actin turnover and subsequent pseudopod retraction occurs when 

capping or severing proteins such as cofilin depolymerize F-actin filaments back into G-

actin monomers. In addition to providing structure within the cell, polymerized actin in the 

cytoplasm contributes to its viscoelastic nature [47]. 

1.4.2 Myosin 

Within the body, the myosin family of proteins is responsible for muscle contraction 

and the intracellular motility of organelles and other cargo, both of which are significantly 

important processes [54]. In a non-muscle motile cell, the myosin II variant protein 

converts chemical energy in the form of ATP into mechanical energy. Inside the cell, 

myosin II is normally distributed throughout the entire cell cortex. When migratory 

stimulation occurs, however, the myosin aggregates towards the rear of the cell [56]. 

Activation causes combinations of association and dissociation with an actin filament, 

coupled with conformational changes in the myosin head, resulting in the sliding of actin 
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filaments and an ensuing contractile force [45]. This procedure is illustrated below in 

Figure 1.5.  

 

Figure 1.4: An electron micrograph of the actin network of the leading edge in a migrating 

keratocyte [76]. Republished with permission of T. D. Pollard from Molecular Mechanisms 

Controlling Actin Filament Dynamics in Non-muscle Cells, T. D. Pollard et al, Annual 

Review of Biophysics and Biomolecular Structure, 29, 2000; permission conveyed through 

Copyright Clearance Center, Inc.  

 

Figure 1.5: Illustration of a bipolar myosin II contractile assembly and its action on actin 

filaments [45]. Image taken from Figure 11.26 of The Cell: A Molecular Approach by 

Geoffrey M. Cooper © 2000. Reproduced with permission of the Licensor through 

PLSclear. 
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1.4.3 Adhesion 

Under the standard model of cellular migration, adhesion proteins present in the leading 

edge of a cell adhere to ligands on the underlying substrate, effectively remaining in place 

as the cell advances forward [45]. When the adhesive group reaches the rear of the cell, 

contractile forces in the posterior cause these bonds to break as new bonds are again formed 

on the anterior. Cell adhesion is not exclusively found in cell migration, however. Skin and 

muscle cells, for instance, need to connect strongly with their neighbors to prevent rupture 

[47], while cells themselves are known to migrate with varying degrees of adhesive 

strength [59]. Because of this requirement in adhesive diversity, five different families of 

adhesion molecules are known to exist: cadherins, immunoglobulin-cell adhesion 

molecules (IgCAMs), selectins, mucins, and integrins [47].  

Cadherins generally interact with other cadherins on adjacent cells in a calcium-

dependent fashion, forming stable cell-cell junctions where adjacent cytoskeletons are 

linked together. The four remaining adhesion molecules, on the other hand, are transient in 

interaction. IgCAMs can be homophilic or heterophilic, meaning they can recognize and 

adhere to both similar or different adhesion molecules, respectively. Selectins are utilized 

primarily in the microcirculation, providing transient interactions for white blood cells to 

attach to the epithelial lining, after which, stronger integrin-based adhesions form, allowing 

the cell to leave the blood through extravasation [45]. Mucins are also present on white 

blood cells and endothelial cells, using carbohydrates to bond to selectins of other cells 

[47]. It is also possible that multiple adhesion protein families can work in tandem, such as 

during an extravasation event.  
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Integrins are present in most animal cells and are considered to be the primary adhesion 

protein responsible for connecting cells to the extracellular matrix. Integrins are composed 

of two transmembrane dimers labeled as α and β, which due to several unit types, provides 

over twenty different isoforms of integrins, each capable of bonding to specific ligand types 

[45]. Integrins bind to collagen and fibronectin within the extracellular matrix, thus 

allowing for sufficient adhesion as shown in Figure 1.6. The number and degree to which 

integrins are utilized may vary depending on cell properties as discussed in the following 

section. 

 

Figure 1.6: Human fibroblast distribution of 𝛽1 integrin (green) and F-actin (red) in 3D 

matrices [149]. Scale bar represents 10 𝜇m. (Left) Migration through 3D fibrin matrix. 

(Right) Migration through 3D basement membrane extract. Significant difference in cell 

morphology is seen when migrating through different tissue scaffolds. Image is from 

Tissue Engineering: Part A, 17:5-6, 2011. Direct Comparisons of the Morphology, 

Migration, Cell Adhesions, and Actin Cytoskeleton of Fibroblasts in Four Different Three-

Dimensional Extracellular Matrices, K. M. Hakkinen, J. S. Harunaga, A. D. Doyle, and K. 

M. Yamada. Reproduced with permission from Mary Ann Liebert Publishers. 
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1.5 Amoeboid vs. Mesenchymal Migration 

Evolution has produced an untold assortment of cells with unique properties and 

behaviors. Therefore, it is no surprise to imagine that cells can achieve motility through 

very diverse means. Within the category of cells driven by membrane extensions, however, 

two distinctive morphologies merit discussion: amoeboid and mesenchymal locomotion. 

The amoeboid mode is characterized by an ellipsoidal cell shape only weakly dependent 

on integrin adhesion, which uses its high membrane deformability to quickly squeeze 

through or navigate around obstacles [54]. The mesenchymal mode of motility, on the other 

hand, is characterized as a slow moving, spindle-shaped morphology which is highly 

dependent on integrin-based adhesion and capable of degrading connective tissue through 

proteolytic enzyme remodeling. Figure 1.7 shows images comparing the amoeboid and 

mesenchymal morphologies, while Table 1.1 lists the key differences between the two 

modes of locomotion. One noteworthy difference is migration speed, with the amoeboid 

mode possibly reaching one to two orders of magnitude higher than the mesenchymal 

mode. Another important distinction is the degree of adhesiveness, as amoeboid cells are 

described to have low and transient levels of integrin expression on their membranes, while 

mesenchymal cells form clusters of focal contacts which generate high adhesive forces 

[28].  

Further interest between the mesenchymal and amoeboid morphologies arises from 

recent studies, which have shown the blocking of matrix degrading proteolytic enzymes in 

cancer cells did not completely inhibit tumor cell migration [1]. It was observed that 

mesenchymal cancer cells could effectively convert to the amoeboid mode in what is 

known as a mesenchymal to amoeboid (MAT) transition. This compensation mechanism 
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elevates the importance of the amoeboid form of locomotion, since in addition to cancer 

cells, immune cells, nerve cells, epithelial cells, and even embryonic cells utilize the 

amoeboid morphology [45], making an investigation into its inner workings well 

worthwhile. 

 

Figure 1.7: Amoeboid versus mesenchymal modes of motility. (Left) Neutrophil-like 

human HL-60 cell expressing mCherry-utrophin in a fluorescently labeled collagen 

matrix [75]. From B.-C. Chen et al. Lattice light-sheet microscopy: Imaging embryos to 

molecules at high spatial resolution. Science, 346:6208, 2014. Reprinted with permission 

from AAAS. (Right) Lifeact–GFP expressing cancer cell within a 3D collagen hydrogel 

[26]. Reproduced with permission under the Creative Commons Attribution License (CC 

BY) from P. T. Caswell and T. Zech. Actin-based cell protrusion in a 3D matrix. Trends 

in Cell Biology, 28:10, 2018. https://doi.org/10.1016/j.tcb.2018.06.003 

 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tcb.2018.06.003


14 

 

 

 

 

Table 1.1: Characteristics describing the amoeboid and mesenchymal modes of motility 

[28]. Reprinted by permission from Copyright Clearance Center, Inc: Springer Nature, 

Nature Reviews Cancer, Tumour-cell invasion and migration: diversity and escape 

mechanisms, P. Friedl and K. Wolf, © 2003. 

 

1.6 Scope of dissertation 

As detailed in the above discussion, cell migration is a complex, multiscale process 

which combines aspects of biology, fluid dynamics, and solid mechanics. The amoeboid 

mode in particular presents an even more interesting challenge, due to its highly 

deformable membrane and fast speeds compared with other motility mechanisms. 

Additionally, pseudopod generation is a highly dynamic process involving internal and 

external signaling, as well as complex biochemistry within the cell. With that being said, 

the objective of this dissertation was to construct a three-dimensional computational model 

of amoeboid cell migration, which couples cell membrane deformability, protein 

dynamics, fluid interaction, and extracellular matrix geometry. A comprehensive analysis 

is performed on cell dynamics as both cell and matrix properties are varied. 
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1. Numerical Methodology (Chapter 2): An accurate computational model for a 

three-dimensional amoeboid cell membrane is developed using a front-tracking 

continuous forcing immersed boundary method. This membrane resists shear, area 

dilation, and bending. Pseudopod generation is accomplished through an activator-

inhibitor system driven by surface reaction-diffusion equations. Flow is modeled 

using the unsteady stokes equation, which is solved using the projection method by 

finite volume and spectral methods. Matrix geometry is included using a sharp-

interface ghost node method. This aggregate model is then used to study the behavior 

and dynamics of an amoeboid cell under various cell states and matrix geometries. 

2. Pseudopod-driven swimming of an amoeboid cell in a fluid medium (Chapter 

3): Recent experiments regarding amoeboid cells have demonstrated a capability to 

swim in a liquid medium through the use of pseudopod-driven membrane extensions 

[2-3]. These extensions appear at the cell front, then migrate towards the rear of the 

cell, mimicking paddles, until finally retracting. No discrete adhesion force was 

modeled. Consistent with Purcell’s Scallop Theorem [6], the model discussed in 

Chapter 2 is applied to simulate pseudopod-driven amoeboid swimming in an 

unbounded fluid medium. Parameter studies are performed in order to determine the 

effect of varying membrane deformability, surface protein diffusivity, and cell-to-

fluid viscosity ratio on cell behavior and dynamics. 

3. Adhesion-independent pseudopod-driven migration of an amoeboid cell in 

extracellular matrix geometry (Chapter 4): Previous studies have shown three-

dimensional amoeboid cell migration both in vivo [50] and in vitro [51] was 

essentially unaffected by the knockdown or absence of adhesion as compared to 
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wild-type cells. This is made possible by a highly deformable membrane which 

makes use of footholds and constriction rings to gain traction while migrating 

through connective tissue [52]. Pseudopod-driven amoeboid cells are introduced into 

periodic extracellular matrix geometries. Discrete adhesive interactions between the 

cell and matrix are not considered. The influence of membrane deformability, and 

matrix obstacle size and porosity are studied. 

4. Pseudopod-driven migration of an amoeboid cell in various extracellular matrix 

geometries with weak adhesion (Chapter 5): While amoeboid cells are fully 

capable of migration through extracellular matrix sans adhesion, studies have 

suggested a weak, diffuse network of adhesion proteins exists on the cell’s plasma 

membrane [53]. As such, the work on amoeboid migration through extracellular 

matrices considered in Chapter 4 is expanded upon with the introduction of a weak 

adhesion model derived from the work of Bell [4] and others [5,16]. In addition, three 

distinct extracellular matrix geometries are used as approximations to specific tissue 

types or as theoretical exercises. Studies are performed on the effect of membrane 

deformability, adhesive strength, and matrix geometry.  
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Chapter 2 

Numerical Methodology 

 

2.1 Problem Setup 

Pseudopod-driven cellular migration through a three-dimensional computational 

domain is considered. In the case of migration through an unbounded fluid medium, the 

domain is triply periodic in order to reduce computational effort, while for the case of 

migration through extracellular matrix geometry, the domain is periodic in the x- and z- 

directions but bounded by a no-slip wall in the y-direction. The length of each side of the 

cubic domain is set to be 6𝜋, where the number of Eulerian grid points is established to be 

360 per dimension. The fluid is assumed to be initially quiescent and free of any pressure 

gradients until cell movement otherwise generates them. 

2.2 Membrane Model 

As discussed, the cell plasma membrane is composed of a lipid bilayer which provides 

a barrier between the cell and its environment. Directly beneath the bilayer is the cell 

cortex, which provides the cell with an actin-based structural framework. Because a generic 

amoeboid cell has a characteristic length of tens of micrometers, while the plasma 

membrane has thickness in the nanometer range, the cell membrane is therefore treated as 

having zero-thickness. In addition, because we do not consider the cell to have a nucleus 

or other organelles within the cytoplasm, the cell interior is treated as a viscous fluid-drop. 

Combined together, the lipid bilayer and cortex provide resistance against shear, area 
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dilation, and bending, with the actin cortex resisting shear, and the plasma membrane 

resisting area dilation and bending.  

To model shear deformation and area dilation, we look to the work of Skalak et al [92] 

who developed constitutive energy functions for the lipid bilayer and cortex of red blood 

cell membranes. Equation 2.1 below illustrates the strain energy model, where 𝐺𝑆 is the 

membrane shear modulus, and 𝐼1 = 𝜖1
2 + 𝜖2

2 − 2 and 𝐼2 = 𝜖1
2𝜖2

2 − 1 are the invariants of 

Green’s strain tensor. The terms 𝜖1 and 𝜖2 are the principal stretch ratios.  

𝑊𝐸 =
𝐺𝑆

4
[(𝐼1

2 + 2𝐼1 − 2𝐼2) + 𝐶𝐼2
2]                                           (2.1) 

Green’s strain tensor arises from continuum mechanics and is defined by Equation 2.2, 

where 𝑭 = 𝜕𝒙 𝜕𝑿⁄  is the deformation gradient tensor, and 𝒙 and 𝑿 are the current and 

initial cell configurations in space, respectively. 𝑰 is the identity tensor. 

𝑬 = 𝑭𝑇 ∙ 𝑭 − 𝑰                                                          (2.2) 

The first grouped term in Equation 2.1 is associated with shear deformation, while the last 

term accompanies area dilation. The parameter 𝐶 controls the allowable amount of area 

dilation, and is set to unity. Changes in cell surface area as high as 30% have been observed 

experimentally in the amoeba Dictyostelium discoideum [98], while area fluctuations are 

further possible through membrane wrinkles and vesicle fusion or detachment from 

endocytosis [99].  

With knowledge of the strain energy function 𝑊𝐸, the principal elastic stresses on the 

membrane are found via Equations 2.3 and 2.4. 
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𝜏1 =
1

𝜖2

𝜕𝑊𝐸

𝜕𝜖1
                                                            (2.3) 

𝜏2 =
1

𝜖1

𝜕𝑊𝐸

𝜕𝜖2
                                                            (2.4) 

The elastic stresses present in the membrane from shear and area dilation are solved for by 

the finite element method, which is detailed in [95-97]. To begin, the cell membrane is 

discretized into 20,480 Delaunay triangles characterized by 10,242 nodes as seen in Figure 

2.1A and B. A linear displacement field 𝒗 is then defined over each element using shape 

functions (𝑁) as seen in Equation 2.5, where the index 𝑖 corresponds to the local vertex 

number of the element. 

𝒗 = 𝑁𝑖𝒗𝑖                                                              (2.5) 

Knowledge of the shape functions allows for the calculation of the deformation 

gradient tensor 𝑭, which subsequently leads to the principal stretch ratios and the stress 

tensor 𝝉. The in-plane elastic force on each element can then be calculated by the principal 

of virtual work, 𝒇𝑒
𝑚 = − 𝜕𝑊𝐸 𝜕𝒗⁄ . The force at each node is then found by compiling the 

resultant as in Equation 2.6, where 𝑷 = 𝜖1𝜖2𝝉 ∙ 𝑭−𝑇 is the first Piola-Kirchhoff stress 

tensor, and 𝑆𝑚 is the area summation of the m elements surrounding the node in question. 

𝑓𝑒 = ∑ ∫
𝜕𝑵

𝜕𝑿
∙ 𝑷𝑑𝑆

 

𝑆𝑚𝑚

                                                   (2.6) 



20 

 

 

 

 

Figure 2.1: (A) Cell membrane composed of Delaunay triangular elements. (B) Zoomed-

in view of Delaunay mesh. (C) Example of indices used for numerical curvature gradient 

calculation. Adapted from [148] with the permission of AIP Publishing. 

 

To model the membrane bending resistance, we implement Helfrich’s bending energy 

formulation as seen by Equation 2.7, where 𝐸𝐵 is the bending stiffness, 𝜅 is the mean 

curvature, 𝑐0 is the spontaneous curvature, and 𝑆 is the cell surface area [93]. The 

spontaneous curvature serves to quantify the difference between the two layers of the lipid 

bilayer, which may be subjected to unalike chemical compositions or surroundings [94]. 

With this in mind, and a lack of sufficient literature on the subject, 𝑐0 is set to zero. 

𝑊𝐵 =
𝐸𝐵

2
∫(2𝜅 − 𝑐0)2𝑑𝑆

 

𝑆

                                               (2.7) 

i 

j 

j+ A
j
 

A 

B 

C 
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A numerical implementation of Equation 2.7 is performed by considering the bending 

force density 𝒇𝑏 in Equation 2.8, where 𝜅𝑔 is the Gaussian curvature and 𝒏 is the surface 

outward normal. ∆𝐿𝐵= ∇𝑠 ∙ ∇𝑠 is the Laplace-Beltrami operator, where ∇𝑠= 𝑰𝑠 ∙ ∇ is the 

surface gradient operator, and 𝑰𝑠 = 𝑰 − 𝒏𝒏 is the surface projection matrix. 

𝒇𝑏 = 𝐸𝑏[(2𝜅 + 𝑐0)(2𝜅2 − 2𝜅𝑔 − 𝑐0𝜅) + 2∆𝐿𝐵𝜅]𝒏                         (2.8) 

The outward normal vector 𝒏 is found by taking the vector sum of the element normal 

vectors surrounding a vertex, then taking a weighted average and normalizing to a unit 

vector. The curvatures 𝜅 and 𝜅𝑔 are calculated through the use of a quadratic surface fitting, 

the form of which is detailed is Equation 2.9. The parameters (𝑥′, 𝑦′, 𝑧′) represent the local 

coordinate system of the node in question, where 𝑧′ is oriented in the direction of the 

approximated normal vector.  

𝑧′ = 𝑎𝑥′2 + 𝑏𝑥′𝑦′ + 𝑐𝑦′2 + 𝑑𝑥′ + 𝑒𝑦′                                   (2.9) 

As detailed in [100], an iterative process is performed where the coefficients of 

Equation 2.9 are found using the nearest vertices around a given point, along with the least-

squares method until a satisfactory convergence for the estimated normal vector is 

achieved. The coefficients can then be used as follows to find each curvature. 

𝜅 = −
𝑎 + 𝑐 + 𝑎𝑒2 + 𝑐𝑑2 − 𝑏𝑑𝑒

(1 + 𝑑2 + 𝑒2)3 2⁄
                                           (2.10) 

𝜅𝑔 =
4𝑎𝑐 − 𝑏2

(1 + 𝑑2 + 𝑒2)2
                                                       (2.11) 

Finally, the surface gradient and Laplace-Beltrami numerical implementation are 

discussed. Utilizing tools from the image reconstruction field [101-102], ∆𝐿𝐵𝜅 can be 



22 

 

 

 

written as follows, where 𝐻 is the sum of element areas surrounding a vertex, and 𝑁1(𝑖) 

contains the set of vertices directly surrounding node 𝑖. 𝑛𝑗̃ is the unit outward normal to the 

edge connecting points 𝑗 and 𝑗+ as detailed in Figure 2.1C. 

∆𝜅𝑖 =
1

2𝐻
∑ 𝑛𝑗̃ ∙ (∇𝑠𝜅𝑗 + ∇𝑠𝜅𝑗+)‖𝑥𝑗

′ − 𝑥𝑗+
′ ‖

𝑗∈𝑁1(𝑖)

                      (2.12) 

The surface gradient of curvature ∇𝑠𝜅𝑗  can be found through taking a weighted average on 

the gradients of curvature on the adjacent elements surrounding vertex 𝑖 as seen by 

Equation 2.13. 

∇𝑠𝜅𝑗 =
1

𝐻
∑ 𝐴𝑗∇𝑇𝑗

𝜅

𝑘∈𝑁1(𝑗)

                                             (2.13) 

𝐴𝑗 is the area of triangle 𝑗 denoted by the set of points [𝑖, 𝑗, 𝑗+]. Lastly, ∇𝑇𝑗
𝜅 can be 

implemented by the following equation with the assumption that 𝜅 only varies linearly in 

each element. 

∇𝑇𝑗
𝜅 =

1

4𝐴𝑗
2 {𝜅𝑖[(𝑥𝑖

′ − 𝑥𝑗
′) ∙ (𝑥𝑗

′ − 𝑥𝑗+
′ )(𝑥𝑗+

′ − 𝑥𝑖
′) + (𝑥𝑖

′ − 𝑥𝑗+
′ ) ∙ (𝑥𝑗+

′ − 𝑥𝑗
′)(𝑥𝑗

′ − 𝑥𝑖
′)]

+ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡ℎ 𝑖 𝑎𝑛𝑑 𝑗 𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝑑

+ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡ℎ 𝑖 𝑎𝑛𝑑 𝑗+ 𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝑑}                                  (2.14) 

The cell membrane can additionally be considered as viscoelastic, which has been done 

in prior works [95,103]. A Kelvin-Voigt model was implemented, where the membrane 

viscoelastic behavior was expressed as a sum of elastic and viscous stresses as shown in 

Equation 2.15. 

𝜏 = 𝜏𝑒 + 𝜏𝑣                                                         (2.15) 
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The elastic stresses have been considered previously in Equations 2.3 and 2.4, while the 

viscous stress is modeled as follows, where 𝜇𝑚 is the membrane shear viscosity and 𝑫 is 

the strain rate tensor. The viscous stress is computed using a time-convolution integral 

which relates the stress to its strain history. 

𝜏𝑣 = 2𝜇𝑚 [𝑫 −
1

2
𝑡𝑟(𝑫)𝑰𝑆]                                          (2.16) 

Validation of the membrane model has been performed previously in [107], where the 

aspiration of a red blood cell by a micropipette was analyzed and compared with 

experimental data, with a good agreement observed. General cell smoothness is seen even 

after extreme deformations occur, therefore confirming the accuracy of the method. 

2.3 Pseudopod Pattern Generation Model  

A key element to simulating amoeboid motility is a model which captures the dynamic 

nature of pseudopod extension, bifurcation, and retraction. Biologically speaking, 

membrane extension is accomplished through a complex series of events triggered inside 

the cell, resulting in crosslinked polymerized actin filaments generating protrusive forces. 

Pseudopod retraction then follows as the actin network is disassembled. However, due to 

the numerous amounts of signaling channels and proteins required to activate pseudopod 

dynamics, a more realistic modeling approach is taken. Here we model the cell protein 

dynamics on the surface of the cell using a coarse-grain method. This method relies on the 

generation of Turing instabilities, or spatiotemporal patterns generated from the combined 

reaction and diffusion of coupled discrete chemical species [78]. Turing models, also 

referred to as activator-inhibitor systems or diffusion-driven instabilities, have been 

applied in the past to study a great number of problems, from chemical reactions [81-82], 
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to embryonic development [83] and animal skin or fur patterns [79-80]. Additionally, 

Turing models have also been used to study amoeboid migration in two-dimensional [7-

10] and three-dimensional [11] environments. 

In our model, a Meinhardt-type activator-inhibitor system [7,84] is used to generate 

dynamic patterns which will be coupled to regions of pseudopod growth. Equations 2.17 

to 2.19 below illustrate the system, where 𝑎1, 𝑎2, and 𝑎3 are the concentrations of the local 

activator, global inhibitor, and local inhibitor, respectively. We consider the activator to 

represent the concentration of polymerized actin filaments. Similar works have presumed 

analogous correlations between actin and activator concentrations [8,32] or other proteins 

which are known to directly precede a motile response [9,29]. Along a similar vein, the 

global and local inhibitors are assumed to be related to the concentration of capping and 

severing proteins which act to stop or reverse the growth of actin.  

𝑎1̇ = 𝐷1∆𝑆𝑎1 +
(𝑟1 + 5000𝜖) (

𝑎1
2

𝑎2
+ 𝑘1)

(𝑠3 + 𝑎3)(1 + 𝑠1𝑎1
2)

− 𝑟1𝑎1                         (2.17) 

𝑎2 =
1

𝑆
∫ 𝑎1𝑑𝑆

 

𝑆

                                                       (2.18) 

𝑎3̇ = 𝐷3∆𝑆𝑎3 − 𝑟3𝑎3 + 𝑘2𝑎1                                          (2.19) 

A brief description of each parameter is as follows [84]. 𝐷1 and 𝐷3 are the surface 

diffusivities of the local activator and inhibitor, while 𝑆 is the surface representation of the 

deforming cell. 𝑟1 is linked to the generation and decay rate of the local activator, while 𝑘2 

sets the rate of local inhibitor production. Similarly, 𝑟3 is the decay rate of the local 

inhibitor. 𝑘1 is a basic activator production constant to initiate activator autocatalysis. 𝑠1 
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controls the activator saturation level, thereby tuning the number of individual instabilities, 

and subsequently, the number of pseudopods which can be generated. 𝑠3 is the Michaelis-

Menten constant, often used to model enzymatic reactions, which sets the affinity of the 

inhibitor towards the activator. Finally, ∆𝑆 is the surface laplacian, while the dot superscript 

seen on the left-hand side of the equations represents the time derivative. We note that 

Equations 2.17 and 2.19 have absorbed the rate parameter 𝛾 used in [7]. Table 2.1 below 

provides the dimensionless parameter values used in each simulation.  

Parameter 𝐷1 𝐷3 𝑟1 𝑟3 𝑘1 𝑘2 𝑠1 𝑠3 

Value 1 2-3 1000 650 0.1 250 1E-4 0.2 

 

Table 2.1: Dimensionless parameters used in the Meinhardt activator-inhibitor system. 

