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ABSTRACT OF THE DISSERTATION

Cop: Broad-Spectrum, Dependable, and Secure Protocol

Enforcement Mechanism for Multi-Agent Systems

By CHEN CONG

Dissertation Director:

Naftaly H. Minsky

This work introduces Cop, a highly dependable and secure protocol enforcement mecha-

nism for Multi-Agent Systems. Cop features high scalability, low latency, and regulated

interoperability, making it applicable to a broad spectrum of systems including large-scale

and complex systems, time-critical systems, and systems-of-systems. Cop enforces protocols

via Law-Governed Interaction, coupled with a new protective mechanism that significantly

enhances the dependability and security of the enforcement in a highly scalable and effi-

cient manner. Cop is arguably superior to the currently popular Blockchain-based Smart

Contract mechanisms in terms of its applicability to a wide range of systems, as the latter

is inherently unscalable, has high latency, and lacks interoperability.
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Chapter 1

Introduction

Multi-Agent System (MAS) is a type of distributed system consisting of a group of loosely

coupled, autonomous, and heterogeneous actors interacting with each other to solve prob-

lems beyond individual capabilities. The actors in MAS may be software processes, physical

devices, or people. A group of actors in a MAS, who may not trust each other, may be

required to interact with each other subject to a given interactive protocol, we call such a

group a community.

Some protocols can be established by the voluntary compliance of all actors in the

community. As pointed out by [22], such a protocol must satisfy the following conditions:

• Complying with the protocol is in the vested interest of all actors.

• Failure to comply with the protocol by any actor should not cause serious harm to

other actors.

If any one of these conditions is not satisfied, then the protocol needs to be enforced. We

call a mechanism used for enforcing protocols a Protocol Enforcement Mechanism (PEM).

We maintain that an effective PEM should have the following qualities:

• It should be Dependable and Secure, i.e., able to defend itself against failures and

attacks.

• It should be Broad-spectrum, i.e., able to support a wide range of systems including

time-critical systems, large-scale systems, complex systems, and systems-of-systems.

This leads to the following further requirements:

– Sufficiently Low Latency. Latency means the time it takes the PEM to resolve a

transaction. Different applications may require different upper bounds of latency.
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For commercial and financial systems it may be in the magnitude of minutes,

while in time-critical systems such as industry control systems and airborne

control systems, it may be in the magnitude of milliseconds.

– High Scalability. Scalability means the ability to accommodate the increase of

transaction volume and frequency without significantly increasing the latency.

Scalability is crucial to large-scale systems, such as enterprise systems, infras-

tructure systems, and financial systems.

– Regulated Interoperability. Interoperability means the ability of communities that

operate subject to different protocols to interact with each other, and such an

ability needs to be subject to regulations on which communities can interact

with each other and how such interactions should be conducted. Regulated

interoperability is required by complex systems and systems-of-systems such as

federated enterprise systems, supply chain systems, and healthcare systems, in

which different systems need to interact with each other while each of them

operates under its own protocol. Moreover, most complex systems and systems-

of-systems cannot be effectively governed by a single protocol, they generally

require different parts of the system to operation subject to different protocols,

while still being able to interact with each other.

Recently, a type of PEM for MAS inspired by [54] and [43] called Blockchain-based Smart

Contract has been attracting much attention from both academia and industry. Some most

widely known Blockchain-based Smart Contract implementations include Ethereum [58]

and Hyperledger Fabric [1]. Blockchain-based Smart Contract records transactions in a

temper-free ledger called blockchain maintained within a distributed network of mutually

untrusting peers and can enforce protocols over the blockchain through the underlying

consensus among the peers. It features a high level of dependability and security; however,

it lacks the quality of broad-spectrum due to the following inherent limitations:

• The consensus procedure of Blockchain-based Smart Contract leads to substantial

latency, including (a) proposal latency: the time it takes a transaction to be included

in a block proposal; (b) broadcasting latency: the time it takes a block proposal to
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be broadcast to all peers; (c) ordering latency: the time it takes for different block

proposals to be ordered; (d) validation latency: the time it takes a block proposal

to be validated and admitted by all peers. Under the various implementations of

Blockchain-based Smart Contract, the latency can be in the magnitude of minutes or

more.

• Blockchain-based Smart Contract is inherently unscalable, even if many works such

as [1] tried to reduce the level of unscalability. Although the consensus has a de-

centralized nature, the enforcement itself is essentially centralized and linear: a new

block cannot be admitted to the distributed body of the blockchain until its preced-

ing block is resolved via the decentralized consensus. Suppose each block contains b

transactions in average, and it takes t(b) time to resolve one such block in average,

to resolve s amount of transactions, it requires s× t(b)/b time. With the increase of

transaction volume and frequency, the latency will unavoidably grow.

• Blockchain-based Smart Contract cannot effectively handle interoperations between

communities, let alone regulated interoperations. Some works including [55] and [27]

tried to solve this problem; however, none of them provides a practical and general

solution. In fact, this is widely regarded as the “holy grail” of this field.

On the other hand, another PEM for MAS with a much longer history called Law-

Governed Interactions (LGI), which will be introduced in Chapter 2, satisfies most of our

required qualities of an effective PEM, including low latency, high scalability, and regulated

interoperability. However, as Chapter 3 will show, LGI has a serious flaw that may degrade

its dependability and security, to which we refer as its Achilles’ Heel. Fortunately, unlike

the inherent limitations of Blockchain-based Smart Contract which are hard or even unable

to get rid of, the Achilles’ Heel of LGI can be largely removed.

The goal of this work is to create an LGI-based PEM for MAS which satisfies all our

required qualities by removing the Achilles’ Heel of LGI. This PEM is named Cop, aiming

to evoke an analogy to police officers who enforce social laws.

The rest of the dissertation is organized as follows: Chapter 2 provides an overview of

LGI. Chapter 3 discusses the Achilles’ Heel of LGI. Chapter 4 introduces the architecture
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of Cop. Chapter 5 and Chapter 6 introduce how Cop removes the Achilles’ Heel of LGI.

Chapter 7 discusses Cop’s requirements on LGI’s implementation and our solutions. Chap-

ter 8 discusses a functionally complete prototype of Cop and the experiments we have done

with it. Chapter 9 proposes several future research directions. Chapter 10 concludes this

dissertation.
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Chapter 2

An Overview of LGI

Law-Governed Interaction (LGI) [41] is a decentralized, stateful, and modular mechanism

for a community of distributed heterogeneous actors to interact under an explicit and en-

forced protocol called the law of the community. As shown in [60] and [40], LGI can

effectively enforce protocols in MAS. This chapter provides an overview of LGI, while its

manual [39] provides a more in-depth description.

The gist of LGI is as follows. A community following the law L is called L-community,

denoted as CL. LGI can enforce L in CL in a strictly decentralized way without needing

the knowledge or control of the internals of the actors in CL, which is roughly done as

follows. An actor can join CL by adopting a private surrogate called controller loaded with

L and conducting interactions through this controller, then the actor along with its con-

troller is called an L-agent. The controller conducts interactions strictly following L, and

thus enforces L on the interactive activities of the L-agent. Thanks to the local nature of

laws, which will be elaborated in Section 2.1, such enforcement is carried out locally at the

L-agent, without needing the knowledge of or dependency on anything that happens simul-

taneously at other L-agents, enabling L to be enforced in parallel in CL by the controllers

of various L-agents.

The decentralized nature of the enforcement ensures its inherently low latency and high

scalability; in particular, as shown in [41], the latency of LGI is in the magnitude of mil-

liseconds. In addition, as Section 2.3 will discuss, LGI enables two different communities

to interoperate under the regulation of both communities’ laws. For more complex sys-

tems, LGI provides a more flexible mechanism called Conformance Hierarchy to regulate

the interactions in them.

The rest of this chapter introduces several aspects of LGI. Section 2.1 introduces the
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concept of law; Section 2.2 discusses the enforcement of law; Section 2.3 introduces how

LGI enables regulated interoperations between communities.

2.1 The Concept of Law

In LGI, a law is formulated in terms of three elements defined with respect to a given

controller t:

• E: the set of all Regulated Events that may occur locally at t, such as the arrival of

a message. Every regulated event may carry multiple arguments and can be uniquely

represented by a byte string.

• S: the set of all possible local Control States of t. Distinct from the internal state of

the actor, of which the law is oblivious, the control state of t is an unbounded but

usually small set of key-value pairs, each of which is called a control state entry.

• O: the set of all Primitive Operations that can be mandated by a law for t to execute,

such as sending a message. Every primitive operation may include multiple arguments

and can be uniquely represented by a byte string.

The formal definition of a law L is a mapping:

L : E × S → O∗ × S

That is, in response to the occurrence of a regulated event at t, according to the control

state of t at the time of occurrence of the event, L mandates a possibly empty sequence of

primitive operations that t should execute sequentially and atomically, and a new control

state that is to replace the current control state of t.

The definition of law reveals its local nature: when making rulings, a law L only concerns

the events that occur locally at the controller and the local control state of the controller,

and the operations it mandates are to be executed locally by the controller. Although

some operations L mandates may incur non-local effect (e.g., sending a message to another

controller which will trigger an event on that controller), the decision to execute such
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operations are still made locally. Despite the local nature, L has a global sway in L-

community, as it is locally enforced at every L-agent. Meanwhile, as proved in [39], the

local nature does not reduce law’s expressive power.

Law is stateful, i.e., the rulings of a law may depend on the controller’s current control

state, while the evolution of the controller’s control state is regulated by the law by man-

dating set operations, which create or update control state entries; and unset operations,

which remove control state entries. The statefulness of law makes it sensitive to the history

of interactions, which is crucial for establishing coordination protocols between them.

A law can be made proactive to an extent with the mechanism of Enforced Obligation: it

can mandate an imposeObligation or repealObligation operation for a controller to impose

or repeal an obligation, which is essentially a named timer. When the obligation dues, i.e.,

the specified time is up, an obligationDue event will occur at the controller for which the

law can make further rulings. Enforced Obligation enables the law to express both safety

and liveliness rules.

A law may be non-deterministic, i.e., its rulings may base on random numbers. Non-

deterministic laws are specifically useful for the protocols involving randomness and tie-

breaking.

A law can be expressed with Event-Condition-Action (ECA) blocks, any language that

can express ECA blocks can potentially be developed into a Domain-Specific Language

(DSL) for writing laws. In this dissertation, all laws are written in a DSL called LawScript

which is designed by the dissertation author and is fully supported in the latest implemen-

tation of LGI. Appendix A will introduce the details of LawScript.

Law 2.1 and Law 2.2 are two simple example laws written in LawScript. In Law 2.1

(money law), each member of the community is provided with an initial budget of $1000

when joining the community, then it can transfer any amount of money to another member

only if the amount is not greater than its current budget, after which the budgets of the

sender and the receiver will be updated appropriately. Law 2.2 (monitor law) establishes

a systematic monitoring scheme with a designated monitor for all interactions within the

community, so that whenever a new member joins the community or a member sends a

message to another member, the monitor is guaranteed to be informed.
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Law 2.1: money law

Name: money
LawScript: CoffeeScript

UPON "adopted", ->
DO "set", key: "budget", value: 1000
return true

UPON "sent", ->
if @message <= CS("budget")
DO "set", key: "budget", value: CS("budget") - @message
DO "forward"
return true

UPON "arrived", ->
DO "set", key: "budget", value: CS("budget") + @message
DO "deliver"
return true

Law 2.2: monitor law

Name: monitor
LawScript: CoffeeScript

monitor = "monitor@192.168.1.100:5000"

UPON "adopted", ->
DO "forward", receiver: monitor, message:
type: "adopted", controller: @self

return true

UPON "sent", ->
DO "forward", receiver: monitor, message:
type: "sent", message:@message
sender: @self, receiver: @receiver

DO "forward"
return true

UPON "adopted", ->
if @self is monitor
return true

UPON "arrived", ->
DO "deliver"
return true
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2.2 The Enforcement of Law

In LGI, laws are enforced by mutually independent controllers in a strictly decentralized

way, making LGI free from single point of attack, single point of failure, and low scalability.

All generic controllers are supposed to be maintained by a highly reputable organization

called Controller Service (CoS), whose users may trust it just like they trust email services,

ISPs, or cloud computing services. CoS can vouch for the authenticity of the generic con-

trollers it maintains so that each of them can be trusted to correctly enforce any well-formed

law loaded into it. CoS may ensure the authenticity of controllers with trusted computing

technologies such as Trusted Platform Module (TPM) [5], which is particularly feasible to

deploy in CoS as all the generic controllers have the identical code which leads to a single

and stable hash. Moreover, CoS provides each controller it maintains with a certificate with

its signature, so that the controller can authenticate itself as an authentic controller when

it interacts with other controllers.

Any actor can join L-community and thus form an L-agent by performing the following

steps:

1. The actor acquires a generic controller from CoS.

2. The actor loads the controller with L retrieved from a well-known and trusted law

server.

3. The actor adopts this controller to be its surrogate that mediates all its interactive

activities subject to L.

