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ABSTRACT OF THE DISSERTATION

Uniform asymptotic approximation of solutions to the

conductivity problem with thin open filaments

By MATTHEW CHARNLEY

Dissertation Director: Michael Vogelius

The asymptotic approximation of solutions to the conductivity problem with thin fil-

aments is analyzed. While filaments with a closed mid-curve have been looked at

previously, this thesis pays particular attention to the case of an open mid-curve, fo-

cusing on the extra singularities that can develop around the endpoints of this curve.

The argument relies on a primal and dual energy argument as well as an explicit repre-

sentation for the most singular part of the solution around each of the endpoints of the

mid-curve. After proving the energy closeness of the reduced problem to the full prob-

lem for a constant conductivity in the inhomogeneity, related problems including those

with variable conductivities, anisotropic conductivities, and curved inhomogeneities are

all discussed briefly. Finally, numerical simulations are shown for many of the situa-

tions in this thesis, illustrating the convergence that has been proven here, as well as

convergence that it may be possible to prove in the future.
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Chapter 1

Introduction

The problem of how electricity and electromagnetic waves travel through media has been

studied by mathematicians and physicists for decades. In the case of electrostatics, this

problem reduces to the conductivity equation,

−∇ · (γ∇u) = f,

where f models the source charge distribution in the domain, γ represents the conduc-

tivity of the material, and boundary conditions can be specified with either Dirichlet or

Neumann conditions. One area of work in this problem, and the one we consider here,

is determining how, or how much, small changes in the conductivity parameter γ affect

the solution to the equation. In particular, this leads to discussing the presence of small

inhomogeneities or imperfections in the material and how they affect the solution away

from these inclusions.

The precise problem can be stated as follows. Consider a domain Ω and a conduc-

tivity profile γ0 on Ω which is non-degenerate and constitutes the background object.

Given a boundary condition ϕ ∈ H1/2(∂Ω), we can find the solution to
−∇ · (γ0∇u0) = f Ω

u0 = ϕ ∂Ω,

which will be called the background solution. To model the small inhomogeneities, we

choose a set ωε ⊂⊂ Ω that is ‘small’ in some appropriate sense, and pick a conductivity

aε for this inclusion. Then, we can define the extended conductivity as

γε(x) =


γ0(x) x ∈ Ω \ ωε

aε x ∈ ωε
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and the solution to the ‘full problem,’ the problem with inhomogeneity, as the function

uε satisfying 
−∇ · (γε∇uε) = f Ω

uε = ϕ ∂Ω.

(1.1)

Intuitively, if ωε is small, then the presence of this inhomogeneity should only have

a small effect on the field, that is, u0 and uε should be close in some sense. This leads to

considering asymptotic estimates on the difference between these two functions, looking

at how (or if) ||uε−u0|| goes to zero as ε→ 0. For certain types of ωε, that is the work

being continued here.

The first case to consider in this setup is when ωε is a ball of radius ε contained

in Ω, so that the inhomogeneity shrinks to a point as ε → 0. A lot of work has been

done in this area, and the situation is known fairly completely. In [CFMV98], the

authors develop a more general pointwise asymptotic formula for the full solution in

Ω ⊂ Rn, showing that uε is the same as u0 up to an explicit term of order εn, which

depends on the conductivity of the inclusion, the solution to the background equation,

and the geometry of the domain, and an error term of order εn+1/2. These authors

assume that the conductivity ki in each of the m disjoint inhomogeneities is fixed,

independent of ε, and that each of the pieces of the inhomogeneity shrink to a point

as ε → 0. They also consider the limits as ki → 0 or ki → ∞, at which the problem

becomes degenerate, and show that the first term in their estimate still holds. They

do, however, lose the uniformity of the error term of order εn+1/2, indicating that the

degenerate problem is something that needs to be handled delicately. In the follow up

paper [NV09], the authors deal with this issue, proving that the error term is uniformly

valid in the conductivity of the inclusion, assuming the domain ωε shrinks to a point

nicely enough as ε → 0. The main development there from the previous work is the

use of a dual variational principle, allowing the error estimates to be connected to the

background problem, which is known to be nice, as opposed to the full problem, which

may degenerate as ε→ 0.

With that case understood fairly well, a possible next direction is to look at different

kinds of ωε. The simplest choice for ωε that are ‘small’ but do not collapse to a point
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as ε → 0 are ‘thin inhomogeneities.’ Let σ be a smooth hypersurface contained in Ω,

and take

ωε = {x+ tn(x) : x ∈ σ, t ∈ (−ε, ε)}

as a tubular neighborhood of σ, where n(x) is a normal vector to the hypersurface σ

at the point x. In [BMV01], the authors derive a formal asymptotic expansion of the

solution uε in terms of the normal background solution u0 and terms that depend on

the geometry of the system, under the assumption that the conductivities in each of

the inclusions are bounded and bounded away from zero. For most of the analysis,

the authors here assume that the hypersurface σ is closed, and then use a mapping

property to extend to open hypersurfaces. The rigorous analysis for this problem was

done in [BFV03], where the authors prove an error estimate for the difference between

u0 and uε in exactly this case. By getting an explicit representation of the solution, the

authors prove an error estimate of the form

||uε − u0||H1(Ω) = O(ε1/2)

in the case where σ is either closed or open, but the conductivity aε is fixed, inde-

pendent of ε, and must be bounded and bounded away from zero. This case of thin

inhomogeneities with aε independent of ε has also been studied in several other works,

including [BF03, CV03, CV06].

The question then arises, what about uniformity of these estimates? Can the same

work be carried out in the case of thin inhomogeneities where the conductivity of the

inclusion is allowed to degenerate to 0 or∞ as ε→ 0? One of these cases, namely where

aε
ε → b as ε→ 0 for 0 ≤ b <∞, was addressed in [PP13]. However, intuition says that

uniformity of this convergence will not be possible in general. If the conductivity either

goes to infinity or goes to zero, then the inhomogeneity will become either infinitely

conductive or resistive as ε→ 0, resulting in either a constant Dirichlet condition or a

zero Neumann condition on σ. Explicitly, we see that if Ω ⊂ R2 and aε = a is fixed (or

at least controlled) so that εaε → 0 and aε
ε →∞ as ε→ 0, then the solution uε to (1.1)
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converges to U , the solution to 
−∆U = f Ω

U = ϕ ∂Ω.

However, if aε goes to infinity fast enough so that εaε →∞ as ε→ 0, then the solution

uε converges to u∞, which solves

−∆u∞ = f Ω \ σ

∂u∞
∂τ = 0 σ

[u∞] = 0 σ

u∞ = ϕ ∂Ω,

where τ denotes the tangential derivative along σ and [φ] denotes the jump of a function

across σ. Finally, if aε goes to 0 fast enough so that aε
ε → 0 as ε→ 0, then uε converges

to u0, which solves 
−∆u0 = f Ω \ σ

∂u0
∂n = 0 σ

u0 = ϕ ∂Ω,

where n denotes the normal vector to the curve σ. Since these are three very different

problems, there should be no single ε-independent background solution that can handle

all of these cases at the same time. The next question to be asked is if it is possible to

construct different background solutions corresponding to the different behaviors of aε

that will still give the asymptotic accuracy we had in the case where aε is constant.

The first step in this process was done in [DV17], where the authors consider the

case Ω ⊂ R2 and σ a closed curve. In particular, the authors define a ‘reduced problem’

whose solution u0
ε is asymptotically close to uε as ε → 0 in all cases. The problem

defining u0
ε depends on aε and ε, so it is not a uniform background solution, but it only

depends on these parameters and the curve σ, so it can still function as a reference

solution. Since a uniform background solution is not possible, this is the best we can

do. The next section will go into more detail as to what was done in this paper, as a lot

of the results here are extensions of them. However, the arguments rely heavily on the
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fact that σ is a closed curve, and so does not have endpoints. Any extension to open

curves must find a way to deal with the endpoints for the argument to go through.

This is the question answered here and in [CV19]. As described above, endpoints

need to be dealt with, and there is a body of work already dealing with these types of

problems. The endpoints of a curve in R2 can be thought of as corners of a polygon with

angle 2π, and works like [Gri92] and [Dau88] deal with the types of singularities that

can arise in elliptic equations in polygons. Under another interpretation, the endpoints

of smooth curves can be thought of a transition in boundary conditions from whatever

is specified on the curve to the background solution off of it. The work [CD10] deals

with transitions in boundary conditions, particularly as a problem degenerates as ε→ 0

from a smooth problem to a singular one. With the domain shrinking to a curve, this

is the type of problem that we face here as well.

Beyond the scope of this thesis, other versions of this problem have been considered.

The case of electromagnetic waves has been considered in [VV00, AVV01, AK03], re-

sulting in asymptotic expansions to solutions to Maxwell’s equations in the same vein.

These asymptotically accurate formulas can be used to generate reconstruction algo-

rithms to find or analyze these inhomogeneities for both the conductivity problem and

electromagnetic waves [CFMV98, BHP01, BV94, AMV03, ABF04]. As the asymptotic

accuracy of the background solution for the diametrically small inhomogeneities gives

rise to successful approximate cloaking schemes via transformation optics [KSVW08],

this type of result is also of interest for solving cloaking problems. In particular, these

sorts of formulas have been used to improve approximate cloaks [ABF13].

Over the course of this thesis, we prove asymptotic accuracy of a reduced problem

solution u0
ε to the full solution uε in the case of thin inhomogeneities around an open

curve σ. The next section will outline the work [DV17] and describe how those authors

got to their result. Chapter 2 will take the results needed from that paper and extend

them to the case of an open curve. Following that, Chapter 3 will focus on the problem

of dealing with the endpoints of the curve, deriving the necessary formulas to push the

energy estimates through. Chapter 4 will show the energy convergence bounds that will,

as established in Chapter 2, show the asymptotic accuracy of the solution to the reduced
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problem. The work in the Chapters 3 and 4 is also presented in our paper [CV19].

Chapter 5 will showcase other results connected to this problem. including more details

about the solution near the endpoints of σ and different types of conductivities on the

inhomogeneity. Chapter 6 will show numerical simulations of many of these results,

illustrating the convergence in these cases, and Chapter 7 will summarize the results

and look to future work.

Extension of Previous Work

A lot of the initial results here follow the work [DV17], which deals with asymptotic

approximations of solutions to problems of this type, but where the curves σ are closed.

Our initial goal will be to extend the base results here to open curves, and then use

them to prove asymptotic exactness of our solution on open curves.

The work [DV17] starts by setting up the appropriate definitions for the domains

in question, which will be done in Chapter 2, and then moves on to proving an energy

lemma. This energy lemma provides the motivation for the methods in that paper;

it says that if two minimizers are close in energy for all boundary data and source

terms, then the solution functions are close as well, allowing energy methods and energy

asymptotics to be used to prove the ‘closeness’ of the solution u0
ε to uε. The paper then

goes into working with the energy functional for uε directly and finds a differential

equation that u0
ε must solve that will allow it to be close to uε in energy as ε→ 0. As

many of these proofs rely on the fact that σ is closed, we will derive new versions of the

proofs here that allow for σ to be open as well. All of this is contained in Chapter 2.

Beyond that, the paper goes on to study the solution u0
ε , getting energy and regular-

ity estimates on this solution, which will come into play in showing asymptotic closeness

later. Then, the energy closeness of uε and u0
ε is proved using a primal and dual energy

formulation of the problems for both uε and u0
ε , which give the upper and lower bounds

on the difference in the two energies, and prove that the two functions need to be close

by the energy lemma from before. This is the work that will be modeled here in the

next few chapters.
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Chapter 2

Extensions to Open Curves

In this chapter, we extend the results of [DV17] to hold in the case where the curve σ

is open. These results will provide the foundation for how we approach the problem of

proving asymptotic exactness of the solution to the reduced problem to the full problem.

2.1 Notation

Let Ω be a domain in R2 with smooth boundary, and σ a smooth, open curve contained

in Ω so that σ̄ is non-self-intersecting. Particular smoothness considerations of both

∂Ω and σ will be discussed when needed. Since σ is sufficiently regular, we choose

a continuous normal vector n(x) along σ, and for any function u on Ω, we define u+

and u− to be the traces of u on the positive and negative sides, respectively, of σ with

respect to the defined normal vector n(x). If u is sufficiently regular, we can also define

∂u±

∂n
(x) = lim

t→0
∇u(x± tn(x)) · n(x)

as the normal derivative on the positive and negative sides of σ.

With respect to our curve σ, we can define the standard distance

d(x, σ) = min
y∈σ

d(x, y),

where d is the Euclidean distance. The thin inhomogeneity with mid-surface σ and

width 2ε is defined as the set

ωε := {x ∈ Ω | d(x, σ) < ε}.

Since σ is an open curve, this set can be divided into two parts, the first of which has

the nearest point on σ, pσ(x), on the interior of σ and looks like the inhomogeneity
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from [DV17], and the second, where the nearest point on σ is one of the endpoints of

the curve. From this, we define

ωintε := {x+ tn(x) | x ∈ σ, t ∈ (−ε, ε)}

and

ωendsε = ωε \ ωintε ,

where ωendsε corresponds to the two round caps around the endpoints of σ, as shown in

Figure 2.1.

∂ωε

σ

∂Ω

ωintε

ωends,aε ωends,bε x

y

ba

Figure 2.1: Structure of the inhomogeneity ωε

We assume that the conductivity is 1 in the background domain and it is aε in the

inhomogeneity. The assumption of the background conductivity being a constant is

not much of a restriction, as similar results would hold for any positive definite and

symmetric conductivity. This aε is a constant, but it may depend on ε, allowing for

the non-uniform convergence of the solution to the full problem as discussed in the

introduction. Defining a conductivity in the domain by

γε =


1 Ω \ ω̄ε

aε ωε,
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we then have that our full problem with solution uε is given by
−∇ · (γε∇uε) = f Ω

uε = ϕ ∂Ω

(2.1)

for some choice of f ∈ L2(Ω) and ϕ ∈ H1/2(∂Ω), representing the charge distribution

and boundary potential respectively. Since aε is a positive constant, standard arguments

show that this has a unique solution uε ∈ H1(Ω). In what follows, we will require f ∈ Fδ

for some δ > 0, where

Fδ = {f ∈ L2(Ω) | supp(f) ⊂ Ω \ ωδ},

instead of just L2(Ω), as the charge density should be supported away from the inho-

mogeneity.

Since σ is non-self-intersecting and sufficiently regular, there exists an η > 0 such

that the projection mapping

pσ : x 7→ the unique y ∈ σ with d(x, y) = d(x, σ)

is well-defined on ωη, and from this, we can define a signed distance function dσ(x) by

the relation

x = pσ(x) + dσ(x)n(pσ(x)) x ∈ ωintη

that is, dσ(x) > 0 if x is on the positive side of σ with respect to n(x), and similarly

for the negative side. On ωendsε we do not have a well-defined normal vector, so the

distance to σ is just the distance from the corresponding endpoint of σ and does not

have a sign associated to it. For the remainder of this section, we will assume that

ω1 ⊂ Ω, and that pσ is well-defined on ω1. Since these facts hold for some η > 0, this is

just a matter of rescaling, and serves to make the notation simpler. Based on this fact,

we can extend the normal vector n(x) and the curvature κ(x) to functions on ωint1 by

setting n(x) = n(pσ(x)) and κ(x) = κ(pσ(x)). As given in [DV17], the derivatives of

these functions are given by

∇dσ(x) = n(x) ∇2(dσ)(x) =

 κ(x)
1+κ(x)dσ(x) 0

0 0

 ∇pσ(x) =

 1
1+κ(x)dσ(x) 0

0 0
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where the matrices are given in the orthonormal basis (τ(x), n(x)), where τ is the 90

degree clockwise rotation of n(x), which is an extension of a tangent vector field on σ

to all of ωint1 . The co-area formula [Cha06] then tells us that

Proposition 2.1.1. Let g ∈ L1(Ω). Then for any ε ≤ 1,

ˆ
ωintε

g(x) dx =

ˆ
σ

ˆ
p−1
σ (y)∩ωintε

g(z)(1 + κ(y)dσ(z))dµ1(z)ds(y),

where dµ1 denotes the one-dimensional Hausdorff measure on the preimages p−1
σ (y) ∩

ωintε and ds(y) is the Lebesgue measure on σ.

2.2 Distance between energy minimizers

In this section, we cite the results of [DV17], as none of this work depends on the fact

that the curve σ was closed.

Lemma 2.2.1 (Lemma 3 in [DV17]). Let Vε and Wε be two families of Hilbert spaces,

and let H be another Hilbert space that continuously contains all the Vε and Wε. Con-

sider aε : Vε × Vε → R and bε : Wε ×Wε → R, two families of symmetric bilinear forms

that are continuous and are coercive on the corresponding homogeneous spaces (i.e.,

zero Dirichlet boundary condition). For any ` ∈ H ′, define the energy functionals E`ε

and F `ε by

∀ v ∈ Vε E`ε(v) =
1

2
aε(v, v)− `(v)

∀w ∈Wε F `ε (w) =
1

2
bε(w,w)− `(w)

E`ε and F `ε admit unique minimizers v`ε ∈ Vε and w`ε ∈Wε by the standard Lax-Milgram

theory. The gap between v`ε and w`ε can be controlled in terms of the gap between the

corresponding energies as

sup
||`||H′≤1

||v`ε − w`ε||H ≤ 4 sup
||`||H′≤1

|E`ε(v`ε)− F `ε (w`ε)|

Lemma 2.2.2 (Lemma 4 in [DV17]). Let Ω be a bounded domain in R2, and let Vε and

Wε be two families of Hilbert spaces of functions defined on Ω such that, for any ε > 0,

the trace operator

Vε 3 v 7→ v|∂Ω ∈ H1/2(∂Ω)
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is well-defined, continuous, and has a linear, continuous right inverse ϕ 7→ vϕ, and the

same holds for Wε. Let H be another Hilbert space that continuously contains all the Vε

and Wε. Consider aε : Vε × Vε → R and bε : Wε ×Wε → R, two families of symmetric

bilinear forms that are continuous and are coercive on the corresponding homogeneous

spaces (i.e., zero Dirichlet boundary condition). For any ϕ ∈ H1/2(∂Ω) and ` ∈ H ′,

define the energy functionals E`ε and F `ε by

∀ v ∈ Vε E`ε(v) =
1

2
aε(v, v)− `(v)

∀w ∈Wε F `ε (w) =
1

2
bε(w,w)− `(w)

and consider the minimization problems

min
v∈Vε

v=ϕ on ∂Ω

E`ε(v) min
w∈Wε

w=ϕ on ∂Ω

F `ε (w).

These problems admit unique minimizers v`,ϕε ∈ Vε and w`,ϕε ∈ Wε by the standard

Lax-Milgram theory. Then, for any s ≥ 1/2, we have

sup
||`||H′≤1

||ϕ||Hs(∂Ω)≤1

||v`,ϕε − w`,ϕε ||H ≤ 4 sup
||`||H′≤1

||ϕ||Hs(∂Ω)≤1

|E`ε(v`,ϕε )− F `ε (w`,ϕε )|

Remark. If the spaces Vε and Wε are only weakly contained in H, i.e., there exist linear

continuous mappings Pε : Vε → H and Qε : Wε → H through which they may be

identified as subspaces of H, the results above can still hold with modifications. The

linear term in the energy functionals needs to be modified to

∀ v ∈ Vε E`ε(v) =
1

2
aε(v, v)− P ∗ε `(v)

∀w ∈Wε F `ε (w) =
1

2
bε(w,w)−Q∗ε`(w)

and the result of the first lemma now says that

sup
||`||H′≤1

||Pεv`ε −Qεw`ε||H ≤ 4 sup
||`||H′≤1

|E`ε(v`ε)− F `ε (w`ε)|.

2.3 Derivation of the reduced problem

In this section, we derive the differential equation that the reduced solution u0
ε should

solve in order to be an asymptotic approximation to the full solution uε. We do this by

forming an asymptotic expansion of the energy functionals defining uε.
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The full problem (2.1) has a solution that is given by

min
u∈H1(Ω)
u=ϕ on ∂Ω

Eε(u) Eε(u) =
1

2

ˆ
Ω
γε|∇u|2 dx−

ˆ
Ω
fu dx (2.2)

where we assume that f ∈ Fδ, with ε < δ so that f is supported off of the inhomogeneity.

To isolate the inhomogeneity and fix the size of the domain, we define a map Hε : ω1 →

ωε by

Hε(x) = pσ(x) + ε(x− pσ(x)).

On ωint1 , this reduces to the map

pσ(x) + εdσ(x)n(x),

but on the ends, it is a dilation of factor ε. Thus, using the formulas from earlier, we

see that

∇Hε =

1+εκdσ
1+κdσ

0

0 ε

 ωint1

∇Hε = εI ωends1 .

For any function u ∈ H1(ωε), we denote by û ∈ H1(ω1) the function u ◦ Hε, and can

compute by a change of variablesˆ
ωintε

|∇u|2 =

ˆ
ωint1

((det∇Hε)∇H−1
ε ∇(H−1

ε )T )∇û · ∇û dx

= ε

ˆ
ωint1

1 + κdσ
1 + εκdσ

(
∂û

∂τ

)2

dx+
1

ε

ˆ
ωint1

1 + εκdσ
1 + κdσ

(
∂û

∂n

)2

dx

and

ˆ
ωendsε

|∇u|2 =

ˆ
ωends1

((det∇Hε)∇H−1
ε ∇(H−1

ε )T )∇û · ∇û dx =

ˆ
ωends1

|∇û|2 dx

Using this change of variables, we can define a rescaled version of this energy as

Fε(u, v, w0, w1) =
1

2

ˆ
Ω\ω̄ε
|∇u|2 dx−

ˆ
Ω
fu dx

+
εaε
2

ˆ
ωint1

1 + κdσ
1 + εκdσ

(
∂v

∂τ

)2

dx

+
aε
2ε

ˆ
ωint1

1 + εκdσ
1 + κdσ

(
∂v

∂n

)2

dx

+ aε

ˆ
ωends,a1

|∇w0|2 dx+ aε

ˆ
ωends,b1

|∇w1|2 dx

(2.3)
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where a and b denote the two endpoints of σ and

ωends,a1 = B1(a) \ ωint1 ωends,b1 = B1(b) \ ωint1

denote the two separate end caps of ω1, where the minimization to solve this problem

is taken over the space

V 0
ε = {(u, v, w0, w1) ∈ H1(Ω \ ω̄ε)×H1(ωint1 )×H1(ωends,a1 )×H1(ωends,b1 ) | CC}

where CC is a set of continuity conditions given by

CC =



∀x ∈ σ u(x± εn(x)) = v(x± n(x))

∀ θ ∈ S1 with a+ θ ∈ ωends,a1 w0(a+ θ) = u(a+ εθ)

∀ θ ∈ S1 with b+ θ ∈ ωends,b1 w1(b+ θ) = u(b+ εθ)

∀ t ∈ (−ε, ε) w0(a+ tn(a)) = v(a+ tn(a))

∀ t ∈ (−ε, ε) w1(b+ tn(b)) = v(b+ tn(b))

,

to be understood in the sense of traces, which follow from the fact that the re-scaled

and combined function needs to be in H1(Ω). If we set v, w0 and w1 all equal to û,

then we get the same value as the energy of the full problem. A sketch of the domain

and how these functions connect to each other can be seen in Figure 2.2.

∂ωε

σ

∂Ω

v

w0 w1

u

x

y

(1,0)(-1,0)

Figure 2.2: Regions for the functions in the energy functional F (u, v, w0, w1)
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Since the gradient term in the ‘ends’ regions scales independent of ε, there are two

ways we can formulate this energy, depending on if we want to group the w functions

with the function v inside the inhomogeneity or the function u outside of it. This gives

rise to two other formulations of this energy functional, F sε (u, v) and F rε (u, v), where

the s and r denote the squared or rounded ends of the removed region. Sketches of

these two regions can be found in Figures 2.3 and 2.4 respectively.

∂ωε

σ

∂Ω

x

y

(1,0)(-1,0)

Figure 2.3: Sketch of the region ωsε

∂ωε

σ

∂Ω

x

y

(1,0)(-1,0)

Figure 2.4: Sketch of the region ωrε
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The first of these functionals is given by

F sε (u, v) =
1

2

ˆ
Ω\ω̄ε
|∇u|2 dx+

aε
2

ˆ
ωendsε

|∇u|2 dx−
ˆ

Ω
fu dx

+
εaε
2

ˆ
ωint1

1 + κdσ
1 + εκdσ

(
∂v

∂τ

)2

dx+
aε
2ε

ˆ
ωint1

1 + εκdσ
1 + κdσ

(
∂v

∂n

)2

dx

(2.4)

where the pair (u, v) belongs to the space

V s
ε =

{
(u, v) ∈ H1(Ω \ ωintε )×H1(ωint1 ) | CCs

}
and CCs is a set of continuity conditions given by

CCs =


∀x ∈ σ u(x± εn(x)) = v(x± n(x))

∀ t ∈ (−1, 1) u(a+ εtn(a)) = v(a+ tn(a))

∀ t ∈ (−1, 1) u(b+ εtn(b)) = v(b+ tn(b)).

Similarly, the second functional is given by

F rε (u, v) =
1

2

ˆ
Ω\ω̄ε
|∇u|2 dx−

ˆ
Ω
fu dx+

aε
2

ˆ
ωends1

|∇v|2 dx

+
εaε
2

ˆ
ωint1

1 + κdσ
1 + εκdσ

(
∂v

∂τ

)2

dx+
aε
2ε

ˆ
ωint1

1 + εκdσ
1 + κdσ

(
∂v

∂n

)2

dx

(2.5)

where the pair (u, v) belongs to the space

V r
ε =

{
(u, v) ∈ H1(Ω \ ωε)×H1(ω1) | CCr

}
and CCr is a set of continuity conditions given by

CCr =


∀x ∈ σ u(x± εn(x)) = v(x± n(x))

∀ θ ∈ S1 with a+ θ ∈ ωends,a1 v(a+ θ) = u(a+ εθ)

∀ θ ∈ S1 with b+ θ ∈ ωends,b1 v(b+ θ) = u(b+ εθ).

As both of these functionals are equivalent to the Fε defined in (2.3), all of the

minimizations are the same, so we are allowed to use whichever is most convenient. In

order to move towards finding the appropriate reduced problem for the situation, we

use the F sε functional. To do so, we look at the leading order terms in this energy,



16

which gives rise to the functional

F s,0ε (u, v) =
1

2

ˆ
Ω\σ
|∇u|2 dx+

εaε
2

ˆ
ωint1

(1 + κdσ)

(
∂v

∂τ

)2

dx

+
aε
2ε

ˆ
ωint1

1

1 + κdσ

(
∂v

∂n

)2

dx−
ˆ

Ω
fu dx

(2.6)

where the pair (u, v) now belongs to the space

V s,0
ε =

{
(u, v) ∈ H1(Ω \ σ)×H1(ωint1 ) | u±(x) = v(x± n(x)), x ∈ σ

}
where, again, this condition is understood in the sense of traces. There are two things

of note about this step. First of all, we lost a boundary condition on the vertical edges

of the domain ωint1 , which comes from the fact that the function u is only in H1, and

so is not well-defined at the endpoints of σ. The boundary condition would need to

connect v on the vertical segment to u± at the endpoints, which can not be done. The

second point is that we removed the term

aε
2

ˆ
ωendsε

|∇u|2 dx

from the expression, because

lim
ε→0

ˆ
ωendsε

|∇u|2 dx = 0

since ∇u is L2. The full term may not go to zero as ε → 0 if aε is unbounded, but we

will ignore this term in the same way that we ignore terms of order aε
ε ε that show up

in the normal derivative term.

Now, our functional F s,0ε and space V s,0
ε match exactly with the F 0

ε functional and

V 0 space in [DV17]. The work in that paper then carries through almost exactly to

our case here. That is, the process of minimizing the function F s,0ε (u, v) in (2.6) can

be split into two parts, fixing the u function and minimizing over all v satisfying the

appropriate boundary condition on ∂ω1, and then minimizing over all u. We can then

write

min
(u,v)∈V s,0ε

F s,0ε (u, v) = min
u∈H1(Ω\σ)
u|∂Ω=ϕ

1

2

ˆ
Ω\σ
|∇u|2 dx−

ˆ
Ω
fu dx+G0

ε (u)
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where

G0
ε (u) = min

v∈H1(ω1)
v(x+n(x))=u+(x)
v(x−n(x))=u−(x)

εaε
2

ˆ
ω1

(1 + κdσ)

(
∂v

∂τ

)2

dx+
aε
2ε

ˆ
ω1

1

1 + κdσ

(
∂v

∂n

)2

dx.

As the two terms in the expression for G0
ε are of different orders, we would expect

that the behavior of the minimizer (at least to leading order) should be determined

by the behavior of the term in G0
ε of higher order. Thus, we should try to find the

minimizer of the term ˆ
ω1

1

1 + κdσ

(
∂v

∂n

)2

dx.

Based on the Euler-Lagrange equation associated with this minimization, we know that

the minimizer v must satisfy

ˆ
ω1

1

1 + κdσ

∂v

∂n

∂w

∂n
dx = 0 ∀w ∈ H1

0 (ω1).

Using the co-area formula of Proposition 2.1.1, this becomes

ˆ
σ

ˆ 1

−1

∂v

∂n
(x+ tn(x))

∂w

∂n
(x+ tn(x)) dt ds(x) = 0 ∀w ∈ H1

0 (ω1).

Choosing a test function w of the form w(x + tn(x)) = φ(x)ψ(t) for an arbitrary

φ ∈ C∞0 (σ) and ψ ∈ C∞0 ((−1, 1)) turns this expression into

ˆ
σ
φ(x)

ˆ 1

−1

∂

∂t
v(x+ tn(x))ψ′(t) dt ds(x) = 0.

Since φ is arbitrary, this becomes

ˆ 1

−1

∂

∂t
v(x+ tn(x))ψ′(t) dt ds(x) = 0,

which, for ψ arbitrary, gives that the function t→ v(x+ tn(x)) is affine. Therefore, we

know that

v(x+ tn(x)) =
1 + t

2
u+(x) +

1− t
2

u−(x)

for all x ∈ σ and t ∈ (−1, 1). Then, plugging this expression in for v in G0
ε (u) gives

that

G0
ε (u) ≈ εaε

3

ˆ
σ

(
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ
ds+

aε
4ε

ˆ
σ
(u+ − u−)2 ds.
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In order to find an approximation u0
ε to our full solution uε, we are thus motivated

to look for the solution to

min
u∈Vσ

u=ϕ on ∂Ω

E
′0
ε (u)

over the space

Vσ = {u ∈ H1(Ω \ σ) | u+|σ, u−|σ ∈ H1(σ)}

where the energy functional is given by

E
′0
ε (u) =

1

2

ˆ
Ω\σ
|∇u|2 dx+

εaε
3

ˆ
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds

+
aε
4ε

ˆ
σ
(u+ − u−)2 ds−

ˆ
Ω
fu dx

and the rescaled potential inside ωint1 should be affine from u0+
ε to u0−

ε in the normal

direction. Since we get to the same energy functional as [DV17], we make use of a

remark later in the paper, where they provide a second functional that also provides a

uniform 0th order approximation to the full problem in the case of closed curves. The

functional that we will focus on for the remainder of this document is

E0
ε (u) =

1

2

ˆ
Ω\σ
|∇u|2 dx+

εaε
2

ˆ
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2
)
ds

+
aε
4ε

ˆ
σ
(u+ − u−)2 ds−

ˆ
Ω
fu dx

(2.7)

over the same space Vσ.

2.4 Classical formulation of the reduced problem

To work towards a classical formulation of the minimization of (2.7) over Vσ, we define

the homogeneous subspace

Vσ,0 = {v ∈ Vσ | v = 0 on ∂Ω, v(a) = v(b) = 0}

where, again, a and b denote the endpoints of σ. With this, the variational formulation

of (2.7) is given by: Find u0
ε ∈ Vσ with u0

ε |∂Ω = ϕ so that for all v ∈ Vσ,0,

ˆ
Ω\σ
∇u0

ε · ∇v dx+ εaε

ˆ
σ

(
∂u0+

ε

∂τ

∂v+

∂τ
+
∂u0−

ε

∂τ

∂v−

∂τ

)
ds

+
aε
2ε

ˆ
σ
(u0+
ε − u0−

ε )(v+ − v−) ds =

ˆ
Ω
fv dx.

(2.8)
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By defining the norm

||u||2Vσ := ||u||2L2(Ω) + |u|2Vσ

|u|2Vσ :=

ˆ
Ω\σ
|∇u|2 dx+

ˆ
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2
)
ds+

ˆ
σ
(u+ − u−)2 ds

on Vσ, we see that the blinear form on the left hand size of (2.8) is both continuous

and coercive for any fixed ε > 0 and aε > 0. This coercivity is not uniform in ε and aε,

and relies on the fact that | · |Vσ is an equivalent norm to || · ||Vσ for all v ∈ Vσ,0.

By choosing v ∈ C∞0 (Ω \ σ), we can see that u0
ε satisfies

−∆u0
ε = f in Ω \ σ

in the sense of distributions. If f and ϕ are smooth enough, then it can also be easily

shown that u0
ε is C2,α away from σ, and so u0

ε solves this equation in the classical sense.

If σ is also smooth enough, this differential equation holds classically up to σ, away

from the endpoints of the curve. Using (2.8) and integrating by parts both on Ω and

on σ, we get that, because v ∈ Vσ,0,

ˆ
σ

(
−∂u

0+
ε

∂n
v+ +

∂u0−
ε

∂n
v−
)
ds− εaε

ˆ
σ

(
∂2u0+

ε

∂τ2
v+ +

∂2u0−
ε

∂τ2
v−
)
ds

+
aε
2ε

ˆ
σ
(u0+
ε − u0−

ε )(v+ − v−) ds = 0.

If we choose v so that v− ≡ 0 and v+ is smooth on σ, we get that u0
ε must satisfy

∂u0+
ε

∂n
+ εaε

∂2u0+
ε

∂τ2
− aε

2ε
(u0+
ε − u0−

ε ) = 0 on σ

and by reversing the roles of v+ and v−, we see that

∂u0−
ε

∂n
− εaε

∂2u0−
ε

∂τ2
− aε

2ε
(u0+
ε − u0−

ε ) = 0 on σ.

Thus, we have the ‘classical’ problem that u0
ε satisfies as

−∆u0
ε = f Ω \ σ

u0
ε = ϕ ∂Ω

∂u0+
ε
∂n + εaε

∂2u0+
ε

∂τ2 − aε
2ε (u

0+
ε − u0−

ε ) = 0 σ

∂u0−
ε
∂n − εaε

∂2u0−
ε

∂τ2 − aε
2ε (u

0+
ε − u0−

ε ) = 0 σ.

(2.9)
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Chapter 3

Analysis of Open Curves

In order to move forward with the energy analysis, we need more detailed information

about the solution to (2.9) near the endpoints of σ. To figure out how the solution

behaves here, we analyze a pair of related differential equations and connect their

solutions to those of (2.9).

3.1 Base problem

In order to simplify calculations, we will assume that our domain Ω = B2(0) and that

the curve σ is the line segment σ = {(x, 0) | x ∈ (−1, 1)}. As long as the curve σ is a

line segment, this is not much of a restriction, as will be addressed later. The reduced

problem (2.9) then becomes



−∆u0
ε = f Ω \ σ

u0
ε = ϕ ∂Ω

∂u0+
ε
∂y + εaε

∂2u0+
ε

∂x2 − aε
2ε (u

0+
ε − u0−

ε ) = 0 σ

∂u0−
ε
∂y − εaε

∂2u0−
ε

∂x2 − aε
2ε (u

0+
ε − u0−

ε ) = 0 σ.

(3.1)

The benefit of this particular choice of domain Ω is that it is symmetric with respect

to the line segment σ. Therefore, we can simplify the above equation by looking at the

odd and even parts of u0
ε with respect to the line y = 0:

uev(x, y) =
1

2
(u0
ε (x, y) + u0

ε (x,−y)) uodd(x, y) =
1

2
(u0
ε (x, y)− u0

ε (x,−y)).
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By using the boundary conditions in (3.1), we have that uev satisfies
−∆uev = fev Ω \ σ

uev = ϕev ∂Ω

∂uev±

∂y + εaε
∂2uev±

∂x2 = 0 σ

(3.2)

and uodd satisfies 
−∆uodd = fodd Ω \ σ

uodd = ϕodd ∂Ω

∂uodd±

∂y + εaε
∂2uodd±

∂x2 − aε
ε u

odd± = 0 σ,

(3.3)

where ϕ = ϕev + ϕodd and f = fev + fodd are the decompositions of ϕ and f into

even and odd parts respectively. Since these two solution functions are even and odd,

respectively, they are determined by their values on Ω+ = Ω ∩ {y > 0}. Therefore,

we can restrict each of these problems to Ω+, introducing new boundary conditions on

{y = 0} \ σ from the symmetry to get that uev is defined by



−∆uev = fev Ω+

uev = ϕev ∂Ω+

∂uev

∂y + εaε
∂2uev

∂x2 = 0 σ

∂uev

∂y = 0 {y = 0} \ σ

(3.4)

and that uodd is defined by

−∆uodd = fodd Ω+

uodd = ϕodd ∂Ω+

∂uodd

∂y + εaε
∂2uodd

∂x2 − aε
ε u

odd = 0 σ

uodd = 0 {y = 0} \ σ.

(3.5)

3.2 Even problem regularity

Consider a solution u ∈ H1(R2
+) to
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−∆u = 0 R2

+

∂u
∂y + α∂

2u
∂x2 = 0 {x > 0, y = 0}

∂u
∂y = 0 {x < 0, y = 0}

, (3.6)

which is related to (3.4) through a renaming of εaε to α and localizing to a single

endpoint of σ. Since f ∈ Fδ, localizing close enough to the endpoint will result in the

source term being identically zero. In order to analyze this problem, we first define an

auxiliary map A by

A[f(t)] = |t|f(t).

Lemma 3.2.1. The map A has the following properties:

1. A maps L2
loc(R) into L2

loc(R)

2. A maps H1
loc(R) into H1

loc(R)

3. A maps H2
loc(R) ∩ {f : f(0) = 0} into H2

loc(R) ∩ {f : f(0) = 0}

4. A maps H
5/2
loc (R)∩{f : f(0) = 0} into H

5/2−β
loc (R)∩{f : f(0) = 0} for any β > 0.

Proof. 1. This follows because |x| is bounded on compact sets.

2. We compute that

d

dx
(|x|f(x)) =


f(x) x > 0

−f(x) x < 0

+ |x| d
dx
f(x)

which is in L2
loc(R) if f is in H1

loc(R).

3. We compute the second derivative as

d2

dx2
(|x|f(x)) = 2f(0)δ0 +


2f ′(x) x > 0

−2f ′(x) x < 0

+ |x| d
2

dx2
f(x)

If f(0) = 0, then the term with the δ0 measure vanishes, and so the remaining

function is in L2
loc(R) if f is also in H2

loc(R). The result follows from the fact that

|x|f(x) vanishes at 0.
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4. Looking at the formula for the second derivative, as long as f(0) = 0, each

component of the function is in at least L2
loc(R). Since we don’t know if f ′(0) = 0,

the combined function may not be in H
1/2
loc (R), but it will be in H

1/2−β
loc (R) for

any β > 0. �

Corollary 3.2.1. By interpolation of Sobolev Spaces, as in [BL76], we have that

1. A maps H
1/2
loc (R) to H

1/2
loc (R).

