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In less than a decade, virtual assistants had established themselves as very handy

natively included components of the main commercial consumer systems available.

These, expand both the applications and challenges of human-machine interaction,

sparkling many solution to some well researched and new problems. Virtual agents

are a manifest of how artificial intelligence is making its way into improving the reg-

ular consumer’s experience, productivity, and how this, is gradually becoming an es-

sential part of people’s life.

However, there is are still big gaps in those available today, in terms of the qual-

ity of the actual human-machine interaction. These agents are not fully prepared to

understand the nature of actual human communication and conversation. This pro-

cess not only involves understanding natural language utterances and following com-

mands, but true conversation is achieved by also capturing information from facial

expressions and body language, to finally assign a semantic meaning, in context of it

all. This introduces a new layer of complexity in terms of how perception is handled,

signals are processed, interleaved and analyzed, for then elicit coherent and proper

behaviors and responses.
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This work will display the design and implementation, of a virtual modular intelli-

gent agent. We expand the boundaries of simple unilateral communication, to a more

robust, engaging, believable and meaningful interaction. This is achieved by enabling

the agent to complement the basic speech input with voice emotion, facial expres-

sions recognition, and smarter natural language parsing and generation. Finally, we

demonstrate, with the presented implementation, how this agent raises the standard

for human-machine communication, and how artificially intelligent agents can work

in a multi-input model of complex signals in order to elicit meaningful and compelling

behaviors in more natural interactions. Moreover, as opposed to other smart agents,

this learns, remembers and pro-actively communicates with a complex set of coherent

behaviors.
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Chapter 1

Introduction

1.1 Introduction

When discussing artificial intelligence (AI), the average consumer public typically pic-

tures products which are the embodied bridge between the academic research theory

and the implementation of these techniques. The idea of mechanizing aspects of hu-

man behaviors, especially those attributable to our sentient nature, was one on which

many authors, throughout history, have focused their research on. It would not be ac-

curate to say that the field of Artificial Intelligence, and all its derived products, is one

which have suddenly spawned and flourished just in the late stretch of the twentieth

century. Furthermore, despite that the discipline as such was academically formalized

in the 1950s, its foundations go many centuries back. However, just since the begin-

ning of the 21st century, we, as a society, can perceive a sheer exponential growth

of the field, through the introduction of unparalleled products and services. Com-

mercially, these come accompanied by colorful terminology which is rapidly making

its way into popular knowledge. Some are Deep Learning, Machine Learning, Natural

Language Processing, Computer Vision, Speech Recognition and Robotics, just to name a

few. These concepts have gradually, and at a rather hastily paced, been making their

way into people’s minds, mainly via the consumption of said goods. Nowadays, the

so called Smart products, are normally enhanced and enabled by intelligent software

systems. From the perspective of popular perception, being able to visualize a tangi-

ble AI-powered product, gives one the sense of being staring straight into the future.

Everyday, we are benefiting from, and relying more and more on these products for

our daily activities. One doesn’t have to reach far out, to find an example. It suffices to
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think of how smart-phones, which are almost indispensable nowadays for the vast ma-

jority, can be considered as a gateway to a vast pool of intelligent products. This work

will focused exclusively on virtual assistants which in the past decade, since Apple’s

commercial inception of Siri in 2011, have been growing and reaching new heights of

complexity and reliance. This was a critical milestone on the path of developing and

enhancing the machine-human interaction experience. Throughout this path, we can

find many systems which have been developed and subjected to, among others, the

test presented by Turing, 1950. This path spans through many decades, some of the

earliest computer models are Weizenbaum, 1966 ELIZA and Mark Kenneth Colby’s

PARRY (1972).

Just in the past seven years, we witnessed the rising of several of these products

offered by different lead technology companies. For instance, IBM Watson (2013) -

Ferrucci, 2012, Microsoft’s Cortana (2014), Ok Google conversational search (2013) and

Amazon’s Alexa (2014), just to name a few. It is clear that many leading research en-

terprises are currently geared at further developing their commercial AI products due

to an existing high demand for such products. Furthermore, all the aforementioned

agents are included natively in each of the companies’ main operating systems and

flagship devices. This is not only a statement of how useful consumers find them, but

also how aggressively, companies are collecting data to further improve their offering.

But it begs the question: what are the main factors which make a virtual assistant

useful, attractive, and reliable? Certainly before 2011, there were virtual agents around

to help with simple automation tasks, so what makes today’s agents different? First,

we will look at the Human-Machine Interaction factor. Being able to simply talk to a

computing system, removed a big layer of complexity which was in the way for many

average consumers, just as touch capabilities, bridged between less tech-savvy users

and this formidable devices. People no longer need to have access to a laptop or a

workstation, and to understand the concepts of chat rooms or terminal interactions.

The interaction is now intuitive and readily available, either by active listening from

the devices, a simple voice command or a push of a dedicated button. The second factor
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is their usefulness. As opposed to the original chat-bots for support, or phone assis-

tants, today’s virtual assistants are no longer dedicated to a single task. Instead, they

are now able to handle many of smaller, everyday tasks such as calendar handling,

reminders, media playing, search and more. Moreover, this impacts directly on the re-

liability part of our question. The more people use these services, the more robust they

become and better perceived by the public. Hence, availability, access, and usefulness

are three factors which have allowed virtual intelligent agents to steadily and hastily

grow in the industry encouraging research on pertinent fields.

There is one more factor which, as of today, is not fully addressed, engagement.

Many of the previously listed products claim to have conversational capabilities, but

what is really comprised in such a definition? A conversation is a bilateral commu-

nication process, based on the exchange of ideas, rather than simply the issuance of

commands–which is most of the technology we have commercially today. However,

true conversation goes beyond the one-sided interaction, with deeper understanding

on the meaning of the message. Saying that communication is the mere process of ex-

changing words is limiting and incomplete. There are many factors which are encom-

passed in engaging and believable interaction. For instance, facial expressions, the

emotional load of the speech and body language, etc.

Our focus is on addressing these features, and to combine and process said sig-

nals in order to generate a deep understanding of the message. That then allows the

agent to elicit meaningful behaviors and responses. We will proceed to expose the

implementation of Sara, a virtual intelligent assistant agent, capable of perceiving, un-

derstandings and acting in accordance to the conversation and its context.

In summary, the key blocks for keeping the fluency and reality of the communica-

tion with a smart agent are understanding and coherent behaviors. Understanding is

a product of the analysis of the input of the agent. This is comprised of multi-modal

information, facial expressions from live video stream, speech containing the tone in-

formation and the recognized text, and other sources of inputs such as touchscreen

interactions. The output of the deliberation based on the input signals, will come in

the form of behaviors, that is, the feedback of the smart agent. This includes speech,
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facial expressions and body language, in the form of animations.

This work describes the end-to-end design and implementation of an embodied

conversational agent. It presents the input-analysis-output pipeline, and the process-

ing involve in each segment of the perception-deliberation and acting cycle. Finally, it

demonstrates such implementation with demo examples and use-cases.

1.2 Problem Background

Many of the techniques and systems which are combined and synergized in this imple-

mentation have been heavily researched and developed throughout the past decades.

The final product of this work is a product of the interpolation of said components

into a single system. Intelligent conversational agents have been the focus of research

for years now. Eliza Weizenbaum, 1966 and Parry Colby, 1972 are some of the first

chat-bots ever created. Moving two decades forward, we can find ALICE Foundation,

2002, the Artificial Linguistic Internet Computer Entity. It is another type of chat-

bot inspired by Eliza using Artificial Intelligence Markup Language files to store its

knowledge. There have also been approaches in having a general-domain question-

answering agent in a museum Leuski et al., 2006; Robinson et al., 2008. Leuski et

al. Leuski et al., 2006 and Robinson et al. Robinson et al., 2008 describe a general

question-answering agent used in a such a scenario, trained using utterances.

In terms of logical processing, techniques have been evolving significantly. For

instance, a simple hard-coded rules approach, can benefit from an additional statistical

model layer on top of them, as seen in Young et al., 2010. It is also possible to learn

generation rules from a minimal set of authored rules or labels using the vector space

framework as described in Banchs and Li, 2012. Furthermore, deep recurrent neural

networks like Seq2Seq Sutskever, Vinyals, and Le, 2014; Serban et al., 2015 or Long

Short-Term Memory (LSTMs) Hochreiter and Schmidhuber, 1997 provide a powerful

way of creating general conversational agents. However, such systems usually require

a superlative and difficult to gather amount of training data which can easily result in

a knowledge acquisition bottleneck.
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Many games, entertainment aimed implementations and educational solutions take

advantage and present novel work when it comes to conversational agents.Morris

Morris, 2002 provides an example of using conversational agents in games. Tarau

and Figa Tarau and Figa, 2004 provides another example of an agent in an educational

environment. In the latter, a Prolog database is used to store a variety of possible

question/answer sets that the agent can pick from.

Regarding the analysis of human emotions, these can be measured from differ-

ent aspects. One efficient and direct way to obtain emotional information is through

facial expressions. The Facial Action Coding System (FACS) devised by Ekman and

Friesen established a formal way to describe facial expressions. To improve the accu-

racy, speeches and body language analysis can also be applied. Emerich, Lupu, and

Apatean proposed a emotion recognition method by analyzing speech and facial ex-

pressions. Their framework devised statistical models for classifying emotions with

the input of image sequences and utterances. The result showed the correlation of fa-

cial expressions and speeches. Recent study by Chowanda et al. shows that correctly

modeling emotions and large-scale personalities for virtual agents can greatly boost

the user experience and engagement. Potard, Aylett, and Baude proposed an evalu-

ation baseline for synthesized emotional speech and facial expression, and it allows

the speech synthesis to add gradual changes to the perceived emotion both in terms of

valence and activation.

Finally, believable agent embodiment plays a key role in engaging machine-human

interactions for they allow humans to assimilate to their digital counterparts on a

different level. There are frameworks such as SmartBody which address complex

problems, such as lips synchronization Xu et al., 2013 and motion blending tech-

niques Feng et al., 2012, and ADAPT Kapadia, Marshak, and Badler, 2014, a complete

testbed of purposeful human characters in a rich virtual environment. The concept of

meaningful embodied agents can be expressed in terms of their capacity to perform

behaviors, as presented in parameterized behavior trees all, n.d.