The motivation for an actor to join L-community is due to the handshake mechanism of

LGI: before conducting interactions, a pair of controllers first validate each other’s certificate

signed by CoS to establish mutual trust on each other’s code, then exchange the hash of

their laws. In this way, the controllers can mutually recognize each other’s law, and can

justifiably trust each other to enforce the law. The handshake mechanism enables a law

to set its community’s boundary of interactions. By default, only interactions within the

community are allowed, while communities may also interoperate to the extent permitted
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by the respective laws. Therefore, if an actor’s intended interlocutor requires it to join

L-community, then it is effectively compelled to join L-community.

The adoption of a controller triggers an adopted event on the controller, for which L

may make rulings, such as initializing the control state. L may also reject the adoption

under some circumstances by mandating a quit operation (e.g., when the actor does not

provide a required certificate), which enables L to set requirements on the actors that are

allowed to join L-community.

The interactive activities of an L-agent are governed by L as follows:

• When the actor of an L-agent wants to send a message to another L-agent, it requests

the controller to carry out the interaction, which will trigger a sent event on the

controller, for which L can make rulings on what the controller should do.

• To make a controller send a message to another controller, L can mandate a forward

operation.

• When the controller of an L-agent receives a message from another controller, an

arrived event will occur at the controller, for which L can make rulings on what the

controller should do.

• To make a controller deliver a message to the actor that adopted it, L can mandate

a deliver operation.

Figure 2.1 shows an interaction between two L-agents governed by L. Note the dual

nature of the governance: the interaction is first mediated by the sender’s controller, and

then by the receiver’s controller.

Sometimes a controller may need to interact with actors not belonging to any community;

such an actor is called an alien. When the controller receives a message from an alien, a

submitted event will occur at it. On the other hand, L can mandate a release operation

under some circumstances which is executed by the controller by sending a message to an

alien.

Note that the actor and the controller of an L-agent may be spatially separated, their
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Figure 2.1: An Interaction Governed by L

communication is via the network connection between them. Once the connection is bro-

ken, a disconnected event will occur at the controller; once the connection is restored, a

reconnected event will occur at the controller. This allows L to handle the changes on the

connection status.

Sometimes the controller of an L-agent may fail to execute an operation, e.g., when

it tries to send a message while the receiver is offline. When such a failure happens, an

exception event will occur at the controller with the information of the failed operation,

then L can make rulings for this event to handle the exception.

It is noteworthy that every event carries an argument indicating the timestamp when it

occurs at the controller, which may affect the rulings of the law. Note that this timestamp

does not always reflect the time when the controller processes the event, as an event is not

always immediately processed by the controller when it occurs, because the sequence of

operations a law mandates are to be executed sequentially and atomically by the controller

before processing the next event, i.e., during the execution of this sequence of operations, no

other operations should be executed, and no other events should be processed. Therefore,

when an event occurs at a controller, it may need to wait to be processed until all the

operations mandated for the previous event have been executed.

2.3 Beyond Single Community

LGI can support more than a single community, as the generic controllers maintained by CoS

may serve multiple different communities after being loaded with different laws. Obviously,

LGI can support multiple isolated communities.
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In addition, it can also support multiple interoperating communities. As mentioned

above, a law can set its community’s boundary of interactions, which is done by specifying

the communities its members can interact with, the conditions under which such interactions

are allowed, and how such interactions should be carried out. Therefore, members from

different communities may interact under the regulation of their respective laws.

Furthermore, LGI can organize a set of laws that collectively governs a complex system

or a system-of-systems into a coherent ensemble called Conformance Hierarchy, which is a

tree of laws rooted by a single root law, in which every law, except the root law, transitively

conforms to its superior law, and this conformance relation is inherent in the way it is

constructed, which requires no extra validation. Each law in a Conformance Hierarchy may

be used to enforce protocols in a subsystem; when interacting, agents operating under the

different laws in a common Conformance Hierarchy, i.e., agents from different subsystems,

can identify the position of each other’s laws within this Conformance Hierarchy, and thus

their interactions can be regulated by their respective laws accordingly. The formal defi-

nition and the construction of Conformance Hierarchy are introduced in [2], and a recent

application of Conformance Hierarchy is introduced in [38].
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Chapter 3

The Achilles’ Heel of LGI

The correctness of LGI’s enforcement of laws depends on the correct operation of controllers.

Even if CoS does its utmost to maintain and protect the authentic controllers, there are

still chances that some individual controllers may malfunction and violate the law subject

to which they are supposed to operate in the following ways:

• Not executing some operations that their laws mandate.

• Executing some operations that their laws do not mandate.

• Executing different sequences of operations than what their laws mandate.

Such a malfunction is essentially a failure of a controller, which may happen under the

following threat model:

• An insider of CoS or an outsider who discovers some vulnerability in the controller’s

code may conduct a targeted attack on the controller and cause the failure.

• A bug in the controller’s code may appear and cause the failure, which can only appear

under some rare runtime conditions.

Unlike the case in centralized reference monitors, in LGI, a community as a whole may

continue to operate despite the failure of individual controllers. However, individual failed

controllers may be able to inflict damage to their community; in some cases, even a single

failed controller may be devastating to the entire community. A case in point is Law 2.1

(money law): one failed controller may distribute a large amount of fake money among

other members of the community without raising any suspicion. This reveals a serious flaw

of LGI to which we refer as its Achilles’ Heel: LGI provides no general mechanism for
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handling failed controllers; in particular, it provides no general mechanism for discovering

and recovering failed controllers.

It should be pointed out that we are concerned mostly about Byzantine failures, i.e.,

failures that make controllers behave arbitrarily, unpredictably, and potentially maliciously.

In fact, LGI can effectively tolerate fail-stop failures, i.e., failures that make controllers stop

functioning and produce no illegal output: if a fail-stop failure occurs at a controller, when

its interlocutors try to interact with it, they will get exception events, so that they can

perceive and handle the failure according to their laws.

For some specific communities, it may be possible to eventually discover failed con-

trollers, which generally requires a monitor agent who monitors and analyzes all interactions

in the community, as shown in Law 2.2 (monitor law). However, this method relies on the

honest self-reporting of the controllers on their interactive activities, while a failed controller

may report different interactive activities than what it actually conducts. In addition, it

may take a very long time for such an analysis to discover the failed controllers, and this

latency may be exploited by the failed controllers to inflict massive damage. Furthermore,

this method is not general: different communities may require different specifically tailored

monitoring and analyzing methods.

There are several general methods for tolerating Byzantine failures, such as [8], [48],

and [25]. However, these methods may incur very high replication cost and multicasting

overhead for tolerating even one failed controller, while the number of controllers and the

number of operations these controllers may execute in even a single community can be very

large, let alone multiple communities. For most applications of LGI, these methods are far

too inefficient and expensive; therefore, they cannot effectively remove LGI’s Achilles’ Heel.

Removing LGI’s Achilles’ Heel is one of the major goals of this work. In the following

chapters, we will introduce our approach that can effectively remove LGI’s Achilles’ Heel.
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Chapter 4

The Architecture of Cop

Cop is an LGI-based PEM for MAS. It inherits the low latency, high scalability, and regu-

lated interoperability of LGI. In addition, it removes the Achilles’ Heel of LGI, making it

also highly dependable and secure.

Cop consists of two parts working in concert:

• LGI. As an LGI-based PEM, Cop enforces protocols with LGI. Since LGI has been

sufficiently introduced in Chapter 2, this chapter will not elaborate more on LGI.

• A mechanism called Discovery and Recovery (D&R), with two purposes:

– Promptly discovers any controller who fails to comply with its law right after the

failure occurs.

– Immediately recovers the failed controllers right after discovering them and as-

sists with the reparation of the damage they may have inflicted.

In order for the D&R mechanism to carry out these purposes, in Cop, each community

has a Ledger that keeps records of the interactive activities of the controllers in the com-

munity, and an Inspector that systematically inspects the community’s Ledger to discover

failed controllers and initiates the recovery of the failed controllers. To cooperate with

the Ledger and Inspector of each community, a component called Controller Provider (CP)

takes the role of LGI’s CoS; in addition to hosting controllers for multiple communities with

enhanced security, CP is also responsible for feeding every community’s Ledger and actu-

ating the recovery of failed controllers. Figure 4.1 shows the overview of the architecture of

Cop.

Ledgers, Inspectors, and CP are the Trusted Computing Base (TCB) of Cop, the correct-

ness of the D&R mechanism depends on their correct operation. As the following discussion
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Figure 4.1: Overview of Cop

will show, trustworthiness and security are of high priority in their design. Moreover, their

trustworthiness and security can be further enhanced via traditional methods such as TPM.

The rest of this chapter introduces the details of Ledger, Inspector, CP, and their rela-

tionship. With this chapter’s introduction as a foundation, Chapter 5 will introduce how

the D&R mechanism works.

4.1 Ledger

In Cop, each community has a structure called Ledger which keeps records of the interac-

tive activities of each controller in the community, including events that occurred at each

controller, and operations executed by each controller. The Ledger of the community CL is

denoted by GL.

As mentioned in Section 2.1, every event/operation has a unique byte string represen-

tation. We call the representation of an event an event record, and the representation of an

operation an operation record. The event record representing the event e is denoted as e,

and the operation record representing the operation o is denoted as o. A Ledger consists



17

Figure 4.2: Schematic of a Ledger

t1
e1 e2 e3 e4 · · ·

o1 o2 o3 o4 · · ·

t2
· · ·

· · ·

· · ·

of event records and operation records, each of which is called a Ledger Entry. Ledger GL

maintains two sequences for each controller t in CL: Et, the sequence of event records for

the events that occurred at t in their occurrence order; and Ot, the sequence of operation

records for the operations that t executed in their execution order. Figure 4.2 shows the

schematic of a Ledger.

For the reason that will be discussed in Section 5.1.1, the Ledger does not keep records of

exception events or set/unset operations. The events/operations recorded on a Ledger are

all caused by interactive activities, or more precisely, network I/O. Some operation records

represent failed operations and will be used in the D&R mechanism for inferring exception

events. The events/operations for Enforced Obligations require some additional discussion,

which will be provided in Section 7.1.

After the on-line protocol enforcement of L by any controller t in CL, the interactive

activities of t will be recorded on GL, which will be used off-line as the basis of the D&R

mechanism. Obviously, the accuracy and security of the Ledger of each community are cru-

cial to the correctness of the D&R mechanism. Since the controllers may fail, the production

of Ledger Entries cannot rely on the controllers’ self-reporting. Chapter 6 will introduce

our solution for reliably producing Ledger Entries based on the analysis of network I/O.

In addition, for better security, the Ledger of each community is highly secluded, and is

only accessible by the Inspector of the community and the Ledger Writers which will be

introduced in Section 4.3.1.

Ledger is highly shardable. Since LGI controllers work locally and independently, Ledger

entries of different controllers can be stored in different locations. Sharding a Ledger may

reduce the risk of single point of failure or attack and provide better scalability.



18

Figure 4.3: Inspector of CL

Another seemingly possible way for organizing the Ledger is to use a single sequence

to record the interactive activities of each controller t, so that whenever t processes an

event, the corresponding event record will be appended to the sequence, and whenever t

executes an operation, the corresponding operation record will be appended to the sequence.

However, it is impractical to construct a Ledger organized in this way, as it depends on the

time when the controller processes the event: as mentioned in Section 2.2, due to the atomic

nature of the execution of operations, the time when an event occurs at a controller does

not always equal to the time when the controller processes it; although as Chapter 6 will

show, the time when an event occurs at a controller can be accurately figured out without

needing to trust the controller, the time when the controller processes the event cannot be

figured out without relying on the controller’s self-reporting which is untrustworthy, as the

processing of an event is an internal activity of the controller.

4.2 Inspector

For each community CL, Cop maintains an Inspector IL that systematically and contin-

uously inspects the community’s Ledger GL to discover failed controllers and initiate the

recovery of failed controllers. As shown in Figure 4.3, the way IL works, which will be

elaborated in Chapter 5, is based on two components it maintains:
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• Controller State Variable (CSV) for every controller t of CL, denoted as vt, which is a

variable reflecting the correct control state of t. Note that vt is physically independent

from the control state stored internally in t, and must be computed by IL: for each

controller t, vt is initially empty, and will be updated recursively during D&R, as

Section 5.1.1 will show.

• Law Evaluator. It takes one event record e and one control state s as input, then

evaluates L : E × S → O∗ × S with the corresponding event e and s and yields a

sequence of operations O and the new control state s′ that L mandates, and finally

outputs the corresponding sequence of operation records O and s′.

Note that the Law Evaluator does not handle any network I/O, its only task is to evaluate

the law; in particular, it does not execute the operations the law mandates. Therefore, the

complexity of the Law Evaluator and the risk it faces are significantly lower than those of

the controllers.

The local nature of controllers enables the CSVs of different controllers to be independent

of each other. Meanwhile, the Law Evaluator does not record runtime state or rely on

previous runtime state; therefore, it can be easily replicated and work in parallel. As

Section 5.1.1 will show, the independent nature of CSVs and the high replicability of the

Law Evaluator will bring considerable benefit to the scalability of the D&R mechanism.

