
ENABLING ENSEMBLE-BASED METHODS FOR
COMPUTATIONAL DRUG CAMPAIGNS AT SCALE

ON HIGH PERFORMANCE COMPUTING CLUSTERS

BY JUMANA DAKKA

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Shantenu Jha, Matteo Turilli

And approved by

New Brunswick, New Jersey

May, 2019



ABSTRACT OF THE THESIS

Enabling Ensemble-based Methods for Computational

Drug Campaigns at Scale on High Performance

Computing Clusters

by Jumana Dakka

Thesis Directors: Shantenu Jha, Matteo Turilli

Free energy calculations that use molecular dynamics (MD) simulations are emerg-

ing as an important tool for studying important problems like computational drug de-

sign. Recent evidence suggests that free energy calculations, specifically binding affinity

calculations, i.e., calculations that quantify the strength of interactions between drug

molecules and target proteins, can achieve useful predictive accuracy (≤ 1 kcal/mol)

to impact clinical decision making in computational drug design. However, free en-

ergy calculations must provide results rapidly and without loss of accuracy. The dual

challenge of scaling thousands of concurrent simulations and adaptive selection of fa-

vorable simulations based upon feedback from statistical errors and uncertainty need

to be tacked. To address these challenges requires advances in algorithms, efficient uti-

lization of supercomputing resources, and software tools that facilitate the scalable and

automated computation of varied free energy calculations. This thesis evaluates the

requirements of large-scale and adaptive ensemble-based approaches in order to build

a software tool designed to enable applications like computational drug campaigns.

In this thesis, we introduce a software tool called the High-Throughput Binding

Affinity Calculator (HTBAC), the primary contributions of which are: (i) its ability

ii



to apply recent advances in workflow system building blocks to binding affinity calcu-

lations, (ii) the ability to execute simulations independent of the simulation software

package or supercomputing resources, (iii) enable features of scalability and adaptivity

in order to improve resource utilization and scientific results.
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Chapter 1

Introduction

1.1 Motivation

Drug discovery and design is immensely expensive with one study putting the current

cost of each new therapeutic molecule that reaches the clinic at US$1.8 billion [1]. A

diversity of computational approaches, specifically binding affinity calculations which

rely on physics-based molecular dynamics (MD) simulations to quantify the strength

of interaction between drugs and proteins have been developed [2]. Blind tests show

that binding affinity calculations have considerable predictive potential [3, 4]. Recent

evidence suggests that binding affinity calculations can achieve useful predictive accu-

racy of below 1 kcal mol−1 [5] and has led to increased interest from the pharmaceutical

industry to design computational drug campaigns using binding affinity calculations.

The improvements in predictive accuracy can be attributed to many advances in

methodologies and hardware. Specifically, ensemble-based binding affinity calculations,

which favor many shorter MD simulation trajectories over few longer MD simulations,

have been shown to increase sampling efficiency while also reducing time to clinical

insight [6]. For binding affinity calculations to gain traction, they must have well-

defined uncertainty and consistently produce statistically meaningful results.

Computational drug campaigns rely on rapid screening of millions of drug can-

didates, which start with an initial screening of candidates to filter out the ineffec-

tive binders before using more sensitive methods to refine the structure of promising

candidates. Two prominent ensemble-based binding affinity protocols, ESMACS and

TIES [7], have shown the ability to consistently filter and refine the drug design process.

The ESMACS (enhanced sampling of molecular dynamics with approximation of con-

tinuum solvent) protocol provides an “approximate” endpoint method used to screen
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out poor candidates. The TIES protocol (thermodynamic integration with enhanced

sampling) uses the more rigorous “alchemical” thermodynamic integration approach

[8, 9]. These protocols have produced statistically meaningful results for industrial

computational drug campaign [10].

In recent years, considerable effort has been put into improving the efficiency of

binding affinity calculations [11, 12, 13]. As computational drug campaign can cover

millions of candidates and require hundreds of millions of core-hours for screening, it

is important that binding affinity calculations be effective and aim to optimize the

accuracy and precision of results. This is challenging as, by definition, drug discovery

involves screening drug candidates that are highly varied and potentially unique in their

chemical properties. The variability in the drug candidate chemistry results in diverse

sampling behavior that contributes to the statistical uncertainty of binding affinity

predictions. Further, a particular difficulty comes from the fact that not all changes

induced in protein shape or behavior are local to the drug binding site and, in some

cases, MD simulations will need to adjust to account for complex interactions between

drugs and their targets within individual studies.

Moreover, computational drug campaigns are becoming increasingly important in

making individualized therapeutic decisions and to address the concern of drug resis-

tance. Given the rapidly decreasing cost of next-generation DNA sequencing, many

cancer centers are sequencing patient tumors to identify the genetic alterations driving

individual cancers. The ultimate goal is to make individualized therapeutic decisions

based upon these data—an approach termed precision cancer therapy. While several

common (recurrent) mutations have been cataloged for their ability to induce resis-

tance, the vast majority of clinically observed mutations are rare [14, 15]. Essentially,

this ensures that it will be impossible to make therapeutic decisions about the majority

of individual patient tumors by using catalog-building alone.

Moreover, resistance to therapy is becoming increasingly important in drug dis-

covery. In recent years, chemotherapy based on targeted kinase inhibitors (TKIs) has

played an prominent role in the treatment of cancer. Unfortunately, the development

of resistance to these drugs limits the amount of time that patients can derive benefits
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from their treatment. Resistance to therapeutics is responsible for more than 90% of

deaths in patients with metastatic cancer [16]. While drug resistance can emerge via

multiple mechanisms, small changes to the chemical composition of the therapeutic

target (known as mutations) control treatment sensitivity and drive drug resistance in

many patients (see Fig. 1.1).

TKIs have been developed to selectively inhibit kinases involved in the signaling

pathways that control growth and proliferation, which often become dysregulated in

cancers. This targeting of specific cancers reduces the risk of damage to healthy cells

and increases treatment success. Currently, 35 FDA-approved small molecule TKIs are

in clinical use, and they represent a significant fraction of the $37 billion U.S. market

for oncology drugs [17, 18]. Imatinib, the first of these of drugs, is partially credited

for doubling survivorship rates in certain cancers [18, 19].

Figure 1.1: Cartoon representation of the Epidermal Growth Factor Receptor (EGFR)

kinase bound to the inhibitor AEE788 shown in chemical representation (based on

PDB:2J6M). Two residues implicated in modulating drug efficacy are highlights; in

pink T790 and in orange L858. Mutations to either of these residues significantly alter

the sensitivity to TKIs.

There are two major strategies for countering the threat to treatment efficacy posed

by resistance: tailoring the drug regimen received by a patient according to the muta-

tions present in their particular cancer to address the need for precision cancer therapy,
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and developing more advanced therapies that retain potency for known resistance mu-

tations. In both cases, future developments require insight into the molecular changes

produced by mutations, as well as ways to predict their impact on drug binding on

a timescale much shorter than is typically experimentally feasible. This represents a

grand challenge for computational drug campaigns.

Fortunately, improvements in computational power and algorithm design are en-

abling the use of simulations to reliably quantify differences in binding strength. This

provides the opportunity to use advances in simulations to supplement existing in-

ductive decision support systems with deductive predictive modeling and drug rank-

ing [20, 21].

Computational drug campaigns using ensemble-based approaches rely on rapid screen-

ing of millions of drug compounds that require running a large number of simulations

in parallel. This effort requires a significant amount of computational resources, be-

yond standard small-scale computing facilities and instead using scalable platforms like

high-performance computing (HPC) facilities. Applications like computational drug

campaigns can exploit the availability of HPCs to speed up expensive calculations us-

ing free academic resources.

In addition, for ensemble-based approaches to make the necessary impact on com-

putational drug campaigns, two main computational challenges need to be tackled.

First, is the challenge of scaling a large number of parallel simulations and second is

enabling adaptive selection of simulations using feedback from statistical errors and

uncertainty. The second challenge arises on the basis of designing successful drug cam-

paigns that permit the rapid time-to-solution to make clinical impact. As indicated

earlier, drug candidates vary by chemical properties, which poses difficulty in identify-

ing when small chemical changes result in large binding strength changes for individual

drug candidates. In general, there is no way to know exactly which setup of simula-

tions a particular drug candidate requires before runtime. Traditionally, computational

drug campaigns use approximations of simulation parameters in order to guarantee ac-

ceptable scientific results for a general set of drug candidates, by executing simulations

for a predetermined and invariable duration [22, 23]. This approach has at least two
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shortcomings: by failing to account for simulation parameters of individual candidates,

it potentially wastes valuable computational resources and fails to account for the dif-

ferent values of the simulations results. For example, some drug candidates can reach

their optimal solution faster than others and can therefore release their computational

resources to allow new simulations to begin executing.