Our goal is not to overlap with this research but to leverage it by combining all this

elements into an engaging and meaningful multi-modal conversational agent.
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1.3 Problem Scope

The Embodied Virtual Agent’s model presented in this work, is in part, the product

of the interpolation of many diverse techniques and systems which have been heavily

developed and researched upon. The scope of this presentation is limited to explain

such a design and how this methods converge to achieve the final goal of simulating

an embodied conversational virtual agent. Although these systems will be presented

and used in the implementation, these will be explained from the product’s perspec-

tive. The breadth and depth of their exposition is limited by their interfaces, input

and output required by the agent. Throughout the different chapters, the concepts

of software engineering, signal input and output, computer vision, behavioral mod-

eling and natural language analysis will be covered, among others. This is, above all

things, a software implementation. The utilized framework will be explained in detail

and how this modular architecture can be design to model an abstract representation

of agent’s the Perception, Deliberation and Behaviors overall cycle. In terms of signal

handling, processing and analyzing, the main tools and how these are intertwined

within the system is explained in from the perspective of their input and output. We

will expose the main processing mechanisms and how these, ultimately, produce the

necessary output, as input for their consuming modules. When it comes to the delib-

eration phase, on of the products of the previously processed signals is speech in the

form of text. The models for handling their syntactic and semantic analysis and their

implementation will be presented. The main Prolog analysis engine will be explained

in detail. A simplified version of the used grammars are presented in the form of dia-

grams and rule sets. In addition, we will also explain how the tokenized parsed input

is utilize and what role it plays in the agent state of beliefs. Because emotional analysis

is a key factor of the implementation in terms of the conversational aspect of the agent,

different modeling approaches will be explained, ultimately detailing the system used

by this model. Finally, in terms of the agent’s behavior modeling mechanics, we will

present the concept of behavior trees, their different types and components, culminat-

ing on the implementation of an asynchronous interactive model, capable of handling
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many complex responses.

1.4 Outline

Throughout this work, it is described a bottom-up, end to end, design and implemen-

tation of the embodied conversational agent’s model. This is comprised of three main

foundational blocks, which are the agent’s Perception, Deliberation and Behavioral capa-

bilities.

Chapter 2 presents the design of the agent model we use as the foundation on which

we build upon the other components. The implementation and the framework are pre-

sented to explain how an agent can modularly and asynchronously manage a real time

perception, deliberation and act continuous cycle. Along the framework, the assets

pipeline is explained and how these are included in the implementation of the avatar.

Some of this assets are animations, sound and models. We also present the concept of

modularity, as defined by this work, which allows for scalability and independence of

the interacting gears and components of the system.

We then proceed to brake the system down in its three fundamental building blocks,

as mentioned before, these are: perception, deliberation and behaviors.

When explaining Perception, we will describe the main feeds of the agent and how

these are acquired, processed, analyzed and finally combined to as a product for the

agent’s system of beliefs. The input is mainly comprised by audio and video. The pro-

cessing and deriving products will be explained in detail in Chapter 3. Some of these

are user utterances, their semantic meaning, sentiment on this speech and emotional

facial recognition, among others.

Chapter 4 describes in detail the utilized mechanisms for parsing speech as input,

validating and understanding its structure and utilizing this to update the agent’s sys-

tem of beliefs and deliberation process. It is also explained how the analyzed seman-

tics will aid in creating and completing a knowledge base represented as a concep-

tual network. This structure is presented with examples and use-cases. Finally, an

approach for generating language and the challenges this impose is explained along
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with approaches for the agent to utilize such results.

The last foundational component of this model’s design is presented in Chapter

5. This is the agent’s Behaviors system. This is represented and implemented uti-

lizing Behavior Trees. Their composition, types and examples are covered in detail.

The agent’s interactive nature is demonstrated via the utilization and design of asyn-

chronous real-time capable tree structures. This section finalizes with a simplified

implementation of such interactive trees and their diagrams.
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Chapter 2

Architecture

2.1 Implementation and Foundational Components Overview

This section goes on to explain the basic architecture, design choices and components

of the general framework used in this work. The overall implementation not only

deals with the basic animation and physics of the virtual agent, but also with every

component which enables it to perceive, understand and ultimately interact with its

environment, other agents, and users.

The framework used for this implementation is called NPC. Every basic component

was built within the Unity engine (Technologies, 2018), in its .NET C# scripting lan-

guage option. Along the framework, libraries such as Nemesysco and Affectiva are used

for different signal processing. We can enumerate components of the implementation

in the following four categories:

• Framework Foundation: Main NPC Controller

• Basic Agent Components: Body, AI and Perception

• Modules: Customizable Interface Implementations

• Libraries: Vendor Provider Unity plugins.

In addition of defining basic members and properties of an agent, the foundation is

the main part of the implementation, being the only section which executes the main

simulation loop on a per-frame basis. No other component is directly consumed by

client code nor constantly updated. This allows for a controller capable of managing

every single aspect of the execution of an agent. In just a few words, on frame up-

date, the controller will resolve the current state and data of the agent’s perception,
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body and deliberation system. Each of the aforementioned segments, count with a

single update function which if enabled, will process all data relevant to their domain

of knowledge and execution. These are the basic aforementioned agent components:

Perception, Body and Deliberation. Each of these are implemented in their own class

and executed individually, utilizing and updating a centralized pool of state within

the main controller. We will also display all how settings can be uniquely customized

on each individual agent. This is to ensure that either a general model can be used on,

for example, crowds, or agents can be customized based on the simulation’s need, like

in the case of a conversational agent, which might not need to process social forces or

in-simulation perception if only interacting with the user. Extending the basic blocks

capabilities, modules can be added to the framework to add general or unique capa-

bilities to a single, or multiple agents. These modules are recognized by the main con-

troller, enabled and updated during the simulation. Some of the modules used in this

implementation are specific for signal processing, natural language parsing and be-

havioral modeling. Finally, although not part of the main framework, vendor libraries

are added on top or within modules. This projects utilizes such libraries for natural

language parsing, conceptual knowledge base, image and computer vision analysis

and voice processing and analysis.

We proceed to elaborate on each of this four categories and their implementation.

2.2 Agent Model Framework

The implementation was design primarily with scalability and customization in mind.

It is true that no single implementation would be able to offer and cover every single

aspect needed of all virtual agents in every simulation. The primary intention was to

provide solid bones, a skeleton, which would enable basic agent services, and allow

for adding reusable customized modules as needed.

Many state-of-the-art frameworks could potentially be disregarded due to and un-

friendly implementation and learning approach.
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FIGURE 2.1: General Framework Structure

FIGURE 2.2: NPC Framework Component

As opposed to other implementations,

NPC provides an intuitive component

which takes care of adding all dependen-

cies and managing internally the com-

plexities of for example: animations, in-

verse kinematics, navigation, audio and

clips synchronization, social forces sys-

tem and obstacle detection, among oth-

ers. NPC centralizes all lits functionali-

ties in the main controller and its mod-

ules. Also, unneeded features can be

disabled, saving quite a big of compu-

tation, especially on high density crowd

settings. Figure 2.2 display the primary

settings which can be adjusted from the

main controller component. Along this

controller, there are a few other compo-

nents which although added to the agent

object in Unity, are not displayed. These components are: NPCBody, NPCAI, NPCPer-

ception, a main Collider, a Rigidbody, the NPCIK controller and an Animation Controller

state machine. Every public aspect of these components can be managed via the single

displayed inspector interface, there is no need for the developer to access components

individually in the editor interface. The controller, however, does expose properties
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FIGURE 2.3: Global Framework Life Cycle

and methods which would allow consumer code to further interface with all the ele-

ments of the agent.

The first step on setting an agent up, in this case one which will ultimately be able

to converse, is just to add the main controller as a component of the GameObject.

Data: Modules π ∈ Π
Data: AI α
Data: Perception φ
Data: Body β
if (!initialized) then

Π← CollectModules()
α← SetupAI()
φ← SetupPerception()
β← SetupBody()

Algorithm 1: Add or Reset

Algorithm 1 is executed every time the NPCController component is added to an

agent. Once finished, all needed components will be added, and hidden from view,

except for the controller settings display on figure 2.2. Having a single point of set up

is not only efficient, but also narrows the scope of development and point of failure of

the framework.

Data: Modules π ∈ Π
Data: AI α
Data: Perception φ
Data: Body β
φ.Initialize()
β.Initialize()
α.Initialize()
nextUpdate← (Now + UpdateDelta)
Π.Load()

Algorithm 2: Awake
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Algorithm 2 is execute when a simulation starts and before any component has

been updated. This is really important since many components need to initialize them-

selves to ensure there are no missing dependencies or invalid state options. The most

critical part of the initialization process, is to instantiate all fast data structures used

during runtime, which cannot be serialized and transition between editor/simulation

mode. Many components utilize these non-serializable data structures to optimize

CPU lookup time during each frame. For example, φ (Perception) will initialize a Per-

ceivedEntities map, adjust perception colliders and view angle. β (Body) will initialize

main colliders, available gestures, affordances, IK controller reference, agent naviga-

tion navigation and steering mechanisms, the physics rigid-body and audio-animation

clips synchronization objects, among others. Finally, the NPCAI module will initialize

navigation modules, if available and most importantly, pre-loaded behavior trees for

immediate execution.

Data: Modules π ∈ Π
Data: AI α
Data: Perception φ
Data: Body β
if (nextUpdate > Now) then

nextUpdate← UpdateDelta + Now
φ.Update()
α.Update()
β.Update()
foreach π ∈ Π do

if (π.Enabled) then
π.Tick()

end

Algorithm 3: Update

Once the simulation started, as diplayed on 3, the agent or agents will be updated

every frame. As previously mentioned, the only component which can update the

framework is the NPCController driver. This will update every basic aspect of the

model and each module, if enabled, which has been appended to that particular agent.

It is important to notice the update order of the components. φ (Perception) is up-

dated first, then α (AI), which will process environment or input changes, and finally β
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(Body) for acting, steering, audio and animations. This is analogous to the Perception-

Deliberation-Act cycle.

The implementation emulates a well established general agent model, the Perceive,

Deliberate and Act cycle. On every frame, this cycle will update the components in

that order. First, the environment (agents, objects and entities) will be considered,

then, the agent’s beliefs system will be updated accordingly, followed by deliberating

on the current action, if needed, for finally acting upon this deliberation.

2.2.1 Perception, Deliberation and Action Model

FIGURE 2.4: Agent Model

Those components previously described as the basic ones, are those which will execute

specific tasks of the execution cycle. These tasks are separated and carefully sequen-

tially executed, for output of a component, will be input of the other. We can see in

figure 2.4, how each layer executes in order and consumes the previous layer’s product

as input. This section will briefly describe the main functions of each of these elements

of the framework.

The first component in the chain is NPCPerception. Generally speaking, an agent
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should be able to perceive its environment, and some external signal stimuli. The

framework basic φ (Perception) component only deals with virtual line of sight and

proximity of other entities - both agents and objects. When it comes to conversational

agents, that input alone is not sufficient, we need also to be able to perceive signals

coming from the user. These are in the form of audio and/or video. Special modules

will extend the perception capabilities of the agent presented in this implementation to

be able to read and process such signals. These will be explained in detail later. There

are two aspects of this module which need to be highlighted. First, the fact that percep-

tion works on top of the engine’s physics loop, which is independent from the main

per-frame general Update. This means that entities are perceived asynchronously to

the main component Update call from the NPCController component. This is because

entities proximity are detected by a trigger on a sphere collider attached to the each

agent. Once a trigger fired, we need to determine if the entity is within the agent field

of view. Before determining this, it is really important to check if the agent was NOT

previously detected. This can be quickly done in O(1) complexity with the previously

mentioned hash maps which keep track of currently perceived entities. Finally, due to

the cost of these physics and vector operations, it is important to exploit every possible

optimization. The main optimization does occur in the main Update call for this com-

ponent, and consist in shrinking the perception radius (not the view field). This will

save the agent many unnecessary physic collision trigger detections, for if the agent

is surrounded by other, say four agents, there is no need to expand the collision de-

tection beyond the furthest agent. This is crucial in highly populated crows scenarios.