2. A maps H
3/2
loc (R) ∩ {f : f(0) = 0} to H

3/2
loc (R) ∩ {f : f(0) = 0}.

In polar coordinates, define a function W in the first quadrant by W (r, θ) =

u(r2, 2θ), and since ∂W
∂x = 0 on {x = 0, y > 0} by the boundary condition for u,

we may extend W to be a function defined on all of R2
+ that is even across x = 0. This

function W now satisfies 
−∆W = 0 R2

+

∂W
∂y = −α ∂

∂x

(
1

2|x|
∂W
∂x

)
{y = 0}

(3.7)

Since u ∈ H1
loc(R2

+), with a bound independent of α, so is W (the converse is not true;

W could have a mild singularity at the origin that becomes not integrable when moving

back to u). Thus, the trace of ∂W∂y on y = 0 is in H
−1/2
loc (R), and so by (3.7), 1

2|x|
∂W
∂x (x, 0)

is in H
1/2
loc (R), with bound controlled by C

α . By the properties of the map A, we see

that ∂W
∂x (·, 0) is in H

1/2
loc (R), so that W (x, 0) ∈ H3/2

loc (R), and by elliptic regularity of the

Dirichlet problem, we have that W ∈ H2
loc(R2

+) with bound controlled by C
α + C.

Repeating this process, we then have that ∂W
∂y (·, 0) is in H

1/2
loc (R), so that, by (3.7)

again, 1
2|x|

∂W
∂x (·, 0) is in H

3/2
loc (R). Since W is even in x, ∂W

∂x is odd in x, and so the

function 1
2|x|

∂W
∂x (·, 0) is odd. Since it is also continuous, it must vanish at 0. Thus, the

corollary about the map A says that the function ∂W
∂x (·, 0) is in H

3/2
loc (R), implying that

W (·, 0) ∈ H5/2
loc (R) and W ∈ H3

loc(R2
+), where the bound is controlled by C

α2 + C.

With this regularity, we then have that ∂W
∂y (·, 0) is in H

3/2
loc (R), so that, by (3.7),

1
2|x|

∂W
∂x (·, 0) is in H

5/2
loc (R). The corollary about the map A says that the function

∂W
∂x (·, 0) is in H

5/2−β
loc (R) for any β > 0, implying that W (·, 0) ∈ H7/2−β

loc (R) and W ∈

H4−β
loc (R2

+), with a bound controlled by C
α3 + C.
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Now, let V be the harmonic conjugate of W , defined so that V (0, 0) = 0. Since

∇V = ∇W⊥, we have that V ∈ H4−β
loc (R2

+) with the same bound as W . Then, the

function

W(z) = W (x, y) + iV (x, y) for z = x+ iy

is holomorphic in a C+ := C ∩ {Im(z) ≥ 0} neighborhood of 0 and C2,β on the closure

of this neighborhood for any β < 1 by standard Sobolev embeddings. Thus, it has a

Taylor approximation of degree 2 around the origin in the sense that

W(z) = B0 +B1z +
1

2
B2z

2 + E(z)

where

|E(z)| ≤
(
C

α3
+ C

)
|z|2+β∣∣∣∣ ddzE(z)

∣∣∣∣ ≤ ( Cα3
+ C

)
|z|1+β∣∣∣∣ d2

dz2
E(z)

∣∣∣∣ ≤ ( Cα3
+ C

)
|z|β

(3.8)

This follows from the fact that w has a Taylor expansion in x and y, and the z̄ co-

efficients must vanish by the function being holomorphic. Since W is even in x, it

follows that B1 = −ib1 and B2 = 2b2, where b1 and b2 are real parameters, and since

V (0, 0) = 0, B0 = b0 is also real. Since we have C2,β control on W, we know that the

coefficients b0, b1, and b2 are all bounded by C
α3 + C.

In order to get back to the function u, we let
√
z be the complex square-root function

with branch cut along the positive real axis, and define

w(z) = W(
√
z)

with the motivation that, under this definition

u(x, y) = Re(w(x+ iy))

for (x, y) ∈ R2
+. With this, we see that

w(z) = b0 − ib1
√
z + b2z + e(z)
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with appropriate bounds on e(z) coming from (3.8), resulting in the solution u to (3.6)

having the form

u(x, y) = b0 + b1r
1/2 sin(θ/2) + b2r cos(θ) + e(x, y)

with

|e(x, y)| ≤
(
C

α3
+ C

)
r1+β

2

|∇e(x, y)| ≤
(
C

α3
+ C

)
r
β
2

|D2e(x, y)| ≤
(
C

α3
+ C

)
r−1+β

2

in an R2
+ neighborhood of the origin, with (r, θ) denoting polar coordinates around

(0, 0). For convenience, we set u∗ = b0 + b2r cos θ + e(x, y), isolating the most singular

term in the expression, resulting in a decomposition of the form

u(x, y) = b1r
1/2 sin(θ/2) + u∗(x, y) (3.9)

with

u∗(x, y) ∈ C1,β/2

|D2u∗| ≤
(
C

α3
+ C

)
r−1+β

2

u∗(0, 0) = b0

∂u∗

∂x
(0, 0) = b2

(3.10)

in a R2
+ neighborhood of the origin.

3.3 Odd problem regularity

Now, we consider a problem of the form


−∆u = 0 R2

+

∂u
∂y = λu {x > 0, y = 0}

u = 0 {x < 0, y = 0}.

(3.11)
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This is related to the problem (3.5) via a renaming of ε
aε

to λ, localizing to one of

the endpoints of σ and removing the second derivative term. We will show later that

removing this term does not affect the resulting solution too much, in the sense that

these two solutions are ‘close’ in an appropriate sense. The analysis of this problem

is very similar to that of the even problem in the last section. We define W (r, θ) =

u(r2, 2θ) as before, but now, since W ≡ 0 along x = 0, we extend W as an odd function

in x to all of R2
+. This function W satisfies

−∆W = 0 R2
+

∂W
∂y = λ|x|W (x, 0) {y = 0}.

As before, W ∈ H1
loc(R2

+), and so its trace on R, W (·, 0) ∈ H1/2
loc (R), bounded by a

constant independent of λ. By the properties of the map A discussed earlier, we have

that | · |W (·, 0) ∈ H1/2
loc (R), and so ∂W

∂y ∈ H
1/2
loc (R), with a bound controlled by Cλ. Now,

by using the elliptic regularity of the Neumann problem, (as opposed to the Dirichlet

problem that we used before) we have that W ∈ H2
loc(R2

+), with norm controlled by

(Cλ + C). We can now use the same bootstrapping argument from before: W (·, 0) is

thus in H
3/2
loc (R), and by properties of the map A, so is | · |W (·, 0), because, as before, W

is now a continuous function that is odd in x, and so vanishes at (0, 0). This regularity

carries over to ∂W
∂y , and so by the regularity of the Neumann problem, W ∈ H3

loc(R2
+).

We can run the process one more time, getting to W ∈ H4−β
loc (R2

+), with norm controlled

by (Cλ3 + C).

We can again define V to be the harmonic conjugate of W , with V (0, 0) = 0 and

define the function

W(z) = W (x, y) + iV (x, y) z = x+ iy

Since W is holomorphic in a C+ := C∩{Im(z) ≥ 0} neighborhood of (0, 0) and is C2,β

on this neighborhood for any β < 1, it has a Taylor series approximation of the form

W(z) = B0 +B1z +
1

2
B2z

2 + E(z)
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where

|E(z)| ≤
(
Cλ3 + C

)
|z|2+β∣∣∣∣ ddzE(z)

∣∣∣∣ ≤ (Cλ3 + C
)
|z|1+β∣∣∣∣ d2

dz2
E(z)

∣∣∣∣ ≤ (Cλ3 + C
)
|z|β

. (3.12)

Since W(0, 0) = 0, we have that B0 = 0, and since W is odd in x, we have that B1 = b1

and B2 = −2ib2 where b1 and b2 are real parameters. After setting w(z) = W(
√
z) we

get that

w(z) = b1
√
z − ib2z + e(z)

and noticing that u(x, y) = Re(w(x+ iy)) exactly as before gives the following decom-

position for the solution u to (3.11):

u(x, y) = b1r
1/2 cos(θ/2) + b2r sin θ + e(x, y)

with

|e(x, y)| ≤
(
Cλ3 + C

)
r1+β

2

|∇e(x, y)| ≤
(
Cλ3 + C

)
r
β
2

|D2e(x, y)| ≤
(
Cλ3 + C

)
r−1+β

2

in an R2
+ neighborhood of the origin, where (r, θ) denote polar coordinates there. In

a similar manner to what we did with the even problem, we will reformulate this

decomposition to isolate the most singular term, giving a decomposition of the form

u(x, y) = b1r
1/2 cos(θ/2) + u∗(x, y) (3.13)

with

u∗(x, y) ∈ C1,β/2

|D2u∗| ≤
(
Cλ3 + C

)
r−1+β

2

∂u∗

∂y
(0, 0) = b2

(3.14)

in a R2
+ neighborhood of the origin.
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3.4 Localization argument

Now, we want to relate the solution to (3.6) to that of (3.2), which is directly connected

to the reduced problem we are trying to solve. We will start with

−∆uev = fev Ω+

uev = ϕev ∂Ω+

∂uev

∂y + α∂
2uev

∂x2 = 0 σ

∂uev

∂y = 0 {y = 0} \ σ,

(3.15)

which is (3.4) with εaε replaced by a fixed constant α. Let (r, θ) denote polar coordinates

around the point (−1, 0), which is the left endpoint of σ, and assume that f ∈ Fδ for

some δ > 0. Without loss of generality, we may assume that δ < 1
2 . If we restrict to

the domain r < δ
2 , we have that uev solves

−∆uev = 0 {r < δ
2}+

uev = ψev {r = δ
2}+

∂uev

∂y + α∂
2uev

∂x2 = 0 {y = 0,−1 < x < −1 + δ
2}

∂uev

∂y = 0 {y = 0, −1− δ
2 < x < −1}

(3.16)

where ψev = uev |r= δ
2
. By standard elliptic regularity results, we know that

||ψev||H1/2({r= δ
2
}) ≤ C

(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)
(3.17)

and we will let C(f, ϕ) denote this form of constant on the right hand side of the above

expression. In particular, since the curve r = δ
2 lies in the region where f ≡ 0, we have

that ψev is actually smooth, and the bound in (3.17) holds in any Hs norm, not just

H1/2. We are now left with a problem that is very similar to (3.6), except we have a

boundary condition at r = δ
2 . In order for the results in the previous sections to carry

through, we need to show regularity of the solution uev near (−1, 0). The analysis

to get this regularity is almost identical to what was already done, with a few main

differences.
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1. When generating the function W defined by W (r, θ) = u(r2, 2θ), this function

becomes defined on the ball of radius
√

δ
2 instead of all of R2, with a boundary

condition at this boundary that is related to ψev. It shares the same norm control,

up to constants that may depend on δ, which is fixed.

2. Instead of dealing with functions inHs
loc(R), the entire proof needs to use functions

in Hs(I), where I is an interval in R. For s > 0, there is no change, but for

s < 0, where the space is defined as a dual space of distributions, things change

slightly. For s > 0, the space H−s(I) is defined as the dual space of Hs
00(I), where

this denotes the set of all functions in Hs(I) that are in Hs(R) when extended

by 0 outside of I [LM72]. For s < 1/2, Hs
00(I) = Hs(I) (since step functions

are in Hs) and for 1/2 < s < 1, Hs
00(I) = Hs

0(I). The case where s = 1/2

is complicated, and since the final regularity result has flexibility in terms of

the β > 0, we can afford to give up regularity at this first step to save the

technical details. In particular, since we know that ∂
∂x

1
2|x|

∂W
∂x (x, 0) ∈ H−1/2(I),

we know that ∂
∂x

1
2|x|

∂W
∂x (x, 0) ∈ H−1/2−β(I) for any β > 0, where this space is

now the dual of H
1/2+β
0 (I). Since 1

2|x|
∂W
∂x (x, 0) is odd across zero and ∂

∂x maps

H1/2−β(I) ∩ {v :
´
I v = 0} one-to-one and onto H−1/2−β(I) (which is proven via

the adjoint map), we then know that the function 1
2|x|

∂W
∂x (x, 0) ∈ H1/2−β(I). The

rest of the proof then works exactly as before, except all of the regularity results

are reduced by some β > 0. Since our final result is that our function belongs in

the space H4−β(I) for any β > 0, we can incorporate this reduced regularity from

before into this to get us to the same regularity result.

3. Whenever elliptic regularity of the Dirichlet or Neumann problem is used to in-

crease the regularity of the function, this step also needs to worry about the norm

of the boundary data. However, the boundary data is smooth, and always has a

norm controlled by C(f, ϕ). Thus, all of the C constants that arose in the analysis

become C(f, ϕ), due to this extra boundary condition, but this provides no other

obstacle to the analysis.
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Therefore, we have that, for the even symmetry case, our solution uev has a decom-

position of the form

uev(x, y) = b1r
1/2 sin(θ/2) + uev,∗(x, y)

with

uev,∗(x, y) ∈ C1,β/2 ||uev,∗||C1,β/2 ≤ C(f, ϕ)

(
1

α3
+ 1

)
|D2uev,∗| ≤ C(f, ϕ)

(
1

α3
+ 1

)
r−1+β

2

uev,∗(−1, 0) = b0

∂uev,∗

∂x
(−1, 0) = b2

(3.18)

for some real constants b0, b1, and b2, in some neighborhood of (−1, 0), for any β < 1.

We also know that, by the C1,β/2 control, that all of the b constants are bounded by

C(f, ϕ)
(

1
α3 + 1

)
.

The exact same analysis can be carried out for the endpoint at (1, 0), resulting in

a similar expansion in terms of polar coordinates (r′, θ′), where θ′ = 0 and θ′ = 2π

correspond to the curve σ. Now, let η be a radial cut-off function with η(r) ≡ 1 on

r < δ
2 and η(r) ≡ 0 on r > δ. Consider the function

v(x, y) = b1r
1/2 sin(θ/2)η(r) + b′1r

′1/2 sin(θ′/2)η(r′)

and look at v−uev. Since η(r) ≡ 1 on r < δ
2 , the functions v and uev agree on r < δ

2 up

to a function in C1,β/2 with norm controlled by C(f, ϕ)
(

1
α3 + 1

)
. The exact same holds

for r′ < δ
2 . Outside of these two regions and inside ωδ (where f ≡ 0), we have that both

v and uev are smooth functions with norms controlled by the same constant. Therefore,

we know that in all of ωδ, v− uev is a C1,β/2 function. This gives the following lemma.

Lemma 3.4.1. Let (r, θ) and (r′, θ′) be polar coordinates around the two endpoints of

σ, (−1, 0) and (1, 0) respectively, where in each case, the 0 and 2π angles correspond

to σ. Let η denote a smooth cut-off function as above. Then the solution uev to (3.15)

satisfies

uev = b1r
1/2 sin(θ/2)η(r) + b′1r

′1/2 sin(θ′/2)η(r′) + uev,∗
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where uev,∗ is bounded in C1,β/2((ωδ)+) by C(f, ϕ)
(

1
α3 + 1

)
, and the constants b1 and

b′1 are bounded by C(f, ϕ)
(

1
α3 + 1

)
as well.

Remark. The only obstruction to extending this result to larger subdomains of Ω is the

regularity of the input data. If f was at least H2, then this result could be extended to

hold in any Ω̃ ⊂⊂ Ω with ∂Ω̃ smooth enough by standard elliptic regularity arguments,

because the solution to the equation in the full domain would be at least C1,β/2 for any

β > 0. The norm dependence would increase from the L2 norm of f to the H2 norm of

f in this external region. The same goes for regularity up the boundary; if ϕ and ∂Ω

were smoother, then this could be extended to all of Ω with the corresponding increase

in the norms required.

By following the exact same procedure, we can say something about problems related

to (3.11). Consider a problem of the form

−∆uodd
′

= fodd Ω+

uodd
′

= ϕodd ∂Ω+

∂uodd
′

∂y = λuodd
′

σ

uodd
′

= 0 {y = 0} \ σ

(3.19)

defined on the upper-half region Ω+. Following the same process of restricting to a

neighborhood of each endpoint of σ and using the decomposition given in (3.13) and

(3.14) instead of (3.9) and (3.10), gives the following lemma

Lemma 3.4.2. Let (r, θ) and (r′, θ′) be polar coordinates around the two endpoints of

σ, (−1, 0) and (1, 0) respectively, where in each case, the 0 and 2π angles correspond to

σ. Let η denote a smooth cut-off function as above. Then the solution uodd
′

to (3.19)

satisfies

uodd
′

= b1r
1/2 cos(θ/2)η(r) + b′1r

′1/2 cos(θ′/2)η(r′) + uodd,∗

where uodd,∗ is bounded in C1,β/2((ωδ)+) by C(f, ϕ)
(
λ3 + 1

)
, and the constants b1 and

b′1 are bounded by C(f, ϕ)
(
λ3 + 1

)
as well.
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Chapter 4

Energy Convergence

In this chapter, we use the analysis of the previous chapter to prove energy, and thus

norm, convergence of the solution u0
ε to uε as ε → 0. In a sense, this proves that the

reduced problem (2.9) is an appropriate approximation to the full problem (2.1) in the

limit as ε→ 0.

4.1 Setup

The goal for this chapter is to use Lemma 2.2.2 to show that the solution u0
ε to (2.9)

is asymptotically close to the solution uε to (2.1) as ε → 0. To do this, we need to

show that for any background f and boundary data ϕ, the energy of the minimizers of

the corresponding energy functional are close, up to a constant depending on f and ϕ.

To show that they are close, we make use of the dual energy maximization problem,

rewriting the energy minimization as a corresponding maximization problem. This will

allow us to show that

Eε(uε)− E0
ε (u0

ε )

is small by getting a bound on

Eε(u)− E0
ε (u0

ε )

for a particular choice of u that is very similar to u0
ε , and to show that

E0
ε (u0

ε )− Eε(uε)

is small by converting both of these to maximization problems, and showing that

E0,c
ε (u0

ε )− Ecε (u)
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is small for an appropriately chosen u. For a more detailed description of dual energies,

as well as a derivation of all of the dual energies used later in this chapter, see Appendix

B.

For the next few sections, we will assume that Ω = B2(0) and σ = {(x, 0) | x ∈

(−1, 1)}, and that f ∈ Fδ for some δ > 0. This will allow us to make use of the even

and odd symmetric problems discussed in the last chapter. The plan for the next few

sections is that we will deal with either the even or odd problem, restricting the value

of aε to facilitate the necessary analysis to prove the closeness that we want. After

that, we will combine these results to get a conclusion for any aε and then extend to

domains that are not symmetric around σ, only assuming that σ is a straight line.

4.2 Even symmetry, εaε > m > 0

Taking the domain assumptions as above and looking at the even version of the problem

gives us the PDE (3.4), that is

−∆uev = fev Ω+

uev = ϕev ∂Ω+

∂uev

∂y + εaε
∂2uev

∂x2 = 0 σ

∂uev

∂y = 0 {y = 0} \ σ.

If we assume that εaε > m > 0, then we are in exactly the case of Lemma 3.4.1,

which tells us that the uev has the form

uev = b1r
1/2 sin(θ/2)η(r) + b′1r

′1/2 sin(θ′/2)η(r′) + uev,∗

where uev,∗ is bounded in C1,β/2((ωδ)+) by C(f, ϕ)
(

1
(εaε)3 + 1

)
, and the constants b1

and b′1 are bounded by C(f, ϕ)
(

1
(εaε)3 + 1

)
. Given this decomposition, we can also

prove an additional fact about the remainder term uev,∗.

Lemma 4.2.1. For this function uev,∗, we have

∂uev,∗

∂x
(−1, 0) =

∂uev,∗

∂x
(1, 0) = 0,

that is, the tangential derivatives of uev,∗ vanish at the endpoints of σ.



34

Proof. Let T be an inverse to the trace operator on H1/2(σ) so that the lifted function

vanishes on ∂Ω. The variational formulation of (3.4) gives that

ˆ
Ω+

∇uev∇(Tv) dx = εaε

ˆ
σ

∂uev

∂x

∂Tv

∂x
ds

= εaε

ˆ
σ

∂uev

∂x

∂v

∂x
ds

= εaε

ˆ
σ

∂uev,∗

∂x

∂v

∂x
ds

where the last step holds because the most singular parts of uev are identically zero

along the curve σ. This equality then implies that the functional

v 7→
ˆ
σ

∂uev,∗

∂x

∂v

∂x

can be extended continuously to all of H1/2(σ), provided εaε > m > 0. Since uev,∗ is

smooth on the interior of σ and C1,β/2 up to the boundary, we can integrate by parts

to get that ˆ
σ

∂uev,∗

∂x

∂v

∂x
dx = −

ˆ
σ

∂2uev,∗

∂x2
v dx+

∂uev,∗

∂x
v |x=1

x=−1

for any v ∈ H1(σ). For the first term on the right hand side, we get∣∣∣∣ˆ
σ

∂2uev,∗

∂x2
v ds

∣∣∣∣ ≤ ˆ
σ

∣∣∣∣∂2uev,∗

∂x2

∣∣∣∣ |v| ds
≤ C

(ˆ
σ
d(x, ∂σ)2(−1+β/2+p) ds

)1/2(ˆ
σ

|v|2

d(x, ∂σ)2p
ds

)1/2

≤ C
(ˆ

σ
d(x, ∂σ)2(−1+β/2+p) ds

)1/2

||v||Hp(σ)

where we have used the properties of uev,∗ from (3.18), as well as the fact that for p ≤ 1,

|v| ∈ Hp(σ), and for 0 ≤ p ≤ 1
2 ,

ˆ
σ

|v|2

d(x, ∂σ)2p
ds ≤ C||v||Hp(σ).

This last statement follows from the classical Hardy’s inequality, combined with interpo-

lation of Sobolev spaces in the sense that the interpolant of L2(σ) and H1(σ)∩{f(0) =

0} is Hp(σ) for 0 ≤ p ≤ 1
2 . Since β can be chosen arbitrarily close to 1, we may choose

it large enough so that ˆ
σ
d(x, ∂σ)2(−1+β/2+p) ds <∞
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for any p > 0. Therefore, we have that∣∣∣∣ˆ
σ

∂2uev,∗

∂x2
v ds

∣∣∣∣ ≤ C||v||Hp(σ)

for any 0 < p ≤ 1
2 , which implies that this term of the functional is continuously

extendable to H1/2(σ). This then implies that

v 7→ ∂uev,∗

∂x
v
∣∣∣x=1

x=−1

must also be continuously extendable to H1/2(σ). However, we know that the trace

operators at 1 and −1 are not well defined on H1/2(σ), which means that this statement

can only hold if

∂uev,∗

∂x
(−1, 0) =

∂uev,∗

∂x
(1, 0) = 0. �

To analyze this problem, we define the even energy

Eev(v) =
1

2

ˆ
Ω\σ
|∇v|2 dx+ εaε

ˆ
σ

(
∂v

∂x

)2

ds−
ˆ

Ω\σ
fevv dx (4.1)

for v ∈ H1(Ω)∩H1(σ) with v = ϕev on ∂Ω, which we want to compare to the even part

Eevε (v) =
1

2

ˆ
Ω
γε|∇v|2 dx−

ˆ
Ω
fevv dx

of Eε(v) from (2.2), with v ∈ H1(Ω) and v = ϕev on ∂Ω.

In this section, we prove the following theorem:

Theorem 4.2.1. Suppose εaε > m > 0. Consider the solution uε to the problem

(2.1), where σ is a straight line segment and Ω is symmetric about σ, with f ∈ Fδ and

ϕ ∈ H1/2(∂Ω). Let fev and ϕev be the even parts of f and ϕ respectively. Let uev be

the solution to (3.2), and let uevε be the even part of uε. Then

|Eevε (uevε )− Eev(uev)| ≤ C(f, ϕ)2εβ/4

where C(f, ϕ) denotes a quantity of the form

C(f, ϕ) = C(||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)).

This is reduced to verifying two inequalities:

Eevε (uevε )− Eev(uev) ≤ C(f, ϕ)2εβ/2 (4.2)

and

Eev(uev)− Eevε (uevε ) ≤ C(f, ϕ)2εβ/4. (4.3)
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4.2.1 Proof of (4.2)

In order to compare Eevε (uevε ) to Eev(uev), we rewrite the energy Eevε as F rε (u, v), as

derived in (2.5). To get something that might be close in energy to Eev(uev), we choose

a pair of functions u∗ and v∗ that are related to uev. An initial guess is choosing

u∗ = uev and v∗ = uev ◦ pσ, which has energy

F rε (u∗, v∗) =
1

2

ˆ
Ω\ω̄ε
|∇u∗|2 dx−

ˆ
Ω
fevu∗ dx+

aε
2

ˆ
ωends1

|∇v∗|2 dx

+
εaε
2

ˆ
ωint1

1 + κdσ
1 + εκdσ

(
∂v∗

∂τ

)2

dx+
aε
2ε

ˆ
ωint1

1 + εκdσ
1 + κdσ

(
∂v∗

∂n

)2

dx

=
1

2

ˆ
Ω\ω̄ε
|∇uev|2 dx−

ˆ
Ω
fevuev dx+ εaε

ˆ
ωint1

(
∂uev

∂x

)2

dx

≤ Eev(uev)

where we have used the fact that κ ≡ 0 because σ is a straight line, v∗ is constant in

the ends regions because the projected point is constant, and ∂v∗

∂n = 0 because v∗ is

constant in the normal direction. The inequality comes from the fact that to get to

Eev, the energy integral needs to be extended from Ω \ωε to Ω \ σ, while the extension

on the linear term does not matter because f vanishes on ωδ for some δ > 0. This

statement tells us that

F rε (u∗, v∗)− Eev(uev) ≤ 0, (4.4)

which is even better than the statement we want to prove. However, this pair (u∗, v∗)

does not satisfy the necessary continuity conditions to be in the space V r
ε . To correct

this, we introduce the function zε as the unique solution to
−∆zε = 0 Ω \ ωε

zε = 0 ∂Ω

zε = uev ◦ pσ − uev ∂ωε

We then see that the pair (u∗ + zε, v
∗) is now an element of V r

ε , and in Appendix

A.1, we prove that

||zε||H1(Ω\ωε) ≤ C(f, ϕ)εβ/2

for any β < 1. This result relies heavily on the specific form of the most singular part

of the solution uev and the higher regularity of the uev,∗ term. With this result, we see
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that

F rε (u∗ + zε, v
∗) = F rε (u∗, v∗) +

1

2

ˆ
Ω\ωε
|∇zε|2 dx+

ˆ
Ω\ωε
∇zε∇uev dx

−
ˆ

Ω\ωε
fzε dx

≤ F rε (u∗, v∗) + C(f, ϕ)2εβ + C(f, ϕ)εβ/2||uev||H1(Ω\ωε)

+ C(f, ϕ)εβ/2||f ||L2(Ω)

≤ F rε (u∗, v∗) + C(f, ϕ)2εβ/2

Then, we have that

Eevε (uevε )− Eev(uev) ≤ F rε (u∗ + zε, v
∗)− Eev(uev)

≤ F rε (u∗, v∗) + C(f, ϕ)2εβ/2 − Eev(uev)

≤ C(f, ϕ)2εβ/2

as desired by (4.2), where the last line uses (4.4).

Remark. One could also try to correct for this mismatch in boundary conditions by

adding a function zε on the inside of ωε, as opposed to the outside. In this case, we

would expect zε to have r1/2 singuarities near each endpoint of σ. Computing the

energy of this type of function gives something of the form

aε

ˆ
r<ε

∣∣∣∇(r1/2 sin(θ/2))
∣∣∣2 dA = O(εaε)

which does not go to zero as ε→ 0. Therefore, this has the same order of contribution to

the energy as the ∂u
∂τ term, and so would not be “small” enough to give this asymptotic

accuracy. Surprisingly, putting the zε correction outside of ωε does not have this issue.

4.2.2 Proof of (4.3)

In order to prove (4.3), we use the dual energy formulation of Eε. The point of this is

to turn the minimization that normally characterizes uε into a maximization problem,

so that we can replace the input to this energy with a different test function to make

the energy smaller (instead of larger, like in Section 4.2.1) and get an inequality in the

reverse direction. The process for doing this is described in detail in Appendix B.
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The dual energy corresponding to Eevε , as derived in Appendix B.2.1 is

Eev,cε (ξ) =

ˆ
∂Ω
ϕξ · n ds− 1

2

ˆ
Ω
γ−1
ε |ξ|2 dx

where ξ ∈ L2(Ω)2 with −∇·ξ = fev. After separating out the ωε portion of the integral

and rescaling it to ω1, and using the fact that σ is a straight line, the dual energy, as

derived in Appendix B.2.1, becomes

F ev,cε (ξ, η) =

ˆ
∂Ω
ϕξ · n ds− 1

2

ˆ
Ω\ωε
|ξ|2 dx− 1

2εaε

ˆ
ωint1

|η1|2 ds

− ε

2aε

ˆ
ωint1

dx− 1

2aε

ˆ
ωends1

|η|2 dx

where the maximization is taken over the set

Wε = {(ξ, η) ∈ L2(Ω \ ωε)2 × L2(ω1)2 | − ∇ · ξ = fev, ∇ · η = 0,

η2(x,±1) = ξ2(x,±ε) − 1 ≤ x ≤ 1,

η · n = εξ · n ◦Hε ∂ω1 ∩ ∂ωends1 }.

(4.5)

In order to make the difference

Eev(uev)− F ev,cε (ξ, η)

small, we choose a pair (ξ, η) that behaves like ∇uev, in that we choose ξ = ∇uev and,

in order to get a divergence-free vector field η, we define

η(x, y) =

εaε ∂∂xuev(x, 0)

y ∂
∂yu

ev(x, 0+)


on ωint1 , and η ≡ 0 on ωends1 . However, based on the decomposition of uev as

uev = b1r
1/2 sin(θ/2)η(r) + b′1r

′1/2 sin(θ′/2)η(r′) + uev,∗,

we know that, since ∂
∂y = 1

r
∂
∂θ along σ, we have that

∂

∂y
uev(x, 0+) =

b1
2
r−1/2η(r) +

b′1
2
r′−1/2η(r′) +

∂uev,∗

∂y
(x, 0+)

for −1 < x < 1, and this function is not in L2(σ). Therefore, we define a regularized

version of this function

DU(x) =
b1
2

max{x+ 1, ε}−1/2η(x+ 1) +
b′1
2

max{1− x, ε}−1/2η(1− x)

+
∂uev,∗

∂y
(x, 0+) + dε
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where the constant dε is given by

dε =
b1
4

ˆ −1+ε

−1
[(x+ 1)−1/2 − ε−1/2] dx+

b1
4

ˆ 1

1−ε
[(1− x)−1/2 − ε−1/2] dx

=
√
ε

(
b1
2

+
b′1
2

)
so that ˆ 1

−1
DU(x) dx =

ˆ 1

−1

∂uev

∂y
(x, 0+) dx.

With these definitions, we see that

|dε| ≤ C(f, ϕ)
√
ε

because the b constants are bounded by C(f, ϕ) and

||DU ||L2(−1,1) ≤ | log ε|1/2C(f, ϕ).

Finally, we define the function

R(x) =

ˆ x

−1

∂uev

∂y
(t, 0)−DU(t) dt

on σ, which is continuous, bounded by
√
εC(f, ϕ) and has R(−1) = R(1) = 0 by

construction. With these modified derivatives of uev, we can now define our test vector

field η as

η(x, y) =

εaε ∂∂xuev(x, 0) +R(x)

yDU(x)


in ωint1 , and η ≡ 0 in ωends1 , where this time, η ∈ L2(ω1)2. With this choice, we have

that

−∇ · ξ = fev

and

∇ · η = 0

because

∂

∂x
η1 =

∂

∂x

(
εaε

∂

∂x
uev(x, 0) +R(x)

)
= εaε

∂2

∂x2
uev(x, 0) +

∂

∂x
R(x)

= −∂u
ev

∂y
(x, 0) +

(
∂uev

∂y
(x, 0)−DU(x)

)
= −DU(x) = − ∂

∂y
(yDU(x)) = − ∂

∂y
η2
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in ωint1 . The inner vector field η is also divergence-free in ωends1 , and to merge the two

conditions together, we use the fact that along the joint boundary of these regions

∂

∂x
uev(−1, 0) =

∂

∂x
uev,∗(−1, 0) = 0

∂

∂x
uev(1, 0) =

∂

∂x
uev,∗(1, 0) = 0 (4.6)

where the derivatives are taken along σ. While this combined vector field is close

to ∇uev, it doesn’t satisfy the interface conditions along ∂ωε. Therefore, we define a

correction vector field ξε that satisfies
∇ · ξε = 0 Ω \ ωε

(ξε)2(x,±ε) = ±DU(x)− ∂
∂yu

ev(x,±ε) −1 < x < 1

ξε · n = − ∂
∂nu

ev ∂ωε ∩ {(x, y) : |x| > 1}

with

||ξε||L2(Ω\ωε) ≤ ε
β/4C(f, ϕ)

for any β < 1. The construction of this ξε and proof of this bound is postponed to

Appendix A.2. With this, we have that the pair (ξ + ξε, η) is in Wε, because

(ξ + ξε)2(x,±ε) =
∂

∂y
uev(x,±ε)±DU(x)− ∂

∂y
uev(x,±ε)

= ±DU(x) = η2(x,±1) − 1 < x < 1

and

(ξ + ξε) · n =
∂

∂n
uev − ∂

∂n
uev = 0 = η · n ∂ω1 ∩ |x| > 1

which are exactly the interface conditions in (4.5). In terms of the dual energy, we see
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that, using the fact that η ≡ 0 in ωends1 ,

F ev,cε (ξ + ξε,η) =

ˆ
∂Ω

∂uev

∂n
ϕ ds− 1

2

ˆ
Ω\ωε
|∇uev + ξε|2 dx

− 1

2aε

ˆ
ωint1

∣∣∣∣εaε∂uev∂x
(x.0) +R(x)

∣∣∣∣2 dx dy

− ε

2aε

ˆ
ωint1

|yDU(x)|2 dx dy

=

ˆ
∂Ω

∂uev

∂n
ϕ ds− 1

2

ˆ
Ω\ωε
|∇uev + ξε|2 dx

− 1

aε

ˆ
σ

∣∣∣∣εaε∂uev∂x
(x, 0) +R(x)

∣∣∣∣2 dx− ε

3aε

ˆ
σ
|DU(x)|2 dx

≥
ˆ
∂Ω

∂uev

∂n
ϕds− 1

2

ˆ
Ω\ωε
|∇uev|2dx− 1

aε

ˆ
σ

∣∣∣∣εaε∂uev∂x
(x, 0)

∣∣∣∣2 dx
− ||∇uev||L2(Ω\ωε)||ξε||L2(Ω\ωε) −

1

2
||ξε||2L2(Ω\ωε)

− 2

εaε

∣∣∣∣∣∣∣∣εaε∂uev∂x

∣∣∣∣∣∣∣∣
L2(σ)

||R||L2(σ) −
2

εaε
||R||2L2(σ) −

ε

3aε
||DU ||2L2(σ).

(4.7)

From energy estimates on the reduced problem defining uev, we have that

||∇uev||L2(Ω\ωε) ≤ C(f, ϕ)

∣∣∣∣∣∣∣∣εaε∂uev∂x

∣∣∣∣∣∣∣∣
L2(σ)

≤ C(f, ϕ)
√
εaε

and by the work in Section B.2.2, the corresponding dual energy for uev is given by

Eev,c(ξ, ζ) :=

ˆ
∂Ω
ϕevξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx− εaε

ˆ
σ
|ζ|2 ds.

Thus, we see that, after expanding integrals, the first three terms in the last expression

in (4.7) are smaller than Eev,c(∇uev, ∂uev∂x ) = Eev(uev). Using this fact combined with

our estimates on R and DU gives that

F ev,cε (ξ + ξε, η) ≥
ˆ
∂Ω

∂uev

∂n
ϕ ds− 1

2

ˆ
Ω\σ
|∇uev|2 dx− 1

aε

ˆ
σ

∣∣∣∣εaε∂uev∂x
(x.0)

∣∣∣∣2 dx

− C(f, ϕ)2εβ/4 − C(f, ϕ)2εβ/2 − C(f, ϕ)2

√
ε

√
εaε

− C(f, ϕ)2ε

εaε
− C(f, ϕ)2ε2| log ε|2

εaε

≥ Eev(uev)− C(f, ϕ)2

(
εβ/4 + εβ/2 +

√
ε

√
εaε

+
ε

εaε
+
ε2| log ε|2

εaε

)
≥ Eev(uev)− C(f, ϕ)2εβ/4

for any β > 1, where in the last step, we use the fact that εaε > m > 0 to remove the

denominators and get that εβ/4 is the slowest term going to zero. Therefore, we have
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that

Eev(uev)− F ev,cε (ξ + ξε, η) ≤ C(f, ϕ)εβ/4,

so that by the dual energy construction, we have that

Eev(uev)− Eevε (uevε ) ≤ C(f, ϕ)εβ/4,

as desired in (4.3).

4.3 Even symmetry, εaε → 0

Now, we need to address the other half of the case with even symmetry. If εaε → 0,

then our decomposition in (3.10) no longer holds, and we need a different approach.

However, in this case, the only part of the equation that depends on ε is also going

to zero, and so we can see what happens if we ignore this term. This motivates us to

define the function uev0 as the solution to
−∆uev0 = fev Ω

uev0 = ϕev ∂Ω

which can be obtained through minimization of the functional

Eev0 (v) =
1

2

ˆ
Ω
|∇v|2 dx−

ˆ
Ω
fevv dx

over the set of all v ∈ H1(Ω) with v = ϕev on ∂Ω. In this section, we prove the following

theorem

Theorem 4.3.1. Assume εaε → 0 as ε → 0. Consider the solution uε to the problem

(2.1), where σ is a straight line segment and Ω is symmetric about σ, with f ∈ Fδ and

ϕ ∈ H1/2(∂Ω). Let fev and ϕev be the even parts of f and ϕ respectively. Let uev be

the solution to (3.2) and uevε be the even part of uε. Then

|Eevε (uevε )− Eev(uev)| ≤ C(f, ϕ)2(εaε + εβ)

for any β < 1, where C(f, ϕ) denotes a quantity of the form

C(f, ϕ) = C(||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)).
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We prove this statement by proving that both uevε and uev are close to uev0 in the

sense that

|Eev(uev)− Eev0 (uev0 )| ≤ C(f, ϕ)2εaε (4.8)

and

|Eevε (uevε )− Eev0 (uev0 )| ≤ C(f, ϕ)2(εβ + εaε) (4.9)

for any β < 1, and the result above then follows by the triangle inequality.