The security of the Inspector of each community is crucial to the correctness of the

D&R mechanism; therefore, each Inspector IL is highly secluded and only has access to the

components that are necessary to the D&R mechanism, i.e., the law L, the Ledger GL, and

CP with which IL initiates the recovery of failed controllers.

4.3 Controller Provider

Controller Provider (CP) is a variant of LGI’s CoS. In addition to hosting controllers for

multiple communities, it also feeds every community’s Ledger and actuates the recovery of

failed controllers. It consists of a cluster of servers called CP Nodes and a component called

CP Manager for managing the cluster. Figure 4.4 shows the overview of the architecture

of CP.
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Figure 4.4: Overview of Controller Provider

4.3.1 CP Node

A CP Node is a server that hosts multiple generic controllers. The controllers on a CP

Node may be loaded with different laws and thus may serve different communities. Figure

4.5 shows the architecture of a CP Node.

In a CP Node, controllers are encapsulated with Linux Containers (LXC) [30] [35], an

OS-level virtualization mechanism for running multiple isolated instances of Linux system

on a single host with a single Linux kernel. Two of the most important features of LXC

include:

• Isolation. Powered by Linux namespaces [32], LXC can partition the resources of the

host, including PIDs, UIDs, network, and file systems, and assign them to different

containers, so that each container has an isolated and independent view of the envi-

ronment that they can and can only operate in. On the other hand, with seccomp

[32], LXC can also limit the system calls that the processes in a container can make.

In this way, LXC can effectively prevent processes in a container from interfering with

its cotenants on the same host, i.e., they cannot interfere with the processes in other

containers or processes not in container.

• Resource control. Powered by Linux control groups (cgroups) [32], LXC can limit,

prioritize, account, and control the resource usage of each container, including CPU,

memory, storage, and network. In this way, LXC can effectively prevent processes in
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Figure 4.5: CP Node

one container from hogging all the resources of the host; it can also help optimize the

resource allocation to the containers dynamically to fit the actual demand.

By isolating controllers in containers, a CP Node can ensure that failed controllers cannot

hog all the hardware resources or interfere with the environment outside the container, and

thus prevent them from disabling or corrupting other controllers or components on the same

CP Node. It also enables the CP Node to dynamically adjust resource allocation to the

controllers it hosts to fit the actual demand.

It is noteworthy that Virtual Machine (VM) is another potential solution for isolating

controllers. Theoretically, VM can provide more secure isolation than LXC, as the processes

isolated in different VMs do not share the same kernel. However, as many works including

[18] [24] [42] have pointed out, VM is generally less efficient and scalable than LXC. In

addition, it is inflexible to dynamically adjust resource allocation with VM. Moreover, no

work has convincingly demonstrated that LXC is really less secure than VM. Therefore, in

this work, we chose LXC over VM.

Every CP Node has a component called CP Node Manager that manages the CP Node
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and the controllers it hosts. It is also responsible for actuating the recovery of failed con-

trollers, which will be elaborated in Section 5.2. For better security, the CP Node Managers

only take input from the CP Manager. More on the CP Node Manager and the CP Manager

will be discussed in Section 4.3.2.

In addition to hosting controllers, the CP Nodes are also responsible for feeding the

Ledgers. The production of Ledger Entries cannot rely on the self-reporting of controllers,

because controllers may fail and thus cannot be trusted to honestly report their interactive

activities. Fortunately, each CP Node can capture the network I/O of the controllers it

hosts at a lower level, enabling our solution for reliable Ledger Entry production that will

be elaborated in Chapter 6, which is carried out by a component of the CP Node called

Ledger Writer. It is noteworthy that the multiple communities that Cop may serve have

a many-to-many relationship with the CP Nodes: a CP Node may host controllers for

multiple communities, while a community may scatter over multiple CP Nodes. Therefore,

a CP Node may need to feed the Ledgers for multiple communities, and the Ledger of one

community may be fed by multiple CP Nodes.

The security of the Ledger Writer and the CP Node Manager of every CP Node is

crucial to Cop. In fact, protecting the Ledger Writer and the CP Node Manager from the

interference of failed controllers is another reason for isolating controllers in containers.

4.3.2 CP Manager

CP Manager is a CP component for managing the CP Nodes; it is also the interface for the

users to use Cop. It has three main tasks:

• Routine management of controllers, including creating, removing, adjusting, and mon-

itoring controllers.

• Monitoring the status of CP Nodes, including their health, load, and available hard-

ware resource.

• Actuating the recovery of failed controllers when informed by an Inspector. More on

this will be discussed in Section 5.2.
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As Figure 4.5 shows, the management of the CP Manager is carried out via the CP Node

Manager of every CP Node. Whenever the CP Manager needs to carry out a management

operation, it will send a command message to the relevant CP Node Manager. For better

security, the command messages will be sent via TLS. Upon receiving a command message,

the CP Node Manager first checks the sender’s certificate; then if and only if the certificate

shows that the sender is the CP Manager, the CP Node Manager will execute the operation

on the CP Node according to the command message and respond if necessary.

With a global view of all CP Nodes and controllers, the CP Manager can help optimize

the utilization of the CP Nodes and the distribution of controllers among the CP Nodes.

For example, it can dynamically adjust the resource allocation to the controllers on a CP

Node to better fit the demand; it can also create new controllers on less occupied CP Nodes.

It is noteworthy that the CP Manager does not keep any runtime state, all the runtime

state (e.g., the roster of controllers) is kept by the CP Node Managers. Therefore the CP

Manager can be easily replicated to accommodate large numbers of CP Nodes and users.
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Chapter 5

The D&R Mechanism

Cop ensures its dependability and security by removing the Achilles’ Heel of LGI with the

D&R mechanism, which carries out the following two complementary tasks based on the

systematical and continuous inspection of the interactive activities of each controller in each

community:

• Promptly discovers any controller who fails to comply with its law right after the

failure occurs.

• Immediately recovers the failed controllers right after discovering them and assists

with the reparation of the damage they may have inflicted.

This chapter introduces how the D&R mechanism works. It first introduces the mech-

anism for discovering failed controllers, then it introduces the mechanism for recovering

failed controllers.

5.1 The Discovery Mechanism

Thanks to the local nature of LGI laws and their enforcement, the failure of a controller t in

a community CL to comply with L can be discovered locally by inspecting the interactive ac-

tivities of t alone and independently from any other controllers. This significantly simplifies

the inspection and makes it highly efficient and scalable. This section discusses the Discov-

ery mechanism. For the sake of simplicity, our discussion will first focus on a single isolated

community CL, whose members only interact with members of CL. Obviously, the Discov-

ery mechanism can be carried out in parallel in multiple isolated communities in the same

way, enabling it to support multiple isolated communities. Furthermore, our discussion will
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be expanded to explain how the Discovery mechanism handles multiple communities that

interoperate with each other.

5.1.1 For Isolated Communities

In a community CL, the inspection of a controller by the Inspector IL starts when its first

event record appears on the Ledger. This event must be an adopted event which occurs

when the controller gets loaded with L and adopted by an actor, marking the start of its

lifetime. When IL observes an adopted event record e1 of a controller t on the Ledger GL,

it carries out the initial inspection of t as follows:

1. IL creates the CSV for t, denoted as vt. Initially vt is an empty set, the same as any

newly spawned controller.

2. IL evaluates L with the Law Evaluator for the pair (e1, vt), and gets the sequence of

operation records O1 (except set/unset operations), and a control state s1.

3. IL sets vt to s1.

4. IL then inspects Ot (the operation records of t on GL, see Section 4.1) to verify

whether t has executed the exact sequence of operations mandated by L sequentially

and atomically, i.e., ∀i ∈
[
1..

∣∣O1

∣∣] , Ot(i) = O1(i). Then:

• If t has executed the exact sequence of operations mandated by L sequentially

and atomically, then IL can conclude that t has operated correctly so far.

• Otherwise, IL concludes that t is failed, and will initiate the recovery of t as

Section 5.2 will describe.

After the initial inspection, IL continuously carries out the recursive inspection of the

consecutive event records in Et (the event records of t on GL, see Section 4.1) until it

observes a quit operation record:

1. Suppose IL has inspected a sequence of event records (e1, e2, . . . , ek) without detecting

any failure, and for the events represented by these event records, L totally mandates
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p operations whose corresponding operation records have all been inspected during

the inspection. Then there are the following three situations:

• There is no more uninspected event record or uninspected operation record on

GL. This situation means t does not conduct any more interactive activity;

therefore, nothing should be done until more event records or operation records

appear on GL.

• There is no more uninspected event record on GL, but there are some uninspected

operation records on GL. This situation means the controller has executed more

operations than L mandates; therefore, it should be regarded as failed, and IL

will initiate the recovery of t as Section 5.2 will describe.

• There are uninspected event records on GL. In this situation, IL will go to Step

2 and start inspecting the next event.

2. Suppose the event record after ek is ek+1. IL evaluates L with the Law Evaluator for

the pair (ek+1, vt), and gets the sequence of operation records Ok+1 (except set/unset

operations), and a control state sk+1.

3. IL sets the value of vt to sk+1.

4. IL then inspects Ot to verify whether t has executed the exact sequence of operations

mandated by L sequentially and atomically, i.e., ∀i ∈
[
1..

∣∣Ok+1

∣∣] , Ot(p+i) = Ok+1(i).

Then:

• If t has executed the exact sequence of operations mandated by L sequentially

and atomically, then IL can conclude that t has operated correctly so far.

• Otherwise, IL concludes that t is failed, and will initiate the recovery of t as

Section 5.2 will describe.

The underlying philosophy of the inspection algorithm is: for a controller t in CL,

no matter how it behaves internally, as long as it always executes the exact sequence of

operations mandated by L sequentially and atomically for each event occurs at it, the effect

of the controller on others is identical to the effect mandated by L, and thus should be seen
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as correct; otherwise, it should be seen as failed. Therefore, even though IL does not and

cannot access the internals of t, particularly the actual control state stored internally in t,

it can still effectively verify the correctness of t. This requires that the CSV of t always

accurately reflects the correct control state of t as mandated by L, which can be proved as

follows:

Proof. This can be proved with induction.

Basis step: Initially the CSV of t, denoted as vt, is an empty set, which accurately

reflects the correct control state of the newly spawned t. During the initial inspection, vt

is set to the control state mandated by L; therefore, it still accurately reflects the correct

control state of t.

Inductive step: Suppose that after a sequence of events (e1, e2, . . . , ek), the correct con-

trol state of t is sk, and vt reflects the correct control state of t, i.e., vt = sk. When a new

event ek+1 occurs at t, if t is correct, it should evaluate L which maps the pair (ek+1, sk) to

(O, sk+1), then execute the sequence of operations O and update its control state to sk+1.

On the other hand, according to the inspection algorithm, when IL sees the event record

ek+1, it evaluates L for the pair (ek+1, vt), which equals to (ek+1, sk), and gets the pair

(O, sk+1), then updates vt to sk+1. Now vt = sk+1, i.e., it still reflects the correct control

state of t.

In conclusion, vt always accurately reflects the correct control state of t.

Note that during the inspection, set/unset operations are ignored, as they will be re-

flected in the new control state. If a controller fails to execute the correct set/unset opera-

tions, it will have a wrong control state which will eventually lead to wrong operations, so

that the Inspector can eventually discover this failure.

As mentioned in Section 4.1, some operation records on GL represent failed operations.

In a correct controller, a failed operation should incur an exception event with the informa-

tion of the failed operation. Therefore, when observing a failed operation, IL will imitate

a correct controller and generate an exception event record accordingly. Before inspecting

the next event record, IL will first inspect the exception event records it has generated

for the failed operations records during the inspection of the current event record in the
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same order as the failed operations records. The reason behind this will be elaborated in

Section 7.2.2. Sometimes it is impossible for IL to get the information of a failed operation

from GL, e.g., when the operation failed during the TCP handshake and thus no message

has been exchanged at all. In this situation, IL can generate the exception event with the

operation record o which it computes for comparing with the failed operation, because if

the controller is correct, the operation it failed to execute must be o.

The inspection algorithm is highly efficient, as it is on a linear and rolling basis, i.e.,

there is no look-ahead or look-behind: during the inspection of an event record, there is

no need to consider any future event records, and same to operation records; on the other

hand, the inspected Ledger Entries will not be inspected again. The high efficiency of the

inspection algorithm enables IL to discover the failed controllers promptly after the Ledger

Entries reflecting the incorrect activity appear on GL.

In addition, since each controller works locally, their Ledger Entries can be inspected

independently in parallel, making the inspection algorithm highly parallelizable. Moreover,

as mentioned in Section 4.2, the independent nature of the CSVs and the high replicability

of the Law Evaluator make it possible for a community to have multiple Inspector instances

working in parallel, so that each instance only carries out the Discovery mechanism for

a subset of controllers of the community, which makes the inspection algorithm highly

scalable.

The same inspection algorithm can be executed in parallel in multiple isolated commu-

nities, enabling the Discovery mechanism to support multiple isolated communities.

