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ABSTRACT OF THE DISSERTATION

Statistical Emulation and Uncertainty Quantification in
Computer Experiments

by Linglin He

Dissertation Director: Ying Hung

Computer experiments refer to the study of real systems using complex mathematical

models. They have been widely used as alternatives to physical experiments, especially for

studying complex systems in science and engineering. Typically, computer experiments

require a great deal of time and computing to conduct and they are nearly deterministic in

the sense that a particular input will produce almost the same output if given to the com-

puter experiment on another occasion. Therefore, it is desirable to build an interpolator

for computer experiment outputs and use it as an emulator for the actual computer exper-

iment. This thesis mainly focuses on building efficient statistical emulators for computer

experiments and providing prediction uncertainty with real-world applications.

Gaussian process (GP) models are widely used in the analysis of computer experi-

ments. However, two issues have not been solved satisfactorily. One is the computa-

tional issue that hinders GP from broader application, especially for massive data with
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high-dimensional inputs. The other is the underestimation of prediction uncertainty in GP

modeling. To tackle these problems simultaneously, in Chapter 1 we propose two methods

to construct GP predictive distributions based on a new version of bootstrap subsampling.

The new subsampling procedure borrows the strength of space-filling designs to provide

an efficient subsample and thus reduce the computational complexity. It is shown that

this procedure not only alleviates the computational difficulty in GP modeling, but also

provides unbiased predictors with better quantifications of uncertainty comparing with ex-

isting methods. We illustrate the proposed methods by two complex computer experiments

with high-dimensional inputs and tens of thousands of simulation outputs.

Traditional GP models are limited in the computational capability of dealing with mas-

sive and complex data. To overcome the computational issue without imposing strong

assumptions, a spline-based approach is developed to build emulators for computer ex-

periments to handle big spatial-temporal data in Chapter 2. A direct application of the

proposed framework is to model Antarctic ice-sheet contributions to sea level rise. Sea

level rise is expected to impact millions of people in coastal communities in the coming

centuries. Global, regional, and local sea level rise projections are highly uncertain, par-

tially due to uncertainties in Antarctic ice-sheet (AIS) dynamics, and parameterized sim-

ulations are expensive to run. We create an ice-sheet emulator to provide near-continuous

distributions of the sea-level equivalent of AIS melt based on two input parameters, which

alter the behavior AIS mass loss, under two forcing scenarios: the Last Interglacial and

RCP 8.5 forcing. The spline-based emulator with Gaussian Process priors on the spline

parameters is flexible enough to capture the nonlinearity of the underlying structure, while

computationally feasible at the same time. It achieves a good fit for the physical model

and provides prediction uncertainties simultaneously.

The reminder of this thesis is organized as follows. In Chapter 1, we introduce two
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methods to construct GP predictive distribution using design-based subsampling. In Chap-

ter 2, a spline-based approach with GP priors in parameters is proposed for emulating

Antarctic ice-sheet contributions to sea level rise.
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Chapter 1

Efficient Gaussian Process Prediction using Design-Based
Subsampling

1.1 Introduction

Computer experiments refer to the study of real systems using complex mathematical

models. They have been widely used as alternatives to physical experiments, especially

for studying complex systems. The reason is, in many situations, a physical experiment is

infeasible because it is unethical, impossible, inconvenient or too expensive. A mathemat-

ical model of the system can often be developed and input/output pairs can be produced

with the help of computers. Computer experiments are widely used in science and engi-

neering. Typically, computer experiments require a great deal of time and computing to

conduct and they are nearly deterministic in the sense that a particular input will produce

almost the same output if given to the computer experiment on another occasion. There-

fore, it is desirable to build an interpolator for computer experiment outputs and use it as

an emulator for the actual computer experiment. More discussions of design and analysis

of computer experiments can be found in Santner et al. (2003) and Fang et al. (2006).

A Gaussian process (GP) model (or called kriging) is a flexible and widely used

method in the analysis of computer experiments; however, there are two critical issues

in GP modeling. One is the computational issue that hinders GP from broader applica-

tions, especially with high-dimensional inputs and massive outputs observed on irregular
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grids. This is because modeling and prediction of GP heavily involve manipulations of the

N ×N correlation matrix, where N is the sample size, that require O(N3) computations

and often result in singularity. This issues is even more critical for the analysis of complex

computer experiments because the estimation of high-dimensional correlation parameters

often leads to numerical instability in the estimation and prediction. The second issue is

how to accurately quantify the uncertainty based on GP. It is well-known that the GP pre-

dictive interval constructed by substituting the true parameters by estimators, often called

plug-in predictor, underestimates the uncertainty (Santner et al. 2003, p.98). Although

there are intensive studies addressing both issues, to the best of our knowledge, there is no

systematic approach that can address both issues simultaneously, which is the main focus

of this paper.

The computational issue is well recognized in the literature and a number of methods

have been proposed. Various methods address this problem by changing the model to one

that is computationally convenient. Examples include Rue and Tjelmeland (2002), Rue

and Held (2005), Cressie and Johannesson (2008), Banerjee et al. (2008), Gramacy and

Lee (2008), Wikle (2010), Chang et al. (2014), Castrillon et al. (2015). Another ap-

proach is to approximate the likelihood for the original data. Examples include Nychka

(2000), Smola and Bartlett (2001), Nychka et al. (2002), Stein et al. (2004), Furrer et al.

(2006), Snelson and Ghahramani (2006), Fuentes (2007), Kaufman et al. (2008), Gramacy

and Apley (2014), Nychka et al. (2015). Despite various methods, most of the existing

ones are developed for data sets collected from a regular grid under a low-dimensional

geostatistical setting. These assumptions are often violated in computer experiments be-

cause having high-dimensional inputs is common in complex computer experiments and

the computational expense often prohibits running computer experiments over a dense

grid of input configurations. A commonly used approach for high-dimensional computer
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experiments is to impose a sparsity constraint on the correlation matrix (Kaufman et al.

2008, 2011). However, it has been shown that this method does not work well for pur-

poses of parameter estimation (Stein 2013, Liang et al. 2013), which is crucial for the GP

predictor. In addition, the connection between the degree of sparsity and computation time

is nontrivial.

The second issue of uncertainty quantification in GP prediction is important but has

been overlooked in the literature. For example, most of the aforementioned methods ad-

dress the computational issue, but adopt the idea of plugin predictors for inference and

therefore underestimate the prediction uncertainty. Moreover, with different approxima-

tion techniques, these methods bring in additional uncertainty which is difficult to quan-

tify. Although some methods, such as Bayesian approaches (Kennedy and O‘Hagan 2001,

Schmidt and O‘Hagan 2003) and regular bootstrap (Santner et al. 2003, Luna and Young

2003), have been proposed to provide a better quantification of prediction uncertainty, they

are computationally intensive and often intractable for massive data.

In this paper, a new framework is proposed to construct GP predictors and their pre-

dictive distributions. The proposed methods are easy to compute and more accurate in

quantifying the predictive uncertainty comparing with existing methods. The idea is to

combine the bootstrap predictive distribution with an experimental design-based stratified

subsampling plan. Bootstrap is an increasingly utilized method for obtaining accurate

confidence intervals and performing statistical inference (Efron 1979, DiCiccio and Efron

1992, 1996, Efron and Tibshirani 1993). Direct application of bootstrap methods to con-

struct predictive distributions for GP is conceptually attractive but computationally pro-

hibitive especially for massive data. Therefore, we introduce a new version of bootstrap

using design-based subsampling and propose two methods for the construction of boot-

strap predictive distributions. It can be shown that the proposed predictors are unbiased,
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given a significant alleviation in computation. Moreover, theoretical comparisons with the

commonly used predictors are provided.

The remainder of the paper is organized as follows. In Section 2, we introduce the idea

of Latin hypercube design-based block bootstrap and propose two methods to construct

predictive distributions. In Section 3, the proposed predictors are shown to be unbiased.

Theoretical comparisons with the regular bootstrap and the plugin approach are developed.

In Section 4, finite-sample performance of the proposed methods is investigated by sim-

ulation studies. Applications to two real examples in computer experiments are given in

Section 5. Discussions are given in Section 6.

1.2 GP prediction via design-based subsampling

1.2.1 Gaussian process models for computer experiments

Consider a computer experiment which has n inputs x ∈ Rd and produces output

y(x). To analyze the experiments, y(x) is assumed to be a realization from a stochastic

process

Y (x) = µ(x) + Z(x), (1.1)

where the mean function is defined as µ(x) = xTβ and Z(x) is a stationary Gaussian

process with mean 0 and covariance function σ2ψ. The covariance function is defined as

cov{Y (x+ h), Y (x)} = σ2ψ(h;θ), where θ is a vector of correlation parameters for the

correlation function ψ(h;θ) and ψ(h;θ) is a positive semidefinite function with ψ(0;θ) =

1 and ψ(h;θ) = ψ(−h;θ). Note that we assume the variables in the mean function

are known and such a model is also known as universal kriging. However, the proposed
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framework is not limited to this assumption. It can be further extended to incorporate

various variable selection methods for GP models (Chu et al. 2011, Li and Sudjianto

2005).

Suppose n realizations are observed and denoted by

Dn = {
(
xt1 , y(xt1)

)
, . . . ,

(
xtn , y(xtn)

)
} = {(x1, y1), . . . , (xn, yn)}.

Let yn = (y1, . . . , yn)T , Xn = (x1, . . . ,xn)T , φ = (θT ,βT , σ2)T be the vector of all the

parameters, and Θ be the parameter space. Based on (1.1), the likelihood function can be

written as

f(yn,Xn;φ) =
|Rn(θ)|−1/2

(2πσ2)n/2
exp{− 1

2σ2
(yn −Xnβ)TR−1n (θ)(yn −Xnβ)},

where Rn(θ) = [ψ(y(xi), y(xj);θ), i, j = 1, . . . , n] is an n× n correlation matrix. Thus,

the log-likehood function, ignoring a constant, is

`(Xn,yn,φ) = − 1

2σ2
(yn −Xnβ)TR−1n (θ)(yn −Xnβ)− 1

2
log|Rn(θ)| − n

2
log(σ2),

Here, the parameters β, θ, and σ are unknown. They are estimated by likelihood-based

methods such as maximum likelihood or restricted maximum likelihood (REML) (Irvine

et al. 2007). In this paper, we focus on the study of maximum likelihood estimators and

the results can be further extended to REML.

For a GP model, the maximum likelihood estimators (MLEs) can be obtained by

β̂n = (XT
nR
−1
n (θ)Xn)−1XT

nR
−1
n (θ)yn, (1.2)
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σ̂2
n = (yn −Xnβ̂n)TR−1n (θ)(yn −Xnβ̂n)/n, (1.3)

and

θ̂n = arg min
θ
{nlog(σ̂2

n) + log|Rn(θ)|}, (1.4)

where |Rn(θ)| is the determinant of matrix Rn(θ).

Based on the MLEs, we are interested in predicting yn+1 at an untried new input xn+1

and quantifying the uncertainty. To achieve this, the conventional plug-in method predicts

yn+1 by a distribution g(xn+1 |Xn,Y n, φ̂n) which is normally distributed with mean

µ(xn+1 |Xn,yn, φ̂n) = xT
n+1β̂n + γn(θ̂n)TR−1n (θ̂n)(yn −Xnβ̂n) (1.5)

and variance

σ2(xn+1 |Xn,yn, φ̂n) = σ̂2
n{1− γn(θ̂n)TR−1n (θ̂n)γn(θ̂n)}, (1.6)

where γn(θ̂n) is the correlation between the new observation and the existing data, i.e.

γn(θ̂n) =
[
ψ(xi − xn+1; θ̂n), i = 1, . . . , n

]
.

Such a predictor is often computationally infeasible for massive data because it re-

quires manipulations of a n × n correlation matrix Rn(θ̂n), such as the calculation of

R−1n (θ) and |Rn(θ)|, which is computationally intensive and often intractable due to nu-

merical issues. It is particularly difficult for massive data (i.e., large n) collected on irreg-

ular grids because Kronecker product techniques cannot be utilized to simplify the com-

putation (Rougier 2008). Alternatives, such as Bayesian methods suffer from the same

difficulty. Furthermore, the resulting plug-in predictors tend to underestimate the uncer-

tainty because the variance in (1.6) is obtained by substituting the true parameters by their
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estimators. (Castrilln-Cands et al., 2016)

1.2.2 Latin hypercube design-based block subsampling

The main idea to achieve efficient computational reduction in GP estimation and pre-

diction is to incorporate a new version of bootstrap subsampling called Latin hypercube

design (LHD)-based block subsampling. A similar idea is first introduced by Zhao et al.

