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Reports of the application of near infrared (NIR) spectroscopy to analyses of lipid
oxidation in solid foods generally indicate poor performance. To elucidate reasons for this,
effects of sample packing and presentation (off-centered rotation) on NIR analyses were
examined in a sampling system miniaturized to employ amounts of material feasible for research
studies. Packing and presentation conditions affording the best performance in qualitative studies
were utilized in quantitative assays to determine the ability of NIR to monitor lipid oxidation in
model solid food systems by comparison with reference chemical analyses of conjugated dienes,
lipid hydroperoxides, and carbonyl products.

Preliminary investigation indicated constant forming pressure and rotational averaging
during scanning reduced variation among replicate scans of mixtures of up to 15% (w:w) lipid
with white rice flour. Neat pecan or canola oils oxidized at 40°C for up to sixteen weeks and
assayed chemically for conjugated dienes, lipid hydroperoxides and carbonyls were used to
prepare 7.5% (w/w) oil : white rice flour samples for NIR analysis with constant pressure and
rotation. Canola oxidized more readily than pecan oil, reaching apparent maxima for conjugated

dienes and peroxides; however, carbonyls developed only near the end of incubation.
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NIR models of oxidation used either the full spectrum (4000 - 10,000 cm™) or
wavenumber ranges selected by statistical model improvement techniques. Full spectrum models
of conjugated dienes or peroxides for pecan oil samples showed very poor correlations with
chemical analyses; neither was improved by wavenumber selection. Full spectrum models for
canola oil samples were slightly better and improved with wavenumber selection.

Peroxide value model quality rose with sample numbers; the opposite occurred for
conjugated dienes. The best peroxide value models included far fewer wavenumbers than
conjugated diene models, which were more susceptible to interference from various sources.
Results from wavenumber selection appeared pathway dependent, varying with samples used and
pretreatments applied in the initial model. Spectral reproducibility among nominally identical
samples was the primary hindrance to quantitative correlations for conjugated dienes and
peroxide values. Thus, improvements in sample presentation mechanisms and software may

render NIR suitable for quantitative analysis of lipid oxidation in solid food systems.
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1. INTRODUCTION

Near infrared (NIR) spectroscopy is a rapid analytical technique which if successful can
supplant some traditional chemical assays and the associated time, labor and material costs. It is
environmentally sound as NIR obviates the use of hazardous chemicals. Its speed can expand the
scope of analytical programs at negligible cost, affording certainty of ingredient quality prior to
use in manufacturing. This is particularly advantageous in an increasingly demanding regulatory
environment, ensuring legal compliance and minimizing losses from producing non-salable
goods.

While in theory this technology appears promising, its practical application has often
been limited to simple systems or to analytes present as bulk constituents in more complex ones.
NIR has been used in pharmaceutical analysis, where strict tolerances for the purity and identity
of products provide uniformity advantageous to the application of the technique. It has also been
used in the analysis of agricultural commodities for qualitative identification of origin as well as
quantitative analysis of bulk constituents. Both pharmaceuticals and agricultural commodities are
simpler analytical systems than those of food products, which are nonhomogeneous in nature.
The application of NIR to food systems has met with mixed results depending on the complexity
of the system and the amount of analyte present therein.

Our interest lies in the analysis of lipid oxidation in foods. In addition to the advantages
discussed above, the speed of NIR could greatly benefit the determination of lipid oxidation
products. These analytes pose challenges for traditional chemical assays given their transient and
labile nature, particularly in solid food systems where extractions must be performed without
changing the amount and distribution of lipid oxidation products. Unfortunately, the literature
generally indicates poor performance among NIR analyses of lipid oxidation in solid food
systems. This result reflects the fact that oxidation products are typically present in small

amounts in a complex and nonhomogeneous food matrix.



To overcome the problem posed by nonhomogeneous systems, NIR practitioners have
adopted averaging techniques in which each spectrum is a composite of spectra acquired from
multiple locations of a sample. Given the number of replicates required to construct a reliable
NIR model, such techniques can demand amounts of sample impractical for a research lab.
While it is possible to reuse samples when quantities are limited, the practice involves physically
disrupting the sample between spectral measurements to generate multiple views of the same
sample. Such approaches are impractical for labile analytes such as lipid oxidation products.

The primary objective of this research was to assess the ability of NIR to monitor lipid
oxidation in solid foods using model systems and to determine the effects of various factors on
the analysis. Each model system included minor amounts (5 — 15% (w/w)) of a fat or oil mixed
with white rice flour. Studies of oxidative degradation were performed by incubating the lipid
constituent alone prior to mixing with flour to obtain the NIR sample. Reference chemical
analyses were thus able to be performed on the lipid component without the complicating effects
of a prior extraction.

Specific objectives of this research included assessing the feasibility of a miniaturized
NIR sampling system to use amounts of sample manageable for a typical research lab and
assessing techniques for sample handling and scanning to minimize sources of spectral variation.
The ability of NIR to discriminate among model systems comprising minor amounts of (a)
different lipids or (b) identical fats or oils at different stages of oxidation were investigated. We
also assessed quantitative NIR assays for three specific markers of lipid oxidation.

The knowledge gained from this research will be particularly useful in rapid assays of
lipid oxidation and more generally for rapid analysis of minor constituents in solid food systems.
If the adverse impact of sample handling and presentation methods, sample nonhomogeneity and
other factors can be identified and corrected, it may be possible to extend the cost-effective, green

benefits of NIR to a much broader range of analytes in solid foods



2. BACKGROUND

2.1 NIR Basics

Near Infrared (NIR) spectroscopy has attracted considerable attention since it was first
used in the analysis of agricultural commodities decades ago. Proponents of the technology
assert numerous advantages including rapid sample measurement, often on the scale of seconds to
minutes, minimal to no need for sample preparation, the potential for measurement without
destruction of the sample, and the ability to use inexpensive optical accessories such as glass or
even plastic during measurement (Osborne & Fearn, 1986). The NIR region of the spectrum
spans the wavelength range from 780 to 2500 nm, or in the units commonly employed by
practitioners, the wavenumbers from 4000 to 12,821 cm™. Nestled between the visible region
(wavelengths lower than 780 nm) and the mid-infrared (mid-IR) (wavelengths above 2500 nm),
the NIR is characterized by signals arising from overtones and combination bands of the
fundamental molecular vibrations which occur in the mid-IR region (Workman & Weyer, 2008).
Unlike the discrete, sharp bands afforded by these fundamental stretching, bending or
deformation vibrations, their overtones and combinations are broad bands with reduced intensity
which typically overlap each other (Osborne & Fearn, 1986). Thus, the NIR was for some time
thought to be lacking as an analytical tool despite the recognition of utility of the mid-IR region.

NIR attracted renewed attention with the advent of modern computing, when
developments in speed and processing power made the use of multivariate statistical analyses to
analyze and extract information from raw spectra a reality. A wide and varied host of such
analyses are encompassed within the discipline known as Chemometrics, which sits at the
interface of analytical chemistry, statistics and computing (Brereton, 2003). Whereas wet
chemical analysis of a sample requires either a technique capable of specifically detecting an
analyte within a sample or a physical separation of the analyte from interferents prior to detection,

Chemometrics offers the potential for mathematical isolation of the signal of an analyte of interest



from a complex sample using little or no sample preparation. Early NIR practitioners saw the
potential of Chemometrics to obviate the perceived shortcoming of the broad, overlapping bands
in this region. Moreover, the diminished signal intensity thought to render NIR of secondary
import to mid-IR gave rise to a notable advantage. Given the strong signals of many materials in
the mid-IR, lenses and other optical accessories used for sample presentation to the instrument are
limited to expensive materials such as quartz which afford minimal spectral interferences. A host
of other, more cost-effective accessories become available for use in NIR considering the reduced
intensity of interfering signals from materials such as borosilicate glass and the ability to parse
spectral components with Chemometrics (Osborne & Fearn, 1986).

The union of NIR analysis and Chemometrics holds significant promise for faster,
greener, more cost-effective analyses when properly employed in a sampling program. These
techniques are often used to supplant wet chemical techniques requiring substantially more labor
and time in the preparation and performance of an analysis, as well as the use of consumables
such as hazardous chemicals with their own acquisition and disposal costs. In other cases, the
speed of NIR enables the performance of analyses that were not possible prior to its use, such as
routine and rapid lot testing upon receipt of shipments. These analyses can be used to flag
potentially problematic materials for further assessment by wet chemical techniques. This
minimizes the time, labor, cost, and waste associated with such analyses as they are used only
when necessary. Moreover, with little additional cost companies obtain improved certainty in the
quality of materials to be used in making their products prior to manufacturing. This obviates
losses incurred in using labor, materials and equipment time to produce non-salable goods.

NIR can be applied to determine constituents and/or physical properties of a sample for
qualitative or quantitative purposes. Determinations of constituents have evolved with the
technology. Early adopters used NIR to analyze bulk quantities such as protein, lipid, or moisture
content, while more refined assays for specific compounds have since been added to the growing

body of literature in the field. As a physical technique, NIR has been used in the determination of



properties such as hardness in pharmaceutical tablets (Guo et al., 1999) as well as kernel hardness
in wheat and digestibility in forages (Williams, 2001). Qualitative assays categorize known
samples by their spectral features to develop models for accurate identification of unknowns. An
example would be to identify agricultural commodities emanating from certain growing regions.
Quantitative assays correlate spectral features with known values of quantities or parameters of
interest measured by reference techniques to supplant those techniques in future analyses. An
example would be to monitor hexanal content in oxidized oil based on a model developed with

data from GC analyses (Jensen et al., 2001).

2.2 General Procedures for the Use of Chemometrics in Spectroscopy

2.2.1 Preparation of Spectra for Chemometric Analysis via Pretreatment
It is often helpful and thus a common practice to pretreat spectra prior to the application
of chemometrics. Pretreatment assists in separating the overlapping bands of the signal and
minimizes the effects of noise. There are three categories of pretreatments, namely,
normalization, smoothing, and derivatization. Pretreatments from multiple categories are often

used, and hybrid approaches spanning categories are also possible.

2.2.1.1  Normalization
Normalization functions are used to reduce baseline variations among different spectra
(NIRCal 5.4 Software Manual). The effect of normalization on a set of spectra of mixtures of oil
and flour is shown in Figure 1. The 135 spectra shown include all three replicate scans acquired
for each of fifteen sample tablets made from each of the three batches of oil drawn at a single

time point of the quantitative accelerated shelf life study performed herein.
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In the analysis of solid systems, particularly those of granules or powders, particle size
effects, packing (pressure) differences and sample thickness give rise to light scattering that
confound spectra (NIRCal 5.4 Software Manual). Scattering increases with the number of
interactions between light and the sample (Naes et al., 2002). This makes FT-NIR of powdered
samples, which have numerous surface interactions, particularly problematic. As a consequence,
single-point measurements of powdered samples are disfavored and averaging the signal acquired
from a large bed of sample with a rotating sample platform is recommended instead (NIRCal 5.4
Software Manual).

Normalization techniques compensate for scattering by acknowledging that this problem
has both additive (baseline-shifting) and multiplicative (intensity dependent) components (Naes et
al., 2002). Standard normal variate (SNV) transformation of a spectrum first involves taking the
mean and standard deviation of intensities at all wavenumbers in the spectrum. Normalization of
each spectrum by SNV is accomplished by subtracting the mean from the intensity at each
wavenumber and then dividing by the standard deviation (Naes et al., 2002). The result
standardizes the baseline of each spectrum and compensates for intensity fluctuations from

scattering, significantly clarifying the basis for comparison of multiple spectra (Figure 1).

2.2.1.2  Smoothing

Smoothing functions are used to remove noise from the signal obtained during scanning
of a spectrum (Brereton, 2003). The simplest of these functions is a moving average, in which
the intensity measured at a given wavelength is averaged with the measurements obtained at the
surrounding wavelengths as shown in Table 1. The intensity of random noise included in any
single measurement is dissipated by distributing the error over the window of wavelengths

included in the moving average (Brereton, 2003).



Table 1. Windows for smoothing functions.

Moving Average Smoothed Intensity at A,
3-Point Average (M1, M, Mis1)
5-Point Average (M2, M1, Moy M1, Ais2)
7-Point Average (M3, M2, M1, My Akrty Aieiz, Aieis)
9-Point Average (M4, M3, M2y Mty My Mty Mict2, Mit3, Mird)

Unfortunately, as a linear approximation, the moving average method typically
underestimates peak intensity since peaks are better modeled by polynomials (Brereton, 2003).
Also problematic is that polynomial calculations are computationally intensive. To address these
issues, a simplified calculation to approximate polynomials was determined (Savitzky and Golay,
1964). Savitzky-Golay smoothing calculates a set of coefficients based solely upon the order of
the polynomial approximated and the size of the window used for the smoothing operation. The
intensity measured at each wavelength in the smoothing window is multiplied by the
corresponding coefficient, and the smoothed value is simply the sum of these products.

An example of smoothing a spectrum with error from random noise, represented by an
erroneous peak at wavelength 5, is shown in Figure 2. The 5 point moving average function is
only slightly worse than Savitzky-Golay functions at minimizing the error at wavelength 5, but
much worse at modeling the actual peak centered nearby at wavelength 8. In addition to those for
use with original spectra, Savitzky-Golay coefficients have been developed for use with
derivative spectra (Brereton, 2003). A number of conceptually similar window-based smoothing

operations also exist (Brereton, 2003; NIRCal 5.4 Software manual).
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Figure 2. Effect of smoothing on spectra.

2.2.1.3  Derivatization
Derivatization of the original spectrum can enhance features as shown in Figure 3. With
each successive derivatization, the peaks of overlapping bands can be separated and intensified.
Advantageously, inversion of the second derivative of a signal places its peaks in phase with
those of the original spectrum (Naes et al., 2002). However, there are limits as derivatization
enhances noise as well as the signal, which can complicate analysis and interpretation (Naes et

al., 2002). It is also noteworthy that derivatization inherently adjusts the baselines of spectra to a

common value.
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Figure 3. Effect of derivatization on spectra.

2.2.2 Vector Representation of Spectra and Linear Transformation Using

Matrices

The main utility of chemometrics is to simplify complex data. In NIR analyses, a
spectrum is comprised of a large number of measurements at individual wavelengths. As shown
in Figure 4, any spectrum can be represented as a vector in Cartesian space having an axis
corresponding to each wavelength (NIRCal 5.4 Software manual). Although this simple example
involves only three wavelengths, the Buchi NIRFlex instrument scans 1501 wavelengths,
indicating the advantage of chemometric algorithms designed to reduce the dimensionality of this
vector representation. Such algorithms operate to rotate and scale the vector representation in

space by transforming the original coordinate system into a new one where axes correspond to
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linear combinations of the original variables actually measured, known as “latent variables.” It is
often the case that the dimensionality of the original representation can be reduced, as shown in
Figure 4 where the rotated and scaled vector lies along a single dimension.

For simplicity, Figure 4 shows the effect of this transformation on a single spectrum. In
practice, multiple vectors corresponding to the spectra in a set of samples are involved as shown
in Figure 5. Spectra may be pretreated and measurements at each wavelength are then mean
centered prior to transformation. Mean centering results in a vector representation solely

indicative of the variation existing among the sample spectra.
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Figure 4. Effect of linear transformation on the vector representation of a spectrum.



12

In chemometrics, matrices are used to make the linear transformations described above
(Naes et al., 2002). For a set of samples, the mean centered intensities measured at a given
wavelength represent the variation among the samples along one of the axes in the original
coordinate system. These intensities can be collected in a vector vi. Multiplying v with a matrix
M transforms or “maps” v; into another vector va:
Mv, = v,
The new vector v, represents the variation among the samples along a new axis forming

part of the new coordinate system.
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Figure 5. Linear transformation applied to a set of samples.
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2.2.3 Results of Linear Transformation: Latent Variable Isolation

Linear transformation generates a new coordinate system in which each vector
representing the variation from the mean for a particular sample spectrum in Cartesian space is
recast. Each axis in the new coordinate system is a linear combination of the wavelength axes of
the original Cartesian space. This linear combination is defined by weight factors indicating the
importance of each of the original axes to the new axis. These weights are called loadings (Naes
et al., 2002; Brereton, 2003). The placement of each vector in the new coordinate system is given
by new coordinates for the corresponding sample called scores (Naes et al., 2002; Brereton,
2003).

2.2.3.1 Loadings
The loadings for each of the two principal components from the linear transformation

example of Figure 5 are shown in Figure 6. Loadings for a given principal component are often
shown as spectra since there is a value for each wavelength from the original set of x variables
(NIRCal 5.4 Software Manual). As different moieties within molecules absorb at characteristic
wavelengths, loadings aid in identifying the relationship between each principal component and
the chemical composition of the samples. Comparisons are made with the use of a Colthup chart
which indicates chemical moieties and their corresponding absorbances in the NIR region. A
Colthup chart comprising observations from the literature on the use of NIR in lipid oxidation
studies is provided in Appendix A.

2.2.3.2  Scores

The scores for each of the two principal components from the linear transformation
example of Figure 5 are shown in Figure 7. This scores plot shows the location of the four
samples used in the example in principal component space. The points in the scores plot

correspond to the vertices of the corresponding transformed vectors from Figure 5.
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2.3 Limitations in the Application of NIR to Food Analysis

The examples provided above are both simplified and idealized. In practice, FT-NIR
analyses involve far more wavelengths as well as numerous replicate measurements of each
sample to ensure statistical significance. Small differences in replicate spectra of a sample can
result in variation among the corresponding scores. These differences often arise from random
errors inherent in spectroscopic analyses, but can also arise from the nature of the sample.

Depending on the analyte of interest, the variation among scores of nominally identical
samples may render analysis impossible. When samples differ greatly in comparison to the
variation among replicates, separation of clusters of scores is possible (Figure 8a). When changes
among the samples assayed are similar in magnitude to the variation among replicates, analyses
can fail as shown in Figure 8b where the samples on the left are unable to be resolved.

Most solid foods are inherently heterogeneous. Thus, spectroscopic assay of different
locations in the same solid food sample will result in different spectra due to differences in
composition. Additionally, as a physical technique, FT-NIR is affected by light scattering, which
increases dramatically for granular and powdered solids. These compositional and physical
sources of variation limit the resolving power of FT-NIR analyses of many solid foods. Thus,
while FT-NIR has been used for the assay of bulk constituents of solid foods (Osborne & Fearn,
1986), its use for trace constituents has been problematic (see, e.g. Dellarosa et al., 2015).

A common practice used to minimize variation in granular or powdered solid food
samples is rotational averaging (NIRCal 5.4 Software Manual). This involves rotating a bed of
the sample, often in a petri dish, past the detector as spectra are acquired. The output is a single
average spectrum derived from scans of different points of the sample acquired as it is swept past
the detector. Although rotational averaging helps to reduce variation it typically requires large
amounts of any given sample. This can be prohibitive in a research environment in which many

different samples are systematically investigated and only small quantities are available.
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2.4 Chemometric Approaches to Construct and Assess NIR Models

An overview of the various chemometric techniques used to generate NIR models is
presented in Figure 9. Details of the statistical measures used to assess model fitness during
validation are shown in Appendix B.

In this investigation, we employed Principal Components Analysis (PCA) for qualitative
assessments in pilot studies to discriminate among different lipids incorporated in model solid
food systems, among lipids at different stages of oxidation incorporated in model solid food
systems, and among different sample forming pressures and modes of presentation (stationary vs.
rotating) to the NIR. We employed Partial Least Squares Regression (PLSR) for quantitative
assessments of indicators of lipid oxidation in model solid food systems using data from chemical

reference assays.
2.5 Review of the Literature: NIR Studies of Lipid Oxidation

2.5.1 Lipid Hydroperoxides
NIR spectroscopy has been used for the determination of peroxide values in both edible
oils and food products. A number of research groups have reported varying degrees of
correlation between NIR calibrations and reference methods for peroxide values in investigations
of neat oils. In solid food systems, correlations are typically hindered by the reduced amount of
analyte, interferences from other constituents of the food matrix and the nonhomogeneous nature
of foods.

2.5.1.1  NIR Analyses in Neat Oils

The most prevalent application of NIR to determine peroxides in lipids has been in the study neat
oils. Mixed results have been reported from studies of different lipids using different oxidation
conditions, sample preparation and presentation techniques. Different treatments of spectroscopic

data also affected outcomes, with most studies indicating optimal pretreatments.
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2.5.1.1.1 Poor to Fair Quality NIR Models

Studies in which NIR models of poor to fair quality for peroxide values were found in
neat lipids are shown in Table 2. Each of the four investigations cited used iodometric titration as
the reference assay, whether described in EU regulation EEC/2568/91 (Armenta et al., 2007),
AOAC standard methods from 1990 (Cozzolino et al., 2005) or 1995 (Szabo et al., 2009), or
IUPAC 2.501 (Cayuela Sanchez et al., 2013). Only the study of lard (Szabo et al., 2009)
involved oil samples that were thermally treated according to an accelerated oxidation study.
Thus, the ranges of peroxide values in many of these studies were smaller than those in the
accelerated shelf life studies described below. Moreover, the mean value of peroxides was
typically skewed toward the low end of each range, further indicating the effect that limited
oxidation could have had on these studies.

Each of these studies used partial least squares to model pretreated data from large
spectral ranges. Armenta et al. (2007) used 4599-5450 cm™! and 7498-11959 cm™ for both olive
oil and sunflower, seed and maize oil models and 4550-5450 cm™ and 6100-7500 cm! for the
combined model, each of which relied upon first derivative and normalization pretreatments.
Cozzolino et al. (2005) used 4000-9091 cm™ (1100-2500 nm) with second derivative treatment
and Savitzky-Golay smoothing. Szabo et al. (2009) used 4000-12,500 cm™! with multiplicative
scatter correction, second derivative and smoothing pretreatments. Cayuela Sanchez et al. (2013)
applied variable selection techniques to choose wavenumber ranges from within an overall range
of 4000-28,571 cm™! with normalization of absorbance data as the only pretreatment. That group
appeared to have the best validation results based solely upon the RPD value.