4.3.1 Proof of (4.8)

Since uev is even across σ, it is in H1(Ω), and not just H1(Ω \ σ), and so is a valid test

function for the energy functional Eev0 . Using this fact, the minimization properties of

these solutions, and the positivity of εaε, we see that

Eev0 (uev0 ) ≤ Eev0 (uev) =
1

2

ˆ
Ω
|∇uev|2 dx

≤ 1

2

ˆ
Ω
|∇uev|2 dx+ εaε

ˆ
σ

∣∣∣∣∂uev∂x

∣∣∣∣2 ds = Eev(uev)

≤ Eev(uev0 ) =
1

2

ˆ
Ω
|∇uev0 |2 dx+ εaε

ˆ
σ

∣∣∣∣∂uev0∂x
∣∣∣∣2 ds

≤ 1

2

ˆ
Ω
|∇uev0 |2 dx+ εaεC(f, ϕ)2 = Eev0 (uev0 ) + εaεC(f, ϕ)2

where, in moving to the last line, we used the fact that by elliptic regularity and the

fact that f vanishes in a neighborhood of σ,

ˆ
σ

∣∣∣∣∂uev0∂x
∣∣∣∣2 ds ≤ C(f, ϕ)2.

This sequence of inequalities gives us that

Eev0 (uev0 ) ≤ Eev(uev) ≤ Eev0 (uev0 ) + εaεC(f, ϕ)2

from which (4.8) follows.

4.3.2 Proof of (4.9)

To establish (4.9), we use a pair of primal and dual energies in order to prove

Eevε (uevε )− Eev0 (uev0 ) ≤ εaεC(f, ϕ)2 (4.10)
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and

Eev0 (uev0 )− Eε(uε) ≤ εβC(f, ϕ)2 (4.11)

from which (4.9) follows.

The same process from the previous section works to prove (4.10); we calculate that

Eevε (uevε ) ≤ Eε(uev0 ) =
1

2

ˆ
Ω\ωε
|∇uev0 |2 dx+

1

2

ˆ
ωε

aε|∇uev0 |2 dx

≤ 1

2

ˆ
Ω\ωε
|∇uev0 |2 dx+ εaεC(f, ϕ)2

≤ 1

2

ˆ
Ω
|∇uev0 |2 dx+ εaεC(f, ϕ)2

= Eev0 (uev0 ) + εaεC(f, ϕ)2

from which we see (4.10). For (4.11), we need to use the dual energies for both of these

problems. As shown in Appendix B, the dual energy for Eε is given by

Eev,cε (ξ) =

ˆ
∂Ω
ϕevξ · n ds− 1

2

ˆ
Ω\ωε
|ξ|2 dx− 1

2aε

ˆ
ωε

|ξ|2 dx

over the set of vector fields

W ev
ε = {(ξ, η) ∈ L2(Ω \ ωε)2 × L2(ω1)2 | − ∇ · ξ = fev, −∇ · η = 0,

η2(x, y) = ξ2(x, εy) − 1 ≤ x ≤ 1, y = ±1,

η · n = ε(ξ · n) ◦Hε on ∂ω1 ∩ ∂ωends1 }

and the dual energy for Eev0 is

Eev,c0 (ξ) =

ˆ
∂Ω
ϕevξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx

over the set

W ev
0 = {ξ ∈ L2(Ω)2 | −∇ · ξ = fev in Ω}.

As before, we define a test vector field in W ev
ε that looks like ∇uev0 . Our initial guess

would be to use the vector field that is ∇uev0 in Ω \ ωε and 0 inside ωε, but this does

not lie in W ev
ε . To fix, this, we define a corrector vector field ξε satisfying

∇ · ξε = 0 Ω \ ωε

ξε · n = 0 ∂Ω

ξε · n = −∇uev0 · n ∂ωε
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with norm control of

||ξε||L2(Ω\ωε) ≤ ε
βC(f, ϕ)

for any β < 1. The construction of this vector field is postponed to Appendix A.3.

Then, by the definition of the space W ev
ε , we see that the vector field

ξ̃ =


∇uev0 + ξε Ω \ ωε

0 ωε

is in W ev
ε , and so we can use it as a test function to calculate

Eevε (uevε ) ≥ Ecε (ξ̃) =

ˆ
∂Ω
ϕev ξ̃ · n ds− 1

2

ˆ
Ω\ωε
|ξ̃|2 dx− 1

2aε

ˆ
ωε

|ξ̃|2 dx

=

ˆ
∂Ω
ϕev ξ̃ · n ds− 1

2

ˆ
Ω\ωε
|∇uev0 |2 dx

− 1

2

ˆ
Ω\ωε
|ξε|2 dx−

ˆ
Ω\ωε
∇uev0 · ξε dx

≥
ˆ
∂Ω
ϕev ξ̃ · n ds− 1

2

ˆ
Ω
|∇uev0 |2 dx

− 1

2
||ξε||2L2(Ω\ωε) − ||∇u

ev
0 ||L2(Ω\ωε)||ξε||L2(Ω\ωε)

≥ Eev0 (uev0 )− C(f, ϕ)2εβ

where in the last step, we use the dual energy formula for Eev0 and the norm control on

ξε. Therefore, we see

Eev0 (uev0 )− Eevε (uevε ) ≤ C(f, ϕ)2εβ,

establishing (4.11). With this, we now have (4.10) and (4.11), which combine to give

(4.9). Putting this together with (4.8) gives the full proof of Theorem 4.3.1.

4.4 Odd symmetry, aε < Mε

Having dealt with the even symmetry case for all ranges of aε, we now move to odd

symmetry. In Chapter 3, we discussed the problem with odd symmetry, deriving that

the solution uodd solves (3.5)
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−∆uodd = fodd Ω+

uodd = ϕodd ∂Ω+

∂uodd

∂y + εaε
∂2uodd

∂x2 − aε
ε u

odd = 0 σ

uodd = 0 {y = 0} \ σ.

We will also consider a more simplified version of this problem, given by

−∆uodd
′

= fodd Ω+

uodd
′

= ϕodd ∂Ω+

∂uodd
′

∂y = aε
ε u

odd′ σ

uodd
′

= 0 {y = 0} \ σ,

(4.12)

and for each of these functions, we will consider their odd extensions to all of Ω. For

these differential equations, we have the corresponding energies

Eodd(v) =
1

2

ˆ
Ω\σ
|∇v|2 dx+εaε

ˆ
σ

∣∣∣∣∂v+

∂τ

∣∣∣∣2 ds+
aε
ε

ˆ
σ
|v+−v−|2 ds−

ˆ
Ω
foddv dx (4.13)

and

Eodd
′
(v) =

1

2

ˆ
Ω\σ
|∇v|2 dx+

aε
ε

ˆ
σ
|v+ − v−|2 ds−

ˆ
Ω
foddv dx (4.14)

where the minimzations are taken with boundary data ϕodd on ∂Ω. If we have that

aε < Mε for some constant M , then the term aε
ε will be bounded, and since the

tangential derivative term has a coefficient that is now O(ε2), it should not have a

substantial impact on the solution. We see that this is true with the following lemma.

Lemma 4.4.1. Under the assumption that aε < Mε for some M ,

|Eodd(uodd)− Eodd′(uodd′)| ≤ εC(f, ϕ)2

Proof. Out of necessity later, the energies (4.13) and (4.14) are defined in terms of

integrals on all of Ω, but it is much easier to work with regions that do not surround
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the curve σ. Thus, we note that

Eodd(uodd) = 2

(
1

2

ˆ
Ω+

|∇uodd|2 dx+
εaε
2

ˆ
σ

∣∣∣∣∂uodd,+∂τ

∣∣∣∣2 ds

+
aε
2ε

ˆ
σ
|uodd,+|2 ds−

ˆ
Ω+

fodduodd dx

)

Eodd
′
(uodd

′
) = 2

(
1

2

ˆ
Ω+

|∇uodd′ |2 dx+
aε
2ε

ˆ
σ
|uodd′,+|2 ds−

ˆ
Ω+

fodduodd
′
dx

)
(4.15)

and work with the expressions on Ω+. For one direction of the absolute value, we see

that, using minimization properties of both solutions and the positivity of εaε,

1

2
Eodd

′
(uodd

′
) ≤ 1

2
Eodd

′
(uodd)

=
1

2

ˆ
Ω+

|∇uodd|2 dx+
aε
2ε

ˆ
σ
|uodd,+|2 ds−

ˆ
Ω+

fodduodd dx

≤ 1

2

ˆ
Ω+

|∇uodd|2 dx+
εaε
2

ˆ
σ

∣∣∣∣∂uodd,+∂τ

∣∣∣∣2 ds

+
aε
2ε

ˆ
σ
|uodd,+|2 ds−

ˆ
Ω+

fodduodd dx

=
1

2
Eodd(uodd)

so that Eodd
′
(uodd

′
) ≤ Eodd(uodd).

For the other direction of the absolute value, we need to use the decomposition of

uodd
′

developed in (3.14), which says that

uodd
′

= b1r
1/2 cos(θ/2)η(r) + b′1r

′1/2 cos(θ′/2)η(r′) + uodd,∗

where uodd,∗ is bounded in C1,β/2((ωδ)
+) by C(f, ϕ)

((
aε
ε

)3
+ 1
)

, and the constants b1

and b′1 are bounded by C(f, ϕ)
((

aε
ε

)3
+ 1
)

as well. By construction, we also have that

uodd,∗ is in H1(Ω), in particular, outside of ωδ, controlled by C(f, ϕ). Based on our

assumption that aε < Mε, we know that all of the bounds above can be simplified to

C(f, ϕ). We would like to use uodd
′

as a test function to plug into the energy Eodd like

we did in the reverse direction, but this representation of uodd
′

shows that it is not in

H1(σ). Therefore, we define a smoothed version of this function by

voddε = b1 max{ε, r}−ρr1/2+ρ cos

(
θ

2

)
η(r)+b′1 max{ε, r′}−ρr′1/2+ρ cos

(
θ′

2

)
η(r′)+uodd,∗

for any ρ > 0. We see that this function is both in H1(σ) and H1(Ω+), and so can be

used as a test function in Eodd.
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Remark. The regularized version of the solution is different here than it was in Section

4.2.2 because we have different requirements. In the previous case, we only needed ∂uev

∂y

to be in L2(σ), where as here we need both that the function be in H1(σ) and H1(Ω+).

Since cos(θ/2) is not in H1 near 0, the function needs to be modified to have extra

decay near the endpoints of σ.

Using this definition of voddε and the fact that it matches uodd
′

identically outside

of a ball of radius ε around each endpoint, we compute using the explicit formulas and

the triangle inequality that
ˆ

Ω+

|∇voddε |2 dx ≤
ˆ

Ω+

|∇uodd′ |2 dx+ εC(f, ϕ)2,

ˆ
σ

∣∣∣∣∂voddε

∂x

∣∣∣∣2 ds ≤ C(f, ϕ)2 [ερ + | log ε|+ 1 + ερ + | log ε|+ 1 + 1]

≤ | log ε|C(f, ϕ)2,ˆ
σ
|voddε |2 ds ≤

ˆ
σ
|uodd′ |2 ds+ |b1|2ε−2ρ

ˆ ε

0
t1+2ρ dt+ |b2|2ε−2ρ

ˆ ε

0
t1+2ρ dt

≤
ˆ
σ
|uodd′ |2 ds+ ε2C(f, ϕ)2.

(4.16)

Since we can use this voddε as a test function for Eodd, we see that, using all of the

inequalities proved in (4.16) and the fact that aε
ε < M ,

1

2
Eodd(uodd) ≤ 1

2
Eodd(voddε )

=
1

2

ˆ
Ω+

|∇voddε |2 dx+
εaε
2

ˆ
σ

∣∣∣∣∣∂vodd,+ε

∂τ

∣∣∣∣∣
2

ds

+
aε
2ε

ˆ
σ
|vodd,+ε |2 ds−

ˆ
Ω+

fodduodd dx

≤
ˆ

Ω+

|∇uodd′ |2 dx+ εC(f, ϕ)2 + εaε| log ε|C(f, ϕ)2

+
aε
2ε

(ˆ
σ
|uodd′ |2 ds+ ε2C(f, ϕ)2

)
≤
ˆ

Ω+

|∇uodd′ |2 dx+
aε
ε

ˆ
σ
|uodd′ |2 ds+ εC(f, ϕ)2

+
M

2
ε2| log ε|C(f, ϕ)2 +

M

2
ε2C(f, ϕ)2

≤ 1

2
Eodd

′
(uodd

′
) + εC(f, ϕ)2

which gives that

Eodd(uodd)− Eodd′(uodd′) ≤ εC(f, ϕ)2
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giving the full result of the lemma when combined with the earlier result that

Eodd
′
(uodd

′
) ≤ Eodd(uodd). �

We now want to relate this solution uodd
′

to a solution with even symmetry by

duality. To that end, we note that∇uodd′ is a vector field in L2(ω+
δ )2 that has divergence

0 (we are restricting to a set on which f is identically zero), so there exists a function

vev,N ∈ H1(ω+
δ ) so that

∇uodd′ =

(
−∂v

ev,N

∂y
,
∂vev,N

∂x

)
with

´
∂ω+

δ
vev,N ds = 0. By duality, this function vev,N will be even across y = 0, and

we want to determine what differential equation it solves. By construction of vev,N and

the boundary condition on uodd
′
, we see that for any z ∈ H1(σ)

ˆ
σ

∂vev,N

∂x

∂z

∂x
dx =

ˆ
σ

∂uodd
′

∂y

∂z

∂x
dx

=
aε
ε

ˆ
σ
uodd

′ ∂z

∂x
dx

= −aε
ε

ˆ
σ

∂uodd
′

∂x
z dx

=
aε
ε

ˆ
σ

∂vev,N

∂y
z dx

(4.17)

where we have also used that uodd
′

vanishes at the endpoints of σ, and that the second-

to-last integral makes sense because uodd
′

is in L1(σ) from the representation formula

and z is continuous. Since uodd
′

vanishes outside of σ, we know that ∂vev,N

∂y = −∂uodd
′

∂x =

0 there, and (4.17) gives the variational formulation of a boundary condition on σ.

Finally, defining ϕ̃odd = uodd
′ |∂ω+

δ
, we get that vev,N is the solution to

−∆vev,N = 0 ω+
δ

∂vev,N

∂y + ε
aε
∂2vev,N

∂x2 = 0 σ

∂vev,N

∂y = 0 {y = 0 ∩ ωδ}

∂vev,N

∂n = ∂ϕ̃odd

∂τ ∂(ωδ)
+.

(4.18)

If we denote by ψev the function ∂ϕ̃odd

∂τ , which can be extended as an even function to

all of ∂ωδ, then the even extension of vev,N to all of ωδ (which we will still denote by
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vev,N solves 

−∆vev,N = 0 ωδ \ σ

∂vev,N,+

∂y + ε
aε
∂2vev,N,+

∂x2 = 0 σ

∂vev,N,−

∂y + ε
aε
∂2vev,N,−

∂x2 = 0 σ

∂vev,N

∂n = ψev ∂ωδ

(4.19)

and is the minimizer of the energy

Eev,N (v) =
1

2

ˆ
ωδ\σ
|∇v|2 dx+

ε

aε

ˆ
σ

(
∂v

∂x

)2

dx−
ˆ
∂ωδ

ψevv ds. (4.20)

(4.18) and (4.20) look very similar to (3.4) and (4.1), which correspond to a problem

that we have already analyzed. The differences between these equations are a replace-

ment of aε by 1
aε

, removing the source term, and changing the boundary condition from

a Dirichlet to a Neumann condition. Therefore, we should be able to leverage the even

problem to help with getting a result here. For that, we need to relate the energy of

the original problem uodd
′

to that of the rotated problem vev,N . Looking at each term

in (4.20), we compute that

ˆ
∂ω+

δ

ψevvev,N ds =

ˆ
∂ω+

δ

∂ϕ̃odd

∂τ
vev,N ds

= −
ˆ
∂ω+

δ

uodd
′ ∂vev,N

∂τ
ds

= −
ˆ
∂ω+

δ

uodd
′ ∂uodd

′

∂n
ds

=

ˆ
ω+
δ

|∇uodd′ |2 dx+
aε
ε

ˆ
σ
|uodd′ |2 ds

(4.21)

where the last equality comes from the variational formulation of the differential equa-

tion for uodd
′
. We also have that

ε

2aε

ˆ
σ

(
∂vev,N

∂x

)2

ds =
ε

2aε

ˆ
σ

(
∂uodd

′

∂y

)2

ds

=
ε

2aε

ˆ
σ

(aε
ε
uodd

′
)2

ds =
aε
2ε

ˆ
σ
|uodd′ |2 ds,

ˆ
ω+
δ

|∇vev,N |2 dx =

ˆ
ω+
δ

|∇uodd′ |2 dx.

(4.22)
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Using (4.21) and (4.22) in (4.20), we see that

1

2
Eev,N (vev,N ) =

1

2

ˆ
ω+
δ

|∇vev,N |2 dx+
ε

2aε

ˆ
σ

(
∂vev,N

∂x

)2

dx

−
ˆ
∂ωδ

ψevvev,N ds

=
1

2

ˆ
ω+
δ

|∇uodd′ |2 dx+
ε

2aε

ˆ
σ

(
∂uodd

′

∂y

)2

ds

−
ˆ
ω+
δ

|∇uodd′ |2 dx− aε
ε

ˆ
σ
|uodd′ |2 ds

= −1

2

ˆ
ω+
δ

|∇uodd′ |2 dx− aε
2ε

ˆ
σ
|uodd′ |2 ds = −1

2
Eodd

′
(uodd

′
).

(4.23)

Based on the changes mentioned above, the appropriate full problem that vev,N

should be close to is the solution vNε to
−∇ · (γ̃ε∇vNε ) = 0 ωδ

∂vNε
∂n = ψev ∂ωδ

with the constraint
´
∂ωδ

vNε ds = 0, where the coefficient γ̃ε is defined by

γ̃ε =


1 ωδ \ ωε

1
aε

ωε.

This solution vNε is the minimizer of the energy

ENε (v) =
1

2

ˆ
ωδ

γ̃ε|∇v|2 dx−
ˆ
∂ωδ

ψevv dx.

In terms of the solution to a problem with odd symmetry, vNε is related to uε, where

the Dirichlet boundary condition of ψev is enforced on ∂ωδ by the relation

γε∇uε =

(
−∂v

N
ε

∂y
,
∂vNε
∂x

)
.

Thus, we see that by integration by parts again

ENε (vNε ) =
1

2

ˆ
ωδ

γ̃ε|∇vNε |2 dx−
ˆ
∂ωδ

∂vNε
∂n

vNε dx

= −1

2

ˆ
ωδ

γ̃ε|∇vNε |2 dx = −1

2

ˆ
ωδ

γε|∇uε|2 dx = −Eoddε (uoddε )

(4.24)
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By combining (4.24) with (4.23), we see that

|Eev,N (vev,N )− ENε (vNε )| = |Eodd′(uodd′)− Eoddε (uoddε )|

so that any result we have about the energy difference between even problems can be

used on this odd problem. Since we are assuming aε < Mε and the conductivity in

the inhomogeneity in the even problem that we construct this way is 1
aε

, it falls into

the case of Section 4.2. All of the results in that section were proved with Dirichlet

boundary conditions, but since we are looking away from the boundary of the domain,

they could have also been proved with Neumann conditions. Therefore, Theorem 4.2.1

says that

|Eodd′(uodd′)− Eoddε (uoddε )| = |Eev,N (vev,N )− ENε (vNε )| ≤ C(f, ϕ)2εβ/4

for any β < 1, so long as we restrict all of the energies to only involve integrals over

ωδ. We would like to have the energies be defined on all of Ω, which can be done. The

proof is not too technical, but since it will be used again later on (when we want to

remove symmetry assumptions), it is included in Appendix A.4. At the end of that,

combining this estimate with Lemma 4.4.1, we get the following theorem.

Theorem 4.4.1. Suppose aε < Mε for some M > 0. Consider the solution uε to the

problem (2.1), where σ is a straight line segment and Ω is symmetric about σ, with

f ∈ Fδ and ϕ ∈ H1/2(∂Ω). Let fodd and ϕodd be the odd parts of f and ϕ respectively.

Let uodd be the solution to (3.5), and let uoddε be the odd part of uε. Then

|Eoddε (uoddε )− Eodd(uodd)| ≤ C(f, ϕ)2εβ/4

where C(f, ϕ) denotes a quantity of the form

C(f, ϕ) = C(||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)).

4.5 Odd symmetry, aε
ε
→∞

To finish up all four cases, we prove the following theorem.
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Theorem 4.5.1. Suppose aε
ε → ∞ as ε → 0 for some M > 0. Consider the solution

uε to the problem (2.1), where σ is a straight line segment and Ω is symmetric about

σ, with f ∈ Fδ and ϕ ∈ H1/2(∂Ω). Let fodd and ϕodd be the odd parts of f and ϕ

respectively. Let uodd be the solution to (3.5), and uoddε be the odd part of uε. Then

|Eoddε (uoddε )− Eodd(uodd)| ≤ C(f, ϕ)2

(
ε

aε
+ εβ

)
where C(f, ϕ) denotes a quantity of the form

C(f, ϕ) = C(||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)).

The proof of this result is similar to the result in Section 4.3, in the sense that we

will show that both uoddε and uodd are both energy close to the function uodd0 , which is

the solution to 
−∆uodd0 = fodd Ω

uodd0 = ϕodd ∂Ω

and is the minimizer of the energy

Eodd0 (u) =
1

2

ˆ
Ω
|∇u|2 dx−

ˆ
Ω
fu dx

over the set of all functions in H1 with boundary data ϕodd. We will show

|Eodd(uodd)− Eodd0 (uodd0 )| ≤ C(f, ϕ)2 ε

aε
(4.25)

and

|Eoddε (uoddε )− Eodd0 (uodd0 )| ≤ C(f, ϕ)2

(
ε

aε
+ εβ

)
(4.26)

from which Theorem 4.5.1 follows.

4.5.1 Proof of (4.25)

In order to prove (4.25), we will prove two inequalities using primal and dual formula-

tions of the energy. Since the solution uodd may jump across σ, it is more efficient to

look at half of the energy, which can be related to an energy expression on Ω+. We

define this half-energy as

Eodd,+(v) =
1

2

ˆ
Ω+

|∇v|2 dx+
εaε
2

ˆ
σ

∣∣∣∣∂v∂x
∣∣∣∣2 dx+

aε
2ε

ˆ
σ
|v|2 dx−

ˆ
Ω+

foddv dx
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over the set of all functions in H1(Ω+) with boundary data ϕodd and that are zero along

({y = 0} ∩ Ω) \ σ. Using this energy, we can see that

1

2
Eodd(uodd) = Eodd,+(uodd) ≤ Eodd,+(uodd0 )

=
1

2

ˆ
Ω+

|∇uodd0 |2 dx+
εaε
2

ˆ
σ

∣∣∣∣∂uodd0

∂x

∣∣∣∣2 dx

+
aε
2ε

ˆ
σ
|uodd0 |2 dx−

ˆ
Ω+

fodduodd0 dx

=
1

2

ˆ
Ω+

|∇uodd0 |2 dx−
ˆ

Ω+

fodduodd0 dx =
1

2
Eodd0 (uodd0 )

which tells us that

Eodd(uodd)− Eodd0 (uodd0 ) ≤ 0. (4.27)

For the other bound, we use the dual energy for Eodd,+, which is derived in Appendix

B to be

Eodd,c(ξ, ζ, χ) = 2

ˆ
(∂Ω)+

ϕevξ · n ds−
ˆ

Ω+

|ξ|2 dx− εaε
ˆ
σ
|ζ|2 ds− aε

ε

ˆ
σ
χ2 ds

where the maximization is taken over the set

W odd = {(ξ, ζ, χ) ∈ L2(Ω+)2 × L2(σ)× L2(σ) | − ∇ · ξ = fodd

ξ2 + εaε
∂ζ

∂x
− aε

ε
χ = 0 on σ},

where the constraints are meant to be interpreted in the sense of distributions. By the

differential equation that uodd0 satisfies, we see that the triple
(
∇uodd0 , 0, εaε

∂uodd0
∂y

)
is in

W odd and so we have

1

2
Eodd(uodd) = Eodd,+c

(
∇uodd, ∂u

odd

∂x
,
∂uodd

∂y

)
≥ Eodd,+c

(
∇uodd0 , 0,

ε

aε

∂uodd0

∂y

)
=

ˆ
(∂Ω)+

ϕodd
∂uodd0

∂n
ds− 1

2

ˆ
Ω+

|∇uodd0 |2 dx−
ε

2aε

ˆ
σ

∣∣∣∣∂uodd0

∂y

∣∣∣∣2 ds

≥
ˆ

(∂Ω)+

ϕodd
∂uodd0

∂n
ds− 1

2

ˆ
Ω+

|∇uodd0 |2 dx−
ε

aε
C(f, ϕ)2

= Eodd,c0 (uodd0 )− ε

aε
C(f, ϕ)2 =

1

2
Eodd0 (uodd0 )− ε

aε
C(f, ϕ)2

so that

Eodd0 (uodd0 )− Eodd(uodd) ≤ ε

aε
C(f, ϕ)2 (4.28)

which can be combined with (4.27) to establish (4.25).
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4.5.2 Proof of (4.26)

The same process will allow us to prove (4.26). We are trying to compare Eodd0 to Eε,

which only differ by the factor of aε on the integral over ωε. However, since aε is large,

we will not be able to use each function as an approximate minimizer for the opposite

functional. In order to correct for this, we would like for our approximate minimizer to

be zero in ωε, so that we can ignore the aε term. For one direction of the inequality, we

take the function uodd0 and build an approximate minimizer to Eε in the form

vtest =


uodd0 + vε Ω \ ωε

0 ωε,

where vε is any function in H1(Ω \ ωε) with vε = −uodd0 on ∂ωε and vε = 0 on ∂Ω with

||vε||H1(Ω\ωε) ≤ ε
βC(f, ϕ)

for any β < 1. We define this function by extending −uodd0 constantly along the normal

direction to ωε and then multiplying by a cutoff function to match the desired boundary

condition on ∂Ω. Since uodd0 is H1(Ω) and vanishes along y = 0, we have that

|uodd0 | ≤ εC(f, ϕ) ∂ωε∣∣∣∣∂uodd0

∂τ

∣∣∣∣ ≤ C(f, ϕ) ∂ωε ∩ {|x| > 1}∣∣∣∣∂uodd0

∂τ

∣∣∣∣ ≤ εC(f, ϕ) ∂ωε ∩ {|x| < 1}

,

and combining these factors together give the desired norm estimate on vε. With this,

we then have that

Eoddε (uoddε ) ≤ Eoddε (vtest) =
1

2

ˆ
Ω\ωε
|∇(uodd0 + vε)|2 dx

≤ 1

2

ˆ
Ω\ωε
|∇uodd0 |2 dx+ εβC(f, ϕ)2 ≤ Eodd0 (uodd0 )εβC(f, ϕ)2

which gives

Eoddε (uoddε )− Eodd0 (uodd0 ) ≤ εβC(f, ϕ)2 (4.29)

which is half of the desired bound.
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For the other half of the inequality, we consider the dual energy corresponding to

Eε, which is shown in Appendix B to be

Eodd,cε (ξ) =

ˆ
∂Ω
ϕoddξ · n ds− 1

2

ˆ
Ω
γ−1
ε |ξ|2 dx.

Using ∇uodd0 as a test field gives that

Eoddε (uoddε ) = Eodd,cε (∇uε) ≥ Eodd,cε (∇uodd0 )

=

ˆ
∂Ω
ϕodd

∂uodd0

∂n
ds− 1

2

ˆ
Ω\ωε
|∇uodd0 |2 dx−

1

2aε

ˆ
ωε

|∇uodd0 |2 dx

≥
ˆ
∂Ω
ϕodd

∂uodd0

∂n
ds− 1

2

ˆ
Ω
|∇uodd0 |2 dx−

ε

aε
C(f, ϕ)2

= Eodd0 (uodd0 )− ε

aε
C(f, ϕ)2

where we have used the fact that uodd0 is smooth inside ωε, so∇uodd0 is uniformly bounded

by C(f, ϕ). This gives

Eodd0 (uodd0 )− Eoddε (uoddε ) ≤ ε

aε
C(f, ϕ)2 (4.30)

and combining (4.29) and (4.30) gives the estimate desired for (4.26).

4.6 Results independent of aε

Now, we want to merge all of these results together to get something that works in-

dependent of aε and combines the odd and even symmetry cases together. The set-

up for this is the following. We have the two solutions u0
ε to (3.1) and uε to (2.1),

for some f ∈ Fδ and ϕ ∈ H1/2(∂Ω), where Ω is symmetric around the straight line

σ = {(x, 0) | − 1 < x < 1}. We split these two functions along with f and ϕ into their

even and odd parts with respect to σ:

u0
ε = uev + uodd

uε = uevε + uoddε

f = fev + fodd

ϕ = ϕev + ϕodd.

The results in Sections 4.2 and 4.3 combine to give the following.
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Lemma 4.6.1.

lim
ε→0

sup
P

|Eev(uev)− Eevε (uevε )|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 = 0

where the parameter set P is

P = {(aε, f, ϕ) : 0 < aε ∈ R ∀ ε > 0, f ∈ Fδ, ϕ ∈ H1/2(∂Ω)}

Proof. Suppose that this statement is not true. Then there exists a sequence εn → 0

and a constant c > 0 so that for all n,

c < sup
P

|Eev(uev)− Eevεn (uevεn)|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 .

This means that we can also pick a corresponding aεn so that this statement holds for

that aεn , namely

c < sup
f∈Fδ

ϕ∈H1/2(∂Ω)

|Eev(uev)− Eevεn (uevεn)|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 . (4.31)

Now, there are two possibilities for the sequence εnaεn .

1. There exists a constant m so that m < εnaεn , or

2. There exists a subsequence of εnaεn that goes to zero.

In the first case, the results of Section 4.2 apply. Thus, we know that

|Eev(uev)− Eevεn (uevεn)| ≤ εβ/4n C(f, ϕ)2

This implies that

|Eev(uev)− Eevεn (uevεn)|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 ≤ Cε
β/4
n

which contradicts (4.31).

In the second case, the results from Section 4.3 apply to this subsequence, giving us

that

|Eev(uev)− Eevεn (uevεn)| ≤ (εnaεn + εβn)C(f, ϕ)2

which, since εnaεn → 0, the same argument gives another contradiction to (4.31). Since

we have a contradiction in each case, Lemma 4.6.1 is proved. �
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In the case of odd symmetry, the analogous result holds.

Lemma 4.6.2.

lim
ε→0

sup
P

|Eodd(uodd)− Eoddε (uoddε )|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 = 0

where the parameter set P is

P = {(aε, f, ϕ) : 0 < aε ∈ R ∀ ε > 0, f ∈ Fδ, ϕ ∈ H1/2(∂Ω)}

Proof. Suppose that this statement is not true. Then there exists a sequence εn → 0

and a constant c > 0 so that for all n,

c < sup
P

|Eodd(uodd)− Eoddεn (uoddεn )|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 .

This means that we can also pick a corresponding aεn so that this statement holds for

that aεn , namely

c < sup
f∈Fδ

ϕ∈H1/2(∂Ω)

|Eodd(uodd)− Eoddεn (uoddεn )|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 . (4.32)

Now, there are two possibilities for the sequence εnaεn .

1. There exists a constant M so that aεn < Mεn, or

2. There exists a subsequence of aεn
εn

that goes to infinity.

In the first case, the results of Section 4.4 apply. Thus, we know that

|Eodd(uodd)− Eoddεn (uoddεn )| ≤ εβ/4n C(f, ϕ)2

This implies that

|Eodd(uodd)− Eoddεn (uoddεn )|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 ≤ Cε
β/4
n

which contradicts (4.32).

In the second case, the results from Section 4.5 apply to this subsequence, giving us

that

|Eodd(uodd)− Eoddεn (uoddεn )| ≤
(
εn
aεn

+ εβn

)
C(f, ϕ)2

which by the same argument as case 1 gives another contradiction to (4.32), as εn
aεn
→ 0.

Since we have a contradiction in each case, Lemma 4.6.2 is proved. �
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Finally, we can use the fact that all of the energy expressions used in this paper

split nicely with respect to even and odd symmetry across y = 0 in the sense that

E0
ε (u0

ε ) = E0
ε (uev + uodd) = Eev(uev) + Eodd(uodd)

and

Eε(uε) = Eε(u
ev
ε + uoddε ) = Eevε (uevε ) + Eoddε (uoddε )

and the triangle inequality to combine the results of Lemma 4.6.1 and Lemma 4.6.2

into the following theorem.

Theorem 4.6.1. Let Ω be a domain that is symmetric around the straight line segment

σ = {(x, 0) | − 1 < x < 1}, and let u0
ε and uε be the solutions to (2.9) and (2.1)

respectively. Then

lim
ε→0

sup
P

|E0
ε (u0

ε )− Eε(uε)|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 = 0

where the parameter set P is

P = {(aε, f, ϕ) : 0 < aε ∈ R ∀ ε > 0, f ∈ Fδ, ϕ ∈ H1/2(∂Ω)}

Remark. The assumption that σ = {(x, 0) | − 1 < x < 1} is unnecessary; the same

results would go through for any straight line-segment for σ after a rotation, translation,

and scaling. However, at this point, we do need σ to be a straight line segment, at least

near the endpoints.

4.7 Full results

The last assumption that we want to remove is the fact that Ω is symmetric around

the line segment σ. In order to address this, we will introduce a subscript on all of the

energies discussed so far to refer to the domain on which the integrals are calculated.

That is, we will use

Eε,U (u) =
1

2

ˆ
U
γε|∇u|2 dx−

ˆ
U
fu dx
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and the minimization would take place over functions in H1(U) with specified boundary

data on ∂U . The same goes for

E0
ε,U (u) =

1

2

ˆ
U\σ
|∇u|2 dx+

εaε
2

ˆ
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2
)
ds

+
aε
4ε

ˆ
σ
(u+ − u−)2 ds−

ˆ
U
fu dx.

Theorem 4.7.1. Let Ω ⊂ R2 be a bounded C1 domain, with σ a straight line segment

so that ωε ⊂⊂ Ω for ε < ε0. Fix any δ > 0, and for any f ∈ Fδ and ϕ ∈ H1/2(∂Ω), let

u0
ε and uε denote the solutions to (2.9) and (2.1) respectively. Then

lim
ε→0

sup
P

|E0
ε,Ω(u0

ε )− Eε,Ω(uε)|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 = 0

where the parameter set P is

P = {(aε, f, ϕ) : 0 < aε ∈ R ∀ ε > 0, f ∈ Fδ, ϕ ∈ H1/2(∂Ω)}.

Proof. If Ω was symmetric with respect to σ, this would exactly be the result of Theorem

4.6.1. To extend this to general Ω, we use the fact that since ωε ⊂⊂ Ω for small enough

ε, then we can pick a domain Ω̃ ⊂ Ω so that Ω̃ is symmetric with respect to σ. We

define

ϕε = uε |∂Ω̃ ϕ0
ε = u0

ε |∂Ω̃

and find solutions to (2.9) and (2.1) on Ω̃ with these boundary data. That is, we let v0
ε

be the solution to (2.9) on Ω̃ with boundary data ϕε and let vε be the solution to (2.1)

on Ω̃ with boundary data ϕ0
ε . Then we define two functions on Ω

ū0
ε =


uε Ω \ Ω̃

v0
ε Ω̃,

ūε =


u0
ε Ω \ Ω̃

vε Ω̃.

By choice of boundary data, these two functions are H1 across ∂Ω̃, and based on the

spaces where vε and v0
ε belong, we know that

ū0
ε ∈ H1(Ω \ σ) ∩H1(σ) ūε ∈ H1(Ω)

so that we can use them in our energy formulas.
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By Theorem 4.6.1, we know that the energy gaps between solutions with the same

boundary data are small in an appropriate sense. This means that

|E0
ε,Ω̃

(v0
ε )− Eε,Ω̃(uε)| = o(1)C(f, ϕ) (4.33)

and

|E0
ε,Ω̃

(u0
ε )− Eε,Ω̃(vε)| = o(1)C(f, ϕ) (4.34)

where the o(1) term goes to zero as ε→ 0. This comes from the fact that the boundary

data on ∂Ω̃ is can be controlled by C(f, ϕ) by standard elliptic arguments. This means

that we can swap these energies in our calculations by adding in a term of the form

o(1)C(f, ϕ). Using these facts and the definition of ū0
ε , we compute that

E0
ε,Ω(ū0

ε ) = E0
ε,Ω̃

(v0
ε ) +

1

2

ˆ
Ω\Ω̃
|∇uε|2 dx−

ˆ
Ω\Ω̃

fuε dx

≤ Eε,Ω̃(uε) + o(1)C(f, ϕ) +
1

2

ˆ
Ω\Ω̃
|∇uε|2 dx−

ˆ
Ω\Ω̃

fuε dx

= Eε,Ω(uε) + o(1)C(f, ϕ).

Similarly, the definition of ūε gives us

Eε,Ω(ūε) = Eε,Ω̃(vε) +
1

2

ˆ
Ω\Ω̃
|∇u0

ε |2 dx−
ˆ

Ω\Ω̃
fu0

ε dx

≤ E0
ε,Ω̃

(u0
ε ) + o(1)C(f, ϕ) +

1

2

ˆ
Ω\Ω̃
|∇u0

ε |2 dx−
ˆ

Ω\Ω̃
fu0

ε dx

= E0
ε,Ω(u0

ε ) + o(1)C(f, ϕ).

However, we know that u0
ε and uε are minimizers of their respective energy func-

tionals. This gives that

Eε,Ω(uε) ≤ Eε,Ω(ūε) ≤ E0
ε,Ω(u0

ε ) + o(1)C(f, ϕ)

E0
ε,Ω(u0

ε ) ≤ E0
ε,Ω(ū0

ε ) ≤ Eε,Ω(uε) + o(1)C(f, ϕ)

(4.35)

and combining the two estimates in (4.35) gives that

|Eε,Ω(uε)− E0
ε,Ω(u0

ε )| ≤ o(1)C(f, ϕ)

which is exactly what is asserted by Theorem 4.7.1. �

Now, we can use our energy lemma to move this from energy convergence to con-

vergence in any Sobolev norm.
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Theorem 4.7.2. Let Ω ⊂ R2 be a bounded C1 domain, with σ a straight line segment

so that ωε ⊂⊂ Ω for ε < ε0. Fix any δ > 0, and for any f ∈ Fδ and ϕ ∈ H1/2(∂Ω), let

u0
ε and uε denote the solutions to (2.9) and (2.1) respectively. Then

lim
ε→0

sup
P

||u0
ε − uε||Hs(Ω\ωδ′ )

||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

= 0

for any s ≥ 0 and any δ′ > 0, where the parameter set P is

P = {(aε, f, ϕ) : 0 < aε ∈ R ∀ ε > 0, f ∈ Fδ, ϕ ∈ H1/2(∂Ω)}

Proof. The move from convergence in energy in Theorem 4.7.1 to convergence in

L2(Ω \ ωδ′) is done using Lemma 2.2.2. In this application, we take V = H1(Ω),

W = {v ∈ H1(Ω) : v+, v− ∈ H1(σ)} and H = Fδ̂ for some 0 < δ̂ < min{δ, δ′}. The

projection maps P and Q into H are taken to be multiplying by the characteristic

function of Ω \ωδ̂. The bilinear forms a : V × V → R and b : W ×W → R are taken to

be the forms corresponding to the energies Eε and E0
ε respectively. Since f ∈ Fδ ⊂ Fδ̂,

it gives rise to a well-defined functional in H ′, and so the energy lemma can be applied.

