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ABSTRACT OF THE DISSERTATION

A simple algorithm for Horn’s problem and two results on

discrepancy

By WILLIAM COLE FRANKS

Dissertation Director: Michael Saks

In the second chapter we consider the discrepancy of permutation families. A k–

permutation family on n vertices is a set-system consisting of the intervals of k per-

mutations of [n]. Both 1– and 2–permutation families have discrepancy 1, that is, one

can color the vertices red and blue such that the number of reds and blues in each

edge differs by at most one. That is, their discrepancy is bounded by one. Beck con-

jectured that the discrepancy of for 3–permutation families is also O(1), but Newman

and Nikolov disproved this conjecture in 2011. We give a simpler proof that Newman

and Nikolov’s sequence of 3-permutation families has discrepancy at least logarithmic

in n. We also exhibit a new, tight lower bound for the related notion of root-mean-

squared discrepancy of a 6–permutation family, and show new upper bounds on the

root–mean–squared discrepancy of the union of set–systems.

In the third chapter we study the discrepancy of random matrices with m rows

and n � m independent columns drawn from a bounded lattice random variable, a

model motivated by the Komlós conjecture. We prove that, with high probability, the

discrepancy is at most twice the `∞-covering radius of the lattice. As a consequence,

the discrepancy of a m× n random t-sparse matrix is at most 1 with high probability

for n ≥ m3 log2m, an exponential improvement over Ezra and Lovett (Ezra and Lovett,
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Approx+Random, 2015). More generally, we show polynomial bounds on the size of n

required for the discrepancy to become at most twice the covering radius of the lattice

with high probability.

In the fourth chapter, we obtain a simple algorithm to solve a class of linear alge-

braic problems. This class includes Horn’s problem, the problem of finding Hermitian

matrices that sum to zero with prescribed spectra. Other problems in this class arise

in algebraic complexity, analysis, communication complexity, and quantum information

theory. Our algorithm generalizes the work of (Garg et. al., 2016) and (Gurvits, 2004).
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Chapter 1

Introduction

This thesis contains two results in combinatorial matrix theory, and one algorithmic

result in linear algebra.

1.1 Balancing stacks of balanceable matrices

The discrepancy of an m × n matrix M is the degree to which the rows of the matrix

can be simultaneously balanced by splitting the columns into two groups; formally,

disc∞(M) = min
x∈{+1,−1}n

‖Mx‖∞.

We study how the discrepancy of matrices can grow when placed one atop the other.

That is, how the discrepancy of

M =



−M1−

−M2−
...

−Mk−


compares with disc∞(M1),disc∞(M2), . . . ,disc∞(Mk). The discrepancy of M can be

much larger, but if we instead consider the more robust hereditary discrepancy, there is

a meaningful relationship. Define herdisc∞(A) to be the maximum discrepancy of any

subset of columns of A. Matousek [Mat13] showed that if M is m× n, then

herdisc∞(M) = O

(√
k(log3/2m) max

i
herdisc∞(Mi)

)
.

Improving Matousek’s bound is an interesting open problem. Lower bounds so far are

consistent with the following:
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Conjecture 1.1 (Matousek [Mat13]).

herdisc∞(M) = O

(√
k(logm) ·max

i
herdisc∞(Mi)

)
(1.1)

To the author’s knowledge, it is not known that Eq. (1.1) would be tight. It is

known that the factors
√
k and logm are individually necessary, but there seems to be

no lower bound with a factor more than f(k) logm where f(k) = ω(1). We conjecture

that f(k) =
√
k.

Conjecture 1.2 (Matousek’s conjecture is tight even for constant k). There is a

constant C > 0 such that, for every k ∈ N, there is a family of tuples of matrices

(M1, . . . ,Mk) with

herdisc∞(M) ≥ C
√
k(logm) ·max

i
herdisc∞(Mi).

One interesting example are permutation families in which Mi are each column-

permuted copies of following upper-triangular matrix:

P =



1 1 . . . 1

0 1 . . . 1

...
...

. . .
...

0 0 . . . 1


.

Because Mi is the incidence matrix of the intervals of some permutation, σ, i.e. the set-

system {{}, {σ(1)}, {σ(1), σ(2)}, . . . }, M is called a k–permutation family. By choosing

alternating signs for the columns of P one can immediately see that disc∞(Mi) =

disc∞(P ) is 1, and in fact herdisc∞(Mi) = 1 for 1 ≤ i ≤ k. Though less trivial, the

hereditary discrepancy of 2-permutation families is also 1. This suggests that the dis-

crepancy of 3–permutation families should be small. However, disproving a conjecture

of Beck, Newman and Nikolov [NN11] showed that the discrepancy of 3–permutation

families can be Ω(log n), providing another1 example showing that a logm factor2 in

Matousek’s bound is necessary. We provide, using only straightforward calculations, a

1The first such example is due to Pálvölgyi [Mat13].

2 in 3-permutation families, m = θ(n), so logn = logm+O(1).
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simpler proof of their lower bound on the same counterexample. The proof technique

extends naturally to higher values of k, and we hope to use it to show the following

result towards Conjecture 1.2.3

Conjecture 1.3 (Michael Saks). There is a function f ∈ ω(1) and a family of k-

permutation families Mn on n vertices such that

disc∞(Mn) ≥ f(k) log n

for all n, k ∈ N.

Our analysis also yields a new result for the root–mean–squared discrepancy disc2

of permutation families, where

disc2(M) :=
1√
m

min
x∈→{±1}n

‖Mx‖.

Theorem 1.4. There is a sequence of 6–permutation families on n vertices with root–

mean–squared discrepancy Ω(
√

log n).

Define the hereditary root–mean–squared discrepancy, denoted herdisc2(M), to be

the largest root–mean–squared discrepancy of any subset of columns of M . The paper

[Lar17] exhibits a lower bound for herdisc2 which approximates the hereditary root–

mean–squared discrepancy to within a
√

log n factor, but this quantity is constant on

families of constantly many permutations. Thus, Theorem 1.4 shows that the
√

log n

approximation factor between herdisc2(M) and the lower bound in [Lar17] is best pos-

sible. As a side–benefit, we also observe that the lower bound from [Lar17] behaves

well under unions, which implies the following:

Theorem 1.5. herdisc2(M) = O
(
k
√

log n maxi∈[k] herdisc2(Mi)
)
.

It is an interesting open direction to improve k to
√
k in Theorem 1.5.

1.2 Balancing random wide matrices

[A paper joint with Michael Saks] We continue our study of discrepancy, shifting our

focus to random matrices. It is not hard to see that, if the columns of M are chosen

3See Footnote 2
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independently at random from some distribution on Rn, the discrepancy is asymptoti-

cally constant as n grows while m is left fixed. Under very minimal assumptions on the

column distribution, we study how large n must be as a function of m for this behavior

to take place. For example, if M is a random t-sparse matrix, i.e. the columns are

random vectors with t ones and m − t zeroes, it was known that n = Ω(
(
m
t

)
log
(
m
t

)
)

suffices [EL16]. We improve the bound on n to a polynomial in m.

Theorem 1.6. Let M be a random t-sparse matrix for 0 < t < cm/2 for c = 1. For

n = Ω(m3 logm), then

disc(M) = 1

with probability 1− 2−Ω(m) −O(
√
m/n logm).

We explicitly describe the distribution of disc∞(M) for large n, which asymptotically

depends on n only in that it depends on the parity of n, and has support contained in

{0, 1, 2}. The main technical ingredient in our proof is a local central limit theorem for

random signed sums of the columns of M which holds with high probability over the

choice of M . The main open problem remaining is to improve bounds on the value of

n. We conjecture that n = θ(m logm) is the true answer.

For distributions on arbitrary lattices L, we show that the discrepancy becomes at

most twice the `∞–covering radius ρ∞(L) of the lattice when the number of columns

is at least polynomial in the number of rows and a few natural parameters of the

distribution. Ideally, this would allow one to conclude that the discrepancy becomes

constant when the columns are drawn from a distribution of unit vectors, but this would

require the following open conjecture:

Conjecture 1.7. There is an absolute constant C such that for any lattice L generated

by unit vectors, ρ∞(L) ≤ C.

1.3 Sums of Hermitian matrices and related problems

Culminating a long line of work, Knutson and Tao [KT00] proved Horn’s conjecture,

which posits that the answer to the following problem is a polyhedral cone with facets

given by a certain recursively defined set of linear inequalities.
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Problem 1.8 (Horn’s problem). What is the set of spectra of m×m Hermitian matrices

A,B,C satisfying

A+B = C?

We consider the problem of finding the matrices A,B, and C from Problem 1.8.

Problem 1.9 (Constructive variant of Horn’s problem). Given three nonincreasing

sequences α,β,γ of m real numbers, construct (if they exist) m×m Hermitian matrices

A,B,C with spectra α,β,γ satisfying

A+B = C. (1.2)

We give a simple, iterative algorithm for solving Problem 1.9 to arbitrary precision

ε. This solves Problem 1.9 in the sense that the sequence of outputs of the algorithm

as ε → 0 have a subsequence converging to a solution of Problem 1.9. Informally, the

algorithm proceeds as follows:4

1. Define C = diag(γ). Choose random real matrices UA, UB, and define

A = UA diag(α)U †A and B = UB diag(β)U †B.

2. Alternately repeat the following steps until Eq. (4.1) holds to the desired precision:

(a) Enforce A + B = C by simultaneous left–multiplication of UA, UB by the

same lower-triangular matrix.

(b) Make UA orthogonal by right–multiplication with an upper-triangular ma-

trix. Do the same for UB.

3. Output A,B,C.

The above algorithm is an example of alternating minimization, a primitive in opti-

mization. Specializations of our algorithm also solve the below problems, though the

specialization of our algorithm to Problem 1.10 was discovered by Sinkhorn long ago

[Sin64], and the original characterization of Problem 1.11 was algorithmic [Hor54].

4As written, the algorithm requires α,β,γ to be positive. This is without loss of generality by a
simple (and standard) rescaling argument.
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Problem 1.10 (Matrix scaling). Given a nonnegative matrix A and nonnegative row-

and column-sum vectors r and c, construct (if they exist) nonnegative diagonal matrices

X,Y such that the row and column sums of A′ = XAY are, respectively, r and c (if

possible).

Problem 1.11 (Schur–Horn). Given vectors α,β ∈ Rm, construct (if it exists) a

symmetric matrix with spectrum β and with α as its main diagonal.

Problem 1.12 (Quantum channels). Given a completely positive map T and mixed

quantum states ρ1, ρ2, construct (if they exist) invertible linear maps g, h such that

T ′ : X 7→ g†T (hXh†)g is a quantum channel sending ρ1 to ρ2.

The analysis of the algorithm proceeds by “lifting” the steps of the algorithm to a

larger instance for which the algorithm is known to converge by the work of Gurvits

[Gur04]. The lifting map is similar to a trick used by Derksen and Wayman [DW00] to

provide an alternate proof of Horn’s conjecture using quiver representations.

Problems 1.8 to 1.12 are more than linear algebraic curiosities: they have a deep

relationship with representation theory. For group actions on vector spaces, invariant

varieties such as closures of group orbits are central objects of study. It is often fruitful

to study such varieties through the representation theory of their coordinate rings.

For instance, the geometric complexity theory approach to lower bounds in algebraic

complexity relies on a strategy to show a certain orbit closure is not contained in another

by proving that there is an irreducible representation occuring in one coordinate ring but

not the other. Mumford showed that asymptotic information about the representation

theory of the coordinate rings is encoded in a convex polytope known as the moment

polytope [NM84]. For example, the set described in Problem 1.11 is succinctly described

as a moment polytope.

The complexity of testing moment polytope membership is open, except in very

special cases such as Horn’s problem. Our central open problem is to improve our

algorithms so that they can test membership in the moment polytope in polynomial

time.

Another interesting avenue for the future concerns approximation algorithms and
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Van der Waerden–type conjectures, which were the original motivations of matrix

scaling. Among many other examples, scaling problems arose in proofs of Van der

Waerden-like conjectures [Gur08], and in [LSW98] it was observed that polynomial

time algorithms for matrix scaling result in deterministic algorithms to approximate

the permanent to a singly exponential factor. The permanent can be viewed as a sum

of squares of evaluations of invariant polynomials of the action of an Abelian group,

but there has been no approximation algorithm or Van der Waerden type theorem for

the analogous quantities in the non-Abelian case. This reflects the lack (to the author’s

knowledge) of noncommutative analogues of hyperbolic and log–concave polynomials.

1.4 Common notation

Here are a few conventions followed throughout the chapters:

• Unless otherwise specified, 〈·, ·〉 denotes the standard inner product on Cn or Rn.

The corresponding norm is written ‖ · ‖.

• On complex or real matrices, ‖ · ‖ denotes the Frobenius norm, i.e. ‖M‖2 =

trM †M , where M † denotes the conjugate transpose of M . ‖M‖2 denotes the

spectral norm of M .

• The symbol � denotes the Loewner ordering on matrices, i.e. A � B if A−B is

positive-semidefinite. A � B if A−B is positive-definite.

• For m ∈ N, we denote by Im the m×m identity matrix.

• Bold letters such as x indicate vectors, or more generally tuples of objects. Ran-

dom vectors are denoted by capital letters X. The ith entry of the tuple x will

be denoted xi.

• If S is a set in a universe U , 1S denotes the characteristic vector of S in RU .

• For n ∈ N, we let [n] denote the set {1, 2, . . . , n}.
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Chapter 2

Discrepancy of permutation families

This chapter is based on the work [Fra18c] of the author.

2.1 Introduction

The discrepancy of a set-system is the extent to which the sets in a set-system can be

simultaneously split into two equal parts, or two–colored in a balanced way. Let A be

a collection (possibly with multiplicity) of subsets of a finite set Ω. The discrepancy of

a two–coloring χ : Ω → {±1} of the set-system (Ω,A) is the maximum imbalance in

color over all sets S in A. The discrepancy of (Ω,A) is the minimum discrepancy of

any two–coloring of Ω. Formally,

disc∞(Ω,A) := min
χ:Ω→{+1,−1}

disc∞(χ,A), (2.1)

where disc∞(χ,A) = maxS∈A |χ(S)| and χ(S) =
∑

x∈S χ(x).

A central goal of the study of discrepancy is to bound the discrepancy of set-systems

with restrictions or additional structure. Here we will be concerned with set-systems

constructed from permutations. A permutation σ : Ω → Ω from a set Ω with a total

ordering ≤ to itself determines the set-system (Ω,Aσ) where

Aσ = {{i : σ(i) ≤ σ(j)} : j ∈ Ω} ∪ {∅}.

For example, if [3] inherits the usual ordering on natural numbers and e : [3] → [3]

is the identity permutation, then Ae = {∅, {1}, {1, 2}, {1, 2, 3}}. Equivalently, Aσ is a

maximal chain in the poset 2[n] ordered by inclusion. If P = {σ1, . . . , σk} is a set of

permutations of Ω, let AP = Aσ1 + · · · + Aσk where + denotes multiset sum (union

with multiplicity). Then we say (Ω,AP ) is a k-permutation family.
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By Dilworth’s theorem, the maximal discrepancy of a k-permutation family is the

same as the maximal discrepancy of a set-system of width k, that is, a set-system that

contains no antichain of cardinality more than k.

It is easy to see that a 1–permutation family has discrepancy at most 1, and the same

is true for 2–permutation families [Spe87]. Beck conjectured that the discrepancy of a 3–

permutation family is O(1). More generally, Spencer, Srinivasan and Tetali conjectured

that the discrepancy of a k-permutation family is O(
√
k) [JS]. Both conjectures were

recently disproven by Newman and Nikolov [NN11]. They showed the following:

Theorem 2.1 ([NN11]). There is a sequence of 3–permutation families on n vertices

with discrepancy Ω(log n).

The same authors, together with Neiman, showed in [NNN12] the above lower bound

implies a natural class of rounding schemes for the Gilmore–Gomory linear program-

ming relaxation of bin–packing, such as the scheme used in the Kamarkar-Karp algo-

rithm, incur logarithmic error.

Spencer, Srinivasan and Tetali proved an upper bound that matches the lower bound

of Newman and Nikolov for k = 3.

Theorem 2.2 ([JS]). The discrepancy of a k–permutation family on n vertices is

O(
√
k log n).

They showed that the upper bound is tight for for k ≥ n. However, it is open

whether this upper bound is tight for 3 < k = o(n). In fact, no one has proved lower

bounds with logarithmic dependency on n that grow a function of k.

Conjecture 1.3 (Michael Saks). There is a function f ∈ ω(1) and a family of k-

permutation families Mn on n vertices such that

disc∞(Mn) ≥ f(k) log n

for all n, k ∈ N.

In this chapter, we present a new analysis of the counterexample due to Newman

and Nikolov. We replace their case analysis by a simple argument using norms of
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matrices, albeit achieving a worse constant ((4
√

6)−1 log3 n vs their 3−1 log3 n). Our

analysis generalizes well to larger permutation families, and can hopefully be extended

to handle Conjecture 1.3. Our analysis also yields a new result for the root–mean–

squared discrepancy, defined as

disc2(Ω,A) = min
χ:[n]→{±1}

disc2(A, χ)

where disc2(A, χ) =
√

1
|A|
∑

S∈A |χ(S)|2. Define the hereditary root–mean–squared dis-

crepancy by

herdisc2(Ω,A) = max
Γ⊂Ω

disc2(Γ,A|Γ).

Theorem 1.4. There is a sequence of 6–permutation families on n vertices with root–

mean–squared discrepancy Ω(
√

log n).

For k = 6, Theorem 1.4 matches the upper bound of
√
k log n for the root–mean–

squared discrepancy implied by the proof of Theorem 2.2 in [JS]. Further, the lower

bound implied by [Lar17] for the hereditary root–mean–squared discrepancy is constant

for families of constantly many permutations. This fact was communicated to the

author by Aleksandar Nikolov; we provide a proof in Section 2.3 for completeness. The

lower bound in [Lar17] is smaller than herdisc2(Ω,A) by a factor of at most
√

log n, so

Theorem 1.4 shows that the
√

log n gap between herdisc2(Ω,A) and the lower bound

in [Lar17] is best possible.

Remark 2.3 (Odd discrepancy). One can relax to odd integer assignments and our

lower bounds still hold: define the odd discrepancy of A by the smaller quantity

oddisc∞(Ω,A) = min
{χ:Ω→(2Z−1)}

disc∞(χ,A),

and define oddisc2(Ω,A) analogously. The stronger versions of Theorem 1.4 and The-

orem 2.1 with, respectively, disc∞ replaced by oddisc∞ and disc2 replaced by oddisc2

hold.

Acknowledgements

The author would like to thank Michael Saks and Aleksandar Nikolov for many inter-

esting discussions. The author also thanks Aleksandar Nikolov and Shachar Lovett for
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suggesting the application of this argument to the root–mean–squared discrepancy, and

especially to Aleksandar Nikolov for communicating Observation 2.22 and suggesting

the connection with [Lar17], [NTZ13], and [Mat13].

2.2 The set-system of Newman and Nikolov

Our proof of Theorem 2.1 uses the same set-system as Newman and Nikolov. For

completeness, we define and slightly generalize the system here. The vertices of the

system will be r–ary strings, or elements of [r]d. For Newman and Nikolov’s set-system,

r = 3. We first set our notation for referring to strings.

Definition 2.4 (String notation).

• Bold letters, e.g. a, denote strings in [r]d for some d ≥ 0. Here [r]0 denotes the

set containing only the empty string ε.

• If a = a1 . . . ad ∈ [r]d is a string, for 0 ≤ k ≤ d let a[k] denote the string a1 . . . ak,

with a[0] := ε.

• If a is a string, |a| denotes the length of a.

• If a and b are strings, their concatentation in [r]|a|+|b| is denoted ab.

• If j ∈ [r], then j denotes the all j’s string of length d; e.g. 3 := 33..3︸︷︷︸
d

.

• τ denotes the permutation of [r] given by τ(i) = r − i + 1, the permutation

reversing the ordering on [r].

We may now define the set-system of Newman and Nikolov.

Definition 2.5 (The set-system ([r]d,AP )). Let < be the lexicographical ordering on

[r]d. Given a permutation σ of [r], we define a permutation σ of [r]d by acting digitwise

by σ. Namely, σ(a) := σ(a1)σ(a2) . . . σ(ad). For any subset P ⊂ Sr of permutations of

[r], define the permutation family AP by

AP = A{σ:σ∈P}.
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Namely, the edges of AP are ∅ and the sets ≤σ a defined by

≤σ a := {b ∈ [r]|a| : σ(b) ≤ σ(a)}

as σ ranges over P and a over [r]d. Note that for each σ ∈ P and a ∈ [r]d, AP also

contains the edges defined not to include a:

<σ a := {b ∈ [r]|a| : σ(b) < σ(a).

Definition 2.6 (The set-system of Newman and Nikolov). The system of Newman and

Nikolov is ([3]d,AC) with C = {e, (1, 2, 3), (1, 3, 2)}. That is, C is the cyclic permuta-

tions of 3.

We first bound the discrepancy of the 6-permutation family ([3]d,AS3). In fact, we

bound the smaller odd discrepancy of this family.

Proposition 2.7 (Discrepancy lower bound). If r ≥ 3 is odd, then

disc∞([r]d,ASr) ≥ oddisc∞([r]d,ASr) ≥
d

2
√

6
.

Proposition 2.7 is proved in the next section, Section 2.2.1. We bound the discrep-

ancy of AC in terms of the discrepancy of AS3 . Theorem 2.1 follows immediately from

Observation 2.8 and Proposition 2.7 for r = 3.

Observation 2.8 ([NN11]).

disc∞([3]d,AC) ≥ oddisc∞([3]d,AC) ≥ 1

2
oddisc∞([3]d,AS3).

Proof. The key observation is that [3]d is in reverse order under the action of σ and

τ ◦ σ, so for each σ,a, the edges ≤σ a and <τ◦σ a partition [3]d.

Let χ : [3]d → 2Z− 1 be an assignment of minimal discrepancy K to ([3]d,AC). Let

σ ∈ S3,a ∈ [r]d be arbitrary. It suffices to show |χ(≤σ a)| ≤ 2K. By the preceding

reasoning, |χ(≤σ a)| = |χ([3]d)− χ(<τ◦σ a)| ≤ 2K.

We recall a few facts about the set-system of Newman and Nikolov. Define

<σ a = {b ∈ [r]|a| : σ · b < σ · a}.



13

As observed in [NN11], the quantity χ(<σ a) behaves additively under concatenta-

tion of strings. That is, if a = bc, then there is a natural way to define colorings χε and

χb of [r]|b| and [r]|c|, respectively, such that χ(<σ a) = χε(<σ b) + χb(<σ c). Further,

this holds even if χ is a coloring of [r]d with any odd integers (rather than just ±1).

Definition 2.9 (Extension of colorings). We extend each assignment χ : [r]d → 2Z− 1

to

χ : [r]0 ∪ [r]1 ∪ · · · ∪ [r]d → 2Z− 1

by defining χ(a) =
∑
|b|=d−|a| χ(ab) for |a| ≤ d. Crucially, χ the entries of χ are indeed

odd. Observe that

χ(a) =
∑
i∈[r]

χ(ai) (2.2)

for |a| < d. For |a| ≤ d, define

χa : [r]0 ∪ [r]1 ∪ · · · ∪ [r]d−|a|

by χa(b) = χ(ab) for |b| ≤ d − |a|. In particular, χε and χ are equal as functions on

[r]0 ∪ [r]1 ∪ · · · ∪ [r]d.

Observation 2.10 (Additivity of discrepancy). For any assignment χ : [r]d → 2Z− 1

and a = bc with |a| ≤ d, we have

χ(<σ a) = χε(<σ b) + χb(<σ c) (2.3)

Proof. If |b′| = |b| and |c| = |c′|, then b′c′ is in ≤σ bc if and only if σ · b′ < σ · b or

b′ = b and σ · c′ < σ · c. Thus,

χ(≤σ bc) =
∑

σ·b′<σ·b

∑
|c′|=|c|

χ(b′c′) +
∑

σ·c′<σ·c
χ(bc′).

The right-hand-side is precisely χε(<σ b) + χb(<σ c).

2.2.1 Proof of the lower bound

In this section we prove Proposition 2.7, the lower bound on oddisc∞([r]d,ASr).
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Proof of Proposition 2.7. To show the discrepancy oddisc∞([r]d,ASr) is at least K, it

is enough to show that given an assignment χ : [r]d → 2Z − 1, we can choose σ ∈ Sr

and a ∈ [r]d so that |χ(<σ a)| is at least K.

We do this in two steps. First, define some vector Mχ(a) depending on χ and the

choice of a such that if ‖Mχ(a)‖ ≥ K, then there is a σ with |χ(<σ a)| ≥ K. Next, we

choose a to maximize ‖Mχ(a)‖. The correct object Mχ turns out to be an r× r matrix

valued function of a, and we will measure its size using a certain seminorm ‖ · ‖Sr . We

will define the two such that for any a ∈ [r]d,

max
σ
|χ(<σ a)| = ‖Mχ(a)‖Sr .

Definition 2.11 (The seminorm ‖ · ‖Sr). For M ∈ Matr×r(R) and σ ∈ Sr, define

σ ·M :=
∑

i,j∈[r], σ(i)>σ(j)Mi,j . Now let

‖M‖Sr = max
σ∈Sr

|σ ·M | .

Remark 2.12. This seminorm is well–studied; if M is the 0, 1 adjacency matrix of a

directed graph G, then ‖M‖Sr is the maximum size of an acyclic subgraph of G. In

[GMR08] it is shown that, assuming the unique games conjecture, ‖M‖Sr is NP–hard

to approximate even for M antisymmetric.

We will define M such that, in particular,

χ(<σ a) = σ ·Mχ(a). (2.4)

Recall how we extended χ in Definition 2.9. If we define Mχ to be an additive function

on [r]0 ∪ [r]1 ∪ · · · ∪ [r]d, i.e.

Mχ(ab) = Mχε(a) +Mχa(b), (2.5)

then by linearity of σ ·M in M we only need check that Eq. (2.4) holds for r = 1. This

motivates our definition of Mχ.