However, this new approach requires monitoring the progress of simulations and

enacting on decisions about continued execution on the basis of scientific results, as

opposed to running all simulations for a predetermined and invariable duration. The

benefit of enabling such feature of enacting upon runtime decision allows computational

drug campaigns to utilize resources more efficiently by reallocating resources during

runtime to execute only those simulations that yield the fastest time-to-solution or

produce the most accurate scientific results for a fixed computational budget. These

challenges indicate that computational drug campaigns not only require software tools

that enable scalability and management of highly concurrent simulations on HPC, but

also require the ability to make runtime decisions based on scientific results generated

during execution.

1.2 Objective

The objective of this thesis is to develop a software tool for supporting scalable, adaptive

and concurrent ensemble-based approaches tailored to computational drug campaigns.

In this thesis we focus on a particular application in computational drug campaigns

using binding affinity calculations, yet the framework can apply to other application

that entail ensemble-based approaches. The design of the software tool is based on a set

of requirements and we evaluate the design using a set of quantitative and qualitative

metrics.

To show a successful design of the software, it is necessary to understand the com-

ponents of the application that motivate the need for such design. It is necessary to

understand the limitations and landscape of pre-existing software tools as well as eval-

uate the user requirements. Lastly, it is necessary to understand how computational
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resources and similar applications will evolve in the future and how this evolution will

impact the design of the framework.

We implement our design using a software tool called HTBAC. We support our

design decisions using scientific validation of a case-study in binding affinity calculations

to show that the software tool meets identified requirements.

1.3 Overview

The motivation and objective for this thesis is given in Chapter 1. We discuss the

impact and key components of computational drug campaigns using binding affinity

calculations. We discuss the current landscape of software systems that are used to

support computational drug campaigns, and highlight the software barriers that limit

scientific progress.

In Chapter 2, we provide background information necessary to appreciate this the-

sis. First we introduce and motivate ensemble-based approaches for calculating free

energy, specifically binding affinity calculations using MD simulations. We also discuss

the specific composition of the application that motivates the design of the framework

and experiments that evaluate the requirements of the software. Next, we provide an

overview of the existing approaches to execute ensemble-based binding affinity calcula-

tions, and highlight the computational challenges associated with existing approaches.

We also include a section discussing the motivation for adaptivity given requirements

of the aforementioned application and discuss the computational limitations of adap-

tive execution. We include a background section with a discussion of the building

block approach in workflow systems, focusing on RADICAL-Cybertools (RCT) that

can provide a solution to the aforementioned challenges. Next, we introduce two spe-

cific binding affinity protocols that are used in the experiments, namely ESMACS and

TIES. Lastly, we include a section provided by our use-case collaborators at University

College London (UCL) that describes and validates a set of well-known commercial

physical systems used across many computational drug campaigns. These physical sys-

tem describe the physical and chemical properties of the simulations that are used to
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conduct the experiments in this thesis.

Chapter 3 describes the design, architecture and implementation of HTBAC. In

this chapter we also discuss the implementation of RADICAL-Cybertools–a set of mid-

dleware tools that address the computational challenges of scalability and adaptive

execution—and describe how they are used by HTBAC to manage the scalable and

adaptive execution of binding affinity calculations. We conclude this chapter with an

implementation of adaptive and non-adaptive versions of TIES using HTBAC to show

the encoding of different applications using HTBAC.

In chapter 4 we present and discuss experiments performed to optimize the per-

formance of HTBAC. We evaluate the weak and strong scaling properties using the

ESMACS and TIES protocols, with the physical systems provided by UCL. We also

provide experiments conducted by UCL that validate the adaptive requirements of HT-

BAC, using the TIES protocol.

In Chapter 5, we outline they key conclusions of this thesis with a discussion of the

impact of HTBAC. We discuss how well HTBAC satisfies the set of requirements we

have identified in chapters 3 and how well we achieved the objectives of this dissertation.

Finally we highlight the near-term possible directions for the development of HTBAC.
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Chapter 2

Background

In this section we motivate ensemble-based binding affinity calculations, and the com-

putational challenges associated with executing ensemble-based binding affinity calcu-

lations in the context of computational drug campaigns. Next, we discuss the landscape

of existing software solutions that enable execution of ensemble-based simulations and

their limitations. Next, we discuss the building blocks approach to workflow tools, fo-

cusing on RADICAL-CyberTools (RCT), that address the aforementioned challenges.

Next, we provide the background and composition of two widely-known binding affinity

protocols that are be used to perform the experiments using HTBAC. Lastly, we include

a brief overview describing the physical systems used in the experiments.

2.0.1 Ensemble-based Binding Affinity Calculations

Binding affinity calculations rely on free energy calculations using MD simulations to

quantify the interactions between drug candidates and target proteins. Free energy cal-

culations using MD simulations occur in a wide range of research including protein fold-

ing and assessing small molecule binding. Free energy calculations require three main

components: (1) suitable Hamiltonian model; (2) sampling protocol; and (3) estimator

of free energy. Several approaches to computing binding affinity exist, amongst which

relative binding affinity (or binding free energy) calculations are generating accurate

predictions, delivering considerable promise for computational drug campaigns [24].

Specifically, ensemble-based MD simulations have been shown to reduce the sam-

pling time required to deliver the precision necessary to meet the requirements of com-

putational drug campaigns. In fact, the lack of reproducibility of single simulation

approaches has been show in both HIV-1 protease and MHC systems, with calculations
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for the same protein-ligand combination, identical initial structure and force field, which

produce binding affinities varying by up to 12 kcal mol−1 for small ligands [25, 26, 27].

Indeed, these works have revealed how completely unreliable single simulation based

approaches are.

Previous work using ensemble-based simulation approaches has also reliably pro-

duced results in agreement with published experimental findings [26, 28, 27, 7, 10, 29],

and correctly predicted the results of experimental studies performed by different aca-

demic groups [30]. While the accuracy of force fields could be a source of error, the

very large fluctuations in calculations account for the lions share of the variance (hence

also uncertainty) of the results.

Several ensemble-based approaches are widely used to compute binding free energies,

studying different problem spaces. For example, a popular approach is to use Markov

state models to learn a simplified representation of the explored phase space and to

choose which regions should be further sampled [31]. Replica exchange with solute

tempering uses the Metropolis-Hastings criteria to make periodic decisions about what

regions of the phase space to sample [32, 33, 34]. In expanded ensemble MD simula-

tions, thermodynamic states are explored via a biased random walk in state space [35].

Approaches that learn by exchanging information have been found to improve sampling

results and decorrelate as fast or faster than standard MD simulations.

Using these approaches to compute binding free energy calculations, sampling is

performed at discrete regions along the transformation between the two compounds.

The choice of where exactly this sampling occurs is a key determinant of the uncertainty

in and accuracy of the calculations [36, 37]. Increasing MD simulations with many

ensembles in regions of most rapid change reduces errors on the predicated binding

affinity.

2.0.2 Computational Challenges

Using ensemble-based approaches to compute binding free energy or simulations in

general involves a hierarchy of computational processes. At the lowest level is the spe-

cific simulation using an simulation engine. In the case of MD simulations, there are
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well-known MD engines such as NAMD, Gromacs or AMBER. An ensemble-based al-

gorithm (or equivalently protocol) is comprised of multiple such MD simulations that

are collectively used to compute a scientific measurement In the case of binding affinity

calculations, a protocol is used to execute MD simulations that compute the the binding

free energy of a single drug candidate. Given that ensemble-based simulations require

highly parallel execution, to reduce the simulation time of the simulation, which may

require millions of time-steps, domain scientists often take advantage of the capabilities

of high performance computers.

There are multiple protocols that can be used, each comes with its specific trade-offs.

For example, TIES and ESMACS are two protocols to compute binding affinities that

differ in their accuracy but also their computational cost. The computational instance

implementing a protocol with specific parameter values, number of simulations and

other computational aspects of that protocol, constitutes a workflow. A workflow

may be fully specified a priori, or it may adapt one or more of its properties, say

parameters, as a consequence of intermediate results. Typically, there is a one-to-many

relationship between protocols and workflows and different workflows can be used to

compute a given binding free energy calculation for a given drug candidate.

When multiple drug candidates need to be evaluated with certain constraints and

a defined objective, the entire computational activity (i.e., computing binding affinities

for multiple drug candidates) is referred to as a computational campaign. The

objective of the computational campaign is to maximize the number of drug candidates

for which the binding affinity of each individual candidate is determined to within a

(given) acceptable level of error. The campaign is constrained by the computational

resources available, measured in thousands of core-hours.