Lastly, the parameter 𝜖 serves as a spatiotemporal stochastic random noise, which is 

fed into the local activator equation in order to create perturbations in concentration. A 

chemotactic signal can additionally be added by biasing the noise, as has been done in other 

works [7-9] but is not considered here. The random noise 𝜖 is generated from an Ornstein-

Uhlenbeck stochastic differential equation which is described below in Equation 2.20. W 

represents the Wiener process, which provides the stochastic behavior module. 

𝑑𝜖 = −𝜖𝑑𝑡 + (2.0𝐸 − 4)𝑑𝑊                                            (2.20) 

An Euler-Maruyama method (Equation 2.21) is used to numerically approximate the 

solution for each element of the cell. 𝑅 is a random number taken from a normal 

distribution with a mean of zero and a standard deviation of unity. Additionally, 𝜇 is the 
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mean, 𝜎 is the variance, and 𝜃 is the rate of reversion to the mean. Parameter values are 

displayed below in Table 2.2. The timestep Δ𝑡 is globally set to be 1.0E-3. 

𝜖𝑛+1 = 𝜖𝑛 + ∆𝑡(𝜃𝑛[𝜇 − 𝜖𝑛]) + 𝜎𝑛+1𝑅√∆𝑡                              (2.21) 

 

Parameter Value 

𝜇 0 

𝜎 2.0E-4 

𝜃 1 

 

Table 2.2: Parameters used in the Euler-Maruyama method solution. μ is the mean, σ is the 

variance, and θ is the rate of reversion to the mean. 

 

The coupled activator-inhibitor system is solved on the surface of the deforming cell 

using an evolving surface finite element method developed by Dziuk and Elliott [85]. 

Details of the solution are presented here. Consider the generic, time-dependent differential 

equation seen in Equation 2.22. Here, 𝐷 is the diffusivity and 𝑓(𝑎) is the reaction term 

which may be a function of multiple species.  

𝑎̇ − 𝐷∆𝑆𝑎 − 𝑓(𝑎) = 0                                                (2.22) 

We first multiply by an arbitrary weak function (𝜙) and integrate over the cell surface. 

∫[𝑎̇𝜙 − 𝐷(∆𝑆𝑎)𝜙 − 𝑓(𝑎)𝜙]

 

𝑆

𝑑𝑆 = 0,     ∀𝜙                            (2.23) 
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Equation 2.23 can be simplified using integration by parts, in which one of the resulting 

terms will vanish because the cell surface is closed, so no net flux occurs [86]. This leads 

to Equation 2.24. 

∫[𝑎̇𝜙 + 𝐷∇𝑆𝑎 ∙ ∇𝑆𝜙 − 𝑓(𝑎)𝜙]

 

𝑆

𝑑𝑆 = 0,     ∀𝜙                         (2.24) 

This equation is displayed below with a superscript “e” added to indicate that 

approximations are to be taken. 

∫[𝑎𝑒̇𝜙𝑒 + 𝐷∇𝑆
e𝑎𝑒 ∙ ∇𝑆

e𝜙𝑒 − 𝑓(𝑎𝑒)𝜙𝑒]

 

𝑆𝑒

𝑑𝑆 = 0,     ∀𝜙                 (2.25) 

Approximations are now introduced for the species 𝑎 and arbitrary function 𝜙 for each 

triangular element using basis functions.  

𝑎𝑒 = ∑ 𝛼𝑗𝜒𝑗

𝑁𝑒

𝑗=1

                                                        (2.26) 

𝜙𝑒 = ∑ 𝜒𝑘

𝑁𝑒

𝑘=1

                                                           (2.27) 

𝑑

𝑑𝑡
∫ ∑ 𝛼𝑗𝜒𝑗𝜒𝑘

𝑁𝑒

𝑗=1

 

𝑆𝑒

+ 𝐷 ∫ ∑ 𝛼𝑗∇𝑆
𝑒𝜒𝑗 ∙ ∇𝑆

𝑒𝜒𝑘

𝑁𝑒

𝑗=1

 

𝑆𝑒

− ∫ ∑ 𝑓𝑒𝜒𝑗

𝑁𝑒

𝑗=1

 

𝑆𝑒

= 0           (2.28) 

With further simplification, the above can be reduced into an ordinary differential equation 

for each element as follows. 

𝑑

𝑑𝑡
(𝑀𝑒𝛼𝑒) + 𝐾𝑒𝛼𝑒 = 𝐹𝑒                                             (2.29) 
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Here, 𝑀𝑒 is the element mass matrix,  𝐾𝑒 is the element stiffness matrix, and 𝐹𝑒 is an 

element forcing vector as described below. The matrix 𝐵 is the gradient operator matrix 

derived from the triangular shape functions, whereas 𝐴𝑒is the area of an element. The mass 

and stiffness matrices may be fully solved on three-node triangular elements without the 

use of integration, while Gauss quadrature is needed for the forcing term. 

𝑀𝑒 = ∫ 𝜒𝑗𝜒𝑘𝑑𝑆

 

𝑆𝑒

=
𝐴𝑒

12
[
2 1 1
1 2 1
1 1 2

]                                    (2.30) 

𝐾𝑒 = 𝐷 ∫ ∇𝑆
𝑒𝜒𝑗 ∙ ∇𝑆

𝑒𝜒𝑘𝑑𝑆

 

𝑆𝑒

= 𝐷 ∫ 𝐵𝑇𝐵𝑑𝑆

 

𝑆𝑒

                                 (2.31) 

𝐹𝑒 = ∫ 𝑓𝑒𝜒𝑗𝑑𝑆

 

𝑆𝑒

                                                      (2.32) 

Equation 2.29 can be globally assembled over each element, resulting in the final form of 

the activator-inhibitor equation below. A forward difference approximation is utilized for 

the time derivative, while a semi-implicit method is used for the remaining terms.  

𝑑

𝑑𝑡
(𝑀𝑎) + 𝐾𝑎 = 𝐹                                                   (2.33) 

This method is used to solve for the local activator and inhibitor concentrations on the 

cell surface at each timestep. With knowledge of 𝑎1, the solution for the global inhibitor 

𝑎2 is easily found as the average of local activator over the cell surface (Equation 2.34), 

where 𝑁 is the total number of nodes. Note that this species is spatially uniform over the 

cell surface. 
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𝑎2 =
1

𝑁
∑ 𝑎1

𝑖

𝑁

𝑖=1

                                                        (2.34) 

Knowledge of the local activator concentration on each cell node will later tie into the 

protrusive force, which we assign a linear relation as seen below in Equation 2.35. The 

force is directed in the outward normal direction of the cell membrane by the unit vector 

𝒏, where 𝜉 is deemed the force per actin filament. A linear relation is chosen for the 

protrusive force [7] since the complexities between cell signaling and actin polymerization 

are not fully understood, while computational models using other force relations have 

found no significant differences [9]. 

𝑭𝑝 = 𝜉𝑎1𝒏                                                            (2.35) 

2.3.1 Validation 

Both qualitative and quantitative validations have been performed to determine the 

accuracy of our surface finite element method. Qualitative tests were done by solving the 

Fitzhugh-Nagumo activator-inhibitor system on a rigid sphere as seen in [87]. Figure 2.2 

below illustrates our solution as a spiral wave meandering over the spherical surface for 

several timesteps. We note that even after sufficient time has elapsed, the wave is still well 

resolved, demonstrating the accuracy of our method. 

Qualitative validation was also done by comparing the types of Turing instabilities we 

were capable of generating against existing models in the literature. Through adjustment 

of several parameters in Equations 2.17-2.19, our finite element method is capable of 

producing arrays of high-concentration spots of varying sizes and densities. Furthermore, 

dynamic and bifurcating patterns are also possible, while variations of stripes and spots are 
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also seen. Figure 2.3 illustrates some of the diverse patterns which have been generated. 

We note that the results agree very well with works which have modeled activator-inhibitor 

systems previously [7,86,88,89]. 

 

Figure 2.2: Solution of the Fitzhugh-Nagumo activator-inhibitor system on a rigid sphere 

using our surface finite element method. Dimensionless solution times are indicated. 
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Figure 2.3: Diversity of patterns generated with our surface finite element method using 

Meinhardt kinetics. (A) Six large, stable spots. (B) Numerous small, stable spots. (C) 

Multiple small, stable spot scattered over the surface. (D) Numerous small, stable spots 

with inverted concentrations. (E) Stable ridges. (F) Combinations of inverted ridges and 

spots. (G) A meandering spot which changes direction, darting about. (H) A single spot 

rotating around the surface. (I) A hemispherical band cyclically forming at one pole and 

terminating at the other. (J-L) A bifurcating system. Red contours represent high 

concentration. 
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Finally, a quantitative validation was performed by solving the diffusion equation on a 

rigid sphere as described by Equation 2.36.  

𝑎̇ = ∆𝑠𝑎                                                              (2.36) 

An initial distribution following Equation 2.37 was applied, and the system was allowed to 

run towards a steady-state value. Figure 2.4 tracks the concentration of one point on the 

sphere as well as the exact solution (Equation 2.38), and we find agreement between the 

two. 

𝑎(𝒙, 𝑡 = 0) =
𝑧

𝑅
                                                     (2.37) 

𝑎(𝒙, 𝑡) =
𝑧

𝑅
𝑒−2𝑡                                                     (2.38) 

 

Figure 2.4: Solution of the diffusion equation on a rigid sphere using our surface finite 

element method. One point on the rigid sphere is tracked over time and compared to the 

exact solution. 
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2.4 Weak Adhesion Model 

The amoeboid migration mode has been described as highly deformable with a diffuse, 

non-clustered, linear surface distribution [1]. And although experiments have shown 

adhesion to be dispensable for amoeboid migration in confined matrix geometries, 

adhesion is still a necessary cell function which mediates cell behavior, retention, invasion, 

and communication [50]. With this in mind, an amoeboid-specific adhesion model was 

sought to study new cell dynamics engendered by cell-matrix adhesive interactions.  

Among the existing amoeboid migration works within the literature, attempts to study 

adhesion have produced a variety of models. Some consider adhesion to be negligible 

[8,13,29], while others assign an ad hoc, drag-based constraint which acts against migration 

[7,34]. Other models have set adhesive force to be proportional to cell adhesion complex 

density [30] or receptor-ligand concentrations and matrix elasticity [31]. Cirit et al modeled 

nascent and stable adhesions at the leading edge using ordinary differential equations [14]. 

Finally, discrete adhesion models which consider each bond as a deformable spring have 

been considered [11,32]. 

Perhaps the most prominent adhesion model comes from the work of Bell et al [4], and 

its derivatives [5,104], which utilizes thermodynamic calculus to model discrete adhesions 

as springs driven by reaction kinetics. The model is further strengthened with the addition 

of a stochastic Monte-Carlo method [16], which adds uncertainty to whether or not a bond 

will form or break. To begin, reaction rates relating the separation distance between the 

cell and obstacle surface are established as seen in Equation 2.39 and 2.40, where 𝐾𝑓 is the 

forward reaction rate (bond creation) and 𝐾𝑟 is the reverse reaction rate (bond retraction). 
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Furthermore, 𝐾𝑟
𝑜 and 𝐾𝑓

𝑜 are the unstressed reaction rates, 𝜎 is the spring constant, 𝜎𝑡𝑠 is 

the transition-state spring constant, 𝑙 and 𝑙𝑜 are the current and reference ligand lengths, 

and 𝐾𝐵𝑇 is the thermal energy based on the Boltzmann constant and absolute temperature. 

𝐾𝑟 = 𝐾𝑟
𝑜𝑒𝑥𝑝 [

(𝜎 − 𝜎𝑡𝑠)(𝑙 − 𝑙𝑜)2

2𝐾𝐵𝑇
]                                     (2.39) 

𝐾𝑓 = 𝐾𝑓
𝑜                                                            (2.40) 

The probabilities of forward reaction (𝑃𝑓) and reverse reaction (𝑃𝑟) are subsequently 

established as described by Equations 2.41 and 2.42. 

𝑃𝑓 = 1 − exp(−𝐾𝑓∆𝑡)                                                (2.41) 

𝑃𝑟 = 1 − exp(−𝐾𝑟∆𝑡)                                                (2.42) 

The Monte-Carlo method is then applied by considering the parameters 𝑁𝑓 and 𝑁𝑟, random 

numbers selected between zero and unity. If 𝑃𝑓 > 𝑁𝑓, a proposed bond will form, while if 

𝑃𝑟 > 𝑁𝑟, an existing bond will terminate [5,66]. Finally, for the bonds which have 

successfully formed, or for the bonds which have remained intact, an adhesive force based 

on Hookean spring physics may be defined.  

𝑓𝑎 = 𝜎(𝑙 − 𝑙𝑜)                                                      (2.43) 

2.5 Extracellular Matrix Geometry 

As is the case present in the in vivo setting, cells often encounter a variety of obstacles 

in their extracellular environment, be it other cells, or the many matrix constituents which 

makeup body tissue. Here we discuss a framework for including rigid, non-moving 

obstacles into the fluid computational domain. Obstacle geometries are “immersed” into 
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the extracellular fluid, serving as the solid-phase component of the porous medium. A no-

slip boundary condition is imposed on the surface of each obstacle. Because the 

continuous-forcing immersed boundary method is more well-behaved for elastic interfaces 

than rigid boundaries, however, a direct-forcing immersed boundary method is 

alternatively used. This Sharp-Interface Ghost Node method, which is introduced in detail 

in [107], allows for the implementation of arbitrarily-shaped obstacles whose surfaces do 

not necessarily coincide with the regular Eulerian mesh. Because of this freedom of 

geometry, additional considerations are required to enforce the no-slip condition on the 

obstacle surface.  

As depicted in Figure 2.5, the Eulerian nodes determined to be inside of a closed 

obstacle are relabeled as solid nodes. The solid nodes immediately underneath the obstacle 

surface are further classified as ghost nodes (GN). A boundary intercept (BI) is then defined 

to be the point on the cell surface intersected by the surface normal vector passing through 

the ghost node. Finally, an image point (IP) is defined as the point outside of the cell 

running along the ghost node normal at a distance equivalent to the spacing between the 

ghost node and boundary intercept. The boundary intercept velocity 𝒖𝐵𝐼 is then set as the 

average value of the ghost node and image point velocities, 𝒖𝐺𝑁 and 𝒖𝐼𝑃, respectively. 

Enforcement of the no-slip condition requires setting 𝒖𝐵𝐼 to zero as seen in Equation 2.44. 

𝒖𝐵𝐼 =
(𝒖𝐺𝑁 + 𝒖𝐼𝑃)

2
= 0                                            (2.44) 

Finally, with knowledge of 𝒖𝐼𝑃 from a trilinear interpolation of the solved velocity field, 

the ghost node velocity can be determined as 𝒖𝐺𝑁 = −𝒖𝐼𝑃. This velocity value is enforced 

during solution, ensuring the no-slip condition on each obstacle surface is satisfied. 
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Obstacle validation has been performed in previous studies [107], where a rigid and 

nondeformable spherical obstacle was subjected to shear flow. Velocity data was compared 

to the analytical solution with excellent agreement. A more complex validation was 

performed by considering multiple deformable cells migrating through a bifurcating and 

merging rectangular channel, which produced good quantitative agreement. 

  

Figure 2.5: Illustration of the Ghost Node method. Ghost node velocities are valued such 

that a no-slip condition will occur at the boundary intercept. 

 

2.6 Fluid-Structure Interaction 

We consider both the cytosol in the cell interior and the extracellular fluid to be 

incompressible Newtonian fluids. Additionally, since viscous forces dominate at the 

microscale, the Reynold’s number is taken as zero. We also assume the absence of any 

inertial terms, which leads to the Stoke’s equations and incompressibility condition as seen 
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below, where 𝒖 is the velocity field vector, 𝑝 is the pressure field, and 𝜇 is the fluid 

viscosity. While a viscosity contrast can be applied between the cytosol and external fluid, 

we assume the fluid densities to be that of water. 

∇ ∙ 𝒖 = 0                                                           (2.45) 

0 = −∇𝑝 + ∇ ∙ 𝜇[∇𝒖 + ∇𝒖𝑇]                                      (2.46) 

Coupling between protrusive force, cell deformation, and fluid motion is done by 

considering the continuous-forcing immersed-boundary method [105], which allows for a 

single set of governing equations to be defined for the cell interior and exterior. To 

differentiate between the two fluid domains, an indicator function 𝐼(𝒙) is used as seen 

below in Equation 2.47, where 𝜇𝑖 is the cytosolic interior viscosity, and 𝜇𝑜 is the viscosity 

of the extracellular fluid. 

𝜇(𝒙, 𝑡) = 𝜇𝑜 + (𝜇𝑖 − 𝜇𝑜)𝐼(𝒙, 𝑡)                                  (2.47) 

Naturally due to cell migration, the indicator function, which has a magnitude of either 

unity or zero, requires constant updating as the cell moves through the domain. This is 

accomplished by solving the Poisson equation seen below in Equation 2.48, where 𝛿 is the 

three-dimensional Dirac-delta function, 𝑥 is a location in the fluid domain, 𝑥′ is a point on 

the cell membrane, 𝒏 is the outward normal vector, and 𝑆 is again the cell surface. 

∇2𝐼(𝒙, 𝑡) = ∇ ∙ ∫ 𝛿(𝑥 − 𝑥′)𝒏𝑑𝑆
 

𝑆

                                 (2.48) 

The influence of the cell membrane on the fluid, which serves as the boundary between 

the fluid interior and exterior, is accounted for by introducing a source term into the 

governing equations as seen below, where 𝒇𝑒 and 𝒇𝑏 are the forces due to shear 
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deformation and area dilation, and bending, respectively. 𝒇𝑝 is the membrane protrusion 

force due to pseudopod extension, and 𝒇𝑎 is the membrane force resulting from adhesive 

bonding with the extracellular matrix.  

0 = −∇𝑝 + ∇ ∙ 𝜇[∇𝒖 + ∇𝒖𝑇] + ∫ (𝒇𝑒 + 𝒇𝑏 + 𝒇𝑝 + 𝒇𝑎)
 

𝑆

𝛿𝑑𝑆               (2.49) 

The delta function 𝛿 is zero except on the cell membrane, thus allowing the coupling 

between cell and fluid. Numerically, however, the delta function is approximated using a 

cosine function which smoothly spans over four Eulerian grid points in the fluid domain 

as seen by Equation 2.50, where ℎ is the distance between Eulerian nodes in the fluid, 𝑥𝑖 

is an Eulerian node, and 𝑥𝑖
′ is Lagrangian node on the cell surface [106]. 

𝛿(𝑥 − 𝑥′) =
1

64ℎ3
∏ [1 + cos

𝜋

2ℎ
(𝑥𝑖 − 𝑥𝑖

′)] ,

3

𝑖=1

                         (2.50) 

                   𝑓𝑜𝑟 |𝑥𝑖 − 𝑥′| ≤ 2ℎ, 𝑖 = 1, 2, 3 

= 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

2.7 Flow Solver 

Equation 2.49 is solved to obtain the fluid velocity field 𝒖(𝒙) in the domain. The cell 

membrane velocity 𝒖𝑚 can then be found via an interpolation integral coupled with the 

Dirac-delta function as seen in Equation 2.51, where 𝒙′ is again a Lagrangian node on the 

cell surface, and 𝒙 is a fluid node. Advection of the membrane nodes labeled as 𝒙𝑚 can 

then be performed using 𝑑𝒙𝑚 𝑑𝑡⁄ = 𝒖𝑚, thus resulting in the new cell position at the next 

timestep. 
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𝒖𝑚(𝒙′) = ∫ 𝒖(𝒙)𝛿(𝒙 − 𝒙′)𝑑𝒙
 

𝑆

                                        (2.51) 

The numerical technique for solving the computational domain which includes the cell 

membrane, internal and external fluid, and obstacle geometries is detailed in [107] but is 

briefly discussed here. A projection method is used for the solution of the unsteady Stokes 

equations. First, an advection-diffusion equation is solved, where the body-force terms 

representing the cell membrane, protrusion, and adhesion forces are treated explicitly using 

an Adams-Bashforth second-order method. Viscous terms are treated semi-implicitly using 

a Crank-Nicholson method. The pressure and velocity field within the Eulerian grid are 

organized in a staggered arrangement, with pressure at the center of an element, and 

velocity components at the edges. Spatial derivatives are evaluated using second-order 

finite differencing. The advection-diffusion equation is then solved using an alternating 

direction implicit (ADI) method. Next, a Poisson equation is solved to enforce the 

incompressibility constraint. An implicit solution is performed, while the periodic nature 

of the computational domain allows the use of a Fourier expansion for fast solutions. 

2.8 Dimensionless Parameters and Scaling 

Three dimensionless parameters are considered for a deformable amoeboid cell 

immersed in an unbounded fluid medium as described by Equations 2.52 through 2.54. 𝜆 is 

defined as the ratio between internal cell viscosity and external fluid viscosity. A range 

from 0.1 − 10.0 is considered in Chapter 3 but kept at an equal ratio in Chapters 4 and 5. 

𝛽 is the ratio between local inhibitor diffusivity to local activator diffusivity, and is set in 

the range of 1.5 − 3.5 in Chapter 3. In Chapters 4 and 5, 𝛽 is kept exclusively at 3. Finally, 

𝛼 is defined to be the ratio of protrusive force to membrane elastic force, which is set in 
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the range of 1.0 − 10.0 in Chapter 3, but limited to a maximum of 7.0 in Chapters 4 and 

5. Here, 𝑅 is the cell radius, and 𝐺𝑠 is the membrane shear modulus. 

𝜆 =
𝜇𝑐𝑦𝑡𝑜𝑠𝑜𝑙

𝜇𝑓𝑙𝑢𝑖𝑑
                                                     (2.52) 

𝛽 =
𝐷3

𝐷1
                                                              (2.53) 

𝛼 =
ξ

𝐺𝑠𝑅
                                                           (2.54) 

When the cell is exposed to matrix geometries, two more dimensionless parameters are 

required as listed in Equations 2.55 and 2.56. 𝜙 is defined as the matrix porosity, or void 

space over the total space of the computational domain, and ranges from 0.54 for the 

densest matrix implemented to 1.00 for an unbounded domain. Finally, 𝛾 is the ratio of 

obstacle radius to the radius of the cell, and varies from 0.25 − 2.00. 

𝜙 =
𝑉𝑣𝑜𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
                                                               (2.55) 

𝛾 =
𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑅
                                                         (2.56) 

Length is scaled by the cell radius 𝑅, which for migrating amoeboid cells is in the range 

of 10 − 50 𝜇𝑚 [27]. Time is scaled by 
𝑅2

𝐷1
 and velocity by 

𝐷1

𝑅
. The shear modulus 𝐺𝑠 is on 

the order of 10−6 𝑁

𝑚
 [90] while the activator and inhibitor diffusivities, 𝐷1 and 𝐷3 are on 

the order of 1
𝜇𝑚2

𝑠
, while the force per actin filament 𝜉 ranges from 3 − 8 𝑝𝑁 [91]. The 

strength of an integrin bond is approximately 40 𝑝𝑁 [19].  
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Chapter 3 

Pseudopod-Driven Swimming of an Amoeboid Cell 

in a Fluid Medium1 

 

Amoeboid cells migrate through the use of pseudopods, or cylindrical extensions of the 

cell membrane which protrude, bifurcate, and retract in a dynamic fashion, resulting in a 

net displacement of the cell. This complex problem involves the interaction between the 

internal cytoplasm and extracellular fluid medium, coupled with bio-molecular reactions 

taking place on the cell surface in addition to extreme cell deformations. As has been 

recently observed experimentally, amoeboid cells are capable of swimming in a fluid 

medium completely absent of adhesive traction forces. In this work, an amoeboid cell is 

immersed inside an unbounded fluid domain where pseudopod-driven locomotion is 

activated. Results are compared to experiments both qualitatively and quantitatively. It is 

found that swimming behavior transitions from a random-like motion to a persistent 

unidirectional motion as cell deformability or protein diffusivity increase. This behavior is 

subsequently accompanied by an increase in swimming speed, and is due to the focusing 

of pseudopods on the cell anterior. Greater numbers of pseudopods are generated with 

increasing deformability and protein diffusivity, thereby amplifying this effect. Similar 

behavior is seen with regard to low viscosity ratio, while a nonlinear effect is seen in 

swimming speed as the viscosity ratio is increased. Results show a strong coupling between 

cell deformability, protein diffusivity, and fluid viscosity. 

                                                 
1 Adapted from ref. [148] E. J. Campbell and P. Bagchi. A computational model of amoeboid cell swimming. 
Physics of Fluids, 29:101902 (2017) with the permission of AIP Publishing 
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3.1 Introduction 

As was described in Chapter 1, the amoeboid migration mode presents a highly 

deformable and dynamic migration mechanism through its use of pseudopods, or active 

actin-based membrane extensions which protrude, bifurcate, and retract over time, 

resulting in a net locomotion of the cell. A multitude of cells are known to migrate using 

the amoeboid mode, such as immune cells as they search and destroy foreign pathogens 

[22], epithelial cells during wound repair [24], embryonic positioning during reproduction 

[23], and even the metastasis of cancer cells [1]. The amoeba Dictyostelium discoideum 

(Dicty) also achieves motility through pseudopod-based mechanisms, and has served as an 

excellent case study due to its size and speed under experimental conditions.  

