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ABSTRACT OF THE DISSERTATION

Brane Transport Beyond Calabi-Yau:
A Tale of Geometry and Localization

By JOEL AARON CLINGEMPEEL

Dissertation Director: Gregory Moore

The goal of this thesis is to study the behavior of branes preserving B-type super-

symmetry in two-dimensional N = (2,2) theories as parameters are varied across the

(quantum-corrected) Kähler moduli space. These branes may naturally be organized

into a category which is equivalent to the derived category of coherent sheaves on the

target geometry. For theories constructed from an abelian gauged linear sigma model,

this wall-crossing is studied using the analytic continuation of the hemisphere partition

function for which an explicit integral formula is known by work on localization of

Hori-Romo. This leads to an understanding of transport functors which exhibit splitting

of branes between the Higgs and Coulomb branches, thus going beyond the work of

Hori-Herbst-Page in the Calabi-Yau case.

As a case study, explicit brane transport is worked out for Hirzebruch-Jung surfaces,

extending the work of Moore-Martinec at the level of K-theory. Furthermore, the

hemisphere partition function is evaluated with suitable regularization and shown to

match to leading order the known formula for central charge in terms of characteristic

classes. This is based on the arXiv hep-th 1811.12385 which was joint with B. Le Floch

and M. Romo.
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Chapter 1

Introduction

String theory and supersymmetry have in recent years had a profound impact on

both the physics and mathematics communities. On the physics side, string theory

provides a leading candidate for unifying quantum mechanics with gravity by replacing

point particles with tiny, vibrating strings which obey the laws of quantum mechanics.

One consequence is the existence of supersymmetry, a symmetry that mixes fermionic

and bosonic fields. Even without string theory, supersymmetry could still exist, and

its existence would shed light on a number of phenomological puzzles. From the

theoretical side, supersymmetry provides a powerful toolbox for exact results that would

be unattainable in ordinary quantum field theories. From the mathematics side, strings

and supersymmetry have been and will continue to be a great source of inspiration for

new insights into pure mathematics, ranging from knots to the topology of three and

four dimensional manifolds to mirror symmetry. Regardless of the status of strings and

supersymmetry in terms of describing nature, they will remain interesting in terms of

the underlying mathematics.

One particular area that has been incredibly rich for the interplay between math-

ematics and physics has been in 2-dimensional (2,2) supersymmetric quantum field

theories which describe the quantum dynamics of a string propagating in a spacetime

geometry X, often called a (supersymmetric) sigma model with target X. The quantum

field theory itself contains a lot of information about the geometry of X which can be

extracted from studying objects such as branes that preserve certain subsets of the

supersymmetry or equivalently by a procedure called topological twisting in which one

is able to remove dynamical aspects and is left with a theory whose details can be

described purely in terms of the geometry of X. On the quantum field theory side, there
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are two ways that one can establish a correspondence between this and a quantum field

theory on a different manifold X̂ which then leads to a bridge between geometrical

questions about X and X̂.

One such bridge is via mirror symmetry. The first vague hint of mirror symmetry

was the existence of a curious involution of the supersymmetry algebra, but this alone

didn’t seem to point to anything quite so fantastic. In [15], given that a theory with

target X has two naturally associated rings, one of which turns out to be isomorphic to

the cohomology of X, it was conjectured that the second ring should be the cohomology

of a mirror manifold X̂ and that some sort of duality should exist between the two

theories. The classic paper [6] then established mirror symmetry for a quintic projective

Calabi-Yau threefold, establishing concrete evidence for this proposal. Later in [12]

mirror symmetry was systematically derived from T-duality for a large class of theories,

and subsequent work by many others showed that incorporating branes would lead to

far more robust versions of mirror symmetry. This subsequently inspired a number

of mathematical papers on rigorously proving results in mirror symmetry although a

number of the physical insights still remain unproven.

The other way to get a different geometry is via a phase transition of the theory

which does not involve invoking T-duality. One can vary certain parameters of a theory

with target X such that for a generic small perturbation, the geometry of X slightly

changes, but when one crosses certain exceptional walls in the parameter space, one

suddenly obtains a different manifold. Such a drastic jump across such a wall is called

wall-crossing. This approach was greatly clarified in the famous paper [19] in which

it was shown that by gauging (in a supersymmetric way) a theory whose target is Cd,

giving what is called a gauged linear sigma model (GLSM), one can obtain at low energies

ungauged theories with a variety of non-linear targets. The result geometry depends on

real parameters of the UV theory called FI parameters which naturally take values in a

real vector space. This vector space may be subdivided into a fan of polyhedral cones

which correspond to distinct target manifolds, and crossing the borders between adjacent

polyhedral cones gives rise to the wall-crossing described above. Strictly speaking, the

positions of the walls are modified by quantum corrections which asymptote to the
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classical walls at infinity, but the essential idea of wall-crossing remains the same. This

was actually done in a bit more generality as one can turn on a superpotential, but the

focus of this thesis shall be in the case of vanishing superpotential. We will also restrict

to the case of an abelian gauge group though it would be interesting to remove this

restriction in subsequent work.

A striking fact is that many aspects of the underlying quantum field theory remain

invariant despite there perhaps having been a major change in the geometry. This is

because of the role of theta angles: these have no geometric interpretation in terms

of the target geometry and in fact behave like turning on background electric fields.

However, these serve to complexify the parameter space: the FI parameters and theta

angles naturally combine to form holomorphic coordinates, and the walls that were once

of real codimension one are now in fact of complex codimension one. This means that

there are now paths that interpolate between phases, and anything that is invariant

under a small perturbation of parameters should be invariant under transport along

such a path between phases. There is, however, monodromy phenomena associated with

the choice of path.

A natural question one might ask is why an equivalence between theories on different

target manifolds should lead to precise correspondences between purely geometric

invariants of the two manifolds. This is because of a procedure called topological twisting

in which the theory is modified so as to have no kinematic information and in particular

to be invariant under any perturbations of the metric; the quantities that remain then

purely depend on the geometry of the underlying manifold. An alternate perspective is

that even without twisting one can find such geometric invariants from examining BPS

objects: objects which preserve some fraction of the supersymmetry operators. Studying

how BPS branes are mapped under mirror symmetry leads to the famous and striking

homological mirror symmetry conjecture of Kontsevich [14] relating the derived category

of coherent sheaves on one manifold to the derived Fukaya category on another.

Instead of studying how BPS branes are mapped under mirror symmetry, one could

instead study the behavior of such branes under phase transitions. In [8], this was

considered for the particular case of a certain subset of the supersymmetry charges
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called B-type supersymmetry. For an (ungauged) sigma model, the category of branes

preserving this supersymmetry is precisely the derived category of coherent sheaves

on the target geometry. They analyzed how the GLSM viewpoint the transformations

between derived categories that naturally arise when crossing walls in a parameter space.

Given a brane in a phase, one can lift it to the GLSM where it can be expressed in terms

of line bundles which are topologically trivial but may be charged under the gauge group.

Naively, one can then push this down to a different phase, but unfortunately, such a

map fails to be well-defined. The key insight of [8] is that in fact only line bundles whose

charges lie within a certain band in the charge lattice can be transported, a principle

called the grade restriction rule. This extends to arbitrary branes as one can always

construct a lift to a complex line bundles obeying the charge condition, thus leading

to well-defined transport functors between chambers associated to paths. The choice

of theta angle can change the homotopy class of the path which leads to a different

transport functor and hence opens the door to monodromy behavior. This can be viewed

morally as an isotrivial bundle of categories with a flat connection on the parameter

space, but making this precise is currently an open question.

The hemisphere partition function, given by integrating over all field configurations

on a hemisphere with boundary conditions set by a brane, is a powerful tool for gaining

deep insights into these theories. This function is believed to be equal to the geometric

central charge with instanton corrections [11]. In [11], a formula for the partition

function is derived via supersymmetric localization as an integral over a suitable contour

which for abelian models lies in the Lie algebra of the gauge group. In this thesis, we

show that by studying the analytic continuation of the partition function of a UV lift a

brane between phases of a GLSM, one can obtain a more robust version of the grade

restriction rule which applies to anomalous models. The IR target geometry in a phase

is the Higgs branch of vacua, characterized by having all vector multiplets Higgsed while

the chiral multiplets may fluctuate in certain ways. When crossing a wall, a Coulomb

branch may open which is characterized by one or more vector multiplets flucuating,

and branes which cross the wall split into branes supported on these two branches. This

wall-crossing obeys a generalization of the grade restriction rule in which we actually
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obtain two bands in the charge lattice: a wider band corresponding to all charged line

bundles that one can be transported to the other phase, possibly with a Coulomb branch

contribution, and a narrower band corresponding to charged line bundles which may be

transported to give solely a contribution to the geometry in the other phase. Moreover,

we show how one can determine the precise Coulomb branch contribution for a charged

line bundle in the wide window, thus completely specifying how the brane is transported.

This can be viewed as the physical counterpart to mathematical work in [2].

We also analyze convergence aspects of the hemisphere partition function. The local-

ization formula as derived in [11] requires R-charges to lie in (0, 2), but our application

of interest is in the case in which all R-charges vanish. One can try to turn on tiny

R-charges and then take the limit as they tend to zero which will give a simplified formula

should the contour not be pinched between colliding poles. However, this is in many

cases unavoidable so such a simplified formula is not universally valid. We show that for

the case of compactly supported branes, exactly the right cancellation of poles occurs

for this to work. Moreover, if we restrict further to branes which become trivial in the

IR, then there is enough cancellation of poles so that no residue can contribute, yielding

that the partition function vanishes as expected. For branes which are not compactly

supported, it seems that the R-charges serve as a kind of equivariant regularization;

it would be interesting to understand this more deeply and to see if any meaningful

information can be extracted which is independent of the choice of R-charges. This is a

bit reminiscent of the Nekrasov instanton moduli space appearing in four dimensional

supersymmetric gauge theories; the volume formally diverges though one can regularize

it through U(1)2-equivariant parameters and from this extract information about the

original (non-equivariant) theory.

As a test case, we consider the various (partial) resolutions of C2/Zn where Zn acts

diagonally with charges (1, p). The Calabi-Yau case is precisely when p = n− 1. The

number of exceptional divisors needed to be blown up in order to resolve this singularity

is given by the length of a minimal continued fraction expansion of np , and the details

of this continued fraction encode information about the resulting geometry. The fully

resolved complex surface is called a Hirzebruch-Jung surface. The category of branes
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is given by the derived representation category in the fully singular phase, the derived

category of coherent sheaves in the fully resolved phase (in which case it is generated by

sheaves wrapping the different exceptional divisors together with the structure sheaf),

and a hybrid between the two for intermediate phases - namely sheaves with additional

representation-theoretic data at the orbifold points. In the mathematical literature, it is

known that certain representations of Zn called special representations correspond to the

sheaves wrapping the different exceptional divisors; see [18] and [13]. The paper of [16]

shed light on how this arises from a physical viewpoint but worked with the K-theory

rather than using the full machinery of derived categories; they clarified in particular

the role of the non-special representations: these are related to the massive vacua of a

Coulomb branch that opens when interpolating between the singular geometry and the

resolved geometry.

For our particular class of examples, we were able to extend the brane transport

of [16] to the level of categories. We also showed that the leading order part of the

localization formula, given by taking a residue at the origin, gives as expected the result

of a geometric integral over a formula involving characteristic classes where the latter can

be evaluated using combinatorial machinery as explained in [4] to study the differential

topology of toric varieties.

This thesis is organized as follows. We review the basics of 2d N = (2,2) supersym-

metric theories in chapter 2, and we cover the basics of gauged linear sigma models in

chapter 3 as was understood in [19]. In chapter 4, we introduce the Hirzebruch-Jung

geometries which will serve as our core set of examples for everything that follows,

and then in chapter 5 after a quick review of branes in general, we explain the role of

the derived category as describing the branes preserving B-type supersymmetry and

build up to the picture in [8] of how transporting branes between GLSM phases leads

in the Calabi-Yau case to functors between derived categories. Chapter 6 contains a

review of the basic idea of deriving (finite dimensional) integral formulas for partition

functions from localization as well as the particular formula from [11] that we will need.

In chapter 7, after first discussing the U(1) case for intuition, we proceed to show the

role of compactly supported branes: while the formula as derived in [11] requires positive
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R-charges, compactly supported branes give precisely the right cancellation of poles in

the integrand to enable one to take the R-charges to zero without the contour being

pinched between poles. We also show that the partition function vanishes for empty

branes as expected. After briefly describing the structure of the derived category on

Hirzebruch-Jung models in terms of line bundles, we then calculate from the localization

formula the leading (0-instanton) contribution to the partition function. In chapter

8, we present machinery from [4] that enables one to do explicit calculations with

cohomology, K-theory, and their compactly supported variants for toric varieties in

terms of the combinatorial data defining them and subsequently apply this to evaluate

for fully-resolved Hirzebruch-Jung geometries a geometric formula for central charge in

terms of an integral involving characteristic classes, obtaining agreement to leading order

with the result obtained by localization. We turn in chapter 9 to understanding the

generalization of the grade restriction rule beyond the Calabi-Yau case. We demonstrate

this first for the U(1) case through studying the analytic continuation of the localization

formula and subsequently reframe this in a more functorial manner. In particular, we

give a procedure for determining the exact contribution of transported branes to the

Coulomb branch. We then argue that through Higgsing one can obtain a generalization

to higher rank abelian theories. Finally, chapter 10 explores explicit brane transport for

Hirzebruch-Jung geometries using the results obtained in the previous chapter.
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Chapter 2

Background on 2-dimensional Supersymmetry

In this section, we review the basics of N = (2, 2) supersymmetry in two dimensions. An

excellent reference for this subject covering much more than we say here is the book [10].

We initially consider a flat “worldsheet” (which one can think of as the trajectory of a

moving string - analogous to the worldline of a particle in general relativity) R1,1 with

spatial coordinate x and time coordinate t. This can be generalized to other surfaces

though additional subtleties will be involved in what follows. Then the Poincare group is

the group of transformations generated by boosts (hyperbolic rotations) and translations

in space and time, and the corresponding Lie algebra is generated by the Hamiltonian

H, the momentum P , and the angular momentum M which are the respective Noether

currents for time translation, spatial translation, and Lorentz boosts. Poincare invariance

then is then equivalent to being relativistic. It is possible to extend the Poincare Lie

algebra to a Lie superalgebra with additional generators called supersymmetry generators

Q± and Q± obeying the relations

Q2
+ = Q2

− = Q2
+ = Q2

− = 0

{Q±,Q±} = H ± P

{Q+,Q−} = {Q+,Q−} = 0

{Q−,Q+} = {Q+,Q−} = 0

[iM,Q±] = ∓Q±, [iM,Q±] = ∓Q±

[iFV ,Q±] = −iQ±, [iFV ,Q±] = iQ±

[iFA,Q±] = ∓iQ±, [iFA,Q±] = i±Q±

(2.1)

with the usual Hermiticity property Q†± = Q± and where FV and FA are respectively

the generators of the vector and axial symmetries which may or may not be broken
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depending on the theory, a point we shall return to shortly. It is possible to slightly

generalize this by introducing central charges to the algebra, but we shall not consider

this here.

In order to write down expressions invariant under supersymmetry, we introduce

the superspace formalism which provides a convenient way of writing down expressions

invariant under supersymmetry. We first introduce “supercoordinates” which consist of

our ordinary (bosonic) coordinates x, t together with Grassmann (fermionic) parameters

θ± and θ̄± which anticommute and square to zero. A Lorentz boost which acts on the

bosonic coordinates via x
t

 7→
cosh γ sinh γ

sinh γ cosh γ


x
t

 (2.2)

also acts on the fermionic coordinates via

θ± 7→ e±γ/2θ± (2.3)

θ̄± 7→ e±γ/2θ̄±. (2.4)

A superfield is then a function on superspace. The Taylor expansion in the Grassmann

parameters is automatically finite by nilpotency. It is then easy to write down the

supersymmetry operators in terms of the actions on the superfields.

Q± = ∂

∂θ±
+ iθ̄±∂± (2.5)

Q± = − ∂

∂θ̄±
− iθ±∂± (2.6)

To evaluate Grassman integrals, we use the rule
∫

(aθ + b)dθ = a for θ a real Grassman

parameter; this result works for general functions because the Taylor expansion in a

Grassman variable must stop at the linear term by nilpotency. Complex Grassman

integrals can then be calculated by writing complex Grassman parameters in terms of

real and imaginary parts. Thus these integrals can be viewed as essentially projecting

onto certain coefficients in the θ-expansion. We can then introduce the vector and axial

actions for a superfield F by

eiαFV : F(xµ, θ±, θ̄±) 7→ eiαqV F(xµ, e−iαθ±, eiαθ̄±)

eiαFA : F(xµ, θ±, θ̄±) 7→ eiβqV F(xµ, e∓iβθ±, e±iβ θ̄±)
(2.7)
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for integers qV and qA called vector and axial R-charges respectively.

We have three basic types of expressions which are invariant under supersymmetry;

more complicated supersymmetric actions can be expressed as a mixture of these. By

carrying out the θ integrals, we end up with an explicit expression for the Lagrangian.

