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ABSTRACT OF THE DISSERTATION

Semiparametric Estimation of Financial Risk: Corporate Default, Credit

Ratings, and Implied Volatility

By YIXIAO JIANG

Dissertation Director:

Roger Klein

There are contexts in which it is important to estimate a model without overly assuming

functional forms and distributions. For this reason, extant empirical work often

considers semiparametric single-index models: that is, objects of interest depends on

the explanatory vector x through a single linear index xtβ0. However, as suggested by

economic/financial theories, it is natural to consider models in which covariates interact

more freely with each other through multiple indices. This dissertation consists of three

chapters featuring the formulation and application of semiparametric, multiple-index

methods in finance, spanning corporate default modeling, conflicts of interest in credit

ratings, and option implied volatilities.

In the first chapter, I introduce the econometric framework. As the number of

indices increases, one technical difficulty that impedes statistical inference is to control

bias terms of higher dimensional conditional expectation estimators. To control for

this bias, I employ a differencing approach (see, Shen and Klein, 2017) which is

known to reduce the bias to any order. However, there is no proof for asymptotic

normality for a general multiple-index model and this result is critical for making
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inferences. Here, I obtain asymptotic normality (conjectured but not proven in Shen

and Klein, 2017) by establishing a novel U -statistic equivalence result that utilizes the

theory of empirical process developed by Eddy and Hartigan (1977). I also provide

institutional background for the empirical substances of this dissertation and a brief

literature review.

The second chapter covers a semiparametric, ordered-response model of credit

rating in which ratings are equilibrium outcomes of a stylized cheap-talk game. The

proposed model allows the rating probability to be an unknown function of multiple

indices permitting flexible interaction, non-monotonicity, and non-linearity in marginal

effects. Based on Moody’s rating data, I examine credit rating agencies’ (CRAs)

incentive to bias ratings when the CRA’s shareholders invest in bond issuers. I find

the degree of Moody’s rating bias varies significantly for both rating categories as well

as the institutional cross-ownership between Moody’s and the bond issuer.

In the third chapter1, we consider an ordered-response model in which the threshold

parameters are random and can correlate with some or all covariates. We use a control

function approach to identify the index coefficients and provide a novel identication

and estimation strategy for the conditional threshold points up to location and scale.

As a leading example, we consider estimation of the so-called “soft adjustment” —

adjustments made by CRA based on unobserved and possibly subjective criteria — in

the credit rating process. Empirically, we find a significant reduction of Moody’s soft

adjustment after the Dodd-Frank reform.

Chapter 4 develops a Hausman type specification test for a partially linear model

against a semiparametric bi-index alternative which permits interaction effects. Using

recent SP 500 index traded options data, we confirm that a partially linear model

permitting a flexible “volatility smile” as well as an additive quadratic time effect is

a statistically adequate depiction of the implied volatility data.

1This chaper is based on a joint work with Zhutong Gu, currently an Assistant Professor at Peking
University-HSBC Business School, and Shuyang Yang, an Economist at Amazon. We started this paper
in 2016 when all three of us were Ph.D. students at Rutgers University.
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Chapter 1

Introduction

There are contexts in which it is important to estimate a model without overly assuming

functional forms and distributions. For example, economists may not want to assume

agents utilities are Cobb-Douglas or the distribution of shocks is known ex-ante. To

strike a balance between flexibility and precision-loss in estimation, econometricians

combine the two extreme approaches (fully nonparametric vs parametric) and make

the model “semiparametric”: that is, the estimated model contains a finite-dimensional

parameter β0 as well as an unknown function, mp¨q. Despite decades of development,

much of the empirical work is still based on estimation of semiparametric single-index

models (SIMs): that is, objects of interest depends on the explanatory vector x through

a single linear combination xtβ0. While the SIMs considerably relax distribution and

functional form assumptions, they still impose restrictions. For example, ratios of

marginal effects are constant when calculated as derivatives for continuous random

variables.

In this dissertation, I am concerned with estimation and inference problems in

models with a flexible functional form, as well as how to apply such methods in the

realm of finance. By “flexible functional form” I mean the Conditional Expectation

Function (CEF) may depend on the explanatory variables through an unknown function

of a potentially multi-dimensional index vector. To be more precise, consider a

model in which the dependent variable Y is driven by an explanatory vector x “



2

rx1, x2...xds P R
k such that,

ErY |Xs “ mpxtβ0q (1.1)

where xtβ0 ” rxt1β10, x
t
2β20...x

t
dβd0s P R

d (1.2)

where mp¨q : Rd Ñ R is the true, but unknown CEF function. Note that in the two

extreme cases that (1) when d “ 1, we have the single index model (SIMs), which

has been studied extensively in the literature by many1, and (2) when d “ k, we have

a pure nonparametric model in which the stochastic relationship between x and y is

entirely captured by the CEF function and does not depend on any finite-dimensional

parameter β0.

To estimate the model accurately and efficiently (e.g., the estimator β̂ converges

to the truth β0 “fast” as the sample size goes to infinity), I must address the bias in

estimating the CEF in a high dimensional setting. In this dissertation, I will estimate

densities and CEFs using kernels. Heuristically, a kernel estimator for ErY |xtβ0 “ v0s

can be taken as a weighted average of Yi for observations with vi ” xtiβ0 that are

close to v0. This estimator, however, has biases and variances. In fact, variance of

this estimator goes to zero at a slower rate as the continuous dimension of the problem

increases. The intuition is as dimpvq increases, it is hard to find a group which are

comparable to v0 in very dimension of v. Therefore, the effective sample that are used

to estimate the CEF shrinks, inducing a larger variance. This is the so-called “curse-

of-dimensionality”.

To make the estimator converges fast to the truth, the rate of convergence on the

bias needs to be increased, a.k.a, correct the bias, to combat the curse of dimensionality.

Higher order kernels (HOKs) (Muller, 1984; Ichimura and Lee, 1991; Lee, 1995)

are often used in the literature to correct biases so that the semiparametric estimator

1A partial list includes Klein and Spady (1993); Ichimura (1993); Powell et al. (1989); Manski
(1985); Härdle and Stoker (1989); Horowitz and Härdle (1996); Klein and Sherman (2002)
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can be properly located at the true parameter vector of interest. However, HOKs can

result problems when the dependent variables are naturally bounded. For example, as

confirmed in the empirical exercises in this dissertation as well as other studies, HOKs

deliver estimated probability outside of [0,1] rendering estimation results in difficult

to interpret. Set against this background, Shen and Klein (2017) provide conditions

on bias control to obtain asymptotic normality with regular kernels. The authors

conjecture that a U -statistic result holds under their “recursive differencing” strategy.

For single-index models, this result clearly holds. However, because of the complex

structure of the estimator, a standard U -statistics argument is difficult to employ in

higher dimensions.

A critical econometric contribution of this dissertation is that I prove a U -statistic

equivalence result. This result, in its core, states that in certain circumstances

discussed below, it is permissible to replace the recursive differencing estimator with

a regular Nadaraya-Watson estimator in the limit. By leveraging this equivalence

result, I show that asymptotic normality of index parameter estimators can be easily

achieved for an arbitrary number of indices, which formally verifies Shen and Klein

(2017)’s conjecture. This result also applies to estimating and testing a large class of

semiparametric models.

In this dissertation, I will estimate a variety of empirical models in finance,

spanning from default risk, credit ratings, and implied volatilities. These models are

essentially variants of the general econometric framework described in Eq. 1.1 and 1.2.

Relaxing the functional form restrictions has tremendous advantages in evaluation of

financial models. For example, in the first two chapters, I evaluate how Credit Rating

Agencies (CRAs) assess default risk and assign credit ratings. It is difficult in this

context to even have a rough idea of what information is relevant or how the CRA

utilize information to produce ratings. Consequently, when it comes to estimation,

econometricians have little knowledge on the CEF that maps the default risk predictors

to the rating probabilities. In Chapter 3, I estimate the implied volatility surface, which
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is a two-dimensional function that maps time-to-maturity and moneyness to option

implied volatility. While inverting the Black-Scholes formula gives a closed-form

solution, such a functional form is only valid for European style options and when

the set of Black-Scholes assumptions are met. In both estimating credit rating and

implied volatility models, lifting the restriction on CEFs clearly makes econometric

analysis more flexible as well as robust.

To proceed, I first preview a U -equivalence result in Section 1.1, which is the

foundation for making inference in models studied in the remaining chapters. In

Section 1.2 and 1.3, I describe the empirical substances of this dissertation, namely

the conflicts of interest in credit ratings and estimation of implied volatility. I then

review the relevant finance literature on those subjects in Section 1.4.

1.1 A U -Statistic Equivalence Result

Let E denote the CEF function ErY |X “ xs ” Epv, θ0q in the model under a

multiple-index restriction, v the index vector, τ a trimming function that removes small

denominator when estimating E. For reasons that will be discussed later, I employ the

“recursive differencing” estimator for Epv, θ0q proposed by Shen and Klein (2017):

{E˚t`1pv, θq :“

ř

ipYi ´
y∆t
ivqKhpVi ´ vq

ř

iKhpVi ´ vq
(1.3)

in which the kernel function Khp¨q is the normal probability density. The component

y∆t
iv ”

{E˚t´1pVi, θq´
{E˚t´1pv, θq here, which will be estimated “iteratively”, plays a role

in reducing the bias2. However, since ∆ itself is a difference of ratios, the large sample

distribution of estimators involving zE˚t`1 is very difficult to study.

One econometric contribution of this dissertation is to prove the asymptotic

2When ∆ “ 0, this is the standard Nadaraya-Watson (NW) estimator. Starting with the NW
estimator, Shen and Klein (2017) shows that one can iteratively compute x∆t and then zE˚t`1. Effectively,
this method can be applied for t “ 1, 2, ... to control the bias in estimating E to any order.
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normality results of the estimator for θ when the index dimension is d ą 1. This

result will be formally proved in its entirety in Chapter 2. Here I sketch the key steps.

To be concrete, I take the normalized index parameter, denoted by θ, in Model (1.1) as

an example. After a standard Taylor expansion at θ0,
?
Npθ̂´ θ0q depends on the score

(or gradient):
?
NĜpθ0q “ ApE, ŵq ` BiaspÊ˚, ŵq

where the estimated weight function ŵi “ αi∇θ
pEpvi, θ0q and

ApE, ŵq ” N´1{2
ÿ

i

τipYi ´ Eiqŵ “

apply CLT
hkkkikkkj

ApE,wq`opp1q

BiaspÊ˚, ŵq ” N´1{2
ÿ

i

τipxE˚i ´ Eiqŵ

“ N´1{2
ÿ

i

τipxE˚i ´ Eiqw
ĝ

g
loooooooooooooomoooooooooooooon

BiaspÊ˚,wq

`opp1q

g here is the joint density of the index vector v. The recursive structure of {E˚pv, θq

makes BiaspÊ˚, wq difficult to analyze, so I replace it with another object that is easier

to study. The following U -statistic equivalence result permits this replacement.

In particular, I show that

BiaspÊ˚, wq ´ BiaspÊ, wq “ opp1q

where Ê ”

ř

i Y
K
i KhpVi´vq

ř

iKhpVi´vq
is the regular NW kernel estimator for conditional

expectations. Importantly, I use a “residual property” of semiparametric derivatives

Erw|vipθqsθ“θ0 “ 0 due to Witney Newey3 to turn the above difference into the

difference of two empirical processes. This is otherwise impossible becauseEt ĝ
g
pxE˚i ´

xEiqsu is not zero since xE˚i has lower bias. By leveraging the uniform convergence of

3A formal proof of this residual result can be found at Klein and Shen (2010). The authors thank
Witney Newey for mentioning in a private communication
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empirical processes established by Eddy and Hartigan (1977) and Nadaraya (1964),

the claimed result follows. I refer the above result as “U -statistic equivalence” because

after the replacement, BiaspÊ, wq is a degenerate U´statistic which is opp1q.

1.2 Conflict of Interest in Credit Ratings

While the Credit Rating Agencie’s (CRA) profits exploded with the growth of

structured finance, the collapse of these highly rated securities in the last financial crisis

has led to suspicions that ratings were indeed “too optimistic” during the boom years.

One prevailing and plausible explanation for rating inflation is the conflicts of interest

faced by the CRA. A long-standing conflict stems from the “issuer-paid” model,

whereby CRAs are paid by the issuers seeking ratings and hence are incentivized to

issue inflated ratings.

When issuers are allowed to approach different CRAs and pick whichever agency

that provides the highest rating, the CRAs are adversely incentivized to knock out

their competitors by providing exaggerated ratings. Once the aforementioned strategy

is employed by all CRAs, the credit rating system will fall into a “bad equilibrium”

in which ratings are bid up and no longer accurately inform true credit worthiness of

the security. More devastatingly, after purchasing investments that are more likely to

default than anticipated, it is the vast investors who pay the price for this morbid rating

system – losing their savings, their homes and their jobs. Even though reality may

not be as bad as the general equilibrium model predicts, we have witnessed that in the

recent financial crisis, the consequences brought by the collapse of many AAA rated

structured products are quite serious.

In addition to the pressure of losing business from their competitors, the

increasingly public ownership of rating agencies might induce other conflicts of

interests. Of the two biggest agencies Moody’s became a public firm in 2001,

while Standard& Poor’s is part of the publicly traded McGraw-Hill Companies.
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Being a publicly traded firm not only intensifies the pressure to grow and increase

profits (Bogle, 2005), but also motivates the CRAs to be biased towards their own

shareholders. Warren Bufett, a major investor in Moodys, had to answer questions

in front of the Financial Crisis Inquiry Commission in 20104 because media reports

alleged that Moodys’ has been slow to downgrade Wells Fargo, an investee of

Berkshire Hathaway5. Since large shareholders may extract private benefit through

their govenance power or threat of exit, CRAs’ rating decisions might possibly be

affected by the economic interest of their large shareholders as well (Kedia et al., 2017).

This ownership relation between the CRA and Wall Street firms makes it even harder

for the CRA to perform its role as an independent arbiter of risk.

In the aftermath of the 2008 crisis, there has been a heated debate about how

to effectively regulate the financial environment, and there are heated debate among

them. In the famous Dodd-Frank Wall Street Reform and Consumer Protection Act

(Pub.L. 1112036, H.R. 41737; commonly referred to and henceforce as “Dodd-Frank”),

an entire section aims to improve the regulation of credit rating agencies. This law

required the SEC to establish clear guidelines for determining which credit rating

agencies qualify as Nationally Recognized Statistical Rating Organizations (NRSROs).

It also gave the SEC the power to regulate NRSRO internal processes regarding record-

keeping and how they guard against conflicts of interest8. Instead of merely enforcing

and strengthening oversight, other regulators advocate overhauling the issuer-pay

model. The Franken-Wicker amendment to the Dodd-Frank financial reform law9

would use a governmental entity to assign securities to qualified ratings agencies based

4http://www.philstockworld.com/2011/03/14/transcript-of-warren-buffetts-testimony-in-front-of-
the-fcic/

5http://www.forbes.com/sites/halahtouryalai/2012/02/16/missing-from-moodys-downgrade-list-
warren-buffetts-favorite-bank/

6https://www.gpo.gov/fdsys/pkg/PLAW-111publ203/html/PLAW-111publ203.htm
7https://www.congress.gov/bill/111th-congress/house-bill/4173
8https://www.sec.gov/spotlight/dodd-frank/creditratingagencies.shtml
9https://www.sec.gov/comments/4-629/4629-28.pdf

https://www.gpo.gov/fdsys/pkg/PLAW-111publ203/html/PLAW-111publ203.htm
https://www.congress.gov/bill/111th-congress/house-bill/4173
https://www.sec.gov/comments/4-629/4629-28.pdf
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on capacity and expertise. Bernie Sanders10 also aims to change the business model

used by the credit ratings agencies to a nonprofit model, keeping it independent of Wall

Street.

Is a separate and nonprofit credit rating system necessary for the purpose of

regulation? To answer this question, one needs to understand in what circumstances

would the issuer-CRA relation turn from profit to peril for the financial system as a

whole. The first two chapters model address these points from different lenses. In

Chapter 2, I construct an empirical measurement of the institutional cross-ownership

relation and explore the its heterogeneous impact on the ratings. In Chapter 3, I

formulate a semi-structural econometric framework to think about the impact of private

information on ratings and how the CRA’s discretion envolves before and after the

Dodd-Frank Act.

1.3 From Credit Rating to Options: Does Volatility Risk Matter?

Apart from conflicts of interest, which potentially bias the rating, another critique on

the CRA is that credit ratings are lagged indicators of firm default risk. For example,

at the moment that Moody’s announced a downgrade, this negative news is likely to be

priced in other firm-specific assets already.

One reason leads to the untimeliness of credit rating is the trade-off between ratings

accuracy and stability. According to Cantor and Mann (2006), investors, issuers,

as well as regulators want ratings to reflect enduring changes in credit risk because

rating changes have real consequences — primarily due to ratings-based portfolio

governance rules— that are costly to reverse. Instead of simply tracking market-based

measures of credit risk, ratings should reflect independent analytical judgments that

provide counterpoint to often volatile market-based assessments. Should the CRA do

its duty rightfully and diligently, one shall expect consistency between credit ratings

10https://berniesanders.com/statement-by-senator-bernie-sanders-on-wall-street-and-the-economy/
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and market-based assessments on related securities, though the ratings often lagged the

others.

Taken this view into account, I want to examine whether those market-based

assessments capture additional component of risk that is not contained in credit ratings.

Stock, bond, CDS, and options are all claims on the same firm assets. In the literature

on asset pricing, numerous studies document that the price movement of these assets

are closely correlated. The intuition for the empirical lead-lag relation relies on the

trading motives of market participants. For example, bond investors who receive

negative material nonpublic information about the firm have several options to reduce

the downside credit exposure. They can either short the underlying bonds/stocks

or long the put options/CDS. Such trading behaviors would lead to abnormal price

movements in related securities; however, the content and speed of information

discovery depends critically on the structure and trading environment in these markets

as well as the payoff structure of the instruments. The relative rates of price discovery

is illustrated in Figure 1.1, where we plot the responses of single-name asset returns

(bond, option, and CDS) to the rating downgrade of Tyson Foods, Inc. on November

13, 2008. This figure shows both the put options and CDS spread rallied well ahead of

the rating downgrade.

What drives the significant put option reactions before rating events? Any public

information, such as the concurrently trading stocks and bond prices, cannot be the

source of marginal option market information. As noted in Cremers et al. (2008), jump

and volatility risk represent the additional information that traded individual options

captured, which is not already captured by equity and riskless debt. On the assumption

that corporate debt is a combination of riskless debt and a short potion in a credit put

option struck at-the face value of the debt (Merton, 1974), bond price is linked to equity

volatility in a structural way.