Until recently, simulations have generally been limited to at most tens of drug-target

combinations. As computational campaigns become larger and more ambitious the in-

efficiency, and associated cost, of fire-and-forget approaches based on standardized and

approximated sampling (e.g. simulations of fixed length) are multiplied. Moreover,

strict bounds on time-to-solution exist for clinical insight. This requires both scale and

efficient utilization of computational resources. To meet this objective, each workflow
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computing the binding affinity of a drug candidate is adaptively executed. Adaptive

approaches are capable of reducing the computational effort and allowing informed

trade-offs between factors such as simulation error tolerance, time-to-solution and com-

putational cost. Executing scalable and adaptive simulations on production-grade HPC

resources using ensemble-based methods presents several challenges [22, 23].

The scientific goals require advanced computational capabilities, which pose the

following challenges: (1) scaling the adaptive execution of workflows comprised of mul-

tiple heterogeneous protocols; (2) developing simple and usable software systems that

support adaptive workflows at scale, invariant to the HPC resource or the simulation

engine; and (3) implementing different types of adaptivity.

Currently, HPC software ecosystem mostly enable strong and weak scaling of ap-

plications composed by a single simulation that requires large amount of parallelism.

This ecosystem has instead limited support for the concurrent execution of workflows,

especially when composed of multiple heterogeneous simulations. Particularly limiting

are the long queue waiting time and the limited amount of concurrency and flexibil-

ity offered by machine and architecture-specific tools that enable bulk submission of

simulations.

Multiple workflow systems have emerged in response to this and other problems,

each with its own strengths and unique capability but also with specific problems and

challenges. For example, gSOAP [38] enables web services for HPC applications while

Ninf-G [39] and OmniRPC [40] support distributed programming via a client/server

architecture. These solutions provide methods to launch applications on remote ma-

chines but leave the details of scheduling, resource and data management to the user.

On the other hand, domain-specific workflows provide a customized interface to the do-

main scientist, but require users to manage resource selection and setup the execution

environments on the HPC system. Despite the many successes of workflow systems,

there is a perceived high barrier-to-entry, integration overhead and limited flexibility.

Moreover, adaptive capabilities can be beneficial to domain science applications but

supporting them comes with three main challenges. The first challenges lies in the

expressibility of adaptive applications. Composition of adaptive applications requires
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Application Programming Interfaces (APIs) that enable the expression of the initial

state of the application and specification of algorithms that capture how the application

adapts to intermediate data. The former translates to a description of the application

Task Graph (TG) while the latter specifies adaptive methods that adapt this TG.

The second challenge is in determining when the adaptation is instantiated. The

adaptation is described at the end of the execution of a task wherein a new TG is gen-

erated. Different strategies can be employed in the instantiation of the adaptation [41].

The third challenge lies in implementation of the adaptation of the application dur-

ing runtime. We divide this challenge into three parts: (i) propagation of adapted TG

to all components; (ii) consistency of the state of the TG among different components;

and (iii) minimal overhead of performing adaptive operations compared to the execution

duration of the tasks.

Besides the limitations in existing workflow tools, these challenges also exist within

the MD simulation engine packages. MD engines like NAMD provide support for ex-

ecuting highly parallel simulations with respectable performance using programming

models like message passing, but lack in providing the capability to construct spe-

cific algorithms. Given that the execution strategy is tightly integrated with the MD

simulation engine itself, domain scientists cannot easily implement any specialized func-

tionality within the MD simulation engine.

To address these novel applications and scenarios, flexible and efficient ensemble-

based software tools are required that are invariant to the simulation engine software or

the computational resource. For computational drug campaign application, these tools

must provide an interface to encode heterogeneous ensemble-based protocols, enable

adaptive execution on the basis of scientific results obtained during runtime, enable

scalable execution of heterogeneous ensemble-based protocols that is invariant to the

type of protocol, simulation engine or the supercomputing resources.

In the next Section, we discuss the design and implementation of the RADICAL-

Cybertools, a set of software building blocks that can be easily composed to design,

implement and execute domain specific applications like computational drug campaigns.
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2.0.3 RADICAL-CyberTools

The RADICAL-Cybertools (RCT) are a set of middleware building blocks that address

the challenges in developing and executing workflows on HPC platforms. HTBAC

uses two RCT components, mainly the Ensemble Toolkit (EnTK) and RADICAL-Pilot

(RP). EnTK provides the ability to create and execute ensemble-based workflows with

complex coordination and communication but without the need for explicit resource

management. EnTK uses RP as a runtime system which provides resource management

and task execution capabilities.

RCT eschew the concept of a monolithic workflow systems and uses building blocks.

RCT provide scalable implementations of building blocks in Python that are used to

support dozens of scientific applications on HPC and distributed systems [42, 43, 44, 45,

46]. In this thesis we show an understanding of how these components have been used to

support the flexible and scalable execution of binding affinity calculations. In Chapter

4 we discuss how RCT play an important role in providing the middleware support to

build software tools like HTBAC that can support computational drug campaigns.

2.0.4 Protocols for Computing Binding Affinity Calculations: ES-

MACS and TIES

In this subsection we provide details about two ensemble-based binding affinity pro-

tocols, ESMACS and TIES [10, 7] that are used throughout this work. ESMACS

implements absolute free energy methods while TIES implements relative free energy

methods. Absolute free energy methods calculate the binding affinity of a single drug

molecule to a protein, while relative methods calculate the difference in binding affinity

between two (usually similar in structure) drug molecules. Both protocols are designed

to use an ensemble MD simulation approach to enhance the reproducibility and accuracy

of standard free energy calculation techniques (MMPBSA [47] in the case of ESMACS

and thermodynamic integration [48, 9] in TIES). The use of ensemble averaging allows

tight control of error bounds in the resulting free energy estimates.

ESMACS and TIES consists of three main steps: minimization, equilibration and
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production MD (in its current implementation all MD steps are conducted in the MD

engine, NAMD [8]). In practice, the equilibration phase is broken into multiple steps to

ensure that the size of the simulation box does not alter too much over the simulation.

During these steps, positional constraints are gradually released from the structure and

the physical system is heated to a physiologically realistic temperature.

Whilst both protocols share a common sequence of steps, the make-up of the en-

semble is different. In ESMACS, an ensemble consists of a set of 25 replicas, i.e.,

identical simulations differing only in the initial velocities assigned to each atom. In

TIES, the ensemble contains a set of λ windows, each spawning a set of replicas. As

a transformation parameter λ increases from 0 to 1, the system description transforms

from containing an initial drug to a target compound via a series of hybrid states.

Sampling along λ is then required to compute the difference in binding free energy. In

previous studies, TIES has been deployed using 65 replicas, evenly distributed among

13 λ windows. Following the completion of the simulation steps, both protocols require

the execution of free energy analysis steps. The detailed composition of ESMACS and

TIES protocols is shown in Fig. 2.1.

2.0.5 The Value of Adaptivity: A Case-Study

In this section, we motivate the need for adaptivity in computational drug campaigns.

Our users of HTBAC presented this particular need given the hindrance on performance

and progression of scientific results.

The main driver for adaptivity is that computational campaigns will typically involve

compounds with a wide range of chemical properties which can impact the time-to-

solution and the type of sampling required to gain accurate results. There may be

cases where it is important to increase the sampling of phase space, possibly through

expanding the ensemble. In general, there is no way to know exactly which calculation

setup a particular system requires before runtime.

Another driver of adaptivity is that, on occasion, alchemical methods may converge

very slowly to reach an acceptable error tolerance. This means that the most effective

way to gain accurate and precise free energy results on industrially or clinically relevant
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Figure 2.1: TIES and ESMACS protocols consist of simulations steps followed by analy-

sis step(s). ESMACS contains 25 replicas per simulation step; TIES contains 5 replicas

per λ window. We model TIES with 13 λ windows, spawning 65 replicas in each

simulation step. All replicas simulate for 6 nanoseconds (ns).
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timescales is to adapt either the workflow corresponding to a specific protocol or adapt

different workflows in relation to each other. The latter is referred to as inter-protocol

adaptivity; the former as intra-protocol wherein, for example, the parameter values

associated with a specific protocol might change. With thousands of workflows (corre-

sponding to a protocol instances) to adapt in different ways, this has the potential to

allow for significant optimization.

In TIES, the change in free energy associated with the transformation is calculated

using an adaptive quadrature function which numerically integrates the values of the

∂U/∂λ across the full set of simulated λ windows. Obtaining accurate and precise results

from TIES using adaptive quadratures requires that the λ windows correctly capture

the changes of ∂U/∂λ over the transformation. This behavior is highly sensitive to

the chemical details of the compounds being studied and varies considerably among

candidates. Typically, λ windows are evenly spaced between 0 and 1 with the spacing

between them set before execution at a distance determined by the simulator to be
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sufficient for a wide range of systems.