(2018) to address the computation issue in variable selection. Inspired by its computational

efficiency, we developed a new framework to construct predictive distributions.

The idea of bootstrap subsampling is attractive in many applications to achieve compu-

tational reductions, but direct applications with random subsamples is not efficient in GP

estimation and prediction because of two reasons. First, it is known in the experimental

design literature that the estimation efficiency of simple random sampling can be improved

by certain stratification such as Latin hypercube designs (Mckay et al. 1979). Second, it

is shown by Zhu and Stein (2006) that including clusters of points are important for cap-

turing the local behavior of the process especially when the parameters are unknown in

GP.

The LHD-based block subsampling has the following advantages. First, because of

the one-dimensional balance property inherited from LHDs, the subsamples can spread

out uniformly over the complete data and therefore the resulting subsamples are more

representative. Second, the estimation and prediction calculated by the LHD-based sub-

samples are expected to outperform those from simple random samples because of the

well-developed understanding of variance reduction in LHD compared with simple ran-

dom sampling (MaKay et al. 1979). Third, the clusters of points within the blocks captures

the local behavior of the process and therefore improves the estimation accuracy for cor-

relation parameters which is essential for GP prediction.
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The LHD-based subsampling can be described in the following three steps.

Step 1: Denote the d-dimensional input space by Γ ∈ [0, l]d. Divide each dimension

into m equally spaced intervals so that Γ consists of md disjoint hypercubes/blocks.

Define each block by mapping i to a d-dimensional hypercube

Bn(i) = {x ∈ Rd : bij ≤ xj ≤ b(ij + 1) and j = 1, ..., d},

where i = (i1, ...id), ij ∈ (0, ...,m− 1), represents the index of each block and b =

l/m is the edge length of the hypercube. Let |Bn(i)| be the number of observations

in the ith block. For simplicity, assume |Bn(i)| = n/md and the data points are

equally spaced.

Step 2: Select m hypercubes according to a randomly generated m-run LHD, in

which each column of the design matrix is a random permutation of {0, . . . ,m−1}.

Denote the design points by d-dimensional vectors i∗1, . . . , i
∗
m and the correspond-

ing selected blocks are Bn(i∗1), . . . ,Bn(i∗m). The bootstrapped subsamples, denoted

by y∗1(x∗1), . . . , y
∗
N(x∗N), are the observations in the selected blocks, where N =∑m

i=1 |Bn(i∗i )|. Based on the subsamples, maximum likelihood estimators φ̂
∗
N can

be obtained by (1.2)-(1.4).

Step 3: Repeat the second stepU times to obtain bootstrapped MLEs φ̂
∗
N(1), · · · , φ̂

∗
N(U).

Based on these estimators, the bootstrap predictive distributions can be constructed

using the methods described in Section 1.2.3.

To illustrate the subsampling idea, we look at a simple example of an 6-run 2-dimensional

LHD on the left panel of Figure 1. The design points are denoted by i∗1 = (0, 4), i∗2 =

(1, 0), i∗3 = (2, 2), i∗4 = (3, 5), i∗5 = (4, 1), and i∗6 = (5, 3). On the right panel, consider
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Figure 1.2.1: An example of LHD-based block bootstrap

Γ ∈ [0, 24]2 with d = 2 and l = 24. The circles represent the settings in which computer

experiments are performed and the total sample size is n = 216. According to the LHD

on the left, we have m = 6, b = 4, |Bn(i)| = 6. The corresponding LHD-based blocks

are the six gray boxes on the right panel and the red dots are the resulting subsamples with

size N = 36.

Note that, by the application of LHD-based block subsampling, the complexity is re-

duced from O(n3) to O(n3/m3(d−1)), which is particularly useful for high-dimensional

problems in computer experiments. This method also allows parallel computing for large

datasets. Furthermore, the assumption |Bn(i)| = n/md is mainly for notation simplicity

and the procedure can be applied as long as the number of observations in each block is

in the same order, i.e. |Bn(i∗i )| = O(n/md). We refer to Zhao et al. (2018) for various

modifications to account for practical situations such as irregular design space (Draguljić
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et al. 2012, Hung et al. 2012), empty blocks, and the applications to a subset of variables.

1.2.3 Two construction methods for predictive distribution

To construct a predictive distribution based on the LHD-based subsamples, we devel-

oped two bootstrap procedures. One is called the direct density prediction method and the

other is called the Normal approximation method. Both procedures utilize the LHD-based

subsamples to construct predictive distributions; therefore, compared with using full data,

the computational complexity is reduced. The difference between these two methods is

how the Normal assumption is imposed. The direct density method imposes the Normal

assumption on each bootstrap iteration which leads to the final predictive distribution fol-

lowing Normal mixture. On the other hand, the Normal approximation method assumes

that the final predictive distribution is Normal and the mean and variance are estimated

by LHD-based subsamples. The mathematical definition of the two methods are given as

follows.

Definition 1 (Direct density prediction). Given the realization {Xn,yn}, let {X∗N ,y∗N}

be a bootstrap sample with empirical distribution P ∗ and φ̂
∗
N be the maximiser of the

log-likelihood `(X∗N ,y
∗
N ,φ), a bootstrap predictive distribution is defined by

g∗(xn+1 |Xn,yn) =

∫
g(xn+1 |X∗N ,y∗N , φ̂

∗
N)dP ∗(X∗N ,y

∗
N |Xn,yn), (1.7)

where g(·) is probability density function of Normal distribution with mean µ(xn+1 |

Xn,yn, φ̂n) and variance σ2(xn+1 |Xn,yn, φ̂n).

Based on the LHD-based subsamples, a Monte Carlo estimate of (1.7) can be obtained
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by

g̃∗(xn+1 |Xn,yn) = U−1
U∑

u=1

g(xn+1 |X∗N(u),Y
∗
N(u), φ̂

∗
N(u)),

where φ̂∗N(u) and u = 1, ..., U are the MLEs obtained from each subsample. The resulting

g̃∗(xn+1 | Xn,yn) follows a mixture distribution. When U → ∞, g̃∗(xn+1 | Xn,yn)

converges to g∗(xn+1 |Xn,yn).

The conventional predictive distribution discussed in Section 1.2.1 is Normal, therefore

a reasonable alternative is to assume a Normally distributed predictive distribution with

mean and variance estimated as follows.

Definition 2 (Normal approximation). The predictive distribution is Normal with mean

µ∗(xn+1 |Xn,yn) =

∫
µ(xn+1 |X∗N ,y∗N , φ̂

∗
N)dP ∗(X∗N ,y

∗
N |Xn,yn) (1.8)

and variance

σ2∗(xn+1 |Xn,yn) =

∫
σ2(xn+1 |X∗N ,y∗N , φ̂

∗
N)dP ∗(X∗N ,y

∗
N |Xn,yn). (1.9)

Based on the LHD-based subsamples, the Monte Carlo estimates of (1.8) and (1.9) can

be obtained by:

µ̃∗(xn+1 |Xn,yn) = U−1
U∑

u=1

µ(xn+1 |X∗N(u),y
∗
N(u), φ̂

∗
N(u))

and

σ̃2∗(xn+1 |Xn,yn) = U−1
U∑

u=1

σ2(xn+1 |X∗N(u),y
∗
N(u), φ̂

∗
N(u)).

When U → ∞, µ̃∗(xn+1 | Xn,yn) converges to µ∗(xn+1 | Xn,yn) and σ̃2∗(xn+1 |
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Xn,yn) converges to σ2∗(xn+1 |Xn,yn).

1.3 Theoretical properties and comparisons

Theoretic properties including the unbiasedness and the variance of the proposed pre-

dictors are derived in this section. The results herein focus only on GP prediction, as-

suming that the estimator φ̂
∗
N converges to the original MLE φ̂n in probability which is

shown by Zhao et al. (2018). Note that there are two distinct asymptotics, the fixed-

domain (Stein 1999) and increasing domain (Cressie 1993, Mardia and Marshall 1984)

asymptotics. However, theoretical results under fixed-domain asymptotics are limited in

the literature due to its complex correlation structure in general (Ying 1993, Zhang 2004).

It is shown by Zhang and Zimmerman (2005) that, given quite different behavior under the

two frameworks in a general setting, their approximation quality performs about equally

well for the exponential correlation function under certain assumptions. Therefore, we

focus here on the increasing domain asymptotics as a fundamental step to provide insights

about the bootstrap estimators.

We first construct an asymptotic expansion of the predictive distributions, which is a

fundamental tool for the theoretical developments of the proposed method. Define the

information matrix of the bootstrapped likelihood function evaluated at φ̂n by

I = E∗{−∇2
φ`(X

∗
N ,y

∗
N , φ̂n)}

and Isi is the entry in the sth row and ith column of I−1. The third-order derivative of the

likelihood function evaluated at φ̂n is then defined by

Kijk =
1

2
E∗{∂

3`(X∗N ,y
∗
N , φ̂n)

∂φi∂φj∂φk

}.
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The cross products between the first and second order derivative of the predictive function

and the second and third order derivative of the likelihood function evaluated at φ̂n are

Lj
s,i(h) = E∗{∂h(xn+1 |X∗N ,y∗N , φ̂n)

∂φs

∂`(X∗N ,y
∗
N , φ̂n)

∂φi

∂`(X∗N ,y
∗
N , φ̂n)

∂φj

},

where h1(xn+1 | ...) = I−1h(xn+1 | ...) and

Jrs,ij(h) = E∗{∂
2h(xn+1 |X∗N ,y∗N , φ̂n)

∂φrφs

∂`(X∗N ,y
∗
N , φ̂n)

∂φi

∂`(X∗N ,y
∗
N , φ̂n)

∂φj

},

and

Ms,j,ik(h) =
1

2
E∗{∂h(xn+1 |X∗N ,y∗N , φ̂n)

∂φs

∂`(X∗N ,y
∗
N , φ̂n)

∂φj

∂2`(X∗N ,y
∗
N , φ̂n)

∂φi∂φk

}.

The following theorem provides a third-order asymptotic expansion of the proposed

predictive function. To facilitate the presentation, we use Einstein’s summation convention

hereafter: if an index appears twice in any one term, once as an upper and once as an lower

index, summation over the index is applied.

Theorem 1. Assume I is asymptotically nonsigular and the limit of

I−1/2∇2
φ`(X

∗
N ,y

∗
N , φ̂n)I−1/2 is a unit matrix when N →∞. Then, the LHD-based boot-

strap prediction function h∗(xn+1 | Xn,Y n) has the following third-order asymptotic

expansion:

h∗(xn+1 |Xn,Y n) = E∗h(xn+1 |X∗N ,y∗N , φ̂n)

+ IsiIjkMs,j,ik +
1

2
I ijKirsL

j
r,s(h) + IrjIsiJrs,ij(h) +Op∗(N−2).

Due to the correlation between xn+1 andXn, the first term E∗h(xn+1 |X∗N ,y∗N , φ̂n)
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does not always equal to h(xn+1 | Xn,yn, φ̂n). Assuming data independence, an im-

portant special case of Theorem 1, which agrees with the result in Fushiki et.al (2005,

Theorem 1), is the following.

Corollary 1. If ψ(x1,x2) = 0 if x1 6= x2, the LHD-based bootstrap prediction function

h∗(xn+1 |Xn,Y n) = h∗(xn+1 | φ̂n) has the following third-order asymptotic expansion:

h∗(xn+1) = h(xn+1 | φ̂n) + IsiIjkMs,j,ik +
1

2
I ijKirsL

j
r,s + IrjIsiJrs,ij +Op∗(N−2).