To more concretely understand this type of volatility, or “jump”, risk, I need to

turn to the estimation of option implied volatility. Option implied volatility is an
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Figure 1.1: Bond, option, and CDS reactions to the downgrade of Tyson Foods, Inc.
on 11/13/2008

Note: This figure plots the time-series of CDS spread, at-the-money put options, and corporate bond
returns around a downgrade event on November 13, 2008 (The red vertical line). The returns are
cumulative in the sense that the return at day t (each dot) is defined as the log-difference between
the option or bond price at day t and the day that the series start (90 days before the event). CDS
spread is provided by Bloomburg Terminal. Bond return data is from Trace. Option return data is from
OptionMetrics. A detailed description of data collection can be found later in this paper.
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important component in the Black-Scholes model and therefore affects the observed

option prices. As shown in Aıt-Sahalia, Bickle and Stoker (2001, ABS henceforth),

inverting the B-S formula with respect to the volatility parameter would give to the

following model for Implied Volatility (σiv),

σiv “ mpK{Ft, T q ` ε with Erε|K{Ft, T s “ 0 (1.4)

where K{Ft is the “moneyness” of an option and ε summarizes potential sources

of noise, e.g., bid-ask spread. The unknown transformation mp¨, ¨q captures the

dependency of IV on K{Ft and T . If options are indeed quoted based on B-S formula,

one should expect a constant IV which does not vary across moneyness or time-to-

expiration. However, it is found that out-of-the-money (OTM) put options, i.e., put

options with K{Ft ă 1, are traded at higher implied volatility than at-the-money

(ATM) options and OTM calls, also known as “volatility smiles”.

ABS further show that a semiparametric model permitting a flexible “volatility

smile” as well as an additive quadratic time effect, i.e., mpK{Ft, T q “ gpK{Ftq `

θ1T ` θ2T
2, is a statistically adequate depiction of the IV data. The above partially

linear specification, however, rules out potential interaction effect between moneyness

and time-to-expiration. That is, if one plots IV against moneyness and time-to-

expiration, which gives the so-called Implied Volatility surface, a partially linear

structure implies that the term structures of IV across different moneyness values

should roughly have the same shape and only differ by a level shift, which is argued by

many in the literature (See, for example Fengler (2006)).

My pointed interest in the third chapter in this dissertation is to rigorously test

whether a partially linear model is a statistically adequate simplification of the general

nonparametric model above. Taking the partially linear structure into account would

increase the estimation efficiency of implied volatility models. The specification test

that I proposed is a Hausman-type test (Hausman, 1978).
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1.4 Literature Review

Much of academic debate has focused on the conflict of interest inherent in the issuer-

pay model. This model and its equilibruim structure are studied by Bolton et al. (2012)

and Sangiorgi et al. (2009). The conflict of interests can be characterized as a “trade-

off” between providing accurate (and hence unflattering) ratings versus exaggerating

on the investment but risking a potential loss on their reputation. In the empirical

literature, researchers (Jiang et al., 2012; Cornaggia and Cornaggia, 2013; Kraft, 2015)

have also focused on compromised ratings on account of issuer-pay model.

When modeling the rating process, I follow the previous literature on bond

ratings to select firm/bond characteristics that determine the ratings (e.g, Pinches and

Mingo (1973); Kaplan and Urwitz (1979); Blume et al. (1998); Campbell and Taksler

(2003); Jiang et al. (2012)). Researchers have estimated the rating process in various

parametric forms, with the majority focusing on the linear probability and ordered

probit models. In contrast, the two semiparametric models that we proposed allow the

explanatory variable affect the rating in a much more flexible manner.

This dissertation also relates to the vast literature on the role of large shareholders.

Barclay and Holderness (1989) and Admati and Pfleiderer (2009) found that large

shareholders may extract private benefit through their govenance power or threat of

exit. After their IPO, CRAs’ rating decisions might possibly be affected by the

economic interest of their large shareholders as well. The paper that motivates this

dissertation the most is Kedia et al. (2017), in which the authors find Moodys assigned

more favorable ratings to firms that are related to its large shareholders, and the

favorable treatment cannot be explained by its private information.
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1.5 Outline for this Dissertation

The remaining part of this disseration is organized as follow: In Chaper 2, I propose

a semiparametric model for credit ratings and formally prove the aforementioned U -

statistic equivalence result. I use this model to study the heterogeneous marginal effect

of conflict. The asymptotic distribution of the proposed estimators are proved. In

Chapter 3, we provide the first identification and estimation results for an ordered-

model with heterogeneous thresholds and potentially endogenous regressors. We apply

such methods to study the evolution of rating agency’s discretion, namely how much of

the rating dispersion is explained by public information vs private information, before

and after the Dodd-Frank Act. In Chapter 4, I estimate a flexible model for option

implied volatility and provide a specification test for it.
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Chapter 2

Semiparametric Estimation of a Credit Rating
Model

2.1 Introduction

While the Credit Rating Agencie’s (CRA) profits exploded with the growth of

structured finance, the collapse of these highly rated securities in the last financial

crisis has led to suspicions that ratings were indeed “too optimistic” during the boom

years. One prevailing and plausible explanation for rating inflation is due to the

conflicts of interest faced by the CRA. A long-standing conflict stems from the “issuer-

paid” model, whereby CRAs are paid by the issuers seeking ratings and hence are

incentivized to issue inflated ratings.1 In the past two decades, rating agencies are

increasingly owned by large financial institutions, which induces a conflict of interest

that is less obvious: CRAs can inflate ratings to benefit issuers that are controlled by

their shareholders to cater to the economic interest of those shareholders. While much

of the extant literature focused on issuer-paid models, this paper examines the empirical

relationship between rating inflation and this often-neglected source of conflicts of

interest—what I call shared-ownership—within a novel econometric framework.

Partially guided by a stylized “cheap-talk” framework, our econometric model

allows a bond’s latent default risk to be an unknown and potentially non-separable

function of multiple indices and an error term. With each index being an unknown

1For theoretical studies on the issuer-paid model and rating shopping, see Bolton et al. (2012);
Sangiorgi et al. (2009); Skreta and Veldkamp (2009) and some empirical evidence (Mathis et al., 2009;
Jiang et al., 2012; He et al., 2015)
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linear combination of covariates, the three indices depend on firm characteristics,

bond characteristics, and the Moody-firm-ownership-index (MFOI), which is a shared-

ownership index that I introduce later in this paper. Consideration of a non-

separable function is essential because this non-separable structure is implied by the

equilibrium outcome of a structural framework devised to study the strategic interaction

between the CRA and a representative shared owner. As the model is estimated

semiparametrically, it is not necessary to know how CRAs use information, both public

and private, at their disposal a priori. Estimates are robust to a wide class of utility

functions assuming some regularity conditions. Because of the permitted interaction

among indices, the marginal effects of one component of X , for example, X1, can vary

across subpopulations defined by the index values without constraints.

Our paper contributes to the empirical literature on the modeling of credit rating

decisions and the econometric theory of bias controls. Turning to the empirical

literature, one approach, employed by Kraft (2015); Campbell and Taksler (2003);

Jiang et al. (2012), is to estimate a linear probability model for which the rating

outcome is a linear combination of covariates and error terms. Constrained by its

functional form, the model can only capture the average marginal effects and not the

heterogeneity of the marginal effects. Another class of models (Kaplan and Urwitz,

1979; Horrigan, 1966; Blume et al., 1998; West, 1970) defines a latent variable

of theoretical interest (i.e., default risk) and specifies a parametric link function

between covariates to the conditional choice probability. However, as found below,

the functional forms underlying parametric models may not be correct and conflict

with the prediction from an underlying behavioral model. Neither of the described

approaches allow for a non-separable functional form and can be restrictive in many

ways. Therefore, to avoid misspecification, it is important to have a flexible model

specification.

Extensive literature addresses semiparametric models and the estimation of

semiparametric single index models (SIMs) including Klein and Spady (1993);
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Ichimura (1993); Powell et al. (1989); Manski (1985); Härdle and Stoker (1989);

Horowitz and Härdle (1996); Klein and Sherman (2002). However, there are

fewer results available on the estimation of multiple-index regression models. The

identification of index coefficients in multiple-index models of this sort has been

studied by Ichimura and Lee (1991); Lee (1995) and Ahn et al. (2017). However, this

paper, to the best of our knowledge, is the first to consider estimating ordered models

in a multiple-index context. To establish large sample results for the index parameter

estimator, which are necessary for inferences, I must address the bias in estimating the

conditional choice probability2. Shen and Klein (2017) provides conditions on bias

control to obtain asymptotic normality with regular kernels. The authors conjecture

that a U -statistic result holds under their “recursive differencing” strategy. For single-

index models, this result clearly holds. However, because of the complex structure

of the estimator, a standard U -statistics argument is difficult to employ in higher

dimensions. In this paper, I verify their conjecture by proving a U -statistic equivalence

result that holds for an arbitrary number of indices. This result applies to a large class

of semiparametric models.

Using the Mergent’s Fixed Income Securities Database(FISD) for the years 2001

to 2007, I estimate the aforementioned model and characterize marginal effects of

the shared-ownership index MFOI . Since marginal effects in general will not be

constant in nonlinear models, the contribution of this application to the pertaining

empirical literature is to explore the heterogeneity of rating bias due to institutional

cross-ownership. The empirical findings are twofold. First, I find that investment-grade

bonds related to large shareholders of Moody’s, particularly A-rated bonds, are most

vulnerable to conflicts of interest. This result aligns with the observation that large

shareholders may use their governance power and/or threat of exit to extract private

2 Higher order kernels (Muller, 1984; Ichimura and Lee, 1991; Lee, 1995) are often used in the
literature to correct biases so that the semiparametric estimator can be properly located at the true
parameter vector of interest. However, as confirmed in our empirical exercises, higher order kernels
can deliver estimated probability outside of [0,1] rendering estimation results difficult to interpret.
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benefit (Admati and Pfleiderer, 2009; Edmans, 2009). The empirical results also imply

that employing a flexible estimation framework is important: for A-grade bonds, the

magnitude of rating bias is twice that of comparable parametric models.

Second, contrary to the common belief that bonds at the investment-grade/high-

yield boundary are likely to benefit the most, I find Moody’s does not assign favorable

ratings to high-yield bonds regardless of the issuer’s shared-ownership relation with

Moody’s. The second empirical finding is relatively original in the literature. One

possible but speculative explanation is related to the “reputation capital” view (White,

2002; Becker and Milbourn, 2011; Bolton et al., 2012): low quality bonds are more

likely to default implying a higher probability of triggering reputation loss3. To protect

its reputation, the CRA might be more conservative and self-disciplined when rating

low quality bonds.

The rest of the paper is as follows. The next section presents a stylized cheap-

talk model that guides our empirical investigations. Section 3 describes the rating data

and how I use institutional shareholding data to measure conflicts of interest. Section 4

describes an econometric model for credit rating. Section 5 presents the main empirical

findings, including estimates of index coefficients and heterogeneous marginal effects.

Section 6 concludes. A more detailed description of the cheap-talk model is provided

in Appendix A. Technical details/preliminaries concerning the econometric inference

procedure are provided in Appendix B, followed by the formal asymptotic theorems in

Appendix C.

2.2 Theoretical Motivation

To guide the empirical investigation, I study a stylized version of the “cheap-talk”

model proposed by Crawford and Sobel (1982). This adapted version was devised to

study the strategic interaction between a CRA and an informed shared owner — often

3This implies that the CRA will be “punished” once a highly rated investment results in default. See
Bolton et al. (2012) for a discussion.
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a large financial institution that owns both the CRA and the bond issuer. To streamline

the discussion, I focus on the key prediction of the model and its empirical implication.

A full description of the model including players’ payoff functions and strategy are

provided in the Appendix.

Let y˚ denote a bond’s latent default risk, which the CRA should estimate for

the purpose of assigning ratings. I show that in equilibrium, y˚ is driven by three

components in a non-separable form:

y˚ “ y˚pV,m, bq (2.1)

in which (i) V is a potentially multi-dimensional vector representing firm and bond

characteristics that the CRA can observe such as a firm asset, leverage ratio, and

subordination status; (ii) m represents the level of soft information that will be

explained below, and (iii) b is a measure of the degree of conflict of interest between

the CRA and its shareholder(s).

Here I make three observations about estimating the above model with empirical

data.

1. The exact form of y˚p¨, ¨, ¨q is generally unknown, necessitating a flexible

estimation procedure. For this type of models, Crawford and Sobel (1982)

shows that an equilibrium solution exists under quite general conditions, with

some smoothness and shape restriction on utility functions. However, the exact

formula of y˚p¨, ¨, ¨q is often hard to compute analytically. In the Appendix I give

a closed-form solution for the “uniform-quadratic” case in which players have

quadratic utility functions and m is uniformly distributed. In this representative

case, y˚p¨, ¨, ¨q is a non-separable function with respect to m and b. Presumably

y˚ can take a very different functional form when players have non-quadratic

utility functions. Therefore for estimation, it is essential to have a flexible model

that can, at least, allow for non-separability.
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2. On the substantive end, the above formulation in (A.3) reflects that credit risk

is driven by both hard information and soft information in a potentially non-

separable form. According to Petersen (2004), soft information represents

factors that drive credit risk but cannot be completely summarized in numerical

scores, such as a manager’s abilities. For estimation, I treat the level of soft

information, represented by m, as a regression error term.

3. To empirically study the model in (2.1), I identify variables to measure the hard

information vector V and the conflicts of interest measure b. I assume that V is an

unknown function of firm and bond characteristics, for example, V ” GpF,Bq.

The choice of firm characteristics F and bond characteristics B is discussed in

Section 2.3.1. Using the institutional shareholding data (13f) from Thomson

Reuters, I construct a variable, termed Moody-Firm-Ownership-Index (MFOI),

to characterize the institutional cross-ownership between the bond issuer and

Moody’s. This variable is formally defined in Section 2.3.2. Similarly, I assume

that the conflict of interest b is an unknown function of MFOI , for example,

b “ CpMFOIq. Put it differently, I assume the degree of conflicts of interest is

associated with the “liaison” between the bond issuer and Moody’s.

2.3 Dataset and Variables

The data are derived from multiple sources. First, I obtain initial ratings on corporate

bonds issued by firms from either CRSP or Compustat from Mergent’s Fixed Income

Securities Database (FISD). The sampling period begins in 2001, when Moody’s went

public, and ends in 2007 to prevent any confounding effect of the financial crisis

and other subsequent regulation acts. I then obtain a number of firm characteristics

from CRSP-Compustat to match the rating data. After combining data from multiple

sources, the final dataset is composed of 4,967 bonds issued by 986 firms.
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2.3.1 Firm and bond characteristics

Table 2.1 shows that a number of firm and bond characteristics (termed Fi, Bi,

respectively) are selected as additional controls based on bond rating literature

(Horrigan, 1966; West, 1970; Kaplan and Urwitz, 1979; Jiang et al., 2012; Blume

et al., 1998). The explanatory variables are: (1) Firm leverage, defined as the ratio

of long-term debt to total assets (LEVERAGE). (2) Operating performance, defined

as operating income before depreciation divided by sales (PROFIT). (3) Issue size,

defined as the par value of the bond issue (AMT). (4) Issuer size, defined as the value

of the firm’s total assets (ASSET), and (5) Subordination status, a 0-1 dummy variable

that is equal to one if the bond is a senior bond (SENIORITY). (6) Stability variable

(STABILITY), defined as the variance of the firm’s total assets in the last 16 quarters.

Firm-level variables are computed using a five-year arithmetic average of the annual

ratios because Kaplan and Urwitz (1979) note that bond raters might look beyond a

single year’s data to avoid temporary anomalies.

Table 2.1: Firm and Bond Characteristics

Variable Description Mean Std. Dev. Min Max
ASSET log(asset) of the issuer 9.643 2.280 4.360 14.324
STABILITY Variance of asset 0.230 0.169 0.003 1.416
LEVERAGE Firm leverage ratio 0.264 0.178 0.002 1.212
PROFIT Operating performance 0.026 0.058 -0.739 0.436
AMT log(issuing amount) 12.224 1.681 2.708 19.337
SENIORITY a bond’s subordination status 0.809 0.393 0.000 1.000

2.3.2 Conflicts of interest

As noted above, conflicts of interest is measured by institutional cross-ownership

between Moody’s and a bond issuer. To characterize the degree of cross-ownership,

I first obtain the list of Moody’s shareholders and calculate their ownership stake

in Moody’s (the percentage of Moody’s stock that they hold) for each quarter in

the sampling period. Next, I access each shareholders investment portfolio to find
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Table 2.2: Moody’s large shareholders from 2001-2016

Shareholder T Mean Max Min
HARRIS ASSOCIATES L.P. 21 2.42% 5.02% 0.00%
CHILDREN’S INV MGMT (UK) LLP 20 2.29% 5.31% 0.01%
SANDS CAPITAL MANAGEMENT, INC. 28 3.01% 5.59% 0.40%
T. ROWE PRICE ASSOCIATES, INC. 64 1.47% 5.94% 0.18%
BARCLAYS BANK PLC 55 2.52% 6.32% 0.03%
GOLDMAN SACHS & COMPANY 63 1.94% 7.24% 0.01%
VALUEACT CAPITAL MGMT, L.P. 13 5.19% 7.77% 0.93%
VANGUARD GROUP, INC. 64 3.79% 7.98% 1.64%
MSDW & COMPANY 57 2.20% 8.14% 0.22%
DAVIS SELECTED ADVISERS, L.P. 51 5.56% 8.14% 0.10%
FIDELITY MANAGEMENT & RESEARCH 64 1.99% 9.08% 0.00%
CAPITAL RESEARCH GBL INVESTORS 13 4.80% 11.31% 0.07%
CAPITAL WORLD INVESTORS 35 6.07% 12.60% 0.66%
BERKSHIRE HATHAWAY INC. 64 14.87% 20.43% 11.33%

Note: In the second column (T), I report the number of quarters in the 16 year period (out of 64) that
the shareholder in Column 1 has liaison with Moody’s. In column 3 (4,5), I report that shareholder’s
average (min, max) ownership stake in Moody’s (The percentage of Moody’s stock owned).

out which bond issuers have the same shareholders as investors. The shareholder’s

manager type code (MGRNO) and the firm’s Committee on Uniform Securities

Identification Procedures (CUSIP) number are used to match the shareholding data

with the 986 bond issuers. A list of Moody’s large shareholders (shareholders who

have owned more than 5% of Moody’s from 2001-2016) is presented in Table 2.2.

To summarily characterize the shared-ownership relation between each bond issuer

and Moody’s from this large dataset, I propose the following aggregate measure.

Suppose Moody’s has j “ 1, 2, ¨ ¨ ¨ ,M shareholders in a given quarter4, and any subset

of those shareholders can invest in an issuing firm. The key variable of interest, the

MFOI, is defined as follows:

MFOI “
M
ÿ

j“1

pjλj (2.2)

4Since all of the variable are time-specific, I drop the time t subscript for notation simplicity
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where λj denotes shareholder j’s ownership take in Moody’s (the percentage of

the CRA owned by the shared owner j), and pj denotes issuing firm i’s weight in

shareholder j’s investment portfolio (the percentage of the shareholder’s portfolio

accounted for by the issuing firm). I choose a product form because there are no

conflicts of interest associated with shareholder j if either portion is zero.

Since institutional investors hold diverse portfolios, most pj and λj take on small

values5, resulting in an extremely skewed to zero distribution: approximately 20% of

the bonds in our sample are issued by firms that are not affiliated with Moody’s at all.

Most of the bonds come from firms whose investors are Moody’s small shareholders.