A key advantage of superfield notation is that one can write rather succinct expressions

which when expanded would look rather complicated; this is possible because the

constraint of being supersymmetric is quite tight.

• An expression of the form ∫
d2xd4θK(F) (2.8)

for F a superfield is called a D-term.

• A chiral superfield is a superfield Φ which can be expressed as

Φ(. . . ) = φ(y±) + θαψα(y±) + θ+θ−F (y±) (2.9)

where y± = x± − iθ±θ̄±. Then an expression of the form∫
d2xd2θW (Φ) (2.10)

is called an F-term.

• A twisted chiral superfield is a superfield U which can be expressed as

U(. . . ) = ν(ỹ±) + θ+χ̄−(ỹ±) + θ̄−χ−(ỹ±) + θ+θ̄−E(ỹ±) (2.11)

where y± = x± − iθ±θ̄±. Then an expression of the form∫
d2xd2θ̃W̃ (U) (2.12)

is called a twisted F-term.

As an alternative perspective, if we introduce differential operators acting on super-

fields via

D± = ∂

∂θ±
− iθ̄±∂± (2.13)

D± = − ∂

∂θ±
+ iθ±∂±, (2.14)
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then chiral and twisted chiral superfields can be defined by the equations D±Φ = 0 and

D+U = D−U = 0 respectively. Note that the expressions for D± and D± are almost the

same as those for Q± and Q± except that the signs of their second terms are flipped.

To construct a quantum field theory, one begins by writing down a Lagrangian L

which is then integrated over the worldsheet to give the action S. In a classical theory

(i.e. if we wished to describe the classical motion of a string), we would find field

configurations that extremize this functional. To promote this to a quantum theory, one

has to consider a functional integral over all field configurations.

1
Z

∫
D(fields) . . . e

∫
d2xL (2.15)

Here the “. . . ” is an expression in the fields corresponding to something physical that

would be observed, and the net result of this integral is to compute its expectation value.

Here Z is called the partition function and is given by computing the integral in the

above equation without the “. . . ” part. One can roughly think of the exponential part as

a kind of (unnormalized) probability density function on an infinite-dimensional space

of field configurations, and Z is then the normalization constant. Strictly speaking, this

integral (and in fact quantum field theory as a whole) is not mathematically well-defined,

but it has proved again and again to be a tremendous source of mathematical insight.

To recover the classical theory, one rescales the action by 1
~ and takes ~→ 0, effectively

reducing to an integral against a delta function supported on the (classical) solution

to the variational problem. Note that physically ~ corresponds to the scale on which

quantum effects are relevant, and taking ~→ 0 is mathematically equivalent to holding

~ fixed and “zooming out” which one would expect to reduce to everyday physics.

As a first prototype, we consider a Lagrangian equal to a D-term of the form

L =
∫
d4θ

∑
i

Φ̄iΦi =
∑
i

|∂0φi|2 −
∑
i

|∂1φi|2 + |F |2 + . . . (2.16)

where Φ1, . . . ,ΦN are chirals and where “. . . ” refers to the fermionic terms. The

derivative terms are standard kinetic terms, and the field F is non-dynamical and may

be eliminated via its equations of motion. Though presently we end up with F = 0, this

need not continue to be the case when we add more terms to the Lagrangian. This can
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essentially viewed as starting with a (bosonic) theory of a string propagating freely in

Cd and adding the minimum terms needed for it to be supersymmetric.
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Chapter 3

Gauged Linear Sigma Models

It is quite desirable to be able to construct theories of strings propagating on non-

linear backgrounds. As string theory requires ten dimensions, for our universe to be

described by a string theory one necessarily must compactify, leading to a (possibly

rather complicated) curved manifold. Also from the viewpoint of extracting insights

into pure mathematics from physics, there are far more interesting manifolds than Cd!

So how does one proceed in constructing a theory with non-linear target? The most

obvious approach is to cover the manifold with charts, write down a Lagrangian like the

flat space one for each chart and somehow “glue” these together. In practice, however,

this can get quite tricky. In [19], E. Witten introduced a beautiful alternative: by

gauging in a way compatible with supersymmetry a theory on flat space, one can obtain

at low energies theories with a wide variety of non-linear targets.

As a motivation, consider the (non-supersymmetric) theory of complex scalars

φ1, . . . , φN with Lagrangian −
∑
i |∂µφi|2 − U(φ) where the potential U(φ) is given by

U(φ) = e2

2
(∑

i |φi|2 − ζ
)2
. For ζ > 0, the vacuum manifold obtained by minimizing U

is S2N−1, and at low energies this theory would reduce to a theory in which the string

is confined to this S2N−1. It turns out to be possible to construct a supersymmetric

analog of this, and thus we can gain additional leverage in study the resulting low energy

theory by using powerful tools from supersymmetry.

3.1 Lagrangian Description

It turns out that one can construct a wide array of low energy target manifolds from

our supersymmetric theory on Cd simply by gauging the theory. For simplicity, we

temporarily restrict to a single chiral Φ. Under the transformation φ 7→ eiαφ, our
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Lagrangian above is invariant under a global transformation (i.e. when α is constant)

but is not invariant under a local transformation (i.e. when α is permitted to vary

over the worldsheet) because of the derivative terms. To remedy this, we promote the

transformaion to a superfield transformation Φ 7→ eiAΦ. This doesn’t quite work because

now Φ̄Φ 7→ Φ̄e−i(Ā−A)Φ, but the expression Φ̄eV Φ is invariant provided we constrain

V to be real and impose the transformation law V → V + i(Ā−A). Such a symmetry

that we make exist locally is called a gauge symmetry.

The superfield V is called a vector multiplet and using the above gauge symmetry

above can be expressed in the Wess-Zumino gauge, meaning that it can be constructed

from a vector field ν, a complex scalar field σ, fermions λ± and λ̄± and an auxiliary real

field D. There is still a residual gauge symmetry fixing this form, and this corresponds

to ordinary (non-supersymmetric) gauge transformations of ν. As the vector multiplet

is dynamical, it should have its own kinetic term and possibly a potential. For this, we

define the field strength as ν01 = ∂0ν1 − ∂1ν0 and then consider a corresponding twisted

chiral superfield Σ whose expansion begins with ν01. Then the gauge kinetic part of the

Lagrangian is given by
∑
α

1
2e2
∫
d4θΣ̄αΣα+ c.c. where c.c. stands for complex conjugate,

analogous to the kinetic term for the chiral Φ. Here e is the gauge coupling whose role

will become clear later. We also have the freedom to add a twisted F-term depending

on Σ which will play a crucial role in what roles: for this, we shall only consider those

of the form
∑
α−tα

∫
d2θ̃Σα + c.c. Though we could be more general, this already as we

shall see leads to a lot of extremely robust wall-crossing phenomena. Here tα = ζα − iθα

where ζα and θα are the FI parameter and theta angle respectively.

Now we can introduce a potential in a way that preserves supersymmetry by adding

an F-term to the Lagrangian (or twisted F though by symmetry it would have essentially

the same consequence) which takes the form
∫
d2θW (Φ1, . . . ,ΦN ) + c.c After doing the

superfield calculus, we see that it changes the value of the auxiliary field F in the chiral

multiplet, leading to a potential term of the form −|W ′(φ1, . . . , φN )|. This term then

acts as a potential and makes it energetically expensive for the string to move in a

region where W ′ is large. When such a term is added, W is called the superpotential.

Similarly, the term introduced before depending on Σ is called a twisted superpotential.
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Putting everything together, we have a Lagrangian of the form

L =
∫
d4θΦ̄eV Φ +

∫
d4θ

1
2e2 Σ̄Σ + c.c.+−t

∫
d2θ̃Σ + c.c.+

∫
d2θW (Φ) + c.c. (3.1)

= Lkin + Lgauge + LFI,θ + LW . (3.2)

We can generalize this to have chirals Φ1, . . . ,ΦN and vector multiplets V1, . . . , Vr.

L =
∫
d4θ

(
N∑
i=1

e
∑

α
QiαVαΦ̄iΦi −

1
2e2

∑
α

Σ̄αΣα + c.c.

)
+ (3.3)∫

d2θ̃
∑
α

(−tαΣα) + c.c.+
∫
d2θW (Φ1, . . . ,ΦN ) + c.c. (3.4)

Here the overall gauge symmetry is now U(1)r and Qiα is the matrix giving the charges

for how each gauge factor U(1)α acts on each chiral Φi. More generally, one could

consider a non-abelian gauge group together with a chiral representation, but for our

purposes these representations will always be abelian and hence reduce to the above

description.

It is natural to ask whether a theory of this form is invariant under part or all of

the U(1)V × U(1)A group of vector and axial rotations. It can be shown that such

an action is always invariant under U(1)A, and U(1)V invariance holds if an only if

the superpotential is quasi-homogeneous by which we mean that W (λqiΦi) = λ2W (Φi)

for some choice {qi} of R-charges. This does not, however, imply invariance of the

quantum theory due to the presence of anomalies: the measure on the space of fields

may fail to be invariant, rendering correlation functions not invariant. An important

result for N=(2,2) theories is that the vector symmetry is never anomalous, and the

axial symmetry is anomalous if and only if
∑
iQiα 6= 0 for some i.

3.2 Classical Phases in the Infrared

If we expand the superfields, carry out the θ-integrals, and eliminate auxiliary fields

via equations of motion, then the bosonic part consists of the kinetic energy (given by

the terms involving derivatives of fields) minus the potential energy. The latter has the

following form.

U =
∑
i

|Qiασα|2|φi|2 + e2

2
∑
α

(∑
i

Qiα|φi|2 − ζα

)2

+
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 (3.5)
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Like in the non-supersymmetric toy example, the string is effectively confined to the

moduli of vacua, i.e. the vanishing locus of U(φ). To find this, we see we can eliminate

the first term by either i) setting all σα’s to 0 which leads to the Higgs branch or ii)

setting all φi’s to 0 which leads to the Coulomb branch. In addition, there are also

hybrid scenarios called mixed branches. For now, we focus on the Higgs branch except

to point out that Coulomb / mixed branches can only occur for exceptional choices of

ζα’s as otherwise we will not be able to eliminate the second term.

To eliminate the second term, we impose the equations

∑
i

Qiα|φi|2 = ζα for all α. (3.6)

Furthermore, there is an additional redundancy correspond to the action of the gauge

group on this solution set, and we should thus quotient the solution set by the gauge

action. The last term of the potential then simply imposes further equations

∂W

∂φi
= 0 for all i. (3.7)

Moreover, the fields in the vector multplet are eliminated by a supersymmetric analog of

the Higgs mechanism: σα becomes heavy with mass of order e|ζα|1/2 and at low energies

should be integrated out.

Remark 1. It is possible that certain fluctuations transverse to the equations coming

from (3.7) may be massless. In this case, the resulting IR theory will allow fluctuations

in these theories but will have a nontrivial superpotential. Even when this is not the

case, it is possible up to some subtleties (see [8]) to go to an intermediate energy scale

in which equation 3.7 is not imposed, but one instead has a nontrivial superpotential.

From the mathematics side, this construction for W = 0 is precisely the construction

of a toric variety from symplectic reduction corresponding to an action of a compact

abelian Lie group G on a complex vector space V with equation (3.6) giving the moment

maps. Here the ζα’s are coordinates on g = Lie(G), i.e. we have collectively that ζ ∈ g∨.

Concretely, G is isomorphic to U(1)r for some r, and the representation is given by its

collection of weights Qj : g → C specifying how g acts infinitesimally on each of the
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coordinates φ1, . . . , φN for V. Note that in general the resulting geometry may have

orbifold singularities.

From now on, we shall adhere to the following convention.

Convention 1. In what follows, we shall assume W = 0 except to occasionally point out

what generalizations one can obtain from the introduction of a nontrivial superpotential.

Denote by Xζ the result of the above symplectic reduction where ζ without an

index refers to our collective choice of ζα’s. As a complex orbifold, Xζ is equivalent to

taking a suitable geometric invariant theory (GIT) quotient, meaning that we remove a

Zariski-closed subset called a deleted set (in these cases, a hyperplane arrangement) and

then quotient by the complexification of G (isomorphic to (C∗)r). The correct choice

of deleted set needed to reproduce the symplectic reduction construction depends on

the choice of ζ ∈ g∨. If we regard ζ and ζ ′ as equivalent in the case that Xζ and Xζ′

give isomorphic toric stacks, then the subdivision of g∨ into equivalence classes gives

a natural subdivision into a complete fan of polyhedral cones which we call classical

phases. Physically, this construction is relevant for ζ deep within a cone as the positions

of the walls receive quantum corrections which are suppressed when we run off to infinity

deep inside a cone. The Kähler metric, however, will be sensitive to changing ζ within

a cone, and in fact, the cone containing ζ is naturally identified with the Kähler cone

of Xζ . The union of the interiors of all such cones is called the classical Kähler moduli

space, denoted byMcl
K . We next turn to how this is modified by quantum effects.

3.3 Quantum Effects

There are several different quantum effects that are relevant. First we have the renor-

malization of the FI parameters which is given by

ζα(µ) = ζUVα +
(∑

i

Qiα

)
log( µ

MUV
) (3.8)

for ζUVα a UV FI parameter, µ an energy scale, and MUV a UV mass scale. We thus

see that the axial anomaly is cancelled precisely in the case that the FI parameters do

not run under RG flow. In this case, the theory is actually invariant under the N=2,2
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superconformal algebra which contains both the N = (2,2) supersymmetry algebra and

all worldsheet conformal transformations. Conformal invariance is extremely powerful

for constraining quantum field theories and enabling exact calculations though since

we will not be using it explicitly, we merely refer the interested reader to the book [10].

Geometrically, this happens if and only if the target geometry is Calabi-Yau: this is

because having
∑
iQiα 6= 0 for some α is equivalent to having c1 integrate nontrivially

along a complex codimension one cycle.

For anomalous theories, we see that renormalization is actually playing two roles at

once: going from the GLSM to a theory in a phase and moving in the FI parameter

space, possibly cutting between phases. A potential source of concern is that if RG flow

would take us from one phase to another, say from phase I to phase II, then it might not

be possible to start in the UV and flow to phase I. Perhaps RG flow always bypasses

phase I and goes directly from the UV to phase II. We can avoid this problem by taking

the gauge coupling e→∞ for fixed energy scale: this (just like flowing to the IR) will

produce a theory with target the vacuum manifold modulo gauge, but it keeps with the

energy scale fixed which then enables us to send the energy scale to zero as a further

limit, thus ensuring that we visit phase I before phase II. The e→∞ limit also has the

effect of decoupling the vector multiplet.

There are also quantum corrections to the positions of the walls in the moduli space.

A classical wall corresponds to where a Coulomb (or mixed) branch can open. If we

write σ = σ0u0 for u0 a vector normal to the boundary wall, then taking σ0 to be large

forces chirals Φi for which Qi ·u0 6= 0 to become heavy. Integrating these out then yields

a low energy effective theory on this branch with a twisted superpotential for σ0.

W̃eff (σ0) = −(t · u0)σ0 −
∑

i:Qi·u0 6=0
(Qi · u0)σ0

(
log (Qi · u0)σ0

µ
− 1

)
(3.9)

The corresponding vacua, given by the critical points of the above twisted superpotential,

are given by

t · u0 = −(Qtot · u0) log
(
σ0
µ

)
−

∑
i:Qi·u0 6=0

(Qi · u0) log(Qi · u0) (3.10)

There are then two distinct cases to consider.
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• In the non-anomalous case where Qtot · u0 = 0, the first term vanishes, and we see

that the position of the wall is simply shifted by a constant amount.

• In the anomalous case where Qtot · u0 6= 0, we have no wall - merely a finite set

of solutions corresponding to Coluomb (or mixed) branch vacua which join the

Higgs branch when crossing between two phases

One should actually consider the FI parameters together with real lifts of theta

angles as describing complex coordinates tα = ζα− iθα on g⊗C, and after removing the

quantum-corrected walls, we obtain the complexified Kähler moduli space MK . From

the above analysis, we see that hitting a wall requires taking a particular value for a

theta angle so the walls are in fact complex codimension one. This implies that one can

continuously interpolate between phases, giving a conceptual reason for why certain

properties would be wall-crossing invariant.

Remark 2. It may seem puzzling as to why one should take real lifts of theta angles

when the underlying theory only depends on their values modulo 2π. This is because

taking real lifts allows for topologically distinct paths connecting phases which, as will

be shown later, lead to distinct transport functors. This is related to the existence of

nontrivial monodromy around the singular loci.
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Chapter 4

Hirzebruch-Jung Geometry

The McKay correspondence builds a beautiful bridge between algebraic geometry and

representation theory. Let Γ ⊂ SU(2) be a finite subgroup acting on C2 via linear

transformations. Then Γ follows an ADE classification and is either cyclic (An), dihedral

(Dn), or one of three exceptional types (En for n ∈ {6, 7, 8}). The quotient C2 has an

orbifold singularity at the origin with stabilizer Γ and is smooth elsewhere. Taking

a minimal resolution of the singularity, we obtain a finite set of exceptional divisors

isomorphic to copies of CP1. If we construct a graph by drawing a vertex for each

exceptional divisor and connecting pairs of vertices when the corresponding exceptional

divisors intersect, then we obtain precisely the Dynkin diagram of the corresponding

Lie algebra! Moreover, the intersection matrix for the exceptional divisors equals minus

the Cartan matrix associated to this Lie algebra.