Based on the asymptotic expansion in Theorem 1, we show that the two new predictors

are unbiased and their variances can be rewritten as in the next theorem. Denote the

predictive mean and variance of the direct density method by µ∗1(·) and σ2∗
1 (·). Similarly,

denote µ∗2(·) and σ2∗
2 (·) for the normal approximation method. Let

∑
i be the summation of

all md blocks and
∑
π be the summation of independent permutation over {0, 1, . . . ,m−

1}.

Theorem 2. Under the regularity conditions given in the Appendix, we have:

i. The proposed predictors, µ∗1 and µ∗2, are unbiased, i.e.,

E{µ(xn+1 |Xn,yn, φ̂n)− µ∗1} = E{µ(xn+1 |Xn,yn, φ̂n)− µ∗2} → 0

ii. The predictive variances have the following relationship:

P (σ2∗
1 ≥ σ2∗

2 )→ 1,

σ2∗
1 = σ2∗

2 +
1

(m!)d−1

∑
π

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2 + op(1),

σ2∗
2 = σ̂2

n

{
1− 1

md−1

∑
i

γi(θ̂n)TR−1i,i γi(θ̂n)
}

+ op(1).
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The next theorem focuses on the comparison of the predictive variance of the plug-in

predictive distribution defined in (1.6) and those of the two new predictors.

Theorem 3. Under the regularity assumptions given in Appendix, we have

P (σ2∗
1 ≥ σ2(xn+1 |Xn,yn, φ̂n)→ 1,

P (σ1∗
2 ≥ σ2(xn+1 |Xn,yn, φ̂n)→ 1.

It is known that the regular plug-in predictor interpolates the observed data. The next

theorem shows that although this interpolation property cannot be guaranteed by the pro-

posed predictors, the predictive variance on an existing data point is smaller than the vari-

ance on an untried point. For the direct density approach, denote the variance within the

sampled data by σ2∗
1

(I) and the variance for out-of-sample by σ2∗
1

(O). Similarly, we have

σ2∗
2

(I) and σ2∗
2

(O) for the normal approximation method.

Theorem 4. Under the regularity assumptions given in Appendix, we have:

(i). The in-sample predictive variances are

σ2∗
1

(I)
= σ2∗

2
(I)

+ op(1)

+ (1− 1

md−1 )
1

(m!)d−1

∑
π

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2,

σ2∗
2

(I)
= (1− 1

md−1 )σ̂2
n[1− 1

md−1

∑
i

γi(θ̂n)TR−1i,i γi(θ̂n)] + op(1).
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(ii). Comparison of the in-sample and out-of-sample predictive variance:

σ2∗
1

(O) − σ2∗
1

(I)
= σ2∗

2
(O) − σ2∗

2
(I)

+ op(1)

+ (mm!)1−d
∑
π

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2,

σ2∗
2

(O) − σ2∗
2

(I)
=

σ̂2
n

md−1 [1− 1

md−1

∑
i

γi(θ̂n)TR−1i,i γi(θ̂n)] + op(1)

i.e.

P ( σ2∗
1

(O) ≥ σ2∗
1

(I)
)→ 1, P ( σ2∗

2
(O) ≥ σ2∗

2
(I)

)→ 1.

For Theorem 4, although the proposed predictors do not have the interpolation prop-

erty, their in-sample predictive variances are in general smaller than their out-of-sample

variances.

1.4 Simulation studies

The objective of this section is to demonstrate the finite-sample performance of the

proposed methods. They are compared with some existing methods, including the regular

GP model and the conventional bootstrap prediction. All the simulations are conducted by

a 2.4 GHz Intel Core i5, 8GB 1600 MHz DDR3 workstation under Python 3.5.2 in MAC

OS X.

1.4.1 Comparisons with regular MLE

The finite sample performance of the proposed methods are compared with the regular

MLE using full data, denoted by “ALLData”. Three different settings of LHD-based block

bootstrap, m = 3, 4 and 5, are performed. The outputs are simulated from a Gaussian
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process with the mean function coefficients β = (2,−2, 1) and the correlation function

ψ(x1,x2) = exp(−
3∑

i=1

|x1i − x2i|/θi),

where θ1 = θ2 = θ3 = 0.4 and σ = 1. Two sample sizes, n = 2000 and 4000, are con-

sidered and the design points are generated from regular grid over the region [0, 1]3. For

each sample size, 50 training samples and 100 testing samples are generated. The perfor-

mance of parameter estimation is summarized in Table 1.4.1 based on 100 replicates with

10 LHD-based block bootstrap samples implemented for the proposed method. In addi-

tion, the mean squared prediction errors (MSPE) for the testing datasets and the averaged

computing time are both reported.

The results demonstrate that the estimated parameters using LHD-based block boot-

strap are in general consistent with those obtained using the complete data. When n =

2000, the standard deviations increase with the number of blocks m, especially for the

correlation parameters. This is not surprising because the sample sizes are smaller for

larger m and ”AllData” implies the special case of ”m=1”. The impact of m on the esti-

mation variance appears to be smaller when sample size increases to n = 4000. In terms

of computing time, LHD-based block bootstrap is much faster than the conventional GP

modeling especially for large n.

Note that the proposed methods are particularly useful for data collected from irreg-

ular grids. The reason to generate the simulations from a regular grid is that the MLE

calculation using full data, under this setting, can be further simplified by Kronecker prod-

uct techniques and some matrix singularity can be avoided (Rougier 2008). But these

techniques are not applicable to datasets collected from an irregular grid. Therefore, the

computational advantage of the proposed methods are expected to be even more significant
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Table 1.4.1: Comparisons with regular MLE (standard deviation in parenthesis).

AllData LHD
m=3 m=4 m=5

n = 2000

θ1 0.40(0.03) 0.43(0.09) 0.48(0.27) 0.90(2.68)
θ2 0.40(0.03) 0.42(0.10) 0.45(0.24) 0.46(0.26)
θ3 0.39(0.03) 0.45(0.13) 0.42(0.15) 0.50(0.41)
β1 2.02(0.52) 2.04(0.68) 2.13(0.67) 2.06(0.72)
β2 -2.04(0.57) -1.98(0.70) -2.03(0.64) -2.00(0.73)
β3 1.05(0.55) 1.03(0.69) 1.02(0.72) 1.04(0.68)

MSPE 0.10(0.14) 0.24(0.32) 0.33(0.46) 0.44(0.61)
Time 76.78(5.12) 10.96(4.03) 7.84(3.60) 4.83(1.67)

n = 4000

θ1 0.40(0.02) 0.44(0.09) 0.43(0.13) 0.41(0.13)
θ2 0.40(0.03) 0.44(0.09) 0.46(0.11) 0.41(0.14)
θ3 0.40(0.02) 0.42(0.08) 0.44(0.12) 0.40(0.12)
β1 2.07(0.53) 2.11(0.60) 2.10(0.68) 2.24(0.64)
β2 -2.01(0.52) -2.05(0.56) -2.04(0.60) -2.15(0.65)
β3 1.04(0.49) 1.02(0.71) 1.02(0.60) 1.00(0.67)

MSPE 0.07(0.09) 0.16(0.22) 0.22(0.31) 0.27(0.38)
Time 605.83(35.93) 58.38(5.21) 20.53(4.41) 12.39(3.61)



19

for data collected from irrregular grids.

1.4.2 Comparisons of prediction uncertainty

We also compare the proposed predictive distributions with existing methods by look-

ing at their predictive variance. Two existing methods, the regular bootstrap and the plugin

predictive distribution, are considered. The regular bootstrap, although computationally

expensive, can serve as a benchmark for capturing the true prediction uncertainty. Simula-

tions are generated from the same model given in Section 1.4.1. Due to the computational

constraints in regular bootstrap, we conduct relatively smaller sample sizes, n = 1000

and n = 2000, for comparison. The predictive variance is evaluated based on 100 untried

settings with 50 replications. Both LHD-based subsampling and the regular bootstrap are

performed using the two construction approaches, direct density and Normal approxima-

tion, and they are all calculated based on 10 resampling.

The performance on predictive variance is summarized in Table 1.4.2. The LHD-based

subsampling is denoted by “LHD”. In general, using LHD subsampling, the predictive

variance constructed by direct density is larger than the one by Normal approximation,

which is consistent with the theoretical results in Theorem 2. It is also not surprising

to see that the predictive variances obtained from LHD subsampling are larger than the

benchmark results from regular bootstrap, and the differences become smaller when sam-

ple size increases. Comparing with the plugin approach, the proposed methods provide a

better quantification of the predictive uncertainty as expected. Furthermore, it is interest-

ing to observe a significant amount of computational reduction even compared with the

plug-in approach. So this result suggests that, by the LHD-based subsampling, the com-

putational efforts can be effectively allocated to capture the uncertainty instead of large

matrix manipulations.
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Table 1.4.2: Comparisons of predictive variance (standard deviation in parenthesis).

LHD (m=3) Regular Bootstrap Plugin
n = 1000

Direct Density 0.53(0.19) 0.35(0.15)
0.15(0.04)

Normal 0.41(0.08) 0.22(0.05)
Time 5.50(2.09) 405.30(119.61) 19.11(6.45)

n = 2000
Direct Density 0.39(0.22) 0.33(0.16)

0.10(0.02)
Normal 0.31(0.08) 0.20(0.06)
Time 10.96(4.03) 1917.15(543.02) 76.78(5.12)

1.5 Real Examples

1.5.1 A data center thermal management example

A data center is a computing infrastructure facility that houses large amounts of in-

formation technology equipment used to process, store, and transmit digital information.

Data center facilities constantly generate large amounts of heat to the room, which must be

maintained at an acceptable temperature for reliable operation of the equipment. A signifi-

cant fraction of the total power consumption in a data center is for heat removal; therefore,

determining the most efficient cooling mechanism has become a major challenge. To solve

the problem, a crucial step is to model the thermal distribution at different experimental

settings (Hung et al. 2012).

For a data center thermal study, physical experiments are not always feasible because

some settings are highly dangerous and expensive to perform. Therefore, simulations

based on computational fluid dynamics (CFD) are widely used. In this example, CFD

simulations are conducted at IBM T. J. Watson Research Center based on a real data cen-

ter layout. Detailed discussions about the CFD simulations can be found in (Lopez and
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Hamann 2011). The first three columns in Table 1.5.1 list nine variables and their lev-

els in the CFD simulations, including four computer room air conditioning (CRAC) units

with different flow rates (x1, ..., x4), the overall room temperature setting (x5), the perfo-

rated floor tiles with different percentage of open areas (x6), and spatial location in the

data center (x7 to x9). There are 27,000 temperatures simulated from the CFD simulator

and these temperature outputs are obtained from an irregular grid over the 9-dimensional

experimental space.

It is computationally intensive to build a GP model based on the complete CFD data.

So we implement the proposed LHD-based block bootstrap approach with m = 3 for vari-

ables x6, x7 and x9, which are the top three factors with highest levels. The fitted GP model

is summarized by the last two columns of Table 1.5.1, where β̂ represents the estimated

mean function coefficients and θ̂ represents the correlation parameters estimated based on

exponential covariance function. From the fitted model, it appears that the height (x9) in

a data center has a relatively larger effect, particularly to the mean function. Furthermore,

we find the temperatures increase dramatically with height based on the predicted heat

map at three different heights (Figure 1.5.1) with an untried setting (i.e., CRAC unit 1

flow rate 6500, unit 2 flow rate 6500, unit 3 flow rate 2750, unit 4 flow rate 2750, room

temperature 70 (F) and tile percentage 59). These findings can be validated by the general

understanding of thermal dynamics.

1.5.2 Ice sheet thickness modeling

The second application focuses on the study of ice sheet thickness using the commu-

nity ice sheet model (CISM; Rutt et al. 2009, Price et al. 2011). The main objective of

this model is to understand ice sheet behavior and its impact on climate. CISM mimics the

effects of past climate on the current ice sheet state by considering a model of an idealized
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Table 1.5.1: LHD Bootstrap analysis of thermal management data (standard deviation in parenthe-
sis).