5.1.2 For Interoperating Communities

The inspection algorithm introduced in Section 5.1.1 can also support interoperating com-

munities. This is because, as mentioned in Section 2.3, in LGI, interoperations between two

communities are locally governed by the laws of these communities; therefore, any controller

t′ in a community that interoperates with another community still needs to operate subject

to the law of its community, in which sense it is not different from any controller t in an

isolated community; therefore, the inspection algorithm for t′ is exactly the same as the

inspection algorithm for t.
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5.2 The Recovery Mechanism

When a failed controller is discovered, it will be immediately recovered so that its operation

can be put back to normal. Since controllers are independent of each other, the recovery of

an individual failed controller can be done without considering other controllers, making it

highly efficient and scalable.

The Recovery mechanism has the following two tasks:

• Resumes the proper operation of the failed controller.

• Assists with the reparation of the damage that the failed controller may have inflicted.

5.2.1 Resuming the Proper Operation

Resuming the proper operation of a failed controller may seem to be a daunting task, as it

seems to suggest the need to examine the entire runtime context of the failed controller to

find what is wrong and try to fix the problem. This procedure is also known as “debugging”,

which is notoriously labor-intensive and time-consuming, as different failures may have

different causes and require different and specific examinations and solutions. Fortunately,

thanks to the generic nature of controllers, such a debugging is unnecessary: the code of

controllers is identical, what makes them different is their laws and control states. Therefore,

to resume their proper operation, we can just respawn the controller with the authentic

controller code, then load it with the law and the correct control state which can be retrieved

from its CSV.

The resumption of the proper operation of a failed controller t in a community CL is

efficiently done as follows:

1. When the Inspector IL discovers a failed controller t, it will send a recovery notification

to the CP Manager with t’s location and its CSV value vt via TLS.

2. Upon receiving a recovery notification, the CP Manager will first check the sender’s

certificate; if and only if the certificate shows that the sender is an Inspector, the CP

Manager will locate t and send a command message to the CP Node Manager of the

CP Node that hosts t, denoted as Nt.



30

3. Nt respawns t with the authentic generic controller code.

4. Nt loads the respawned t with the law L.

5. Nt loads vt to t. Now the proper operation of t is resumed.

Since controllers are independent of each other, the resumption of failed controllers can

be done in parallel, making the Recovery mechanism highly scalable.

5.2.2 Repairing the Damage

Although failed controllers can be promptly discovered after they behave illegally, there is

still some latency in which the failed controllers may inflict damage on others. Therefore,

after the resumption of the operation of a failed controller, it is also necessary to repair the

damage it may have inflicted.

As mentioned in Chapter 3, a failed controller may violate its law in the following ways:

• Minus Case: it may have not executed some operations that its law mandates.

• Plus Case: it may have executed some operations that its law does not mandate.

• It may have executed a different sequence of operations than what its law mandates.

This is essentially a combination of the Minus Case and the Plus Case.

After discovering a failed controller, according to the Ledger, the Inspector will generate

a diagnosis report for the controller indicating the incorrect operations it has executed for

the event which marks its failure, the operations that it has not executed but should have

for that event, and the events occurred at it and the operations it has executed after the

failure happened. With this diagnosis report, the Minus Case can be largely handled:

after resuming the proper operation of a failed controller t, Nt will direct it to execute the

unexecuted operations for the event it wrongly processed, then re-process the events that

occurred after its previous failure, without repeating the already executed operations.

For the Plus Case, the diagnosis report of the failed controller can also assist with the

reparation of the damage, as it provides us with a degree of understanding of the nature of

the damage so that we can attempt to fix it accordingly. However, sometimes the operations
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a failed controller has executed may have cascading or irreversible effects. For example,

consider Law 2.1 (money law), suppose a failed controller t sent m amount of money to

another controller t′ although it only had the budget of 0, even if t is promptly discovered

and recovered, the m amount of money has already been illegally sent to t′, and t′ may, in

turn, send this illegal money to others legally. In these situations, it may be necessary to

examine the Ledger Entries of all involved controllers to get a comprehensive understanding

of the nature of the damage in order to attempt to repair the damage. The systematical

handling of the Plus Case is beyond the scope of this work.
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Chapter 6

Ledger Entry Production

For the D&R mechanism to work correctly, it is crucial that the Ledger accurately re-

flects the interactive activities of the controllers in its community. This requires a reliable

mechanism for producing Ledger Entries.

The seemingly most straightforward way is to require every controller to report all its

events/operations to the Ledger. However, this method is unreliable, as the controllers may

fail and cannot be trusted to honestly report their events/operations.

Fortunately, in a proper LGI implementation, almost all event/operation types have

distinct network I/O patterns, and thus can be accurately inferred from the network I/O.

There are only three event/operation types that cannot be directly inferred from the network

I/O:

• set/unset operations. As discussed in Section 5.1.1, they do not need to appear on

the Ledger, and thus do not need to be considered.

• Events/operations about Enforced Obligations, i.e., imposeObligation,

repealObligation, and obligationDue. Section 7.1 will introduce our method

for making them inferable.

• exception events. As discussed in Section 4.1, exception events are caused by failed

operations and are recorded as failed operation records on the Ledger. In LGI, all

operations that may cause exception events are inferable, making exception events

also inferable. More details will be discussed in Section 6.2.

No matter how a controller behaves internally, its network I/O always objectively re-

flects its interactive activities, which is all that the Ledger concerns. With all relevant
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events/operations directly or indirectly inferable from the network I/O, Ledger Entries can

be reliably produced by the inference. Note that the inference has some requirements on

the implementation of LGI, which will be elaborated in Chapter 7.

6.1 Event Record Production

Except for exception events which will be discussed in Section 6.2, every event that occurs

at a controller is caused by a network input stream to the controller, i.e., a TCP stream

initiated by a peer of the controller. An event can be inferred from a network input stream,

in particular, the TCP handshake information, the peer’s information, and the messages

exchanged in the stream, then an event record representing this event can be naturally

produced.

Different LGI implementations may lead to different network input stream patterns for

the same event type. Appendix B lists the patterns of all events in our reference LGI

implementation.

Sometimes it may be impossible to infer an event from a network input stream. There

are two possible causes of this situation:

• The controller did not follow the interactive protocol of the LGI implementation. In

this case, the controller should be directly reported as failed.

• The controller followed the interactive protocol of the LGI implementation, but some-

thing else went wrong, e.g., the stream was broken, timeout happened, or the peer did

not follow the interactive protocol. In a proper LGI implementation, such a network

input stream should not cause an event; therefore, during the inference, it is safe to

just ignore it.

6.2 Operation Record Production

Except set/unset operations which do not need to appear on the Ledger, every operation

executed by a controller will cause a network output stream from the controller, i.e., a TCP

stream initiated by the controller. An operation can be inferred from a network output
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stream, in particular, the TCP handshake information, the peer’s information, and the

messages exchanged in the stream, then an operation record representing this operation

can be naturally produced.

Different LGI implementations may lead to different network output stream patterns for

the same operation type. Appendix B lists the patterns of all operations in our reference

LGI implementation.

Sometimes it may be impossible to infer an operation from a network output stream.

There are two possible causes of this situation:

• The controller did not follow the interactive protocol of the LGI implementation. In

this case, the controller should be directly reported as failed.

• The controller followed the interactive protocol of the LGI implementation, but some-

thing else went wrong, e.g., the stream was broken, timeout happened, or the peer

did not follow the interactive protocol. In a proper LGI implementation, such a net-

work output stream should cause an exception event; therefore, in this case, a failed

operation record should be produced.

6.3 Ledger Writer

As Figure 6.1 shows, each CP Node has a component called Ledger Writer for producing

Ledger Entries for all controllers the CP Node hosts. For each controller, the Ledger Writer

captures its network I/O outside the container, and periodically stores the captured packets

(maybe none) into batches; from each batch, the Ledger Writer infers events/operations,

produces Ledger Entries, orders them by their TCP handshake completion timestamps (for

event records, see Section 7.3) or TCP handshake start timestamps (for operation records,

as they can reflect the time the controller executes the operations), then writes them to the

Ledger of the controller’s community.

Sometimes a batch may contain incomplete streams, i.e., streams without FIN or RST

packets. Such streams are not necessarily broken streams: maybe they were just cut into

pieces stored in multiple batches. In order to handle this situation, whenever the first

incomplete stream is observed in a batch, the Ledger Writer will stop processing the rest
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Figure 6.1: Ledger Writer

of the batch; instead, it will prepend the unprocessed packets in the current batch to the

next batch and move on to processing the next batch.

The way the Ledger Writer handles incomplete streams has one seeming vulnerability.

In a proper LGI implementation, hanging connections caused by abruptly irresponsive peers

are handled with the timeout mechanism: for a network input stream which is supposed to

cause an event, if it takes longer than the allowed time, the controller should terminate it

and no event will occur; for a network output stream which is caused by an operation, if

it takes longer than the allowed time, the controller should terminate it, and an exception

event should occur. When a proper controller terminates a timeout stream, it will send an

RST packet which marks the completion of the stream, so that the Ledger Writer can move

on to processing other streams. However, controllers may fail and may never send the RST

packet, making the Ledger Writer believe this is an incomplete stream and waits forever for

it to complete. In this situation, the Ledger Writer is practically disabled.

To solve this problem, in each batch, the Ledger Writer records its creation timestamp.

For each stream, if the difference between the batch creation timestamp and the stream’s

TCP handshake completion timestamp is more than the allowed time, i.e., at the time the



36

batch was created the stream had already used up its allowed time, then the stream must

be a timeout stream. If the stream is a network input stream, then the Ledger Writer will

just ignore it; if it is a network output stream, then the Ledger Writer will create a failed

operation record. After processing the timeout stream in such a way, the Ledger Writer

will move on to processing other streams.

It is noteworthy that most network streams the Ledger Writer handles are TLS streams.

In order to infer events/operations, the Ledger Writer needs to have the session keys of

the streams. In TLS, session keys are negotiated by both sides with secure key exchange

algorithms such as Diffie-Hellman [14] or RSA [50]; therefore, it is impossible to retrieve the

session keys from the TLS streams themselves. In order to meet the requirement under this

constraint, every controller is required to export the session keys and encryption algorithm

names of all TLS streams it handles right after the TLS handshake to a location on the

CP Node only accessible by the Ledger Writer, so that the Ledger Writer can decrypt the

payload. After decrypting the payload, the Ledger Writer will remove the session keys

and the encryption algorithm names. If the Ledger Writer cannot decrypt the payload

of a complete TLS stream of a controller with the session key the controller provides, it

means the controller did not correctly or honestly export the session key or the encryption

algorithm name, then the controller should be directly reported as failed.

The way the Ledger Writer retrieves session keys has one seeming vulnerability: a failed

controller may have actually sent message m with key k, which yielded ciphertext c in

the TLS stream, but it wants to mislead the Ledger Writer into believing that it has sent

message m′, so it computes and reports a key k′, with which m′ can be encrypted as c as

well; then when the Ledger Writer decrypts c with k′, it will get m′, and thus be misled.

However, this situation is virtually impossible, because it is essentially a Known-Plaintext

Attack (KPA) with only one plaintext-ciphertext pair, while as pointed out by [57], TLS

encryption algorithms are required to be strong against KPA.

Since the production of Ledger Entries for each controller is independent of others, for

better performance, the Ledger Writer can be replicated and work in parallel, so that each

Ledger Writer instance only needs to produce Ledger Entries for a subset of controllers.
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Chapter 7

Cop’s Requirements on LGI’s Implementation

To ensure the correctness of the D&R mechanism, Cop has several requirements on LGI’s

implementation. To meet these requirements, we made several enhancements to the original

LGI implementation called Moses. The enhanced LGI implementation is called Moses-2.

This chapter discusses these requirements and how Moses-2 addresses them.

7.1 Observable Obligations

As introduced in Section 2.1, Enforced Obligation is one of the essential features of LGI. In

the original LGI implementation, obligations of a controller are maintained by the controller

internally in the following way:

• When an imposeObligation operation is executed, the controller will create an internal

timer for the obligation.

• When the time is up, an obligationDue event will occur internally at the controller.

• When a repealObligation operation is executed, the controller will remove the internal

timer of the specified obligation.

However, in this way, imposeObligation, repealObligation, and obligationDue will not

cause any network I/O, making the Ledger Writer unable to infer and record them on the

Ledger. Therefore, Cop requires a mechanism that makes obligations observable.

To meet this requirement, Moses-2 handles obligations with a component called Obli-

gation Registry running on each CP Node, which manages obligations for all Moses-2 con-

trollers on the CP Node in the following way:
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• When a Moses-2 controller executes an imposeObligation operation, it will send

an imposeObligationRequest message with the obligation’s name, arguments, and

delay to the Obligation Registry of its CP Node. Upon receiving a valid

imposeObligationRequest message from a Moses-2 controller on its CP Node, the

Obligation Registry will create a timer of the specified delay for the obligation, then

respond with an imposeObligationResponse message without errors indicating the

successful imposition of the obligation. Failing to receive such a response will cause

an exception event on the Moses-2 controller.

• When the time is up, the Obligation Registry will send an obligationDueMessage

message with the obligation’s name and arguments to the Moses-2 controller that

imposed the obligation. Upon receiving a valid obligationDueMessage message from

the Obligation Registry of its CP Node, a corresponding obligationDue event will

occur at the Moses-2 controller.