However, the number or the location of the λ windows that will most impact the cal-

culation are not known a priori, and varies across candidates. As each window requires

multiple simulations, sampling with a high frequency is expensive. Approximations

using evenly spaced λ windows reach an acceptable accuracy threshold but adaptive

placement of λ windows is likely to better capture the shape of the ∂U/∂λ curve, leading

to more accurate and precise results for a comparable computational cost.

In this work, we focus on enabling intra-protocol adaptivity which relies on interme-

diate runtime results within a protocol instance to define the following set of simulations.

Instead of approximating the placement of all the λ windows prior to execution, we run

TIES with less λ windows and shorter bursts of simulations, analyzing intermediate

runtime results (i.e., trajectories) to seed new and ideally placed λ windows.

2.0.6 Physical System Description

This section describes the physical systems that are used in the experiments. These

systems are based on real-world examples of common drug candidates provided by our

users at UCL and developed in collaboration with GlaxoSmithKline. Scientific and

computational improvements require validation across a number of protein ligand com-

plexes. We selected 4 proteins and 8 ligands or ligand pairs to run adaptive free energy

calculations. The proteins are the Protein tyrosine phosphatase 1B (PTP1B), the In-

duced myeloid leukemia cell differentiation protein (MC1), tyrosine kinase 2 (TYK2)

and the bromodomain-containing protein 4 (BRD4). Four ligands are alchemical trans-

formations from one to another (used in TIES), four are single ligands suitable for

absolute free energy calculations (used in ESMACS). All systems were taken from pre-

viously published studies [7].

Simulations were set up using an automated tool developed by UCL called BAC [49].

This process includes parametrization of the compounds, solvation of the complexes,

electrostatic neutralization of the systems by adding counterions and generation of con-

figurations files for the simulations. The AMBER ff99SB-ILDN [50] force field was
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Figure 2.2: (L) Cartoon representation of the Bromodomain-containing protein, BRD4,

bound to an inhibitor shown in chemical representation (based on PDB:4BJX). (R)

Ligand in cartoon representation with the tetrahydroquinoline scaffold highlighted in

magenta. The regions which are modified between ligands investigated are labeled 1 to

4.

used for the proteins, and TIP3P was used for water molecules. Compound parame-

ters were produced using the general AMBER force field (GAFF) [51] with Gaussian

03 [52] to optimize compound geometries and to determine electrostatic potentials at

the HartreeFock level (with 6-31G** basis functions). The restrained electrostatic po-

tential (RESP) module in the AMBER package [53] was used to calculate the partial

atomic charges for the compounds. All systems were solvated in orthorhombic water

boxes with a minimum extension from the protein of 14 Å resulting in systems with

approximately 40,000 atoms.

Bromodomain-containing proteins (used in ESMACS) as shown in Fig. 2.2, and

in particular the four members of the BET (bromodomain and extra terminal do-

main) family, are currently a major focus of research in the pharmaceutical industry.

Small molecule inhibitors of these proteins have shown promising preclinical efficacy in

pathologies ranging from cancer to inflammation. Indeed, several compounds are pro-

gressing through early stage clinical trials and are showing exciting early results [54].

One of the most extensively studied targets in this family is the first bromodomain of
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bromodomain-containing protein 4 (BRD4-BD1) for which extensive crystallographic

and ligand binding data are available [55].
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Chapter 3

HTBAC

In this section we discuss the requirements that HTBAC satisfies, and its design and

implementation. In addition, we discuss the execution model which enables adaptive

execution of ensemble-based binding affinity protocols. We conclude with examples of

adaptive and non-adaptive ensemble-based binding affinity protocols that are described

using HTBAC.

3.1 Requirements

HTBAC is a software system for running ensemble-based binding affinity protocols

adaptively and at scale on HPC resources. Currently, HTBAC supports protocols com-

posed of an arbitrary number of analysis and simulation steps, and relies on the ensem-

ble management system and runtime system provided by the RADICAL-Cybertools

(RCT). HTBAC is designed to be extended to support more types of protocols and

alternative runtime middleware.

HTBAC satisfies three main requirements: (1) enable the scalable execution of

concurrent protocols; (2) abstract protocol specification from execution and resource

management; and, (3) enable adaptive execution of protocols.

Computational drug campaigns increasingly depend on scalable ensemble-based

binding affinity protocols. This poses at least two major computational challenges.

First, ensemble-based binding affinity protocols require execution coordination and re-

source management among ensemble members, within protocols as well as across proto-

cols. Second, the setup of execution environments and data management has to preserve

efficient resource utilization. These challenges need to be addressed by HTBAC as well

as the underlying ensemble management and runtime system.
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Adaptive execution of protocols requires the ability to change the control logic of the

ensemble execution, based on intermediate results of the ongoing computation. Thus,

HTBAC has to support resource redistribution, according to the logic of the adaptive

algorithms, enabling the optimization of computational efficiency.

Finally, usability plays an important role in the development of HTBAC. HTBAC

has to provide a flexible interface which enables users to easily scale the number of drug

candidates and quickly prototype existing and novel binding free energy protocols.

3.2 Design and Implementation

HTBAC exposes four constructs to specify free energy protocols: Protocol, Simulation,

Analysis, and Resource. Protocol enables multiple descriptions of protocol types, while

Simulation and Analysis constructs specify simulation and analysis parameters for

each protocol. Resource allows to specify the amount of resources needed to execute

the given protocols. Together, protocol instances, simulation and analysis parameters,

and resource requirements constitute an HTBAC application.

Each protocol models a unique protein ligand physical system. Protocols follow

a sequence of simulation and analysis steps, assigning ensemble members to execute

independent simulations or analysis. An ensemble member that executes a simulation

within a simulation step is referred to as a replica. Each simulation is assigned a

different initial velocity, which enables simulations to begin in different parts of the

ligand’s phase space.

Individual simulations or analyses with input, output, termination criteria and ded-

icated resources are designed as a computational task [56]. Aggregates of tasks with

dependencies that determine the order of their execution constitute a workflow. In this

way, HTBAC encodes NP instances of the Pth protocol as a workflow of computational

tasks.

Fig. 3.1 shows the components and subcomponents of HTBAC. The API enables

users to describe protocols in terms of protocol type, simulation and analysis steps,
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and compute infrastructure requirements. The Descriptor component uses two sub-

components to aggregate protocol descriptions into a single application and resource

description. Note that Descriptor can aggregate different types of protocols, with dif-

ferent computing and resource requirements.

API

Descriptor

Runner

Execution Layer

Resource

Application 
description

Resource 
description 

Component

Sub-component

CI Description

Application Description

Protocol Simulation Analysis

Middleware 
Connector

Execution 
Manager
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Figure 3.1: HTBAC architecture. Users specify protocol(s) with multiple simulation

and analysis steps. Descriptor derives a single application that Runner executes on

an external execution layer. Runtime Adaptive Evaluator enables the execution of

adaptive protocols.

The Runner component has three subcomponents: Execution Manager, Middleware

Connector and Runtime Adaptive Evaluator. The Execution Manager communicates

with the execution layer via a connector to coordinate the execution of the application.

In principle, HTBAC can use multiple connectors for diverse middleware to access

different computing infrastructures.

The Middleware Connector converts the application description of HTBAC into a

middleware-specific format. The Execution Manager can pass the given application to

the connector in full or only in parts. This enables to start the execution of an appli-

cation before its full description is available or to change those parts of the application

that still have to be executed. This will enable future capabilities like, for example, to

concurrently execute the application on diverse middleware.

The Runtime Adaptive Evaluator enables the execution of adaptive applications.

This subcomponent can evaluate partial results of an application execution via tailored
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algorithms. On the base of this evaluation, the Runtime Adaptive Evaluator can decide

to return the control to Execution Manager or modify the description of the application

that is executed. In this way, HTBAC implements adaptivity for diverse protocols,

allowing users to define arbitrary conditions and algorithms.

HTBAC is implemented in Python as a domain-specific library. All components

of HTBAC are implemented as objects that communicate via method calls. HTBAC

uses two RCT software tools as building blocks [57]: Ensemble Toolkit (EnTK) and

RADICAL-Pilot (RP).

EnTK provides HTBAC with the capabilities to execute ensemble-based applica-

tions [56]. EnTK exposes three constructs: Task, Stage and Pipeline. Tasks contain

information regarding an executable, its software environment and its data dependen-

cies. Stages are sets of tasks without mutual dependencies that can execute concur-

rently. Pipelines are lists of stages, where stages can execute only sequentially. Pipelines

can execute independently. HTBAC uses a Middleware Connector for EnTK to encode

a protocol instance as a single pipeline that contains stages of individual simulations

and analyses tasks.