Definition 2.13 (The matrix Mχ(a)). Let χ : [r]d → 2Z − 1. For d = 0, define

Mχ(ε) = 0. For a ∈ [r], i.e. d = 1, define Mχ(a) to be the r × r matrix with only the
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a’th row nonzero, and the entries of this row given by χ(1), χ(2) . . . , χ(r). Equivalently,

Mχ(a)i,j = δi,aχ(j) for a ∈ [r]. (2.6)

For d > 1, define

Mχ(a) =

|a|∑
k=1

Mχa[k−1](ak). (2.7)

Note that (a, χ) 7→Mχ(a) is unique r × r matrix–valued function on

([r]0 ∪ [r]1 ∪ · · · ∪ [r]d)× (2Z− 1)[r]d

satisfying Mχ(ε) = 0, Eq. (2.6), and Eq. (2.5).

We now prove that this matrix and seminorm have the promised property.

Claim 2.14. For all χ : [r]d → 2Z−1, Eq. (2.4) holds. It follows that maxσ |χ(<σ a)| =

‖Mχ(a)‖Sr .

Proof of Claim 2.14. By the additivity (Eq. (2.5)) of Mχ, it suffices to prove the claim

for d = 1. This is a straightforward calculation. By Eq. (2.6), for a ∈ [r],

σ ·Mχ(a) =
∑

i,j∈[r], σ(i)>σ(j)

δi,aχ(j) =
∑

j∈[r]:σ(j)<σ(a)

χ(j).

The right-hand-side is exactly χ(<σ a).

Now that we have Claim 2.14, it remains to bound minχ maxa ‖Mχ(a)‖Sr below.

This quantity is at least the value of the following d-round game played between a

“minimizer” and a “maximizer.”

Definition 2.15 (The seminorm unbalancing game). The states of the seminorm bal-

ancing game are r× r integer matrices M . The matrix M is updated in each round as

follows:

1. The minimizer chooses a row vector v in (2Z−1)r; that is, a list of r odd numbers.

2. The maximizer chooses a number i ∈ [r] and adds v to the ith row of M .

The value for the maximizer is the value of ‖M‖Sr at the end of the game. ♦
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The coloring χ : [r]d → (2Z−1) determines the following strategy for the minimizer:

if the maximizer chose rows a = a1, . . . , ak−1 in rounds 1, . . . , k − 1, the minimizer

chooses the vector v = χ(a1), . . . , χ(ar) in round k, where χ on [r]k is determined by

χ on [r]d as in Definition 2.13. If the minimizer plays this strategy and the maximizer

plays a ∈ [r]d, the matrix after the kth round will be Mχ(a[k]), because Mχa[k−1](ak)

has v in the athk row and zeroes elsewhere. If the minimizer is constrained to choose

w, v in the (k − 1)st and kth rounds, respectively, such that
∑r

i=1 vi = wak−1
, then by

Eq. (2.3) the strategy of the minimizer is determined by some coloring χ as above.

However, the value of the game is Ω(d) even without this constraint on the minimizer.

To show this, we first bound the seminorm below by a simpler quantity. Recall that

‖M‖ denotes the Frobenius norm of the matrix M , i.e. is the square root of the sum

of squares of its entries.

Lemma 2.16. For σ ∈ Sr chosen uniformly at random,

‖M‖Sr ≥
√
Eσ(σ ·M)2 ≥ 1

2
√

6
‖M −M †‖.

Proof of Lemma 2.16. The first inequality is immediate. Let J be the all–ones matrix.

For the second inequality, we use the identity

Eσ(σ ·M)2 =
1

4
(tr J(M +M †))2 +

1

4
Eσ(σ · (M −M †))2. (2.8)

Eq. (2.8) follows because the expectation of the square of a random variable is its

mean squared plus its variance, and Eσσ ·M = 1
2 tr J(M + M †). The second term is

the variance because M = 1
2(M + M †) + 1

2(M −M †) and for any σ ∈ Sr, we have

σ · 1
2(M +M †) = Eσσ ·M .

Set A = M −M †. In particular, A is antisymmetric. Write

Eσ(σ ·A)2 =
∑
i,j,k,l

Ai,jAk,lE[1σ(i)>σ(j)1σ(k)>σ(l)]

=
1

4

∑
|{i,j,k,l}|=4

Ai,jAk,l +
1

3

∑
|{i,j,k}|=3

2Ai,jAi,k

+
1

6

∑
|{i,j,k}|=3

2Ai,jAj,k +
1

2

∑
|{i,j}|=2

Ai,jAi,j .
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This expression is obtained by computing E[1σ(i)>σ(j)1σ(k)>σ(l)] in each of the cases

and using antisymmetry of A.

• If |{i, j, k, l}| = 4, then E[1σ(i)>σ(j)1σ(k)>σ(l)] = 1/4.

• If |{i, j, k}| = 3, then E[1σ(i)>σ(j)1σ(i)>σ(k)] = 1/3, E[1σ(i)>σ(j)1σ(j)>σ(k)] = 1/6.

• If |{i, j}| = 2, then E[1σ(i)>σ(j)1σ(i)>σ(j)] = 1/2, E[1σ(i)>σ(j)1σ(j)>σ(i)] = 0.

Because A is antisymmetric, the sum over |{i, j, k, l}| = 4 is zero. Dropping this term,

combining the two terms with |{i, j, k}| = 3, and observing that
∑
|{i,j}|=2Ai,jAi,j =

‖A‖2, we have

Eσ(σ ·A)2 =
1

3

∑
i

∑
j 6=i

Ai,j

2

− ‖A‖2
+

1

2
‖A‖2 ≥ 1

6
‖A‖2 (2.9)

for any antisymmetric matrix A. Combining Eq. (2.9) and Eq. (2.8) completes the

proof.

By Lemma 2.16, it suffices to exhibit a strategy for the maximizer that enforces

‖M−M †‖ ≥ d after d rounds. This is rather easy – we may accomplish this by focusing

only on two entries of M : the maximizer only tries to control the 1, r and 2, r entries.

If in the kth round, minimizer chooses v with vr > 0, the maximizer sets ak = 1. Else,

maximizer sets ak = 2. Crucially, the entries of v are odd numbers; in particular, they

are greater than 1 in absolute value. Further, all but the first and second rows of M are

zero throughout the game. Thus, in the dth round, |(M −M †)2,r|+ |(M −M †)1,r| ≥ d,

so ‖M −M †‖ ≥ d.

Remark 2.17 (Improving the lower bound for higher values of r). To prove Con-

jecture 1.3, it suffices to show the maximizer can achieve ‖M‖Sr = f(r)d where

f(r) = ω(log r). A promising strategy is to replace ‖ · ‖Sr by another seminorm ‖ · ‖∗

and show that the maximizer can enforce ‖ · ‖∗ ≥ f(r)‖Id‖Sr→∗, where Id is the iden-

tity map on Matr×r(R). Obvious candidates such as ‖M −M †‖ and ‖M −M †‖1 do

not suffice. Here ‖B‖1 is the sum of the absolute values of entries of B. For instance,

the minimizer can enforce ‖M − M †‖ = O(d) or ‖M − M †‖1 = O(
√
rd), and even
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antisymmetric matrices A can achieve ‖A‖Sr ≤ ‖A‖ and ‖A‖Sr ≤
√

log r√
r
‖A‖1. The first

inequality is very easy to achieve, and a result of Erdos and Moon shows the second

is achieved by random ±1 antisymmetric matrices [EM65]. By the inapproximability

result mentioned in Remark 2.12, it is not likely that any of the easy–to–compute norms

‖ · ‖∗ have both ‖Id‖Sr→∗ and ‖Id‖∗→Sr bounded by constants independent of r. A

candidate seminorm is the cut–norm of the top–right 1/3r × 2/3r submatrix of M : it

is not hard to see that this seminorm is a lower bound for ‖M‖Sr .

2.3 Root–mean–squared discrepancy of permutation families

This section is concerned with the proof of Theorem 1.4. Before the proof, we discuss the

relationship between Theorem 1.4 and the previous lower bounds in [Mat13], [NTZ13],

[Lar17], presented below. The original lower bound was for the usual `∞ discrepancy.

Theorem 2.18 ([LSV86]). Denote by A be the |Ω| × |A| incidence matrix of (Ω,A),

and define

detlb(Ω,A) = max
k

max
B
|det(B)|1/k.

where B runs over all k × k submatrices of A. Then

herdisc∞(Ω,A) := max
Γ⊂Ω

disc∞(Ω,A) ≥ detlb(Ω,A).

It was proved in [Mat13] that this lower bound behaves well under unions:

Theorem 2.19 ([Mat13]).

detlb(Ω,A1 + · · ·+Ak) = O

(√
k max

i∈[k]
detlb(Ω,Ai)

)
,

where + denotes the multiset sum (union with multiplicity).

Next, consider the analogue of the determinant lower bound for disc2.

Theorem 2.20 (Theorem 6 of [Lar17]; corollary of Theorem 11 of [NTZ13] up to

constants). Denote by A be the |Ω| × |A| incidence matrix of (Ω,A), and define

detlb2(Ω,A) = max
Γ⊂Ω

√
m|Γ|
8πe

det(A|†SA|S)
1

2|Γ| .

Then herdisc2(Ω,A) ≥ detlb2(Ω,A).
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Theorem 2.21 (Consequence of the proof of Theorem 7 of [Lar17]).

herdisc2(Ω,A) = O(
√

log n detlb2(Ω,A)).

The main point of Theorem 2.21 and Theorem 2.20 is that detlb2 is a
√

log n ap-

proximation to herdisc2. Taken together with Theorem 2.19, we obtain the following

bound.

Observation 2.22 (Communicated by Aleksandr Nikolov).

herdisc2(Ω,A1 + · · ·+Ak) = O

(√
k log n max

i∈[k]
herdisc∞(Ω,Ai)

)
Proof. Applying the Cauchy-Binet identity to det(A†A) implies

detlb2(Ω,A) = O(detlb(Ω,A)).

By Theorem 2.21, Theorem 2.19, and Theorem 2.18,

herdisc2(Ω,A1 + · · ·+Ak) = O
(√

log n detlb2(Ω,A1 + · · ·+Ak)
)

= O
(√

log n detlb(Ω,A1 + · · ·+Ak)
)

= O

(√
k log n max

i∈[k]
detlb(Ω,Ai)

)
.

= O

(√
k log n max

i∈[k]
herdisc∞(Ω,Ai)

)

If (Ω,A) is a 1–permutation family, then herdisc∞(Ω,A) = 1. Combined with

Observation 2.22, we immediately recover the bound from [Spe87].

Corollary 2.23. If (Ω,A) is a k–permutation family, then herdisc2(Ω,A) ≤
√
k log n.

Theorem 1.4 implies that, for constant k, Corollary 2.23 and Observation 2.22

are tight. Further, the reasoning for Observation 2.22 shows that for k constant,

detlb2(Ω,A) is constant for k–permutation families (Ω,A). Thus, Theorem 1.4 shows

that Theorem 2.21 is best possible in the sense that there can be a Ω(
√

log n) gap

between detlb2(Ω,A) and herdisc2(Ω,A).

We now proceed with the proof of Theorem 1.4, which follows immediately from the

below proposition.
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Proposition 2.24 (Root–mean–discrepancy of a 6–permutation family).

disc2([3]d,AS3) ≥ oddisc2([3]d,AS3) = Ω(
√
d).

Fix a coloring χ : [3]d → 2Z − 1. We must show disc2(AS3 , χ)2 = Ω(d). By

Lemma 2.16 and Eq. (2.4),

disc2(AS3 , χ)2 = Ea[|χ(<σ a)|2] ≥ 1

2
√

6
Ea‖Mχ(a)−Mχ(a)†‖2. (2.10)

Consider again the seminorm unbalancing game of Definition 2.15. Let (Mi : i ∈

[d]) be the sequence of random matrices determined by minimizer playing strategy

χ against maximizer choosing the sequence of rows a uniformly at random, so that

Ea‖Mχ(a)−Mχ(a)†‖2 = Ea‖Md−M †d‖
2. It is enough to show Ea‖Md−M †d‖

2 = Ω(d).

Consider the sequence of random variables Yi = (Mi −M †i )1,2 + (Mi −M †i )2,3 − (Mi −

M †i )1,3. By the Cauchy-Schwarz inequality, ‖Md −M †d‖
2 ≥ |Yd|2/3, so it is enough to

show that Ea[Y 2
d ] = Ω(d). We will instead show the following, which clearly implies

Proposition 2.24.

Claim 2.25. Let χ : [3]d → 2Z − 1. If disc2(AS3 , χ) ≤ 0.2(1.9/
√

3)d then EaY 2
d ≥

10−4d.

We now make a few observations to motivate and aid in the proof of Claim 2.25.

The sequence Yi is a martingale with respect to Mi, because Yi − Yi−1|Mi−1 is equally

likely to be v2 − v3, v3 − v1, or v1 − v2 if the minimizer chooses v in round i. Because

Yi is a martingale,

EaY 2
d =

d∑
i=1

Ea[i−1]

[
(v2 − v3)2 + (v1 − v3)2 + (v1 − v2)2

3

∣∣∣∣a[i− 1]

]
. (2.11)

There are strategies for the minimizer that make the above quantity small, but they

are bad strategies if they come from a coloring χ. If (v2−v3)2 +(v1−v3)2 +(v1−v2)2 is

small, then v1, v2, v3 are typically equal. However, strategies induced by χ satisfy that

vk1 + vk2 + vk3 = vk−1
ak−1

if the minimizer chose vk−1, vk in round k− 1, k, respectively, and

the maximizer chose ak−1 in round k− 1. vk typically having equal entries should lead

to the entries of vk exponentially decreasing with k, which means that for k small they

must be very large. This leads to a high discrepancy.
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We now make this intuition precise. Firstly, because |AS3 | ≤ 6·3d, if disc2(AS3 , χ)2 ≤

0.25 · 1.92d/(6 · 3d), then |χ(E)| ≤ 0.5 · 1.9d for every E ∈ AS3 . It follows that |χ(ε)| =

|χ(<e 3) + χ(3)| = |χ(<e 3) + χ(<τ 32)| ≤ 1.9d where τ = (1, 3). In summary,

Observation 2.26. Let χ : [3]d → 2Z − 1. If disc2(AS3 , χ)2 ≤ 1.92d/(24 · 3d) then

|χ(ε)| ≤ 1.9d.

Next, we show that the assumption |χ(ε)| ≤ 1.9d implies many cancellations, and

that this implies Eq. (2.11) is large. For a ∈ [r]0∪ [r]1∪· · ·∪ [r]d, define the cancellation

of χ at a by

Cχ(a) =
∑
i∈[3]

|χ(ai)| − |χ(a)| . (2.12)

For i ∈ [d], define the average cancellation Ciχ = Ea∈[r]iCχ(a). The following two

propositions, along with Observation 2.26, imply Claim 2.25.

Proposition 2.27. Let χ : [3]d → 2Z− 1. EY 2
d ≥

1
d

(∑d
i=1C

i
χ

)2
.

Proposition 2.28. Let χ : [3]d → 2Z−1. If |χ(ε)| ≤ 1.9d and d ≥ 400, then
∑d

i=1C
i
χ ≥

0.01d.

Proof of Proposition 2.27. In response to a = a1 . . . ak−1, the maximizer plays the vec-

tor v = (χ(a1), χ(a2), χ(a3)). Then

Cχ(a)2 = (|v1|+ |v2|+ |v3| − |v1 + v2 + v3|)2 (2.13)

≤ (|v1 − v2|+ |v2 − v3|+ |v3 − v1|)2 (2.14)

≤ 3
(
|v1 − v2|2 + |v2 − v3|2 + |v3 − v1|2

)
. (2.15)

Eq. (2.14) is the inequality |a|+ |b|+ |c| − |a+ b+ c| ≤ |a− b|+ |b− c|+ |c− a|, which

can be proved by cases: without loss of generality, a ≤ b ≤ c, if all are positive, then

both sides vanish; else, without loss of generality a ≤ 0 ≤ b. In this case the left–hand

side is 2|a|, but the right–hand side is 2|a|+ 2|c|. Thus, if the strategy of the minimizer
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is induced by χ, using Eq. (2.15) and Eq. (2.11) we have

EaY 2
d =

d∑
i=1

Ea[i−1]

[
(v2 − v3)2 + (v1 − v3)2 + (v1 − v2)2

3

∣∣∣∣a[i− 1]

]

≥
d∑
i=1

Ea∈[r]i
[
Cχ(a)2

]
≥

d∑
i=1

Ciχ
2 ≥ 1

d

(
d∑
i=1

Ciχ

)2

. (2.16)

Proof of Proposition 2.28. Define the average absolute value |χi| = Ea∈[r]i |χ(a)|. Note

that |χi| ≥ 1. Thus, there exists j ∈ {1, . . . , d.99de} such that |χj−1| ≤ 2|χj |, else

|χ(ε)| = |χ0| ≥ 2.99d > 1.9d.

Taking the expectation of both sides of the definition Eq. (2.12) of cancellation

yields the identity

Ciχ = 3|χi+1| − |χi|,

so
d−1∑
i=j

Ciχ = 3|χd| − |χj−1|+ 2

d−1∑
i=j

|χi| ≥ 2

d−1∑
i=j+1

|χi| ≥ 2(b0.01dc − 2).

The right–hand side is at least 0.01d provided d is at least 400.

2.4 Root–mean–squared discrepancy under unions

The proof of Theorem 2.21 proceeds through an intermediate quantity defined in

[Lar17]. Denote by A be the |Ω| × |A| incidence matrix of (Ω,A), and let λl be the lth

largest eigenvalue of A†A. Define

kgl(Ω,A) = max
1≤l≤min{|Ω|,|A|}

l

e

√
λl

8π|Ω||A|

and herkgl(Ω,A) = max
Γ⊂Ω

kgl(Γ,A|Γ).

Theorem 2.29 (Corollary 2 and consequence of the proof of Theorem 7 of [Lar17]).

herkgl(Ω,A) ≤ detlb2(Ω,A) ≤ herdisc2(Ω,A) = O(
√

log n herkgl(Ω,A)).

Like detlb, the quantity herkgl behaves nicely under unions.

Observation 2.30. herkgl(Ω,A1 + · · ·+Ak) ≤ kmaxi∈[k] herkgl(Ω,Ai).
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Proof of Observation 2.30. Let C = maxi∈[k] herkgl(Ω,Ai). It is enough to show

kgl(Γ, (A1 + · · ·+Ak)|Γ) ≤ kC for any Γ ⊂ Ω. Let |Γ| = n, mi = |Ai|, and
∑
mi = m.

If Ai is the incidence matrix of (Γ,Ai|Γ) and A that of (Γ, (A1 + · · ·+Ak)|Γ), then

A†A = A†iAi + · · ·+A†iAi.

Weyl’s inequality on the eigenvalues of Hermitian matrices asserts that if H1 and H2

are n × n Hermitian matrices then λi+j−1(H1 + H2) ≤ λ(H1)i + λ(H2)j for all 1 ≤

i, j ≤ i+ j−1 ≤ n. Applying this inequality inductively, λl(A
†A) ≤

∑k
i=1 λdl/ke(A

†
iAi).

Thus,

kgl(Γ, (A1 + · · ·+Ak)|Γ) = max
1≤l≤min{n,m}

l

e

√
λl(A†A)

8πmn

≤ max
1≤l≤min{n,mk}

l

e

√∑k
i=1 λdl/ke(A

†
iAi)

8πmn

≤ kC.

where in the last line we used
∑
mi = m and λdl/ke(A

†
iAi) ≤ 8πmin

(
Cek
l

)2
from our

assumption that kgl(Γ,Ai|Γ) ≤ herkgl(Ω,Ai) ≤ C.

The following cousin of Observation 2.22 is a pleasant consequence of Observa-

tion 2.30 and Theorem 2.29.

Corollary 2.31 (Theorem 1.5 restated).

herdisc2(Ω,A1 + · · ·+Ak) = O

(
k
√

log n max
i∈[k]

herdisc2(Ω,Ai)
)
.

Improving k to
√
k in Observation 2.30, would strengthen Observation 2.22 and

generalize Theorem 2.2.
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Chapter 3

Discrepancy of random matrices with many columns

This work is based on the joint work [FS18] of the author and Michael Saks.

3.1 Introduction

We continue our study of discrepancy, turning to the discrepancy of random matrices

and set-systems. The discrepancy of a matrix M ∈ Matm×n(C) or Matm×n(R) is

disc(M) = min
v∈{+1,−1}n

‖Mv‖∞. (3.1)

If M is the incidence matrix of the set-system (Ω,S), then Eq. (3.1) and Eq. (2.1) agree.

Using a clever linear-algebraic argument, Beck and Fiala showed that the discrepancy

of a set-system (Ω,S) is bounded above by a function of its maximum degree ∆(S) :=

maxx∈Ω |{S ∈ S : x ∈ S}|. If ∆(S) is at most t, we say (Ω,S) is t-sparse.

Theorem 3.1 (Beck-Fiala [BF81]). If (Ω,S) is t-sparse, then disc(Ω,S) ≤ 2t− 1.

Beck and Fiala conjectured that disc(S) is actually O(
√
t) for t-sparse set-systems

(Ω,S). The following stronger conjecture is due to Komlós:

Conjecture 3.2 (Komlós Conjecture; see [Spe87]). If every column of M has Euclidean

norm at most 1, then disc(M) is bounded above by an absolute constant independent of

n and m.

This conjecture is still open. The current record is due to Banaszczyk [Ban98], who

showed disc(M) = O(
√

log n) if every column of M has norm at most 1. This implies

disc(Ω,S) = O(
√
t log n) if (Ω,S) is t-sparse.
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3.1.1 Discrepancy of random matrices.

Motivated by the Beck-Fiala conjecture, Ezra and Lovett initiated the study of the dis-

crepancy of random t-sparse matrices [EL16]. Here, motivated by the Komlós conjec-

ture, we study the discrepancy of random m×n matrices with independent, identically

distributed columns.

Question 3.3. Suppose M is an m × n random matrix with independent, identically

distributed columns drawn from a vector random variable that is almost surely of Eu-

clidean norm at most one. Is there a constant C independent of m and n such that for

every ε > 0, disc(M) ≤ C with probability 1− ε for n and m large enough?

The Komlós conjecture, if true, would imply an affirmative answer to this question.

We focus on the regime where n� m, i.e., the number of columns is much larger than

the number of rows.

A few results are known in the regime n = O(m). The theorems in this direc-

tion actually control the possibly larger hereditary discrepancy. Define the hereditary

discrepancy herdisc(M) by

herdisc(M) = max
Y⊂[n]

disc(M |Y ),

where M |Y denotes the m×|Y | matrix whose columns are the columns of M indexed by

Y . Again, this agrees with the definition of the hereditary discrepancy of a set-system

if M is the incidence matrix of the system.

Clearly disc(M) ≤ herdisc(M). Often the Komlós conjecture is stated with disc

replaced by herdisc. While the Komlós conjecture remains open, some progress has

been made for random t-sparse matrices. To sample a random t-sparse matrix M ,

choose each column of M uniformly at random from the set of vectors with t ones and

m− t zeroes. Ezra and Lovett showed the following:

Theorem 3.4 ([EL16]). If M is a random t-sparse matrix and n = O(m), then

herdisc(M) = O(
√
t log t) with probability 1− exp(−Ω(t)).

The above does not imply a positive answer to Question 3.3 due to the factor of
√

log t, but is better than the worst-case bound
√
t log n due to Banaczszyk.
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We now turn to the regime n � m. It is well-known that if disc(M |Y ) ≤ C

holds for all |Y | ≤ m, then disc(M) ≤ 2C [AS04]. However, this observation is not

useful for analyzing random matrices in the regime n � m. Indeed, if n is large

enough compared to m, the set of submatrices M |Y for |Y | ≤ m is likely to contain a

matrix of the largest possible discrepancy among t-sparse m×m matrices, so improving

discrepancy bounds via this observation is no easier than improving the Beck-Fiala

theorem. The discrepancy of random matrices when n � m behaves quite differently

than the discrepancy when n = O(m). For example, the discrepancy of a random

t-sparse matrix with n = O(m) is only known to be O(
√
t log t), but it becomes O(1)

with high probability if n is large enough compared to m.

Theorem 3.5 ([EL16]). Let M be a random t-sparse matrix. If n = Ω
((
m
t

)
log
(
m
t

))
then disc(M) ≤ 2 with probability 1−

(
m
t

)−Ω(1)
.

3.1.2 Discrepancy versus covering radius

Before stating our results, we describe a simple relationship between the covering radius

of a lattice and a certain variant of discrepancy. We’ll need a few definitions.

• For S ⊆ Rm, let spanR S denote the linear span of of S, and spanZ S denote the

integer span of S.

• A lattice is a discrete subroup of Rm. Note that the set spanZ S is a subgroup of

Rm, but need not be a lattice. If S is linearly independent or lies inside a lattice,

spanZ S is a lattice. Say a lattice in Rm is nondegenerate if spanR L = Rm.

• For any norm ‖ · ‖∗ on Rm, we write d∗(x, y) for the associated distance, and for

S ⊆ Rm, d∗(x, S) is defined to be infy∈S d∗(x, y).

• The covering radius ρ∗(S) of a subset S with respect to the norm ‖ · ‖∗ is

supx∈spanR S
d∗(x, S) (which may be infinite.)

• The discrepancy may be defined in other norms than `∞. If M is an m×n matrix

and ‖ · ‖∗ a norm on Rm, define the ∗-discrepancy disc∗(M) by

disc∗(M) := min
y∈{±1}

‖My‖∗.
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In particular, disc(M) is disc∞(M).

A natural relaxation of ∗-discrepancy is the odd∗ discrepancy, denoted oddisc∗(M).

Instead of assigning ±1 to the columns, one could minimize ‖My‖∗ for y with odd

entries. This definition is consistent with the odd discrepancy of a set-system. By

writing each odd integer as 1 plus an even number, it is easy to see that the odd∗

discrepancy of M is equal to

oddisc∗(M) = d∗(M1, 2L) ≤ 2ρ∗(L).

where L is the lattice generated by the columns of M and 1 is the all-ones vector.

In fact, by standard argument which can be found in [LSV86], the maximum odd∗

discrepancy of a matrix whose columns generate L is sandwiched between ρ∗(L) and

2ρ∗(L).

In general, disc∗(M) can be arbitrarily large compared to oddisc∗(M), even for

m = 1, n = 2. If r ∈ Z then M = [2r+1, r] has ρ∗(spanZM) = 1/2 but disc∗(M) = r+1.