Interestingly, two studies (Armenta et al., 2007; Cayuela Sanchez et al., 2013) used
transmittance instruments with increased path lengths than those used in the transflectance
instruments of the others (Cozzolino et al., 2005; Szabo et al., 2009). Thus, both modes of

sample presentation were applied in this group. The number of samples used also ranged from
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moderate (33 in Armenta et al., 2007 and Szabo et al., 2009) to large (245 in Cayuela Sanchez et
al., 2013). Other factors such as extent of oxidation must have adversely affected these results.

It was noteworthy that all but the Armenta et al. (2007) study exhibited fair to poor
linearity among their calibration data sets (r* in Table 2), which typically indicates assay
condition problems. Cozzolino et al. (2005) stated that operational constraints caused at least a 5
day delay between the NIR and reference analyses, during which time samples were stored in the
dark at room temperature. Changes in peroxide values between assays were thus the likely reason
for the inability to obtain a linear calibration. Szabo et al. (2009) found a calibration 1> of only
0.483 for samples subjected to stability testing. However, that study applied eight frying
temperatures (160-230°C) for eight hours per day for up to four days. The authors attributed the
weak correlation to the rapid decomposition of peroxides under their assay conditions. A
dramatic increase in peroxide values was observed after the first eight hours of incubation which
was then followed by a drop almost to initial levels.

Interestingly, Cayuela Sanchez et al. (2013) reported a calibration r* of only 0.87 using
199 calibration samples, quartz apparatus for sample presentation and computerized variable
selection techniques to optimize wavenumber ranges used in the model. A box and whiskers plot
of the calibration samples indicated approximate values of Q1, Q2 and Q3 were 9, 12, and 26
meq/kg. Thus, although the overall range of peroxide values was moderately large (up to 43.0
meq/kg), the bulk of the samples were in the less oxidized area of the range. The authors noted
that the high monounsaturated to polyunsaturated fatty acid ratio and the natural presence of
strong antioxidants in virgin olive oil afforded high resistance to oxidative degradation. The fair
linearity among calibration samples may indicate issues regarding sensitivity of the technique and

the model may be improved by incorporating samples with higher levels of oxidation.



Table 2. Poor to fair quality NIR models for peroxide values in lipids from the literature.

. Number of Sample Range Model | RMSEC | RMSEP SEC SEP |Calibration|Validation
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10 Validation - (7)
9 Predicti Prediction (RMSEV) (Val)
rediction) . (Mean 6 SD 2)
Transmittance
36 in 6.5 mm i.d 18-7
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2.5.1.1.2 Improved Quality NIR Models from ASL Studies

Studies that employed accelerated shelf life (ASL) testing generally increased the range
of sample oxidation and resulted in improved models for peroxide values in neat oils. These
studies used various thermal or illumination conditions to oxidize samples of olive, sunflower,
rapeseed, soybean, canola, safflower or cottonseed oils. More recent studies applied partial least
squares, while previous ones found single or double wavelength models to be optimal after
application of multiple linear regression to spectral data.

Studies that found better PLS models for peroxide values in neat oils are summarized in
Table 3. Each used iodometric titration as the reference assay, whether by AOCS Official
Methods Cd 8b-90 (Manley & Eberle, 2006) or Cd 8-53 (Yildiz et al., 2001), or by EU
Regulation 61/2011, L23 (Wojcicki et al., 2015). All were ASL studies. Manley and Eberle
(2006) used moderately elevated temperatures with illumination for up to 10 weeks on extra
virgin olive oil. Wojcicki et al. (2015) applied higher temperatures in darkness for up to only 15
days on olive, sunflower and rapeseed oils. Yildiz et al. (2001) used illumination with fluorescent
light for up to 180 hours (7.5 days) to oxidize soybean oil. Peroxide value ranges varied with
ASL conditions and oil type, but were generally larger than those of studies cited in Table 2.

PLS models were successfully generated using both transmittance and transflectance
modes for sample presentation. Manley and Eberle (2006) compared results using two different
FT-NIR spectrometers, a Perkin Elmer IdentiCheck and a Buchi NIRLab N-200. Measurements
on the Perkin Elmer spectrometer were made at four different resolutions (64, 32, 16 and 8 cm™)
using quartz cuvettes at each of 2 path lengths (0.2 mm and 0.5 mm) in transmittance mode.
Measurements on the Buchi spectrometer were performed in transflectance mode at a higher
resolution (4 cm™) using glass Petri dishes fitted with a 0.3 mm high reflectance plate affording a
path length of 0.6 mm overall. Although paired comparison tests indicated no significant
differences among peroxide value model quality using different path lengths and scanning

resolutions, significant differences were observed among the two spectrometers respecting the
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standard deviation of repeated measurements. The instrument which relied upon quartz cuvettes
resulted in reduced standard deviation among measurements which was attributed to the
consistent path length provided. Measurements from the instrument which relied upon Petri
dishes for sample presentation indicated fluctuations arising from different path lengths due to
their irregular surfaces. The authors noted that transmittance would be preferable to
transflectance in cases such as this where the sample presentation apparatus affected variation
among measurements. Sample presentation in both of the other PLS model studies was via
transmittance using longer path lengths. Yildiz et al. (2001) relied upon both 1 and 2mm quartz
cuvettes, with better validation results arising from the latter. Wojcicki et al. (2015) described
their measurement cell as an 8 mm wide glass vial.

Optimized models in extra virgin olive oil (Manley & Eberle, 2006) were obtained using
only normalization as a pretreatment from 4000-9091 cm™ (1100-2500 nm) for the transmittance
instrument and 4000-10,224 cm™ (978-2500 nm) for the transflectance instrument. Absorbance
increases throughout the NIR spectra were observed with oxidation, with particular effect
between 4545 and 5000 cm™! attributed to the formation of unsaturated hydroperoxides.

Although Wojcicki et al. (2015) investigated the use of both mid and near IR, the best
models for peroxides were found to arise solely from the NIR region. Peroxide models in olive,
sunflower and rapeseed oils used mean-centered absorbance spectra from 4000-12,500 cm™. PLS
models for sunflower and rapeseed oil required fewer factors than the model for olive oil.
Peroxide formation was fastest in sunflower oil, followed by refined rapeseed oil, cold-pressed
rapeseed oil, and olive oil in keeping with fatty acid content and levels of natural antioxidants.
As samples oxidized, spectral absorbances rose at 4810 cm™ as well as on the lower energy side
of a peak at 7068 cm™!, which correlated with characteristic hydroperoxide bands at 4831 cm™ and
6849 ¢cm™! determined by Holman (Holman et al., 1958). Principal component analysis on a
combined sample set of all oils indicated that 90% of spectral variation was accounted for by two

principal components. Loadings of PC1, which accounted for 75% of the variation, included
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bands at 4800 cm™ and 6852 cm!, both attributable to the generation of hydroperoxides. PC2
appeared to correlate with unsaturated structures lost upon oxidation.

The optimized PLS model for peroxides in soybean oil (Yildiz et al., 2001) used first
derivative pretreatment of the range from 1100-2200 nm (4545-9091 cm™). Key changes among
oxidized samples were observed at 1200-1400 nm (7143-8333 cm™'), 1700 nm (5882 cm™'), and
2000-2200 nm (4545-5000 cm™!). These features were attributed to OH stretching vibrations, CH
stretching vibrations, and OH combination bands, respectively. Although the range of peroxide
values was almost as narrow as studies from Table 2, validation statistics were greatly improved
likely due to the more even distribution of peroxide values in this ASL study. The number of
PLS factors (13) was highest among the studies in Table 3 given the diminished extent of
oxidation, in keeping with the observation of Wojcicki et al. (2015).

Yildiz et al. (2003) subsequently used this PLS model in a comparison among iodometric
titration (AOCS Official Method Cd 8-53) with NIR as well as the ferrous xylenol orange (FOX),
and PeroxySafe™ chemical assays in five soybean oils oxidized with fluorescent light for up to
216 hours. Hydroperoxides determined by iodometric titration correlated highly with both their
NIR method (r = 0.991 and the Standard Deviation of Differences (SDD) = 0.72 meq/kg) and the
PeroxySafe™ method (r = 0.993 and SDD = 0.56 meq/kg). They observed a weaker correlation
between iodometric titration and the FOX method (r = 0.975 and SDD = 2.3 meq/kg).
Accordingly, they concluded that iodometric titration, NIR and the PeroxySafe™ assay were

equivalent for the determination of peroxide values in soybean oil



Table 3. Partial Least Squares (PLS) NIR models for peroxide values in lipids from the literature.
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le and double wavelength NIR models from MLR for peroxide values in lipids from the literature.
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Studies that found good models for peroxide values in neat oils using one or two
wavelengths determined from multiple linear regression (MLR) are summarized in Table 4. In a
three week accelerated shelf life study of soybean oil held at 75 °C, Cho et al. (1998) found a
model incorporating two wavelengths, primarily 2080 nm (4808 cm') and secondarily 2020 nm
(4950 cm™), was not significantly improved upon by the inclusion of additional wavelengths.
Second derivative pretreatment of spectra was used to separate the signals arising from other
chemical changes during oxidation from those of interest. Validation statistics indicated excellent
fit (r>= 0.992 and RPD = 11.5). This model was highly accurate in the early stages of lipid
oxidation during peroxide accumulation; however, during longer periods where peroxide
decomposition occurred, the accuracy of the model dropped. This phenomenon was previously
observed (Hong et al., 1994) and was later cited by Szabo et al. (2009) to explain the poor
performance of NIR in assessing peroxides in oils subjected to frying temperatures long beyond
the point at which they decomposed.

An accelerated shelf life study by Takamura et al. (1995) followed peroxide values up to
600 meq/kg in stripped canola, olive and safflower oils and up to 30 meq/kg in soybean and
cottonseed oils subjected to autooxidation at 50 °C. Peak intensity at 2084 nm (4798 cm™!) in
second derivative spectra correlated highly with peroxide values in each of these oils. Models
using only this wavelength for each oil exhibited > > 0.988 and small standard errors of
prediction for the ranges of peroxides assessed (8.5, 12.7 and 19.2 meq/kg for canola, olive and
safflower oils and 0.83 and 1.37 meq/kg for soybean and cottonseed oils). The authors noted that
Holman et al. (Holman et al., 1958) reported lipid peroxides at 1460 and 2070 nm (6849 and 4831
cm'!), and that the difference between the latter and the 2084 nm (4798 cm™') peak they observed
was likely due to the pretreatment applied. They also confirmed that this peak was due to
hydroperoxides using pure systems of methyl linoleate autooxidized at 50 °C and observing

losses in this peak in methyl linoleate hydroperoxide upon reduction with sodium borohydride.
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Among the more easily oxidized oils, single wavelength models from another area of the
spectrum also correlated well with peroxide values (1746 nm (5727 cm™) in olive oil, 1744 nm
(5734 cm™) in canola oil, and 1742 nm (5741 cm™) in safflower oil).

The importance of the band in the 4800 cm™! range determined by both the Cho and
Takamura groups as well as that in the 5700 cm™' range determined by Takamura was reinforced
by Yildiz et al. (2001). In their soybean oil study discussed above, the Yildiz group also
performed multiple linear regression and found the best four wavelength models at both 1 mm
and 2 mm path lengths. The 1 mm model included 2070 nm (4831 cm™"), 2036 nm (4912 cm’!),
1746 nm (5727 cm’"), and 1400 nm (7143 cm™"), while the 2 mm model included 2068 nm (4836
cm!), 2016 nm (4960 cm™), 1612 nm (6203 cm'), and 1242 nm (8052 cm™). In both cases, the
band around 2070 nm (4831 cm™") was highly significant, while the band at 1746 nm (5727 cm™")
appeared in the model for the same 1 mm path length used in the study by the Takamura group.
Despite agreement with the Takamura group’s finding that 2084 nm was critical, Yildiz et al.
(2001) cautioned against a single wavelength approach given the potential of interference from a
variety of other hydroxyl containing compounds.

2.5.1.2  NIR Analyses in Complex Food Systems

Attempts to monitor peroxide values in solid food systems via NIR have generally been
unsuccessful. The food matrix complicates spectra by reducing signal intensity for analytes of
interest relative to their levels in neat oils, adding potential interferences from signals of matrix
constituents and giving rise to homogeneity issues resulting in increased variation among
measurements of the same sample in different areas. The matrix also complicates correlation
between NIR and chemical reference assays as the latter typically require lipid extraction prior to
analysis, a process which can lead to differences between the NIR sample and the reference assay
sample. These problems require the application of controls over sample presentation during
scanning as well as consideration of what constitutes a representative sample and what spectral

regions should be used to construct models.
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The studies summarized in Table 5 are generally indicative of these complications.
Jensen et al. (2001) investigated walnut kernels and Dellarosa et al. (2015) investigated seven
formulations of precooked fish cakes using ferric thiocyanate reference methods for peroxides.
Kaddour et al. (2006) investigated three food products, salted crackers, moist Asian noodles, and
healthy crackers, as well as bulk rapeseed oil using iodometric titration (AOCS Official Method
Cd 23-93) as the reference method.

Although all three were shelf life studies, only Kaddour et al. (2006) was a true ASL,
with products subjected to 40 °C for up to two months. The others used chilled (0 to 5 °C)
(Jensen et al., 2001; Dellarosa et al., 2015) or room temperature (Jensen et al., 2001) conditions to
track oxidation during normal shelf life conditions for those products. Peroxide value ranges in
the lower temperature studies were small to moderate, resembling those in studies of neat oils
which yielded poor models (Table 2) and likewise implicating the sensitivity of NIR for these
analytes. Ranges of peroxide values for the products in the Kaddour et al. (2006) study varied
according to fatty acid content (saturated vs. unsaturated) and disposition of lipid within the
product (homogeneous throughout or on the surface), and for all products except salted crackers
were far higher than those of the other studies in Table 5. NIR models of the most oxidized
product investigated, moist Asian noodles, relied on data from only the first half of the study
because after a few weeks drying of the product altered spectra and degraded model quality.
(Kaddour et al., 2006) Nevertheless, these models had the best validation statistics (RPD) among
those in Table 5, likely due to the extent of oxidation.

Sample sizes were moderate, with the models of the Kaddour et al. (2006) ASL using
roughly half (17-24) the number as the normal shelf life studies (50 for Jensen et al. (2001) and
45 for Dellarosa et al. (2015)). Jensen et al. (2001) drew duplicate walnut samples at TO as well
as 3, 8, 12, 16 20 and 25 weeks under each of the four assay conditions for chemical analysis.
Kaddour et al. (2006) drew samples ‘periodically’ up to 60 days. Dellarosa et al. (2015) drew fish

cake samples at TO as well as 4, 7, 14 and 28 days of storage, the stated shelf life of the product.
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Under three of the four conditions studied (storage at 21°C with or without illumination
and 5 °C with illumination) by Jensen et al. (2001), peroxide values in walnuts were observed to
rise and then fall within the duration of the study. The precooked fish cakes of Dellarosa et al.
(2015) were fried and baked prior to the study; peroxides formed during cooking and measured in
the TO samples dropped by the second time point and then rose again with the third. The
inclusion of samples from after the point at which peroxides degraded, according to the findings
of Cho et al. (1998) and Hong et al. (1994), may also have adversely affected models in both
studies.

Due to the volume of work, chemical and NIR assays of walnuts were unable to be
performed on the same day (Jensen et al., 2001). Samples were stored at 5 °C in vacuum packed
bags in the dark in the intervening time, the duration of which was not specified. Although these
conditions were improved over those of Cozzolino et al. (2005) (five days in the dark at room
temperature), they were similar to those of Dellarosa et al. (2015) who observed a drop in levels
of peroxides in fish cakes during the first four days of chilled storage. Thus, changes in peroxide
content of the samples between assays may have impacted the correlation between chemical
testing and NIR in models of the walnut study.

Sample presentation in the solid food systems studies occurred by reflectance
spectroscopy. Ground walnut kernels were scanned in reflectance mode using a rotating sample
cup with a quartz window and a compressive paper disk to ensure constant pressure on the sample
(Jensen et al., 2001). Kaddour et al. (2006) scanned products both intact and after grinding using
a fiber optic probe. Dellarosa et al. (2015) did not specify the exact mode of sample presentation
other than that a Bruker Optik MPA spectrometer was used on minced fish cakes. On the issue of
sample homogeneity, scans of walnuts employed rotational averaging, while five scans of distinct
areas in stationary samples were averaged for spectra of minced fish cakes. It is questionable

whether five stationary points (Dellarosa et al., 2015) or the use of a fiber optic probe (Kaddour et
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al., 2006) would result in a representative sample given the heterogeneous nature of foods. The
improvement in the fit of calibration observed by Kaddour et al. (2006) for healthy crackers upon
grinding (r?of 0.711 versus 0.575 for intact samples) is further evidence that sample
heterogeneity is an important consideration.

It is also important to consider the spectral regions to use in a model. Excellent
correlations for peroxide values have been found in neat oils using single and double wavelengths
in the 4800 - 5000 cm™' area as well as the 5730 cm™! area (Cho et al., 1998; Takamura et al.,
1995). Jensen et al. (2001) found NIR to correlate poorly with peroxides (validation r? = 0.55)
using second derivative spectra in the combined visible and NIR ranges (400 - 2498 nm or 4003 -
25,000 cm™). Results using an NIR specific range (1850 - 1980 nm or 5051 - 5405 cm™') proved
much worse (validation r? = 0.28); however, this range did not include any of the wavelengths
indicative of peroxides from other literature and was chosen because it provided the best
separation among oxidized walnuts generally in principal component analysis scores plots. This
simply indicates that changes in peroxides were not the principal driver to alter spectra of walnuts
under the oxidation conditions used in that study.

Full spectrum models were also used in Kaddour et al. (2006) (1000 - 2500 nm or 4000 -
10,000 cm™") and Dellarosa et al. (2015) (800 - 2500 nm or 4000 - 12,500 cm™), and the latter also
used a slightly truncated region (1100 - 2200 nm or 4545 - 9091 cm-1) based upon the findings of
Yildiz et al. (2001). Kaddour et al. (2006) reasoned that many of their models suffered because
sample sets were too small. Dellarosa et al. (2015) cited the minimal range of peroxide values
and interference from the food matrix for the lack of fit. Although these factors contributed to
their results, and in addition to the other issues with these studies noted above, the finding that a
small number of wavelengths correlated well with peroxide values (Cho et al., 1998; Takamura et
al., 1995) could indicate that the wavelength ranges used to construct these models were too

large.
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Studies in solid food systems highlight two problems associated with NIR analysis of
lipid oxidation products. One is the sensitivity and limit of detection, since as shown in several of
the studies cited above, NIR models tend to be poorer when peroxide levels were low or when
high levels of other products were also present. Whether this arose directly due to low
absorptions from hydroperoxides or indirectly due to interferences from other oxidation products
remains to be determined. Another problem inherent in correlating NIR data with chemical
analyses is that the latter require extraction of lipids from the solid matrix. This usually alters the
endogenous oxidation status (e.g. increasing some products and decomposing others) and,
depending on the extraction method, is often incomplete. Thus, analyses of extracts of solid

materials may not detect the same products as those determined by NIR of the intact materials.

2.5.2 Conjugated Dienes

NIR spectroscopy has been used to develop models of varying quality for conjugated
dienes in soybean oil and olive oils. As shown in Table 6, models were created using PLS as well
as combinations of four wavelengths isolated from forward stepwise MLR. These studies
primarily relied upon transmittance spectroscopy with quartz optics and used large sample sets.

During the ASL study of soybean oil cited above in the discussion of peroxide values,
Yildiz et al. (2001) also assessed NIR models to quantify conjugated dienes. Reference assay
values were obtained as percent conjugated dienes by measurement at 233 nm according to
AOCS Official Method Ti 1a-64 (1990). As oxidation via fluorescent light proceeded, changes in
levels of conjugated dienes tracked those of peroxides. Initial conjugated diene values for the
eight soybean oils ranged from 0.20-0.26%, and although a range of conjugated dienes was not
reported, the mean of both calibration and validation samples was 0.31% with a standard

deviation around 0.1%.



Table 5. Partial Least Squares (PLS) NIR models for peroxide values in solid food systems from the literature.
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Models were made using samples scanned in 1 mm or 2 mm path length quartz cuvettes,
with the latter observed to provide improved validation statistics. All soybean oil models
reported in Table 6 used first derivative pretreatment of spectra. A discrepancy was observed
when wavelength ranges were optimized to provide the best PLS models for each path length.
Although the best 2 mm model used 1100 - 2200 nm (4545 - 9091 cm™!), 1 mm models were not
improved by excluding the 2200 - 2500 nm range (4000 - 4545 cm™). Yildiz et al. (2001)
proposed that nonlinearities observed at longer path lengths in that region were likely responsible.
As a result, the wavelength range for the best 1 mm path length model of conjugated dienes
differed from that shared by the best 2 mm path length model and the best models of peroxides at
both path lengths.

In addition to indicating the importance of a primary wavelength in the 2064-2070 nm
region (4831-4845cm™), four wavelength MLR models for conjugated dienes using data from
each path length indicated discrepancies based on sample thickness (Table 6). Two of the four
wavelengths for the 1 mm model, 2430 nm (4115 ¢m™) and 2350 nm (4255 ¢cm™), fell within the
region excluded by PLS models of the thicker sample. The remaining two wavelengths were
shared, including the primary wavelength and one at 1396-1398 nm (7153-7163 cm™).

Validation statistics indicated PLS and MLR models were fair for 1 mm and good for 2
mm path length. They were also robust as shown by good results obtained with an external
validation set of thirty samples made from ASL treatment of three additional oils (Table 6).
Although good correlation of NIR with conjugated dienes was observed, Yildiz et al. (2001)
noted that it was not as strong as that obtained for peroxides (see Table 3).