• When a Moses-2 controller executes a repealObligation operation, it will send a

repealObligationRequest message with the obligation’s name to the Obligation Reg-

istry of its CP Node. Upon receiving a valid repealObligationRequest message from

a Moses-2 controller on its CP Node, the Obligation Registry will remove the timer

for the obligation, then respond with a repealObligationResponse message without

errors indicating the successful repeal of the obligation. Failing to receive such a

response will cause an exception event on the Moses-2 controller.

In this way, all obligation-related events/operations will cause network I/O, enabling

Ledger Writer to infer and record them on the Ledger.

For better security, all interactions between Moses-2 controllers and the Obligation Reg-

istry are through TLS. Before a Moses-2 controller sends an imposeObligationRequest or

repealObligationRequest message, it will check the receiver’s certificate and only send the

message if the certificate shows that the receiver is the Obligation Registry. On the other

hand, when a Moses-2 controller receives an obligationDueMessage message, it will check

the sender’s certificate and only trigger an obligationDue event if the certificate shows that

the sender is the Obligation Registry.
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7.2 Consistent Event Processing Order

In order for the Ledger to correctly reflect the interactive activities of a controller, Cop

requires:

1. A mechanism that ensures that the order of the events that the controller actually

processes is consistent with the order of the events recorded on the Ledger.

2. A mechanism that ensures that the order of the operations that the controller actually

executes is consistent with the order of the operations recorded on the Ledger.

Requirement 2 is trivial because LGI requires operations to be executed sequentially and

atomically. However, although seemingly trivial as well, Requirement 1 is actually quite

tricky. The rest of this section will elaborate on the challenges of Requirement 1, and our

solutions.

7.2.1 For Non-exception Events

As mentioned in Section 6.1, in LGI, except for exception events, all events that occur at a

controller are caused by network input. The events recorded on the Ledger are ordered by

their timestamps, which in Moses-2, due to the reason that will be discussed in Section 7.3.1,

are their corresponding network input streams’ TCP handshake completion timestamps.

When a controller finishes reading a network input stream’s payload, it will try to derive

an event from the payload, and if a valid event is derived, the controller will append the

event to an internal First-In-First-Out (FIFO) structure called Event Queue. Meanwhile, a

processor thread in the controller keeps processing the events in the Event Queue in FIFO

order.

To satisfy Cop’s requirement of consistent event processing order, the most straightfor-

ward approach is to use one single thread to process network input in each controller, so

that the TCP handshake of a network input stream will not be completed until its prior

network input stream has been completely processed. In this way network input streams

are naturally processed sequentially in the order of their TCP handshake completion times-

tamps. However, this will incur significant overhead: a network input stream may need a
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very long time to be processed due to a large payload or a slow peer, and during this time all

following network input streams have to wait. On the other hand, a network input stream

must wait until all prior network input streams have been completely processed. With a

large network input traffic, the overhead may become unacceptable.

It is more practical to use multiple threads to process network input. We can use one

thread s to listen to the specified port and handles TCP handshakes, once a TCP handshake

completes, a socket c will be created, then s will create a worker thread w, hand c to w,

then continue with the next TCP handshake. After being created, w will read all payload

from c, derive an event e from the payload, acquire the Event Queue’s lock le, append e

to the Event Queue, then release le. In this way, network input streams can be processed

in parallel without needing to wait for others to finish. However, Cop’s requirement of

consistent event processing order may not be satisfied in the following situation.

Suppose there are two network input streams α and β, which complete TCP handshake

at time tα and tβ respectively, and tα < tβ, i.e., α completes TCP handshake earlier than β;

α is processed by the worker thread wα, and is supposed to cause event eα; β is processed

by the worker thread wβ, and is supposed to cause event eβ; α and β require the time of pα

and pβ to be processed respectively, and pα > pβ because the payload of α is larger than β,

Now consider the possible situation tα+pα > tβ +pβ, in which wα appends eα to the Event

Queue later than wβ appends eβ. So eα will be processed later than eβ by the controller.

However, since tα < tβ, eα is prior to eβ on the Ledger. Therefore in this situation, Cop’s

requirement of consistent event processing order is not satisfied.

Moses-2 provides an effective solution to this problem. A Moses-2 controller processes

network input with multiple threads; in addition, it controls the event processing order with

an internal FIFO structure called Reservation Queue in the following way:

1. In a Moses-2 controller, one thread s listens to the specified port and handles TCP

handshakes. Once a connection is established and a socket c is created, s will create

a worker thread w with the unique ID iw, acquire the Reservation Queue’s lock lr,

append iw to the Reservation Queue, release lr, and hand c to w, then continue with

the next TCP handshake.
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2. After being created, w will read all payload of c, create an event e according to the

payload, then perform a procedure called reservation check defined as follows:

(a) First w acquires lr and checks if iw is at the head of the Reservation Queue:

• If iw is not at the head of the Reservation Queue, then w will release lr and

be put to sleep.

• Otherwise, w will acquire the Event Queue’s lock le, append e to the Event

Queue, release le, acquire lr, remove iw from the head of the Reservation

Queue, wake up all sleeping worker threads, then release lr, and thus its

running is completed.

(b) Upon being awakened, the worker threads will perform reservation check recur-

sively.

With the Reservation Queue, Moses-2 satisfies Cop’s requirement of consistent event

processing order without losing the performance benefits provided by multiple threads.

Take the aforementioned situation with network input streams α and β as an example.

Since tα < tβ, iwα will be prior to iwβ
in the Reservation Queue. Therefore even though

tα + pα > tβ + pβ, after reading the payload of β and producing eβ, wβ will be put to sleep

as iwβ
is not at the head of the Reservation Queue. When wα finishes reading the payload

of α and produces eα, it will append eα to the Event Queue because iwα is at the head of

the Reservation Queue. wα will then remove iwα from the head of the Reservation Queue

and wake up all sleeping worker threads, including wβ. Upon being awakened, wβ will find

iwβ
at the head of the Reservation Queue, so it will append eβ to the Event Queue and

remove iwβ
from the head of the Reservation Queue. In the end, eα will be processed earlier

than eβ by the controller, and Cop’s requirement of consistent event processing order is

thus satisfied.

7.2.2 For exception Events

Reservation Queue is effective for events caused by network input. However, exception

events are not caused by network input; therefore, they cannot benefit from the Reservation

Queue and need special treatment.
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Before processing the next event, a controller should process the exception events (if

any) in the same order as the execution order of the operations that cause them. The reason

behind this is:

• As a common engineering rule of thumb, exceptions should be handled as soon as

possible. In LGI, operations are atomically executed; therefore, the earliest possible

time to process the exception event caused by an operation is right after the execution

of all the operations the law mandates for the current event.

• In LGI, operations are sequentially executed; therefore, it is natural that the exception

events they caused are processed in the same order as their execution order.

Moses-2 addresses this requirement with an internal FIFO structure called Exception

Queue in the following way:

1. In a Moses-2 controller, operations are executed by a single processor thread which

keeps processing the events in the Event Queue in FIFO order by sequentially and

atomically executing the operations mandated by the law for each event. Before

processing each event, the processor thread will clear the Exception Queue.

2. During processing an event, if any operation fails to execute, the processor thread will

generate an exception event with the information of the failed operation, then append

it to the Exception Queue.

3. After processing an event, if the Exception Queue is not empty, the processor thread

will prepend all elements in the Exception Queue to the Event Queue.

In this way, the exception events caused in the current event will be processed before the

next event in the same order as the execution order of the failed operations that cause them.

Meanwhile, Cop’s requirement of consistent event processing order is satisfied, as the order

of exception events recorded on the Ledger is essentially the order of the corresponding

failed operation records.
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7.3 Consistent Event Timestamp

As mentioned in Section 2.2, in LGI, every event has a timestamp which may affect the

rulings of the law. In order for the Ledger to correctly reflect the interactive activities of a

controller, Cop requires:

• The timestamp of each event that the controller actually uses when evaluating the law

is consistent with the timestamp recorded on the Ledger.

• The event timestamps are consistent with their processing order.

7.3.1 For Non-exception Events

As mentioned in Section 6.1, except for exception events, all events are caused by network

input. As most network programs do, Moses-2 handles network input with sockets, specifi-

cally blocking sockets. Therefore, the earliest time a Moses-2 controller can access a network

input stream is when the corresponding socket is created. As pointed out by [52], a blocking

socket is created when the TCP connection is established, i.e., when the TCP handshake

completes; therefore, it is most natural for Moses-2 to use the TCP handshake completion

timestamp as the timestamp of each event. Moreover, the mechanism introduced in Section

7.2.1 ensures that the event timestamps generated in this way are consistent with their

processing order.

On the other hand, a network input stream’s TCP handshake completion timestamp can

be easily observed and recorded in the corresponding Ledger Entry by the Ledger Writer,

as it is the timestamp of the ACK packet of the three-way TCP handshake.

Therefore, for a non-exception event, Moses-2 uses the TCP handshake completion

timestamp of the corresponding network input stream as its timestamp, so does the Ledger

Writer.

7.3.2 For exception Events

Unlike other events, exception events are not caused by network input; they are caused by

failed operations, which obviously cannot be executed before the occurrence of the event
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for which the law mandates them. Therefore, the timestamps of exception events must not

be earlier than the timestamp of the event in which they are caused. Moreover, due to the

reason discussed in Section 7.2.2, the exception events caused by the operations mandated

by the law for the current event should be processed before the next event; therefore, the

timestamp of exception events must be earlier that than the timestamp of the next event.

The seemingly most straightforward way for setting the timestamp of an exception event

is to use the timestamp when the corresponding failed operation is executed. However, due

to the situation discussed in Section 7.2.1, this cannot guarantee that the timestamp of the

exception event is earlier than the timestamp of the next event.

Therefore, Moses-2 uses the timestamp of the event in which the exception event is

caused as the timestamp of the exception event. This way the timestamp of the exception

event is not earlier than the timestamp of the current event and is always earlier than the

timestamp of the next event. Although this will make the exception events caused in the

same event have the same timestamp, the tie on their processing order can be easily broken

with the execution order of the operations that cause them.

7.4 Treatment of Non-deterministic Laws

As introduced in Section 2.1, non-deterministic law is one of the essential features of LGI.

In order for the Inspector to correctly inspect a controller loaded with a non-deterministic

law, Cop requires a mechanism that enables the Inspector to know each random number the

controller generates. Since the controller may fail, such a mechanism should not rely on the

controller’s self-reporting.

Moses-2 addresses this requirement as follows:

1. Every Moses-2 controller has a unique ID. During the initialization of a Moses-2

controller, the MD5 [49] hash of the concatenation of its unique ID and law text is

computed and saved in its control state as the seed, call it r.

2. During processing an event, when the Moses-2 controller is about to generate the

first random number, it retrieves r from its control state, and returns a pseudoran-

dom number r1 generated by a Linear Congruential Generator (LCG) [29] with the
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arguments introduced in [47]:

r1 = r × 1372383749 + 1289706101 (mod 232)

3. All following random numbers during the processing of the current event are generated

recursively:

rk+1 = rk × 1372383749 + 1289706101 (mod 232)

4. After processing the event, i.e., after the atomic execution of the operations man-

dated by the law for the event, the controller saves the last pseudorandom number it

generates to its control state as the new value of r, then continues from Step 2.

With the same arguments and seed, LCG will generate the same sequence of pseudo-

random numbers. For each controller, the Inspector has the access to its controller ID and

the law text, so it can generate the same seed which is actually used by the controller.

During the inspection, whenever the law requires a random number to be generated, the

Inspector will follow similar procedures as described above, the only difference is: rather

than loading r from the control state or saving r to the control state, the Inspector will load

r from the CSV of the controller, and save r to the CSV of the controller. In this way, the

Inspector can get each pseudorandom number generated by the controller; therefore, Cop’s

requirement on random numbers is satisfied.
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Chapter 8

A Prototype of Cop and its Evaluation

We have developed a functionally complete prototype of Cop, in which the Inspector and

the Ledger Writer are written in Python 3; Linux containers are managed with Docker [36];

network I/O is captured with tcpdump [23], and preliminarily analyzed with tshark [10];

CP Manager and CP Node Manager are written in Bash.

We have conducted several experiments with the prototype. Since the low latency, high

scalability, and regulated interoperability of LGI have been extensively studied and verified

in many works including [41], [39], and [2], our experiments mainly focused on evaluating

the correctness and performance of the D&R mechanism.

It should be pointed out that due to various limitations, our experiments were conducted

with weak hardware; in particular, the hard drives we used are very slow, the CPUs we

used have mediocre single-core frequency, and the number of machines we could access is

very small. The hardware limitation makes us unable to conduct larger scale experiments.

Moreover, although our prototype is functionally complete, it is not optimized in terms of

performance; in particular, the Inspector and the Ledger Writer of our prototype are writ-

ten in Python, an interpreted scripting language with significantly lower performance than

compiled languages such as C and C++. An industry-level implementation of Cop should

have sufficient performance optimization and be deployed on a much more powerful hard-

ware platform; therefore, it is expected to have a much higher performance than what our

experiment results will show. Nonetheless, the results of our experiments still reveal some

important properties of Cop that are expected to stay in an industry-level implementation.