Variable Levels β̂ θ̂
x1 CRAC unit 1 flow rate (cfm) (0,7000,8500,10000 -8.58(0.96) 0.85(0.17)

11500,13000)
x2 CRAC unit 2 flow rate (cfm) (0,7000,8500,10000 -11.12(1.26) 0.77(0.23)

11500,13000)
x3 CRAC unit 3 flow rate (cfm) (0,2500,4000,5500) -6.83(0.80) 1.14(0.27)
x4 CRAC unit 4 flow rate (cfm) (0,2500,4000,5500) -6.26(0.98) 1.70(0.71)
x5 Room temperature setting (F) (65,67,69,71,73, 75) -0.82(0.66) 3.39(0.94)
x6 Tile open area percentage (%) (15, 25, 35, 45 0.15(3.63) 1.24(0.91)

(55, 65, 75)
x7 Location in x-axis 8 unequally spaced -5.09(2.72) 0.14(0.11)
x8 Location in y-axis 4 unequally spaced 3.70(2.18) 0.62(0.25)
x9 Height 18 equally spaced 33.43(3.90) 21.61(0.22)

Figure 1.5.1: Bootstrap predictive heat map in a data center
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ice sheet over a rectangular region which is flowing out to sea on one side, while accumu-

lating ice from prescribed precipitation over a time of 1000 years. There are two control

variables in CISM, one is a constant term in the Glen-Nye flow law (Greve and Blatter

2009) controlling the deformation of the ice sheet denoted by x1 and the other controls the

heat conductivity in the ice sheet denoted by x2. The simulated thickness is produced on a

27×32 rectangular lattice of the spatial locations, denoted by x3 and x4. We focus on the

central part of the icebergs by taking the middle 13×16 rectangular lattice in this analysis.

A set of simulations with 20 different combinations of the two control variables is consid-

ered and therefore the total sample size is n = 4160. The detailed variable settings can be

found in Higdon et al. (2013).

The focus of this study is to compare the performance of the proposed method with

conventional GP using full data in real applications. A four-dimensional GP is considered

for the analysis of simulation results from CISM. Estimation and prediction performance

is evaluated based on a 10-fold cross validation. The LHD-based subsamples are obtained

by the setting of (m = 3, U = 10) and each LHD-based subsample has size N = 139.

The results are summarized in Table 1.5.2 with the conventional GP denoted by “Alldata”

and the proposed method denoted by “LHD”. RMSPE is the root mean squared prediction

error calculated from the 10-fold cross validation.

From the results in Table 1.5.2, it appears that even with only 3.7%(≈ 1/27) of the

data in each subsample, the LHD-based approach can provide a reasonable performance

in terms of parameter estimation and prediction. The computational time is reduced for

more than 99.3% using the proposed method. In general, the estimation for x3 seems to be

more challenging than the other variables due to its relatively smaller effect. One example

of the iceberg thickness prediction is demonstrated in Figure 1.5.2 over the entire spatial

location with the parameter setting of x1 = 2.40 and x2=6.53× 104. The left panel is the



24

Table 1.5.2: LHD Bootstrap analysis of CISM data (standard deviation in parenthesis).

Alldata LHD
β̂ θ̂ β̂ θ̂

x1 -0.80(4.0× 10−3) 7.26(11.00) -0.84(0.08) 23.71(19.56)
x2 0.31(6.0× 10−3) 3.41(8.15) 0.42(0.05) 3.82(4.00)
x3 7.3× 10−5(6.0× 10−4) 0.03(9.5× 10−3) -1.2× 10−4(2.2× 10−3) 3.4× 10−3(1.1× 10−3)
x4 0.11(4.6× 10−4) 0.65(0.21) 0.08(0.01) 0.21(0.58)

RMSPE 0.01 0.07
Time (Sec) 10097.39 66.36

Figure 1.5.2: Thickness predictions of icesheet. Left: Truth. Middle: Prediction using conventional
GP. Right: LHD-based method.

original simulation outputs from CISM. The middle panel is the plug-in prediction using

full data. The right panel is the prediction obtained from the LHD-based approach. It

shows that, given some roughness due to the small subsample size, the prediction using

LHD-based approach can efficiently capture the underlying structure.

1.6 Discussion

We present a LHD-based block subsampling procedure with two prediction methods to

tackle the computational difficulties and uncertainty quantification issues in GP prediction.

The new procedure borrows the strength of space-filling designs to provide an efficient
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subsampling plan and reduce computational complexity. Theoretical properties of the

proposed predictive distributions are discussed. The proposed procedure is applied to two

complex computer experiments with high dimensional inputs and massive outputs.

Future work will be in the following directions. First, extensions of the proposed pro-

cedure to optimal designs with better space-filling properties are intuitively appealing. For

example, it is known that randomly generated LHDs can contain some structure. To further

enhance desirable space-filling properties, various modifications are proposed. Numerical

comparisons and theoretical developments of the generalization to different types of opti-

mal space-filling designs will be carefully studied. Second, an interesting and important

issue of the LHD-based block bootstrap is to determine the optimal block size. This topic

has been discussed for conventional block bootstrap methods (Hall et al. 1995, Lahiri

1999, Nordman et al. 2007), however the solutions therein are not directly applicable to

GP models. We plan to study the optimal block size for the propose procedure based on

some new criteria defined for GP.

1.7 Technical proofs

1.7.1 Assumptions

Let yi = (ys(xs),xs ∈ Bn(i)) and Xi = (xs,xs ∈ Bn(i))T denote the data in

the ith block. Define Ri,j(θ)=
[
ψ(y(xs), y(xt);θ), xs ∈ Bn(i),xt ∈ Bn(j)

]
, Dn(θ) =

diag(Ri,i(θ)) with i = (i1, . . . , id) in lexicographical order, andEn(θ) = Rn(θ)−Dn(θ).

We need the following assumptions for the proposed prediction procedures.

1. m = o(n1/d) and m→∞.

2. limn→∞ supθ λmax(En(θ)) = 0, when the block space b = l/m→∞.
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These two assumptions are also the necessary conditions for the consistency of the

bootstrap estimators (Zhao et al. 2018). The second assumption aims to control the corre-

lation between bootstrap blocks.

1.7.2 Proof of Theorem 1

By definition, the bootstrap predictive function is

h∗(xn+1 |Xn,yn) = E∗{h(xn+1 |X∗N ,y∗N , φ̂
∗
N)}

=
∫
h(xn+1 |X∗N ,y∗N , φ̂

∗
N)dP ∗(X∗N ,y

∗
N |Xn,yn).

Take Taylor expansion of h(xn+1 |X∗N ,y∗N , φ̂
∗
N) at φ̂n for each bootstrap, we have

h(xn+1 |X∗N ,y∗N , φ̂
∗
N)

= h(xn+1 |X∗N ,y∗N , φ̂n) +∇T
φh(xn+1 |X∗N ,y∗N , φ̂n)(φ̂

∗
N − φ̂n)

+
1

2
(φ̂
∗
N − φ̂n)T∇2

φh(xn+1 |X∗N ,y∗N , φ̂n)(φ̂
∗
N − φ̂n)

+
1

6
∇{(φ̂

∗
N − φ̂n)T∇2

φh(xn+1 |X∗N ,y∗N , φ̂n)(φ̂
∗
N − φ̂n)}(φ̂

∗
N − φ̂n)

+Op∗(‖φ̂
∗
N − φ̂n‖42).

So we only need to calculate the expectation of each term on the right-hand side of the

equation above.

Again, we treat∇`(X∗N ,y∗N , φ̂
∗
N) as a function of φ and take the second order Taylor

expansion at φ̂n. Recall that∇`(X∗N ,y∗N , φ̂
∗
N) = 0 and

0 = ∇`(X∗N ,y∗N , φ̂n) +∇2`(X∗N ,y
∗
N , φ̂n)ω +

1

2
∇{∇2`(X∗N ,y

∗
N , φ̂n)ω}ω +OP ∗(‖ω‖32)

(1.10)
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where ω = φ̂
∗
N − φ̂n. Multiplying (1.10) by∇Th(xn+1 |X∗N ,y∗N , φ̂n), we have

0 =∇`(X∗N ,y∗N , φ̂n)∇Th(xn+1 |X∗N ,y∗N , φ̂n)

+∇2`(X∗N ,y
∗
N , φ̂n)ω∇Th(xn+1 |X∗N ,y∗N , φ̂n)

+
1

2
∇{∇2`(X∗N ,y

∗
N , φ̂n)ω}ω∇Th(xn+1 |X∗N ,y∗N , φ̂n) +OP ∗(‖ω‖32). (1.11)

Using the fact that φ̂
∗
N − φ̂n = I−1∇`(X∗N ,y∗N , φ̂n) +OP ∗(N−1/2), take expectations of

each term in the equation above. For presentation simplicity, X∗N ,y
∗
N are omitted in the

calculation below.

E∗{∇2`(X∗N ,y
∗
N , φ̂n)ω∇Th(xn+1 |X∗N ,y∗N , φ̂n)}

= E∗{∇2`(φ̂n)}E∗{ω∇Th(xn+1 | φ̂n)}+ Cov∗{∇2`(φ̂n),ω∇T∇Th(xn+1 | φ̂n)}

= −IE∗{ω∇Th(xn+1 | φ̂n)}+ I−1E∗{∇2`(φ̂n)∇`(φ̂n)∇Th(xn+1 | φ̂n)}

−I−1E∗{∇2`(φ̂n)}E∗{∇`(φ̂n)∇Th(xn+1 | φ̂n)}

Using the same technique, we have

E∗{∇{∇2`(X∗N ,y
∗
N , φ̂n)ω}ω∇Th(xn+1 |X∗N ,y∗N , φ̂n)}

= (KirsL
j
r,s)i,j=1,...,N +OP ∗(N−2).
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Plugging the equations back into (1.11), we have

0 =E∗{∇`(φ̂n)∇Th(xn+1 | φ̂n)} − IE∗{ω∇Th(xn+1 | φ̂n)}

+ I−1E∗{∇2`(φ̂n)∇`(φ̂n)∇Th(xn+1 | φ̂n)}

− I−1E∗{∇2`(φ̂n)}E∗{∇`(φ̂n)∇Th(xn+1 | φ̂n)}

+
1

2
(KirsL

j
r,s)i,j=1,...,N +OP ∗(N−2).

Thus,

E∗{ω∇Th(xn+1 | φ̂n)} = I−2E∗{∇2`(φ̂n)∇`(φ̂n)∇Th(xn+1 | φ̂n)}

+
1

2
I−1(KirsL

j
r,s)i,j=1,...,N +OP ∗(N−2).

Taking trace on both side of the equation, we have

E∗{ω∇Th(xn+1 | φ̂n)} = IsiIjkMs,j,ik +
1

2
I ijIjkKirsL

j
r,s(h) +OP ∗(N−2).

Similarly,

E∗(φ̂
∗
N − φ̂n)T∇2

φh(xn+1 |X∗N ,y∗N , φ̂n)(φ̂
∗
N − φ̂n) = {IrjIsiJrs,ij(h)}+OP ∗(N−2).

The result follows by plugging the two equations into the Taylor expansion of h∗(·). �

1.7.3 Proof of Theorem 2

To investigate the asymptotic properties of the predictions from LHD-based block

bootstrap, we decompose the likelihood function into blocks. For each block, denote

yi = (ys(xs),xs ∈ Bn(i)), Xi = (xs,xs ∈ Bn(i))T , Ri,j(θ)=
[
ψ(y(xs), y(xt);θ),
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xs ∈ Bn(i),xt ∈ Bn(j)
]

and zi = R
−1/2
i,i (θ)(yi − Xiβ). Then, we can rewrite the

normalised log-likelihood function n−1`(Xn,yn,φ) as

Qn(Xn,yn,φ) = −(2nσ2)−1
∑n

s=1 z
2
s − (2n)−1

∑n
s=1 log(λs)

−(2n)−1
∑n

s=1 log(σ2) + n−1rn(Xn,yn,φ)

= n−1
∑n

s=1 qs(ω,φ) + n−1rn(ω,φ),

where {λs, s = 1, . . . , n} = {eigenvalues of |Ri,i(θ)|, i = (i1, . . . , id)} with (i1, . . . , id)

in lexicographical order and eigenvalues from the largest to the smallest. Note that rn(ω,φ)

= `(Xn,yn,φ) −
∑n

s=1 qs(zs,φ) contains all terms involving the off block-diagonal

terms. Define Dn(θ) = diag(Ri,i(θ)) and En(θ) = Rn(θ) − Dn(θ). Assuming that

En(θ) = Un(θ)UT
n (θ), we have

rn(ω,φ) =
1

2σ2(1 + g)
(yn −Xnβ)TD−1n (θ)En(θ)D−1n (θ)(yn −Xnβ)

+
1

2
log|In + UT

n (θ)D−1n (θ)Un(θ)|,

where g = trace(En(θ)D−1n (θ)).