EnTK is designed to be coupled with different runtime systems. In this paper,

EnTK uses RP to execute tasks via pilots. RP supports task-level parallelism and high-

throughput by acquiring resources from a computing infrastructure and scheduling tasks

on those resources for execution. RP uses RADICAL-SAGA to interface with several

resource managers, including batch systems like SLURM, PBS (pro), and Lustre File

System (LSF). Pilot systems execute tasks directly on the resources, without queuing

them on the infrastructure’s scheduler.

3.3 Execution Model

Users describe one or more protocols alongside their resource requirements via HT-

BAC’s API. The Descriptor component takes these descriptions as input and returns

an application description (Fig. 3.1.1). As seen in §3.2, this application consists of a

set or sequence of tasks with a set of resource requirements for their execution.
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The application description is passed to the Execution Manager of the Runner com-

ponent (Fig. 3.1.2). The Execution Manager evaluates the resource requirements, se-

lects a suitable connector (currently only to EnTK), tags each protocol instance of the

application with an ID, and passes all or part of the application description to the

connector for execution (Fig. 3.1.3).

The Middleware Connector of the Runner component gets the application descrip-

tion, converting it into a middleware-specific description (EnTK pipelines of stages of

tasks) and a resource request. The connector submits this request to the underly-

ing execution layer (Fig. 3.1.4) and initiates the execution of the application once the

execution layer communicates the availability of the resources (Fig. 3.1.5).

The resource requirements specified via HTBAC’s API include walltime, cores,

queue, and user credentials. EnTK derives a resource request from these requirements,

converting it into a pilot description for RP. RP converts this pilot requests into a batch

script that is submitted to the specified HPC machine. Once the pilot becomes active,

EnTK identifies those application tasks that have satisfied dependencies and can be ex-

ecuted concurrently. EnTK’s own Execution Manager uses RP to execute those tasks

on the pilot’s resources.

HTBAC allows to specify conditions tailored to individual simulation steps of a

protocol implementation. We leverage this ability to implement adaptivity by enabling

the user to partition protocols into simulation steps and generate new simulation steps

at runtime, based on a set of predefined conditions. The user specifies these conditions

in an analysis script for the Runtime Adaptive Evaluator subcomponent.

Execution Manager can retrieve the results of simulations (Fig. 3.1.6) and these

results can be evaluated by the Runtime Adaptive Evaluator via a user-defined analysis

script (Fig. 3.1.7). Depending on the result of the evaluation, the Runtime Adaptive

Evaluator may generate new simulation steps, adding them to the application descrip-

tion (Fig. 3.1.8a) or return control back to the Application Manager (Fig. 3.1.8b) with-

out changing the application. If new simulations are to be generated, the Execution

Manager bypasses termination of the application, and passes the added application de-

scription to the connector. Execution Manager uses the protocols’ IDs to keep track of
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those protocols that require additional simulations at runtime. In this way, older sim-

ulations can continue executing while new simulations can be passed to the Execution

Manager.

In an adaptive scenario, as the number of simulations grows at runtime, the ratio

of cores-to-task fluctuates. EnTK’s Execution Manager automatically redistributes an

even share of the total requested cores to each simulation. RP allows for new simulations

to execute within the pilot’s wall-time, without having to acquire new resources via the

resource management system.

3.4 RADICAL-Cybertools

In its current implementation, HTBAC uses two RCT components, RADICAL-Pilot as

the runtime system and Ensemble Toolkit as the ensemble management system. We

have designed RCT to be functionally delineated building blocks in developing and

executing workflows on HPC platforms.

EnTK provides the ability to create and execute ensemble-based workflows with

complex coordination and communication but without the need for explicit resource

management. EnTK uses RP as a runtime system which provides resource management

and task execution capabilities. In this section we discuss details of RP, and EnTK,

understanding how these components have been used to support the flexible and scalable

execution of tools like HTBAC.

3.4.1 RADICAL-Pilot

The scalable execution of applications with large ensembles of tasks is challenging.

Traditionally, two methods are used to execute multiple tasks on a resource: each task

is scheduled as an individual job, or message-passing interface (MPI) capabilities are

used to execute multiple tasks as part of a single job. The former method suffers from

unpredictable queue time: each task independently awaits in the resource’s queue to

be scheduled. The latter method relies on the fault tolerance of MPI, and is suitable

to execute tasks that are homogeneous and have no interdependencies.
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The Pilot abstraction [58] solves these issues: The pilot abstraction: (i) uses a

placeholder job without any tasks assigned to it, so as to acquire resources via the local

resource management system (LRMS); and, (ii) decouples the initial resource acquisi-

tion from task-to-resource assignment. Once the pilot (container-job) is scheduled via

the LRMS, it can pull computational tasks for execution. This functionality allows all

the computational tasks to be executed directly on the resources, without being queued

via the LRMS. The pilot abstraction thus supports the requirements of task-level par-

allelism and high-throughput as needed by scientific applications, without affecting or

circumventing the queue policies of HPC resources.

RADICAL-Pilot is an implementation of the pilot abstraction, engineered to support

scalable and efficient launching of heterogeneous tasks across different platforms.

3.4.2 Ensemble Toolkit

Ensemble Toolkit (EnTK), simplifies the process of creating and executing ensemble-

based applications with complex coordination and communication requirements. EnTK

decouples the description of ensemble-based applications from their execution by sepa-

rating three orders of concern: specification of task and resource requirements; resource

selection and acquisition; and task execution management. Domain scientists retain full

control of the implementation of their algorithms (directly with EnTK’s own API or to

build a higher level of abstraction like HTBAC), programming ensemble-based appli-

cations by describing what, when and where should be executed. EnTK uses a runtime

system, like RADICAL-Pilot, to acquire the resources needed by applications to manage

task execution.

As indicated earlier, EnTK enables the creation of ensemble-based applications by

exposing an API with four components: Application Manager, Pipeline, Stage

and Task.

The use of the Task, Stage, and Pipeline components, implemented as set and list

data structures, avoids the need to express explicitly relationship among tasks. These

relationships are insured by design, depending on the formal properties of the lists

and sets used to partition tasks into stages and group stages into pipelines. Further,
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EnTK enables an explicit definition of pre and post conditions on the execution of

tasks, enabling a fine grained adaptivity, both a local and global level. Conveniently,

this does not require the codification of a directed acyclic graph (DAG), a process that

imposes a rigid representation model on the domain scientists [56].

As indicated earlier, the Application Manager component of EnTK enables users

to specify target resources for the execution of the ensemble-based application. This

includes properties like walltime, number of nodes and credentials for resource access.

Users can also define execution setup parameters such as the number of processes or

messaging queues that should be used by EnTK. This allows to size and tune the

performance of EnTK, depending on the number of tasks, stages and pipelines, but

also on the resources available to the toolkit.

The Application Manager along with the WF Processor is responsible for the

transformation of the application workflow into workloads, i.e., set of tasks, that can

be submitted to the indicated resources for execution. Internally, EnTK’s Resource

Manager and Execution Manager components enable the acquisition of resources

and the management of execution of these workloads.

3.5 Implementing ESMACS and TIES in HTBAC (Use-Cases)

In §2.0.4 we define the structure of the ESMACS and TIES protocols. Here we pro-

vide skeletons of the TIES protocol implemented in HTBAC. In L. 3.1 we show a

customization of a production MD simulation step.

1 import htbac.protocols.TIES

ties_1 = Protocol(system = ’brd4 -1’)

3 sim = Simulation(name = ’Production MD’)

... # define simulation conditions

5 sim.ensemble(’replica ’, range (5))

sim.ensemble(’lambda ’, range (13))

7 # add simulation configurations to protocol

TIES.step0 = sim

9 ties_1.append(TIES.step0)

# assign resources , append protocol to Runner
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11 runner = Runner(resource = ’ncsa.blue_waters ’,

walltime = 60)

13 runner.add_protocol(protocol = ties_1)

# launch application

15 runner.run()

Listing 3.1: TIES protocol implemented with HTBAC. We import the predefined

protocol ‘TIES’. We assign the physical system to the protocol, we instantiate a

simulation, customize its steps (replica, lambda) and assign it to the TIES’s step0.

We instantiate the Runner with a resource request and pass the protocol description to

it.

In §3.3 we show HTBAC’s adaptive execution capabilities. In L. 3.2 we provide an

intra-protocol adaptive implementation of TIES, based on the use-case of §2.0.5.

1 # we start with the same previous implementation

# provide runner with two flags

3 runner.run(save_output = True , terminate = False)

# specify adaptivity script

5 requested_lambdas = AdaptiveQuadrature ()

sim1 = Simulation(name = ’production MD 2’)

7 ...

sim1.ensemble(’replica ’, range (5))

9 sim1.ensemble(’additional lambdas ’,

requested_lambdas)

11 TIES.step1 = sim1

ties_1.append(TIES.step1)

13 runner.add_protocol(protocol = ties_1)

runner.run(terminate = True)

Listing 3.2: Adaptive TIES protocol implemented with HTBAC. Assuming L. 3.1,

we run the Runner retrieving runtime results, we specify an adaptivity script for the

evaluator, create TIES step1. The analysis script operates on partial simulation results,

generating new simulation conditions for the next simulation step.
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Chapter 4

Experiments

In in chapter we present and discuss experiments performed to optimize the performance

of HTBAC. We evaluate the weak and strong scaling properties using the ESMACS and

TIES protocols, with the physical systems provided by UCL. We also include a section

that validates the adaptivity requirements of HTBAC, using scientific experiments con-

ducted by UCL with the TIES protocol.