Manley and Eberle (2006) investigated conjugated dienes in extra virgin olive oil samples
oxidized for up to 10 weeks at 35°C using the specific extinction coefficient at 232 nm (K232)
(Table 6). As they observed for peroxides, paired comparison tests showed a statistically
significant reduction in the standard deviation of measurements of conjugated dienes from NIR

spectra acquired via transmittance in quartz cuvettes relative to those by transflectance in glass
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petri dishes. The best PLS model based upon transmittance relied upon the 4000-9091 c¢cm'!
range, had only six factors and provided a validation 1? of 0.94 and a RPD of 3.62 indicating it
was suitable for screening. The best PLS model based upon transflectance used the 4000-10,224
cm’! range, had only four factors and provided a validation r? of 0.87 and a RPD of 2.56
indicating it was only suitable for very rough screening. They did not elaborate on the specific
wavelengths contributing to the fit of this model. Oxidation increased absorption throughout the
spectrum with particular effect between 4545-5000 cm™' (2000-2200 nm), which was attributed to
increased unsaturation and peroxide formation.

Cayuela Sanchez et al. (2013) also investigated conjugated dienes using K232 in virgin
olive oil samples. Although transmittance was used in 5 mm path length quartz cuvettes, the best
PLS model obtained had an RPD of 2.56, the worst value obtained among studies with such
sample presentation apparatus in Table 6. This likely indicates the sensitivity of NIR for
conjugated dienes as the study was a survey of collected oils, rather than an ASL, resulting in a
range of K232 values approximately one quarter of the size used by Manley and Eberle (2006).
Although the visible/NIR range of 350-2500 nm (4000-28,571cm™) was used initially, the model
was the result of multiple rounds of wavelength selection based on regression coefficients. The

final wavelengths used in this model were not reported.
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2.5.3 Carbonyls

Researchers have investigated the use of NIR to determine secondary products of lipid
oxidation in both neat oils and food systems. These secondary products comprise a variety of
carbonyl compounds, including saturated and unsaturated aldehydes, ketones and acids.
Unfortunately, direct evaluation of carbonyls is not possible because these groups do not give rise
to signals in the NIR region. (See, e.g., Yildiz et al., 2001; Dellarosa et al., 2015) Thus, NIR
assays must rely on changes in related moieties such as aldehydic C-H bonds which do exhibit
signals to determine secondary lipid oxidation products. Attempts to model carbonyl values,
hexanal, and free fatty acids using NIR have met with mixed success.

2.5.3.1 Total Carbonyl Value

During their investigation of quality alterations in lard upon extended heating at frying
temperatures ranging from 160-230 °C, Szabo et al. (2009) also assessed the ability of NIR to
model carbonyl values as determined by hydroxylamine-HCI titration. Carbonyl values of the 33
samples ranged from 3.61-21.6 with a mean of 8.18 and standard deviation of 4.59. The best PLS
model was based upon a single factor and arose from a very weak calibration (r*=0.109). The
standard error of cross validation (SECV) reported (4.57) indicated a very poor RPD of 1.00 for
the model. The authors speculated that very low concentrations of carbonyls could be responsible
for the lack of correlation with NIR.

2.5.3.2 Hexanal

NIR has been determined to be moderately predictive of hexanal content in walnut
kernels (Jensen et al., 2001) as well as peanuts and muesli (Jensen et al., 2004) (Table 7). These
studies relied upon static GC headspace analysis as the reference assay for hexanal, reported in
mg per kg of food product. The nuts were investigated as high fat foods (walnuts 53% fat w/w;
peanuts 50% fat w/w), while muesli products were high carbohydrate foods (62 and 65% w/w for

products I and II). Peanuts were evaluated at five time points within their shelf life as well as one
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at the twenty four week shelf life and one at twenty six weeks (Jensen et al., 2004). Both muesli
products were evaluated at four, seventeen and twenty six weeks, well within their thirty six week
shelf life. However, muesli I was exposed to 2900 lux fluorescent light, while muesli II was
further investigated at thirty four weeks and considerably beyond its shelf life at thirty nine, forty
two and fifty two weeks (Jensen et al., 2005).

PLS models of hexanal using the full visible/NIR spectral range had moderate correlation
with validation samples in walnuts (r*> = 0.72), peanuts (r* = 0.64), muesli I (r* = 0.70), and muesli
II (r> = 0.83) (Table 7). While limitation of the spectral ranges used to certain areas of the NIR
did not improve models in nuts, validation statistics for samples of muesli I improved (r* = 0.80)
by use of 5650 - 5994 cm™!. Thus, it appears hexanal models could be slightly better in high
carbohydrate foods rather than high fat ones. Oddly, the best model in Table 7 was obtained for
muesli I, which had the smallest range of hexanal values among samples. This may indicate an
issue with these results. The literature indicates that moderate correlation of hexanal content can
be made using NIR. Jensen et al. (2004) concluded that spectroscopic methods were useful to
complement though not replace chemical assays.

2.5.3.3  Free Fatty Acids

Attempts to use NIR to model free fatty acids (FFA), usually as percentage or
concentration of oleic acid content, have been moderately successful in both neat lipid systems
and solid food systems. These models arose from investigations of shelf life studies of neat
lipids (Cho et al., 1998; Szabo et al., 2009), discrimination of plant oils from various sources
(Manley & Eberle, 2006; Armenta et al., 2007; Cayuela Sanchez et al., 2013), discrimination of
oil byproduct of fish meal (Cozzolino et al., 2005) and fish meat (Karlsdottir et al., 2014) by
species and collection season, and discrimination of beef (Realini et al., 2004) and poultry breast

meat (Berzaghi et al., 2005) based on dietary conditions.
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2.6 Issues raised by analysis of the literature

Considering all the studies cited above, issues of concern that impede the progress and
acceptance of NIR as a valid and useful tool for analyzing lipid oxidation include the following:

1) Most calibrators are prepared from lipids extracted from foods and analyzed for lipid
oxidation while NIR analyzes intact food samples with matrices intact and lipids unmodified.

2) Non-homogeneity of foods on a molecular scale leads to large variation in NIR data,
which in turn impairs ability to develop and apply accurate mathematical models of foods.

3) Chemical analyses used to quantitate target molecules in calibrators seldom have the
same sensitivity as NIR, impairing strong correlations in mathematical models.

4) Detailed analysis of chemometric models is often overlooked, leading to the
possibility of incorrect correlation of spectral features with chemical analyses.

Much still needs to be learned to optimize NIR analyses of solid samples, particularly in

the context of lipid oxidation in foods.



41

3. HYPOTHESIS AND OBJECTIVES

3.1 Hypothesis and Overall Objective
Fourier Transform Near Infrared Spectroscopy and Chemometrics can provide qualitative
and quantitative information about lipid oxidation in complex food systems with minimal sample
preparation, as reflected by using a solid food model system having minor amounts of oils
analyzed for conjugated dienes, lipid hydroperoxides, and carbonyl products of lipid oxidation.
Many food companies have rejected use of NIR for on-line and quality control analyses
of lipid oxidation, claiming poor sensitivity, large data scatter, and general inaccuracy, i.e. factors
inherent in NIR as a methodology. Some basic research has also reported poor performance of
NIR in identifying lipid oxidation in foods or model systems. This research questions these
assessments and seeks to determine if apparent problems with NIR analyses stem from limitations
of NIR spectroscopy itself or rather from practical issues of sample handling and analysis.
Accordingly, we start with the working hypothesis that NIR indeed has the capabilities to
detect and differentiate products of lipid oxidation in foods and model systems, and propose that
poor results with NIR analyses arise from suboptimal handling of samples, inappropriate or
inaccurate calibrators, and random application of chemometric statistical analyses. Development
of robust and accurate NIR analyses will probably require considerable revision and tailoring of

approaches, rather than just transferring methodologies, e.g. from mid-IR.

3.2 Specific Objectives
1. Identify and minimize sources of spectral variation to improve methods for sample handling
and presentation to the FT-NIR and enable analysis of lipid oxidation in complex solid food
model systems using sample sizes practical for a research laboratory.
a. Test effects of compacting solid food samples rather than analyzing loose particles, and
of forming pressure used to compact miniaturized samples of solid food model systems of oil

mixed with white rice flour on variability of FT-NIR spectra and principal component scores.
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b. Test effects of rotational averaging in miniaturized samples of solid food model
systems of oil mixed with white rice flour on variability of FT-NIR spectra and principal
component scores.

2. Test the ability of FT-NIR to discriminate among fats and oils present as a minor ingredient in
a model solid food system primarily composed of white rice flour.

3. Test the ability of FT-NIR to discriminate among model solid food systems with different
oxidation levels in oils present as a minor ingredient by preparing the model systems with fresh
soybean, canola, sunflower or safflower oil as well as with oils subjected to oxidation at 60°C for
one, two or three weeks.

4. Test the ability of FT-NIR to accurately quantify three markers of lipid oxidation, conjugated
dienes, lipid hydroperoxides, and carbonyls, in solid food model systems with different oxidation
levels in lipids present as a minor ingredient, by including canola and pecan oils chemically
assayed for those markers both fresh and after oxidation at 40°C at six time points up to fifteen

weeks.
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4. EXPERIMENTAL PROCEDURES

4.1 Experimental Design

This study was undertaken to evaluate the performance of FT-NIR for analysis of lipid
oxidation in solid food systems and to determine factors impacting that performance. Our
laboratory recently acquired an FT-NIR instrument with a sample platform dedicated for the
analysis of solids, thus we needed to prepare a model solid food system. The system was chosen
to model the composition of cereal-based food products. White rice flour was chosen as the main
constituent based on its widespread use in food products. Given the complexity imparted to the
system by food processing techniques and the need for certainty that lipid oxidation per se was
being modeled, shelf life studies were conducted by exposing neat lipids to oxidation at elevated
temperatures prior to mixing with white rice flour at room temperature at the time of analysis.
This procedure eliminated the need to extract lipids from a solid matrix prior to chemical analysis
and thus provided lipids of identical composition for both chemical and NIR analyses.
Preliminary investigations using moderate sample sizes indicated a scattering problem in spectra.
Thus, the overall experimental design addressed the development and testing of a miniaturized
FT-NIR sample platform prior to conducting an accelerated shelf life (ASL) study to assess the
ability of FT-NIR to quantitatively monitor lipid oxidation in model solid food systems.

4.1.1 Development of a Miniaturized FT-NIR Sample Platform

FT-NIR models of chemical or physical parameters require a large number of replicates
to ensure accuracy and fit. Depending upon the sample presentation format available, this can
give rise to the need for large amounts of sample as well as related requirements for glassware
and incubator and storage space. This makes the use of FT-NIR for systematic lab-scale
investigation prohibitive without an appropriate mini or microscale sample presentation format.
Thus, we developed a miniaturized format for use in the shelf life study reported herein as well as

for general analyses of foods and model systems by NIR.
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FT-NIR analyses of complex solid food systems are complicated by variation due to
inhomogeneity of composition and differences in sample packing. Variation can be particularly
confounding in analyses involving only minor changes in composition among different samples.
The shelf life study herein was one such case, as changes were limited to those attributable to
oxidative degradation of a minor constituent of the model system. Accordingly, we assessed
means to reduce spectral variation by controlling material packing and increasing spectral
sampling by rotation in a miniaturized sample holder. Successful modifications should improve
modeling not only of the markers of lipid oxidation, but also of minor constituents in food
systems more generally.

The experimental design for development and testing of the FT-NIR miniaturized
sampling system is shown in Figure 10. Studies were undertaken to determine if FT-NIR data
acquired from small samples was reproducible and could provide models which accurately
discriminate among food systems containing different lipids. Additionally, studies were
undertaken to determine if FT-NIR could discriminate among small samples made with the same
lipid at different stages of oxidation. Finally, studies were undertaken to determine the effects of
forming pressure applied during sample preparation and of sample rotation during FT-NIR
analysis on variation in scores plots. These variation studies used models based on pressure
differences per se as well as the best model obtained for qualitative discrimination of oxidation in
canola oil mixed with white rice flour. The latter provided insight into the degree to which

pressure and rotation could affect the results of FT-NIR analyses of lipid oxidation.
4.1.2 Assessment of FT-NIR for Quantitation of Indicators of Lipid Oxidation
The experimental design for the accelerated shelf life study to determine the ability of

FT-NIR to quantitatively monitor lipid oxidation in canola and pecan oils incorporated in model

solid food systems is shown in Figure 11.
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Neat oils were incubated at 40°C to induce oxidation and triplicate samples were withdrawn at
different time points for chemical analysis of three markers of lipid oxidation, namely, conjugated
dienes, lipid hydroperoxides and soluble carbonyls. The same oil samples were mixed with white
rice flour for FT-NIR analysis on the following day using the miniaturized sampling system
developed herein. Data from reference and spectroscopic assays were then used to develop and

test models for each marker in the respective model solid food systems.

4.2 Materials

4.2.1 Solvents

18 MQ resistivity water was obtained by purification of doubly-distilled deionized water
through a four-cartridge Milli-Q™ water purification system with two ion exchange cartridges for
removal of metals. (EMD Millipore Corporation, Billerica, MA) This purified water is referred
to as distilled deionized water herein.

Acetonitrile (Omnisolv® LC-MS Grade) was acquired from EMD Millipore (Billerica,
MA, USA).

Chloroform (J.T. Baker HPLC Grade), Isooctane (2, 2, 4-Trimethylpentane) (Macron
Fine Chemicals™ ChromAR®) and Isopropyl Alcohol (Macron Fine Chemicals™ UltimAR®
HPLC Grade) were acquired from Avantor Performance Materials (Center Valley, PA, USA).

N, N — Dimethylformamide (Chromasolv® Plus for HPLC (>99.9%)) was acquired from
Sigma-Aldrich (St. Louis, MO, USA).

4.2.2 Reagents

2, 4 — Dinitrophenylhydrazine (70%) was acquired from Aldrich Chemical Co., Inc.
(Milwaukee, WI, USA).

Formic Acid (>98%) was acquired from EMD Millipore (Billerica, MA, USA).

Lauric Aldehyde (>98%) was acquired from Aldrich (St. Louis, MO, USA).

The PeroxySafe™ STD Kit was acquired from MP Biomedicals, LLC (Solon, OH, USA).
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4.2.3 Sample Materials

White Rice Flour (Remyflo R 7-150) was acquired from Beneo Inc. (Morris Plains, NJ,
USA).

Pecan Oil was received as a generous donation from Kinloch Plantation Products
(Winnsboro, LA, USA).

Chicken Fat was received as a generous donation from Royal Canin U.S.A., Inc. (Saint
Charles, MO, USA).

The following fats and oils were purchased in local stores:

Canola Oil, Wegmans, Wegmans Food Markets (Rochester, NY, USA).

Flaxseed Oil, GNC Certified Organic, General Nutrition Corporation (Pittsburgh, PA,
USA).

Lard, Leidy’s®, ALL Holding Co., Inc. (Harleysville, PA, USA).

Palm Oil, Spectrum® Naturals Organic Shortening, Hain Celestial Group, Inc. (Lake
Success, NY, USA).

Safflower Oil, Hollywood®, Hain Celestial Group, Inc. (Boulder, CO, USA).

Soybean Oil, Crisco®, The J.M. Smucker Company (Orrville, OH, USA).

Sunflower Oil, Loriva®, Blue Marble Brands, LLC (Providence, RI, USA).

4.3 Equipment
The Buchi NIRFlex N500 FT-NIR (Buchi Corporation, New Castle, DE, USA) is a
modular instrument for analyzing many types of materials. Our experiments were conducted with
the transflectance-based solids module (Figure 12). Transmission involves passing radiation
through a sample and detecting the modified beam on the opposite side. Reflectance involves
detecting the modified beam bouncing back from the sample surface on the same side as the
incident radiation. Transflectance, like reflectance, involves detecting the modified beam

bouncing back from the sample; however, like transmittance, the radiation penetrates beyond the
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sample surface. Accordingly, transflectance involves collecting radiation which interacts with the
sample prior to returning to a detector placed on the same side of the sample as the source of the

impinging radiation.

Figure 12. Buchi NIRFlex Solids N500 FT-NIR instrument used in this study.

The Buchi FT-NIR accommodates a number of platforms for sample presentation. The
instrument was originally acquired with a rotating platform for large petri dishes full of solid
materials. Unfortunately, the amount of sample as well as incubator and freezer space plus
glassware required was excessive for a systematic research program, making analysis of a large
number of samples difficult if not prohibitive. Accordingly, an adjustable vial holder was
acquired to accommodate small samples. Initial experiments using borosilicate glass shell vials

to hold small amounts of sample indicated a high degree of spectral variation due to inconsistent
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thickness and poor optical quality of vial bottoms. More importantly, the holder did not rotate
and thus allowed only single point measurements for each sample, which per the manufacturer
were unadvisable for the powdered sample mixtures of our model food systems.

Also, a bed of powdered or granular sample contains gaps of air at random locations,
which can result in the detection of NIR radiation that has not fully interacted with the sample.
Such non-interacted radiation has been reported to lead to spectral variation (Yoon et al., 2013).
Curvilinearity of response in NIR measurement of powdered samples is also known to give rise to
variation (Barnes et al., 1989). Although certain pretreatments may be applied to raw spectra to
reduce these effects, the sensitivity of our application for lipid oxidation analyses in complex
food systems required better reproducibility than these algorithms could provide. We therefore
sought to apply a forming pressure to the samples to minimize air dispersed within the samples.

Sample packing is known to affect NIR spectra to such an extent that NIR has been
applied to measure tablet compaction in the pharmaceutical industry (Guo et al., 1999; Roggo et
al., 2005). To test the effect of applying a forming pressure in our model systems, samples were
pressed into tablets using a manually-operated Carver hydraulic press (Carver, Inc., Wabash, IN,
USA) (Figure 13). Following initial experiments, the incorporation of a digital pressure gauge
(Figure 13, bottom right) confirmed that the Carver was incapable of applying pressure
reproducibly to each sample. Thus, it was necessary to ascertain whether the differences in
pressure exerted on different samples during forming added to variability among sample spectra,
confounding the NIR analysis.

To explore this issue, a lever press (Figure 14) was constructed to ensure application of
reproducible pressures during forming of the samples. The lever press arm weighed 65 Ibs and
had holders positioned to confer a mechanical advantage of 5X, 10 X, 15 X and 20 X to any
weights applied. Plate weights were obtained from a local fitness store and masses verified with

a Toledo scale (Mettler-Toledo, Columbus, OH, USA).
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Figure 13. Carver hydraulic press used to prepare sample tablets for NIR analysis.

)

Figure 14. Lever press constructed for compacting samples at discrete pressures.
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Approximately 4 g of each sample were pressed in a 1.125 inch diameter die which
provided a 0.994 square inch sample tablet (Figure 15). In initial experiments, spectra were
acquired by placing the pressed sample on a washer which was then inserted directly over the
coverplate window. This window was centrally disposed over the rectangular NIR beam,
resulting in a stationary scan on the center of the tablet through the hole in the middle of the
washer. To reduce variation by expanding the surface area scanned by the NIR, a rotating sample
holder was mounted on the original coverplate as shown in Figure 16. The motorized apparatus

turned a sample holder insert one revolution every 15 seconds (4 rpm).

Figure 15. Compacted 7.5% (w/w) canola oil : white rice flour samples.
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The sample holder was disposed off-center from the original coverplate window so that the beam
would sweep over the full surface of the sample during rotation. Compacted samples varied in oil
content from 7.5 to 15% (w:w), and ranged from moderately to very friable depending upon oil
content and forming pressure applied. To structurally support the samples during measurement
and accommodate scanning of the larger surface area, they were placed on 1.125 inch diameter, 2
mm thick borosilicate glass discs (Specialty Glass Products, Inc., Willow Grove, PA, USA)
(Figure 17). The discs rested on a lip in the base of the sample holder insert. These pressing and

sample rotation techniques were used in all quantitative FT-NIR analyses in this study.

Figure 17. Insertion of compacted sample on borosilicate glass disc in sample holder.
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4.4 Experimental Methods

4.4.1 Discrimination of 15% w/w Lipid : White Rice Flour Mixtures

Commercial products of canola oil, sunflower oil, soybean oil, safflower oil, flaxseed oil,
chicken fat, palm oil, lard and white rice flour were obtained from the sources cited in 4.2 above.
In stainless steel bowls, 61 g of each oil was coated onto 345 g of white rice flour using a
handheld electric mixer to make mixtures of 15% (w/w) lipid: white rice flour. Ten samples were
prepared from each mixture by pressing 4 g in a 1.125 inch diameter die using a Carver press at
one half metric ton of pressure for three seconds. After 20 minutes, each sample was placed on a
washer and three replicate spectra were scanned on the NIRFlex Solids N500 without rotation
(Figure 18). Qualitative models to discriminate among the different lipid mixtures were
generated in NIRCal by dedicating seven of the samples to calibration and three to validation sets,

respectively.

Figure 18. Scanning of a stationary sample tablet on a washer.
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4.4.2 Discrimination of Degree of Lipid Oxidation : Qualitative ASL Study

To assess the effect of oxidative degradation of oils on the spectra of their respective
mixtures with white rice flour, soybean oil, sunflower oil, safflower oil, and canola oil heated for
up to three weeks at 60°C were assayed by NIR each week. Samples of 12 g of each oil were
placed in 50 mL borosilicate glass serum bottles (Wheaton Industries, Inc., Millville, NJ, USA)
and incubated in a Hybaid HS9360 rotisserie hybridization oven (Thermo Fisher Scientific,
Waltham, MA, USA) at 60°C in darkness using a rotation speed setting of 6.5. A laboratory
tissue was secured over the mouth of each bottle to block particulate matter while allowing
oxygen to interact with the sample. Each week a single bottle of each oil was assayed, providing
4 time points including the TO sample.