Only the top 5% of bonds are issued by firms with extremely large MFOI (those who

are likely to be related to Moody’s large shareholders).

2.4 Econometric Strategy

2.4.1 Model

Let Xi ” pFi, Bi,MFOIiq be a vector composed of firm characteristics, bond

characteristics, and the described shared-ownership relation proxy MFOI . Denote

y˚i as the latent default risk associated with a corporate bond. Based on the economic

model for y˚ described in Section 2, I estimate an ordered-response model in which

the CRA assigns each bond with an ordinal rating Yi “ 1, 2, 3 . . . L based on y˚i and a

5p = 0.25%, λ =0.07% are the 75 percentile cutoffs



23

series of cutoff points cj6 between rating categories:

Yi “

L
ÿ

j“1

j1tcj´1 ă y˚i ă cju, (2.3)

y˚i “ y˚pXi, Uiq

1tEu : an indicator function of the event E

where Ui is a potentially multidimensional disturbance term representing the soft

information. Motivated by the theoretical framework in (2.1), the function y˚p¨, ¨q that

links default risk with hard/soft information is left unspecified and may be fully non-

separable. Such a flexible non-separable structure, however, is precluded in ordered-

probit/logit models in which y˚ is assumed to be linear in Xi and Ui.

For the model defined above, a key component of estimation interest is ProbpYi “

j|Xq, which is the probability that a bond will be rated in category j given the set of

explanatory variables. In a more general nonparametric formulation,

PrpYi “ j|Xiq “ PjpXiq, for j “ 1, 2, ¨ ¨ ¨ , L (2.4)

This specication imposes few restrictions on the form of the joint distribution of the

data. Therefore, there is little room for misspecification, and the consistency of the

estimator is established under more general conditions than is the case under parametric

modeling (Powell, 1994). However, when the dimension of X is large, the resulting

estimator will have considerable variance due to the “curse of dimensionality.” To

estimate the above probability with a moderately sized sample, I propose estimating

this probability based on the following index assumption and making the model

semiparametric:

6Credit ratings are coded as follow: Aaa “ 1, Aa “ 2, ¨ ¨ ¨ , C “ 7. The cutoff points c1js may
be fixed points, as in the case of ordered-probit/logit models. Alternatively, these cutoff points may be
random variables from different distributions that are independent of the explanatory variables allowing
the rating criteria to vary with issuers. The estimator employed in this paper allows for either possibility.
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Assumption 1. There exists a firm aggregator (or index) VF ” Fiβ
F
0 , a bond

aggregator VB ” Biβ
B
0 and for a differentiable function Hp¨, ¨, ¨q such that for all

category j:

ProbpYi “ j|Xiq “ ProbpYi “ j|Fiβ
F
0 , Biβ

B
0 ,MFOIiq ” HjpVF , VB,MFOIiq(2.5)

The above assumption states that Xi influences the ratings through three channels:

a firm index VF “ Fiβ
F
0 , a bond index VB “ Biβ

B
0 and, most importantly, the

institutional cross-ownership measure MFOIi. Because it is nonparametric, the

mappingHjp¨, ¨, ¨q allows the rating probability to be a flexible function permitting non-

monotonicity and interactions in its arguments. Note also that the functionHj may vary

by category; thus, the model allows the rating agency to have different criteria for each

rating category. This type of “multiple-index” model, first proposed by Ichimura and

Lee (1991), arises naturally in many applications where a single-index model cannot

fully capture the underlying economic behaviors7.

2.4.2 Quantile marginal effect

Recall that this paper aims at studying the effect of shared-ownership, as measured by

MFOI , on credit ratings. Given the above model, it is convenient to define the impact

of MFOI on the rating as the cumulative change in (3.2) from a marginal increase in

MFOIi: for example, the probability of obtaining a better rating from a counterfactual

change in MFOI:

MEpFi, Bi,mb; ∆, Kq ” ProbpYi ă K|Fi, Bi,mb `∆q ´ ProbpYi ă K|Fi, Bi,mbq

“

K´1
ÿ

j“1

HjpVF , VB,m
b
`∆q ´HjpVF , VB,m

b
q, (2.6)

7Examples include sample selection (Klein et al., 2015), extraneous variables (Stoker, 1986), and
decision-making with multiple players (Lührmann and Maurer, 2008).
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The second equality follows directly from the index assumption in (3.2). That is, for

a bond initially rated in category K, I take a partial sum of the Hj´ differentials from

the highest credit rating category j “ 1 to j “ K ´ 1. Therefore, the marginal effect

defined here effectively captures how much more likely it is that a K-rated bond will

be rated at least to K ´ 1 when MFOI increases from mb to mb `∆.

Importantly, the marginal impact of MFOI can be sufficiently heterogeneous.

As implied by Kedia et al. (2017), the impact of MFOI may be significant only

when mb exceeds some threshold: that is, when an issuer is related to “large”

shareholders of Moody’s. To explore the heterogeneity of the shared-ownership effect

acrss subpopulations defined by the value ofmb, denote the “quantile Marginal effects”

(QME) as

QMEpZq;Kq ” ErMEpFi, Bi,mb; ∆, Kq|mb P Zqs (2.7)

That is, the unit-level marginal effects defined in (2.6) are averaged for observations

with MFOIi in a particular quantile of interest Zq. This measure is best understood

as a “local” version of the average marginal effect: instead of measuring the average

impact of MFOI for the entire sample, QMEpZq;Kq addresses how such an impact

differs for issuers with different degrees of affiliation with the CRA. To obtain

inference and test economic hypotheses, I derive the large sample distribution of the

QMEpZq;Kq estimator.

2.4.3 Estimation

Note that the function Hj in (3.2) is not parametrically specified, it is well-known that

identification of the index parameter vector β0 is up to any multiplicative and additive

constant, or the so-called identification is up to location and scale. More formally, I

redefine VF “ F1`F
1θF0 and VB “ B1`B

1θB0 as functions of the identified parameter

vector θ0 ” rθ
F
0 , θ

B
0 s, where F1pB1q is the firm (bond) characteristic that is chosen for
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the normalization and F 1pB1q is a vector for other firm(bond) covariates.

Estimation of the QMEpZq;Kq proceeds in two steps. The first step estimates the

normalized index parameters θ0 “ rθF , θBs. The second step computes the sample

analogue of (2.7) with the (normalized) estimated index: xVFi ” F1 ` F 1θ̂F , xVBi ”

B1 `B
1θ̂B and MFOIi.

Step 1: Index parameter

More formally, the estimator is obtained by maximizing the following (log-) “quasi-

likelihood:”

θ̂ P argmax Qpθq ”

N
ÿ

i“1

τit
L
ÿ

k“1

Y k
i LnpP

k
i pθqqu (2.8)

where Y k
i “ 1tYi “ ku, P k

i pθq ” ProbpYi “ k|Xiq is the probability that

Yi “ k conditional on the three indices, and τi is a trimming function that removes

observations with poor estimates of P k
i pθq. Under an appropriate trimming strategy

and a residual property of semiparametric derivatives, asymptotic normality can be

obtained with a regular kernel estimator for P k
i pθq for single-index models (Klein and

Shen, 2010). However, in higher dimensions, additional bias control mechanisms are

required to ensure normality. Therefore, I use the following “recursive differencing”

estimator proposed by Shen and Klein (2017) to reduce the bias:

{P kpθq “
N´1

ř

jpY
k
i ´ δjpViqqKhpVj ´ Viq

N´1
ř

jKhpVj ´ Viq
(2.9)

where KhpVj ´ Viq ”
1
h3
Kp

VFj´VFi

h
qKp

VBj´VBi

h
qKp

MFOIj´MFOIi
h

q, h is a bandwidth

parameter affecting the bias and variance in estimating P k
i , andKhpxq ”

1?
2π
expp´x2

2
q

is a Gaussian kernel function that downweights observations with Vj far away from Vi.

The exact formula for δjpViq, termed “localization bias,” is determined recursively

to reduce the bias. The recursion depends on both the number of dimensions as well
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as the boundedness of the data. For single-index models, δj is zero, and the above

estimator reduces to the regular Nadaraya-Watson estimator for conditional expectation

(Stage 0). In our model with three indices, I need one additional stage of the recursion

to reduce the order of bias to Oph4q. Formal guidance on how to use this recursive

differencing estimator to an appropriate stage is given in Shen and Klein (2017).

Step 2: Marginal Effect

After obtaining an estimator for θ and the estimated index xVFi ” F1 ` F 1pθF , xVBi ”

B1 `B
1
pθB, a second stage “plug-in” estimator for QMEK

q is

{QMEpZq;K, θ̂q ”

řN
i“1 t̂qi

zMEipFi, Bi,mb; ∆, K, θ̂q
řN
i“1 t̂qi

(2.10)

where the quantile trimming function t̂qi “ tMFOIi P Zqu ensures that the average

is taken over observations with MFOI in the quantile of interest Zq. The unit-level

marginal effect is estimated by the difference of predicted probabilities:

zMEipFi, Bi,mb;K, θ̂q “

K´1
ÿ

k“1

r pPkpxVFi, xVBi,MFOIi `∆; θ̂q ´ pPkpxVFi, xVBi,MFOIi; θ̂qs

2.4.4 Inference

I also compute the large sample distribution of both θ̂ and {

QMEpZ;K, ˆqθ. To preserve

space, I briefly note a technical contribution—termed the U-statistics equivalence—

which plays a key role in deriving the asymptotic distribution of θ̂.

From standard results, the asymptotic distribution of
?
Npθ̂ ´ θ0q depends

on Ĥpθ`q
?
NĜpθ0q, where Ĥpθ`q is the estimated Hession evaluated at some

intermediate point θ` P pθ0, θ̂q. In a large class of semiparametric index models,



28

including the model given here, the gradient has the form:

?
NĜpθ0q “ N´1{2

N
ÿ

i“1

L
ÿ

k“1

τirY
k
i ´ E

k
i pθ0qs∇θE

k
i pθq|θ“θ0αi

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

A

(2.11)

` N´1{2
N
ÿ

i“1

L
ÿ

k“1

τirE
k
i pθ0q ´

{Ek
i pθ0qs∇θE

k
i pθq|θ“θ0αi

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

B

`opp1q

where Ek
i is the conditional expectation ErY k

i |Xis under the index assumption,

whereas {Ek
i pθ0q is an estimation of that assumption. In the case of the ordered

model, Ek
i pθ0q is the conditional probability given in (2.9) and αi “ 1{Ek

i pθ0q.

This class also includes the quasi-maximum-likelihood estimators for semiparametric

binary response (Klein and Spady, 1993) with αi “ 1{Eipθ0qr1 ´ Eipθ0qs and k “ 1.

The multiple-index semiparametric least-squares estimators (see Ichimura and Lee

(1991) and Ichimura (1993))are also included, in which k “ 1 (no categorical-specific

conditional expectation), αi “ 1.

Referring to the gradient representation given above, component A has no

estimated quantities and can be handled by the standard central limited theorem. Shen

and Klein (2017) asserted that in semiparametric index models with regular Gaussian

kernels, B can be written as higher order degenerate U -statistics so the bias will vanish

asymptotically. While this assertion is true for the single-index model, to the best of

our knowledge there are no formal theorems proving B “ opp1q in higher dimensional

cases. In Theorem 1 of the Appendix—what I refer to as the U -statistics equivalence

result—I show that B is asymptotically equivalent to a degenerate U -statistics that

is opp1q. This result can be applied to a large class of semiparametric models with

arbitrary dimensions8. In Theorems 2 and 3, I derive the large sample distribution of θ̂

and {QMEpZq;K, θ̂q.

8To make the presentation cohesive, I only give proof in the context of an ordered model with three
indices. When the dimension increases, I apply the recursive differencing multiple times according to
the rules given in Shen and Klein (2017) to reduce the bias to a certain order.
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In Theorem 1 below—what I refer as the U -statistics equivalence result—I show

that B, the second component in the gradient, is asymptotically equivalent to a

degenerate U -statistics that is opp1q. This result, as noted above, applies to a large

class of semiparametric models with arbitrary dimensions9. Based on this important

result, in Theorem 2,3, I derive the large sample distribution of θ̂ and {QMEpZq;K, θ̂q.

Theorem 2.4.1 (U -Statistics Equivalence). With the window size 1{12 ă r ă 1{10

for the case of three indices and the gradient representation given in (2.11), set the

iteration of recursion equals 1, for a class of estimators defined in Section 4.4, it can

be shown that with ĝpv, θq ” N´1
ř

jKhpVj ´ vq,

ĝpv, θqB “ opp1q

where B is the second component in the gradient representation given in (2.11).

Theorem 2.4.2 (Normality of θ). For the 3-index semiparametric ordered model

discussed in the main text, with the window size h “ stdpvqN´r, 1{12 ă r ă 1{10

and Q2 the likelihood function defined in (2.8), where the trimming function is based

on the estimated index,

?
Npθ̂ ´ θ0q

d
Ñ Np0, H´1

0 ΣH´1
0 q

where H0 ” Er∇θ1θQ2pθ0qs Σ “ Et
?
N
řN
g“1GgG

1
g

?
Nu, Gg “ ∇θ

ř

iPg gipYi|θ0q

and gipYi|θ0q ”
řL
k“1 Y

k
i LnpP

k
i pθ0qq.

Theorem 2.4.3 (Normality for Quantile Marginal effects). Under A.1-A.5, we have

?
NpQMEK

q ´
{QMEK

q q „ Np0,
K´1
ÿ

k“1

Erψ1kψksq

9To make the presentation cohesive, I only give the poof in the context of an ordered model with
three indices. When the dimension grows higher, one should apply the recursive differencing multiple
times according to the rules given in Shen and Klein (2017) to reduce the bias to a certain order.
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where ψk ” ψk1j ` ψ
k
2j ` ψ

k
3j ` ψ

k
4j with

ψk1j ”
Ertqj∇θP

k
j pVF , VB, Z ` δ; θ0qs ´ Ertqj∇θP

k
j pVF , VB, Z; θ0qs

Ertqjs
H´1

0 Gpθ0q

ψk2j ” t∇qErtqjmjpθ0qs ´∇qErtqjQMEk
q su

Bj

Ertqjs

ψk3j ”
Ertqj|VF , VB, Z ` δsε

δ
j ´ Ertqj|VF , VB, Zsεj

Ertqjs

ψk4j ”
tqjmjpθ0q ´ ErtqjsQMEk

q

Ertqjs
´
tqj ´ Ertqjs

Ertqjs
QMEk

q (2.12)

2.5 Results

In this application, I estimate the heterogeneous impact of MFOI, the aforementioned

shared-ownership index, on credit ratings in the described semiparametric model.

Previous estimates reported in the literature are typically constrained to a single

number by the functional form of the underlying regression model. For example,

Kedia et al. (2017) found that the ratings assigned by Moody’s are, on average,

0.213 notches better than ratings by S&P’s for firms related to Moody’s two major

shareholders. This number can be understood as the “average treatment effect” of a 0-1

variable capturing whether a bond issuer has a relationship with Moody’s shareholders.

However, if the benefit of developing a rapport with Moody’s shareholders is actually

heterogeneous, such an estimate is not informative on the effect that varies across

relevant subpopulations and may not even be consistent for the overall population

mean (Abrevaya et al., 2015). Using a flexible econometric approach, the application

explores the heterogeneity of the shared-ownership effect across subpopulations

defined by rating categories and/or possible values of issuer characteristics.

For comparative purposes, and to highlight the importance of employing a more

flexible framework, I estimate both the proposed semiparametric model and the

ordered-probit model described in the previous section. I compare both the estimated

index coefficients as well as the marginal effects in quantiles. Lastly, I compare the
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two approaches in terms of predicting credit ratings.

2.5.1 Index parameter estimates and average marginal effects

Table 2.3: Index Parameter and Average Marginal Effects

Index Marginal Effects (percentage point)
Parameters AA A Baa Ba B C Average

Semiparametric
ASSET 1.00 0.11 1.71 5.89 6.13 4.31 0.64 4.42***

STABILITY -2.71*** -0.23 -4.46 -8.89 -10.80 -8.81 -1.25 -5.74***
LEVERAGE -4.25*** -0.01 -0.97 -2.08 -2.78 -2.57 -0.48 -1.49***

PROFIT 24.21*** 0.49 4.81 17.88 15.52 10.06 1.31 9.91***
AMT 0.41*** 0.05 0.07 -0.09 -1.96 -1.23 0.08 -0.49***

SENIORITY 1.00 0.81 0.62 3.36 8.52 4.52 -0.22 3.10***
MFOI 0.51 9.78 9.00 2.12 2.27 0.14 5.86***

Ordered-Probit
(with Year and Industry Fixed Effects)

ASSET 1.00 0.98 5.69 9.12 10.05 7.47 1.69 6.77***
STABILITY -0.51*** -0.67 -4.35 -5.91 -5.83 -4.45 -1.07 -3.71***
LEVERAGE -5.14*** -0.41 -2.65 -3.59 -3.54 -2.71 -0.65 -2.26***

PROFIT 14.92*** 1.83 11.87 16.11 15.90 12.14 2.91 10.13***
AMT -0.09 -0.02 -0.11 -0.15 -0.18 -0.13 -0.03 -0.06

SENIORITY 1.00 1.08 6.45 8.75 8.63 6.59 1.58 5.48***
MFOI -71.13*** 0.51 3.02 4.84 5.33 3.96 0.89 3.59***

Note: *** represents statistical significance at the 1% level
- In column 1, I report the index parameter estimates. In the semiparametric model, the
parameters of asset and seniority are normalized to one. Since MFOI enters the model
nonparametrically by itself, there are no parameter estimates for MFOI.
- In columns 2 to 7, I report the average marginal effect of covariates from the
semiparametric model (top panel) and ordered probit (lower panel) for each rating category.
The marginal effects are computed by increasing the asset and issuing amount (AMT) by
1- In the last column, the average marginal effects are calculated by taking a weighted
average of category-specific marginal effects where the weights are the percentage of a
rating category in the entire sample.

In Table 2.3, I report the estimates of index parameter vectors θ and average

marginal effects for the parametric (ordered-probit) and semi-parametric models.

Statistical significance of the semiparametric model is obtained based on the

asymptotic covariance matrix derived in this paper (Theorem 2 in the Appendix)10.

10The standard errors in the ordered probit model are computed from the White (1982) formula.



32

The parameters of SENIORITY and ASSET are normalized to one; both variables

belong to the model considering the bond rating literature. The signs and statistical

significance of index parameters are consistent across models, except for ASSET.

Next, I compare the average marginal effects in the two models because, in

ordered models, there is typically no natural economic interpretation for the index

parameters — I know nothing beyond whether a variable belongs to the model. I

begin by discussing the marginal effects of MFOI, our main variable of interest.

Overall, the semiparametric model yields a much larger effect than the ordered-probit

(5.86% vs 3.59%). However, for A and Baa-rated bonds, the estimated effects from

semiparametric models triple that of the ordered-probit model: when MFOI increases

by one standard deviation11, A-rated bonds are 9.78% more likely to be rated into a

higher category from the semiparametric model, whereas the estimated effect from

ordered-probit is only 3%. The more dispersed effect captured by the semiparametric

model highlights the potential value of employing a more flexible approach.