Typically, a computational campaign for drug discovery explores a large number of

drug candidates by running several workflows multiple times, each requiring thousands

of concurrent simulations. Often these drug campaigns require hundreds of million core-

hours on HPCs. Therefore, we perform experiments to characterize the weak and strong

scaling performance of HTBAC and its overheads using one HPC resource: NCSA Blue

Waters. We validate the results of the free energy calculations produced using HTBAC

against published results.

Given that protocols like TIES are more computationally demanding than proto-

cols like ESMACS, it is paramount to use resources efficiently, especially for campaigns

that have a predefined computational budget. As described in 3, adaptive simulation

methods have the potential to reduce the number of simulations without a loss in ac-

curacy and with a lower computational load. Using HTBAC, our collaborators at UCL

validated the adaptivity requirements of HTBAC using an adaptive implementation of

TIES and measured the improvements in terms of accuracy, reduction of total simula-

tions and computational load.



30

Table 4.1: Parameters of scalability experiments.

ID Type of Experiment Physical System(s) Protocol(s) No. Protocol(s) Total Cores

1 Weak scaling BRD4 ESMACS (2, 4, 8, 16) 1600, 3200, 6400

2 Weak scaling BRD4 TIES (2, 4, 8) 4160, 8320, 16640

3 Weak scaling BRD4 ESMACS + TIES (2, 4, 8) 5280, 10560, 21120

4 Strong scaling BRD4 TIES (8, 8, 8) 16640, 8320, 4160

5 Strong scaling BRD4 ESMACS (16, 16, 16) 6400, 3200, 1600

6 Strong scaling BRD4 ESMACS + TIES (20, 20, 20) 22120, 10560, 5280

4.1 Experiment Setup

Table ?? shows 6 experiments we designed to characterize the behavior of HTBAC on

NCSA Blue Waters. Each experiment executes the ESMACS and/or TIES protocol for

different physical systems. Experiments 1–6 use the BRD4 physical system provided

by GlaxoSmithKline.

Experiment 1 and 2 measure the weak scaling of HTBAC using the ESMACS and

TIES protocols. Experiments 3 uses both the TIES and ESMACS protocols, charac-

terizing the weak scaling of heterogeneous protocol executions. Experiments 4 and 5

measure the strong scaling of HTBAC using a fix number of instances of the ESMACS

and TIES protocols. Experiments 6 uses both the TIES and ESMACS protocols, char-

acterizing the strong scaling of heterogeneous protocol executions.

In each weak scaling experiment (1–3), we keep the ratio between resources allocated

and protocol instances constant. Consistently, for each experiment we progressively

increase both the number of cores (i.e., measure of resource) and the number of protocol

instances by a factor of 2. In each strong scaling experiment (4–6), we change the ratio

between resources allocated and the number of protocol instances: we fix the number

of protocol instances and reduce the number of cores by a factor of 2.

Weak scaling experiments provide insight into the size of the workload that can be

executed in a given amount of time, while strong scaling experiments show how the

time duration of the workload scales when adding resources. For all the weak and

strong scaling experiments we characterize the overheads of HTBAC, EnTK and RP,

and we show an approximation of the time taken by the resources to become available.
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This offers insight about the impact of HTBAC and its runtime system on the time to

completion of each workload. In [59], we show baseline performance of HTBAC using

ESMACS with a null workload.

For weak and strong scaling experiments, we reduced the number of time-steps of

the protocols and omitted the analysis steps S5 and S6 of their workflows (Fig. 2.1).

These simplifications are consistent with characterizing scalability performance instead

of simulation duration. The time-steps are set to enable the physical systems to reach

steady-state. For the experiments 1–6 we used the following time-steps: S1 = 1000;

S2 = 5000; S3 = 5000; and S4 = 50000.

We measure the following durations for Experiments 1–6:

• Total Task Execution Time: Time taken by all the task executables to run

on the computing infrastructure.

• HTBAC Overhead: Time taken to instantiate HTBAC, and validate and pro-

cess the application description.

• EnTK and RP Overhead: Time taken by EnTK and RP to manage the

execution of tasks.

• aprun Overhead: Time taken by aprun to launch tasks on Blue Waters.

Note that once RP relinquishes the control flow to aprun, the precise time at which

aprun schedules each task on a compute node and the MD kernel of each task begins

execution cannot be measured. Instead, for each task, we measure the difference be-

tween the task execution time and its NAMD kernel execution time, provided by the NAMD

output logs. In this way, we approximate the time taken by aprun to launch the task.

Once aggregated, these measures constitute what we defined as aprun Overhead. The

summation of all durations provides the average wall-time of the pilot job.

We performed all the experiments on Blue Waters, a 26868 node Cray XE6/XK6

SuperComputer with peak performance of 13.3 petaFLOPS managed by NCSA. Con-

sistent with NCSA policies, we initiated the experiments from a virtual machine outside

NCSA, avoiding to run persistent process on the NCSA login node. We used HTBAC
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0.1, EnTK 0.6, and RP 0.47 and the NAMD-MPI MD kernel, and launched via the aprun

command. For the analysis stages in the TIES protocol we used AmberTools.

NCSA sets a system policy on the maximum number of processes that aprun can

spawn, limiting the number of concurrent tasks we can execute on Blue Waters to

≈450. During the execution of Experiment 2, we observed failing tasks with 8 TIES

protocol instances, i.e., 520 concurrent tasks. In a trial of 10 repetitions at this scale,

we observed an average of 70±6.67 failing tasks. More data would be required to model

the distribution type of these results.

NCSA allows to run only one MPI application for each compute node. Thus, we run

each MD simulation with 32 cores (i.e., one compute node) even if our performance of

NAMD on Blue Waters indicated that 16 cores offers the best trade-off between computing

time and communication overhead.

4.2 Weak Scaling Characterization

Fig. 4.1(a) shows the weak scaling of HTBAC with the TIES protocol. Each instance

of the TIES protocol contains a single pipeline with 4 stages and 65 concurrent tasks.

We increase the number of protocol instances linearly, between 2 and 8. When scaling

to 8 protocol instances, we execute more than 450 concurrent tasks, the average limit

supported by aprun, as described in §4.1. This introduces some failures that contribute

to a slight degradation in performance.

Fig. 4.1(b) shows the weak scaling of HTBAC with the ESMACS protocol. We

increase the number of instances linearly, between 2 and 16. Each ESMACS protocol

contains 1 pipeline with 4 stages and 25 concurrent tasks.

Fig. 4.1(c) shows the weak scaling of HTBAC with instances of both TIES and

ESMACS protocols. Also in this case, we scale the instances of both protocols linearly,

between 2 and 8. The first configuration shows 1 ESMACS and 1 TIES protocol, and

with each increase in scale we double the number of protocols. Experiments 2 and 3

show scaling ranges within the limit of the maximum number of concurrent tasks we

can successfully execute on Blue Waters.
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Figure 4.1: Weak scaling of HTBAC. The ratio number of protocol instances to re-

sources is constant. Task Execution Time, and HTBAC, EnTK+RP, aprun overheads

with (a) TIES (Experiment 1), (b) ESMACS (Experiment 2), and (c) TIES and ES-

MACS (Experiment 3).

For all weak scaling experiments (1–3) we use physical systems from the BRD4-GSK

library with the same number of atoms and similar chemical properties. The uniformity

of these physical systems ensures a consistent workload with insignificant variability

when characterizing their performance under different conditions.

In all weak scaling experiments (Fig. 4.1) we observe that the value of Total Task

Execution Time (green bar) shows minimal variation as the number of protocol in-

stances increases, suggesting that HTBAC is invariant to the protocol. We conclude

that HTBAC shows near-ideal weak scaling behavior under these conditions.

The HTBAC overhead depends mostly on the number of protocol instances that

need to be generated for an application. This overhead shows a super linear increase as

we grow the number of protocol instances, but the duration of the overhead is negligible

when compared to Total Task Execution Time.

The aprun overhead increases as we approach the limit of concurrent aprun processes

that can be executed on Blue Waters. For example, when scaling to 8 TIES protocol

instances (Fig. 4.1(a)), we see that the increase in aprun overhead occurs due to task
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failure. This is explained by noticing that attempts to relaunch failed tasks require

additional communication among the nodes that were running the tasks and the MOM

Nodes from which the execution is coordinated.