Each sample was withdrawn from the oven and allowed to cool to room temperature
before 10 g of oil was coated on 56.67 g of white rice flour to produce a 15% (w:w) lipid mixture
in a stainless steel mixing bowl using a whisk. Ten replicate samples were prepared for NIR by
pressing 4 g of the mixture in a 1.125 inch diameter die using a Carver press at one half metric
ton of pressure for three seconds. After one hour, each sample was placed on a washer and three
replicate spectra were scanned on the NIRFlex NIR Solids without rotation (Figure 18).
Qualitative models to determine if spectral features corresponding to oxidative changes in oils
were discernible were generated in NIRCal by dedicating seven of the samples to calibration and

three to validation sets, respectively.

4.4.3 Discrimination of Identical Samples Subjected to Different Pressures
In initial experiments, the Carver press was used to apply a “forming” pressure to remove
air in an attempt to reduce spectral variability from packing differences inherent in powdered
samples. However, addition of a precise digital pressure gauge to the press indicated this press
could not be used to apply pressure reproducibly to each sample. Thus, it was necessary to

ascertain whether the differences in pressure exerted on different samples during forming added
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to variability among sample spectra, confounding the NIR analysis. The objective of this
experiment was to determine whether NIR could discriminate among samples packed at various
forming pressures far lower than those employed in pharmaceutical tableting operations where
the use of NIR to monitor compaction has been reported (Guo et al., 1999; Roggo et al., 2005).

A 15% (w/w) mixture of canola oil and white rice flour was prepared by dropwise
addition of 40 g of canola oil during mixing of 226.7 g of white rice flour in a kitchen stand mixer
fitted with a dough hook attachment. Four sets of ten samples each were prepared by pressing 4 g
samples in a 1.125 inch diameter die using the lever press with 13.75 Ibs, 15 1bs, 16.25 Ibs and
17.5 1bs applied to the 20X holder. Factoring in the die area of 0.994 in® and the weight of the
lever arm, the nominal pressures applied to the respective sample sets were 340 psi, 365 psi, 390
psi and 415 psi. After one hour, each sample was placed on a washer and three replicate spectra
were scanned on the NIRFlex NIR Solids without rotation (Figure 18). Qualitative models to
discriminate among samples prepared with different forming pressures were generated in NIRCal
by dedicating seven of the samples to calibration and three to validation sets, respectively.

This experiment was subsequently repeated using half the amount of oil when results of
the original experiment indicated the highest pressure applied caused oil to separate from the
flour and pool in the tablets, giving rise to increased inhomogeneity. Samples were made from a
7.5% (w/w) mixture of canola oil and white rice flour prepared by dropwise addition of 30 g of
canola oil during mixing of 370 g of white rice flour in a kitchen stand mixer fitted with a dough
hook attachment. Qualitative models to discriminate among samples prepared with different
forming pressures were generated in NIRCal by dedicating seven of the samples to calibration

and three to validation sets, respectively.

4.4 4 Effect of Sample Rotation

Two experiments were performed to determine the effect of rotation on the dispersion of

scores derived from spectra using the qualitative canola ASL model generated from the
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experiment described in 4.4.2.2 above. The miniaturized sampling system with the modified
rotating coverplate described herein was used in both of these experiments.

A 10% (w/w) mixture of canola oil and white rice flour was prepared by dropwise
addition of 72.2 g of canola oil during mixing of 650 g of white rice flour in a kitchen stand mixer
fitted with a dough hook attachment. Each sample tablet took longer to monitor via NIR in these
experiments since spectra were acquired with the same samples stationary and rotating. Thus,
each tablet was prepared immediately before it was assayed. The sample mixture was placed in a

sealed glass jar protected from light during the rotation experiments.

44.4.1.1 Replicate Scans of a Single Sample

The objective of this experiment was to assess the effects of inhomogeneity in a sample
on the variability of scores as well as the potential effects of forming pressure and rotation on that
variability. Replicate scans were made on a 4 g sample of the 10% canola oil: white rice flour
mixture as a free powder and subsequently on another 4 g sample of the mixture as a tablet
compressed at 415 psi. Twenty one replicate scans were acquired at different locations in the
sample by positioning it over the detector using landmarks on the rotating sample holder. These
scans comprised seven cycles of triplicates acquired in chronological order. In each cycle, each
of the triplicate scans was acquired at a location offset by 120° angles relative to the other two.
At each point, a stationary scan was acquired on the sample immediately prior to a rotating scan
beginning at that point. Each spectrum took thirty two seconds to acquire, representing the
average of sixty four scans acquired each half second, regardless of whether the sample was
stationary or rotating during acquisition. Including the time for each scan as well as the time
required to position the sample, the overall time of exposure for the sample on the NIR was just
under half an hour. Sample spectra were translated to scores along the two principal component
axes from the qualitative canola ASL model for comparative statistical analyses of the dispersion

among replicates of stationary and rotating samples of powders and pressed tablets.
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4.4.4.1.2 Replicate Scans of Multiple Samples

The objective of this experiment was to assess the effects of inhomogeneity among
multiple nominally identical samples on the variability of scores as well as the potential effects of
forming pressure and rotation on that variability. Replicate scans were made on two sets of ten
samples of the 10% canola oil: white rice flour mixture. Each sample was made by pressing 4 g
of the mixture into a 1.125 inch diameter tablet. The first set was gently compressed at 115 psi,
while the second set was compressed at 415 psi. For each sample tablet three replicate scans
were acquired, each at a location offset by 120° angles relative to the other two, by positioning
the tablet over the detector using landmarks on the rotating sample holder. At each point, a
stationary scan was acquired immediately prior to a rotating scan beginning at that point. Each
spectrum took thirty two seconds to acquire, representing the average of sixty four scans acquired
each half second, regardless of whether the sample was stationary or rotating during acquisition.
Including the time for each scan as well as the time required to position the sample, the overall
time of exposure for the sample tablet on the NIR was just under five minutes. Sample spectra
were translated to scores along the two principal component axes from the qualitative canola ASL
model for comparative statistical analyses of the dispersion among replicates of stationary and

rotating sample tablets formed at low and high pressures.

4.4.5 Accelerated Shelf Life Study: Quantitative Analysis of Lipid Oxidation
To assess the ability of NIR to discern indicators of lipid oxidation, an accelerated shelf
life (ASL) study was conducted using two commercial oils (pecan and canola) incubated for up to
16 weeks at 40° C in darkness in a Jeio Tech incubator equipped with a rotating platform set at 45
rpm (Jeio Tech, Inc., Woburn, MA, USA). Replicate 10-12 g samples of oil were incubated in 50
ml borosilicate glass serum bottles (Wheaton Industries, Inc., Millville, NJ, USA) covered with a

laboratory wipe to block particles but allow for oxygen to interact with the sample. For each oil,
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18 samples were incubated, allowing assay of three replicate samples for each of six time points
in addition to three replicate samples at TO.

NIR data were correlated with three chemical analyses for indicators of lipid oxidation:
conjugated dienes and peroxides as two early indicators of oxidation, as well as carbonyls, a later
indicator of oxidation. Chemical analyses were performed on samples the day they were
removed from the incubator. Due to time constraints, NIR assays were typically performed on
the following day.

At each time point, three bottles containing the same type of oil were removed from the
incubator, flushed with argon and sealed after withdrawal of an approximately 1 mL aliquot for
use in chemical assays before stoppering the serum bottles, wrapping the closure with gas
impermeable Teflon tape and storing under foil in the -80° C freezer. Each aliquot for chemical
assays was kept under argon in a sealed borosilicate glass test tube in darkness. Throughout all
chemical assays precautions were taken to protect the aliquots and assay samples from light and
oxygen where possible.

4.45.1 Conjugated Dienes

Oils were assayed for conjugated dienes using a modified version of AOCS Official
Method Ti 1a-64. Given the instability of these compounds, this assay was always performed
first after samples were withdrawn from the incubator and equilibrated to room temperature given
the instability of these compounds. 250 ml of isooctane was sparged with argon for at least 15
minutes and its absorbance at 233 nm was verified to be no greater than 0.070 against a distilled
deionized water blank. Typically, two serial dilutions of each sample of oil in isooctane were
made, with the second made directly in the microcuvette in which the absorbance reading was
made. For time points after 10 weeks of incubation, it was necessary to incorporate a third serial
dilution to account for the increased content of conjugated dienes. For each sample, three

replicate dilutions were performed and the average result was used for regression of the NIR data.
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Absorbance measurements were made with a Cary 50 Bio UV-Visible spectrophotometer
(Varian, Inc., Palo Alto, CA, USA) using the Simple Reads program. Each replicate dilution was
scanned three times for 3 seconds each at both 233 nm and 215 nm. The specific absorbance
value or oxidation index (Klein, 1970) was obtained by dividing the average value for the sample
at 233 nm by that at 215 nm, and normalized among all samples by multiplying by the dilution
factor. The specific absorbance values were found to be much more stable among repeated
measurements than absorbance values at 233 nm alone.

4.4.5.2  Lipid Hydroperoxides

Oils were analyzed for peroxide value using the PeroxySafe™ STD kit (MP Biomedicals,
Solon, OH). Measurements were performed on a Cary 50 spectrometer using the Simple Reads
program. The instrument was fitted with a platform to accept 10 mm borosilicate glass test tubes,
which helped minimize use of the reagents while affording stable results by eliminating time-
consuming transfers to cuvettes. Isopropyl alcohol was a major solvent in this reaction. Given
the volatility of this solvent, opening the reaction vessel to transfer its contents to a cuvette gave
rise to fluctuations in concentration which confounded results. Also, it was very difficult to use
the same cuvette to read multiple samples given the time constraints of this assay discussed
below. Accordingly, measurements were obtained in the same sealed vessel in which the reaction
occurred.

Although this colorimetric assay is based on the ferrous xylenol orange assay which
develops a stable color within 20 minutes to a half hour, the color in this kit continues to develop
beyond the 15 minute incubation recommended by the manufacturer. Accordingly, this assay was
found to be extremely time sensitive and it was necessary to read the sample exactly 15 minutes
after addition of the final reagent to the reaction.

If the concentration of peroxides in a sample is too high, it can bleach the color complex
and result in underestimation of the peroxide value. For this reason, it is advised to test at least

two different dilutions of each sample to ensure accuracy of the result. On any given day, three
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samples of the same oil incubated for the same length of time were tested. To address the
bleaching concern, as well as the time sensitive nature of each analysis, each peroxide assay was
performed using two sets of six samples each. The first set involved three analytical replicates of
the first oil sample prepared at two different dilutions. This afforded the appropriate results for
the first oil sample, as well as the appropriate dilution to use for the second and third samples. In
the second set, three analytical replicates each of the second and third oil samples were prepared
at the appropriate dilution and assayed.

The PeroxySafe™ reaction was prepared by flushing each 10 mm diameter test tube with
argon prior to adding 1000 pL of Reagent A, 25 pL of the oil sample diluted as necessary in the
Prep Reagent, and 100 pL of Reagent B. Upon addition of 160 puL of Reagent C, each sample
tube was sealed, vortexed for 30 seconds and incubated in a test tube block at room temperature
for precisely 15 minutes. All reactions were prepared and incubated in darkness. At exactly 15
minutes, each sample was scanned in the Cary 50 at 570 nm for three seconds. Peroxide values in
milliequivalents per kilogram of oil (meq/kg) were determined by comparison with a standard
curve generated the same week using calibrators provided in the kit.

4453  Carbonyls

Oils were analyzed for carbonyls using an HPLC assay based on derivatization with 2, 4-
dinitrophenylhydrazine (DNPH). Formic acid was chosen as the acidulant as it was volatile and
thus would be compatible with LC-MS in the future. A pH of 3.0 was selected for the reaction
medium, which struck a balance between the pH needs of the reagent and carbonyl substrates and
rendered the sample suitable for direct injection without dilution on the HPLC column, which had

a low-end pH limit of 2.5.
4.4.53.1 Recrystallization of DNPH

DNPH was recrystallized twice from n-butanol and once from acetonitrile to remove

hydrazone impurities from opportunistic derivatization of volatile carbonyls in ambient air. To
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recrystallize from n-butanol, 26 g of 70% DNPH was added to 200 ml of n-butanol in a 500 ml
round bottom flask. A magnetic stirrer was added before the flask was fitted with a reflux
condenser and placed in a heating mantle. The mixture was refluxed with stirring for one hour
and then decanted while hot into a second round bottom flask for recrystallization and drying in a
rotary evaporator (Buchi Corporation, New Castle, DE, USA) fitted with a water bath heated to
70°C. The recrystallized DNPH was dissolved in n-butanol and the process was repeated.

The twice recrystallized DNPH was then recrystallized from acetonitrile using the same
procedure outlined above except that a 50°C bath was used with the rotary evaporator during
recrystallization to avoid bumping because of the reduced boiling point of this solvent relative to
n-butanol. Following the final recrystallization, the DNPH was dried in darkness in a vacuum
oven at 50°C overnight. The final product was verified to be free of impurities by HPLC and
stored in crystalline form at room temperature in darkness in a foil-wrapped borosilicate glass

screw cap vial flushed with argon and sealed with gas impermeable Teflon tape.

44532 Preparation of DNPH Reagent
DNPH reagent (202 mM / 10X reaction concentration) was routinely prepared on the day
of each analysis by weighing 60 mg of recrystallized DNPH (M.W. = 198.14 g/mol) into an
argon-flushed 12 mm diameter test tube, dissolving in 1.454 mL of dimethylformamide (DMF),
and acidifying with 46.2 pL of 2.16 M formic acid. The latter was prepared by adding 247 pl of
concentrated formic acid (26.24 M determined using d = 1.22 g/ml, M.W. = 46.03 g/mol, purity =
99%) to 2.753 ml of dd H,O. The DNPH reagent was prepared in dark conditions and likewise
kept in a sealed glass tube under argon at room temperature pending use within a few hours.
44533 DNPH Reaction and HPLC Assay
The DNPH reaction was performed by combining 725 pl of pre-mixed 1:1 (v/v)

isopropanol : acetonitrile (IPA:ACN), 125 ul of chloroform, 25 ul of the lipid sample, 25 ul of 40

mM lauric aldehyde (as an internal standard) and 100 pl of fresh DNPH reagent in an HPLC vial
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pre-flushed with argon. Each assay included three blank replicates which were prepared by
combining 750 pL of 1:1 (v/v) acetonitrile/isopropanol, 125 pL of chloroform, 25 pL of 40 mM
lauric aldehyde, and 100 uL of DNPH reagent. The overall DNPH concentration in the reaction,
including protonated (inactive) and free reagent, was 20.2 mM. All twelve reactions (three
blanks and three replicates each of the three oil samples assayed that day) were prepared and
incubated at room temperature in darkness for five hours prior to initiation of the HPLC run on
the first sample.

HPLC was performed according to the conditions of Yao (Yao, 2015). The column was
a Restek® Ultra C18 (4.6 mm L.D. x 150 mm length with 5 pm particle size), for which the
manufacturer’s recommended pH range was 2.5 — 8.0. The method used a gradient elution with
two mobile phases, 1:1:2 (v/v) Isopropanol: Acetonitrile: ddH,O (B) and 1:1 (v/v) Isopropanol:

Acetonitrile (A), as shown in Table 8. The overall run time was 60 minutes.

Table 8. HPLC Gradient Conditions for DNPH Carbonyl Assay.

Time (min) % B Flow Rate (ml / min)
0 83.3 1.2
17 0 1.2
19 0 1.4
50 0 1.4
55 83.3 1.2
60 83.3 1.2

Analyses were performed using an Agilent 1100 Series liquid chromatograph equipped
with a diode array detector. HPChemStation software provided system control as well as data
analysis. In addition to 360 nm and 206 nm, wavelengths evaluated included 233 nm for

monounsaturated carbonyls with 7 systems conjugated to the carbonyl bond (2-enals) and 270 nm
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for polyunsaturated carbonyls such as decadienal with 7 systems conjugated to the carbonyl bond
(2, 4-enals).

4.4.5.4  Near Infrared Spectroscopy

4.454.1 Data Collection

All NIR analyses were conducted on a Buchi NIRFlex N-500 NIR spectrometer with
NIRWare 4.2 sample management and operating software and NIRCal 4.2 chemometric software
(Buchi Corporation, New Castle, DE, USA). This instrument (Figure 12) works in transflectance
mode, whereby the solid sample causes some of the incident radiation to be redirected back to the
detector. For each sample in this quantitative oxidation study, a 7.5% w/w oil mixture was
prepared by addition of 5 g of oil to 61.67 g of white rice flour (Remyflo R 7-150) (Beneo Inc.,
Morris Plains, NJ, USA) in a small stainless steel mixing bowl while mixing with a hand-
operated OXO stainless steel egg beater (OXO International, Ltd., New York, NY, USA).

Mixing resulted in a heterogeneous product given the hydrophilic nature of rice flour. As
the packing density of a powdered sample could influence the NIR spectra of samples, fifteen
samples of 3.5 g each of the oil and flour mixture were pressed in a 1.125 inch diameter die under
a uniform pressure of 415 psi using the lever press (Figure 14). Each sample tablet was covered
with a 1.125 inch diameter borosilicate glass disc upon removal from the die. The tablet and
glass disc were then inverted into a holder (Figure 17). The holder assembly mounted in a
rotating sample platform (Figure 16) disposed off-center from the beam of near infrared radiation,
allowing for the beam to sweep over the full area of the tablet as it rotated during spectral
acquisition.

NIR spectra were acquired in triplicate on each of fifteen rotating samples. Each
spectrum was a composite of 64 scans acquired once per half second (amounting to a 32 second
scan time) at a resolution of 4 cm™'. The forty five spectra acquired for each batch were averaged

for use in chemometric analysis to create models for conjugated dienes and peroxide values using
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the respective reference assay data. Chemometric approaches included principal component
regression and partial least squares regression of spectra using a variety of pretreatments
including normalization, smoothing and/or first or second derivatization of the original spectra.
Cross validation was used to obtain the best model for each set of conditions from the software.
Model quality was evaluated by the manufacturer’s index, the Q value, described in Appendix B.
44542 Assessment of Wavenumbers for Use in Models
It is possible to improve the quality of models by refining the range of wavenumbers
employed therein. It is important to maintain as much of the valuable information contained in the
spectrum as possible. However, inclusion of data from any given wavenumber adds noise in
addition to any useful information it can provide. Thus, it is important to identify and exclude
wavenumbers which lack sufficient useful information to overcome the additional noise they
impart to a model.
4.4.54.2.1 Comparison of Spectral Variation Among and Within Groups: e
One metric used to assess the importance of wavenumbers for discriminating among
samples is e, the ratio of variance between different groups of samples to the variance of samples
within the same group. This is determined by the following formula (Wu et al., 1995):
o (i - )_’.i)z
L ;’czl(nj - 1) szi

The subscripts i and j denote the wavenumber and the sample group, respectively, while

n; indicates the number of samples in group /. In the numerator, y;; is the mean absorbance of all
samples from the same group at a given wavenumber, while y; is the overall mean absorbance at
a given wavenumber for samples from all groups. In the denominator, s;; is the standard
deviation for all samples from the same group at a given wavenumber.

When a particular wavenumber is useful in discriminating among different types of

samples, the sum of differences between the mean absorbance for each group and the overall
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mean in the numerator will grow. When a particular wavenumber is stable among identical
samples, the standard deviation for samples within the same group in the denominator will
diminish. Wavenumbers which are both stable and useful for discrimination will thus have the
largest values of e.

4454272 Cross Validation Regression Coefficients t-Test

The use of cross validation to estimate uncertainty in PLS regression was originally
described by Martens and Martens (2000). This development enabled significance testing of PLS
model parameters such as regression coefficients, scores and loadings, addressing a key criticism
of PLS among statisticians at the time (Davies, 2001). Significance testing of regression
coefficients was used to improve the quality of models by eliminating unimportant wavenumbers
from models (Martens & Martens, 2000; Westad & Martens, 2000).

Cross validation is used to evaluate the performance of models in predicting unknowns
(Williams, 2001; Naes et al., 2002). An example for models created with ten samples is shown in
Figure 19. A test of the model is run for each sample by removing it from consideration during
calibration for an analyte of interest. The prediction error for that test is determined by the
difference between the amounts of analyte predicted by the NIR model (¥) and determined from
the reference assay (y). Test results are combined in a single term, the Root Mean Square Error
of Cross Validation (RMSECV), which decreases as predictive ability of the model improves. As
the RMSECYV is a composite of terms for the bias and standard deviation of residuals (see

Appendix B) reported by the Buchi NIRCal 5.4 software, those terms were used here instead.



Evaluate Predictive Ability of Models A, B and C by Performing Cross Validation on Each as Follows:

Samples (N = 10) Error Testing
Prediction
Error
Test 1 M 2 | 3|4 | 5|6 | 7| 8|09 01 —y1)
Test 2 1 BB 3| 4|56 | 7|89 P2—y2) SR°°t Mean
Test 3 1 20 256|780 $3—vs) quare Error
= of Cross
Test4 1|2 |3l 5|6 |7|8]09 Ga—ya) Validation
Test5 112 | 3| 40 6|7 ]| 8|9 (Ps—ys) (RMSECV)
Test 6 1123|458 7| 8| 9 e —Ye)
Test 7 112 (3|4|5| 6 gl 8|9 37 —y7) N 5
— )
Test 8 1|2 |3 |4|5|6]|7 N9 s — ys) N
Test9 11 2| 3| 4|5|6]|7]| 8 I F9— y9) =1
Test 10 12| 3| 4| 5| 6| 7| 8] 9 (J10 — Y10)
|  cCalibration | Validation
RMSECV
l (A<B<C)
Best Predictive Model A
Ability 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 —» Output Parameters

Figure 19. Cross validation of models created from a set of ten samples. [Adapted from Williams (2001) and Naes et al. (2002)].