This gives us convergence involving ||u0
ε − uε||L2(Ω\ωδ̂), and monotonicity of L2 norms

gives us the same result on Ω \ ωδ′ . The fact that the lemma requires the norms of

f and ϕ to be less than 1 is taken care of by rescaling, which removes one factor of

C(f, ϕ) from the denominator in this result.

The convergence in higher Sobolev norms is done using standard elliptic regularity,

with the fact that ∆(u0
ε − uε) = 0 in Ω \ ωδ̂ and this difference vanishes on ∂Ω. �
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Chapter 5

Other Results

5.1 Computation of the stress intensity factors

With the convergence results established, we now seek to get a better idea of what

these solutions look like. In particular, we will find an explicit formula for the stress

intensity factors of the solution with even symmetry across the straight line σ, with

εaε > m > 0. As before, we will assume that Ω = B2(0) and σ = {(x, 0) − 1 < x < 1}.

For convenience, Lemma 3.4.1 is stated again here.

Lemma. Let (r, θ) and (r′, θ′) be polar coordinates around the two endpoints of σ,

(−1, 0) and (1, 0) respectively, where in each case, the 0 and 2π angles correspond to σ.

Let η denote a smooth cut-off function which is 1 near r = 0 and vanishes outside of

r = δ/2. Then the solution uev to (3.4) satisfies

uev = b1r
1/2 sin(θ/2)η(r) + b′1r

′1/2 sin(θ′/2)η(r′) + uev,∗

where uev,∗ is bounded in C1,β/2((ωδ)+) by C(f, ϕ)
(

1
(εaε)3 + 1

)
, and the constants b1

and b′1 are bounded by C(f, ϕ)
(

1
(εaε)3 + 1

)
as well.

What we want to do here is find a formula for the b1 coefficient in this expression,

based on the function u. In particular, we want this formula to depend on the solu-

tion away from the corresponding singularity at (−1, 0), and as much away from σ as

possible. For reference, the function uev solves

−∆uev = fev Ω+

uev = ϕev ∂Ω+

∂uev

∂y + εaε
∂2uev

∂x2 = 0 σ

∂uev

∂y = 0 {y = 0} \ σ
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and belongs to the space

V ev,+
σ = {u ∈ H1(Ω+) | u+|σ ∈ H1(σ), u even across σ}.

In this section, we prove the following.

Proposition 5.1.1. For the decomposition above, we have that

b1π =

ˆ
∂B2(0)

∂uev

∂n
ψ̃ ds−

ˆ
∂B2(0)

∂ψ̃

∂n
uev ds− uev(1, 0)

√
2

+

ˆ 2

1

[
∂ψ̃

∂y

]
uev dx+

ˆ
B2(0)

fevψ̃ dx

where ψ̃ = ṽ + 2
εaε
w̃ for

ṽ = r−1/2 sin

(
θ

2

)
w̃ = r1/2 cos

(
θ

2

)
.

To start, we want to derive something similar to a variational formulation that uev

must satisfy. If w ∈ V ev,+
σ , we see thatˆ

Ω+

fevw dx = −
ˆ

Ω+

∆uevw dx

=

ˆ
Ω+

∇uev · ∇w dx−
ˆ
∂Ω+

∂uev

∂n
w ds

=

ˆ
Ω+

∇uev · ∇w dx−
ˆ

(∂Ω)+

∂uev

∂n
w ds− εaε

ˆ
σ

∂2uev

∂x2
w ds

=

ˆ
Ω+

∇uev · ∇w dx−
ˆ

(∂Ω)+

∂uev

∂n
w ds+ εaε

ˆ
σ

∂uev

∂x

∂w

∂x
ds− ∂uev

∂x
w |ba

However, in the case of even symmetry and this range of εaε, we know that

uev = uev,∗ along σ (since the sine terms vanish) and ∂uev,∗

∂x = 0 at the endpoints of σ,

which was proven in Lemma 4.2.1. Therefore, this expression can be rearranged to

εaε

ˆ
σ

∂uev

∂x

∂w

∂x
ds =

ˆ
Ω+

fevw dx−
ˆ

Ω+

∇uev · ∇w dx+

ˆ
(∂Ω)+

∂uev

∂n
w ds (5.1)

which holds for any w ∈ V ev,+
σ .

To work towards an actual formula for b1, we define

ṽ = r−1/2 sin(θ/2)

and let A = B2(0)+ \Bρ((−1, 0))+ for some ρ > 0. With this, we integrate by parts to

compute that
ˆ
A
∇uev∇ṽ dx =

ˆ
(∂B2(0))+

∂uev

∂n
ṽ ds−

ˆ
(∂Bρ((−1,0)))+

∂uev

∂r
ṽ ds+

ˆ
A
fevṽ dx
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where we have used the fact that ∂uev

∂n = 0 along {(x, 0) | − 2 < x < −1− ρ} by even

symmetry and ṽ = 0 along {(x, 0) | −1 +ρ < x < 2} by definition. If ρ is small enough

so that fev vanishes on Bρ((−1, 0))+ and η(ρ) = 1, then

ˆ
A
fevṽ dx =

ˆ
Ω+

fevṽ dx

and we can compute that

ˆ
(∂Bρ((−1,0)))+

∂uev

∂r
ṽ ds =

ˆ
(∂Bρ((−1,0)))+

∂

∂r

(
b1r

1/2 sin(θ/2)
)
ṽ ds

+

ˆ
(∂Bρ((−1,0)))+

∂uev,∗

∂r
ṽ ds.

For the first integral, we get that

ˆ
(∂Bρ((−1,0)))+

∂

∂r

(
b1r

1/2 sin(θ/2)
)
ṽ ds =

b1
2

ˆ π

0
r−1/2 sin(θ/2)r−1/2 sin(θ/2)r dθ

=
b1
2

ˆ π

0
sin2(θ/2) dθ =

b1
4
π

and for the second, we note that because uev,∗ ∈ C1,β/2 and ∇uev,∗(−1, 0) = 0, we have

that ∣∣∣∣∂uev,∗∂r

∣∣∣∣ ≤ rβ/2
on Bρ(−1, 0)+, so that∣∣∣∣∣

ˆ
(∂Bρ((−1,0)))+

∂uev,∗

∂r
ṽ ds

∣∣∣∣∣ ≤
ˆ π

0
ρβ/2ρ−1/2ρ dθ → 0

as ρ → 0. For convenience in what follows, we will use o(1) to denote any term that

goes to zero as ρ→ 0. Thus, we have that

ˆ
A
∇uev∇ṽ dx =

ˆ
(∂B2(0))+

∂uev

∂n
ṽ ds− b1

4
π +

ˆ
A
fevṽ dx+ o(1). (5.2)

Since ṽ is harmonic on A, we can integrate by parts in the other direction, giving

that
ˆ
A
∇uev∇ṽ dx =

ˆ
(∂B2(0))+

∂ṽ

∂n
uev ds−

ˆ
(∂Bρ((−1,0)))+

∂ṽ

∂r
uev ds

−
ˆ −1−ρ

−2

∂ṽ

∂y
uev dx−

ˆ 2

−1+ρ

∂ṽ

∂y
uev dx.

(5.3)
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By definition, ∂ṽ
∂y = 0 along {(x, 0) | − 2 < x < −1 − ρ}, so the first term in the

second line vanishes. We can also compute that

ˆ
(∂Bρ((−1,0)))+

∂ṽ

∂r
uev ds =

ˆ
(∂Bρ((−1,0)))+

∂ṽ

∂r
b1r

1/2 sin(θ/2) ds

+

ˆ
(∂Bρ((−1,0)))+

∂ṽ

∂r
uev,∗ ds

where, by a similar argument as before,

ˆ
(∂Bρ((−1,0)))+

∂ṽ

∂r
b1r

1/2 sin(θ/2) ds = −b1
4
π (5.4)

and ˆ
(∂Bρ((−1,0)))+

∂ṽ

∂r
uev,∗ ds = −ρ−1/2uev(−1, 0) + o(1), (5.5)

since by the smoothness of uev,∗, once we subtract off the value of the function at

(−1, 0), the difference vanishes to a high enough order to cause the remainder term to

go to zero with ρ. We also note that

ˆ 2

−1+ρ

∂ṽ

∂y
uev dx =

ˆ 1

−1+ρ

∂ṽ

∂y
uev dx+

ˆ 2

1

∂ṽ

∂y
uev dx

and, since ∂
∂y = 1

r
∂
∂θ along these segments, we see that

∂ṽ

∂y

∣∣∣
y=0,x>−1

=
1

2
(x+ 1)−3/2.

Noticing that

1

2
(x+ 1)−3/2 = −2

d2

dx2
(x+ 1)1/2

we can then compute that

ˆ 1

−1+ρ

∂ṽ

∂y
uev dx =

1

2

ˆ 1

−1+ρ
uev(x+ 1)−3/2 dx

= −2

ˆ 1

−1+ρ
uev

d2

dx2
(x+ 1)1/2 dx

= 2

ˆ 1

−1+ρ

d

dx
uev

d

dx
(x+ 1)1/2 dx− uev(1, 0)2−1/2

+ uev(−1 + ρ, 0)ρ−1/2

= 2

ˆ 1

−1+ρ

d

dx
uev

d

dx
(x+ 1)1/2 dx− uev(1, 0)2−1/2

+ uev(−1, 0)ρ−1/2 + o(1)

(5.6)
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where we integrated by parts in the second to last step. In the final step, we used the

fact that, along σ, uev = uev,∗, and uev,∗ is regular enough that replacing −1 + ρ by −1

has a remainder term that goes to zero with ρ. Substituting the results of (5.4), (5.5),

and (5.6) into (5.3), we get that

ˆ
A
∇uev∇ṽ dx =

ˆ
(∂B2(0))+

∂ṽ

∂n
uev ds+

b1
4
π + ρ−1/2uev(−1, 0) + o(1)

− 2

ˆ 1

−1+ρ

d

dx
uev

d

dx
(x+ 1)1/2 dx+ uev(1, 0)2−1/2

− uev(−1, 0)ρ−1/2 + o(1)−
ˆ 2

1

∂ṽ

∂y
uev dx.

=

ˆ
(∂B2(0))+

∂ṽ

∂n
uev ds+

b1
4
π + uev(1, 0)2−1/2

− 2

ˆ 1

−1+ρ

d

dx
uev

d

dx
(x+ 1)1/2 dx−

ˆ 2

1

∂ṽ

∂y
uev dx+ o(1).

(5.7)

We can then set (5.7) equal to (5.2) via the
´
A∇u

ev∇ṽ dx term and solve for the b1

term to give that

b1
2
π =

ˆ
(∂B2(0))+

∂uev

∂n
ṽ ds−

ˆ
(∂B2(0))+

∂ṽ

∂n
uev ds− uev(1, 0)2−1/2

+ 2

ˆ 1

−1+ρ

d

dx
uev

d

dx
(x+ 1)1/2 dx+

ˆ 2

1

∂ṽ

∂y
uev dx+

ˆ
A
fevṽ dx+ o(1)

(5.8)

Within this equation, only the first term in the second line is problematic, because

it still depends on ρ. In order to deal with this term, we pick some t > 0 and define

w̃ρ(r, θ) =


r1/2 cos(θ/2) r > ρ

ρ−tr1/2+t cos(θ/2) r ≤ ρ,

w̃(r, θ) = r1/2 cos(θ/2).

The importance of these definitions is that for all ρ > 0, w̃ρ ∈ H1(B2(0)+) ∩ H1(σ),
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while w̃ ∈ H1(B2(0)+), but is not in H1(σ). Based on these definitions, we see that
ˆ −1+ρ

−1

d

dx
uev

d

dx
w̃ρ dx = o(1),

ˆ
B2(0)+∩{r<ρ}

∇uev∇w̃ρ = o(1),

ˆ
B2(0)+∩{r<ρ}

∇uev∇w̃ = o(1),

ˆ
B2(0)+∩{r<ρ}

fevw̃ρ = o(1),

ˆ
B2(0)+∩{r<ρ}

fev∇w̃ = o(1).

(5.9)

The first of these identities comes from the fact that on σ, uev = uev,∗, which is more

regular, and d
dx w̃ρ ≤ r−1/2 on this domain. The others follow from the fact that

w̃ρ ∈ H1(B2(0)+) with uniform control on the norm independent of ρ, because the

changes only make the function and all derivatives smaller. Therefore, we have that
ˆ 1

−1+ρ

d

dx
uev

d

dx
(x+ 1)1/2 dx =

ˆ 1

−1+ρ

d

dx
uev

d

dx
w̃ρ dx

=

ˆ 1

−1

d

dx
uev

d

dx
w̃ρ dx+ o(1).

(5.10)

Since w̃ρ ∈ V ev,+
σ , we can use (5.1) to rewrite this as

ˆ 1

−1

d

dx
uev

d

dx
w̃ρ dx =

1

εaε

ˆ
Ω
fevw̃ρ dx−

1

εaε

ˆ
B2(0)+

∇uev∇w̃ρ dx

+
1

εaε

ˆ
(∂B2(0))+

∂uev

∂n
w̃ρ ds

=
1

εaε

ˆ
Ω
fevw̃ dx− 1

εaε

ˆ
B2(0)+

∇uev∇w̃ dx

+
1

εaε

ˆ
(∂B2(0))+

∂uev

∂n
w̃ ds+ o(1),

(5.11)

where in the last line, we have used the estimates in (5.9) to replace w̃ρ by w̃ in all of

the integrals by adding an o(1) term. Finally, we can use the fact that w ∈ H1(B2(0)+)

and is harmonic to integrate by parts to see that
ˆ
B2(0)+

∇uev∇w̃ dx =

ˆ
(∂B2(0))+

∂w̃

∂n
uev ds−

ˆ 2

−2

∂w̃

∂y
uev dx

=

ˆ
(∂B2(0))+

∂w̃

∂n
uev ds−

ˆ −1

−2

∂w̃

∂y
uev dx

(5.12)

where, in the second line, we used the fact that ∂w̃
∂y = 0 along {(x, 0) | − 1 < x < 2}

by definition. Then, we can put equations (5.10), (5.11), and (5.12) together, and use
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them to replace the problematic term in (5.8) to give a new expression of the form

b1
2
π =

ˆ
(∂B2(0))+

∂uev

∂n
ṽ ds−

ˆ
(∂B2(0))+

∂ṽ

∂n
uev ds− uev(1, 0)2−1/2

+
2

εaε

ˆ
B2(0)+

fevw̃ dx− 2

εaε

ˆ
(∂B2(0))+

∂w̃

∂n
uev ds

+
2

εaε

ˆ −1

−2

∂w̃

∂y
uev dx+

2

εaε

ˆ
(∂B2(0))+

∂uev

∂n
w̃ ds+

ˆ 2

1

∂ṽ

∂y
uev dx

+

ˆ
B2(0)+

fevṽ dx+ o(1)

(5.13)

or, defining the function ψ̃ = ṽ + 2
εaε
w̃, this becomes

b1
2
π =

ˆ
(∂B2(0))+

∂uev

∂n
ψ̃ ds−

ˆ
(∂B2(0))+

∂ψ̃

∂n
uev ds− uev(1, 0)2−1/2

+

ˆ −1

−2

∂ψ̃

∂y
uev dx+

ˆ 2

1

∂ψ̃

∂y
uev dx+

ˆ
B2(0)+

fevψ̃ dx+ o(1)

in which we can finally send ρ→ 0 to get

b1
2
π =

ˆ
(∂B2(0))+

∂uev

∂n
ψ̃ ds−

ˆ
(∂B2(0))+

∂ψ̃

∂n
uev ds− uev(1, 0)2−1/2

+

ˆ −1

−2

∂ψ̃

∂y
uev dx+

ˆ 2

1

∂ψ̃

∂y
uev dx+

ˆ
B2(0)+

fevψ̃ dx.

(5.14)

This formula will be illustrated in the numerical results in Chapter 6.

Remark. As should be expected, the value for b1 does not change if we add a constant

to uev. This fact requires verifying that

−
ˆ

(∂B2(0))+

∂ṽ

∂n
ds+

ˆ 2

1

∂ṽ

∂y
dx = 2−1/2

−
ˆ

(∂B2(0))+

∂w̃

∂n
ds+

ˆ −1

−2

∂w̃

∂y
dx = 0

For the second, we know that w̃ is harmonic in B2(0)+, which gives that

0 =

ˆ
∂B2(0)+

∂w̃

∂n
ds

=

ˆ
(∂B2(0))+

∂w̃

∂n
ds−

ˆ 2

−2

∂w̃

∂y
dx

=

ˆ
(∂B2(0))+

∂w̃

∂n
ds−

ˆ −1

−2

∂w̃

∂y
dx

where, in the last line, we have used the fact that ∂w̃
∂y = 0 if x > −1 and y = 0.
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For the first identity, we need to be a little more careful because ṽ 6∈ H1(B2(0)+).

However, it is in H1 and harmonic on the domain B2(0)+ \B1/2((−1, 0)). Thus, we get

that

0 =

ˆ
∂(B2(0)+\B1/2((−1,0)))

∂ṽ

∂n
ds

=

ˆ
(∂B2(0))+

∂ṽ

∂n
ds−

ˆ −3/2

−2

∂ṽ

∂y
dx−

ˆ
(∂B1/2((−1,0))+

∂ṽ

∂r
ds−

ˆ 2

−1/2

∂ṽ

∂y
dx

=

ˆ
(∂B2(0))+

∂ṽ

∂n
ds−

ˆ
(∂B1/2((−1,0))+

∂ṽ

∂r
ds−

ˆ 2

−1/2

∂ṽ

∂y
dx,

where in the last line, we used the fact that ∂ṽ
∂y = 0 on y = 0 and x < −1. Based on

the definition of ṽ, we compute that

ˆ
(∂B1/2((−1,0))+

∂ṽ

∂r
ds = −1

2

ˆ π

0
r−3/2r sin(θ/2) dθ

= −(1/2)1/2

ˆ π

0
sin(θ/2) dθ

= −2(1/2)1/2 = −21/2 = −(1/2)−1/2

and

ˆ 2

−1/2

∂ṽ

∂y
dx =

ˆ 1

−1/2

∂ṽ

∂y
dx+

ˆ 2

1

∂ṽ

∂y
dx

=
1

2

ˆ 1

−1/2
(x+ 1)−3/2 dx+

ˆ 2

1

∂ṽ

∂y
dx

= −1(x+ 1)−1/2 |1−1/2 +

ˆ 2

1

∂ṽ

∂y
dx

= −2−1/2 + (1/2)−1/2 +

ˆ 2

1

∂ṽ

∂y
dx.

Thus, we have that

0 =

ˆ
(∂B2(0))+

∂ṽ

∂n
ds−

ˆ
(∂B1/2((−1,0))+

∂ṽ

∂r
ds−

ˆ 2

−1/2

∂ṽ

∂y
dx

=

ˆ
(∂B2(0))+

∂ṽ

∂n
ds+ (1/2)−1/2 + 2−1/2 − (1/2)−1/2 −

ˆ 2

1

∂ṽ

∂y
dx

=

ˆ
(∂B2(0))+

∂ṽ

∂n
ds+ 2−1/2 −

ˆ 2

1

∂ṽ

∂y
dx,

which is exactly what we wanted to show.

Remark. The formula (5.14) could instead be computed over the domain B2(0)−, giving
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rise to the formula

b1
2
π =

ˆ
(∂B2(0))−

∂uev

∂n
ψ̃ ds−

ˆ
(∂B2(0))−

∂ψ̃

∂n
uev ds− uev(1, 0)2−1/2

−
ˆ −1

−2

∂ψ̃

∂y
uev dx−

ˆ 2

1

∂ψ̃

∂y
uev dx+

ˆ
B2(0)+

fevψ̃ dx,

(5.15)

where the change in sign comes from the flipping of the direction of the outward normal

to B2(0)− along the horizontal segments. Adding (5.14) to (5.15) gives another formula

for b1:

b1π =

ˆ
∂B2(0)

∂uev

∂n
ψ̃ ds−

ˆ
∂B2(0)

∂ψ̃

∂n
uev ds− uev(1, 0)

√
2

+

ˆ −1

−2

[
∂ψ̃

∂y

]
uev dx+

ˆ 2

1

[
∂ψ̃

∂y

]
uev dx+

ˆ
B2(0)

fevψ̃ dx,

where [w] = w+ − w− refers to the jump of the function w across y = 0. Since[
∂φ̃

∂y

]
= 0

along {(x, 0) | − 2 < x < −1}, the formula reduces to

b1π =

ˆ
∂B2(0)

∂uev

∂n
ψ̃ ds−

ˆ
∂B2(0)

∂ψ̃

∂n
uev ds− uev(1, 0)

√
2

+

ˆ 2

1

[
∂ψ̃

∂y

]
uev dx+

ˆ
B2(0)

fevψ̃ dx,

which was the formula we set out to prove in Proposition 5.1.1.

Remark. Nothing in this derivation depended on the fact that the full domain was

B2(0)+. Therefore, if we had a line segment that was not in the center of the domain,

we could run the same argument. First, we would need to extend σ by straight line

segments off each endpoint until they first intersect ∂Ω. These extra segments would

replace the integrals from −2 to −1 and 1 to 2. We would then get a formula of

b1π =

ˆ
∂Ω

∂uev

∂n
ψ̃ ds−

ˆ
∂Ω

∂ψ̃

∂n
uev ds− uev(b)

√
`

−
ˆ
σF

[
∂ψ̃

∂n

]
uev dx+

ˆ
Ω
fevψ̃ dx

where σF denotes the line segment extending σ away from the endpoint b until it hits

the boundary of Ω and ` is the length of σ.
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5.2 Different types of conductivities

Up to this point, the conductivity aε inside the inhomogeneity ωε has been an isotropic

constant throughout the region. However, most physical problems of this type, particu-

larly those in cloaking, involve conductivities that are non-constant and/or anisotropic.

In the next sections, we look at what happens to the energy functional and reduced

problem when we drop these assumptions.

5.2.1 Non-constant conductivities

In the case of non-constant (but still isotropic) conductivities, we are looking to solve

a problem of the form 
−∇ · (γε∇u) = f Ω

u = ϕ ∂Ω,

(5.16)

where

γε =


1 Ω \ ωε

aε(x) ωε,

and ωε is a tubular neighborhood of a curve σ. For simplicity, we will assume that the

curve σ is closed in order to ignore the singularities at the endpoints. The procedure

for trying to find an appropriate reduced equation begins the same way, by looking at

the energy formulation of the reduced problem and finding a first order approximation

to it.

The energy formulation of (5.16) is minimizing

1

2

ˆ
Ω
γε|∇u|2 dx−

ˆ
Ω
fu dx.

As with the work in previous chapters, we isolate the region ωε to write this func-

tional as

1

2

ˆ
Ω\ωε
|∇u|2 dx+

1

2

ˆ
ωε

aε(x)|∇u|2 dx−
ˆ

Ω
fu dx.

We then apply a change of variables using the map Hε to modify the integral over ωε

to be

1

2

ˆ
ωε

aε(x)|∇u|2 dx =
1

2

ˆ
ω1

aε(Hε(y))|∇u|2(Hε(y)) det(∇Hε) dy.
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Since the map Hε satisfies

∇Hε =

1+εκdσ
1+κdσ

0

0 ε


in the (τ, n) basis, we can define the functions

û = u ◦Hε âε = aε ◦Hε

and carry out the change of variables, giving that

1

2

ˆ
ωε

aε(x)|∇u|2 dx =
1

2

ˆ
ω1

aε(Hε(y))|∇u|2(Hε(y)) det(∇Hε) dy

=
1

2

ˆ
ω1

âε(y)|∇H−1
ε ∇û|2 det(∇Hε) dy

=
ε

2

ˆ
ω1

âε(y)
1 + κdσ
1 + εκdσ

(
∂û

∂τ

)2

dy

+
1

2ε

ˆ
ω1

âε(y)
1 + εκdσ
1 + κdσ

(
∂û

∂n

)2

dy.

The first order approximation of each of the terms in the final line is given by

ε

2

ˆ
ω1

âε(y)(1 + κdσ)

(
∂û

∂τ

)2

dy +
1

2ε

ˆ
ω1

âε(y)
1

1 + κdσ

(
∂û

∂n

)2

dy

and we want to minimize this expression. Since these terms have different orders of

magnitude, we try to find a minimizer of this functional by minimizing

ˆ
ω1

âε(y)
1

1 + κdσ

(
∂v

∂n

)2

dy

over functions v ∈ H1(ω1). The Euler-Lagrange equations for this energy are that, for

any w ∈ H1
0 (ω1), ˆ

ω1

âε(y)
1

1 + κdσ

∂v

∂n

∂w

∂n
dy = 0.

Applying the co-area formula means we can rewrite this condition as

∀w ∈ H1
0 (ω1)

ˆ 1

−1

ˆ
σ
âε(x+ tn(x))

∂v

∂n
(x+ tn(x))

∂w

∂n
(x+ tn(x)) dx dt = 0

Choosing w(x + tn(x)) = ϕ(x)ψ(t) for ϕ ∈ C∞(σ) (or C∞0 (σ) is σ is open) and

ψ ∈ C∞0 ((−1, 1)), this expression becomes

ˆ
σ
ϕ(x)

ˆ 1

−1
âε(x+ tn(x))

∂v

∂n
(x+ tn(x))ψ′(t) dt dx = 0
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which implies that for each x ∈ σ,

ˆ 1

−1
âε(x+ tn(x))

∂v

∂n
(x+ tn(x))ψ′(t) dt = 0.

After integration by parts in t, this implies that

∂

∂n

(
âε
∂v

∂n

)
= 0.

In the case where aε is a constant, this reduces to ∂2û
∂n2 = 0, i.e., that the map t →

û(x+ tn(x)) is affine for each x ∈ σ. In order to figure out what the potential v looks

like, we need to solve the differential equation

d

dt

(
âε(x+ tn(x))

d

dt
(v(x+ tn(x)))

)
= 0

with the boundary conditions

v(x− n(x)) = u−(x) v(x+ n(v)) = u+(x)

for each fixed x ∈ σ. The solution to this differential equation is the function

v(x+ tn(x)) =
1

2
Aε(x)(u+(x)− u−(x))

ˆ t

−1

1

âε(x+ sn(x))
ds+ u−(x) (5.17)

where

Aε(x) = 2

(ˆ 1

−1

1

âε(x+ sn(x))
ds

)−1

=

( 1

−1

1

âε(x+ sn(x))
ds

)−1

=

( ε

−ε

1

aε(x+ sn(x))
ds

)−1

.

Using this formula, we see that

∂

∂n
(v(x+ tn(x)) =

Aε(x)

2âε(x+ tn(x))
(u+(x)− u−(x))



75

so that the second term in the inner energy minimization becomes

1

2ε

ˆ
ω1

âε(y)
1

1 + κdσ

(
∂v

∂n

)2

dy

=
1

2ε

ˆ
σ

ˆ 1

−1
âε(x+ tn(x))

(
∂

∂n
(v(x+ tn(x))

)2

dt dx

=
1

2ε

ˆ
σ

ˆ 1

−1
âε(x+ tn(x))

(
Aε(x)

2âε(x+ tn(x))
(u+(x)− u−(x))

)2

dt dx

=
1

2ε

ˆ
σ

ˆ 1

−1
âε(x+ tn(x))

Aε(x)2

4âε(x+ tn(x))2
(u+(x)− u−(x))2 dt dx

=
1

8ε

ˆ
σ
Aε(x)2(u+(x)− u−(x))2

ˆ 1

−1

1

âε(x+ tn(x))
dt dx

=
1

4ε

ˆ
σ
Aε(x)(u+(x)− u−(x))2 dx,

which looks a lot like the normal derivative term from the previous chapters, with the

aε replaced by the Aε(x) inside the integral.

If aε is constant, then Aε(x) = aε and the expression (5.17) reduces to the affine

case discussed before. In order to get the full expression for the energy, we need to

compute
(
∂
∂τ v(x+ tn(x))

)2
, but the expression for the tangential derivative is much

more complicated than the normal derivative. Also, there is reason to believe that the

process from earlier in this document will not work for general aε(x), as we needed

to use either an explicit formula for the solution or something with more than H1

regularity in order to get uniformity of convergence. We can not guarantee more than

H1 regularity because of the possibility of extra r1/2 singularities if Aε changes wildly

or is 1 on a subset of the inhomogeneity. This is why, in previous chapters, we needed

to look at the corners, characterize their singularities, and use the explicit form to prove

that things are still close in energy. Therefore, we look at a few specific types of aε(x)

before considering the general situation. Overall, we conjecture that all of the previous

results will go through in the case where aε is independent of x, but more conditions will

be needed to ensure convergence when aε is allowed to vary with x. These conjectures

will be stated in their respective sections.
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âε(x, t) independent of x

This situation could correspond to a physical problem with a radial inhomogeneity,

where the conductivity profile is the same in every direction, but it can still be a

function of distance from the curve σ. Going back to the function v on ω1, we have

v(x+ tn(x)) =
1

2
Aε(x)(u+(x)− u−(x))

ˆ t

−1

1

âε(x+ sn(x))
ds+ u−(x)

where now, both Aε and âε are independent of x. This causes the expression to reduce

to

v(x+ tn(x)) =
1

2
Aε(u

+(x)− u−(x))

ˆ t

−1

1

âε(s)
ds+ u−(x).

We can then compute that

∂

∂τ
v(x+ tn(x)) =

(
∂u+

∂τ
− ∂u−

∂τ

)
1

2
Aε

ˆ t

−1

1

âε(s)
ds+

∂u−

∂τ
,

so that, if we define the function

ā(t) =
1

2
Aε

ˆ t

−1

1

âε(s)
ds,

then

∂

∂τ
(v(x+ tn(x)) = ā(t)

∂u+

∂τ
+ (1− ā(t))

∂u−

∂τ
.

Squaring this expression, we get that

∂

∂τ
(v(x+ tn(x)))2 = ā(t)2

(
∂u+

∂τ

)2

+ 2ā(t)(1− ā(t))
∂u+

∂τ

∂u−

∂τ
+ (1− ā(t))2

(
∂u−

∂τ

)2

.
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Now, in terms of the appropriate piece of the reduced energy, we have that

ε

2

ˆ
ω1

âε(y)(1 + κdσ)

(
∂v

∂τ

)2

dy =
ε

2

ˆ
σ

ˆ 1

−1
âε(x+ tn(x))(1 + κdσ)2

(
∂v

∂τ

)2

dt dx

=
ε

2

ˆ
σ

ˆ 1

−1
âε(x+ tn(x))

(
∂

∂τ
(v(x+ tn(x))

)2

dt dx

=
ε

2

ˆ
σ

ˆ 1

−1
âε(t)

[
ā(t)2

(
∂u+

∂τ

)2

+ 2ā(t)(1− ā(t))
∂u+

∂τ

∂u−

∂τ

+ (1− ā(t))2

(
∂u−

∂τ

)2
]
dt dx

=
ε

2

[ ˆ 1

−1
âε(t)ā(t)2 dt

ˆ
σ

(
∂u+

∂τ

)2

dx

+ 2

ˆ 1

−1
âε(t)ā(t)(1− ā(t)) dt

ˆ
σ

∂u+

∂τ

∂u−

∂τ
dx

+

ˆ 1

−1
âε(t)(1− ā(t))2 dt

ˆ
σ

(
∂u−

∂τ

)2

dx

]
.

In order to determine the coefficients of the derivative terms, we need to evaluate

integrals of the form ˆ 1

−1
âε(t)ā(t)2 dt

which, since

ā(t) =
1

2
Aε

ˆ t

−1

1

âε(s)
ds,

can be expanded to

ˆ 1

−1
âε(t)ā(t)2 dt =

1

4
A2
ε

ˆ 1

−1
âε(t)

(ˆ t

−1

1

âε(s)
ds

)2

dt,

with similar expressions for the other two terms involving

1− ā(t) =
1

2
Aε

ˆ 1

t

1

âε(s)
ds.

If the reduced equation here is supposed to be similar to the case where aε is constant

like in [DV17], then this should be equal to some constant times Aε. To improve the

notation again, we define the following.

Definition 5.2.1. For a function F ∈ C0,1([a, b]) with F (a) = 0 and F ′ > 0, we define
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the following functionals

H1[F ] =
1

F (b)

ˆ b

a

F (t)2

F ′(t)
dt,

H2[F ] =
1

F (b)

ˆ b

a

F (t)(F (b)− F (t))

F ′(t)
dt,

H3[F ] =
1

F (b)

ˆ b

a

(F (b)− F (t))2

F ′(t)
dt,

where F ′ is defined almost everywhere. For a bounded function f > 0 on [a, b], we

define the corresponding impact factors of the function f by

Ij [f ] = Hj
[ˆ t

a

1

f(s)
ds

]
.

From these definitions, we see that, for the function âε(t) defined on (−1, 1)

I1[âε(t)] = Hj
[ˆ t

−1

1

âε(s)
ds

]
=

1´ 1
−1

1
âε(s)

ds

ˆ 1

−1
âε(t)

(ˆ t

−1

1

âε(s)
ds

)2

dt

=
Aε
2

ˆ 1

−1
âε(t)

(ˆ t

−1

1

âε(s)
ds

)2

dt

which is double what we want for the coefficient of the
(
∂u+

∂τ

)2
term. The same holds

for the I2 and I3 terms. Thus, we see that, in this case, the tangential derivative term

in the reduced energy looks like

εAε
4

ˆ
σ
I1[âε]

(
∂u+

∂τ

)2

+ 2I2[âε]
∂u+

∂τ

∂u−

∂τ
+ I3[âε]

(
∂u−

∂τ

)2

dx

With this, the reduced energy takes the form

E(u) =
1

2

ˆ
Ω\σ
|∇u|2 dx−

ˆ
Ω
fu dx+

Aε
4ε

ˆ
σ
(u+(x)− u−(x))2 dx

+
εAε
4

ˆ
σ
I1[âε]

(
∂u+

∂τ

)2

+ 2I2[âε]
∂u+

∂τ

∂u−

∂τ
+ I3[âε]

(
∂u−

∂τ

)2

dx,

and from this, we can derive a classical form of the reduced problem as

−∆u = f Ω

u = ϕ ∂Ω

∂u+

∂n + εAε
2

(
I1[âε]

∂2u+

∂τ2 + I2[âε]
∂2u−

∂τ2

)
− Aε

2ε (u+ − u−) = 0 σ

∂u−

∂n −
εAε
2

(
I2[âε]

∂2u+

∂τ2 + I3[âε]
∂2u−

∂τ2

)
− Aε

2ε (u+ − u−) = 0 σ.

(5.18)
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If aε is a constant, like in the previous paper, we see that Aε = aε and the impact

factors can be computed as

I1[âε] =
1

2

ˆ 1

−1
(t+ 1)2 dt =

4

3

I2[âε] =
1

2

ˆ 1

−1
1− t2 dt =

2

3

I3[âε] =
1

2

ˆ 1

−1
(t− 1)2 dt =

4

3

and the classical formulation of the reduced problem that we get is

−∆u = f Ω

u = ϕ ∂Ω

∂u+

∂n + εAε
2

(
4
3
∂2u+

∂τ2 + 2
3
∂2u−

∂τ2

)
− Aε

2ε (u+ − u−) = 0 σ

∂u−

∂n −
εAε
2

(
2
3
∂2u+

∂τ2 + 4
3
∂2u−

∂τ2

)
− Aε

2ε (u+ − u−) = 0 σ,

which is identical to what was found in [DV17].

It is also fairly easy to see that if aε(t) = aε(−t), then I1[âε] = I3[âε], but this does

not need to hold in general. While this does not affect closed curves, if this relation

does not hold, then the even/odd symmetry argument used to analyze the open curve

case will no longer be possible, because the terms will not match up and cancel. It may

be possible to use some other sort of symmetry argument, but the standard one here

will fail. The previous work on open curves should carry through in this case provided

the conductivity is symmetric with respect to the curve σ.

Another fact to note about these problems is that the I coefficients may also vary

with ε, so that the behavior of Aε alone does not determine the behavior of these

solutions. As will be illustrated in Chapter 6, it is the behavior of Aε(I1 ± I2) that

determines how these solutions behave as ε→ 0.

With these observations and numerical calculations, we conjecture that, provided

the conductivity is symmetric with respect to σ, the results proved earlier in this paper

should go through to the case where âε is independent of x.

Conjecture. Let âε for ε > 0 be any family of rescaled conductivities on (−1, 1) satis-

fying
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1. âε > 0

2. âε(t) = âε(−t) for all t ∈ (0, 1)

3. âε and 1
âε
∈ L∞(−1, 1).

Then the solution u to 5.18 is an asymptotically accurate approximation to the solution

uε to 5.16 in the sense of Theorem 4.7.2.

The main issue with proving this result will be the I coefficients and how their

dependence on ε affects the convergence. It is possible that the fact that the normal

derivative term is multiplied by Aε
ε and the tangential derivative term is multiplied by

εAεI1 could result in a situation similar to an anisotropic conductivity, which will be

discussed separately in Section 5.2.2. However, since the only variance in how the terms

differ is in the I coefficients, it should be possible to understand how these coefficients

can behave and use that to produce similar results in the case where aε only depends

on distance from the curve.

âε(x, t) independent of t

The case where âε(x, t) is independent of t could physically occur in the case of an

inhomogeneity that is a blend of several different materials in the direction of the curve,

but each cross-section of the inhomogeneity is uniform. Since âε is independent of t, the

average Aε at each point x ∈ σ is exactly âε(x). Therefore, our function v(x + tn(x))

in (5.17) becomes

v(x+ tn(x)) =
1

2
âε(x)(u+(x)− u−(x))

ˆ t

−1

1

âε(x)
ds+ u−(x)

=
1

2
(t+ 1)(u+(x)− u−(x)) + u−(x)

=
1 + t

2
u+(x) +

1− t
2

u−(x),

which is an affine function again, and identical to the function determined in [DV17].

Therefore, almost everything here works out the same as in the original work, and the

same equation that was developed in previous chapters. The only difference here is that

now âε(x) = aε(x) is a function of x, so it can not be pulled out of the integrals along

σ.
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With this formula for v, we know that the tangential derivative term will look like

1 + t

2

∂u+

∂τ
(x) +

1− t
2

∂u−

∂τ
(x)

so that after multiplying by âε(x) and integrating in t (of which all of the functions are

independent) we get an energy expression that looks like

E(u) =
1

2

ˆ
Ω\σ
|∇u|2 −

ˆ
Ω
fu+

1

4ε

ˆ
σ
aε(x)(u+(x)− u−(x))2 dx

+
ε

3

ˆ
σ
aε(x)

[(
∂u+

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ
+

(
∂u−

∂τ

)2
]
dx.

This is identical to the reduced energy in [DV17], except for the fact that the aε

terms are inside the integrals instead of outside them. Thus, we can also use the

same process to get a classical formulation of the corresponding reduced problem. The

variational approach to this energy minimization gives the classical formulation as

−∆u = f Ω

u = ϕ ∂Ω

∂u+

∂n + ε
3

(
2 ∂
∂τ

(
aε(x)∂u

+

∂τ

)
+ ∂

∂τ

(
aε(x)∂u

−

∂τ

))
− aε(x)

2ε (u+ − u−) = 0 σ

∂u−

∂n −
ε
3

(
∂
∂τ

(
aε(x)∂u

+

∂τ

)
+ 2 ∂

∂τ

(
aε(x)∂u

−

∂τ

))
− aε(x)

2ε (u+ − u−) = 0 σ.