EnTK and RP overheads mostly depend on the number of tasks that need to be

translated in-memory from a Python object to a task description [59, 60]. As such, those

overheads are expected to grow proportionally to the number of tasks, as observed in

Fig. 4.1, blue bars.

The RP overhead is calculated by measuring and aggregating the execution time of

the RP components that manage and coordinate the execution of the protocol instances.

Among these components, the task scheduler of RP introduces the largest overhead.

Due to the general scheduling algorithm loaded by default in RP, the task scheduling

overhead scales linearly with the number of tasks that need to be scheduled.

In comparison to Total Task Execution Time, the EnTK and RP overheads are

an order of magnitude shorter, yet they directly contribute to the total duration of

the application execution. Based on Fig. 4.1, we approximate the use of our systems

will results in ≈ 15% additional usage of resource allocation. This overhead can be

substantially reduced by using a special-purpose scheduler for RP as illustrated in

Ref. [60].

4.3 Strong Scaling Characterization

In Experiment 4 we fix the number of instances of the TIES protocol to 8 (due to the

described aprun limitations) and we vary the amount of resources between 4160, 8320

and 16640 cores. Assuming the definition of ‘generation’ in §4.1, given 4160 cores, we

can execute 4 generations of 130 concurrent tasks; with 8320 cores, 2 generations of 260

tasks; and with 16640 cores, 1 generation of 520 tasks.

In Experiment 5 we fix the number of instances of the ESMACS protocols to 16

and vary the amount of resources between 3200, 6400 and 12800 cores. In this way, we

obtain the same number of generations as in Experiment 4.

In Experiment 6 we fix the number of instances of the ESMACS and TIES protocols
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to 16 and 4 respectively, and vary the amount of resources between 5280, 10560 and

22120 cores. In this way, we obtain the same number of generations as in Experiment

4 and 5.

Fig. 4.2 shows a linear speedup in Total Task Execution Time for both experiments,

proportional to the increase in the number of cores. The availability of more resources

for a fixed number of protocols explains this behavior. Overheads remain essentially

constant for both experiments when increasing the number of cores. The scheduling

of the number of tasks, as opposed to the amount of resources, is the main driver of

EnTK and RP overheads (Ref. [60]).
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Figure 4.2: Strong scaling of HTBAC. The number of protocol instances is fixed while

the number of cores increases. Task Execution Time, and HTBAC, EnTK+RP, aprun

overheads with (a) TIES (Experiment 4), ESMACS (Experiment 5) and ESMACS +

TIES (Experiment 6).

4.4 Validation

In order to validate the correctness of the results produced in Experiment 1–6, using

HTBAC and the BRD4-GSK physical systems, we compare our results with those

previously published in Wan et al. [10]. In this way, we can confirm that we calculated

the correct binding free energies values.
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Table 4.2: Validation of HTBAC results against published and experimental values

System
HTBAC

(kcal mol−1)

Wan et al.

(kcal mol−1)

Experiment

(kcal mol−1)

BRD4 3 to 1 0.39(10) 0.41(4) 0.30(9)

BRD4 3 to 4 0.02(12) 0.01(6) 0.00(13)

BRD4 3 to 7 −0.88(17) −0.90(8) −1.30(11)

We validated our implementation selecting a subset of the protein ligand systems

used in Wan et al. [10]: ligand transformations 3 to 1, 4, and 7. We then performed a

full simulation on all 3 systems and calculated the binding affinity using HTBAC.

The results of our experiments, collected in Table 4.2, show that all three ∆∆G

values are within error bars of the original study, validating the results we produced

with HTBAC.

4.5 Validation of Adaptive Requirements

This section presents experiments that validate the adaptivity requirements of HTBAC

designed by UCL. Table 4.3 shows 2 adaptivity experiments to characterize nonadaptive

and adaptive simulation methods using the TIES protocol. These experiments were also

performed on NCSA Blue Waters and utilize the PTP1B, MC1, and TYK2 physical

systems.

The adaptivity experiments compare the accuracy and time to solution of non-

adaptive and adaptive simulation methods. For the nonadaptive simulation method

of Experiment 1 our users preassigned 13 approximated λ windows, consistent with

the value reported in Ref. [7]. In this way, this produces 65 concurrent simulations

for stages S1–S4 of TIES (see Fig. 2.1). The production simulation stage S4 executes

each simulation for 4 ns. Stage S5 has 5 analysis tasks which aggregate the simulation

results of S4. The global analysis stage S6 has a single task that aggregates the results

from S5.



37

In the adaptive implementation 4.3, the TIES protocol is initialized with 3 λ win-

dows, obtaining 15 replicas, while stage S4 of each TIES replica is separated into 4

sub-stages. Each sub-stage runs a 1 ns simulation, followed by an adaptive quadratures

analysis which estimates free energy errors with respect to each interval of two λ values.

Experiment 3 compares the adaptive and non-adaptive execution of TIES. Using

65 simulations derives 13 equally spaced λ windows to calculate the free energy with

high accuracy. This creates a baseline against which to compare the adaptive and

non-adaptive results.
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Figure 4.3: Adaptive workflow for TIES. After equilibrating 3 λ, the first stage starts.

This is followed by analysis at every λ interval, to decide whether to add a new window

in between. In our implementation, the simulation-analysis cycle is repeated for 4

simulation steps, not shown here.

Experiment 1 and 3 are assigned the following simulation time-steps in S1 = 3000;

S2 = 50000; S3 = 50000; and S4 = 2000000. The adaptive simulation of Experiment

8 uses the same time-steps, apart from S4 which is divided into 4 sub-stages of 500000

time-steps each.

The design of HTBAC permits enhancing protocols while continuing to use “static”

simulation engines. Our UCL users implemented two adaptive methods using HTBAC:
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Table 4.3: Parameters of adaptivity experiments.

ID Type of Experiment Physical System(s) Protocol(s) No. Protocol(s) Total Cores

1 Non-adaptivity PTP1B, MC1, TYK2 TIES (1, 1, 1) 2080, 2080, 2080

2 Adaptivity PTP1B, MC1, TYK2 TIES (1, 1, 1) 2080, 2080, 2080

3 Reference PTP1B, MC1, TYK2 TIES (1, 1, 1) 10400, 10400, 10400

adaptive quadrature and adaptive termination. Both of these methods use the features

of adaptivity offered in HTBAC to scale to large number of concurrent simulations and

to increase convergence rate and obtain more accurate scientific results.

The aim of introducing adaptive quadrature for alchemical free energy calculation

protocols (e.g., TIES) is to reduce time to completion while maintaining (or increasing)

the accuracy of the results. Time to completion is measured by the number of core-

hours consumed by the simulations. Accuracy is defined as the error with respect to a

reference value, calculated via a dense λ window spacing (65 windows). This reference

value is used to establish the accuracy of the non-adaptive protocol (which has 13

λ windows) and the adaptive protocol (which has a variable number of λ windows,

determined at run time).

One of the input parameters of the adaptive quadrature algorithm is the desired

acceptable error threshold of the estimated integral. We set this threshold to the error

of the non-adaptive algorithm calculated via the reference value. The algorithm then

tries to minimize the number of λ windows constrained by the accuracy requirement.

Table 4.4 shows the results of running adaptive quadrature on 5 protein ligand sys-

tems, comparing the Total Task Execution Time and accuracy versus the non-adaptive

case. The number of lambda windows are reduced on average by 32 %, hence reducing

Total Task Execution Time by the same amount. The error on the adaptive results is

also decreased, on average by 77 % (see fig. 4.4). More importantly, the error on all of

the systems are reduced to below 0.2 kcal mol−1, which has recently been shown to be

the upper bound of reproducibility across different simulation engines [61].

The Total Task Execution Time of the TYK2 L7–L8 system has increased for the

adaptive run by 1 λ window, compared to the non-adaptive case. This is due to the
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Figure 4.4: Quantifying the benefits of the adaptive quadrature simulations. (top)

The error of the adaptive run is reduced for all 5 test systems, sometimes by a signif-

icant amount. It has been shown that reproducibility of free energy calculations can

be achieved up to 0.2 kcal mol−1 [61]. The adaptive algorithm brings down the error

of the nonadaptive simulations below this threshold, ensuring that results are also re-

producible. (bottom) Resource consumption is reduced, except for one of the systems,

where the low error threshold required more λ windows.

non-adaptive error being very low, and matching that same accuracy required the use

of a large number of windows. Nonetheless due to the efficient placing of the windows,

the accuracy of the free energy still increased by 40 %.

Fig. 4.5 compares the error on the adaptive and non-adaptive simulations as a time

series plot. As fewer lambda windows are calculated the adaptive algorithm uses less

resources. Remarkably, the error is drastically reduced as the windows are placed

adaptively to capture the changes in function.