89
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Although the “leave one out” approach at the heart of the cross validation appears again
in the cross validation regression coefficients t-test (Figure 20), the two procedures differ
thereafter and are used for distinct purposes. While the goal of cross validation is to evaluate
model performance, that of the cross validation regression coefficients t-test is to evaluate
wavenumbers to include in a model. In the former procedure, each sample is excluded in turn to
test the accuracy of the model. In the latter, each sample is excluded to generate a “submodel”
from the remaining samples. Like the overall model, each submodel contains a regression
coefficient for each wavenumber.

Wavenumbers with larger regression coefficients in the overall model (B), whether
positive or negative, are more relevant to NIR determination of the analyte of interest.
Wavenumbers with a smaller standard deviation among the regression coefficients of the
submodels (Sg) provide more stable results. Wavenumbers which are both relevant and stable are
sought to include in good models, and can be determined by the following t-test when N samples

are used [NIRCal 5.4 Manual; Martens &Martens (2000)]:

_ |BIGN)
(Sg)

Regression coefficients can be tested for significance with the use of a t-distribution table. Those
wavenumbers lacking regression coefficients statistically different from zero at the desired
confidence level can be excluded from the model. Alternatively, values of t can be ranked and
models created which retain wavenumbers with t values falling at or above a certain cutoff limit.
In the initial description of the cross validation regression coefficients t-test, Martens and
Martens (2000) used the equation for Sg reproduced in Figure 20. This formula used a scaling
coefficient g which reflected terms originally proposed by Tukey (1958) for use in “leave one

out” scenarios. Tukey’s approach was evaluated for effectiveness and subsequently advocated by

Efron (1982).



Obtain Regression Coefficients from Submodels and Overall Model

Regression

Samples (N = 10; g = 0.949) Coefficients

Submodel 1 M 2 (3|4 |5 |6 |7 |89 B, Standard Deviation
Submodel 2 1 2 3 4 5 6 7 8 9 B, of Submodel
Submodel 3 1| 2 M 4| 5|6 |7 |8]|09 B, Regression
Submodel 4 1|2 |3 WM 5|6 | 7|8]09 B, Coefficients (Sg)
Submodel 5 1123|498 6|7| 8|09 Bs N
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N
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| Used in Calibration | Not used in Calibration

Perform t-test at Each Wavenumber using Regression Coefficient of Overall Model (B), Number of Samples (N) and
Standard Deviation of Submodel Regression Coefficients (Sg)
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Figure 20. Cross validation regression coefficients t-test for a model created from a set of ten samples.
[Adapted from Martens and Martens (2000), Tukey (1958) and NIRCal 5.4 Software Manual].

0L



71

445423 Model Improvement by Wavenumber Selection

Values of e or t can be used to select wavenumbers to improve model quality. Like the
coefficient e, the cross validation regression coefficients t-test assesses the importance
(numerator) and stability (denominator) of measurements at each wavenumber to isolate the best
variables. Unlike e, which tracks the largest overall changes among sample groups, t follows the
most relevant wavenumbers for the analyte of interest.

It has been demonstrated that model quality can be improved significantly in an iterative
process which at each step retains data only from wavenumbers with regression coefficients that
pass significance testing (Martens & Martens, 2000; Westad & Martens, 2000). As a parameter
of the model, regression coefficients change when areas of the spectrum found to be of little value
are dropped, thus the regression coefficients t-test can be used iteratively to improve the quality
of models. The value of e is a function of spectral intensities rather than an output of the model.
It is thus constant for each wavenumber and cannot be used iteratively per se.

Initial models of conjugated dienes and peroxide values created with combined data sets
of 7.5% (w/w) pecan oil : white rice flour samples and 7.5% (w/w) canola oil : white rice flour
samples were subjected to model improvement techniques using wavenumber selection based on
e and the cross validation regression coefficients t-test. Ranking of wavenumbers by the
application of cutoffs based on e and the numerator of ¢ were evaluated. The latter metric did not
account for the stability among scans of the same sample and was used to determine if important
wavenumbers were discarded when using the e coefficient because of variation. Significance of
regression coefficient t-test values at 99.5% confidence as well as ranking of wavenumbers by the
application of cutoffs based on t were also evaluated. The best models resulting from application
of these improvement procedures to the combined sample set were then applied to sample sets

made with either pecan or canola oil.
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5. RESULTS & DISCUSSION
5.1 Preliminary Experiments using Near Infrared Spectroscopy

5.1.1 Discrimination of Fat or Oil Type in Lipid : White Rice Flour Mixtures

Eight different oils and fats were coated on white rice flour at 15% (w/w) to assess the
ability of NIR to distinguish between lipids with different fatty acid composition. As shown in
Figure 21, seven of these could be resolved by NIR, but safflower oil could not be distinguished
from sunflower oil due to the similarity of their respective fatty acid compositions. Hence,
safflower oil was omitted from the model calculated for these samples. An acceptable qualitative
model (Q-Value > 0.8) was found via principal component analysis which could discriminate
among samples of the seven test lipids (Figure 21 and Table 9). The main penalty assessed arose
from the proximity of the clusters corresponding to different oils and fats, which indicates the
degree of similarity among the samples assayed. A second penalty arose from the moderately
uneven spread of samples of the same type within their respective clusters.

The property interference penalty showed a certain degree of similarity among the
samples. This was to be expected considering that the composition of each sample was nominally
85% identical (white rice flour), and the remaining 15% varied only with the difference in
composition among the lipids. The scores plot indicated that saturated fats (lard and palm oil)
were readily distinguishable from oils with higher linoleic acid content (sunflower [and thus
safflower], canola and soybean oil) along the third principal component axis. This distinction
was also evident in the in the second derivative pretreated spectra from 5760 — 5900 cm™! (Figure
22). This region includes wavenumbers corresponding to the first overtones of C-H stretching
vibrations for methylene (5797 cm™) and methyl groups (5865 cm™). Samples of the saturated

fats showed greater intensity for the methylene group signal than those of oils.
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Figure 21. Scores plot of qualitative model for discrimination of
15% lipid : white rice flour mixtures.

Table 9. Q-value criteria of qualitative model for discrimination of

15% lipid : white rice flour mixtures.

Penalty Value Weight

C-Set False Identified (Calibration Sample in Wrong Cluster) 0 10
C-Set Not Identified (Calibration Sample Outside All Clusters) 0 10
V-Set False Identified (Validation Sample in Wrong Cluster) 0 5
V-Set False Identified (Validation Sample Outside All Clusters) 0 1
Cluster Index (Samples of Same Type Should be in Single Cluster) 0 1
Property Uniformity (Even Spread of Samples Within Clusters) 0.026112 1
Property Interference (Independence of Clusters from Each Other) 1.5385 0.1
Q-Value 0.847485
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Figure 22. Pretreated spectra of different fats or oils in 15% lipid : white rice flour
mixtures from 5760-5900 cm™.

The property uniformity penalty indicated a certain degree of variation in the spread of
nominally identical samples within their respective clusters. Two effects related to such variation
were evident. First, samples of the saturated fats displayed greater variability in scores plots than
those of oils (Figure 21). This is believed to be an artifact of the sample preparation process.
Small pieces of saturated fat samples often stuck to the die upon removal of the sample tablet,
rendering the surface scanned by NIR uneven. Since this experiment involved a single point
measurement directed at the center of the tablet’s surface, the effect of physical scattering was
more pronounced for these samples in comparison to the oil samples which ejected cleanly and
had a uniform flat surface. This scattering was particularly evident for lard and palm oil and is

apparent in the 5760 — 5820 cm! region of the second derivative spectra (Figure 22).
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The second effect was a noticeable streaking of scores for any given sample. For all
samples, clusters extend from the lower left to the upper right (Figure 21). Subsequent analyses
of mixtures with nominal oil content of 10% and 7.5% indicated that the streaking was due to
inhomogeneity as scores of samples with different amounts of oil fell along the same axis of
variation. Each measurement in Figure 21 was a single point reading of a non-homogeneous
mixture. Accordingly, certain samples contained higher and lower oil content than the nominal
15%. This effect was also seen in numerous other experiments.

In conclusion, NIR was determined capable of distinguishing among different oils and
fats when present in a mixed solid food model system at a nominal level of 15% by weight. NIR
analyses were acceptable in the qualitative context for mere sample identification, but sample
presentation issues, particularly for saturated fats, as well as sample inhomogeneity gave rise to
confounding effects that might significantly impair the fit of quantitative models. These

considerations must be addressed if NIR is to be used for quantitative analyses of lipid oxidation.

5.1.2 Discrimination of Oxidation Status in Lipid : White Rice Flour Mixtures

Having demonstrated that NIR could distinguish between different oils in food model
systems, the next step was to determine whether extents of lipid oxidation could be differentiated
by NIR and which products could be identified. Accordingly, 15% (w/w) oil: white rice flour
mixtures were prepared with soybean, sunflower, safflower or canola oils and incubated at 60°C
for up to three weeks. Results of qualitative NIR models from principal component analysis
(PCA) were mixed. Models for sunflower and safflower oils were not attainable under the
conditions investigated. A model for soybean oil could discriminate only among the first three
time points (TO, one and two weeks incubation). The scores plot for this model is shown in
Figure 23. Q-value criteria for this model are shown in Table 10. An acceptable qualitative

model that discriminated among all four time points (TO and one, two or three weeks of
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incubation) was only obtained for canola oil. The scores plot for this model is shown in Figure

24. Q-value criteria for this model are shown in Table 11.

To produce an acceptable qualitative model, PCA requires the ability to differentiate
between each time point. If any two cannot be discriminated, the model will fail. Given the
similarity of the sunflower and safflower oils tested as noted in the experiment above, as well as
the high polyunsaturated fatty acid content of sunflower, safflower and soybean oils (67.5, 77.7
and 53.7% linoleic acid (18:2), respectively), the inability to distinguish samples at different time
points likely reflected the difference in times necessary to degrade these oils. Among those
tested, the canola sample was apparently the most stable. As all four time points of the canola
incubation were discernible, the other oil samples reached a state of degradation by the third week
or sooner which was undiscernible from at least one other time point. This is substantiated by
an apparent circular pattern through which samples move during oxidation as shown in scores

plots of the soybean and canola models (Figure 23 and Figure 24, respectively).

TO 1 Week at 60° C 2 Weeks at 60° C

3 02 o1 o0 o1 02

Figure 23. Scores plot of discrimination of oxidation status of soybean oil in 15% soybean
oil : white rice flour mixtures. [Due to data loss, image shown from NIRCal 5.4 with
tolerance radii (ellipses) about scores of calibration (+) and validation () samples.]
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Table 10. Q-value criteria of qualitative model for discrimination of oxidation status of

soybean oil in 15% soybean oil : white rice flour mixtures.

Penalty Value Weight
C-Set False Identified (Calibration Sample in Wrong Cluster) 0 10
C-Set Not Identified (Calibration Sample Outside All Clusters) 0 10
V-Set False Identified (Validation Sample in Wrong Cluster) 0 5
V-Set False Identified (Validation Sample Outside All Clusters) 0 1
Cluster Index (Samples of Same Type Should be in Single Cluster) 0 1
Property Uniformity (Even Spread of Samples Within Clusters) 0.0158566 1
Property Interference (Independence of Clusters from Each Other) 0.903865 0.1
Q-Value 0.90396
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Figure 24. Scores plot of discrimination of oxidation status of canola oil in
15% canola oil : white rice flour mixtures. Each square represents the score of an
individual spectrum acquired on the sample. Three replicate scans were made on each of

ten tablets pressed from each sample.
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Table 11. Q-value criteria of qualitative model for discrimination of oxidation status of
canola oil in 15% canola oil : white rice flour mixtures.

Penalty Value Weight

C-Set False Identified (Calibration Sample in Wrong Cluster) 0 10
C-Set Not Identified (Calibration Sample Outside All Clusters) 0 10
V-Set False Identified (Validation Sample in Wrong Cluster) 0 5
V-Set False Identified (Validation Sample Outside All Clusters) 0 1
Cluster Index (Samples of Same Type Should be in Single Cluster) 0 1
Property Uniformity (Even Spread of Samples Within Clusters) 0.02505 1
Property Interference (Independence of Clusters from Each Other) 1.634 0.1
Q-Value 0.8414

In both instances, separation of the samples was possible on two principal component

axes. Interestingly, scores in the canola model appeared to follow a circular path as oxidation

progressed. This was likely in keeping with the cyclic nature of lipid oxidation frequently

mentioned in the literature. Concentrations of early products, conjugated dienes and peroxides,

rise to a certain level before falling as they are converted to secondary product carbonyls. The

soybean model scores also appeared to follow such a path, though they were less conclusive on

this point as soybean oil oxidized earlier, rendering the 3 week sample indistinguishable from one

of the earlier samples and causing the four point model to fail.

Incubation occurred in bottles open to air, which would have allowed volatile aldehydes

to evaporate from the samples. Although it is noted by some authors (Dellarosa et al., 2015;

Yildiz et al., 2001) that signals for the direct detection of carbonyls are lacking in the NIR region

anyhow, the loss of volatile aldehydes from late stage oxidation samples would further render

their spectra similar to early stage samples with equivalent levels of primary oxidation products.
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It was also noteworthy that the canola model was obtained from PCA after selecting
certain wavenumbers from the full range of 4000-10,000 cm™. This model included spectral
ranges from 4152-4216 cm’!, 4300-4552 cm™!, 4848-5100 cm!, 5148-5480 cm’!, 6980-7340 cm’!
and 7500-7652 cm!.  Loadings for both principal component axes are shown in Figure 25. The
importance of wavenumbers around 5000-5200 cm™! as well as at 7000-7200 cm™ was

consistently evident in preliminary oxidation studies of different oils on white rice flour.

Possible chemical assignments for important wavenumbers from each of the loading
spectra are shown in Table 12. It is apparent therein that wavenumbers consistent with those
determined from previous lipid oxidation studies (Appendix A) as well as those relevant to the
flour matrix (starch, protein) and possible interferents (moisture) are represented. This
underscores the complexity of the problem as well as the need to account for sample handling and

presentation issues as fully as possible for fine analyses using NIR.

As was the case with the model from the lipid discrimination experiment above, streaking
of scores among nominally identical samples was observed in the canola oxidation model. The
scores for replicate scans of the ten NIR sample tablets made from canola oil at TO are shown in
Figure 26a, with the tablet number closest to the first replicate and subsequent replicates
connected in order by a line for that tablet. Although scores of each tablet fell randomly within
the cluster along both principal component axes, replicate scans for a given tablet drifted
systematically, primarily along the axis for principal component 1. These effects were also
evident in scores of replicates at each incubation time point (Figure 26b-d). The random scatter
was likely due to inhomogeneity among the samples. The drifting was likely due to sample
temperature or moisture content as neither was controlled and either could result in a systematic

change with time. This is discussed further in Section 5.2.4.2.
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Figure 25. Loadings plots for 15% canola oxidation status model:
(a) Principal component 1; (b) Principal component 2.

PC2 Loadings
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Table 12. Possible chemical assignments from 15% canola oil oxidation status model
loadings: (a) Principal component 1; (b) Principal component 2.

a. Principal component 1

Rank Wa‘éi'{:?glber Loading Possible Assignment(s)

Starch: 5263*; Carboxylic Acid: 5263%*, 5263 (Holman

1 5284 2.6567 | & Edmondson, 1956); Hydroxyl: 5241*
Amide: 5208*; Water: 5165 (Realini et al., 2004), 5181
(Berzaghi et al., 2005), 5187 (Cozzolino et al., 2005),

9 5192 1.6196 | 3195 (Kaddour et al., 2006) and 5208 (Karlsdottir et al.,

' 2014); Possible Secondary Oxidation Product: 5219

(Takamura et al., 1995)
Hydroxyl: 7092*, 7042 (Holman et al., 1958);

3 7096 1.1237 Hydroperoxides: 7068 (Wojcicki et al., 2015)
Hydroxyl: 4975 (Holman et al., 1958); Carbonyl from

4 4980 1.0551 | Liberated Fatty Acids: 4980 (Cho et al., 1998); Starch:
5000*; Amide: 5000*
Possible Secondary Oxidation Product: 4456
(Takamura et al., 1995); Amino Acid: 4460*; Starch:

5 4464 0.8645 | 4440*; Terminal Epoxides: 4532 (Peck et al., 1987),
4545 (Goddu & Delker, 1958)
Polymer Content of Sunflower Oil: 5400 (El-Rafey et

6 5368 -0.6839
al., 1988)

. *. .

7 4392 10.6452 ?;?éc)h 4394%*; Methyl: 4386 (Holman & Edmondson,
Linoleic Acid Content of Sunflower Qil: 4873 (EI-

8 4872 -0.5409 | Rafey et al., 1988); Protein: 4864 (Berzaghi et al., 2005),
4878*; Hydroperoxides: 4831 (Holman et al., 1958)

9 7230 0.5107 Polar Content of Sunflower Qil: 7267 (El-Rafey et al.,
1988)

10 4168 0.4646 | -

11 7620 -0.2968 | -

* Indicates Data from NIRCal 5.4 Software Chemical Bonding Module
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Table 12. (Continued) Possible chemical assignments from 15% canola oil oxidation status
model loadings: (a) Principal component 1; (b) Principal component 2.

b. Principal component 2

Rank Wa‘éiﬁ:‘;} ber Loading Possible Assignment(s)
Possible Secondary Oxidation Product: 4456
(Takamura et al., 1995); Amino Acid: 4460*; Starch:
1 4460 0.5696 | 4440*; Terminal Epoxides: 4532 (Peck et al., 1987),
4545 (Goddu & Delker, 1958)
Starch: 5263*; Carboxylic Acid: 5263%*, 5263 (Holman
2 5260 05131 | o Edmondson, 1956); Hydroxyl: 5241*
Polymer Content of Sunflower Qil: 5400 (El-Rafey et
3 5344 0.3602
al., 1988)
Polymer Content of Sunflower Oil: 5400 (El-Rafey et
4 5360 0.3575
al., 1988)
. k. .
5 4392 -0.3479 ?glsgc)h 4394*; Methyl: 4386 (Holman & Edmondson,
6 7136 -0.3280 | Hydroxyl: 7143 (Cozzolino et al., 2005)
7 7280 0.3063 fgglg?g; Content of Sunflower Oil: 7267 (El-Rafey et al.,
Methylene: 4348 (Holman & Edmondson, 1956), 4348
8 4344 -0.3059 | (Kaddour et al., 2006); Conjugated Systems: 4348
(Holman & Edmondson, 1956)
Methylene: 7168*; Polymer Content of Sunflower Oil:
9 7192 0.2800 | 7163 (El-Rafey et al., 1988); Hydroxyl: 7143 (Cozzolino
et al., 2005)
10 7572 -0.2745 | -
11 4908 0.2719 | Amide: 4926*

* Indicates Data from NIRCal 5.4 Software Chemical Bonding Module
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Figure 26. 15% Canola oil oxidation status model scores: (a) TO; (b) 1 Week; (c) 2 Weeks;
and (d) 3 Weeks incubation. Each number indicates the first replicate of each sample tablet
in the order assayed. Replicate scans are connected by lines in the order acquired.
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Figure 26. (Continued) 15% Canola oil oxidation status model scores: (a) TO; (b) 1 Week;
(c) 2 Weeks; and (d) 3 Weeks. Each number indicates the first replicate of each sample
tablet in the order assayed. Replicate scans are connected by lines in the order acquired.
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5.1.3 Effect of Sample Packing on Variability of NIR Response
5.1.3.1  15% Canola Oil: White Rice Flour Samples

Effects of sample packing on NIR spectra were assessed using tablets of 15% (w:w)
canola oil: white rice flour samples pressed uniformly at four discrete pressures using the lever
press. FT-NIR was unable to fully discriminate among nominally identical samples compacted at
different forming pressures from 340 to 415 psi, as shown in the overlap of clusters in the scores
plot (Figure 27). However, when the highest pressure samples at 415 psi were excluded from the
analysis, FT-NIR was able to resolve the same samples into three distinct groups according to
forming pressure and thus sample packing (Figure 28).

Sample inhomogeneity was the likely explanation for these results. Pressed samples
were scanned as single point measurements without rotation. Increased forming pressure caused
a decrease in scores along PC2 (Figure 27 and Figure 28). The white rice flour matrix was
relatively hydrophilic, and the application of too high a forming pressure caused the oil to
separate from the matrix, increasing inhomogeneity and confounding the results. This would
explain why the 415 psi cluster was unable to be resolved from the 390 psi cluster. It would also
explain why there was no overlap of the 415 psi samples with the 340 psi samples and only
minimal overlap at the edge of the 365 psi cluster in Figure 27.

Although the application of a forming pressure was devised primarily to minimize
variation from scattering effects in the solid matrix, early experiments also indicated practical
effects for sample handling. Pressed samples of white rice flour mixed with only minor amounts
of oil were extremely friable. Elevating oil concentrations and increasing forming pressures both
reduced breakage of sample tablets during transfer from the forming die to the FT-NIR sample
holder. Based upon the results of this experiment, it was expected that the pressure which

induced inhomogeneity would vary inversely with the oil content of the sample.
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A review of numerous cereal-based food products at the inception of our work indicated
most had oil contents of less than 10%. Our initial experiments were performed with 15% oil to
ensure that the alterations of interest solely in this minor constituent could be detected by FT-
NIR. Given the inverse relationship between forming pressure and oil content as well as other
preliminary results indicating the sensitivity of FT-NIR, we undertook an investigation of
samples incorporating only 7.5% oil.

5.1.3.2  7.5% Canola Oil: White Rice Flour Samples

Results of the experiment to assess the ability of NIR to discriminate among 7.5% (w:w)
canola oil: white rice flour sample tablets pressed uniformly at different pressures are shown in
the scores plot in Figure 29 and Q-Value criteria in Table 13. In this experiment, NIR was able to
discriminate among samples of identical nominal composition subjected to pressures differing by
only 25 psi. Accordingly, the use of NIR to evaluate forming pressures in powdered samples
with modest oil composition appeared effective, in keeping with its use at much higher pressures

employed in pharmaceutical tableting (Guo et al., 1999; Roggo et al., 2005).