One possible way to explore this physically is to construct a sigma model to C2/Γ.

Then B-branes correspond to equivariant vector bundles and hence to representations of

Γ. If we consider wall-crossing corresponding to blowing up exceptional divisors, then

these branes should map to sheaves wrapping exceptional divisors (with appropriate

equivariant structure at any remaining singularities). Going to the fully resolved phase

in particular should map the derived representation category of Γ to the derived category

of the resolved geometry.

In [16], this kind of brane transport was considered at the level of K-theory for a

natural generalization of the An case: one can allow Γ to be any subgroup of U(2) as

opposed to just SU(2). This allows for the Calabi-Yau condition to be violated and for

a Coulomb branch containing massive vacua to open when crossing from the resolved

to singular phase. They argued that the counting of branes on both sides is consistent
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provided one takes into account the Coulomb branch vacua together with the branes

wrapping cycles of the resolved geometry. In [8], this brane transport for the An model

was carried out at the categorical level but without the generalization allowing for

massive vacua. There has also been relevant mathematical work as in [18] and [13].

We will show how using a generalization of the grade restricted rule from [8] to the

anomalous case enables one to carry out both generalizations simultaneously.

4.1 Background

We consider the generalization of the An McKay correspondence given by the quotient of

Zn acting on C2 via (X,Y ) 7→ (ωX,ωpY ) for ω an n-th root of unity which we denote by

C2/Zn(p). Taking p = n− 1 yields the usual An quotient which is Calabi-Yau; otherwise

we obtain a massive generalization.

We now turn to a review of continued fractions; all of the material here is pulled

from [16]. We may write n
p as a continued fraction as follows

n

p
= a1 −

1
a2 − 1

a3− 1
... 1
ar

(4.1)

where ai ≥ 1 are integers. We will sometimes denote such a continued fraction as

[a1, . . . , ar]. Such a representation is not unique as is easily observed via the formula

[x+ 1, 1, y + 1] = [x, y]. (4.2)

However, there is a unique minimal representative for which all entries are ≥ 2. In

these notes, we will focus on minimal representatives although many of our remarks will

apply more generally. The generalized Cartan matrix for a continued fraction expansion

[a1, . . . , ar] is given by

Cαβ = aαδαβ − δα+1β − δα−1β. (4.3)

Note that in the Calabi-Yau case (r = n−1), we have n
n−1 = [2, . . . , 2] with n−1 entries,

thus recovering the usual An Cartan matrix. In what follows, it will be convenient to

introduce the recursively defined sequences pα and qα for α = 0, . . . , r + 1. We define

pj−1
pj

= [aj , . . . , ar] (4.4)
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qj+1
qj

= [aj , . . . , a1] (4.5)

for 1 ≤ j ≤ r with the initial conditions pr+1 = 0, q0 = 0, pr = 1, and q1 = 1. Note that

the sequences pα and qα are decreasing and increasing respectively and that p0 = n.

From this, one can write a nice formula for the inverse of Cαβ.

(C−1)αβ =


1
nqαpβ 1 ≤ α ≤ β ≤ r

1
npαqβ 1 ≤ β ≤ α ≤ r

(4.6)

We now note several relations which follow easily and which will prove useful later.

pα
qα

>
pα+1
qα+1

(4.7)

qαpα−1 − qα−1pα = n (4.8)

pα−1 − aαpα + pα+1 = 0 (4.9)

qα−1 − aαqα + qα+1 = 0 (4.10)

This setup admits a generalization based on minors of the Cartan matrix which is

useful for analyzing partially resolved phases. Define

dij = −dji = det(Cαβ)i<α,β<j for 0 ≤ i < j ≤ r + 1 (4.11)

dii = 0 for 0 ≤ i ≤ r + 1. (4.12)

Doing cofactor expansion on the first or last row of a minor gives the recursion relations

di(j−1) + di(j+1) = ajdij (4.13)

d(i−1)j + d(i+1)j = aidij (4.14)

from which a simple induction argument yields

[ai, . . . , aj−1] =
d(i−1)j
dij

(4.15)

[aj , . . . , ai+1] =
di(j+1)
dij

. (4.16)

As the continued fractions are ≥ 1, we must have dij < d(i−1)j and dij < di(j+1) for

i < j. We then recover our above setup by taking pj = dj(r+1) and qj = d0j . We may

also use (4.13) and (4.14) recursively to obtain

piqj − pjqi = ndij for 0 ≤ i, j ≤ r + 1 (4.17)
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from which can then prove that

dijdkl − dikdjl + dildjk = 0. (4.18)

Alternatively, one can start with the matrix

pi pj pk pl

qi qj qk ql

pi pj pk pl

qi qj qk ql


(4.19)

whose determinant trivially vanishes. If one asks how after two steps of cofactor

expansion (going along the rows in order) to reduce to the determinant that computes

ndkl, one sees that one must either pick pi and then qj OR pj and then qi, leading to a

net contribution of

(piqj − pjqi)ndkl = n2dijdkl. (4.20)

The sum over all analogous contributions to the determinant give a result proportional

the left hand side of our identity.

Next following [16], we introduce two equivalent GLSMs to study the geometry of

C2/Zn(p) and its (partial) resolutions.

Model I

P X1 X2 X3 . . . Xr Q

U(1)1 1 −a1 1 0 . . . 0 0

U(1)2 0 1 −a2 1 . . . 0 0

U(1)3 0 0 1 −a3 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

U(1)r 0 0 0 0 . . . −ar 1

Here P is charged 1 under U(1)1 and is neutral under all other U(1)’s while Q is charged

1 under U(1)r and is neutral under all other U(1)’s. The charges of the Xi’s are given

by minus the generalized Cartan matrix. In the fully resolved phase, the number of

exceptional divisors is r, precisely the size of the continued fraction expansion of np . We
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may diagonalize the charges using n(C−1)αβ to obtain the following second (equivalent)

model.

Model II

P X1 X2 X3 . . . Xr Q

U(1)1 p1 −n 0 0 . . . 0 q1

U(1)2 p2 0 −n 0 . . . 0 q2

U(1)3 p3 0 0 −n . . . 0 q3

. . . . . . . . . . . . . . . . . . . . . . . .

U(1)r pr 0 0 0 . . . −n qr

Convention 2. In the context of Hirzebruch-Jung models, we write tα = ζα− iθα when

referring to Model I and t′α = ζ ′α − iθ′α when referring to Model II.

Here the geometric interpretation is more transparent: increasing the α-th FI

parameter ζ ′α increases the size of the α-th exceptional divisor in the regime where

ζ ′α > 0 for fixed values of the neighboring FI parameters; this can also impact the size

of the neighboring exceptional divisors. Following the discussion on section 6 of [16], we

can make this more concrete by looking at allowed values of |P |2 and |Q|2. The region

of admissible values is given by the region in the first quadrant of the (|P |2, |Q|2) plane

which is above the line

pα|P |2 + qα|Q|2 = ζ ′α (4.21)

for each α. Note that the FI parameter ζ ′α corresponds to the position of a line of slope
pα
qα
, and these slopes are decreasing in α by virtue of equation (4.7). Moving the αth line

so that it cuts through the region of admissible values (and therefore that region contains

as part of its boundary a line segment on this line) corresponds to a blow-up introducing

an exceptional divisor whose size is now controlled by ζ ′α. A full resolution corresponds

to arranging the lines so that each line contains a segment which is part of the boundary

of the admissible region. The resulting geometry is called a Hirzebruch-Jung surface

and contains r exceptional divisors - one for each FI parameter.
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4.2 Local Models

Let Ei = {Xi = 0} for 0 ≤ i ≤ r + 1, and let A be all i ∈ {1, . . . , r} for which Ei is

nonempty. Then E0 and Er+1 are noncompact while Ei for i ∈ A is an exceptional

divisor and is isomorphic to CP1.

Suppose Ei ∩Ej is nonempty. Then no indices between i and j may be contained in

A as otherwise Ei and Ej would be separated by one or more exceptional divisors. Near

the intersection point all chirals except for Xi and Xj are frozen to vevs.

We now turn to analyzing the residual gauge symmetry in the basis of GLSM I. Let

(g1, . . . , gr) ∈ U(1)r be such an element. Then using that X0, . . . , Xi−1 are fixed, we

can iteratively show g1 = · · · = gi = 1. Similarly, using that Xr+1, . . . , Xj+1 are fixed

iteratively gives that gr+1 = · · · = gj+1 = 1. Now for each α we have gα−1 = gaαα g−1
α+1,

and we obtain through induction that

gα = g
dαj
j−1 for i ≤ α ≤ j, (4.22)

by using our recursion relations. This finally forces gdijj−1 = 1, leaving us with the residual

gauge group Zdij . From looking at the action on the two unfrozen chirals, we see that

we can describe the intersection via the local model

Xi Xj

Zdij d(i+1)j 1
.

Next we study the geometry of a single exceptional divisor Ej . Choose i < j and

k > j such that Ei and Ek are neighboring Ej , i.e. they each intersect Ej at a point.

Similar to the previous case, we work in the basis of GLSM I and iteratively show that

g1 = . . . gi = 1 and gr+1 = . . . gk = 1 and then deduce by induction that gα = gdiαi+1 and

gα = gdαkk−1. Then g
dij
i+1 = gj = g

djk
k−1 so therefore

gi+1 = hdjk/mωu and gk−1 = hdij/mωv for (h, ω) ∈ U(1)× Zm (4.23)

where m ∈ Z≥1 and u, v ∈ Z satisfying m = gcd(dij , djk) = udij − vdjk. We then obtain

by working out explicitly the action on Xi, Xj , and Xk the following local model
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Xi Xj Xk

U(1) djk/m −dik/m dij/m

Zm u s v

.

where

l = −dik (4.24)

s ≡ di(j−1)u− d(j−1)kv mod m. (4.25)

This corresponds geometrically to a Zariski-open neighborhood of a single exceptional

divisor corresponding to Xj = 0. This exceptional divisor is geometrically given by

WCP1
a,b.

As it will prove useful later, we note that this easily yields a formula for the

complexified FI parameter of the local model:

tloc =
k−1∑
α=i+1

(
dimin(α,j)dmax(α,j)k

m

)
tα (4.26)

where the coefficient of tα comes from writing gα as an exponent of h.

We turn to understanding the geometry of sheaves on WCP1
a,b. We can construct this

geometry by gluing C/Za with coordinate x to C/Zb with coordinate y. Then xa and yb

are single-valued, and we may glue by identifying xa = y−b. If we are given a line bundle

on WCP1
a,b, then its restriction to C/Za is characterized by its charge under Za which we

denote by −γ̄ ∈ Za. Similarly, its restriction to C/Zb is characterized by its charge under

Zb which we denote by δ̄ ∈ Zb. We can describe the restriction of a section of this line

bundle to our cones via some fN : C∗ → C such that fN (x) = ω−γ̄a fN (ωax) and some

fS : C∗ → C such that fS(y) = ωδ̄bfN (ωby) which are together related by a transition map

fN (x) = (. . . )fS(y) for xa = y−b. Assuming a transition map of the form xγyδ, we see

that to obtain the correct restrictions we must have −γ̄ ≡ γ(mod a) and δ̄ ≡ δ(mod b).

Then the dependence on (γ, δ) is only up to its class in Za/((a,−b)Z) ∼= Z × Zm for

m = gcd(a, b) so we may view this group as parameterizing all such line bundles. Note

that in the case m = 1 of ordinary weighted projective space, this group is just Z,

indicating that all line bundles are (possibly negative) tensor powers of a single bundle

O(1).
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Chapter 5

B-Branes in a GLSM

If we generalize our worldsheet to allow for boundary components, then it is necessary

to impose boundary conditions which correspond to manifolds equipped with bundles

and connections or possibly a bound state of these. Quite remarkably, the boundary

conditions themselves become dynamical objects leading to the notion of branes, and

their study leads to a rich mixture of physics and mathematics. After briefly reviewing

branes in general, we will focus on a particular class of branes called B-branes whose

study leads to the algebraic geometer’s notion of a derived category. These will then be

the main focus of this thesis. The main reference on which this chapter is based is [8].

5.1 From Strings to B-Branes

If we consider our theory on the worldsheet Σ = R × R≥0 instead of R1,1, then it

is necessary to impose boundary conditions. For the moment, we discuss boundary

conditions in general and then extend to the supersymmetric case. If the target space

was R, there would be two types of boundary conditions we could impose

• Dirichlet: φ|∂Σ = φ0 ∈ R

• Neumann: nµ∂µφ|∂Σ for nµ a normal vector

The respective physical interpretations are fixing an endpoint and prohibiting any

momentum from flowing off the end of the string. If we extend to Rn, then we have the

freedom to make an independent choice for each coordinate direction. One can further

extend this to a more global setting by considering a target X with submanifold Y. To

restrict the end of the string to Y is to effectively impose Dirichlet boundary conditions

in all normal directions, and one can furthermore impose Neumann boundary conditions
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(infinitesimally) for tangential directions to Y. The Neumann portion of the boundary

condition may be generalized via

GIJ∂nφ
J = FIJ∂tφ

J (5.1)

where we write GIJ for the spacetime metric, FIJ for the spacetime field strength of the

gauge field, and the subscripts n and t for the normal and tangential directions to the

boundary on the worldsheet. This in turn requires adding to the action a boundary term

so that the variation of the (total) action has no boundary part. The boundary term may

be given explicitly via −
∫
∂Σ φ

∗(A) for A = AIdφ
I . The gauge field is a connection on a

(possibly nontrivial) vector bundle on Y ; including multiple gauge fields is equivalent to

summing the corresponding bundles.

A natural question therefore is if the introduction of such boundary conditions breaks

supersymmetry. Though it impossible to preserve all four supercharges of the N = (2, 2)

supersymmetry algebra, it is, however, possible to preserver at most half. If we let

QA = Q̄+ +Q− and QB = Q+ +Q−, then it is possible to preserve either i) QA and Q̄A

(called A-type supersymmetry) or ii) QB and Q̄B (called B-type supersymmetry). One

can further deform either of these by rotating Q− but not Q+ or vice versa, but we shall

not consider this here. The case of interest to us for the remainder of this thesis will

be B-type supersymmetry in which a delicate analysis of the boundary conditions (see

[9]) leads to branes as a complex submanifold together with a complex vector bundle or

more generally a bound state of these which we shall later define more precisely.

More formally, we may express a brane B as B = (E,A,Q) for E a graded vector

bundle, A a connection on E, and Q a degree one operator on E satisfying Q2 = 0. The

grading corresponds physically to the R-charge, and different ways of forming complexes

ammount to different ways of binding branes together. In particular, binding a pair

of branes amounts to taking a mapping cone. As we will soon see, there are at low

energies many relations between branes, and even though a priori E could be a bundle

on any submanifold, in fact every brane is equivalent to a complex of vector bundles

on the entire space. This is related to the phenomenon of tachyon condensation and is

discussed in great detail in [8]. Thus in the discussion that follows we will assume E to
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be a vector bundle on spacetime.

If we change the worldsheet and now consider the case when Σ = [0, 1]×R, we acquire

the freedom to choose a different brane for each boundary component. Quantization

leads to a space of string states associated with the pair of branes. One can show that

the ground states are given by the QB cohomology of such states by essentially the same

arguments used in supersymmetric quantum mechanics to match ground states with

cohomology classes. Namely, one notes that H = {QB,QB} as can easily be verified

using the N = (2,2) supersymmetry algebra as in (2.1). It follows that for any state of

positive energy, QB-closed implies QB-exact so these states do not contribute to the

QB cohomology. Meanwhile, a positivity argument shows that H = 0 for a state if and

only if QB = QB = 0 so therefore the cohomology gives exactly the ground states.

Now suppose we choose branes B1 = (E1, A1, Q1) and B2 = (E2, A2, Q2). The

computation of the QB-cohomology is simplified by virtue of the facts that i) the

fields ψi± and ∂zxi, ∂z̄xi are paired under Q and thus give no net contribution and ii)

ψ̄+ − ψ̄− = 0 by virtue of the boundary conditions. If one identifies ψ̄j with dx̄ and

gij̄ ẋ
i with −i∂j̄ +Aj̄ , this reduces to computing the cohomology of

Hzero(B1,B2) =
n⊕
i=1

Ω0,i(X,Hom(E1, E2)). (5.2)

By using field an expression for QB in fields as given in [8], we see that

iQBφ = ∂̄A1,2φ+Q2φ− (−1)|φ|φQ1 (5.3)

where ∂̄A1,2 is the Cauchy-Riemann operator given by

∂̄A1,2φ = dzj̄ ∧ (∂j̄φ+ iA2,j̄φ− iA1,j̄φ). (5.4)

Here |φ| is the R-charge which is given as the sum of the gradings from Hom(E1, E2)

and from forms. It is known that one has isomorphisms

H0,p
∂̄A1,2

(X,Hom(E1, E2)) ∼= Hp(X,Ext(E1, E2)) ∼= Extp(E1, E2) (5.5)

relating the Dolbeault cohomology to the Ext cohomology, allowing for a purely algebraic

interpretation.
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5.2 The Derived Category and Its Physical Interpretation

It is natural to organize branes into a category. We take the objects to be branes,

morphisms to be spaces of ground string states of vanishing R-charge, and composition

of morphisms to be “gluing” strings which quantum mechanically gives a pairing of

wavefunctions. We wish moreover to consider two branes which flow to the same object

in the infrared to in fact be the same in the category. This leads to two types of relations:

D-term deformations and brane-antibrane annihilate. Amazingly, as is shown in [8],

this is the same category as the (bounded) derived category which is famous in the

mathematical literature!