In summary, pseudopod creation is a complex process beginning with the activation of 

external receptors due to outside stimuli. Signaling cascades then occur in which the 

nucleation of actin is started by the Arp2/3 complex, converting G-actin monomers into F-

actin filaments which are crosslinked directly below the plasma membrane, resulting in a 

protrusive force which extends the cell forward. Contraction of the cell rear via the 

molecular motor Myosin II combined with the creation of adhesive bonds in the anterior, 

and rupture of bonds in the posterior creates a cyclic behavior which results in a net cell 

migration. For the case of a swimming cell, however, no adhesion is present. Furthermore, 

no explicit contractile mechanism is present within our model. Recent experimental 

observations have shown that amoeboid cells are capable of swimming while suspended in 

a fluid medium using only pseudopod-based modes, which extend near the cell anterior, 

bifurcate, migrate towards the rear, and finally retract [2-3,113]. These observations are 

validated by Purcell’s Scallop Theorem, which states that non-reciprocal motions in time, 
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such as that caused by dynamic pseudopod activity, could generate a drag force sufficient 

for propulsion on the microscale [6]. 

Among the various properties of an amoeboid cell, deformability is known to play a 

critical role in regard to cell migration [2-3,9,27,113]. In fact, because metastatic cancer 

cells were observed to be much softer than their stiffer, benign counterparts [115], cell 

deformability has been proposed as a biomarker for metastatic potential [114]. Both 

fibroblasts and breast cancer cells which underwent cell softening were seen to exhibit 

higher migration speeds and an increased proliferation of malignant cells [116]. In addition 

to the membrane elasticity, the rheology of the cell cytoplasm and extracellular fluid are 

two major parameters which control cell deformation. Streaming flow occurs within a 

growing pseudopod as it extends outward and encounters drag imposed by the extracellular 

fluid [119-120]. A protruding pseudopod must also overcome membrane tension, after 

which the resulting tension and membrane curvature can affect actin-associated proteins 

like Ras [117-118], thereby generating a coupled feedback loop affecting cell motility. 

While the field of amoeboid motility has seen significant modeling advancement 

recently, a full three-dimensional model still remains a challenge [121]. Numerous models 

consider only the biochemical aspect of cell migration, but not fluid flow or cellular 

deformation [122-123]. Other models which do consider cell deformation are limited to 

two-dimensions [8,124-127], while further models are limited to relatively simple cell 

shapes [127-129]. Several noteworthy studies are now discussed. Vanderlei et al [130] 

constructed a two-dimensional motile cell model using the immersed boundary method, 

resolving cell deformation, internal and external fluid flows, and a cell-volume reaction-

diffusion system, thus allowing advection-diffusion of biochemical species within the cell 
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as it migrates and deforms. Bottino and Fauci [131] also modeled a two-dimensional, 

deformable and motile amoeboid cell using an immersed boundary method, where the 

cytoskeleton was modeled as a network of dynamic springs immersed in fluid. In addition 

to protrusive and contractile forces, cycles of attachment and detachment while crawling 

over a substrate were seen. Elliott et al [7] constructed a three-dimensional model of a 

deforming cell with bifurcating pseudopods. Similar to other models [8,9,125-126,128-

129], however, no modeling of cytoplasm or extracellular fluid was done, which as 

discussed, is an important factor in determining cell motility. Farutin et al [108] and Wu et 

al [132] both conceived of a deformable cell driven via an axisymmetric oscillating force. 

But, while internal and external fluids are considered, the complex dynamic nature of 

pseudopods are not captured, nor is the random movement that would be expected for 

amoeboid motion. Najem and Grant [133] simulated the migration of neutrophils 

responding to external cues in three-dimensions using a phase-field approach, but ignored 

the presence of fluids. Finally, Moure and Gomez [10-11] used a phase-field approach to 

simulate two- and three-dimensional amoeboid motility through obstacle fields and fibrous 

networks. Cytosolic fluid and rheology, acto-myosin dynamics, and membrane signaling 

dynamics using activator reaction-diffusion equations were all considered. 

3.2 Results 

3.2.1  General Swimming Behavior 

Figure 3.1 displays a sequence of a swimming amoeboid cell as it migrates through the 

fluid medium over time. Qualitative comparisons are made using references [2-

3,9,27,113,135,157-158], and good agreement is seen between predicted amoeboid shapes 

and experimental images of migrating cells. Since the fluid is coupled to the cell, ad hoc 
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models for the drag are not needed as has been done in earlier studies [7-8,29,125-

126,128,]. The effect of fluid drag on the cell is directly resolved. Furthermore, the 

nonlinear membrane model used is a significant improvement over other models, and as a 

result, simulations can be run for long durations, even for cells which generate complex 

and highly deformed shapes. Several interesting types of behavior are witnessed within the 

sequence. de novo pseudopod formation, bifurcation, pseudopod meandering, and 

retraction are all seen in each simulation, contributing to the highly dynamic behavior seen 

as the cell migrates. Looking at Figure 3.1A in particular, the cell is initialized as a sphere 

with uniform activator and inhibitor concentrations set. Random noise generated within the 

reaction-diffusion system then causes perturbations which develop into a single high-

concentration activator instability. Because activator concentration is directly linked to 

protrusive force, a de novo pseudopod begins to emerge as the membrane extends outwards 

(Figure 3.1A (a)). As the pseudopod protrudes further into the extracellular fluid, a 

bifurcation begins to take place, where the parent pseudopod splits into two daughter 

pseudopods as seen in (b) and (c). Responding to the protrusive force directions imparted 

to the pseudopods, a meandering behavior is seen in (c) and (d), which further propels the 

cell forward. Another bifurcation is seen in (e) which then develops into the form shown 

in (f). In (g), the decay of a pseudopod is shown, where the membrane protrusion still 

remains after the high-concentration activator has diminished. This causes a fundamental 

shift in pseudopod direction, as seen in (h) where a new forward direction is maintained by 

further pseudopod bifurcations. In (i) through (o), another characteristic behavior is seen 

in which pseudopods focus toward the front of the cell, providing a consistent protrusive 

force and allowing the cell to maintain a nearly persistent direction. This directional motion 
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is then interrupted in (o) by an errant pseudopod which causes a turn as seen by (p) and (q). 

As shown in Figure 3.1, the active nature of pseudopod dynamics causes significant three-

dimensional movement and deformation. 

 

Figure 3.1: Sequence of images of a swimming amoeba as predicted by our simulations. 

(A) 𝛼 = 5, 𝛽 = 3, 𝜆 = 1. Direction of cell motion is from (a) to (q). Color contours 

represent the activator concentration. (B) 𝛼 = 3, 𝛽 = 2.5, 𝜆 = 1. (C) 𝛼 = 2, 𝛽 = 2, 𝜆 =
0.1. Reprinted from [148] with the permission of AIP Publishing. 
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Figure 3.2: Instantaneous cell shapes at reduced membrane stiffness. (A) 𝛼 = 1.5, 𝛽 = 3, 

𝜆 = 1. (B) 𝛼 = 5, 𝛽 = 3, 𝜆 = 0.1. (C) 𝛼 = 5, 𝛽 = 3, 𝜆 = 10. Swimming direction is from 

left to right. Color contour represents activator concentration. Reprinted from [148] with 

the permission of AIP Publishing. 

 

Parameter studies have revealed the large dependence that membrane stiffness, 

protrusive force, protein diffusivity, and fluid viscosity have on cell shape and dynamics. 

Figure 3.2 illustrates the differences in cell shape for several parameters. For the parameter 

𝛼, for which larger values correspond to reduced membrane stiffness, cells generally adopt 

a more spherical shape when 𝛼 < 3. For values of 3 or greater, however, elongated cell 

shapes are observed as seen by Figure 3.1A (k)-(n). Similar behavior is seen when the 

diffusivity ratio 𝛽 is varied. When 𝛽 > 2.5, elongated cell shapes are again seen, while for 
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smaller values of 𝛽, rounded shapes can be found. Comparable observations can be made 

with the viscosity ratio 𝜆, where elongated cell shapes and generally spherical shapes are 

seen for 𝜆 < 1 and 𝜆 ≥ 1, respectively, as seen in Figure 3.2 B and C. Pseudopods 

themselves are noted to be more slender and longer for cases with softer membranes and 

higher diffusivity ratios, while they are seen as shorter and wider for stiffer membranes and 

lower diffusivity ratios. For small 𝛼, the protrusive force is not significant enough to 

overcome membrane tension, thus resulting in mostly spherical shapes (Figure 3.2A). A 

general roundness is also seen for high values of viscosity ratio 𝜆, where viscous dissipation 

and membrane tension act to counter the protrusive force. Pseudopod remnants can also be 

seen in Figure 3.2C for the case of high viscosity ratio, where larger shape recovery times 

slow down the rate of pseudopod retraction even though activator concentrations have 

decayed.  

3.2.2  Instantaneous Velocity and Cell Trajectory 

Because our model provides no bias in the stochastic noise fed into the activator 

equation, external cues are not present, and therefore do not affect cell dynamics. As a 

result, pseudopod generation, bifurcation, meandering, and retraction occur randomly and 

as dictated by key cell properties. We have found, however, that under certain parameter 

ranges, cell migration behaviors can transition from a random-walk like behavior to a more 

persistent swimming migration. Figure 3.3A illustrates several cell centroid trajectories of 

amoeboid cells over time and with various cell parameters to show this effect. Cells 

categorized by lower values of 𝛼 and 𝛽, and higher values of 𝜆  (color trajectories) are seen 

to travel shorter distances characterized by sharp and frequent turns. Changes in direction 

were discussed previously, and are caused by pseudopod meandering and retractions. On 
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the opposite spectrum of parameters, higher values of 𝛼 and 𝛽, and lower values of 𝜆 (black 

trajectories) are noticeably longer in length and have fewer and smaller magnitude 

directional changes, resulting in a persistent migration.  

Instantaneous cell centroid velocities 𝑉𝐶 are shown in Figure 3.3B for several values of 

𝛼 and 𝛽. The randomness in cell migration can be observed from fluctuations in the 

velocity curves, where larger-scale changes in velocity are due to directional changes of 

the whole cell, while smaller maxima and minima occur as a result of the motions from 

pseudopod dynamics. Velocity magnitudes are also seen to vary, with higher speeds seen 

for larger 𝛼 and 𝛽 with the reverse true for smaller values. Further analysis reveals larger 

values of 𝛽 show smaller-magnitude fluctuations in velocity, demonstrating a more 

persistent directional motion characterized by fewer deviations from pseudopod dynamics. 

For the viscosity ratio, similar effects are noted. Larger values of 𝜆 show higher degrees of 

fluctuations leading to smaller velocities, while smaller 𝜆 results in reduced fluctuations 

and higher velocities brought about by persistent motion. 

 

Figure 3.3: (A) Sample cell trajectories. Parameter values are noted for the trajectories 

shown using black symbols. For green, blue, and red, 𝛼 = 6, 7, and 8, respectively. 𝛽 = 2 

and 𝜆 = 1. For magenta, 𝛼 = 1, 𝛽 = 3, 𝜆 = 10. (B) Instantaneous velocity of cell centroid. 
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A question arises of whether the swimming migration seen in our simulations is 

characterized as diffusive or ballistic (super diffusive). Often the subject of entire works in 

the literature, it has been shown that ballistic motion can occur over shorter time scales on 

the order of persistence time, while longer times can be described as diffusive after 

encountering the caprices of the cell’s migration [134-135]. Mean Squared Displacement 

(MSD) was computed and is displayed in Figure 3.4 for several cell trajectories. At larger 

times, the MSD appear to exhibit a linear trend, indicating a diffusive behavior, though a 

full determination would require more extensive simulations which were considered as 

beyond the scope of this work. 

 

Figure 3.4: Mean Squared Displacement (MSD) for several parameter ranges. Reprinted 

from [148] with the permission of AIP Publishing. 

 

3.2.3  Flow Field 

Several snapshots showing instantaneous velocity fields for various cell parameters and 

cell dynamics are illustrated in Figure 3.5. Simulations reveal transient and dynamic fluid 

velocity fields both inside and outside of the cell. During a pseudopod extension event, 

cytoplasmic streaming into the growing pseudopod is observed. On the exterior of the 
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pseudopod, fluid is seen to be drawn towards the growing pseudopod and pushed away. 

The reverse is true during a retraction event, where exterior flow follows the receding 

pseudopod, while a streaming flow occurs towards the main cell body in the interior. 

Velocity magnitudes are seen as larger when near a pseudopod due to the actively 

protruding membrane, while reduced magnitudes occur after high-concentration 

instabilities have decayed due to passive effects. Figure 3.5 also shows complex and 

unsteady flow patterns which result from dynamic cell and pseudopod motion. 

 

Figure 3.5: Instantaneous fluid velocity vectors drawn in a plane passing through the cell 

centroid and superimposed with a two-dimensional cell shape. Colors represent activator 

concentration. Reprinted from [148] with the permission of AIP Publishing. 
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Within the literature are discussions regarding two paradigms of cell swimming: 

pushers and pullers. Pushers are described as generating a fluid repulsion along the 

directional axis of swimming, and a fluid attraction along the sides of the cell. Pullers are 

the exact opposite, pulling in fluid along the axis of swimming, and repelling fluid away 

from the sides. Other unclassified flow patterns, which can be considered a hybrid of 

pusher and puller motion can also exist inside the flow field. In references [108,132], 

deformable vesicles were studied using spherical harmonics for protrusive and contractile 

force. Out of the four strokes of the displacement cycle, one showed pusher motion, and 

another showed puller motion. The remaining strokes showed a hybrid type motion 

encompassing aspects of both modes. Figure 3.6 displays these some of the different 

classifications observed within our simulations. Pusher migration, as seen in Figure 3.6A, 

was only noted to occur during the initial transient period when opposing pseudopods were 

forming, and only for cases of high 𝛼. Puller motion, on the other hand, and which is seen 

in Figure 3.6B and C, was noted to occur more frequently and regardless of 𝛼, but with 

smaller values of 𝛽. In most cases, though, fluid patterns cannot be described by pushers 

or pullers. Figure 3.6D-F illustrate several examples where cell elongation and pseudopod 

focusing on the cell anterior prevent other modes from occurring. 

Pusher and puller classification were also performed qualitatively and quantitatively to 

analyze beyond an instantaneous cell state. For each case, flow fields were examined over 

the entire solution time, after which conclusions were made. Additionally, classifications 

were determined through calculation of the stresslet tensor 𝑺, of which the general form is 

described by Equation 3.1 below [136]. 
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Figure 3.6: Instantaneous fluid velocity vectors. (A) pusher-like motion as observed during 

initial transience. (B-C) Puller-type motion. (D-F) Neither pusher-like or puller-like 

motion. Color contours represent activator concentration. Reprinted from [148] with the 

permission of AIP Publishing. 

 

𝑆𝑖𝑗 = ∮ [
1

2
(𝑥𝑗𝜏𝑖𝑘 + 𝑥𝑖𝜏𝑗𝑘)𝑛𝑘 −

1

3
(𝑥𝑘𝜏𝑘𝑙𝑛𝑙)𝛿𝑖𝑗 − 𝜇(𝑢𝑖𝑛𝑗 + 𝑢𝑗𝑛𝑖)] 𝑑𝐴               (3.1)

 

𝑆

 

For a three-dimensional cell which experiences extreme deformation and dynamic 

pseudopod motion, however, the stresslet tensor has constantly changing non-zero terms, 

making it difficult to interpret. Assuming the problem of an axisymmetric swimmer 

moving along the 𝒆𝑧 direction, however, allows the stresslet to be simplified to a scalar Ψ 

as seen below. 
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𝐒 = Ψ (𝒆𝑧𝒆𝑧 −
1

3
𝑰)                                                             (3.2) 

During initial transient periods, our simulated cells can be approximately modeled as being 

axisymmetric, and therefore Ψ can be computed. For the case of a pusher, Ψ = −15,500, 

while for a pusher, Ψ = 190. The signs of the pusher and puller stresslet are negative and 

positive, respectively, as is the case in the literature [137]. 

3.2.4  Pseudopod Dynamics 

The dynamic nature of Turing instabilities are used to evolve membrane protein 

concentration, which is then linked to protrusive force. Experiments have revealed high 

concentrations of proteins such as Ras or F-actin at the site of a pseudopod [125,159]. This 

effect is modeled using Turing instabilities, which result in the generation, migration, and 

bifurcation of activator patches on the cell surface. Corresponding pseudopod dynamics 

result in a paddle-like, non-reciprocal motion which agrees with Purcell’s theorem [6]. 

Furthermore, pseudopod bifurcation, or “tip-splitting,” is perceived as the key event in 

amoeboid swimming motility [135,159]. 

As inferred from Figures 3.1 and 3.2, cell shape is heavily dependent upon pseudopod 

dynamics, which themselves are dependent on the membrane stiffness, protein diffusivity, 

and fluid viscosity. For larger values of 𝛼 and 𝛽, and smaller values of 𝜆, pseudopods were 

shown to focus near the front of the cell, resulting in an elongated and persistent cell 

motion. On the other hand, for smaller values of 𝛼 and 𝛽, and larger values of 𝜆, cells were 

seen as mostly spherical while pseudopods showed no preference in direction. Elongation 

of the cell was seen to occur as a direct result of oriented pseudopods. Additionally, for 

larger values of 𝛼 and 𝛽, and smaller values of 𝜆, a maximum number of pseudopods, 
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around 3 − 4, were seen to exist in simulations. Only 1 − 2 pseudopods were seen for the 

alternate parameter ranges. 

In order to quantify the directional persistence observed in cells, directionality was 

quantified by plotting the pseudopod tip normals over time using the spherical coordinates 

𝜃 and 𝜙 as seen in Figure 3.7. For stiff cells with lower values of 𝛼 (Figure 3.7A), or with 

values of 𝜆 > 1 (Figure 3.7D), pseudopod tips are seen as uniformly distributed across the 

entire spherical domain, indicating generation or positioning of pseudopods in random 

directions. Scattered pseudopods are also noted to occur for smaller values of 𝛽 as seen in 

Figure 3.7A. On the other hand, for softer cells with higher values of 𝛼 (Figure 3.7C) or 

values of 𝜆 < 1 (Figure 3.7E), pseudopods are seen to form in a narrow grouping of points, 

indicating that pseudopods are focused or generated in the same direction. A tighter 

grouping of pseudopods is also seen as 𝛽 is increased. One would expect an activator-

inhibitor system with random noise to generate random activator patches, yet our 

simulations have predicted a persistent unidirectional motion is possible in the absence of 

an external cue or bias on the activator-inhibitor system. This behavior was also observed 

in experiments [113,134-135], where it was also found that cells were persistent because 

pseudopods maintained direction. This behavior is a direct result of pseudopod dynamics, 

which in turn depend on membrane deformability, protein diffusivity, and fluid viscosity. 

Looking at Figure 3.7F, the primary mechanism for persistent cell migration by focused 

pseudopods can be observed. Starting with the cell on the right, a bifurcation occurs, after 

which two daughter pseudopods migrate outwards and away from each other, creating a 

concavity in the cell membrane. Soon after, the pseudopods begin to move back inwards 

towards the point of bifurcation. One pseudopod will then retract, leaving the remaining 
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pseudopod free to bifurcate in a similar direction, thus preserving the overall directionality 

of the cell. Finally, the inherent three-dimensionality of the swimming amoeboid cell can 

be seen in Figure 3.7G, where pseudopod bifurcations are shown to occur in the plane 

normal to the plane of the previous bifurcation. This aspect of migration could not be 

inferred from two-dimensional experimental images. This behavior also seems to be a 

three-dimensional equivalent of the progression in Figure 3.7F, which is noted to occur 

continuously until persistence is broken by errant pseudopod dynamics. 

 

Figure 3.7: Pseudopod directionality is quantified by the angular position of pseudopod 

tips using spherical coordinates 𝜃 (0 to 2𝜋) and 𝜙 (0 to 𝜋). (A) 𝛼 = 1, 𝛽 = 2, 𝜆 = 1. (B) 

𝛼 = 1, 𝛽 = 3, 𝜆 = 1. (C) 𝛼 = 6, 𝛽 = 3, 𝜆 = 1. (D) 𝛼 = 2, 𝛽 = 3, 𝜆 = 10. (E) 𝛼 = 2, 

𝛽 = 3, 𝜆 = 0.1. Data points are separated by 0.05 dimensionless time. (F) Mechanism of 

focused directionality of pseudopods. (G) Pseudopods bifurcate at angles perpendicular to 

previous bifurcations. Color contours represent activator concentration. Reprinted from 

[148] with the permission of AIP Publishing. 
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Quantification of pseudopod statistics was performed in Figure 3.8, where the average 

and maximum number of pseudopods present are shown in addition to the average 

pseudopod lifetime. Dependence on 𝛼, 𝛽, and 𝜆 is presented. The maximum number of 

pseudopods ranges from 2 − 4, while pseudopod averages are in the range 1.0 − 2.5. 

Similar trends are noted to occur over each parameter range. The average number of 

pseudopods present on a cell at any given time is seen to increase with larger 𝛼 and 𝛽, and 

with decreasing 𝜆. This corresponds to a cell becoming more deformable or as the 

diffusivity ratio increases. For stiffer cells, no more than two pseudopods are seen at a time, 

while the number increases to three or four as the cell becomes softer. Similarly, for low 

values of the diffusivity ratio, a maximum of two pseudopods is seen, while three or four 

pseudopods can be observed with higher diffusivity ratio.  

In Figure 3.8, the average pseudopod lifetime is seen to depend on 𝛼 and 𝛽, but not for 

𝜆. Lifetimes are also noted to decrease with increasing 𝛼, which we attribute to a greater 

propensity to bifurcate when exposed to higher levels of deformability. Lower lifetimes 

also correspond to higher frequencies of pseudopod tip-splitting as 𝛼 is increased. In this 

case, an existing pseudopod can bifurcate before the alternate pseudopod retracts, resulting 

in higher levels of bifurcation frequency and greater amounts of membrane extensions 

present at a given point in time. Pseudopod lifetimes are also seen to increase with 

increasing 𝛽, which is caused by the activator concentration increasing faster than the 

inhibitor concentration, thus allowing Turing instabilities, and subsequently, pseudopods 

to survive longer.  
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Figure 3.8: Pseudopod dynamics. (A-C) show average (black bars) and maximum (grey 

bars) number of pseudopods as functions of 𝛼, 𝜆, and 𝛽, respectively. (D-F) show average 

lifetime (scaled by 𝑅2 𝐷1⁄ ) of a pseudopod. Reprinted from [148] with the permission of 

AIP Publishing. 

 

3.2.5  Swimming Speed 

As inferred by the trajectory and velocity plots in Figure 3.3, pseudopod dynamics play 

a large role in determining the swimming speed of an amoeboid cell. Speed is likewise 

linked to the mechanical properties of the cell in addition to the protein diffusivity 

controlling the activator-inhibitor system. Figure 3.9 plots the time-averaged speed 𝑉𝑐̅ 

(scaled by 𝐷1 𝑅⁄ ) as a function of 𝛼 for two different values of the diffusivity ratio. Average 

swimming speed is seen to increase with increasing 𝛼, which is expected due to larger 

protrusive forces acting on the cell. However, a sizable difference in speed is seen between 

𝛽 = 2 and 𝛽 = 3. Earlier discussions are again referenced to explain this behavior. In 
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Figure 3.7A-C, pseudopod tips are shown to focus in a particular direction as 𝛼 and 𝛽 

increase, thereby summing the individual protrusive forces of each pseudopod and 

resulting in a higher cell speed. When 𝛽 is low, however, pseudopods do not focus, and 

therefore produce a random-type motion characterized by lower swimming speed. 

Similarly, in Figure 3.8, a greater number of pseudopods is produced with higher value of 

𝛽. Coupled with a pseudopod focusing, more pseudopods result in a higher protrusive 

force, and therefore a higher swimming speed.  

Figure 3.9 also shows an increase in the slope of 𝑉𝑐̅ as the diffusivity ratio is increased. 

As a result, cell deformation is seen to have a greater effect on cell speed for larger values 

of the inhibitor diffusivity. Likewise, inhibitor diffusivity provides greater influence as the 

cell becomes more deformable. This statement details the strong coupling between cell 

deformability and surface protein diffusion, which in turn both affect pseudopod dynamics 

and cell speed. The average speed 𝑉𝑐̅ is again plotted against diffusivity ratio and viscosity 

ratio for several values of 𝛼 in Figure 3.10. In Figure 3.10A, the swimming speed is noted 

to be almost constant in the range 𝛽 < 2.25. As 𝛽 increases past this amount, however, the 

swimming speed begins to increase substantially. This trend is again caused by pseudopod 

dynamics detailed in Figures 3.7 and 3.8, which show both an increase in the number of 

pseudopods with 𝛽 as well as a higher degree of focusing. Pseudopod lifetimes are also 

noted to increase with 𝛽, thus allowing for longer usages of protrusive force. Taken 

together, these properties lead to higher protrusive force and higher swimming speed as a 

result. 
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Figure 3.9: Average cell speed as a function of 𝛼. Error bars represent one standard 

deviation. Reprinted from [148] with the permission of AIP Publishing. 