Conversely, if identical samples were packed with variable pressures, e.g. either different
loading into vials or different packing into tablets, the differences in packing would increase
variation among the corresponding NIR spectra and could thereby increase scatter among scores.
Thus, controlling sample packing must be a critical consideration for reducing scatter and
eliminating overlap of sample clusters. It is essential for accurate quantitation of lipid oxidation

and other assays tracking minor changes in samples using NIR.

Whether pressure differences confounded analysis of lipid oxidation in the initial ASL
studies described above depends on the loadings of the pressure discrimination model in
comparison to those of a lipid oxidation model. If there is overlap in the wavenumbers critical to
the models, it is more likely that pressure differences in lipid oxidation samples would interfere

with that analysis.
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Figure 29. Scores plot of pressure discrimination model in 7.5% canola oil : white rice flour
samples using all four forming pressures assayed. Spheres indicate tolerance radii about
sample scores shown as points within to aid three-dimensional visualization.

Table 13. Q-value criteria of qualitative model for pressure discrimination in

7.5% canola oil : white rice flour samples.

Penalty Value Weight

C-Set False Identified (Calibration Sample in Wrong Cluster) 0 10
C-Set Not Identified (Calibration Sample Outside All Clusters) 0 10
V-Set False Identified (Validation Sample in Wrong Cluster) 0 5
V-Set False Identified (Validation Sample Outside All Clusters) 0 1
Cluster Index (Samples of Same Type Should be in Single Cluster) 0 1
Property Uniformity (Even Spread of Samples Within Clusters) 0.001667 1
Property Interference (Independence of Clusters from Each Other) 0.6691 0.1
Q-Value 0.9358
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Table 14 shows the eigenvalues for all four principal components of the pressure
discrimination model, including the three principal component axes along which the samples can
be discriminated as well as a fourth corresponding to errors in the data. The eigenvalue for each
principal component indicates the amount of variation among samples in the model attributable to
that principal component. Principal components one through three account for 38.4%, 26.0% and

24.6% of the variation in the set of samples, respectively.

Figure 30 shows the loadings spectra for the first three principal components, with red
highlighted areas in each corresponding to wavenumber ranges used in the qualitative canola
oxidation model above. Although the most critical wavenumbers in the pressure discrimination
model are between 9000 — 10,000 cm™, there are important features for all three principal
components in this pressure model falling within the 4300-4552 ¢cm™ range used in the canola
oxidation model. This range is particularly important in loadings of the first and most important
principal component in the pressure discrimination model (Figure 30a). Also, changes in sample
packing, arising here from different forming pressures, are a bulk phenomenon. Thus, packing
differences among samples likely contributed to variation in sample scores of the qualitative
canola oxidation model and forming pressure should be controlled to minimize variation during

quantitative analyses.

Table 14. Eigenvalues of qualitative model for pressure discrimination in
7.5% canola oil : white rice flour samples.

% of Total

Eigenvalue Variation
Principal Component 1 0.0323 38.4
Principal Component 2 0.0219 26.0
Principal Component 3 0.0207 24.6
Principal Component 4 (Error) 0.0092 10.9
Total 0.0841 100
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5.1.4 Effect of Sample Rotation on Variability in NIR Spectra

Rotation of samples during spectral acquisition markedly decreased variation in scores
plots for both single and multiple samples regardless of the forming pressure applied.

5.1.4.1  Variability Among Replicate Scans of a Single Sample

Results of replicate FT-NIR scans of a single sample of 10% (w:w) canola oil: white rice
flour assayed as a powder or after tableting at 415 psi are shown in Figure 31. Both panels of
Figure 31 are on the same scale and show an identical area of principal component space. Even
in the 1.125 inch diameter sample assay system employed here, rotation significantly reduced the
variation among scans of a single sample on both principal component axes.

Standard deviation data for the scores of 21 scans of each sample are shown in Table 15
and Figure 32. Sample rotation reduced the standard deviation of scores along Principal
Component 1 by nearly 80% for both powdered and 415 psi pressed samples. Rotation also
reduced the standard deviation of scores along Principal Component 2 for these samples by 42%
and 86%, respectively. Although scores from stationary scans of the pressed sample were more
variable than those of the powdered sample along both principal components, when samples were
rotated, tableting of the sample slightly increased the standard deviation of scores along Principal
Component 1 but greatly decreased the standard deviation along Principal Component 2.

Closer inspection of scores for replicates of the pressed sample showed a trend towards
more positive values of Principal Component 1 from early to late samples (Figure 33). This is
consistent with the trend observed in each of the samples in Figure 26. Conversely, a trend
towards more positive values of Principal Component 2 is seen among replicates of the powdered
sample (Figure 34). Each trend may represent an interfering effect particular to the state of the
sample. A powdered sample predominantly comprised of white rice flour is expected to be more
susceptible to moisture, while a pressed sample may exhibit temperature changes while cooling

during scanning to dissipate heat generated by the forming process.
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Figure 31. Scores plots of a 10% canola oil: white rice flour sample: (a) Stationary; (b)
Rotating [(1 Powder; [ 415 psi Tablet]. Each square indicates the score of a single
replicate stationary scan made at or rotating scan starting at a distinct point of the sample.
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Table 15. Standard deviation of scores of one 10% canola oil : white rice flour sample.

21 Scans Each of 1 Sample

Powder (n=21)

415 psi Tablet (n=21)

Stationary Rotating Stationary Rotating
Principal Component 1 1.16 x 102 2.33x 103 1.88 x 10 3.98x10%
Principal Component 2 1.38 x 102 8.00x 107 3.17x 102 4.57x 107
0.04
m
o S
o
@,0'03
c
) S
©
S 0.02
a
= S
S 0.01
go.
5 R R R
(70}
0.00

Principal Component 1

Principal Component 2

Figure 32. Standard deviation among scores of 21 scans of a single 10% canola oil : white
rice flour sample [0 Powder; B 415 psi Tablet; Stationary (S); Rotating (R)].




PC2

94

-0.896
-0.898
-0.900
-0.902
-0.904
-0.906
-0.908
-0.910
-0.912
-0.914
-0.916

-0.918
-0.782 -0.780 -0.778 -0.776 -0.774 -0.772 -0.770 -0.768

PC1

Figure 33. Expanded view of scores plot from scans of a single pressed

10% canola oil : white rice flour sample acquired with rotation. Groups of three scans
acquired at 120° angles relative to each other are connected by lines. Numbers indicate the
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first scan of each group in temporal order.
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Figure 34. Expanded view of scores plot from scans of a single powdered

10% canola oil : white rice flour sample acquired with rotation. Groups of three scans
acquired at 120° angles relative to each other are connected by lines. Numbers indicate the

first scan of each group in temporal order.
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5.1.4.2  Variability Among Replicate Scans of Multiple Samples

Results of replicate FT-NIR scans of ten samples each of 10% (w:w) canola oil: white
rice flour assayed after tableting at 115 psi or 415 psi are shown in Figure 35. Both panels of
Figure 35 are on the same scale and show an identical area of principal component space.
Although the effect of sample rotation in reducing variation was less profound than in the case of
a single sample, variation among scans of multiple samples was reduced by sample rotation on
both principal component axes. Comparison of these scores plots also indicates rotation
improved resolution among samples subjected to different forming pressures as evidenced by
reduced overlap between different clusters of rotating samples (Figure 35b) than those of
stationary ones (Figure 35a).

Standard deviation data for scores from sets of three scans of each of ten samples are
shown in Table 16 and Figure 36. Sample rotation reduced the standard deviation of scores by
30% along Principal Component 1 and by 33% along Principal Component 2 for the set of low
pressure (115 psi) sample tablets. Rotation also reduced the standard deviation of scores by 59%
along Principal Component 1 and by 56% along Principal Component 2 for the set of high
pressure (415 psi) sample tablets. The difference in the effect of rotation between the two
forming pressures was likely the result of increased sample inhomogeneity induced by the higher
pressure. Although scores from stationary scans of the high pressure samples were more variable,
sample rotation eliminated this effect. Given the advantages of pressure for sample handling, the

415 psi forming pressure was selected for the quantitative ASL study.
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Figure 35. Scores plots of 10% canola oil: white rice flour samples:
(a) Stationary; (b) Rotating [ 115 psi Tablets; [ 415 psi Tablets].
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Table 16. Standard deviation of scores of ten 10% canola oil : white rice flour samples.

3 Scans Each of 10 Samples

115 psi Tablets (n=30)

415 psi Tablets (n=30)

Stationary Rotating Stationary Rotating
Principal Component 1 1.51x 102 1.06 x 102 2.14x 1072 8.72x 10
Principal Component 2 1.94x 102 1.29 x 102 2.82x 1072 1.23 x 10
0.04
S

o
o
@

0.02

0.01 B

Standard Deviation (Scores)

0.00

Principal Component 1

Principal Component 2

Figure 36. Standard deviation among scores of triplicate scans of ten 10% canola oil :
white rice flour sample tablets [C1 115 psi; B 415 psi; Stationary (S); Rotating (R)].

An expanded view of the rotating 415 psi sample scores is shown in Figure 37. Unlike

scores from repeated scanning a single rotating tablet as shown in Figure 33 or from scanning

multiple stationary tablets as shown in Figure 26, no trend was evident in the scores of multiple

rotating tablets. The trending in earlier experiments may have been a temperature or moisture

effect. Repeated scanning of a single sample increased the duration that the sample was atop the

spectrometer, allowing greater shifts in temperature or moisture content of the sample between

initial and final scans. Although scanning only three replicates per sample as in the qualitative

canola oxidation study provided much less time for changes associated with these effects,

repeated measurement of a stationary point was not complicated by shifts in scores due to
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changes in the sample composition which arise from rotation of the sample during scanning,.
Thus, scores of replicate scans of each sample in Figure 24 and Figure 26 showed trending, while
the initial placement for any particular sample in those scores plots depended upon its
composition. The trending effect was not evident in scores of the multiple rotating sample tablets
in Figure 37, likely due to the brief time each sample spent on the spectrometer and the fact that

sample rotation gave rise to shifting composition effects which obscured trending.

-0.795
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-0.840 3
-0.845
-0.630 -0.625 -0.620 -0.615 -0.610 -0.605 -0.600 -0.595 -0.590 -0.585

PC1

Figure 37. Expanded view of scores plot of rotating sample tablets pressed at 415 psi.
Replicate scans made on each sample tablet are connected by lines. Numbers indicate the
first scan of each of the ten sample tablets assayed in temporal order.
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5.2 Quantitative Analysis of Lipid Oxidation: Accelerated Shelf Life Study

5.2.1 Experimental Results
5.2.1.1 Conjugated Dienes Reference Assay
The distribution of oxidation index values among pecan and canola oils indicated a
disparity in extent of oxidation among oils despite similar incubation times (Figure 38). Pecan oil
was more stable to oxidation. Initial (T0) canola oil samples had larger oxidation index values
and the range of values during the course of the canola ASL was nearly 30% greater. Overall
ranges for both oils skewed toward low levels of oxidation, likely due to the fact that neither was

stripped of antioxidants and that incubations occurred at 40°C rather than higher temperatures.

Pecan Oil

T —

0.0 0.3 0.6 0.9 1.2 1.5

Minimum 1st Quartile | 2nd Quartile | 3rd Quartile Maximum
0.2831 0.3016 0.4756 0.8717 1.038
Canola Oil

. [}——
0.0 0.3 0.6 0.9 1.2 1.5
Minimum 1st Quartile | 2nd Quartile | 3rd Quartile Maximum
0.3639 0.3764 0.9836 1.069 1.324

Figure 38. Box and whiskers plots showing distribution of oxidation index values
for oils during the 40°C ASL study. Whiskers indicate first and fourth quartiles of data and
boxes indicate second and third quartiles of data.
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Plots of oxidation index versus incubation time for each oil are shown in Figure 39,
which displays the average of the three samples taken at each time point with error bars indicating

95% confidence intervals.
1.4 - a

1.2 -
Pecan Oil

y = 0.0599x + 0.1603
R?=0.995

-—
1

.’
.
o
o
.o
.o

o
(o]
1

.o
.o
.*
.
o
o
.*
o
o
o
.*
o
.
o
.*
.

e
[<}]
1
ré

Oxidation Index

e
=Y
1

é

...............

o
N
1

.
.
.
.
.
.

o

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1
Incubation Time (Weeks)

5 16

1.4 - b

o
o
.

1.2 -

Canola Oil ¥

11 [y=0.0774x + 0.2492 .

i
0 . RE=0999 | ..

Oxidation Index

o
o
o
.

0 T —— T/ T —— T ——r———r——— T/ 1/ 1T 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Incubation Time (Weeks)

Figure 39. Oxidation index (conjugated dienes) for (a) pecan and (b) canola oils incubated
at 40°C. Each point represents the average of three replicates drawn at that incubation
time. Where error bars do not appear they are below the size of the marker.
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Klein’s oxidation index has been reported to have a linear relationship with the duration
(Babincova et al., 1999) and intensity (Mandal et al., 1978) of oxidizing conditions. Three points
are clearly evident from the figure. First, the first two samples of each oil were taken during a lag
period prior to the propagation phase accompanied by development of conjugated dienes at a
constant rate. The lag period for pecan oil was longer than that for canola oil, a consequence of
different fatty acid composition and different levels of antioxidants in these oils. Second, the rate
at which conjugated dienes were generated during the propagation phase was nearly 30% higher
in canola oil based on the ratio of slopes of the propagation phase lines. Third, while no clear
maximum was reached for pecan oil, oxidation index values for canola oil peaked during the
study as samples at the final time point taken sixteen days after the previous assay were far below
the growth line. This decrease was consistent with the conclusion that conversion of conjugated

dienes to secondary oxidation products was reached in canola.

5.2.1.2 Lipid Hydroperoxides Reference Assay

The distribution of peroxide values among pecan and canola oils during the ASL, shown
in Figure 40, indicated a large disparity between the two oils. The range of peroxide values
observed in canola oil was nearly 6.5 times that of pecan oil. As was observed for conjugated
dienes, peroxide values in both sets of oil samples were skewed towards lower levels of oxidation
under the conditions investigated.

Plots of peroxide values versus incubation time for each oil are shown in Figure 41,
which displays the average of the three samples taken at each time point with error bars indicating
95% confidence intervals. Peroxide values for pecan oil (Figure 41a) were less than one quarter
of the overall range for the first five of the seven time points evaluated. Variability increased as
peroxide values rose in pecan oil. The latter observation was even more pronounced in canola oil
(Figure 41b) where data from the last two time points were highly variable. Unlike the case in

pecan oil, in canola oil the changes between peroxide values of the final two time points appeared
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to level off and their confidence interval ranges largely overlapped. This reinforces the inference
from the oxidation index data that canola oil but not pecan oil reached the point at which levels of

primary lipid oxidation products began to level off or drop, likely as secondary products arose.

Pecan Oil

25

50

75

100

Minimum 1st Quartile | 2nd Quartile | 3rd Quartile Maximum
0.07592 0.6031 9.909 43.00 84.69
Canola Oil
| | |
0 150 300 450 600
Minimum 1st Quartile | 2nd Quartile | 3rd Quartile Maximum
0.04033 0.2195 92.85 357.2 544.0

Figure 40. Box and whiskers plots showing distribution of peroxide values (meq/Kg) for oils
during the 40°C ASL study. Whiskers indicate first and fourth quartiles of data and boxes
indicate second and third quartiles of data.

5.2.1.3 Non-Volatile Carbonyl Products Reference Assay
Analysis of carbonyl secondary products of lipid oxidation by the modified DNPH assay
indicated that incubations at 40°C for just over fourteen weeks in pecan oil or over fifteen weeks
in canola oil were insufficient to generate substantial amounts of these products. No carbonyls
were observed in chromatograms of any of the pecan oil samples, while among canola oil

samples short chain saturated carbonyls developed only in the final two time points of the study

(Figure 42).
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Figure 41. Peroxide values for (a) pecan and (b) canola oils incubated at 40°C. Each point
represents the average of three replicates drawn at that incubation time. Where error bars

do not appear they are below the size of the marker.
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Figure 42. 360 nm chromatograms following DNPH derivatization of canola oil
incubated at 40°C for 10.86 weeks (top), 13.57 weeks (center) and 15.86 weeks (bottom).
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The conditions for the DNPH assay relied upon lauric aldehyde as a valid internal
standard for saturated aldehydes, while less reactive unsaturated aldehydes were monitored using
233 nm for 2-enals and 270 nm for 2, 4-dienals. Incorporation of the internal standard indicated
the assay worked properly for saturated aldehydes, as peaks for the hydrazone derivative of lauric
aldehyde were consistently observed throughout all blanks and samples. Saturated aldehydes
generated from sample incubation were only observed in the final two time points of the canola
oil incubation.

Although a small peak corresponding to the retention time for butanal was observed at
almost 11 weeks of incubation, it did not arise from oxidation as the chromatogram shown in
Figure 42 (top) was identical to the blank. Interestingly, butanal was not found to increase in
later time points, but a many products arose at shorter retention times in addition to successively
longer chain saturated aldehydes (Figure 42 center, bottom). Casale et al. (2007) investigated the
kinetics of aldol condensation in C2-C8 aliphatic aldehydes and determined butanal to be the
most reactive. Our observations could indicate butanal was not a significant product of oxidation,
evaporated during sample incubation, or underwent side reactions during the DNPH assay.

While many of the products eluting prior to butanal were also observed in the respective
blanks at diminished concentrations, sample chromatograms were much noisier and contained a
peak at 2.8 minutes (Figure 42 bottom) not found in the blank. Yao (2015) also found large
amounts of early eluting products during studies of lipid oxidation using a similar DNPH assay.
These could be natural products of lipid oxidation or side products generated during the DNPH
assay. None of the seven longer chain saturated aldehydes observed in the final week samples of
canola (Figure 42 bottom) were observed in the blank.

Monitoring at 233 nm indicated characteristic peaks for each oil between 16 and 26

minutes (Figure 43). Peak areas among sample batches correlated with conjugated diene levels.
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Figure 43. 233 nm chromatograms of oils incubated at 40°C following DNPH
derivatization: pecan oil at 14.14 weeks (top); canola oil at 13.57 weeks (center); and canola
oil at 15.86 weeks (bottom).
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Given the retention times of these products, they were tentatively identified as core conjugated
dienes attached to triacylglycerols. Chromatograms of samples containing the maximal amount
of conjugated dienes observed for pecan oil (Figure 43 top) and canola oil (Figure 43 center)
indicated a greater amount of a core product eluting between 22 and 23 minutes in canola. This
discrepancy among pecan and canola oils was consistent throughout the ASL, thus it was likely
attributable to differences among the respective fatty acid compositions of the two oils. Typical
compositions for the two are shown in Table 17.

Table 17. Typical fatty acid composition of pecan and canola oils.

Fatty Acid Pecan Oil* | Canola Oil** | Pecan Oil*** | Canola Oil***
Palmitic (16:0) 5.2% 5.2%
Stearic (18:0) 2.7% 4.4%
Saturated 7.9% 9.6% 9.5% 9.6%
Oleic (18:1) 64.6% 59.5%
Monounsaturated 64.6% 59.5% 52.0% 59.7%
Linoleic (18:2) 24.4% 18.8%
Linolenic (18:3) 2.2% 11.9%
Polyunsaturated 26.6% 30.7% 38.5% 30.7%
(Other) 0.9% 0.2% - -

* (Toro-Vazquez et al., 1999) Average of values from three growing regions.
** (Kostik et al., 2013) Values for high oleic variety.
*** ("Benefits of Cooking With Pecan Qil", 2019)

Toro-Vazquez et al. (1999) observed that the content of oleic acid in pecan oil dropped
while those of linoleic and linolenic acids rose with tree age, with linoleic acid content
significantly greater than linolenic acid. Comparison of values from the first two columns of
Table 17 indicates the largest differences in fatty acid composition between pecan oil and high
oleic canola oil are attributable to these three unsaturated fatty acids. Values in the final two
columns of Table 17 are from the website of Kinloch Plantation Products, LLC, the manufacturer
of the pecan oil used in this study. The canola oil values are identical to those of Kostik et al.
(2013), while those for pecan oil differ greatly from Toro-Vazquez et al. (1999) in the amount of

unsaturated fatty acids. This indicates that the pecan oil used herein had lower contents of oleic
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and linolenic acids but a much higher content of linoleic acid than the high oleic canola oil
assayed herein. Differences in conjugated dienes evident from chromatograms of the two oils at
233 nm thus reflect differences in fatty acid composition. The difference in oxidation rates of the
two oils was attributable to the very high level of natural antioxidants present in pecans, 179.4
umol Trolox equivalents (TE)/g (Wu et al., 2004) relative to those typically found in plant oils
[i.e. 2.20 umol TE/g in soybean oil, 1.79 umol TE/g in extra virgin olive oil, and 1.17 umol TE/g
in sunflower oil (Pellegrini et al., 2003)].

The changes in chromatograms of canola oil from the penultimate (Figure 43 center) and
final (Figure 43 bottom) time points of the ASL also reflected the observations from the
conjugated dienes assay (Figure 39b). Reduction of conjugated dienes in the final canola oil
samples corresponded with the increase in secondary carbonyl products of lipid oxidation (Figure
42 bottom).