The estimated impacts of firm and bond characteristics are consistent across

models. In terms of economic magnitude, the most significant impact on ratings

comes from PROFIT, which is the ratio of profits to total assets realized from business

operations: a 10% increase in PROFIT increases the likelihood of obtaining a higher

rating by approximately 10 percentage points. A bond issuer’s asset level also has

a significant effect on ratings. When ASSETs go up by 1%, bonds are 4.4% and

6.8% more likely to be rated in a higher category in semiparametric and ordered-

probit models, respectively. When the bond issuer has a higher leverage ratio or asset

volatility, the ratings on its bonds tend to be lower. Subordination status (SENIORITY)

has a highly significant effect on rating in both specifications: declaring seniority

causes a bond 3.1% (5.5%) more likely to be rated higher in the semiparametric model

(ordered-probit).

11In our sampling period, SDMFOI “ 0.004. In terms of economic magnitude, this implies that a
bond issuer is related with another shareholder of Moody’s who owns 10% of Moody’s stock, and the
bond issuer accounts for 4% of the shareholder’s portfolio.
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Figure 2.1: Quantile Marginal Effects of MFOI

Note:
- The horizontal axis in each sub-panel indicates the decile level of MFOI from the lowest
(issuers with no shareholding relation with Moody’s) to the highest (issuers with a strong
shareholding relation with Moody’s). The red solid line corresponds to the (average)
marginal effects of MFOI in the corresponding decile of interest with the two dashed green
lines bounding the 95% confidence interval.
-The marginal effects are computed by increasing MFOI by one standard deviation. For
example, in the top panel, the right end-point in the red line should be interpreted in the
following way: when the CRA-issuer relation strengthens by one standard deviation as
measured by MFOI, the probability that an A-grade bond will be rated higher will increase
by 9.5%.
- The confidence intervals are computed using the asymptotic theory derived in this paper.

2.5.2 Quantile effects of MFOI

In Figure 4.1, I plot the estimated quantile marginal effects of MFOI—the average

marginal effect of MFOI for observations with MFOI in a particular quantile— from

the semiparametric model (red solid line) and ordered-probit model (purple solid line).

Note that one conclusion from Table 2.3 is that the effect of MFOI varies significantly

by categories. Here, I examine the heterogeneity of marginal effect along the quantile

of MFOI. There are two main findings.

First, I find that rating inflation is unlikely to occur on bond issuers associated with

small MFOI. Using the A-grade bonds as an example, the estimated marginal effect
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of MFOI is approximately 30% for firms that have strong connectedness with Moody

(those with MFOI in the ninth decile) implying that roughly one third of A-grade bonds

issued by those firms might receive favorable treatment. A strengthening CRA-issuer

relation also has a significant positive impact for Baa-grade bonds (as depicted in the

top-right panel of Figure 4.1); however, the economic magnitude is much smaller (from

30% to 15%). In contrast, marginal effects are not statistically significant for issuers

associated with low-decile MFOIs. Second, the inflation rating is not pronounced for

bonds below investment grade regardless of the issuer’s shareholding relation with

Moody’s. As depicted in the lower two panels of Figure 4.1, the probability that a

bond is rated into a higher category is at most 6% for Ba-rated bonds and 4% for B-

rated bonds; both effects are not statistically significant.

Note that the average magnitude of rating bias identified approximate the

magnitude found in Kedia et al. (2017)12. Additionally, by estimating the

heterogeneous marginal effect, our model highlights the distributional pattern of rating

bias. Qualitatively, our main conclusion from our empirical exercise is that the degree

of Moody’s rating bias varies significantly for both rating categories as well as the

bond issuer’s affiliation with Moody’s shareholders. As can be seen from Figure 2.2,

the favorable treatment on A-bonds does seem to decline over time.

Capturing such heterogeneity is difficult in a parametric setting because of the

constrained functional form. By comparing the ordered-probit estimates (purple

line) and semiparametric estimates (red lines), the ordered-probit estimates are more

“homogeneous”: they vary between zero and 10 % (whereas the semiparametric

estimates can be as large as 30%) and have identical patterns across different rating

categories. One possible explanation could be that the ordered-probit model assumes

that the rating probabilities for all categories are driven by the same normally

12Kedia et al. (2017) found that Moody’s ratings are a 0.213 category better than S&P’s, on average,
using a finer rating scale (A1,A2,A3...). This number translates to a 7.1% average marginal effect in our
scale assuming that the rating probability is linear. Recall that in the semiparametric model, I find that
the average marginal effect of MFOI is 5.86%.
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Figure 2.2: Time series variation of marginal effects from 2001-2016

Note: The y-axis is the marginal effect, which is the probability that the bond will be rated one notch
higher given a standard deviation increase in MFOI. From top to bottom, the three hairlines describe the
time series change in marginal effects for A, Baa, and Ba bonds.
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distributed random variable. In contrast, the semiparametric model allows the rating

probability function in (3.2) to be category-specific.

2.5.3 Prediction Performance

In this section, I compare our semiparametric model and various parametric models in

the literature as for in-sample fitness. Using the dataset on Moody’s initial ratings from

2001-2007, I first estimate the semiparametric model proposed in the previous section:

PrpYi “ k|Xq “ EpRk
i |VF , VB,MFOIq “ PkpVF , VB,MFOIq (2.13)

VF “ ASSET ` θF1 STABILITY ` θ
F
2 LEV ERAGE ` θ

F
3 PROFIT

VB “ AMT ` θB1 SENIORITY

with the following ordinal information on ratings:

Yi “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1 if the bond is rated as Aaa

2 if the bond is rated as Aa

...

7 if the bond is rated as Caa

This specification includes our theoretical prediction y˚ “ Xβ0`HpZi, Uiq as a special

case. Despite the generality with which this framework accounts for the influence of

explanatory variables, the complexity of the estimation procedure raises the question

of whether these features can be satisfactorily addressed by a simpler model.

In the empirical literature of credit ratings, the most prevailing approach is linear

probability models (LPM, see Jiang et al. (2012); Campbell and Taksler (2003); Kedia

et al. (2017) among other works), which assumes the observed ratings Yi is a linear

function on predictor variables X and error term U , e.g., Yi “ Xiβ0 ` Ziπ0 ` Ui.

This approach ignores the discreteness in ratings and implicitly assumes, for example,
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Aa-grade bonds (Yi “ 2) are twice as likely to default as Aaa-grade bonds (Yi “ 1).

Such an assumption is logically problematic, as rating scales convey only ordinal rather

than quantitative relationship. Moreover, Hausman et al. (1992) argues that the linear

probability model always deliver conditional distributions of dependent variable that

is unimodal and have little weight in the tails. Therefore, in contexts where the focal

interest is the conditional probabilities, as it is in our case, researchers switch to more

advanced discrete-choice models.

The second frequently employed approach is ordered probit/logit models (Kaplan

and Urwitz, 1979; Blume et al., 1998; West, 1970). This class of models assume the

default risk

y˚ “ Xβ0 ` Ziπ0 ` U (2.14)

and the same aforementioned ordinal information. Hausman and his coauthors

regarded ordered-probit as “a suitably extended version of LPMs” when the dependent

variable is naturally discrete. However, ordered-probit model deliver consistent

estimates only when the functional form on y˚ and the distributional assumption

on U are correctly specified. As derived in the behavioral framework, the CRA’s

estimates of default risk y˚ does not have the “threshold-crossing” property13 required

by ordered-probit. Therefore, the estimates of β0 as well as conditional probabilities

PrpYi “ K|Xq in ordered-probit models are subject to misspecification bias.

In ordered-response models, usually fitness is measured by the percentage of being

correctly predicted. The predicted rating is the category with highest conditional

probability Pr[Y k
i “ 1|X].

13This is referred as a threshold crossing model because PrpYi ď K|Xq “ PrpXβ0`U ă ck|Xq “
PrpU ă ck ´Xβ0|Xq. That is, a bond will be rated at least category k higher when the error term U
“crosses”, or lower than, the respective threshold point ck ´Xβ0
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Semiparametric vs Ordered-Probit

The ordered-probit model specified above replaces (2.13) with the following

parametric structure:

PrpYi “ k|Xq “

$

’

’

’

&

’

’

’

%

Φp´wwiq if k “ 1

1´ ΦpcL´1 ´ wwiq if k “ 7

Φpc˚k ´ wwiq ´ Φpc˚k´1 ´ wwiq otherwise

where

wwi “ α0Xi ` γ0Zi ` c
˚
1 , α0 “

β0

σ
γ0 “

π0

σ

The Φ function is the cumulative distribution function for U , and the α’s and γ can be

consistently estimated through the standard maximum likelihood estimation.

After estimating the semiparametric model and the benchmark ordered probit

model, we report the fitness for the two in Table 2.4, which is the traditional format

of displaying the results of bond-rating predictions. The upper table corresponds to the

semiparametric model with three indices and the lower table corresponds to the linear

parametric probit model. Collectively the semiparametric model correctly predicts

68 % of bonds, which is 10 % higher than the standard parametric model with the

same explanatory variables. In addition, the semiparametric model performs a better

predictive power in all the rating categories, especially the Aaa, A and Ba grades.

Semiparametric vs Other Models in the Literature

I further compare the semiparametric model with previous models in the literature

of bond ratings and reports the results in Table 2.5. It is important to note that,

for each previous work, the statistics on the percentage of correctly predicted is

directly imported from the corresponding paper. Therefore, we view the comparison

as suggestive in the sense that the dataset and the explanatory variables being used

are different. In terms of percentage of correctly predicted, the semiparametric
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Table 2.4: Predictions of New-Issues: 2001-2007

Predicted Ratings(Semiparametric)
Actual ratings Aaa Aa A Baa Ba B Caa
Aaa 13 21 16 3 3 3
Aa 753 146 17
A 91 979 374 2
Baa 1341 46 55
Ba 16 439 213 116
B 3 190 101 661 3
Caa 28 6 62 44

Predicted Ratings(Linear ordered probit)
Actual ratings Aaa Aa A Baa Ba B Caa
Aaa 0 34 14 9 2
Aa 732 165 19
A 339 682 421 4 2
Baa 4 191 1293 51 69
Ba 7 508 85 184
B 4 224 83 613 34
Caa 1 32 3 90 14

Note: The upper table is the prediction result for the 3-index model and the lower table is
the prediction result for the ordered-probit model with specification below
- 3-index model: 4009/5913 = 67.72 % correct
- Probit model: 3419/5913 = 57.82 % correct

Table 2.5: Comparison with other predictive models in the bond rating literature

% of correct prediction in category
Study Aaa Aa A Baa Ba B Caa %
West(1970) 0.00 0.65 0.76 0.45 0.57 0.67 0.6234
Horrigan(1966) 1.00 1.00 0.71 0.53 0.64 0.4 0.5857
BLM*(1998) 0.26 0.36 0.74 0.54 0.5721
PM**(1975) 0.71 0.83 0.48 0.89 0.74 0.7538
KU(1979) 1.00 0.22 0.92 0.47 0.00 0.00 0.6875
3-index 0.22 0.82 0.68 0.83 0.27 0.69 0.31 0.6772

* - In Blume et al. (1998), the authors estimate only the investmnet grade bonds using
S%P’s rating
** - In Pinches and Mingo (1975), the authors use Multiple Discriminant Analysis (MDA)
instead of regular regression
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model outperforms West (1970), Horrigan (1966) and Blume et al. (1998). The

semiparametric model has roughly the same predictive power with Kaplan and Urwitz

(1979). However, KU made poor prediction on Aa Ba and B bonds, while the

semiparametric model shows more robust predictive power across all rating categories.

2.6 Conclusion

This paper contributes to the literature by evaluating rating quality using a

semiparametric ordered model. Compared to extant parametric models, the

semiparametric model proposed in this paper allows for a richer set of interactions

among covariates. I study to what extent Moody’s ratings are affected by the economic

interests of its shareholders, which is pertinent for the regulation of credit rating

agencies.

In summary, I conclude that a strong connection with Moody’s shareholders

could increase the probability of receiving a higher rating by as much 31 %, or, on

average, one out of three bonds issued by firms with a Moody connection received

favorable treatment. This effect is twice that of comparable parametric models. In

addition, I found that high-yield bonds issued by any firms, regardless their ownership

interaction with Moody’s, are unlikely to be treated favorably, which seems credible

because overrating a subprime bond would incur a greater expected reputation loss than

overrating a safe bond.
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Chapter 3

Ordered Response Models with Unobserved
Correlated Thresholds

3.1 Introduction

Alleviating information asymmetry is central to enhancing the efficiency of financial

markets. As one of the most important information intermediaries, Credit Rating

Agencies (CRAs) have been dedicated to the production and dissemination of credit

ratings to market participants since 1920s. Credit ratings, at its core, are devised to

benchmark the default risk of financial instruments. The proper functioning of CRAs

reduces information asymmetry between borrowers and lenders, which is crucial to the

health of financial markets.

In the aftermath of the recent financial crisis, the reliability of CRAs’ rating

methodology, however, has been scrutinized. In fact, apart from estimating default risk

with financial variables, CRAs have the discretion to adjust rating outcomes subject to

their own understanding of qualitative factors. This step is termed “soft adjustment”

by Kraft (2014) because adjustments are made based on hidden and subjective factors

such as the manager’s ability. Given their exposure to a variety of conflicts of interest,

it is unclear whether CRAs utilize the soft adjustment to reflect material nonpublic

information or simply distort ratings in a subtle way.1 As a regulatory response,

1There has been an extensive literature focusing on the conflicts of interest in credit ratings (Kedia
et al., 2017; Becker and Milbourn, 2011; Jiang et al., 2012). Several channels, through which rating
inflation can occur, are examined and documented by past studies. For example, public firms are
operated under intensive pressure to grow and increase profits (Bogle, 2005), which motivates CRAs
to report inflated rating in order to retain repeated customers for rating fees under the current issuer-pay
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one chapter of the Dodd-Frank Wall Street Reform and Consumer Protection Act

(henceforce “the Dodd-Frank”) is dedicated to rating agency reform through enhancing

information transparency and strengthening supervision.

Set against this background, this paper develops an empirical framework to

investigate the information production process of CRAs. A variety of equilibrium-

based economic models have been developed to help better understand the

mechanisms, as well as potential problems, of the information production process of

CRAs2. However, on the substantive end, extant bond rating models are largely in

reduced-forms (Kaplan and Urwitz, 1979; Blume et al., 1998, etc), and therefore fall

short to genuinely capture CRA’s strategic behaviors predicted by the theories. Implied

by a structural framework, our study contributes to this literature by providing an

empirical valuation of CRA’s information. We focus on (i) quantifying and estimating

the impact of material non-public information on credit rating assignments, and (ii)

examining the time variation of such effects before and after the passage of the Dodd

Frank Act.

We examine the rating process for corporate bond ratings in an innovative

econometric framework. To be specific, we model the aforementioned soft adjustment

as firm-specific thresholds in an ordered-response model, in which a bond will be

assigned to a rating category if its latent default index is between the corresponding

thresholds. The literature on bond ratings often requires the thresholds to be fixed

parameters, which leaves the differences in ex post ratings completely attributable

to the idiosyncratic rating errors for observationally identical bonds. In contrast,

firm-specific thresholds echoe the aforementioned “soft” adjustment, because firms

with identical fundamentals can wind up with different ratings due to adjustment

business model (Cornaggia and Cornaggia, 2013; Jiang et al., 2012).
2The early papers of Allen (1990), Ramakrishnan and Thakor (1984) and Millon and Thakor

(1985) provide the theoretical foundations for thinking about rating agencies as diversified information
producers and sellers. Relatedly, in a cheap-talk framework developed by Goel and Thakor (2015), the
authors model a rating agency’s objective in setting ratings is as to balance the divergent goals of the
issuing firm and the investors purchasing the issuing securities.
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on the thresholds. Of interests are both the latent index coefficients, which capture

the relative importance of different risk predictors, and thresholds parameters, which

convey information on the degree of soft adjustment.

We note that in this context, soft adjustment may stem from two sources:

unobserved heterogeneity and conflicts of interest. Both of them may cause mechanical

correlation between the firm-specific thresholds and regressors, leading to the problem

of endogeneity. Our paper contributes to the literature of location estimators of

ordered response models by allowing endogenous regressors and correlated thresholds

(Manski, 1985; Horowitz, 1992; Lewbel, 1997; Klein and Sherman, 2002, etc). In

particular, we demonstrate that under an additive separability condition, a bond

issuer’s “connectedness” with CRA’s can be exploited as an efficient control for

endogenity. Our identification strategy on index parameters follows the control

function approach (Blundell and Powell, 2004; Florens et al., 2008; Imbens, 2007;

Imbens and Newey, 2009, etc). To quantify the soft adjustment, we focus on the

average threshold conditional on the aforementioned measure of “connectedness”. The

identification strategy exploits a special property of the rating probability functions

termed conditional shift restrictions, which is a generalization of Klein and Sherman

(2002) to models with endogenous predictors. The regression coefficients are

estimated by semiparametric pseudo maximum likelihood, combined with a grid-

search algorithm to estimate conditional mean thresholds. Finally, the extracted hidden

adjustments are used to evaluate policy changes.

We estimate the proposed model with 11,134 initial bond ratings issued by Moody’s

from 2000 to 2016, with the sample split by the enactment of the Dodd-Frank Act in

2010. Moody’s became a public firm in 2000, with over 300 shareholders every quarter

since then. One conflict that resurfaced recently concerns the ownership structure

of CRAs: publicly traded CRAs may bias ratings towards issuers that are invested

by their own shareholders. This issue was first noted by Kedia et al. (2014) and

further examined by Kedia et al. (2017). However, none of the above papers explicitly
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considers the relationship between soft adjustment and rating bias. In contrast, we

assess the change of soft adjustment after the passage of Dodd-Frank and examine

the relationship between shareholding structures and soft adjustments, accounting for

the fact that bond issuers may choose bond characteristics (such as issue amount,

subordination status) endogenously based on perceived favorable treatment and private

soft information.

The estimation results suggest several noticeable changes in terms of Moody’s

rating methodology before and after the Dodd-Frank. First, issuing amount and

profitability have gained more weights in CRAs’ discretion of hard information,

implying that Moody’s has become more stringent towards low-profit and high-debt

issuers. Second, there is a significant drop in the dispersion of soft adjustment for all

categories after the reform. This provides evidences in support of the effectiveness

of the Dodd-Frank Act in the credit rating industry, at least in terms of the effort to

reduce information opacity. Third, by examining the pattern of threshold parameters,

we find that it has become more difficult for a bond to be rated as investment grade

bonds on average, and that Moody’s has been more stringent towards issuers that are

related with Moody’s large shareholders. These findings suggest Moody’s has become

more conservative and sensitive to conflicts of interest after the Dodd-Frank.

The rest of this paper is structured as follows. In Section 3.2, we consider

the stylized rating process for corporate bonds with soft adjustment and discusses

identifying strategies of the hidden soft adjustment along with the assumptions needed.