 

The influence of cytoplasmic to extracellular viscosity on the average swimming speed 

is seen in Figure 3.10B for several values of 𝛼. Two distinct trends, which are separated by 

a minimum, are immediately discernible. When 𝜆 < 1, an inverse correlation between 

swimming speed and viscosity ratio exists: As 𝜆 increases, 𝑉𝑐̅ is seen to decrease. When 

minimum swimming speed is reached at 𝜆 = 3, the viscosity ratio and swimming speed 

become positively correlated, where 𝑉𝑐̅ increases with 𝜆. In both regimes, an explanation 

can be found by looking at the pseudopod dynamics. As the viscosity ratio decreases, the 

maximum number of pseudopods is seen to increase (Figure 3.8B). Furthermore, 

pseudopods are found to focus on the cell anterior as seen by Figure 3.7E. Combined with 

larger pseudopod lifetimes, these dynamics give the cell a higher protrusive force focused 
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in the same direction for a longer period of time, thus resulting in higher swimming speeds. 

The case of higher viscosity ratio can be similarly argued. While the number of average 

pseudopods is seen to decrease with increasing 𝜆 and pseudopods are shown to form 

uniformly in all directions, pseudopod lifetimes are seen to increase, thus contributing to 

the slower increase seen for large 𝜆. 

 

Figure 3.10: Time averaged cell speed as a function of (A) diffusivity ratio 𝛽 and (B) 

viscosity ratio 𝜆 for various values of 𝛼. Reprinted from [148] with the permission of AIP 

Publishing. 

 

Our data on the average swimming speed is quantitatively comparable to that of 

experiments. Although most experimental works deal with cell crawling on a substrate, 

some such as [113] have reported data on both migration mechanisms. To convert to 

dimensional quantities, we use a cell size of 20 𝜇𝑚, and an activator diffusivity of 

1 𝜇𝑚2 𝑠⁄ . Speed is then scaled by 𝐷1 𝑅⁄ , which results in a typical swimming speed of 

3 − 9 𝜇𝑚2 𝑚𝑖𝑛⁄  for a dimensionless range of 𝑉𝑐̅ ≈ 1 − 3, considering moderate cell 

parameter values. This range agrees well with experiments showing 3 𝜇𝑚2 𝑚𝑖𝑛⁄  for 

swimming cells, and 7 − 12 𝜇𝑚2 𝑚𝑖𝑛⁄  for crawling cells [113,134]. Additionally, we also 



62 

 

 

 

look at the average pseudopod tip velocity, which is in the range of 15 − 21 𝜇𝑚2 𝑚𝑖𝑛⁄ , 

and has good agreement with the experimental value of 18 𝜇𝑚2 𝑚𝑖𝑛⁄  [113]. 

Other experimental studies have used wild-type and mutant cells to study amoeboid 

motility. In [159], wild-type amoeba were observed to have a more elongated shape and a 

higher migration speed (~22 𝜇𝑚 𝑚𝑖𝑛⁄ ), while nearly spherical mutant cells moved much 

slower at (~3 𝜇𝑚 𝑚𝑖𝑛⁄ ). We link these observations to membrane stiffness, protein 

diffusivity, and cytoplasmic viscosity. Cells are seen to decrease speed and become rounder 

as membrane stiffness increases. Our simulated speeds go from 1.5 − 18 𝜇𝑚 𝑚𝑖𝑛⁄  as 𝛼 

ranges from 1 to 10. Variations in cell speed therefore agree well with experimental data 

for wild-type and mutant cells. Instantaneous velocity plots also show similarities with 

corresponding plots in Figure 3.3B. 

3.3 Summary 

In conclusion, results were presented for a three-dimensional model of a pseudopod-

driven amoeboid cell swimming through a fluid medium. The effect of membrane 

deformability, surface protein diffusivity, and cytoplasmic to extracellular fluid viscosity 

was investigated for cell dynamics, fluid field velocity, pseudopod statistics, and cell 

swimming speeds. A transition from a slow-moving cell characterized by randomly 

generated pseudopods to a persistent cell with higher speed was predicted with increasing 

cell deformability and protein diffusivity, and decreasing viscosity ratio. Persistent 

swimming was seen without any explicit bias within the activator-inhibitor system, and 

occurred as a direct result to changing pseudopod dynamics. Pseudopod directionality, 

quantity, and lifespan were quantified based on deformability, protein diffusivity, and 

viscosity ratio. While swimming speed was seen to increase with increasing deformability 
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and protein diffusivity, non-monotonic behavior was seen as the viscosity ratio was 

changed. Results show a strong coupling between cell deformation and membrane protein 

diffusion in deciding cell motility. 
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Chapter 4 

Adhesion-Independent Pseudopod-Driven Migration 

of an Amoeboid Cell in Extracellular Matrix 

Geometry2  

 

Locomotion of amoeboid cells is accomplished through finger-like extensions of the 

cell body known as pseudopods, which are the primary method of motility for many cells 

within the body including leukocytes, embryonic cells, and cancer. In addition to the 

involvement of complex deformation, biomolecular reactions, and viscous interactions, 

cells within the body are often exposed to a confined geometry known as the Extracellular 

Matrix (ECM). Here we present a computational modeling study of an amoeboid cell 

migrating through a fluid-filled porous matrix array characterized by finite-sized periodic 

spheres. The influence of cell deformability, matrix porosity, and obstacle size on motility 

are analyzed. Migration is found to be completely inhibited below a certain parameter 

range, to which phase plots are presented. New cell dynamics seen as a result of obstacle 

interactions are found, including probing, tug-of-war, doubling-back, and freezing or cell 

arrest. Furthermore, the nearly persistent unidirectional motion seen in unbounded 

migration is found to be lost in the presence of obstacles due to modified pseudopod 

dynamics. This mechanism, however, is seen to aid in matrix penetration as the cell seeks 

new avenues to travel through. These results show a strong coupling between cell 

                                                 
2 Adapted from Ref. 103 with permission from The Royal Society of Chemistry. 
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deformability and ECM properties, thereby providing new insight into amoeboid migration 

in a confined medium. 

4.1 Introduction 

In this chapter, the pseudopod-driven amoeboid cell is immersed in porous extracellular 

matrices of rigid spheres, while porosity and obstacle size are varied. Numerous examples 

can be drawn upon regarding amoeboid cell migration within the body. Some physiological 

processes include the migration of leukocytes through tissue [22], fibroblast reconstruction 

of damaged tissue [59], epithelial cell migration for wound healing [24], and key 

positioning of cells during embryonic development [23]. One of the most prominent 

examples, however, is the amoeboid migration of cancer cells as they detach from the 

tumor and metastasize into healthy tissue [21,57,138]. 

Pseudopod formation itself represents a complex process. Key proteins such as Arp2/3 

or WASP, which are activated by some stimulus, proceed to activate nucleation sites within 

the cell, polymerizing G-actin monomers into F-actin filaments [139]. A protrusive force 

is generated by these growing filament networks, thereby causing a local protrusion of the 

cell membrane. When adhesive interactions are possible, further considerations are 

necessary. Adhesive proteins such as integrins form bonds between a substrate and cell 

body to allow for force transmission. Myosin II proteins present in the cell rear then 

generate a contraction event, forcing the cell forward as posterior bonds are broken.  

While cells are fully capable of crawling or swimming [2,3,113] though, cells within 

the body are frequently exposed to confining three-dimensional environments. Known as 

the Extracellular Matrix (ECM), this complex and heterogenous structure is constructed of 
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various protein fibers embedded in a gel-like polysaccharide fluid [39,51,57,140,141]. The 

ECM microstructure, which is characterized by features such as porosity, pore size, and 

fiber orientation, plays host as a scaffold for cells, often influencing their behavior through 

alignment, stiffness, and elasticity [142]. For instance, mesenchymal cancer cells adopt 

large adhesive forces as they bore through tissue in order to metastasize and form new 

tumors, while fibroblasts may use large adhesive forces in connective tissue, remodeling 

the ECM as they pass through. Amoeboid motility through the ECM is decidedly different, 

though. Amoeboid cancer cells require little to no adhesive capability, instead using their 

high deformability to squeeze through gaps in the matrix tissue [58,143-144]. Neutrophils 

are also capable of adopting the amoeboid mode with little or no adhesion. In fact, 

neutrophils lacking integrins showed no significant differences migrating in three-

dimensional environments as compared to wild-type cells [52]. Furthermore, the amoeboid 

mode can also serve as a compensation strategy for other migration modes which are either 

blocked or inconvenient [1]. Because of this unique adaptation, ECM conditions 

characterized by little or weak adhesion coupled with high confinement can cause the 

amoeboid phenotype to be selected [58]. For instance, a metastatic cancer cell can revert 

to the amoeboid mode if their ECM-degrading mesenchymal mode is inhibited, thereby 

continuing its malevolent journey. 

 In this work, our objective was to present a computational model serving to study 

amoeboid motility through a confined medium. Several noteworthy studies have 

investigated cell motility through confined spaces. Wu et al [132] modeled the swimming 

of a two-dimensional amoeboid cell through a confined microchannel and without adhesion 

using the boundary integral method and force harmonics to model protrusive and 
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contractile forces. Confinement was found to increase swimming speed to a certain limit, 

after which migration was negatively affected. Lim et al [13] developed a two-dimensional 

model of an adhesion-free blebbing cell migrating through microchannels of increasing 

confinement, treating the cell as an elastic membrane and elastic actin cortex connected by 

Hookean springs. Using the boundary integral method, they found locomotion was possible 

without adhesion, while confinement benefits migration to a certain extent. Schlüter et al 

[34] analyzed the dynamics of a two-dimensional rigid cell subjected to Stoke’s drag, 

migrating on a substrate composed of moveable cylindrical fibers of varying orientations 

and stiffness using a force-based method. Cells were observed to prefer stiffer matrices 

over softer variants, where cell persistence was seen to increase with more ordered 

substrates. Elliott et al [7] considered amoeboid motility through two-dimensional rigid 

but moveable obstacle fields, in addition to three-dimensional unbounded medium, 

although fluid interactions were not considered. Pseudopods were generated via an 

activator-inhibitor system, while adhesion was modeled simply as a frictional force. Hecht 

et al [29] simulated two-dimensional chemotactic amoeboid cells without adhesion in 

unbounded flow and through obstacle and maze-like geometries. Moure and Gomez [10] 

created a phase-field model for a three-dimensional amoeboid cell, including transport 

equations to describe cytosolic biochemistry dynamics, an activator-inhibitor system to 

describe cell biochemistry, and hydrodynamic drag to describe adhesive forces. 

Simulations were generated for two-dimensional cells moving through obstacle 

geometries, in addition to three-dimensional cells migrating through rigid, periodic, fibrous 

cylindrical networks. 
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Also worth briefly discussing are the works by Vanderlei et al [130], whose two-

dimensional model resolved cell deformation, internal and external flow, and advection-

diffusion of biological species within the cell volume. Bottino and Fauci [131] similarly 

modeled a motile cell with the cytoskeleton described by networks of fluid-immersed 

springs. Farutin et al [108] considered a deformable cell driven by an oscillating 

axisymmetric force in an unbounded medium, while Najem and Grant [133] used a phase-

field method to simulate three-dimensional neutrophil migration responding to external 

cues, but ignoring fluid interactions.  

While significant advancements have been made in modeling amoeboid motility, three-

dimensional migration through confining medium remains a challenge, since confinement 

is known to heavily influence cell behavior. As a result, two-dimensional studies cannot 

fully replicate cell dynamics seen in three-dimensions [51]. Furthermore, simulation allows 

freedom of ease to vary matrix and cell properties, which would otherwise be difficult in 

an experimental setting. With this in mind, a three-dimensional pseudopod-driven 

amoeboid cell model migrating through arrays of rigid, nondeformable spheres immersed 

in viscous fluid is presented. 

4.2 Results 

4.2.1  Interaction Between Reaction-Diffusion, Surface Shape, and Deformation 

While not the exact focus of this dissertation, the reaction-diffusion system was 

observed to produce very interesting dynamics. Key differences were seen between 

activator-inhibitor modeling on a rigid, spherical cell, and that on a cell with varying 

membrane deformabilities. The effect of curvature also produced interesting observations. 

Finally, obstacle interactions with cells were shown to alter dynamics significantly. The 
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physical insights discussed here are helpful towards understanding the amoeboid dynamics 

which will be analyzed in forthcoming sections. 

 

Figure 4.1: Different Turing instabilities generated by the activator-inhibitor system. For 

(A-C), evolution of the activator patch is shown in (i)-(iii) using the activator concentration 

𝑎1, while (iv) shows the ratio of local inhibitor to activator concentration 𝑎3 𝑎1⁄  

corresponding to the time instance (iii). For activator concentration 𝑎1, the regions in red 

are those of high concentration. (A) Single, steady patch. (B) Traveling patch. (C) Multiple 

patches. (D) Bifurcating patch. In (D), (i)-(iv) shows the activator concentration field, and 

(v)-(viii) shows the inhibitor to activator concentration ratio at the same time instances. 

Reproduced from [103] with permission of the Royal Society of Chemistry. 
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(A) Turing Patterns on Rigid Spheres 

Generated by the reaction-diffusion equations, Turing instabilities lead to the growth 

and bifurcation of high concentration activator regions. The local activator, described by 

Equation 2.17, represents a positive-feedback process where a small increase in 

concentration due to the local noise 𝜖 is further amplified due to the nonlinear term 

dependent on 𝑎1
2 𝑎2⁄  (Figure 4.1A). As the activator grows, however, so does the inhibitors 

(Equations 2.18 and 2.19). The global inhibitor 𝑎2 suppresses high concentrations of the 

activator everywhere on the surface except near the instability, where 𝑎1 and 𝑎3 continue 

to grow. Because of this growth, a gradient develops which sets up the diffusion of each 

species away from the high-concentration region. The result is a dynamic equilibrium 

balanced by species production, annihilation, and diffusion resulting in specific patterns of 

high-concentration activator which is shown in Figure 4.1A(i)-(iii), where a single activator 

instability is generated. In Figure 4.1A(iv) however, a ring of 𝑎3 𝑎1⁄  concentration is seen 

to surround the local activator instability. This suggests the activator is surrounded by a 

larger-concentration inhibitor which keeps the spot in equilibrium as any concentration 

which diffuses away is likely neutralized. 

By varying the parameters in the reaction-diffusion equations, different patterns can be 

formed as was shown in the pattern generation section in Chapter 2. For example, in Figure 

4.1B, a traveling patch which moves about the sphere is developed, while Figure 4.1C 

shows the formation of multiple steady patches. In Figure 4.1D, a repeating bifurcating 

pattern is seen. Stable patches are generated when the inhibitor diffusion is faster than then 

activator diffusion (𝐷3 > 𝐷1) while a traveling instability occurs when diffusivities are 

comparable (𝐷3 𝐷1⁄ ≈ 1). In each example, though, the high-concentration activator patch 
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is surrounded by a ring of high 𝑎3 𝑎1⁄  magnitude, which dictates the eventual equilibrium 

of the patterns. For example, in Figure 4.1B, the ring thickness varies around the activator 

patch. As a result, the activator is neutralized if it diffuses out in one direction, but is 

virtually unaffected when escaping in the other direction. This results in a “moving” 

activator patch.  

Bifurcation patterns are formed when the reaction rate parameter 𝑟1 is large. As seen in 

Figure 4.1D, a single activator instability bifurcates into two patches, which then move 

apart as the ring of 𝑎3 𝑎1⁄  drives a wedge in between them. Eventually one instability 

decays, and the bifurcation cycle continues. Phase diagrams for the different patterns 

obtained on a rigid sphere are given in Figure 4.2. 𝛽 = 𝐷3 𝐷1⁄ , 𝑟1, and 𝑠1 are varied, 

showing the sensitivity in which patterns may be formed. For an appropriate pseudopod-

generation model, we limit the reaction-diffusion parameters to those which create a 

bifurcating patch. 

 

Figure 4.2: Turing patterns generated by the reaction-diffusion equations on a rigid sphere: 

Single, steady patch of activator (P), travelling patch (M), bifurcating patch (B), multiple 

stable patches (S), stripes (T), and a noisy lack of patterns (N). The bifurcating pattern 

appears over larger space with increasing reaction rate 𝑟1, since the reaction-diffusion 

system becomes more unstable. Reproduced from [103] with permission of the Royal 

Society of Chemistry. 
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(B) Influence of Curvature on Turing Patterns 

The above discussion was related to Turing patterns on a rigid sphere with constant 

curvature. Now, the effect of surfaces with varying curvature are discussed. It has been 

shown in the literature that diffusion is possible entirely due to curvature. A species can in 

fact concentrate on a convex surface (positive gaussian curvature), or diffuse away from a 

hyperbolic surface (negative gaussian curvature) [153-154]. Therefore, the former 

mechanism causes faster growth of activator and local inhibitor in the high curvature 

regions, also enhancing the relative instability of the pattern. To illustrate this effect, Figure 

4.3 shows a Turing pattern on a rigid sphere and on a cup-shaped surface using the same 

reaction-diffusion parameters. The rigid sphere simulation only produces a single and 

steady activator patch, while the cup-shaped geometry shows a patch which only bifurcates 

near the high-curvature region. This curvature dependence is enforced by the surface 

Laplacian in Equations 2.17 and 2.19. 

 

Figure 4.3: Influence of surface curvature on pattern formation. (A) A single, steady 

activator patch is generated on the surface of a rigid sphere for 𝛽 = 3 and 𝑟1 𝑅 𝐷1⁄ = 150. 

(B) In contrast, the patch becomes unstable and bifurcates when a cup-shaped object is 

considered for the same reaction-diffusion parameters. (i)-(iv) show a time sequence of the 

bifurcating patch. Colors show activator concentration, where red is high activator 

concentration (𝑎1). Reproduced from [103] with permission of the Royal Society of 

Chemistry. 
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(C) Surface Deformation 

In Figures 4.1 and 4.3, a red contour color is associated with high activator 

concentration (𝑎1). For a deformable surface, however, the protrusive force is coupled 

directly to the activator concentration. In the areas with high 𝑎1, the result is a bulging 

outward wherever the instability is localized to. This process is shown in Figure 4.4A 

which shows the evolution of the activator concentrations and deformable surface as a 

pseudopod is generated and then bifurcates. To mimic the behavior of bifurcating 

pseudopods which have been observed to continually bifurcate, we have selected the 

relevant parameters for the reaction-diffusion equations to produce an activator-inhibitor 

system which repeatedly generates bifurcating instabilities. In Figure 4.4B, the ratio 𝑎3 𝑎1⁄  

is plotted, which shows a similar behavior to that of a bifurcating instability on a rigid 

surface as seen by Figure 4.1D. The ring forms encroaches on the lone patch, thereby 

forcing a bifurcation and the subsequent separation of each pseudopod. One Turing 

instability will then die out, and with it the pseudopod linked to it, after which the cycle 

will repeat again. 

Deforming surfaces cause activator instabilities to become more unstable, as seen by 

the phase plots in Figure 4.4C and D, which describe bifurcating regions in terms of 𝛽 and 

𝑟1. Figure 4.4C is for the case of a rigid sphere, while Figure 4.4D is that of a deforming 

sphere with a deformability of 𝛼 = 5. The region where bifurcations occur is seen to 

expand in the case of the deformable sphere, because the protruding surface generates a 

curvature which as noted in section B creates a more unstable activator patch which 

bifurcates. To summarize, we use patterns of bifurcating activator patches to mimic the 

bifurcations of pseudopods in amoeboid cells. These patterns are more likely to bifurcate 



74 

 

 

 

in regions of high curvature, and therefore are also more likely to form when a protrusive 

force is present, as is the case in a deformable cell. 

 

Figure 4.4: Influence of surface deformation on Turing patterns. (A) Time sequence of 

bifurcating activator patch, and the resulting bifurcating pseudopod is shown for a 

deformable cell. (B) Ratio of local inhibitor to activator concentrations at the same time 

instances as in (A). (C-D) are phase plots showing bifurcating (filled symbols) and non-

bifurcating (open symbols) for (C) the rigid sphere and (D) deformable cell. Reproduced 

from [103] with permission of the Royal Society of Chemistry. 

 

 



75 

 

 

 

(D) Presence of Obstacles 

In Figure 4.5, an obstacle is encountered by the deforming sphere. Two pseudopods 

attempt to wrap around it, which results in a concave impression left by the obstacle. In the 

bifurcation cycle, one activator instability decays, after which the other instability 

bifurcates. As discussed in Section B, the high curvature near the rim causes the activator 

patch to become unstable and bifurcate, while locally hyperbolic regions just below the rim 

help stabilize the patch. As the activator tries to move past the rim, it causes further 

protrusion around the sphere, and as a result, an increase in curvature which adds to the 

concavity. As a result, the patch is bounded inside the concave cavity, where bifurcations 

continuously occur over time as the process repeats.  

 
Figure 4.5: Time sequence of pseudopod dynamics in the presence of an obstacle (sphere 

in grey). Activator concentration is shown in color, with red being the maximum 

concentration. The membrane protrudes outward at regions of high activator concentration. 

Starting with two activator patches labeled as A and B, one of them (B) dies over time, 

while the other (A) bifurcates in to two daughter patches, and hence, two pseudopods 

labeled A1 and A2. Subsequently A1 dies, and the process repeats. The activator patch 

favors hyperbolic regions (Section B). As it tries to move over the rim, it causes even more 

elongation of the rim, thereby confining itself within the concave front. Reproduced from 

[103] with permission of the Royal Society of Chemistry. 

 

So, it is the interaction between cell deformation and the obstacle which causes the 

activator patches, and therefore the pseudopods to be confined to the concave region. We 

have run additional simulations with a concave-shaped rigid geometry (similar to Figure 
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4.3), and observed an activator patch can indeed escape the concavity and form pseudopods 

on other points on the surface. 

4.2.2  General Motility Behavior 

A sequence of an amoeboid cell migrating through the ECM over time is considered in 

Figure 4.6. Beginning with an initially spherical shape and allowing the activator-inhibitor 

system to run, a Turing instability develops which forms a protruding de novo pseudopod. 

Cycles of bifurcations, pseudopod growth, and retractions are common as the cell navigates 

around the rigid obstacles. Indeed, the cell shapes accompanying each type of cell process 

are similar to experimental images of crawling and swimming Dicty cells seen in [2-

3,27,53,113]. Cells are noted to squeeze through gaps as the protrusive force from each 

pseudopod acts to pull the cell forward. Figure 4.6 also shows cells as being highly 

deformed and confined by ECM geometry as its pseudopods weave around and through 

dense obstacles. The cell body is often seen conforming to obstacle geometry as 

pseudopods pull the cell near the adjacent ECM. Furthermore, when forward migration is 

hindered by obstacles, the cell is capable of repolarizing, where it turns around along its 

original trajectory in order to find a more suitable path. More interesting dynamics are also 

seen. Pseudopods can protrude independently in opposite directions, forcing the cell to 

straddle against an imposing obstacle. In time, a pseudopod will then retract, allowing the 

cell to proceed forward past the obstacle. Interesting interactions between the activator-

inhibitor system and cell membrane are seen when deformed by a convex obstacle. 

Bifurcating Turing patterns are seen to remain confined to regions of concavity on the cell 

front, preventing a cell from generating pseudopods, which results in a stuck cell. To 

address this issue, a lubrication pressure is added to the model which acts on the cell 
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membrane if its distance to the obstacle surface is less than two Eulerian grid points. This 

is also conveniently the same distance used to distribute membrane force using the delta 

function from Equation 2.50. Tests were run to determine if migration would be 

fundamentally changed using a smaller or greater distance, with results indicating a 

negligible change. Secondly, if an active pseudopod achieves a distance closer than two 

Eulerian grid points to an obstacle surface, the entire activator-inhibitor system across the 

cell is reset to unity, while the surface noise is zeroed. A similar approach was taken in 

[10-11], and allows the generation of Turing instabilities, and therefore pseudopods, in 

alternate directions, allowing the cell to continue migrating through the ECM. 

 

Figure 4.6: Simulation results: sequence of images of a migrating amoeboid cell through 

the extracellular space. The extracellular solid phase represented by an array of rigid, non-

moving spheres of finite size is shown in grey. Parameters are 𝛼 = 5, 𝛾 = 1, and 𝜙 = 0.79. 

Direction of cell motion is shown by red arrows. Color contours on the cell surface 

represent activator concentration. Reproduced from [103] with permission of the Royal 

Society of Chemistry. 
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Figure 4.7: Examples of highly complex cell shapes predicted by simulations. (A) 𝛼 = 5, 

𝛾 = 0.5, and 𝜙 = 0.83. (B) 𝛼 = 7, 𝛾 = 1.0, and 𝜙 = 0.68. (C)  𝛼 = 1, 𝛾 = 1.0, and 𝜙 =
0.83. Color contours on the cell surface represent activator concentration. Reproduced 

from [103] with permission of the Royal Society of Chemistry. 