We will first discuss our experiments and the results, then in Section 8.4 we will propose a

rational estimation of the performance of an industry-level implementation of Cop.

The rest of this chapter discusses our experiments and the results. Section 8.1 discusses
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our experiments for validating the correctness of the D&R mechanism; Section 8.2 dis-

cusses our experiments for evaluating the performance of the Discovery mechanism; Section

8.3 discusses our experiments for evaluating the performance of the Recovery mechanism;

Section 8.4 discusses the experiment results.

8.1 Correctness Evaluation of the D&R Mechanism

This set of experiments are for validating the correctness of the D&R mechanism of our

prototype, i.e., no false positive: a correct controller should not be reported as a failed

controller; and no false negative: a failed controller should not be reported as a correct

controller.

Our experiments were conducted in 3 different settings:

• 1 CP Node running as a VirtualBox VM with eight 3.0 GHz virtual CPU cores, 8GB

RAM, 7200 RPM HDD, and Debian OS. The CP Node hosts 10 controllers.

• 50 CP Nodes running as KVM VMs, each of which has one 2.2 GHz virtual CPU

core, 2GB RAM, 5400 RPM HDD, Debian OS, and hosts 1 controller. There are 50

controllers in total.

• The same 50 CP Nodes, each of which hosts 2 controllers. There are 100 controllers

in total.

We conducted the following experiments in each of the settings:

• All controllers follow Law 8.1 (trivial law) in the beginning: all messages the actor

wants to send will be directly forwarded, and all arrived messages will be directly

delivered to the actor. After 30 seconds, one of the controllers starts to behave abnor-

mally by following Law 8.2 (trivial-rogue law), although during the handshakes it

will still claim it is following Law 8.1: all messages the actor wants to send will be

appended with a string “-rogue” and then forwarded; and all arrived messages will

be appended with a string “-rogue” and then delivered to the actor. Each controller

sends a random string to a random controller every 1 ∼ 60 seconds.
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• All controllers follow Law 2.1 (money law) in the beginning: each controller is pro-

vided with an initial budget of $1000, then it can transfer to another controller any

amount of money only if the amount is not greater than its current budget, after

which the budgets of the sender and the receiver will be updated appropriately. After

30 seconds, one of the controllers starts to behave abnormally by following Law 8.3

(money-rogue law), although during the handshakes it will still claim it is following

Law 2.1: whenever it sends money to others, the amount it sends is always its budget

plus 1, and thus it violates Law 2.1. Each controller sends a random positive integer

to a random controller every 1 ∼ 60 seconds representing money transfer.

• All controllers follow Law 8.4 (throttle law) in the beginning: each controller can

only send 1 message per 60 seconds. After 30 seconds, one of the controllers starts

to behave abnormally by following Law 8.1 (trivial law) which does not have this

restriction, although during the handshakes it will still claim it is following Law 8.4.

Each controller sends a random string to a random controller every 1 ∼ 60 seconds.

• In the beginning, all controllers follow Law 8.6 (dummy-hierarchy Conformance Hi-

erarchy), whose root law is Law 8.5 (root law): the operations mandated by the root

law and the subordinate law will be executed in turn: in the root law’s turn, the

controller will send a message containing the string “root” before sending the message

that the actor wants to send; in the subordinate law’s turn, the controller will send a

message containing the string “sub” before sending the message that the actor wants

to send. After 30 seconds, one of the controllers starts to behave abnormally by follow-

ing Law 8.1 (trivial law) and will not send the “root” or “sub” messages, although

during the handshakes it will still claim it is following Law 8.6. Each controller sends

a random string to a random controller every 1 ∼ 60 seconds.

In each experiment, the failed controller was correctly discovered, and no correct con-

troller was reported as a failed controller. After being discovered and recovered, all previ-

ously failed controllers behaved correctly. These experiments verify the correctness of the

D&R mechanism of our prototype.
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Law 8.1: trival law

Name: trivial
LawScript: CoffeeScript

UPON "sent", ->
DO "forward"
return true

UPON "arrived", ->
DO "deliver"
return true

Law 8.2: trivial-rogue law

Name: trivial-rogue
LawScript: CoffeeScript

UPON "sent", ->
DO "forward", message: "#{@message}-rogue"
return true

UPON "arrived", ->
DO "deliver", message: "#{@message}-rogue"
return true

Law 8.3: money-rogue law

Name: money-rogue
LawScript: CoffeeScript

UPON "adopted", ->
DO "set", key: "budget", value: 1000
return true

UPON "sent", ->
DO "forward", message: CS("budget") + 1
return true

UPON "arrived", ->
DO "set", key: "budget", value: CS("budget") + @message
DO "deliver"
return true
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Law 8.4: throttle law

Name: throttle
LawScript: CoffeeScript

UPON "adopted", ->
DO "set", key: "throttled", value: false
return true

UPON "arrived", ->
DO "deliver"
return true

UPON "sent", ->
if not CS("throttled")
DO "set", key: "throttled"
DO "impose_obligation", name: "unthrottle", delay: 60000
DO "forward"

return true

UPON "obligation_due", ->
if @name is "unthrottle"
DO "set", key: "throttled", value: false
return true

Law 8.5: root law

Name: root
LawScript: CoffeeScript

UPON "adopted", ->
DO "set", key: "root_turn"
return true

UPON "arrived", ->
DO "deliver"
return true

UPON "sent", ->
if CS("root_turn")
DO "set", key: "root_turn", value: false
DO "forward", message: "root"
DO "forward", message: @message

else
DO "set", key: "root_turn"
DO op for op in DELEGATE()

return true
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Law 8.6: dummy-hierarchy law

Name: dummy-hierarchy
LawScript: CoffeeScript
Portal: root, http://192.168.1.100/root.law
Refines: root

UPON "sent", ->
DO "forward", message: "sub"
DO "forward", message: @message
return true

8.2 Performance Evaluation of the Discovery Mechanism

This set of experiments are for evaluating the performance of the Discovery mechanism of

our prototype, i.e., the time it needs to discover a failed controller after the failure happens.

The discovery of a failed controller after its failure involves two stages:

1. The Ledger Writer records the events/operations of the controller reflecting its abnor-

mal behavior on the Ledger as Ledger Entries.

2. The Inspector inspects these Ledger Entries and discovers the failed controller.

Therefore, the performance of the Discovery mechanism depends on the performance of

both Stage 1 and Stage 2, i.e., the performance of the Ledger Writer and the Inspector.

8.2.1 Performance Evaluation of the Ledger Writer

We first evaluated the performance of the Ledger Writer of our prototype, i.e., the time

it takes the Ledger Writer to record an event/operation on the Ledger after it occurs at

or is executed by a controller. Our evaluation was conducted on 1 CP Node running as a

VirtualBox VM with eight 3.0 GHz virtual CPU cores, 8GB RAM, 7200 RPM HDD, and

Debian OS. In order to minimize the uncertainty brought by network latency, the Ledger

was stored on the same physical machine.

We spawned 2 controllers following Law 8.1 (trivial law), each of which would send

a message of 1K bytes to the other one every second. This led to 8 events/operations per

second: 2 sent events, 2 forward operations, 2 arrived events, and 2 deliver operations.
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Figure 8.1: Distribution of the Latency of Ledger Writer

During the experiment, we recorded 1000 samples of the time it took the Ledger Writer to

record an event/operation on the Ledger after it occurred at or was executed by any one

of the controllers. Figure 8.1 is a histogram showing the distribution of these results, in

which the x-axis is the latency of the Ledger Writer in seconds, the y-axis is the number of

samples. The results show that:

• The average latency is 3.56 seconds

• The median latency is 3.54 seconds.

• The minimal latency is 1.98 seconds.

• The maximum latency is 5.37 seconds.

• The standard deviation is 0.70.

We also evaluated the impact of event/operation frequency on the performance of the

Ledger Writer. We spawned 4 controllers following Law 8.1 (trivial law) on the CP Node,

then conducted 3 experiments with respectively 2, 3, and 4 of the controllers conducted

interactive activities every second each of which would send a message of 1K bytes to a

random controller on the CP Node. This led to 8, 12, and 16 events/operations per second

respectively. During each of the experiments, we recorded 1000 samples of the time it took
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the Ledger Writer to record an event/operation on the Ledger after it occurred at or was

executed by any one of the controllers. Figure 8.2 is a box plot showing the distributions of

these results, in which the left and right borders of each box show the first and third quartile

respectively, the line and cross inside the box show the median and mean value respectively,

the leftmost and rightmost bars show the minimum and maximum value respectively. The

results show that with the same number of controllers, the frequency of events/operations

has an impact on the performance of the Ledger Writer: the increase of 1 event/operation

per second with the payload of 1K bytes will increase the average latency of the Ledger

Writer by around 0.3 seconds.

Figure 8.2: Impact of Event/Operation Frequency

Frequency Mean Median Min Max Standard Deviation

8 3.57 3.56 1.99 5.34 0.73

12 4.79 4.78 2.83 6.92 0.92

16 5.97 5.96 2.98 8.94 1.25

Furthermore, we evaluated the impact of the number of controllers on the performance

of the Ledger Writer. In addition to the previous experiments with 8 events/operations per

second and 2 and 4 controllers, we conducted a similar experiment with 3 controllers on the

CP Node while keeping the event/operation frequency and the payload size. We did this by
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making only two randomly chosen controllers conduct interactive activities every second,

each of which would send a message of 1K bytes to a random controller on the CP Node.

During the experiment, we recorded 1000 samples of the time it took the Ledger Writer to

record an event/operation on the Ledger after it occurred at or was executed by any one of

the controllers. Table 8.1 shows the distributions of these results, along with the results of

the previous experiments with 2 and 4 controllers. The results show that under the same

event/operation frequency, the number of controllers does not have a significant impact on

the performance of the Ledger Writer.

Table 8.1: Impact of the Number of Controllers

# Mean Median Min Max Standard Deviation

2 3.56 3.54 1.98 5.37 0.70

3 3.53 3.51 2.04 5.37 0.73

4 3.57 3.56 1.99 5.34 0.73

8.2.2 Performance Evaluation of the Inspector

After the evaluation of the Ledger Writer, we evaluated the performance of the Inspector

of our prototype, i.e., the time it takes the Inspector to discover the failed controller after

the corresponding Ledger Entries appear on the Ledger.

Our evaluation was conducted on a VirtualBox VM with eight 3.0 GHz virtual CPU

cores, 8GB RAM, 7200 RPM HDD, and Debian OS. On the VM, we ran an Inspector

for Law 8.1 (trivial law) that kept inspecting the Ledger which was stored on the same

physical machine.

We conducted 50 experiments in each of which we spawned a controller following Law

8.1 (trivial law) in the beginning, then started to silently follow Law 8.2 (trivial-rogue

law) after 30 seconds, which should be regarded as failed as it violated Law 8.1. During

each experiment, we recorded the time it took the Inspector to discover the failed controller

after the corresponding Ledger Entries appeared on the Ledger. Figure 8.3 is a histogram

showing the distribution of the results, in which:

• The average latency is 18.50 milliseconds.
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• The median is 18.11 milliseconds.

• The minimal latency is 13.63 milliseconds.

• The maximum latency is 25.31 milliseconds.

• The standard deviation is 2.93.

Figure 8.3: Distribution of the Latency of Inspector

8.3 Performance Evaluation of the Recovery Mechanism

This set of experiments are for evaluating the performance of the Recovery mechanism of

our prototype, i.e., the time it needs to recover a failed controller.

We have measured the recovery time for different sizes of CSV on 1 CP Node running as

a VirtualBox VM with eight 3.0 GHz virtual CPU cores, 8GB RAM, 7200 RPM HDD, and

Debian OS. The CSV sizes we considered include 1 byte, 1K bytes, and 1M bytes. For each

CSV size, we conducted 50 experiments, in each of which we recovered a failed controller

with a CSV of that size. Figure 8.4 shows the results of our experiments.

The results show that a failed controller can be normally recovered in around 2 sec-

onds, and the size of CSV has an insignificant impact on the performance of the Recovery

mechanism.
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Figure 8.4: Time to Recover a Controller

Size of CSV Mean Median Min Max Standard Deviation

1 1.92 1.92 1.80 2.03 0.06

1K 1.95 1.93 1.85 2.11 0.06

1M 1.96 1.95 1.86 2.11 0.06

8.4 Discussion on the Evaluation

The evaluation results show that in our prototype:

• The D&R mechanism works correctly.

• Under the frequency of 8 events/operations per second with the payload of 1K bytes,

the Ledger Writer can record an event/operation on the Ledger after it occurs at or

is executed by a controller in averagely 3.56 seconds.

• The increase of 1 event/operation per second with the payload of 1K bytes will increase

the average latency of the Ledger Writer by around 0.3 seconds.

• The number of controllers does not have a significant impact on the performance of

the Ledger Writer.
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• The Inspector can discover a failed controller after the corresponding Ledger Entries

appear on the Ledger in averagely 18.50 milliseconds.

• After being discovered, a failed controller can be recovered in around 2 seconds. The

size of CSV does not have a significant impact.