However, the discrepancy of a random matrix with many columns drawn from L behaves

more like the odd discrepancy.

Proposition 3.6. Suppose X is a random variable on Rm whose support generates a

lattice L. Then for any ε > 0, there is an n0(ε) so that for n > n0(ε), a random m×n

matrix with independent columns generated from X satisfies

disc∗(M) ≤ d∗(M1, 2L) ≤ 2ρ∗(L)

with probability at least 1− ε.

Proof. Let S be the support of S. For every subset T of S, let sT be the sum of the

elements of T . Let C be large enough that for all T , there is an integer combination

vT of elements of S with even coefficients at most C such that ‖vT − sT ‖ ≤ d∗(sT , 2L).

Choose n0(ε) large enough so that with probability at least 1 − ε, if we take n0(ε)

samples of X, every element of S appears at least C+ 1 times. Let n ≥ n(ε) and let M

be a random matrix obtained by selecting n columns according to X. With probability

at least 1−ε every vector in S appears at least C times. We claim that if this happens,
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disc∗(M) ≤ d∗(M1, 2L). This is because if T is the subset of S that appeared an

odd number of times in M , d∗(M1, 2L) = d∗(sT , 2L), but because each element of S

appears at least C + 1 times, we may choose y ∈ {±1}n so that My = sT − vT for

‖vT − sT ‖ ≤ d∗(sT , 2L).

3.1.3 Our results

The above simple result says nothing about the number of columns required for M

to satisfy the desired inequality with high probability. The focus of this chapter is

on obtaining quantitative upper bounds on the function n0(ε). We will consider the

case when spanZ supp(X) is a lattice L. The bounds we obtain will be expressed in

terms of m and several quantities associated to the lattice L, the random variable

X and the norm ‖ · ‖∗. Without loss of generality, we assume X is symmetric, i.e.

Pr[X = x] = Pr[X = −x] for all x. For a real number L > 0 we write B(L) for the set

of points in Rm of (Euclidean) length at most L.

• The ‖ · ‖∗ covering radius ρ∗(L).

• The distortion R∗ of the norm ‖ · ‖∗, which is defined to be maximum Euclidean

length of a vector x such that ‖x‖∗ = 1. For example, R∞ =
√
m.

• The determinant detL of the lattice L, which is the determinant of any matrix

whose columns form a basis of L.

• The determinant det Σ, where Σ = E[XX†] is the m×m covariance matrix of X.

• The smallest eigenvalue σ of Σ.

• The maximum Euclidean length L = L(Z) of a vector in the support of Z =

Σ−1/2X.

• A parameter s(X) called the spanningness. The definition of this crucial param-

eter is technical and is given in Section 3.1.4; roughly speaking, it is large if X is

not heavily concentrated near some proper sublattice of L.

We now state our main quantitative theorem about discrepancy of random matrices.
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Theorem 3.7 (Main discrepancy theorem). Suppose X is a random variable on a

nondegenerate lattice L. Let Σ := EXX† have least eigenvalue σ. Suppose suppX ⊂

Σ1/2B(L) and that L = spanZ suppX. If n ≥ N then

disc∗(M) ≤ d∗(M1, 2L) ≤ 2ρ∗(L)

with probability at least

1−O

(
L

√
log n

n

)
.

Here N , given by Eq. (3.22) in Section 3.2, is a polynomial in the quantities m,

s(Σ−1/2X)−1, L, R∗, ρ∗(L), and log (detL/ det Σ).

Remark 3.8 (degenerate lattices). Our assumption that L is nondegenerate is without

loss of generality; if L is degenerate, we may simply restrict to spanR L and apply

Theorem 3.7. Further, the assumptions that L = spanZ suppX and L is nondegenerate

imply σ > 0.

Remark 3.9 (weaker moment assumptions). Our original motivation, the Kómlos

conjecture, led us to study the case when the random variable X is bounded. This

assumption is not critical. We can prove a similiar result under the weaker assumption

that (E‖X‖η)1/η = L <∞ for some η > 2. The proofs do not differ significantly, so we

give a brief sketch in Section 3.4.4. ♦

Obtaining bounds on the spanningness is the most difficult aspect of applying Theo-

rem 3.7. We’ll do this for random t-sparse matrices, for which we extend Theorem 3.5 to

the regime n = Ω(m3 log2m). For comparison, Theorem 3.5 only applies for n�
(
m
t

)
,

which is superpolynomial in m if min(t,m− t) = ω(1).

Theorem 3.10 (discrepancy for random t-sparse matrices). Let M be a random t-

sparse matrix. If n = Ω(m3 log2m) then

disc(M) ≤ 2

with probability at least 1−O
(√

m logn
n

)
.

Remark 3.11. We refine this theorem later in Theorem 3.24 of Section 3.3 to prove

that the discrepancy is, in fact, usually 1. ♦
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Using analogous techniques to the proof of Theorem 3.7, we also prove a simi-

lar result for a non-lattice distribution, namely the matrices with random unit vector

columns.

Theorem 3.12 (random unit vector discrepancy). Let M be a matrix with i.i.d random

unit vector columns. If n = Ω(m3 log2m), then

discM = O(e−
√

n
m3 )

with probability at least 1−O
(
L
√

logn
n

)
.

One might hope to conclude a positive answer to Question 3.3 in the regime n �

m from Theorem 3.7. This seems to require the following weakening of the Komlós

conjecture:

Conjecture 3.13. There is an absolute constant C such that for any lattice L generated

by unit vectors, ρ∞(L) ≤ C.

3.1.4 Proof overview

In what follows we focus on the case when X is isotropic, because we may reduce to

this case by applying a linear transformation. The discrepancy result for the isotropic

case, Theorem 3.20, is stated in Section 3.2, and Theorem 3.7 is an easy corollary. We

now explain how the parameters in Theorem 3.7 arise.

The theorem is proved via local central limit theorems for sums of vector random

variables. Suppose M is a fixed m× n matrix with bounded columns and consider the

distribution over Mv where v is chosen uniformly at random from (±1)n. Multidimen-

sional versions of the central limit theorem imply that this distibution is approximately

normal. We will be interested in local central limit theorems, which provide precise

estimates on the probability that Mv falls in a particular region. By applying an ap-

propriate local limit theorem to a region around the origin, we hope to show that the

probability of being close to the origin is strictly positive, which implies that there is a

±1 assignment of small discrepancy.
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We do not know suitable local limit theorems that work for all matrices M . We

will consider random matrices of the form M = MX(n), where X is a random variable

taking values in some lattice L ⊂ Rm, and MX(n) has n columns selected independently

according to X. We will show that, for suitably large n (depending on the distribution

X), such a random matrix will, with high probability, satisfy a local limit theorem. The

relative error in the local limit theorem will decay with n, and our bounds will provide

quantitative information on this decay rate. In order to understand our bounds, it helps

to understand what properties of X cause the error to decay slowly with n.

We’ll seek local limit theorems that compare Pry[My = w] to something propor-

tional to e−
1
2
w†(MM†)−1w. One cannot expect such precise control if the lattice is very

fine. If the spacing tends to zero, we approach the situation in which X is not on

a lattice, in which case the probability of expressing any particular element could al-

ways be zero! In fact, in the nonlattice situation the covering radius can be zero but

the discrepancy can typically be nonzero. For this reason our bounds will depend on

log(detL) and on L.

We also need ρ∗(L) and the distortion R∗ to be small to ensure e−
1
2
w†(MM†)−1w

is not too small for some vector w that we want to show is hit by My with positive

probability over y ∈ {±1}n.

Finally, we need that X does not have most of its mass on or near a smaller sublattice

L′. This is the role of spanningness, which is analogous to the spectral gap for Markov

chains. Since we assume X is symmetric, choosing the columns M and then choosing

y at random is the same as adding n identically distributed copies of X. Intuitively,

this means that if M is likely to have My distributed according to a lattice Gaussian,

then the sum of n copies of X should also tend to the lattice Gaussian on L. If the

support of X is contained in a smaller lattice L′, then clearly X cannot obey such a

local central limit theorem, because sums of copies of X are also contained in L′. In

fact, this is essentially the only obstruction up to translations. We may state the above

obstruction in terms of the dual lattice and the Fourier transform of X.
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Definition 3.14 (Dual lattice). If L is a lattice, the dual lattice L∗ of L is the set

L∗ = {z : 〈z,λ〉 ∈ Z for all λ ∈ L}.

The Fourier transform X̂ of X is the function defined on θ ∈ Rm by X̂(θ) =

E[exp(2πi〈X,θ〉)]. Note that |X̂(θ)| is always 1 for θ ∈ L∗. In fact, if |X̂(θ)| = 1 also

implies that θ ∈ L∗, then the support of X is contained in no (translation of a) proper

sublattice of L! This suggests that, in order to show that a local central limit theorem

holds, it is enough to rule out vectors θ outside the dual lattice with |X̂(θ)| = 1.

In this work, the obstructions are points θ far from the dual lattice with

E[|〈θ, X〉 mod 1|2]

small, where the range of mod 1 is defined to be (−1/2, 1/2]. However, we know that for

θ very close to the dual lattice we have |〈θ,x〉 mod 1|2 = |〈θ,x〉|2 for all x ∈ suppX,

so E[|〈θ, X〉 mod 1|2] is exactly d(θ,L∗)2. The spanningness measures the value of

E[|〈θ, X〉 mod 1|2] where this relationship breaks down.

Definition 3.15 (Spanningness for isotropic random variables). Suppose that Z is an

isotropic random variable defined on the lattice L. Let

Z̃(θ) :=
√
E[|〈θ, Z〉 mod 1|2],

where y mod 1 is taken in (−1/2, 1/2], and say θ is pseudodual if Z̃(θ) ≤ d(θ,L∗)/2.

Define the spanningness s(Z) of Z by

s(Z) := inf
L∗ 63 θ pseudodual

Z̃(θ).

It is a priori possible that s(Z) =∞.

Spanningness is, intuitively, a measure of how far Z is from being contained in a

proper sublattice of L. Indeed, s(Z) = 0 if and only if this the case. Bounding the

spanningness is the most difficult part of applying our main theorem. Our spanningness

bounds for t-sparse random matrices use techniques from the recent work of Kuperberg,

Lovett and Peled [KLP12], in which the authors proved local limit theorems for My for

non-random, highly structured M . Our discrepancy bounds also apply to the lattice

random variables considered in [KLP12] with the spanningness bounds computed in

that paper; this will be made precise in Lemma 3.33 of Section 3.3.1.
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Related work

We submitted a draft of this work in April 2018, and during our revision process Hoberg

and Rothvoss posted a paper on arXiv using very similar techniques on a closely related

problem [HR18]. They study random m×n matrices M with independent entries that

are 1 with probability p, and show that for discM = 1 with high probability in n

provided n = Ω(m2 logm). The results are closely related but incomparable: our

results are more general, but when applied to their setting we obtain a weaker bound

of n ≥ Ω(m3 log2m). Costello [Cos09] obtained very precise results in every norm

when X is Gaussian, which imply the discrepancy is constant with high probability for

n = O(m logm).

Organization of the chapter

• In Section 3.2 we build the technical machinery to carry out the strategy from

the previous section. We state our local limit theorem and show how to use it to

bound discrepancy.

• In Section 3.3 we recall some techniques for bounding spanningness, the main

parameter that controls our local limit theorem, and use these bounds to prove

Theorem 3.10 on the discrepancy of random t-sparse matrices.

• Section 3.4 contains the proofs of our local limit theorems.

• In Section 3.5 we use similar techniques to bound the discrepancy of matrices

with random unit columns.

Notation

If not otherwise specified, M is a random m× n matrix with columns drawn indepen-

dently from a distribution X on a lattice L that is supported only in a ball B(L), and

the integer span of the support of X (denoted suppX) is L. Σ denotes EXX†. D will

denote the Voronoi cell of the dual lattice L∗ of L. ‖ · ‖∗ denotes an arbitrary norm.

Throughout the chapter there are several constants c1, c2, . . . . These are assumed to be
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absolute constants, and we will assume they are large enough (or small enough) when

needed.

3.2 Likely local limit theorem and discrepancy

Here we show that with high probability over the choice of M , the random variable My

resembles a Gaussian on the lattice L. We also show how to use the local limit theorem

to bound discrepancy.

For ease of reference, we define the rate of growth n must satisfy in order for our

local limit theorems to hold.

Definition 3.16. Define N0 = N0(m, s(X), L,detL) by

N0 := c14 max
{
m2L2(logm+ logL)2, s(X)−4L−2, L2 log2 detL

}
, (3.2)

where c14 is a suitably large absolute constant.

A few definitions will be of use in the next theorem.

Definition 3.17 (Lattice Gaussian). For a matrix M , define the lattice Gaussian with

covariance 1
2MM † by

GM (λ) =
2m/2 det(L)

πm/2
√

det(MM †)
e−2λ†(MM†)−1λ.

Theorem 3.18. Let X be a random variable on a lattice L such that EXX† = Im,

suppX ⊂ B(L), and L = spanZ suppX. For n ≥ N0, with probability at least 1 −

c13L
√

logn
n over the choice of columns of M , for all λ ∈ L − 1

2M1,∣∣∣∣ Pr
yi∈{±1/2}

[My = λ]−GM (λ)

∣∣∣∣ = GM (0) · 2m2L2

n
. (3.3)

where GM is as in Definition 3.17.

Equipped with the local limit theorem, we may now bound the discrepancy. We use

a special case of a result by Rudelson.

Theorem 3.19 ([Rud99]). Suppose X is an isotropic random vector in Rm such that

‖X‖ ≤ L almost surely. Let the n columns of the matrix M be drawn i.i.d from X. For
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some absolute constant c4 independent of m,n

E
∥∥∥∥ 1

n
MM † − Im

∥∥∥∥
2

≤ c4L

√
log n

n
.

In particular, there is a constant c5 such that with probability at least 1− c5L
√

logn
n we

have

MM † � 2nIm (concentration)

and MM † � 1

2
nIm (anticoncentration)

We restate Theorem 3.7 using N0.

Theorem 3.20 (discrepancy for isotropic random variables). Suppose X is an isotropic

random variable on a nondegenerate lattice L with L = spanZ suppX and suppX ⊂

B(L). If n ≥ N then

disc∗(M) ≤ d∗(M1, 2L) ≤ 2ρ∗(L)

with probability 1− c6L
√

logn
n , where

N1 = c15 max
{
R2
∗ρ∗(L)2, N0 (m, s(X), L,detL)

}
(3.4)

for N0 as in Eq. (3.2).

Proof. By the definition of the covering radius of a lattice, there is a point λ ∈ L− 1
2M1

with ‖λ‖∗ ≤ d∗(1
2M1,L) ≤ ρ∗(L). It is enough to show that, with high probability over

the choice of M , the point λ is hit by My with positive probability over y ∈ {±1/2}n.

If so, 2y is a coloring of M with discrepancy 2ρ∗(L).

Let n be at least N0(m, s(X), L,detL′). By Theorem 3.19, the event MM † �
1
2nIm and the event in Theorem 3.18 simultanously hold with probability at least 1−

c6L
√

logn
n We claim that if the event in Theorem 3.18 occurs, then λ is hit by My

with positive probability. Indeed, conditioned on this event, for all λ ∈ L− 1
2M1 with

e−2λ†(MM†)−1λ > 2m2L2/n we have

Pr
y∈{±1/2}n

(My = λ) > 0.

Because n ≥ N , e−1 ≥ 2m2L2/n. Thus, it is enough to show λ†(MM †)−1λ < 1
2 . This

is true because MM † � 1
2nIm and so λ†(MM †)−1λ ≤ 2‖λ‖2∗

R2
∗
n ≤ 2R

2
∗
n ρ∗(L)2.
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Now Theorem 3.7 is an immediate corollary of Theorem 3.20.

Theorem 3.21 (Restatement of Theorem 3.7). Suppose X is a random variable on

a nondegenerate lattice L. Suppose Σ := E[XX†] has least eigenvalue σ, suppX ⊂

Σ1/2B(L), and that L = spanZ suppX. If n ≥ N then

disc∗(M) ≤ d∗(M1, 2L) ≤ 2ρ∗(L)

with probability at least 1− c13L
√

logn
n , where

N = c15 max

{
R2
∗ρ∗(L)2

σ
,N0

(
m, s(Σ−1/2X), L,

detL√
det Σ

)}
(3.5)

for N0 as in Eq. (3.2).

Proof. Note that σ > 0, because L is nondegenerate and

L = spanZ suppX ⊂ spanR suppX.

Thus, σ = 0 contradicts spanR suppX ( Rm.

Let Z := Σ−1/2X so that E[ZZ†] = Im; we’ll apply Theorem 3.20 to the ran-

dom variable Z, the norm ‖ · ‖∗∗ given by ‖v‖∗∗ := ‖Σ1/2v‖∗, and the lattice L′ =

Σ−1/2L. The distortion R0 is at most R∗/σ
1/2, the lattice determinant becomes detL′ =

detL/
√

det Σ, and suppZ ⊂ B(L). The covering radius of ρ0(L′) is exactly ρ∗(L). Since

the choice of N in Eq. (3.22) is N1 of Theorem 3.20 for Z, ‖ · ‖∗∗, and L′, we have from

Theorem 3.20 that

disc∗(M) = disc0(Σ−1/2M) ≤ 2ρ0(L′) = 2ρ∗(L)

with probability at least 1− c13L
√

logn
n .

3.3 Discrepancy of random t-sparse matrices

Here we will state our spanningness bounds for t-sparse matrices, and before proving

them, compute the bounds guaranteed by Theorem 3.7.

Fact 3.22 (random t-sparse vector). A random t-sparse vector is 1S for S drawn

uniformly at random from
(

[m]
t

)
. Let X be a random t-sparse vector with 0 < t < m.
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The lattice L ⊂ Zm is the lattice of integer vectors with coordinate sum divisible by t;

we have ρ∞(L) = 1. Observe that L∗ = Zm+Z1
t1, where 1 is the all ones vector. Since

e1, . . . , em−1,
1
t1 is a basis for L∗, detL = 1/detL∗ = t.

Σi,j = E[XX†]ij =


t
m i = j

t(t−1)
m(m−1) i 6= j

The eigenvalues of Σ are t2

m with multiplicity one, and t(m−t)
m(m−1) with multiplicity m− 1.

The next lemma is the purpose of the next two subsections.

Lemma 3.23. There is a constant c10 such that the spanningness is at least c10m
−1;

that is,

s(Σ−1/2X) ≥ c10m
−1.

Before proving this, we plug the spanningness bound into Theorem 3.21 to bound

the discrepancy of t-sparse random matrices.

Proof of Theorem 3.10. If X is a random t-sparse matrix, ‖Σ−1/2X‖ is
√
m with prob-

ability one. This is because E‖Σ−1/2X‖2 = m, but by symmetry ‖Σ−1/2x‖ is the same

for every x ∈ suppX. Hence, we may take L =
√
m. By Fact 3.22, σ is t(m−t)

m(m−1) . Now

N from Theorem 3.21 is at most

c15 max


m · m(m− 1)

t(m− t)︸ ︷︷ ︸
R2∞ρ∞(L)2

σ

, m3 log2m︸ ︷︷ ︸
m2L2(logM+logL)2

, m3︸︷︷︸
s(X)−4L−2

m log2 t︸ ︷︷ ︸
L2 log2 detL


, (3.6)

which is O(m3 log2m).

We can refine this theorem to obtain the limiting distribution for the discrepancy.

Theorem 3.24 (discrepancy of random t-sparse matrices). Let M be a random t-sparse

matrix for 0 < t < m. Let Y = B(m, 1/2) be a binomial random variable with m trials

and success probability 1/2. Suppose n = Ω(m3 log2m). If n is even, then

Pr[disc(M) = 0] = 2−m+1 +O
(√

(m/n) log n
)

Pr[disc(M) = 1] = (1− 2−m+1) +O
(√

(m/n) log n
)
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and if n is odd then

Pr[disc(M) = 0] = 0

Pr[disc(M) = 1] = Pr[Y ≥ t|Y ≡ t mod 2] +O
(√

(m/n) log n
)

Pr[disc(M) = 2] = Pr[Y < t|Y ≡ t mod 2] +O
(√

(m/n) log n
)

with probability at least 1−O
(√

m logn
n

)
. Note that

Pr[Y ≤ s|Y ≡ t mod 2] = 2−m+1
s∑

k≡t mod 2

(
m

k

)
.

We use a standard lemma, which we prove in Appendix B.1.

Lemma 3.25 (Number of odd rows). Suppose Xn is a sum of n uniformly random

vectors of Hamming weight 0 < t < m in Fm2 and Zn is a uniformly random element

of Fm2 with Hamming weight having the same parity as nt. If dTV denotes the total

variation distance, then

dTV (Xn, Zn) = O(e−(2n/m)+m).

Proof of Theorem 3.24. The proof is identical to that of Theorem 3.10 apart from mak-

ing use of the upper bound d∗(M1, 2L) rather than the cruder 2ρ∗(L). There are two

cases:

Case 1: n is odd. The coordinates of M1 sum to nt. The lattice 2L is the integer

vectors with even coordinates whose sum is divisible by 2t. Thus, in order to

move M1 to 2L, each odd coordinate must be changed to even and the total sum

must be changed by an odd number times t. The number of odd coordinates has

the same parity as t, so we may move M to 2L by changing each coordinate by

at most 1 if and only if the number of odd coordinates is at least t.

Case 2: n is even. In this case, the total sum of the coordinates must be changed by

an even number times t. The parity of the number of odd coordinates is even,

so the odd coordinates can all be changed to even preserving the sum of all the

coordinates. This shows may move M to 2L by changing each coordinate by at

most 1, and by at most 0 if all the coordinates of M1 are even.
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Thus, in the even case the discrepancy is at most 1 with the same failure probability and

0 with the probability all the row sums are even, and in the odd case the discrepancy is

at most 1 provided the number of odd coordinates of M1 is at least t. Observe that the

vector of row sums of a m×n random t-sparse matrix taken modulo 2 is distributed as

the sum of n random vectors of Hamming weight t in Fm2 . Lemma 3.25 below shows that

the Hamming weight of this vector is at most O(e−2n/m+3m) in total variation distance

from a binomial B(m, 1/2) conditioned on having the same parity as nt. Because this

is dominated by
√

(m/n) log n for n ≥ m3 log2m, the theorem is proved.

We’ll now discuss a general method for bounding the spanningness of lattice random

variables.

3.3.1 Spanningness of lattice random variables

Suppose X is a finitely supported random variable on L. We wish to bound the span-

ningness s(X) below. The techniques below nearly identical to those in [KLP12], in

which spanningness is bounded for a very general class of random variables.

We may extend spanningness for nonisotropic random variables.

Definition 3.26 (nonisotropic spanningness). A distribution X with finite, nonsingular

covariance EXX† = Σ determines a metric dX on Rm given by dX(θ1,θ2) = ‖θ1−θ2‖X

where the square norm ‖θ‖2X is given by θ†Σθ = E[〈X,θ〉2]. Let

X̃(θ) :=
√

E[|〈θ, X〉 mod 1|2],

where y mod 1 is taken in (−1/2, 1/2], and say θ is pseudodual if X̃(θ) ≤ dX(θ,L∗)/2.

Define the spanningness s(X) of X by

s(X) := inf
L∗ 63 θ pseudodual

X̃(θ).

This definition of spanningness is invariant under invertible linear transformations X ←

AX and L ← AL; in particular, s(X) is the same as s(Σ−1/2X) for which we have

‖θ‖Σ−1/2X = ‖θ‖. Hence, this definition extends the spanningness of Definition 3.15.
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Strategy for bounding spanningness

Our strategy for bounding spanningness follows [KLP12]; we present it here for com-

pleteness and consistency of notation. To bound spanningness, we need to show that

if θ is pseudodual but not dual, i.e., 0 < X̃(θ) ≤ d(x,L∗)/2, then X̃(θ) is large. We do

this in the following two steps.

1. Find a δ such that if all |〈x,θ〉 mod 1| ≤ 1
β for all x ∈ suppX, then X̃(θ) ≥

dX(θ,L∗). Such θ cannot be pseudodual without being dual.

2. X is α-spreading : for all θ,

X̃(θ) ≥ α sup
x∈suppX

|〈x,θ〉 mod 1|

Together, if θ is pseudodual, then X̃(θ) ≥ α/β.

To achieve the first item, we use bounded integral spanning sets as in [KLP12].

The following definitions and lemmas are nearly identical to arguments in the proof of

Lemma 4.6 in [KLP12].

Definition 3.27 (bounded integral spanning set). Say B is an integral spanning set

of a subspace H of Rm if B ⊂ Zm and spanRB = H. Say a subspace H ⊂ Rm has a

β-bounded integral spanning set if H has an integral spanning set B with max{‖b‖1 :

b ∈ B} ≤ β.

Definition 3.28. Let AX denote the matrix whose columns are the support of X (in

some fixed order). Say X is β-bounded if kerAX has a β-bounded integral spanning

set.

Lemma 3.29. Suppose X is β-bounded. Then either

max
x∈supp(X)

|〈x,θ〉 mod 1| ≥ 1

β

or

X̃(θ) ≥ dX(θ,L∗).
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Proof. To prove Lemma 3.29 we use a claim from [KLP12] , which allows us to deduce

that if 〈x,θ〉 is very close to an integer for all x then we can “round” θ to an element

of the dual lattice to get rid of the fractional parts.

Claim 3.30 (Claim 4.12 of [KLP12]). Suppose X is β bounded, and define rx :=

〈x,θ〉 mod 1 ∈ (−1/2, 1/2] and kx to be the unique integer such that 〈x,θ〉 = kx + rx.

If

max
x∈supp(X)

|rx| < 1/β

then there exists l ∈ L∗ with

〈x, l〉 = kx

for all x ∈ supp(X).

Now, suppose maxx∈supp(X) |〈x,θ〉 mod 1| = maxx∈supp(X) |rx| < 1/β. By Claim

3.30, exists l ∈ L∗ with 〈x, l〉 = kx for all x ∈ supp(X). By assumption,

X̃(θ) =
√

E(〈X,θ〉 mod 1)2 =
√

Er2
X =

√
E〈X,θ − l〉2 ≥ dX(θ,L∗),

proving Lemma 3.29.

In order to apply Lemma 3.29, we will need to bound X̃(θ) below when there is

some x with |〈x,θ〉| fairly large.