The good news is that when it comes to conversational agents, this will probably be

used in a single agent-to-user interactions, with no need to enable the perception cy-

cle, saving a lot of physics computation which ultimately results in saving CPU cycles

which will be most needed for other uses, such as natural language processing.

Next in the update sequence, comes the Deliberation component, called NPCAI. By

default, the NPC Framework provides basic deliberation services, these are path reso-

lution for navigation and behavior trees execution. Path resolution can be customized
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with specific navigation implementations, or default to Unity’s NavMesh library. Con-

versational agents will use modules to process signals, analyze and update state. In

figure 2.2, we can see a Navigation component can be selected if available. These

components are classes which implement a specific NPCNavigation interface, but gen-

erally speaking, the default Unity’s path resolution mechanism is preferred due to

optimizations and portability between projects. For the purpose of the conversational

agent discussed in this implementation, no navigation is required, so any navigation

capabilities can be safely disabled, again, optimizing computation cycles. The most

important aspect of the AI component is the capacity of running, updating, pausing,

starting, stopping and interrupting behaviors. These behaviors are presented in the

form of trees and will be covered in detail in Chapter 5, but in short, every Update

cycle of the component, will tick the currently executed behavior tree. At any given

point in time, there could be either 0 or 1 nodes executing for each agent. Nodes which

will result in actions are called Affordance nodes, and these affordances, are atomic ac-

tions which will make the avatar perform either a gesture, execute an audio-animation

clip sequence, go to location, or perform any specific action. These affordances are C#

attribute-tagged in the AI components as NPCAffordances. Each of these affordances

are available for the behavior trees to use in their leaf action nodes. Although the

NPCAI modules executes a single tree at a time, it can potentially queue many trees in

FIFO order, and execute them sequentially. Finally, any running tree can be stopped, or

paused. Pause will of course allow for resuming its execution, while stopping the tree

doesn’t. In Chapter 5, we explain how the system is capable of executing Interactive Be-

havior Trees which are the chosen solution for the conversational agent problem. A sin-

gle tree, which evaluates many conditions in parallel and execute those which satisfy

certain parameters. There is one more thing to highlight, which is the separation be-

tween executing affordances individually as opposed than in organized fashion, via a

data structure such as a behavior tree. That is an important distinction, since the body

component, discussed momentarily, does allow for atomic execution of affordances,

but these are independent of any order or consequence of execution, as opposed to

the trees. Finally, the NPCBody component will handle every operational aspect of
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the agent in the simulation, this includes but not limited to: steering, social forces, IK

targets, obstacle detection, path navigation, multi-layered animations execution, ani-

mation time and curves, user IO controls and audio-synchronization control. The fact

that every aspect which has to do with animations, navigation - not path resolution -

and inverse kinematics will be processed per-frame within this module, makes it to be

the heaviest from the implementation and processing perspective. However, for sin-

gle, one-way user interaction conversational agents, there are many features which we

can disable and obviate. The main components which we will use from this module

specifically are its animation and audio synchronization capabilities. This is achieved

using a support data structure from the framework called NPCANimatedAudio. This

element, encapsulates animations and audio clips, providing a way to annotate time-

stamped execution events. For instance, while an audio is playing, assume a phrase,

we can trigger sequentially phonemes animations to emulate lip-synchronized speech.

The same is true for the inverse, a longer animation which needs to play an audio clip

at a given point of the animation. An unlimited array of these can be defined via the

inspector interface, as displayed in figure 2.2.

2.3 Basic Components

FIGURE 2.5: Overall Development Pipeline

Now that we count with a brief overview of the main components of the framework,

it is time to define the objects on which this framework works on. The Unity engine
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defines almost every component of a simulation scene a GameObject. These are com-

ponents which usually comprehend a render mesh, to display the three dimensional

model, an animator controller and the concept of a transform, which is the abstraction

of an objects position, rotation and scale in the world. This section provides a brief

description of the main components utilized for the simulation from the hard-assets

perspective. These hard assets are going to result in the embodiment, animations and

audio of the conversational agent. Ultimately, the animated avatar is the result of

logic-driven assets. Figure 2.5 describes the development pipeline used for this imple-

mentation. There are two main blocks, the hard assets development portion - models,

rigs, animations and audio - and the Unity simulation development part. Generally

speaking, and once a primary model has been created, both parts of the pipeline work

in parallel. While the simulation is being developed with an initial model and rough

assets, artists and technical designers can work in creating new models, animations

for these models, adapting rigs and creating audio. Within each of these phases, espe-

cially for the hard assets one, tasks usually work in sequential fashion. As mentioned,

once an initial model and basic assets are in place, the end-to-end result is attain-

able by threading the assets to the simulation logic within the engine. By this time,

designers and artists can re-iterate over the rig, add more animations and provide de-

velopers with version X assets. Developers should always keep their implementation

independent from the assets. In other words, assets should not dictate logic, because

otherwise, the whole reusability value of the framework will be lost. The only frame-

work component which must be customized, are the animation-audio clip sequences.

These will change throughout development until the final rigged model, animations

and audio clips are in place.

We will describe separately those products and components used in this imple-

mentation.

2.3.1 Avatar
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FIGURE 2.6: Facial Blendshapes

The main model which we use has been

created and rigged in Autodesk’s Maya,

which is a highly professional, industry

standard, modeling and animation tool.

Creating this model is a highly technical

and involved process. We will only enu-

merate its phases and the end result, fo-

cusing rather not on its development, but

on what is needed to successfully bring

a simulation-ready avatar into Unity, for

the purpose of developing the simulation. The modeling global overall cycle consist

of the following steps:

FIGURE 2.7: Model and Rig

• Modeling: This is when the complete mesh of the model is created. Several

approaches could be used, but the ultimate result, is a single group of meshes

which, in addition to textures, UV maps and materials will create our empty

avatar. By empty, I mean that although the model is complete, bones and joints

are yet to be added to the model.

• Skin and Rig: Once the model has been completed, we will have an A or T posed
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character, as in figure 2.7. For this avatar to be a functional humanoid model, we

need to add the basic joints and bones. This process will define all the character

articulation points. This is paramount for animation for all rotation pivots are

defined. In addition to the bones, we will also create the skin, which is how the

weight of forward kinematics rotations will be distributed among the meshes’

pixels, when animated.

• Blendshapes: Last but not least, once the avatar’s model is completed, rigged

and skinned, we proceed to create the blendshapes, which are the link between

animation controllers and facial skin points. These controls allow for manipula-

tion of any portion of the face mesh’s triangles. The granularity depth depends

on need. For this case, we will need the avatar to be able to not only perform

phonemes, but also to demonstrate emotional states via gestures. For this, the

technical design team must allow for brow, lips, cheeks and many other facial

segments movement, as shown in figure 2.6.

• Export: Finally, once the model is fully functional, we can proceed to export/import

it into Unity to thread it with the logical framework, as shown in figure 2.8. Once

in Unity, we will attach the NPCController component and all custom required

modules. In addition, we need to ensure the Humanoid rig has been selected,

which means that the avatar is animation-state-machine ready. Unity’s Anima-

tor Controller is a key element of any humanoid avatar in terms of multi-layered

animations and inverse kinematics. From this point on, we can extend the basic

framework to utilize other services such as audio and network access.
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FIGURE 2.8: Exported Model

2.3.2 Animations and Audio

This assets are produced independently from the Unity development phase. As soon

as the avatar is complete, we can import it directly into Unity and start working until

receiving new these new assets with a library of either basic animations and audio, or

dummy values which emulate what is going to be the final product. As mentioned,

the NPC framework allows to synchronize this animations and audio clips into atomic

units of execution. The result is an animation which can play any number of audio

clips throughout its execution. The opposite is also true, we trigger audio clips at

any given point of an animation in its normalized time. It is worth noting that this

mechanic is yet another tool available in the framework and not the de facto system to

be used for every single scenario. For the purpose of conversational agents, however,

we can heavily rely upon this initially, to execute prerecorded sequences, until another,

more sophisticated, logic-driven mechanisms is in place.

The NPCAnimatedAudio is the object utilized to execute these atomic sequences.

This class is basically is collection of queues of animation and audio timestamps. When

each unity will execute, depends on how the designer set it up in the editor. Once

running, the NPCBody controller will be responsible for driving a coroutine which

will iterate every frame, querying these queues and executing elements at the correct

timestamped time. Algorithm 4 displays a coroutine which will run, not blocking the
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Data: AnimatedAudio animatedAudio
Data: Animations animations
Data: Audio Clips audio
Data: NPC Controller npcController
if (randomizeAnimations) then

animatedAudio.Shu f f leAnimationClips()
animationQueue← animatedAudio.Animations
audioQueue← animatedAudio.AudioClips
startTime← Now
runLength← startTime + animatedAudio.Length
do

if (audioQueue.Peek.ExecuteNow) then
npcController.PlayAudio(audioQueue.Dequeue)

if (animationQueue.Peek.ExecuteNow) then
npcController.DoGesture(animationQueue.Dequeue)

while Now <= runLength;

Algorithm 4: Execute Animated Audio

main thread, until all audio and animation clips of an NPCAnimatedAudio instance

have been executed. To alleviate the task of the designer, the NPC inspector allows

him or her to design these clips utilizing their real execution time. Upon initialization

of the simulation, these instances are baked into normalized time lines, on which other

metadata is collected, such as total duration and proper execution order.

2.4 Modularity

As explained before, the NPC framework supports the addition of custom modules

which extend its capabilities. This is critical for any implementation, for these are

very likely to have unique requirements which are not covered by the general services

provided by the main controller. This modules can be added to any agent which con-

tains the NPCController components. This controller will identify the added modules

in the editor, and incorporate them to the main execution loop. Each module will be

ticked every frame, or as frequent as the controller’s update parameter specifies. This

is of course, if the module is enabled or not. In addition, each module can choose to

ignore the controller’s update function, and work independently from it, still benefit-

ing from all the aforementioned functionalities. This implementation utilizes many of

these modules for natural language parsing, audio processing, API consumption and
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behaviors modeling, among other aspects of the conversational agent. We proceed to

briefly present the main interface which each custom component is to implement, with

its basic definitions.

2.4.1 Interface

For a module to be recognized by the framework, it must implement the INPCModule

interface. This interface, have the following contractual signatures:

• InitializeModule: To be called before the first frame is rendered in the simula-

tion, but after all basic components of the driver framework have been initial-

ized.

• IsUpdateable: Determines whether the module should be ticked on update or

not.

• TickModule: Framework controller-driven function, which will be updated on

general controller update cycle. Alternatively, each module can sub-class Unity’s

MonoBehaviour component, which allow for engine-driver update routines.

• IsEnabled: Determines whether a module should be initialized, updated, de-

stroyed or cleaned up.

• SetEnable← enabled : bool: Set the Enabled value.

• RemoveNPCModule: Gracefully disassociates a module with the main con-

troller on remove.