Results may have been attributable to gentle incubation conditions, to evaporation of
volatile aldehydes during incubation, and/or to the presence of endogenous or added antioxidants
in the commercial oils. The incubation periods used for these oils at 40°C were insufficient to
reach the later stages of lipid oxidation in which large amounts of carbonyl secondary products
arose. These observations were also interesting in light of alternate competing pathways of lipid
oxidation being studied in this laboratory. Carbonyl products typically result from scission
reactions of lipid alkoxyl radicals. A strong proton donating source is necessary to stabilize
scission products and drive the reaction forward (Schaich, 2005). In oxidizing oils with randomly
oriented triacylglycerol molecules, abstractable hydrogens are not readily available. Peroxyl
radicals add preferentially to lipid double bonds, generating epoxides instead of hydroperoxides.
Preliminary testing of oils from this experiment indicated the presence of elevated levels of
epoxides. These shifting reaction pathways could explain why carbonyls were not detected under
the conditions investigated. More detailed analyses will be necessary in future studies. Without

available data from the carbonyl reference assay, NIR analysis was not performed for carbonyls.
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52.14 Near Infrared Spectroscopy

All 945 original reflectance spectra of samples made with each oil are shown in Figure 44.
The broad bands in each figure are the result of baseline shifting of individual spectra due to
variation in the intensity of light returning to the detector among different samples. The most
intense spectra in Figure 44a are triplicate scans accidentally acquired on a sample that was not
placed on a borosilicate glass disc. This shows the damping effect on spectral intensity that
substrates such as the borosilicate glass discs used here can have in transflectance spectroscopy.
Replicate spectra on this sample were immediately reacquired with the sample on a borosilicate
glass disc and that data was used for chemometric modeling.

Figure 44 shows all of the individual scans made during the ASL. To create chemometric
models relating NIR and chemical assay data, the average spectrum of the forty five scans
acquired for each sample batch were used, following the application of various pretreatments, to
compare with the values of conjugated dienes and peroxides obtained for that batch from the
applicable reference assay. Examples of spectra for the twenty one batches of pecan oil samples
and canola oil samples following normalization (SNV) and smoothing (9 point Savitzy-Golay gap
2) pretreatment are shown in Figure 45. The models developed herein relied upon correlation of

the minor changes in these spectra with chemical assays of the corresponding samples.

5.2.2 Full Spectrum Predictive NIR Models for Lipid Oxidation Parameters
Chemometric models using partial least squares regression (PLSR) were developed for
conjugated diene content [expressed as the oxidation index (Klein, 1970)] and peroxide values
(meq/kg) in pecan and canola oils subjected to accelerated shelf life incubation and coated on
white rice flour at 7.5% oil by weight. Models were also assessed using PCR; however, the
fitness of those was comparable to or worse than PLSR models. Principal components analysis is
useful in qualitative analyses for sample identification (such as in the lipid discrimination,

forming pressure discrimination, rotation or qualitative ASL studies herein) or where quantitative
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reference assay data is lacking. PLS factors, which are derived using the quantitative reference
assay data, are more easily interpreted than principal components in quantitative analyses. Given
this increased difficulty in interpretation and the lack of any improvement in PCR models over

PLSR models, analysis was constrained to PLSR.

Intensity
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Figure 44. Original NIR reflectance spectra of 7.5% (w/w) nominal mixtures of oils from
the ASL study with white rice flour: (a) Pecan oil samples and (b) Canola oil samples.
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Figure 45. Normalized and smoothed average NIR spectra for each of the twenty one
7.5% oil : white rice flour batches from ASL studies of (a) Pecan oil and (b) Canola oil.
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PLSR models for conjugated dienes and lipid hydroperoxides were developed for
samples made with pecan oil and canola oil as well as for a data set combining both sample types.
Models relied upon reference assay data for the twenty-one samples of each oil from the ASL
study as well as the average NIR spectrum of the 7.5% oil : white rice flour mixture made with
each oil sample. Each average spectrum was a composite of the forty-five spectra (triplicate
scans of fifteen pressed tablets acquired with rotation) acquired for that oil sample. Initial models

were generated by applying PLSR to the full NIR spectrum (4000 - 10,000 cm™).

5.2.2.1 NIR Assays of Conjugated Dienes (Oxidation Index)
NIR models for conjugated dienes (expressed as the oxidation index (Klein, 1970)) using
7.5% (w/w) pecan oil mixed with white rice flour were generally very poor under the conditions
studied, while those using similar samples incorporating 7.5% (w/w) canola oil were slightly
better. A data set combining both sets of samples provided models with quality nearly as good as
those for canola oil samples. A number of factors were identified to explain these results and

indicate possible adjustments in sample handling and analysis that can improve the technique.

5.2.2.1.1 Pecan Oil Samples

Q-values for models constructed using various pretreatments on the spectral data of
samples made with pecan oil are shown in Table 18. Outlier analysis of these full spectra models
was complicated by a fair amount of scatter in residual values. This was likely attributable to the
relatively low level of oxidation in many of the samples given the stability of pecan oil (see
Figure 38). Candidates for exclusion included the TO samples as well as those from the final
week (Week 14) given that these samples capped the data and thus had high leverage in addition
to scatter among residuals.

As seen in Table 18, model quality improved by removing the TO samples but dropped

when the final week samples were excluded, likely because of low levels of oxidation among the
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remaining samples. Eliminating the T0 samples reduced scattering at the low end of the data,

while eliminating samples from the final week discarded the most oxidized samples.

Table 18. Q-values for models of conjugated dienes in 7.5% pecan oil samples.

c c
S |29 S
PLS E S E *m-' ~ 'ﬁ Samples Excluded
Q-Value TZ |e£ g = n
Factors - g S o .g from Model

o » o 5

r4 =~ a
0.4445 3 - - - 21
0.5096 2 + - - - 21
0.5097 2 + + - - 21
0.5288 2 + + 1st - 21
0.4705 2 + + 2nd - 21
0.5807 5 - - - TO 18
0.6182 2 + - - TO 18
0.6182 2 + + - TO 18
0.6266 2 + + 1st TO 18
0.6183 2 + + 2nd TO 18
0.3945 2 - - - Week 14 18
0.4494 2 + - - Week 14 18
0.4489 2 + + - Week 14 18
0.4336 2 + + 1st Week 14 18
0.4282 2 + + 2nd Week 14 18
0.5153 5 - - - TO0 and Week 14 15
0.5501 2 + - - TO0 and Week 14 15
0.5502 2 + + - TO0 and Week 14 15
0.5465 2 + + 1st TO0 and Week 14 15
0.5433 2 + + 2nd TO0 and Week 14 15

The best full spectrum model was obtained by discarding only the TO samples and

applying normalization, smoothing and first derivative transformation of the spectral data. This

full spectrum model afforded a Q-value of 0.6266.
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5.2.2.1.2 Canola Oil Samples
Q-values for models constructed using various pretreatments on the spectral data of
samples made with canola oil are shown in Table 19. Although canola oxidized to a greater
extent than pecan, outlier analysis remained difficult due to scatter among the data. Again, initial
and final time points were candidates for exclusion given their increased leverage in addition to

scatter among their residuals.

Table 19. Q-values for models of conjugated dienes in 7.5% canola oil samples.

c [
S |20 S
PLS E S é ﬂw- ~ ﬁ Samples Excluded

Q-Value Factors s % 3 g g B from Model n

E-|EaQ O] 2

(] » o [}

Z ~ a
0.5813 4 - - - - 21
0.5371 4 + - - - 21
0.5364 4 + + - - 21
0.5995 4 + + 1st - 21
0.5839 4 + + 2nd - 21
0.4861 3 - - - T0 18
0.5454 3 + - - T0 18
0.5455 3 + + - T0 18
0.5851 3 + + 1st T0 18
0.5524 3 + + 2nd T0 18
0.6349 4 - - - Week 15 18
0.6018 4 + - - Week 15 18
0.6332 5 + + - Week 15 18
0.6712 3 + + 1st Week 15 18
0.6976 3 + + 2nd Week 15 18
0.6438 5 - - - TO0 and Week 15 15
0.6778 4 + - - TO0 and Week 15 15
0.7252 6 + + - TO0 and Week 15 15
0.6949 3 + + 1st TO0 and Week 15 15
0.6801 3 + + 2nd TO0 and Week 15 15
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While exclusion of the TO samples alone failed to improve model quality, removal of
only the final week samples did, while the greatest improvement resulted from removing both
groups of samples. This result was interesting as it is typical for model quality to degrade when
using fewer samples. The best such full spectrum model was obtained by applying normalization

and smoothing pretreatments and had a Q-value of 0.7252.

5.2.2.1.3 Combined Samples

PLS models of conjugated dienes were also obtained using a combined data set of pecan
and canola samples over the full spectral range. A summary of the best models for each sample
set of individual oils is shown in Table 20. These results indicated that normalization, smoothing
and first derivative pretreatment resulted in the best model obtained for pecan oil samples in
addition to accounting for half of the top models for both the pecan and canola oil samples.
Normalization and 9 point Savitzky-Golay (Gap 2) smoothing provided the best model for canola
oil samples and also the second best model for pecan oil samples. Accordingly, each
pretreatment was evaluated for all permutations of TO and final week sample exclusions of both

oils in the combined data set.

Table 20. Best individual oil conjugated diene models for each sample set.

c [
) o Q o
pls | 5S |E28| § | samples Excluded
Q-value | _ SZ |85 8§ % fp Model n
actors EL |8 S o S rom Mode
] N o ]
Z =~ a
0.6266 2 + + 1st TO 18
0.5502 2 + + - T0 and Week 14 15 ?'f’
0.5288 2 + + 1st - 21 g
0.4494 2 + - - Week 14 18
0.7252 6 + + - TO0 and Week 15 15 o
0.6976 3 + + 2nd Week 15 18 g
0.5995 4 + + 1st - 21 %
0.5851 3 + + 1st TO 18
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Results of models prepared using normalization with smoothing and first derivative
pretreatment are shown in Table 21 ranked by Q-value. Each of the best five models eliminated
the final week samples for canola and all but one also excluded the final week samples for pecan.
Most excluded the TO samples for canola as well. Overall, improved quality was observed in
conjugated diene models using this pretreatment as samples were excluded.

Table 21. Combined data models of conjugated dienes using
SNV and first derivative pretreatment ranked by Q-value.

Pecan Samples Canola Samples
PLS Excluded Excluded
Q-Value Factors n
T0 Week 14 T0 Week 15
0.6946 3 X X X X 30
0.6795 6 X X 36
0.6774 5 X X X 33
0.6665 3 X X 36
0.6393 6 X X X 33
0.6282 3 X X 36
0.6202 3 X X X 33
0.6139 3 X 39
0.6131 5 X 39
0.6102 3 X X 36
0.5790 5 X X 36
0.5529 3 X 39
0.5472 3 X X X 33
0.5440 5 42
0.5355 6 X X 36
0.5145 6 X 39

Results of models prepared using normalization and smoothing pretreatment are shown in
Table 22 ranked by Q-value. Although the change in pretreatment shifted the order of sample
sets relative to model quality, the general trend towards improvement with exclusion of samples,
particularly with respect to initial and final canola samples, was preserved. This pretreatment
resulted in the best overall model for the combined data set by excluding the final weeks of each

oil as well as the initial canola oil samples, with a Q-value of 0.7214.



Table 22. Combined data models of conjugated dienes using
SNV and smoothing pretreatment ranked by Q-value.

Pecan Samples Canola Samples
PLS Excluded Excluded
Q-Value Factors n
T0 Week 14 T0 Week 15
0.7214 5 X X X 33
0.6966 5 X X X X 30
0.6734 5 X X 36
0.6616 5 X X 36
0.6375 4 X X 36
0.6202 4 X 39
0.6163 5 X X X 33
0.6159 3 X X 36
0.6124 5 X 39
0.5940 4 X X X 33
0.5675 5 X X X 33
0.5659 5 X X 36
0.5589 5 X 39
0.5380 5 42
0.5182 5 X X 36
0.4909 5 X 39

5.2.2.2 NIR Assays of Lipid Hydroperoxides
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Full spectrum NIR models of lipid hydroperoxides constructed using either 7.5% (w/w)

pecan or canola oils mixed with white rice flour were found to be worse than those for conjugated

dienes under the conditions studied. Unlike the case with conjugated dienes, use of a combined

data set improved models relative to those of individual oils. Thus, sample size appears to have

been more critical in the case of peroxides than conjugated dienes.

5.2.2.2.1 Pecan Oil Samples

Q-values for models constructed using various pretreatments on the spectral data of
samples made with pecan oil are shown in Table 23. Similar to models for conjugated dienes,
quality improved by removing the TO samples but dropped when the final week samples were

excluded. Again, the likely reason was low levels of oxidation among the set of pecan oil



samples. Eliminating the TO samples reduced scattering at the low end of the data, while

eliminating samples from the final week discarded the most oxidized samples.

Table 23. Q-values for models of peroxide values in 7.5% pecan oil samples.
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0.3949 2 - - - - 21
0.4575 2 + - - - 21
0.4577 2 + + - - 21
0.4648 2 + + 1st - 21
0.3041 2 + + 2nd - 21
0.4298 2 - - - TO 18
0.5029 2 + - - TO 18
0.5030 2 + + - TO 18
0.5027 2 + + 1st TO 18
0.4702 2 + + 2nd TO 18
0.3533 2 - - - Week 14 18
0.3934 2 + - - Week 14 18
0.3936 2 + + - Week 14 18
0.3548 2 + + 1st Week 14 18
0.3609 2 + + 2nd Week 14 18
0.4139 2 - - - TO0 and Week 14 15
0.4410 2 + - - T0 and Week 14 15
0.4412 2 + + - TO0 and Week 14 15
0.4258 2 + + 1st T0 and Week 14 15
0.4293 2 + + 2nd TO0 and Week 14 15

The best model, obtained by excluding only the TO samples and pretreating spectra by

normalization and smoothing, afforded a Q-value of only 0.5030. Comparison of these models

with those for conjugated dienes (Table 18) using corresponding sample sets and pretreatments

indicated a general reduction in quality among peroxide value models.
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5.2.2.2.2 Canola Oil Samples

Q-values for models constructed using various pretreatments on the spectral data of
samples made with canola oil are shown in Table 24. Again, comparison of these models with
those for conjugated dienes (Table 19) indicated peroxide value models were lower in quality
than corresponding models for conjugated dienes. However, unlike either peroxide models of
pecan samples (Table 23) or conjugated diene models of canola samples (Table 19), removal of
TO or final week samples generated little if any improvement in model quality. Models were
sufficiently poor that the highest Q-value (0.5264) was observed when using all samples with no
pretreatments, a highly suspect result as in such a model baseline shifts between different samples
were not corrected. The best quality model with pretreated spectra was obtained by dropping TO
samples and applying normalization and first derivative transformation (Q = 0.4692). This was
slightly improved over a model which dropped the final week samples and used normalization

with smoothing (Q = 0.4560).



Table 24. Q-values for models of peroxide values in 7.5% canola oil samples.
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0.5264 4 - - - - 21
0.4441 3 + - - - 21
0.4434 3 + + - - 21
0.4444 3 + + 1st - 21
0.4386 3 + + 2nd - 21
0.3748 4 - - - T0 18
0.4458 2 + - - T0 18
0.4449 2 + + - T0 18
0.4692 2 + + 1st T0 18
0.4624 2 + + 2nd T0 18
0.4103 4 - - - Week 15 18
0.4556 3 + - - Week 15 18
0.4560 3 + + - Week 15 18
0.4476 3 + + 1st Week 15 18
0.3850 3 + + 2nd Week 15 18
0.4064 2 - - - TO0 and Week 15 15
0.4308 2 + - - TO0 and Week 15 15
0.4302 2 + + - TO0 and Week 15 15
0.4140 2 + + 1st TO0 and Week 15 15
0.4214 1 + + 2nd TO0 and Week 15 15

5.2.2.2.3 Combined Samples

PLS models of peroxide values were also obtained using a combined data set of pecan

and canola samples over the full spectral range. A summary of the best models for each sample

set of individual oils is shown in Table 25. These results indicated that pretreatment via

normalization and 9 point Savitzky-Golay (Gap 2) smoothing resulted in the best model obtained

for pecan oil samples and the second best model for canola oil samples. Normalization with

smoothing and first derivative pretreatment resulted in the best model obtained for canola oil
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samples and the second best model for pecan oil samples. Either of these pretreatments
accounted for all of the best pecan sample models as well as the three best canola sample models.
Accordingly, each pretreatment was evaluated for all permutations of T0 and final week sample

exclusions of both oils in the combined data set.

Table 25. Best individual oil peroxide value models for each sample set.
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0.5030 2 + + - TO 18
0.4648 2 ¥ + 1st - 21 | g
0.4412 2 + + - T0 and Week 14 15 | 8
0.3936 2 + + - Week 14 18
0.4692 2 + + 1st TO 18 o
0.4560 3 + + - Week 15 18 | 8
0.4444 3 + + 1st - 21 %
0.4308 2 + - - T0 and Week 15 15

Results of models from the sixteen sample permutations using normalization with
smoothing and first derivative pretreatment are shown in Table 26 ranked by Q-value. Unlike the
case for conjugated diene models, quality for peroxide models appeared higher when more
samples were included. The sole exceptions were models which excluded only the TO samples
from either oil (see Table 26 bottom). Models were also generally worse than corresponding ones
for conjugated dienes, which ranged from Q of 0.5145 to 0.6946 (Table 21). The few exceptions
to this observation included the model made with all 42 samples (Q = 0.5913 for peroxides and

0.5440 for conjugated dienes).



Table 26. Combined data models of peroxide values using
SNV and first derivative pretreatment ranked by Q-value.

Pecan Samples Canola Samples
PLS Excluded Excluded
Q-Value Factors n
T0 Week 14 T0 Week 15
0.5981 3 X X 36
0.5922 3 X X 36
0.5913 3 42
0.5878 3 X 39
0.5849 3 X X 36
0.5829 3 X X 36
0.5769 3 X X 36
0.5761 3 X 39
0.5736 3 X X X 33
0.5625 3 X X 36
0.5610 3 X X X 33
0.5516 3 X X X 33
0.5471 3 X X X X 30
0.5376 3 X X X 33
0.5229 3 X 39
0.4667 4 X 39

Results of models from the sixteen sample permutations using normalization and

smoothing pretreatment are shown in Table 27 ranked by Q-value. As was the case with
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conjugated diene models, the change in pretreatment shifted the order of sample sets relative to

model quality. Without applying the first derivative, the trend of improved quality with
additional samples was clarified.
All eight models comprising the bottom half of the quality rankings excluded the final

week of canola samples (Table 27). The worst four models among those also excluded the TO

canola samples. The worst two of those four models excluded the TO pecan samples. The worst

of those two models also excluded the final week of pecan samples. This pattern repeated

throughout all eight models which excluded the final week of canola samples, with the single

caveat that the top two of those models had effectively identical Q-values.



Table 27. Combined data models of peroxide values using
SNV and smoothing pretreatment ranked by Q-value.

Pecan Samples Canola Samples
PLS Excluded Excluded
Q-Value Factors n
T0 Week 14 T0 Week 15
0.6200 4 X 39
0.6155 4 42
0.6090 4 X 39
0.6081 4 X X 36
0.6001 4 X X 36
0.5964 5 X 39
0.5891 5 X X 36
0.5851 4 X X X 33
0.5573 4 X X 36
0.5573 4 X 39
0.5506 4 X X 36
0.5423 4 X X X 33
0.5357 4 X X 36
0.5332 4 X X X 33
0.5157 4 X X X 33
0.5042 4 X X X X 30
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Among the eight models comprising the top half of the quality rankings, the worst four

models excluded the TO pecan samples. The worst two of those four models also excluded the

final week of pecan samples. Also among those four models, the worst and best excluded the TO

canola samples. This pattern repeated throughout all eight of the top models.

The best full spectrum peroxide model using the combined sample set was obtained with

normalization and smoothing and afforded a Q-value of 0.6200. Only the initial canola oil

samples were excluded, and model quality was better than those obtained from individual oils.

5.2.3 Predictive NIR Models for Lipid Oxidation using Selected Wavenumbers

Sample sets for the best combined models for conjugated dienes (oxidation index) and

peroxides were analyzed to determine if they could be improved by eliminating wavenumbers

from consideration. The e coefficient (Wu et al., 1995) provided information about how well the
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oxidation parameters of interest aligned with overall changes among spectra of different oil
samples during ASL testing. The cross validation regression coefficients t test (Martens &
Martens, 2000) enabled selection of wavenumbers based on how critical they were to changes in
the analyte of interest among ASL samples. Both approaches favor spectral regions which are not
only relevant but also where repeated measurements of a sample are stable.

Analyses using the sample set for the best conjugated dienes (oxidation index) model
[Q value 0.7214, normalization (SNV) and smoothing pretreatment, n = 33 excluding T0 canola
oil samples and the final week samples of both oils] are reported below. However, problems
were encountered using the sample set for the best peroxide value model [Q value 0.6200,
normalization (SNV) and smoothing pretreatment, n = 39 excluding only the TO canola oil
samples]. Although numerous studies have ascribed bands to peroxides in the area of 4500 -
5000 cm™! (see Appendix A), application of the cross validation regression coefficients t test to
this sample set dropped this entire region from the model.

A comparison of the cross validation regression coefficient t test statistics for two models
of peroxide values, one using the 39 samples from the data set providing the best peroxide value
model and the other using the 33 samples from the data set providing the best conjugated diene
model is shown in Figure 46. These sample sets differed only by the final week samples of each
oil. In the 4500 - 5000 cm! region, a large difference between sample sets was observed in the t
test values (Figure 46, top) which was largely attributable to an increased standard deviation
(Figure 46, bottom) when the final week samples were included. While including these samples
improved model quality for full spectrum models, it also increased variability in this critical
spectral region that shifted the wavenumber selection process away from a region known for
peroxide signals. When the t test was applied using the smaller sample set, wavenumbers in this
critical region were identified as important. Therefore, the smaller set of 33 samples was used for

wavenumber selection in peroxide value models as well as those for conjugated dienes.
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Figure 46. Comparison of regression coefficient statistics for two initial models of peroxide
values made from different sample sets (— n =39; — n = 33): t test values (top), absolute
value (center) and standard deviation among cross validation submodels (bottom).
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5.2.4 NIR Model Improvement: Wavenumber Selection using the e Coefficient

The value of e, the ratio of differences among groups to those within groups, was
calculated for the combined set of 33 samples with pretreatments that provided the highest-
quality model, namely, normalization (standard normal variate) followed by smoothing (9 point
Savitzky-Golay Gap 2). The spectrum of e values is presented in Figure 47a. Three large peaks
were evident at 5164 cm™!, 5688 cm™ and 5828 cm™!. The first of these likely corresponded to the
rice flour matrix and water as a hydroxyl combination band has been attributed to polysaccharides
at 5181 cm™ and multiple sources cite bands associated with moisture from 5155 to 5200 cm'!
(see Appendix A). The middle peak likely corresponded to CH stretching from methylene groups
noted at 5682 cm™! in a number of lipid oxidation references and at 5666 cm™ and 5675 cm™! in
aliphatic compounds. The final peak also likely arose from methylene groups noted at 5797-5829
cm’! in lipid oxidation references as well as at 5797 cm! in aliphatic compounds.