The maximum likelihood estimator is obtained by φ̂n = arg maxφQn(Xn,yn,φ).

Analogue to the decomposition for Qn(Xn,yn,φ), the log-likelihood function for LHD-

based block bootstrap samples can be written as

Q∗N(X∗N ,y
∗
N ,φ) = N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N(·, ω,φ), (1.12)
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where r∗N(·, ω,φ) contains all terms involving the off block-diagonal terms with boot-

strapped samples. Specifically,

r∗N(·, ω,φ) =
1

2σ2(1 + g∗)
(y∗N −X∗Nβ)TD∗N

−1(θ)E∗N(θ)D∗N
−1(θ)(y∗N −X∗Nβ)

+
1

2
log|IN + U∗N

T (θ)D∗N
−1(θ)U∗N(θ)|,

where D∗N(θ) = diag(Ri∗j ,i∗j (θ), j = 1, . . . ,m) and E∗N(θ) = R∗N(θ) − D∗N(θ) with

E∗N(θ) = U∗N(θ)U∗N
T (θ); g∗ = trace(E∗N(θ)D∗N

−1(θ)). The bootstrapped version of φ̂n

is φ̂
∗
N = arg maxφQ

∗
N(X∗N ,y

∗
N ,φ), which is a consistent estimate of φ̂n according to

Zhao et al. (2018).

Similar to the decomposition of the bootstrapped likelihood (1.12), we rewrite the

weighted average of the bootstrapped data. Recall D∗N(θ̂n) = diag(Ri∗j ,i∗j (θ̂n), j =

1, . . . ,m) and E∗N(θ̂n) = R∗N(θ̂n) − D∗N(θ̂n) with E∗N(θ̂n) = U∗N(θ̂n)U∗N
T (θ̂n); ĝ∗ =

trace(E∗N(θ̂n)D∗N
−1(θ̂n)). Then γ∗N(θ̂n)TR∗−1(θ̂n)(y∗N −X∗N β̂n) can be written as

γ∗N(θ̂n)TR∗−1(θ̂n)(y∗N −X∗N β̂n)

=
m∑
j=1

γi∗j (θ̂n)TR−1i∗j ,i∗j (θ̂n)(yi∗j −Xi∗j
β̂n) + s∗N(θ̂n, β̂n),

where γ∗N(θ̂n) is the correlation between xn+1 and the bootstrapped data X∗N calculated

at θ̂n and R∗ is the correlation matrix of the bootstrapped data X∗N calculated at θ̂n as

well; and s∗N(θ̂n, β̂n) contains all terms involving the off block-diagonal terms with boot-

strapped samples. Specifically,

s∗N(θ̂n, β̂n) =
1

(1 + ĝ∗)
γ∗N(θ̂n)TD∗N

−1(θ̂n)E∗N(θ̂n)D∗N
−1(θ̂n)(y∗N −X∗N β̂n).
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According to Theorem 1, for both direct density prediction method and normal predic-

tion method, the predictive distribution has mean

E∗{xT
n+1β̂n + γ∗N(θ̂n)TR∗−1(θ̂n)(y∗N −X∗N β̂n)}+ op(1)

= xT
n+1β̂n +

1

md−1

∑
i

γi(θ̂n)TR−1i,i (θ̂n)(yi −Xiβ̂n) + E∗(s∗N(θ̂n, β̂n)) + op(1).

By the same treatment as the proof of rn(·) and r∗N(·) in Lemma 4 in Zhao et al. (2018),

under condition A.3, we have sn(·) = 1
(1+g)

γn(θ̂n)TD−1n (θ̂)En(θ̂)D−1n γn(θ̂n) → 0 in P

as well as s∗N(·) → 0 prob-P ∗N,ω prob-P and E∗(s∗N(θ̂n, β̂n)) → 0 in P . Decompose the

predictive mean of plug-in predictor using the same technique, we show that

E{µ(xn+1 |Xn,yn, φn)− µ∗1} = E{µ(xn+1 |Xn,yn, φn)− µ̂∗2}

= E
md−1 − 1

md−1

∑
i

γi(θ̂n)TR−1i,i (θ̂n)(yi −Xiβ̂n) + op(1)

→ 0.

where
∑
i is the summation of all md blocks.
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The predictive distribution of direct density prediction method, which follows normal mix-

ture, has variance

σ2∗
1 = E∗{σ2(xn+1|X∗(u)N ,y

∗(u)
N , φ̂n) + [µ(xn+1|X∗(u)N ,y

∗(u)
N , φ̂n)

−µ(xn+1|Xn,yn, φ̂n)]2}+ op(1)

=
1

(m!)d−1

∑
π1,...,πd

{σ2(xn+1|X∗N ,y∗N , φ̂n) + [µ(xn+1|X∗N ,y∗N , φ̂n)

−µ(xn+1|Xn,yn, φ̂n)]2}+ op(1)

= σ̂2
n

{
1− 1

md−1

∑
i

γi(θ̂n)TR−1i,i γi(θ̂n)− E∗(t∗N(θ̂n))
}

+
1

(m!)d−1

∑
π1,...,πd

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2 + op(1),

where t∗N(θ̂n) = 1
(1+ĝ∗)

γ∗N(θ̂n)TD∗N
−1(θ̂n)E∗N(θ̂n)D∗N

−1(θ̂n)γ∗N(θ̂n) and
∑
π is the sum-

mation of independent permutation over {0, 1, . . . ,m− 1}.

The predictive distribution of normal prediction method has variance

σ2∗
2 = E∗{σ2(xn+1|X∗(u)N ,y

∗(u)
N , φ̂n) + op(1)

=
1

(m!)d−1

∑
π1,...,πd

{σ2(xn+1|X∗N ,y∗N , φ̂n) + op(1)

= σ̂2
n

{
1− 1

md−1

∑
i

γi(θ̂n)TR−1i,i γi(θ̂n)− E∗(t∗N(θ̂n))
}

+ op(1)

Under condition A.3, we have t∗N(·) → 0 prob-P ∗N,ω prob-P . Then the result follows.

Comparing the predictive variance under both methods, it is straightforward to show that

σ2∗
1 − σ2∗

2 = E∗[µ(xn+1|X∗(u)N ,y
∗(u)
N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2 + op(1)

i.e. P (σ2∗
1 ≥ σ2∗

2 )→ 1 as n→∞ �
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1.7.4 Proof of Theorem 3

Using the same technique in proof of Theorem 2, it is easy to show that the variance

of the plug-in predictive distribution can be written as

σ̂2
n

{
1−

∑
i

γi(θ̂n)TR−1i,i γi(θ̂n)− 1

(1 + g)
γn(θ̂n)TD−1n (θ̂n)En(θ̂n)D−1n γn(θ̂n)

}
,

Under condition A.3, we have tn(·) = 1
(1+g)

γn(θ̂n)TD−1n (θ̂n)En(θ̂n)D−1n γn(θ̂n) → 0 in

P . Deducting the predictive variance σ2∗
1 and σ2∗

2 calculated in Theorem 2, the result

follows immediately. �

1.7.5 Proof of Theorem 4

Under the regularity assumptions given in Appendix, we compare the predictive vari-

ance on both in-sample and out-of-sample case under direct density approach and normal

approximation approach. For the direct density approach, denote the variance within the

sampled data by σ2∗
1

(I) and the variance for out-of-sample by σ2∗
1

(O). Similarly, we have

σ2∗
2

(I) and σ2∗
2

(O) for the normal approximation method. We predict y at a given value

xn+1.

In one single m-LHD subsamples (X∗N ,y
∗
N),

when xn+1 is within (X∗N ,y
∗
N), by the interpolation property of Gaussian Process Model,

we have

σ̂2
n+1 = 0
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when xn+1 is out of (X∗N ,y
∗
N), according to proof of Theorem 2 we have

σ̂2
n+1 = σ2(xn+1|X∗N ,y∗N , φ̂n) + [µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2

+op(1).

Under the regularity assumptions given in Appendix

σ2∗
1

(I)
= (1− 1

md−1 )σ̂2
n

{
1− 1

md−1

∑
i

γn,i(θ̂n)TR−1i,i γn,i(θ̂n)− E∗(t∗N(θ̂n))
}

+(1− 1

md−1 )
1

(m!)d−1

∑
π1,...,πd

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2

+
1

md−1 ∗ 0 + op(1)

= (1− 1

md−1 )
{
σ̂2
n[1− 1

md−1

∑
i

γn,i(θ̂n)TR−1i,i γn,i(θ̂n)]

+
1

(m!)d−1

∑
π1,...,πd

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2
}

+ op(1)

Under the normal approximation approach, similarly, when xn+1 is within (X∗N ,y
∗
N),

by property of interpolation of Gaussian Process Model,

σ̂2
n+1 = 0

when xn+1 is out of (X∗N ,y
∗
N), according to proof of Theorem 2 we have

σ̂2
n+1 = σ2(xn+1|X∗N ,y∗N , φ̂n) + op(1)
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Under the regularity assumptions given in Appendix

σ2∗
2

(I)
= (1− 1

md−1 )σ̂2
n

{
1− 1

md−1

∑
i

γn,i(θ̂n)TR−1i,i γn,i(θ̂n)− E∗(t∗N(θ̂n))
}

+
1

md−1 ∗ 0 + op(1)

= (1− 1

md−1 )σ̂2
n[1− 1

md−1

∑
i

γn,i(θ̂n)TR−1i,i γn,i(θ̂n)] + op(1)

According to Theorem 2,

σ2∗
1

(O)
= σ̂2

n

{
1− 1

md−1

∑
i

γn,i(θ̂n)TR−1i,i γn,i(θ̂n)
}

+
1

(m!)d−1

∑
π1,...,πd

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2 + op(1)

and

σ2∗
2

(O)
= σ̂2

n

{
1− 1

md−1

∑
i

γn,i(θ̂n)TR−1i,i γn,i(θ̂n) + op(1)

To compare the in-sample and out-of-sample predictive variance, simply take the dif-

ference under the corresponding approach and the result follows immediately, we have

σ2∗
2

(O) − σ2∗
2

(I)
=

σ̂2
n

md−1 [1− 1

md−1

∑
i

γn,i(θ̂n)TR−1i,i γn,i(θ̂n)] + op(1)

i.e. P ( σ2∗
2

(O) ≥ σ2∗
2

(I)
)→ 1 as n→∞
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and

σ2∗
1

(O) − σ2∗
1

(I)
=

1

md−1

{
σ̂2
n[1− 1

md−1

∑
i

γn,i(θ̂n)TR−1i,i γn,i(θ̂n)]

+
1

(m!)d−1

∑
π1,...,πd

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2
}

+op(1)

= σ2∗
2

(O) − σ2∗
2

(I)
+ op(1)

+(mm!)1−d
∑
π

[µ(xn+1|X∗N ,y∗N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2

> 0

i.e. P ( σ2∗
1

(O) ≥ σ2∗
1

(I)
)→ 1 as n→∞

�
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Chapter 2

Emulating Antarctic Ice-sheet Contributions to Sea Level
Rise

2.1 Introduction

Sea level rise is expected to impact millions of people in coastal communities in the

coming centuries (Strauss et al., 2012). But there are large uncertainties in how sea levels

will change locally and globally, due primarily to a) uncertainties in Antarctic ice-sheet

dynamics and b) the breadth of possible human choices with respect to emissions (Kopp

et al., 2017). Modeling the contributions of the Antarctic ice-sheet (AIS) to sea level rise is

challenging, in part because the physical mechanisms for ice-sheet instabilities are not well

constrained. Furthermore, simulations of ice-sheet evolution in response to climate forcing

are computationally expensive to run, limiting the range and quantity of experiments that

may be performed.