• NPCModuleType : TYPE: Meta-data module classifier to determine if this mod-

ule is AI, Audio, Behaviors, and other predefined types.

• NPCModuleTarget : TARGET: Specifies if the module will affect an agent AI,

Body, Perception components or other.

• NPCModuleName: Module display name.
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(A) Isometric Adventure Game (B) Single Agent Simulation

FIGURE 2.9: Different simulations using NPC Framework

• CleanupModule: Called when a simulation terminates. Some capabilities, such

as network connectivity, buffer allocation in memory and other services might

require graceful termination.

As it can be perceived, the signatures definition are as general and simple as pos-

sible. There is only enough information for the controller to understand the type of

module, its name, initialize, update, enable, remove and clean it up if needed.

Figures 2.9 displays two totally different simulations utilizing the NPC framework.

Figure 2.9a, shows the framework used in an isometric action/adventure style game,

while figure 2.9b uses the same implementation for a totally different single-agent sim-

ulation. Both implementations have two things in common; firstly, their foundation,

lastly, that both customize the framework with especial modules. The game imple-

ments customized behaviors, game oriented AI logic and player IO controls. The

second simulation, uses the aforementioned modules for behaviors, audio and API

connectivity, among others.

Subsequent chapters, will discuss in detail the modules utilized to build up a con-

versational agent. These will extend Perception, Deliberation and Behavior capabili-

ties of the agent.
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Chapter 3

Perception

3.1 Multi-modal Sensing

In a general multi-agent simulation, the natively framework allows for an agent to

perceive other characters, objects and behaviors in its natural field of view - modeled

as a foveal cone of parameterizable angle and distance. The actions an agent can per-

ceive are categorized as: (a) global: which impacts all background characters that see

it, (b) targeted: meant for a specific character, and (c) neutral. For example, an author

could mark a ‘Warning Shot’ as global, which when executed, will update every per-

ceiving agent’s hostility level of the source character. This is provided as input to the

deliberation module to elicit appropriate responses in the characters.

FIGURE 3.1: Multi Agent Perception

The perceived interactions are recorded in the agent’s memory, then used in the

deliberation phase to determine a reaction. The conditions that determine these re-

sponses are defined using a designable, and can also be tailored for unique agents,
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using modifiers. Additionally, every agent will be aware of the context its is currently

in if provided during design. Context is defined as a specific geographical place in

the environment. The context can be used to enhance, reduce or neutralize behav-

iors’ modifiers. As an example, an agent carrying a weapon in a combat training field

would not increase perceived hostility levels on other characters. This should not hold

true in a non-combat-controlled environment. This concepts are also available for de-

sign and are optional to every model, hence an author has no need to worry about the

design complexity until is necessary.

Leveraging this capabilities and thanks to how the framework can be modularly

extended, a conversational agent, as opposed to regular characters, perceives its en-

vironment in terms of audio feeds and imagery captured by the device’s peripherals.

Data is then forwarded for post-processing on an independent threads. The main pro-

cessing modules we utilize are:

• Native Speech-to-Text solutions, defaulting to GoogleTM Cloud Speech API

• AffectivaTM Facial Expressions Recognition

• NemesyscoTM Voice Emotional Analysis

• Rasa Natural Language Understanding

• Proprietary Natural Language Parsing (NLP) System

• Proprietary Believe-Desire-Intention (BDI) Framework

Once all the data has been processed, the agent will either start, continue or in-

terrupt a behavior. These are mostly conversational, as a response to the user’s inter-

action. Input is collected continuously in the simulation loop, in parallel, consumer

modules are constantly monitoring the messages queues, such that no signal message

is left unprocessed on a first-come, first-serve manner. As an example, the agent can

actively listen to the user as he or she speaks, interrupt, interject, express different emo-

tions based on the message, respond with information or execute an action. Finally, a

memory module keeps track of the agent’s state and believes of the world. Memory



27

Raw Emotions Speech Texts

Emotions Parsed Sentence Intents

Natural Language 
Understanding

Natural Language 
Parsing

Signal 
Processing

Affectiva Speech 
RecognitionNemesysco

Next Layer Processing (Knowledge Base, etc.)

Video Stream Audio Stream

M
ultim

odal Sensing

FIGURE 3.2: The pipeline of the multimodal sensing framework

is thus, a representation of the conversation flow actively consulted and updated on

usage.

Figure 3.2 shows the overall multi-modal emotion and user intent sensing structure

in our framework. This structure can detect and model emotions from various sources,

parse speeches and analyze user intents. The output of the sensing unit will be passed

to the next layer for higher level data processing, including knowledge base reasoning

and the BDI model, etc.

Before being processed, signals by themselves are inherently meaningless. We will

describe them all, starting with raw audio input, which is nothing but a simple se-

quence of sampled waves represented as bytes. We begin by discretizing said bytes

into sequential atomic buffers. In this way, we ensure silence marks the beginning and

the end of each potentially meaningful input unit.

Immediately after signals were processed, there are two main uses for the informa-

tion created from this data. Initially, we parse and extract the meaning of said signals,

this will be used to match already known concepts which the agent might be able to

manage and respond to coherently. Secondly, we utilize this meaning to potentially

fill up gaps and enrich the integrated agent’s knowledge base. When the meaning has

been extracted, a real-time system will make use of it and feed the behavior system.

On the other hand, enriching and completing the knowledge base, although triggered

right after each signal has been processed, is done on a separate thread of execution;

this implies that the new concepts might not be available for the agent’s next immedi-

ate response. We proceed to explain which and how signals are processed.
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Once the buffer has been formed, we will attempt to produce the following prod-

ucts out of it: human natural speech, its semantics, and the characteristics of this in

terms of its emotional load. This requires us to build a knowledge base and the corre-

sponding representation and reasoning mechanisms.

The audio and video streams of the user are processed to construct a knowledge

base which stores the constantly changing Sara’s belief of the user, and the information

obtained from the current (and past) conversations. The knowledge base can be then

queried by the user by asking Sara questions, or can be leveraged by Sara directly

in order to make a more informed response. Details of the implementation of signal

processing, knowledge representation and reasoning are shown in Section Knowledge.

3.1.1 Active Listening

The aforementioned responsiveness in verbal communication corresponds to the most

deliberate (and thereby the most delayed) means of communication from the agent to

the user. In verbal communication, there is another type of responsiveness that is

expected more frequently than the prior. What the previous responsiveness achieves

is a delayed engagement. After the user is done speaking, the agent responds. A more

active engagement requires responsiveness to the audio input as it is received. This

means that while the user is speaking, the agent should show some indication that it

is listening. This indication can take several forms, namely eye contact, nodding, and

acknowledgements (e.g., “mm-hm”). To maintain eye contact, the agent should face

the center of the camera by default. However, if there is additional information about

the user’s face through head pose estimation, the agent’s gaze can be offset from the

camera’s center.

Active engagement and delayed engagement are mutually exclusive because they

correspond to different phases in a conversation; i.e., the user’s turn to speak and the

agent’s turn to speak respectively. The agent’s behaviors are driven by these phases

and changes between them. This means that the agent will always wait until its turn

to speak. On the other hand, the user is free to disregard the phases and speak out

of turn. The abrupt change in phase from the agent’s turn to the user’s turn will be
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followed by the agent’s active engagement, because the phase dictates that it should

not be speaking, but listening. When conversations of this sort happen between hu-

mans, an abrupt change in phase is often accompanied by a short phrase to aid the

transition; e.g., “Oh, sorry” or “Please continue.” Our agent employs this behavior in

order to raise the user’s awareness of the phases, because contemporary virtual assis-

tants have made people accustomed to virtual assistants’ insensibility to conventions

of conversation.

3.1.2 Emotions in Facial Expressions

Facial movements can be measured and described by FACS. Based on the data, facial

expressions can be further analyzed and categorized into low-dimensional emotion

classes. Our framework uses AffectivaTM as the main source of the raw facial emo-

tion data. AffectivaTM can provide raw frame-based 8-dimension emotion data from

the camera video stream in real time. As a drawback, it doesn’t contain any temporal

information about the emotions, which may fail under some situations when the mus-

cles on the user’s face move frequently and cause noises. It hinders accurate emotion

analysis when the user is speaking, which is quite a common case in our implemen-

tation. Therefore, further signal processing is necessary to minimize the impact of the

emotion noises.

3.1.3 Emotions in Voices

Although not as explicit as facial expression, people obviously show emotions in their

voices. Voices provide two types of raw signals related with emotions: (i) sentiments

based on the text, and (ii) tone and speed information based on the sound wave anal-

ysis. With semantics analysis, the former signal provides more figurative information

about the emotional state of the user, while the latter signal provides a more abstract

statistical conclusion on the sound of the voice, regardless of the actual words being

spoken.

In our project, the sound data captured with the microphone is fed into multiple
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FIGURE 3.3: User intent classification procedure

processing submodules. The raw data is sent to different processing branches in par-

allel. One of them is our Motional server with NemesyscoTM running for voice sound

wave analysis, and the other ones are speech-to-text services based on the OS plat-

form. When the speech-to-text result is returned, it will be further used as the inputs

for sentiment analysis, knowledge base query, and intent detection. NemesyscoTM can

extract information related to emotions, but the result space is distinct from the tra-

ditional 8-dimension facial emotion information. To correlate the data, we adapted a

mapping algorithm to merge the data from different emotion sources and remap them

into a standard emotion space with 3 dimensions, which is an analogy to the HSV

color space.

3.1.4 User Intent Detection

Voices also deliver more information than emotions, such as intents. Besides natural

language parsing, we are beginning to utilize Rasa natural language understanding to

extract user intents from the text recognized from speech. Depending on the scenarios

where the agent is to be implemented, we trained different models accordingly.

In this implementation, the model is trained with a variety of user intents. The fol-

lowing list shows part of the intent labels that are related to the multi-modal emotion

analysis and the BDI model.

• greet and goodbye show that the user wants to start and end the conversation,

respectively.
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• affirmative and negative show the user’s acknowledgement and disagree-

ment to the previous response from Sara.

• state_mood delivers the current mood of the user to Sara;

• query_mood is for when the user tries to ask for the current mood state of Sara;

• desire shows that the user want to request something.

Every spoken sentence of the user can be categorized into one of the intents. More-

over, we also train the model with related entities, and during runtime, Sara extracts

them if there exist any in the sentence.

Figure 3.3 shows the procedure of the user intents classification. The voice sound

signals are initially cut into pieces containing each spoken sentence. Meanwhile, each

sentence is converted into text through platform-dependent speech recognition ser-

vices. The returned texts are then enqueued into the message bus and waiting to be

fed into NLU services. To optimize user experience, latencies are not expected. We

minimized the latency between “end of the sentence in the speech” and “user intent

classification result returned” to be less than 300 milliseconds, which includes two

Internet communication sessions plus all the data processing time.

However, a naive NLU intent classification module doesn’t fit every case in prac-

tice. For example, Rasa classifies intents without referring to the actual entities ex-

tracted from the sentence, and hence two sentences with a similar semantic structure

but totally distinct entities (which implies different intents) might be incorrectly classi-

fied to the same intent. To resolve this type of conflicts between intents and entities, we

implemented a post-processing algorithm to further categorize the intents in a higher

level and hence improve the robustness of the NLU module.