In Section 3.3, we propose a two-stage semiparametric index and location estimator to

quantify soft information. Section 3.4 provides the background of the U.S. credit rating

industry and presents our data. Empirical results are in Section 3.5. Finally, Section 3.6

concludes this chapter.
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3.2 Bond Rating Models and Soft Adjustment

Uncovering the “blackbox” of the rating methodology used by CRAs has always been

a pursuit of financial regulators, academic researchers and business practitioners. Let

Yi P t0, 1, ¨ ¨ ¨ , J ´ 1u be a discrete ordinal credit rating for bond i. To fix idea, we

characterize the rating process as:

Yi “
J´1
ÿ

j“0

j ˆ 1tTj´1,i ă V0i ď Tjiu, j P t0, 1, ¨ ¨ ¨ , J ´ 1u (3.1)

wherein a bond’s latent “default risk index” is driven by observed firm and bond

characteristics Xi ” pX 1F
i , X

1B
i q

1 as a single-index, i.e. V0i ” Xiβ0; Ti “

pT0i, ¨ ¨ ¨ , TJ´1,iq is a vector of bond-specific thresholds that partitions the risk index

into different rating categories. 1t¨u represents an indicator function.

Importantly, allowing the thresholds to be bond-specific echoes the idea of “soft

adjustment” (Kraft, 2014).3 That is, by perturbing Ti, the CRA is able to assign

different ratings to bonds that have identical financial characteristics, reflecting certain

qualitative adjustments. Extant credit rating models often restrict thresholds to be

constant plus a pure random error; this assumption, however, rules out soft adjustment,

leaving the differences in ex post ratings completely attributed to idiosyncratic errors

for otherwise identical bonds.

Of interests are the estimation of the index coefficients β0 and recovering patterns

of the bond-specific threshold T i. However, when T i is interpreted as soft adjustments,

the correlation between Ti and regressors requires new identification strategies to be

developed. We believe such correlation may arise from two sources: unobserved

heterogeneity and the conflicts of interest. The unobserved heterogeneity reflects

3 According to Kraft (2014) and Petersen (2004), credit ratings involve both “hard” and “soft”
information. The CRA first constructs a default risk index using publicly available quantitative
information from issuers’ financial statements. This generates the relatively objective “hard”
information. Next, the CRA conducts a subjective “soft” adjustment based on other qualitative factors
and then finally release a categorical rating to the public given its internal criteria.
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qualitative information about the underlying bond that is otherwise not reflected in

Xi and this information is available to both the bond-issuing firm and the CRA but not

the researcher.4 Therefore, the bond-specific threshold should correlate with Xi due to

the mechanical correlation between a bond’s observed and unobserved characteristics.

Therefore, some bond and firm characteristics, Xi, are likely to be endogenously

selected in the presence of unobserved heterogeneity.

Other than reflecting CRA’s private information, the soft adjustment may also be

due to conflicts of interest. In our context, bond issuers and the CRA are connected

through common shareholders. CRA may cater to the interest of its shareholders by

assigning inflated ratings. Endogeneity arises in this context because the issuer can

contemplate on the choices of characteristics by forming an expectation of the soft

adjustment given their own private relationship with the CRA. For instance, a better

connection with the CRA could induce riskier and more audacious issuance due to the

expectation of receiving an upward rating adjustment.5 Estimates will be generally

inconsistent if the induced endogeneity is not appropriately taken into account.

Before discussing our identification strategy in detail, we make several

observations. First, the soft adjustment, if identified, might serve the purpose of

uncovering the “blackbox” of rating models, increasing the transparency of rating

methodology and improving the predictive power of current models. Second, this

econometric framework can be utilized to investigate whether the rating process is

impaired by conflicts of interest. By estimating the systematic pattern of Tji, one can

empirically test whether the CRA has consistent rating criteria towards all bond issuers.

4For example, the unobserved firm characteristics could encompass the managerial efficiency,
organizational productivity or other qualitative financial risk related information beyond spreadsheet.
Moreover, this firm heterogeneity is very likely to be time-varying, so adding company fixed effects
might not fully solve the problem.

5To illustrate, consider the following example: one bond characteristics that affects credit ratings is
issuing size, namely how large the debt issuance is. If the bond issuer has prior information about Ti,
say knowing that the CRA will be more lenient, it may strategically choose to issue more debt since a
better credit rating could lower the borrowing interest rate. See online appendices for the example.
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3.2.1 Identification via Shareholding Structure

It should also be noted that our model is semiparametric in the sense that no

distributional assumption is made about the thresholds Tji. And we consider this

necessary especially given the complex structure and meanings of the soft adjustment

across bonds and categories. For this reason, the index parameter vector β0 can be

identified only up to location and scale. Suppose β0 ” pβ10, β20, ¨ ¨ ¨ , βd0q
1 P Rd´1

is the coefficient vector that is conformable to the d´dimensional bond and firm

characteristics Xi. We let β10 “ 1 for a continuous variable X1i, e.g. the log of total

asset in our empirical analysis, and denote the identifiable index by V0i ” X1i ` rX 1
iβ0.

Under this normalization, β0 becomes the relative contribution of each characteristic

with respect to that of X1i. A sufficient condition for identification is detp rX 1
i
rXiq ą 0

with X1i being a continuous variable and rXi ” pX2i, ¨ ¨ ¨ , Xdiq.

For identification, we rely on a control function approach to handle endogenous

variables that are correlated with structural thresholds.6 To be specific, let Ri be a

vector capturing the whole connectedness between the CRA and a bond issuer through

common shareholders, e.g. each common shareholder’s identity, investment stake in

the CRA and the bond-issuing firm i, etc. We impose an additive separable structure

on thresholds.

A-I.1 Additive Separability. For each j, Tji “ δjpRiq ` uij , where uij K pXi, Riq

and uij is i.i.d. across i and j.

A-I.1 basically conveys that each threshold can be decomposed into two additive terms,

i.e. a category-specific component, δjp¨q and an orthogonal random shock uij . The

functional form of δjp¨q needs to be flexibly specified. The former component reflects

the heterogeneous soft adjustment or category effect, while the disturbance represents

calculation errors of the CRA or pure noise. Under A-I.1, it implies that the soft

6 The control function approach is frequently employed in nonseparable models with endogeneity
(Blundell and Powell, 2004; Florens et al., 2008; Imbens and Newey, 2009; Hoderlein and Sherman,
2015, etc).
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adjustment is equivalent to the conditional mean of threshold, i.e. EpTji|Riq “ δjpRiq.

It also implies the independence of Xi and the thresholds Tji after conditioning on Ri.7

To see this, note that

PrpYi ď j|Xi, Riq “ Prp´ui ď δjpRiq ´ V0i|Xi, Riq “ PrpYi ď j|V0i, Riq (3.2)

More importantly, A-I.1 also dictates that the shareholding structure Ri suffices to

control for all unobservables that matter in both firms’ issuing decisions and the CRA’s

ratings. Given the sources of the soft adjustment considered earlier, the conflict-of-

interest, having stronger connections with the CRA may lead to favorable adjustment at

each category, a finding in Kedia et al. (2017). When thresholds reveal a certain degree

of unobserved heterogeneity of the firm itself, our compromising assumption is that

common shareholders have as much private information as the CRA. If so, any material

nonpublic information about the issuer firm is “materialized” in common shareholders’

investment decisions, thus already embodied in the shareholding structure Ri. For

example, institutional investors are more likely to invest in issuers with “better”

unobserved soft quality. In empirical contexts, it is alway the case that both sources

of adjustment are present. However, it is unnecessary to separately identify the two

sources if our objective is only to consistently estimate the index parameters and back

out the ex post individual soft adjustment.8

Our choice of shareholding structure is substantive admittedly. If there are other

hidden factors which drive the rating decision but bear no relation with the investment

of common shareholders, our control could be insufficient. Developing a fully

structured issuing model that covers every possible pathway of information sharing

between the CRA and common shareholders is a daunting task. Instead, we present a

simple example in the Appendix to highlight the endogeneity problem and the role of

7This is also implied by a weaker condition—conditional independence, i.e. Xi K T i|Ri.
8 One shortcoming of mixing together those errors is that counterfactuals in regards to the change of

shareholding structure would be confounded and unclear.
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Ri.

In order to encompasses the entire connectedness structure between bond issuer

i and the CRA through all common shareholders, Ri can be very high-dimensional.

To this end, we assume that the information contained in Ri can be sufficiently

summarized by a “index” of three key aggregate variables in the empirical analysis

such that

PrpYi ď j|Xi, Riq “ PrpYi ď j|X 1
iβ0, R

1
iα0q (3.3)

Under this simplification, the space of finite-dimensional parameters also expands,

e.g. θ0 ” pβ0, α0q P pB ˆ Aq. Such models have been studied in ? and Klein and

Vella (2009). Identification of double-index parameters requires the existence of at

least one continuous variable in each index and a sufficient condition precluding the

composition of same variables in both indices, which our model has already satisfied.9

To streamline the discussion, we defer the detailed description of these three variables

until the empirical section. As our identification of the soft adjustment does not rely

on the index structure of Ri, we therefore illustrate it in a general specification.

3.2.2 Soft Adjustment and Conditional Shift Restrictions

Turning to the soft adjustment δjpRiq, the key object of interest in this paper, we show

that identification of this object can be achieved by exploiting a “special” property

of the rating probabilities. This property is a generalization of the “shift restriction”

proposed by Klein and Sherman (2002)10. Besides ours, there are other thresholds or

location estimators that have been considered in the binary or ordered choice literature

9As in other semiparametric models, index parameters are identified up to location and scale.
Specifically, let R1i ` rR1iα0, where R1i is continuous and rRi ” pR2i, R3iq, with |detp rRi

rR1iq| ą 0.
10In Klein and Sherman (2002), they use those shift restrictions to estimate the relative scaled

thresholds in semiparametric ordered response models. In this paper, we generalize the shift restriction
technique to allow endogenous regressors with correlated thresholds.
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(Manski, 1985; Horowitz, 1992; Lewbel, 1997, 2003; Chen, 1999, 2000, etc). But most

of them focus on models with only exogenous variables.

In what follows, assume that pβ0, α0q is known to us. Recall from A-I.1 that for a

representative category j, the soft adjustment can be expressed as δjprq “ EpTji|Ri “

rq, e.g., the conditional expectation of the j1s threshold given Ri “ r. Likewise, we

define ∆j,kprq ” EpTki ´ Tji|Ri “ rq as the conditional mean threshold difference

between categories k and j.With the conditional cumulative rating probability function

defined as

Pjpv, rq ” PrpYi ď j|V0i “ v,Ri “ rq, j P t0, 1, ¨ ¨ ¨ , J ´ 1u. (3.4)

The above function measures the probability of bond i being rated into category

j or above given its true risk index and shareholding relationship with the

CRA. Identification of the soft adjustment relies critically on the implication of

Proposition 3.2.1 below.11

Proposition 3.2.1 (Conditional Shift Restriction). Under Assumption A-I.1, for each

pv, rq P R ˆR, then Pjpv, rq “ Pkpv `∆j,kprq, rq, for each j, k P t0, 1, ¨ ¨ ¨ , J ´ 1u

and

∆j,kprq “ P´1
k pPjpv, rq, rq ´ v (3.5)

Proposition 3.2.1 introduces the conditional shift restrictions, a generalization of

Klein and Sherman (2002)’s. In particular, it reveals the hidden restrictions across

categories. Figure 3.1 depicts an example of shifts between jth-conditional probability

functions and the pj ` 1qth for single-dimensional Ri. Given the index V0i “ v and

the conditioning variable Ri “ r, one can equate Pj`1pv, rq to Pjpv, rq by increasing

11Note that A-I.1 is sufficient but not necessary for conditional shift restrictions. A weaker set of
conditions require that the conditional distributions of uij be the same for each level j. However, we
would lose the interpretation of the δj,kprq being the soft adjustment.
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the index v by ∆j,kprq, which is precisely the conditional mean thresholds differences.

Intuitively, identification of ∆j,kprq can be achieved by equating the two probability

functions Pj`1pv, rq to Pjpv, rq for a given r.

Figure 3.1: Conditional Shift Restrictions from PjpVi, Riq and Pj`1pVi `∆, Riq

More importantly, ∆j,kprq can be identified by inverting Pkp¨, rq for each r and

j, k P t0, 1, ¨ ¨ ¨ , J ´ 1u. A formal proof of Proposition 3.2.1 is given in the appendix.

Under proper support conditions, the unconditional mean of thresholds can be obtained

by taking expectation, i.e. ∆j,k “ Er∆j,kpRiqs.12

Recall that ∆j,kprq only measures the average distance between thresholds as

a function of the shareholding structure Ri. In practice, the level of thresholds

themselves are often of interest as they reflect the CRA’s rating criteria. To make

comparison of thresholds possible, we adopt the normalization as in A-I.2.

A-I.2 Base level. There exists a known category j such that δjprq is constant for any

12In case the large support condition fails, one may compute a set-average expectation: ∆j,kpR0q “

Er∆j,kpRq|R P R0s, whereR0 Ă R is a compact set of interest.
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r P R, i.e. Bδjprq{Br “ 0.

In the empirical estimation, we choose j “ 0 and assume that there is essentially no

heterogeneous soft adjustment for Aaa-rated bonds, i.e. δ0prq “ 0, for any r P R.

We provide further support for our choice of the normalized category in the empirical

section. As a result in Proposition 3.2.2, the soft adjustment at category j P t1, ¨ ¨ ¨ , J´

2u can be backed out as ∆0,jprq “ EpTji ´ T0i|Ri “ rq “ δjprq.

Proposition 3.2.2 (Identification of Soft Adjustment). Under Assumption A-I.1 and

A-I.2, δjprq is identified, for each r P R and j P t0, 1, ¨ ¨ ¨ , J ´ 1u.

3.3 A Two-stage Semiparametric Estimator

In this section, we provide a two-stage semiparametric estimators for pθ0,∆prqq for

each r P R, where ∆prq ” p∆0,1prq,∆0,2prq, ¨ ¨ ¨ ,∆0,J´2prqq
1 denotes the identified

vector of threshold differences. In the first stage of estimation, we target at the index

parameters, θ0 ” pβ0, α0q, up to location and scale by pseudo-maximum likelihood

(ML) estimation. Then with the risk index estimator pVi “ X 1
i
pβ and the relationship

control index R1ipα, we estimate the conditional mean thresholds (or soft adjustment),

p∆prq at each point r P R by a grid search estimator in the second stage. The grid

search algorithm is attractive for its fast computing speed, as opposed to GMM and

other extremum estimators.13

3.3.1 First Stage: Index Estimators

Conditional Probability Function

We begin by introducing the estimator of conditional rating probability function

in Eq. (3.4), a basic building block that will be fed into the likelihood function.

13The two-stage estimator can be combined in a single-step GMM estimator, which might lead to
more efficient estimation. However, doing it in two stages would be much faster in practice when the
dimension of parameter space gets large.
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Semiparametric index estimators have been extensively studied in the literature. For

example, Manski (1985); Klein and Spady (1993); Powell et al. (1989); Ai and Chen

(2003); Blundell and Powell (2004); Klein and Shen (2010); Hoderlein and Sherman

(2015).

For any pβ, αq P Θ, define Vipβq ” X 1
iβ and Ripαq ” R1iα and we suppress

θ for notational simplicity whenever it is self-evident. We use the local constant

kernel estimator to obtain the semiparametric conditional probabilities. In particular,

the leave-one-out semiparametric estimator of the conditional probability function for

Yi ď j is used in Eq. (3.6),

pPjpi; θq ” pPjpVipβq, Ripαqq “

řN
l‰iKhpVlpβq ´ VipβqqKhpRlpαq ´RipαqqtYl ď ju
řN
l‰iKhpVlpβq ´ VipβqqKhpRlpαq ´Ripαqq

(3.6)

To seek a
?
N -consistent parameter estimator, one need resort to the bias reduction

techniques to make sure that the asymptotic bias vanishes faster than
?
N in the limit.14

Pseudo-ML Estimator

Note that the double-index parameters can be solved in a semiparametric pseudo-MLE

framework similar to Klein and Vella (2009) and Maurer et al. (2011). It requires only

one-step of optimization like below. Define pP´1ipθq “ 0 and pPJipθq “ 1.

pθ “ arg max
θPΘ

N´1
N
ÿ

i“1

J
ÿ

j“0

ptitYi “ ju ln
´

pPjpi; θq ´ pPj´1pi; θq
¯

(3.7)

where the trimming function estimator pti “ ΠdX`dR
k“1 tpqZk

pτlq ă Zki ă pqZk
pτuqu is

the product of the indicator functions for each continuous Zk, with fixed lower and

upper quantiles τl and τu, where Zi “ pX 1
i, R

1
iq
1. pqZik

pτq is estimated by the empirical

quantile function, inftzk : N´1
řN
i“1tZki ď zku ě τu.

14In principle, one may use higher-order kernels, local smoothing and the recursive methods in Klein
and Shen (2016). In practice, we only use Silverman’s rule-of-thumb bandwidths as we do not find large
and significant change to our results with bias-correction techniques.
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3.3.2 Second Stage: Conditional Mean Thresholds ∆p¨q

The shift restrictions naturally imply an extremum-type estimator by minimizing

the distance between PjpVi, rq and PkpVi ` ∆k,jprq, rq for each r and j ‰

k. For a J-supported Yi, there are totally
`

J´2
2

˘

possible restrictions to choose

from. For parsimonious reason, we only consider the shift conditions of adjacent

levels. Additional restrictions could be used to increase efficiency and conduct an

overidentification test.

However, in terms of computing time, the optimization needs to be done repeatedly

for each value of Ri in the sample or of particular interest. This can take quite long

time once the support of Yi is large. To this end, we choose to estimate it by directly

inverting the conditional probability functions following the identification condition in

Eq. (3.5). Since the equality holds for each value of v, the final estimator takes the

form of averaging over all empirical points of Vipβq, for i P t1, 2, ¨ ¨ ¨ , Nu.

p∆j,j´1prq “
1

N

N
ÿ

i“1

”

pP´1
j´1

´

pPjpVippβq, rq, r
¯

´ Vippβq
ı

, j P t1, ¨ ¨ ¨ , J ´ 1u (3.8)

We choose to estimate the adjacent levels since the range of overlapping region is the

widest. Without redundant information, we are left with J ´2 restrictions and for each

r P R. To implement it, we use a grid search algorithm which is an extension of the

grid search estimator in Klein and Sherman (2002).15 To be specific, one can repeat

the following four steps for each r P R and j P t1, ¨ ¨ ¨ , J ´ 1u,

1. Estimate pPjppVippβq, rq nonparametrically for each i.

2. Estimate pPj´1pv, rq nonparametrically at each v over a set of grid points, VgN .

3. Find the closest v such that V ˚i “ arg minvPVg
N
| pPjppVippβq, rq ´ pPj´1pv, rq| for

each i.

15The joint estimation of a vector of conditional thresholds using extremum-type estimators could
be more efficient than our grid search methods. However, not only the computational time would
substantially increase but the estimates can be sensitive to starting values.
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4. Compute p∆j,j´1prq as N´1
řN
i“1 V

˚
i ´ Vip

pβq.

For the choices of grid sets VgN , it is advised that the adjacent interval distance should

be smaller than Op1{
?
Nq in order to be negligible in the limit. Given the fast speed of

the grid search algorithm, one can pick an even finer grid, though we find the empirical

differences are not quite significant. The relative conditional mean threshold of level

j with respect to the base level (namely Yi “ 0) is readily available by multiplying

a lower triangular matrix A with entry equal to 1 below and along the diagonal. Let

p∆0prq “ Ap∆prq, so p∆0prq “ pp∆1,0prq, p∆2,0prq, ¨ ¨ ¨ , p∆J´2,0prqq
1.