To construct the derived category of a variety X, we begin by considering the

homotopy category Ho(X) whose objects are bounded complexes of coherent sheaves

and whose morphisms are chain maps modulo chain homotopies with the obvious notion

of composition. We call a morphism a quasi-isomorphism if it induces isomorphisms on

the cohomology, and we define the derived category Db(X) to be the category obtained

from Ho(X) by appending (formal) inverses to quasi-isomorphisms. A morphism is

then an alternating sequence of morphisms in Ho(X) and these formal inverses for

quasi-isomorphisms.

This leads to the notion of a morphism in the derived category as a sequence of “roof

diagrams” where each such diagram consists of a formally inverted quasi-isomorphism

followed by an ordinary morphisms (i.e. in Ho(X)).

Y1

X1 X2

q1 f1 . . .

Yn−1

Xn−1 Xn

qn−1 fn−1

(5.6)

It turns out by a theorem in homological algebra (as described for instance in [7])

that any such sequence can be expressed as a single “roof diagram.”
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Ỹ

X1 Xn

q̃ f̃

(5.7)

As is discussed in [7] or [8], given F ,G ∈ Db(X), one has that HomDb(X)(F ,G[n]) ∼=

Extn(F ,G) where the latter can alternatively be computed as the cohomology of

the complex obtained by applying the Hom functor to an appropriate resolution.

Furthermore, the derived category comes equipped with a natural collection of functors

[n] for n ∈ Z called shift functors where [n] shifts the grading of a complex C n units

to the right, i.e. C[n]j = Cj+n. The shift functors then enable one to obtain the higher

Ext groups via HomDb(X)(F ,G[n]) = Extn(F ,G) which corresponds physically by the

discussion in section 5.1 to ground string states with varying R-charges.

Though in principle coherent sheaves can be quite complicated, it turns out that

they can always be resolved by vector bundles and are hence always equivalent (in the

derived category) to complexes of vector bundles. Furthermore, for toric varieties which

shall be the focus of this thesis, one can actually resolve by line bundles; see [5] for

details. This makes it substantially easier to do explicit calculations in the derived

category.

5.3 The Role of the GLSM

If we now think of varying ζ, then we have for each point inMK a brane category given

by Db(Xζ). A natural question to ask is how to define a transport functor that relates

for a particular choice of path the brane category at one endpoint to the brane category

at the other. More precisely, we can associate paths to transport functors between

derived categories. Small deformations of the path will not change the functor, but

there can be interesting monodromy phenomena associated with the choice of homotopy

class of paths. Ideally, one would like to have a notion of a bundle of categories with a

flat connection onMK , but it is not yet known how to realize this sharply. In fact, due

to difficulty with quantum/stringy effects, we will work far away from the center so as
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to suppress the difficult-to-control corrections.

Since the GLSM was used to construct the theories in all phases in the first place, it

is natural to suspect that it should play a pivotal role in understanding the transport

between phases, and indeed [8] showed this to be the case. To understand this, we first

take a short digression to understand the brane category for the GLSM.

Since the target of the GLSM is topologically trivial, so is necessarily any vector

bundle on it. One might naively be inclined to say that a brane is therefore a complex

of vector spaces, but this would fail to take the gauge group into account. The proper

way to account for this is to study a complex of pairs consisting of a vector bundle

together with a fiber-preserving action of the gauge group. The isomorphism type of

the fiber representation cannot change as we vary the fiber so we can identify each

pair with simply a gauge representation. If we explicitly identify G = U(1)r, then

any representation decomposes into characters, and the lattice of such characters is

Hom(U(1)r, U(1)) ∼= Zk. Thus if we define W(q1, . . . , qk), called a Wilson line brane,

to be a line bundle with character corresponding to (q1, . . . , qk) ∈ Zk, then in fact any

object in the brane category of the GLSM can be written as a complex of such objects.

We denote the resulting category by Db(Cd, U(1)r).

Remark 3. In more mathematical terms, we are studying the equivariant derived

category for Cd with its U(1)r action.

Remark 4. The origin of the term Wilson line brane comes from comes from the fact

that the effect of this brane is equivalent to starting with a trivial brane (corresponding

to the trivial line bundle on the target) and inserting a Wilson line on the worldsheet

boundary. See [8].

Given a brane in the UV GLSM theory, we can for a choice of phase flow down to get

a brane on the Higgs branch theory which gives rise to a functor Fζ : Db(Cd, U(1)r)→

Db(Xζ). This map is naturally viewed from the GIT viewpoint as follows. Consider

(Cd\∆ζ)× C where ∆ζ is the (phase-dependent) deleted set. If we consider the gauge

acting on the first factor by its usual action on the matter fields and on the section factor

as specified by (q1, . . . , qk), then the quotient is the total space for a line bundle over
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Xζ = (Cd\∆ζ)/(C∗)k which we denote by O(q1, . . . , qk). Then Fζ maps W(q1, . . . , qk)

to O(q1, . . . , qk), and since Fζ acts on a complex degree-by-degree and commutes with

taking direct sums, this is sufficient to uniquely specify it.

5.4 Derived Categories in Phases from Generators and Relations

A useful perspective is to start with the UV brane category, denoted by Db(Cd, U(1)r),

which is given by complexes of Wilson lines. We think of this as a U(1)r-equivariant

version of Db(Cd). From the GIT viewpoint, after choosing a phase, we have for each

U(1)α a corresponding deleted set ∆α. We can take a Koszul resolution of O∆α by

equivariant vector bundles, and by our earlier remark, this can in fact be expressed

purely in terms of equivariant line bundles, i.e. Wilson lines. Then upon flowing to the

IR, O∆α becomes trivial, giving an exact sequence of Wilson lines which we can view

as a relation in the derived category. If we write O(−→q ) for the Higgs branch image of

W(−→q ), then we can think of O(−→q ) as a set of generators with one relation for each

deleted set.

For explicit calculations, it is helpful to think in terms of modules. Schematically, if

we have variables x1, . . . , xm, y1, . . . , yn with the deleted set given by y1 = · · · = yn = 0,

then we take a Koszul resolution of C[x1, . . . , xm], viewed as a C[x1, . . . , xm, y1, . . . , yn]-

module. Note that we are working with graded modules so it is important to keep

up with the charges at each stage of the resolution. In practice, one starts with a

charge-neutral copy of C[x1, . . . , xm, y1, . . . , yn] surjecting to C[x1, . . . , xm] and then at

each stage finds the charges by looking at the connecting map.

5.5 Brane Transport following Hori-Herbst-Page

We now seek to understand how to transport branes from one phase to another. If we

are given adjacent phases separated by a codimension-one wall and containing ζ and

ζ ′ respectively, then we seek a functor Fζ,ζ′ : Db(Xζ)→ Db(Xζ′). A naive attempt to

define such as brane transport functor would be as follows: given a brane in a phase, lift

it to a complex of Wilson lines in the UV, and then push down to the brane category of
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a different phase. Unfortunately, this fails to even be well-defined, as different choices of

UV lifts give different results.

Db(Cd, U(1))

Db(Xζ) Db(Xζ′)

Fζ Fζ′

Fζ,ζ′

(5.8)

A key result of [8] is that for the non-anomalous case, only certain Wilson lines may

be transported through the wall. By working asymptotically at infinity in MK , the

so-called large volume limit, and crossing a codimension one wall, the gauge group is

always Higgsed to no bigger than a single U(1), allowing one to focus solely on the U(1)

case. In this case, we define

S =
∑
Qi>0

Qi = −
∑
Qi<0

Qi (5.9)

where the second equality follows because in the non-anomalous case,
∑
Qi = 0. Then a

Wilson line W(q) may only be transported through the wall if the window condition is

satisfied:

− S2 <
θ

2π + q <
S
2 . (5.10)

For a complex involving Wilson lines not obeying this condition, one can use the

relations in the derived category to find an equivalent complex which does obey the

window condition and then transport that. The idea is to “cancel” Wilson lines by

replacing a complex with the mapping cone of a map from this complex to an exact

sequence. From the viewpoint of the derived category, as the exact sequence is trivial,

this construction doesn’t change the object. Furthermore, by arranging to have the

identity map from a Wilson line to itself, one can then remove the pair which also

preserves the corresponding object in the derived category. For branes far outside of the

window, one may have to do this iteratively with each iteration removing the charges

farthest from the window.

For example, consider the Hirzebruch-Jung GLSM for C2/Z2(1) which has two chirals

charged 1 and one chiral charged −2 under a single U(1). This flows for ζ � 0 to
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C2/Z2 and for ζ � 0 to a resolution which has a single exceptional divisor. Note that

the latter geometry retracts onto CP1 and thus admits the same classification of line

bundles as the familiar story for CP1. In the ζ � 0 phase, one has that the complex

W(−1) → W(0)⊕2 → W(1) becomes trivial in the IR. For a slightly negative theta

angle, the window condition only allows one to transport complexes constructed from

W(0) and W(1). If we wanted to transport W(−1), we could taking a mapping cone

of W(−1) with our IR trivial complex to get W(−1)→W(−1)⊕W(0)⊕2 →W(1). By

arranging so that the first map is projection onto the W(−1) summand, we can cancel

the pair of W(−1)’s to obtain W(0)⊕2 →W(1) which now obeys the window condition

and can be transported to the ζ � 0 phase. Far more examples of binding to cancel

Wilson lines and obtain a complex obeying a window condition can be found in [8].

For a given choice of θ, the Wilson lines obeying the window condition are sufficient

to generate the derived category in the sense that an arbitrary brane is equivalent to

a complex of sums of Wilson lines. This then enables one to transport more general

branes by first rewriting them in terms of branes in the window. A main goal of this

thesis is to understand how this framework should generalize to anomalous models.

This also highlights the crucial role played by the theta angle. Changing the theta

angle would correspond to changing the window condition which in turn would modify

the transport functor. This is related to the fact that since the quantum-correct walls

are removed,MK is no longer path-connected (though it is still connected); different

(homotopy classes of) paths between two phases can give different transport functors.

A more functorial picture is that the theta-dependent window w determines a window

category Tw which is the full subcategory of Db(Cd, U(1)) generated by the Wilson lines

obeying the window condition, and its projections to Db(Xζ) and Db(Xζ′) generate the

respective derived categories and in fact exhibit equivalences of categories. This is not,

however, compatible with forming tensor products; in fact, the window category is not

even closed under tensor products. To determine the image of some B ∈ Db(Xζ) under

Fζ,ζ′ , one chooses a lift B̃ ∈ Tw with Fζ(B̃) = B, and then one has Fζ,ζ′(B) = Fζ′(B̃).
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Db(Cd, U(1))
∪
Tw

Db(Xζ) Db(Xζ′)

Fζ Fζ′

∼= ∼=Fζ,ζ′

(5.11)

Remark 5. In [8], the result given is in fact a bit more general. In the case of

a nontrivial superpotential W, instead of considering complexes of Wilson lines, one

considers matrix factorizations. A matrix factorization is given by a Z2-graded sum of

Wilson lines together with an odd endomorphism Q satisfying Q2 = W Id. At the level

of the transport, virtually nothing changes: one still transports a brane by expressing it

through binding to IR trivial branes purely in terms of Wilson lines obeying the grade

restriction rule. This generalization will not, however, be a focus of this thesis.
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Chapter 6

Localization Background

In this chapter, we review the basics of supersymmetric localization and then introduce

the particular case that we shall need: the disk partition function for GLSMs as

introduced by [11]. Since the details of localization are quite technical, we will make

no attempt to give a full derivation; rather we shall be content to sketch the key ideas

underlying localization and to examine what physical properties can be gleaned from

the specific localization formula relevant to our case of interest.

6.1 The Idea of Localization

This review section is roughly based on the lectures of Benini in [3]. We begin with

a Euclidean supersymmetric quantum field theory formulated on a compact manifold,

possibly with boundary provided one imposes appropriate boundary conditions. If

instead given a Lorentzian theory, one can Wick rotate via t → iτ with τ real to

Euclidean signature, compute a localization result, and then analytically continue back.

To take a supersymmetric theory that was originally formulated on Euclidean space and

rewrite it on a curved manifold, it is necessary to couple to a background supergravity

multiplet which in particular contains conformally constant spinors that enable us to

realize the supersymmetry transformations; the details are quite technical so we refer

the interested reader to [3]. The reason for assuming compactness is to circumvent

delicate issues with infinity.

The partition function is computed by a path integral of the form

Z =
∫
Dφe−S(φ) (6.1)
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where φ refers collectively to all fields. Consider the following deformation

Z(t) =
∫
Dφe−(S(φ)+QV). (6.2)

Then we have
d

dt
Z(t) =

∫
DφQ(. . . ) = 0 (6.3)

via a version of Stokes theorem for field space, implying that Z(t) is independent of

t. Hence we can evaluate our original partition function, initially given by t = 0, via

instead taking the limit t → ∞. This reduces to an integral over the fields obeying

QV = 0.

We can further improve upon this by parameterizing φ via

φ = φ0 + t−1/2φ̂. (6.4)

The choice of t-dependency implies that the action for large t we have

S + tQV = S(φ0) + (QV)quad(φ̂) +O(t−1/2) (6.5)

where (QV)quad(φ̂) is the quadratic part of QV. This then reduces our localization

formula to ∫
Dφ0e

−S(φ0) 1
SDet′(QV)quadφ0

(6.6)

where SDet refers to the superdeterminant which is given as the ratio of bosonic

to fermionic determinants with the prime symbol indicating that one should remove

zero modes to get a sensible value for the partition function. The calculation of the

superdeterminant is often achieved via index theorems.

By making the choice

V =
∑

fermions ψ
(Qψ)‡ (6.7)

where ‡ is any anti-linear operator for which QV is non-negative for the fields over

which we are integrating and for which the bosonic variation of V vanishes, we reduce

to an integral over the moduli space of solutions to Qψ = 0. These are often called BPS

equations.
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6.2 Hori-Romo Review

Following [11] and specializing to the case of abelian gauge group, we have the following

formula for the hemisphere partition function as an integral over an appropriate cycle

in the Coulomb branch moduli.

ZD2(B) = C(rΛ)ĉ/2
∫
γ⊂tC

dlGσ
∏
i

Γ
(
iQi(σ) + Ri

2

)
eit(σ)fB(σ) (6.8)

Here the dependence on the brane B is solely through the brane factor fB(σ′) which is

defined via

fB(σ) = Treπire2πρ(σ) (6.9)

for r the R-charge and ρ the matter representation. We must assume that the R-charges

satisfy 0 < Ri < 2 for all i. One can send the R-charges to 0 to obtain a simplified

formula provided one does not encounter contour pinching; however, contour pinching

can occur for general models. We later analyze when contour pinching is avoided and

show that it corresponds to B being compactly supported. Furthermore, we have the

freedom to rescale by an overall constant as this does not affect physical observables

and can therefore choose a normalization according to convenience. Also recall that t

depends on the energy scale.

The brane factor for a single Wilson lineW(~q) is e2π~q·σ, and for a more general brane,

the brane factor can be easily computed as a sum over all Wilson lines, weighted by

signs determined by R-charges. Note that the only dependence of the partition function

on the brane is through the brane factor.

The reason that the dependence on t is holomorphic is discussed in chapter 4 of [11].

Essentially, changing t̄ would amount to an antiholomorphic deformation of the twisted

superpotential, and such a deformation is Q-exact.

Solving the BPS equations in the localization calculation (see [11]) would naively

lead to γ being the real locus, but it is necessary to consider a continuous deformation

so as to ensure convergence. As there are codimension one poles from the Gamma

functions, care must be taken so as not to cross the poles during such a deformation.

Since the integration cycle is supposed to be a valid A-brane [11], we should further
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assume that the contour is Lagrangian. For U(1) models, as the integration cycle is in

C, the Lagrangian condition is vacuous.

Convention 3. Except when explicitly mentioned otherwise, we redefine the partition

function so as to omit the factor of (rΛ)ĉ/2.

The partition function gives an easy way to observe monodromy under theta angle

shifts. Indeed, if we take θα → θα + 2π for some α, then the exponential is multiplied

by e2π which may in turn be absorbed into the brane factor if we shift the α-th gauge

charge of each Wilson line (in some fixed resolution of the brane) by 1. This is equivalent

to tensoring the complex with W(0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the α-th position.