3.1.5 Emotion-Certainty-Intensity Emotion Classification Model

ECI (Emotion, Certainty, Intensity) is a representation of the Lövheim cube of emotion,

which was inspired by the HSV color model. The representation is a concise, unified

alternative to emotion data, which in our framework, was processed and received in
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the form of a 6-tuple corresponding to the probabilities of Ekman’s six basic emotions:

anger, disgust, fear, happiness, sadness, and surprise. In Lövheim’s model, emotions

are a blend of signals from three neurotransmitters: serotonin, dopamine, and no-

radrenaline. These signals are represented as orthogonal axes in three-dimensional

space, making this model a precise analog to the RGB color model. Therefore, the

equations for RGB to HSV conversions are applicable to the conversion of the Lövheim

cube into the ECI model. In the ECI model, Emotion (the analogue to Hue) changes

based on the proportions of the neurotransmitter signals. In increasing degree or-

der, these emotions are disgust (with the highest proportion of serotonin), surprise,

sadness (with the highest proportion of noradrenaline), anger, fear (with the highest

proportion of dopamine), and happiness. Certainty (the analogue to Saturation) is a

measure of how distinct the emotion is from general excitement, and Intensity (the

analogue to Value) measures the intensity of the emotion. The ECI representation is

an intuitive alternative to the Lövheim cube of emotion.

In order to convert emotion data from AffectivaTM and NemesyscoTM to ECI, we

took the emotions with the highest likelihoods, normalized their probabilities, and

multiplied them to vectors that corresponded to the points of maximum intensity for

each emotion. The average of these vectors is the point in the Lövheim cube of emotion

that we used for conversion into ECI.
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Chapter 4

Deliberation

4.1 General Framework Capabilities

Let us first explain the generic capabilities offered by the framework for basic event

and effect handling within traditional simulations. For a single agent, all the cur-

rently perceived entities, and their states, will be taken into consideration for select-

ing the next group of candidate events to be executed. The first step in this pro-

cess is to filter all candidate events based on their conditions and modifiers. Condi-

tions are evaluated against the state of the current agent, or the perceived character’s

state, and returns TRUE or FALSE. For example, let assume there exists an event ‘Greet-

MainCharacter’ with the following conditions: (1) Target.IsForegroundPlayer, (2)

Target.Friendliness >0.5, (3) Self.Idle.

This mechanic can be used by designing a set of conditions and events, given the

available affordances from agents and their traits. These conditions are not bound to

any specific event until the author assigns them to it. At code level, a condition is an

Attribute which get associated with either a function or a property, for then to be eval-

uated against a target value during runtime. Once a condition has been instantiated, it

can be reused in any defined event, hence the overhead of these are not significant as

the number of available Events increase. Assuming the agent’s current state satisfies

all needed conditions, then ’GreetMainCharacter’ becomes available as a candidate

event. Now, assume there is also another event which has been satisfied, for instance,

‘Wander’. This, will also be included in the candidate Events queue. At the time of

taking a decision which event is to be executed, we must consider mainly four things:

(1) Is this agent currently selected by the User? (2) Is the character currently executing

an event? (3) Is the first candidate event of higher priority of the currently executed
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event? (4) Is the final chosen event the same one is being executed? Being a fore-

ground character or taking part in a higher/equal priority than the top candidate one,

can prohibit an agent to start executing a new event. Should two or more events share

the same priority, the one with the higher number of constraints will be executed. Fur-

thermore, if two or more share also the same number of constraints, then one will be

picked randomly. Algorithm 4 is the highest-abstraction level routine for the event-

deliberation system, to select potential candidates who satisfy its required conditions,

based on their state. Every event may include modifiers that can persistently or non-

persistently modify how its execution perceived by other agents. This enables a more

flexible design which allows the author to further decide how a behavior will impact

other agent’s perceptive memory.

Additionally, the framework integrates modules for path finding, steering with

built in social forces, and perceptive memory, among others which will be covered at

the end of this section.

(A) Perceptive Memory (B) Path Resolution



35

Data: Predefined lexicon of Events e ∈ E

Data: Smart Objects s ∈ S

Data: Evaluating agent ac

Output: Queue of valid events, Ev

Ev ← ∅;

et ← ∅;

foreach e ∈ E do

P← GetValidEventParticipants(S);

foreach p ∈ P do

if C(ep) = true then

if Ev = ∅ then
Ev = Ev ∪ ep

else

if p(ep) >p(top(Ev) then
Ev = Ev ∪ ep

else if p(ep) = top(Ev) then

Ev = Ev ∪ ep;

if ResolvePriority(ep, top(Ev)) = true then
Ev = Ev ∪ ep

end

else
InsertInOrder(ep, Ev)

end

end

end

end
Algorithm 4: Event Deliberation Process

Act. Finally, the events that are chosen by the deliberation phase are used to invoke

appropriate reactions in the background characters, implemented as PBT’s.
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4.2 Understanding Signals

Although this implementation does not utilize the previously explained mechanic of-

fered by the framework, the deliberation process in this single-agent conversational

simulation is still resolved within a domain of constraints, viable responses and ad-

equate behaviors which are of course continuously influenced by the user’s input.

Responsiveness is a critical aspect of human communication. When a person is com-

municating through words, tone, facial expressions, etc., he or she expects to receive

a prompt response from an engaged participant in the conversation. For each inde-

pendent mode of communication, our framework prioritizes immediate feedback to

provide this engagement to the user. To achieve the closest possible level of real-time

responsiveness, we divide the processing engine in two blocks. The first part is on

the client application, the second one, resides on a remote server not only capable of

processing signals, but also capture data, which could eventually be used for analyti-

cal and learning purposes. Starting on the device, basic I/O peripherals will capture

in real-time video and voice. Facial recognition is processed on the device almost

seamlessly. As mentioned before, Affectiva utilizes a system of 40 points to capture

the current user’s expression, which allows us to determine certain possible expres-

sions. The second client-side processing mechanism is YieldProlog, a library also in-

stalled with the application which translates regular Prolog constructs into executable

C-sharp code, compatible with the application’s base language. Finally we jump onto

the last portion, which is emotional voice analysis. This is not processed on the de-

vice. Nemesysco receives raw buffers of audio, which were indeed processed to 8-bit

mono signals in the device, on a remote machine. These machine maintains a per-

sistent TCP connection with the device, and once a buffer has been completed and a

signal successfully analyzed, a call-back function receives with a 2 to 3 seconds delay

an analysis which represents the probable emotional state of the users based on his

voice levels. This feature is still being tested, with a success rate of only 40 percent.

The software was originally developed for telephone communication of clients to call

centers, hence we are adapting a tool designed for long-lasting communications, and
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Sentence

Noun-phrases

Noun-phrase-A

Article Noun

. . .

Verb-phrases

Verb-phrase-A

Verb

. . .

FIGURE 4.2: A parsing tree with different levels of grammar

fine-tweaking it to analyze short bursts of voice audio buffers. We implemented a

noise and feedback control logical gate into the application, still, obtaining accurate

results still proves elusive in most situations. In this sections we will explain how the

previously discussed signals are comprehended by the agent and which information

is taken into consideration at the time of deliberating a coherent response.

4.3 Natural Language Processing

The knowledge of a conversational agent is formed by two steps: first “consuming”

natural language and then building the extracted concepts.

Natural speech, consist of obtaining the speech from the signal, and more impor-

tantly, understanding the semantics of said speech. We try to take advantage of each

Operating System’s native capabilities when available for NLP. For example, iOS, An-

droid, and Windows offer extremely robust solutions to this well-explored problem.

When unavailable, or on fail, we default to Google Cloud Speech API, which although

very mature, the network overhead for the service call is significantly greater than

the one from its native counterparts. Once speech has been extracted from the au-

dio buffer, we feed the speech utterance into the parsing engine. This will be parsed

with a syntax tree approach. We use this method to primarily identify and extract

the following elements: (1) proper sentence formation, (2) subject, (2) verb, (3) subject

characteristics, (4), simple expressions, and (5) wh- questions.

To achieve this analysis, the agent counts with a predetermined context-sensitive
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S → NP|VP
S → AP|NP|VP
S → NP|VP|NP
S → . . .

NP → article|noun
NP → noun
NP → . . .
VP → verb
VP → . . .
AP → determiner|adjective
AP → . . .

FIGURE 4.3: Sample Context Sensitive Grammar

grammar capable of identifying structure and content within the sentence. The gram-

mar is used to conduct a tree-like analysis throughout the sentence. As its parts are

identified, the content enumerated above is extracted to be returned for further pro-

cessing. Once a sentences parts have been identified, we proceed to the knowledge

base provides two main services: a repository of meta information for speech recog-

nition, and a conceptual network of concepts. Figure 4.2 is a simple example of a

possible parsing tree, derived from its grammar definition.

The grammar is of the form shown in figure 4.3.

Capturing the elements semantic elements of the speech occurs in parallel to the

sentences being analyzed for proper formation. A properly formed sentence will fol-

low certain rules of the spoken language, allowing the system to populate a collection

with meta information of the utterance and the conceptual meaning of it. Firstly, the

obtained meta-data is essential to set up the context of the speech. This information

is primarily used for validating the rest of the components in the sentence during

analysis. Some examples, are the tense and the number. Secondly, we extract the

components we previously mentioned: subjects, actions, modifiers, expressions, and

interjections, among others.
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4.4 Knowledge-base Design and the Conceptual Network

The knowledge base the agent is compromised of rules, as explained above, a network

of facts, dynamic assumptions and a highly granular classification of terms which al-

lows her to understand certain constructs of the human speech. In addition, every

time speech is received, this is analyzed for new terminology, and if a gap is detected,

a recursive system will start querying a different online data source to include this per-

manently in Sara’s knowledge base. We proceed to explain the conceptual network.

Finally, Sara’s state of beliefs, or dynamic assumptions, is dynamically updated based

on the user’s emotions and responses.

Initially, when referring to concepts non related to speech, we distinguish between

root elements, part of relationships and entities. Root elements are those which we

identify as top-of-the-tree classification nodes. For example: What is a cat? a cat is an

animal, more particularly, a feline, and a mammal. But what is a mammal? A mammal

is indeed an animal, so we could say that a cat, is a feline, which is a mammal, which is

an animal. In this simple example, we identify the animal as the root of the conceptual

network. But so far, we only count on a path rather than a tree. Now, if we include

a lion, snow leopard, a lynx and the concepts of wild and domestic, we could form a

graph of relationships as is shown in figure 4.4.

We can see how this forms what initially would look like a tree. However, a tree

does not offer the flexibility that a graph, or network, would. Where would be placed

canines and dogs? Fortunately, we do not need to worry about duplication, since we

could easily add a new node, under Mammal, which would then derived in Domestic,

and append it to its children, along with the cat. But it is worth noting that following a

tree search would not work in our case because if we wouldn’t keep internal references

to parent nodes, we wouldn’t be able to distinguish between domestic felines and

canines. Next, let’s see how this information is useful.