Definition 3.31 (Spreadingness). Say X is α-spreading if for all θ ∈ Rm,

X̃(θ) ≥ α · sup
x∈suppX

|〈x,θ〉 mod 1|.

Combining Lemma 3.29 with Definition 3.31 yields the following bound.

Corollary 3.32. Suppose X is β-bounded and α-spreading. Then s(X) ≥ α
β .

A lemma of [KLP12] immediately gives a bound on spanningness for random vari-

ables that are uniform on their support.

Lemma 3.33 (Lemma 4.4 from [KLP12]). Suppose X is uniform on suppX ⊂ B∞(L′)

and the stabilizer group of suppX acts transitively on suppX. That is, for any
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two elements x,y ∈ suppX there is an invertible linear transformation A such that

A suppX = suppX and Ax = y. Then X is

Ω

(
1

(m log(L′m))3/2

)
-spreading.

In particular, if X is β-bounded, then

s(X) = Ω

(
1

β(m log(L′m))3/2

)
.

3.3.2 Proof of spanningness bound for t–sparse vectors

Using the techniques from the previous section, we’ll prove Lemma 3.23, which states

that t-sparse random vectors have spanningness Ω(m−1). In particular, we’ll prove that

t-sparse random vectors are 4-bounded and Ω(m−1)-spreading and apply Corollary 3.32.

Random t-sparse vectors are Ω(m−1)-spreading

Lemma 3.33 implies t-sparse vectors are Ω
(

1
(m log(m))3/2

)
-spreading, but we can do

slightly better due to the simplicity of the distribution X.

In order to show that t-sparse vectors are c-spreading, recall that we must show that

if a single vector 1S has |〈θ,1S〉 mod 1| > δ, then E[|〈θ, X〉 mod 1|2] ≥ c2δ2. We cannot

hope for c = o(m−1), because for small enough δ the vector θ = δ(1
t1[t] − 1

m−t1m\[t])

has 〈θ,1[t]〉 mod 1 = δ but E[|〈θ, X〉 mod 1|2] = 1
m−1δ

2. Our bound is worse than this,

but the term in Eq. (3.6) depending on the spanningness is not the largest anyway, so

this does not hurt our bounds.

Lemma 3.34. There exists an absolute constant c10 > 0 such that random t-sparse

vectors are c10
m -spreading.

For i ∈ [m], ei ∈ Rm denotes the standard basis vector. For U ∈
(

[m]
t

)
, let eU denote

the standard basis vector in R([m
t ).

Proof. If t = 0 or t = m, then t-sparse vectors are trivially 1-spreading. Suppose there

is some t-subset of [m], say [t] without loss of generality, satisfying |〈θ,1[t]〉 mod 1| =

δ > 0. For convenience, for S ∈
(

[m]
t

)
, define

w(S) := |〈θ,1S〉 mod 1|.
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We need to show that w([t]) = δ implies ESw(S)2 = Ω(m−2δ2). To do this, we will

define random integer coefficients λ =
(
λS : S ∈

(
[m]
t

))
such that

1[t] =
∑

S∈([m]
t )

λS1S .

Because |a+ b mod 1| ≤ |a mod 1|+ |b mod 1| for our definition of mod1, we have the

lower bound

δ = w([t]) ≤ Eλ
∑

S∈([m]
t )

w(S)|λS | =
∑

S∈([m]
t )

w(S) · Eλ|λS |. (3.7)

It is enough to show Eλ|λS | is small for all S in
(
m
t

)
, because then E[w(S)] is large and

E[w(S)2] ≥ E[w(S)]2.

We now proceed to define λ. Let σ be a uniformly random permutation of [n] and let

Q = σ([t]). We have

1[t] = 1Q +
∑

i∈[t]:i 6=σ(i)

ei − eσ(i), (3.8)

where ei is the ith standard basis vector. Now for each i ∈ [t] : i 6= σ(i) pick Ri at

random conditioned on i ∈ Ri but σ(i) 6∈ Ri. Then

ei − eσ(i) = 1Ri − 1Ri−i+σ(i). (3.9)

To construct λ, recall that eU denotes the U th standard basis vector in R([m
t ), and

define

λ = eQ −
∑

i∈[t]:i 6=σ(i)

eRi − eRi−i+σ(i).

By Eq. (3.8) and Eq. (3.9), this choice satisfies
∑
λS1S = 1[t].

It remains to bound Eλ|λS | for each S. We have

Eλ|λS | ≤ Pr[Q = S] (3.10)

+
t∑
i=1

Pr[σ(i) 6= i and Ri = S] (3.11)

+
t∑
i=1

Pr[σ(i) 6= i and Ri − i+ σ(i) = S]. (3.12)
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since Q is a uniformly random t-set, Eq. (3.10) =
(
m
t

)−1
. Next we have Pr[σ(i) 6=

i and Ri = S] = m−1
m Pr[Ri = S]. However, Ri is chosen uniformly at random among

the t-sets containing i, so

Pr[Ri = S] =

(
m− 1

t− 1

)−1

1i∈S =
m

t

(
m

t

)−1

1i∈S .

Thus Eq. (3.11) ≤ (m−1)
(
m
t

)−1
. Similarly, Ri− i+σ(i) is chosen uniformly at random

among sets not containing i, so Pr[Ri−i+σ(i) = S] =
(
m
t−1

)−1
1i 6∈S = m−t+1

t

(
m
t

)−1
1i 6∈S .

Thus Eq. (3.11) ≤ (m − 1)
(
m
t

)−1
. Thus, for every S we have Eλ|λS | ≤ 2m

(
m
t

)−1
.

Combining this with Eq. (3.7) we have

E[w(S)2] ≥ E[w(S)]2 ≥ (2m)−2δ2.

We may take c10 = 1/2.

Random t-sparse vectors are 4-bounded

Recall that AX is a matrix whose columns consist of the finite set

suppX =

{
1S : S ∈

(
[m]

t

)}
.

We index the columns of AX by
(

[m]
t

)
.

Lemma 3.35. X is 4-bounded. That is, kerAX has a 4-bounded integral spanning set.

Definition 3.36 (the directed graph G). For S, S′ ∈
(

[m]
t

)
we write S′ →j S if 1 ∈ S′,

j 6∈ S′ and S is obtained by replacing 1 by j in S′. Let G be the directed graph with

V (G) =
(

[m]
t

)
and S′S ∈ E(G) if and only if S′ →j S for some j ∈ S \ S′. Thus every

set containing 1 has out-degree m − t and in-degree 0 and every set not containing 1

has in-degree t and out-degree 0.

The following proposition implies Lemma 3.35. Note that if S′ →j S, then 1S′−1S =

e1 − ej .

Proposition 3.37.

S =

m⋃
j=2

{eS′ − eS + eQ − eQ′ : S′ →j S and Q′ →j Q}

is a spanning set for kerAX .
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Proof of Proposition 3.37. Clearly S is a subset of kerAX , because if S′ →j S, then

1S′ − 1S = e1 − ej , and so AX(eS
′ − eS) = 1S′ − 1S = e1 − ej . Thus, if S′ →j S

and Q′ →j Q, AX(eS
′ − eS + eQ − eQ′) = 0. If S′ →j S, then AX(eS

′ − eS) =

1S′ − 1S = e1 − ej . Thus, if S′ →j S and Q′ →j Q, AX(eS
′ − eS + eQ − eQ′) = 0, so

eS
′ − eS + eQ − eQ′ ∈ kerAX .

Next we try to prove S spans kerAX . Note that dim kerAX =
(
m
t

)
−m, because

the column space of AX is of dimension m (as we have seen, e1 − ej are in the column

space of AX for all 1 < j ≤ m; together with some 1S for 1 /∈ S ∈
(

[m]
t

)
we have a basis

of Rm). Thus, we need to show dim spanR S is at least
(
m
t

)
−m.

For each j ∈ [m] − 1, there is some pair Qj , Q
′
j ∈

(
[m]
t

)
such that Q′j →j Qj . For

j ∈ {2, . . . ,m}, pick such a pair and let fj := eQ′j −eQj . As there are only m− 1 many

fj ’s, dim span{fj : j ∈ [m] − 1} ≤ m − 1. By the previous argument, if S′ →j S, then

eS
′ − eS − fj ∈ kerAX . Because

⋃m
j=2{eS

′ − eS − fj : S′ →j S} ⊂ S, it is enough to

show that

dim spanR

m⋃
j=2

{eS′ − eS − fj : S′ →j S} ≥
(
m

t

)
−m.

We can do this using the next claim, the proof of which we delay.

Claim 3.38.

dim spanR

m⋃
j=2

{eS′ − eS : S′ →j S} =

(
m

t

)
− 1.

Let’s see how to use Claim 3.38 to finish the proof:

dim spanR

m⋃
j=2

{eS′ − eS − fj : S′ →j S} ≥

dim spanR

m⋃
j=2

{eS′ − eS : S′ →j S} − dim spanR{fj : 1 6= j ∈ [m]} ≥(
m

t

)
− 1− (m− 1) =

(
m

t

)
−m.

The last inequality is by Claim 3.38.

Now we finish by proving Claim 3.38.

Proof of Claim 3.38. If a directed graphH on [l] is weakly connected, i.e. H is connected

when the directed edges are replaced by undirected edges, then span{ei − ej : ij ∈
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E(H)} is of dimension l − 1. To see this, consider a vector v ∈ spanR{ei − ej : ij ∈

E(H)}⊥. For any ij ∈ E, we must have that vi = vj . As H is weakly connected, we

must have that vi = vj for all i, j ∈ [l], so dim spanR{ei−ej : ij ∈ E(H)}⊥ ≤ 1. Clearly

1 ∈ spanR{ei − ej : ij ∈ E(H)}⊥, so dim spanR{ei − ej : ij ∈ E(H)}⊥ = 1.

In order to finish the proof of the claim, we need only show that our digraph G is

weakly connected. This is trivially true if t = 0, so we assume t ≥ 1. Ignoring direction

of edges, the operations we are allowed to use to get between vertices of G (sets in
(

[m]
t

)
,

that is) are the addition of 1 and removal of some other element or the removal of 1 and

addition of some other element. Thus, each set containing 1 is reachable from some set

not containing 1. If S does not contain one and also does not contain some i 6= 1, we

can first remove any j from S and add 1, then remove 1 and add i. This means S−j+ i

is reachable from S. If there is no such i, then S = {2, . . . ,m}. This implies the sets

not containing 1 are reachable from one another, so G is weakly connected.

3.4 Proofs of local limit theorems

3.4.1 Preliminaries

We use a few facts for the proof of Theorem 3.18. Throughout this section we assume

X is in isotropic position, i.e. E[XX†] = Im. This means DX = D and BX(ε) = B(ε).

Fourier analysis

Definition 3.39 (Fourier transform). If Y is a random variable on Rm, Ŷ : Rm → C

denotes the Fourier transform

Ŷ (θ) = E[e2πi〈Y,θ〉].

♦

We will use the Fourier inversion formula, and our choice of domain will be the

Voronoi cell in the dual lattice.
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Definition 3.40 (Voronoi cell). Define the Voronoi cell D of the origin in L∗ to be the

points as close to the origin as anything else in L∗, or

D := {r ∈ Rm : ‖r‖ ≤ inf
t∈L∗\{0}

‖r − t‖}.

Note that volD = detL∗ = 1/detL, where detL is the volume of any domain whose

translates under L partition Rm.

Fact 3.41 (Fourier inversion for lattices, [KLP12]). For any random variable Y taking

values on a lattice L (or even a lattice coset v + L),

Pr(Y = λ) = det(L)

∫
D
Ŷ (θ)e−2πi〈λ,θ〉dθ.

for all λ ∈ L (resp. λ ∈ v + L). Here D is the Voronoi cell as in Definition 3.40, but

we could take D to be any fundamental domain of L.

3.4.2 Dividing into three terms

This section contains the plan for the proof of Theorem 3.18. The proof compares the

Fourier transform of the random variable My to that of a Gaussian; the integral to

compute the difference of the Fourier transforms will be split up into three terms, which

we will bound separately.

Let M be a matrix whose columns xi are fixed vectors in L, and let YM denote the

random variable My for y chosen uniformly at random from {±1/2}n. This choice is

made so that the random variable YM takes values in the lattice coset L − 1
2M1. Let

ΣM be the covariance matrix of YM , which is given by

ΣM =
1

4

n∑
i=1

xix
†
i =

1

4
MM †.

Let Y be a centered Gaussian with covariance matrix ΣM . That is, Y has the density

GM (λ) =
1

(2π)m/2
√

det ΣM
e−

1
2
λ†Σ−1

M λ.

Observe that Eq. (3.21) in Theorem 3.18 is equivalent to

|Pr(YM = λ)− det(L)GM (λ)| ≤ 1

(2π)m/2
√

det ΣM
· 2m2L2n−1
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for λ ∈ L− 1
2M1. To accomplish this, we will show that ŶM and Ŷ are very close. By

Fourier inversion, for all λ ∈ L − 1
2M1,

|Pr(YM = λ)− det(L)GM (λ)| =

det(L)

∣∣∣∣∫
D
ŶM (θ)e−2πi〈λ,θ〉dθ −

∫
Rm

Ŷ (θ)e−2πi〈λ,θ〉dθ

∣∣∣∣ ;
recall the Voronoi cell D from Definition 3.40. Let B(ε) ⊂ Rm denote the Euclidean

ball of radius ε about the origin. If B(ε) ⊂ D, then for all λ ∈ L − 1
2M1,

|Pr(YM = λ)− det(L)GM (λ)| ≤

= det(L)


∫
B(ε)
|ŶM (θ)− Ŷ (θ)|dθ︸ ︷︷ ︸

I1

+ +

∫
Rm\B(ε)

|Ŷ (θ)|dθ︸ ︷︷ ︸
I2

+

∫
D\B(ε)

|ŶM (θ)|dθ︸ ︷︷ ︸
I3

 .

(3.13)

We now show that this is decomposition holds for reasonably large ε, i.e. B(ε) ⊂ D.

Lemma 3.42. Suppose ε ≤ 1
2L . Then Then B(ε) ⊂ D; in particular, Eq. (3.13) holds.

Proof. Suppose θ ∈ B(ε); we need to show that any nonzero element of the dual lattice

has distance from θ at least ε. It is enough to show that any such dual lattice element has

norm at least 2ε. Suppose 0 6= α ∈ L∗. As supp(X) spans Rm, for some x ∈ supp(X),

we have 0 6= 〈α,x〉 ∈ Z, so ‖x‖‖α‖ ≥ |〈α,x〉| ≥ 1; in particular ‖α‖ ≥ 1
L ≥ 2ε.

Proof plan

We bound I1 using the Taylor expansion of ŶM to see that, near the origin, ŶM is very

close to the unnormalized Gaussian Ŷ . We bound I2 using standard tail bounds for

the Gaussian. The bounds for the first two terms hold for any matrix M satisfying

Eq. (concentration) and Eq. (anticoncentration) and for the correct choice of ε. Finally,

we bound I3 in expectation over the choice of M . This is the only bound depending on

the spanningness.
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The term I1: near the origin

Here we show how to compare ŶM to Ŷ near the origin in order to bound I1 from

Eq. (3.13). The Fourier transform of the Gaussian Y is

Ŷ (θ) = exp(−2π2θ†ΣMθ).

There is a very simple formula for ŶM , the Fourier transform of YM .

Proposition 3.43. If M has columns x1, . . .xn, then

ŶM (θ) =

n∏
j=1

cos(π〈xj ,θ〉). (3.14)

Proof.

ŶM (θ) = Ey∈R{±1/2}n [e2πi〈
∑n
j=1 yjxj ,θ〉] =

n∏
j=1

Eyj [e
2πi〈yjxj ,θ〉] =

n∏
j=1

cos(π〈xj ,θ〉).

We can bound the first term by showing that near the origin, ŶM is very close to a

Gaussian. Recall that by Proposition 3.43,

ŶM (θ) =
n∏
j=1

cos(π〈xj ,θ〉).

For θ near the origin, 〈vj ,θ〉 will be very small. We will use the Taylor expansion of

cosine near zero.

Proposition 3.44. For x ∈ (−1/2, 1/2), cos(πx) = exp(π
2x2

2 +O(x4)).

Proof. Let cos(πx) = 1 − y where y ∈ [0, 1). Then log(cos(πx)) = log(1 − y) =

1− y+O(y2). Since cos(πx) = 1− π2x2

2 +O(x4), we have that y = π2x2

2 +O(x4). Thus

log(cos(πx)) = 1− π2x2

2 +O(x4). The proposition follows.

We may now apply Proposition 3.44 for ‖θ‖ small enough.

Lemma 3.45. Suppose M satisfies Eq. (concentration) and ‖θ‖ < 1
2L . Then there

exists a constant c11 > 0 such that

ŶM (θ) ≤ exp
(
−2π2θ†ΣMθ + E

)
for |E| ≤ c11nL

2‖θ‖4.
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Proof. Because for all i ∈ [n] we have |〈xi,θ〉| ≤ ‖xi‖‖θ‖ < 1/2, Proposition 3.44

applies for all i ∈ [n] and immediately yields that there is a constant c such that

ŶM (θ) = exp
(
−2π2θ†ΣMθ + E

)
.

for |E| ≤ c
∑n

j=1〈xj ,θ〉4. Next we bound the quartic part of E by

n∑
j=1

〈xj ,θ〉4 ≤ max
j∈[n]
‖xj‖2‖θ‖2

n∑
j=1

〈xj ,θ〉2

≤ L2‖θ‖2θ†
 n∑
j=1

xjx
†
j

θ
≤ 2nL2‖θ‖4,

and take c11 = 2c.

Lemma 3.46 (First term). Suppose M satisfies Eq. (anticoncentration) and Eq. (con-

centration). Further suppose that L2nε4 < 1, and that ε < 1
2L . There exists c12 with

I1 ≤ c12
m2L2n−1

(2π)m/2
√

det(ΣM )
.

Proof. By concentration and Lemma 3.45,

I1 =

∫
B(ε)
|ŶM (θ)− Ŷ (θ)|dθ ≤

∫
B(ε)

Ŷ (θ)
∣∣∣ec11L2n‖θ‖4 − 1

∣∣∣ dθ.
Let the constant c be such that |ec11x − 1| ≤ c|x| for x ∈ [−1, 1]. Thus

I1 ≤ cL2n

∫
B(ε)

Ŷ (θ)‖θ‖4dθ.

By Eq. (anticoncentration),

I1 ≤ cL2n−1

∫
B(ε)

Ŷ (θ)
(
θ†ΣMθ

)2
dθ. (3.15)

Note that (2π)m/2
√

det(ΣM )Ŷ is equal to the density of W = 1
2πΣ

−1/2
M G, where G
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is a Gaussian vector with identity covariance matrix. Σ
−1/2
M exists because Eq. (anti-

concentration) holds. Further, W †ΣMW = 1
4π2 ‖G‖2. Therefore∫

Rm
Ŷ (θ)

(
θ†ΣMθ

)2
dθ =

1

(2π)m/2
√

det(ΣM )
EW

[(
W †ΣMW

)2
]

=
1

16π4(2π)m/2
√

det(ΣM )
EG
[
‖G‖4

]
=

1

16π4(2π)m/2
√

det(ΣM )
(2m+m2)

≤ 3m2

16π4(2π)m/2
√

det(ΣM )
.

Plugging this into (3.15) and setting c12 = 3
π4 c completes the proof.

The term I2: Bounding Gaussian mass far from the origin

Here we bound the term I2 of Eq. (3.13), which is not too difficult.

Lemma 3.47 (Third term). Suppose M satisfies Eq. (anticoncentration) holds and

that ε2 ≥ 16m
π2n

. Then

I2 ≤
e−

π2

8
ε2n

(2π)m/2
√

det(ΣM )
.

Proof. If M satisfies Eq. (anticoncentration), then B(ε) ⊃ 1
2{θ : θ†ΣMθ ≥ nε} :=

BM (ε/2). If we integrate over BM (ε/2) and change variables, it remains only to calcu-

late how much mass of a standard normal distribution is outside a ball of radius larger

than the average norm. By Lemma 4.14 of [KLP12], a standard Gaussian tail bound,

if ε2 ≥ 16m
π2n

then ∫
Rm\BM (ε/2)

|Ŷ (θ)|dθ ≤ e−
π2

8
ε2n

(2π)m/2
√

det(ΣM )
.

The term I3: Bounding the Fourier transform far from the origin

It remains only to bound the term I3 of Eq. (3.13) which is given by

I3 =

∫
D\B(ε)

|ŶM (θ)|dθ.
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This is the only part in which spanningness plays a role. If ε is at most the spanningness

(see Definition 3.15), we can show I3 is very small with high probability by bounding

it in expectation over the choice of M . The proof is a simple application of Fubini’s

theorem.

Lemma 3.48. If EXX† = Im and ε ≤ s(X), then

E[I3] ≤ det(L∗)e−2ε2n

Proof. By Fubini’s theorem,

EM [I3] =

∫
D\B(ε)

E|ŶM (θ)|dθ

≤ det(L∗) sup{E[|ŶM (θ)|] : θ ∈ D \B(ε)}. (3.16)

By Proposition 3.43 and the independence of the columns of n,

EM [|ŶM (θ)|] = (E| cos(π〈X,θ〉)|)n .

Thus,

sup{E[|ŶM (θ)|] : θ ∈ D \B(ε)} ≤ (sup{E[| cos(π〈X,θ〉)|] : θ ∈ D \B(ε)})n . (3.17)

| cos(πx)| is periodic with period 1/2, so it is enough to consider 〈X,θ〉 mod 1, where

x mod 1 is taken to be in [−1/2, 1/2). Note that for |x| ≤ 1/2, | cos(πx)| = cos(π(x)) ≤

1− 4x2, so

E[| cos(π〈X,θ〉)|] ≤ 1− 4E[(〈X,θ〉 mod 1)2] = 1− 4X̃(θ)2

By the definition of spanningness and the assumption in the hypothesis that ε ≤ s(X),

we know that every vector with X̃(θ) ≤ d(θ,L∗)/2 = ‖θ‖/2 is either in L∗ or has

X̃(θ) ≥ ε. Thus, for all θ ∈ D, X̃(θ) ≥ max{‖θ‖/2, ε}, which is at least ε/2 for

θ ∈ D \B(ε). Combining this with Eq. (3.17) and using 1− x ≤ e−x implies

sup{E[|ŶM (θ)|] : θ ∈ D \B(ε)} ≤ e−2ε2n.

Plugging this into Eq. (3.16) completes the proof.
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3.4.3 Combining the terms

Finally, we can combine each of the bounds to prove Theorem 3.18.

Proof of Theorem 3.18. Recall the strategy: we have some conditions (the hypotheses

of Lemma 3.42) under which we can write the difference between the two probabilities

of interest as a sum of three terms, and we have bounds for each of the terms (Lemma

3.46, Lemma 3.48, and Lemma 3.47) respectively. Our expression depends on ε, and so

we must choose ε satisfying the hypotheses of those lemmas. These are as follows:

(i) To apply 3.42 we need ε ≤ 1
2L ,

(ii) for Lemma 3.46 we need L2nε4 ≤ 1,

(iii) to apply Lemma 3.47, we need ε2 ≥ 16m
π2n

, and

(iv) for Lemma 3.48 we need ε ≤ s(X).

It is not hard to check that setting

ε = L−1/2n−1/4

will satisfy the four constraints provided

1. n ≥ 16L2,

2. n ≥ (16mL)2/π4, and

3. n ≥ s(X)−4L−2.

However, (1) follows from (2) because L ≥
√
m (this follows from EXX† = Im, which

implies E[‖X‖2] = m), so

n ≥ (16mL)2/π4 and n ≥ s(X)−4L−2

suffice. By 3.42 we have

|Pr(YM = λ)− det(L)GM (λ)| ≤

= det(L)


∫
B(ε)
|ŶM (θ)− Ŷ (θ)|dθ︸ ︷︷ ︸

I1

+ +

∫
Rm\B(ε)

|Ŷ (θ)|dθ︸ ︷︷ ︸
I2

+

∫
D\B(ε)

|ŶM (θ)|dθ︸ ︷︷ ︸
I3

 .
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By Lemma 3.48 and Markov’s inequality, I3 is at most e−ε
2n with probability at least

1 − e−ε2n det(L∗). By Theorem 3.19, Eq. (anticoncentration) and Eq. (concentration)

hold for M with probability at least 1− c5L
√

(log n)/n. If n is at least a large enough

constant times L2 log2 detL, e−ε
2n det(L∗) is at most L

√
(log n)/n. Thus, all three

events hold with probability at least 1−c13L
√

(log n)/n over the choice of M . Condition

on these three events, and plug in the bounds given by Lemma 3.46 and Lemma 3.47

for I1 and I2 and the bound e−ε
2n = e−

√
n/L for I3 to obtain the following:

|Pr(YM = λ)− det(L)GM (λ)|

≤ det(L)

 m2L2n−1

(2π)m/2
√

det(ΣM )
+

e−
π2

8

√
n/L

(2π)m/2
√

det(ΣM )
+ e−

√
n/L

 .

≤ det(L)

(2π)m/2
√

det(ΣM )

(
m2L2n−1 + e−

π2

8

√
n/L + (2π)m/2

√
det(ΣM )e−

√
n/L

)
≤ det(L)

(2π)m/2
√

det(ΣM )

(
m2L2n−1 + 2e

m
2

log(4πn)−
√
n/L
)
, (3.18)

where the last inequality is by Eq. (concentration). If c14 is large enough, the quantity

in parentheses in Eq. (3.18) is at most 2m2L2/n provided

n ≥ N0 = c14 max
{
m2L2(logm+ logL)2, s(X)−4L−2, L2 log2 detL

}
, (3.19)

and the combined failure probability of the required events is at most c13L
√

logn
n .

3.4.4 Weaker moment assumptions

We now sketch how to extend the proof of Theorem 3.18 to the case (E‖X‖η)1/η = L <

∞ for some η > 2, weakening the assumption that suppX ⊂ B(L).

Theorem 3.49 (Lattice local limit theorem for > 2 moments). Let X be a random

variable on a lattice L such that EXX† = Im, (E‖X‖η)1/η = L < ∞ for some η > 2,

and L = spanZ suppX. Let GM be as in Theorem 3.18. There exists

N2 = poly(m, s(X), L,
1

η − 2
, log (detL))

1+ 1
η−2 (3.20)

such that for n ≥ N2, with probability at least 1− 3n
− η−2

2+η over the choice of columns of

M , the following two properties of M hold:
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1. MM † � 1
2nIm; that is, MM † − 1

2nIm is positive-semidefinite.