(5.19)

While this may look simpler than the independent of x case, we do not expect our

previous arguments to be able to prove asymptotic accuracy of this solution. The fact

that aε can depend on x allows for additional r1/2 singularities along the curve σ, which

do not fit into the C1,β/2 remainder term. Therefore, we would need a way to identify

and handle these individually, figure out how to handle them as a group, or prevent

them from occurring. Therefore, we are left with the following question.

Open Question. Under what conditions on aε(x) does our method still provide a

proof of asymptotic accuracy? Beyond that, when, in general, is the solution to (5.19)

asymptotically accurate and can our proof be modified to fit this new scenario?
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The general case

From before, we know that the scaled function v on the interior of the inhomogeneity

is given by

v(x+ tn(x)) =
1

2
Aε(x)(u+(x)− u−(x))

ˆ t

−1

1

âε(x+ ρn(x))
dρ+ u−(x).

From here forward, we will denote by α(x, t) the function

α(x, t) :=

ˆ t

−1

1

âε(x+ ρn(x))
dρ (5.20)

so that

∂

∂τ
(v(x+ tn(x))) =

1

2

∂Aε
∂τ

(x)[u](x)α(x, t) +
1

2
Aε(x)

∂[u]

∂τ
(x)α(x, t)

+
1

2
Aε(x)[u](x)

∂α

∂τ
(x, t) +

∂u−

∂τ
(x)

Following the process in [DV17], the remaining steps are to square this expression,

multiply by âε, and integrate from −1 to 1 in t. Once this expression is squared out,

the integrals that need to be computed only depend on âε and α. Thus, we define

Jm,n[âε](x) :=

ˆ 1

−1
âε(x+ tn(x))α(x, t)m

∂α

∂τ
(x, t)n dt (5.21)

which allows us to write

ˆ 1

−1
âε

(
∂

∂τ
(v(x+ tn(x)))

)2

dt =

(
1

2

∂Aε
∂τ

[u] +
1

2
Aε
∂[u]

∂τ

)2

J2,0[âε]

+
1

2

(
∂Aε
∂τ

[u] +Aε
∂[u]

∂τ

)
Aε[u]J1,1[âε] +

(
∂Aε
∂τ

[u] +Aε
∂[u]

∂τ

)
∂u−

∂τ
J1,0[âε]

+
1

4
A2
ε [u]2J0,2[âε] +Aε[u]

∂u−

∂τ
J0,1[âε] +

(
∂u−

∂τ

)2

J0,0[âε].

By expanding and collecting terms, we can write this expression as

ˆ 1

−1
âε

(
∂

∂τ
(v(x+ tn(x)))

)2

dt =
1

2
M1[u]2 +M2[u]

∂u+

∂τ
+M3[u]

∂u−

∂τ

+
1

2
K1

(
∂u+

∂τ

)2

+K2
∂u+

∂τ

∂u−

∂τ
+

1

2
K3

(
∂u−

∂τ

)2
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where

M1 =
1

2

(
∂Aε
∂τ

)2

J2,0[âε] +
∂Aε
∂τ

AεJ1,1[âε] +
1

2
A2
εJ0,2[âε]

M2 =
1

2

∂Aε
∂τ

AεJ2,0[âε] +
1

2
A2
εJ1,1[âε]

M3 = −1

2

∂Aε
∂τ

AεJ2,0[âε]−
1

2
A2
εJ1,1[âε] +

∂Aε
∂τ
J1,0[âε] +AεJ0,1[âε]

K1 =
1

2
A2
εJ2,0[âε]

K2 = −1

2
A2
εJ2,0[âε] +AεJ1,0[âε]

K3 =
1

2
A2
εJ2,0[âε]− 2AεJ1,0[âε] + 2J0,0[âε]

and we have suppressed the fact that all of these are functions of x. With this term,

we can now go back to the full energy expression for this problem to get that our

approximate energy is given by

E0
ε (u) =

1

2

ˆ
Ω\σ
|∇u|2 dx+

ε

2

ˆ
σ

1

2
M1[u]2 +M2[u]

∂u+

∂τ
+M3[u]

∂u−

∂τ

+
1

2
K1

(
∂u+

∂τ

)2

+K2
∂u+

∂τ

∂u−

∂τ
+

1

2
K3

(
∂u−

∂τ

)2

ds

+
1

4ε

ˆ
σ
Aε[u]2 ds−

ˆ
Ω
fu dx.

Finally, we would like to compute the classical differential equation that this energy

minimizer solves. By the same tactics used before, −∆u = f in Ω, and u = ϕ on

the boundary. For the boundary condition on σ, we transform this into a variational

formulation and then integrate by parts. After doing so, we get that the boundary

conditions on σ are

∂u+

∂n
+
ε

2

[
∂

∂τ

(
K1

∂u+

∂τ

)
+

∂

∂τ

(
K2

∂u−

∂τ

)
−M1[u]

+
∂

∂τ
(M2[u])−M2

∂u+

∂τ
−M3

∂u−

∂τ

]
− Aε

2ε
[u] = 0

∂u−

∂n
− ε

2

[
∂

∂τ

(
K2

∂u+

∂τ

)
+

∂

∂τ

(
K3

∂u−

∂τ

)
+M1[u]

+M2
∂u+

∂τ
+

∂

∂τ
(M3[u]) +M3

∂u−

∂τ

]
− Aε

2ε
[u] = 0.

(5.22)

This gives the classical equation that u0
ε should satisfy in order to approximate uε.

In the case that aε is either constant, or independent of x, then this equation reduces to
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the earlier case. The K coefficients correspond to the impact factors defined earlier, and

all of theM coefficients are zero because all of the terms in these expressions involve a

tangential derivative of either aε or Aε.

Variable Width Inhomogeneities

Another specific situation where we can try to apply this formulation is the case of

variable-width inhomogeneities. For a function h ∈ C2(σ) with 0 < h ≤ 1, we define

the variable width inhomogeneity by

ωhε = {x ∈ ωε | d(x, σ) < εh(pσ(x))}

where ωε is defined as before and pσ is the projection onto σ, which is well-defined on

ωε. For these problems, we will go back to the assumption that the conductivity inside

the inhomogeneity is a constant aε, and so we can define a non-constant conductivity

in the uniform domain ω1 by

âε(x+ tn(x)) =


aε |t| ≤ h(x)

1 |t| > h(x)

which will correspond to the variable-width inhomogeneity ωhε having conductivity aε.

In order to figure out the corresponding classical differential equation that the re-

duced solution u0
ε should satisfy, we need to find theM and K coefficient functions. To

do this, we need to compute Aε and all of the J functions. For the âε given above, we

have that

Aε(x) =
1

1 + h(x)
(

1
aε
− 1
) , ∂

∂τ
Aε =

(
1− 1

aε

)
h′(x)(

1 + h(x)
(

1
aε
− 1
))2 ,

and

α(x, t) =


t+ 1 t < −h(x)

t
aε

+ 1 + h(x)
(

1
aε
− 1
)
−h(x) < t < h(x)

t+ 1 + 2h(x)
(

1
aε
− 1
)

t > h(x).
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This then allows us to compute the J coefficients as

J2,0[âε](x) =
1

3

[ (
1− a2

ε

)
(1− h(x))3 +

(
a2
ε − 1

)(
1 + h(x)

(
2

aε
− 1

))3

+ 8

(
1 + h(x)

(
1

aε
− 1

))3
]

J1,1[âε](x) = h′(x)

(
1

aε
− 1

)[(
a2
ε

2
− 1

)(
1 + h(x)

(
2

aε
− 1

))2

+ 4

(
1 + h(x)

(
1

aε
− 1

))2

− a2
ε

2
(1 + h(x))2

]

J0,2[âε](x) = 2h′(x)2

(
1

aε
− 1

)2

(1− h(x)(1− aε))

J1,0[âε](x) =
1

2

[ (
1− a2

ε

)
(1− h(x))2 + (a2

ε − 1)

(
1 + h(x)

(
2

aε
− 1

))2

+ 4

(
1 + h(x)

(
1

aε
− 1

))2
]

J0,1[âε](x) = 2h′(x)

(
1

aε
− 1

)
(1− h(x)(1− aε))

J0,0[âε](x) = 2 + 2h(x)(aε − 1).

Plugging these in to get theM and K coefficients will provide the energy and classical

expression for the reduced problem.

However, there is another way to think about these inhomogeneities that leads

to an easier formulation of the problem and a fairly straight-forward way to prove a

convergence result similar to what was discussed in earlier chapters. The main change

in this process is that instead of separating out the domain ωε, rescaling it to ω1, and

solving the problem with that inclusion, we instead rescale the domain ωhε to ωh1 in

the same manner, and solve this problem. The end result is that instead of specifying

boundary data u+ and u− on the top and bottom boundaries of ω1, we specify these

conditions on the corresponding curves in ∂ωh1 .

The full problem in this situation can be written as
−∇ · (γε∇uε) = f Ω

uε = ϕ ∂Ω

γε =


1 Ω \ ωhε

aε ωhε

(5.23)
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∂ωε

∂ωhε

∂Ω̃

Figure 5.1: Relation between ωε and ωhε for variable-width inhomogeneities

which has corresponding energy

Ehε (u) =
1

2

ˆ
Ω
γε|∇u|2 dx−

ˆ
Ω
fu dx =

1

2

ˆ
Ω\ωhε

|∇u|2 dx+
1

2

ˆ
ωhε

aε|∇u|2 dx−
ˆ

Ω
fu dx.

The process goes almost identically to the work in Chapter 2. We begin by sepa-

rating the energy integral into two parts based on the conductivity profile and rescale

the inhomogeneity to size 1. Taking the first order approximation of each term in the

resulting expression gives an approximate energy minimization of the form

min
u∈H1(Ω\ωε)
u|∂Ω=ϕ

1

2

ˆ
Ω\σ
|∇u|2 dx−

ˆ
Ω
fu dx+G0,h

ε (u)

where

G0,h
ε (u) = min

v

εaε
2

ˆ
ωh1

(1 + κdσ)

(
∂v

∂τ

)2

dx+
aε
2ε

ˆ
ωh1

1

1 + κdσ

(
∂v

∂n

)2

dx, (5.24)

where

v ∈ {H1(ωh1 ) | v(x+ h(x)n(x)) = u+(x) v(x− h(x)n(x)) = u−(x)}.

Since aε is still isotropic, we can assume that minimizing the term of the form

1

2

ˆ
ωh1

1

1 + κdσ

(
∂v

∂n

)2

dx

will given an approximate solution to the full minimization. As done previously, this

gives that the function v(x, t) needs to be affine in the normal direction. Since we now
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want to apply the boundary conditions u+ at t = h(x) and u− at t = −h(x) (as opposed

to t = ±1 in previous chapters), the function v is then given by

v(x, t) =
1

2

(
1 +

t

h(x)

)
u+(x) +

1

2

(
1− t

h(x)

)
u−(x).

With this formula,

∂v

∂t
=
u+(x)− u−(x)

2h(x)

so that after applying the co-area formula,

ˆ h(x)

−h(x)

1

1 + κdσ

(
∂v

∂n

)2

dt =
1

2h(x)
(u+(x)− u−(x))2

and the corresponding term in the energy is

aε
2ε

ˆ
ωh1

1

1 + κdσ

(
∂v

∂n

)2

dx =
aε
4ε

ˆ
σ

1

h(x)
(u+(x)− u−(x))2 ds. (5.25)

Now, we need to look at the tangential derivative term. For this, we compute that

∂v

∂x
= −1

2

th′(x)

h(x)2
u+(x)+

1

2

(
1 +

t

h(x)

)
∂u+

∂τ
(x)+

1

2

th′(x)

h(x)2
u−(x)+

1

2

(
1− t

h(x)

)
∂u−

∂τ
(x)

which we can rewrite as

∂v

∂x
=

1

2

∂ū

∂τ
+

t

2h

∂[u]

∂τ
− th′

2h2
[u] =

1

2

(
∂ū

∂τ
+
t

h

∂[u]

∂τ
− th′

h2
[u]

)
where we have used the notation ū = u+ + u− and [u] = u+ − u−.

Now, we need to square this expression and integrate in t from −h(x) to h(x). When

we do this integration, any term that is odd in t will vanish. Thus, we ignore these

terms from the start, leaving only one cross term in the expansion. The terms that

remain in
(
∂v
∂x

)2
are

1

4

[(
∂ū

∂τ

)2

+
t2

h2

(
∂[u]

∂τ

)2

+
t2h′2

h4
[u]2 − 2t2h′

h3

∂[u]

∂τ
[u]

]
which can be integrated in t to give

ˆ h(x)

−h(x)

(
∂v

∂x

)2

dt =
h

2

(
∂ū

∂τ

)2

+
h

6

(
∂[u]

∂τ

)2

+
h′2

6h
[u]2 − h′

3

∂[u]

∂τ
[u]

=
h

2

(
∂ū

∂τ

)2

+
1

6

(√
h
∂[u]

∂τ
− h′√

h
[u]

)2

=
2h

3

[(
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

]
+
h′2

6h
[u]2 − h′

3

∂[u]

∂τ
[u]



88

where the expression in the second line is given to emphasize that this is a positive

quantity. This then gives the energy of the corresponding term as, after applying the

co-area formula again,

εaε
2

ˆ
ωh1

(1 + κdσ)

(
∂v

∂τ

)2

dx =
εaε
12

ˆ
σ

h′(x)2

h(x)
[u]2 ds− εaε

6

ˆ
σ
h′(x)

∂[u]

∂τ
[u] ds

+
εaε
3

ˆ
σ
h(x)

[(
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

]
ds.

(5.26)

Inserting (5.26) and (5.25) into (5.24) gives the approximate minimizing energy

(playing the same role as E0
ε ) as

Eh(u) =
1

2

ˆ
Ω\σ
|∇u|2 −

ˆ
Ω
fu+

εaε
3

ˆ
σ
h(x)

[(
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

]
ds

+
εaε
12

ˆ
σ

h′(x)2

h(x)
[u]2 ds− εaε

6

ˆ
σ
h′(x)

∂[u]

∂τ
[u] ds

+
aε
4ε

ˆ
σ

1

h(x)
(u+(x)− u−(x))2 ds

Note that if h(x) ≡ 1, then this reduces to exactly the formula proved previously for

E0
ε . In what follows, we will change this to an energy similar to what was used in the

earlier work to perform the regularity analysis. That is, we will take the approximate

energy to be

E0,h
ε (u) =

1

2

ˆ
Ω\σ
|∇u|2 −

ˆ
Ω
fu+

εaε
2

ˆ
σ
h(x)

[(
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2
]
ds

+
εaε
12

ˆ
σ

h′(x)2

h(x)
[u]2 ds− εaε

6

ˆ
σ
h′(x)

∂[u]

∂τ
[u] ds

+
aε
4ε

ˆ
σ

1

h(x)
(u+(x)− u−(x))2 ds.

(5.27)

Classical Formulation of the Reduced Problem

In order to find the classical formulation of the reduced equation corresponding to

the variable-width inhomogeneity, we again compute the first variation of E0,h
ε . This

tells us that

0 =

ˆ
Ω\σ
∇u · ∇v dx−

ˆ
Ω
fv dx+ εaε

ˆ
σ
h(x)

[
∂u+

∂τ

∂v+

∂τ
+
∂u−

∂τ

∂v−

∂τ

]
ds

+
εaε
6

ˆ
σ

h′(x)2

h(x)
[u][v] ds− εaε

6

ˆ
σ
h′(x)

(
∂[v]

∂τ
[u] +

∂[u]

∂τ
[v]

)
ds+

aε
2ε

ˆ
σ

1

h(x)
[u][v] ds.

for any v ∈ H1
0 (Ω) with v± ∈ H1

0 (σ).
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If v is supported away from σ, we get that −∆u = f in Ω \ σ. Using this fact and

integrating by parts on the first term, we see that

0 =

ˆ
σ
−∂u

+

∂n
v+ +

∂u−

∂n
v− ds+ εaε

ˆ
σ
h(x)

[
∂u+

∂τ

∂v+

∂τ
+
∂u−

∂τ

∂v−

∂τ

]
ds

+
εaε
6

ˆ
σ

h′(x)2

h(x)
[u][v] ds− εaε

6

ˆ
σ
h′(x)

(
∂[v]

∂τ
[u] +

∂[u]

∂τ
[v]

)
ds+

aε
2ε

ˆ
σ

1

h(x)
[u][v] ds.

To get to a classical formulation of the boundary conditions on σ, we need to integrate

by parts on all the terms that involve tangential derivatives of v. This turns the above

formulation into

0 =

ˆ
σ
−∂u

+

∂n
v+ +

∂u−

∂n
v− ds− εaε

ˆ
σ

∂

∂τ

(
h(x)

∂u+

∂τ

)
v+ +

∂

∂τ

(
h(x)

∂u−

∂τ

)
v− ds

+
εaε
6

ˆ
σ

h′(x)2

h(x)
[u][v] ds− εaε

6

ˆ
σ

(
− ∂

∂τ

(
h′(x)[u]

)
+ h′(x)

∂[u]

∂τ

)
[v] ds

+
aε
2ε

ˆ
σ

1

h(x)
[u][v] ds.

or, by simplifying the product term in the second line,

0 =

ˆ
σ
−∂u

+

∂n
v+ +

∂u−

∂n
v− ds− εaε

ˆ
σ

∂

∂τ

(
h(x)

∂u+

∂τ

)
v+ +

∂

∂τ

(
h(x)

∂u−

∂τ

)
v− ds

+
εaε
6

ˆ
σ

h′(x)2

h(x)
[u][v] ds+

εaε
6

ˆ
σ
h′′(x)[u][v] ds+

aε
2ε

ˆ
σ

1

h(x)
[u][v] ds.

Therefore, by choosing v+ ∈ H1
0 (σ) arbitrary and v− = 0, we get that

∂u+

∂n
+ εaε

∂

∂τ

(
h(x)

∂u+

∂τ

)
− aε

2εh(x)

(
1 +

ε2

3
h′(x)2 +

ε2

3
h′′(x)h(x)

)
[u] = 0

and by reversing the roles of v+ and v−,

∂u−

∂n
− εaε

∂

∂τ

(
h(x)

∂u−

∂τ

)
− aε

2εh(x)

(
1 +

ε2

3
h′(x)2 +

ε2

3
h′′(x)h(x)

)
[u] = 0.

This gives the classical formulation of the reduced problem as

−∆u0
ε = f Ω \ σ

u0
ε = ϕ ∂Ω

∂u0,+
ε
∂n + εaε

∂
∂τ

(
h(x)∂u

0,+
ε
∂τ

)
− aε

2εh(x)

(
1 + ε2

3 h
′(x)2 + ε2

3 h
′′(x)h(x)

)
[u0
ε ] = 0 σ

∂u0,−
ε
∂n − εaε

∂
∂τ

(
h(x)∂u

0,−
ε
∂τ

)
− aε

2εh(x)

(
1 + ε2

3 h
′(x)2 + ε2

3 h
′′(x)h(x)

)
[u0
ε ] = 0 σ.

(5.28)
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Unlike the formulation of the variable-width inhomogeneity that rescaled ωε as part

of the derivation, this formulation can be split into even and odd parts, each of which

solves a differential equation that only involves the corresponding function, that is, the

differential equation for the even part only depends on the even part, and similarly

for the odd part. Therefore, we can analyze the even and odd parts of this solution

separately in order to prove convergence. Thus, if we assume that σ is a straight line

segment, this allows us to make full use of the arguments constructed in Chapter 4 to

prove convergence. For the case of a variable-width inhomogeneity, the even part of the

solution to the reduced problem will satisfy the boundary condition

∂uev

∂y
+ εaε

∂

∂x

(
h(x)

∂uev

∂x

)
= 0

on σ, while the odd part will satisfy

∂uodd

∂y
+ εaε

∂

∂x

(
h(x)

∂uodd

∂x

)
− aε
εh(x)

(
1 +

ε2

3
h′(x)2 +

ε2

3
h′′(x)h(x)

)
uodd = 0

on σ.

Convergence Arguments

The convergence arguments used earlier in this work had two main steps,

1. Regularity estimates on the even problem and a simplified version of the odd

problem, and

2. Energy closeness, calculated via a primal and dual energy formulation,

and then concluded by combining the results from different types of symmetry and

asymptotic regimes of aε in order to get full convergence. As most of the work to solve

this problem will mirror what was done previously, this section will only indicate how

the work would change to fit this new problem, along with some model calculations

where appropriate. For simplicity, we will assume that σ is the line segment from

(−1, 0) to (1, 0), and that h(x) is a C2(σ) function with 0 < c < h(x) ≤ 1 everywhere.

This regularity assumption on h is a potential area for future study.
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Regularity Results

In modifying the work of Chapter 3, the problems that we need to analyze for

regularity concerns are
−∆u = 0 R2

+

∂u
∂y + α ∂

∂x

(
h̃(x)∂u∂x

)
= 0 {x > 0, y = 0}

∂u
∂y = 0 {x < 0, y = 0}

(5.29)

for the even case and 
−∆u = 0 R2

+

∂u
∂y = λ

h̃(x)
u {x > 0, y = 0}

u = 0 {x < 0, y = 0}

(5.30)

for the odd case, where h̃ is an appropriately translated version of h. These can be

compared to the reduced problems (3.6) and (3.11) in Chapter 3. Carrying out all of

the same work as previously leads to one needing to analyze the regularity properties

of the map B, defined by

Bf(x) =
|x|
h̃(x2)

f(x).

Previously, we needed to analyze the properties of the map A given by

Af(x) = |x|f(x),

and these regularity properties provided the crucial steps in getting an explicit form for

the most singular part of the solutions to the given differential equations. B plays the

exact same role this time around, so proving similar properties about B will allow us to

get the same characterization of solutions to this differential equation. If h(x) > c > 0

on σ and h is at least C2, then h̃ also satisfies these conditions, and all of these regularity

considerations can be verified. Thus, under these assumptions, we will know that the

most singular part of the solution is an r1/2 term with the same bounds on the error

that were proved in Chapter 3.

Energy Arguments

While the energies involved are different, the process of getting to energy closeness

is the same as in Chapter 4. Since ωhε ⊂ ωε, the constructions of zε and ξε can both
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still be done on Ω \ωε, ignoring the fact that the actual inhomogeneity is smaller. This

will allow us to use the same work as before, along with the same tedious constructions

and error bounds, to show that the energies of these two formulations are close in the

even case with εaε > m > 0. If εaε → 0, then the same arguments as before will show

that both solutions will be close to the u0 solution.

For the odd case, there are a few other issues that need to be dealt with. The first

is the need to show that the solution to the reduced problem is energy close to the

solution to (5.30) with λ = aε
ε when this term is bounded. The calculations here go

very similarly to those in Chapter 4. The only extra step we need is to use the fact

that ˆ
σ
|uodd|2 ds ≤ C(f, ϕ)

to be able to throw out the terms of order εaε that also depend on |uodd|2 in the

energy calculation. This, combined with the fact that h ∈ C2(σ), will allow the same

arguments to push through. Secondly, the duality argument needs to be addressed. In

Chapter 4, this argument was used to relate the simplified problem with odd symmetry

to a problem with even symmetry, which we already know converges in the appropriate

manner. Using the same steps as before, but with our new boundary conditions, we

can compute that

−
ˆ
σ

∂

∂x

(
h(x)

∂Uε
∂x

)
z ds =

ˆ
σ
h(x)

∂Uε
∂x

∂z

∂x
ds

=

ˆ
σ
h(x)

∂uodd
′

∂y

∂z

∂x
ds

=
aε
ε

ˆ
σ
uodd

′ ∂z

∂x
ds

= −aε
ε

ˆ
σ

∂uodd
′

∂x

∂z

∂x
ds

=
aε
ε

ˆ
σ

∂Uε
∂y

z ds,

which is exactly the step needed to show that Uε, which is the rotated version of the odd

solution, solves the desired even-symmetric problem with conductivity 1
aε

. Therefore,

we can produce the same type of convergence results as before for the odd problem

with aε
ε < M . The convergence for the odd problem if aε

ε → ∞ follows in a similar

manner to the original argument. Thus, we have convergence results for both even and
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odd symmetry, and all regimes of conductivities, and can stitch them together in the

same way as before to get the full convergence result. Therefore, we have analogues

of Theorem 4.7.1 and Theorem 4.7.2 in the case of a variable-width inhomogeneity ωhε ,

provided that h > c > 0 and h ∈ C2(σ).

Theorem 5.2.1. Let Ω ⊂ R2 be a bounded C1 domain, with σ a straight line segment

so that ωε ⊂⊂ Ω for ε < ε0. Let h be any C2(σ) function with 0 < c ≤ h ≤ 1. Fix any

δ > 0, and for any f ∈ Fδ and ϕ ∈ H1/2(∂Ω), let u0
ε and uε denote the solutions to

(5.28) and (5.23) respectively. Then

lim
ε→0

sup
P

|E0,h
ε (u0

ε )− Ehε (uε)|(
||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

)2 = 0

where the parameter set P is

P = {(aε, f, ϕ) : 0 < aε ∈ R ∀ ε > 0, f ∈ Fδ, ϕ ∈ H1/2(∂Ω)}.

Theorem 5.2.2. Let Ω ⊂ R2 be a bounded C1 domain, with σ a straight line segment

so that ωε ⊂⊂ Ω for ε < ε0. Let h be any C2(σ) function with 0 < c ≤ h ≤ 1. Fix any

δ > 0, and for any f ∈ Fδ and ϕ ∈ H1/2(∂Ω), let u0
ε and uε denote the solutions to

(5.28) and (5.23) respectively. Then

lim
ε→0

sup
P

||u0
ε − uε||Hs(Ω\ωδ′ )

||f ||L2(Ω) + ||ϕ||H1/2(∂Ω)

= 0

for any s ≥ 0 and any δ′ > 0, where the parameter set P is

P = {(aε, f, ϕ) : 0 < aε ∈ R ∀ ε > 0, f ∈ Fδ, ϕ ∈ H1/2(∂Ω)}.

5.2.2 Anisotropic Conductivities

One other generalization, and the one that also leads to many applied problems, is that

of anisotropic conductivities. In the cloaking problem, the material that makes up the

cloak is necessarily anisotropic (see [KSVW08]), and in the case of thin inhomogeneities,

the fact that the two dimensions are scaled differently when the cloak is applied will

turn an isotropic conductivity into one that is anisotropic.
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In order to begin analyzing this problem, we define our conductivity aε on the

inhomogeneity to be

aε =

a(1,1)
ε a

(1,2)
ε

a
(1,2)
ε a

(2,2)
ε


when written in the (τ, n) basis of ωε, which is a symmetric positive definite matrix, con-

stant in space but whose coefficients can depend on ε. Then, the combined conductivity

on Ω is

γε =


I Ω \ ωε

aε ωε

and we want to find an approximation to the solution to
−div(γε∇uε) = f Ω

uε = ϕ ∂Ω.

(5.31)

The procedure for doing this will follow the same ideas as in Chapter 2 for deter-

mining the energy functional corresponding to an approximation of that problem. To

simplify notation, we will assume that the curve σ is closed. If it was an open curve,

this same process would work, replacing ωε and ω1 by ωintε and ωint1 respectively. As a

starting point, we know that the energy functional corresponding to (5.31) is

Eε(u) =
1

2

ˆ
Ω

(γε∇u) · ∇u dx−
ˆ

Ω
fu dx

=
1

2

ˆ
Ω\ωε
|∇u|2 dx−

ˆ
Ω
fu dx+

1

2

ˆ
ωε

(aε∇u) · ∇u dx
(5.32)

where the minimization is taken over all H1 functions on Ω with boundary data ϕ on

∂Ω. Next, we want to use the Hε map from Chapter 2 to transform the integral over

ωε to one over ω1. The same transformation process as before gives that
ˆ
ωε

(aε∇u) · ∇u dx =

ˆ
ω1

det(∇Hε)((∇H−1
ε )aε(∇H−1

ε )T∇û) · ∇û dx. (5.33)

We then compute, based on the definition of Hε,

(∇H−1
ε )aε(∇H−1

ε )T =

 1+κdσ
1+εκdσ

0

0 1
ε

a(1,1)
ε a

(1,2)
ε

a
(1,2)
ε a

(2,2)
ε

 1+κdσ
1+εκdσ

0

0 1
ε


=


(

1+κdσ
1+εκdσ

)2
a

(1,1)
ε

1
ε

1+κdσ
1+εκdσ

a
(1,2)
ε

1
ε

1+κdσ
1+εκdσ

a
(1,2)
ε

1
ε2
a

(2,2)
ε

 .
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Since

det(∇Hε) = ε
1 + εκdσ
1 + κdσ

we have that the integrand in (5.33) becomes

det(∇Hε)((∇H−1
ε )aε(∇H−1

ε )T∇û) · ∇û = εa(1,1)
ε

1 + κdσ
1 + εκdσ

(
∂û

∂τ

)2

+ 2a(1,2)
ε

∂û

∂τ

∂û

∂n
+
a

(2,2)
ε

ε

1 + εκdσ
1 + κdσ

(
∂û

∂n

)2
(5.34)

and so the rescaled energy becomes

Eε(u, v) =
1

2

ˆ
Ω\ωε
|∇u|2 dx−

ˆ
Ω
fu dx

+
1

2

ˆ
ω1

[
εa(1,1)
ε

1 + κdσ
1 + εκdσ

(
∂v

∂τ

)2

+ 2a(1,2)
ε

∂v

∂τ

∂v

∂n

+
a

(2,2)
ε

ε

1 + εκdσ
1 + κdσ

(
∂v

∂n

)2
]
dx

(5.35)

where u is a function in H1(Ω \ ωε), v is on H1(ω1), with continuity conditions across

the boundary, just like in Chapter 2. At this point, if we go back to assuming that aε

was isotropic, we would get exactly (2.4).

Next, we want to take the highest order contribution of each term, as before, which

gives an expression of the form

Eε(u, v) =
1

2

ˆ
Ω\σ
|∇u|2 dx−

ˆ
Ω
fu dx

+
1

2

ˆ
ω1

[
εa(1,1)
ε (1 + κdσ)

(
∂v

∂τ

)2

+ 2a(1,2)
ε

∂v

∂τ

∂v

∂n

+
a

(2,2)
ε

ε

1

1 + κdσ

(
∂v

∂n

)2
]
dx

(5.36)

which, again, will match up with (2.6) if aε were isotropic, and the continuity conditions

here are the same as for that equation. Finally, we want to consider this as a two-part

minimization, fixing u and minimizing over the v that meet those boundary conditions,

and then minimizing over u. This results in the inner energy to be minimized having
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the form

G0
ε (u) = min

v∈H1(ω1)
v(x+n(x))=u+(x)
v(x−n(x))=u−(x)

1

2

ˆ
ω1

[
εa(1,1)
ε (1 + κdσ)

(
∂v

∂τ

)2

+ 2a(1,2)
ε

∂v

∂τ

∂v

∂n

+
a

(2,2)
ε

ε

1

1 + κdσ

(
∂v

∂n

)2
]
dx.

From here, the work in Chapter 2 goes on to say that, because we know that the

terms in G0
ε are of different orders, we can assume that the form of the minimizing

solution will be dictated by the largest term, which in that case was the aε
ε term, and

we could use only that one term in solving the problem. However, if aε is anisotropic,

then we don’t necessarily know that these terms are of different orders. For instance,

if a
(1,1)
ε is O(1), a

(1,2)
ε is O(ε), and a

(2,2)
ε is O(ε2), as would be the case with a constant

conductivity rescaled by a cloaking procedure, then all four terms in G0
ε are the same

order. Therefore, we can not outright ignore any of these terms. We then need to find

the actual minimizer of this functional in terms of u+ and u− (in particular, the energy

of this minimizer) to get final form of the energy E0
ε (u).

In the case where aε is diagonal in terms of the (τ, n) basis, we can say a bit more

about this minimizer. If a
(1,2)
ε = 0, then G0

ε (u) takes the form

G0
ε (u) min

v∈H1(ω1)
v(x+n(x))=u+(x)
v(x−n(x))=u−(x)

1

2

ˆ
ω1

[
εa(1,1)
ε (1 + κdσ)

(
∂v

∂τ

)2

+
a

(2,2)
ε

ε

1

1 + κdσ

(
∂v

∂n

)2
]
dx.

To simplify the calculations, we will also assume that our mid-curve σ is the straight

line from (−1, 0) to (1, 0), which further simplifies this expression to

G0
ε (u) min

v∈H1(ω1)
v(x+n(x))=u+(x)
v(x−n(x))=u−(x)

1

2

ˆ
ω1

[
εa(1,1)
ε

(
∂v

∂x

)2

+
a

(2,2)
ε

ε

(
∂v

∂y

)2
]
dx.

The Euler-Lagrange equation corresponding to this functional is

εa(1,1)
ε

∂2v

∂x2
+
a

(2,2)
ε

ε

∂2v

∂y2
= 0

on the domain (x, y) ∈ [−1, 1]2 with boundary data u− along y = −1 and u+ along

y = 1.



97

In order to solve this problem, we will abstract a little bit further, and look to solve

a
∂2v

∂x2
+ b

∂2v

∂y2
= 0

on (−1, 1) × (0, 2) with boundary conditions u+ along y = 2 and u− along y = 0.

We will solve this using separation of variables and Fourier series. Using separation of

variables, we know that if v(x, y) = X(x)Y (y), then X and Y must satisfy that

X ′′

X
= − b

a

Y ′′

Y
= −λ

for an appropriate set of eigenvalues λ. To determine the proper eigenvalues, we can

expand u+ and u− into Fourier series on (−1, 1) as

u±(x) =
1

2
d±0 +

∞∑
n=1

c±n sin
(nπ

2
x
)

+ d±n cos
(nπ

2
x
)
,

where

d±0 =

ˆ 1

−1
u±(x) dx

d±n =

ˆ 1

−1
u±(x) cos

(nπ
2
x
)
dx

c±n =

ˆ 1

−1
u±(x) sin

(nπ
2
x
)
dx.

With this expansion, we see that we want our eigenvalues to be λn =
(
nπ
2

)2
, which

means that the function Y must either be linear (n = 0) or

Y (y) = sinh

(
nπ

2

√
a

b
y

)
(n ≥ 1).

We only need the hyperbolic sine terms here based on how we are going to apply

boundary conditions. Applying the boundary conditions on y = 0 and y = 2, using

symmetry to simplify the first of these, gives the solution v as

v(x, y) =
d−0
2

+ (d+
0 − d

−
0 )
y

4

+
∞∑
n=1

c+
n sinh

(
nπ
2

√
a
b y
)

+ c−n sinh
(
nπ
2

√
a
b (2− y)

)
sinh

(
nπ
√

a
b

) sin
(nπ

2
x
)

=

∞∑
n=1

d+
n sinh

(
nπ
2

√
a
b y
)

+ d−n sinh
(
nπ
2

√
a
b (2− y)

)
sinh

(
nπ
√

a
b

) cos
(nπ

2
x
)
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Remark. If the conductivity aε was isotropic, then we will have a = εaε and b = aε
ε , so

that a
b = O(ε2). For small arguments, we know that sinh(t) ≈ t, so this solution would

reduce to

v(x, y) =
d−0
2

+ (d+
0 − d

−
0 )
y

4
+
∞∑
n=1

c+
n

(
nπ
2

√
a
b y
)

+ c−n
(
nπ
2

√
a
b (2− y)

)(
nπ
√

a
b

) sin
(nπ

2
x
)

+
d+
n

(
nπ
2

√
a
b y
)

+ d−n
(
nπ
2

√
a
b (2− y)

)(
nπ
√

a
b

) cos
(nπ

2
x
)

=
1

2
d−0 + (d+

0 − d
−
0 )
y

4
+

1

2

∞∑
n=1

(c+
n y + c−n (2− y)) sin

(nπ
2
x
)

+ (d+
n y + d−n (2− y)) cos

(nπ
2
x
)

=
(

1− y

2

)[1

2
d−0 +

∞∑
n=1

c−n sin
(nπ

2
x
)

+ d−n cos
(nπ

2
x
)]

+
y

2

[
1

2
d+

0 +
∞∑
n=1

c+
n sin

(nπ
2
x
)

+ d+
n cos

(nπ
2
x
)]

,

which is exactly the affine combination of u+ and u− that was obtained as the approx-

imate solution on ω1 in the isotropic case.

Now, we need to find the energy of this solution to simplify the G0
ε term in the

overall energy minimization. The energy is computed by

1

2

ˆ 2

0

ˆ 1

−1
a

(
∂v

∂x

)2

+ b

(
∂v

∂y

)2

dx dy.

To simplify computations, we define

Ĉn(y) =
c+
n sinh

(
nπ
2

√
a
b y
)

+ c−n sinh
(
nπ
2

√
a
b (2− y)

)
sinh

(
nπ
√

a
b

)
D̂n(y) =

d+
n sinh

(
nπ
2

√
a
b y
)

+ d−n sinh
(
nπ
2

√
a
b (2− y)

)
sinh

(
nπ
√

a
b

)
so that the solution v can be written as

v(x, y) =
1

2
d−0 + (d+

0 − d
−
0 )
y

4
+

∞∑
n=1

Ĉn(y) sin
(nπ

2
x
)

+ D̂n(y) cos
(nπ

2
x
)
.

Then

∂v

∂x
=
∞∑
n=1

nπ

2

(
Ĉn(y) cos

(nπ
2
x
)
− D̂n(y) sin

(nπ
2
x
))

,

so that, by orthogonality of these trigonometric functions on [−1, 1],

ˆ 1

−1

(
∂v

∂x

)2

dx =

∞∑
n=1

(nπ
2

)2 (
Ĉn(y)2 + D̂n(y)2

)
. (5.37)
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Similarly, we can compute

∂v

∂y
=

1

4
(d+

0 − d
−
0 ) +

∞∑
n=1

Ĉ ′n(y) sin
(nπ

2
x
)

+ D̂′n(y) cos
(nπ

2
x
)
.

If we define

C̄n(y) =
c+
n cosh

(
nπ
2

√
a
b y
)
− c−n cosh

(
nπ
2

√
a
b (2− y)

)
sinh

(
nπ
√

a
b

)
D̄n(y) =

d+
n cosh

(
nπ
2

√
a
b y
)
− d−n cosh

(
nπ
2

√
a
b (2− y)

)
sinh

(
nπ
√

a
b

)
so that

Ĉ ′n(y) =
nπ

2

√
a

b
C̄n(y) D̂′n(y) =

nπ

2

√
a

b
D̄n(y)

we have that

∂v

∂y
=

1

4
(d+

0 − d
−
0 ) +

√
a

b

∞∑
n=1

nπ

2

(
C̄n(y) sin

(nπ
2
x
)

+ D̄n(y) cos
(nπ

2
x
))

,

so that by orthogonality again, we have

ˆ 1

−1

(
∂v

∂y

)2

dx =
1

8
(d+

0 − d
−
0 )2 +

a

b

∞∑
n=1

(nπ
2

)2 (
C̄n(y)2 + D̄n(y)2

)
. (5.38)

Combining (5.37) and (5.38) gives that the full energy can be calculated by

1

2

ˆ 2

0

ˆ 1

−1
a

(
∂v

∂x

)2

+ b

(
∂v

∂y

)2

dx dy = a

ˆ 2

0

b

16a
(d+

0 − d
−
0 )2

+
1

2

∞∑
n=1

(nπ
2

)2 [
Ĉn(y)2 + D̂n(y)2 + C̄n(y)2 + D̄n(y)2

]
dy.