We can now query our knowledge base to ask: what other animals, other than

dogs can be domesticated? Starting from the dog, we go one level up to Domestic, and

query all its children. From there, the answer: cats. Switching gears on our example,
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we could very much apply the same network to concepts such as pistons, and ask:

What is a piston? It would be easy to answer that a piston is a part of a motor which is

a part of a vehicle, not necessarily a car. This distinction was made when after querying

for the piston, we determined that not only cars have motors, but many other means

of transportation have them as well.

Finally, another advantage of this conceptual graph is the ability to share prop-

erties, hierarchically, among items from same categories. We could tag “Domestic”:

“Human-friendly”. Now we span the property along the class, and when querying:

which animals are human-friendly? the result would be the set of Domestic animals.

Thanks to the built-in processing rules, we can identify which parts of the utter-

ance are nouns, and potentially identify those which Sara doesn’t know. Once a gap is

discovered, a thread independent process is triggered to go fill this gap. There are two

main sources being checked, at the time of this paper. The first one is Google Cloud

NLP, for entities. The second one, is Microsoft Concept Graph research base. Initially,

we interpolate the definitions provided by both knowledge bases. Google’s NLP will

possibly identify the entity, and so will Microsoft. The big difference between these

two, is the probabilistic factor associated with Microsoft definitions. Each concept is

marked with a probability. Based on this, we will select the top k results, and keep

querying until we reach a point where we hit a root entity, of the k iterations where

completed. Once the data has been fully gathered, the server-side end of the imple-

mentation, will insert and update the conceptual graph, for then, write it back to the

client-side, the agent, for future use.
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Animal
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Feline

Domestic

Cat

Wild

Lion Snow-Leopard Lynx

FIGURE 4.4: The tree structure of relationships

4.5 Planning

As an example of the framework’s modularity capabilities, a partial-order planner

module (NPCPlanner) was introduced to the main framework’s assets for creating be-

haviors, conditioned actions and their goals and ultimately compute a plan to achieve

a specific action. This is particularly useful when in need for creating more compelling

and non-deterministic behaviors which could be found in an predefined actions search

space. One of the main advantages of allowing for dynamic partial-order planning of

behaviors is scalability. Provided a set of actions with associated goals and conditions,

the planner has a larger ground of options when dynamically creating behaviors in

real time only limited by the available actions. Therefore, increasing responses based

on goals can be simply achieve by designing and creating new action nodes assets

without the need of defining static behavior trees or massive interactive ones.

Lets assume we are implementing basic locomotion goals such as go to a given lo-

cation. This can be easily achieve by implementing a single Go/ To affordance. Now

lets assume we would like to set some constraints on this affordance, such as that the

agent cannot be sitting down before executing the aforementioned action. Addition-

ally, we create yet another affordance for either standing up or sitting down. This
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affordance has the condition that the agent must not be navigating while executing

it. Just by defining these two behaviors with simple conditions, a goal can be fed into

the planner, such as go to a specific location, and this, will attempt to generate a tree

which given the current agent state, will achieve said goal. The fact that the plan is

partially ordered, means that some actions might not necessarily need to be executed

in a specific order at some point in the plan for the goal to be achieve, which allows

for a trail and error tree with multiple branches on which only one needs to succeed.

For this particular trivial example, the plan will result in two execution paths:

1. Go To Location

2. Stand Up -> Go To Location

Assume we simply generated these two branches under a Selector tree. The first one

executes, but because our hypothetical agent is sitting down, fails. Then we can exe-

cute the second branch, which will indeed satisfy our goal. Finally, because a partial

plan will be computed, there might be execution paths which contain actions which

can be executed utilizing the same mechanism, a selector, hence only one needs to

succeed for the plan to potentially achieve completion.

Initially the mentioned planner could be added as a component of some individual

agent, hence each plan will take into consideration, and as parameters for its actions,

that particular agent’s state, such as locomotion mode and target entities if interacting

with something. Depending on the type of affordance, these are assigned dynamically

and ultimately completed for execution in realtime by topologically sorting a partial

plan.

More complex scenario could arise for interactive conversational agents, on which

most of their executions are likely targeted to coherent responses given a user’s input.

This implementation is yet to include the planner for a conversational agent, never-

theless, the required actions could be designed, conditioned and added to the actions

search space in the future. So far, the planner has been used to resolve locomotion and

"search and find" goals in other projects which utilize the framework.
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4.5.1 Planner Implementation

The planner utilizes the following structures:

• Causal Link: Triple ordered relationship between two action elements and a con-

dition, of the form: <action A, C, action B> on which action A satisfies a condition

C for action B to be executed.

• Constraint: An ordered pair of actions, A and B, which represents the fact that

action A must be always executed before action B.

• Action Node: The node data structure which wraps an affordance, a list of con-

ditions and a goal. If the given conditions are satisfied, the affordance can be

executed to achieve the desired state expressed by its goal.

• Condition: Structure which represents a desired state of locomotion or traits for

agents, or interaction state for objects.

• Goal: Also referred as post-conditions, this is the type of entity, agent or object,

and ta

This structures are implemented within the class which also implements the INPC-

Module interface, which highlights the fact that any type of object can indeed be utilize

as a module. Then the following functions will participate in computing the final plan,

if found:

• Public

– GeneratePlan <- Goal Action

• Private

– AddConstraint <- Action A, Action B : Adds a new constraint to the set if

two given Actions, A and B are not already there or do not contradict an

existing constraint.

– GetSatisfyingAction <- Condition : Finds and Action associated with a given

condition.
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– FindSatisfyingAction <- Condition : Finds an Action which can satisfy a

given condition in the action search space.

– IsSatisfied <- Condition : Checks is a given condition has already been sat-

isfied in a Causal Link or by the agent’s current state.

– OrderConstraints <- Causal Link, Action : Topologically sorts a graph of

constraints represented as a list of linked lists of constraints.

Finally, the GeneratePlan algorithm, as seen in Chandra, n.d., generates a plan

starts by receiving a desired action goal which the agent should execute. This action,

or tree with actions can potentially be constrained with conditions by designed. Upon

finding said conditions, these are added to an open set which must be fully satisfied

for a plan to be generated successfully. The algorithm declares empty sets of actions,

constraints and causal links. There two initial actions which will create a 0-state con-

straint. The meaning is that the current state - represented as an action - must precede

the goal action. Finally, the algorithm will execute a loop which dequeues the next con-

dition to be satisfied. Whether this has been fulfilled or not, an action which satisfies

that condition will be yield, and during the current iteration, the logic could poten-

tially create new constraints, causal links and will always organize the plan to ensure

no action is violating an already created constraint. Should a plan is found, this will

be returned in the form of a Behavior tree on which ordered actions are executed in Se-

quence control nodes, and partially-ordered ones are executed as children of a Selector,

which will guarantee that if a partially ordered action was successfully executed, the

next one will be omitted for the plan to move on during play.
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Chapter 5

Action

5.1 Behaviors Overview

Almost every interactive commercial games, academic or professional simulations,

will most likely have a primary artificial intelligence component. This module usually

not only manages characters, but also game mechanics, decision making, narrative

guidance, and many other components which vary based on the nature for each sim-

ulation. When it comes to create believable, rich, immersive and engaging interactive

or scripted simulations and games, agents behaviors are paramount. How immersive

the experience will be, is absolutely proportional to the level of effort, design placed

on the characters behaviors and how these are ultimately executed.

FIGURE 5.1: Witcher 3 City
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FIGURE 5.2: NPC Framework Behaviors Editor

There are many ways developers can implement these intelligence modules. Origi-

nally, agents behaviors were nothing but a set of stored patterns, which would usually

have an effect on movement and combat. Nowadays, we can find vibrant and lively

cities scattered throughout games. These are not only busy, full of simulated life, but

also coherent. They have generic crowds, specialty groups and individual key charac-

ters which ultimately, will shape and define how immersive each scenario is. Games

like The Witcher 5.1, Assassin’s Creed and many others, have exploited and mastered

techniques which would allow their developers to successfully create these scenarios

for players to truly feel inside the simulation. Furthermore, systems within engines

are just developed to allow designers to rapidly build these models, avoid bottlenecks

in the development cycle and to still be able to produce a high quality product.

When it comes to single-agent interaction applications, such as this one, this mechanic

is of utmost importance from the user’s perspective. The intention is to have a system

which is not only responsive computationally, but also engaging, diverse and make

a user feel like if involved in almost in a real interaction. In this implementation, we

have a developed a quick design system which allows us easily create, test and adapt



47

new behaviors to our agent. This component is part of the NPC Framework. Any agent

which utilizes the NPC Controller can benefit of using this behaviors component. This

editor is nothing but an interface to the actual implementation of all the nodes and

controllers which ultimately will execute the tree at runtime.

In this chapter, we introduced the basic structure and definition of behavior trees, ad-

vantages, limitations and how to implement a system which hierarchically executes

this structures.

5.1.1 Behavior Trees

We will start by defining behavior trees. These are hierarchical structures of nodes,

represented as n-ary trees, which as opposed to finite state machines, they offer control

capabilities within its subtrees. Their leaf-nodes are ultimately the structures which

encapsulates agents’s affordances behavior-oriented executions. Inner nodes, are called

control nodes, and will define how their substructure (subtree under that node) will be

updated, or ticked. We will start by listing the three main type of control nodes:

• Sequences: Will execute all of its children sequentially and succeed if and only if

all of its children do.

• Selectors: Will execute all of its children sequentially, and succeed if at least one

was successfully executed

• Decorators: Will handle the reported status from a subtree

Sequence and Selectors nodes can be viewed as conjunctive and disjunctive logical

structures, respectively. Behavior trees are executed in in-order traversal, and on each

iteration, each node is updated in order to inquiry the current state of the tree. A

Sequence node subtree will only succeed if all of its children executed successfully.

Selectors will execute every child until at least one returns success. Finally, Decorators

are used to manipulate the outcome of a subtree based on its status at completion.

These are generally placed on top of the a subtree root such as a Sequence. These

statuses can be:
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• Success: Overall, the tree executed with no errors and the expected behavior was

properly ran.

• Running: The tree is still running some leaf node.

• Failure: The expected behavior couldn’t be executed for some reason.

When updated, the tree will ultimately return one of these three possible states. A

successful root node, implies that the entire tree has been completely executed, running

means that some state is yet to terminate, still executing, and failure is of course, the

opposite of a successful execution. Now, to expand a tree’s complexity of execution,

each of the aforementioned categories can be further expanded into different types. All

of the three main categories presented before can be implemented in different ways,

to allow richer flexibility and more complex behaviors. Some of these are:

• Sequence/Selector Parallel: All children execute simultaneously, for selectors,

once all finished, if at least one was successful, the tree is successful, for se-

quences, if at least one child failed, the entire tree failed.

• Sequence/Selector Raced: All subtrees are updated simultaneously, the result

for the tree will be the result of the first node which finished executing.

• Sequence/Selector Chance: Potentially executes a child node with probability

1-p.

• Decorator Loop: Repeats a subtree as long as it successfully executes. One can

think this as a while(success) statement.