 

Predicted cell shapes are seen as comparable to experimental images of cells migrating 

through tissue [1,22,50,53]. Cells are observed to undergo significant deformation as they 

interact with obstacles, where the degree of deformation is determined by membrane 

stiffness, matrix porosity, and obstacle size. Comparisons can be made in Figure 4.7, where 

cell shapes are shown for several different parameter sets. The extremely deformed cells 

seen here show off the robustness of our method and nonlinear membrane model. The 

Lagrangian mesh remains fully resolved, therefore no mesh refinement is required as 

compared to other works which require ad hoc corrections [7,9,123-124,126,128]. Case A 

of Figure 4.7 shows a cell with high deformability (𝛼 = 7), smaller obstacle radius 
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(𝛾 = 0.5), and moderate porosity (𝜙 = 0.83). Deformation is clearly evident as multiple 

obstacle impressions are left on the cell as it successfully navigates through the ECM. This 

is possible even under conditions of high confinement. Case B of Figure 4.7 considers a 

cell with high deformability (𝛼 = 7), cell-sized obstacle radius (𝛾 = 1.0), and low matrix 

porosity (𝜙 = 0.68). Due to the increased confinement, the front half of the cell appears 

highly flattened as it attempts to migrate through the narrow gap between obstacles, while 

the cell rear bulges out as cytoplasmic fluid is squeezed backwards. In case C of Figure 

4.7, a cell with low deformability (𝛼 = 1), cell-sized obstacle radius (𝛾 = 1.0), and 

moderate porosity (𝜙 = 0.83) is pictured. Deformation is again noticeable, yet due to the 

increase in cell stiffness, the cell appears more spherical and cannot penetrate the matrix. 

Interesting dynamical modes which were observed during cell-obstacle interactions are 

now discussed. Figure 4.8 illustrates two time sequence plots of cell migration, where 

obstacles have been removed for clarity purposes. In Figure 4.8A, the sequence begins at 

(a) and ends at (n). Starting at (a), two de novo pseudopods are generated. As one 

pseudopod decays and begins to retract, the other pseudopod bifurcates into two daughter 

pseudopods as seen in (b). Further pseudopod activity occurs in (c), until and interesting 

behavior is seen in case (d). All existing pseudopods are terminated and begin to retract as 

the cell enters a brief period of inactivity. We have named this behavior “freezing” or 

temporary cell arrest, as the cell may remain inactive for several dimensionless time. In 

(e), the cell reactivates with a bifurcating de novo pseudopod, which also changes the cell’s 

direction. Further pseudopod activity is seen in (f) and (g), where a turn is instigated due 

to an obstacle situated directly ahead in the cell’s path. Because anterior pseudopods cannot 

move the cell forward, an errant pseudopod is eventually generated which forces a sharp 
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turn in the cell, thus allowing it to further penetrate the matrix. In (h) through (j), further 

pseudopod dynamics such as bifurcation and meandering are seen, while in (k), 

meandering helps the cell turn gradually. Another freezing event occurs in (l) and (m), 

where the transition to a relaxed equilibrium shape can be seen. Finally, in (n), de novo 

pseudopods are again formed which propel the cell forward. 

Another interesting dynamical behavior is seen in Figure 4.8B. Similar to the previous 

sequence, the cell begins with de novo pseudopod formation at (a), which results in a 

bifurcation at (b). In (c), the termination of active pseudopods can be seen due to an 

obstacle directly ahead, thus causing the cell to generate a pseudopod, forcing a hard turn. 

In (e) through (g), pseudopod bifurcations are seen. A freezing event then occurs in (h), 

causing the cell to briefly become inactive as it retracts. In (i), the cell become active again 

with a de novo pseudopod, which then bifurcates in (j). Another termination takes place in 

(k), setting the stage for a new type of behavior seen in (l) through (n). The cell begins to 

generate pseudopods which briefly extend outwards, usually through narrow gaps, and 

which quickly contact an obstacle, resulting in their subsequent termination and retraction. 

This process happens repeatedly, allowing the cell to slowly move forward and overcome 

the obstacle. We call this behavior probing, and while freezing is characterized by a 

complete withdrawal of pseudopods and period of inactivity, probing exhibits an activator 

concentration which cyclically grows and retracts pseudopods. Another instance of probing 

can be seen in (p) through (s) after a turning event in (o). 
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Figure 4.8: Different motility dynamics observed in our simulations for amoeboid cells 

migrating through the ECM. Spherical obstacles are not shown for clarity. The time 

sequence begins at (a) and proceeds onwards. (A) 𝛼 = 5, 𝛾 = 1.0, and 𝜙 = 0.79. (B) 𝛼 =
7, 𝛾 = 1.0, and 𝜙 = 0.68. See text for descriptions. Color contours represent activator 

concentration. Reproduced from [103] with permission of the Royal Society of Chemistry. 
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4.2.3  Obstacle-Mediated Dynamics 

The freezing and probing dynamics offer new insights into amoeboid cells migrating 

through confining matrix environments. For this reason, each dynamic is further 

investigated. Figure 4.9A examines the case of freezing, showing an instantaneous velocity 

plot stacked together with a distance traveled curve. During three time periods within the 

interval of simulation, cell speed is shown to drop to essentially zero, while the distance 

traveled remains constant. These two pieces of evidence further strengthen the case that 

the cell becomes inactive during a freezing event. At the exact end of a freezing occurrence, 

the instantaneous velocity quickly spikes as a de novo pseudopod forms and pulls the cell 

out of its confined state. A sequence showing the amoeboid cell’s transition to inactivity 

during a freezing event is shown in Figure 4.9B. The sequence shows pseudopod extension 

followed by termination and retraction, where the cell begins to adopt a more spherical 

shape. The cell remains in an inactive state for several dimensionless seconds until a 

suitably positioned pseudopod can pull the cell into a new location. We note that activator 

patches are still being formed by Turing instabilities during a freezing event, but they are 

quickly reset due to the possibility of the cell becoming stuck on a convex obstacle as 

previously discussed. If areas of high-concentration activator continue to form in 

inconvenient areas, the freezing event will continue until a suitably placed instability can 

remove the cell from its present location. Freezing behavior has been observed 

experimentally for neutrophils migrating in three-dimensional ECM [52]. It is possible, 

however, that this behavior could be generated through chemokine-directed activity, since 

chemokines are known to induce cell arrest to halt T-cells in areas of infection [22], or 

draw leukocytes to stop or slow down near a source [145]. Because our simulations lack 
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any chemical signaling, it is possible that confinement, a mechanical effect, can also 

instigate cell arrest. 

 

Figure 4.9: Obstacle-mediated dynamics: Freezing of cells in a highly confined matrix. (A) 

Instantaneous velocity of the cell centroid 𝑉𝑐 (left axis, black line), and distance traveled 𝐿 

(right axis, red line). Parameters are 𝛼 = 5, 𝛾 = 1.0, and 𝜙 = 0.79. Arrows are used to 

indicate freezing events. (B) Time sequence of cell behavior during the freezing event 

occurring over 𝑡 ≈ 10.5 − 17.0 in (A). The sequence shows pseudopod termination, cell 

retraction, and formation of a new pseudopod in a different direction. Reproduced from 

[103] with permission of the Royal Society of Chemistry. 
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Figure 4.10: Obstacle-mediated dynamics: (A-B) Two examples of doubling-back 

dynamics. (C) Tug-of-war between pseudopods straddling an obstacle. Some obstacles 

have been removed for clarity. Dimensionless time is listed in the top left corner of each 

frame. Reproduced from [103] with permission of the Royal Society of Chemistry. 
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During freezing events, or after pseudopod termination due to obstacle closeness, 

another interesting dynamic is observed, and shown in Figure 4.10A and B. Termed 

“doubling-back,” cells which are prevented from migrating in the forward direction by 

obstacles are sometimes shown to freeze briefly, then completely repolarize and turn 

around along their original trajectory. Doubling-back behavior has been observed in 

experimental conditions with T-cells confronted by impassible structures directly ahead 

[22]. Note that the same mechanism which causes freezing is responsible for doubling-

back. A pseudopod collision with an obstacle forces a reset of the activator-inhibitor 

system, after which a new de novo pseudopod is formed by chance on the cell rear. The 

cell is then able to continue its migration through the matrix. Another interesting dynamic, 

termed tug-of-war is seen in Figure 4.10C. This behavior occurs when opposing 

pseudopods fork around both sides of an obstacle, effectively forcing the cell to remain 

impacted until one pseudopod decays and retracts, leaving the remaining pseudopod free 

to carry the cell forward. The tug-of-war dynamic has also been observed experimentally 

with neutrophils in vitro, noting no significant bias in the direction chosen by the cell [146]. 

Finally, a more detailed description of the probing dynamic is performed. Recall that 

an extending pseudopod will trigger a reset of the activator-inhibitor system to prevent 

instabilities forming in the concave membrane indented by the obstacle. After a brief pause, 

a pseudopod again forms in the same position on the cell. Cycles of this probing behavior 

allow the cell to creep forward through a constriction. Figure 4.11A shows the 

instantaneous cell centroid velocity during a probing event. Small shark-fin shaped curves 

in the velocity plot are evident, with each spike representing the movement of the cell 

centroid due to extension and retraction of a single pseudopod. An illustration of this 
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behavior is seen in Figure 4.11B. Compared to the velocity plot for freezing in Figure 4.9A, 

we note that the cell velocity is always nonzero, since probing is slowly forcing the cell 

forward through the constriction. A probing event can also end with the bifurcation of a 

pseudopod as shown in Figure 4.11C. Although the confinement is large in this example, 

we note that probing can occur in more porous environments if a pseudopod is suitably 

positioned near an obstacle. Probing has also been observed in experiments, which showed 

constant shape change with protruding and retracting pseudopods [52,145]. The idea of 

probing can also be related to dynamic information sampling, where exploratory 

pseudopod protrusions are used for spatiotemporal sensing to examine the cells adjacent 

environment [22,145]. 

 

Figure 4.11: Probing dynamics. (A) Instantaneous velocity of cell centroid for 𝛼 = 7, 𝛾 =
1.0, and 𝜙 = 0.68. (B) Sequence showing cell activity during a probing event. (C) 

Sequence showing the transition from probing to bifurcation dynamics. Some obstacles 

have been removed for clarity. Dimensionless time is listed in the top left corner of each 

frame. Reproduced from [103] with permission of the Royal Society of Chemistry. 

 

4.2.4  Limits on Motility 

Because cell migration is heavily reliant on pseudopod dynamics and confinement, it 

is no surprise that obstacle-induced pseudopod dynamics such as freezing or probing have 

large effects on overall cell migration. If confinement becomes too severe, cell motion can 
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completely be inhibited. We have found that cell deformability, matrix porosity, and 

obstacle size have a significant effect on cell migration. In Figure 4.12A, the influence of 

cell deformability and matrix porosity on the instantaneous cell velocity is plotted, where 

the corresponding cell centroid trajectories are plotted in the inset. For a low deformability 

(𝛼 = 1) and a moderately dense matrix (𝜙 = 0.68), cell migration is not possible. 

Although activator patches and pseudopods are generated on the cell as seen by the 

fluctuations in velocity, they are unable to penetrate the small gaps of the matrix. The cell 

may change its direction of motion, but simply cannot penetrate the ECM due to an 

insufficiently low deformability. If deformability is increased to 𝛼 = 5 for instance, the 

cell is sufficiently soft to penetrate the matrix, though large fluctuations in speed indicate 

some difficulty in doing so based on the cell shape (similar to Figure 4.7B). Probing and 

other dynamics are also likely to be observed in this confined geometry. If the cell 

deformability is kept constant at 𝛼 = 5, but the matrix porosity is adjusted to 𝜙 = 0.54, 

the cell is again unable to penetrate the matrix. Probing and other dynamic events are also 

likely to occur as the cell attempts to bypass the obstacle geometry. Finally, if the porosity 

is increased to 𝜙 = 0.87, sufficient space between obstacles allows the cell to move with 

limited difficulty as seen by Figure 4.12A. A large distance is seen to be traveled in the 

trajectory inset (black line). Additionally, larger fluctuations are seen within the 

instantaneous velocity, indicating that obstacles may interfere with a cell’s migration, but 

the cell quickly turns using alternate pseudopods and proceeds through the ECM. 
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Figure 4.12: (A) Influence of matrix porosity and cell deformability on instantaneous cell 

velocity, and cell trajectory (inset). (B) Time-averaged migration speed as a function of 

matrix porosity for different cell deformabilities. (C) Time-averaged migration speed as a 

function of matrix porosity for different obstacle size. Error bars represent RMS velocity 

fluctuation. 𝜙 = 1.00 represents the cell migration in the unbounded case. Reproduced 

from [103] with permission of the Royal Society of Chemistry. 
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Figure 4.12B displays the time-averaged cell migration speed as a function of matrix 

porosity across the spectrum of membrane deformability. In each case, the migration speed 

is seen to increase with increasing porosity. Additionally, migration speed is observed to 

be larger with increasing membrane deformability. An explanation is as follows. A larger 

matrix porosity indicates less obstacles which might interfere with the cell’s trajectory, 

thus allowing the cell to achieve its maximum potential speed. When lower matrix 

porosities are involved, however, the cell is frequently disrupted by obstacles, and therefore 

has a slower migration speed as it moves through the ECM. In the case of cell 

deformability, softer cells (more deformable) have less difficulty penetrating the narrow 

gaps, and therefore can achieve a larger speed. Error bars in Figure 4.12B and C are found 

by scaling the root-mean-squared value by the average velocity. Fluctuations are seen to 

increase as matrix porosity decreases, since average velocity is smaller, and more frequent 

cell directional changes due to obstacles increases the fluctuations in velocity. Fluctuations 

can also be influenced by pseudopod dynamics, which show small maxima and minima in 

Figure 4.12A, or general cell behavior, which appears as larger-scale maxima and minima. 

In Figure 4.12C, the time-averaged velocity is plotted against the matrix porosity across 

the spectrum of obstacle sizes 𝛾 while membrane deformability is kept constant. Under 

constant porosity and deformability, migration speeds are shown to increase as the obstacle 

size increases. This is a result of the relative distance between two obstacles. For larger 

obstacle sizes, the same porosity can be obtained with fewer obstacles, thus resulting in 

larger void space between obstacles. Cells can then achieve larger speeds as they are less 

likely to be interrupted by obstacle-induced interactions. Conversely, small obstacle sizes 
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require many obstacles to keep porosity constant, resulting in a tightly-packed matrix with 

slower speeds due to greater migration inhibition. 

Average migration speeds are seen to be comparable to experimental measurements. In 

[50], leukocyte migration speeds were found to be ~4 𝜇𝑚 𝑚𝑖𝑛−1, while speeds greater 

than 10 𝜇𝑚 𝑚𝑖𝑛−1 were seen in [36] for dendritic and immune cells. Amoeboid cancer 

cells were reported to have speeds of 4 𝜇𝑚 𝑚𝑖𝑛−1 in [147], while a range of 0.1 −

20.0 𝜇𝑚 𝑚𝑖𝑛−1 was predicted in [28]. A peak migration speed as high as 25 𝜇𝑚 𝑚𝑖𝑛−1 

was predicted in [53]. We note here that data providing amoeboid cell migration speeds 

through three-dimensional mediums is difficult to come by, and the uncertainty in speeds 

most likely depends on the properties of the cell and matrix involved, as well as the imaging 

technique performed. A cell radius of 10 𝜇𝑚 and a diffusivity of 1 𝜇𝑚 𝑚𝑖𝑛−1 is used to 

convert our data into dimensional values. Therefore, a dimensionless velocity of 0.5 − 1.0 

seen in Figure 4.12B for moderate values of membrane deformability, matrix porosity, and 

obstacle size yields a speed of 3 − 6 𝜇𝑚 𝑚𝑖𝑛−1, which agrees well with experimental data 

from the literature. 

Figure 4.12 illustrates how cell migration is inhibited as membrane deformability, 

matrix porosity, and obstacle size are decreased. Figure 4.13 displays these “motility 

limits” which capture the parameters below where migration is not possible. For a given 

matrix porosity and obstacle size, migration is only possible if deformability is large 

enough. Similarly, for a constant deformability, migration can only occur if the matrix 

porosity is void enough for penetration. Finally, because smaller obstacles are packed 

closer together, they can also cause cell arrest. These results are validated by experimental 

observations, in which highly-deformable neutrophils can squeeze through tight gaps 
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within the tissue, while stiffer fibroblasts are unable to [59], and must migrate using other 

means such as matrix remodeling [28].  

 

Figure 4.13: Motility limits as obtained from current simulations. Phase diagrams are 

shown in terms of confinement (1 − 𝜙) and cell deformability for three different obstacle 

sizes 𝛾. Open squares represent cases for which cells are able to migrate through the matrix. 

Filled circles represent cases when cell movement is prevented. Reproduced from [103] 

with permission of the Royal Society of Chemistry. 

 

4.2.5  Pseudopod Dynamics 

It has been shown that amoeboid motility depends on pseudopod dynamics, which in 

turn depend on membrane deformability, matrix porosity, and obstacle size. Quantification 

of the average lifetime of pseudopods is plotted in Figure 4.14A and B. The average 

lifetime of a pseudopod is seen to increase with increasing matrix porosity. This is entirely 

due to interactions of the cell with an obstacle, since fewer obstacles will cause less 

pseudopod terminations, resulting in larger lifetimes. Lifetimes are also seen to decrease 

with increasing matrix deformability. Similar trends were seen for an unbounded cell in 

Chapter 3 [148]. In this case, increased deformability leads to a greater instability in the 

reaction-diffusion system, which generates more frequent activator patches and 

bifurcations as a result. The average lifetime can also be seen as less dependent on porosity 
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at higher deformabilities. This is because the pseudopods of cells with larger 𝛼 are able to 

weave through obstacles, and therefore show less dependence on interactions. The 

pseudopods of cells with lower 𝛼, however, are blunt, causing more frequent collisions 

with obstacles as porosity decreases. The influence of obstacle size for one case of 

deformability and porosity is shown in Figure 4.14B. Lifetime is seen to decrease with 

obstacle size due to a larger number of collisions from more closely-spaced obstacles. 

 

Figure 4.14: Pseudopod lifetime 𝜏𝑃 (scaled by 𝑅2 𝐷1⁄ ) (A) as a function of 𝛼 for different 

value of matrix porosity (B) as a function of obstacle size 𝛾. (C) Fraction of de novo 

pseudopods to total pseudopods as a function of 𝛼 for different value of matrix porosity 

(D) as a function of obstacle size 𝛾. Reproduced from [103] with permission of the Royal 

Society of Chemistry. 
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Another important characteristic of pseudopod dynamics is the de novo frequency 

(Figure 4.14C and D), or the ratio of de novo pseudopods to total number of pseudopods 

generated within the simulation. As the cell progresses through the ECM, it can either 

generate pseudopods from bifurcations, or from an independently generated pseudopod 

known as a de novo pseudopod. In Figure 4.14C, proportions of de novo pseudopods are 

shown as a function of membrane deformability and matrix porosity. The fraction of de 

novo pseudopods is seen to increase with decreasing porosity, since a greater number of 

obstacles results in more pseudopod terminations. New pseudopods are then generated in 

order to move the cell forward. For a constant porosity, the proportion of de novo 

pseudopods is also seen to increase with increasing deformability. Additionally, de novo 

proportions are seen to increase with decreasing obstacle size as seen by Figure 4.14D. 

Arguments for these two statements are similar to those given previously for pseudopod 

lifetime. 

4.2.6  Confined versus Unconfined Medium 

While de novo pseudopods are observed to be frequently generated for an amoeboid 

cell within the ECM geometry, none are generated in the case of cell migration through an 

unbounded medium [148]. Therefore, de novo pseudopod generation can be described as a 

distinct dynamic seen within obstacle geometries. In the absence of obstacles, the cell will 

purely produce pseudopods through bifurcation, or “tip-splitting” as it has sometimes been 

called in the literature [9]. As such, pseudopod lifetimes tend to be much larger when 

compared to those in a confined medium, approximately 2 − 6 times greater. In addition, 

the average number of pseudopods in unconfined medium is approximately 2, while the 

number is reduced to the range 1.25 − 1.75 due to the effect from single de novo 
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pseudopods which lower the average. Furthermore, the maximum number of pseudopods 

seen in unconfined medium is as high as 3 or 4, while that number is only 2 or 3 when 

obstacles are present. Each of these quantities is seen to decrease as either membrane 

deformability, matrix porosity, or obstacle size are decreased. 

Further differences between cell behavior in confined and unconfined medium can be 

elucidated by looking at the cell persistence. Figure 4.15A shows two cell centroid 

trajectories for the case of an unbounded cell and a cell immersed in a high porosity matrix. 

At moderate deformability (𝛼 = 3), the unbounded cell is observed to maintain a nearly 

persistent unidirectional motion for a large distance. Using the same cell parameters but 

adjusting the matrix porosity to 𝜙 = 0.92 shows a drastic difference, however. The cell 

trajectory is characterized by short, frequent turns which are seen to have little persistence 

due to obstacles forcing cells to slow down and change direction. Turning events are not 

exclusive to cells interacting with obstacles however, as was seen in the case of migration 

in unbounded medium in Chapter 3 [148]. Instead, turns are slower and caused by 

pseudopod meandering. For a confined medium, though, turns are much more common as 

well as more severe as obstacle force pseudopods to strongly detour, or as de novo 

pseudopods form on another area of the cell. As seen in Figure 4.15A, even a small change 

in the matrix porosity (𝜙 = 0.92) was able to eliminate persistent motion. As a more 

quantitative measure for gauging persistence, Equation 4.1 was used.  

∆𝜃̅̅̅̅ =
1

𝐿
∫ 𝜃𝑖𝑑𝐿

 

𝐿

                                                             (4.1) 
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Figure 4.15: Cell motility in confined (𝜙 < 1) versus unconfined (𝜙 = 1) medium. (A) 

3D cell trajectories in unconfined medium (black, dotted curve) and confined medium (𝜙 =
0.92; red, solid curve). (B) Total directional change ∆𝜃̅̅̅̅  in cell trajectory as a function of 

matrix porosity for different 𝛼 and 𝛾. (C-D) Pseudopod directionality is quantified by the 

angular position of pseudopod tips using the spherical coordinates Ψ (0 to 2𝜋) and Θ (0 to 

𝜋) for the unconfined and confined (𝜙 = 0.87) domains, respectively, with 𝛼 = 5 and 𝛾 =
1. Reproduced from [103] with permission of the Royal Society of Chemistry. 

 

In Equation 4.1, the total directional change over the cell centroid trajectory was found by 

integration, where 𝐿 is the trajectory length, and 𝜃𝑖 is the incremental directional change 

between subsequent positions. Then for a purely persistent cell, ∆𝜃̅̅̅̅ = 0. Results are plotted 

in Figure 4.15B against the matrix porosity for several values of deformability and obstacle 
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size. For an unconfined medium (𝜙 = 1), ∆𝜃̅̅̅̅  is noted to be very small as the unbounded 

trajectory in Figure 4.15A indicates. ∆𝜃̅̅̅̅  is also seen to increase with decreasing matrix 

porosity, implying a loss of cell persistence as more obstacles are introduced into the 

domain. Decreasing obstacle size also results in higher values of ∆𝜃̅̅̅̅ . Finally, ∆𝜃̅̅̅̅  is seen to 

increase with increasing cell deformability, due to shorter pseudopod lifetimes and larger 

cell speeds. 

In Chapter 3 and our previous study [148], cells with a larger diffusivity ratio 𝛽 were 

shown to generate pseudopods only near the cell anterior in unconfined medium. Even in 

the absence of an external cue or chemotactic signal, subsequent bifurcations continued to 

occur in the same region on the cell, resulting in a polarized, persistent motion. In the case 

of a confined matrix geometry, however, de novo pseudopods are prevalent, and are seen 

to increase in proportion as confinement is increased. de novo pseudopods are prone to 

appear in any area on the cell and without any preference due to a reset noise and activator-

inhibitor system. To quantify the pseudopod directionality, the angular position of 

pseudopod tip normals is calculated using the spherical coordinates Ψ and Θ as seen in 

Figure 4.15 C and D. They are absolute coordinates tied to the Eulerian cartesian system 

as a reference frame, where Ψ is the angle of the pseudopod normal projected onto the xy 

plane relative to the x-axis, while Θ is the angle relative to the positive z-axis. And since 

protrusive force is generated by the pseudopod, the cell will move in the resultant direction. 

Each point represents a specific pseudopod and time step. For the cell in an unconfined 

environment (Figure 4.15C), a tight grouping of points is seen, indicating the pseudopods 

are focused and generated in a similar direction over the entire solution time. The 

mechanism for pseudopod focusing was outlined in Chapter 3 and our earlier work [148], 
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and is caused by the initially polarized cell pseudopods converging and bifurcating before 

they can sufficiently meander to another point on the cell, thus maintaining the angular bias 

seen in Figure 4.15C. The case of migration with obstacles present is shown in Figure 

4.15D, in which a uniformly scattered distribution of points is seen across the plot. This 

indicates pseudopods are scattered in all directions over the cell, again due to the activator-

inhibitor being frequently reset due to obstacle collisions, and the appearance of de novo 

pseudopods which change cell direction. As evident by Figure 4.15A and D, even a small 

decrease in porosity is enough to break the cell polarity, and as a result, the persistence of 

the cell through the matrix. 

4.2.7  Flow Field 

The instantaneous fluid motion of the migrating cell is now considered. Due to dynamic 

pseudopod behavior and cell deformation as well as the presence of obstacles, complex 

and transient fluid flow develops both inside and outside the cell. In general, the flow 

patterns seen in a confined medium are similar to those of a migrating cell in unbounded 

medium as seen in Chapter 3 [148]. A pseudopod will cause a streaming flow inside the 

cell from the main body into the growing appendage. The surrounding fluid is also 

entrained by the pseudopod, and pushed in the direction of motion. The reverse effect is 

seen during pseudopod contraction, where streaming flow will exit the pseudopod and 

move into the main cell body. During pseudopod protrusion and retraction, complex 

vortical patterns are observed. Within the literature on microswimmers exists 

characterizations of the pusher- and puller-type mode depending on the mechanism used 

to achieve motility. Pushers repel fluid away from the cell along the axis of movement and 

attract flow towards the cell along its sides. Pushers are rarely seen, and if so, only during 
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the initial transient when opposing pseudopods form. Puller motion is the opposite of 

pusher motion. Fluid is pulled in along the direction of migration and repelled along the 

side. Pullers are seen more often in simulations, but true characterizations are difficult to 

make due to highly deformed shapes and pseudopod dynamics. 