2. For all λ ∈ L − 1
2M1,∣∣∣∣ Pr

yi∈{±1/2}
[My = λ]−GM (λ)

∣∣∣∣ ≤ GM (0) · 2m2L2n
− η−2

2+η . (3.21)

Before proving the theorem, note that it allows us to extend our discrepancy result

to this regime. The proof of the next corollary from Theorem 3.49 is identical to the

proof of Theorem 3.21 from Theorem 3.18.

Corollary 3.50 (Discrepancy for > 2 moments). Suppose X is a random variable on

a nondegenerate lattice L. Suppose Σ := E[XX†] has least eigenvalue σ, (E‖Z‖η)1/η =

L < ∞ for some η > 2 where Z := Σ−1/2X, and that L = spanZ suppX. If n ≥ N3

then

disc∗(M) ≤ 2ρ∗(L)

with probability at least 1− 3n
− η−2

2+η , where

N3 = c15 max

{
R2
∗ρ∗(L)2

σ
,N2

(
m, s(Σ−1/2X), L,

detL√
det Σ

)}
(3.22)

for N0 as in Eq. (3.2).

Proof sketch of Theorem 3.49. We review each step of the proof of Theorem 3.18 and

show how it needs to be modified to accomodate the weaker assumptions. Recall that,

to prove Theorem 3.18, we had some conditions (the hypotheses of Lemma 3.42) under

which we can write the difference between the two probabilities of interest as a sum

of three terms, and we have bounds for each of the terms (Lemma 3.46, Lemma 3.48,

and Lemma 3.47) respectively. We also need an analogue of Theorem 3.19 which tells

us that Eq. (anticoncentration) and Eq. (concentration) hold with high probability.

Neither Lemma 3.48 nor Lemma 3.47 use bounds on the moments of ‖X‖, so they hold

as-is. Let’s see how the remaining lemmas must be modified:

Matrix concentration: By Theorem 1.1 in [SV+13], Eq. (concentration) and Eq. (an-

ticoncentration) hold with probability at least 1− n−
η−2
2+η provided

n ≥ poly(m,L,
1

η − 2
)
1+ 1

η−2 .
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Lemma 3.42: The bound ε ≤ 1
2L becomes ε ≤ 1

4L
− η
η−2 . To prove Lemma 3.42 it was

enough to show α was at least twice the desired bound on ε for α 6= 0 ∈ L∗. Here

we do the same, but to show α is large we consider the random variable Y ≥ 1

defined by conditioning |〈α, X〉| on 〈α, X〉 6= 0. By assumption, X is isotropic.

Let p = Pr[〈α, X〉 6= 0], so that ‖α‖2 = pE[Y 2] and L‖α‖ ≥ (E|〈α, X〉|η)
1
η =

p
1
η (E[Y η])

1
η ≥ p

1
η (E[Y 2])

1
2 by Hölder’s inequality. Cancelling p from the two

inequalities and using Y ≥ 1 yields the desired bound.

Lemma 3.46: The analogue of this lemma will require L2n
1+ 4

2+η ε4 < 1 and ε <

1
4Ln

− 2
2+η , and will hold with probability at least 1 − n

− η
4+η over the choice

of columns of M . The numerator of the right-hand side becomes m2L2n
− η−2

2+η .

Lemma 3.46 followed from Lemma 3.45. Here the analogue of Lemma 3.45 holds

with |E| ≤ c11n
1+ 4

2+ηL2‖θ‖4 if ‖zi‖ ≤ Ln
2

2+η for all i ∈ [n], which holds with

probability 1− n−
η−2
2+η by Markov’s inequality. The rest of the proof proceeds the

same.

The new constraints on ε will be satisfied if we take

ε = n
− 4+η

12+3η ,

and n ≥ max
{

(4L)
12+6η
η−2 , 16

π2m
6+3η
2η−4

}
. The remainder of the proof proceeds as for The-

orem 3.18.

3.5 Random unit columns

Let X be a uniformly random element of the sphere Sm−1. Again, let M be an m× n

matrix with columns drawn independently from X. Note that X is not a lattice random

variable. This time Σ = 1
mIm, and ‖Σ−1/2X‖ is always at most m.

We will again prove a local limit theorem, only this time we will not precisely control

the probability of hitting a point but rather the expectation of a particular function.

The function is similar to the indicator of the cube, but it will be modified a bit to

make it easier to handle. Let B be the function, which we will determine later. Recall

that, once M is chosen, YM is the random variable obtained by summing the columns of
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M with i.i.d ±1/2 coefficients. ΣM is MM †/4, and Y is the Gaussian with covariance

matrix ΣM . We will try to show that, with high probability over the choice of M ,

EB(YM ) ∼ EB(Y ). If B is supported only in [−K,K]m, to show that discM < K it

suffices to show that

|EB(YM )− EB(Y )| < EB(Y ).

3.5.1 Nonlattice likely local limit

We now investigate a different extreme case in which spanZ suppX is dense in Rm. In

this case the “dual lattice” is {0}, so we define pseudodual vectors to be those vectors

with X̃(θ) ≤ ‖θ‖X/2, and the spanningness to be the least value of X̃(θ) at a nonzero

pseudodual vector.

Theorem 3.51. Suppose EXX† = Im, suppX ⊂ B(L), and that s(X) is positive. Let

B : Rm → R be a nonnegative function with ‖B‖1 ≤ 1 and ‖B̂‖1 ≤ ∞. If

n ≥ N1 = c17 max
{
m2L2(logM + logL)2, s(X)−4L−2, L2 log2 ‖B‖1

}
,

then with probability at least c13L
√

logn
n over the choice of M we have

|E[B(YM )]− E[B(Y )]| ≤ 2m2L2n−1

and MM † � 1
2nIm.

Proof. By Plancherel’s theorem,

E[B(YM )]− E[B(Y )] =

∫
Rm

B̂(θ)(ŶM (θ)− Ŷ (θ))dθ.

Again, we can split this into three terms: ∣∣∣∣∫
Rm

B̂(θ)(ŶM (θ)− Ŷ (θ))dθ

∣∣∣∣ ≤∫
B(ε)
|B̂(θ)||ŶM (θ)− Ŷ (θ)|dθ︸ ︷︷ ︸

J1

+

∫
Rm\B(ε)

|B̂(θ)ŶM (θ)|dθ︸ ︷︷ ︸
J2

+

∫
Rm\B(ε)

|B̂(θ)Ŷ (θ)|dθ.︸ ︷︷ ︸
J3

(3.23)

The proofs of the next two lemmas are identical to that of Lemma 3.46 and Lemma 3.47,

respectively, except one uses the assumption ‖B‖1 ≤ 1, which implies ‖B̂‖∞ ≤ 1, to

remove B̂ from the integrand.
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Lemma 3.52 (First term). Suppose Eq. (anticoncentration) and Eq. (concentration)

hold. Further suppose that L2nε4 < 1, ε < 1
2L , and that ‖B‖1 ≤ 1. There exists c16

with

J1 ≤ c16
m2L2n−1

(2π)m/2
√

det(ΣM )
.

Lemma 3.53 (Third term). Suppose Eq. (anticoncentration) holds, ε2 ≥ 16m
π2n

, and

‖B‖1 ≤ 1. Then

J3 ≤
e−

π2

8
ε2n

(2π)m/2
√

det(ΣM )
.

The proof of the next lemma is the same as that of Lemma 3.47, except in the

derivation of Eq. (3.16) instead of integrating over D one must integrate over the whole

of Rm \B(ε) against B̂, hence detL∗ is replaced by ‖B̂‖1.

Lemma 3.54. If X is in isotropic position and ε ≤ s(X), then

E[J2] ≤ ‖B̂‖1e−2ε2n

We now proceed to combine the termwise bounds. As before, we may choose ε =

n1/2L−1/2 provided

n ≥ (16mL)2/π4 and n ≥ s(X)−4L−2,

and with probability at least 1−‖B̂‖1e−ε
2n− c5L

√
logn
n , we have J2 at most e−ε

2n and

Eq. (concentration), Eq. (anticoncentration) hold. Condition on these events. As in

the proof of Theorem 3.18, we have∣∣∣∣∫
Rm

B̂(θ)(ŶM (θ)− Ŷ (θ))dθ

∣∣∣∣ ≤ 1

(2π)m/2
√

det(ΣM )

(
m2L2n−1 + 2e

m
2

log(4πn)−
√
n/L
)
.

(3.24)

If c17 is large enough, the quantity in parentheses in Eq. (3.18) is at most 2m2L2/n

and the combined failure probability of all the required events is at most c13L
√

logn
n

provided

n ≥ N1 = c17 max
{
m2L2(logM + logL)2, s(X)−4L−2, L2 log2 ‖B‖1

}
. (3.25)
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3.5.2 Discrepancy for random unit columns

Lemma 3.55. Let X be a random unit vector. Then

s(X) ≥ c18.

for some fixed constant c18.

Before we prove the lemma, let’s show how to use it and Theorem 3.51 to prove

discrepancy bounds.

Proof of Theorem 3.12. Let X be a random unit vector. We need to choose our function

B.

Definition 3.56. For K > 0, let B = 1
(2K)2m1[−K,K]m ∗1[−K,K]m . Alternately, one can

think of B as the density of a sum of two random vectors from the cube [−K,K]m. ♦

It’s not hard to show ‖B‖1 = 1 using that B is a density and that, by Plancherel’s

theorem, ‖B̂‖1 = 1
(2K)m . Next, we apply Theorem 3.51 to Z =

√
mX; in order to apply

the theorem we need

n ≥ N2 := c19 max
{
m3 log2m,m−1,m3 log2(1/K)

}
.

Thus, we may take

n ≥ c2m
3 log2m and K = c3e

−
√

n
m3 .

We also need to obtain a lower bound on E[B(Y )] in order to use the bound on

|E[B(YM )]−E[B(Y )]| to deduce that E[B(YM )] > 0, or equivalently that discM ≤ 2K.

The quantity EB(Y ) is at least the least density of Y on the support of B. The support

of B is contained within a 2K
√
m Euclidean ball. Using the property MM † ≥ 1

2nIm,

the density of Y takes value at least

1

(2π)m/2
√

det(ΣM )
e−2σmin(MM†)−14K2m ≥ 1

(2π)m/2
√

det(ΣM )
e−16K2m/n.

Since the error term in Theorem 3.51 is at most 1

(2π)m/2
√

det(ΣM )
2m2L2n−1, to deduce

discM ≤ K it is enough to show e−16K2m/n > 2m3n−1; indeed this is true with

K = c3e
−
√

n
m3 and n ≥ m3 log2m for suitably large c3.
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Spanningness for random unit vectors

We now lower bound the spanningness for random unit vectors. We use the fact that

for large m the distribution of a random unit vector behaves much like a Gaussian upon

projection to a one-dimensional subspace.

Proof of Lemma 3.55. Let ‖θ‖X = 1√
m
δ > 0. We split into two cases. In the first, we

show that if δ = O(
√
m), then θ is not pseudodual. In the second, we show that if

δ = Ω(
√
m) then X̃(θ) is at least a fixed constant. This establishes that s(X) is at

least some constant.

By rotational symmetry we may assume θ is δe1, where e1 is the first standard basis

vector, so

X̃(θ)2 = E[(〈X,θ〉 mod 1)2] = E[(δX1 mod 1)2].

We now try to show θ is not a pseudodual vector if δ = O(
√
m). Recall that X is a

random unit vector; it is easier to consider the density of X1. The probability density

function of δX1 for x < δ is proportional to (1− (x/δ)2)
m−3

2 =: fδ(x). Integrating this

density gives us ∫ δ

−δ

(
1−

(x
δ

)2
)m−3

2

dx = δ

∫ δ

0
(1− x)

m−3
2 x−

1
2dx

=
δΓ
(
m−1

2

)
Γ
(

1
2

)
Γ
(
m
2

)
=
δ
√
π√
m

(1 + o(1)) .

Therefore, we obtain

E[(δX1 mod 1)2] =
Γ
(
m
2

)
δΓ
(
m−1

2

)
Γ
(

1
2

) ∫ δ

−δ
(x mod 1)2

(
1−

(x
δ

)2
)m−3

2

dx.

If we simply give up on all the x for which |x| > 1/2, we obtain the following lower
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bound for the above quantity:

Γ
(
m
2

)
δΓ
(
m−1

2

)
Γ
(

1
2

) [∫ δ

−δ
x2

(
1−

(x
δ

)2
)m−3

2

dx− 2

∫ δ

1/2
x2

(
1−

(x
δ

)2
)m−3

2

dx

]

=
δ2

m
−

2Γ
(
m
2

)
δΓ
(
m−1

2

)
Γ
(

1
2

) ∫ δ

1/2
x2

(
1−

(x
δ

)2
)m−3

2

dx

≥ δ2

m
− (1 + o(1))

2
√
m− 3

δ
√
π

∫ ∞
1/2

x2e−
(m−3)x2

2δ2 dx.

=
δ2

m
− (1 + o(1))

23/2δ2

m

(
1√
2π

∫ ∞
√
m−3
2δ

u2e−
u2

2 du

)
The integral in parentheses is simply the contribution to the variance of the tail of a

standard gaussian, and can be made an arbitrarily small constant by making δ/
√
m

small. Thus, for δ at most δ ≤ c20
√
m, the last line above expression is at least

.62 δ2

m = .62‖θ‖2X , so θ is not pseudodual.

Next we must handle δ larger than c20
√
m; we will show that in this case X̃(θ) is

at least some fixed constant. We use the fact that fδ is unimodal, so for any k 6= 0,∫ k+1/2
k−1/2 (x mod 1)2fδ(x)dx is at least the mass of fδ(x) between k− 1/2 and k times the

integral of (x mod 1)2 on this region (that is, 1/24). This product is then at least which

is at least one 48th of the mass of fδ(x) between k− 1/2 and k + 1/2. Taken together,

we see that

E[(δX1 mod 1)2] ≥ 1

48
Pr[|δX1| ≥ 1/2]. (3.26)

We will lower bound the left-hand side by a small constant for δ = Ω(
√
m). We can do

so by bounding the ratio of
∫ 1/2
−1/2 fδ(x) to

∫∞
1/2 fδ(x). To this end we will translate and

scale the function

gδ(x) =

 fδ(x) x ≥ 1/2

0 x < 1/2

to dominate fδ(x) for x ∈ [0, 1/2]. Let us find the smallest scaling a > 0 such that

agδ(x+ 1/2) ≥ fδ(x) for x ∈ [0, 1/2]; equivalently, afδ(x+ 1/2) ≥ fδ(x) for x ∈ [0, 1/2].

If we find such an a, we’ll have
∫ 1/2

0 fδ(x) ≤ a
∫∞

0 gδ(x)dx, or Pr[x ∈ [−1/2, 1/2]] ≤

a(1− Pr[x ∈ [−1/2, 1/2]]). We need

a(1− ((x+ 1/2)/δ)2)
m−3

2 ≥ (1− (x/δ)2)
m−3

2 ,
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or

a = max
x∈[0,1/2]

(
1− (x/δ)2

1− ((x+ 1/2)/δ)2

)m−3
2

= max
x∈[0,1/2]

(
δ2 − x2

δ2 − (x+ 1/2)2

)m−3
2

≤
(

δ2

δ2 − 1

)m−3
2

=

(
1− 1

δ2

)−m−3
2

≤ e
(m−3)

2δ2 .

As discussed, we now have Pr[x ∈ [−1/2, 1/2]] ≤ a(1 − Pr[x ∈ [−1/2, 1/2]]). Equiva-

lently, Pr[x ∈ [−1/2, 1/2]] ≤ a/(1 + a). Therefore

Pr[|x| > 1/2] ≥ 1/(1 + a) ≥ .5e−
m−3

2δ2 .

If δ ≥ c20
√
m, this and Eq. (3.26) imply E[(δX1 mod 1)2] = E[(〈θ, X〉 mod 1)2 is at

least some constant. Thus, if δ ≥ c20 then X̃(θ) is at least some constant.

3.6 Open problems

There is still a gap in understanding for t-sparse vectors.

Question 3.57. Let M be an m×n random t-sparse matrix. What is the least N such

that for all n ≥ N , the discrepancy of M is at most one with probability at least 1/2?

We know that for t not too large or small, m ≤ N ≤ m3 log2m. The lower bound is an

easy exercise.

Next, it would be nice to understand Question 3.3 for more column distributions in

other regimes such as n = O(m). In particular, it would be interesting to understand

a distribution where combinatorial considerations probably won’t work. For example,

Question 3.58. Suppose M is a random t-sparse matrix plus some Gaussian noise of

of variance
√
t/m in each entry. Is discM = o(

√
t logm) with high probability? How

much Gaussian noise can existing proof techniques handle?

The quality of the nonasymptotic bounds in this chapter depend on the spanningness

of the distribution X, which depends on how far X is from lying in a proper sublattice
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of L. If X actually does lie in a proper sublattice of L′ ⊂ L, we may apply our theorems

with L′ instead. This suggests the following:

Question 3.59. Is there an N depending on only the parameters in Eq. (3.22) other

than spanningness such that for all n ≥ N ,

discM ≤ max
L′⊂L

ρ∞(L′)

with probability at least 1/2?

Next, the techniques in this chapter are suited to show that essentially any point in

a certain coset of the lattice generated by the columns may be expressed as the signed

discrepancies of a coloring. This is why we obtain twice the `∞-covering radius for

our bounds. In order to bound the discrepancy, we must know ρ∞(L). However, the

following question (Conjecture 3.13 from the introduction) is still open, which prevents

us from concluding that discrepancy is O(1) for an arbitrary bounded distribution:

We could also study a random version of the above question:

Question 3.60. Let v1, . . . , vm be drawn i.i.d from some distribution X on Rm, and

let L be their integer span. Is ρ∞(L) = O(1) with high probability in m?

Here we also bring attention to an open–ended question asked in [KLP12, HR18]. In-

terestingly, though we use probabilistic tools to deduce the existence of low-discrepancy

assignments, the proof does not yield any obvious efficient randomized algorithm to find

them.

Question 3.61. If an object can be proved to exist by a suitable local central limit

theorem, is there an efficient randomized algorithm to find it?
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Chapter 4

A simple algorithm for Horn’s problem and its cousins

This chapter is based on the work [Fra18a], which also appeared in the conference

proceedings [Fra18b].

4.1 Introduction

A primary motivation for this chapter is a constructive variant of the following problem.

Problem 1.8 (Horn’s problem). Which triples (α,β,γ) of nonincreasing sequences

of m real numbers are the respective spectra of m × m Hermitian matrices A,B,C

satisfying

A+B = C?

In a non-constructive sense, Horn’s problem is solved: the desired Hermitian matri-

ces exist for α,β,γ if and only if (α,β,γ) is in the Horn polytope, a certain polyhedral

cone defined by a recursively defined set of linear inequalities with binary integer co-

efficients. This result, conjectured by Horn, was proved in [KT00] which culminated a

long line of work by many authors; for the history we refer the reader to the survey

[Ful00]. Horn’s conjecture is remarkable because, a priori, one does not expect such

(α,β,γ) to form a polyhedral cone. The solution [KT00] of Horn’s problem implies a

polynomial time algorithm for the decision problem [MNS12], but the algorithm does

not help construct the matrices.

We consider the problem of constructing Hermitian matrices A,B,C with respective

spectra α,β,γ satisfying A+B+C = 0. Exact solutions may involve irrational numbers

which cannot be represented in finite space even if α,β,γ are rational, so we consider

an approximate version.
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Problem 4.1 (Constructive Horn’s problem). Given a triple (α,β,γ) of nonincreasing

sequences of m real numbers, either

1. Correctly determine that (α,β,γ) is not in the Horn polytope, or

2. Construct a sequence of triples of Hermitian matrices (Ak, Bk, Ck)
∞
k=1 with re-

spective spectra α,β,γ such that limk→∞Ak +Bk − Ck = 0.

For a given triple (α,β,γ), exactly one of Tasks (1) and (2) is possible. That

the impossibility of Task (1) implies the possibility of Task (2) is immediate from

the definition of the Horn polytope. On the other hand, if Task (1) is possible, by

compactness of the set of matrices of bounded spectral norm, the sequence (Ak, Bk, Ck)

has a convergent subsequence whose limit (A,B,C) satisfies A+B = C and has spectra

(α,β,γ), certifying that (α,β,γ) is in the Horn polytope.

We present a simple iterative algorithm (Algorithm 1) to solve Problem 4.1. Algo-

rithm 1 solves a slightly different problem, but one to which Problem 4.1 can easily be

reduced by a simple rescaling argument. 1

Theorem 4.2 (Correctness of Algorithm 1). Let (λ1,λ2,λ3) be a triple of nonincreas-

ing sequences of m positive real numbers. Either

1. There do not exist Hermitian H1, H2, and H3 with respective spectra λ1,λ2,λ3

satisfying H1 +H2 +H3 = Im, or

2. For every ε > 0, with probability one, Algorithm 1 outputs real, symmetric matri-

ces H1, H2, and H3 with respective spectra λ1,λ2,λ3 satisfying

‖H1 +H2 +H3 − Im‖ ≤ ε. (4.1)

Remark 4.3 (Rescaling argument). To use Algorithm 1 to solve Problem 4.1 for

(α,β,γ), let εk → 0 and let (Hk
1 , H

k
2 , H

k
3 )∞k=1 be the sequence of outputs for λ1 =

1
a(α + b1),λ2 = 1

a(β + b1),λ3 = 1
a(−γ + (a − 2b)1) for b > max{−αm,−βm} and

1This algorithm is slightly more convenient to analyze than the informal algorithm in Section 1.3,
but both converge.
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a > 2b + γ1. Alternatively, one can use the sequence of (H1, H2, H3) obtained in Step

(b) of the algorithm with ε = 0. The sequence

(Ak, Bk, Ck)∞k=1 =
(
aHk

1 − bIm, aHk
2 − bIm,−aHk

3 + (2b− a)Im

)∞
k=1

is the solution to Problem 4.1. ♦

Input: Nonincreasing sequences λ1,λ2,λ3 of m positive real numbers and ε ≥ 0.

Output: A triple (H1, H2, H3) of real, symmetric matrices with respective spectra
λ1,λ2,λ3 and

‖H1 +H2 +H3 − Im‖ ≤ ε.

Algorithm:

1. Choose each entry of U1, U2, U3 ∈ Matm(R) independently and uniformly at

random from [−1, 1]. For i ∈ {1, 2, 3}, define Hi = Ui diag(λi)U
†
i throughout.

2. while ‖H1 +H2 +H3 − Im‖ > ε do:

(a) Choose B ∈ MatmR lower triangular such that

B (H1 +H2 +H3)B† = Im,

and set Ui ← BUi for i ∈ {1, 2, 3}.
(b) For i ∈ {1, 2, 3}, choose Bi ∈ Matm(R) upper triangular such that UiBi is

orthogonal and set Ui ← UiBi.

3. output H1, H2, H3.

Algorithm 1: Algorithm for Problem 4.1.

Algorithm 1 can be seen as a generalization of Sinkhorn’s algorithm [Sin64] which,

given a nonnegative matrix A, constructs a sequence (Xk, Y k) of pairs of nonnegative

diagonal matrices so that XkAY k is 1/k–doubly stochastic (if possible). Sinkhorn’s

algorithm and its relatives fall into a framework within optimization known as alternat-

ing minimization. To minimize a function with several inputs, one alternates between

minimizing the function on each input with the others fixed. We will see that Prob-

lem 4.1 can be cast as a minimization problem. The diagonalizing orthogonal matrices

U1, U2, U3 such that Hi = Ui diag(λi)U
†
i satisfies Eq. (4.1) are approximate solutions to

the minimization problem. The steps (a) and (b) from Algorithm 1 arise as alternating
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minimization steps; step (a) enforces orthogonality of the Ui, while step (b) enforces

Eq. (4.1). One can find the upper triangular matrices using the Cholesky decompo-

sition. The surprising aspect of the algorithm is that performing (a) does erase the

progress made by (b), and vice versa.

Remark 4.4 (Implementability). As written, Algorithm 1 is not implementable by

a computer because it requires uniform samples from [−1, 1], and it requires exact

Cholesky decomposition (which may require irrational numbers). In reality, we must

do these steps to some finite precision. We address these issues in Section 4.5. ♦

To analyze Algorithm 1, we prove convergence of a similar class of algorithms solving

a common generalization of Sinkhorn’s problem and Horn’s problem. Our algorithm is

very similar to the first algorithm, due to Gurvits [Gur04], for the “scaling” of com-

pletely positive maps.

Related work

A variant of Algorithm 1 was suggested in [GP15] in the more general setting of com-

pletely positive maps, which will be explained in the next section. Instead of the

Cholesky decomposition, [GP15] uses square roots, and does not include a randomiza-

tion step. In [Fri16] it was shown the algorithm in [GP15] converges for certain special

cases that do not include Problem 4.1.

The follow–up work [BFG+18] shows that Algorithm 1 extends naturally to finding

tensors with prescribed marginals. In a forthcoming work with the same authors, we

exhibit generalizations of the results of this chapter and [BFG+18] to general moment

polytopes.
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Layout of the chapter

• In Section 4.2, we describe quiver representations, the general setting in which

our algorithms work.

• In Section 4.3, we describe a reduction to simpler instances which will be used

in the analysis of our algorithm. Section 4.3 alone implies that Algorithm 1

terminates in finite time on rational λ1, λ2, λ3.

• In Section 4.4, we show our algorithms work even for irrational inputs. In the

process we generalize Gurvits’ theorem on scalability of completely positive maps.

• In Section 4.5 we analyze the running time of our algorithms, including an imple-

mentable version of Algorithm 1.