• Decorator Negate: Flips the result of a tree and reports the opposite to its parent

node.

• Decorator Force: Regardless of the actual result of its subtree, this decorator will

always yield a specific result.

From the implementation stand point, all of these structures can inherit many basic

functionalities from a parent abstract Node class, which means that many different

types of controls nodes can potentially be created as long as these subclass said class.
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In terms of the leaves, the following are those which are regularly used:

• Action: Executes an agent affordance

• Assertion: Evaluates a specific condition on the actual agent or perceived entities

• Wait: Simply holds the tree execution returning RUNNING status for a given

period of time

FIGURE 5.3: Basic Behavior Tree

Figure 5.3 is a simple behavior tree

which utilizes many of the aforemen-

tioned components. This tree consist of

a Decorator Loop which will execute a Se-

lector permanently. This Selector will at-

tempt to perform two tasks, the first one

is an Action and the second one is a Wait

leaf. The Action leaf runs an affordance

which will make the agent select a ran-

dom point in the map, and walk to it.

Once completed, the agent will wait for a period of time, and then, the tree will start

executing again thanks to the decorator. It is important to note that if the action node,

for some fails, then the wait node will trigger and most certainly succeed, yielding to

an overall successful execution of the tree - this is why we are in this case utilizing a

Selector over a Sequence node, due to the unpredictability of the choices from the first

node.

Parameterized Behavior Trees

The next aspect to be discussed is how we can parameterize behavior trees. This will

determine which data will be available for each leaf node to utilize on execution. For

example, a most basic case would be how many milliseconds will a Wait node will

hold the trees execution. Which type of parameters and how these will be determined
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highly depend on how we want to use them, and whether we need global, local, dy-

namic or static parameterization. For example, a simple "Wandering Loop", as the one

presented on figure 5.3, might not need to dynamically determine the available set of

points available as destinations, but instead, have these fed to it statically on the de-

sign phase, and then utilize simple logic to randomize the next point in the array. This

is not only simpler to implement, but also more computationally efficient. This is very

important to keep in mind when designing behavior trees.

The traditional way to parameterize a behavior tree, is by utilizing a single data

structure called a Blackboard. This consists of a global map of key-value pairs shared

among all nodes, for these to retrieve specific values when needed. A big disadvantage

of this approach, is the fact that if many nodes happen to be accessing these parameters

simultaneously, a race condition might arise, turning the value in a volatile one. In

addition, a single blackboard does not scale nicely. It becomes really hard really fast to

keep track of all needed values as the simulation or game grows in size, and specially,

complexity. Next, if the designer opts for limiting the number of parameters trees will

share, the complexity will also be affected, so basically there is little balance between

scalability and complexity resulting in compromised quality and flexibility.

A second approach, as exposed by all, n.d. is to feed those parameters which the

tree will consume from the root of the tree, for them to cascade down as the tree ex-

ecutes. This approach removes the factor that each tree depends on the same data

structure and all parameters are shared decentralizing them from a single point of de-

pendency. This is an improvement from the first option since it completely removes

the chance of a race condition to occur over certain parameters. However, we can

point the following disadvantages: lack of flexibility to determine certain values dur-

ing runtime, trees must be statically created which means that if two or more trees are

concatenated, certain parameters might not be appropriate for other instances. Lastly,

we would still need logic to determine how to instantiate the parameters which will be

passed to the root of the primary tree, leaving no room for elasticizing values during

runtime. Nevertheless, this model is extremely powerful and heavily used through-

out several applications and modern games to control agents AI, characters’ responses
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and other components of the simulation.

FIGURE 5.4: Look At If Tree

A third mechanism to parameterize trees, and the one designed for this implemen-

tation, is a mix between the two former and latter options.

FIGURE 5.5: Subtree’s Blackboard

We utilize smaller atomic trees, param-

eterized by their own blackboard in-

stances (not shared), with the added

capability of resolving values dynami-

cally in a two-way data binding system.

Figure 5.4 is a simple example of how

a value can be determined at runtime

while asserting a condition. If a value

satisfies said condition, that object will

be passed up to the subtrees’ Blackboard, for the next node to immediately consume.
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This allows for different trees to be joined without the need of validating parameters

for each execution unity will have its own defined static or dynamic subset. It also

increases a tree flexibility for values are not needed to be known before hand so any

assertion can be satisfied and a tree executed at any point and by many sources. To im-

plement such a mechanism, we will cascade parameters from a Blackboard attached to

a root node, say for example a Sequence, down to its children. Should another black-

board is attached down the down, we will skip these, to allow the lower Blackboard

now to cascade its parameters to its children nodes. Another important fact, is that

two sibling trees would not share a blackboard, even if their leaves are at the same

level. If needed to, a new master Blackboard is to be attached to the root of both tree,

remove the previous lower ones, and add all the parameters which would satisfy all

action nodes. Finally, in this implementation, parameters are validated during design

(editor) time, such that a parameter which does not correspond to the required type

for the leaf, wouldn’t be an option for selection. For example, if an action node, such as

Go To Point requires a boolean and vector values, a transform parameter being cascade

from the upper Blackboard will not be an option for this leaf.

Interactive Behavior Trees

This sections will explain how to expand a simple behavior tree into a more complex

structure which would allow simulated agents to not just follow a single behavior pat-

tern, but to be able to adapt to different situations, specially when interacting with a

human controlled agent, or like in this case, the actual user through peripherals. So

far we have explained the basic controls which would allow to form single-execution-

path trees. These trees, although potentially complex, are usually not flexible enough

to adapt to different situations. They are most likely execute single patterns over and

over, which ultimately might result detrimental to the simulation immersive factor

and increase response predictability. There are many ways we can enrich these trees

and tackle the linearity problem. One such way is by implementing interactive behav-

ior trees. These are a type of behavior tree which on every update, execute evalua-

tion functions to determine if the current subtree must be executed or another branch



53

should take precedence.

Just with the simple set of resources covered thus far, we could create a tree which

would adapt to different circumstances. These will be the base of our interactive agent.

However, we will start by looking at this from a more generic and familiar example,

such as a regular NPC which would be performing a generic task, then look at a spe-

cific agent once approached by it. Finally, if some agent in the scene turns hostile, the

character will flee. A most common scenario in open world games. This same tech-

nique can be used to handle bigger aspects of a simulation such as story arcs, triggered

events in games and of course, interactive agents. Before proceeding with an exam-

ple of such implementation, it is worth noting that these approach is just but a tool

in a wide array of resources which can potentially enrich agents’ behaviors. Another

simple but effective way to do so, is to, as mentioned before, extend the abstract im-

plementation of the Node class to add chance and randomizer nodes to our repertoire.

Sequence

GoTo(P1) Decorator Loop

DoGesture(A) ...

FIGURE 5.6: Simple Tree - T1

Tree 5.6 is a basic structure which will make an agent go to a position P1, and then

repeat a set of actions over and over. This won’t do much for a simulation but to

create a static - non-interactive - NPC doing some trivial background behaviors. We

can easily append another tree to it to enhance this behavior.
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Decorator Loop

Selector Parallel (T2)

Sequence

Assert(TAG:Player) LookAt(Result)

T1

FIGURE 5.7: Compound Tree - T2

The second tree 5.7, wraps the first simple tree 5.6 and creates a behavior which will

run continuously, and most importantly, execute two subtrees simultaneously. This

will result on the agent to execute the actions in T1, while at the same time, constantly

attempting to run the leftmost subtree under the Selector Parallel control node. it is very

important to utilize a Selector in this case, because it is not guaranteed that an agent

with the "Player" tag will be around all the time, therefore, most of the time, the subtree

under the Sequence portion will fail. By using a Selector, the tree will move past this

failed first attempt and execute its second subtree. A very important fact to note is that

because this is a Parallel node, even after a subtree returns failure, this will be reseted

and the root node will attempt to run it again. This is an example of the simplest

of interactions between an NPC agent, and a user or player character. Although not

fully interactive, just this subtle change, increases the level of immersion users might

experience.
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Decorator Loop

Selector

Sequence

Assert(Agent:Hostility) EscapeSubTree

T2

FIGURE 5.8: Compound Tree 3 - T3

Finally, tree 5.8 exploits the same technique used before, becoming yet another

wrapper, which captures T2, also encapsulating T1. In this case, we are not using

a Parallel type of control, since we do not want the second subtree, T2, to execute if

the first one succeeded. A simple Selector will do. Also notice how we utilize the

Sequence control node to create atomic actions, which will either execute, or not at all.

As opposed to Selectors, on which a the control can succeeded if at least one of its

subtree did, a Sequence will fail in all cases with exception of the one on which all its

children have succeeded.

5.2 Behavior Design

Conversational agents need to be fully responsive, coherent and interactive. Its level of

responsiveness will highly impact the user’s engagement and immersive experience.

This aspect is proportional to how capable our agent is to process input signals and

semantically analyze these on the fly. It is for this reason that when designing a main

interactive behavior tree, it is essential to favor breadth over height on our main tree.

That is to say, we should always think in utilizing as many parallel processes as possi-

ble for our main execution tree. Nevertheless, it is also important not to neglect depth,

for this will have a direct impact in the second aspect, coherency. For example, assume

we have a parallel control node which executes two simple routines: voice commands

parsing, and greeting the user. Commands must be parsed immediately, therefore
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taking precedence and preempting any other type of interactions, for ultimately, this

implementation’s agent, is primarily a virtual assistant, capable of conversing. To ful-

fill this goal, it should be clear that the main control node, the root of our tree, must

be a loop-decorated Selector (not parallel) with two main children: a left most - first in

the order of execution – Selector, with many Sequence children underneath, and the

right-most a Sequence Parallel for the conversation tree, as displayed on tree 5.9.

Decorator Loop

Selector→

Selectorcommands

Sequence ...

Selector Parallelconversation

Sub Tree1 ... Sub Treek

FIGURE 5.9: Interactive Agent Tree 1 - Foundation

This model, allows our agent to handle any pre-defined request over any conver-

sation which might occur should no request is in the line on every update. By intro-

ducing Sequences under the first child, we know for sure that these can only succeed if

and only if a command has been issued and satisfied by any of the subtrees. If this is

the case, the Sequence subtree will make the first child Selector to succeed, notifying the

root accordingly. One the root reports success to its parent decorator, the loop starts

again on the next update. But what if we actually want to block the tree from updating

while a certain animation sequence or processing is occurring in the background? for

example, data fetching from a web-service, or some heavy computational task. The

first approach would be to introduce a Wait node after every subtree, guaranteeing

the tree to keep updating this node until the wait period is over. This is, however,

extremely impractical and ineffective from an implementation standpoint, for know-

ing the exact times some tasks might take before hand is not scalable nor portable.

To solve this problem, we can introduce a preemptive node before the original first
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Selector which will assert for a blocking flag.

Decorator Loop

Selector→

Assert(busy) Selectorcommands

...

Selector Parallelconversation

...

FIGURE 5.10: Interactive Agent Tree 2 - Blocking Control

Tree 5.10 provides an elegant and scalable mechanism which will block the main

tree from being updated while the busy flag is set on. This same mechanic could be

applied to any subtree which we don’t want to execute given a certain condition is met,

but overall, having a general Assert blocking node is always a good idea to ensure a

single behavior sequence is played at any given time, without another one interrupting

it, nor having to deal with specific animation lenght calculations.