Figure 4.16: Flow patterns for a cell migrating through a matrix. (A-F) Shows a sequence 

of flow patterns for 𝛼 = 3, 𝜙 = 0.54, and 𝛾 = 1. Vortical patterns can be seen at locations 

(A-B) marked in red. Velocity vectors are drawn in the plane passing through the cell 

center. Dimensionless times are 0.80, 1.05, 1.15, 1.20, 1.35, and 1.40. (G-J) Shows another 

sequence with a probing event for 𝛼 = 5, 𝜙 = 0.68, and 𝛾 = 1. Clockwise and 

counterclockwise vortices are marked by “CW” and “CCW,” respectively. Dimensionless 

times are 6.80, 6.95, 7.65, and 7.90. Reproduced from [103] with permission of the Royal 

Society of Chemistry. 
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Additional flow features which are not seen in unbounded flow have been observed for 

a cell migrating in a confined environment. Vortices which alter direction are seen during 

pseudopod growth and retraction. Figure 4.16A through F illustrates these events, where 

the matrix porosity is 𝜙 = 0.54. In (A), two clockwise vortices (marked by A and B) form 

during the growth and bifurcation of a pseudopod. In (B), the pseudopods are terminated 

due to obstacle closeness, resulting in both vortices changing to a counter-clockwise 

direction. As new pseudopods form in (E) and (F), the vortex directions change once again 

to clockwise. These dynamics are cause by cycles of obstacle-induced pseudopod 

termination and subsequent de novo pseudopod formation, and are therefore absent in the 

case of unbounded flow. Another example which shows alternating vortices during a 

probing event is shown in Figure 4.16G through J. As the pseudopod cyclically protrudes 

and retracts, the clockwise and counter-clockwise vortices continuously change direction. 

4.2.8  Additional Considerations 

(A) Viscoelastic Membrane 

In previous works, an accurate model for a viscoelastic cell membrane was developed 

[95]. Viscoelastic behavior was resolved using a Kelvin-Voigt model, which was 

mentioned in Chapter 2 but is repeated below for convenience. The total membrane stress 

is thus the sum of the elastic and viscous stresses as seen in Equation 2.15. 

𝜏 = 𝜏𝑒 + 𝜏𝑣                                                          (2.15) 

Elastic stresses were given by Equations 2.3 and 2.4, while the viscous stress is expressed 

as follows, where 𝜇𝑚 is the membrane shear viscosity, 𝑫 is the strain rate tensor, and 𝑰𝑺 is 

the surface projection tensor. 



100 

 

 

 

𝜏𝑣 = 2𝜇𝑚 [𝑫 −
1

2
𝑡𝑟(𝑫)𝑰𝑆]                                           (2.16) 

Numerical implementation is then performed to find the stress in terms of strain history 

using a time-convolution integral. We have performed simulations using a dimensionless 

membrane viscosity of 𝜇𝑚 𝜇0𝑅⁄ = 0, 1, and 10, where zero is the case of an elastic 

membrane. Figure 4.17 shows the dimensionless average cell speed against the 

dimensionless membrane viscosity, showing a small increase with viscosity, while the 

RMS fluctuation decreases slightly. The cell persistence, found as ∆𝜃̅̅̅̅ = 0.026, 0.021, and 

0.020 in order of increasing viscosity showed similar trends. General motility behavior 

was seen as similar, while obstacle-mediated dynamics such as freezing and probing were 

still observed.  

 

 

Figure 4.17: Influence of membrane viscosity on average cell speed. Variables are defined 

in main article. Error bars are RMS quantities. Reproduced from [103] with permission of 

the Royal Society of Chemistry. 
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Figure 4.18: Sequences showing the effect of a viscoelastic membrane on cell motility. 

𝜇𝑚 𝑅𝜇0⁄ = 1 (top) and 10 (bottom). Similar motile dynamics are observed as for elastic 

membrane. Reproduced from [103] with permission of the Royal Society of Chemistry. 
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Viscosity is seen to stiffen the cell membrane, causing ruffles which are artifacts of 

former pseudopods or deformed membranes.  Sequence plots are shown in Figure 4.18 for 

two cases of membrane viscosity. Because these ruffles also exhibit high curvature, they 

are also instigators of more frequent bifurcations as previously described. As a result, a 

larger number of pseudopods is generated, leading to a slightly higher cell speed. Note that 

the membrane deformation time scale is 𝑅𝜇0 𝐺𝑠⁄ ~ 𝜇𝑚 𝐺𝑠⁄ ~10−3 − 10−2, while the 

activator-inhibitor diffusive time scale is 𝑅2 𝐷3⁄  or 𝑅2 𝐷1⁄ ~1. This means the membrane 

quickly responds to the evolving Turing patterns even when viscosity is large, so the cell 

behavior widely depends on activator-inhibitor dynamics. 

(B) Variation of Bending Rigidity 

 

Figure 4.19: Average cell speed (black, 𝛾 = 1; red, 𝛾 = 0.5) as a function of 

dimensionless bending rigidity 𝐸𝑏
∗. Error bars represent RMS velocity fluctuations over 

time. Reproduced from [103] with permission of the Royal Society of Chemistry. 
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The nonlinear constitutive model (Equation 2.1) which considers membrane 

deformation is prone to buckling [95], while pseudopod dynamics caused by protrusive 

forces can generate ruffles or kinks of high curvature. To protect against this, membrane 

bending is added. Dimensionless bending stiffness is scaled as 𝐸𝐵
∗ = 𝐸𝐵 𝑅2𝐺𝑠⁄ , where the 

bending stiffness 𝐸𝐵~1 − 9 × 10−19 J [90,93]. 𝐸𝐵
∗  was varied in simulations from 0.003 −

0.020, where the average speed was found and plotted in Figure 4.19. Both cell velocities 

and persistence were not seen to deviate significantly. Cell behavior was observed to be 

similar, while obstacle-mediated dynamics like probing and freezing were still observed.  

(C) Cutoff Distance for Cell-Obstacle Interaction 

As noted in section 4.2.2, when an active pseudopod gets nearer than two Eulerian 

mesh points to an obstacle surface, the activator-inhibitor system is reset, and a repulsive 

force is generated to prevent the cell from collapsing onto the obstacle and becoming stuck. 

The two-point cutoff is not arbitrary, however. It is also used to distribute membrane forces 

over a finite width using the Dirac delta function outlined in Equation 2.50. For the 

immersed-boundary method used here, the delta function is modeled as a cosine function 

which spreads over two grid points on each side of the membrane. This is the fundamental 

reason why the two-point cutoff is used. Other cases were still examined, though. Cutoff 

distances of 1, 1.5, 2.5, and 3 grid points were simulated. No major differences were seen 

except for the case using 1 grid points, where the cell surface mesh collapses due to a larger 

lubrication force proportional to the inverse distance apart cubed. 
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(D) Cylindrical Obstacles 

Although arrays of spheres were the only extracellular matrix geometry modeled in this 

chapter, the robustness of our model allows for any form of complex geometry. One such 

variant is an array of cylinders, briefly discussed here, but further expanded upon in 

Chapter 5. A limited number of simulations has been performed as seen by Figure 4.20, 

which shows several frames of a migrating cell through the aligned field of obstacles in 

addition to a dimensionless speed plot as a function of matrix porosity. Data from sphere-

based simulations is also included in the plot for comparative reasons. Cell behavior and 

pseudopod dynamics are all qualitatively similar to the case of spherical obstacles. Average 

cell speeds also show no significant difference. It is noted that the cylinder velocities show 

unsmooth variations, which is purely due to the limited number of runs performed. More 

cylindrical obstacle-based migration analysis will be shown in Chapter 5. 

 

Figure 4.20: Influence of cylindrical obstacles. Snapshots show a sequence of motility. The 

average cell speed is compared for cylinders (open symbols) and spheres (filled symbols) 

for 𝛾 = 1 (diamonds), and 0.25 (squares). Reproduced from [103] with permission of the 

Royal Society of Chemistry. 
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4.3 Summary 

A three-dimensional multiscale and multiphysics computational model coupling fluid 

mechanics, solid mechanics, and a dynamic pseudopod-generating pattern formation 

model was presented to simulate amoeboid migration through a porous extracellular space 

in the absence of adhesive interactions. Predicted cell shapes were found to be similar to 

those observed by experiment. Extreme deformation was seen as cells squeeze through, 

and weave around narrow spaces between obstacles. Migration speeds were seen to align 

with experimentally determined speeds in multiple works. The effect of cell deformability, 

matrix porosity, and obstacle size were studied, with each property strongly influencing 

cell behavior and dynamics. Cell migration was completely hindered as these parameters 

dropped below certain limiting magnitudes, to which phase diagrams were constructed. 

This conclusion is supported by experiments, where soft immune cells can move over an 

order of magnitude faster through tissue than stiffer fibroblasts. Interesting cell dynamics 

are predicted, such as freezing, probing, tug-of-war, and doubling-back, which have all 

been observed within the literature. These dynamics are not seen in unbounded flow, and 

are seen to appear in greater amounts as confinement is increased. Since no chemical 

signaling mechanisms are used in our model, this suggests that mechanical stimulation 

could also produce these dynamics. Persistent unidirectional motion seen in migrating cells 

in unbounded flow is prevented in the presence of obstacles, where cells must adopt a zig-

zag type of migration, a major change in cell dynamics. Because active pseudopods too 

near an obstacle cause an activator-inhibitor reset, de novo pseudopods are seen to become 

more common, also increasing in frequency with higher confinement. While pseudopod 

lifetimes are seen to decrease with increasing confinement, new pseudopods help the cell 
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find a new direction to migrate in. On average, less pseudopods are seen as matrix porosity 

decreases. Fluid interaction was also studied by investigating complex patterns and 

dynamics seen in fluid velocity vector fields. Vortices generated by membrane extensions 

and retractions are seen to change directions. These attributes were not seen in unbounded 

flow, and can be predicted to drastically alter the distribution of chemicals and proteins 

within a confined geometry. To summarize, a strong coupling between membrane 

deformability, matrix porosity, and obstacle size was observed. New insights for amoeboid 

migration through confined matrix geometry were made, setting the stage for more 

complex cell modeling, and the results which will be unearthed. 
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Chapter 5 

Pseudopod-Driven Migration of an Amoeboid Cell in 

Various Extracellular Matrix Geometries with Weak 

Adhesion 

 

Amoeboid cell migration is accomplished through the use of pseudopods, or cylindrical 

membrane extensions which protrude, bifurcate, and retract dynamically. Cells exhibiting 

pseudopod-driven locomotion hold significant importance, particularly within the human 

body, as both immune cells and metastatic cancer cells use pseudopods, among others. The 

modeling of amoeboid locomotion is a complex and multiscale process, where large 

membrane deformations, cell surface biochemistry, and both cytosolic and extracellular 

fluid interactions must be considered. Furthermore, cells are often confined inside the 

extracellular matrix (ECM), a heterogenous, porous, fluid-filled medium. Adhesive 

properties of the cell and underlying substrate add another layer of complexity. In this 

work, we present a three-dimensional computational model of pseudopod-driven amoeboid 

migration with weak adhesion through various matrix geometries: aligned cylinders, three-

dimensional lattice, and arrays of spheres. Adhesion is implemented using a modified Bell 

model. The effect of cell deformability, adhesive strength, and matrix geometry on 

amoeboid cell migration is studied. Cell shapes qualitatively similar to experimental 

images are observed, while several types of cell dynamics, including a gliding-type mode, 

are witnessed. Weak adhesion is shown to have little effect on average cell speed, while 

the degree of helpfulness that adhesion engenders is quantified. Finally, bond quantity is 

seen to vary across matrix geometry and membrane deformability, while the average bond 
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distribution reveals trends in bond formation. Results presented here show a strong effect 

between adhesive dynamics, cell deformability, and matrix geometry, providing valuable 

insight towards amoeboid migration within the body. 

5.1 Introduction 

In this work, pseudopod-driven amoeboid migration is simulated through three distinct 

extracellular matrix geometries, while discrete adhesive bond dynamics are considered 

between the cell and surrounding matrix. As has been discussed, amoeboid motility is a 

major migratory phenotype, especially within the human body, where an assortment of 

biologically-significant processes are carried out through pseudopod-generated activity. 

Biological details of pseudopod growth and retraction in addition to the cell motility cycle 

were discussed in previous chapters and are not reemphasized here. 

Generally speaking, when not freely suspended in a fluid medium [2-3,113], cell 

interaction with a substrate is necessary in two- or three-dimensions. Transmembrane 

adhesive proteins, such as integrins, form connections with corresponding surface 

receptors, resulting in discrete bonds between the cell and its environment [150]. in vivo 

cell migration rarely occurs in two dimensions, however. Instead, motile cells often need 

to navigate through complex three-dimensional tissues of varying porosity, pore size, and 

fiber orientation [36,39,151]. This cellular scaffold is known as the Extracellular Matrix 

(ECM), which provides a structure in which cells can anchor to and function on. The 

composition of the ECM is highly diverse, but principally speaking, structural collagen 

fibers are embedded in a gel-like polysaccharide fluid. Additional fibers are incorporated 

into the ECM, such as elastin which gives tissue its resiliency, and fibronectin, which 

provides adhesive bonding sites between cells, matrix, and fluid. Cell behavior can be 



109 

 

 

 

heavily influenced by ECM properties, including alignment, stiffness, and elasticity [57]. 

Fibroblasts, for instance, can exhibit an adhesion-dependent polarized mode or an 

adhesion-independent, highly deformable configuration based on matrix properties [59]. 

These and other mesenchymal-type cells rely on strong adhesion via integrins clustered 

into focal adhesions, and an ability to degrade the matrix using proteases. Amoeboid 

properties, on the other hand, are significantly different. Amoeboid cells maintain a non-

polarized morphology, taking advantage of high membrane deformability to squeeze 

through gaps in tissue. Amoeboid cells have also been observed to migrate with no 

adhesion [50], or weak adhesion using a diffuse amount of adhesive proteins spread out 

across the cell membrane [20]. The latter case is the subject of this chapter. 

Considering the above discussion, the objective of this work is to present a fully three-

dimensional computational modeling study of pseudopod-driven amoeboid migration with 

weak adhesion through several confined matrix geometries. Several prior works have 

explored cell locomotion through two- and three-dimensional geometries while modeling 

adhesion. Zaman et al developed a computational cell migration model in three-

dimensional matrices using a force-based dynamics method [31]. Adhesive forces were 

implicitly set as being proportional to receptor and ligand concentrations, and the matrix 

modulus of elasticity. Schlüter et al used a force-based cell migration model in two-

dimensional matrices of varying alignments, with adhesion force proportional to cell speed 

[34]. Ordered geometries were seen to allow for greater persistence. Copos et al studied 

two-dimensional cell spatiotemporal adhesion patterns using a force-balance approach and 

linear springs to model adhesion [33]. Amoeboid cells were shown to have extension and 

contraction events from nonuniformly spaced adhesions. Using the finite element method, 
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Sakamoto et al created a two-dimensional axisymmetric cell model to better understand 

transitions in cellular migration modes, modeling adhesion-complex density with an 

advection-reaction equation, and adhesive force proportional to surface velocity and 

adhesion-complex density [30]. Amoeboid cells were found to have weaker adhesion 

capabilities, and more frequent transitions between elongation and retraction stages. Cirit 

et al studied the interplay between adhesion and protrusion at the leading edge of a cell, 

modeling the densities of nascent and stable adhesions, and myosin using coupled ODEs 

[14]. Optimal leading-edge protrusion was seen at intermediate ECM densities. Shao et al 

developed a phase-field two-dimensional cell migration model with discrete adhesion sites 

characterized by gripping or slipping modes [32].  

Zhu and Mogilner modeled two-dimensional cell migration through extracellular 

matrix using an elastic spring-node network, where protrusion and retraction of the cell 

membrane was modeled as expanding and shrinking networks [152]. Discrete adhesions 

were formed based on distance considerations, and eliminated by a constant detachment 

rate. An amoeboid mode was observed, which showed little dependence on adhesion 

detachment rate or leading-edge growth and posterior contractility, while ECM size had a 

slight effect. Finally, Moure and Gomez developed a three-dimensional amoeboid 

migration model using a diffuse-domain approach, considering actin and myosin dynamics 

within the cytosol, and activator dynamics on the cell membrane using a reaction-diffusion 

equation [10-11]. Adhesion was considered as a summation between drag and punctual 

spring-based adhesions which were randomly formed.  

Since adhesion has the capacity to influence cell behavior as strongly as the 

extracellular matrix, a detailed three-dimensional study investigating the effect of adhesion 
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on amoeboid cells merits attention. A weak, diffuse model for adhesion dynamics is 

implemented into the existing amoeboid cell framework. Adhesive strength is varied in 

order to investigate the reliance of adhesion on the amoeboid morphology. 

5.2 Results 

5.2.1  General Motility Behavior 

Migration of an amoeboid cell was simulated through three independent geometries: 

arrays of spheres (𝜙 = 0.68, 𝛾 = 1), arrays of aligned cylinders (𝜙 = 0.68, 𝛾 = 0.5) and 

(𝜙 = 0.82, 𝛾 = 0.5), and a three-dimensional lattice (𝜙 = 0.68, 𝛾 = 0.5). The sperical 

geometry uses 𝛾 = 1 because, for an equivalent porosity at 𝛾 = 0.5, the gaps between 

obstacles would be roughly twenty percent of the cell radius, which would completely 

inhibit cell migration. Therefore larger radius spheres are used. Two cylindrical geometries 

are simulated due to the current state of results available. Our reasoning for choosing these 

distinctive geometries is as follows. Arrays of rigid spherical obstacles follows our earlier 

work [103], in which non-adhesive amoeboid migration was modeled. Spheres served as 

an arbitrary geometry where variations in porosity and obstacle size could be controlled. 

Furthermore, cell migration through circular geometries – a two-dimensional equivalent of 

spheres, has been modeled prior by Elliott et al [7] and Hecht et al [29]. In previous works, 

cylinders have been used to represent interstitial collagen filaments within the ECM [10-

11,34]. In addition, aligned filaments can be found in several parts of the body, such as in 

collagen networks [19] or between muscle or nerve fibers [57]. Simulations utilizing 

cylinders of random orientation have not been suitably completed to generate results, and 

therefore are not presented in this work. Additionally, more complicated geometries and 

models for deformable matrices are to be considered in future works. The three-



112 

 

 

 

dimensional lattice consists of arrays of aligned cylinders oriented in the three principal 

cartesian directions. This geometry therefore acts as a scaffold for cells, as witnessed by 

tissue-engineering studies [155] and other works [19,156]. We place high importance on 

the three-dimensional lattice, since physical properties such as filament diameter and 

porosity can affect cell survival and differentiation within artificial or bio-inspired 

scaffolds. Cell migration simulations can therefore help determine the optimal matrix 

properties suitable for cell differentiation and prosperity. 

 

Figure 5.1: Sequences showing amoeboid migration through (A) Aligned cylinders for 𝛼 =
7, 𝜙 = 0.83, 𝛾 = 0.5, and 𝜎 = 2. (B) Three-dimensional lattice for 𝛼 = 4, 𝜙 = 0.68, 𝛾 =
0.5, and 𝜎 = 1. (C) Array of spheres for 𝛼 = 7, 𝜙 = 0.68, 𝛾 = 1, and 𝜎 = 1. Bonds 

between the substrate and cell are shown as pink lines. 
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Figure 5.1 illustrates a sequence of an amoeboid cell migrating through each type of 

geometry in the presence of adhesion over time. Since adhesion can trigger gene regulation 

or changes in cell behavior, a thorough analysis is warranted [161]. Adhesive bonds are 

represented by individual pink lines connecting the cell to the adjacent substrate. The cell 

is first initialized as a sphere, while the activator-inhibitor system is set to unity across the 

cell. Through perturbations of the noise term 𝜖, a Turing instability soon develops, causing 

a locally-induced protrusion in the region of the instability. This de novo pseudopod 

extends outward until the activator concentration of the underlying instability abates, or 

until the pseudopod bifurcates into two separate instabilities. A decay in activator 

concentration will lead to a pseudopod retraction event, while a splitting of the instability 

will result in the bifurcation of the parent pseudopod into two daughter pseudopods. 

Additionally, a pseudopod may also get too near an obstacle, forcing a reset of the 

activator-inhibitor system to unity, and the noise across the cell to zero. This step was 

determined to be necessary in order to prevent the cell from becoming stuck on a convex 

obstacle surface, and has been discussed thoroughly in Chapter 4 [103]. A de novo 

pseudopod will then form somewhere on the cell, which continues its migration. Large 

deformations are seen in Figure 5.1 for each type of geometry. For migration through 

aligned cylinders, the cell becomes highly polarized as it migrates, likely because of the 

amount of confinement imposed on the cell. For three-dimensional lattice (Figure 5.1B), 

membrane ruffling is seen, due to adhesive pulling and the cell migrating through a square-

shaped hole of smaller equivalent diameter. Finally, in the sphere geometry (Figure 5.1C), 

large deformations are imposed on the cell from multiple spheres as it migrates through 

narrow gaps. In addition to seeing dynamics such as freezing, probing, doubling-back, and 
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tug-of-war, several new dynamics are seen. Two new modes are described as gliding and 

posterior retraction relative to the cell body. 

 

Figure 5.2: Examples of highly complex cell shapes predicted in various matrix geometries. 

Some matrix obstacles have been removed for clarity. (A) Shows a highly polarized cell 

stretched between several cylindrical obstacles for 𝛼 = 7, 𝜙 = 0.68, 𝛾 = 0.5, and 𝜎 = 1. 

(B) Shows a cell migrating through the three-dimensional lattice for 𝛼 = 7, 𝜙 = 0.68, 𝛾 =
0.5, and 𝜎 = 2. The cell membrane is seen to bulge slighly where adhesive bonds have 

formed, indicating the presence of a traction force. (C) Shows a cell attempting to squeeze 

through a narrow gap between spheres for 𝛼 = 7, 𝜙 = 0.68, 𝛾 = 1, and 𝜎 = 1. 

 

A survey of cell shapes encountered is presented in Figure 5.2 for each geometry. In 

the aligned cylinders matrix (Figure 5.2A), the cell can be seen as highly slender and 
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polarized when cell deformability is high. Adhesive connections on four distinct cylinders 

are the reason why a normally rounded and non-polarized cell appears as such. The 

adhesive bonds act like weak anchor points, which hold the cell membrane fixed at that 

location until they are broken by the force from a protruding front. Cell shapes for three-

dimensional lattice and the spherical array (Figure 5.2B and C) are subjected to different 

forms of confinement, and therefore are shorter and less polarized. Furthermore, each cell 

is shown to conform to the shape of the void space of the matrix. In the three-dimensional 

lattice, for instance, the cell may be forced into a square-like configuration, while 

pseudopod extensions are thinner than otherwise seen in the array of spheres in order to 

penetrate the narrow gaps between obstacles. Additionally, membrane pulling can be seen 

in the lattice geometry, imparted by adhesive bonds with a spring constant of 𝜎 = 2. 

Interesting cell dynamics have been observed as each cell migrates through its 

corresponding matrix. In summary, we label these behaviors as tug-of-war, doubling-back, 

freezing, probing, gliding, and rear cell retraction. Because the first four listed dynamics 

have been extensively mentioned in Chapter 4, they are only discussed briefly here. The 

reason for each dynamic, with the exception of tug-of-war, is due to a reset of the activator-

inhibitor system when an active pseudopod gets too near an obstacle. Different dynamics 

are seen depending on how the activator-inhibitor system responds. In doubling-back, a de 

novo pseudopod will form on the cell posterior, forcing the cell to turn around. In freezing, 

no viable de novo pseudopods will form for a brief period of time, forcing the cell to remain 

inactive. And in probing, the deactivated pseudopod will independently form on the same 

retracting extension continuously, helping the cell through a constriction with each cycle. 
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In tug-of-war, two pseudopods wrap around an obstacle, which becomes stuck until one of 

the competing pseudopods decays. 

 

Figure 5.3: An amoeboid cell exhibiting gliding type behavior in the aligned cylinder 

geometry for 𝛼 = 5, 𝜙 = 0.83, 𝛾 = 0.5, and 𝜎 = 1. All but the necessary cylinders needed 

to illustrate the gliding dynamic have been removed for clarity. Discrete bonds are shown 

as pink line segments. Dimensionless times for each frame are displayed. 