4.2 Completely positive maps and quiver representations

We will reduce the constructive version of Horn’s problem to a problem known in com-

puter science as operator scaling [GGOW16b, Gur04]. The objects to be considered are

completely positive maps, linear maps between spaces of matrices that preserve positive-

semidefiniteness in a strong sense. Completely positive maps describe the physically

possible operations on a quantum system [NC02], but for our purposes a completely

positive map T : Matn×n(C)→ Matm×m(C) is a map of the form

T : X 7→
r∑
i=1

AiXA
†
i ,

where Ai : Cn → Cm, i ∈ [r] are linear maps called Kraus operators of T . Note that

T preserves positive-semidefiniteness. Considered as a map between normed spaces, T

has an adjoint T ∗ known as the dual of T , given by

T ∗ : X 7→
r∑
i=1

A†iXAi.
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Example 4.5 (Nonnegative matrices as completely positive maps). Suppose A is a

nonnegative m× n matrix. For i ∈ [m], j ∈ [n], define eij to be the m× n matrix with

a one in the ij entry and zeros elsewhere. Let T√A : Matn×nC → Matm×mC be the

completely positive map with Kraus operators Eij =
√
Aijeij , i ∈ [m], j ∈ [n]. Then

for x ∈ Cn,

T√A(diag(x)) = diag(Ax).

If A is a Markov chain transition matrix, i.e. A is stochastic, then TA is a quantum

channel, a completely positive map that preserves traces. ♦

In analogy with Markov chains and nonnegative matrices, say T is doubly stochastic

if both T and its dual send the identity to the identity, i.e. T (I) = I and T ∗(I) = I.

Re-weighting the rows and columns of a nonnegative matrix by positive numbers is a

natural “scaling” operation on nonnegative matrices. Analogously, say a completely

positive map T ′ is a scaling of another completely positive map T by invertible maps

g ∈ GLm(C), h ∈ GLn(C) if T ′(X) = g†T (hXh†)g. That is, T ′ consists of T post-

and pre-composed with changes of basis on the inner products on Cm,Cn by g and h.

Motivations in polynomial identity testing [Gur04, GGOW16b] and analysis [BCCT08]

lead one to ask when T has a doubly stochastic scaling.

As in Example 4.5, often the domain and range of T have a direct sum structure

that must be preserved by the scalings in order to capture the original problem. For

instance, the classic matrix scaling problem considered by Sinkhorn [Sin64] is equivalent

to whether T√A has a doubly stochastic scaling by diagonal matrices g, h. To formulate

these restrictions on the scalings, we express our completely positive maps through

quiver representations.

4.2.1 Quiver representations

Quiver representations are an especially convenient framework to express the problems

solved by algorithms like Algorithm 1; we do not address deep issues usually considered

in the study of quiver representations, nor do we use heavy tools from that field. 2

2apart from a powerful degree bound of [DM17].
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Definition 4.6 (Quiver representations). A quiver Q is a directed multigraph (Ω, E)

with vertex set Ω and edge set E. 3

• If e ∈ E is from x to y, then t(e) denotes the tail x and h(e) denotes the head y.

• A representation V of Q is an assignment x 7→ Vx of a finite dimensional complex

inner product space to each vertex and an assigment e 7→ (Ae : Vt(e) → Vh(e)) of

a linear map to each edge e ∈ E.

• The dimension vector d ∈ ZΩ is the list of dimensions d : x 7→ dimVx. Through-

out, if x is a vector we allow
∑
x to denote the sum of its entries, and we define

dimV =
∑
d.

• Rep(Q,d) denotes the space of quiver representations with dimension vector d.

Our quiver representations will always have Vx = Cd(x) for x ∈ Ω, meaning we have

chosen some orthonormal bases for the vector spaces.

Example 4.7 (The Kronecker quiver and completely positive maps). Representations

of the Kronecker quiver with r arrows, as shown below, correspond to completely pos-

itive maps with r Kraus operators.

V =

 Cn CmA2

A1

...

Ar


Here Ai ∈ Matm×n(C). ♦

Our motivating examples come from only three families of quivers, seen in Fig. 4.1.

The quiver in Fig. 4.1b is the complete bipartite quiver with three sources and three

sinks, and the quiver in Fig. 4.1c is the Kronecker quiver with three edges. In particular,

all the quivers of interest here have a bipartite structure.

Definition 4.8 (Bipartite quivers). A quiver is bipartite if Ω = LqR, and every edge

is from L to R.

3here we differ from the usual tradition of denoting the vertex set Q0 and the edge set Q1.
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x

y w

z

(a) Horn’s problem

x x′

y y′

z z′

(b) Matrix scaling

x y

(c) Operator scaling

Figure 4.1: Examples of relevant quivers

• A quiver representation is bipartite if its underlying quiver is bipartite.

• Whenever there is an assignment x of some objects to the vertices of Ω, xL will

denote the projection to only the vertices in L and xR the projection to R.

For example, dL ∈ ZL is the assignment x 7→ dimVx, and so dimV L =
∑
dL.

Example 4.9. A bipartite quiver Q and a representation of Q.

Q =

 x y

z w

 ,V =


C2 C1

C1 C1

[7 5]

[8i 2]

[−5]


We write the dimension vector d of V as (2, 1; 1, 1). ♦

We next discuss how to use a quiver V to define a map TV :
⊕

x∈L Matd(x)(C) →⊕
y∈R Matd(y)(C) between direct sums of matrix spaces, analogously to the completely

positive maps between matrix spaces. We view

⊕
x∈L

Matd(x)(C) and
⊕
y∈R

Matd(y)(C)

as included in MatdimV L
(C),MatdimV R

(C), respectively, as block diagonal matrices in

the natural way. We want the maps TV to be completely positive and to preserve the

block structure; namely, if X ∈ MatdimV L
(C) is block diagonal, i.e. in the image of⊕

x∈L Matd(x)(C) under inclusion, then TV (X) should also be. This leads one to con-

sider Kraus operators in MatdimV L×dimV R
(C) that are nonzero on exactly one “block”.

We can describe such maps more directly as follows.
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Definition 4.10 (Completely positive maps for bipartite quivers). Using the com-

pletely positive map associated to the representation of a Kronecker quiver as in Exam-

ple 4.7, to each bipartite quiver representation V we may assign a completely positive

map

TV :
⊕
x∈L

Matd(x)(C)→
⊕
y∈R

Matd(y)(C).

To do this, for each pair of vertices x ∈ L and y ∈ R, consider the representation of

the Kronecker quiver on {x, y} by restricting V to only the edges incident to x and y.

Let Tx,y : Matd(x)(C)→ Matd(y)(C) be the corresponding completely positive map. We

then define

TV : X 7→
⊕
y∈R

∑
x∈L

Tx,y(Xx).

In words, to determine the y component := Ty(X) of TV (X), sum AeXt(e)A
†
e over

all edges e with head y. ♦

We now relate this to the discussion of block matrices before the definition. Though

[Gur04, GGOW16b] only discuss the Kronecker quiver, it is well-known that, for quivers

without oriented cycles, the problems we will consider can be reduced to those on Kro-

necker quivers by reductions of [DZ01]. For bipartite quivers, this reduction amounts to

contracting L and R to single vertices x and y assigned the subspaces ⊕x∈LVx,⊕y∈RVy,

respectively, and replacing every edge e by an edge e′ from x to y which is assigned

the block matrix A′e ∈ MatdimV L,dimV R
(C) with Ae in the h(e), t(e) block and zeroes

elsewhere. For example,

V =


C2 C1

C1

[7 5]

[8i 2]


reduction of [DZ01]7−−−−−−−−−−−−→ V ′ =


C2 C2

7 5

0 0



 0 0

8i 2




Definition 4.11 (Duals). The quiver V ∗ is obtained by reversing the directions of all

the arrows in V and replacing Ae by A†e. The dual T ∗V of TV is defined to be TV ∗ . ♦
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Remark 4.12 (Inner products and positivity). Viewing
⊕

x∈L Matd(x)(C) and⊕
y∈R Matd(y)(C) as included as block-diagonal matrices in MatdimV L

(C),MatdimV R
(C),

respectively, determines traces, inner products 〈A,B〉 := trA†B, and positive-

semidefiniteness on the two spaces. We write the induced norms as ‖ · ‖, and the

Loewner orderings by �. The map TV ∗ is then the adjoint of TV ; this follows from the

formula

trY TV (X) = trT ∗V (Y )X, (4.2)

an easy consequence of the cyclic identity for trace. TV maps positive-semidefinite

elements to positive-semidefinite elements. ♦

Extending from completely positive maps, say a bipartite quiver representation V

is doubly stochastic if TV (IL) = IR and T ∗V (IR) = IL, where I denotes the element⊕
x∈Ω IVx To capture Horn’s problem, we define a more general notion of balancedness.

Definition 4.13 (Quiver data). Say (V ,p) is a datum of the quiver Q if V is a repre-

sentation of Q and x 7→ p(x) ∈ Rd(x)
≥0 \ {0} is an assignment of nonzero, nonincreasing

vectors with nonnegative entries to the vertices of Q.

• Say (V ,p) is positive if all the entries of p are positive.

• Px denotes the operator diag(p(x)) for x ∈ Ω, and

P :=
⊕
x∈Ω

Px ∈
⊕
x∈Ω

P (Vx) := P (V ).

• If Q is bipartite, say (V ,p) is ε-balanced if

‖TV (P L)− IR‖ ≤ ε and ‖T ∗V (PR)− IL‖ ≤ ε,

and balanced if it is 0-balanced.

(V ,1) denotes the datum where each vertex is assigned a vector of all ones. Clearly

(V ,1) is balanced if and only if V is doubly stochastic.

Remark 4.14 (Depicting quiver data). Because we assume Vx = Cd(x), we do not

depict the vector space assigned to each vertex, but rather depict quiver data as below
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(with the maps suppressed if they are not relevant)

(V , (px,py)) =

(
px py

)
. (4.3)

The nonincreasing sequences assigned by integral p are naturally viewed as partitions.

Recall that a partition λ of a nonnegative integer l with k parts is a weakly decreasing

sequence (λ1, . . . , λk) of nonnegative integers summing to l. A partition λ is often

depicted by a Young diagram, a left-justified collection of boxes with λi boxes in the

ith row from the top. For example, if λ = (3, 1), then

λ = .

We also use such diagrams to represent non-integral vectors q, e.g if q = (2, 2,
√

2) then

q =

Thus, for px = (4, 3, 3, 1),py = (4, 4, 3) we may pictorially represent (V , (px,py)) of

Eq. (4.3) as
 or


 .

Example 4.15 (Horn’s problem). Consider the quiver

Q =



1

2 0

3


.

Let α,β,γ be nonincreasing sequences of m nonnegative numbers. There exist m×m

Hermitian matrices A,B,C with respective spectra α,β,γ satisfying A + B + C =

Im if and only if there is a balanced datum (V ,p) of Q with dimension vector d =

(m,m,m;m) and p = (α,β,γ; 1m). Indeed, if the below datum

(V ,p) =



α

β 1m

γ

U

V

W


.
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Is balanced then U †U, V †V,W †W are the identity, so U, V,W are unitary, and

U diag(α)U † + V diag(β)V † +W diag(γ)W † = Im,

so we may take A = U diag(α)U †, etc. Likewise, if A = U diag(α)U † etc, for U, V,W

unitary, then assigning U, V,W to the edges of Q make (V ,p) balanced.

4.2.2 Scaling of quiver representations

We next consider a right action of products of linear groups on quivers, generalizing

the action of GLm(C)×GLn(C) on completely positive maps.

Definition 4.16 (Scalings of quiver representations). If V is a representation of the

quiver Q, then GL(V ) denotes
∏
x∈Ω GL(Vx), the elements of which are assignments

g : x 7→ gx of invertible matrices to the elements of Ω.

• Let Sg : Rep(Q,d) → Rep(Q,d) denote the linear map sending V to the quiver

SgV assigning g†h(e)Aegt(e) to edge e ∈ E.

• If G is a subgroup of GL(V ), W is called a scaling of V by G if there exists g ∈ G

with SgV = W , i.e. W is in the orbit of V under G.

If V is bipartite, let GL(V )L,GL(V )R denote
∏
x∈L GL(Vx),

∏
x∈R GL(Vx), respec-

tively, so that GL(V ) = GL(V )L ×GL(V )R. ♦

We next show how the scaling of quiver representations recovers the scaling of

matrices considered in [Sin64].

Example 4.17 (Matrix scaling). Consider the complete bipartite quiver K[n]→[n] with

vertices [n] q [n] with one edge xy with t(xy) = x, h(xy) = y for each pair (x, y) ∈

[n] × [n]. If V is a representation of this quiver with d = 1, i.e. Vx = C for all

x ∈ [n] q [n], then (Axy : (x, y) ∈ [n] × [n]) is an array of complex numbers naturally

viewed as a complex matrix, and TV : Cn → Cn is given by

Ty(v) =
∑
x∈[n]

|Axy|2vx.
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Thus, we view TV as the nonnegative matrix A = (|Axy|2 : (x, y) ∈ [n] × [n])†. Then

T ∗V is the nonnegative matrix A†. Now GL(V )L = GL(V )R = Cn× and for g, h ∈

GL(V )L×GL(V )R, the completely positive map associated to V (g,h) is the nonnegative

matrix DhADg where Dh = diag(|hx|2 : x ∈ [n]) and Dg = diag(|gx|2 : x ∈ [n]).

Problem 4.18 (Balanced scalings of quivers). Given a bipartite quiver datum (V ,p),

find (if possible) an ε–balanced scaling W of V for every ε > 0.

The p for which this problem has a solution form a convex polytope known as the

moment polytope of the orbit of V for the action of U(V ) (the unitary subgroup of

GL(V )), and the corresponding moment map is V 7→ (TV (IL), T ∗V (IR)) [NM84]. We

do not use technology for moment maps here, as it is largely non-algorithmic.

Remark 4.19 (Trace condition). Eq. (4.2) implies that

trP L =
∑

pL =
∑

pR = trPR (4.4)

is necessary for a positive solution to Problem 4.18. ♦

Example 4.20 (Scaling for Horn’s problem). If the following datum has a

(V ,p) =



α

β 1m

γ

Im

Im

Im


.

has a balanced scaling by (g1, g2, g3; g), then by the calculation in Example 4.22 the

matrices g†1g, g
†
2g, g

†
3g the diagonalizing unitaries needed for Horn’s problem.

We provide an algorithm (Algorithm 2) to solve Problem 4.18 to within arbitrary

precision, if possible. Algorithm 1 is instance of Algorithm 2 applied to the quiver

representation from Example 4.20. The informal algorithm in Section 1.3 is roughly

Algorithm 2 applied to the quiver datum

(V ,p) =



α

γ

β

C−1/2

C−1/2


,
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where C = diag(γ) and with the change of variables gx ← C1/2gxC
−1/2 applied to the

scalings in step (a).

Definition 4.21 (Scalability). Say (V ,p) is approximately scalable if there exists an

ε–balanced scaling of (V ,p) for every ε > 0. ♦

Note that (V ,1)–scalability is the same as scalability to doubly stochastic.

Example 4.22 (Brascamp Lieb data, Forster’s problem). Let p ∈ Rn≥0. The quiver

datum
1m

p(1)1d(1) p(2)1d(2) . . . p(n)1d(n)

B1
B2

Bn

is called a Brascamp Lieb datum, and is approximately scalable if and only if there is a

positive constant C such that∫
Rm

n∏
i=1

fi

(
B†i x

)pi
dx ≤ C

n∏
i=1

(∫
Rd(i)

fj(x)dx

)pj
for all nonnegative functions fj : Rd(j) → R≥0, j ∈ [n] [Bar98, BCCT08]. This class of

inequalities is called Brascamp-Lieb inequalities. Algorithms for finding C were found

in [GGOW16a]. Forster [For02] used that a generic datum with d = (1n;m) and p = 1n

is approximately scalable, first proved in [GS02], to prove communication complexity

lower bounds. ♦

Theorem 4.23 (Correctness of Algorithm 2). Let (V ,p) be a positive bipartite quiver

datum. Either

1. (V ,p) is not approximately scalable, or

2. For every ε > 0, with probability one, Algorithm 2 outputs an ε–balanced scaling

of (V ,p).

Algorithm 2 applied to the quiver from Example 4.22 is exactly Algorithm 1.

Remark 4.24 (Implementability II). Algorithm 2 suffers from the same implementabil-

ity issues as Algorithm 1 highlighted in Remark 4.4. Both are addressed in Section 4.5.
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Input: A bipartite quiver datum (V ,p) and ε > 0.

Output: An ε–balanced scaling W of V .
Algorithm:

1. Choose g ∈ GL(V ) by picking each entry of gx independently at random in
[−1, 1] for x ∈ Ω. Set W = SgV .

2. while ‖TW (P L)− IR‖ > ε do:

(a) Choose g ∈ GL(V )R upper triangular such that

g†TW (P L)g = IR,

and set W ← S(IL,g)W .

(b) Choose h ∈ GL(V )L upper triangular such that

h†T ∗W (PR)h = IL,

and set W ← S(h,IR)W .

3. output W .

Algorithm 2: Algorithm for Problem 4.18.

4.3 Reduction to Gurvits’ problem

The analysis of the algorithm hinges on two steps: firstly, finding arbitrarily precise

scalings of (V ,p) is equivalent to a approximate scaling of (SgV ,p) by a smaller group

for generic g, hence the randomization step in Algorithm 2. The smaller group is a

group of block–upper triangular matrices in a certain basis.

The second step is a further reduction from Problem 4.26 to an instance of Prob-

lem 4.18 where p = 1, which was already addressed by Gurvits. The simple alternating

algorithm in Theorem 4.27 applied to the quiver obtained from the reduction “lifts” to

the upper triangular scaling steps of Algorithm 2. This reduction only works when p

is integral, so by the end of this section the reader will be convinced that Algorithm

2 works for rational p. We proceed to set some notation to define the new scaling

problem.
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Upper–triangular matrices in GLn(C) are exactly those that fix the standard flag

F• = {〈e1〉, 〈e1, e2〉, . . . , 〈e1, . . . , en〉}.

More generally, a partial flag F◦ on a vector space V is a set of nontrivial subspaces

that form a chain in the inclusion ordering, and a complete flag F• is a partial flag of

cardinality n. If F◦ is a partial flag on V , let GL(F◦) denote the subgroup of GL(V )

fixing F◦, sometimes called a parabolic subgroup of GL(V ). Concretely, GL(F◦) ⊂

GLn(C) consists of invertible, block–upper triangular matrix with blocks demarcated

by {i : E + i ∈ F◦}.

Definition 4.25 (Flags and sequences). If p is a decreasing subsequence of length

n, let Fp◦ denote the partial flag {Fi : p(i) 6= p(i+ 1), i ∈ [n]} where p(n + 1) := 0.

GL(V ,p) denotes the group
∏
x∈Ω GL(F

px◦ ) ⊂ GL(V ). That is, each gx is an invertible,

block–upper triangular matrix with blocks demarcated by {i : pi(x) 6= pi+1(x)}. ♦

We are ready to state the problem which generically captures scalability of (V ,p).

Problem 4.26 (Approximate parabolic scaling). Given a bipartite quiver datum (V ,p)

find (if possible) for every ε > 0 an ε–balanced scaling of (V ,p) by GL(V ,p).

The main purpose of using block–upper triangular matrices rather than upper–

triangular ones is to avoid using unnecessary randomness, and so the problem is the

same as approximate scaling for p = 1. If a solution for Problem 4.26 exists for (V ,p),

say (V ,p) is approximately parabolic scalable.

Theorem 4.27 ([Gur04]). Let (V ,1) be a datum of a bipartite quiver Q.

1. (V ,1) is approximately scalable.

2. V is rank–nondecreasing, i.e. for X � 0, rankTV (X) ≥ rankX.

3. dimV L = dimV R and 0 < cap(V ) := infX�0
detTV (X)

detX .

4. For all ε > 0, the below algorithm outputs an ε-scaling W of V .

1. Set W ← V .

2. while ‖TV (IL)− IR‖ > ε do:
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(a) Choose any g ∈ GL(V )R such that g†TV (IL)g = IR, and set W ← S(IL,g)W .

(b) Choose any h ∈ GL(V )L such that h†T ∗V (IR)h = IR, and set W ← S(h,IR)W .

3. output S.

Gurvits did not originally state this theorem in the language of quivers, but rather in

the language of completely positive maps. However, it is very easy to prove the slightly

more general Theorem 4.27 from Gurvits’ original formulation using the standard re-

duction of [DZ01] from a bipartite quiver to a Kronecker quiver as in Example 4.7.

The combination of the reduction to parabolic scaling and the reduction from

parabolic scaling to Gurvits’ problem will show that Algorithm 2 converges on approx-

imately scalable data (V ,p). In the process of analyzing the running time, however,

we will provide (with hindsight) a more self–contained proof mirroring the proof of

Theorem 4.27.

4.3.1 Reduction from parabolic scaling to Gurvits’ problem

In this section we prove Theorem 4.28 below. The reduction for Brascamp–Lieb data

in [GGOW16a] is a special case of our reduction, which also bears some similarity to

the reduction from representation theoretic version of Horn’s problem to quiver semi–

invariants in [DW00].

Say a bipartite quiver datum (V ,p) is integral is p is an integer vector.

Theorem 4.28. There exists a map Red assigning to each integral, bipartite quiver

datum (V ,p) a bipartite quiver V ′ = Red(V ,p) and to each element g ∈ GL(V ,p) an

element Red g ∈ GL(V ′) such that

1. (V ′,1) is approximately scalable if and only if (V ,p) is approximately parabolic

scalable.

2. If the group elements in Algorithm 3 on input (V ,p) are g1, g2, . . . then

Red g1,Red g2, . . . are valid choices in Algorithm 3 on input (V ′,1).

In in particular, Algorithm 3 on (V ′,1) is identical to the algorithm in Theorem 4.27
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Input: A bipartite quiver datum (V ,p) and ε > 0.

Output: An ε–balanced parabolic scaling W of V .
Algorithm:

1. Set W ← V .

2. while (W ,p) is not ε–balanced, do:

(a) Choose h ∈ GL(V ,p)R such that

h†TW (P L)h = IR,

set g = (IL, h), and set W ← SgW .

(b) Choose h ∈ GL(V ,p)L such that

h†T ∗W (PR)h = IL,

set g = (h, IR), and set W ← SgW .

3. output W .

Algorithm 3: Algorithm for Problem 4.26.

on V ′. The reduction is easy to describe. It will be a sequence of “cuts”, denoted Cutp,x,

which operate on one vertex of a datum at a time as shown below.



0.7︷︸︸︷

x


Cut0.7,x7−−−−−→




Definition 4.29 (Cuts). Given a bipartite quiver datum (V ,p) of Q, x ∈ L and

0 ≤ p < p1(x), let Cutp,x(V ,p) be a datum (V ′,p′) for the quiver Q′ described as

follows.

1. Q′ contains all edges and vertices of Q, but Q′ has one new vertex x′ that is a

duplicate of x. That is, for each edge e with t(e) = x there is a new edge e′ with
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t(e′) = x′ and t(e′) = z. E.g.

Q =



x y

z w

u v


7−→



x′

x y

z w

u v


= Q′

2. V ′ is the representation ofQ′ assigning the same values to the edges and vertices of

Q, and assigning to x′ the element Fj of the standard flag for j = |{i : pi(x) > p}|,

and to each edge e′ the map Ae ◦ ι where ι : F ↪→ Vx is the inclusion map.

Vx Vy

Vx′ = Fj

Ae
e

ι
Ae◦ι

e′

3. p′ assigns all vertices of Q′ but x and x′ their original values, and to x it assigns

the sequence p′(x) = (min{p, pi(x) : i ∈ [d(x)]) and to x′ the sequence p′(x′) =

(pi(x)− p : i ∈ [d(x′)]). For example,

(3, 2, 1)
px

p=1.57−−−→ (1.5, 1.5, 1)
p′x

, (1.5, .5)
p′(x′)

4. For x ∈ Ω′, if px = 0 then remove x from Q′0 and all its incoming and outgoing

edges. Note that this step will only change Q′ if p = 0.

For fixed p, we abuse notation by allowing Cutp,x : Rep(Q,d)→ Rep(Q′,d′) to denote

the injective, linear map that sends V → V ′. ♦

Example 4.30. Below p(x) = (4, 2, 1), which contains two values bigger than one.
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Hence Vx′ = F2 = span{e1, e2}, so ι =

1 0 0

0 1 0

† and


x

a b c

d e f


 Cut1,x7−−−−→



x

x′

a b c

d e f



a b

d e




.

♦

Remark 4.31 (Observations about cuts).

• By design, one recovers p(x) by adding p′(x) to p′′(x) padded with the appropriate

number of zeroes. In particular,
∑
p =

∑
p′ and Px = P ′x + ιP ′x′ι

†.

• So far we have only seen how to perform “left cuts” on vertices of L to perform

a cut on a vertex in R, simply do the cut on the dual (V ,p)∗ := (V ∗,pR ⊕ pL)

and then take the dual of the result.

• Some cuts do not change the quiver, i.e. Cut0,x when pd(x) > 0. Call these trivial

cuts.

• Cuts commute. If x 6= y, then Cutp,x Cutp′,y = Cutp′,y Cutp,x. Similarly, for

p < p′, Cutp,x Cutp′,x = Cutp′−p,x′ Cutp,x .

Before describing more properties of cuts, we describe the reduction. If the entries

of p are positive integers, we may “cut” a datum to the point that the datum is of the

form (W ,1). If we only cut by integers, we may only perform nontrivial cuts for so

long, and we may only do it in one way.

Definition 4.32 (Reduction as a sequence of cuts). Let (V ,p) be a bipartite quiver da-

tum. Red(V,p) is the unique quiver representation obtained by any maximal sequence

of nontrivial cuts of the form Cuti,x where i is a positive integer. By Remark 4.31,

dim RedV =
∑
p. ♦
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Figure 4.2: Maximal sequence of cuts of (4, 3, 3, 1)

Using the first observation in Remark 4.31, we can show cuts preserve balancedness.

Lemma 4.33. If x ∈ L and (V ′,p′) = Cutp,x(V ,p), then

TV ′(P
′
L′) = TV (P L) (4.5)

Furthermore, Cutp,x(V ,p) is left (resp. right)–balanced if and only if Cutp,x(V ,p) is

left (resp. right)–balanced, and if p > 0 then Cutp,x(V ,p) is ε–balanced then (V ,p) is

ε–balanced.

Proof. Let (V ′,p′) = Cutp,x(V ,p). Eq. (4.5) implies cuts preserve left–balancednes.