(5.39)

Finally, we need to integrate these expressions in y. The first term easily integrates to

b
8a(d+

0 −d
−
0 )2. For the rest of the terms, we will show the computations for the integrals

involving the C coefficients, as the corresponding computations for the D coefficients

are identical. Using the fact that

sinh(a) sinh(b) =
1

2
(cosh(a+ b)− cosh(a− b))

cosh(a) cosh(b) =
1

2
(cosh(a+ b) + cosh(a− b)),
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we can expand the individual terms in the energy as

Ĉn(y)2 =
1

sinh
(
nπ
√

a
b

)2
[

(c+
n )2

2

(
cosh

(
nπ

√
a

b
y

)
− 1

)
+ c+

n c
−
n

(
cosh

(
nπ

√
a

b

)
− cosh

(
nπ

√
a

b
(y − 1)

))
+

(c−n )2

2

(
cosh

(
nπ

√
a

b
(2− y)

)
− 1

)]
,

C̄n(y)2 =
1

sinh
(
nπ
√

a
b

)2
[

(c+
n )2

2

(
cosh

(
nπ

√
a

b
y

)
+ 1

)
− c+

n c
−
n

(
cosh

(
nπ

√
a

b

)
− cosh

(
nπ

√
a

b
(y − 1)

))
+

(c−n )2

2

(
cosh

(
nπ

√
a

b
(2− y)

)
+ 1

)]
.

(5.40)

These can then be integrated in y to give

ˆ 2

0
Ĉn(y)2 dy =

1

sinh
(
nπ
√

a
b

)2
[

sinh
(
nπ
√

a
b

)
cosh

(
nπ
√

a
b

)
nπ
√

a
b

(
(c+
n )2 + (c−n )2

)
−

2 sinh
(
nπ
√

a
b

)
nπ
√

a
b

c+
n c
−
n − (c+

n )2 − (c−n )2 + 2c+
n c
−
n cosh

(
nπ

√
a

b

)]
,

ˆ 2

0
C̄n(y)2 dy =

1

sinh
(
nπ
√

a
b

)2
[

sinh
(
nπ
√

a
b

)
cosh

(
nπ
√

a
b

)
nπ
√

a
b

(
(c+
n )2 + (c−n )2

)
−

2 sinh
(
nπ
√

a
b

)
nπ
√

a
b

c+
n c
−
n + (c+

n )2 + (c−n )2 − 2c+
n c
−
n cosh

(
nπ

√
a

b

)]
.

Adding these terms together and simplifying, we get that

ˆ 2

0
Ĉn(y)2 + C̄n(y)2 dy

=
2

nπ
√

a
b sinh

(
nπ
√

a
b

) [cosh

(
nπ

√
a

b

)(
(c+
n )2 + (c−n )2

)
− 2c+

n c
−
n

]
.

(5.41)

By combining this term with the equivalent term for the D coefficients and the other
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term integrated previously, we can compute the energy of this function as

1

2

ˆ 2

0

ˆ 1

−1
a

(
∂v

∂x

)2

+ b

(
∂v

∂y

)2

dx dy = a
b

8a
(d+

0 − d
−
0 )2

+ a

∞∑
n=1

(nπ
2

)2 1

nπ
√

a
b sinh

(
nπ
√

a
b

)[− 2c+
n c
−
n − 2d+

n d
−
n

+ cosh

(
nπ

√
a

b

)(
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
) ]

=
b

8
(d+

0 − d
−
0 )2 +

√
ab

∞∑
n=1

nπ

4 sinh
(
nπ
√

a
b

)[− 2c+
n c
−
n − 2d+

n d
−
n

+ cosh

(
nπ

√
a

b

)(
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
) ]

(5.42)

Therefore, we should want to use

G0
ε (u) =

b

8
(d+

0 − d
−
0 )2 +

√
ab
∞∑
n=1

nπ

4 sinh
(
nπ
√

a
b

)[− 2c+
n c
−
n − 2d+

n d
−
n

+ cosh

(
nπ

√
a

b

)(
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
) ] (5.43)

as our energy from the inner minimization in the anisotropic case. Since u+ and u−

are in H1(σ), we know that these series will converge, and this is a valid energy to use

in this problem.

Remark. Again, if we are in the isotropic case,
√

a
b is of order ε, and we can use this to

simplify the energy. With this fact, one-term Taylor expansions tell us that sinh(t) ≈ t

and cosh(t) ≈ 1 for t small, which gives an approximate energy of

G0
ε (u) ≈ b

8
(d+

0 − d
−
0 )2 +

b

4

∞∑
n=1

(c+
n − c−n )2 + (d+

n − d−n )2

≈ b

4

[
1

2
(d+

0 − d
−
0 )2 +

∞∑
n=1

(c+
n − c−n )2 + (d+

n − d−n )2

]

which, by the definition of the Fourier coefficients for u+ and u−, is exactly

b

4

ˆ
σ
(u+ − u−)2 dx

which matches one of the terms in our previous energy expression with the substitution

b = aε
ε .
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If we want to be more accurate, we can retain one more term in the Taylor series

of hyperbolic cosine, using the approximation that

cosh(t) ≈ 1 +
t2

2

for t small to get an energy approximation of the form

G0
ε (u) ≈ b

8
(d+

0 − d
−
0 )2 +

b

4

∞∑
n=1

(c+
n − c−n )2 + (d+

n − d−n )2

+
a

8
(nπ)2

(
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
)

≈ b

4

[
1

2
(d+

0 − d
−
0 )2 +

∞∑
n=1

(c+
n − c−n )2 + (d+

n − d−n )2

]

+
a

2

(nπ
2

)2 (
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
)
.

Using the Fourier coefficients for u+ and u− again, we can represent this energy as

G0
ε (u) ≈ b

4

ˆ
σ
(u+ − u−)2 ds+

a

2

ˆ
σ

(
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

ds

which, making the substitution a = εaε and b = aε
ε , is the exact same as the reduced

energy that we use in all of the other work in this paper.

For one more step of accuracy, we can also retain an additional term in the Taylor

series of hyperbolic sine, giving that

sinh(t) ≈ t+
t3

6

for t small, or

1

sinh(t)
≈ 1

t+ t3

6

=
1

t

1

1 + t2

6

≈ 1

t

(
1− t2

6

)
.

This gives an approximate energy of

G0
ε (u) ≈ b

8
(d+

0 − d
−
0 )2 +

b

4

∞∑
n=1

(
1− (nπ)2a

6b

)[
− 2c+

n c
−
n − 2d+

n d
−
n

+

(
1 +

(nπ)2a

2b

)(
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
) ]

Expanding this out and collecting terms in a similar manner to previous calculations
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gives an expression of the form

G0
ε (u) ≈ b

8
(d+

0 − d
−
0 )2 +

b

4

∞∑
n=1

[
(c+
n − c−n )2 + (d+

n − d−n )2
]

+
a

8

∞∑
n=1

(nπ)2
(
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
)

− b

24

∞∑
n=1

(nπ)2
[
(c+
n − c−n )2 + (d+

n − d−n )2
]

− a2

48b

∞∑
n=1

(nπ)4
(
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
)
.

Ignoring the cross term with an extra factor of a
b and simplifying expressions as before

gives that

G0
ε (u) ≈ b

4

[
1

2
(d+

0 − d
−
0 )2 +

b

4

∞∑
n=1

[
(c+
n − c−n )2 + (d+

n − d−n )2
]]

+
a

2

∞∑
n=1

(nπ
2

)2 (
(c+
n )2 + (c−n )2 + (d+

n )2 + (d−n )2
)

− a

6

∞∑
n=1

(nπ
2

)2 [
(c+
n − c−n )2 + (d+

n − d−n )2
]

which, by the definition of the Fourier series of u+ and u−, is the same as

G0
ε (u) ≈ b

4

ˆ
σ
(u+−u−)2 ds+

a

2

ˆ
σ

(
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

ds− a
6

ˆ
σ

(
∂(u+ − u−)

∂τ

)2

ds.

Expanding the last term and combining with the second gives the formula

G0
ε (u) ≈ b

4

ˆ
σ
(u+ − u−)2 ds+

a

3

ˆ
σ

(
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ
ds

which is exactly the same as the expression that was derived in Chapter 2 and [DV17]

for the approximate energy of the function on ω1.

Now that we have an explicit formula for the energy of the function on ω1 in terms

of the boundary data, the next step in this process would be to figure out if there is a

relatively simple way to express this energy in terms of the functions u+ and u− for a

fixed a and b when we can not assume that this ratio is small. As shown in the previous

remark, when a
b is small, we can simplify this expression in a way that makes it fairly

easy to represent in terms of the boundary data. An expression of this form is necessary

for getting energy estimates to start working with a convergence argument as well as

for developing a numerical model to visualize how these solutions behave.
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5.3 Curved inhomogeneities

Another assumption that has persisted throughout all of this work is the fact that

σ needs to be a straight line segment. This assumption was dropped briefly in the

previous section because we went back to assuming that σ is closed. The main issue

with σ needing to be a straight segment for the open curve case is the reduction to a

problem on R2 \ {(x, 0) | x > 0} in order to get the specific form of the most singular

part of uev. The point was that we could translate and rotate σ so that it lies inside

{(x, 0) | x > 0} without changing the fact that the function u0
ε was harmonic. This fact

was crucial to the development of the explicit representation of the solution to the even

and odd problems near each of these endpoints, which gives rise to half of the results

derived earlier.

If σ is not a straight line-segment, then there are two cases for σ, resulting in

different approaches to address this problem.

5.3.1 Line Segment Ends

If σ is a curve that is straight near the endpoints, that is, if the curvature vanishes in a

neighborhood of each endpoint, then this issue is fairly easy to solve. The initial steps

of this process involved localizing near the endpoints of σ. If σ has a portion of the

boundary near each endpoint that is a straight line, then this localization can also be

chosen so that the part of σ inside the region where η(r) = 1 is a straight segment.

Then this region can be rotated and translated to lie within {(x, 0) | x > 0} and the

construction of the “most singular term” in the expansion can be done as before, giving

regularity estimates in this region. These results can then be extended to the entire

curve σ using the interior regularity results from [DV17] to give the exact estimates

that we need, proving the asymptotic accuracy of these solutions as desired.

5.3.2 Curved Ends

If σ is an open curve that does not have straight line segments near each endpoint, we

can still localize near the endpoint and get a map to the domain R2 \ {(x, 0) | x > 0}
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so that the image of σ is contained in {(x, 0) | x > 0}. However, since this map is not

just a translation and rotation, the image of u0
ε under this transformation will no longer

be harmonic. In order to analyze this problem, we need to determine what differential

equation this function will solve on R2 \ {(x, 0) | x > 0}.

Without loss of generality, assume that we are going to localize around the endpoint

a of σ. Let γ(t) be an arc-length parametrization of σ so that γ(0) = a, with n(t) =

γ′(t)⊥ a normal vector to σ at the point γ(t). Then, the map

Ψ(x, y) = γ(x) + yn(x)

sends {(x, 0) | 0 < x < ρ} into σ for ρ < ρ0, for some ρ0 > 0. We now want to extend the

parametrizations γ and n so that they are defined on −ρ < x < 0 so that the curvature

κ is even in x, extending the curve σ through the endpoint a. This extension is uniquely

defined by the point γ(0), the tangent and normal vectors at that point, and our choice

of curvature, and the extended curve is C2 by construction. Thus, there exists a ρ > 0

so that Bρ(0) maps into ωδ, the neighborhood around σ on which f vanishes, under the

map Ψ, and this image contains an entire neighborhood of γ(0) = a.

Now, we can consider the function û = u0
ε ◦Ψ on Bρ(0) and try to find the differential

equation that û satisfies, as well as what the “most singular term” of this function is.

To do this, we use a result stated in [DV17] that, under this geometry, we have that

for any vector field ξ on ωε,

div(ξ) =
∂

∂τ
ξτ +

∂

∂n
ξn +

κ

1 + κdσ
ξn

where κ refers to the curvature of σ at the projected point on the curve and dσ is the

signed distance from σ. Since u0
ε is harmonic, we know that

0 = div(∇u0
ε ) =

∂

∂τ
uτ +

∂

∂n
un +

κ

1 + κdσ
un

and this now holds true with respect to the extended curve σ. However, by our def-

inition of the map Ψ, any tangential derivatives of u0
ε will become x derivatives of û,

and similarly for normal derivatives becoming y derivatives. Therefore, this equation

becomes

0 =
∂2û

∂x2
+
∂2û

∂y2
+

κ(x)

1 + κ(x)y

∂û

∂y
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as, after the mapping, y represents the distance to the curve. So, full analysis of

this problem and the limiting behavior of the solution as ε → 0 requires knowing the

regularity of solutions to this problem on R2 \ {(x, 0) | x > 0}.

Unfortunately, our regularity results before relied on the fact that we had a harmonic

function, and so could use complex analysis to get a formula for the most singular term.

Since û is no longer harmonic (unless κ ≡ 0), this analysis will not go through in this

case. The second order part of the differential equation defining û is just Laplace’s

equation, and the remaining portion is a lower order term that does not degenerate on

the domain, so it will likely be possible to push the results from the harmonic problem

through to this part. We would expect that we would still see an r1/2 behavior near

these endpoints, resulting in a proof of uniform validity of the estimates here as well.
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Chapter 6

Numerical Results

In this chapter, we showcase some numerical results that illustrate the convergence

proved in Chapter 4, as well as show numerical versions of the other results presented

in Chapter 5. All of the results were computed using the FEniCS package. This

package provides a way to set up domain data, generate meshes, and solve variational

differential equations with the finite element method. The Python programs that were

used to generate these results are included in Appendix C.

The mesh for the finite element method was chosen to be a small uniform mesh.

The issue with using an adaptive mesh refinement is that if ε is too small compared to

the mesh size, then the inhomogeneity will not register on the mesh, and the numerical

solution will act as though the conductivity is 1 throughout the entire domain. Thus

the adaptive method will ignore the inhomogeneity and does not work for our problem.

The mesh here was chosen to be small enough so that we could pick ε small enough

to sufficiently illustrate the convergence. The results were shown to be consistent over

different mesh sizes, provided ε was chosen in an appropriate manner.

6.1 General convergence results

This section contains numerical results that illustrate the fact that the solution u0
ε to

(2.9) is an approximation to the solution uε to (2.1) as ε → 0, uniformly in aε, as

proved in Chapter 4. For the sake of numerical computation, we take the domain Ω to

be B2(0) and the curve σ to be the straight line segment from (−1, 0) to (1, 0). We take

the source function f to be identically zero in Ω (instead of on some smaller subset ωδ)

and specify Dirichlet boundary data as

ϕ(x, y) = 1− x+ x2y − (x+ 1)y2 + 3xy3.
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To carry out the computations, we make full use of the symmetry considerations from

Chapter 3 to break the problem into its even and odd parts, and solve the problem on

the half domain Ω+. This results in boundary data

ϕev(x, y) = 1− x− (x+ 1)y2

for the even part and

ϕodd(x, y) = x2y + 3xy3

for the odd part.

6.1.1 Even symmetry

The problem defining the even part of the solution in Ω+ is given by (3.4), where the

extra boundary conditions outside of σ are forced by the even symmetry of the problem.

As the only parameter in this problem that changes with ε is εaε, the behavior of the

solution as ε → 0 should only depend on whether εaε converges to 0, is bounded and

strictly positive in the limit, or goes to infinity. As described previously, we consider

the boundary data ϕev(x, y) = 1− x− (x+ 1)y2 and compare the two solutions along

the horizontal segment at y = 0.5, a fixed distance away from the curve σ. The plots

in Figure 6.1 show both the solution uev and uevε , and in the case where εaε → 0, the

solution uev0 as well.

As expected from the results proved in this thesis, we have convergence of the two

solutions as ε→ 0 in all cases, so long as we stay a fixed distance away from the curve

σ. To further analyze these results, Figure 6.2 shows the values of the solutions on the

horizontal segment at y = 0, which includes σ.

In particular, these images show the behavior that we expected to see at the end-

points of σ due to Lemma 3.4.1, since for both εaε → ∞ and εaε bounded and away

from zero, there is a distinct r1/2 behavior near these endpoints. However, in the case

where εaε → 0, the numerics seem to indicate that this behavior vanishes, which is

consistent with the fact that uev0 , another approximating solution in this case, does not

have these singularities. We also observe that the solutions seem to converge on σ,

which our method of proof can not show at this point.
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y = 0.5 ε = 0.2 ε = 0.02 ε = 0.002

aε = 3
ε2

aε = 3
ε

aε = 3ε

Figure 6.1: Numerical results for even symmetry along the line y = 0.5. In each plot,
the solid line with circles represents the solution uevε , and the dashed line with squares
represents the solution uev. In the last row, the dot-dash line with triangles shows the
solution uev0 .

y = 0 ε = 0.2 ε = 0.02 ε = 0.002

aε = 3
ε2

aε = 3
ε

aε = 3ε

Figure 6.2: Numerical results for even symmetry along the line y = 0. In each plot,
the solid line with circles represents the solution uevε , and the dashed line with squares
represents the solution uev. In the last row, the dot-dash line with triangles shows the
solution uev0 .
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6.1.2 Odd Symmetry

For the odd part of the solution, the approximating problem takes the form of (3.5),

which now has two changing parameters in it; εaε and aε
ε . However, the results of this

thesis, in particular, how the convergence proof needed to be divided between Sections

4.4 and 4.5, seem to indicate that the behavior of the solutions as ε→ 0 only depends

on whether or not aε
ε goes to infinity. As described before, we choose the boundary

data ϕodd(x, y) = x2y + 3xy3 and Figure 6.3 shows the data on y = 0, which includes

the curve σ.

Notice that due to continuity and odd symmetry, uoddε is identically zero along y = 0

in all cases, and all solutions are zero outside of σ. However, only when aε
ε → ∞ are

uodd and uodd
′

also forced to be continuous across y = 0, and so will vanish there as

well. If aε
ε < M , then it is possible for these two solutions to jump across σ. In Lemma

4.4.1, we show that the solutions uodd and uodd
′

are energy close when aε
ε < M , but the

numerical results above seem to show that this may hold in more generality. The next

tables show plots from the same solutions along the line y = 0.5 in Figure 6.4 and the

vertical line x = 0 in Figure 6.5, including the solution uodd0 when this is an appropriate

approximation.

As expected, we see convergence of the solution at y = 0.5, and the solutions along

x = 0 match up away from the curve σ, but if aε
ε remains bounded, there appears to be

a boundary layer forming around σ, caused by the odd symmetry of the problem with

the inhomogeneity forcing a zero boundary condition.
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y = 0 ε = 0.2 ε = 0.02 ε = 0.002

aε = 3
ε2

aε = 3
ε

aε = 3

aε = 3ε

aε = 3ε2

Figure 6.3: Numerical results for odd symmetry along the line y = 0. In each plot,
the solid line with circles represents the solution uoddε , the dashed line with squares
represents the solution uodd, and the dot-dash line with triangles represents the solution
uodd′ .
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y = 0.5 ε = 0.2 ε = 0.02 ε = 0.002

aε = 3
ε

aε = 3ε

Figure 6.4: Numerical results for odd symmetry along the line y = 0.5. In each plot,
the solid line with circles represents the solution uoddε and the dashed line with squares
represents the solution uodd. In the first row, the dot-dash line with triangles represents
the solution uodd0 , while in the second row, it is the solution uodd′ .

x = 0 ε = 0.2 ε = 0.02 ε = 0.002

aε = 3
ε

aε = 3ε

Figure 6.5: Numerical results for odd symmetry along the line x = 0. In each plot,
the solid line with circles represents the solution uoddε and the dashed line with squares
represents the solution uodd. In the first row, the dot-dash line with triangles represents
the solution uodd0 , while in the second row, it is the solution uodd

′
. The kinks in the

solid line solutions occur at the boundary of the inhomogeneity, and are expected.
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6.1.3 Natural Conjectures

There are two main types of conjectures that these numerical computations seem to

suggest that we have not yet proven. One of these is the behavior of the solutions on

σ. For all values of aε in the even symmetry case, we see that the solution uev seems to

approach the solution uevε , even on the curve σ, while the only results we have been able

to prove thus far involve convergence in the far-field. For odd symmetry, the situation

is more precarious: when aε
ε goes to infinity, the solution uodd appears to converge to

0 on σ, which is the value of uoddε , except for either a boundary layer or numerical

anomaly at the two endpoints. However, if aε
ε remains bounded, we can not expect

to have convergence on σ, because if the solution to (3.5) was to converge to 0 on σ,

it would then have Cauchy data identically 0 on this curve, and so the solution itself

would be 0, which we know is not true. Therefore, there cannot be convergence on σ

in this case, but the numerical results see to show that we may have such convergence

in other cases.

The second type of conjecture that is as of yet unproven is a rate estimate of

convergence. Since the local convergence results of this thesis are based on a supremum

argument where, in each case, only one of the two inequalities has a strict rate control

on the error, the final results do not have this kind of bound. To see what might be

expected for the error as ε→ 0, we performed calculations of the L2 error of the solution

on ω0.8 \ ω0.5. The plots in Figure 6.6 and Figure 6.7 show the error as a function of ε

for several different values of aε and the even and odd parts of the solution. As before,

boundary data is specified as

ϕ(x, y) = 1− x+ x2y − (x+ 1)y2 + 3xy3,

so that we have

ϕev(x, y) = 1− x− (x+ 1)y2

for the even part of the solution and

ϕodd(x, y) = x2y + 3xy3

for the odd part.
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Figure 6.6: Error plot (log-log scale) for boundary data ϕev(x, y) = 1− x− (x+ 1)y2

with even symmetry. The value in the legend for each data set represents the power of
ε in aε = 2εα.

Figure 6.7: Error plot (log-log scale) for boundary data ϕodd(x, y) = x2y + 3xy2 with
odd symmetry. The value in the legend for each data set represents the power of ε in
aε = 2εα.
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From the results in this thesis, we expect convergence at a rate of εβ/2 as long as

εaε > m > 0 for even symmetry, and convergence at a rate of εβ/4 in the odd case for

aε < Mε, for any β < 1. Our proofs, however, do not give any such rate estimates

for any of the other cases. These numerical results seem to suggest that such a rate

estimate exists for all cases. The slopes of the best-fit lines to these data are presented

in Table 6.1.

aε Even Symmetry Odd Symmetry

3ε−2 1.016 1.157

3ε−1 1.016 1.144

3 0.813 1.071

3ε 1.006 1.014

3ε2 1.041 0.979

Table 6.1: Experimental rates of convergence for the approximate problem to the full
problem as ε→ 0 for a variety of conductivities aε.

These numerical results suggest that it might be possible to prove a rate estimate of

order ε in all cases. While not shown here, the same type of results hold if the boundary

data is less smooth across y = 0, indicating that this type of error rates estimate may

hold independent of the increased regularity of this boundary data.
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6.2 Stress intensity factor formula

This section illustrates the use of formula (5.14) to calculate the b1 and b′1 coefficients

in the expansion of uev in Lemma 3.4.1. This expansion should hold as long as εaε does

not converge to zero. In each of these pictures, we show the functions uevε , uev, and the

r1/2 terms from the expansion in Lemma 3.4.1. For the graph of the r1/2 terms, the

solution on σ is plotted as the linear interpolation between the two endpoints of σ, as

these r1/2 terms only appear outside of σ.

This set of images uses boundary data ϕev(x, y) = 1−x− (x+1)y2 and f(x, y) = 0.

As can be seen in the images in Figures 6.8 and 6.9, the dot-dash lines with triangles fit

the r1/2 behavior that both uε and uev satisfy near the endpoints of σ. For εaε → ∞,

it matches up almost exactly, but for εaε → a for some finite number a, there is

some additional error in the calculations. This comes from the fact that the numerical

software is unable to correctly evaluate

ˆ 1

0
r−1/2 dr

because of the singularity at 0. Therefore, the integral needs to be truncated, resulting

in a computed value for the b1 and b′1 coefficients that is not exactly what it should be.
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y = 0 ε = 0.2 ε = 0.02 ε = 0.002

aε = 3
ε2

aε = 3
ε

Figure 6.8: Numerical results illustrating formula (5.14) in computing the coefficient
of the r1/2 terms from Lemma 3.4.1 along y = 0. The solid line with circles is the
solution uevε , the dashed line with squares is the solution uev, and the dot-dash line
with triangles shows the r1/2 terms.

x = −1 ε = 0.2 ε = 0.02 ε = 0.002

aε = 3
ε2

aε = 3
ε

Figure 6.9: Numerical results illustrating formula (5.14) in computing the coefficient
of the r1/2 terms from Lemma 3.4.1 along x = −1. The solid line with circles is the
solution uevε , the dashed line with squares is the solution uev, and the dot-dash line with
triangles shows the r1/2 terms.
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6.3 Non-constant conductivities

Now, we illustrate numerical results for the case of non-constant conductivities as de-

scribed in Section 5.2.1. The plan for these pictures is the same as before: the solid line

with circles will represent the solution to the problem with the inhomogeneity and the

dashed line with squares will represent the solution to the reduced problem on σ. Since

the problem will be solved on the half-domain {y ≥ 0} and we want to decompose

the function into its even and odd parts, we will assume that the conductivity aε is

symmetric with respect to σ. The code will take the function that is used to define

the conductivity and compute the impact factors as defined in Section 5.2.1 and use

them to find the corresponding equation that u0
ε needs to satisfy. It will then solve both

problems and plot them to show the convergence. For the even part of the solution,

plots will be shown along y = 0, y = 0.5, and x = −1, and for the odd part, plots will

be shown along y = 0.5 and x = 0. As with previous sections, Dirichlet boundary data

will be specified as

ϕ(x, y) = 1− x+ x2y − (x+ 1)y2 + 3xy3,

so that we have

ϕev(x, y) = 1− x− (x+ 1)y2

for the even part of the solution and

ϕodd(x, y) = x2y + 3xy3

for the odd part.

6.3.1 Conductivity independent of x

In order to numerically simulate this problem, we first need to compute the correspond-

ing differential equations for the even and odd parts of u0
ε . The only thing that needs

to be determined is the formulas for ∂uev

∂y and ∂uodd

∂y on σ, which will allow us to form

the variational formulation and implement it into the code. Computing this from (5.18)
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(after assuming that the conductivity is symmetric across σ) gives that

∂uev

∂y
=

1

2

∂

∂y
(u(x, y) + u(x,−y)) |y=0

=
1

2

(
∂u+

∂y
− ∂u−

∂y

)
= −εAε

4

(
I1
∂2u+

∂x2
+ I2

∂2u−

∂x2
+ I2

∂2u+

∂x2
+ I3

∂2u−

∂x2

)
= −εAε

2
(I1 + I2)

∂2uev

∂x2
,

∂uodd

∂y
=

1

2

(
∂u+

∂y
+
∂u−

∂y

)
=
Aε
ε
uodd − εAε

4

(
I1
∂2u+

∂x2
+ I2

∂2u−

∂x2
− I2

∂2u+

∂x2
− I3

∂2u−

∂x2

)
=
Aε
ε
uodd − εAε

2
(I1 − I2)

∂2uodd

∂x2
.

Two examples will be showcased here. The first has conductivity profile in the

inhomogeneity given by aε(x, t) = 3y
2

ε4
+ ε2. Figure 6.10 illustrates the results for even

symmetry and Figure 6.11 illustrates the results for odd symmetry.

ε = 0.2 ε = 0.02 ε = 0.002

y = 0

y = 0.5

x = −1

Figure 6.10: Numerical results for even symmetry with conductivity aε(x, y) = 3y
2

ε4
+

ε2. In each plot, the solid line with circles represents the solution uevε , and the dashed
line with squares represents the solution uev.
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ε = 0.2 ε = 0.02 ε = 0.002

y = 0.5

x = 0

Figure 6.11: Numerical results for odd symmetry with conductivity aε(x, y) = 3y
2

ε4
+ε2.

In each plot, the solid line with circles represents the solution uoddε , and the dashed line
with squares represents the solution uodd.

The second has conductivity profile in the inhomogeneity given by aε(x, t) = 3y
2

ε2
+1.

Figure 6.12 illustrates the results for even symmetry and Figure 6.13 illustrates the

results for odd symmetry.

These two examples show some of the interesting features of these problems. For

each of them, we can compute the average conductivity Aε. For the first, we get, after

rescaling,

Aε =

(
1

2

ˆ 1

−1

dt

3 t
2

ε2
+ ε2

)−1

=

√
3

tan−1
(√

3
ε2

)
and for the second

Aε =

(
1

2

ˆ 1

−1

dt

3t2 + 1

)−1

=
3
√

3

π
,

both of which are finite and bounded away from zero as ε → 0. However, the two

solutions show very different behavior as ε → 0. This comes from the fact that for

the first conductivity I1 is O( 1
ε2

), while for the second, I1 is O(1). Therefore, the

coefficient of the ∂2u
∂τ2 term for the first conductivity is O( 1

ε2
), so the solution should

look like the aε = 3
ε2

case from earlier sections. In contract, this coefficient for the

second conductivity is O(1), so it should look like the aε = 3 case from before.

It is also possible to define conductivities aε so that Aε
ε → 0, but εAε(I1 +I2)→∞,

which would represent a situation that can not be achieved by an isotropic conductiv-

ity. However, computing the integrals defining Aε and I1 accurately becomes an issue
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ε = 0.2 ε = 0.02 ε = 0.002

y = 0

y = 0.5

x = −1

Figure 6.12: Numerical results for even symmetry with conductivity aε(x, y) = 3y
2

ε2
+1.

In each plot, the solid line with circles represents the solution uevε , and the dashed line
with squares represents the solution uev.

because the functions involved are large and change rapidly. For instance, in the first

example from before, the function 1
aε

is of order ε2 for y away from zero, but is of

order 1
ε2

near y = 0, so numerical methods can struggle with accurately modeling this

function. The conductivity profile that gives rise to a situation that has behavior dis-

tinct from any isotropic conductivity is much harder to model. The attempts made at

constructing this situation numerically resulted in the reduced problem not accurately

approximating the full problem with inhomogeneity because the coefficients were not

computed accurately.
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ε = 0.2 ε = 0.02 ε = 0.002

y = 0.5

x = 0

Figure 6.13: Numerical results for odd symmetry with conductivity aε(x, y) = 3y
2

ε2
+1.

In each plot, the solid line with circles represents the solution uoddε , and the dashed line
with squares represents the solution uodd.



123

6.3.2 Conductivity independent of t

Again, we need to determine the problem that the even and odd parts of u0
ε will solve

in the case where aε is independent of t. Doing the same computation as before, but

starting from (5.19), gives

∂uev

∂y
=

1

2

(
∂u+

∂y
− ∂u−

∂y

)
= − ε

6

[
2
∂

∂x

(
aε(x)

∂u+

∂x

)
+

∂

∂x

(
aε(x)

∂u−

∂x

)

+ 2
∂

∂x

(
aε(x)

∂u−

∂x

)
+

∂

∂x

(
aε(x)

∂u+

∂x

)]

= ε
∂

∂x

(
aε(x)

∂uev

∂x

)
,

∂uodd

∂y
=
∂u+

∂y
+
∂u−

∂y

=
aε(x)

ε
uodd − ε

3

[
2
∂

∂x

(
aε(x)

∂u+

∂x

)
+

∂

∂x

(
aε(x)

∂u−

∂x

)

− 2
∂

∂x

(
aε(x)

∂u−

∂x

)
− ∂

∂x

(
aε(x)

∂u+

∂x

)]

=
aε(x)

ε
uodd − ε

3

∂

∂x

(
aε(x)

∂uodd

∂x

)
,

which is implemented in variational form in the code for this simulation.

This example has boundary data ϕ(x, y) = 1 − x + x2y − (x + 1)y2 + 3xy3 with

source function f = 0. The conductivity profile is

aε(x, t) =



3ε2 x < −0.5

3ε−2 −0.5 < x < 0

3ε2 0 < x < 0.5

3ε−2 x > 0.5

(6.1)

in ωε. The point of this conductivity profile is to illustrate that if the conductivity varies

in the tangential direction, it is possible to generate additional r1/2 singularity terms

that also need to be dealt with. Figure 6.14 illustrates the results for even symmetry,

and Figure 6.15 illustrates the results for odd symmetry.
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ε = 0.2 ε = 0.02 ε = 0.002

y = 0

y = 0.5

x = −1

Figure 6.14: Numerical results for even symmetry with the discontinuous conductivity
described in (6.1). In each plot, the solid line with circles represents the solution uevε ,
and the dashed line with squares represents the solution uev.

ε = 0.2 ε = 0.02 ε = 0.002

y = 0.5

x = 0

Figure 6.15: Numerical results for odd symmetry with the discontinuous conductivity
described in (6.1). In each plot, the solid line with circles represents the solution uoddε ,
and the dashed line with squares represents the solution uodd.
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6.3.3 Generic Conductivity

The next goal would be to model a generic variable conductivity aε within ωε. The only

thing to be determined is theM and K parameters in order to plug them into the normal

derivative terms in (5.22). However, we need to first determine the problems that the

even and odd parts of u0
ε satisfy. We need to initially assume that âε(x, t) = âε(x,−t),

which will give that K1 = K3. Then, we can calculate

∂uev

∂n
=

1

2

(
∂u+

∂y
− ∂u−

∂y

)
= − ε

2

[
∂

∂τ

(
K1

∂uev

∂τ

)
+

∂

∂τ

(
K2

∂uev

∂τ

)
+

∂

∂τ

(
(M2 +M3)uodd

)]
= − ε

2

[
∂

∂τ

(
(K1 +K2)

∂uev

∂τ

)
+

∂

∂τ

(
(M2 +M3)uodd

)]
,

∂uodd

∂n
=

1

2

(
∂u+

∂y
+
∂u−

∂y

)
=
Aε
ε
uodd + εM1u

odd − ε

2

∂

∂τ

(
(K1 −K2)

∂uodd

∂τ

)
+

∂

∂τ

(
(M2 −M3)uodd

)
−M2

∂u+

∂τ
−M3

∂u−

∂τ
.

Unfortunately, the even and odd parts of u0
ε are not decoupled in these derivatives, like

they were in all of the problems in the previous sections. The only way this would

happen is if all of the M coefficients are zero, which requires a lot of extra symmetry

in the conductivity aε. In order to model this type of problem, a new numerical model

would be required that does not solve the problem using symmetry, and can analyze

the entire domain at once.
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Chapter 7

Conclusions

The content of this thesis has three main parts. The first of these is the extension of

the existing work to the case of open curves. We determine a way to take the results in

[DV17] that work for closed curves and extend them to open curves. The main difficulty

here is to deal with the endpoints of the curve, as there could be some issues with the

regularity of the solution at these points. Our approach here is to determine the explicit

form of the most singular part of the solution around each of these endpoints and use

this to prove energy closeness, using the same energy lemma to move from energy

closeness to norm closeness.

The second part is supplemental results to related problems. This includes the

formula for computing the coefficient of r1/2 in the expansion of the solution around

the endpoints of σ, which allows for validation of the fact that this term does exist in

these expansions. This section also contains explorations into adjacent problems with

non-constant or anisotropic conductivities. These more general types of problems are

more similar to physical problems that may arise and would have more applications.

The third part of this work is a numerical implementation of this problem, and the

results that can be shown from that. The ability to generate these kinds of images can

illustrate when and how the convergence occurs, as well as potentially hint at conjectures

that might be able to be proven. For instance, Lemma 4.2.1 was first suggested via

several numerical results that showed this behavior of the solution, and then we were

able to prove this fact. The numerical simulations generated here make use of the

symmetry assumptions made throughout this work to solve the problem on B2(0)+

and are run separately for even and odd symmetry. While this is slightly restrictive, it

provides numerical evidence and support for all of the results that are proven here.
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Where do we go from here? One clear path forward is to finish up some of the

supplemental results, namely, proving the uniformly accurate asymptotic approximation

of the reduced problem on σ to the full problem with the inhomogeneity in the case of a

non-constant conductivity. As discussed and illustrated with numerical results, this type

of argument, at least in the form presented here, will not work for this problem. In order

to get the uniform approximation, the specific form of the r1/2 term at the endpoints

of σ needed to be known, but for variable conductivities, it is possible for extra r1/2

singularities to be generated at interior points of σ. It is quite possible for a modified

argument to work here, but the same one will not. In addition, attempting to find a way

to represent the inner energy for anisotropic conductivities in terms of boundary data

would be helpful for starting the dive into these problems. The problem for anisotropic

conductvities as a whole is not very well understood, and all of the work done here

assumed that the conductivity is diagonal in the (τ, n) basis, which is a reasonable

start, but it still a limiting assumption. It would also be interesting to investigate what

results still hold if the function f can have support on the inhomogeneity ωε. The

current proofs rely on the fact that the function is harmonic near the singularity, but

that may not be either necessary from the mathematical point of view or present in

physical situations.

It would also be beneficial towards this analysis to develop more involved numerical

models that can address the full problem in different geometries. This would allow the

problem to be looked at without needing to assume even or odd symmetry and allow

for curved geometries to be analyzed. This would give an idea for how the singularities

do or do not change when σ is no longer a straight line segment, and give motivation

for what types of results could be proved on this front. As discussed in Chapter 6, it

will also allow for variable conductivities to be explored fully, as this problem can not

be modeled with even and odd symmetry except in very special cases. In addition, the

numerical results show that the value Aε is not enough to determine the behavior of

the solution, and so the impact factors as defined in Chapter 5 may not be the best

way to model this situation. It would also be interesting to look into if there is a better

way to solve for these parameters so that it is easier to determine the behavior of the
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solution to the reduced problem that is not hidden in these factors.

Most of the applications in this area, particularly those related to cloaking, require

conductivities that are both anisotropic and non-constant. Solving this problem would

require mixing the most difficult parts of both the anisotropic problem and the variable

conductivity problem, so the approach given here may not be the best one. Techniques

related to periodic homogenization may provide an easier route into analyzing these

problems. Finally, once cloaking problems become a possibility, the next step would be

to look at this problem in the case of non-zero frequency, i.e., for the Helmholtz equation.

This would allow these results to be extended to electromagnetic imaging, and, in

particular, the use of directional waves. As this problem has a non-rotationally invariant

inhomogeneity, needing to cloak against directional waves may be easier because we can

make use of this asymmetry to reduce the need for metamaterials in the cloak.
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Appendix A

Selected Proofs

A.1 Correction function in Section 4.2.1

Lemma A.1.1. Let zε be as in Section 4.2.1. Then

||zε||H1(Ω\ωε) ≤ C(f, ϕ)εβ/2

for any β > 1.

Proof. Recall that zε is the solution to
−∆zε = 0 Ω \ ωε

zε = 0 ∂Ω

zε = uev ◦ pσ − uev ∂ωε.

To prove the desired estimate, we split the function zε into two parts, zε = z
(1)
ε + z

(2)
ε

where 
−∆z

(1)
ε = 0 Ω \ ωε

z
(1)
ε = 0 ∂Ω

z
(1)
ε = uev,∗ ◦ pσ − uev,∗ ∂ωε,

and 
−∆z

(2)
ε = 0 Ω \ ωε

z
(2)
ε = 0 ∂Ω

z
(2)
ε = b1r

1/2 sin(θ/2)η(r) + b′1r
′1/2 sin(θ′/2)η(r′) ∂ωε.