 

We have also observed a type of behavior identified as gliding or skipping in the 

literature [28,160]. As seen in Figure 5.3, adhesive bonds are established between the cell 

membrane and the adjacent matrix surfaces. Because the cell is in the process of migrating, 
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bonds are likely to form near any area of close contact, while existing bonds in the rear of 

the cell are likely to be broken as the cell pulls away. A natural result of these processes is 

a cycle of bonds forming in the front and breaking in the rear. We call this behavior gliding, 

since adhesion does not appear to inhibit cell progress. Instead, the same area on the cell 

continuously forms bonds, which are then broken as the cell moves forward, after which 

the aforementioned area on the cell forms new bonds. As in the case of Figure 5.3, probing 

is seen as the cell moves forward. Gliding has only been seen in the aligned cylinder 

geometry, most likely because of the uninterrupted paths available, as well as a lack of 

curvature in the longitudinal direction, which would otherwise pull the cell towards the 

curving geometry. However, it is possible for gliding to occur in the three-dimensional 

lattice geometry, although at reduced intervals because of higher confinement. Reference 

[28] described lymphocytes and neutrophils as having a fast gliding type of motion defined 

by short-lived and weak interactions with substrates, which agrees well with our 

description. Additionally, Bastounis et al described a similar “skipping” mode in which a 

cell forms numerous, diffuse and weak traction adhesions along the cell length [160]. 

Adhesion did not appear to aid or inhibit cell migration during the gliding mode, but instead 

may have kept the cell aligned as in the case of contact guidance [151]. 

Another interesting dynamic is seen when the cell posterior retracts relative to the main 

cell body as illustrated in Figure 5.4. As the cell approaches a narrow gap between two 

aligned cylinders, its leading edge adheres to both obstacles, helping to guide the cell. 

Further protrusion forces the front half of the cell through the constriction. A bifurcation 

occurs, where each pseudopod protrudes in opposite directions and adheres to its nearest 

matrix surface. Now shaped like an inverted “T”, the cell begins to retract its rear as 
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sustained pseudopod protrusion forces the cell to advance. However, the cell front, center, 

and rear are seen to move at different speeds. As seen in Figure 5.5, the rear-cell speed 

briefly exceeds the center-cell speed, resulting in a net contraction of the cell rear relative 

to the rest of the cell. We note that while no explicit contractility model is present in this 

work, leading-edge protrusion is sufficient enough to induce a pulling force in the cell 

posterior [33]. Furthermore, cells lacking Myosin II were shown to exhibit comparable 

traction forces on a substrate, generating sufficient friction for movement [162]. These 

results indicate that contractility is a tool used by the cell to help migration, but is not 

absolutely required. 

 

Figure 5.4: Example of the significant rear-cell retraction which occurs during migration 

in the presence of adhesion for 𝛼 = 7, 𝜙 = 0.83, 𝛾 = 0.5, and 𝜎 = 2. Dimensionless times 

are displayed. 
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Figure 5.5: (A) Relative speeds of three points selected on the migrating cell relative to the 

average cell migration speed: front, center, and rear. The rear-cell speed is seen to exceed 

the center-cell speed briefly during the relative contraction. (B) The amoeboid cell marked 

by each point at a dimensionless time of 2.9. 

 

5.2.2  Adhesion-Induced Effects 

The effect adhesion has on amoeboid cell migration through various extracellular 

matrix geometries is now considered. One such quantity to be analyzed is the maximum 

distance the cell can penetrate in the given time interval, or 𝑃𝑚𝑎𝑥. A larger distance would 

indicate the cell can easily migrate through the matrix with little directional change, while 

a small distance indicates that the cell is either unable to move significantly, or has poor 

persistence and cannot escape from its relative position. The maximum cell penetration is 

plotted against adhesive strength for multiple membrane deformabilities and matrix 

geometries as seen in Figure 5.6. Similar trends are noted in each geometry. An increase 

in maximum penetration is seen with 𝛼, but a saturation appears to occur at higher 

deformabilities. This implies that once a cell becomes excessively deformable, it no longer 
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gains any advantage towards penetrating a matrix. This excessive deformability, in fact, 

may prevent the cell from migrating efficiently due to its highly active nature. Furthermore, 

a decreasing trend in the ability to penetrate the matrix is seen as adhesive strength is 

increased. This effect is more pronounced at larger deformabilities, and is caused by 

adhesion pulling a cell away from its trajectory, resulting in more turns and therefore less 

directed motion away from the initial location. 

 

Figure 5.6: Maximum penetration 𝑃𝑚𝑎𝑥 plotted against adhesive strength under varying 

membrane deformabilites. (A) Cylinders 𝜙 = 0.68, 𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 𝛾 =
0.5. (C) Spheres 𝜙 = 0.68, 𝛾 = 1.  
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Figure 5.7: Accumulated distance traveled  𝐿𝑚𝑎𝑥 by a cell. (A) Cylinders 𝜙 = 0.68, 𝛾 =
0.5. (B) Lattice 𝜙 = 0.68, 𝛾 = 0.5. (C) Spheres 𝜙 = 0.68, 𝛾 = 1.  

 

The accumulated distance traveled 𝐿𝑚𝑎𝑥, which tracks the entire distance traveled by 

the cell, is plotted in Figure 5.7 as a function of adhesive strength. Values are observed to 

remain fairly constant as the adhesive strength is increased, with a minor decreasing trend 

seen for higher deformability cases. A greater distance is traveled by the cell for larger 

membrane deformabilities, yet as predicted by Figure 5.6, the cell is not necessarily 

migrating through the matrix more efficiently. We also note that migration through aligned 
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cylinders (Figure 5.7A) has lower magnitudes than that for the lattice and sphere 

geometries. Because the minimum gap distance between cylinders is approximately 57% 

of the cell radius, while that for lattice and spheres are 135% and 35% of the cell radius, 

respectively, we attribute this to the adhesive dynamics which are discussed later. A 

saturation in total distance traveled is seen in the aligned cylinder geometry as well, 

meaning increased deformability has less of an effect in that geometry. 

 

Figure 5.8: Persistence plots as a function of adhesive strength for various membrane 

deformabilities (A) Cylinders 𝜙 = 0.68, 𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 𝛾 = 0.5. (C) 

Spheres 𝜙 = 0.68, 𝛾 = 1. Filled black squares 𝛼 = 1, Filled red circles 𝛼 = 3, Open green 

squares 𝛼 = 5, and Open blue circles 𝛼 = 7. 
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The influence of adhesion on cell persistence was also investigated. Persistence was 

calculated as the line integral of the change in angle along the trajectory, and then 

normalized by the total distance traveled (recall Equation 4.1). Plots of persistence are 

shown in Figure 5.8, where zero represents a perfectly persistent trajectory, and positive 

increasing numbers convey a reduction in directed cell migration. Each geometry reveals 

that persistence decreases as adhesive strength increases. This is a direct result of geometry 

and adhesion dynamics acting on the cell membrane. When a pseudopod comes into 

adhesion range with a matrix obstacle, our Monte-Carlo adhesion model decides whether 

bonds will form. If bonds form, they will pull the pseudopod away from its migration 

direction because of the convex geometry (spheres and cylinders) found in our matrices. 

Depending on adhesive strength and pseudopod dynamics, the cell’s trajectory can 

effectively be altered, resulting in a weaker persistence. Amoeboid neutrophils have been 

observed to experience frequent directional changes, possibly due to obstructions in the 

tissue [163]. We note that the persistence is almost identical for different deformabilities 

in the lattice geometry (Figure 5.8B). This is likely due to having the largest gaps between 

obstacles available, and a direct line of site for the cell to migrate. Therefore, deformability 

is not much of a consideration for the lattice geometry when looking at persistence. For the 

cylinder and sphere geometry, however, the persistence is not identical. In the cylinder 

matrix (Figure 5.8A), persistence decreases with increasing deformability, since 

pseudopods are more frequent and active, creating the possibility of a cell detouring off 

course because of pseudopod dynamics. In the sphere geometry (Figure 5.8C), larger 

deformability is seen to have an increased persistence than smaller magnitude 

deformabilities. This is likely caused by the narrow gaps between obstacles, since cells 
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without sufficient deformability cannot penetrate the matrix and therefore change direction 

more often.  

So far, increasing adhesion has been shown to decrease the extent of a cell’s ability to 

penetrate the matrix geometry, slightly decrease the total distance traveled by the cell, and 

decrease the cell persistence. With this in mind, a question arises to the extent to which 

adhesion helps or hinders cell migration. Taking the dot product of the normalized adhesive 

traction vector and cell trajectory produces a scalar value between -1 and 1. Positive values 

show that the adhesive force is helping the cell migrate, while negative values are shown 

to hinder migration. Time-averaged quantities are labeled simply as “advantage,” and are 

plotted in Figure 5.9 against the adhesive bond strength. First, it is noted that a cell with 

low deformability (𝛼 = 1) has an advantage of nearly zero, indicating adhesion does not 

help or hurt its migration. In most cases, a deformability this low will not allow the cell to 

penetrate the matrix at all, and therefore adhesion has no effect. When deformability is 

higher, however, adhesion has a more pronounced effect. For each geometry, the advantage 

from adhesion is negative, indicating adhesive bonds are interfering with the amoeboid 

cell’s migration. As adhesive strength is increased, however, there appears to be a positive, 

upward trend in the advantage. This trend is most noticeable for the lattice geometry in 

Figure 5.9B. It can also be observed, though a somewhat smaller in effect, in the cylinder 

and spheres geometries. The effect is most prominent for the case of intermediate 

deformability (𝛼 = 3). Although the advantage still remains negative, the data appears to 

show that a cell with intermediate deformability can utilize adhesion better than cells with 

large deformabilities. Furthermore, because each instance with a deformability above 𝛼 =
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1 in Figure 5.9 is negative, the data also implies amoeboid motility is better off without 

utilizing adhesion. 

 

 Figure 5.9: Average adhesion helpfulness as a function of adhesive strength for various 

membrane deformabilities. (A) Cylinders 𝜙 = 0.68, 𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 𝛾 =
0.5. (C) Spheres 𝜙 = 0.68, 𝛾 = 1. Filled black squares 𝛼 = 1, Filled red circles 𝛼 = 3, 

Open green squares 𝛼 = 5, and Open blue circles 𝛼 = 7. 

 

While the results of Figure 5.9 paint adhesion as either an absolute helper or absolute 

hinderer, as the cell migrates through the extracellular matrix geometry over time, adhesion 

can change the advantage seen by the cell. Figure 5.10 presents the time-dependent 
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advantage for each geometry. We note that the cylinder plot (Figure 5.10A) is for the more 

porous 𝜙 = 0.83 geometry. The advantage is ocassionally seen near a value of 1 and -1, 

indicating the benefit from adhesion depends on how the cell is positioned near an obstace. 

If the cell is moving away from an obstacle, the advantage is likely to be negative as bonds 

still linked to the cell provide resistance. Conversely, if the cell front is moving past an 

obstacle, bonds which are likely to form will help pull the cell in the direction of migration. 

 

Figure 5.10: The dot product between the cell’s trajectory and the net adhesive force vector 

is plotted over time. Positive magnitudes indicate adhesion helps pull the cell forward, 

while negative magnitudes imply adhesion pulls against the direction of migration. (A) 

Cylinders 𝜙 = 0.83, 𝛾 = 0.5. Black line: 𝛼 = 1 and 𝜎 = 1. Blue line: 𝛼 = 7 and 𝜎 = 3. 

(B) Lattice 𝜙 = 0.68, 𝛾 = 0.5. Black line: 𝛼 = 3 and 𝜎 = 1. Blue line: 𝛼 = 3 and 𝜎 = 3. 

(C) Spheres 𝜙 = 0.68, 𝛾 = 1. Black line: 𝛼 = 5 and 𝜎 = 1. Blue line: 𝛼 = 5 and 𝜎 = 2. 
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Figure 5.11: Cylinder bias for aligned cylinders as a function of membrane deformability 

(A) 𝜙 = 0.83. (B) 𝜙 = 0.78 (C) 𝜙 = 0.68. Larger magnitudes reveal a preference in cell 

migration direction. Black lines and circles: x-bias, Red lines squares: y-bias, Green lines 

and diamonds: z-bias. 𝛾 = 0.5 for each instance. 

 

In the aligned cylinder geometry, cylinders are oriented in the x-direction. This means 

a cell migrating through this type of matrix may have an easier experience moving through 

the matrix if it were to choose the x-direction over the y- or z- directions. An analysis was 

performed to see if cells utilize this advantage more so on average than migrating in the 

alternate directions. A cylinder bias plot is shown in Figure 5.11, where the projection of 

the unit trajectory vector is taken onto the three principal cartesian directions and averaged 
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over time. Larger magnitudes indicate the cell has a stronger preference for migration in 

that direction, while the reverse is true for smaller magnitude values. For the first cylinder 

geometry with porosity 𝜙 = 0.83 shown in Figure 5.11A, the bias is essentially neutral, 

with magnitudes near 0.5, indicating the lack of a preference or aversion for any direction. 

This is true across every adhesive strength in addition to simulations with no adhesion. For 

a denser array of aligned cylinders (𝜙 = 0.78) (Figure 5.11B), however, we note a bias 

occurs when 𝛼 = 1. This occurs because the cell’s low deformability prevents it from 

migrating through the matrix in a transverse manner (y or z direction). Instead, the cell 

migrates along the longitudinal direction. A small spike in bias is also seen in higher 

deformabilities, suggesting a stronger impact on cell orientation. Finally, for a matrix 

porosity of 𝜙 = 0.68 (Figure 5.11C), the bias is not seen for a deformability of 𝛼 = 1, but 

is seen for larger deformabilities. We note that once a cell enters the highly confined matrix 

(see Figure 5.2A), it is difficult to reorient due to its polarized nature. 

5.2.3  Pseudopod Dynamics  

Pseudopod dynamics were quantified while varying membrane deformability and 

adhesive strength. Average pseudopod lifetime, the average number of pseudopods 

present, and the proportion of de novo pseudopods to total pseudopods were analyzed. 

Figure 5.12 below shows the average pseudopod lifetime as a function of adhesive strength 

for each matrix geometry. We note that the aligned cylinders geometry uses a porosity 𝜙 =

0.83. A decreasing trend in lifetime is seen as 𝛼 is increased, due to an increasing number 

of pseudopod collisions. Similar effects were seen without adhesion present in Chapter 4 

[103]. Furthermore, adhesive strength does not appear to have much effect on average 

lifetimes, since lifetimes for equivalent cell parameters are similar among each geometry. 
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One explanation is that adhesion merely directs the pseudopod, so that its dynamics remain 

similar for the most part. We also observe that pseudopod lifetime is more similar at higher 

deformabilities since pseudopod dynamics are random for stiffer cells, but tend to focus 

for softer cells [103,148]. One final note concerns the pseudopod lifetimes for 𝛼 = 1, 

which can be two to three times as high as lifetimes for the other deformabilities. At this 

deformability, the membrane lacks the softness required to penetrate the matrix, and is 

therefore less likely to force a reset of the activator-inhibitor system, resulting in longer 

life. 

 

Figure 5.12: Average pseudopod lifetimes as a function of adhesive strength. (A) Cylinders 

𝜙 = 0.83, 𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 𝛾 = 0.5. (C) Spheres 𝜙 = 0.68, 𝛾 = 1. 
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The average number of pseudopods present over time is also plotted below in Figure 

5.13 against the adhesive bond strength. Only small differences in the can be seen across 

all parameter ranges. Slight increases can be observed to occur for aligned cylinders and 

three-dimensional lattice geometries as membrane deformability is increased, as was seen 

in Chapter 4 [103]. Conversely, a slight decrease in the average number of pseudopods is 

seen for the spherical array geometry. We consider this observation a uniqueness of the 

geometry, as the deformable cell has more room to extend pseudopods in as compared to 

a stiff cell.  

 

Figure 5.13: Average number of pseudopods existing vs adhesive strength. (A) Cylinders 

𝜙 = 0.83, 𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 𝛾 = 0.5. (C) Spheres 𝜙 = 0.68, 𝛾 = 1. 
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Finally, de novo pseudopod ratios are plotted below against the adhesive bond strength 

for each membrane deformability in Figure 5.14. de novo ratios appear to increase with 

increasing membrane deformability as was seen in Chapter 4 [103], due to more frequent 

resets of the activator-inhibitor system. Additionally, the de novo pseudopod proportions 

look as if they are unaffected by adhesive strength. We reason that confinement has a much 

larger influence on pseudopod dynamics than adhesion.  

 

Figure 5.14: Percentage of de novo pseudopods existing against adhesive strength. (A) 

Cylinders 𝜙 = 0.83, 𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 𝛾 = 0.5. (C) Spheres 𝜙 = 0.68, 𝛾 =
1. 
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5.2.4  Migration Speed 

The average speed of an amoeboid cell migrating through aligned cylinders, three-

dimensional lattice, and arrays of spheres is plotted below in Figure 5.15. Average cell 

speed is observed to increase with membrane deformability. An increase in cell speed with 

increasing deformability was also noted in our earlier papers [103,148], as the coupled 

reaction-diffusion system produced focused instabilities leading to a higher cell speed. In 

confined medium, larger deformability also leads to cells capable of migrating through 

narrow gaps in the matrix, resulting in a larger displacement and speed. Average speed is 

seen to remain almost constant as the adhesive strength is increased, though. A slight 

downward trend is seen for larger values of cell deformability. This indicates that adhesion 

has little effect on cell speed except at large values of 𝛼. Similar trends were seen in the 

maximum penetration and total distance traveled by the cell in Figures 5.6 and 5.7, 

respectively. The average migration speed for the cylinder geometry (Figure 5.15A) is seen 

to be comparable for low and intermediate levels of deformability (𝛼 = 1 and 3), but 

reduced for high levels of deformability (𝛼 = 5 and 7). This is due to the large confinement 

experienced by the cell, making matrix penetration exceedingly slow. 

Dimensionless average cell speed was approximately in the range of 0.05 – 0.4, which 

scales to 0.3 – 2.4 𝜇𝑚/𝑚𝑖𝑛. Reported speeds of amoeboid cells migrating in three-

dimensional matrices vary in the literature based on cell type and ECM properties, though 

we have found speeds of 0.07-0.6 𝜇𝑚/𝑚𝑖𝑛 [1], 2-25 𝜇𝑚/𝑚𝑖𝑛 [151], 4 𝜇𝑚/𝑚𝑖𝑛 [59] , 5-

8 𝜇𝑚/𝑚𝑖𝑛 [37], 0.1-20 𝜇𝑚/𝑚𝑖𝑛 [28], and 1-5.5 𝜇𝑚/𝑚𝑖𝑛 [50], which mostly agrees well 

with our result. We note that each experiment investigated cell migration likely using 
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different cells and tissues which explains the large ranges. For a suitably confined matrix, 

our results are indeed agreeable. 

 

Figure 5.15: Average cell speed as a function of adhesive bond strength. (A) Cylinders 𝜙 =
0.68, 𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 𝛾 = 0.5. (C) Spheres 𝜙 = 0.68, 𝛾 = 1. 

 

5.2.5  Bond Dynamics 

Finally, bond dynamics are considered. Both the position of bonds along the cell and 

the number of bonds existing between a cell and matrix are quantified. Bond position can 

indicate where the majority of bonds form over time as the cell migrates through the matrix, 
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revealing certain trends or irregularities. As such, bond positions have been plotted below 

in Figure 5.16, where the abscissa characterizes the location on the cell. Zero represents 

the location of the cell centriod, while 1 and -1 are the cell front and rear, respectively. 

Each geometry shares the same distinct trend, showing a peak slightly forward of the cell 

centroid, representing the location of maximum bond density. Bond density quickly 

diminishes moving from the centroid to the cell front. Density also decreases moving 

towards the rear of the cell from the centroid, with a secondary maxima located slightly 

behind the centroid. This universal trend is seen across all adhesion strengths and 

membrane deformabilities, with exception to low defomabilities in the aligned cylinder 

geometry and three-dimensional lattice geometry. In those two cases, another trend in bond 

density emerges. Maximums in bond density appear near the cell-rear and cell-front 

regardless of the adhesive bonds strength, suggesting that the cell shape itself is the reason 

for this secondary trend. The rear bonds indicate a defect in cell migration capacity since 

they pull the cell against its direction of movement, indicating a lack of bond rupture. This 

connects to several studies, which have noted that integrins can impede invasion, as seen 

in types of melanoma, breast, and colon cancers [28]. There are also cases of mutant cells 

with a reduced ability to form [164] or break adhesions [165], thereby affecting cell 

behavior and migration. The front-distributed bonds indicate a more active leading-edge. 

Because the bond density distribution is nearly level for this trend, we conclude that bond 

distribution is almost uniform on the entire cell, consistent with a cell unable to penetrate 

the matrix. 
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Figure 5.16: Average bond position relative to cell. On the abscissa, 0 represents the 

location of the cell centroid while 1 and -1 represent the front and rear of the cell, 

respectively. Each plot is normalized to a maximum value of one. (A) Cylinders 𝜙 = 0.68, 

𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 𝛾 = 0.5. (C) Spheres 𝜙 = 0.68, 𝛾 = 1. Black lines: 𝛼 = 1. 

Red lines: 𝛼 = 3. Green lines: 𝛼 = 5. Blue lines: 𝛼 = 7. 

 

The average number of bonds active on a cell in each geometry was also calculated in 

Figure 5.17. It was observed that matrix geometry played a large role on the number of 

bonds formed on the cell, as well as the trend in bond quantity as deformability and 

adhesive strength were varied. Bond count is observed to increase with increasing 

deformability for aligned cylinders and spheres, but decrease in the lattice geometry. In the 
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former case, the bound count approximately doubles between 𝛼 = 1 and 7, while in the 

latter case, the bound count is approximately halved between the same deformabilities. As 

all cell parameters are identical, the geometry must be the reason for the effect on number 

of bonds. The proportion of surface area available for bonding is likely a key factor, since 

the cell imparts differently on aligned cylinders, lattice (cylinders in each cartesian 

direction), and spheres in a unique way. Therefore, geometry is a principal factor 

influencing the number of bonds which will form, and as a result, the type of cell behavior 

which will arise.  

 

Figure 5.17: Average number of bonds 𝐵𝑎𝑣𝑔 as a function of membrane deformability for 

various adhesive bond strengths (A) Cylinders 𝜙 = 0.68, 𝛾 = 0.5. (B) Lattice 𝜙 = 0.68, 

𝛾 = 0.5. (C) Spheres 𝜙 = 0.68, 𝛾 = 1. 
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In general, the number of bonds is seen to increase with adhesive strength. We attribute 

this to a positive-feedback system. When a bond is established between the cell membrane 

and matrix surface, a tensile force is applied to simulate adhesion. The bond location on 

the cell membrane combined along with adjacent bond sites are then forced to remain close 

to the matrix surface, thereby increasing the probability that new bonds will form.  

5.3 Summary 

In summary, a three-dimensional computational model was developed for an amoeboid 

cell immersed in various extracellular matrix geometries, where cell behavior and 

pseudopod dynamics were analyzed. A weak variant of adhesion commonly associated 

with amoeboid migration was modeled, while the effect of adhesive strength on cell 

migration was calculated. Large scale deformations were predicted as each cell migrated 

through the confining geometry, consistent with experimental results. In addition to 

dynamics previously seen including freezing, probing, doubling-back, and tug-of-war, two 

new dynamics involving adhesion were observed. A gliding-type motion was discovered, 

where the cell formed transient adhesions as it sidled between two obstacles. Rear cell 

retraction relative to the main cell body was also witnessed during migration through 

narrow gaps in the matrix. Maximum penetration and total distance traveled by the cell 

were calculated, showing slight decreases in magnitude as the adhesive strength increased. 

Adhesion was shown to decrease persistence, as adhesive bonding often detoured cells 

away from their previous trajectory. The advantage of adhesion on amoeboid cell migration 

was found, where in general, amoeboid migration was inhibited. Higher deformabilities 

were shown to perform worse than cells with an intermediate deformability. Over time, 

however, cells did experience some benefit from adhesion. Bias in the migration direction 



138 

 

 

 

in the aligned cylinder geometries was calculated, showing cells in higher confinement 

have a slight preference towards traveling in the longitudinal direction of matrix fibers. 

Pseudopod dynamics were quantified, showing little effect from adhesion. Average cell 

migration speed was found, showing slight decreases in speed as adhesive strength was 

increased. Finally, bond dynamics were described, showing the distribution of bond density 

on the cell for each geometry and parameter range. A universal bond distribution was seen, 

while a secondary trend was noted for two geometries. The average number of bonds was 

also calculated, showing the coupling between cell geometry and the cell. To summarize, 

adhesion was seen to have some influence in determining the behavior of a migrating 

amoeboid cell, though confinement and deformability are the principal instigators of cell 

behavior and pseudopod dynamics.  
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Chapter 6 

Conclusions of Dissertation and Directions for Future 

Work 

 

6.1 Conclusions 

In conclusion, we have developed a three-dimensional, multiscale, multiphysics model 

of amoeboid cell motility which couples fluid-mechanics, solid-mechanics, and a dynamic 

pattern formation model to simulate pseudopod-driven locomotion through a porous 

extracellular medium. The extracellular space is composed of a viscous fluid surrounding 

various forms of rigid, non-moving geometries: aligned cylinders, three-dimensional 

lattice, and spherical arrays. An unbounded fluid medium is also considered. An immersed-

boundary method is used to couple the cell to the fluid, and fluid to the matrix, allowing 

for a seamless integration of both deformable and nondeformable interfaces. Reaction-

diffusion of activator-inhibitors, extreme cell deformation, pseudopod dynamics, 

cytoplasmic and extracellular fluid motion, and a fully resolved extracellular environment 

are all modeled. Cell deformation is solved for through the use of a finite-element method, 

while fluid interaction is modeled using Stoke’s equation and solved by finite volume and 

spectral methods. Activator-inhibitor dynamics, which are modeled by coupled nonlinear 

equations, are solved using an evolving surface finite-element method. Solution yields 

dynamic patterns termed Turing instabilities, which are taken to be cell membrane proteins 

linked to the protrusive capacity of the cell. Adhesion is considered using a modified Bell 
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model to determine the discrete dynamics of bond formation on the cell. No external cue 

or chemical bias is implemented. 