The 5164 cm™ peak could indicate differences among samples in the relative composition
of oil to flour as measured. The e value was calculated by comparing variation among mean
absorbances for each sample batch (numerator) with variation among individual tablets prepared
from the same oil (denominator). If measurements for each batch did not reflect the true mean
value of the nominal composition (7.5% oil), model quality would suffer. Even with correct
batch preparation, inaccuracies could arise from failure of the mean absorbance of the fifteen
tablets measured for each batch to converge on the true mean.

This peak could also indicate differences in moisture content among samples. The forty-
two original batches were measured on fourteen different days over the course of nearly four
months. The flour matrix used could have taken up different amounts of moisture based on the
time of exposure of samples during batch preparation as well as the relative humidity in the lab.
Fluctuating moisture content among samples would also have impaired model quality. Finally,
the peak at 5164 cm™ could arise at least in part from lipid hydroperoxide decomposition induced

when oxidized oil was mixed with rice flour, placing it in contact with protein amine groups
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(Schaich & Karel, 1976), followed by protonation from antioxidants present, by lipids, or by
protein donor groups.

Values of e for all wavenumbers were within a single order of magnitude (Figure 47a).
Thus, only limited improvements to the model were possible by excluding less valuable
wavenumbers because no regions within the spectrum were overwhelmingly better than any
others. While extremely low value wavenumbers possessing significant noise and little useful
information could be excluded, removal of those with a moderate amount of useful information
would degrade the quality of the model much more rapidly than in the case where certain
wavenumbers were favored by extremely large discrepancies in e values.

Further analysis was made of the individual components of e (Figure 47b). The
numerator of e indicated discrepancies among sample batches at 7116 cm™ as well as 8264 cm™
which were degraded in the final calculation of e due to within group variation in those areas. The
former is coincident with hydroxyl vibrations indicative of water, alcohols and other
hydroxylated species, while the latter is a -CH overtone region common in oils. Also, the
numerator indicated a much broader peak above 5000 cm™! than was evident from e (Figure 47a)
which was degraded by within group variation, particularly at 5028 cm™ and 5272 cm™! which
coincides with starch from the rice flour.

These observations indicate compositional variation as the relative content of oil and rice
flour varied within the samples. Additionally, moisture contents may have fluctuated both within
and among sample batches. Both of these phenomena could have impaired model quality.

5.2.4.1 Conjugated Diene Model Improvement Based on e Values

Attempts were made to improve model quality by eliminating wavenumber ranges with e
values below a cutoff threshold. Figure 48 shows the Q-value for the best model obtained for the
full spectrum (e cutoff 0.0) and at wavenumber ranges determined by e cutoffs at intervals of
0.25. As shown in Figure 49, as the e cutoff applied increased, wavenumber ranges used in

models were split, truncated, or lost entirely.
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Figure 47. Plots of (a) e coefficient values; and (b) the numerator and denominator of e.
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Improvements were slight, while a minor drop in quality was observed from an e cutoff
of 2.25 to 2.5 and sudden drops in quality were observed at two points (2.5 to 2.75 and 5.75 to
6.0). These breakpoints corresponded to the loss of entire regions shown in red in Figure 49. The
slight drop in model quality corresponded to the loss of the 8740-8788 cm™! region, which falls
within the 8547-8873 cm-1 range for the second overtone of the CH stretch band. The first large
drop coincided with the loss of 4000-4076 cm’!, a region known to contain bands for a methylene
CH combination in lipids (4049 cm-1) as well as CH and CC stretch combination bands (4000
cm’! and 4063 cm™) in starch. The second large drop occurred upon loss of the 5148-5180 ¢cm’!
region atop the first of the three largest peaks in the e value spectrum. As discussed above, this
range encompasses bands for moisture and its combination with hydroxyls in starch from the
flour matrix. The highest Q-value (0.7336) was obtained by applying a cutoff of 2.5 with

reinstatement of the 8740-8788 cm! region.

5.2.4.2 Conjugated Diene Model Improvement Based on the Numerator of e

Attempts to improve model quality were also made using the numerator of e to determine
the importance of ranges exhibiting differences between groups but with e values decreased due
to within group variation. Figure 50 shows the Q-value for the best model obtained for the full
spectrum and at wavenumber ranges (Figure 51) determined by cutoff intervals of 0.025.

Elimination of wavenumbers at lower cutoff values initially detracted from the quality of
the full spectrum model. Q-values returned to those of the initial model using a cutoff of 0.15, the
first point at which the 7076-7148 cm! range (red in Figure 51) was fully discarded. This
corresponds to hydroxyl signals from water, alcohols and other oxygenated compounds, including
hydroperoxides. A slight improvement in model quality peaked at a cutoff of 0.20 (Q-value
0.7288), corresponding to the removal of the shoulder from 5244-5272 cm™ overlaying an area of
increased within group variability (Figure 47b and Figure 51). This region is near bands reported

for water and includes bands reported for starch, indicating that variation in moisture content or
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composition (% oil) of the samples likely confounded the analysis. The three ranges in the best
model included 4000-4092 cm!, 5020-5240 cm™ and 5780-5852 cm™'. Due to CH bands in the
first and last regions (Appendix A), they may be linked to measurement of oxidation while the
middle region likely accounted for variation in oil and possibly moisture content of the samples.
5.2.4.3 Peroxide Value Model Improvement Based on e Values

The value of e for the combined set of 33 samples was also used to assess peroxide value
model quality. The same pretreatments that provided the best conjugated dienes model, namely,
normalization (standard normal variate) followed by smoothing (9 point Savitzky-Golay gap 2),
were also found to provide the best peroxide value models. Attempts were made to improve
model quality by eliminating wavenumber ranges with e values below a cutoff threshold. Figure
52 shows Q-values for the best models obtained for the full spectrum (e cutoff 0.0) and at

wavenumber ranges determined by e cutoffs at intervals of 0.25.
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Figure 52. Refinement of peroxide value model by wavenumber selection based on e.
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Figure 53. Wavenumber ranges used in models after application of e coefficient cutoffs.

Q values for peroxide models were lower than those for conjugated dienes, indicating a
drop in model quality for this analyte. Unlike those for conjugated dienes, peroxide models
steadily improved as wavenumbers were removed from consideration, with the exception of
quality losses from a peak at an e cutoff of 1.75 to 2.50. The wavenumber ranges lost in this drop
include 6156-6356 cm™ and 8724-8856 cm!, both shown in red in Figure 53. The former range
includes CH bands for alkenes as well as hydroxyl bands of water or alcohols. The latter is the
same region observed in quality losses in the conjugated dienes model and corresponds to the
second overtone of the CH stretch band (8547-8873 cm™).

The best Q-value (0.6110) was observed at an e cutoff of 6.0, in which only the narrow
region from the largest peak in the spectrum of e values (5764 - 5872 cm™!) was retained. The
model was improved by combining that region with 6156-6356 cm™ and 8724-8856 cm'!,
resulting in a Q-value of 0.6250. When the six samples dropped from the best peroxide value

model were reinstated, model quality improved to a Q-value of 0.6636.
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5.2.4.4 Peroxide Value Model Improvement Based on the Numerator of e

Attempts to improve model quality were also made using the numerator of e to determine
the importance of the ranges exhibiting differences between groups but minimized in the e
calculation due to within group variation. Figure 54 shows Q-values for the best models obtained
for the full spectrum and at wavenumber ranges determined by e numerator cutoffs of 0.025.
Figure 55 shows the wavenumber ranges meeting the respective cutoffs.

Elimination of wavenumbers at lower cutoff values initially improved model quality to a
maximum Q-value of 0.5725 at a cutoff of 0.075. The subsequent drop in model quality
corresponded to the loss of 4336-4376 cm™! and 8240-8292 cm™!, shown in red in Figure 55. The
former region corresponds to numerous reports of CH bands from lipid oxidation studies and is
close to signals for combination bands for CH stretching and methylene deformation as well as
OH and CC stretching in starch. Lipid oxidation studies have also reported CH bands in the latter
region (Kaddour et al., 2006; Cozzolino et al., 2005; Armenta et al., 2007).

All of the NIR studies we found for peroxides indicated the importance of wavenumbers
in the 4500-5000 cm™ range (Appendix A). As the 4660-4820 cm™' range was dropped in going
from a cutoff of 0.050 to 0.075, a refined analysis was performed to determine if this region
should have been discarded. Q values are shown in Figure 56 and wavenumber ranges in Figure
57. The analysis indicated the highest quality model occurred at a cutoff of 0.065 (Q-value
0.5748). This model relied upon seven wavenumber ranges, 4000-4152 cm!, 4288-4396 cm’!,
4712-4792 cm’!, 4956-5352 cm!, 5500-5912 cm!, 7036-7176 cm™', and 8220-8324 c¢cm!, which
included an area near wavenumbers attributed to peroxides in several NIR studies of lipid

oxidation (Appendix A).
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Figure 54. Refinement of peroxide value model by selection of wavenumbers based on the
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| 0.325
0.300
0.275
0.250
0.225
0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025

NIRRT
Numerator of e Cutoff

10000 9000 8000 7000 6000 5000 4000
Wavenumber (cm-1)

Figure 55. Wavenumber ranges used in models after application of numerator of e cutoffs.



136

0.58

0.58

Q Value
[ ]

0.57

0-56 T T T T 1
0.050 0.055 0.060 0.065 0.070 0.075

Numerator of e Cutoff

Figure 56. Q-values for models from refined numerator of e cutoffs.

I 1 EE |
I 1 HOE| By
°
I 1 BRI ORRos
I 1 EEE RN
T TR TR
I 0§ EEEEE R oo

10000 9000 8000 7000 6000 5000 4000
Wavenumber (cm-1)

Figure 57. Wavenumber ranges for refined numerator of e cutoffs.



137

5.2.5 NIR Model Improvement: Cross Validation Regression Coefficients t Test

Attempts to improve model quality using cross validation regression coefficients t test
values were made by two approaches. First, wavenumbers with t values failing to pass
significance testing indicating they were non zero at a given level of confidence were eliminated.
Second, similar to e value testing, a cutoff ranking approach was used to find the best models.
Each approach was also iterated according to the jackknife procedure (Martens & Martens, 2000;
Westad & Martens, 2000). Regression coefficient statistics for the best model for conjugated
dienes from the combined set of 33 samples with normalization and smoothing pretreatments are
shown in Figure 58. This full spectrum model afforded a Q-value of 0.7214. The corresponding
statistics for the peroxide value model using the same sample set and pretreatments are shown in
Figure 59. This full spectrum model afforded a Q-value of 0.5332, well below the Q-value of
0.6200 for the best model of peroxide values.

5.2.5.1 Conjugated Diene Model Improvement by Significance Testing of t

As shown in Figure 58, the overwhelming majority of wavenumbers exhibited regression
coefficients with t test values well above zero. Thus, a high level of confidence was used to
provide the best opportunity for model improvement during iterations of significance testing. A
confidence level of 99.5% was selected, which at 32 degrees of freedom provided a t test critical
value of 2.740. Wavenumber selection converged within two iterations as shown in Table 28.
Improvements were modest as most wavenumbers passed testing and were retained (Figure 60).
Thus, a ranking process was investigated to attempt further improvement.

Table 28. Conjugated diene models from significance testing of cross validation regression
coefficient t test values at 99.5% confidence.

Model Q Value | Wavenumbers Used
Initial (Full Spectrum) 0.7214 1501
Iteration 1 0.7287 1291
Iteration 2 0.7293 1267
Iteration 3 " "
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Figure 58. Regression coefficient statistics for best initial conjugated dienes model: t test
values (top), absolute value (center) and standard deviation among cross validation
submodels (bottom).
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Figure 59. Regression coefficient statistics for initial peroxide values model subjected to
improvement procedures: t test values (top), absolute value (center) and standard deviation
among cross validation submodels (bottom).
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Figure 60. Regression coefficient statistics for conjugated dienes model after second
iteration of significance testing (99.5% Confidence): t test values (top), absolute value
(center) and standard deviation among cross validation submodels (bottom).
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5.2.5.2 Conjugated Diene Model Improvement by Ranking of t

Because model optimization stalled during significance testing due to the large size of t
values relative to the critical value in the t-distribution for the number of samples used, ranking
was also evaluated. During each iteration, a series of models was assessed using wavenumbers
with t values at or above a threshold cutoff value. The model with the highest Q-value was
selected and t values were recalculated using regression coefficients of the overall model as well
as the standard deviation of the regression coefficients of submodels generated during cross
validation. These values were used in a cutoff analysis for the following iteration. Q-values for
models from these cutoff analyses beginning with the best initial model for conjugated dienes
(see values of t in Figure 58) are shown in Figure 61, while statistics for the best models are
shown in Table 29.

Table 29. Conjugated diene models from ranking of cross validation regression coefficient
t test values.

t Cutoff
Model Q Value | Wavenumbers Used (Best Model)
Initial (Full Spectrum) 0.7214 1501 10
Iteration 1 0.7389 911 7.5
Iteration 2 0.7409 887 0

Application of a t cutoff of 10 to the data from the initial model removed over 1/3 of the
wavenumbers and improved the Q-value to 0.7389. A modest increase in Q-value to 0.7409 was
observed using a t cutoff of 7.5 on data from the first iteration model. Cutoff analysis on the
second iteration model (Figure 61 bottom) failed to generate any improvement, causing
wavenumber ranges to converge and ending the optimization. The ranking procedure resulted in
a slight improvement in model quality beyond significance testing (Q = 0.7409 versus 0.7293)
due to the exclusion of data from additional wavenumbers evident from comparison of Figure 60
and Figure 62. Although sixteen wavenumber ranges were isolated, empirical testing showed that

use of only eight of those further improved model quality to a Q-value of 0.7519 (see Table 32).
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Figure 61. Conjugated dienes model Q-values: wavenumber selection based on cross
validation regression coefficients t test cutoff thresholds for the best initial model (top), best
first iteration model (middle) and best second iteration model (bottom).
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5.2.5.3 Peroxide Value Model Improvement by Significance Testing of t
As was the case with conjugated dienes, the overwhelming majority of wavenumbers for
the initial peroxide value model (Figure 59) exhibited regression coefficients with t test values
well above zero. A high level of confidence (99.5%) was used to provide the best opportunity for
model improvement during iterations of significance testing. The t test critical value was 2.740.
Optimization converged to a final set of 1255 wavenumbers within four iterations, resulting in a
very modest improvement in model quality (Table 30).

Table 30. Peroxide value models from significance testing of cross validation
regression coefficient t test values at 99.5% confidence.

Model Q Value | Wavenumbers Used
Initial (Full Spectrum) 0.5332 1501
Iteration 1 0.5486 1322
Iteration 2 0.5562 1263
Iteration 3 0.5565 1256
Iteration 4 0.5567 1255
Iteration 5 " "

Significance testing from the peroxide value model resulted in slightly fewer
wavenumbers than for the conjugated dienes model. Notable changes included a much broader
gap between wavenumbers used around key hydroxyl bands near 7000 cm™ in the former [6788 -
7196 cm! (Figure 63)] than in the latter [7100 - 7162 cm™ (Figure 60)]. Also, the peroxide model
appeared to include slightly more wavenumbers in the 4500 - 5000 cm™! range often cited in the
lipid oxidation literature.

A modest quality increase resulted upon application of the 1255 wavenumbers isolated by
significance testing to the set of 39 samples which provided the best peroxide value model. As
the Q-value rose from 0.6200 for the full spectrum model to only 0.6360 using wavenumbers

from significance testing, ranking procedures were investigated to determine if the model could

be further improved.
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Figure 63. Regression coefficient statistics for peroxide value model after fourth iteration of
significance testing (99.5% confidence): t test values (top), absolute value (center) and
standard deviation among cross validation submodels (bottom).
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The ranking procedure (see 5.2.5.2) was also used on the peroxide value model from the

combined data set of 33 pecan and canola oil samples. Q-values for models from cutoff analyses

beginning with the initial model (Figure 59) are shown in Figure 64, while statistics for the best

models are shown in Table 31.

Table 31. Peroxide value models from ranking of cross validation regression coefficient
t test values

Model Q Value | Wavenumbers Used (B;S(;’:lﬁ?)f(:el)
Initial (Full Spectrum) 0.5332 1501 12
Iteration 1 0.5763 864 24
Iteration 2 0.6453 226 34
Iteration 3 0.6467 178 0

Analysis of the data from the initial full spectrum model indicated that a t cutoff of 12

resulted in the first maximum in Q-value of 0.5763 (Figure 64 top) associated with the

elimination of over 42% of the spectrum. A t cutoff of 24 was applied in the next iteration

(Figure 64 center), eliminating 85% of the spectrum and improving quality to a Q-value of

0.6453. In the final iteration applied (Figure 64 bottom), a t cutoff of 34 resulted in a slight

improvement in Q-value to 0.6467. This model was unable to be further improved by the ranking

procedure and retained only 178 wavenumbers or 12% of the full spectrum. Unlike the

conjugated dienes model resulting from the ranking procedure (Figure 62), the peroxide value

model (Figure 65) included many fewer wavenumbers in only five discrete regions of the NIR

spectral range. This result reflected the smaller number of hydroxyl bands relative to -CH bands

in NIR. Wavenumbers isolated included 4176 - 4360 cm™!, 4592 - 4632 cm™, 5216 - 5260 cm™,

5768 - 5884 cm’!, and 8808 - 9116 cm™.
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Figure 64. Peroxide value model Q-values: wavenumber selection based on cross validation
regression coefficients t test cutoff thresholds for the initial model (top), best first iteration
model (center) and best second iteration model (bottom).
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Figure 65. Regression coefficient statistics for best peroxide value model after third
iteration of regression coefficient t test ranking: t test values (top), absolute value (center)
and standard deviation among cross validation submodels (bottom).
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The 178 wavenumbers isolated from the ranking procedure were then applied to create a
model using the combined oil sample set (n = 39 with only canola TO samples excluded) that
provided the optimum full spectrum peroxide value model. The result was a significant increase
in model quality from a Q-value of 0.6200 for the full spectrum model to 0.7328 for the limited
wavenumber model. It is known that outliers should be reevaluated after limiting wavenumbers
since the irregularities in those samples may be tied to the spectral regions removed by the
improvement procedure (Davies, 2001). In this instance, optimization of the best full spectrum
model resulted in the loss of all wavenumbers around a critical spectral region where peroxides
have been reported (4500 - 5000 cm!, see Appendix A). Although the model was not optimized
directly, the use of a smaller sample set succeeded in isolating wavenumbers of interest that could
then be applied to the larger sample set to improve the model. This underscores the importance
of presenting a truly representative sample to the NIR. Not only does variation directly affect
model quality, it also affects the optimization process and impacts the effectiveness of model
improvement by wavenumber selection.

5.2.6 Summary of Best Models

Models using wavenumber ranges isolated by the various improvement techniques used on
full spectrum models of the combined data set of both pecan and canola samples are presented in
Figure 66 for conjugated dienes and Figure 67 for peroxide values. For both analytes, the
numerator of e provided the least improvement, likely because variation among sample replicates
was not taken into account. This effect translated to these models despite the fact that each relied
solely upon a single average spectrum for each sample batch. Ranking of the cross validation
regression coefficients t test values provided the best improvement in both cases. For conjugated
dienes an empirical selection of ranges from those isolated by ranking provided further
improvement. Wavenumbers from the top model for each analyte were applied to pecan, canola

and combined sample data sets to generate the quantitative results assessed below.
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5.2.6.1 Conjugated Dienes

Statistics of the best models for conjugated dienes are summarized in Table 32. Models
shown were based on the full spectral range scanned by the NIR as well as selected wavenumber
ranges isolated by the ranking procedure and a subset of those ranges empirically determined to
improve model quality. This subset excluded wavenumbers in the 7000 - 8000 cm! region as
well as all wavenumbers above 9100 cm™. The former range includes bands known to be
associated with moisture near its low end while the latter is inherently variable as noise increases
in FT-NIR spectra approaching 10,000 cm™.

Plots comparing original and NIR predicted values of conjugated dienes expressed as the
oxidation index for the best models for each sample set are shown in Figure 68. Poor linearity
was observed among samples made with pecan oil (Figure 68, top), while good linearity was
observed for canola oil samples (Figure 68, center) and to a lesser extent for the combined
samples (Figure 68, bottom). The disparity in fit was likely due to changes in the degree of
oxidation of the respective samples.

Despite the large difference in peroxide values observed for the respective oils during the
ASL, the oxidation index values for the two exhibited a substantial degree of overlap. This
indicated that models for both oils should be of similar quality, while the opposite was observed.
Although the increased maximum oxidation index for canola oil (1.3 vs. 1.0 for pecan oil)
certainly contributed to the disparity in quality, closer inspection of the data revealed the
respective distribution of oxidation index values in the samples as the likely explanation for the
poor quality of the pecan oil sample model. While twelve of the fifteen batches (80%) used in the
canola oil sample model had oxidation index values of at least 0.72, twelve of the eighteen

batches (67%) used in the pecan oil sample model had oxidation index values of 0.60 or less.



Table 32. Statistics of best models for conjugated dienes.

Calibration Validation
Wavenumbers | Qvalue | (2 | SEC r2 | SECV BIAS SDReforence 