This decomposition relies on the fact that the function

b1r
1/2 sin(θ/2)η(r) + b′1r

′1/2 sin(θ′/2)η(r′)
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is zero along the curve σ. We want to prove the desired norm bound for both z
(1)
ε

and z
(2)
ε individually. To do so, we will show that it is possible to construct a function

Z
(i)
ε that matches the boundary conditions of z

(i)
ε and has the desired norm bound

for i = 1, 2. Then, by the fact that the variational formulation of the PDE that z
(i)
ε

satisfies, we have ˆ
Ω\ωε
∇(z(i)

ε − Z(i)
ε )∇z(i)

ε dx = 0

so that ˆ
Ω\ωε
|∇z(i)

ε |2 dx =

ˆ
Ω\ωε
∇Z(i)

ε ∇z(i)
ε dx,

and so

||∇z(i)
ε ||L2(Ω\ωε) ≤ ||∇Z

(i)
ε ||L2(Ω\ωε) ≤ C(f, ϕ)εβ/2.

This estimate can then be combined with an estimate on Z
(i)
ε |∂ωε and a version of

Poincaré’s inequality to get the H1 estimates that we need.

For Z
(1)
ε , we note that by the fact that uev,∗ is C1,β/2 with norm bounded by C(f, ϕ),

we have that on ∂ωintε

||uev,∗ ◦ pσ − uev,∗||L∞(∂ωintε ) ≤ Cε1+β/2||uev,∗||C1,β/2(Ω\σ) ≤ C(f, ϕ)ε1+β/2∣∣∣∣∣∣∣∣ ∂∂x(uev,∗ ◦ pσ − uev,∗)
∣∣∣∣∣∣∣∣
L∞(∂ωintε )

≤ Cεβ/2||uev,∗||C1,β/2(Ω\σ) ≤ C(f, ϕ)εβ/2

On ∂ωendsε , the function uev,∗ ◦ pσ is identically equal to uev,∗ at the corresponding

endpoint of σ, and so ∇uev,∗ ◦ pσ is zero on these boundaries. From Lemma 4.2.1, we

know that ∂uev,∗

∂x = 0 at these endpoints and ∂uev,∗

∂y = 0 here as well by even symmetry.

Therefore ∇uev,∗ = 0 at each endpoint. Then the C1,β/2 regularity of uev,∗ gives that

||uev,∗ ◦ pσ − uev,∗||L∞(∂ωendsε ) ≤ Cε1+β/2||uev,∗||C1,β/2(∂ωendsε )

≤ C(f, ϕ)ε1+β/2

||∇(uev,∗ ◦ pσ − uev,∗)||L∞(∂ωendsε ) = ||∇uev,∗||L∞(∂ωendsε )

≤ Cεβ/2||uev,∗||C1,β/2(∂ωendsε )

≤ C(f, ϕ)εβ/2

Combining all of these estimates, we see that

||Z(1)
ε ||W 1,∞(∂ωε) = ||uev,∗ ◦ pσ − uev,∗||W 1,∞(∂ωε) ≤ C(f, ϕ)εβ/2.
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Figure A.1: Regions used in the construction of Z
(2)
ε

Given this W 1,∞ function on ∂ωε, we can extend it as a constant function along

normal rays emanating from ∂ωε and multiply by a cutoff function to get the extended

Z
(1)
ε function to vanish near ∂Ω. Since Ω is a fixed domain, we have that

||Z(1)
ε ||H1(Ω\ωε) ≤ C||Z

(1)
ε ||W 1,∞(Ω\ωε) ≤ C||Z

(1)
ε ||W 1,∞(∂ωε) ≤ C(f, ϕ)εβ/2

which is exactly the desired estimate in Lemma A.1.1.

For Z
(2)
ε , we carry out the same process, but we need to be more careful with the

calculations. We start by defining this Z
(2)
ε function in the region (Ω \ ωε) ∩ x < −1,

which is Region A in Figure A.1.

For ε small enough, the value of Z
(2)
ε on ∂ωε is −b1r1/2 sin(θ/2), so on this region,

we extend Zε as a constant in the normal direction and multiply by a cutoff function.

Thus, we have that in the region (Ω \ ωε) ∩ {x < 1}

Z(2)
ε = −b1ε1/2 sin(θ/2)ζ(r)

where ζ is a cutoff function that is 1 on r < δ
4 and 0 on r > δ

2 , where δ denotes the

size of the neighborhood around σ where f vanishes. From this definition, it can be

computed that

||Z(2)
ε ||H1((Ω\ωε)∩{x<−1}) ≤ ε1/2

√
| log ε|C(f, ϕ). (A.1)
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From this, we see that the norm control we should be looking for in this case is of the

form ε1/2
√
| log ε|C(f, ϕ), which we can bound by εβ/2 for any β < 1.

Next, we move on to the region {−1 < x < 0}, which is Region B (and B′) in

Figure A.1. To meet all of our requirements and make it easy to continue to extend

this function to the right half of σ, we want a function Z
(2)
ε on (Ω \ωε)∩{−1 < x < 0}

satisfying 

Z
(2)
ε = −b1ε1/2

√
2

2 ζ(y) (Ω \ ωε) ∩ {x = −1}

Z
(2)
ε = −b1r1/2 sin(θ/2)η(r) {−1 < x < 0, y = ±ε}

Z
(2)
ε = 0 (Ω \ ωε) ∩ {x = 0}

Z
(2)
ε = 0 ∂Ω ∩ {−1 < x < 0},

with

||Z(2)
ε ||H1((Ω\ωε)∩{−1<x<0}) ≤ ε1/2

√
| log ε|C(f, ϕ).

In order to do this, we check that the boundary data define an H1/2 function with the

same norm control. Due to the cutoff functions and the edges where the function is

identically zero, there are three things to check for this: the vertical segments along

{x = −1}, the horizontal segments along {y = ±ε}, and the corners at (−1,±ε) [LM72].

For the vertical segments, we see that

||Z(2)
ε ||H1/2((Ω\ωε)∩{x=−1}) =

∣∣∣∣∣
∣∣∣∣∣b1ε1/2

√
2

2
ζ(y)

∣∣∣∣∣
∣∣∣∣∣
H1/2((Ω\ωε)∩{x=−1})

≤ ε1/2C(f, ϕ) (A.2)

because ζ is smooth.

For the horizontal segments, we compute that, in rectangular coordinates,

Z(2)
ε (x,±ε) = −b1

√
2

2
r1/2 sin(θ/2)η(r)

= ∓b1
2

ε

(
√

(x+ 1)2 + ε2 + (x+ 1))1/2
η(r),

∂

∂x
Z(2)
ε (x,±ε) = ∓b1

2

ε

(
√

(x+ 1)2 + ε2 + (x+ 1))1/2

∂

∂x
η(r)

± b1
4
η(r)

ε

(
√

(x+ 1)2 + ε2 + (x+ 1))3/2

(
x+ 1√

(x+ 1)2 + ε2
+ 1

)
,

from which we compute the norms of this function on ∂ωε ∩ {−1 < x < 0}. We see,
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after shifting coordinates, that

||Z(2)
ε ||2L2(∂ωε∩{−1<x<0}) ≤ C(f, ϕ)2ε2

ˆ 1

0

dx√
x2 + ε2 + x

= C(f, ϕ)2ε2
(ˆ ε

0

dx√
x2 + ε2 + x

+

ˆ 1

ε

dx√
x2 + ε2 + x

)
≤ C(f, ϕ)2ε2

(ˆ ε

0

dx

ε
+

ˆ 1

ε

dx

2x

)
≤ C(f, ϕ)2ε2(1 + log ε),

and ∣∣∣∣∣∣∣∣ ∂∂xZ(2)
ε

∣∣∣∣∣∣∣∣2
L2(∂ωε∩{−1<x<0})

≤ C(f, ϕ)2ε2
(

log ε+

ˆ 1

0

dx

(
√
x2 + ε2 + x)3

)

= C(f, ϕ)2ε2

(
log ε+

ˆ ε

0

dx

(
√
x2 + ε2 + x)3

+

ˆ 1

ε

dx

(
√
x2 + ε2 + x)3

)

≤ C(f, ϕ)2ε2
(

log ε+

ˆ ε

0

dx

ε3
+ C

ˆ 1

ε

dx

x3

)
≤ C(f, ϕ).

Therefore, by logarithmic convexity of the Sobolev norms, we have that

||Z(2)
ε ||2H1/2(∂ωε∩{−1<x<0}) ≤ ε

1/2(| log ε|)1/4C(f, ϕ) ≤ ε1/2
√
| log ε|C(f, ϕ). (A.3)

for ε small.

Finally, for the corners at (−1,±ε), we compute the following integral, which is

equivalent to the square of the H1/2 norm of Z
(2)
ε across the corner.

ˆ δ/2

0

|Z(2)
ε (−1, ε+ s)− Z(2)

ε (−1 + s, ε)|2

s
ds

=
|b1|2

2

ˆ δ/2

0

(
ε1/2 − ε√

(s2 + ε2 + s)1/2

)2
1

s
ds

= ε
|b1|2

2

ˆ δ/2ε

0

[
(
√
t2 + 1 + t)1/2 − 1

]2

t(
√
t2 + 1 + t)

dt

≤ ε| log ε|C(f, ϕ)2

(A.4)

where this last line comes from the fact that for t large, the integrand goes like 1
t , which

gives rise to the log ε term, and the integrand vanishes at t = 0, and so is bounded there.
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Therefore, by combining (A.2), (A.3), and (A.4), we get that the function Z
(2)
ε has

an H1/2 norm on this boundary controlled by ε1/2
√
| log ε|, and so, by extension

||Z(2)
ε ||H1((Ω\ωε)∩{−1<x<0}) ≤ ε1/2

√
| log ε|C(f, ϕ). (A.5)

Since these definitions of Z
(2)
ε in regions A and B have the same trace along the

boundaries (Ω\ωε)∩{x = −1}, combining the estimates (A.1) and (A.5) give that this

function Z
(2)
ε is in H1((Ω \ ωε) ∩ {x < 0}) with

||Z(2)
ε ||H1((Ω\ωε)∩{x<0}) ≤ ε1/2

√
| log ε|C(f, ϕ). (A.6)

We can perform the exact same calculations in the domain (Ω \ωε)∩{x > 0} to get

the same bound, and since our construction vanishes in a neighborhood of x = 0, we

can merge the two constructions together to get the function Z
(2)
ε that meets all of our

requirements. It matches the boundary data of z
(2)
ε on ∂ωε, vanishes in a neighborhood

of ∂Ω, and has

||Z(2)
ε ||H1(Ω\ωε) ≤ ε

1/2
√
| log ε|C(f, ϕ) ≤ εβ/2C(f, ϕ)

for any β < 1, as desired by Lemma A.1.1. �

A.2 Correction vector field in Section 4.2.2

Lemma A.2.1. There exists a vector field ξε so that
∇ · ξε = 0 Ω \ ωε

(ξε)2(x,±ε) = ±DU(x)− ∂
∂yu

ev(x,±ε) −1 < x < 1

ξε · n = − ∂
∂nu

ev ∂ωε ∩ {(x, y) : |x| > 1}

with

||ξε||L2(Ω\ωε) ≤ ε
β/4C(f, ϕ)

where DU(x) and uev are as defined in Section 4.2.2.

Proof. Based on the fact that ∆uev = 0 in ωε \ σ, we know that

ˆ
ωends,+ε

∂

∂n
uev ds+

ˆ 1

−1

∂

∂y
uev(x, ε) dx−

ˆ
y=0

∂

∂y
uev(x, 0+)dx = 0
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and ˆ
ωends,−ε

∂

∂n
uev ds−

ˆ 1

−1

∂

∂y
uev(x,−ε) dx+

ˆ
y=0

∂

∂y
uev(x, 0−)dx = 0.

Since uev is even, we know that ∂uev

∂y (x, 0±) = 0 on {y = 0} \ σ. We can then combine

the two previous equations to get that
ˆ
ωendsε

∂

∂n
uev ds+

ˆ 1

−1

∂

∂y
uev(x, ε) dx−

ˆ
y=0

∂

∂y
uev(x, 0+)dx

−
ˆ 1

−1

∂

∂y
uev(x,−ε) dx+

ˆ
y=0

∂

∂y
uev(x, 0−)dx = 0.

From the definition of DU(x) in Section 4.2.2, we know that

ˆ 1

−1
DU(x) dx =

ˆ 1

−1

∂

∂y
uev(x, 0+) dx

and by even symmetry of uev, we have that

ˆ 1

−1
−DU(x) dx =

ˆ 1

−1

∂

∂y
uev(x, 0−) dx.

Therefore, our calculation gives that
ˆ
ωendsε

∂

∂n
uev ds+

ˆ 1

−1

∂

∂y
uev(x, ε)−DU(x) dx

−
ˆ 1

−1

∂

∂y
uev(x,−ε)−DU(x) dx = 0.

which implies that for the desired values of ξε · n given in Lemma A.2.1, we have that

ˆ
∂ωε

ξε · n ds = 0.

Therefore, the function

V (·) =

ˆ ·
0
ξε · n ds

is well-defined, where the integral is an arc-length integral along ∂ωε starting at the

point (−1, ε). If we can extend V to an H1 function in Ω \ ωε with appropriate norm

control, then the vector field

ξε = (∇V )⊥ =

(
∂V

∂y
,−∂V

∂x

)
will be an L2 vector field that has the appropriate normal derivatives along ωε and have

the same norm bound as V . Thus, we seek to prove that this function V can be lifted

to H1(Ω \ ωε) with

||V ||H1(Ω\ωε) ≤ C(f, ϕ)εβ/4.
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Figure A.2: Regions in the construction of V and ξε

First, we look on the region (Ω \ ωε) ∩ {x < −1}, which is Region A in Figure A.2.

On the part of ∂ωε in this region, we have that

∂

∂n
uev =

b1
2
ε−1/2 sin(θ/2) +

∂

∂r
uev,∗

and by the regularity of uev,∗ with the fact that the gradient vanishes at (−1, 0), we

know that ∣∣∣∣ ∂∂ruev,∗
∣∣∣∣ ≤ Cεβ/2

on this boundary. Then, by integration, we have that, in polar coordinates around

(−1, 0),

V (ε, θ) = −ε
ˆ θ

π/2

b1
2
ε−1/2 sin(θ̂/2) dθ̂ − ε

ˆ θ

π/2

∂

∂r
uev,∗ dθ̂

= b1ε
1/2 cos(θ/2)− b1

2
ε1/2 − ε

ˆ θ

π/2

∂

∂r
uev,∗ dθ̂.

With the control we have on ∂
∂ru

ev,∗, we can extend this function as a constant function

along normal rays from ∂ωε to get a function V (r, θ) defined on all of (Ω\ωε)∩{x < −1}

with

||V ||H1((Ω\ωε)∩{x<−1}) ≤ C(f, ϕ)ε1/2.

Now, we consider the segment {−1 < x < −1 + ρ, y = ε}, where ρ is chosen small

enough so that the cutoff function η is identically 1 on this segment, which is the bottom
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boundary of Region B in Figure A.2. Here, we know that

uev − uev,∗ = b1r
1/2 sin(θ/2) =

b1√
2

√
((x+ 1)2 + y2)1/2 − (x+ 1).

Setting s = x+ 1, we then have that

∂

∂y
uev(s, y) =

b1

2
√

2

(√
s2 + y2 − s

)−1/2
(

y√
s2 + y2

)
+

∂

∂y
uev,∗

=
b1

2
√

2


(√

s2 + y2 + s
)1/2

√
s2 + y2

+
∂

∂y
uev,∗.

Thus, the function V (now in rectangular coordinates) has the form

V (x, ε) = −
ˆ x

−1
(ξε)2(s, ε) ds =

ˆ x

−1

(
∂

∂y
uev(s, ε)−DU+(s)

)
ds

=

ˆ x+1

0

b1

2
√

2


(√

s2 + ε2 + s
)1/2

√
s2 + ε2

+
∂

∂y
uev,∗(s− 1, ε)

− b1
2

max{s, ε}−1/2 − dε −
∂

∂y
uev,∗(s− 1, 0+) ds

=
b1
2

ˆ x+1

0

(√
s2 + ε2 + s

)1/2

√
2
√
s2 + ε2

−max{s, ε}−1/2 ds

+

ˆ x+1

0

∂

∂y
uev,∗(s− 1, ε)− ∂

∂y
uev,∗(s− 1, 0+) ds− dε(x+ 1).

(A.7)

By the regularity of uev,∗, we know that∣∣∣∣ ∂∂yuev,∗(s− 1, ε)− ∂

∂y
uev,∗(s− 1, 0+)

∣∣∣∣ ≤ C(f, ϕ)εβ/2

so that ∣∣∣∣ˆ x+1

0

∂

∂y
uev,∗(s− 1, ε)− ∂

∂y
uev,∗(s− 1, 0+) ds

∣∣∣∣ ≤ C(f, ϕ)εβ/2|x+ 1|,

and by the definition of dε we know that

|dε(x+ 1)| ≤ C(f, ϕ)ε1/2|x+ 1|.

To handle the first term, we let g(t) be the function

g(t) =

ˆ t

0


(√

s2 + ε2 + s
)1/2

√
2
√
s2 + ε2

−max{s, ε}−1/2

 ds.
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After a change of variables, this becomes

g(t) =
√
ε

ˆ t/ε

0


(√

s2 + 1 + s
)1/2

√
2(s2 + 1)

−max{s, 1}−1/2

 ds.

In looking at the integrand of g, we see that as s→∞,(√
s2 + 1 + s

)1/2

√
2(s2 + 1)

−max{s, 1}−1/2 =

(√
s2 + 1 + s

)1/2

√
2(s2 + 1)

− s−1/2

=

√
s
(√

s2 + 1 + s
)1/2

−
√

2(s2 + 1)
√
s
√

2(s2 + 1)

=
s
(√

1 + s−2 + 1
)1/2

− s
√

2(1 + s−2)

s3/2
√

2(1 + s2)

= s−1/2

(√
1 + s−2 + 1

)1/2
−
√

2(1 + s−2)√
2(1 + s2)

= O(s−5/2),

and as s→ 0(√
s2 + 1 + s

)1/2

√
2(s2 + 1)

−max{s, 1}−1/2 =

(√
s2 + 1 + s

)1/2

√
2(s2 + 1)

− 1 = O(1).

Therefore, the integrand of g is L1((0,∞)), and so we know that

g(t) ≤ C
√
ε

with

C =

ˆ ∞
0

∣∣∣∣∣∣∣
(√

s2 + 1 + s
)1/2

√
2(s2 + 1)

−max{s, 1}−1/2

∣∣∣∣∣∣∣ ds <∞.
Therefore, the first term in the expression of V (x, ε) in (A.7) is also bounded by

C(f, ϕ)
√
ε uniformly in x, giving that

||V ||L2({−1<x<−1+ρ,y=ε}) ≤ ||V ||L∞({−1<x<−1+ρ,y=ε}) ≤ C(f, ϕ)εβ/2.

We want to say something about the H1/2 norm of this function, which will let us

talk about the H1 norm of the lifted function. Thus, we look at the first derivative of
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V , which by the fundamental theorem of calculus is

∂

∂x
V (x, ε) =

b1
2

(√
(x+ 1)2 + ε2 + (x+ 1)

)1/2

√
2((x+ 1)2 + ε2)

−max{x+ 1, ε}−1/2 ds

+
∂

∂y
uev,∗(x, ε)− ∂

∂y
uev,∗(x, 0+)− dε.

The same change of variables as before tells us that

ˆ −1+ρ

−1

∣∣∣∣∣∣∣
(√

(x+ 1)2 + ε2 + (x+ 1)
)1/2

√
2((x+ 1)2 + ε2)

−max{x+ 1, ε}−1/2

∣∣∣∣∣∣∣
2

dx ≤ C

where

C =

ˆ ∞
0

∣∣∣∣∣∣∣
(√

s2 + ε2 + s
)1/2

√
2(s2 + ε2)

−max{s, ε}−1/2

∣∣∣∣∣∣∣
2

ds <∞,

and this constant is finite because the decay on the integrand that was proved earlier

also shows that this function is L2((0,∞)). Our previous bounds on dε and uev,∗ give

that ∣∣∣∣∣∣∣∣dε +
∂uev,∗

∂y
(·, ε)− ∂uev,∗

∂y
(·, 0+)

∣∣∣∣∣∣∣∣
L2({−1<x<−1+ρ,y=ε})

≤ C(f, ϕ)εβ/2

which, all together, implies that∣∣∣∣∣∣∣∣ ∂∂xV (·, ε)
∣∣∣∣∣∣∣∣
L2({−1<x<−1+ρ,y=ε})

≤ C(f, ϕ).

Therefore, by logarithmic convexity of the Sobolev norms,

||V ||H1/2({−1<x<−1+ρ,y=ε}) ≤ C(f, ϕ)εβ/4

for any β < 1. In order to lift this to an H1 function on (Ω \ ωε) ∩ {−1 < x < −1 + ρ}

with the appropriate norm control, we need to show that it has the same H1/2 control

on the vertical segment (Ω \ ωε) ∩ {x = −1} as well as across the corner at (−1, ε)

[LM72]. Since we are trying to match the function V we defined on {x < −1}, we know

that we want V to be zero along the vertical segment, which is clearly in H1/2. The

corner integral then simplifies toˆ −1+ρ

−1

|V (x, ε)|2

|x+ 1|
dx ≤ |b1|

2

2

ˆ −1+ρ

−1

|g(x+ 1)|2

|x+ 1|
dx

+ 2

ˆ −1+ρ

−1

∣∣∣´ x−1

(
−dε + ∂uev,∗

∂y (s, ε)− ∂uev,∗

∂y (s, 0+)
)
ds
∣∣∣2

|x+ 1|
dx

(A.8)
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For the second line above, we know that∣∣∣∣−dε +
∂uev,∗

∂y
(s, ε)− ∂uev,∗

∂y
(s, 0+)

∣∣∣∣ ≤ C(f, ϕ)εβ/2

so that

2

ˆ −1+ρ

−1

∣∣∣´ x−1

(
−dε + ∂uev,∗

∂y (s, ε)− ∂uev,∗

∂y (s, 0+)
)
ds
∣∣∣2

|x+ 1|
dx ≤ C(f, ϕ)2εβ (A.9)

by applying this bound to the inner function.

For the first term involving the function g, we have already seen that the integrand of

this function is both in L1 and L2 on (0,∞). Therefore, we can use Hölder’s inequality

to show that

|g(t)| ≤
√
ε

ˆ t/ε

0

∣∣∣∣∣∣∣
(√

s2 + 1 + s
)1/2

√
2
√
s2 + 1

−max{s, 1}−1/2

∣∣∣∣∣∣∣
p

ds


1
p (ˆ t/ε

0
1 ds

) 1
q

≤ Cpt
1
q ε

1
2
− 1
q

where Cp depends on the Lp norm of the integrand of g, with 1 < p < 2, and 1
q = 1− 1

p .

From this, we get that

ˆ −1+ρ

−1

|g(x+ 1)|2

|x+ 1|
dx ≤ Cε1−

2
q

ˆ ρ

0
s

2
q
−1

ds ≤ Cε1−
2
q (A.10)

for any q > 2. Putting the estimates (A.9) and (A.10) into (A.8), we get that

ˆ −1+ρ

−1

|V (x, ε)|2

|x+ 1|
dx ≤ C(f, ϕ)2εβ

for any β < 1, which is exactly the corner condition we need. Therefore, we get that

this function V is H1/2 on the entire boundary, and so we can lift it to a function

V ∈ H1((Ω \ ωε) ∩ {−1 < x < −1 + ρ, y > ε}) with

||V ||H1((Ω\ωε)∩{−1<x<−1+ρ,y>ε}) ≤ C(f, ϕ)εβ/4.

We can perform this same construction on (Ω \ ωε) ∩ {−1 < x < −1 + ρ, y < −ε},

which is Region B′ in Figure A.2. The only difference is that on the vertical segment, we

will have constant data
´ επ

0 ξε ·n ds instead of constant data 0, and the function V (x, ε)

will also be shifted by the same amount. Thus the identical arguments go through (once
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we restrict to only caring about local integrability and regularity) to give an extension

V with the same norm control. Since the boundary data on both vertical segments

match with those of the radial function we defined on (Ω \ ωε)∩ {x < −1} (Region A),

we can stitch these together into a single function on (Ω \ ωε) ∩ {x < −1 + ρ} with the

desired boundary data on ∂ωε and

||V ||H1((Ω\ωε)∩{x<−1+ρ} ≤ C(f, ϕ)εβ/4.

After shifting by the constant corresponding to
´
ξε · n ds from (−1, ε) to (1,−ε)

along ∂ωε, the same argument works on {x > 1 − ρ} to get a function with the same

norm control on that region. On the interior segments {−1 + ρ
2 < x < 1 − ρ

2 , y =

±ε}, which are the interior boundaries of Regions C and C ′ in Figure A.2, V has

W 1,∞ norm controlled by εβ/2C(f, ϕ), so that V can be extended to a function in

H1((Ω \ ωε) ∩ {−1 + ρ
2 < x < 1− ρ

2}) with boundary data equal to
´ ·

0 ξε · n ds and

||V ||H1((Ω\ωε)∩{−1+ ρ
2
<x<1− ρ

2
}) ≤ C(f, ϕ)εβ/2.

Finally, we can paste these three constructions together with a partition of unity in

x to get a function V ∈ H1(Ω \ ωε) with

V |∂ωε=
ˆ ·

0
ξε · n ds ||V ||H1(Ω\ωε) ≤ C(f, ϕ)εβ/4

for any β < 1. Multiplying this by a cutoff function so that it vanishes near ∂Ω gives

the function V that we wanted to construct.

Then, the vector field

ξε = (∇V )⊥ =

(
∂V

∂y
,−∂V

∂x

)
satisfies 

∇ · ξε = 0 Ω \ ωε

(ξε)2(x,±ε) = ±DU(x)− ∂
∂yu

ev(x,±ε) −1 < x < 1

ξε · n = − ∂
∂nu

ev ∂ωε ∩ {(x, y) : |x| > 1}

with

||ξε||L2(Ω\ωε) ≤ ε
β/4C(f, ϕ),
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where the value of the normal derivatives comes from the fact that

ξε · n =
∂V

∂τ

and the tangential derivatives of V are zero on ∂Ω and the desired value of ξε · n on

∂ωε. �

A.3 Correction vector field in Section 4.3.2

Lemma A.3.1. There exists a vector field ξε satisfying
∇ · ξε = 0 Ω \ ωε

ξε · n = 0 ∂Ω

ξε · n = −∇uev0 · n ∂ωε,

with norm control of

||ξε||L2(Ω\ωε) ≤ ε
βC(f, ϕ)

for any β < 1, where uev0 is as defined in Section 4.3.2.

Proof. The construction of this ξε is very similar to the work in Section A.2. Since

∆uev0 = 0 in ωε, then we know that

ˆ
∂ωε

−∇uev0 · n ds = 0,

so the function

V (·) =

ˆ ·
0
∇uev0 ds,

where the integral is taken to be in terms of arclength around ∂ωε starting at (−1, ε)

is a well-defined function. Since uev0 is C2 in Ω, but ∂ωε is only a C1,β curve, for any

β < 1, the same calculations as before will give a similar estimate. In this case, we only

need to worry about the parts of the argument that involved the uev,∗ function, since

uev0 is C2 and does not have an r1/2 singularity. Pushing all of the estimates through

gives that this V can be lifted to all of Ω \ ωε with

||V ||H1(Ω\ωε) ≤ C(f, ϕ)εβ.
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As before, cutting off this function near ∂Ω and taking

ξε = (∇V )⊥ =

(
∂V

∂y
,−∂V

∂x

)
will give a solution to our problem with the norm control that we need. �

A.4 Expanding the energy estimate to Ω in Section 4.4

In Section 4.4, we prove that

|Eodd′(uodd′)− Eoddε (uoddε )| = |Eev,N (vev,N )− ENε (vNε )| ≤ C(f, ϕ)2εβ/4

as long as the energies are restricted to only involve integrals over ωδ, the region where

f ≡ 0. In this section, we extend this to all of Ω.

Lemma A.4.1. The energy estimate

|Eodd′(uodd′)− Eoddε (uoddε )| ≤ C(f, ϕ)2εβ/4

continues to hold when the domains of all of the energies are Ω, any domain symmetric

around σ, instead of ωδ.

Proof. The proof follows the same argument as in Section 4.7, and is only included

here to show that it does not require future results to expand these energies to all of

Ω. As in Section 4.7, we will use subscripts to denote the domains of the integrals in

the energy expression, as well as the boundary curve where boundary conditions are

applied.

Let uodd and uodd
′

be the solutions of their respective differential equations on Ω

with boundary data ϕ. Let ψ and ψ′ be the traces of the functions uodd and uodd
′

respectively on ∂ωδ. Define vodd as the minimizer of Eoddωδ
with boundary data ψ′ and

vodd
′

as the minimizer of Eodd
′

ωδ
with boundary data ψ. Then, we define

ūodd =


uodd

′
Ω \ ωδ

vodd ωδ

ūodd
′

=


uodd Ω \ ωδ

vodd
′
ωδ
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Based on how these functions are defined and their matching traces on ∂ωδ, ū
odd

and ūodd
′

are H1 across ∂ωδ, and the behavior near σ gives that

ūodd ∈ V odd and ūodd
′ ∈ V odd′

which allows us to use them in energy expressions.

By the result that we prove in Section 4.4, we know that

|Eoddωδ
(vodd)− Eodd′ωδ

(uodd
′
)| ≤ C(f, ϕ)2εβ/4

and

|Eoddωδ
(uodd)− Eodd′ωδ

(vodd
′
)| ≤ C(f, ϕ)2εβ/4,

because the data ψ and ψ′ are controlled by C(f, ϕ). Then, by the same arguments in

Section 4.7, we have that

EoddΩ (ūodd) = Eoddωδ
(vodd) +

1

2

ˆ
Ω\ωδ

|∇uodd′ |2 dx−
ˆ

Ω\ωδ
fuodd

′
dx

≤ Eodd′ωδ
(uodd

′
) + C(f, ϕ)2εβ/4

+
1

2

ˆ
Ω\ωδ

|∇uodd′ |2 dx−
ˆ

Ω\ωδ
fuodd

′
dx

= Eodd
′

Ω (uodd
′
) + C(f, ϕ)2εβ/4

and

Eodd
′

Ω (ūodd
′
) = Eodd

′
ωδ

(vodd
′
) +

1

2

ˆ
Ω\ωδ

|∇uodd|2 dx−
ˆ

Ω\ωδ
fuodd dx

≤ Eoddωδ
(uodd) + C(f, ϕ)2εβ/4

+
1

2

ˆ
Ω\ωδ

|∇uodd|2 dx−
ˆ

Ω\ωδ
fuodd dx

= EoddΩ (uodd) + C(f, ϕ)2εβ/4.

Then, since uodd and uodd
′

are minimizers of their respective energy functionals over

Ω, we have that

EoddΩ (uodd) ≤ EoddΩ (ūodd) ≤ Eodd′Ω (uodd
′
) + C(f, ϕ)2εβ/4,

Eodd
′

Ω (uodd
′
) ≤ Eodd′Ω (ūodd

′
) ≤ EoddΩ (uodd) + C(f, ϕ)2εβ/4.

Combining these two estimates above gives exactly the result desired in Lemma A.4.1,

showing that these energy estimates extend to all of Ω. �
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Appendix B

A Primer on Dual Energies

The idea of dual energies and how they can be used in solving this type of problem

goes back to at least [MS61]. The motivation for comes from the following equality of

real numbers:

1

2
a2 = max

b∈R
ab− 1

2
b2.

The function on the right hand side is concave down in b, the unique maximum occurs

when b = a, and the expression evaluates to 1
2a

2. We can use this argument to turn

the minimization problem that normally defines the energy formulation of an elliptic

partial differential equation into a maximization problem. When the problem becomes

a maximization, we know that any test function has a smaller dual energy, which thus

allows us to prove both sides of an energy inequality. For instance, if we want to show

that energies E1 and E2 are close at their minimizers, we can do that using the dual

energy Ec1 to E1. Assume that u1 and u2 are the minimizers of E1 and E2 respectively.

Then, we know that

E1(u1)− E2(u2) ≤ E1(u∗)− E2(u2)

where u∗ is any function in the appropriate space of functions that u1 comes from.

Ideally, one will be able to prove that this is small for a function u∗ that may be defined

to look like u2. For the other direction of the inequality, we can use the fact that

E1(u1)− E2(u2) = Ec1(u1)− E2(u2) ≥ Ec1(u∗)− E2(u2)

where u∗ is again any function chosen from the appropriate space that u1 comes from.

By the same logic, we then try to make this difference small by choosing u∗ so it

looks like u2. The next section will show how this works for the particular case of the
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Laplacian, and the rest of this appendix will show the derivation of the dual energy for

all of the different types of problems that arise in the this thesis.

B.1 Dual energy for the Laplacian

Consider the solution to 
−∆u = f Ω

u = ϕ ∂Ω.

We know that this solution can be found as the minimizer of an energy functional

E(u) = min
v∈V

E(v),

where

E(v) =
1

2

ˆ
Ω
|∇v|2 dx−

ˆ
Ω
fv dx

and

V = {v ∈ H1(Ω) : v = ϕ on ∂Ω}.

We want to find a corresponding maximization problem that can be used to characterize

u. To do this, we use the principle described in the introduction to this Appendix, and

rewrite the squared term as a maximum

1

2

ˆ
Ω
|∇v|2 dx−

ˆ
Ω
fv dx = max

ξ∈L2(Ω)2

ˆ
Ω
∇v · ξ dx− 1

2

ˆ
Ω
|ξ|2 dx−

ˆ
Ω
fv dx,

where the maximum is acheived at ξ = ∇v. We then integrate by parts to see that

E(u) = min
v∈V

1

2

ˆ
Ω
|∇v|2 dx−

ˆ
Ω
fv dx

= min
v∈V

max
ξ∈L2(Ω)2

ˆ
Ω
∇v · ξ dx− 1

2

ˆ
Ω
|ξ|2 dx−

ˆ
Ω
fv dx

= min
v∈V

max
ξ∈L2(Ω)2

ˆ
∂Ω
vξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx−

ˆ
Ω

(∇ · ξ + f)v dx

≥ max
ξ∈L2(Ω)2

min
v∈V

ˆ
∂Ω
vξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx−

ˆ
Ω

(∇ · ξ + f)v dx.

Now, if ∇·ξ+f 6= 0, then v can be chosen so that the inner minimization approaches

−∞, which is not where the maximum in ξ is achieved. Therefore, we can add in the



147

constraint −∇ · ξ = f and not affect the final result of the calculation. Therefore, if we

define the set

W = {ξ ∈ L2(Ω)2 | −∇ · ξ = f in Ω}, (B.1)

where this condition is interpreted in the sense of distributions, the above calculations

give that

min
v∈V

1

2

ˆ
Ω
|∇v|2 dx−

ˆ
Ω
fv dx ≥ max

ξ∈W
min
v∈V

ˆ
∂Ω
vξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx.

Finally, v only appears in this last step in terms of its value on the boundary of Ω,

which we know is ϕ by the definition of the set V . Replacing v |∂Ω by ϕ, we can then

remove the minimization over v, which gives

min
v∈V

1

2

ˆ
Ω
|∇v|2 dx−

ˆ
Ω
fv dx ≥ max

ξ∈W

ˆ
∂Ω
ϕξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx,

from which we can define the dual energy functional as

Ec(ξ) =

ˆ
∂Ω
ϕξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx (B.2)

over the set W defined in (B.1). By integration by parts, and the fact that we know

where we get equality after the first step of our calculations, we see that

Ec(∇u) = E(u),

which makes sense because ∇u ∈W as −∆u = f . Therefore, we see that

E(u) = min
v∈V

E(v) ≥ max
ξ∈W

Ec(ξ) ≥ Ec(∇u) = E(u), (B.3)

so that everything in the above expression is actually an equality. Therefore, we have

that

E(u) = Ec(∇u) = max
ξ∈W

Ec(ξ)

where Ec and W are defined by (B.2) and (B.1) respectively, and this is a maximization

problem that can be used to characterize u, particularly if we only care about the value

of the energy at u.

The rest of this appendix will show this process for all of the energies and dual

energies used in this thesis. The general scheme is the same: add in a maximization,
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integrate by parts, and find the appropriate conditions to make the minimization, after

moving it to the inside, well-defined. The final steps of the justification are also identical,

since we know what the maximizer should be and at this point the primal and dual

energies are equal, the steps in (B.3) work the same in each case. Therefore, the

following sections will not provide all of the justification, but just show how the desired

functionals are derived and show where the maximum should be achieved.

B.2 Even symmetry

B.2.1 Full problem with inhomogeneity

For the even problem with the inhomogeneity, we have that uevε solves
−∇ · (γε∇uevε ) = fev Ω

uevε = ϕev ∂Ω,

which can be found as the minimizer of the functional

Eevε (v) =
1

2

ˆ
Ω
γε|∇v|2 −

ˆ
Ω
fevv

over the space

V ev
ε = {v ∈ H1(Ω) | v is even across y = 0, v = ϕev on ∂Ω}.

From this energy functional, we can write

1

2

ˆ
Ω
γε|∇v|2 −

ˆ
Ω
fevv = max

ξ∈L2(Ω)2

ˆ
Ω
∇v · ξ − 1

2
γ−1
ε |ξ|2 dx−

ˆ
Ω
fevv dx

where the maximum will be achieved at ξ = γε∇v. By integration by parts, we get that

this can be written as

max
ξ∈L2(Ω)2

ˆ
∂Ω
ϕevξ · n− 1

2

ˆ
Ω
γ−1
ε |ξ|2 dx−

ˆ
Ω

(∇ · ξ + fev)v dx,

from which we can see that the condition we want to enforce is that −∇ · ξ = fev and

the dual energy is given by

Eev,cε (ξ) =

ˆ
∂Ω
ϕevξ · n− 1

2

ˆ
Ω
γ−1
ε |ξ|2 dx.
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In order to get something that we can use with our problem, we want to split up the

calculation between ωε and Ω \ ωε and rescale ωε to ω1 in order to mirror the way we

simplified the primal energy in Chapter 2. Thus, we can rewrite

1

2

ˆ
Ω
γ−1
ε |ξ|2 dx =

1

2

ˆ
Ω\ωε
|ξ|2 dx+

1

2aε

ˆ
ωε

|ξ(i)|2 dx

and consider the maximization as taking over the set (ξ, ξ(i)) where −∇ · ξ = fev,

−∇ · ξ(i) = 0 and ξ · n = ξ(i) · n on ωε, assuming that ε < δ so that fev ≡ 0 on ωε.

Finally, we want to apply the map Hε from Chapter 2 to transform ξ(i) into a vector

field η defined on ω1. We want to do this in the same way that the gradient of a function

would transform, because we want to be able to say that uevε still corresponds to the

maximizer in an appropriate sense. Thus, we define

η = det (∇Hε)(∇Hε)
−1ξ(i) ◦Hε

and if ξi ranges over all vector fields satisfying −∇ · ξ(i) = 0 and ξ · n = ξ(i) · n on ωε,

then η ranges over the set{
η ∈ L2(ω1)2 | ∇ · η = 0 in ω1, η · n =

∣∣∣∣ ∂∂τ Hε

∣∣∣∣ (ξ · n) ◦Hε on ∂ω1

}
.