As suggested in Assumption A-I.2, we normalize the base level δ0prq “ 0 in order

to back out the unobserved soft adjustment starting from j “ 2 to j “ J ´ 1. To do

so, we first calculate the empirical control index Rippαq “ R1ipα and then compute the

relative thresholds evaluated at eachRippαq. By definition, estimates of individual-bond

soft adjustment at each category j would be pδij “ p∆j,0rRippαqs, a primary measure to

be examined after policy change.

Note that the consistency and asymptotic normality of the finite-dimensional

index parameter estimators are standard in the semiparametric literature. For index

estimators, we apply the asymptotic normality condition in Klein and Sherman (2002)

to double-index models. For the soft adjustment estimator in Eq. (3.8), consistency

of pδjprq would straightforwardly follow once the consistency of pPjp¨, rq and pVi are

established.16 For the inference, we bootstrap the variances starting only from the

second stage. To implement it, we repeatedly draw samples with the same number

of observations over all possible pYi, pVi, Riq with replacement. Theoretical properties

of semiparametric bootstrapped inference is understudied in the literature despite its

prevalence in empirical studies (Simar and Wilson, 2007, etc).17 Our Bootstrapped

approach falls into a general class of semiparametric M -estimators studied in Cheng

16The point-wise consistency result is given in the online appendices.
17Our first-stage index estimator converges at

?
N , a faster rate than the second-stage threshold

estimator. Therefore, for computational concerns, we run Bootstrapped inference starting from the
second-stage provided that the variance of the index estimator does not contribute in the limit.
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et al. (2010) who prove its validity under relatively weak conditions. Fortunately,

our computational time is relatively fast, even for some large number of bootstrapped

samples.

3.4 Data and Context

3.4.1 Institutional and Regulatory Environment

As the information intermediaries of the financial system, a credit rating agency’s

primary function is to evaluate a particular debt instrument’s credit worthiness. As

noticed by Cantor et al. (1994) and White (2002), the credit rating industry in the U.S.

is highly concentrated: with the“Big Three” credit rating agencies controlling more

than 95% of the ratings business. Moody’s and Standard & Poor’s (S&P) together

control 80% of the global market, and Fitch Ratings controls a further 15% (Alessi

et al., 2013). Of the two biggest agencies Moody’s became a public firm in 2001,

while Standard & Poor’s is a private division of the McGraw-Hill.

Given the massive defaults of highly-rated securities during the last financial crisis,

various reforms have been proposed to regulate the behaviors of CRAs. In the famous

Dodd-Frank Wall Street Reform and Consumer Protection Act (Pub.L. 11120318, H.R.

417319), an entire section is devised to improve the transparency of credit rating

agencies, by means of enforcing public disclosure of credit rating methodologies, data,

and etc. In subtitle C of Title IX of the amendments, it emphasizes the “improvements

to the regulation of credit rating agencies, critical gatekeeper in the debt market central

to capital formation, investor confidence, and the efficient performance of the United

States economy.” Subtitle C also cites findings of conflicts of interest and inaccuracies

during the recent financial crisis contributed significantly to the mismanagement of

risks by financial institutions and investors, which in turn adversely impacted the

18https://www.gpo.gov/fdsys/pkg/PLAW-111publ203/html/PLAW-111publ203.htm
19https://www.congress.gov/bill/111th-congress/house-bill/4173
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health of the United States economy.20 The Franken-Wicker amendment to the Dodd-

Frank financial reform law,21 taking a somehow more extreme approach, suggests to

use a governmental entity to assign securities to qualified ratings agencies based on

capacity and expertise. Recall from the earlier discussion that rating agencies make soft

adjustment based on private information. By estimating how soft adjustments evolve

over time, we aim to assess the effectiveness of Dodd-Frank in enhancing information

transparency.

3.4.2 Data and Summary Statistics

Our data derive from multiple sources. The data on the history of credit rating by

Moody’s is obtained from the Mergent’s Fixed Income Securities Database (FISD).

Our sampling period spans from 2001, when Moody’s went IPO, to 2016, with the

enactment of Dodd-Frank in July 2010. We exclude government bonds and retain

all initial ratings on bonds issued by firms covered in both Center for Research in

Security Prices (CRSP) and Compustat. Institutional shareholding data are obtained

from Thomson Reuters 13F database.

Implied by our identification strategy, we choose to focus only on publicly listed

firms. Recall that our identification strategy critically assumes that material non-public

information can be passed to the CRA through the CRA-issuer connectedness. Being

“residual claimants” —agent who have the sole remaining claim on an organization’s

net cash flows — equity holders, compared with bondholders, have greater incentive to

monitor corporate management and acquire inside information (Shleifer and Vishny,

1986). In addition, as required by public disclosure policy, the data on firm

20This law required the SEC to establish clear guidelines for determining which credit rating
agencies qualify as Nationally Recognized Statistical Rating Organizations (NRSROs) who are
required to establish, maintain, enforce and document an effective internal control structure governing
the implementation of and adherence to policies, procedures, and methodologies for determining
credit ratings. See Partnoy (2009) and White (2002) for the importance of such oversight.
https://www.sec.gov/spotlight/dodd-frank/creditratingagencies.shtml

21https://www.sec.gov/comments/4-629/4629-28.pdf
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fundamentals are easier to obtain and of higher quality for public firms. For both

reasons, we examine a sample of public firms whose stocks are held by Moody’s

shareholders.22

It is worth pointing out that we choose to focus exclusively on Moody’s rating

process because of the agency’s unique exposure to conflicts of interest. Among the

“big three” rating agencies on the market, Fitch is a private firm; Being a private

division under McGraw-Hill, the conflicts-of-interest effect is complicated and indirect

for S &P. Focusing exclusively on Moody’s ratings, however, might lead to sample

selection bias. However, we do not view this as a serious problem in our sample

because most of bonds issued by public firms have been rated by at least two firms and

their ratings are mostly matched after being converted to the same standard (70% of the

ratings assigned by S&P and Moody’s differ by at most one notch). This implies that

agency heterogeneity does not play quite a fundamental role in the rating methodology

to some extent.

Last but not least, we exclusively focus on initial ratings for two reasons.

First, the impact of the soft adjustment is most pronounced on initial ratings.

Many market participants, including investors, issuers, and regulators, have a strong

preference for corporate bond ratings that are not only accurate but also stable. To

achieve long-term rating stability, rating agencies are reluctant to change the credit

rating unless such effects are believed to be permanent (Altman and Rijken, 2004).

Secondly, the proposed estimation and inference framework are designed for cross-

sectional applications. Econometrically, modeling a panel of rating changes with

upgrades/downgrades, is itself challenging, especially for nonparametric models.

Applying the above restrictions leave us with a final sample of 11,134 initial bonds

issued by 1462 firms. Given the aforementioned regulatory changes, we divide the

sample into two time periods by the enactment of the Dodd-Frank on July 21, 2010. To

22Alternatively, one can also examine firms whose debt are held by Moody’s shareholders. We did
not go with this approach because we believe that Moody’s is more likely to possess soft information on
firms whose stocks are externally held by Moody’s shareholders.
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allow for possible implementation lags, we alternatively define the post Dodd-Frank

period starting from the beginning of 2011. By comparing estimates of soft adjustment

in both periods, we aim to examine the policy effect of Dodd-Frank Act on the credit

rating outcomes23. There are 2,540 observations in the crisis period, accounting for

38.4% of the total before the Dodd-Frank.

The distribution of ratings are presented in Table 3.1 by years, with Aaa being

the highest credit category and C the lowest. Figure 3.2 compares the rating

distribution before and after the Dodd-Frank. Noticeably, Moody’s ratings become

more centered around Baa grade after the Dodd-Frank. One plausible explanation is

that the emergence of a variety of credit derivatives, such as the CDS, makes hedging

downgrade risks easier, inducing firms to take more financial leverage. Due to a higher

leverage, investment grades bonds are less likely to receive high credit ratings, which

might explain why the fraction of Aa rated bonds decreased while the fraction of Baa

bonds increased.

Firm and Bond Characteristics

Using data from quarterly Compustat-CRSP merged database and FISD, we construct

a sequence of predictors for credit ratings mentioned in the bond rating literature

(Pinches and Mingo, 1973; Kaplan and Urwitz, 1979; Blume et al., 1998; Jiang et al.,

2012; Campbell and Taksler, 2003, etc). To construct these variables, short-term and

long-term debt for each bond issuers are from quarterly Compustat-CRSP merged

dataset.24 The end of quarter stock price data and number of shares outstanding data

are also taken from Compustat-CRSP. All financial ratios are computed using a 5-year

arithmetic average of the annual ratios, as Kaplan and Urwitz (1979) points out that

bond raters might look beyond a single year’s data to avoid temporary anomalies.

23 In the pre Dodd-Frank period, a crisis dummy is created to capture the financial crisis effect from
2007 to 2010.

24Short-term debt is estimated as the larger of Compustat items 118 (“Debt in current libabilities”)
and 224 (“Total current liability”). Long-term debt is taken from item 119 (“Total long-term liability”).
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Table 3.1: Moody’s Rating Outcomes by Year

Year Aaa Aa A Baa Ba B C Total

2001 10 45 171 221 122 96 11 676
2002 1 78 146 223 85 107 7 647
2003 9 112 155 219 131 174 32 832
2004 3 85 95 177 103 160 18 641
2005 6 118 115 161 94 92 15 601
2006 4 164 163 195 63 68 24 681
2007 9 238 332 167 55 75 13 889
2008 2 110 156 143 29 12 4 456
2009 3 35 129 230 89 104 13 603
2010 7 53 105 183 93 125 26 592
2011 10 38 142 226 41 98 17 572
2012 3 43 166 289 93 134 25 753
2013 12 58 181 325 109 117 36 838
2014 8 37 144 324 94 102 25 734
2015 20 35 218 399 90 68 10 840
2016 26 59 192 347 81 68 6 779

Total 133 1,308 2,610 3,829 1,372 1,600 282 11,134
Note: Subtiers are aggregated together into general tiers, e.g. A consists those rated as A1, A2 and A3.

The selected predictors consists of firm characteristics (1)-(4) and bond

characteristics (5)-(6) as follows: (1) ASSET: denotes issuer size, defined as the

value of the firm’s total asset. (2) LEVERAGE: denotes firm leverage, defined as the

ratio of long-term debt to total assets. (3) PROFIT: denotes operating performance,

defined as operating income before depreciation divided by sales. (4) CVTA: denotes

asset stability, defined as the variance of the firm’s total asset in the year prior.25

(5) OFFAMT: denotes the offering amount, defined as the par value of the bond

issued. (6) SENIOR: denotes subordination status, which a dummy variable equals

to one if the bond is a senior bond and 0 otherwise. We take the log of both sizing

variables (OFFAMT, ASSET) to make all covariates roughly have the same scale as

their differences in denominations can be potentially large. Summary statistics of the

ratings and explanatory variables can be found in the upper panel of Table 3.2. As

motivated in the the behavioral framework, LEVERAGE, OFFAMT and SENIOR are

25The definition here follows that from (Kedia et al., 2017).
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Figure 3.2: Rating Outcome Distributions Before and After the Dodd-Frank Act
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Note: 1. DF is the Dodd-Frank indicator that equals 1 for those after 2010 and 0 if before 2010.

likely to be endogenous as firms might issue more debt when they “foresee” a chance

of higher ratings.

The Shareholding Relations

Recall from Section 2 that we need a vector Ri to characterize the shareholding

relationship between Moody’s and each bond issuer i, so we can address the

endogeneity problem by conditioning on this control vector Ri. Specifically,

we use three variables to jointly capture the shareholding relationship. That is,

Ri ” tMsharei,Fsharei,LargeSHiu. To convey some intuition on the definition of

these variables and why they are selected, consider a bond issuer i that is jointly

invested by two shareholders of Moodys, A and B, as described below:26

26However, Moodys could have shareholders who do not invest in the bond issuer i at all.
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Moody’s Shareholder A Moody’s Moody’s Shareholder B

bond issuer i

A holds λA% of Moodys’ stock B holds λB% of Moodys’ stock

A holds pA% of issuer i’s stock B holds pB% of issuer i’s stock

The shareholding relationship between Moody’s and bond issuer i, in a sense, can

be characterized by both the importance of shareholders to Moody’s (captured by the

λ1s) and the importance of bond issuer i to the shareholders (captured by the p1s)27. To

be more precise, we aggregate the two shareholding percentage measure λ and p across

all common shareholders to approximate bond issuer i’s overall ownership interaction

with Moody’s (in this illustrative example, namely λA% ` λB% and pA% ` pB%,

respectively). Extending to the case with Mi common shareholders, we define:

Msharei ”
Mi
ÿ

j“1

λj%, Fsharei ”
Mi
ÿ

j“1

pj%,

to capture the importance of shareholders to Moody’s and the importance of bond

issuer i to the shareholders. In addition, to highlight the individual shareholder’s

influence, we define:

largeSHi ” 1tissuer i is invested by at least one large shareholder of Moody’su

where 1tEu takes value one if E is true and zero otherwise. In particular, “large”

shareholder are those who own at least 5% of Moodys’ stock. The significant influence

of large shareholders is also documented in Kedia et al. (2017).

The descriptive statistics for these three measures are presented in the lower panel

of Table 3.2. In general, a larger Mshare, Fshare or largeSH indicates a stronger

connection with the CRA. Mshare and largeSH provide the only channel for the

27This characterization is enlightened by Kedia et al. (2017), in which the authors find Moody’s has
an upward bias towards issuers that are large investees or subsidiary firms of its large shareholders.
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conflict-of-interest to impact ratings, with the magnitude being mediated by the level of

Fshare. In contrast, Fshare is supposed to pick up the unobserved bond or firm quality

that is also contained in the CRA’s soft adjustment. By assumptions, after conditioning

Mshare, Fshare and largeSH, issuers should bear no more soft information related to

issuing decisions.

As a robustness check, we have also experimented with other measures such

as number of common shareholders, number of influential shareholders, number of

bonds rated before as well as the weighted shares in common shareholders’ portfolio.

Moreover, we checked the quadratic and cubic functional forms. However, inclusion

of additional variables or higher order terms increases the collinearity of the control

index and lead to nonsensical coefficient estimates. Therefore, we stick to the above

parsimonious specification.

Table 3.2: Descriptive Statistics

Before DF: 2000-2010 After DF: 2011-2016
Mean S.D. Min Max Mean S.D. Min Max

Issuer and Bond Financial Characteristics
ASSET 161.301 325.751 0.078 3065.556 166.851 446.162 0.175 2601.652
CVTA 0.181 0.146 0.000 1.342 0.169 0.175 0.008 1.504
LEVERAGE 0.259 0.172 0.000 1.283 0.260 0.156 0.000 1.021
PROFIT 0.028 0.058 -0.682 0.503 0.046 0.057 -0.366 0.264
OFFAMT 595.5 3860.1 0.0 250000.0 774.3 2017.2 0.0 100000.0
SENIOR 0.823 0.381 0 1 0.908 0.289 0 1
CRISIS 0.384 0.486 0 1 0 0 0 0

Common Shareholder Information
Mshare 44.896 15.468 0 98.794 45.808 15.073 0 89.296
Fshare 46.508 17.066 0 93.204 45.909 17.724 0 99.528
largeSH 0.620 0.485 0 1 0.898 0.302 0 1

Obs.N 6,618 4,516

Note: 1. ASSET and OFFERAMT are measured in thousand dollars (1000 $) whereas logged asset and
offering amount are used in estimation. 2. Mshare and Fshare are measured in percentage. 3. The crisis
dummy is equal to 1 if year is in between 2007 and 2010.
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3.4.3 Correlation Analysis

To motivate our selected control covariates, we start by presenting some simple

correlation analysis between the cumulative rating outcomes and control variables in

Table 3.3. If the control varibles could indeed capture the effect of CRA-issuer liasion

on ratings, we ought to see some co-movement between them: issuers that are close to

Moody’s ownership-wise should be assigned higher ratings. In Table 3.3, we divide the

whole sample into the before and after Dodd-Frank periods, recognizing the structural

change of regulatory environment.

For Mshare, the correlations are positive and consistent, suggesting that a strong

firm-Moody tie always corresponds to a upward pressure for ratings, though the

magnitudes overall decease after the Dodd-Frank. But for Fshare, a negative

correlation is found for investment-level grades, especially after the regulatory change.

The magnitudes of having at least one influential common investor are small relative

to the other measures and its effects are even lower after the reform. To sum up,

our control covariates do convey some predictive power on ratings and should not be

simply left out of the model. From the correlation table, we can also conjecture that

the effect of CRA-issuer relation on ratings might be highly heterogeneous. For bonds

with extremely high or low ratings, the correlation between the rating and the control

variables is quite small. Our empirical model is able to capture such heterogeneity as

the functional form of the soft adjustment is modeled flexibly other than the single-

index restriction. Besides, the structural change of correlation pattern suggest us to

estimate the model separably for the periods before and after the Dodd-Frank.

3.5 Empirical Results

We report results in four subsections. First, we estimate a series of parametric rating

models in the literature, and argue that the parameters of interest are sensitive to model

specification. Hence, it is important to consider a more flexible approach to understand
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Table 3.3: Correlation between Control Variables and Rating Outcomes

Before DF: 2000-2010 (N=6,618)
Aaa ą“Aa ą“A ą“Baa ą“Ba ą“B Mshare Fshare largeSH

Mshare 0.106 0.430 0.498 0.455 0.392 0.130 1.000
Fshare -0.018 0.073 0.101 0.097 0.125 0.082 0.470 1.000
largeSH 0.047 0.220 0.150 0.112 0.079 0.026 0.463 0.191 1.000

After DF: 2011-2016 (N “ 4, 516)
Aaa ą“Aa ą“A ą“Baa ą“Ba ą“B Mshare Fshare largeSH

Mshare 0.166 0.216 0.375 0.342 0.308 0.165 1.000
Fshare -0.018 -0.166 -0.034 0.048 0.107 0.128 0.556 1.000
largeSH 0.045 -0.062 0.044 0.001 0.016 -0.010 0.587 0.560 1.000

Note: 1. ą“X represents cumulative ratings above or equal to notch X.

the rating process. In the second and third subsection, we estimate the structural

rating model proposed in Section 3.2 and reports the estimates of index parameters and

soft adjustment. Lastly, we discuss patterns of threshold parameters over a changing

shareholding relationship.

3.5.1 Parametric Results

The results of parametric regressions are presented in Table 3.4. The first three

specifications are estimated using ordered probit models while the last two are from

ordered logit models. Both models have been employed extensively in the empirial

credit rating literature. Recall that a CRISIS dummy with full interactions with all

covariates are deployed to control for the financial crisis effect for the period before

Dodd-Frank.