It is noteworthy that although in our prototype the D&R mechanism works correctly

and the performance of the Recovery mechanism is reasonably decent and stable, the per-

formance of the Discovery mechanism is relatively inferior, and the main bottleneck of the

Discovery mechanism is the Ledger Writer.

As mentioned in the beginning of this chapter, our experiments were conducted with

weak hardware; in particular, the hard drive we used for the performance evaluation is very

slow and the CPU we used has mediocre single-core frequency. This has a significant impact

on the performance of the Ledger Writer, as the way it works depends on the capture and

analysis of network I/O, which inherently incur high pressure on the CPU and the hard

drive. In addition, the Ledger Writer frequently writes to the Ledger; therefore, the write

speed of the Ledger also has a significant impact on the performance of the Ledger Writer.

With better hardware, especially faster hard drive such as Solid-State Drive (SSD), the

performance of the Ledger Writer can be significantly improved.

Moreover, although our prototype is functionally complete, it is not optimized in terms

of performance. In particular, the Ledger Writer of our prototype is written in Python, an

interpreted scripting language with significantly lower performance than compiled languages

such as C and C++. Meanwhile, the performance of various parts of the Ledger Writer can

be significantly improved with technical approaches that are more performance-oriented.

An industry-level implementation of Cop is expected to have sufficient performance

optimization and be deployed on a more powerful hardware platform. We are optimistic that

in an industry-level implementation of Cop, the performance of the Discovery mechanism

can be improved by at least an order of magnitude.
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Chapter 9

Future Directions

The research on Cop can be continued in several directions. This chapter outlines four of

the most important ones that I plan to pursue in the future.

The first direction is to minimize the damage already inflicted by failed controllers. As

discussed in Section 5.2.2, Cop can handle the Minus Case largely, and the Plus Case to

a certain extent; however, it does not have a systematical method for handling the Plus

Case. Therefore, such a systematical method deserves broader and deeper exploration in

the future.

The second direction is to optimize the performance of the D&R mechanism. Since both

the Ledger Writer and the Inspector can benefit from parallelization, it is worth exploring to

accelerate them with parallel computing platforms and frameworks such as CUDA [44] and

OpenCL [53]. In addition, as mentioned in Section 8.4, the performance of the Ledger Writer

may be improved in several ways, which are worth exploring: it may be improved with faster

storage devices such as SSD, storage architectures with better performance such as RAID-0

[45], or file systems with better performance; it may also be improved with programming

languages with higher performance or technical approaches that are more performance-

oriented. Finally, since the purpose of each component of the D&R mechanism is quite

specific, it may be possible to design specialized system infrastructure for each component

in order to optimize the performance.

The third direction is to further enhance the trustworthiness and security of Cop’s TCB.

The trustworthiness of the Inspectors and CP may be enhanced with traditional trusted

computing technologies such as TPM, and the security of the Ledgers may be enhanced

with replication mechanisms. Moreover, it is worth exploring to move the Ledger Writer

out of the CP Node, so that even if the CP Node is compromised, the Ledger Writer will
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still produce correct Ledger Entries.

The fourth direction is to explore the applications of Cop. Cop can enforce protocols in

single-community MAS, multi-community MAS, or more complex systems such as Governed

Distributed Systems (GDS) [38]. Many open questions in such systems can potentially be

solved by Cop.
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Chapter 10

Conclusion

This dissertation introduces Cop, a broad-spectrum, dependable, and secure protocol en-

forcement mechanism for Multi-Agent Systems. Cop features low latency, high scalability,

and regulated interoperability, making it applicable to time-critical systems, large-scale sys-

tems, complex systems, and systems-of-systems. Cop is arguably superior to the currently

popular Blockchain-based Smart Contract mechanisms in terms of its applicability to a wide

range of systems, as the latter inherently has high latency and low scalability, and lacks

interoperability.

Cop is based on Law-Governed Interactions (LGI), with which it carries out the protocol

enforcement. LGI is a mechanism for a community of distributed actors to interact under an

explicit and enforced protocol called the law of the community, which is enforced by mutually

independent controllers in a strictly decentralized way. While LGI can enforce protocols

with low latency, high scalability, and regulated interoperability, it has an Achilles’ Heel

which may degrade its dependability and security: it provides no general mechanism for

handling failed controllers; in particular, it provides no general mechanism for discovering

and recovering failed controllers.

Cop removes the Achilles’ Heel of LGI with a protective mechanism called Discovery

& Recovery (D&R), which can promptly discover failed controllers right after the failure

occurs, and can immediately recover the failed controllers right after discovering them and

assist with the reparation of the damage they may have inflicted.

In Cop, controllers are hosted by a component called Controller Provider (CP), which

consists of a cluster of servers called CP Nodes and a component for managing the cluster

called CP Manager. Each CP Node hosts multiple generic controllers which may serve

different communities, and each controller is isolated in a Linux container, preventing it
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from interfering with other cotenant controllers or components on the CP Node when it

fails.

For each community, Cop records the interactive activities of all controllers serving

the community in a structure called Ledger which consists of time-ordered Ledger Entries,

each of which represents an event occurred at a controller or an operation that a controller

executed. Since the controllers may fail, the production of Ledger Entries cannot rely on the

controllers’ self-reporting. In Cop, Ledger Entries are produced in a reliable way: on each

CP Node, a component called Ledger Writer captures the network I/O of the controllers

hosted by the CP Node, with which it can accurately infer the events occurred at the

controllers and the operations the controllers have executed, then produce the corresponding

Ledger Entries and write to the corresponding Ledgers.

Each community has an Inspector which systematically and continuously inspects the

community’s Ledger to discover failed controllers. The inspection is highly efficient and

scalable thanks to the local nature of LGI laws and their enforcement; therefore, the In-

spector can promptly discover any controller that fails to comply with the community’s

law right after the failure occurs. Immediately after the discovery of a failed controller,

the Inspector will initiate its recovery, which will be actuated by CP in a highly efficient

and scalable way thanks to the local and generic nature of controllers. In addition, the

Inspector also generates a diagnosis report according to the Ledger for the failed controller

describing its incorrect behavior, which can assist with the reparation of the damage it may

have inflicted. The D&R mechanism can effectively handle isolated communities as well as

interoperating communities.

To ensure the correctness of the D&R mechanism, Cop has several requirements on

LGI’s implementation. We have made several enhancements to LGI’s implementation to

address all these requirements.

We have developed a functionally complete prototype of Cop, and conducted several

experiments with it. Through the experiments, we verified the correctness of the D&R

mechanism in our prototype, and studied its performance to an extent that is meaningful

for a prototype and weak hardware.
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Appendix A

Introduction to LawScript

LawScript is a DSL for writing LGI laws designed by the dissertation author and is fully

supported in Moses-2 introduced in Chapter 7. The example laws in this dissertation are

all written in LawScript. To help the readers better understand the examples, this chapter

provides an introduction to LawScript.

LawScript supports dialects, i.e., variants based on the syntaxes of different languages.

Any JVM language can be developed into a LawScript dialect in principle. Currently, two

dialects are implemented, which are based on JavaScript and CoffeeScript respectively. This

chapter focuses on the CoffeeScript-based dialect since all example laws in the dissertation

are written in it.

CoffeeScript is a scripting language semantically equivalent to JavaScript but with better

readability and flexibility. This chapter does not cover the details of CoffeeScript since there

are many decent introductions such as [33]. Before reading on, the reader is suggested to

get familiar with CoffeeScript first.

A.1 The Structure of LawScript Code

A LawScript code is a plain text file written in LawScript, conventionally with the extension

name of “.law”. A LawScript code consists of 3 parts:

1. Preamble.

2. Definition of constants and functions.

3. ECA blocks.
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Snippet A.1: Preamble with all elements

Name: State
LawScript: CoffeeScript
Portal: Federal, http://192.168.1.100/federal.law
Portal: Constitution, http://192.168.1.100/constitution.law
Refines: Federal

...the rest of the law...

A.1.1 Preamble

Preamble is the first and mandatory part of a LawScript code, it includes:

• The law’s name. It should be specified on the first line of Preamble, in the format of:

Name: $n , in which $n is the law’s name.

• The LawScript dialect being used. It should be specified on the second line of Pream-

ble, in the format of: LawScript: $d , in which $d is the dialect’s name. To use

CoffeeScript dialect, $d should be CoffeeScript.

• The pointers to other involved laws, called portals. A law may specify zero or more

portals, each of which is specified in the format of: Portal: $n, $l , in which $n is

the portal’s name, $l is the URL of the law. Every law has a special portal named

this law pointing to itself.

• The parent law’s portal name if the law is in a Conformance Hierarchy, in the format

of: Refines: $p , in which $p is the parent law’s portal name, which should be one

of the portal names defined above.

• An empty line marking the end of Preamble. Everything after the empty line will not

be treated as part of Preamble.

Snippet A.1 shows the Preamble of a LawScript code with all elements, in which the law

name is State, dialect is CoffeeScript, two portals Federal and Constitution are defined,

and the parent law is the law pointed by the portal Federal.
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Snippet A.2: A simple ECA block

UPON "arrived", ->
if @message is "foo" and CS("bar") is true
DO "deliver"
return true

A.1.2 Definition of Constants and Functions

After Preamble is the body of the LawScript code. Constants and helper functions can be

defined at the beginning of the body. The names of constants and functions must not be

the following reserved words: MOSES, UPON, DO, CS, DELEGATE, CONFORMS, RANDOM.

A.1.3 ECA Blocks

ECA blocks are the main part of a LawScript code, each of which specifies when an event

occurs, under a specific condition, what operations should be executed sequentially and

atomically. An ECA block has the structure of: UPON "$t", $h , in which $t is the event

type that this ECA block is to process, and $h specifies the event handler: a CoffeeScript

function that processes the event, which can be in the form of either the definition of an

anonymous function or the name of a function defined before. Note that $t is in underscore

case, i.e., for an obligationDue event, $t equals to obligation due.

LawScript supports handler fallthrough: in a LawScript code, there may be multiple

ECA blocks processing the same event type; when the event occurs, these ECA blocks will

be executed in order until one of them executes return true , which prevents further ECA

blocks for the event type from being executed.

LawScript provides some salt and pepper that can be used in event handlers, including

DO, CS, DELEGATE, CONFORMS, RANDOM. The following sections will elaborate on them.

Snippet A.2 shows a simple ECA block, with the meaning of: when an arrived event

occurs, if its message argument equals to foo and the control state entry bar equals to

true, then it mandates a deliver operation with default argument values, and stops further

ECA blocks for arrived events from being executed.
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A.2 Accessing Event Arguments

As mentioned in Section 2.1, an event may carry several arguments. The value of an

argument may be in the form of any native CoffeeScript data structure, including number,

string, boolean, null, array, and object. In an event handler, the value of an event argument

can be accessed with @$k , in which $k is the argument’s name. The names of all event

arguments are listed in Table A.1. If the event does not have an argument with the specified

name, undefined will be returned.

For example, the message argument of an arrived event can be returned with @message.

In addition to its own arguments, every event has 2 special arguments:

• self: the name of the controller at which the event occurs.

• time: the timestamp when the event occurs.

Table A.1 lists the event arguments, including their names, value types, and descriptions.

The events without arguments are omitted.

Table A.1: Event Arguments

Event Argument Type Description

adopted
arguments object adoption arguments
issuer object issuer of actor’s certificate
subject object subject of actor’s certificate

arrived
message any the arrived message
sender string sender name
law string the portal name of the sender’s law

exception
type string exception type
message object operation that caused the exception

obligationDue
name string obligation name
arguments object obligation arguments

sent
message any the message to send
receiver string receiver name

submitted

message any the arrived message
address string sender address
port number sender port
issuer object issuer of the sender’s certificate
subject object subject of the sender’s certificate
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Snippet A.3: Alternative way of mandating an operation

op = {operation_type: "set", key: "foo", value: "bar"}
DO op

A.3 Mandating Operations

An event handler can mandate the operations that are to be executed sequentially and

atomically for the event when the conditions are satisfied. An operation can be mandated

with DO "$t", $a , in which $t is the operation’s type, and $a represents the arguments of

the operation in the form of key-value pairs, in each of which the key is the argument’s name,

and the value is the expected value which may be in the form of any native CoffeeScript data

structure, including number, string, boolean, null, array, and object. $a can be in the form

of either the definition of a CoffeeScript object or the name of a CoffeeScript object defined

before. The names of all operation arguments are listed in Table A.2. Note that $t is in

underscore case, i.e., for an imposeObligation operation, $t equals to impose obligation.

For example, a set operation with arguments key = "foo" and value = "bar" can be

mandated with

DO "set", key: "foo", value: "bar"

An operation can also be mandated with DO $o , in which $o

is a CoffeeScript object representing an operation, in the form of:

{"operation type": $t, "$k0": $v0, "$k1": $v1, ...} , in which $t is the op-

eration’s type, each $k is the name of an argument, each $v is the corresponding value.

This method is particularly handy in constructing Conformance Hierarchy, which will be

discussed in Section A.5. Snippet A.3 shows an example of this method, which mandates

the same operation as the example above.