The model expertly creates activator patches which generate pseudopod extensions of 

the cell membrane, dynamically extending, meandering, bifurcating, and retracting over 

the cell surface. Predicted cell shapes are similar to images captured in experimental works. 

In Chapter 3, a strong coupling is found between cell membrane deformability, surface 

protein diffusivity, and fluid viscosity. As such, cell dynamics are seen to transform, in 

certain parameter ranges, from a slow, non-persistent cell to a fast, persistent cell by 

adjustment of pseudopod dynamics. Amoeboid swimming is made possible by pseudopods 

acting as paddles, which act as a non-reciprocal motion necessary for net displacement on 

the microscale. Average swimming speeds are quantified, where the effect of 

deformability, diffusivity, and fluid viscosity is found. Speeds are seen to have nonlinear 

trends as each parameter is adjusted. Pseudopod dynamics are calculated, showing the 

changes in average lifetime in addition to the average and maximum number of pseudopods 

generated by the cell. Fluid field vectors are analyzed, revealing the presence of two 

generalized modes of swimming: pushers and pullers. Both modes are observed to occur, 

though unclassified patterns are more common due to the deformable nature of the cell and 

pseudopod dynamics.  

In Chapter 4, the amoeboid cell is subjected to confined extracellular matrix geometries 

characterized by arrays of rigid, non-moving spheres of various matrix porosity and 

obstacle size. An investigation of the influence of curvature, deformability, and obstacles 

on Turing patterns is performed. Curvature and deformation are shown to destabilize 

activator patterns, making the cell more active as a result. Extreme deformation is observed 
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due to rigid obstacles impressing upon the deformable cell. Major changes in cell behavior 

and pseudopod dynamics are seen. The persistent, unidirectional cell migration seen in 

unbounded flow is lost, as obstacles prevent direct motion. The introduction of de novo 

pseudopods, however, helps the cell navigate through the complex medium. Interesting 

dynamics which are not seen in unbounded flow are observed, including doubling-back, 

tug-of-war, freezing, and probing. These dynamics elucidate a new coupling between the 

cell and matrix. Average migration speeds are calculated over each parameter range, 

revealing an asymptotic decrease in speed as confinement increases. Pseudopod dynamics 

are investigated, showing large-scale changes as compared to unbounded flow. Lifetimes 

are seen to decrease with increasing confinement, while the de novo pseudopod becomes a 

major player in directing cell migration. The physical limits on cell motility are determined 

for all parameter ranges, showing cell migration is hindered as deformability, porosity, and 

obstacle size decrease. Persistence is calculated, revealing a more random, undirected 

motion within the matrix for the same cell properties which produced persistent motion in 

unbounded flow. Finally, complex flow fields are seen as the cell and pseudopods interact 

with obstacles.  

Lastly, in Chapter 5, amoeboid cell migration is introduced to several new geometries 

in addition to the presence of adhesion between the cell and matrix. Cell shapes are found 

to be highly deformed as confinement takes its effect on the highly deformable cell. In 

addition to freezing, probing, doubling-back, and tug-of-war, several new dynamics are 

seen, including a gliding-type motion and rear cell retraction, where both adhesion and 

confinement cause a contraction relative to the main cell body. The distance traveled and 

penetrated by the cell is found, revealing a slight dependence on adhesion. Cell persistence 
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is then calculated, showing adhesion decreases a cell’s ability to direct its motion. This is 

due to adhesive bonds re-directing pseudopods, and cell trajectories as a result. The 

adhesive advantage is then generated, showing that while adhesion occasionally aids cell 

migration, on average it acts to inhibit motion, demonstrating that the amoeboid mode is 

better off without adhesion. Biases in migration direction for various porosities of aligned 

cylinders showed that increasing confinement also increases the propensity to travel along 

an aligned path. Pseudopod dynamics were shown to be similar to those in Chapter 4, while 

adhesion was seen to have little influence. Cell migration speeds were also seen to have a 

slight decreasing effect due to adhesion. Finally, bond density over the cell was calculated, 

showing the existence of one universal trend in where bonds form. The average number of 

bonds was then found, showing the importance that extracellular matrix geometry has on 

cell behavior. 

To our knowledge, no other three-dimensional pseudopod-driven computational model 

has revealed as much information about amoeboid motility as our model has. Our cell is 

capable of extreme deformation, while able to generate dynamic and copious amounts of 

pseudopods which allow the cell to achieve dynamics observed within the literature. 

Furthermore, cell-fluid-matrix coupling shows our model to be well-resolved and free of 

ad hoc corrections needed to patch inconsistencies. With future work aimed at improving 

the cell model, while greatly enhancing the extracellular matrix, we foresee many more 

insights as studies of the largely important pseudopod-driven amoeboid migration are 

continued. 
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6.2 Directions for Future Work 

In the case of the ever-growing field of amoeboid cell migration, and cell migration in 

general, a rich amount of opportunities exists for future academic contributions. The 

following sections are intended to serve as a guide for future endeavors, and therefore are 

constructed with as much detail as possible. Some topics can be easily adapted into the 

current computational model while others would require larger scale additions or 

modifications. The next generation of cell migration models will most likely adopt 

modeling improvements across multiple avenues. 

6.2.1 Viscoelastic Fluid Model 

Within the interior of a cell exists the cytoplasm, a viscoelastic combination of a gel-

like cytosol and actin filaments, among other compounds. Additionally, within bodily 

tissues, the extracellular fluid is composed of viscoelastic glycosaminoglycan chains with 

heterogeneous properties due to variability in synthesis. One of the more common GAGs 

is hyaluronan which has a highly dependent shear viscosity [109]. Additionally, hyaluronan 

is known to inhibit the diffusion of molecules, heal and protect from infection, and provide 

lubrication [110]. As a result, cell dynamics may be markedly different as compared to 

migration through Newtonian fluids. Furthermore, in cells motivated by chemotaxis or 

chemical signals, the interruption of molecular diffusion throughout the extracellular 

medium may also provide interesting behavior not otherwise seen in simulations. Zhu et al 

investigated puller- and pusher-type migration of a spherical swimmer using tangential 

surface deformations inside a viscoelastic fluid, and found differences in swimming speed 

and hydrodynamic efficiency compared to the Newtonian case [111]. Additionally, Li et 

al investigated flagellar swimming in viscoelastic medium using experimentally-derived 



144 

 

 

 

kinematics, also showing differences exist compared to the Newtonian case [112]. 

Simulation of highly deformable amoeboid cells through viscoelastic fluids may similarly 

produce interesting results. 

6.2.2 Chemotaxis 

One possible contribution is the implementation of a chemotactic model into the 

existing framework. Chemotaxis is the biased cell migration towards a particular source 

due to a chemical gradient [27]. When chemoattracts bind to complementary receptors on 

the plasma membrane, internal signaling mechanisms then amplify the chemical bias, 

causing pseudopods to form in the relative direction of the attractant [47]. Over time, and 

with sufficient generations of pseudopods, the cell will reach the source of the 

chemoattractant. Chemotaxis is a highly important strategy used by cells within the body, 

with some prime examples being immune cells dispatched to destroy foreign organisms 

[37], to embryonic cells depending on chemical signals for proper positioning and 

development [23].  

Chemotactic models for amoeboid cell migration have been considered in various 

works [67], some of which are described here. Elliott et al [7] modeled two-dimensional 

amoeboid cell chemotaxis, where like our model, a noise bias was added to an activator-

inhibitor system modeled by reaction-diffusion equations. Activator growth is then 

amplified in the direction of the attractant source. Neilson et al [8] took a similar approach 

using an activator-inhibitor system, but instead based the bias response on the degree of 

chemotactic receptor occupancy, which modulated pseudopod generation rates. Hecht et 

al [9] utilized a compass model which biased membrane patches, and subsequently, 

membrane extensions in the direction of an external source. Finally, Moure and Gomez 
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[10-11] created a three-dimensional amoeboid cell whose membrane receptors react with 

diffusive ligands present in the extracellular medium. Based on the distribution of bonded 

ligands, a bias direction is chosen, which is then used to modify the probability functions 

controlling activator peak and duration to produce chemotactic motion.  

The adoption of a chemotactic model should consider a chemical species, actively 

secreted by tissue or cells within the domain, which can freely diffuse through the 

extracellular fluid. A model cell should have receptor distributions on its membrane, which 

through bonding rates, would produce a bias in pseudopod extension direction. 

Chemotactic migration would present as an interesting problem in the extracellular 

geometries we have considered, possibly affecting migration speed, persistence, and even 

the degree to which confinement traps a cell. 

6.2.3 Peristaltic Migration 

A recent study by Franz et al [12] described an interesting mode of swimming behavior 

termed peristaltic migration. Fat body cells of the pupal Drosophila fly, a non-human 

equivalent of adipocytes, were shown to migrate towards wounds purely through 

actomyosin driven contractile waves. This was accomplished without any adhesion 

mechanism present. These waves begin as a band in the cortex near the cell center, and 

migrate towards the rear, effectively propelling the cell forward. Waves were constantly 

generated under normal circumstances, but only became highly focused once the organism 

became wounded. Except for a contractile band model, the existing cell framework should 

be suitable without any modification. One possible avenue to model the contractile band is 

through pattern generation via Turing instabilities. The same reaction-diffusion equations 

we have used to generate dynamic circular patterns can be run with alternate parameters to 
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produce a variety of patterns. The large number of parameters, however, would require an 

exhaustive study to find the proper pattern. Spherical harmonic equations, which were used 

in [108] to model both protrusive and contractile forces, offer a periodic means to model a 

moving contractile band. Active stresses, which are discussed below are also another 

option to simulate this peristaltic behavior. A secondary but related project which might 

assist in the development of a contractile band model is the process of cytokinesis, or cell 

division. When mitosis is nearly completed, a thin ring of actin and myosin appears below 

the plasma membrane at the cell center. Continuous contraction of the ring results in the 

total separation of the cell [45].  

6.2.4 Membrane Contractility 

Similar to the previous section on peristaltic migration, and consistent with the standard 

model of cell migration is the ability of a cell to contract its membrane when needed. 

Myosin II present in the cell posterior pulls actin filaments towards one another, thereby 

creating a tensile force which advances the rear of the cell forward. While not exclusively 

required for cell migration in three-dimensional environments [58,63], cells with 

contractile capability assist in forcing motility through matrices which would otherwise 

preclude penetration [72-74]. Therefore, while not a shortcoming of any kind, it would be 

a sensible strategy to include a contractility mechanism in future works. 

The computational modeling literature is split between works which do not model cell 

contractility [31,34,35], and those which consider contractility in some form or variation 

[9-11,13,29-30,32-33,61,64-65]. Sakamoto et al [30] conceived of myosin as being either 

free in suspension or bound to actin, thereby providing stiffness to the actin network 

through a shear modulus proportional to bound myosin. Among the three-dimensional 
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models is the work by Moure and Gomez [10-11], who made myosin a diffusible species 

within the cell and dependent on actin filament location. Activator-inhibitor systems may 

be useful to model high concentration regions of myosin, which could then be coupled to 

the governing equations of the cell by a contractile force. Active stresses could serve as 

another means to simulate contractility through fluid interactions. Finally, internal myosin 

dynamics, which are discussed below, can serve to generate more physiologically realistic 

models. 

6.2.5 Blebbing Cell Model 

As discussed above, cellular locomotion can be achieved purely through a contractile 

mechanism alone. Blebbing occurs when myosin induced contractions create a rupture 

between the actin cortex and the plasma membrane, generating an influx of cytosol driven 

by hydrostatic pressure and creating a bubble-like bleb which fills with fluid [26]. The 

cortex is then reconstructed directly under the membrane of the new bleb, which in time 

will retract. This process occurs repeatedly over time as different areas between the cortex 

and plasma membrane rupture, thus allowing the cell to migrate. Several works have 

attempted to model blebbing, including Lim et al [13], who considered a two-dimensional 

elastic actin cortex surrounded by an elastic cell membrane adhered together with Hookean 

springs. Membrane-cortex rupture preceded bleb growth, after which the cortex 

connections were reconstituted, and cortical tension caused bleb retraction. 

The creation of a three-dimensional blebbing amoeboid cell model would be a great 

advancement in terms of current literature works. In our computational framework, both 

the cell plasma membrane and cortex can be modeled as nested vesicles, though a 

contractility mechanism would need to be implemented as discussed. Adhesion dynamics 
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between the membrane and cortex would also need to be considered, as ruptures are the 

flash point for bleb generation. Stochastic methods or perhaps activator-inhibitor systems 

may be helpful to control these adhesive fluctuations. Cytosolic fluid needs to flow from 

the inside of the cell to the gap between the membrane and cortex, so the inner vesicle must 

be either be permeable to fluid or modeled as an open surface where individual elements 

can be removed during bleb growth, and later added as the cell “repairs” its cortex. 

Additionally, the cell cortex could be modeled as an aggregate of individual actin filaments, 

though the complexity of achieving this is a work in itself. 

6.2.6 Improved Adhesion Model 

In our current adhesion model, only ten percent of cell nodes are available for adhesion 

bonding with the extracellular matrix geometries. The number of available bonds is further 

reduced by the Monte Carlo stochastic methods used to determine if bonds will form, and 

of course by distance considerations. This was done in part to mimic the amoeboid 

description of adhesion, which is described as having a diffuse integrin distribution on the 

cell membrane [28]. The probability of bond formation is set to be constant with the 

assumption of a suitable nearness between the cell and substrate, while the probability of 

bond deletion depends on a decaying exponential function of bond length. The latter 

statement agrees well with experiments, since higher forces due to stretching results in 

bonds rupturing.  

Many works modeling cell migration have completely ignored adhesion [7,13,64-65], 

only considered ad hoc approximations proportional to cell speed [9-10,29-30,34] or the 

number of receptors present [30-31], among other methods [35,61]. Cirit et al [14] treated 

nascent and stable adhesions as ordinary differential equations. Similar to our work, Moure 
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and Gomez [11] and others [32-33] treated adhesion as combinations of drag and spring 

forces from discrete adhesion sites. Additionally, the maximum number of adhesions was 

capped, with new adhesions preferring sites with high actin concentration. Finally, 

adhesion maturation was included by linearly increasing the magnitude of the spring 

constant with time. Maturation reflects focal complex development, where integrins cluster 

in specific areas on the cell and connect to the cytoskeleton for stronger force transmission, 

and is therefore not needed for amoeboid modeling. Drag is fully resolved in our model, 

meaning improvements should be looked at in the discrete adhesion model itself. At this 

point in time, however, improvements to computational modeling may need to wait for 

experimental results to illuminate the integrin force-deformation relationship as well as the 

total number and distributions of integrins on amoeboid cells. 

6.2.7 Mesenchymal Migration 

While a more detailed study of amoeboid migration is certainly valid, there is also the 

possibility to model mesenchymal cell migration within the existing computational 

framework. Multiple cell types achieve locomotion using this method, from fibroblasts 

[59] to cancer cells [1]. In particular, cancer cells require a mesenchymal-like behavior 

when penetrating through basement membrane and other dense tissues, where migration 

could not otherwise occur under an amoeboid morphology [40]. Mesenchymal migration 

is characterized by a spindle-like shape coupled with highly adhesive clustered regions on 

the cell. Additionally, the cell is path-generating, or capable of degrading extracellular 

matrix components using proteolytic enzymes [28].  

In order to model this form of locomotion, several modifications would be necessary. 

Focal adhesions can be modeled by associating integrin clusters with patterns generated 
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through activator-inhibitor systems. Cell membrane parameters will most likely need to be 

rescaled from the amoeboid mode, as mesenchymal cells are not as deformable and must 

withstand higher forces due to adhesive connections to the cytoskeleton. Finally, a 

proteolytic model must be implemented into the computational framework. Proteases 

concentrate near cell-ECM connections and cleave macromolecules such as collagen and 

fibronectin, allowing the cell to penetrate the matrix [28]. Proteolytic enzyme concentration 

can similarly be coupled to an activator-inhibitor system, possibly the same system 

controlling focal adhesions but with a delayed effect. Lastly, the extracellular matrix model 

would need to be altered to consider matrix degradation. A filament-based model could 

essentially ‘erase’ certain areas, thereby simulating decay, although additional 

programming would be necessary. 

6.2.8 Phagocytosis 

When pathogens or foreign material enter the body through a wound, white blood cells 

are dispatched to neutralize any threat they may pose. This is primarily accomplished 

through phagocytosis, or the engulfment of a particle by the cell membrane. Receptor-

ligand interactions between the cell and bacterium causes the generation of a pseudopod, 

which envelops the bacterium and fuses to form a vesicle. The vesicle is then internalized 

and combined with lysosomes which digest its contents [45]. In our computational model, 

when amoeboid cells interacted with spherical obstacles, there appeared to be a natural 

tendency for the cell to impose itself onto the obstacle. This was caused by the activator-

inhibitor system producing pseudopods in the deformed concave region between the cell 

and the convex obstacle, thus preventing the cell from migrating elsewhere. It is possible 

that this behavior could be exploited to model an amoeboid cell internalizing a deformable 
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particle. Herant et al [15] simulated phagocytosis of a rigid particle in two dimensions, 

suggesting myosin contractility may be necessary to anchor the cell membrane to the 

obstacle. A three-dimensional phagocytosis model would prove an interesting work if 

pursued. Both chemotactic and contractile mechanisms (per Herant) would need to be 

added. Most importantly, however, the cell membrane would need to be modified so it can 

separate and recombine elements due to vesicle generation. Development of a cytokinesis 

model would aid in programing efforts. Depending on the model complexity, internalized 

vesicles could also fuse with lysosomes, and later become part of the plasma membrane. 

Studies on the effect of deformability and adhesive strength on phagocytosis would prove 

interesting. 

6.2.9 Extravasation 

Because our group models problems both in amoeboid cell migration and blood flow 

within the microvasculature, it is well-posed to combine the models and simulate the 

extravasation of a neutrophil from a blood vessel into the connective tissue. When foreign 

bacteria enter the body, endotoxins are released which cause vascular endothelial cells near 

the infection to express adhesion molecules which help immune cells within the circulation 

attach to and migrate out of the vessel [56].  

Leukocyte rolling adhesion along the epithelium has previously been modeled in our 

group by Pappu and Bagchi [16] among others [5,66]. The blood vessel model would 

require additional modules, however, since it can no longer be considered as a zero-

thickness surface. In addition to the endothelium, vessel walls are also composed of a 

pericyte sheath and basement membrane, beyond which is the connective tissue of the 

extracellular matrix [69]. Experiments have shown that neutrophil engagement with 
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pericytes causes cytoskeletal relaxation which opens gaps along the sheath and allows the 

cell to exit the blood vessel [68]. This geometry could be modeled as fixed deformable 

vesicles immersed inside dense extracellular matrix tissue. Further complexities can be 

added by introducing pathogens which trigger the extravasation cascade by emitting 

specific chemical signatures. 

6.2.10 Active Stresses 

One alternative to pseudopod generation driven by an activator-inhibitor system is a 

concept known as active stress. Introduced by Kruse et al [17], active stresses result in the 

flow of cytoplasmic gels within a cell. Protrusive active stresses in the gel result in 

expansion, effectively mimicking protrusion due to actin polymerization, while contractile 

active stress mimic actomyosin contraction [18]. Active stresses are therefore a means to 

generate motility independent of the physical mechanisms which may have caused it. 

Pseudopods or membrane extensions could be generated by introducing protrusive stresses 

near the membrane. Similarly, cell retraction could be accomplished using contractile 

stresses which pull the membrane forward.  

6.2.11 Migration with Interstitial Flow 

This dissertation has demonstrated the modeling of amoeboid swimming and 

locomotion through various extracellular mediums. In each case, however, the cell was 

immersed in a quiescent flow with no fluid disturbance except that which was self-

generated. Yet within the human body, cells often encounter an interstitial flow generated 

from fluid exchange between the blood vessels and lymph nodes [60]. Flow speeds of 0.1 

through 1 micrometers per second are not uncommon, with those rates increasing in tissues 
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where inflammation is present [19]. Non-zero fluid velocities within the extracellular 

matrix may have a substantial effect on chemical signaling phenomenon and subsequent 

reactions from chemotactic cells. Additionally, when coupled with a deformable 

extracellular matrix geometry, adhesion dynamics are posed to be affected. Integrin 

tethering forces are inclined to vary based on imposed drag forces from the interstitial flow 

on the cell and corresponding tissue. Finally, as observed in this work, matrix geometry 

will most likely affect interstitial flow patterns, and therefore cell dynamics. Our 

computational model is fully capable of generating such flow conditions, and a study of 

how amoeboid cell dynamics vary when subjected to interstitial flow in various matrix 

geometries and under varying cell parameters is warranted. 

6.2.12 Internal Actin-Myosin Dynamics 

As described in the introduction, actin and myosin are proteins situated inside the cell. 

Pseudopod membrane extension is achieved through polymerization of actin filaments, 

which crosslink underneath the plasma membrane. Myosin interacts with actin filaments 

to generate contractility in the membrane. In our computational model, the actomyosin 

complex is modeled using a coarse-grain method on the cell membrane itself, where Turing 

instabilities are associated with concentrations of actin, and capping and severing proteins. 

No explicit contractile mechanism is modeled or included. Moure and Gomez [10-11] 

devised a model for an amoeboid cell which explicitly models the dynamics of myosin, F-

actin, and G-actin within the cell. The total amount of actin is conserved, while myosin 

will advect towards regions of low actin density, consistent with experimental observations 

[27]. Phase transitions between G-actin and F-actin are also considered. Any future 

amoeboid cell model should consider having actomyosin dynamics modeled inside the cell. 
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Various forms of transport equations are one possible method to model actomyosin 

dynamics within the cell as described. Volumetric reaction-diffusion equations are another 

possibility. 

6.2.13 Artificial Cell Modeling 

While numerous models for biological cell migration exist within the literature, there 

is another field emerging which involves artificially constructed cells. And while many 

aspects of living cells such as structure and biochemical pathways are fairly well 

understood, a great deal of information still remains elusive to researchers [70]. Attempts 

to bridge this knowledge gap are being made by the construction of synthetic cells, or 

minimalistic models designed for specific purposes. The reasoning for this is that a cell can 

never be fully understood until science can build one from scratch, so a barebones model 

is a step towards full understanding. One such example is an artificially constructed 

amoeba consisting of a simple membrane vesicle containing nanoparticles which stimulate 

the growth of actin filaments, thereby providing propulsion [71]. Because the design of a 

synthetic cell is rather simplistic, simulation can be used to both support experiments and 

predict results which have not yet been observed.  

6.2.14 Realistic Extracellular Matrix Geometries 

Lastly, we propose the expansion of our computational model for extracellular matrix 

geometries on two fronts. The first recommendation is to simulate more realistic 

geometries. In this work, arrays of rigid and unmoving spheres and cylinders have been 

used to study amoeboid cell migration. Cylindrical arrays bear similarity to aligned tissues 

within the body, while three-dimensional lattice is often used in tissue-engineering studies. 
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Yet cells often encounter networks of crosslinked fibers with sizes ranging on the order of 

nanometer to micrometer thickness and with varying degrees of randomness. Cylinders 

remain a good approximation to collagen filaments within the body, but their dimensional 

nature limits the tissues where it can be modeled. CAD software may be utilized to model 

filaments using lofts or sweeps, allowing filaments to bend or turn as they do naturally in 

vivo. The combination of dozens, or even hundreds of filaments such as these would greatly 

improve the modeling capacity of extracellular matrix geometries. 

The second recommendation, which should be considered along with the first, is to 

institute deformation models for the extracellular matrix geometries. Connective tissue is 

inherently deformable, and because cell behavior has been linked to matrix stiffness 

[36,39,61-62], this challenge must be addressed. Furthermore, tissue properties are known 

to vary across the body. Connective tissue, for instance, is porous and soft, while the 

properties of bone are considerably different [40]. We propose a new model which uses the 

finite element method to track the elastic deformations of each collagen filament as the cell 

exerts a traction force upon it. Each collagen filament can be composed of any standard 

generic solid finite element, such as the hexahedral variant, and mapped to its specific 

location inside the computational domain. Filaments can then be linked together assuming 

the presence of fibronectin linkers, thereby addressing further biological questions. After 

resolving traction and drag forces upon each filament, the standard finite element method 

can be solved for their respective deformations.  

Alternatively, realistic deformable matrices can be implemented into the existing 

model by other means. Future work within our group, which will most likely be performed 

concurrently with future amoeboid works, involves the modeling of blood vessels capable 
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of deformation. This idea can be adapted and repurposed to construct deformable filaments, 

which can be placed throughout the computational domain to serve as an extracellular 

matrix equivalent. Along the same line of thought, because the current model can simulate 

more than one cell in a fluid domain, the extra cells themselves can be reshaped into 

deformable obstacles. 

Many works in the literature either model geometry as rigid [7,29,13,33], or in some 

cases as deformable but greatly oversimplified [30,34]. Moure and Gomez [10-11] 

modeled periodic arrays of thin, fixed and non-deforming cylindrical elements. To our 

knowledge, no models which consider both realistic and deformable extracellular matrix 

geometries exist. Therefore, future models would benefit greatly from extracellular matrix 

geometry which is both physiologically realistic and deformable in nature 
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