There are two main findings. First, some regression coefficients change

significantly after the passage of Dodd-Frank. PROFIT and OFFAMT have a much

larger impact on default risk in the post Dodd-Frank period, indicating that Moody’s

has become more stringent on firms with low profitability ratio and high debt. The

disparity reconfirms the existence of a structural break of rating models. Second,

we note that the regression coefficients are sensitive to the distributional assumption
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of the error term. Oprobit-2 and Ologit-1 (or Oprobt-3 and Ologit-2) differs only

by the error distribution. Despite most of the regression coefficients have the same

signs as predicted, the logit regression coefficients on firm characteristics (ASSET,

CVTA, LEVERAGE and PROFIT) are nearly twice as large as the probit coefficients.28

The somewhat inconsistency results from different parametric specifications calls for a

robust approach which does not overly restrict error distributions.

3.5.2 Semiparametric First Stage: Index Parameters

In this section, we estimate the normalized index parameters defined in Section 2.

Recall that these index parameters reflect how ratings are driven by observed “hard

information”, such as ASSET, LEVERAGE, etc. To fix idea, we focus on comparing

the estimation results along two dimensions: (i) between the semiparametric

framework proposed in this paper and the baseline parametric model, and (ii) before

and after the passage of Dodd-Frank.

The estimation results are shown in Table 3.5 and 3.6, respectively for the period

before and after Dodd-Frank. To facilitate comparison, the first column of each table

“Oprobit-R” gives ratios of estimated coefficients relative to ASSET and Mshare,

the variables that we choose to normalize on, respectively.29 Estimation results of

the suggested semiparametric double-index model, “Semi-R”, is reported in the last

column. As opposed to column 1, we allow arbitrary interactions between shareholding

relation with other characteristics and do not need to specify the error term distribution.

Another interesting experiment we do, in order to assess the impact of ignoring soft

28Most coefficients have the correct predicted signs across the board: the amount of total asset,
profitability and being a senior bond all have negative impact on the default risk index and thus leads to
higher ratings. On the other hand, high variance of assets, measured by CVTA as well as high leverage
ratios are in accordance with a larger default risk index.

29The standard errors of parameter ratios are calculated using the delta-method: via a first order Taylor
expansion around true values, pβ2{pβ1 ´ β20{β10 « ´ppβ1 ´ β10qβ20{β

2
10 ` p

pβ2 ´ β20q{pβ1 and then
compute the standard error. Admittedly, the semiparametric model can identify only the relative ratios
of coefficients. To construct comparable default risk index, one can back out individual coefficients
assuming pβ1 is close to that of ordered probit model.
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adjustment, is estimating a single-index model “Semi-X” in which we deliberately

drop the shareholding relation index Ripαq.

We find the shareholding relation and the CRISIS dummy have very different

estimated impacts when switching from ordered-probit to the semiparametric

framework. Taking the number of common large shareholder (largeSH) as an

example. In the post Dodd-Frank period (reported in Table 3.6), Oprobit-R predicts

a significantly negative impact on default risk, suggesting that Moody’s ratings are

more favorable to issuers who are invested by its own large shareholders. In contrast,

Semi-R predicts a positive impact with similar magnitude, suggesting Moody’s has

become more stringent on these related firms. The disparity is not only statistically

significant, but economically large. Estimated impact of the CRISIS dummy also

differs across the board. From Semi-R, most of the interaction terms have insignificant

coefficients, meaning that firm and bond characteristics roughly have the same impact

on ratings in and out of economic downturns. In contrast, from Oprobit-R, we find

firm’s financial stability (CVTA) and profitability (PROFIT) have significantly less

impacts on rating during the crisis period. As can be seen in Semi-X, interaction

terms also have differential impacts on ratings after we drop the shareholding relation

variables.

Turning to the comparison before and after the Dodd-Frank, the differences in

estimated coefficients are equally striking. First, Moody’s attention to firm and bond

characteristics has clearly changed over time. Specifically, the impact of firm stability

(CVTA) decreases by half after the passage of Dodd-Frank, whereas the impact of

profitability (PROFIT) increases by half. The biggest difference comes from the

relative importance of issuing amount: the estimated effect increasing by a factor of

ten, reflecting Moody’s has increased its scrutiny on the amount of debt that an issuer

is taking. Second, the impact of shareholding relation also changes over time. In

particular, relationship with Moody’s large shareholders led to higher ratings before

the Dodd-Frank. Such effects, however, reverse sign and enlarge in magnitude after
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the Dodd-Frank.

The aforementioned findings suggest that Moody’s rating model has changed

significantly after the Dodd-Frank, in terms of its relative focus on specific

characteristics as well as its treatment to issuers in terms of shareholding relations.

Recall that we use the shareholding relation to “anchor” the amount of soft information

that the CRA may receive from common shareholders. Thereby, the differential impact

of shareholding relation before and after the Dodd-Frank may reflect a substantial

change in terms of how the CRA utilize soft information to determine ratings. To

investigate this issue further, in the next section we estimate the soft adjustment

for each bond issuer given its shareholding relation with Moody’s and report the

distributional pattern of soft adjustment.
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Table 3.5: Estimation Results of Creditworthiness Index Parameters before Dodd-
Frank Act

Parametric Semiparametric
Variables Oprobit-R Semi-X Semi-R

Structural Financial Risk Parameters
CVTA -1.306 *** -1.773 *** -1.884 ***

(0.259) (0.204) (0.213)
LEVERAGE -4.715 *** -3.467 *** -3.862 ***

(0.320) (0.254) (0.298)
PROFIT 17.422 *** 24.339 *** 23.919 ***

(0.706) (0.697) (0.788)
OFFAMT -0.118 *** -0.014 -0.047 **

(0.027) (0.016) (0.019)
SENIOR 1.109 *** 0.928 *** 0.994 ***

(0.101) (0.079) (0.082)
CRISIS -2.790 *** -1.794 *** -1.702 ***

(0.757) (0.514) (0.575)
CRISIS*ASSET 0.222 *** 0.110 *** 0.168 ***

(0.045) (0.029) (0.034)
CRISIS*CVTA 0.821 ** 0.310 0.073

(0.401) (0.314) (0.329)
CRISIS*LEVERAGE 0.117 0.898 ** 0.440

(0.444) (0.366) (0.443)
CRISIS*PROFIT 3.850 *** -1.994 * -1.359

(1.184) (1.148) (1.155)
CRISIS*OFFAMT 0.044 0.031 -0.011

(0.038) (0.022) (0.027)
CRISIS*SENIOR -0.389 ** -0.575 *** -0.526 ***

(0.174) (0.148) (0.173)

Control Index Parameters
Fshare -0.444 *** -1.288 ***

(0.106) (0.036)
largeSH -3.185 * -1.903 **

(1.735) (0.812)
CRISIS*Mshare -0.765 *** 0.046

(0.247) (0.048)
CRISIS*Fshare 0.428 *** -0.068

(0.120) (0.049)
CRISIS*largeSH 1.558 -6.370 ***

(2.760) (1.423)

ASSET -0.485 ***
Mshare -0.026 ***
N “ 6618

Note: 1. The estimation uses data from 2000 to 2010. 2. Estimates represent normalized coefficient
ratios with respect to log of asset and Mshare, respectively for financial and control parameters. 3.
Oprobit-R is estimated by MLE. Semi-X and semi-R are estimated by pseudo-MLE. 4. Standard errors
are in parentheses. 5. Significant level: *10 percent, **5 percent, ***1 percent.
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Table 3.6: Estimation Results of Creditworthiness Index Parameters after Dodd-Frank
Act

Parametric Semiparametric
Variables Oprobit-R Semi-X Semi-R

Structural Financial Risk Parameters
CVTA -1.397 *** -0.447 *** -0.915 ***

(0.265) (0.182) (0.263)
LEVERAGE -4.893 *** -3.140 *** -3.939 ***

(0.380) (0.282) (0.343)
PROFIT 35.361 *** 28.975 *** 32.416 ***

(1.191) (0.890) (1.416)
OFFAMT -0.445 *** -0.558 *** -0.430 ***

(0.055) (0.041) (0.065)
SENIOR 1.834 *** 1.308 *** 1.154 ***

(0.148) (0.158) (0.215)

Control Index Parameters
Fshare -0.279 *** -2.409 ***

(0.091) (0.181)
largeSH -26.150 *** 26.308 ***

(4.886) (4.773)

ASSET -0.430 ***
Mshare -0.025 ***
N “ 4516

Note: 1. The estimation uses data from 2011 to 2016. 2. Estimates represent normalized coefficient
ratios with respect to log of asset and Mshare, respectively for financial and control parameters. 3.
Oprobit-R is estimated by MLE. Semi-X and semi-R are estimated by pseudo-MLE. 4. Standard errors
are in parentheses. 5. Significance level: *10 percent, **5 percent, ***1 percent.
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3.5.3 Second Stage: Soft Adjustment

In this section, we estimate Moody’s soft adjustment to each bond issuers: that, say,

to what extent would Moody’s alter the threshold parameters Tji given an issuer’s

shareholding relation with Moody’s. To fix idea, recall that the (unobserved) soft

adjustment is represented by the relative conditional mean thresholds δj,0prq ”

ErTji ´ T0i|Ripα0q “ rs. To have a comparable measure of soft adjustment, we

choose to normalize the baseline level, Aaa notch that is unlikely to be affected by

the shareholding relation. In the appendix, we provide some practical and empirical

support for choosing this base category.

Figure 3.3 depicts the empirical distributions of estimated individual-bond soft

adjustment ∆j,0prq from the semiparametric model, with the dash (dotted) line

indicating the period before(after) the Dodd-Frank. We only plot the distribution for

the five ratings categories from Aa to B, as the adjustment for Aaa category is already

normalized to zero.

There are three main implications of the results. First, the dispersion of soft

adjustment decreases substantially after the Dodd-Frank as the empirical distribution

becomes more concentrated around the mean, especially for bonds with median

level of credit worthiness. Since the soft adjustment reflects the CRA’s private

information, the decline of the soft adjustment plausibly suggests a more transparent

rating methodology after the Dodd-Frank Act. Second, the distribution of the soft

adjustment shifts in means after the Dodd-Frank. For investment grade bonds, the

soft adjustment, on average, shifts towards the right, implying more stringent rating

criteria. Put differently, receiving an investment grade has become more difficult after

2010 for observationally identical bonds. For speculative bonds of Ba or below, the

mean thresholds have become smaller, indicating more relaxed criteria of the CRA.

The estimated densities also exhibit the apparent tri-modal feature, especially for the

investment grade bonds, which contradicts the conventional parametric assumption that
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the unobserved rating adjustment is normally distributed.30.

In broad, our estimation results on the soft adjustment suggest that the CRAs

took steps to tighten their models and limit the opportunity for conflicts of interest

coming from the human element. The passage of Dodd-Frank may largely contribute

to the reduction of soft adjustment. On top of the discipline effect of Dodd-Frank,

CRAs could have voluntarily become more conservative and used fewer subjective

adjustments after the public condemnation they faced in the crisis.

Figure 3.3: Empirical Distributions of Soft Adjustment before and after the Dodd-
Frank Act
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Note: 1. Sample periods. Before the Dodd-Frank: 2000-2010; After the Dodd-Frank: 2011-2016. 2.
The soft adjustment is estimated as mean thresholds relative to the base level Aaa using the two-step
semiparametric estimator.

Recall that the proposed semiparametric model allows δj,0 to be driven by Ripα0q,

a bond issuer’s relationship with Moody’s, whereas the ordered-probit assumes that

δj,0 is a constant. In Table 3.7, we report estimation results from the two approaches

to highlight the heterogeneity in threshold captured by the semiparametric model. The

30Estimating the distribution of soft adjustment has been difficult in the parametric context. Strict
distributional assumptions, usually a normal random variable with unknown means, have to be imposed
to permit estimation. However, as can be seen from Figure 3.3 in which the soft adjustments
are estimated in a distribution-free manner, the normality assumption on soft adjustments is highly
suspicious.
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first two columns report relative thresholds from ordered probit/logit specifications,31

and the third column from the single-index semiparametric model without assuming

the error term distribution.32 Noticeable differences between Semi-X and the two

parametric models suggests that neither ordered probit nor logit correctly describes

the underlying data. Turning to the proposed model Semi-R, we present estimated

thresholds conditional on various percentiles of the control index. It can be inferred

from the heterogeneous pattern of threshold that the extent of soft adjustment varies

with the control index Riα0. Comparing the standard errors of δj,0 before and after the

Dodd-Frank period, the smaller standard errors in the later period confirms the earlier

finding that soft adjustment become less dispersed.

3.5.4 Patterns of Soft adjustment over Shareholder Relationship

Following our discussion on the threshold parameters ∆j,0, in this section we provide

in-depth analysis on how exactly are soft adjustments driven by the shareholding

relation. Recall that the shareholding relation Ripα0q ” Msharei ` α1Fsharei `

α2LargeSHi. We assess the pattern of ∆j,0prq over Ripα0q, having in mind that α1 ă 0

and α2 ă 0 before the Dodd-Frank and α1 ă 0 and α2 ą 0 after the Dodd-Frank33.

In Figure 3.4, we plot the relationship between Ripα0q and the soft adjustment

across different rating categories, with the left(right) panel indicating the period

before(after) the Dodd-Frank. First, the soft adjustment and Ripα0q have a “U-shape”

relationship before the Dodd-Frank. As the bond issuer builds a tighter relationship

with common shareholders (a higher Fshare and/or LargeSH inducing a lower Ripα0q)

31The base level is Aaa. Relative thresholds are defined as pTji ´ T0iq{pβ1, where pβ1 is the estimated
log asset coefficient.

32The bootstrapped standard errors are presented in parentheses for the semiparametric models and
we use the delta-method to compute them for Ologit and Oprobit similar to those of relative coefficients.

33In the online appendices, we further examine the empirical relationship between the soft adjustment
and each of the shareholding measures: Mshare, Fshare and LargeSH, for various counterfactual
scenarios. The patterns of ∆j,0 over all three measures are roughly the same, albeit to minor disparity,
as if we only use the aggregate the measure Ripα0q. Detailed discussion can be found in the online
appendices.
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Moody’s starts to relax its rating criteria: it is easier for firms with a stronger connection

to receive higher ratings. Possibly due to the worry of conflicts of interest, Moody’s

starts to tighten its rating criteria when the relationship gets too strong. This pattern is

nearly uniform for all rating categories before the Dodd-Frank, with Aa being the only

exception. Interestingly, for the period after the Dodd-Frank, this pattern has changed

completely: as Ripα0q strengthens, Moody’s uniformly tightens the rating criteria.34

Given that largeSH has a positive impact of Ripα0q in this period(e.g. α2 ą 0), we

conclude that Moody’s has become more stringent on issuers related with its large

shareholders after the Dodd-Frank. This change of pattern could be a result of rating

agency’s greater concern of conflicts of interest.

Another sharp contrast between the two panels in Figure 3.4 is that threshold

parameters for different rating categories converge to each other before the Dodd-

Frank, but not after. Recall that those parameters partition the latent default risk into

different rating categories. It can be seen from the left panel that when the relationship

index takes value between -10 and 0 (about 70-80 percentile), threshold parameters for

different rating categories become indistinguishable. In terms of rating criteria, this

indicates Moody’s does not have a clear criteria to separate the safe bonds from the

bad bonds issued by highly connected firms. Instead, actual rating assignments must

involve discretion. This pattern also disappear after the Dodd-Frank, as the threshold

parameter maintain an ordered relationship throughout.

3.5.5 Discussion

The time variation in the soft adjustment that we captured plausibly suggests the

effectiveness of Dodd-Frank in improving the transparency of credit rating procedures.

In particular, we have witnessed that Moody’s soft adjustments have less explanatory

34Since in the post Dodd-Frank period, largeSH and Fshare have opposite impact on Ripα0q, it is
unclear whether a increasing Ripα0q represents a stronger shareholding relation. Therefore we provide
more analysis on the impact of individual variable on soft adjustment later.
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power on the distribution of credit ratings. In addition, Moody’s has also become

more stringent when it comes to rating bonds issued by closely connected firms, as the

threshold parameters increase monotonically as the relationship index strengthens.

Both findings significantly contribute to the extant literature on the time series

pattern of credit rating criteria. Researchers have studied this characteristic of

rating agencies, and many have already found that criteria tighten and loosen over

time (examples include Alp (2013); Jorion et al. (2009); Griffin and Tang (2012).

Our proposed measure of soft adjustment can also be used to quantify such rating

criteria variation across issuers and over time, which cannot be simply achieved with

conventional parametric models. Moreover, we connect CRA’s changing criteria to

conflicts of interest with shareholders by estimating the pattern of soft adjustment

conditional on various level of CRA-issuer connectedness.

We admit that there are other confounding factors that might lead to the structural

change in CRA’s rating methodology, such as the CRA’s increasing awareness of

reputation concerns as well as the emergence of CDS markets. Instead of making a

causal statement that the passage of Dodd-Frank is the root cause of such changes, we

resort to a weaker conclusion that the tightening regulatory requirement is one but very

plausible explanation and leave the causal inference to future work.

Figure 3.4: Estimated Relationship between Soft Adjustment and Shareholding
Control Index
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Note: 1. Left panel: before the Dodd-Frank; right panel: after the Dodd-Frank. 2. Y-axis plots the
estimated soft adjustment as conditional mean thresholds relative to Aaa level. 3. X-axis plots various
percentiles of estimated control index for shareholding relations.
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3.6 Conclusions

This paper considers the role of soft adjustments when estimating a structural corporate

bond rating model used by CRAs and empirically assesses the extent a reduction

in the conflict-of-interest after the enactment of the Dodd-Frank Act, specific to the

credit rating industry. From an empirical point of view, the presence of hidden soft

adjustments could cause endogenous determination of firm and bond characteristics,

resulting in inconsistent default risk index estimates and incorrect rating probability

functions. To resolve this identification issue, we model the soft adjustment as the

bond-specific stochastic thresholds in a fully nonparametric way and approximate it

using the shareholding structures between a bond-issuer and a publicly listed CRA.

The empirical method in this paper can be applied to other contexts featuring ordered

response with unobserved heterogeneous thresholds such as subjective health status,

life happiness, etc. For empirics, we focus on initial bond ratings of listed firms

after the Moody’s went public in 2000 and until 2016, covering a fews year after the

passage of the Dodd-Frank Act. Our empirical results suggest that there is a significant

reduction of soft adjustment over all rating categories in terms of dispersion after the

reform. We also find that it becomes more difficult to be rated as investment grade

bonds on average, reflected by the shift of mean thresholds.

Our model does not consider the competition effect in the rating process, especially

given the “triopoly” market structure of the U.S. credit rating industry. Under the

current issuer-pays model, the CRA charge fees to issuers whose debt will be rated

by the same agency. This would produce another aspect of conflict-of-interest where

CRAs attempt to make more profit and attract more clients by lowering standards.