Table A.2 lists the operation arguments, including their names, value types, descrip-

tions, and default values. Arguments without default values are mandatory. The operations

without arguments are omitted.
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Table A.2: Operation Arguments

Operation Argument Type Description Default value

deliver
sender string the message to send sender of the

arrived event
message any message sender message of the

arrived event

forward

sender string message sender self

receiver string message receiver receiver of
the sent event

law string the portal name of the
receiver’s law

this law

message any the message to send message of the
sent event

imposeObligation
name string obligation name
arguments any obligation arguments null
delay number obligation delay in ms

release

address string receiver address
port number receiver port
message any the message to send
use tls boolean use TLS or not false

repealObligation name string obligation name

set
key string control state entry name
value any control state entry value true

unset key string control state entry name

A.4 Accessing Control State

Each control state entry has a name and a value, the value can be any CoffeeScript object.

The value of a control state entry can be returned with CS("$n") , in which $n is the name

of the control state entry. If the control state entry with the specified name does not exist,

undefined will be returned.

For example, CS("foo") returns the value of the control state entry named foo.

The creation, modification, and removal of control state entries are done by set/unset

operations, which will be executed together with other operations mandated for the current

event atomically; therefore, reading a control state entry right after creating, modifying,

or removing it in the same event handler will only yield its old value instead of the new

one. For example, consider Snippet A.4. The statement DO "forward" will not be executed,

because CS("foo") still returns undefined. Snippet A.5 shows the proper way to access the

new control state entry value right after creating or modifying it in the same event handler.
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Snippet A.4: Example A of control state reading

DO "set", key: "foo", value: "bar"
if CS("foo") is "bar"
DO "forward"

Snippet A.5: Example B of control state reading

foo = "bar"
DO "set", key: "foo", value: foo
if foo is "bar"
DO "forward"

A.5 Constructing Conformance Hierarchy

To construct a Conformance Hierarchy, a law should have the following abilities:

• Specifying the parent law.

• Conducting dynamic consultation.

• Conducting conformance check.

As introduced in Section A.1.1, in a LawScript code the parent law can be specified in

Preamble part.

Dynamic consultation in LawScript can be conducted in each event handler with

DELEGATE() , which returns the sequence of operations mandated by the subordinate law

for the event. Each operation in the sequence is represented as a CoffeeScript object with the

structure of: {"operation type": $t, "$k0": $v0, "$k1": $v1, ...} , in which $t is

the operation’s type, each $k is the name of an argument, each $v is the corresponding

value.

Snippet A.6: Trivial dynamic consultation

for op in DELEGATE():
DO op
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Snippet A.7: Dynamic consultation with condition

for op in DELEGATE():
if op.operation_type is "set"
DO op

Snippet A.8: Dynamic consultation with revision

for op in DELEGATE():
if op.operation_type is "forward"
op.message = "sub:#{op.message}"
DO op

Snippet A.6 shows a trivial dynamic consultation, which will mandate any operations

the subordinate law mandates. Snippet A.7 shows a dynamic consultation with condition,

which will only mandate all set operations the subordinate law mandates. Snippet A.8

shows a dynamic consultation with revision, which will mandate all forward operations

the subordinate law mandates after prepending the message with “sub:”.

Conformance check can only be conducted in arrived event handlers, in the format of:

CONFORMS($p) , in which $p is a portal name. It returns true if the event type is arrived

and the law of the sender conforms to the law pointed by the portal $p. Otherwise it returns

false.

A.6 Generating Random Numbers

To write a non-deterministic law, one can use RANDOM() to generate a 32-bit random

number.
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Appendix B

Protocols of Moses-2

B.1 Message Encoding

In Moses-2, there are two types of messages:

1. Moses Message, or M-message for short. The vast majority of the messages sent and

received by Moses-2 controllers are of this type. An M-message has the following

elements in order:

(a) A byte 0x77 (M), marking this is an M-message.

(b) A byte indicating the type of the M-message. Table B.1 lists the possible values

of the byte and the types they represent.

(c) The message body: a data structure encoded in Protocol Buffers [19] format.

2. JSON [11] string, whose first byte may be:

• 0x5B ([, initial of an array)

• 0x7B ({, initial of an object)

• 0x22 (", initial of a string)

• 0x30 - 0x39 (0-9, initial of a number)

• 0x2D (-, initial of a negative number)

• 0x6E (n, initial of null)

A correct Moses-2 controller will discard network input streams whose payload does not

start with 0x77, 0x5B, 0x7B, 0x22, 0x30, 0x2D, 0x6E. On the other hand, a correct Moses-2

controller will never initiate a network output stream whose payload does not start with

these bytes.
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Table B.1: M-Message Types

0x03: adoptRequest 0x04: adoptResponse

0x05: deliverMessage 0x06: disconnectRequest

0x07: disconnectResponse 0x08: forwardMessage

0x09: handshakeMessage 0x0A: quitMessage

0x0B: sendRequest 0x0C: sendResponse

0x0D: imposeObligationRequest 0x0E: imposeObligationResponse

0x0F: repealObligationRequest 0x10: repealObligationResponse

0x11: obligationDueMessage

These two types of messages are very convenient for the Ledger Writer to accurately

and efficiently decode from network stream payload. First, the Ledger Writer checks the

first byte. If it is one of 0x5B, 0x7B, 0x22, 0x30, 0x2D, 0x6E, then the rest of the stream

payload can be safely parsed as a JSON string; if it is 0x77, then the stream payload should

be parsed as M-messages; otherwise, the stream does not contain any valid message. If the

stream payload contains M-messages, then it should be parsed as follows:

1. Use cursor to denote the ordinal number of the byte that is about to be read in the

stream payload. Initially, the cursor points to the first byte of the stream payload.

2. Check the byte pointed by the cursor, if it is not 0x77, it means the rest of the stream

payload is corrupted, then go to Step 6.

3. Move the cursor to the next byte and decode the type of the M-message from the byte.

If no valid type can be decoded, it means the rest of the stream payload is corrupted,

then go to Step 6.

4. Move the cursor to the next byte and decode the body of the M-message. See [20] for

the details of Protocol Buffers encoding. As discussed in [34], data structures encoded

in Protocol Buffers can be very efficiently decoded from bytes. If no valid body can

be decoded, it means the rest of the stream payload is corrupted, then go to Step 6.

5. Now one M-message has been decoded, and the cursor points to the last byte of its

body. If there are still bytes in the stream payload, it means there may be other M-

messages, so move the cursor to the next byte and go to Step 2 to decode the next

M-message. Otherwise, go to Step 6.
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6. Stop parsing and return the already decoded M-messages.

B.2 Events

This section introduces the protocols for triggering events on a Moses-2 controller. The

discussion will use the event argument names listed in Table A.1.

B.2.1 adopted

To adopt a controller, the actor must have the correct controller password k. When a

controller receives an M-message adoptRequest(k′, p, a) via a TLS stream, if the controller

is not yet adopted and k′ = k, then the controller records the sender’s address as Aa, p

as Ap, and the sender’s certificate as Ac; then an adopted event will be triggered, whose

arguments argument equals to a, issuer and subject arguments equal to the issuer and

subject information of Ac respectively; finally an M-message adoptResponse() will be sent

back to the actor.

B.2.2 arrived

When a controller receives an M-message handshakeMessage(h) via a TLS stream, and

the sender’s certificate is signed by a trusted controller CA, then it will respond with a

handshakeMessage(h′) message, in which h′ is the controller’s law hash; if the sender then

responds with an M-message forwardMessage(m, s), it means the handshake is successful,

then an arrived event will be triggered, whose message argument equals to m, sender

argument equals to s, law argument equals to the name of the portal whose law hash equals

to h.

B.2.3 sent

To trigger a sent event on a controller, the actor must have the correct controller password

k. When a controller receives an M-message sendRequest(k′,m, r) via a TLS stream, if

k′ = k, the sender’s address equals to Aa and the sender’s certificate equals to Ac, then
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a sent event will be triggered, whose message argument equals to m, receiver argument

equals to r; finally an M-message sendResponse() will be sent back to the actor.

B.2.4 submitted

When a controller receives a JSON string, a submitted event will be triggered, whose

message argument equals to the object decoded from the JSON string, address and port

arguments equal to the sender’s address and port respectively, issuer and subject argu-

ments equal to the issuer and subject information of the sender’s certificate respectively. If

the JSON string is not sent through TLS connection, issuer and subject arguments equal

to null.

B.2.5 obligationDue

When a controller receives an M-message obligationDueMessage(n, a) via a TLS stream,

if the sender’s address and certificate equal to those of the Obligation Registry, then an

obligationDue event will be triggered, whose name argument equals to n, arguments argu-

ment equals to a.

B.2.6 disconnected

To trigger a disconnected event on a controller, the actor must have the correct controller

password k. When a controller receives an M-message disconnectedRequest(k′) via a TLS

stream, if the controller is not disconnected, k′ = k, the sender’s address equals to Aa, and

the sender’s certificate equals to Ac, then a disconnected event will be triggered, and an

M-message disconnectedResponse() will be sent back to the actor. If the controller is not

disconnected, a failed deliver operation, which will be described in Section B.3.2, will also

trigger a disconnected event.

B.2.7 reconnected

To trigger a reconnected event on a controller, the actor must have the correct con-

troller password k. When a controller receives an M-message adoptRequest(k′, p, a) or

sendRequest(k′,m, r) via a TLS stream, if the controller is adopted and disconnected,
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k′ = k, the sender’s address equals to Aa, and the sender’s certificate equals to Ac, then a

reconnected event will be triggered. If the M-message is sendRequest(k′,m, r), then it will

also trigger the sent event described in Section B.2.3

B.2.8 exception

exception events will be discussed in Section B.3.

B.3 Operations

This section introduces the protocols for a Moses-2 controller to execute operations. The

discussion will use the operation argument names listed in Table A.2.

B.3.1 forward

When a controller executes a forward operation o, it sends an M-message

handshakeMessage(h) to the controller specified in o’s receiver argument via a

TLS stream, in which h is the controller’s law hash; if the receiver replies with a

handshakeMessage(h′), its certificate is signed by a trusted controller CA, and h′ equals

to the law hash of the portal whose name equals to o’s law argument, then it means the

handshake is successful; then the controller sends an M-message forwardMessage(m, s) to

the receiver, in which m equals to o’s message argument, s equals to o’s sender argument. If

the handshake fails, then an exception event will be triggered, whose type argument equals

to HANDSHAKE EXCEPTION and operation argument equals to o. If forwardMessage(m, s)

fails to be sent, then an exception event will be triggered, whose type argument equals to

FORWARD EXCEPTION and operation argument equals to o.

B.3.2 deliver

When a controller executes a deliver operation o, it sends an M-message

deliverMessage(m, s) to the actor at address Aa port Ap via a TLS stream, in which

m equals to o’s message argument, s equals to o’s sender argument. If o fails, then an

exception event will be triggered, whose type argument equals to DELIVER EXCEPTION and
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operation argument equals to o. If the controller is not disconnected, a failed o will also

trigger a disconnected event, as discussed in Section B.2.6.

B.3.3 release

When a controller executes a release operation o, it sends a JSON string representing o’s

message argument to the address and port specified by o’s address and port arguments

without TLS; if o’s use tls argument is true then it will use TLS. If o fails, then an

exception event will be triggered, whose type argument equals to RELEASE EXCEPTION and

operation argument equals to o.

B.3.4 imposeObligation

When a controller executes an imposeObligation operation o, it sends an M-message

imposeObligationRequest(n, a, d) to the Obligation Registry via a TLS stream, in which n

equals to o’s name argument, a equals to o’s arguments argument, d equals to o’s delay argu-

ment. If the Obligation Registry responds with an M-message imposeObligationResponse()

without errors, then o is successful; otherwise, an exception event will be triggered, whose

type argument equals to IMPOSE OBLIGATION EXCEPTION and operation argument equals

to o.

B.3.5 repealObligation

When a controller executes a repealObligation operation o, it sends an M-message

repealObligationRequest(n) to the Obligation Registry via a TLS stream, in which n

equals to o’s name argument. If the Obligation Registry responds with an M-message

repealObligationResponse() without errors, then o is successful; otherwise, an exception

event will be triggered, whose type argument equals to REPEAL OBLIGATION EXCEPTION and

operation argument equals to o.

B.3.6 quit

When a controller executes a quit operation, it sends an M-message quitMessage() to the

actor at address Aa port Ap via a TLS stream.
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B.3.7 set/unset

Operations of these types will not cause interactions.
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[56] M. Vukolić. Rethinking permissioned blockchains. In Proceedings of the ACM Work-
shop on Blockchain, Cryptocurrencies and Contracts, pages 3–7. ACM, 2017.

[57] D. Wagner, B. Schneier, et al. Analysis of the SSL 3.0 protocol. In Proceedings of the
Second USENIX Workshop on Electronic Commerce, volume 1, pages 29–40. USENIX
Association, 1996.

[58] G. Wood. Ethereum: a secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

[59] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Methodology
(TOSEM), 12(3):317–370, 2003.

[60] W. Zhang, C. Serban, and N. H. Minsky. Establishing global properties of multi-agent
systems via local laws. In International Workshop on Environments for Multi-Agent
Systems, pages 170–183. Springer, 2006.