This was pointed out without localization in [8] via the observation that θ only enters

the GLSM Lagrangian through the expression θ + 2πq.
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Chapter 7

Central Charge from Localization

Having the localization formula at hand for the hemisphere partition function, one must

ask what it actually computes, drawing inspiration from physical string theory. Given

a brane B on a Calabi-Yau threefold target X, we can consider type II string theory

on R3,1 ×X with a brane of the form R × B for R a particle worldline in R3,1. After

dimensional reduction on X, we obtain a BPS particle in a 4-dimensional supersymmetric

theory on R3,1 which has a well-defined central charge under the 4d N=2 supersymmetry

algebra. It is known that this is given by

Z4d(B) = Q ·Π (7.1)

where Q is the RR charge given by

Q(B) =
√
Â(X)chc(B) (7.2)

as derived in [17] while Π is a certain period integral. Putting these together, one may

write down the formula

Z4d(B) =
∫
X

√
Â(X)eτ chc(B) + . . . (7.3)

where . . . refers to higher order corrections and where τ = ω − iB is the complexified

Kähler class for ω the ordinary Kahler class and B a B field; note that τ will be related

to t by a simpler linear transformation. For details on this central charge formula, see

[1] and also the book [10]. Note that in the Calabi-Yau case, the Â class is the same as

the Todd class; it is common in this case to see the above formula with
√
Td(X) in the

literature.

An important claim of [11] is that this central charge in the four dimensional theory

can be determined as the hemisphere partition function of B in the sigma model to X,
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i.e.

Z4d(B) = ZD2(B). (7.4)

Furthermore, even in the anomalous case in which the definition of brane central charge

in terms of a 4-dimensional N=2 theory breaks down, the integral over geometric data

still obeys the same relation to the hemisphere partition function. Since the localization

formula for ZD2(B) may be expanded in residues, one might ask how much of (7.3) is

captured by the leading residue. It actually captures more than the leading term in the

central charge that we have shown. If one replaces
√
Â(X) by the Gamma class ΓX in

the above integral, then this captures an additional piece of the expansion (which would

be negligible in the large volume limit) and matches the leading residue. Explicitly, we

have

Z0−inst
D2,res (B) =

∫
X

ΓXeτ chc(B). (7.5)

After clarifying general results about the hemisphere partition function, we will

use it to compute the leading residue contribution to the central charges for branes

in Hirzebruch-Jung models. Later in thesis in chapter 8 we explicitly check that this

matches with the geometric formula.

7.1 The Partition Function for U(1) Models

Here we study in detail central charge calculations for a one-parameter Hirzebruch-Jung

model which is constructed from a gauge group U(1) and chirals X0, X1, and X2 having

respective charges 1, −n, and 1. Here the ζ � 0 phase gives rise to the orbifold target

C2/Zn(1) while the ζ � 0 phase gives rise to the minimal resolution of this singularity

which is isomorphic to the total space of O(−n)→ CP1.

Turning on R-charges Rj for j = 0, 1, 2 in the interval (0, 2), the localization formula

reduces to

ZD2(B) =
∫
L

dσ

2πΓ(iσ +R0/2)Γ(−inσ +R1/2)Γ(iσ +R2/2)eitσfB(σ). (7.6)

where we have used our freedom of rescaling to choose a convenient normalization for
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what follows. The poles coming from the Gamma functions are given explicitly by

iσ = −Rj/2− k < 0 for j ∈ {0, 2} and k ≥ 0 (7.7)

iσ = 1
n

(R1/2 + k) > 0 for k ≥ 0. (7.8)

Through mixing R-symmetry with gauge symmetry, we can set R1 = 0 and also shift L

slightly so that for each Gamma function, all poles are on the same side of the contour.

As we shall see, the remaining R-charges are crucial for regularization though will turn

out to be irrelevant if we restrict to compact branes. If we try to take either of the

remaining R-charges to zero, then for generic B, the contour gets pinched between two

poles, and the resulting integral blows up.

To see how this diverges arises, note that given a holomorphic function f :∫
R

f(x)dx
(x− iε)(x+ iε) = 2πif(iε)

2iε +
∫
C

f(x)dx
(x− iε)(x+ iε) (7.9)

where C is the contour obtained by bending R slightly to go over the pole at x = iε. If

we take ε→ 0, we obtain a divergence of the form πf(0)
ε .

We now turn to calculating the partition function for specific branes. First we

consider the case of a single Wilson line which descends to O(q) and has with brane

factor e2πqσ. Taking R0, R2 → 0, we get

Z0−inst
D2,res (O(q)) = 1

n

Γ(R0/2)
−2πi

Γ(R2/2)
−2πi +O(1) = − 1

nπ2R0R2
+O( 1

R0
) +O( 1

R2
). (7.10)

The divergent part is a factor of 1
n times the partition function for two free chirals

corresponding to the noncompact directions and is in particular independent of q. This

can also be viewed as computing the U(1)2 equivariant volume of C2 with an additional

factor of 1
n coming from quotienting by Zn.

Next we examine the structure sheaf of the exceptional divisor E which may be

lifted to W(n) X1−−→W. This has brane factor f1(σ) = 1− e2πnσ which serves to cancel

the pole of Γ(−inσ); more explicitly, we have by the reflection formula

Γ(−inσ)f1(σ) = −2πieπnσ

Γ(1 + inσ) (7.11)

which clearly has no pole near the origin. Then we can take the remaining R-charges

to zero in the localization formula free of any contour pinching, and thus the leading
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contribution to the partition function may be calculated directly via

Z0−inst
D2,res (OE) =

∫
0

dσ

2π
−2πieπnσ

Γ(1 + inσ)Γ(iσ)2eitσ = t− iπn+ (n− 2)γ
−2πi (7.12)

where
∫
0 means that the integral is taken around the pole at the origin. Even if we were

to put in the original R1, it would modify the brane factor in exactly the right way to

cancel the pole coming from Γ(−inσ+R1/2), leading to the same conclusion. We could

also twist by for instance considering W(q + n) X1−−→W(q) which flows to OE(q). In this

case, the brane factor would be multiplied by e2πqσ, but the argument about canceling

poles to avoid contour pinching would still work the same way.

Turning to noncompact branes, we will show that the divergences we obtain do in

fact depend on more than just the brane factor with R-charges turned off. Indeed, let us

consider the brane Bk0,k1,k2 arising from the UV resolution W(0)
X
k0
0 X

k1
1 X

k2
2−−−−−−−−→W(k0 −

nk1 + k2) for some ki ≥ 0. This brane is supported on {X0 = 0} ∪ {X1 = 0} ∪ {X2 = 0}

which contains the base as well as two noncompact components. It has brane charge

fBk0,k1,k2
(σ) = 1− e2π(k0−nk1+k2)σ−iπ(k0R0+k2R2). Though the Rj → 0 limit only depends

on k0 − nk1 + k2, the partition function is given by

Z0−inst
D2,res (Bk0,k1,k2) = 1− e−iπ(k0R0+k2R2)

(−2πi)2

( 1
n

Γ(R0
2 )Γ(R2

2 ) +O(1)
)

= 1
n(2πi)

(
k0Γ(R0

2 ) + k2Γ(R2
2 )
)

+ . . .

(7.13)

This gives a geometric interpretation of the divergences as encoding the multiplicities of

the noncompact components.

7.2 Compact Branes in Higher Rank Models

To evaluate the partition function for higher rank models, we follow the Jeffrey-Kirwan

(JK) prescription which yields the following sum over residues:

ZD2,res(B) =
∑

J |ζ∈ConeJ

∑
k|J→Z≥0

±Resiσ=iσJ,k

∏
j

Γ(iQj · σ + Rj
2 )eit·σfB(σ)

 . (7.14)

Here the choice of ζ corresponds to what is usually called a JK parameter, and in fact,

only the choice of phase containing ζ matters in determining which poles contribute.

The sum over J is interpreted as summing over all subsets J ⊂ {1, . . . , n} such that
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the positive-linear span of the Qj ’s for j ∈ J contains ζ. A shortcut is that the sum of

residues we take should be such that the factor eit·σ must have all positive powers of

e−ζkj to ensure convergence; this does not, however, fix the signs.

For K ⊂ {1, . . . , n}, we define EK = {φj = 0 for j ∈ K}. We first point out that the

brane factor for OK will cancel the poles of Gamma functions corresponding to chirals

with indices in K. This will be useful in what follows for determining when we are able

to cancel certain poles in the JK expansion.

We first suppose that EK is contained in the deleted set which corresponds to the

case in which the brane OEK which becomes trivial on the Higgs branch. Then by

definition there is no solution to the D-term equations when φj = 0 for all j ∈ K, but

such solutions correspond exactly to expressing ζ as an element of ConeKc so therefore

we have ζ /∈ ConeKc . For any J in the above expansion, since ζ ∈ ConeJ , we must have

J 6⊂ Kc so then J ∩K is nontrivial. But this means that that one of the poles whose

residue we are taking is canceled by the brane factor, implying that the contribution is

trivial. As this holds for all terms, we see that the central charge vanishes as one should

expect. This easily extends to twists, and moreover, since the brane factor is additive,

this further generalizes to arbitrary empty branes (as these can be constructed from

twists of the structure sheaves of different components of the deleted set).

We now turn to when EK is compact. Then the JK prescription becomes a sum

over all J ⊂ Kc because other terms involve taking a residue of a pole that has been

canceled and thus do not contribute.

Lemma 7.1. EK is compact if and only if there exists s such that Qj · s > 0 for all

j ∈ K.

If such an s exists, then the norm squared of points in EK is bounded above by
ζ·s

mini/∈KQi·s
. If no such s exists, then ConeKc does not lie in a half-space and hence

contains a line through the origin. This forces
∑
i λ

iQi for some positive coefficients λi,

but then given X ∈ EK one can construct arbitrarily large solutions by shifting each

|Xi|2 by the same multiple of λi, thus implying that EK is not compact.
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Using the reflection formula repeatedly, we may write

ZD2,res =

∑
J⊂Kc

ζ∈ConeJ

∑
k:J→Z≥0

±Resiσ=iσJ,k

eit·σe
∑

j∈K(−πQj σ̇+iπRj/2)∏
j /∈K Γ(iQj · σ +Rj/2)

(−2πi)#(Kc\J)∏
j∈K Γ(1− iQj · σ −Rj/2)

 .
(7.15)

The only potentially problematic Gamma functions are those in the numerator. If

we shift σ by σ − iεs where s is as given by the lemma, then the numerator Gamma

functions become Γ(iQj · σ + ε(Qj · s) + Rj/2). Because for these Qj · s > 0, we can

now take Rj → 0 for all j without hitting any of the corresponding poles. Though we

need not have Qj · s > 0 for the poles from the denominator Gamma functions, these

poles will not lead to contour pinching anyhow. This immediately generalizes to twists

because the brane factor gets multiplied by an overall factor which doesn’t alter our

argument about canceling poles, and this then further generalizes to arbitrary compactly

supported branes (which are necessarily supported on a union of exceptional divisors)

by the additivity of the brane factor.

7.3 Line Bundles on Hirzebruch-Jung Models

We now turn to explicitly understand sheaves on a (possibly partially resolved) Hirzebruch-

Jung model X. This essentially comes from specializing the results of section 5.4. The

derived category category is generated by line bundles of the form O(b1, . . . , br) for a

rank r model where such a line bundle is given as the Higgs branch image of the Wilson

line W(b1, . . . , br). A section of the structure sheaf O is a G-equivariant function on

Cd\∆ζ . As multiplication by Xj maps this to O(0, . . . , 0, 1,−aj , 1, 0, . . . , 0), the latter

sheaf is of the form O(Ej) where Ej = {Xj = 0}. To be explicit, we have

O(E0) = O(1, 0, . . . ), O(E1) = O(−a1, 1, 0, . . . ),

O(Eα) = O(. . . , 0, 1,−aα, 1, 0, . . . ) for 1 < α < r,

O(Er) = O(. . . , 0, 1,−ar), O(Er+1) = O(. . . , 0, 1).

(7.16)

Note that we need all such Eα’s to generated the derived category and not just those

for 1 ≤ α ≤ r. A brane in the GLSM which is supported on the deleted set descends on
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the Higgs branch to a trivial brane, thereby giving a relation in the derived category.

We obtain from this two kinds of relations. (All twists of such relations are of course

trivial in the derived category as well.)

1. If the α-th divisor is not blown-up, then ∆ζ contains {Xα = 0} as a component.

Passing a resolution of its structure sheaf to the derived category givesO(−Eα) Xα−−→

O as a relation.

2. If the α-th and β-th divisors are blown up, and there is no α < γ < β for which

the γ-th divisor is also blown up, then ∆ζ contains {Xα = Xβ = 0}. Passing a

resolution of its structure sheaf to the derived category gives

O(−Eα − Eβ)
(Xα,Xβ)
−−−−−→ O(−Eβ)⊕ (−Eα)

(Xβ ,−Xα)
−−−−−−→ O (7.17)

as a relation.

We now turn to understanding line bundles geometrically in terms of their pullbacks

to local models. We first consider the intersection of two neighboring exceptional

divisors Ei and Ej . The residual gauge group Zdij embeds in U(1)r via

Zdij 3 1 7→ (1, . . . , 1, ωd(i+1)j , ωd(i+2)j , . . . , ωd(j−1)j , 1, . . . , 1) (7.18)

where ω = e2πi/dij and where the entries of the form ωdαj are in positions i +

1, . . . , j − 1. We thus obtain an equivariant line bundle on a neighborhood of

Ei ∩ Ej given by

W(q) on C2/Zdij(d(i+1)j) with Zdij -charge q =
j−1∑
α=i+1

dαjbα. (7.19)

We next consider a neighborhood of a single blown up exceptional divisor Ej which

intersects Ei and Ej for 0 ≤ i < j < k ≤ r + 1. The gauge group of the local

model is U(1)× Zm where m = gcd(dij , djk), and (h, ω) ∈ U(1)× Zm corresponds

to (gα) ∈ U(1)r where

gα =



(hdjk/mωu)diα for i ≤ α ≤ j

(hdij/mωv)dαk for j ≤ α ≤ k

0 otherwise

. (7.20)



48

From this, one can compute the charges in the local model to be

djk
m

j−1∑
α=i+1

diαbα + dijdjkbj
m

+ dij
m

k−1∑
α=j+1

dαkbα under U(1),

u
j−1∑
α=i+1

diαbα + v
k−1∑

α=j+1
dαkbα under Zm.

(7.21)

In the fully resolved case this simplifies considerably: O(b1, . . . , br) pulls back to

give O(bj) on Ej .

7.4 Central Charges for Hirzebruch-Jung Models

We now turn to using this machinery to explicitly compute the central charges for

compactly supported branes in Hirzebruch-Jung geometries. We first consider the

central charge of an intersection Ei ∩Ej of adjacent exceptional divisors which is a Zdij

orbifold point. For a Wilson line W(ρ), we have the brane factor

f(σ) = (1− e2πi(iQi·σ+Ri/2))(1− e2πi(iQj ·σ+Rj/2))e2πρ·σ. (7.22)

As the brane is compact, the brane factor will cancel enough poles to avoid contour

pinching; in particular, the poles from the Gamma functions associated with Xi and

Xj are canceled. The JK prescription requires us to sum over choices of r chirals not

containing Xi and Xj , but since there are only r + 2 total chirals, this means we get

one term in the expansion labeled by J = {i, j}c. We obtain

Z0−inst
D2,res = ±resiσ=iσ{i,j}

e(it+2πρ)·σ

(−2πi)2

∏
`=i,j

−2πie−πQ`·σ+iπR`/2

Γ(1− iQ` · σ −R`/2)
∏
`6=i,j

Γ(iQ` · σ +R`/2)


(7.23)

where σ{i,j} is given by solving iQ` · σ +R`/2 = 0. The sign cancels with the sign of the

residue with the latter being given by 1/ det(Q`)` 6=i,j . Now we have

detQ`6̀=i,j =


U N1 0

0 −C(ij) 0

0 N2 L

 = det(−C(ij)) = (−1)j−idij (7.24)

for U and L upper and lower triangular matrices with 1s on the diagonal, N1 and N2

matrices with a single 1 in the corner closest to the diagonal of the main matrix and
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the rest 0s, and C(ij) the partial Cartan which then leads to an overall factor of 1/dij .

We thus have

Z0−inst
D2,res = lim

R→0

1
dij

e(it+2πρ)·σ

(−2πi)2

∏
`=i,j

−2πie−πQ`·σ+iπR`/2

Γ(1− iQ` · σ −R`/2)
∏
`6=i,j


iσ=iσ{i,j}

= 1
dij
. (7.25)

Note that this depends on the fact that σ{i,j} → 0 as R→ 0 which in turn leads to a

result independent of t and ρ.

We now turn to computing the central charge of an exceptional divisor Ej for

1 ≤ j ≤ r. We let i < j < k denote the indices of the neighboring exceptional divisors.