Previously, expert elicitation has been used to describe the range of possible sea level

contributions from the AIS (Bamber and Aspinall, 2013), but these judgments (and their

accompanying probabilities) are limited because they are not explictly tied to dynamical or

physical processes. But without a broad range of many representative model experiments,

probability distributions of sea level contributions from Antarctica will either be based

exclusively on discrete (non-continuous) outcomes (and hence will be less generalizable),

or expert judgments will remain the primary descriptors for AIS uncertainties. In this
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study, we develop an emulator of an ice-sheet simulator to make progress overcoming

these limitations.

The role of AIS contributions in sea level rise is not well constrained. Spatially com-

plete modern observations of Antarctic mass changes (and hence sea level contributions)

are extremely limited, with the satellite record dating back to 1993 (Team, 2018). Instead,

it is necessary to turn to the past for analogues of sea levels which were significantly

influenced by the Antarctic ice-sheet. In warm paleo-climates, in particular the “last in-

terglacial” (LIG, sometimes also referred to as Marine Isotope Stage 5e; ∼130,000 to

115,000 years ago, (Kukla et al., 2002; of PAGES, 2016)) and the Pliocene (∼3 million

years ago, (Rovere et al., 2014; Pagani et al., 2009; Pollard et al., 2018)), global mean tem-

peratures were up to 3 degrees Celsius warmer than present and peak global mean sea lev-

els were potentially up to 9 or 30 meters higher than they are today, respectively. Although

these geological records (and their constraints on sea level processes) remain rather uncer-

tain (Horton et al., 2018), paleo-climate data (proxy reconstructions of sea level) suggests

that only by invoking the role of the AIS can one account for the inferred large changes

in sea level, because the other contributors (oceanic thermal expansion, mountain glaciers,

and the Greenland ice-sheet) account for only part of the highstand estimates (Dutton et al.,

2015). Until very recently, ice-sheet models were unable to simulate these expected large

AIS contributions (Pollard et al., 2015).

A study by DeConto and Pollard (DeConto and Pollard, 2016) presented some of the

first simulations of AIS contributions to global mean sea levels consistent with these likely

contributions from the LIG and Pliocene periods. Their results showed that the AIS’s im-

plied role during these periods could be simulated once they had accounted for two physi-

cal processes: the hydrofracturing of ice-shelves and the mechanical failure of unstable ice

cliffs. These processes were historically under-explored and unincorporated into ice-sheet
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models, but their inclusion in the DeConto and Pollard modeling framework provided

simulations more consistent with geological evidence than previous work. Furthermore,

future simulations including these processes projected median 21st century AIS contri-

butions significantly higher than those previously published (Golledge et al., 2015; Ritz

et al., 2015).

Although these newly integrated physical processes were parameterized based on mod-

ern observations (e.g., the retreat rate of the Jakobshavn Isbrae Glacier, ∼12 km/yr), the

parameter values in (DeConto and Pollard, 2016) are uncertain, and the simulations were

meant to be illustrative, “represent[ing] an envelope of possible outcomes.” In fact, a wide

range of solutions with different parameter calibrations are consistent with geological ana-

logues (in part because the range of peak sea levels during these periods themselves have

large uncertainties, cf. Figure 2.2.2). Accordingly, to explore projections of future AIS

contributions to sea level rise, simulations must be computed over a broad set of these

(loosely constrained) parameter values. This permits a description of some of the current

uncertainties in the ice-sheet/climate coupled system. To carefully calibrate these model

parameters conditional on modern and geological observations, it is necessary to obtain

a full suite of simulations covering their possible ranges and accounting for their interac-

tions.

Furthermore, it is important to incorporate scenario-dependant uncertainties from the

climate system itself. Figure 2.1.1 (bottom) describes the goal framework for our pro-

jections of AIS contributions to sea level. There is a coupling between a representative

climate system simulator (here, a regional climate model with global climate model bound-

ary conditions) and an ice-sheet model which provides projections of sea level equivalent

as a function of input user-chosen ice-sheet model parameters and climate emission sce-

narios. However, end-to-end (from climate model forcing input to ice-sheet simulation
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response of the ice-sheet model (PSUice) to changes in user chosen parameters endogenous in the
ISM. In this formulation, the coupled global/regional/ice-sheet model system is treated as a black
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the ISM. Black double-line arrows are the inputs, double-line boxes are components which may
be substituted, the bold black arrow is the output, and white arrows represent the input/output
communication between components.
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output), this framework takes more than one month to complete for a single run, which is

prohibitively expensive for obtaining a broad suite of simulations.

As an alternative, it is possible to construct and train a statistical emulator of this

framework (using a discrete ensemble of ice-sheet model simulations) which is capable

of producing solutions that are nearly continuous and can be computed rapidly (compared

with the simulation computing time). Statistical emulation additionally produces solutions

(and associated uncertainties) for previously untested model parameter values or emissions

scenarios.

In this study, we adopt an approach describing the relationships between ice-sheets and

model parameters to emulate over the ice-sheet model’s parametric uncertainty. We define

and fit a spline-based statistical emulator whose parameters are assigned Gaussian-process

prior distributions. As a step towards our goal framework, we develop this spline-based

emulation with simulations from a single fixed anthropogenic emissions scenario, but over

a portion of the ice-sheet model’s parametric range.

Ideally, a full treatment of the deep uncertainties associated with AIS contributions

to sea level is needed (Bakker et al., 2017). But such a treatment requires simulations

over all uncertain model parameters, ice-sheet representations among different simulators,

and potential contributions beyond what may be currently simulated; such a treatment is

beyond the scope of this study (see discussion on ongoing work in section 2.2). Instead, we

develop emulation techniques which may be generalized and adaptable to other simulator

parameter sets or other ice-sheet models. In other words, our methods are designed so that

the components in Fig. 2.1.1 are modular.

In section 2.2, we describe and explore the data used in this study, including the ice-

sheet simulations we intend to emulate. In section 2.3, we introduce the spline-based

emulation methodology and present its results both in modeling and prediction. Finally in
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section 2.4, we conclude with a discussion of pros and cons of the spline-based approach

and proposed next steps.

2.2 Data: Ice-Sheet Physics and Model Simulations

We emulate an ice-sheet simulator: the Pennsylvania State University Ice-Sheet model

(PSUice), developed by David Pollard and Rob DeConto and described in (Pollard and

Deconto, 2012) and (Pollard et al., 2015). PSUice simulations have been used in several

studies of ice-sheet contributions to past and future sea level (Pollard et al., 2015; DeConto

and Pollard, 2016; Pollard et al., 2017; Kopp et al., 2017; Pollard et al., 2018).

There are four ensembles (courtesy of Rob DeConto) of ice-sheet evolution computed

with PSUice: three Representative Concentration Pathway simulations of future ice-sheet

projections (RCP2.6, RCP4.5, RCP8.5, see (IPCC, 2013)) over 1950-2500, and a last

interglacial (LIG) simulation of the ice-sheet at its peak retreat ∼125 thousand years ago

(ka). Each ensemble has output of changes in the ice-sheet volume (in units of meters of

global mean sea level equivalent, directly related to changes in ice-sheet volume above

flotation) over time for the total Antarctic ice-sheet (TAIS), the East Antarctic ice-sheet

(EAIS) and West Antarctic ice-sheet (WAIS). The boundary conditions for each PSUice

ensemble are provided by the Regional Climate Model 3 (RegCM3, (Pal et al., 2007)).

Details on the one-way coupling between climate models and the ice-sheet model are

provided in (DeConto and Pollard, 2016).

Although changes in the total AIS drive global mean sea levels, WAIS and EAIS are

physically distinct and have differing gravitational, rotational and deformational impacts

on local sea level (Gomez et al., 2010; Mitrovica et al., 2011, 2018). It is therefore useful

to consider their differential responses to climate warming. Much of WAIS lies below sea

level, with buttressing ice-shelves that extend over the ocean. The ice-sheet grounding
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lines in direct contact with the ocean sit precariously on the edge of reverse sloping beds,

where bedrock elevations drop off into the WAIS interior. The rate of ice-flux across the

grounding line (out of the ice-sheet and into the ocean) is proportional to the height of the

ice-sheet at the grounding line. If ocean temperatures warm (e.g., through climate change),

melt can occur at the grounding line, causing it to retreat. The retreated grounding line then

has a greater height, and the retreat rate again increases in a positive feedback loop known

as Marine Ice Sheet Instability (e.g. (Weertman, 1974; Schoof, 2007)). The topographical

configuration of WAIS means it is particularly susceptible to Marine Ice Sheet Instability,

making it the primary focus of many studies of AIS contributions to sea level rise (e.g.,

(Mercer, 1978; Vaughan, 2008; Bamber et al., 2009; Pollard and DeConto, 2009; Joughin

et al., 2014)).

In contrast, much of the EAIS is grounded above sea level and is more resilient to

Marine Ice Sheet Instability. However, EAIS also stores significantly more ice-mass than

WAIS (∼53-60 meters in EAIS compared with the ∼3-4 meters in WAIS, (Bamber et al.,

2009; Fretwell et al., 2013)). Therefore, EAIS instability has the potential to contribute

significantly to sea level rise.

While we have discussed the distinctions between the EAIS and WAIS here as if they

each evolve uniformly, in reality there are many more subdivided sectors of the AIS (e.g.

see Extended Data Fig. 2 in (Team, 2018)) which have unique responses to climate forc-

ing (these responses while distinct, may be correlated (Little et al., 2013)) and individual

impacts on regional sea level. Although the simulated outputs provided in our current

ensembles are only separated into WAIS and EAIS, a future goal of the emulation is to

extend to more distinct sectors (which will require more apportioned outputs for emulator

training).

The instability process which was newly-invoked in DeConto and Pollard (DeConto
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and Pollard, 2016) is the Marine Ice Cliff Instability. Ice-shelves sitting over marine sec-

tors provide critical buttressing which reduces mass loss of the ice-sheet. But as atmo-

spheric warming increases, surface meltwater and rainfall (transitioning from snow to rain

in warmer climate) increase, pooling and penetrating into the ice-shelf as deep crevasses.

These crevasses may deepen and fracture off, and as the buttressing ice-shelf is removed,

mechanically unstable cliff faces may develop. When these cliff-faces structurally fail and

the ice-sheet begins to retreat on a reverse sloping bed, a positive feedback loop begins

(i.e. Marine Ice Cliff Instability). This instability can contribute greatly to sea level rise,

as we will show. Modeled projections without ice-shelf fracturing and ice cliff collapse

have markedly lower projected sea level contributions over the next 100 years than those

which include them (Schlegel et al., 2018).

In PSUice, the Marine Ice Cliff Instability is primarily represented by two equations

( (Pollard et al., 2015)) The first describes the horizontal ice-shelf calving rate Cis (in

km/yr):

Cis = 3 ∗max(0,min(1, (d− dc)/(1− dc))) (2.1)

where, dc is the critical fractional depth of the ice-sheet thickness (set to 0.75 in PSUice),

and d is the ratio of crevasse depth to ice-sheet thickness. The depth of crevassing is

related to a number of physical processes, including deepening from surface meltwater

(see below). If ice-sheet crevasses deepen to exceed the critical depth, calving and ice-

shelf retreat is initiated with retreat up to 3 km/yr.

Likewise, the horizontal cliff retreat rate, Cic (in km/yr), in PSUice is:

Cic = CLIFVMAX ∗max(0,min(1, (hm − hc)/20)) (2.2)

where, hc is the critical height of an ice-cliff before it becomes structurally unstable (set to
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100 meters in PSUice), and hm is the ice thickness above the water line modified by back-

stresses and wet-crevasse deepening. If an ice cliff develops and its modified thickness

exceeds the critical height, the cliff collapses, and the initiated retreat can accelerate up to

the level of the CLIFVMAX variable.

In our ensemble, the PSUice model configuration is varied over two-dimensional pa-

rameter space, where each parameter takes on 14 discrete values:

• CREVLIQ is the sensitivity of hydrofracturing in the model to surface liquid (i.e.

from rain and meltwater). As this parameter increases, crevasses in the ice-sheet (d

in Eqn. 2.1) deepen for given surface liquid accumulation rate, which increases the

chance of the fracturing and removal of buttressing ice-shelves. CREVLIQ varies in

the ensembles with values: 0, 15, 30, ..., 195 m
(m/yr)2

.