Since, under this transformation,

ˆ
ωε

|ξ(i)|2 dx =

ˆ
ω1

1

| det∇Hε|
(∇HT

ε ∇Hε)η · η dx,

we can rewrite the dual energy as

ˆ
∂Ω
ϕevξ · n ds− 1

2

ˆ
Ω\ωε
|ξ|2 dx− 1

2aε

ˆ
ω1

1

| det∇Hε|
(∇HT

ε ∇Hε)η · η dx

where ξ and η range over the set{
(ξ, η) ∈ L2(Ω \ ωε)2 × L2(ω1)2 | − ∇ · ξ = fev, −∇ · η = 0

η · n =

∣∣∣∣ ∂∂τ Hε

∣∣∣∣ (ξ · n) ◦Hε on ∂ω1

}
We can furthermore simplify this formula by using the specific form of Hε, giving that

∇Hε =

1 0

0 ε

 ∣∣∣∣ ∂∂τ Hε

∣∣∣∣ = 1 over ωint1 ,

∇Hε = εI

∣∣∣∣ ∂∂τ Hε

∣∣∣∣ = ε over ωends1 ,
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and reducing our dual energy expression to

F ev,cε (ξ, η) =

ˆ
∂Ω
ϕevξ · n ds− 1

2

ˆ
Ω\ωε
|ξ|2 dx− 1

2εaε

ˆ
ωint1

|η1|2 dx

− ε

2aε

ˆ
ωint1

|η2|2 dx−
1

2aε

ˆ
ωends1

|η|2 dx,

where the maximization is taken over the set

W ev
ε = {(ξ, η) ∈L2(Ω \ ωε)2 × L2(ω1)2 | − ∇ · ξ = fev, −∇ · η = 0,

η2(x, y) = ξ2(x, εy) − 1 ≤ x ≤ 1, y = ±1,

η · n = ε(ξ · n) ◦Hε on ∂ω1 ∩ ∂ωends1 }.

Based on the derivation of this functional, we know that the maximum should occur

at ξ = ∇uevε and η = ∇(uevε ◦Hε), and plugging in these vector fields gives an energy

that is the same as Eevε (uevε ).

B.2.2 Reduced problem with the curve σ

The function uev solves 
−∆uev = fev Ω

∂uev

∂y + εaε
∂2uev

∂x2 = 0 σ

uev = ϕev ∂Ω,

which is the minimizer of the energy functional

Eev(v) =
1

2

ˆ
Ω
|∇v|2 dx+ εaε

ˆ
σ

(
∂v

∂x

)2

ds−
ˆ

Ω
fevv dx,

which is the energy E0
ε restricted to even functions, over the set

V ev = {v ∈ H1(Ω) | v is even across y = 0, v+, v− ∈ H1(σ), v = ϕev on ∂Ω}.

To find the dual energy, we will first restrict the integrals to only take place over

Ω+, do the integration by parts on this domain, and then use symmetry to extend to

all of Ω if needed. Thus, we have that we can represent the energy as

ˆ
Ω+

|∇v|2 dx+ εaε

ˆ
σ

(
∂v

∂x

)2

− 2

ˆ
Ω+

fevv dx.
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Adding in the maximization term gives that

Eev(v) = max
ξ,ζ

2

ˆ
Ω+

∇v · ξ dx−
ˆ

Ω+

|ξ|2 dx+ 2εaε

ˆ
σ

∂v

∂x
ζ ds

− εaε
ˆ
σ
|ζ|2 ds− 2

ˆ
Ω+

fevv dx,

where ξ ∈ L2(Ω+)2 and ζ ∈ L2(σ). Integration by parts turns this into an expression

of the form

Eev(v) = max
ξ,ζ

2

ˆ
(∂Ω)+

ϕevξ · n ds− 2

ˆ
y=0

vξ2 ds

−
ˆ

Ω+

|ξ|2 dx+ 2εaε

ˆ
σ

∂v

∂x
ζ ds− εaε

ˆ
σ
|ζ|2 ds− 2

ˆ
Ω+

(∇ · ξ + fev)v dx.

Once the minimum in v is moved inside the maximum over ξ and ζ, we see that the

conditions on ξ and ζ in order to make the minimum finite are


ξ2 = 0 {y = 0} \ σ

ξ2 + εaε
∂ζ
∂x = 0 σ

−∇ · ξ = f Ω+.

Therefore, we define the set

W ev = {(ξ, ζ) ∈ L2(Ω+)2 × L2(σ) | − ∇ · ξ = f,

ξ2 = 0 on {y = 0} \ σ,

ξ2 + εaε
∂ζ

∂x
= 0 on σ}

(B.4)

and the dual energy functional for uev then becomes

Eev(uev) = max
(ξ,ζ)∈W ev

2

ˆ
(∂Ω)+

ϕevξ · n ds−
ˆ

Ω+

|ξ|2 dx− εaε
ˆ
σ
|ζ|2 ds,

where the maximum occurs at ξ = ∇uev and ζ = ∂uev

∂x . This can also be written as an

energy over all of Ω by extending ξ1 as an even function across y = 0 and ξ2 as an odd

function. This leads to a functional of the form

Eev,c(ξ, ζ) :=

ˆ
∂Ω
ϕevξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx− εaε

ˆ
σ
|ζ|2 ds.
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B.2.3 Zero limit problem

The function uev0 solves 
−∆uev0 = fev Ω

uev0 = ϕev ∂Ω,

which can be found as the minimization

Eev0 (uev0 ) = min
v∈V ev0

Eev0 (v),

with

Eev0 (v) =
1

2

ˆ
Ω
|∇v|2 dx−

ˆ
Ω
fevv dx

and

V ev
0 = {v ∈ H1(Ω) | v is even across y = 0, v = ϕev on ∂Ω}.

This problem is just the Laplacian, so we can use our work from before to get that

the dual energy functional should be

Eev,c0 (ξ) =

ˆ
∂Ω
ϕevξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx,

where the maximization is taken over the set

W ev
0 = {ξ ∈ L2(Ω)2 | −∇ · ξ = fev in Ω}.

B.3 Odd symmetry

B.3.1 Full problem with inhomogeneity

The function uoddε solves 
−∇ · (γε∇uoddε ) = fodd Ω

uoddε = ϕodd ∂Ω,

which can be found as the minimizer of the functional

Eoddε (v) =
1

2

ˆ
Ω
|∇v|2 −

ˆ
Ω
foddv
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over the space

V odd
ε = {v ∈ H1(Ω) | v is odd across y = 0, v = ϕodd on ∂Ω}.

Up to interchanging even and odd, this is identical to the work in Section B.2.1. All

of the work will go through exactly the same, resulting in a dual energy formulation

F odd,cε (ξ, η) =

ˆ
∂Ω
ϕoddξ · n ds− 1

2

ˆ
Ω\ωε
|ξ|2 dx− 1

2εaε

ˆ
ωint1

|η1|2 dx

− ε

2aε

ˆ
ωint1

|η2|2 dx−
1

2aε

ˆ
ωends1

|η|2 dx,

where the maximization is taken over the set

W odd
ε = {(ξ, η) ∈ L2(Ω \ ωε)2 × L2(ω1)2 | − ∇ · ξ = fodd, −∇ · η = 0,

η2(x, y) = ξ2(x, εy) − 1 ≤ x ≤ 1, y = ±1,

η · n = ε(ξ · n) ◦Hε on ∂ω1 ∩ ∂ωends1 },

and again, the maximum will occur at ξ = ∇uoddε and η = ∇(uoddε ◦Hε).

B.3.2 Simplified problem with the curve σ

The function uodd
′

solves 

−∆uodd
′

= fodd Ω+

uodd
′

= ϕodd ∂Ω+

∂uodd
′

∂y = aε
ε u

odd′ σ

uodd
′

= 0 {y = 0} \ σ

in Ω+, and then can be extended as an odd function to all of Ω. It can be found as the

minimizer of the energy

Eodd
′
(v) =

1

2

ˆ
Ω\σ
|∇v|2 dx+

aε
4ε

ˆ
σ
|v+ − v−|2 ds−

ˆ
Ω
foddv dx

over the set

V odd′ = {v ∈ H1(Ω \ σ) | v is odd across y = 0, v = ϕodd on ∂Ω}.
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As before, we restrict our integrals to Ω+, and use the fact that v is odd across

y = 0. This gives us a new energy functional of the form

Eodd
′
(v) =

ˆ
Ω+\σ

|∇v|2 dx+
aε
ε

ˆ
σ
|v+|2 ds− 2

ˆ
Ω+

foddv dx.

We can then convert each of the two squared terms to a maximzation in the same

way that has been done previously. This gives us that

Eodd
′
(v) = max

ξ,χ
2

ˆ
Ω+\σ

∇v · ξ dx−
ˆ

Ω+\σ
|ξ|2

+ 2
aε
ε

ˆ
σ
v+χ ds− aε

ε

ˆ
σ
χ2 ds− 2

ˆ
Ω+

foddv dx

= max
ξ,χ

2

ˆ
(∂Ω)+\σ

ϕoddξ · n ds− 2

ˆ
y=0

v+ξ2 ds−
ˆ

Ω+\σ
|ξ|2

+ 2
aε
ε

ˆ
σ
v+χ ds− aε

ε

ˆ
σ
χ2 ds− 2

ˆ
Ω+

(∇ · ξ + fodd)v dx,

.

where ξ ∈ L2(Ω+)2 and χ ∈ L2(σ). Since v+ = 0 on {y = 0} \ σ because v is odd, the

extra conditions we need to specify are that
−∇ · ξ = fodd Ω+

ξ2 − aε
ε χ = 0 σ.

From this, we get a dual energy functional of the form

Eodd
′,c(ξ, χ) = 2

ˆ
(∂Ω)+\σ

ϕoddξ · n ds−
ˆ

Ω+\σ
|ξ|2 − aε

ε

ˆ
σ
χ2 ds

where the maximization is taken over the set

W odd′ = {(ξ, χ) ∈ L2(Ω+)2 × L2(σ) | − ∇ · ξ = fodd, ξ2 −
aε
ε
χ = 0 on σ}.

This functional could also be extended to all of Ω if needed. The maximum here is

achieved at ξ = ∇uodd′ and χ = uodd
′,+ |σ.

B.3.3 Reduced problem with the curve σ

The function uodd solves

−∆uodd = fodd Ω+

uodd = ϕodd ∂Ω+

∂uodd

∂y + εaε
∂2uodd

∂x2 − aε
ε u

odd = 0 σ

uodd = 0 {y = 0} \ σ,
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which can be found as the minimizer of the energy

Eodd(v) =
1

2

ˆ
Ω\σ
|∇v|2 dx+ εaε

ˆ
σ

∣∣∣∣∂v+

∂τ

∣∣∣∣2 ds+
aε
ε

ˆ
σ
|v+ − v−|2 ds−

ˆ
Ω
foddv dx

over the set

V odd = {v ∈ H1(Ω \ σ) | v is odd across y = 0,

v+, v− ∈ H1(σ),

v = ϕodd on ∂Ω}.

This problem is a combination of Section B.3.2 and Section B.2.2, putting together

the zeroth order term from B.3.2 with the derivative term from B.2.2. Working through

both of these calculations, we get to an energy expression for Eodd of the form

Eodd(v) = max
ξ,ζ

2

ˆ
(∂Ω)+

ϕevξ · n ds− 2

ˆ
y=0

v+ξ2 ds−
ˆ

Ω+

|ξ|2 dx

+ 2εaε

ˆ
σ

∂v

∂x
ζ ds− εaε

ˆ
σ
|ζ|2 ds

+ 2
aε
ε

ˆ
σ
v+χ ds− aε

ε

ˆ
σ
χ2 ds− 2

ˆ
Ω+

(∇ · ξ + fodd)v dx

after integrating by parts. From this expression, we can see that for the minimum in v

to be finite, we need to have (ξ, ζ, χ) satisfy
−∇ · ξ = fodd Ω+

ξ2 + εaε
∂ζ
∂x −

aε
ε χ = 0 σ.

Therefore, we get to a dual energy for this function as

Eodd,c(ξ, ζ, χ) = 2

ˆ
(∂Ω)+

ϕevξ · n ds−
ˆ

Ω+

|ξ|2 dx− εaε
ˆ
σ
|ζ|2 ds− aε

ε

ˆ
σ
χ2 ds

where the maximization is taken over the set

W odd = {(ξ, ζ, χ) ∈ L2(Ω+)2 × L2(σ)× L2(σ) | − ∇ · ξ = fodd

ξ2 + εaε
∂ζ

∂x
− aε

ε
χ = 0 on σ}.

The maximum here will be achieved at ξ = ∇uodd, ζ = ∂uodd,+

∂x |σ, and χ = uodd,+ |σ.
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B.3.4 Zero limit problem

The function uodd0 solves


−∆uodd0 = fodd Ω

uodd0 = ϕodd ∂Ω

which again is the same as the Laplacian from the introduction to this appendix. There-

fore, the dual energy is

Eodd,c0 (ξ) =

ˆ
∂Ω
ϕoddξ · n ds− 1

2

ˆ
Ω
|ξ|2 dx,

where the maximization is taken over the set

W odd
0 = {ξ ∈ L2(Ω)2 | −∇ · ξ = fodd in Ω}.
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Appendix C

Numerical Code

Here, we present snippets of the numerical code used to generate all of the images in

Chapter 6. All of these calculations use the FEniCS Project packages, more information

on which can be found at http://fenicsproject.org.

C.1 Base code

To begin, this section contains the two basic files that were used to generate the images

for constant conductivities. The first one, for even symmetry, will be shown in its

entirety, and the rest of the section will discuss what types of changes needed to be

made in order to fit the different situation.

C.1.1 Even Symmetry

Here is the full Python code in the case of even symmetry.

"""

EvenSym_Base.py

Matt Charnley, Spring 2019

Constructs the desired finite element problem with even symmetry for

different constant values of a_epsilon and illustrates the convergence as

epsilon goes to zero.

http://fenicsproject.org
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Plots are generated that show the solution u_eps^ev compared to u^ev along

the horizontal line y=0, the horizontal line y = 0.5, and the vertical

line x=-1. In the cases where u^ev_0 is an approximation to the solution,

that graph is shown as well.

For this code, the background domain is B_2(0)^+, with the mid-curve sigma

being the line segment from (-1,0) to (1,0). Most of the variables and

notation here follow the work in the thesis.

"""

# Import necessary FENICS packages, as well as plotting libraries

from fenics import *

from dolfin import *

from mshr import *

import numpy as np

import matplotlib.pyplot as plt

# Define Subdomains

# For these problems omega_eps corresponds to the inhomogeneity, denoted

omega_epsilon in the paper.

class omega_eps(SubDomain):

def __init__(self, eps, *args):

self.eps = eps

SubDomain.__init__(self)

def inside(self,x,on_boundary):

tol = 1E-14

return (x[0] <= 1 + tol and x[0] >= -1 - tol and x[1] <= self.eps + tol)

or ((x[0] + 1)**2 + x[1]**2 <= self.eps**2 + tol**2) or ((x[0]-1)**2

+ x[1]**2 <= self.eps**2 + tol**2)
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# boundary_Out is the portion of the boundary of B_2(0)^+ that is on the

boundary of B_2(0); the region where the Dirichlet condition is

specified.

class boundary_Out(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14

return on_boundary and (x[1] >= tol or x[0] >= 2 - tol or x[0] <= -2 +

tol)

# boundary_Bot is the entire bottom boundary of B_2(0)^+, that is, the

boundary along y=0

class boundary_Bot(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14

return on_boundary and x[1] <= tol

# boundary_BotL is the part of boundary_Bot that is to the left of x=-1

class boundary_BotL(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14

return on_boundary and x[1] <= tol and x[0] <= -1 - tol

# boundary_BotM is the part of boundary_Bot that is along sigma, that is,

between x=-1 and x=1

class boundary_BotM(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14

return on_boundary and x[1] <= tol and abs(x[0]) <= 1 + 2*tol
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# boundary_BotR is the part of boundary_Bot that is to the right of x=1

class boundary_BotR(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14

return on_boundary and x[1] <= tol and x[0] >= 1 + tol

# Define the material properties expression. This takes a mesh function and

sets the conductivity to be 1 outside of the inhomogeneity and a inside

of it.

class A(Expression):

def __init__(self, materials, a, **kwargs):

self.materials = materials

self.a = a

def eval_cell(self, values, x, cell):

if self.materials[cell.index] == 0:

values[0] = 1

else:

values[0] = self.a

"""

Program Start

"""

# Define program parameters

eps_vals = [0.2, 0.02, 0.002] # Values of epsilon used in the iteration

tol = 1E-10 # Numerical tolerance

# Set up point arrays for graphing at the end.

y1 = np.linspace(-1.5 + tol, 1.5 - tol, 320)
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y2 = np.linspace(0, 1, 160)

points_axis = [(y_,0) for y_ in y1]

points_horiz = [(y_, 0.5) for y_ in y1]

points_vert1 = [(-1, y_) for y_ in y2]

# Begin solving the problems

for jnd in [1,2,3,4,5]:

# This jnd counter defines the power of epsilon in a_eps = 2 eps^(jnd-3).

As jnd steps from 1 to 5, this will run through all of the different

possible behaviors of eps a_eps and a_eps/eps as epsilon goes to zero

ind = 0 # Counting variable for the epsilon values

for eps in eps_vals:

ind += 1

a_eps = 3*eps**(jnd-3) # Define the constant conductivity a_epsilon

g = Expression(’1-x[0] -(x[0]+1)*x[1]*x[1]’, degree = 2) # Dirichlet

boundary data

f = Expression(’0’, degree=2) # Source term f

####

# Solve the problem with the inhomogeneity

# This version of the problem has the domain omega_eps with the

differing conductivity

UpperHalf_inhom = Circle(Point(0,0), 2) - Rectangle(Point(-2, -2),

Point(2, 0))

# This is the domain B_2(0)^+
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innerPart1 = (Circle(Point(-1,0), eps) + Circle(Point(1,0), eps) +

Rectangle(Point(-1,0), Point(1,eps))) - Rectangle(Point(-2,-2),

Point(2, 0))

# This is a geometric representation of the inhomogeneity omega_eps

innerPart = omega_eps(eps)

# This is the Subdomain implementation of the inhomogeneity omega_eps

UpperHalf_inhom.set_subdomain(1, innerPart1)

# We need the geometric part to generate the mesh

mesh_inhom = generate_mesh(UpperHalf_inhom, 256) # Define the mesh

V_inhom = FunctionSpace(mesh_inhom, ’P’, 1) # Define the finite

element space

materials = MeshFunction(’size_t’, mesh_inhom,2)

# Generate a blank mesh function for materials

materials.set_all(0)

innerPart.mark(materials, 1)

# and use the Subdomain definition of the inhomogeneity to generate

the material differences

a = A(materials, a_eps, degree = 1)

# using this function from before.

b_Out = boundary_Out() # Define the external boundary

bc_inhom = DirichletBC(V_inhom, g, b_Out) # and set the Dirichlet

boundary condition

u_inhom = TrialFunction(V_inhom)

v_inhom = TestFunction(V_inhom)
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a_inhom = a*dot(grad(u_inhom), grad(v_inhom))*dx # Set up the

appropriate bilinear form using the

# material properties from before

L_inhom = f*v_inhom*dx # and the linear term for the other side

u_inhom = Function(V_inhom)

solve(a_inhom == L_inhom, u_inhom, bc_inhom) # Solve the variational

problem

#

####

####

# Solve the reduced problem involving the mid-curve sigma

# This set solves for the u^ev solution from the thesis

UpperHalf_sig = Circle(Point(0,0), 2) - Rectangle(Point(-3, -3),

Point(3, 0))

# This is again B_2(0)^+

sigBdry = Circle(Point(0,0), 1) - Rectangle(Point(-1,-1), Point(1,0))

UpperHalf_sig.set_subdomain(1,sigBdry)

# While there isn’t an internal domain region that needs to be dealt

with separately, defining

# this subdomain will make sure there are mesh points near the

endpoints of sigma.

mesh_sig = generate_mesh(UpperHalf_sig, 256)

V_sig = FunctionSpace(mesh_sig, ’P’, 1)

# The mesh and function space are generated as before

b_marks_sig = MeshFunction(’size_t’, mesh_sig, 1)

b_marks_sig.set_all(0)

# Now we define a blank marking function for the boundary
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b_Out = boundary_Out()

b_Left = boundary_BotL()

b_Mid = boundary_BotM()

b_Right = boundary_BotR()

b_Bot = boundary_Bot()

# define subdomain implementations of all of the different parts of

the boundary

b_Out.mark(b_marks_sig, 1)

b_Left.mark(b_marks_sig, 2)

b_Mid.mark(b_marks_sig, 3)

b_Right.mark(b_marks_sig, 4)

# and mark them with different numbers so that we can integrate over

each of them separately.

ds_sig = Measure(’ds’, domain=mesh_sig, subdomain_data=b_marks_sig)

# This defines the surface measure corresponding to the marking

defined above.

bc_sig = DirichletBC(V_sig, g, b_Out)

# Set the Dirichlet boundary condition

u_sig = TrialFunction(V_sig)

v_sig = TestFunction(V_sig)

e1 = interpolate(Expression(’x[0]’, degree=2), V_sig)

# Define the function e1(x,y) = x. This will allow us to take x

derivatives along the boundary

# in order to get the variational problem that we need.

a_sig = dot(grad(u_sig), grad(v_sig))*dx + eps*a_eps*dot(grad(u_sig),

grad(e1))*dot(grad(v_sig), grad(e1))*ds_sig(3)
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# Define the bilinear form. We use grad(u) dot (1,0) to get the

x-derivative of u.

L_sig = f*v_sig*dx # Define the linear form for the other side.

u_sig = Function(V_sig)

solve(a_sig == L_sig, u_sig, bc_sig) # Solve the variational problem.

#

####

####

# Solve the zero limit problem. This is the function u^ev_0 in the

thesis, which is an approximation to

# this problem in certain cases. This problem is simpler than the

previous ones, but follows the same form.

UpperHalf_0 = Circle(Point(0,0), 2) - Rectangle(Point(-3, -3), Point(3,

0))

mesh_0 = generate_mesh(UpperHalf_0, 256)

V_0 = FunctionSpace(mesh_0, ’P’, 1)

bc_0 = DirichletBC(V_0, g, b_Out)

u_0 = TrialFunction(V_0)

v_0 = TestFunction(V_0)

a_0 = dot(grad(u_0), grad(v_0))*dx

L_0 = f*v_0*dx

u_0 = Function(V_0)

solve(a_0 == L_0, u_0, bc_0)

#
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####

####

# Data Collection and Graphing

# Gather data from the reduced problem

u_sig_axis = np.array([u_sig(point) for point in points_axis])

u_sig_horiz = np.array([u_sig(point) for point in points_horiz])

u_sig_vert = np.array([u_sig(point) for point in points_vert1])

# from the problem with the inhomogeneity

u_inhom_axis = np.array([u_inhom(point) for point in points_axis])

u_inhom_horiz = np.array([u_inhom(point) for point in points_horiz])

u_inhom_vert = np.array([u_inhom(point) for point in points_vert1])

# and from the zero problem

u_0_axis = np.array([u_0(point) for point in points_axis])

u_0_horiz = np.array([u_0(point) for point in points_horiz])

u_0_vert = np.array([u_0(point) for point in points_vert1])

indx1H = np.arange(10, 320, 30)

indx2H = np.arange(20, 320, 30)

indx3H = np.arange(30, 320, 30)

indx1V = np.arange(5, 160, 15)

indx2V = np.arange(10, 160, 15)

indx3V = np.arange(15, 160, 15)

# Use the matlab plotting library to draw the different graphs

# First, the one along y=0

plt.figure(1)

plt.rc(’xtick’, labelsize=20)

plt.rc(’ytick’, labelsize=20)
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plt.rc(’axes’, labelsize=12)

plt.rc(’lines’, markeredgewidth=2)

plt.plot(y1, u_inhom_axis, ’k-’, linewidth=3)

plt.plot(y1[indx1H], u_inhom_axis[indx1H], ’ko’, MarkerSize=10,

MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

plt.plot(y1, u_sig_axis, ’k--’, linewidth=3)

plt.plot(y1[indx2H], u_sig_axis[indx2H], ’ks’, MarkerSize=10,

MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

if jnd>2:

plt.plot(y1, u_0_axis, ’k-.’, linewidth=3)

plt.plot(y1[indx3H], u_0_axis[indx3H], ’k^’,

MarkerSize=10,MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

plt.xlabel(’x’)

plt.savefig(’radialgraph_axis0_ESym_’+str(jnd)+’_’+str(ind)+’.png’)

plt.gcf().clear()

# then the one along y=0.5

plt.figure(2)

plt.rc(’xtick’, labelsize=20)

plt.rc(’ytick’, labelsize=20)

plt.rc(’axes’, labelsize=12)

plt.rc(’lines’, markeredgewidth=2)

plt.plot(y1, u_inhom_horiz, ’k’, linewidth=3)

plt.plot(y1[indx1H], u_inhom_horiz[indx1H], ’ko’, MarkerSize=10,

MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

plt.plot(y1, u_sig_horiz, ’k--’, linewidth=3)

plt.plot(y1[indx2H], u_sig_horiz[indx2H], ’ks’, MarkerSize=10,

MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

if jnd>2:

plt.plot(y1, u_0_horiz, ’k-.’, linewidth=3)

plt.plot(y1[indx3H], u_0_horiz[indx3H], ’k^’,

MarkerSize=10,MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

plt.xlabel(’x’)
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plt.savefig(’radialgraph_horiz5_ESym_’+str(jnd)+’_’+str(ind)+’.png’)

plt.gcf().clear()

# and then the one along x=-1

plt.figure(3)

plt.rc(’xtick’, labelsize=20)

plt.rc(’ytick’, labelsize=20)

plt.rc(’axes’, labelsize=12)

plt.rc(’lines’, markeredgewidth=2)

plt.plot(y2, u_inhom_vert, ’k’, linewidth=3)

plt.plot(y2[indx1V], u_inhom_vert[indx1V], ’ko’, MarkerSize=10,

MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

plt.plot(y2, u_sig_vert, ’k--’, linewidth=3)

plt.plot(y2[indx2V], u_sig_vert[indx2V], ’ks’, MarkerSize=10,

MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

if jnd>2:

plt.plot(y2, u_0_vert, ’k-.’, linewidth=3)

plt.plot(y2[indx3V], u_0_vert[indx3V], ’k^’,

MarkerSize=10,MarkerFaceColor=’none’, MarkerEdgeColor=’black’)

plt.xlabel(’y’)

plt.savefig(’radialgraph_vert1_ESym_’+str(jnd)+’_’+str(ind)+’.png’)

plt.gcf().clear()

#

####

C.1.2 Odd symmetry

The main thing that changes when solving this problem with odd symmetry is that we

need to specify a zero Dirichlet boundary condition on the part of y = 0 that is outside

of σ. For the even case, we got the Neumann condition for free by not including this

region in our boundary integration. Thus, we need to define

z = Expression(’0’, degree=2) # The zero function, for use as a

boundary condition
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and our boundary conditions change to

b_Out = boundary_Out() # Define the external boundary

b_Bot = boundary_Bot() # and the boundary at the bottom of the region

bc_inhom1 = DirichletBC(V_inhom, g, b_Out)

bc_inhom2 = DirichletBC(V_inhom, z, b_Bot)

# and set the appropriate Dirichlet boundary conditions. The zero

condition comes from the enforced odd symmetry.

bcs_inhom = [bc_inhom1, bc_inhom2] # Stack the boundary conditions together

for the problem with the inhomogeneity,

b_Out = boundary_Out()

b_Left = boundary_BotL()

b_Mid = boundary_BotM()

b_Right = boundary_BotR()

b_Bot = boundary_Bot()

# define subdomain implementations of all of the different parts of the

boundary

b_Out.mark(b_marks_sig, 1)

b_Left.mark(b_marks_sig, 2)

b_Mid.mark(b_marks_sig, 3)

b_Right.mark(b_marks_sig, 4)

# and mark them with different numbers so that we can integrate over

each of them separately.

ds_sig = Measure(’ds’, domain=mesh_sig, subdomain_data=b_marks_sig)

# This defines the surface measure corresponding to the marking defined

above.
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bc_sig = DirichletBC(V_sig, g, b_Out)

# Set the Dirichlet boundary condition

bc_sig1 = DirichletBC(V_sig, z, b_Left)

bc_sig2 = DirichletBC(V_sig, z, b_Right)

# Again, zero boundary conditions on the parts off of sigma due to odd

symmetry.

bcs_sig = [bc_sig, bc_sig1, bc_sig2]

for the reduced problem on σ, and

bc_0 = DirichletBC(V_0, g, b_Out)

bc_01 = DirichletBC(V_0, z, b_Bot)

bcs_0 = [bc_0, bc_01]

for the zero problem. We also need to set up and solve the ‘simplified problem,’ where

the second derivative term is removed. This is implemented as follows.

####

# Solve the simpified problem involving the mid-curve sigma

# This set solves for the u^odd’ solution from the thesis

UpperHalf_sim = Circle(Point(0,0), 2) - Rectangle(Point(-3, -3),

Point(3, 0))

# This is again B_2(0)^+

sigBdry = Circle(Point(0,0), 1) - Rectangle(Point(-1,-1), Point(1,0))

UpperHalf_sim.set_subdomain(1,sigBdry)

# While there isn’t an internal domain region that needs to be dealt

with separately, defining

# this subdomain will make sure there are mesh points near the

endpoints of sigma.

mesh_sim = generate_mesh(UpperHalf_sim, 256)

V_sim = FunctionSpace(mesh_sim, ’P’, 1)
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# The mesh and function space are generated as before

b_marks_sim = MeshFunction(’size_t’, mesh_sim, 1)

b_marks_sim.set_all(0)

# Now we define a blank marking function for the boundary

b_Out = boundary_Out()

b_Left = boundary_BotL()

b_Mid = boundary_BotM()

b_Right = boundary_BotR()

b_Bot = boundary_Bot()

# define subdomain implementations of all of the different parts of

the boundary

b_Out.mark(b_marks_sim, 1)

b_Left.mark(b_marks_sim, 2)

b_Mid.mark(b_marks_sim, 3)

b_Right.mark(b_marks_sim, 4)

# and mark them with different numbers so that we can integrate over

each of them separately.

ds_sim = Measure(’ds’, domain=mesh_sim, subdomain_data=b_marks_sim)

# This defines the surface measure corresponding to the marking

defined above.

bc_sim = DirichletBC(V_sim, g, b_Out)

# Set the Dirichlet boundary condition

bc_sim1 = DirichletBC(V_sim, z, b_Left)

bc_sim2 = DirichletBC(V_sim, z, b_Right)

# Again, zero boundary conditions on the parts off of sigma due to

odd symmetry.

bcs_sim = [bc_sim, bc_sim1, bc_sim2]
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u_sim = TrialFunction(V_sim)

v_sim = TestFunction(V_sim)

e1 = interpolate(Expression(’x[0]’, degree=2), V_sim)

# Define the function e1(x,y) = x. This will allow us to take x

derivatives along the boundary

# in order to get the variational problem that we need.

a_sim = dot(grad(u_sim), grad(v_sim))*dx +

(a_eps/eps)*u_sim*v_sim*ds_sim(3)

# Define the bilinear form. We use grad(u) dot (1,0) to get the

x-derivative of u.

L_sim = f*v_sim*dx # Define the linear form for the other side.

u_sim = Function(V_sim)

solve(a_sim == L_sim, u_sim, bcs_sim) # Solve the variational problem.

#

####

The bilinear form for the reduced problem on σ is given by

a_sig = dot(grad(u_sig), grad(v_sig))*dx + eps*a_eps*dot(grad(u_sig),

grad(e1))*dot(grad(v_sig), grad(e1))*ds_sig(3) +

(a_eps/eps)*u_sig*v_sig*ds_sig(3)

# Define the bilinear form. We use grad(u) dot (1,0) to get the

x-derivative of u.

L_sig = f*v_sig*dx # Define the linear form for the other side.

u_sig = Function(V_sig)

solve(a_sig == L_sig, u_sig, bcs_sig) # Solve the variational problem.
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and all of the other problems are similar.

C.2 Modifications for different problems

This section considers the different types of modifications that need to be made to this

code in order to model the differnet types of problems addressed in Chapter 5. One

of the first modifications that needed to be made for the problem was to allow for the

conductivity to be written as an expression, as opposed to just a constant number.

Thus, the A object defined previously was changed to

# Define the material properties expression. This takes a mesh function and

sets the conductivity to be 1 outside of the inhomogeneity and a inside

of it.

class A_gen(Expression):

def __init__(self, materials, a, **kwargs):

self.materials = materials

self.a = a

def eval_cell(self, values, x, cell):

if self.materials[cell.index] == 0:

values[0] = 1

else:

v = np.empty(1, dtype=float)

self.a.eval(values, x)

This allowed the a value input to this constructor to be an Expression as opposed

to a constant. Constant conductivities could still be utilized by defining them as an

expression that just has a constant value. Also, in these types of problems, the loop

over power of epsilon was removed, as only a single conductivity was used for these

models.
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C.2.1 Variable inhomogeneity - independent of x

In the case of a conductivity independent of x, the beginning of the loop, where the

conductivity is defined, becomes

a_eps =Expression(’3*(x[1]*x[1])/(eps*eps*eps*eps) + eps*eps’, eps =

Constant(eps), degree=2) # Define the conductivity a_epsilon on the

appropriate domain.

# Define a function for the rescaled conductivity.

# This is the same as a_eps with y scaled by epsilon

def a_eps_hat(x,y):

return 3*(y/eps)**2 + eps**2

where this a eps hat corresponds to âε from the analytic work, and will be used in

defining the impact factors. The conductivity profile for the problem with inhomogene-

ity is then defined by

a = A_gen(materials, a_eps, degree = 1)

where now, a eps is an expression.

Next, we need to compute the impact factors of the conductivity from earlier in the

work. Unfortunately, FEniCS does not have a great way to do these sorts of integrals

numerically, so they were constructed manually.

# To determine the appropriate reduced equation on sigma, we need to find

the impact factors from the thesis. As FENICS has no easy way to

compute integrals, we will do so manually with the trapezoidal rule.

# Set up the numerical parameters

NStep = 10*int(eps**(-2))

intVals = np.linspace(-1,1,NStep+1)

stepSize = (1.0-(-1.0))/(NStep)
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# Initialize Values

I1 = 0

I2 = 0

innerInt = 0

totalSum = 0

# Find the total integral of 1/a, which we need for the F(b) term in the

definition of impact factors

for counter1 in range(NStep):

totalSum += stepSize*1.0/2.0*(1.0/(a_eps_hat(0, intVals[counter1])) +

1.0/(a_eps_hat(0, intVals[counter1+1])))

# Now compute the other impact factors. In order to take care of the nested

integrals, we will

# step through the integral and increment the part that is multiplied

inside.

for counter1 in range(NStep):

innerInt += stepSize*1.0/2.0*(1.0/(a_eps_hat(0, intVals[counter1])) +

1.0/(a_eps_hat(0, intVals[counter1+1])))

I1 += (1.0/totalSum)*(1.0/2.0)*(a_eps_hat(0, intVals[counter1]) +

a_eps_hat(0, intVals[counter1+1]))*innerInt*innerInt*stepSize

I2 += (1.0/totalSum)*1.0/2.0*(a_eps_hat(0, intVals[counter1]) +

a_eps_hat(0,

intVals[counter1+1]))*innerInt*(totalSum-innerInt)*stepSize

# Find A_eps from these calculations

A_eps = 2/(innerInt)

Then, we are ready to set up the bilinear forms and solve the variational problems.

For even symmetry, the problem is
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a_sig = dot(grad(u_sig), grad(v_sig))*dx +

1.0/2.0*eps*A_eps*(I1+I2)*dot(grad(u_sig), grad(e1))*dot(grad(v_sig),

grad(e1))*ds_sig(3)

# Define the bilinear form. We use grad(u) dot (1,0) to get the

x-derivative of u.

L_sig = f*v_sig*dx # Define the linear form for the other side.

u_sig = Function(V_sig)

solve(a_sig == L_sig, u_sig, bc_sig) # Solve the variational problem.

while for odd symmetry, it becomes

a_sig = dot(grad(u_sig), grad(v_sig))*dx +

1.0/2.0*eps*A_eps*(I1-I2)*dot(grad(u_sig), grad(e1))*dot(grad(v_sig),

grad(e1))*ds_sig(3) + (A_eps/eps)*u_sig*v_sig*ds_sig(3)

# Define the bilinear form. We use grad(u) dot (1,0) to get the

x-derivative of u.

# This comes from the equations developed in the thesis, using the

impact factors.

L_sig = f*v_sig*dx # Define the linear form for the other side.

u_sig = Function(V_sig)

solve(a_sig == L_sig, u_sig, bcs_sig) # Solve the variational problem.

C.2.2 Variable conductivity - independent of t

When the conductivity is instead independent of t, the problem is much easier. The

conductivity function used here is

a_eps = Expression(’(x[0] < -0.5 + tol) ? (3*eps*eps) : (x[0] < tol) ?

(3/eps/eps) : (x[0] < 0.5 + tol) ? (3*eps*eps) : (3/eps/eps)’, eps=eps,

tol=tol, degree=2)

# Define the conductivity a_epsilon on the appropriate domain.
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which sets up the piecewise defined function as in (6.1). Everything in this code works

the same as the ‘independent of x’ code, except now we no longer need to compute the

impact factors. We can use

# Initialize Values - These are the values we get from a constant in t

integration

I1 = 4/3

I2 = 2/3

# Find A_eps from these calculations

A_eps = interpolate(a_eps, V_sig)

to find exactly what we need. The bilinear forms and problem solving are exactly as

in the previous set of code; the interpolation is needed to make sure that the software

interprets aε as a function in the appropriate finite element space to carry out the

calculations.
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[PP13] R. Perrussel and C. Poignard, Asymptotic expansion of steady-state poten-
tial in a high contrast medium with a thin resistive layer, Applied Mathe-
matics and Computation (2013), 48–65.



180

[VV00] M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the
electromagnetic fields due to the presence of inhomogeneities of small diam-
eter, ESAIM: Mathematical Modeling and Numerical Analysis 34 (2000),
723–748.


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Extensions to Open Curves
	Notation
	Distance between energy minimizers
	Derivation of the reduced problem
	Classical formulation of the reduced problem

	Analysis of Open Curves
	Base problem
	Even problem regularity
	Odd problem regularity
	Localization argument

	Energy Convergence
	Setup
	Even symmetry, eae>m>0
	Even symmetry, eaeto0
	Odd symmetry, ae<Me
	Odd symmetry, ae/etoinfty
	Results independent of ae
	Full results

	Other Results
	Computation of the stress intensity factors
	Different types of conductivities
	Curved inhomogeneities

	Numerical Results
	General convergence results
	Stress intensity factor formula
	Non-constant conductivities

	Conclusions
	Appendix A. Selected Proofs
	Correction function in Section ELP
	Correction vector field in Section ELD
	Correction vector field in Section ESE
	Expanding the energy estimate to O in Section OS

	Appendix B. A Primer on Dual Energies
	Dual energy for the Laplacian
	Even symmetry
	Odd symmetry

	Appendix C. Numerical Code
	Base code
	Modifications for different problems

	References