To prove the equation, enough to show that, for a given neighbor y of x, Tx,y(Px) =

Tx,y(P
′
x) + Tx′,y(P

′
x′). This follows because, by Remark 4.31, px = P ′x + ιP ′x′ι

†, and

Tx′,y(X) = Tx′,y(ιXι
†). To check that right–balancedness is preserved, observe that

T ′∗(P ′R) = T ′∗(PR) and we need only check x, x′. We have T ′∗(PR)x = T ∗(PR)x and

T ′∗(PR)x′ = ι†T ∗(PR)xι, which are both the identity if and only if T ∗(PR)x is.

Further, if (W ,p) = Cutp,x(V ,p), then (V ,p) is approximately (resp. exactly)

parabolically scalable if and only if (W ,p) is approximately (resp. exactly) scalable by

a certain subgroup of GL(W ,p).

Definition 4.34 (Cutting the group). Let Cutp,x(V ,p) = (V ′,p′). By abuse of no-

tation, define the map Cutp,x : GL(V ,p) → GL(V ′,p′) by (Cutp,x g)z = gz if z 6= x′,

and

(Cutp,x g)x′ = ι†gx′ι.

Cutp,x GL(V ,p) ⊂ GL(V ′,p′) denotes the image of this map. The last claim follows

from Eq. (4.5) and the fact that ‖T ′∗(PR)−IL′‖2 is ‖T ∗(PR)−IL‖2+‖T ′∗x′ (PR)−Ix′‖2.
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Lemma 4.35 (Cuts preserve scalability). If p > 0, Cutp,x(V ,p) is approximately (resp.

exactly) parabolically scalable if and only if (V ,p) is approximately (resp. exactly)

parabolically scalable by Cutp,x GL(V ,p).

Proof. Let Sg : RepQ → RepQ denote scaling by g. For the exact scalability part of

the proof, we’d like to show that the group orbit GL(V ,p) · V contains an element

which is balanced when paired with p if and only if the group orbit Cutp,x GL(V ,p) ·

Cutp,x V does. By Lemma 4.33 and the injectivity of Cutp,x, this would follow from

Cutp,x(GL(V ,p) ·V ) = Cutp,x GL(V ,p) ·Cutp,x V , for which it is enough to show that

the below diagram commutes.

Rep(Q,d) Rep(Q′,d′)

Rep(Q,d) Rep(Q′,d′)

Cutp,x

Sg SCutp,x g

Cutp,x

(4.6)

For this we need only look at each pair x, e with x ∈ E and t(e) = x. Let gx′ denote

(Cutp,x g)x′ . We must show that gh(e)Ae′gx′ = g†h(e)Aegxι, but this follows because

gh(e)Ae′gx′ = g†h(e)Aeιι
†gxι, and ιι†gxι = gxι because ιι† is the orthogonal projection to

a an element of F◦(x), which is by definition fixed by gx.

In the approximate case, consider the map fQ : W 7→ (TW (QL), T ∗QQR)). fQ is

continuous and by positivity of q the preimage under f−1B is compact for a closed ball

of B of radius 1/2 about the identity in P (V ∗). Thus f is closed on f−1B, and so

it is enough to show Cutp,x(GL(V ,p) · V ) = Cutp,x GL(V ,p) · Cutp,x V , but this also

follows from Eq. (4.6) because Cutp,x is injective and linear.

Proof of Theorem 4.28. By Lemma 4.35, if (V,p) is approximately parabolically scal-

able then (Red(V ,p),1) is approximately scalable by the subgroup

Red GL(V ,p) = Cuti1,x1 ◦ · · · ◦ Cutit,xt GL(V ,p).

On the other hand, if (Red(V ,p),1) is approximately scalable, the sequence of group

elements balancing (Red(V ,p),1) might not be elements of Red GL(V ,p) in general. If

they were, we could pull them back to elements of GL(V ,p) by Eq. (4.6). However, by
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Theorem 4.27, the sequence of elements can be taken to be steps of Gurvits’ algorithm,

which can be taken in Red GL(V ,p). We prove this for Cut in Lemma 4.36 below,

which implies it for Red by induction. Theorem 4.28 then follows from Theorem 4.27,

and the fact that Red is an injective linear map.

Lemma 4.36 (Algorithm 3 and cuts). If g1, g2, . . . are the sequence of elements in

Algorithm 3 on input (V ,p) with ε = 0, then

Cutp,x g
1,Cutp,x g

2, . . .

are a valid choice of elements for Algorithm 3 on input Cutp,x(V ,p) with ε = 0.

Proof. Let (V ′,p′) = Cutp,x(V ,p), and let W i,W
′
i be the sequence of quiver rep-

resentations in the algorithm run on (V ,p), (V ′,p′), respectively. By Eq. (4.6), we

have that W ′
i = Cutp,xW i throughout. Without loss of generality we assume x ∈ R,

which implies that for i even we have Cutp,x g
i = Cutp,x(hi, IR) = (hi, IR′). As in the

proof of Lemma 4.33, we have T ∗
W ′i−1

(P ′L) = T ∗W i−1
(P L), which implies (hi, IR′) is still

valid. For odd i, we may assume i = 1. Let T = TW 1 and T ′ = TW ′1 , and suppose

gx′ = Cutp,x(IL, h
1)x′ . We need only show that gx′T

′(P L)gx′ = IVx′ . As observed in the

proof of Lemma 4.33 and by the definition of gx′ , we have T ′(P L) = ι†gxιι
†T (P L)ιι†gxι.

As in the proof Lemma 4.35, ιι†gxι = gxι. Hence, T ′(P L) = ι†ι = IVx′ .

For p integral, any cut of (V ,p) can be further cut to obtain Red(V ,p), which

proves the next corollary.

Corollary 4.37. For p integral, Cutp,x(V ,p) is approximately parabolically scalable if

and only if (V ,p) is.

4.3.2 Randomized reduction to parabolic problem

Here we show that Problem 4.18 for (V ,p) is equivalent to Problem 4.26 for (Vg,p)

generic. If (V ,p) is scalable, it is unsurprising that there exists g such that (SgV ,p) is

parabolic scalable. If the g such that (SgV ,p) are parabolic scalable is a Zariski–open

set, then the claim follows. This true for integral p because Red is a regular map and
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the V such that (V ,1) is not scalable form an affine variety known as the null–cone.

The null–cone for quiver representations is rather well–understood.

Theorem 4.38 (Derksen, Makam [DM17]). The null–cone for bipartite quiver repre-

sentations is an affine variety generated by polynomials of degree at most N(N − 1),

where N = dimV L.

The map (g, h†) 7→ RedSg,hV is actually bilinear in (g, h), which yields the follow-

ing.

Corollary 4.39. Let p be integral with
∑
pR = N . The set of (g, h†) ∈ GL(V )L ×

GL(V )R = GL(V ) such that (S(g,h)V ,p) is not parabolic scalable is an affine variety

in GL(V ) generated by polynomials of degree at most N(N − 1).

Some slight care is required, but we have essentially proved our randomized reduc-

tion. In order to apply the following to rational p, simply scale p by a large enough

integer. This does not change scalability.

Theorem 4.40. Suppose p is integral with
∑
p = N . If (V ,p) is approximately

scalable, then (SgV ,p) is approximately parabolically scalable for almost every g. In

particular, if the entries of g are chosen at random in [αN(N − 1)] then (SgV ,p) is

scalable with probability at least 1− 1/α.

Proof. If (V ,p) is approximately scalable, then for every ε > 0 there exists g such

that (SgV ,p) is ε–balanced. This implies (Red(SgV ,p),1) is
√
Nε balanced. By

[Gur04], which we will show reprove later as a consequence of Lemma 4.56, if ε
√
N ≤

1√
N

, then RedSgV is rank–nondecreasing. Thus, it is scalable by Theorem 4.27. By

Theorem 4.28, SgV is parabolic scalable, so by Corollary 4.39 the g such that SgV are

scalable form a Zariski open set. The last point is an application of the Schwarz-Zippel

lemma.

4.4 Analysis of the algorithm

So far, we have only proved Theorem 4.23 for rational p. Furthermore, the running

time depends on a common denominator for the p, though the morally the running
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time should depend on geometrical properties of p. In this section we show that this

the case. In the process, we will prove an analogue of Theorem 4.27 with generalized

notions of the capacity cap(V ) and rank–nondecreasingness for p 6= 1.

4.4.1 Generalization of Gurvits’ theorem

For this part, it will be slightly more convenient to use a different notion of balancedness.

Definition 4.41 (Outer scalings). Say (V ,p) is ε-outer balanced if

‖TV (IL)− PR‖ < ε and ‖T ∗V (IR)− P L‖ < ε,

Say (V ,p) is approximately outer scalable if it has an ε–outer balanced scaling for every

ε > 0. Say (V ,p) is approximately outer parabolically scalable if ε–outer balanced

scaling by GL(V ,p) for every ε > 0. ♦

Remark 4.42 (Outer scalings vs scalings). If (V ,p) is approximately scalable (resp.

parabolically scalable), then (V ,p) is approximately outer scalable (resp. parabolically

scalable). If (V ,p) is positive, then the converse is also true. This is true because if

(V ,p) is balanced then as g → P 1/2, (SgV ,p) converges to outer balanced. If p is

positive we can set g = P−1/2 for the reverse implication.

Theorem 4.43. Let (V ,p) be a bipartite quiver datum.

1. (V ,p) is approximately outer parabolically scalable.

2. (V ,p) is rank–nondecreasing.

3.
∑
pL =

∑
pR and 0 < cap(V ,p).

Moreover, if any of the above hold and (V ,p) is positive, Algorithm 3 terminates on

(V ,p) for all ε > 0.

It will be immediate from our definition of that the rank–nondecreasingness of (V ,p)

is preserved under parabolic scalings and is equivalent to p lying in a polytope P(V )

whose vertices lie in a finite set that depends only on d. That the parabolically scalable

data takes this general form is due to [Fra02]. The capacity cap(V ,p) is a nonnegative
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function that is log-concave in p and is supported on P . cap(V ,p) acts as a potential

function in the analysis of Algorithm 3.

In geometric invariant theory terms, the equivalence of the first three items is a

statement about the semistability of certain quivers, so is probably known to practi-

tioners even if it is not explicitly stated in the literature. We use Theorem 4.43 to show

our full characterization of scalability:

Theorem 4.44. Let (V ,p) be a bipartite quiver datum.

1. (V ,p) is approximately outer scalable.

2. (SgV ,p) is rank–nondecreasing for g in a Zariski-open subset of GL(V ).

3. cap(SgV ,p) > 0 for g in a Zariski-open subset of GL(V ).

Moreover, if any of the above hold and (V ,p) is positive, Algorithm 2 terminates on

(SgV ,p) for all ε > 0 for g in a Zariski-open subset of GL(V ).

To prove this, we need one unsurprising technical result which will be proved in the

next section.

Lemma 4.45 (Nearly balanced implies rank–nondecreasing). There exists ε(p) > 0

such that every ε–outer balanced datum (V ,p) is rank–nondecreasing.

Proof of Theorem 4.44. We need only prove that 1 implies 2. The argument is due

to [Fra02]. The only care required is in avoiding the integrality assumption in Corol-

lary 4.39. To circumvent this, we use that p such that (SgV ,p) is rank–nondecreasing

forms a polytope P(SgV ) whose vertices fall in a finite subset of QdimV depending

only on d. If g is approximately scalable, then by Lemma 4.45, there exists g such

that (SgV ,p) is rank–nondecreasing, i.e. P(SgV ) := P contains p. Now we consider

the finitely many rational vertices p1, . . . ,pt of P. Because there exists g such that

(Vg,p1), . . . , (Vg,pt) are rank–nondecreasing, by Theorem 4.40 they are all in P(SgV )

for generic g. By convexity, (SgV ,p) ∈ P(SgV ) for generic g.

The proof above yields more. Clearly (V ,p) is scalable if it is in the union U of

P(SgV ) for all g ∈ GL(V ). However, the vertices of P(SgV ) lie in some fixed finite
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Figure 4.3: Reducing (4, 3, 3, 1) to uniform

set S independent of g, and if there exists g such that a point is in P(SgV ) then that

point is in P(SgV ) for almost every g. In particular, there exsts g such that P(SgV )

contains all points of S in U . Thus we have the next corollary.

Corollary 4.46 (The scalable data form a convex polytope). The set K(V ) of p such

that (V ,p) is approximately scalable forms a convex polytope with rational vertices.

Before we begin the definitions and proofs, we define another useful reduction.

Definition 4.47 (Reduction to uniform quiver datum). Say a quiver datum (V,p) is

uniform if for every x we have px = p(x)1 for p(x) ∈ R. That is, all px are proportional

to the all–ones vector. If (V,p) is a bipartite quiver datum, let

Unif (V,p)

be the uniform bipartite quiver datum obtained by applying a minimal sequence of

cuts to (V ,p). That is, by applying Cutp,x for each distinct value p appearing in px

for x ∈ Ω. We also define Unif g for g ∈ GL(V ) as Red g,Cutp,x g.

Remark 4.48 (Algorithm on Unif(V ,p)). By Lemma 4.36, if elements gi are valid

choices of group elements in Algorithm 3 on (V ,p) then Unif gi are valid choices for

Algorithm 3 on Unif(V ,p). ♦

4.4.2 Rank–nondecreasingness

A Hall blocker in a bipartite graph on [n] q [n] is an independent set of cardinality

greater than n; the existence of a perfect matching is equlivalent to the nonexistence of

a hall blocker. A collection of subspaces Wx ⊂ Vx will play the role of a Hall blocker in
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obstructing scalings. We assign a certain “mass” p(Wx) to each subspace in W , and

the generalized notion of nonadjacency between x and y is that AeWt(e) ⊂ W⊥h(e) for

every edge e from y to x. We call such a collection W of subspaces a V –independent

set ; if the total mass is too large, W obstructs scalability.

Definition 4.49 (Rank–nondecreasingness). If p ∈ Rn is a nonincreasing sequence,

and W a subspace of Cn, define

p(W ) =
n∑
i=1

(pi − pi+1) dim(Fi ∩W ).

If (V ,p) is a quiver datum and W : x 7→ Wx ⊂ Vx is an assignment of subspaces to

vertices, define

p(W ) =
∑
x∈Ω

px(Wx)

Say a bipartite quiver datum (V ,P ) of a bipartite quiver Q is rank–nondecreasing4 if

∑
pL =

∑
pR (4.7)

and for every V –independent pair W ,

p(W ) ≤
∑

pL. (4.8)

Remark 4.50 (Facts about rank–nondecreasingness).

• Most importantly, rank–nondecreasingness is preserved under the action of

GL(V ,p). This follows because for g ∈ GL(V ,p), gx fixes Fi if px(i) 6= px(i+ 1),

and g−1W : x 7→ g−1
x Wx is still a V –independent set.

• Rank–nondecreasingness of (V ,1) is equivalent to the rank–nondecreasingness of

V in Theorem 4.27.

• Rank–nondecreasingness is manifestly symmetrical; (V ,p) is rank–nondecreasing

if and only if (V ,p)∗ is rank–nondecreasing.

4In the language of quiver representations, rank–nondecreasingness is the same as semistability of
some augmented quiver for p integral.
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• We can rewrite
∑n

i=1(p(i)− p(i+ 1)) dim(W ∩ Fi) as

n∑
i=1

pi(dim(W ∩ Fi)− dim(W ∩ Fi−1))

for F0 := {0}; this shows that rank–nondecreasingness is characterized by a system

of inequalities with coefficients in {−1, 0, 1}.

Example 4.51 (Perfect matchings). If Q is a complete bipartite graph (directed from

left to right) and d = 1 (as in Example 4.17), then (V ,1) is rank–nondecreasing

if and only if the matrix [Axy] supports a perfect matching. In this case, rank–

nondecreasingness amounts to Hall’s condition.

Example 4.52 (Prescribed row and column sums). If (V , (r, c)) where V is as above,

rank–nondecreasingness is equivalent to the condition of Rothblum and Schneider [RS89]

for [Axy] to have a scaling by diagonals to with row and column sums r, c, respectively.

That is,
∑
c =

∑
r and every zero submatrix I × J satisfies

∑
x∈I r(x) +

∑
y∈J c(y) ≤∑n

x∈L c(y).

Example 4.53 (Block matrices with prescribed row and column “sums”). If V is on

the same quiver as above but with d 6= 1, then the condition of rank–nondecreasingness

of (V , (r; c)) generalizes that of Dvir et. al. [DGOS16] for uniform data, i.e. when

rx = r(x)1, cx = c(x)1 are proportional to all–ones vectors, which states that
∑
r =∑

c and ∑
x∈L

r(x) dimWx +
∑
x∈R

c(x) dimWx ≤
∑

r

for any W with AxyWy ⊂W⊥x for all y ∈ L, x ∈ R. ♦

The next lemma is proved in Appendix A.1.

Lemma 4.54 (Cuts preserve rank–nondecreasingness). Cutx,p(V ,p) is

rank-nondecreasing if and only if (V ,p) is. In particular, cuts preserve pL(V ),pR(V )

and the maximum value of p(W ) over all V –independent sets W .

Corollary 4.55 (The reduction preserves rank–nondecreasingness). For (V ,p) inte-

gral, (Red(V ,p),1) is rank–nondecreasing if and only if (V ,p) is.
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We next show that balanced data are rank–nondecreasing. Applying the following

proposition to
(
SP 1/2V ,p

)
implies Lemma 4.45. The proof is in Appendix A.1.

Lemma 4.56 (Approximate balancedness implies rank–nondecreasingness). Suppose

(V ,p) is an ε–outer balanced bipartite quiver datum. Then |
∑
pL−

∑
pR| ≤ 2ε

√
dimV

and

p(W ) ≤
∑
pL + 2εdimV (4.9)

for all V –independent sets W .

4.4.3 Capacity

Here we describe the analogue of the capacity, the function cap(V ) from Theorem 4.27.

Our modified capacity, cap(V ,p), is log-concave in p, and we will show that it is

supported on the set of p such that (V ,p) is rank–increasing.

Definition 4.57 (Relative determinant). Let ιj : Fj → Ck be the inclusion map, or as

an n× j matrix,

ιj =

 Ij

0n−j

 . (4.10)

If p is a nonincreasing sequence in Rn≥0, define det(X,p) : Matn(C)→ C by

det(X,p) =

n∏
j=1

| det ι†jXιj |
pj−pj+1 , (4.11)

where 00 := 1. For an assignment (X,p) : x→ Xx ∈ Matd(x) C,px ∈ Rn≥0 nonincreasing

and x in a finite set S, define

det(X,p) =
∏
x∈S

det(Xx,px).

We use a multiplicativity property of this determinant, which we prove in Ap-

pendix A.2.

Lemma 4.58 (Multiplicativity of determinant). If g ∈ GL(Fp◦ ), then for all X ∈

Matn(C),

det(g†Xg,p) = det(g†g,p) det(X,p). (4.12)
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We are now ready to define the capacity:

Definition 4.59 (Capacity). If (V ,p) is a bipartite quiver datum, define

cap(V ,p) = e−H(pL) inf
X�0

det(TV (X),pR) det(X−1,pL) (4.13)

where H(q) = −
∑
qi log qi is the Shannon entropy. ♦

Firstly, note that the capacity is log–concave.

Lemma 4.60 (log–concavity of capacity). eH(pL) cap(V ,p) is log–concave in p.

Proof. We must show that infX�0 log(det(TV (X),pR) det(X−1,pL)) is concave in p.

However, the quantity being infimized is linear in ∆p : (x, i) 7→ px(i) = px(i + 1) ∈

RdimV
≥0 , which is linear in p. In particular, it takes the form g : ∆p 7→ R∪{−∞} where

g(∆p) = inf
y∈S

∆p · f(y)

for some set S and f a vector valued function on S with components in R∪{−∞}. The

convention 0 log 0 = 0, which is consistent with our convention in defining det(X,a),

and the nonnegativity of ∆p, ensures that for λ ∈ (0, 1) we have

inf
y∈S

(λ∆p1 + (1− λ)∆p2) · f(y) = inf
y∈S

λ(∆p1 · f(y)) + (1− λ)(∆p2 · f(y))

≥ λ inf
y∈S

∆p1 · f(y) + (1− λ) inf
y∈S

∆p2 · f(y).

This determinant behaves well under cuts. It is not hard to see that for (V ′,p′) =

Cutp,x(V ,p) we have

det(Xx,px) = det(Xx,px) det(ι†Xxι,p
′
x′). (4.14)

We prove the next lemma in Appendix A.2.

Lemma 4.61 (Cuts preserve capacity). If (V ,p) is a bipartite quiver datum, then

cap(Cutp,x(V ,p)) = cap(V ,p). (4.15)

Corollary 4.62. If p is integral, then cap(V ,p) = cap(Red(V ,p)).
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4.4.4 Analysis of the algorithm

Here we show that if cap(V ,p) > 0, Algorithm 3 converges. Let W i be the quiver

representation in the ith iteration. We show that if (W i,p) is ε-far from balanced,

then cap(W i+1,p) > cap(W i,p) + f(ε), and throughout cap(W i,p) ≤ 1. It is easier

to analyze the algorithm on Unif(V ,p), which is equivalent by Remark 4.48. We first

state the lemmas and prove that the algorithm converges, and then proceed to prove

the lemmas. We will need a notion of distance from doubly stochastic.

Definition 4.63 (Distance to doubly stochastic). If (V ,p) is a uniform bipartite quiver

datum, define

ds(V ,p)2 =
∑
x∈L

p(x)‖Tx(PR)− Id(y)‖2 +
∑
y∈R

p(y)‖T ∗y (P L)− Id(y)‖2.

In particular, if pmin, pmax are the the maximum and minimum entries of p, then

pmin(‖T (P L)− IR‖2 + ‖T ∗(PR)− IL‖2)

≤ ds(V ,p)2 ≤ pmax(‖T (P L)− IR‖2 + ‖T ∗(PR)− IL‖2) (4.16)

(4.17)

so if (V ,p) is positive then it is ε–balanced if ds(V ,p)2 ≤ ε2pmin and only if ds(V ,p)2 ≤

2ε2pmax. ♦

Proving that the algorithm makes progress each step is the only ingredient that

requires care. We delay the proof until after the proof of Theorem 4.68.

Lemma 4.64 (Substantial progress). Suppose (V ,p) is a uniform datum with pL(V ) =

pR(V ). Suppose (V ,p) is left–balanced, ds(V ,p)2 ≥ ε, and

g = (h, IR) ∈ GL(V ,p) satisfies h†T ∗V (PR)h = IL. Then

cap(SgW ,p) ≥ e.06 min{ε,pmin} cap(W ,p).

The same holds if (V ,p) right–balanced and g = (IL, h) where h†TV (P L)h = IR.

Lemma 4.65 (Evolution of capacity). If g ∈ GL(V ,p), then

cap(SgV ,p) = det(g†g,p) cap(V ,p).
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Proof. Let g = (hL, hR) for hL ∈ GL(V ,p)L and hR ∈ GL(V ,p)R. By the change of

variables Y = hLXh†L, we have

inf
X�0

det(TSgV (X),pR) det(X−1,pL) = inf
X�0

det(h†RTV (hLXh†L)hR,pR) det(X−1,pL)

= inf
Y �0

det(h†RTV (Y )hR,pR) det(h†LY
−1hL,pL)

Applying 4.12 to both factors completes the proof.

The next lemma is proved in Appendix A.2.

Lemma 4.66 (Nonsingular operators map to nonsingular operators). Suppose (V ,p)

is a uniform positive bipartite quiver datum with
∑
pL =

∑
pR and cap(V ,p) > 0.

Then both TV and T ∗V map positive definite matrices to positive definite matrices.

Lemma 4.67 (capacity upper bound). Suppose (V ,p) is left– or right– balanced and

pL(V ) = pR(V ) = 1. Then cap(V ,p) ≤ 1.

Proof. By Lemma 4.61, it is enough to prove the claim assuming (V ,p) is uniform. Let

T = TV . By taking X = P L, we have

cap(V ,p) ≤ e−H(pL) det(T (P L),pR) det(P−1
L ,pL),

which is equal to 1 if (V ,p) is left–balanced. If (V ,p) is instead right–balanced, then

1 = trP L = trP LT
∗(PR) = trT (P L)PR. This shows that

∑
y∈R

∑d(y)
i=1 p(y)λy(i) = 1

if λy denotes the spectrum of Tx(P L). Then

log cap(V ,p) ≤ −H(pL) +
∑
x∈R

p(y) log detTy(PL)−
∑
x∈L

p(x) log detPx

=
∑
y∈R

p(y) log det

d(y)∑
i=1

log λy(i).

The last line is at most one by Jensen’s inequality.

Theorem 4.68 (Running time of Algorithm 3). Suppose (V ,p) is a positive bipartite

quiver datum with pL(V ) = pR(V ). If cap(V ,p) > 0, then Algorithm 3 terminates in

O

(
− log cap(V 1,p)

pminε2

)
steps, where V 1 is the datum obtained after one normalization step.



97

Proof. First, let (V ′,p′) = Unif(V ,p). By Remark 4.48, the steps of the algorithm

on (V ,p) determine valid steps on (V ′,p′). By Lemma 4.33, (V ′,p′) is ε–balanced,

then (V ,p) is ε–balanced. Unif preserves pmin. By Eq. (4.16), it is enough to run the

algorithm on (V ′,p′) until (W ,p′) satisfies ds(W ,p′) ≤ ε′2 := pminε
2.

By Lemma 4.61, cap(V ′,p′) = cap(V ,p) > 0, so Lemma 4.65 implies cap(W ,p′) >

0 throughout the algorithm. The existence of the Cholesky decomposition and Lemma

4.66 imply each step is possible; e.g. in the (a) steps g will be a Cholesky factor of

TW (P ′L)−1. Lemma 4.64 implies that in every step of the algorithm after the first,

cap(SgW ,p′) ≥ e.06 min{pmin,ε
′2} cap(W ,p′).

provided ds(W ,p′) ≥ ε′. By Lemma 4.67, cap(W ,p′) ≤ 1 throughout. Taking loga-

rithms and using min{pn, ε′2} = pminε
2 completes the proof.

Proof of Lemma 4.64. Let T = TW . First note that g = (h, IR) such that h†T ∗(PR)h =

IL. Because the datum is uniform, det(h†h,pL) = det(T ∗(PR)−1,pL). By Lemma 4.65

it is enough to show det(T ∗(PR)−1,pL) ≥ e.06 min{pmin,ε}. The analogous inequality for

the (a) steps follows by symmetry.