The brane factor is given by

f(σ) = (1− e2πi(iQj ·σ+Rj/2))e2πρ·σ (7.26)

and as the brane is compact, we will manage to avoid contour pinching through canceling

poles. In the JK expansion, we must sum over sets J of r chirals with j /∈ J and

ζ ∈ ConeJ . Now ζ ∈ ConeJ exactly when EJc is nonempty which occurs for Jc = {i, j}

or {j, k}.

We first compute the contribution from Jc = {i, j}. The leading residue comes from

solving Q` · σ = iR`/2 for ` 6= i, j. Explicitly, we have

iσ{i,j} =



−
∑α−1
`=0 d`α

R`
2 1 ≤ α ≤ i

− 1
dij

∑r+1
`=0 dimin(α,`)djmax(α,`)

R`
2 i ≤ α ≤ j

−
∑r+1
`=α+1 dα`

R`
2 j ≤ α ≤ r

(7.27)

which can be verified using our identities for the dij ’s. From the recursion relations, one

can show that

iQi · σ̂{i,j} + Ri
2 =

r+1∑
`=0

d`j
dij

R`
2 (7.28)

and similarly

iQj · σ̂{i,j} + Rj
2 =

r+1∑
`=0

di`
dij

R`
2 . (7.29)
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We then compute the residue of the partition function to be

sign
(
det(Q`) 6̀=i,j

)
resiσ̂=iσ̂{i,j}

(
eit·σ̂−πQ

j ·σ̂+iπRj/2∏
`6=j Γ

(
iQ` · σ̂ +R`/2

)
−2πiΓ

(
1− iQj · σ̂ −Rj/2

) )

= 1
dij

eit·σ̂{i,j}+iπ
∑r+1

`=0 (di`/dij)(R`/2)Γ
(∑r+1

`=0
d`j
dij

R`
2
)

−2πiΓ
(
1−

∑r+1
`=0

di`
dij

R`
2
)

= i

2π

(
2∑r+1

`=0 d`jR`
+
( 2it · σ̂{i,j}∑r+1

`=0 d`jR`
+ (iπ − γ)

∑r+1
`=0 di`R`

dij
∑r+1
`=0 d`jR`

− γ

dij

)
+O(R)

)
(7.30)

where we obtained the factor of 1
dij

from the determinant of Q` for ` 6= i, j. For the

Jc = {j, k} contribution, we follow a similar process and obtain

sign
(
det(Q`) 6̀=j,k

)
resiσ̂=iσ̂{j,k}

(
eit·σ̂−πQ

j ·σ̂+iπRj/2∏
`6=j Γ

(
iQ` · σ̂ +R`/2

)
−2πiΓ

(
1− iQj · σ̂ −Rj/2

) )

= i

2π

(
2∑r+1

`=0 dj`R`
+
( 2it · σ̂{j,k}∑r+1

`=0 dj`R`
+ (iπ − γ)

∑r+1
`=0 d`kR`

djk
∑r+1
`=0 dj`R`

− γ

djk

)
+O(R)

)
.

(7.31)

Then if we add the two, the divergences cancel! Then using

iσ̂α{i,j} − iσ̂
α
{j,k} =



0 for 1 ≤ α ≤ i,

(diα/dij)
∑r+1
`=0 d`jR`/2 for i ≤ α ≤ j,

(dαk/djk)
∑r+1
`=0 d`jR`/2 for j ≤ α ≤ k,

0 for k ≤ α ≤ r,

(7.32)

and our identities for the dβγ ’s, we obtain the finite R→ 0 limit

Z0-instanton
D2,residue = (rΛ)ĉ/2 i

2π

(( j−1∑
α=i+1

diα
dij

tα

)
+tj+

(
k−1∑

α=j+1

dαk
djk

tα

)
−iπ dik

dijdjk
+dik − djk − dij

dijdjk
γ

)
.

(7.33)

In the case where i = j − 1 and k = j + 1 in which there are no singularities on the

exceptional divisor, this reduces to

Z0−inst
D2,res = i

2π (tj − iπaj + (aj − 2)γ). (7.34)

More generally, the central charge for an exceptional divisor is the same as what one

gets by computing its central charge in the corresponding local model:

Z0−inst
D2,res = i

2π
1
m

tloc − iπdik/m+ (dik/m− djk/m+ djk/m)γ
(dij/m)(djk/m) (7.35)

where the formula for tloc was derived in the section on local models.
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Chapter 8

Aspects of K-theory

We now turn to explicitly evaluating the leading contribution to the central charge for

Hirzebruch-Jung surfaces following the geometric formula (7.5). Fortunately, it turns

out that the (compactly supported) cohomology and (compactly supported) K-theory

of any toric geometry can be computed explicitly in terms of generators and relations

which in turn can be obtained from the defining combinatorial data. For far more details,

consult [4].

8.1 K-theory and Cohomology of Toric Varieties

We first introduce an alternative perspective on toric geometry which is more common

in the mathematical literature. Consider a rank n lattice N and a fan Σ of polyhedral

cones in N ⊗ R. Let Σ(1) = {v1, . . . , vd} be the rays of Σ and I = {1, . . . , d} be the

corresponding indices.

Consider the map φ : Hom(Σ(1),C∗)→ Hom(N∗,C∗) defined by sending f : Σ(1)→

C∗ to m 7→
∏
v∈Σ(1) f(v)〈m,v〉 for m ∈ N∗. If we let GC = ker(φ), then G acts on Cd via

g · (φ1, . . . , φd) = (g(v1)x1, . . . , g(vd)xd) (8.1)

where we identify coordinates of Cd with elements of Σ(1). If we let

∆(Σ) =
⋃

S⊂Σ(1) not spanning
a cone of Σ

{φj = 0 for j ∈ S}, (8.2)

then one can show that the GC-action preserves Cd\∆(Σ), and we obtain a toric variety

from taking the quotient by this action which we denote by PΣ. This is precisely the

same quotient one would take in constructing this via a GIT quotient from the GLSM

viewpoint.
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For computing the cohomology in the case of orbifold singularities, we have an

untwisted sector which gives the ordinary topological cohomology (i.e. what we get

if we just consider the underlying topological space and “forget” about our singulari-

ties) together with twisted sectors which contain information about the singularities.

Physically, it is this enhanced cohomology whose dimension correctly calculates the

number of vacua. In the case of a nonsingular toric variety, the untwisted sector is the

full cohomology, and there are no twisted sectors.

The untwisted sector cohomology is given by

H∗0 (PΣ) = C[D1, . . . , Dd]
{Σim(vi)Di|m ∈ N∗}, ISR

(8.3)

where ISR is the Stanley-Reisner ideal spanned by all products
∏
i∈J Di for which

J ⊂ I does not span a cone of Σ. The generators Di have degree 2 and correspond

to toric divisors given by (in the GLSM picture) φi = 0. In addition, the twisted

sectors correspond to nonzero γ =
∑
i γivi ∈ N with γi ∈ [0, 1). For σ ∈ Σ, define

Star(σ) = {σ′ ∈ Σ|σ ⊂ σ′}. Then the corresponding pieces of the cohomology are given

by

H∗γ(PΣ) =
C[D̄i]i∈Sγ(1)

{Σim(vi)D̄i|m ∈ Ann(vi ∈ σ(γ))}, IγSR
, Sγ := Star(σ(γ))− σ(γ) (8.4)

where here the Stanley-Reisner ideal IγSR is given by all
∏
i∈J D̄i for J not a cone in

Star(Σ(γ)). The full cohomology H∗(PΣ) is then given as the direct sum over all sectors.

The compactly supported cohomology is similarly constructed from an untwisted

sector and (in the case of orbifold singularities) twisted sectors. The untwisted sector is

given as a quotient of the free module over H∗(PΣ) with generators FJ . Explicitly, we

have

H∗c,0(PΣ) =
⊕

σ◦J⊂Σ◦

C[D1, . . . , Dd]
〈H1, H2〉

(8.5)

where H1 and H2 are the relations defined by

H1 = {DiFJ = FJ∪{i} for i 6∈ J, J ∪ {i} ∈ Σ},

H2 = {DiFJ = 0 for i 6∈ J, J ∪ {i} 6∈ Σ}.
(8.6)

The twisted sectors H∗c,γ(PΣ) are given by

H∗c,γ(PΣ) =
⊕

σ◦J⊆Σ◦γ

C[Di]i∈SγF J
〈Hγ

1 , H
γ
2 〉

(8.7)
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with relations Hγ
1 and Hγ

2 given by

Hγ
1 = {DiF J = F J∪{i} for i 6∈ J, J ∪ {i} ∈ Σγ},

Hγ
2 = {DiF J = 0 for i 6∈ J, J ∪ {i} 6∈ Σγ}

(8.8)

and where Σγ = Σ/σ(γ) is the quotient fan. Then the compactly supported cohomology

H∗c is given as the direct sum of the untwisted and twisted sectors.

The K-theory is given by

K0(PΣ) = C[R±i ]i∈I{∏
i∈I R

m(vi)
i − 1

∣∣∣ m ∈ N∗}, IK , IK =
〈∏
i∈J

(1−Ri)|J 6∈ Σ
〉
. (8.9)

The compactly supported K-theory is given by taking the free K0(PΣ)-module

generated by GJ for σ◦J ⊂ Σ◦ and quotienting by the relations

{(1−R−1
i )GJ = GJ∪{i}, for i 6∈ J, J ∪ {i} ∈ Σ}

{DiFJ = 0, for i 6∈ J, J ∪ {i} 6∈ Σ}.
(8.10)

With this machinery in place, the Chern character

ch : K0(PΣ)→ H∗(PΣ) (8.11)

can be explicitly computed by

chγ(Ri) = 1, i ∈ Star(σ(γ)),

chγ(Ri) = eDi , i ∈ Sγ ,

chγ(Ri) = e2πiγi
∏

j 6∈σ(γ)
ch(Rj)mi(vj), i ∈ σ(γ).

(8.12)

where chγ denotes the component of the Chern character in the (un)twisted sector

labeled by γ. Also the compactly supported Chern character can be explicitly calculated

via

chcγ

(∏
i

Rkii GI
)

=


0 for I * Star(σ(γ)),(∏
i
chγ(Ri)ki

∏
i∈I,i 6∈σ(γ)

1−e−Di
Di

) ∏
i∈I∩σ(γ)

(1− chγ(Ri)−1)F I , for I ⊆ Star(σ(γ)),

(8.13)
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where similarly chγ denotes the component of the compactly supported Chern character

in the (un)twisted sector labeled by γ and where F̄I for I ⊂ Star(σ(γ)) denotes the

projection to Sγ .

Finally, we define the integration map∫
: H∗c (PΣ)→ C (8.14)

in a sector by ∫
F̄I = 1

|VolI |
(8.15)

for |I| = rankNγ and zero otherwise. Here VolI means the index of the sublattice of Nγ

spanned by I, and Nγ is defined by N/Span(σ(γ)).

To be able to apply this framework to a GLSM, we must convert from the GLSM

description of the target toric geometry to the primary fan. This construction is well

known so we simply review it here. If we have n chirals and k gauge fields, then the

charge matrix Qiα can be regarded as a collection of vectors Q1, . . . , Qr in Zn. Then

we can obtain the desired lattice via N = Zd/SpanZ(Qα) viewed as a lattice inside

Rd/SpanZ(Qα) If we let v1, . . . , vd be the images of the basis vectors in Zn under this

quotient, then we can take Σ(1) to be all vi’s for which φi = 0 is not part of the deleted

set (i.e. for which φi = 0 contains a solution to the D-term equations).

To use this in practice, one still needs to find the generators of N. If we define the

map

f :N∗ → Hom((C∗)d,C∗) (8.16)

m 7→ (λ 7→
d∏
i=1

λ
m(v)
i ), (8.17)

then N∗ is given by the points in Rd for which G = ker(f). One can also realize N as

the dual of the lattice of gauge-invariant monomials.

8.2 Geometric Central Charges for Hirzebruch-Jung Geometries

For a compactly supported sheaf F on a variety X, we define the central charge to be

Z(F) =
∫
X
eτ~−

i
2π c1(X)Γ̂(X)chc(F) (8.18)
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where as before τ is the complexified Kahler class. The gamma class Γ(X), c1(X)

and τ are all elements of H∗(X) and act on F which as viewed as an element of

chc(F) ∈ H∗c (X) to produce for the integrand an element of H∗c (X) which may be

integrated according to the rule given earlier. Note that this only depends on F through

its class in Kc
0(X).

We now turn to determining the central charges geometrically for the fully-resolved

Hirzebruch-Jung geometries. For the purpose of doing computations with Hirzebruch-

Jung geometries, it doesn’t matter if one uses GLSM I or II. Therefore we shall use

GLSM II as these computations are much simpler. Since Qj = (pj0 . . . 010 . . . 0qj) with a

1 in the j-th position, the lattice Zr+2/(Qj)rj=1 can easily be expressed solely in terms of

elements of the form (a0 . . . 0b). Moreover, it is easily seen that minus the basis elements

descend to (pj , qj). Thus we may take

S = {vj}r+1
j=0 vj = (pj , qj). (8.19)

Moreover, since no deleted sets in the fully resolved phase are given by the vanishing of

a single chiral, we may take Σ(1) = S. In fact, contracting the j-th exceptional divisor

would correspond exactly to removing vj from Σ(1). From our relations for pj and qj ,

we must have vj−1 − ajvj + vj+1 = 0 so that the lattice spanned by all the vj ’s is in fact

spanned by v0 and v1, and thus we can take the lattice to be

N = SpanZ{(n, 0), (p, 1)} (8.20)

for which the dual is given by

N∗ = SpanZ{(1/n,−p/n), (0, 1)}. (8.21)

From here we restrict ourselves to the fully resolved phase. Then the deleted sets

are of the form {Xi = Xj = 0} for i 6= j ± 1 so therefore the two-dimensional cones take

the form {j, j + 1}, and we have Σ(1) = S. As Σ(1) spans the entire lattice, there are

no twisted sectors, a fact to be expected from the geometry being absent of orbifold

singularities. The cohomology is given by

H∗0 (PΣ) = C[D0, . . . , Dr+1]
{
∑
i piDi =

∑
i qiDi = 0}, ISR

(8.22)
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where ISR = 〈DiDj ||i− j| ≥ 2〉.

From this, one can obtain seemingly stronger relations. Observe that

0 = (
∑
i

piDi)Di = piD
2
i + pi−1DiDi−1 + pi+1DiDi+1 (8.23)

where we define Di to vanish for i outside the allowed range. Then an induction argument

starting with D−1 = 0 shows that

piD
2
i + pi+1DiDi+1 = 0, (8.24)

and one can similarly show that

qiD
2
i + qi+1DiDi+1 = 0. (8.25)

Then taking a suitable linear combination of these two relations, we obtain

0 = 1
n

(piqi+1 − pi+1qi)D2
i = dii+1Di = D2

i (8.26)

which implies that DiDi+1 also vanishes and hence that DiDj in fact vanishes for all

i, j. This ought to be expected as the resolved geometry is homotopy equivalent to a

wedge sum of (two-dimensional) exceptional divisors so therefore H4(PΣ) = 0. Also

using that 1
n(piqj − pjqi) = dij , one obtains

∑
j

dijDj = pi
n

(
∑
j

qjDj)−
qi
n

(
∑
j

pjDj) = 0. (8.27)

We introduce a change of variables for the cohomology based on our change of

variables between GLSM’s I and II:

Di =
∑
α

Qiαη
α, ηα =

∑
β

−(C−1)αβDβ. (8.28)

We may expand the Kähler class as

τ =
∑
α

ταη
α. (8.29)

To compute the Chern class, we use the Euler sequence

0→ Or →
r+1⊕
j=0
O(Dj)→ TPΣ → 0 (8.30)
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from which we obtain

ch(PΣ) = 2 +
∑
α

(2− aα)ηα. (8.31)

We can then obtain the Gamma class as

Γ̂(PΣ) = 1− iγ

2π
∑
α

(2− aα)ηα (8.32)

where γ denotes the Euler-Mascheroni constant.

The compactly supported cohomology and K-theory are respectively generated by

GI ’s and FI ’s for I = {α} or {j, j + 1} where α = 1, . . . , r while j = 0, . . . , r. The

generators of the compactly supported K-theory correspond geometrically to branes

wrapping exceptional divisors, and one can show that

chc(Gα) =
(

1− 1
2Dα

)
Fα. (8.33)

Observe that

0 = (
∑
j

dijDj)Fi = dii−1Fii−1 + diiDiFi + dii+1Fii+1 = (−1)Fii−1 + (0)DiFi + (1)Fii+1

(8.34)

and thus Fii+1 = F01 for all i. Then we have

DiFi = (−
∑
j 6=i

pjDi)Fi = (−pi−1 − pi+1)Di = aiDi (8.35)

which may be combined with our previously known relations to obtain the relation

DαFβ = (δα,β−1 − aαδα,β + δα,β+1)F{0,1} = −CβαF{0,1} (8.36)

which implies easily that ηαFβ = δα,βF{0,1}.