Adaptive quadrature is specific to alchemical free energy calculations. Adaptive

termination, the second adaptive method implemented in HTBAC, offers dynamic ter-

mination for any simulation protocol that has as its aim the prediction of an observable

value. The protocol monitors the convergence of the observable as the simulation pro-

gresses, and stops the execution when a criterion has been met. Non-adaptive protocols



40

Table 4.4: Comparing results of adaptive, non-adaptive and reference runs.

System
Ref ∆∆G

(kcal mol−1)

Non-adaptive ∆∆G

(kcal mol−1)

Adaptive ∆∆G

(kcal mol−1)
No. of λ windows Decrease in TTX Increase in accuracy

PTP1B L1-L2 −58.51 −57.87(64) −58.60(9) 10 23 % 86 %

PTP1B L10-L12 1.83 2.05(22) 1.94(7) 6 54 % 68 %

MCL1 L32-L38 2.13 2.33(20) 2.14(1) 7 46 % 95 %

TYK2 L4-L9 −28.69 −28.25(44) −28.67(1) 7 46 % 98 %

TYK2 L7-L8 4.97 4.92(5) 5.00(3) 14 −8 % 40 %

−1,000 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,00011,000

0

0.05

0.1

0.15

0.2

Resource consumption

decrease

Error decreaseError decrease

Resource consumption (CPU-hours)

E
rr

or
(k

ca
lm

o
l−

1
) Non-adaptive

Adaptive

Figure 4.5: Plot of the error estimate as a function of the resource consumption, com-

paring the adaptive and nonadaptive simulations. The error estimate converges for

both simulations but the window placement of the adaptive simulation considerably

lowered the error.

usually have a predefined simulation time, set based on the assumption that the simu-

lation will converge by that time. This means that in practical examples the simulation

might have converged before the predefined simulation time.

In the original TIES protocol the production part of the simulation has to be run

for 4 ns and the results are analyzed thereafter. This assumes that all systems need this

simulation time for the results to converge. In reality, certain systems could converge

faster, therefore one can terminate the simulation before the static 4 ns end. This

would lead to faster time to insight and less compute resources consumed. Adaptive

termination was implemented in HTBAC by having a checkpoint every τ = 0.5 ns in

the simulation. Fig. 4.6 shows how the observable for a specific simulation changes as

a function of resource consumption. At every checkpoint the convergence is evaluated,

and the simulation is indeed terminated earlier than the non-adaptive protocol would
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Figure 4.6: Plot of the free energy as a function of the resources consumed (hence

simulation time). The adaptive termination algorithm checks the convergence of the

observable every τ = 0.5 ns and if the threshold (0.01 kcal mol−1) has been met, termi-

nates the simulation.

Table 4.5: Simulation time of non-adaptive and adaptively terminated runs for a given

convergence criterion

System Non-adaptive Adaptive Decrease in TTX

PTP1B L10-L12 6.0ns 5.0ns 16.7%

TYK2 L4-L9 6.0ns 5.5ns 8.3%

TYK2 L7-L8 6.0ns 4.5ns 25.0%

suggest. Table 4.5 shows results that the adaptively terminated TIES protocol saves

compute resources and reduces time to insight on average by 16 % for the physical

systems tested.
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Chapter 5

Conclusion

It is necessary to move beyond the prevailing paradigm of running individual MD

simulations, which provide irreproducible results and cannot provide meaningful error

bars. Ensemble-based binding affinity protocols have considerable predictive potential

and enable reproducibility of results, deeming them to be ideal for computational drug

campaigns. However as drug screening can cover millions of compounds and hundreds of

millions of core-hours, it is important for ensemble-based binding affinity calculations to

optimize the accuracy and precision of individual drug candidates. The ability to flexi-

bly scale and adapt ensemble-based protocols to the drug candidate of interest is vital

to produce reliable and accurate results on timescales which make it viable to influence

real world decision making. However, the optimal protocol configuration for a given

drug candidate is difficult to determine a priori, thus requiring runtime adaptations

to workflow executions. In this thesis, we introduce HTBAC to enable ensemble-based

approaches at scale on HPC, tailoring to computational drug campaigns.

Specifically, this thesis makes the following contributions: (1) discusses the land-

scape of ensemble-based simulations and their computational challenges (2) provides

the design of a software tool (HTBAC) which addresses both challenges of scalability

and adaptivity (3) characterizes the performance of HTBAC using a set of weak and

strong scaling experiments (4) provide the adaptive execution capabilities to enable our

users (primarily at UCL) to design and execute adaptivity experiments that improve

scientific metrics, by increasing free energy accuracy at a fixed computational cost,

or reducing the number of total simulations and thereby reducing computational load

within an acceptable bounds of free energy errors.

In Chapter 4, we have characterized the scalability performance of HTBAC on NCSA
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Blue Waters. We showed near-ideal weak and strong scaling behavior using two well-

known binding affinity protocols (ESMACS and TIES), individually and together, to

reach scales of 21,120 cores. This permits a time-to-solution that is essentially invariant

of the size of candidate ligands, as well as the type and number of protocols concurrently

employed. Furthermore, we validated binding free energies computed using HTBAC

with both experimental and previously published computational results.

We also included a section on adaptivity experiments, devised by our users, in

which they compared resource consumption and free energy accuracy using adaptive

and non-adaptive TIES results. Using the adaptive quadrature algorithm, they showed

improvements in ∆∆G on average by 77% over the 5 physical systems tested. By re-

ducing the λ windows on average by 32%, they reduced execution time by the same

amount. The adaptive termination implementation of the TIES protocol saves compute

resources and reduces time to solution on average by 16%. HTBAC’s adaptivity capa-

bilities allowed our users to develop new methodologies like the adaptive TIES protocol,

which produced unprecedented scientific results. The adaptivity experiments validated

the adaptive and scalable capabilities of HTBAC to enable users in their abilities to

produce interesting research.

The use of software implementing well-defined abstractions like that of building

blocks, future proofs users of HTBAC to evolving hardware platforms, while providing

immediate benefits of scale and support for a range of different applications. In this work

we use the middleware provided by the RADICAL-Cybertools to execute applications of

HTBAC. HTBAC represents an important advance towards the use of ensemble-based

binding affinity calculations to the point where they can produce actionable results

both in the clinic and industrial drug discovery.

The majority of our performance overheads are attributed to the the task launching

delay arising from the use of RADICAL-Pilot and it increases as a function of the

number of tasks simultaneously submitted for execution. RADICAL-Pilot is a new

pilot system and is under constant development, as such more development is needed

to improve the scheduling of highly concurrent tasks. This issue is now being addressed

using scheduling decisions based on data awareness which we believe will mitigate this
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overhead even further.

The development of HTBAC has paved a platform to allow a significant increase in

the size of studying drug candidates in computational drug campaigns. Much of the

literature on MD-based binding affinity calculations is limited to a few tens of physical

systems, usually of similar drugs bound to the same protein target. By facilitating the

investigation of much larger sets of physical systems, HTBAC contributes to solve the

grand challenge in drug design and precision medicine: understanding the influences on

binding strength for hundreds or thousands of drug-protein variant combinations.

We believe that design decisions we have made, enable HTBAC to provide a high

level of generality for ensemble-based approaches. HTBAC is designed to be a research

vehicle for the domain scientists and to enable them to prototype and test ensemble-

based approaches unavailable in other software frameworks. Design and modularity of

the code significantly lower the barrier for implementation of novel scientific method-

ologies and reduce development time.
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Chapter 6

Future Work

The most beneficial task in the context of this project would be developing a better

understanding of different adaptivity uses cases, in order to improve the design and

generality of HTBAC. It is crucial to identify scenarios and applications that span

other ensemble-based approaches, besides computational drug campaigns. Also, it is

important to provide a clear guidelines on how to maximize benefits arising from the

usage of adaptive execution, less from an application perspective and more from an

execution perspective. In addition to utilization experiments presented in Chapter 4,

there are a number of scenarios which we have not covered. For example, we can

develop protocols that use ensemble-based simulations, coupled with more complex

analysis such as deep learning. In principle, the design of the HTBAC is invariant

to the type of analysis task; however, we have not yet presented any experiments to

validate this claim.

Another direction for future work is multi-cluster or multiple engine execution of

HTBAC applications. We are seeing more applications surfacing that involve executing

the analysis steps (machine learning models) on GPU clusters, while executing simu-

lations in parallel on either GPU or non-GPU dominant clusters using multiple MD

engines. Therefore, it is important to enable these scenarios to optimize the utility of

all available computational resources. HTBAC can be improved in terms of its features

and functionality by providing explicit support for simulations and analyses utilizing

multiple heterogeneous HPC resources and execution engines.
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