Because the datum is uniform, we may equivalently show

∑
x∈L

p(x) log detT ∗x (PR) ≤ −.06 min{pmin, ε}.

As in [GGOW16b, Gur04], the proof is a stability version of Jensen’s inequality. The

statement is invariant under rescaling of p, so we assume
∑
p(x)d(x) = 1. If λx is the

spectrum of T ∗x (PR), let X be the random variable obtained by choosing λx(i) with

probability p(x). The left–hand side of the above inequality is E[logX]. If any λx(i)

are zero, E[logX] = −∞ because p(x) > 0 for all x, so we assume this is not the

case. Because E[X] = trT ∗(PR) = trPR = 1, Jensen’s inequality shows E[logX] ≤ 0,

however, we need E[logX] ≤ −.3 min{pmin}. We will use that this random variable has

nonzero variance. By assumption, we have

∑
x∈L

p(x)

d(x)∑
i=1

(λx(i)− 1)2 = V[X] ≥ ε.
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Because the logarithm punishes outliers only very weakly, no relationship between the

variance of X and expectation of logX is true without some assumption on X. To

handle this, we apply a simple technical fact.

Fact 4.69. If X is a discrete random variable with E[X] = 1 that takes every value in

its support with probability at least pmin, then

E[logX] ≤ −.3 min{V[X], pmin}.

We prove this fact in Appendix A.

4.4.5 Proof of the generalization of Gurvits’ theorem

Before the proof, we need a technical lemma to handle when (V ,p) is not positive.

To deal with this, we just work with the datum obtained by applying Cut0,x for every

vertex x in sequence.

Lemma 4.70. Let (V ′,p′) = Cut0,x(V ,p). If (V ′,p′) is approximately outer paraboli-

cally scalable, then (V ,p) is approximately outer parabolically scalable.

Proof. Let T = TV , T
′ = T ′

V ′
. Suppose x ∈ R. Suppose (SgV

′,p′) is an ε–outer

balanced scaling of (V ′,p′). Let hx approach ιgx′ι
† and hy = gy for y 6= x. Then

hxTx(IL)h†x approaches

ιgx′ι
†Tx(IL)ι†g′x′ι

†

= ιgx′T
′
x′(IL)gx′ι

†,

which is at most ε from Px. The proof is similar for x ∈ L.

Proof of Theorem 4.43. Define C(V ),S(V ),P(V ) to be the sets of p with
∑
p = 1 such

that, respectively, cap(V ,p) > 0, (V ,p) is approximately outer parabolically scalable,

and (V ,p) is rank–nondecreasing. So far, we have shown that

C(V ) ⊂ S(V ) ⊂ P(V ).

To obtain the leftmost inclusion, suppose cap(V ,p) > 0. Let (V ′,p′) be the datum

obtained by applying Cut0,x to all vertices; by Lemma 4.61, we still have cap(V ′,p′) > 0
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and (V ′,p′) is positive. Now Theorem 4.68 and Remark 4.42 show p′ ∈ S(V ′), and

Lemma 4.70 shows that p ∈ S(V ). The rightmost inclusion is Lemma 4.45.

The reduction characterizes exactly the intersection of each of these sets with QV

(we may always scale so that rational p become integral without changing scalability,

rank-nondecreasingness, or nonvanishing of capacity). By Theorem 4.27, Corollary 4.55,

and Corollary 4.62,

C(V ) ∩QdimV = P(V ) ∩QdimV .

Since P(V ) is a convex polytope with rational vertices, P(V ) ∩ QdimV contains the

vertices of P(V )! However, C(V ) is convex by Lemma 4.60, so it contains P(V ). The

three sets must be the same; this completes the proof.

4.5 Running time

In order to use Theorem 4.68 to bound the running time of Algorithm 3, we must

compute a lower bound cap(V ). For this we will need to use a nontrivial lower bound

on cap(V ) from [GGOW16b].

Theorem 4.71 (Garg et. al. [GGOW16b]). Suppose V is a rank–nondecreasing bi-

partite quiver representation with r edges with Gaussian integer entries, and let N =

dimV R. Then

cap(V ,p) ≥ e−N log(rN4).

This is implicit in the proof of Theorem 2.21 in [GGOW16b], which gives the bound

exp(−O(N2 log(RN4)), the degree bound used there was since improved to the bound

in Theorem 4.38.

To obtain a good enough bound, one can simply apply the above bound to the

Red(V ,p). Slightly more surprising is that our lower bound for a capacity which

does not depend on p at all provided
∑
pL = 1! This follows from the log convexity

of cap(V ,p). Recall from Remark 4.50 that L(V ) is determined by inequalities and

equalities with coefficients in {−1, 0,+1}. The next observation follows by standard

estimates.
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Observation 4.72. The there exists an integer M ≤ (dimV )(dimV )/2 such that entries

of the vertices of P(V ) are of the form k/M for k ∈ Z.

Theorem 4.73. Suppose V has at most r edges whose entries are Gaussian integer

entries. If (V ,p) is rank–nondecreasing,
∑
pL = 1, and dimV = n, then

cap(V ,p) ≥ exp(−7n log n− log r).

Proof. Firstly, we compute our bound for rational p of bit–complexity B. Choose an

integer M ≤ 2B such that q = Mp has integer entries. An easy calculation shows

cap(V ,p) = 1
M cap(V ,Mp)1/M , and by Corollary 4.62 cap(V ,Mp) = cap(V ′) where

V ′ = Red(W ′,Mp). Further, V ′ has dimV ′L = M and has at most M2p2
maxr ≤ M2r

edges whose matrices have Gaussian integer entries. By Corollary 4.55, V ′ is rank–

nondecreasing. By Theorem 4.71, cap(V ′) > eM log(M6r). Combining these observations,

cap(V ,p) ≥ 1
M e

log(M6r) ≥ e−7 logM−log r.

We now remove the dependence on M . By the log-convexity of eH(p) cap(V ,p) in

p, for V fixed eH(p) cap(V ,p) takes a minimum at some vertex of the polytope P(V )

of q such that (V , q) is rank–nondecreasing. By Observation 4.72, we may assume

M ≤ nn/2.

We also need to check that the first step of the algorithm does not change the

capacity very much, because our running time bound in Theorem 4.68 depends on the

capacity after one step.

Lemma 4.74. Suppose V has at most r edges whose entries are Gaussian integer

entries of absolute value at most M . Further suppose that (V ,p) is rank–nondecreasing,∑
pL = 1, dimV = n, and let V 1 be the representation obtained from the first step of

Algorithm 3 applied to (V ,p). Then

cap(V 1, P,Q) ≥ e−9n logn−2 logM−2 log r.

Proof. By Lemma 4.65, cap(V 1,p) = cap(SgV ,p) = det(g†g,p) cap(V ,p). Let T =

TV . Then g = (IL, h) where hT (P L)h† = IR, so Eq. (4.12) shows det(h†h,pR) =

det(T (P L)−1,pR). One can immediately check that T (P L) � n2rM2IL, so

det(T (P L)−1,pR) ≥ (n2rM2)−1
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Multiplying the above by the bound from Theorem 4.73 implies Lemma 4.74.

Combining with Theorem 4.68, we obtain the following.

Corollary 4.75 (Running time of Algorithm 3). Suppose V has at most r edges whose

entries are Gaussian integer entries of absolute value at most M . Further suppose that

(V ,p) is rank–nondecreasing,
∑
pL = 1, and define dimV = n. Then Algorithm 3

terminates in

O

(
n log n+ logM + log r

pminε2

)
steps on input (V ,p), ε.

4.5.1 Running time of the general linear scaling algorithm

In this section we bound the time required for Algorithm 4, which is very similar to

Algorithm 2. The only differences are the use of less–restrictive parabolic scalings

instead of triangular ones, and randomization using the integers instead of reals.

Input: A bipartite quiver datum (V ,p) and ε > 0.

Output: An ε–balanced scaling W of V .
Algorithm:

1. Let n = dimV . Choose the entries of g ∈
⊕

x∈Ω Matd(x)(C) independently and
uniformly at random in [6nn+1].

2. Let W be the output of Algorithm 3 on (SgV ,p), ε; if any step was not
possible, output ERROR.

3. output W .

Algorithm 4: Algorithm for Problem 4.26.

Theorem 4.76 (Algorithm 4 running time). Let (V ,p) be a bipartite quiver datum

with at most r edges each with Gaussian integer entries of absolute value at most M ,∑
pL = 1. Let n = dimV . If (V ,p) is approximately scalable, then Algorithm 4

outputs ERROR with probability at most 1/3 and requires

O

(
n log n+ logM + log r

pminε2

)
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steps of Algorithm 3.

Proof. (V ,p) is approximately scalable, by Corollary 4.46 the point p is in K(V ). In

particular, p is contained in the convex hull some set S of n+ 1 vertices of p. Because

every vertex of K(V ) is a vertex of P(SgV ) for some g ∈ GL(V ), Observation 4.72

implies that for each element q ∈ S there is a number 0 < M ≤ nn/2 such that

every entry of q takes the form k/M for k ∈ Z. Replacing q by Mq preserves rank–

nondecreasingness and
∑
q = M , so Theorem 4.40 shows q 6∈ P(SgV ) with probability

at most 1
3(n+1) . By the union bound, all the elements of S, and hence p, are contained

in P(SgV ) with probability at least 2/3. If this occurs, g must be nonsingular because

cap(SgV ,p) > 0 is and if g is singular then TUnif SgV , T
∗
Unif SgV

do not map nonsingular

operators to nonsingular operators, contradicting Lemma 4.66.

Condition on p ∈ P(SgV ). Then V ′ = SgV has at most r edges whose entries have

absolute values at most 6Mnn, so by Corollary 4.75 Algorithm 3 terminates in at most

O

(
n log n+ logM + log r

pminε2

)
steps.

Remark 4.77 (Numerical issues). We should not expect to be able to compute each

step of Algorithm 3 exactly, but rather to polynomially many bits of precision. The

paper on which this chapter is based had a rather messy analysis of the rounding;

[BFG+18] contains a much more pleasant analysis, which we now sketch.

In each iteration of Algorithm 3, simply compute g to some precision 2−t (ensuring

that they are upper triangular). We need to check that progress is still made per step

and that the capacity is bounded above the entire time. For this we need to emulate the

proof of Lemma 4.64 with some error; it is enough to show that the rounded g′ satisfies

det(g†g,p) ≈ det(g′†g′,p). Because the left–hand side is either det(T ∗(PR)−1,pL) or

det(T (P L)−1,pR), it is enough to show that the least eigenvalues of T ∗(PR)−1 (resp

T (P L)−1) are singly exponentially bounded throughout the algorithm. If this holds,

the capacity is also bounded because T (P L) ≈ IL or T ∗(PR) ≈ IL. Though it requires

proof, this can be done by choosing t polynomial in the number of steps of the algorithm

and the bit complexity of the input.
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4.5.2 Running time for Horn’s problem

We assume
∑
α+

∑
β+

∑
γ = 1, because there are no solutions to H1+H2+H3− 1

mIm

otherwise. By rescaling α,β,γ and adding multiples of the all–ones vectors, we may

further assume

αm, βm, γm ≥
1

3m+ 1
. (4.18)

Theorem 4.78. If there exist Hermitian matrices H1, H2, H3 satisfying

H1 +H2 +H3 −
1

m
Im

with respective spectra λ1,λ2,λ3 with total sum 1 satisfying Eq. (4.18), then Algo-

rithm 4.79 outputs ERROR with probability at most 1/3 and terminates in at most

O(ε−2m2 logm) steps.

Input: Nonincreasing sequences λ1,λ2,λ3 of m positive real numbers and ε > 0.

Output: Real, symmetric matrices H1, H2, H3 with respective spectra λ1,λ2,λ3 and

‖H1 +H2 +H3 −
1

m
Im‖ ≤ ε.

Algorithm:

1. Choose each entry of U1, U2, U3 ∈ Matm(R) independently and uniformly at

random from [24m4m]. For i ∈ {1, 2, 3}, define Hi = Ui diag(λi)U
†
i .

2. while ‖H1 +H2 +H3− Im‖ > ε do: If any step is impossible, output ERROR.

(a) Choose B ∈ MatmR lower triangular such that

B (H1 +H2 +H3)B† =
1

m
Im,

and set Ui ← BUi for i ∈ {1, 2, 3}.
(b) For i ∈ {1, 2, 3}, choose Bi ∈ Matm(R) upper triangular such that UiBi is

orthogonal and set Ui ← UiBi.

3. output H1, H2, H3.

Algorithm 5: Implementable algorithm for Problem 4.1.
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Proof of Theorem 4.78. Algorithm 4.79 is just Algorithm 4 run on the quiver datum

(V ,p) =



λ1

λ2
1
m1m

λ3

Im

Im

Im


.

By the calculations in Example 4.20 and Example 4.22, the above quiver datum is

approximately scalable if and only if the desired matrices H1, H2, H3 exist. If the

quiver datum is approximately scalable, then by Theorem 4.76, Algorithm 4 terminates

in O(ε−2m2 logm) with probability at least 2/3.

Remark 4.79 (Convergent sequences). The sequences of triples (H1, H2, H3) after step

(b) in have a convergent subsequence, because in step (b) they are set to lie within the

compact space of triples with largest eigenvalues at most λ1, λ2, λ3, respectively. ♦

Remark 4.80 (Running time for negative inputs to Problem 4.1). Further, inverting

the rescaling for Eq. (4.18) will increase ‖H1 +H2 +H3 − 1
mIm‖ by a factor of at most

O(m), so applying the rescaling before running the algorithm and then inverting only

decreases the ε needed in the algorithm by a factor of O(m), so there is an algorithm

for positive data not satisfying Eq. (4.18) that runs in time at most O(ε−2m4 logm).

However, to solve Problem 4.1 for data that might be negative, the inversion may

increase the error by a factor of O(m2 max{α1−αm, β1−βm, γ1−γm}), so the running

time for that problem is

O(ε−2m6 max{α1 − αn, β1 − βm, γ1 − γm}2 logm).
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Appendix A

A simple algorithm for Horn’s problem and its cousins

A.1 Rank–nondecreasingness calculations

Lemma 4.54. Cutx,p(V ,p) is rank–nondecreasing if and only if (V ,p) is. In par-

ticular, cuts preserve pL(V ),pR(V ) and the maximum value of p(W ) over all V –

independent sets W .

Proof. Let (V ′,p)′ = Cutx,p(V ,p). Checking that pL′(V
′) = pR′(V

′) if and only if

pL(V ) = pR(V ) is straightforward. By taking duals if need be, we may assume x ∈ L.

Suppose (V ,p) is not rank–nondecreasing and let W be a V –inependent set with

p(W ) > pR(V ). Let W ′ match W for all but Wx′ , which we define to be Wx ∩ Vx′ =

Wx ∩ Fd(x′). We claim that W ′ is a V ′–independent set with p′(W ′) > pR′(V
′) =

pR(V ). Firstly, W ′ is a V –independent set because for t(e) = x, Ae′Wx′ = Aeι(Wx ∩

Vx) = Ae(Wx ∩ Vx) ⊂ W⊥h(e). It is enough to show that px(Wx) = p′x(Wx) + p′x′(W
′
x′).

Observe that Wx′ ∩Fi = Wx∩Fi for i ≤ d(x′). Thus, the right–hand side of the desired

equality is

d(x)∑
i=1

(p′i(x)− p′i+1(x)) dimWx ∩ Fi +

d(x′)∑
i=1

(p′i(x
′)− p′i+1(x′)) dimWx ∩ Fi

=

d(x)∑
i=1

dimWx ∩ Fi(min{pi(x), p} −min{pi+1(x), p}

+ min{pi(x)− p, 0} −min{pi+1(x)− p, 0})

=

d(x)∑
i=1

(pi(x)− pi+1(x)) dimWx ∩ Fi,

which is exactly p(Wx). On the other hand, suppose W ′ is a V –independent set with

p′(W ′) > pR′(V
′) = pR(V ). We again take Wy = W ′y for all y 6= x′. The replacement
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W ′x by ιW ′x′ + W ′x preserves V ′–independence and may not decrease p′(W ′). Thus

we may assume W ′x′ = W ′x′ ∩ Fd(x′) and take Wx = W ′x, in which case the previous

argument shows p′(W ′) = p(W ).

Lemma 4.56. Suppose (V ,p) is an ε–outer balanced bipartite quiver datum. Then

|
∑
pL −

∑
pR| ≤ 2ε

√
dimV and

p(W ) ≤
∑
pL + 2εdimV (A.1)

for all V –independent sets W .

Proof. Let T = TV . Firstly,

|
∑

pL −
∑

pR| ≤ | trP L − trT (IL)|+ εdimV

≤ | trP L − trT ∗(IR)|+ ε
√

dimV

≤ 2ε
√

dimV .

To show Eq. (A.1), we argue assuming (V ,p) = Unif(V ,p). This will change ε to

ε′ ≤ ε
√

dimV , and by Lemma 4.54, it does not change the maximum value of p(W ) over

V –independent sets W . Suppose W is a V –independent set, and let πL = ⊕x∈LπW x

and define πR analogously. By independence, T (πL)πR = 0 and T ∗(πR)πL = 0. By our

assumption that px = p(x)1, pR(W ) = trP LπL. Thus,

pR(W ) = trPRπR

≤ trT (IL)πR + ε′
√

dimV

= trT ∗(πR) + ε
√

dimV

= trT ∗(πR)(I − πL) + ε′
√

dimV

≤ trT ∗(IR)(I − πL) + ε′
√

dimV

≤ trP L(I − πL) + 2ε′
√

dimV

= pL(V )− pL(W ) + 2ε′
√

dimV .
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A.2 Capacity calculations

Lemma 4.58. If g ∈ GL(Fp◦ ), then for all X ∈ Matn(C),

det(g†Xg,p) = det(g†g,p) det(X,p). (A.2)

Proof. We have det(g†Xg,p) =
∏n
j=1 |det ι†jg

†Xgιj |pj−pj+1 . Because g fixes Fj if pj −

pj+1 > 0, the right–hand side is

det(g†Xg,p) =
n∏
j=1

|det ι†jg
†ιjι
†
jXιjι

†
jgιj |

pj−pj+1

= det(X,p)

n∏
j=1

det |ι†jg
†ιjι
†
jgιj |

= det(X,p) det(g†g).

Lemma 4.61. If (V ,p) is a bipartite quiver datum, then

cap(Cutp,x(V ,p)) = cap(V ,p). (A.3)

Proof. Let T = TV and T ′ = TV ′ . First suppose x ∈ R. By Eq. (4.14),

det(T ′x(X),p′x′) det(T ′x′(X),p′x) = det(Tx(X),p′x) det(ι†Tx(X)ι,p′x)

= det(Tx(X),px).

Thus, det(T ′(X),p′) = det(T (X),p) for all X. Now suppose x ∈ L. We first change

variables. Using the Cholesky decomposition we write X = hP Lh
† with h upper trian-

gular, so that by Eq. (4.12) we have det(X−1,pL) = det((h†h)−1,pL) det(p−1
L ,pL) =

eH(pL) det((h†h)−1,pL). Thus

cap(V ,p) = inf
h upper triangular

det(T (hP Lh
†),pR) det((hh†)−1,pL). (A.4)

Next, observe that it is enough to prove Eq. (4.15) when p is at least the second largest

number appearing in (px(1), . . . , px(d(x) + 1)). This is because the cut p can be refined

by a such a sequence of cuts, and cuts commute. Suppose this is the case and write

i = d(x′). We will have p′x′ = (p1(x)− p)1d(x′) := q1d(x′). We need only show that the
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infimum does not increase if performed only over h′ of the form Cutp,x h, for then we

obtain

cap(V ′,p′) = inf
h′=Cutp,x h

det(T (h′P ′Lh
′†),pR) det((h′h′†)−1,p′L)

= inf
g=(h,IR) upper triangular

det(TSgV ′(P
′
L),pR) det((hh†)−1,pL)

= inf
g=(h,IR) upper triangular

det(TSgV (P L),pR) det((hh†)−1,pL)

= inf
h upper triangular

det(T (hP Lh
†),pR) det((hh†)−1,pL)

= cap(V ,p).

where for the second inequality we used Eq. (4.14) and Eq. (4.6) and in the third we

used Eq. (4.5). To show that we only need only infimize over h′ = Cutp,x h, it is enough

to show that we can set the upper–left d(x′)×d(x′) corner ι†h′xι of h′x equal to h′x′ while

holding h′xP
′
xh
′
x+qιh′x′h

′
x′ι
† = Y fixed and not increasing det((h′xh

′†
x )−1,p′x) det(h′x′h

′†
x′)
−q.

To show this, let h = h′x and h′ = h′x′ , P
′ = P ′x, n = d(x), n′ = d(x′). Because h is

upper triangular, det((hh†)−1,p′) =
∏n
i=1 |hii|−2p′i . Modifying the upper–left n′ × n′

corner of h does not change
∏n
i>n′ |hii|−2p′i , and

∏n′

i=1 |hii|−2p′i = det(ι†hιι†h†ι)−p. Set

X = ι†hιι†h†ι and h′h′† = Z; we need only show that p log detX + q log det(Z) does

not decrease. To hold hP ′h† + qιh′h′† = Y fixed while modifying only ι†hι it is enough

to hold pX + qh′h′† := pX + qZ = Y fixed. The log-concavity of determinant implies

p log detX + q log detZ ≤ (p+ q) log det
(
p X
p+q + q Z

p+q

)
= (p+ q) log det

(
Y
p+q

)
, so re-

placing X and Z by Y
p+q has the desired properties. The convention 0 log 0 = 0 ensures

the above argument is valid even if p = 0.

Lemma 4.66. Suppose (V ,p) is a uniform positive bipartite quiver datum with
∑
pL =∑

pR and cap(V ,p) > 0. Then both TV , T
∗
V maps positive definite matrices to positive

definite matrices.

Proof of Lemma 4.66. If TV (X) is nonsingular, then det(TV (X),pR) = 0, which con-

tradicts cap(V ,p) > 0. On the other hand, if T ∗V (X) is singular for some positive

definite X, then T ∗V (IL) is singular because αIL � X for some α > 0. Then for some

nonzero projection π = ⊕x∈Lπx we have trT ∗V (IR)π = 0 and hence trTV (π) = 0.
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Thus TV (π) = 0, so TV (π + (IL − π)) = εTV (IL − π). Take ε→ 0, so that

det(T (π + ε(IL − π)),pR) det(π + ε(I − π),pL) = O
(
ε
∑
pR−

∑
x∈L p(x)(d(x)−rankπx)

)
.

By
∑
pR =

∑
pL, the above is o(1). This contradicts cap(V ,p) > 0.

A.3 Probabilistic fact

Fact 4.69. If X is a discrete random variable with E[X] = 1 that takes every value in

its support with probability at least pmin, then

E[logX] ≤ −.06 min{V[X], pmin}.

Proof. Using the Lagrange remainder bound for a quadratic approximation about x = 1

and concavity, the logarithm is bounded by the piecewise function f : R≥0 → R given

by

f(x) =

 (x− 1)− .1(x− 1)2 0 ≤ x ≤ 1.2

.95(x− 1) x > 1.2.

Thus,

E[logX] ≤ E[f(X)]

= E[(X − 1)− .1(X − 1)2|X ≤ 1.2] Pr[X ≤ 1.2] + .95E[(X − 1)|X > 1.2] Pr[X > 1.2]

= −.1E[(X − 1)2|X ≤ 1.2] Pr[X ≤ 1.2] + E[(X − 1)]− .05E[(X − 1)|X > 1.2] Pr[X 1.2]

≤ −.1E[(X − 1)2|X ≤ 1.2] Pr[X ≤ 1.2]− .06 Pr[X > 1.2]

If Pr[X > 1.2] = 0, then the first term is the variance V[X]. If not, Pr[X > 1.2] ≥ pmin.

This completes the proof.
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Appendix B

Discrepancy of random matrices with many columns

B.1 Random walk over Fm2

Lemma 3.25. Suppose Xn is a sum of n uniformly random vectors of Hamming weight

0 < t < m in Fm2 and Zn is a uniformly random element of Fm2 with Hamming weight

having the same parity as nt. If dTV denotes the total variation distance, then

dTV (Xn, Zn) = O(e−(2n/m)+m).

Proof. Though we will not use the language of Markov chains, the following calculation

consists of showing that a random walk on the group Fm2 mixes rapidly by showing it

has a spectral gap.

Let X be a random element Fm2 of Hamming weight t. Let f be the probability mass

function of X. Let hn be the probability mass function of Zn. By the Cauchy-Schwarz

inequality, it is enough to show that the probability mass function fn of the sum of n

i.i.d. copies of X satisfies ∑
x∈Fm2

|fn(x)− hn(x)|2 = O(e−2n/m)

For y ∈ Fm2 , let χy : Fm2 → {±1} be the Walsh function χy(x) = (−1)y·x. The Fourier

transform of a function g : Fm2 → R is the function ĝ : Fm2 → R given by ĝ(y) =∑
x∈Fm2

g(x)χy(x). The function fn satisfies f̂n = (f̂ )n. Note that ĥn(0) = f̂n(0) = 1,

ĥn(1) = f̂n(1) = (−1)nt, and ĥ = 0 elsewhere. By Plancherel’s identity,∑
x∈Fm2

|fn(x)− hn(y)|2 = Ey∈Fm2 |f̂(y)n − ĥn(y)|2 (B.1)

=
∑

y∈Fm2 \{0,1}

2−n|f̂(y)|2n. (B.2)
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Now we claim that |f̂(y)| ≤ 1 − 1
m for y 6∈ {0,1}, which would imply Eq. (B.2) is at

most (1 − 1/m)2n ≤ e−2n/m. Indeed, if the Hamming weight of y is s, then f̂(y) is

exactly the expectation of (−1)|S∩T | where T is a random t-set and S a fixed s-set. By

symmetry we may assume t ≤ s, and since we are only concerned with the absolute

value of this quantity, by taking the complement of S we may assume s ≤ m/2. We

may choose the elements of T in order; it is enough to show that the expectation of

(−1)|S∩T | is at most 1− 1/m in absolute value even after conditioning on the choice of

the first t − 1 elements of T . Indeed, the value of (−1)|S∩T | is not determined by this

choice, so the conditional expectation is a rational number in (−1, 1) with denominator

at most m, and hence at most 1− 1/m in absolute value.
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