We then evaluate the integrand of the central charge integral:

eτ~−
i

2π c1(PΣ)Γ̂(PΣ)chc(Gα) =

Fβ +
(
− iγ2π (2− aβ) + τβ − i

2π (2− aβ) log(~) + aβ
2

)
F{0,1}.

(8.37)

Since {v0, v1} span the entire lattice N, integrating over X picks out the coefficient of

F{0,1}. Therefore

Z(OEβ ) = Z(Gβ) = − iγ2π (2− aβ) + τβ − i

2π (2− aβ) log(~) + aβ
2 . (8.38)
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If we identify

tβr
−1 = −2πiτβ − (2− aβ) log ~ where ~ = rΛ, (8.39)

then this matches the localization calculation up to a factor of (rΛ)ĉ/2.
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Chapter 9

Grade Restriction Rule for Anomalous Models

We now turn to understanding B-brane transport for anomalous models. We first work

out the U(1) case using the analytic continuation of the partition function between

phases and then results the conclusion in a more functorial light. Finally, the general

abelian case is reduced to the U(1) case by showing that when crossing a codimension-one

wall at infinity, the theory is at all times Higgsed to at most a U(1) theory (possibly

times an irrelevant finite factor). Our conclusion parallels the mathematical theory of

GIT wall-crossing as explained in [2].

9.1 Analytic Continuation of the Partition Function for U(1) Models

We first demonstrate how to derive the grade restriction rule for U(1) models. We

consider a U(1) GLSM with chirals Qj for 1 ≤ j ≤ n, and we let N+ =
∑
Qj>0Qj

and N− =
∑
Qj<0−Qj so that N+ − N− =

∑
j Qj . For convenience, we let t′ =

t+
∑
j Qj logQj . Geometrically, the theory in a phase will be a sigma model with target

a total space of line bundles over a weighted projective space.

In the case that N+ = N−, our model is Calabi-Yau, and there is a well-defined

quantum-corrected wall separating two phases: ζ � 0 and ζ � 0. For N+ 6= N−, we may

without loss of generality assume that N+ > N− in which case for fixed complexified

energy scale µ, the theory for ζ � 0 is described by a sigma model to a Higgs branch,

and the theory for ζ � 0 is described by a sigma model to a different Higgs branch

together with
∑
j Qj massive vacua on the Coulomb branch corresponding to

σ ∼ µ exp
(−t′ + 2πik
N+ −N−

)
, k ∈ ZN+−N− . (9.1)

Our main goal is to understand how when passing from ζ � 0 to ζ � 0 a brane can
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split into Coulomb and Higgs branch components.

We approach this through the hemisphere partition function. For the U(1) case, the

choice of admissible contour amounts to a choice of deformation of R ⊂ C which avoids

poles and guarantees convergence. The Lagrangian condition is trivially satisfied for

any such choice. We may write

log |integrand| = −Aq(σ) +O(log σ), (9.2)

Aq(σ) = (ζ ′ + (N+ −N−)(log |τ + iυ| − 1))υ+(
π

2 (N+ +N−) + (N+ −N−) arctan υ

|τ |
− sign(τ)(θ + 2πq)

)
|τ |

(9.3)

where σ = τ + iυ and where we have introduced the boundary potential Aq(σ). We

have convergence as long as Aq tends to infinity quickly at the ends of the contour.

If we assume that the model is Calabi-Yau, then for any ζ ′ 6= 0, we just have to take

our contour to be given by ν = ±τ2 with the sign given by the sign of ζ ′ to ensure

that the first term is dominant, and then convergence is clear. At ζ ′ = 0, we have

Aq(σ) = (πN+ − signτ(θ+ 2πq))|τ |. Convergence holds here as well provided we assume

− N+
2 <

θ

2π + q <
N+
2 . (9.4)

Outside of this interval, we lose control over the convergence when ζ ′ goes to zero. The

upshot is we obtain for the Calabi-Yau case the grade restriction rule that was originally

derived in [8] albeit through different means: they derived the boundary potential Aq(σ)

through explicit calculations using mode expansions rather than through a localization

formula.

For the phase ζ � 0 with N+ ≥ N− (the case N+ < N− being similar), the integral

with our choice of contour picks up poles on the positive imaginary axis of the form

σ = i(Rj/2 + k)/Qj for Qj > 0 and k ∈ Z≥0. For generic values of the Rj ’s, all poles

are simple, and we can expand in a sum of residues to obtain

ZD2(B) =

C(rΛ)ĉ/2
∑

j|Qj>0

∞∑
k=0

2π(−1)k

k!Qj e−t(Rj/2+k)/QjfB

(
i(Rj/2 + k)

Qj

)∏
i 6=j

Γ
(
Ri
2 −

Qi

Qj

(
Rj
2 + k

))
.

(9.5)
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The asymptotics of a summand can be shown to be

log |summand| = − ζ

Qj
k −

∑
i

Qik

Qj
log

∣∣∣∣∣QikeQj

∣∣∣∣∣+O(log k)

= −N+ −N−
Qj

(k log k − k − k log |Qj |)− ζ +
∑
iQ

i log |Qi|
Qj

k +O(log k).
(9.6)

For N+ > N−, the sum always converges while for N+ = N−, the sum converges only

when ζ ′ > 0. For the case N+ < N−, we get an asymptotic series in fractional powers of

e−t.

We now focus specifically on the case of a Wilson lineW(q) for ζ � 0 with N+ > N−.

We can expand in residues as an asymptotic series in λ = exp(− ζ′

N+−N− ). The terms

shrink until λ is on the order of k
|Qj | at which point they grow again. The contour

integral can correspondingly be decomposed into two parts: a) a sum over residues

bounded above by Im(−σ) < λ and b) an integral over a contour Lλ which passes

through the imaginary axis at σ = −iλ. We can render this integral convergent if we

can deform it into a piece of a saddle contour passing through a critical point together

with a piece that stays in a region where the Aq is quickly growing. The ability to do

this depends crucially on q. There are three cases to consider

1. W(q) is in the small window, i.e.∣∣∣∣ θ2π + q

∣∣∣∣ < 1
2min(N−, N+) (9.7)

Then we can bound from below the coefficient of |τ | by some positive constant,

say |τ | > c. Then

Aq(τ − iλ) ≥ Aq(−iλ) + c|τ | = (N+ −N−)λ+ c|τ |. (9.8)

If we simply take Lλ = R− iλ, then the contribution behaves like exp−(N+−N−)λ,

leading to

ZD2(W(q)) =

 ∑
j:Qj<0

−Rj/2−Qjλ∑
k=0

(. . . )λ−
N+−N−
|Qj |

k

+O(exp−(N+−N−)λ). (9.9)

2. W(q) is in the big window, i.e.∣∣∣∣ θ2π + q

∣∣∣∣ < 1
2max(N−, N+). (9.10)
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Away from the imaginary axis, one has

log(integrand(σ)) =


(N+ −N−)iσ(log(σ)− `+ − 1) +O(log |σ|)

(N+ −N−)iσ(log(−σ)− `− − 1) +O(log |σ|)
(9.11)

where

`± = − ζ

N+ −N−
+ i

θ + 2πq ∓ π
2 (N+ +N−)

N+ −N−
(9.12)

with Re(`±) = log λ. Then we obtain a saddle point at log(σ) = `+ for |Im(`+)| <

π/2, a saddle point at log(−σ) = `− for |Im(`−)| < π/2, and no other saddle

points. The saddle points for fixed θ correspond to the Coulomb branch vacua

and are given by solutions to the equations

(iσ)N+−N− = exp(−t′), t′ = t+
∑
i

Qi logQi mod 2πi. (9.13)

This is because the imaginary part of the effective twisted superpotential with

appropriate boundary term is proportional to Aq(σ) (see [11]).

The existence of such a critical point detects when a brane has a contribution to a

massive vacuum whose exact location is then given by 9.13. The saddle integral

then gives a contribution with the asymptotic

∣∣∣∣∫
Lsaddle

dσintegrand
∣∣∣∣ ∼ exp

(
(N+−N−) cos(N+π−(θ+2πq)

N+−N−
)λ
)
. (9.14)

3. W(q) is in neither window.

In this case, it is impossible to deform the contour so as to keep Aq(σ) positive.

Hence there is no analytic continuation so we are unable to transport W(q).

9.2 Anomalous U(1) Brane Transport

We continue to assume N+ ≥ N− so that we are transporting from the phase ζ � 0 to

the phase ζ � 0. In the phase ζ � 0, the complex

K�0(q) =W(q)⊗
⊗

j|Qj>0

(
W(−Qj)

Xj−−→W(0)
)

(9.15)
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is a resolution of a twist of the structure sheaf of the deleted set and hence has trivial

image on the Higgs branch. Thus ZD2(K�0) = 0. For N+ > N−, this brane can be

transported through the window, and hence we obtain that by analytic continuation

ZD2(K�0) in fact vanishes in all phases. In the non-anomalous case of N+ = N−,

this transport argument fails, and the empty branes in the two phases can be entirely

different.

Given a complex B1 of Wilson lines, one can bind to copies of K�0(q) for different

values of q to systematically remove charges outside of the wide window until one obtains

a brane B2 which obeys the wide window condition and has the same image on the

Higgs branch as B1. How this is achieved is exactly like the single window case discussed

in section 5.5. At the level of brane factors, this corresponds to a decomposition of the

form

fB1(σ) = fB2(σ) + P (e2πσ)fK�0(σ) (9.16)

for P a Laurent polynomial. This is effectively polynomial division, and the “remainder”

fB2(σ) is unique.

We may now transport B2 to where ζ � 0, and the image on the Higgs branch may

be determined via our descent procedure. However, it still remains to determine the

Coulomb branch contribution. We may write

fB2(σ) =
qmax∑
q=qmin

aqe
2πqσ (9.17)

where the sum is taken over q in the wide window. Then each q in the wide window but

not in the narrow window gives |aq| massive vacua to the Coulomb branch. This can

be shown by analyzing the critical points of the partition function integrand where by

linearity it suffices to analyze when the brane factor is e2πq for some q. Now consider

the complex

K�0(q) =W(q) =
⊗

j|Qj<0

(
W(−Qj)

Xj−−→W(0)
)
. (9.18)

If K�0(q) is grade-restricted, then the image on the Higgs branch is trivial in the phase

ζ � 0. Then by binding B2 to copies of K�0(q)’s, we can find a brane B3 with the same

image on the Higgs branch as B2. Once again this is analogous to the binding discussed

in section 5.5
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However, K�0(q) may give contributions to several Coulomb branch vacua, and so

the Coulomb branch contributions of our brane transport come from looking at the

“difference” between B2 and B3, necessarily constructed from copies of K�0(q) for various

q. This corresponds at the level of brane factors to a decomposition

fB2(σ) = fB3(σ) + P̃ (e2πσ)fK�0(σ) (9.19)

for P̃ a Laurent polynomial.

The specific Coulomb branch vacua to which this contributes come from looking at

the critical points of the localization integrand with brane factor −P̃ (e2πσ)fK�0(σ). To

construct complexes descending solely to a single Coulomb branch vacuum, one must

take linear combinations of e2πqσfK�0(σ) for various q so that there is only one e2πq

term for q in the wide window but not the narrow window. Then result is then the

brane factor for the desired complex.

It is illuminating to recast this in a more functorial manner. Let TWwide and TWnarrow

denote respectively the full subcategories of Db(Cd, U(1)) generated by the Wilson lines

obeying the wide and narrow window conditions. Here their respective projections

generate the derived categories for the phases when ζ � 0 and ζ � 0. Like before,

the projections from window categories exhibit equivalences of categories but are not

compatible with tensor products, an operation under which the window categories are

not even closed. Then if we denote by C the category of Coulomb branch branes, then the

RG flow functor FRG maps Db(Cd, U(1)) to 〈C, Db(Xζ)〉, the latter being the category

given as a semiorthogonal decomposition of the categories of Coulomb and Higgs branch

branes for the phase containing ζ.

Db(Cd, U(1))
∪
Twwide
∪

Twnarrow

〈C,Db(Xζ�0)〉
∪

Db(Xζ�0) Db(Xζ�0)

FRG
Fζ�0

∼=

∼=
∼=

(9.20)

That we have a semiorthogonal decomposition is a consequence of the mathematical

paper [2], but as of now we do not have a physical understanding for why this occurs or
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if there is a mechanism by which the IR image of a brane can be a non-trivial bound

state of a Higgs branch brane and a Coulomb branch brane. It would be extremely

interesting to understand this in future work.

Remark 6. The conclusions here should also apply to matrix factorizations in the

presence of a nontrivial superporential since the introduction of a superpotential does

not alter the localization formula.

9.3 Higgsing

A general description of wall crossing at the heart of MK would be rather difficult.

However, if we restrict to only crossing codimension one walls and remain far from the

center, then at all times the gauge group is Higgsed to something no larger than U(1)

times a finite factor. Such a finite factor will not affect the partition function and thus

will not alter the brane transport so the results of the previous sections will then suffice

to define transport maps. As we will argue below, the functor for crossing such a wall

can be obtained by reducing to the grade restriction rule for the case of a single U(1).

When interpreted in terms of the full charge lattice, it will become a band restriction

rule as we now impose restrictions on a certain linear combination of the charges which

depends on the particular wall being crossed.

Recall that the real FI parameters take values in g∨. Then the Coulomb branch

moduli may naturally be identified with g, and we have a pairing

g× g∨ → C. (9.21)

We stress that neither space individually possesses a natural metric. Suppose we wish to

cross a given wall. Then the wall is given as the positive linear space of k−1 charges, say

Qi2 , . . . , Qir ∈ g∨. We assume all walls we cross are codimension one which guarantees

that the charges are linearly independent.

For the Higgsing, we look at the D-term equations

∑
i

Qαi |φi|2 = ζα (9.22)
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in a regime where ζ2, . . . , ζr � 0, i.e. in a regime in which we differ by motion of ζ1

from a point on the wall far from any boundary. We allow ζ1 to evolve with the RG

flow so that we go from ζ1 � 0 to ζ1 � 0. For a wall which is parallel to the direction

of the RG flow, we cannot cross the wall in this way, but we may fix an energy scale

and move an FI parameter to cross this wall. Essentially the same argument as below

applies with now ζ1 corresponding to the FI parameter which is moving. Note that in a

Calabi-Yau model, all walls are of the latter type.

If ζ is written exclusively in terms of Qi2 , . . . , Qik , then the corresponding chirals

all get VEVs. In the case where this does not happen, then as ζ is generic within the

wall, it must be that ζ is expressed in terms of at least r total Qi’s which would then

completely Higgs the gauge group. For otherwise it would be possible to re-express the

wall as a different set of r − 1 chirals. In either case, the gauge group is Higgsed to no

larger than U(1).

For ζ on the wall (i.e. with ζ1 = 0), since we can take ζ2, . . . , ζr as large as desired,

we can ensure that in fact these VEVs are arbitrarily large. The Lagrangian contains

mass terms of the form |φi|2|Qi · σ|2 for all i so therefore Qij · σ for j = 2, . . . , k is

very heavy and effectively frozen at low energies. Note that even though the RG flow

eventually goes to a region in which the gauge group is completely Higgsed, our ability

to take ζ2, . . . , ζr large independently of the energy scale allows us to ensure that in the

wall crossing regime, σ is effectively frozen to the line

L = {σ : Qi2 · σ = · · · = Qir · σ = 0} ⊂ g. (9.23)

Now the effective (bulk) twisted superpotential restricted to L is completely deter-

mined by Qi · σ for all i and for all σ ∈ L, i.e. by how the chirals are charged under

the U(1) subgroup corresponding to L. If we include the boundary contribution from a

Wilson line brane, this term is completely determined by q · σ for q the brane charges

and for σ ∈ L. The brane contribution can then be found explicitly by noting that q

and θ only appear in the Lagrangian through the combination q + θ
2π . This leads to the

equation

W̃eff (σ1) = −t · σ1 −
∑
i

(Qi · σ1)
(

log
(
Qi · σ1
µ

)
− 1

)
+ 2πiq · σ1. (9.24)
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Note that discarding the boundary term 2πiq · σ1 and reparameterizing σ1 in terms

of a basis vector yields precisely 3.9. In this way, we are able to reduce to the U(1)

case. We caution that this approximation is only valid for crossing a single wall in

an asymptotic regime. If we wish to cross multiple walls, each wall crossing will be

in a different asymptotic regime and thus involve a different U(1) subgroup, hence

leading to a different grade restriction rule. Once reduced to the U(1) case, it is this

twisted effective superpotential which is then utilized to derived the associated window

conditions.

More explicitly, for a wall crossing parameter u, define

N± =
∑
i

(Qi · u)± (9.25)

where the sum is taken over only the positive or negative terms, depending on the

subscript of N. Assume without loss of generality that N+ > N− as the reverse case is

analogous. Then we may transport branes according to the wide window condition∣∣∣∣θ · u2π + q · u
∣∣∣∣ < 1

2N+ (9.26)

and the narrow window equation∣∣∣∣θ · u2π + q · u
∣∣∣∣ < 1

2N−. (9.27)

As before, to transport a general brane, we resolve as a complex of Wilson lines, bind to

empty branes in order to express the complex using only windows satisfying the wide

window condition, and then push down into the phase on the other side. The Wilson

lines that do not also satisfy the narrow window condition will in addition give rise to

Coulomb branch branes.
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Chapter 10

Wall-crossing for Hirzebruch-Jung Models

As an application of the general wall-crossing story from chapter 9, we studying wall-

crossing in Hirzebruch-Jung models for the case that the exceptional divisors are blown

up in order, obtaining agreement with the K-theoretic statements in [16]. For illustrative

purposes, we give two concrete examples: C2/Z5(1) and C2/Z5(2).