• CLIFVMAX is the maximum rate of horizontal cliff wastage once an ice-cliff be-

comes mechanically unstable (in Eqn. 2.2). As this parameter increases, structurally

unsound ice-cliffs are permitted to retreat at a rate up to the increased bound. CLIFV-

MAX varies in the ensembles with values: 0, 1, 2, ..., 13 km/yr.

For each scenario (RCPs or LIG), there are a total of 14 × 14 = 196 ensemble members

(every combination of the discrete configurations of CREVLIQ and CLIFVMAX). We note

that when CLIFVMAX= 0, ice cliffs are not permitted to retreat even when they should

structurally fail; in this case, the Marine Ice Cliff Instability mechanism is “turned off” in

the model simulations.

Ensemble simulations for the LIG scenario and the RCP8.5 scenario are shown in

Figure 2.2.2. The LIG ensemble was designed as an equilibrium scenario to represent

the peak of ice-sheet retreat during the period, so we consider only the final value in our

analyses (labeled 125ka). Comparing with the estimates of total AIS contributions to sea
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Figure 2.2.1: Timeseries ensembles of ice-volume lost from the total Antarctic ice-sheet (in meters
of sea level equivalent) for the LIG (left) and RCP8.5 (right) scenarios. Runs are color-coded
spanning CLIFVMAX= 0 (yellow) to CLIFVMAX= 13 (purple). Red shading in the LIG figure is
the geological likely-range of sea level contributions from total AIS (Dutton et al., 2015).

level from geological data (Dutton et al., 2015) shown in the red shading, we find that

all but a few of the highest model ensemble members fall within the estimated historical

range.

Sea level contributions from the total AIS increase as the values of CLIFVMAX or

CREVLIQ increase (Figure 2.2.2; driven largely by Marine Ice Cliff Instability). The two

scenarios produce distinct sensitivities to the parameter values: CLIFVMAX dominates

sea level rise in 2100 under the RCP8.5 forcing, whereas both CLIFVMAX or CREVLIQ

are important in the LIG scenario. Critically, there are interactions between CLIFVMAX

and CREVLIQ; for instance, without a sufficient maximum cliff retreat rate (the leftmost

columns of Fig. 2.2.2), hydrofracturing of buttressing ice-shelves does not significantly

increase sea levels.

The differences between EAIS and WAIS for the RCP8.5 scenario are illustrated in the

broad spread (here represented by the 5-95th quantiles) of the ice-sheet ensembles shown

in Figure 2.2.3. WAIS consistently loses mass and has a relatively small range in 2100,

suggesting that instabilities are expected during the 21st century across the entire suite of

parameter values. In contrast, some simulations of EAIS actually have negative sea level
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Figure 2.2.2: Contoured ensemble sea level equivalent contributions (m) from the total AIS for
the LIG scenario at peak retreat (∼125ka, left) and for the RCP8.5 scenario in 2100 (right), as a
function of model parameters CREVLIQ (y-axis) and CLIFVMAX (x-axis).

contributions through 2100, which is indicative of ice-sheet mass gains from increased

accumulation of snow (related to warmer atmospheric temperatures, see (Medley et al.,

2018) and references therein).

One limitation of the ensembles we train the emulator on is that only two PSUice

parameters are varied, whereas there are >60 parameters that can be manipulated (Rob

Deconto, personal communication). In particular two such parameters, the model’s co-

efficient of sub-ice-shelf oceanic melt (referred to as OCFAC in (DeConto and Pollard,

2016)) and the isostatic rebound relaxation rate (referred to as τ , usually around 3000

years, (Pollard et al., 2015)), could dramatically influence sea level contributions from

the AIS. Complete descriptions of these (and all) model parameterizations are found in

(Pollard et al., 2015). Work by David Pollard and coauthors is ongoing to explore pa-

rameter/variable selection for PSUice; a long-term goal of this research is to integrate our

research with theirs. The solutions with parameters CREVLIQ and CLIFVMAX, however,

represent a broad illustrative range of how the ice-sheet may respond to climate warming,

and are therefore useful to emulate. Extension to a larger model parameter space is left to

future work.
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tions from the Western (red) and Eastern (blue) Antarctic ice-sheets for the RCP8.5 scenario during
the 21st century.

2.3 Spline-based emulation

2.3.1 Background and Motivation

To build a statistical emulator for the ice-sheet model and give prediction uncertainty

at the same time, some important properties of this data set need to be addressed. Firstly,

sea level contribution(output) has a nonlinear relationship with CREVLIQ, CLIFVMAX,

and time (input). Secondly, sea level contribution behaves quite differently in relation

to time than to the ice-sheet parameters, CREVLIQ and CLIFVMAX; i.e., sea level rise

is smoother in time than in the ice-sheet model parameters. Classical models are not

directly applicable to this data set. For example, polynomial regression of high order,

as a method to model nonlinearity, can capture some portion of variance in the output

variable; however, it has obvious disadvantages, including that it does not have enough

flexibility to capture the full trend of the data. Moreover, polynomial regression can be
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highly sensitive to a single influential data point, and performs poorly for extrapolation.

Another method that is widely used in computer experiments, due to its flexibility and

uncertainty quantification for prediction, is Gaussian Process (GP) regression. However,

one drawback to applying GP regression in three dimensions with a large sample size is

the computational expense. In addition, the assumption of full Gaussian Process might be

too strong here. As a result, we need a model in between, which can be flexible enough to

capture the trend, while computationally feasible at the same time.

Spline regression is a powerful tool for modeling the nonlinear relationship between

input and output(Marsh and Cormier, 2001). When using splines, the predictor domain is

subdivided by a set of knots, and regression curves are fitted piecewise between each ad-

jacent knot to join smoothly (continuously). One advantage of using splines is the balance

between the complexity of a given model and its goodness of fit(Wegman and Wright,

1983; Wold, 1974). Splines additionally allow the time dimension to be treated differently

from CREVLIQ and CLIFVMAX. Cubic splines (i.e., a piecewise polynomial of degree 3)

are the most commonly used as it is quite smooth and cost effective(Wang and Wu, 2017).

A graphical illustration of spline regression with a single set of values for CREVLIQ

and CLIFVMAX is shown in Figure 2.3.1, where the plot on the left fits a model with

1 knot and the plot on the right with 2 knots. Spline regression works quite well for a

single set of parameters, CREVLIQ and CLIFVMAX. However, one drawback of simple

spline regression is that it does not provide prediction uncertainties. At the same time,

we are modelling a single set of values for CREVLIQ and CLIFVMAX separately. To

overcome these two limitations, we propose to impose a Gaussian Process prior on the

coefficients of the spline regression. The use of a covariance function within the Gaussian

Process enables sharing of information through the high correlation of hyperparameters

(parameters of the spline regression model) for nearby ice-sheet parameters. Conversely,
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Figure 2.3.1: Cubic spline models at CREVLIQ=60 and CLIFVMAX=10 with one knot (left) and
two knots (right)

as the distance increases between values of CREVLIQ and CLIFVMAX, the correlation in

hyperparameter values diminishes (A.O’Hagan and J.F.C.Kingman, 1978).

To simplify the modelling and illustrate this approach, we first reduce the size of the

data set by averaging the temporal data over 19-year periods and fixing CREVLIQ = 60.

Within the framework of this spline method with GP priors on hyperparameters, we can

control the trade-off between fidelity to the data and roughness of the function estimate.

2.3.2 Methodology

A cubic spline model takes the following form:

y(x, t) = β0(x) + β1(x)t+ β2(x)t2 + β3(x)t3 +
k=K∑
k=1

βk+3h(t, ξk) + ε (2.3)

= f(t)Tβ(x) + ε (2.4)

where K denote the number of knots, x denotes CLIFVMAX values, βi, i = 0, 1, ...(K+3)

are the parameter coefficients of the corresponding basis functions and t is centered and
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normalized by its standard deviation. Gaussian uncertainty, ε,∼ N(0, σ2) is assumed. The

piecewise functions between knots are defined as:

h(t, ξ) = (t− ξ)3+ =

(t− ξ)3, if t > ξ

0, otherwise.
(2.5)

Here, t time denotes time segments, averaged over 19 years and ξ represents each knot. A

spline regression with K = 4 knots is applied to the reduced data set, where the years of

the knots location ξ1 to ξ4 are year 2016, year 2054, year 2092 and year 2225. Knots are

located denser in the early years because the discrepancy between the ice-sheet emulator

and the simulator is less tolerable in 21st century. We allow different values of β to be

appropriate for different x.

To ensure a single value of β provides adequate approximation to the curve locally

as x varies, we assume β(x) and β(x∗) highly correlated when x and x∗ are close. The

belief in local stability can be translated into a suitable prior distribution of β(x). Here we

assume β(x) follows a Gaussian Process (GP) with prior mean and covariance function

defined as:

Eβ(x) = b0, (2.6)

Cov(β(x),β(x∗)) = ρ(|x− x∗|)B0 (2.7)

ρ(d) (the correlation function) is a monotonically decreasing function with d ≥ 0 and

ρ(0) = 1. The more slowly ρ(d) decreases to 0 the more stable β(x) is. b0 represents

the prior mean function for β(x). Assuming separability of β(x), which gives us some

computational advantages, B0 is the 8 × 8 diagonal variance-covariance matrix of β(x).

If we assume a Matérn 3/2 correlation function, which gives fits with the similar degree of

smoothness as the cubic splines, then ρ(|x− x∗|) = exp(−|x− x∗|/r) ∗ (1 + |x− x∗|/r)
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where r is the range parameter of ρ.

Suppose we observe n values of the dependent variable, y1, ...yn, at (x1, t1), (x2, t2), ...

(xn, tn), xi = 1, 2, ...m, tj = 1, 2, ...q. The posterior distribution of β(x) is jointly normal

with mean and variance

b(x) = E(β(x)|y1, ..yn, b0) = S(x)TA−1y +Q(x)Tb0(x), (2.8)

B(x, x∗) = E({β(x)− b(x)}{β(x∗)− b(x∗)T}|y1, ...yn, b0)

= ρ(|x− x∗|)B0 − S(x)TA−1S(x∗) (2.9)

whereQ(x) = IK+4 −GTA−1S(x), y = (y1, ...yn), K denotes the number of knots

S(x) is the n× (K+4) matrix whose ith row is ρ(|x− xi|)f(ti)
TB0,

G(t) = (f(t1)
T , ...,f(tn)T ),A = σ2In +C,

where C is n× n with (i, j)th elements ci,j = ρ(|xi − xj|)f(ti)
TB0f(tj)

For any future value y at (x, t), the predictive distribution of y is

N(f(t)Tb(x), σ2 + f(t)TB(x, x)f(t)) (2.10)

2.3.3 Results

The results shown in this section, if not otherwise specified, are based on the data of

EAIS in RCP8.5 introduced in 2.2. The building of the statistical emulator can be directly

extended to the data in WAIS and other RCPs. Limited by space here, we do not show all

the results for different scenarios but take the data of EAIS and RCP8.5 as an illustration
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example to show the performance of the proposed spline-based approach.

2.3.3.1 Estimation of priors b0 andB0

The mean prior b0 and diagonal covariance matrix prior B0 of β(x) can be estimated

by likelihood-based methods. In this section, b0 and B0 are estimated by maximizing the

likelihood function. The estimated prior is given as follows:

b̂0 = [−1.20,−2.31,−1.48,−0.32, 1.63, 3.54,−6.47, 1.38],

B̂0 = diag{8.97, 41.4, 20.9, 1.15, 3.22, 1.24, 0.15, 1.17e− 3}.

2.3.3.2 Estimated β(x) Coefficients

The posterior of β(x) at each x level can be obtained by Equations (2.8)-(2.9). The

results of estimated β(x) are summarized both in Table 2.3.1 and Figure 2.3.2. In Table

2.3.1, the first column denotes the CLIFVMAX level. β(x) can be calculated for any

CLIFVMAX level in the continuous space. Based on β(x), the prediction of sea level

contribution at any time t can be provided by Equation 2.3. We show the estimation of

β(x) at each discrete CLIFVMAX level in Table 2.3.1 along with its standard deviation.

The estimation of β(x) at a continuous space of CLIFVMAX level is demonstrated in

Figure 2.3.2 with its 95% confidence interval.