5.2.1 Utility Based Nodes

Thus far, we have covered a model which might suit most basic requirements in terms

of flexibility, scalability and ease of implementation. Nevertheless, it is worth pointing

out that although behavior trees by themselves are great structures to execute a certain

pattern of behaviors, these might not be as scalable when it comes to decision making

and adaptability. Of course, one could spend a lifetime developing a tree capable

of handling an impressively large amount of different circumstances solely utilizing

assertions, but in reality, as any other monolithic structure, there is a trade-off between

complexity, maintainability and scalability. Once a complex enough tree is in place,

it proves to be a real challenge for a newcomer developer or designer, to modify or

adapt a large group of nested nodes. Furthermore, there is yet one more characteristic
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to be discussed when crafting believable behaviors, which is paramount to any truly

immersive interaction. This is of course, adaptability. How could a tree be crafted

in such a way that this would execute differently depending on a specific character’s

state? This implementation proposes to leverage the already more flexible dynamic

trees by introducing components of Utility Based AI. The aforementioned AI model

is based on the fact that decisions have a measurable outcome. The metric utilized

is a value known as the utility of said choice. In summary, we can assign different

values to a certain action, in our case, subtrees. The highest scoring one will be the

one to execute. This definition begs the question: how could statically assigned values

can result on a more dynamic and adaptive set of behaviors? This is true. Values

are usually statically assigned in the most simple implementations, but this doesn’t

exclude the fact that these could be evaluated in function of the state of the agent.

For example, an angry or hostile agent would weight utility ui by a factor of trait tj,

hence the resulting utility value of the execution of an action would be the product of

U = ui ∗ tj. Furthermore, if comparing multiple subtrees with different options, we

can simply determine which one would yield a more desired outcome by comparing

their total utility values given by ∑a=1 Ua ∗ t = Ust for each subtree st. Dynamism is

then a collateral product of fluctuating traits on our agents. Should we need to add yet

more uncertainty to which direction our agent will choose, we could further multiply

each subtree’s value by a probability Pst of that path to be executed. So ultimately, our

deliberation module will simply choose max(Pst ∗Ust) among those which can actually

be execute, should any assertion needs to be satisfied first.

5.2.2 Implementation

To implement this model, first, we need to define the agent’s traits. Secondly, we will

simply need to modify our implementation by allowing action nodes to carry a list of

traits which each actually affects, for not all actions will necessarily have direct bearing

in all traits.

Starting with traits, we should have enough which would allow our implementa-

tion to achieve the desired complexity level for the simulation in question. Specifically
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to this implementation, we distinguish two different types of measurable attributes:

character traits and emotions. The first are static, while the second are dynamic, there-

fore they change throughout different interactions. Normally, character traits are ini-

tialized just once, this is, when an agent is being created. The second group’s values

are persisted on each run of the simulation, and slightly and randomly modified every

time the simulation re-opens. As previously seen, the following is a viable example of

general character traits and emotions:

Traits and Emotions

Trait Value Emotions Threshold

Friendliness rand(6..10) Joy rand(3..10)

Charisma rand(1..10) Angry rand(0..3)

Courageousness rand(5..10) Hostility 0

Respectfulness rand(7..10) Sadness rand(0..4)

Bad Tempered rand(3..6) Fear 0

Arrogance rand(1..6) Disgust 0

Clumsiness rand(1..4) Annoyance 0

TABLE 5.1: Subset of Agent’s traits and emotions

When defining an Action Node, we associate to it an instance of a NPC Affordance.

This affordance not only describes the type of action, but could also be loaded with

specific modifiers which are applied when execution said action.

Finally, the behavior tree that drives the behavior module is designed to be respon-

sive to the user’s communication across all modes. Responsiveness can be thought of

as the ability to immediately respond to a stimulus. This includes situations where a

different stimulus of the same or different type is already being responded to. In order

to achieve basic responsiveness to one stimulus using behavior trees, a looping control

node must check frequently to see if the stimulus has been signaled. This assumes that
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the response to the stimulus is atomic, meaning that it cannot be interrupted by an-

other stimulus of the same type. If the response is not atomic, the following structure

must be used instead. For basic responsiveness to two stimuli with mutually exclu-

sive responses, a concurrency control node must use the aforementioned structure for

both stimuli in parallel. However, when the stimulus of higher priority is signaled, the

response to the lower priority stimulus should be halted immediately. An example of

this mutual exclusivity is the use of verbal responses by multiple stimuli, because an

agent cannot speak two utterances at the same time. The behavior tree shown in Figure

5.11 is a simplification of the behavior tree used in the behavior module. However, it

illustrates aspects of the aforementioned constructs for responsiveness to stimuli and

the complexity of a behavior tree that has interplay between multi-modal stimuli. The

structure of the behavior tree parallels the dependence of the behavior module on the

sensing and knowledge modules. The right subtree of the root node uses the respon-

siveness structure for a single stimulus to listen for the end of a user’s speech. This

subtree is what maintains the agent’s adherence to the phases of conversation. When

the user begins to speak again, the subtree is interrupted and waits until the user stops

speaking before attempting to deliver a response. The left subtree is responsible for the

agent’s verbal and nonverbal acknowledgements of the user’s emotions (which are ex-

plained in the Emotion Response section below). It has a higher priority than the right

subtree so that when a verbal acknowledgement is elicited, the left subtree is able to

interrupt the right subtree.
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FIGURE 5.11: Simplified Behavior Tree Control Structure for Multi-

modal Behavior Synthesis
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

A video reel is provided for all the projects which have used the framework so far. The

video displays three main cases categories: crowds, individual agents and behaviors.

NPC Framework Reel - URL: https://goo.gl/bVMTGG

The open source code for the entire framework is also available in Gitlab:

NPC Framework Source - URL: https://gitlab.com/fgeraci/NPC

When creating a new agent-driven project, be it a simulation, game or general ap-

plication. there are many components which weight heavily on the development cycle

due to the effort and time these require. Some of these are hard assets like models, an-

imations and media. Once created, these need to be integrated with a system which

allows for flexible and timely design. These systems, known as engines or components

or engines, must be scalable, robust and intuitive. That is the goal of this implemen-

tation, to provide a non opinionated bed of tools which would allow all-agent compo-

nents to be integrated into any project seamlessly, offering basic capabilities but at the

same time not restraining customization and design.

The core of this framework was utilized and is being used by academic and non

academic sources. Although the main goal was to create a commercial product to

extend the Unity’s engine capabilities, the decision was made to open the source up

from its repository, to allow not only developers, but also students to understand how

to integrate every agent main components:

• Avatars

• Media

https://goo.gl/bVMTGG
https://gitlab.com/fgeraci/NPC
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• Animations

• Animation Controllers and State Machines

• Collision Detection

• Physics-based Dynamic Steering

• Behavior Modeling

These parts then come together by dragging and dropping a single component

onto the humanoid prefabricated agent object. Among other assets, included with

the framework, is a multi-layered multi-sub-state animator controller to handle every

bones sector component of the agent agent based on the gesture or animation to be

performed, utilizing provided masks and most importantly, code to granularly control

these and ultimately, extend. The framework is open for pull requests, bug tickets

and fixes, and it support will be continuous, since it is currently being used in the

development of a graphical-adventure like game.

Additionally, and most importantly, not only the agent described in this work is be-

ing currently developed by a private company as a conversational virtual assistant, but

the same framework was used by the world-recognized firm of architects, Zaha Ha-

did for a real world laser projected show against the Karlsruhe Castle in Germany of a

crowd simulation walking throughout the premises. The latter was presented on 2017.

Since then, the framework has evolved significantly to add intuitive UI based design of

behaviors, dynamic paratemerization, better social-forces-based steering physics, ex-

panded affordances and the option of modularly add any type of custom affordances,

among other aspects. Therefore, the project will be actively supported beyond this

work.

The utilization of such an individual management component is critical when im-

plementing projects which otherwise, would require a substantive amount of effort

just to get some of the aforementioned elements synchronized. Furthermore, the fact

that the code is externally maintained and free, allows for versioning while developing

other components and regular updates from external sources.
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Throughout this work, it has been demonstrated that an agent-centric system to

handle not only single avatars, but multiple ones in groups, can be developed by im-

plementing each component following the natural division of capabilities of human

beings. As explained, these are the ability to perceive, to deliberate based on the infor-

mation and state of the world around and to act accordingly. Finally, all these sections

re controlled by a central component which conversely, serves as the interface of said

agent to the world for development and design.

Finally, the intention of this work is to offer simulation designers, researches and

students a reliable platform to support their work, abstract complexities or offer engi-

neering resources for study and to extend.

6.2 Case Studies

Although referenced above, here is a detailed list of the publications, implementations

and projects on which the framework has been used thus far:

• AAMAS 2018 - Autonomous Agents and MultiAgent Systems

• ICIDS 2015 - Interactive Digital Storytelling

• Zaha Hadid Architects - Karlsruhe Castle, Germany

• Motional.AI - Sara, Virtual Assistant

• In Memoriam - Game

The AAMAS publication, explains how conversational agents can be implemented

with all the aforementioned techniques from this work. The second paper the de-

tails the implementation of the framework’s components which handle the perceptive

memory capability of agent; how they are affected by events, remember interactions

with other agents and ultimately deliberate on how to behave based on the surround-

ing context.

The last three projects use the framework as their primary agents engine for crowds

simulation, a virtual assistant and a multi-agent interactive game, respectively. Both
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the Zaha Hadid and the Motional.AI projects were privately funded endeavors, while

the third one is currently under development to support the frameworks development

in term of capabilities, debugging and features.

A demo of each project can be seen in the provided video reel.

6.3 Future Work

The framework has two aspect for development: stabilization and feature develop-

ment. The source has been opened for public utilization and contribution under an

MIT license since November 1st, 2018. Support will be continuous until reaching a

stable v1.0 release version. As of today, there have been feature requests and bug re-

ports which will be addressed on a timely manner. Once every components has been

debugged, features will be included and ultimately, active support will be provided as

Unity versions change. The original version was introduced with Unity 2015, and has

been updated to the latest release recently. Along these lines, many aspects have been

tweaked which resulted in backward compatibility issues, therefore different LTS and

development versions will be created.

In terms of features, the partial-planning example module will be finished and

finally, mixed behavior trees with dialog response options with effects will be imple-

mented. This last feature is currently under development, since it will be used in the

afore mentioned game, which utilizes the framework for their agents integration and

interactions.

Comprehensive documentation will be added to the repository, in the form of a

Wiki, along a formal API reference for each of the agent, and framework compo-

nents described throughout the chapters, body, perception and AI. So far only video-

documented examples of implementations are provided with the framework. Al-

though useful, these must be complemented with detailed written procedures.
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Appendix A

Abbreviations

ECA EmbodiedConversationalAgent

NPCF NPCFramework

AI Arti f icialIntelligence

NLP NaturalLanguageProcessing

NLU NaturalLanguageUnderstanding
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