10.1 Through the walls

From GLSM II, we see a clear path towards obtaining a sequence of wall crossings

which go from the fully singular phase to the fully resolved phase by iterative blow-ups.

Though there are many possible orders in which one could proceed, it is simplest to

move the lines in order of increasing α. It may be helpful at this point for the reader to

read through the general procedure shown below in parallel with section 3 where we

work through an explicit example with lots of pictures. Thus for the first wall crossing,

we move the first line so that a portion of it passes through the first quadrant. The

position of this wall corresponds to when the line passes through the origin, and this

clearly corresponds to when ζ ′1 changes sign from negative to positive. Thus a normal

vector to this wall is given by (1, 0, . . . , 0).

For subsequent wall crossings, we are moving the αth line until it cuts through the

intersection point of the (α− 1)th line with the |P |2 axis. We note that the fact that

the slopes are decreasing as α increases ensures that this is the first instance for which

the αth line will cut through the admissible region. The intersection of the (α− 1)th

and αth lines for any values of ζ ′α−1 and ζ ′α are given by solving the system

pα−1|P |2 + qα−1|Q|2 = ζα−1 (10.1)
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pα|P |2 + qα|Q|2 = ζα (10.2)

which upon specializing to |Q|2 = 0 easily leads to

ζα−1pα − ζαpα−1 = 0. (10.3)

Thus we obtain (0, . . . , 0, pα,−pα−1, 0, . . . , 0) as our normal vector where the two non-

zero entries occur in the α− 1th and αth positions.

From our normal vectors, we see that the charge vector relevant to the first wall

crossing is given by

P X1 X2 . . . Xr Q

U(1) p1 −n 0 . . . 0 1
,

(using the fact that q1 = 1) and that the charge relevant to the αth wall crossing is

given by

P X1 . . . Xα−2 Xα−1 Xα Xα+1 . . . Xr Q

U(1) 0 0 . . . 0 −pαn pα−1n 0 . . . 0 −n
,

where for the latter we have used equation (4.8). If we consider a Wilson line

W(b1, . . . , br), then for the first wall crossing, we have the grade restriction rule,

|b̃1| <
1
2(p1 + 1) (10.4)

while for the αth wall-crossing for α > 1, we have

| − pαb̃α−1 + pα−1b̃α| <
1
2(pα + 1)n (10.5)

where we have defined b̃α = bα + θα
2π .

Remark 7. The charges one obtains for the α-th wall-crossing after Higgsing correspond

precisely to the local model of the α-th exceptional divisor as described in section 4.2.

Since the wall crossing in this model appears rather simple, it is tempting to try

to directly calculate the brane transport from this directly. Though this should still

be possible in principle, it is rendered more difficult by a crucial subtlety. Namely, a
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redundancy in the gauge symmetry leads to constraints on the allowed Wilson lines.

This is due to the fact that this model arises from Model I via a matrix with non-unit

determinant so it is necessary to restrict to Wilson lines which emerge from Model I.

Parameterizing these by writing them explicitly as the images of Wilson lines from

Model I is effectively the same as just converting everything back to Model I, and so we

shall pursue this latter strategy. Therefore we use n(C−1
αβ ) to convert the above into a

sequence of wall crossings for Model I. We will fix the theta angles throughout what

follows so that our windows start at zero.

Given a Wilson line W(b1, . . . , br) in Model II, the corresponding Wilson line in

Model I is given by W(c1, . . . , cr) where bα =
∑
β n(C−1)αβcβ. If we define for model I

c̃β = cβ+ θ′β
2π where θ′β is a theta angle in Model I, then we also have b̃α =

∑
β n(C−1)αβ c̃β.

For α > 1, we compute

− pαb̃α−1 + pα−1b̃α =

− pα

 ∑
β≤α−1

pα−1qβ +
∑
β≥α

pβqα−1

 c̃β + pα−1

 ∑
β≤α−1

pαqβ +
∑
β≥α

pβqα

 c̃β. (10.6)

Note that the first and third sum cancel, yielding

∑
β≥α

pβ c̃β (pα−1qα − pαqα−1) = n
∑
β≥α

pβ c̃β (10.7)

where we have used equation (4.8). For α = 1, we have a simpler computation

b̃1 =
∑
β

pβq1c̃β =
∑
β

pβ c̃β (10.8)

where we have used that q1 = 1. We therefore arrive at the following grade restriction

rule for Model I. ∣∣∣∣∣∣
r∑

β=α
pβ c̃β

∣∣∣∣∣∣ < pα + 1 for α = 1, . . . , r (10.9)

Note that α starts at 1 instead of 2 as we have combined the results for α > 1 with the

result for α = 1.

For ease of computation, we restrict to the case where the theta angles satisfy∑r
α=1 pαθ

′
α = −π(pα + 1) + 2πε for small ε > 0. Then the j-th band simply requires

0 ≤
r∑

α=j
pαcα ≤ pj . (10.10)
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It is easily observed that the Wilson lines

W(0, . . . 0),W(1, 0, . . . , 0),W(0, 1, 0, . . . , 0), . . . ,W(0, . . . , 0, 1) (10.11)

fit through all of the walls.

Claim 1. Any Wilson line brane which fits through all of the walls is necessarily one

of the above.

Proof. We proceed by induction. First it is obvious from taking α = r in the window

condition that cr ∈ {0, 1}. Now suppose that out of the charges cα+1, . . . , cr, at most

one may be equal to 1, and the rest must be 0. Then
∑r
β=α+1 pβcβ may have at most

one non-zero term which (if it exists) is necessarily equal to pβ for some β > α. Since

pα > pβ for any β > α, if cα < 0, then we must have

r∑
β=α

pβcβ = pαcα +

 r∑
β=α+1

pβcβ

 < 0. (10.12)

This contradicts our window condition, thereby establishing that cα ≥ 0. Again using

the window condition, it is clear that cα must actually be zero unless cβ = 0 for all β > α

in which case cα may be either 0 or 1. By induction, we see that the above Wilson line

branes are the only branes which simultaneously satisfy all the window conditions.

We now turn to analyzing the IR limits of these Wilson lines in the fully singular

phase. To determine the corresponding representation of Zn, it is first necessary to

determine how Zn embeds in U(1)r. Using equation 4.9, it is easily observed that

(ωp1 , . . . , ωpr) stabilizes the Xi’s and therefore gives the desired embedding. It follows

then that W(0, . . . , 0, 1, 0, . . . , 0) with the 1 in the αth position maps to ρpα in the IR,

and obviously W(0, . . . , 0) maps to the trivial representation. Thus we see that the

branes which can be passed through all the walls to the large volume phase are precisely

the fractional branes corresponding to (i) the trivial representation and (ii) the “special”

representations (see [13], [16], and [18]).

The derived category for the fully singular phase is generated by ρ0, ρ1, . . . , ρn−1 for

ρ a “fundamental representation” of Zn. We thus see how each fractional brane may be

lifted uniquely to a Wilson line brane which passes through all the windows and into the
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fully resolved phase. In particular, the trivial representation goes to the structure sheaf,

and the special representations go to the Higgs branch and become coherent sheaves

wrapping exceptional divisors as described in section 7.3, precisely in agreement with

[16]. The remaining branes split between the Higgs and Coulomb branches. While we

don’t have a closed form expression for this, it can be computed for specific values of n

and p using the procedure discussed in section 9.2.

10.2 C2/Z5(1)

We first consider a one parameter example in which there is an interesting splitting

between the Higgs and Coulomb branches.

P X Q

U(1) 1 −5 1

If we consider a Wilson line W(k) and take the theta angle to be slightly negative,

then we obtain the narrow window

0 ≤ k ≤ 1 (10.13)

and the wide window

− 2 ≤ k ≤ 2. (10.14)

Clearly the branes W(0) and W(1) map to line bundles on the resolved geometry which

when restricted to the exceptional divisor look like O and O(1) respectively. It remains

to determine the splittings ofW(q) for q ∈ {−2,−1, 2}. For convenience, when analyzing

brane factors, we set z = e2πσ.

In the case of W(2), one can see that it goes to a single Coulomb branch vacuum

whose location is given by 9.13. Meanwhile, the image on the Higgs branch is O(2)

which can be written in terms of the generating set O(0),O(1) by binding to the brane

O(0) → O(1)⊕2 → O(2) to obtain O(0) → O(1)⊕2. Note that the analogous GLSM

brane Kζ�0(2) : W(0) → W(1)⊕2 → W(2) has a nontrivial image on the Coulomb

branch. This is reflected by the following calculation involving brane factors:

fW(2)(z) = z2 = (z2 − 2z + 1) + (2z − 1) = fKζ�0(2)(z) + (−1 + 2z) (10.15)
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where 2z − 1 is the brane factor of the pure Higgs part while fKζ�0(2)(z) is the brane

factor of the pure Coulomb part.

The case ofW(−1) follows a similar analysis. First one can see that it goes to a single

Coulomb branch vacuum whose location is given by 9.13. Meanwhile, the image on the

Higgs branch is O(2) which can be written in terms of the generating set O(0),O(1) by

binding to the brane O(−1)→ O(0)⊕2 → O(1) to obtain O(0)⊕2 → O(1). Note that the

analogous GLSM brane Kζ�0(1) :W(−1)→W(0)⊕2 →W(1) has a nontrivial image on

the Coulomb branch as is reflected by the following calculation involving brane factors:

fW(−1)(z) = z−1 = (z−1 − 2 + z) + (2− z) = fKζ�0(1)(z) + (2− z) (10.16)

where 2 − z is the brane factor of the pure Higgs part while fKζ�0(1)(z) is the brane

factor of the pure Coulomb part.

The case of W(−2) is more interesting. Analogous to as before, one first notes

that it goes to a single Coulomb branch vacuum whose location is given by 9.13.

Also the Higgs branch image is O(−2), but this time to express it in terms of the

generating set O(0),O(1), we must first bind to O(−2)→ O(−1)⊕2 → O(0) to obtain

O(−1)⊕2 → O(0) and then bind to two copies of O(−1)→ O(0)⊕2 → O(1) to obtain

O(0)⊕4 → O(0)⊕O(1)⊕2. Note that the analogous GLSM branes Kζ�0(0) :W(−2)→

W(−1)⊕2 → W(0) and Kζ�0(1) : W(−1) → W(0)⊕2 → W(1) have nontrivial images

on the Coulomb branch as is demonstrated by the following calculation involving brane

factors:

fW(−2)(z) = z−2 = (z−2 − 2z−1 + 1) + (2z−1 − 1) =

(z−2 − 2z−1 + 1) + 2(z−1 − 2 + z) + (3− 2z) = fKζ�0(0)(z) + 2fKζ�0(1)(z) + (3− 2z)
(10.17)

with 3 − 2z being the pure Higgs brane factor while fKζ�0(0)(z) + 2fKζ�0(1)(z) is the

brane factor of the pure Coulomb part. Here while Kζ�0(1) flows to a single Coulomb

branch, this is not the case for Kζ�0(0). However, in the expression

fKζ�0(0)(z) + 2fKζ�0(1)(z) = z−2 + z − 3, (10.18)

the z−1 dependency cancels, reflecting that one can bind two copies of Kζ�0(1) to

Kζ�0(0) to construct a brane flowing only to a single Coulomb branch vacuum.
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In summary, we have thatW(0) andW(1) flow respectively to only the Higgs branch

and together generate the derived category while W(−2), W(−1), and W(2) go to both

a Coulomb branch vacuum and the corresponding Higgs branch line bundle. However,

the branes Kζ�0(2), Kζ�0(1), and Kζ�0(1)⊕2 → Kζ�0(0) flow to the three distinct

Coulomb branch vacua and have no Higgs branch image.

10.3 C2/Z5(2)

We next turn to the simplest example which is neither Calabi-Yau nor a single parameter

model. Specializing our two models to this example, we obtain the following.

Model I:

P X1 X2 Q

U(1)1 1 −3 1 0

U(1)2 0 1 −2 1

Model II:

P X1 X2 Q

U(1)a 2 −5 0 1

U(1)b 1 0 −5 3

Since these models have two parameters, it is straightforward to directly find the wall

crossings by inspecting the four “cones” in the plane (in either model) as shown in

Figures 10.1 and 10.2.

However, it will be instructive to still follow our general procedure introduced in

section 1. Since the phase boundaries in a two parameter model are (asymptotically)

given by the charge vectors for the different chirals (instead of more generally a cone

spanned by such vectors), a useful consistency check (for both models) comes from

noting that the normal vectors we obtain below from our general procedure are each

normal to a specific vector of charges as expected. As there are two FI parameters, we

have two lines in the (|P |2, |Q|2) plane:

2|P |2 + |Q|2 = ζ ′1 (10.19)
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(3, 0)

(0, 3)

(−3, 1)

(1,−2)

Phase IPhase IV

Phase III Phase II

Figure 10.1: Model I for C2/Z5(2)

|P |2 + 3|Q|2 = ζ ′2. (10.20)

We begin in the fully resolved phase (Phase III), corresponding to ζ ′1, ζ ′2 � 0, as

shown in Figure 10.3. We then start increasing ζ ′1. We see that the first line enters the

first quadrant when ζ ′1 becomes positive as shown in Figure 10.4, yielding the normal

vector (0, 1). We are now in a partially resolved phase (Phase II) corresponding to the

set-up shown in Figure 10.5. If we now fix a positive value of ζ ′2 and increase ζ ′1 until

the admissible region has boundary components on both lines (corresponding to the

fully resolved phase), we see that we must solve

2|P |2 = ζ ′1 (10.21)

|P |2 = ζ ′2 (10.22)

where we use the fact that lines 1 and 2 have slopes 2 and 1
3 respectively to conclude

that this occurs when both lines intersection at a point on the positive |P |2 axis as

shown in Figure 10.6. We thus see that

− ζ ′1 + 2ζ ′2 = 0. (10.23)
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(−5, 0)

(0,−5)

(2, 1)

(1, 3)

Phase IPhase IV

Phase III Phase II

Figure 10.2: Model II for C2/Z5(2)

and therefore obtain the normal vector (−1, 2). The fully resolved phase (Phase I) is

shown in Figure 10.7.

The respective U(1)’s relevant for the wall-crossings are given by

P X1 X2 Q

U(1) 2 −5 0 1

and

P X1 X2 Q

U(1) 0 −5 10 −5
,

and from this we obtain the window conditions

|b̃1| <
3
2 (10.24)

and

| − b̃1 + 2b̃2| < 5 (10.25)

where we follow the convention of section 10.1 in which a tilde means with the theta

angle correction added. We may convert this to the first model via the matrix

2 1

1 3
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Admissible Region2|P |2 + 1|Q|2 = −2 (X1)

1|P |2 + 3|Q|2 = −2 (X2)

Figure 10.3: Starting in the fully singular phase (Phase III)

which yields

|2c̃1 + c̃2| <
3
2 (10.26)

and

|c̃2| < 1. (10.27)

Taking θ′1, θ′2 to be slightly negative, we get the windows

− 1 ≤ 2c1 + c2 ≤ 1 (10.28)

and

0 ≤ c̃2 ≤ 1 (10.29)

from which we see that the only solutions are W(0, 0), W(0, 1), and W(−1, 1) which

map respectively to ρ0, ρ2, and ρ4 for ρ a “fundamental representation” of Z5. If we

retrace the calculations using the large window bounds instead of the small window

bounds (for the same theta angle values), we get

− 2 ≤ 2c1 + c2 ≤ 2 (10.30)

and

0 ≤ c̃2 ≤ 1. (10.31)
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Admissible Region

2|P |2 + 1|Q|2 = 0 (X1)

1|P |2 + 3|Q|2 = −3 (X2)

Figure 10.4: Resolving X1 (Phase III –> Phase II)

Admissible Region

2|P |2 + 1|Q|2 = 4 (X1)

1|P |2 + 3|Q|2 = −3 (X2)

Figure 10.5: Intermediate phase with X1 resolved (Phase II)

Now two additional branes obey the window conditions, namely W(1, 0) and W(−1, 0)

which split between the Higgs and Coulomb branch according to the discussion in section

9.2. Note that the theta angle choices we are making here are different from those in

section 10.1 so the resulting functor will differ by monodromy.
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Admissible Region

2|P |2 + 1|Q|2 = 4 (X1)

1|P |2 + 3|Q|2 = 2 (X2)

Figure 10.6: Resolving X2 (Phase II –> Phase I)

Admissible Region

2|P |2 + 1|Q|2 = 4 (X1)

1|P |2 + 3|Q|2 = 4 (X2)

Figure 10.7: Ending in the fully resolved phase (Phase I)
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