2.3.3.3 Contribution of each basis function in spline-based model

An example at CLIFVMAX = 12 is used to demonstrate the cumulative effect of each

basis in the spline function in Figure 2.3.3. It provides an intuitive idea about how the

spline-base approach works to approximate the target curve through each spline basis. β0

to β3 takes effect on the full time t horizon, while β4 to β7 only makes contribution beyond
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Figure 2.3.2: Posterior distributions of βi(x). From top left to bottom right, β(x) is presented in
ascending order, from β0(x) to β7(x). Grey shading reflects 95% confidence interval (1.96 standard
deviation away).
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Table 2.3.1: Estimated β(x) coefficients at each CLIFVMAX level (standard deviation in parenthe-
sis)). First column denotes CLIFVMAX level.

β0 β1 β2 β3 β4 β5 β6 β7
0 -2.50(1.17) -5.46(2.55) -3.90(1.84) -0.92(0.44) -0.99(0.67) 6.59(0.50) -5.64(0.20) 1.33(0.02)
1 -2.24(1.17) -5.10(2.54) -3.72(1.83) -0.88(0.44) -0.71(0.67) 6.26(0.50) -5.72(0.20) 1.34(0.02)
2 -2.03(1.16) -4.73(2.53) -3.46(1.82) -0.81(0.44) -0.39(0.67) 5.90(0.49) -5.81(0.20) 1.34(0.02)
3 -1.87(1.16) -4.34(2.53) -3.13(1.82) -0.71(0.43) -0.03(0.67) 5.49(0.49) -5.91(0.19) 1.35(0.02)
4 -1.70(1.16) -3.89(2.52) -2.75(1.82) -0.61(0.43) 0.37(0.67) 5.03(0.48) -6.03(0.19) 1.36(0.02)
5 -1.56(1.16) -3.44(2.52) -2.31(1.81) -0.47(0.43) 0.81(0.67) 4.53(0.48) -6.17(0.19) 1.37(0.02)
6 -1.40(1.16) -2.90(2.52) -1.83(1.81) -0.34(0.43) 1.29(0.67) 3.98(0.48) -6.32(0.19) 1.37(0.02)
7 -1.20(1.16) -2.23(2.52) -1.30(1.81) -0.24(0.43) 1.78(0.67) 3.39(0.48) -6.49(0.19) 1.38(0.02)
8 -0.95(1.16) -1.52(2.52) -0.79(1.81) -0.14(0.43) 2.29(0.67) 2.77(0.48) -6.66(0.19) 1.39(0.02)
9 -0.74(1.16) -0.88(2.52) -0.28(1.82) -0.02(0.43) 2.78(0.67) 2.17(0.48) -6.83(0.19) 1.39(0.02)
10 -0.48(1.16) -0.26(2.53) 0.17(1.82) 0.08(0.43) 3.26(0.67) 1.59(0.49) -6.99(0.19) 1.40(0.02)
11 -0.21(1.16) 0.36(2.53) 0.58(1.82) 0.17(0.44) 3.71(0.67) 1.04(0.49) -7.14(0.20) 1.41(0.02)
12 0.05(1.17) 0.96(2.54) 0.97(1.83) 0.23(0.44) 4.12(0.67) 0.53(0.50) -7.28(0.20) 1.42(0.02)
13 0.36(1.17) 1.55(2.55) 1.28(1.84) 0.27(0.44) 4.49(0.67) 0.07(0.50) -7.41(0.20) 1.42(0.02)

the location of its corresponding knot ξ1 to ξ4.

2.3.3.4 Prediction at each CLIFVMAX level

With the distribution of β(x), one can make prediction on sea level contribution at

any value of CLIFVMAX and time. By doing Leave-one-out cross validation(LOOCV),

the prediction at each CLIFVMAX is shown in figures 2.3.4a and 2.3.4b. To be more

specific, the ”one” in LOOCV means to leave out an entire ice-sheet model run. From the

prediction plots, it appears that the predictions are quite close to the true values from the

ice-sheet model, with reasonable uncertainties. The comparison of the prediction and the

corresponding actual value given by the simulation at each CLIVMAX level at year 2054,

2092 and 2491 are listed in the Table 2.3.2. Sea level contribution is averaged every 19

years denoted by the central year. (For example, sea level contribution at year 2054 is the

sea level contribution averaged from year 2045 to year 2063.)
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Figure 2.3.3: Cumulative effect of each basis function term in the spline-based model for one
example sea-level curve at CLIFVMAX = 12. From the top left to the bottom right, β0(x), β1(x)t,...,
β7(x)(t− ξ4)3+ are added sequentially to the model. (Note that the scale of Sea Level Contribution
is different in each subplot.)
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Table 2.3.2: Comparison of Prediction of Sea Level rise at each CLIFVMAX level (standard devi-
ation in parenthesis)) and the actual value from simulation at specific years. First column denotes
CLIFVMAX level.

CLIFVMAX Year 2054 Year 2092 Year 2491
Actual(m) Prediction(m) Actual(m) Prediction(m) Actual(m) Prediction(m)

0 -0.02 -0.02(0.026) -0.04 -0.13(0.015) 0.41 0.40(0.897)
1 -0.02 0.02(0.005) -0.00 -0.06(0.004) 1.65 1.81(0.158)
2 -0.01 0.05(0.004) 0.02 0.01(0.003) 3.18 3.23(0.114)
3 -0.01 0.06(0.004) 0.05 0.05(0.003) 4.85 4.85(0.112)
4 -0.01 0.07(0.004) 0.07 0.09(0.003) 6.54 6.61(0.112)
5 -0.01 0.07(0.004) 0.09 0.13(0.003) 8.50 8.50(0.112)
6 -0.01 0.05(0.004) 0.11 0.13(0.003) 10.39 10.35(0.112)
7 -0.01 0.02(0.004) 0.13 0.14(0.003) 11.96 12.08(0.112)
8 -0.01 -0.03(0.004) 0.15 0.13(0.003) 13.30 13.33(0.112)
9 -0.01 -0.06(0.004) 0.17 0.15(0.003) 14.58 14.67(0.112)

10 -0.01 -0.07(0.004) 0.19 0.18(0.003) 16.09 15.84(0.112)
11 -0.01 -0.08(0.004) 0.22 0.22(0.003) 17.18 17.03(0.114)
12 -0.01 -0.10(0.005) 0.24 0.26(0.004) 18.02 17.84(0.158)
13 -0.01 -0.12(0.026) 0.26 0.28(0.015) 18.81 18.48(0.897)

As expected, predictions at CLIFVVMAX = 0 and 14 have the widest prediction intervals

among all the CLIFVVMAX value, because essentially extrapolation is implemented when

making prediction at these two CLIFVVMAX levels. In the early years, the prediction

uncertainty is quite small. As time passes by, the prediction uncertainty increases with the

scale of sea level rise.

2.3.3.5 Residuals of full fitted model and prediction

The residual plot resulting from the spline-based fitted model is shown in Figure 2.3.5,

in which the levels of CLIFVMAX are coded by color. We find that the majority of the sea-

level signal is already explained by this model. Throughout the full time horizon from year

1950 to year 2500, the difference between the actual value and the fitted value is strictly

within 30cm. The sea level rise contributions in 21st century draws the most attractions
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(a)

(b)

Figure 2.3.4: Comparison of predictions using spline-based emulation and ice-sheet model using
LOOCV. Grey shading reflects 95% confidence intervals (prediction uncertainty). (a)CLIFVMAX
level is even. (b)CLIFVMAX level is odd.
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Figure 2.3.5: Residuals of the spline-based fitted model at each CLIFVMAX level. Each color
matches one CLIFVMAX level displayed in the legend.

among researchers. From the residual plot, it shows that our model, in particular, works

well in the early year with less than 10cm discrepancy most of the time.

2.3.3.6 Coverage ratio of prediction uncertainty

To assess the accuracy of prediction uncertainty, experimental coverage probability is

used to estimate the nominal value calculated by dividing number of observations inside

their Prediction Interval (PI) by the total number of observations. For each PI, the coverage

ratio should be close to the given PI percentage. If more data fall within the PI than

expected, the PI is too conservative. Whereas if fewer data fall within the PI, then then the

PI is too aggressive. We find that the coverage ratio is 95.6% for the 99.7% PI (3 standard

deviations above and below the predictive mean), 87.2% for the 95% PI (1.96 standard

deviations from the predictive mean) and 69.0% for the 68% PI (1 standard deviation from
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the predictive mean). It is interesting to observe that the prediction uncertainty given by the

spline-based model is almost consistent with the experimental coverage, which supports

credibility of uncertainty quantification provided by the proposed method.

2.4 Discussion and Concluding Remarks

The spline-based statistical emulation for predicting outputs of the PSUice model ad-

dresses some of the limitations in the Antarctic ice-sheet simulator itself. It is continu-

ous, enabling prediction at the entire range of CLIFVMAX for a single CREVLIQ value.

It borrows information from close CLIFVMAX value through Gaussian Process prior to

provide an statistical emulator with adequate approximation locally. Compared to full

Gaussian Process model, it is parsimonious so that it brings computational advantages.

The spline-based emulator provides a good fit with the given data set and credible pre-

diction uncertainties for any prediction. With the current framework, it is easy to extend

the spline-based approach to accommodate CREVLIQ as an input variable of the model,

as well as more outputs from the climate model as inputs in an emulator of the ice-sheet

model, if applicable, in the future.

Future work can be tried in the following directions. First, since the model fitting and

prediction is more important before year 2100, except placing more knots between year

2000 and year 2100 as proposed in Section 2.3, applying a weighted loss (penalizing more

on the discrepancy at the early year) when fitting the spline might also improve the ac-

curacy of our model in 21st century. Second, Maximum Likelihood Estimation is used to

give a rough estimation of the mean and covariance prior of the coefficients of the proposed

model. More sophisticated likelihood-based method can be implemented to estimate the

prior, as well as the range parameter in Matérn 3/2 correlation function. A fully Bayesian
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framework could also work here. In addition, there may be advantages to quantifying in-

formation from different emissions scenarios to inform ice-sheet changes to build a full

model. Furthermore, information such as precipitation (provided by the climate model)

could prove valuable for emulating changes in the ice-sheet volume. Modeling with these

techniques will permit inquiries across any reasonable range of human emissions and ac-

companying climate changes, an important feature not yet available to the spline-based

technique.
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López, V. and Hamann, H. F. (2011). Heat transfer modeling in data centers. International Journal

of Heat and Mass Transfer, 54(25-26):5306–5318.

Mardia, K. V. and Marshall, R. J. (1984). Maximum likelihood estimation of models for residual

covariance in spatial regression. Biometrika, 71(1):135–146.

Marsh, L. C. and Cormier, D. R. (2001). Spline regression models, volume 137. Sage.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). Comparison of three methods for se-

lecting values of input variables in the analysis of output from a computer code. Technometrics,

21(2):239–245.

Medley, B., McConnell, J. R., Neumann, T. A., Reijmer, C. H., Chellman, N., Sigl, M., and Kipfs-

tuhl, S. (2018). Temperature and Snowfall in Western Queen Maud Land Increasing Faster Than

Climate Model Projections. Geophysical Research Letters, 45(3):1472–1480.



68

Mengel, M., Levermann, A., Frieler, K., Robinson, A., Marzeion, B., and Winkelmann, R. (2016).

Future sea level rise constrained by observations and long-term commitment. Proceedings of

the National Academy of Sciences, 113(10):2597–2602.

Mercer, J. H. (1978). West antarctic ice sheet and co2 greenhouse effect: a threat of disaster.

Nature, 271.

Mitrovica, J. X., Gomez, N., Morrow, E., Hay, C., Latychev, K., and Tamisiea, M. E. (2011).

On the robustness of predictions of sea level fingerprints. Geophysical Journal International,

187(2):729–742.

Mitrovica, J. X., Hay, C. C., Kopp, R. E., Harig, C., and Latychev, K. (2018). Quantifying the

sensitivity of sea level change in coastal localities to the geometry of polar ice mass flux. Journal

of Climate, 31(9):3701–3709.

Nordman, D. J., Lahiri, S. N., and Fridley, B. L. (2007). Optimal block size for variance estimation
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