However, our measure of soft adjustment is not designed to capture such bias. Future

studies may consider explicitly incorporating strategic rating behaviors among CRAs.
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Chapter 4

A Hausman Test for Partially Linear Models
with an Application to Implied Volatility
Surface

4.1 Introduction

One key assumption behind the well known Black-Scholes (B-S) formula is a constant

volatility function, which has been frequently challenged by both theorists and

practitioners after the October 1987 market crash. The extent to which the market

deviates from this assumption can be tested by examining the implied volatilities

(IV), which by definition is the empirically determined parameter that makes the B-

S formula fit market prices of the options. To see this, we denote the price of a call

option at time t as Ct, its strike price as K, its time to expiration as T , and the (fair)

forward price for delivery at expiration as Ft ” epr´δqTSt. As shown in Aıt-Sahalia,

Bickle and Stoker (2001, ABS henceforth), inverting the B-S formula with respect to

the volatility parameter would give to the following model for IVs (σiv),

σiv “ mpK{Ft, T q ` ε with Erε|K{Ft, T s “ 0 (4.1)

where K{Ft is the “moneyness” of an option and ε summarizes potential sources

of noise, e.g., bid-ask spread. The unknown transformation mp¨, ¨q captures the

dependency of IV on K{Ft and T . If options are indeed quoted based on the B-S

formula, one should expect a constant IV which does not vary across moneyness or

time-to-expiration. However, out-of-the-money (OTM) put options, i.e., put options



80

with K{Ft ă 1, are traded at higher implied volatility than at-the-money (ATM)

options and OTM calls, also known as “volatility smiles”.

ABS further show that a semiparametric model permitting a flexible “volatility

smile” as well as an additive quadratic time effect, i.e., mpK{Ft, T q “ gpK{Ftq `

θ1T ` θ2T
2, is a statistically adequate depiction of the IV data. The above partially

linear specification, however, rules out potential interaction effect between moneyness

and time-to-expiration. If we plot IV against moneyness and time-to-expiration in 3-D,

which gives the so-called Implied Volatility surface, a partially linear structure implies

that the term structures of IV across different moneyness values should roughly have

the same shape and only differ by a level shift. However, as shown in Fig 4.1, which

is taken from Fengler (2006) and confirmed by many other studies, this is not the case:

there is a slightly increasing slope for ATM and OTM call IV term structure, while

OTM put IV displays a decreasing term structure. This paper is primarily motivated by

these conflicting findings.

Researchers have tried at theoretically explaining these stylized facts of IV term

structure using stochastic volatility (Renault and Touzi, 1996; Hull and White, 1987)

and jump diffusion models (Jorion, 1988; Bates, 1996). However, there is an absence

of prior work that formally tests whether options across different moneyness value have

distinct term-structure. To be specific, we will develop a Hausman type specification

test for the partially linear structure in ABS against a semiparametric model that

permits interaction effects, based on the observation that the two estimates should

drift apart if the partially linear structure does not hold. In Section 2, we describe the

testing strategy and construct the Hausman statistic in a general econometric setting.

We carry out some Monte Carlo experiments to study the finite sample properties of

the proposed test statistic in Section 3, and report the empirical results in Section 4

using traded option data of S&P 500 index after the recent crisis. While the focus of

this paper is on option implied volatility, the method can be applied to test additivity of

other econometric models.
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Figure 4.1: Fig 2.8 in Fengler (2006)

4.2 A Hausman-type Specification Test

Using the notation defined in (4.1), we test

H0 : mpK{Ft, T q “ gpK{Ftq ` β1T ` β2T
2 (4.2)

against a two-index model which permits the interaction between moneyness and time-

to-maturity:

Ha : mpK{Ft, T q “ Hpβ1T ` β2T
2, K{Ftq (4.3)
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The motivation of this test comes from Hausman (1978). I find estimator β̂A for β0 ”

rβ1, β2s that is consistent and efficient only under the null, and another estimator β̂B

that is robust to the additive structure that we want to test. If the data is generated

from the null DGP, then the two estimators should be close to each other. We use the

following notation Yi ” σiv, Xi ” rT, T
2s, Zi ” K{Ft to illustrate our testing strategy,

and this test can certainly be applied to other contexts.

Remark 1. For this particular application in which X’s contains only T and T 2, we

need the assumption that T 2 belongs to the model, that is, Prpβ2 ‰ 0q Ñ 1, to

identify parameters in the two-index model. This assumption is plausible since the term

structure of volatility is rarely found to be flat. In other contexts that the information

of X’s cannot be summarized in a single variable, this assumption is not needed.

One candidate for β̂A comes from the “Robinson differencing” procedure: (1) take

conditional expectation of Zi on both sizes e.g, ErYi|Zis “ ErXi|Zisβ0 ` GpZiq.

(2) subtract the conditional expectations from Eq (4.2), e.g, Yi ´ ErYi|Zis “ pXi ´

ErXi|Zisqβ0 ` Ui, and (3) run OLS. Robinson (1988) shows that the final OLS

estimator is root-N-consistent and asymptotically efficient. One candidate for β̂B can

be obtained by implementing the semiparametric least square (SLS) estimation on

(4.3). Ichimura (1993) and Ichimura and Lee (1991) develop a consistent estimator

θ̂B for the “normalized parameter” θ0 ”
β2
β1

. Klein and Shen (2010) employ a two-

stage estimator, so that the conditional expectationErY |Xβ0, Zs can be estimated with

optimal kernel bandwidth.

Since the results from Robinson (1988) and Klein and Shen (2010) are crucial

to the construction of our test statistic, we give these results in the following two

propositions1.

Proposition 4.2.1. Assume (Yi, Xi, Zi) are i.i.d, g(¨) satisfy certain differentiability

1Some trimming parameters have been suppressed in order to facilitate the exposition, and readers
should refer the original papers for full details. Since both methods are widely used in estimating
non/semi-parametric models, the proofs are omitted.
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and moment condition, as in Robinson (1988), we have

?
Npβ̂A ´ β0q „ Np0,ΣAq

where ΣA ” σ2ErpXi ´ ErXi|Zisq
1pXi ´ ErXi|Zisqs

´1 and σ2 is the variance of U.

Proposition 4.2.2. Under the alternative and additional assumptions as in (A1-A6)

in Klein and Shen (2010), let θ̂B be the maximizer of the following quasi-likelihood

function,

Q̂2 ” ´
1

2N

N
ÿ

i“1

t̂virYi ´ ÊapYi|Xiθ, Zqs
2

in which t̂vi is a trimming function on the basis of the (estimated) index and Êa is

an adjusted expectation that protects the estimated denominator away from zero in a

small neighborhood of the true θ. Letting G0 ” ∇θQ2pθ0q and H0 ” ∇θ1θQ2pθ0q,

?
Npθ̂B ´ θ0q „ Np0,Σq

where Σ ” H´1
0 Er

?
NG10G0

?
N sH´1

0 .

Note that β̂A and θ̂B are not directly comparable since the SLS procedure does not

identify the regression coefficients β0, making dimpβ̂Aq “ dimpθ̂Bq ` 1. To conduct

a feasible Hausman-type test, we compute the “normalized parameter” in the partial

linear model as θ̂A ” β̂A2

β̂A1
, and apply the “delta method” to calculate its asymptotic

variance:

V ARp
?
Nθ̂Aq “ ∇Gpβ̂AqT ¨ ΣA ¨∇Gpβ̂Aq (4.4)

∇Gpβ̂Aq “

»

–

´
β̂A2

β̂2
A1

1

β̂A1

fi

fl (4.5)

where ΣA is the variance-covariance matrix of
?
Nβ̂A in Proposition 1. The gradient

matrix∇Gpβ̂Aq comes from first-order Taylor approximation.

With the two estimators formulated above, a Hausman-type test statistic comes
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naturally:

Tn ”
?
Npθ̂A ´ θ̂Bq

1M´1
pθ̂A ´ θ̂Bq

?
N (4.6)

where the appropriate scale matrix M is

M ” V ARp
?
Nθ̂Bq ´ V ARp

?
Nθ̂Aq (4.7)

The first component in M, V ARp
?
Nθ̂Bq, as shown in Klein and Shen (2010),

converges to Σ ” H´1
0 Er

?
NG10G0

?
N sH´1

0 . The second component V ARp
?
Nθ̂Aq

can be estimated consistently using the aforementioned Delta-method. Under the null,

Tn follows a χ2
1 distribution.

4.3 Monte Carlo Experiments

In this section we carry out some Monte Carlo experiments to study the finite sample

properties of the test statistic. The DGP is given as:

Y “ β1X1 ` β2X2 `
?
Z ` δ ˚ pβ1X1 ` β2X2q ˚ Z ` U β1, β2 “ 1 (4.8)

The data is constructed by generating X1, X2 „ χ2p1q, Z “ X1`X3` 3, X3 „ χ2p1q

and U „ Np0, 1q. Some truncations are applied to ensure X and Z are finite. When

δ “ 0, the model is partial linear. As δ increases, the model smoothly transforms

from a series of local alternatives to a two-index model in which Z and Xβ have full

interaction.

In Table 4.1 we report the Monte Carlo results from 500 replications with δ “

0, 0.1, 0.2, 0.5. The parameter of interest here is the ratio of regression coefficients

of X2 and X1: θ “ β2{β1 “ 1. In the first design with δ “ 0, the Robinson

differencing estimator θ̂A performs better than the two-index estimator θ̂B in terms
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of accuracy (MEAN of estimates with N=2000: 1.003 vs 1.045) and efficiency (Root-

Mean-Square-Error (RMSE) with N = 2000: 0.006 vs 0.008). As δ deviates from

zero, the 2-index models still provides robust estimation of θ, while the Robinson

differencing estimator became inconsistent. For example, when δ “ 0.5 and N =

1000, the mean of θ̂A is 0.863 while the mean of θ̂B is 0.997.

The testing results are reported in the lower panel of Table 4.1. Under the DGP

in H0 (δ “ 0) with N=2000, the rejection rate in 500 replication is 3.2% and 8.2 %,

given the theoretical size is 5% and 10% respectively. When the true model deviates

significantly from the partial linear model (δ “ 0.5), the test has powers close to one

in both samples. As the interaction term becomes smaller, that is, when the true model

approaches a series of local alternatives, the power of the test decreases. For each

alternative DGP with a different δ, the power increases as the sample size increases.

4.4 Empirical Results

As motivated in the introduction, we study whether an option’s moneyness and time-

to-maturity affect its implied volatility in an interactive fashion, e.g., do options across

different moneyness value have different term structure? ABS address this question

by testing whether the in-sample-fit of mpK{Ft, T q “ gpK{Ftq ` θ1T ` θ2T
2 is

statistically the same as an unrestricted mpK{Ft, T q. We revisit this problem with

a more recent dataset using the testing strategy developed in this paper.

Our data sample consists of N = 4431 observations on daily S&P 500 index call

options traded at the Chicago Board Options Exchange (CBOE) from September 2012-

August 2013. The options are European, and within the market we have chosen

the most actively traded options with maturities from 1 to 9 months. We compute

the option premium using the midpoint of bid and ask price, and solve for option

implied volatility based on the BS formula. Following the “Robinson differencing”

and Semiparametric Least Square procedures, we estimate the two competing models
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as:

Plinear: m̂pK{Ft, T q “ ĝpK{Ftq ` 0.111
p0.0067q

T ´ 0.089
p0.0098q

T 2 (4.9)

2-index: m̂pK{Ft, T q “ ĤpT ´ 0.663
p0.138q

T 2, K{Ftq (4.10)

To illustrate the nonparametric components in these models, we plot ĝp¨q and Ĥp¨, ¨q

Figure 4.2: “volatility smile” in partially linear model

Note: Blue squares are data points in the sample and the red line is a fitted curve using
spline interpolation

in Figure 4.2 and 4.3. As can be seen from Figure 4.3, the term structure of volatility

is generally downward-sloping for options across different moneyness, which evidents

against the hypothesis that time-to-maturity and moneyness affects implied volatility

in a interactive fashion. To be sure, we compute the test statistic Tn based on (4.6),

which turns out to be 1.18, leading to the acceptance of the partially linear model with

a p-value equals 0.27.
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This finding is in accord with ABS, but conflicts with Fengler (2006) and other

Figure 4.3: implied volatility surface in two index model

Note: This graph depicts the interpolated implied volatility surface (IVS). The time-to-
maturity axis describes the term structure for options with different moneyness values
(K{Ft), while the moneyness axis describes the shape of “volatility smile” for options
with different time-to-maturity.

conventional thoughts claiming that ATM and OTM options have an upward sloping

term structure. Fengler (2006) attributes this pattern to a more ‘shallow” smile for

longer term maturities: a higher implied volatility for ATM and OTM call options

with longer time-to-maturity. Considering the timing in Figure 4.1, such a pattern

may be related to the Dot-com bubble during the late 90s. A persistent rapid rise in

equity values makes OTM call options more appealing to speculators, as they may have

intrinsic values. Such a growing demand for those options bids up the premium, and

thus induces a higher IV for long term calls. Considering the stable market conditions2

in our sampling period, investors may more concern about the short-run risk, making

2S&P 500 index steadily grew in the second half of 2012 and the level of VIX was around 12-20



89

the term structure of implied volatility downward-sloping.

4.5 Conclusion

Through a kernel-based goodness-of-fit test, ABS documented that a partially linear

model permitting a flexible ”volatility smile” and an additive quadratic time effect

is a statistically adequate depiction of the option implied volatility data. This paper

develops an alternative specification test based on the shape of implied volatility

surface at different ”moneyness” values. Our test statistic has a conventional Hausman

form and can be applied to test additivity of other econometric models.
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Chapter 5

Conclusion

Semiparametric models have received tremendous attention in the literature for

decades. Much of the empirical papers stick to the single-index model, where the

explanatory variables affect the outcome through an unknown linear combination.

However, in many contexts, it is necessary to deviate from that specification. For

example,

1. Behavioral models with non-separable utilities could suggest explanatory affect

the outcome variables in a interactive fashion.

2. In models where the error terms are naturally heteroscadasticiy, it is convenient

to have one index drives the conditional expectation and another index drives the

conditional variance

3. In decision making problems involves multiple players, it is also natural to use a

separate index to capture each player’s utility.

Set against this background, the goal of this dissertation to develop econometric

framework for estimating and hypothesis testing models that allow for multiple

indices. One key methodological challenge in this type of problem is to address the

bias in estimating conditional expectation in high dimensions. Higher-order kernels

can reduce the bias to any order but do not perform well when outcome variables

are discrete. A recursive-differencing estimator, recently proposed by Klein and

Shen (2016), perform much more stable; yet the asymptotic normality result is not

explicitly proved for the multiple-index case. The authors assert that a component that
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representing the asymptotic bias can be written in a higher-order degenerate U -statistic

and therefore vanishes. I show this is indeed the case.

This dissertation also contributes to the empirical literature of credit rating and

implied volatility modeling. Researchers (Mathis et al., 2009; Jiang et al., 2012; He

et al., 2015) have concerned with rating qualities on account of the issuers-paid model,

whereby CRAs are paid by the issuers seeking ratings. Recently, several studies also

document a “premium” on ratings for firms that share a particular form of non-rating

relation with the rating agency, such as consulting services (Baghai and Becker, 2016)

and rating-based contracts (Kraft, 2015). To the best of my knowledge, the only other

paper that focuses on the impact of common ownership on rating is Kedia et al. (2017),

in which the authors find that Moody’s, the leading CRA in the U.S., assigned favorable

ratings to firms that are associated with its long term large shareholders.

Much of the empirical evidence presented above, however, have been based on

generalized linear models (GLMs); see Ederington (1985) for a survey of prevalent

bond rating models1. These methods, however, leverage strong assumptions not

only on the linearity of covariates but also the additivity of unobservables: that, say,

rating agency’s private information does not depend on or correlated with observed

characteristics of the bond issuer. In this context in which common shareholders

may transmit material non-public information to the CRAs, the mechanical interaction

between publicly-available and private information makes GLMs prone to systematic

bias.

I contribute to the above literature by evaluating rating quality using a

semiparametric ordered model. Compared to existing models in the bond rating

literature, the semiparametric model proposed here allows a richer set of interactions

among covariates. In summary, I find that Moody’s is likely to assign favorable

ratings to firms that have a strong interaction with Moody’s large shareholders. Based

1The extant literature use ordered-probit/logit model (Kaplan and Urwitz, 1979; Blume et al., 1998;
West, 1970), the linear probability model for the rating process (Jiang et al., 2012; Campbell and Taksler,
2003; Kedia et al., 2017), or discriminant analysis (Pinches and Mingo, 1973, 1975)
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on marginal effect analysis, I found being a large investee firm of Moody’s large

shareholder could increase the probability of receiving favorable treatment by as much

as 14 %, meaning that, on average, one out of seven bonds issued by those firms

received favorable treatment. However, we found Moody’s does not assign favorable

ratings to firms related to Moody’s small shareholders. This “large shareholder bias” is

in accord with the literature on the role of large shareholders in corporate governance.

In addition, we found low credit bonds issued by any firms, regardless their ownership

interaction with Moody’s, will unlikely to be treated with favor, which also seems

credible because overrating a low credit bond would incur a greater expected reputation

loss than overrating a safe bond. The policy relevance of the findings in this paper is

that when credit rating agencies are publicly held by diffuse owners, their ratings are

still highly trustworthy.
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Appendix A

Supplemental Materials to Semiparametric
Estimation of a Credit Rating Model

A.1 A cheap-talk model for credit rating

In the environment that I consider, a credit rating agency (CRA) is asked to rate a bond.

The CRA only has partial knowledge about the bond’s default risk, but can seek advice

from a “shared-owner” - typically a large financial institution who owns both the CRA

and issuer firm equities. Due to a frequent and personal contact with the bond issuer,

these institutional investors have private information1 about the bond issuer, which they

could reveal in meetings with the CRA by sending an messagem. Because the interests

of the two parties are not perfectly aligned, the shared-owner may intentionally offer

biased advice; the CRA will also contemplate the informational content of m. The

model is a stylized version of the cheap-talk model considered by Crawford and Sobel

(1982), CS henceforth.

A.1.1 Model

To fix ideas, consider the rating process of a corporate bond in which two risk-neutral

players are involved, a credit rating agency (CRA) and a biased shared owner who

holds the stock of both the CRA and the bond issuer. The bond’s default risk is

determined by π “ V ` U , in which V “ Xβ0 represents the influence of hard

1Examples of such private information may include soft factors, such as the manager’s abilities.
These information are not reducible to numerical scores and therefore hard for the bond issuer to
communicate directly with the CRA.
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factors (The firm’s asset, leverage ratio...etc), and U summarizes other “soft” factors

such as the manager’s skills and abilities. The CRA can figure out V with their rating

methodology, but only knows U is draw from a uniform distribution between 0 and 1.

Due to a better information access, the shared owner observes a noisy signal about

U in the form of z “ U ` ε, where ε is a small disturbance term, and sends a message

m to the CRA as an “advising device”. Upon receiving the message, the CRA (the

“receiver” of the message) chooses an action y to maximize:

UR
py, πq “ ´py ´ πq2 (A.1)

Given the action y chosen by the CRA, the shared owner (the “sender” of the message)

gains the utility of:

US
py, π, bq “ ´py ´ π ` bq2. (A.2)

where b ą 0 is a scalar “bias” parameter that measures how closely aligned the

preferences of the two are. b represents the shareholder bias because the utility-

maximizing action is π for the CRA but π ´ b for the shared owner. That is, the

shared owner intends to inflate the rating by b through exaggerated advice. All aspects

of the game except the realization of U are common knowledge.

Remark 2. For the purpose of building intuitions and obtaining solutions in closed-

form, the model will be solved assuming the above utility functions and ε “ 0: that,

shared owner observes soft factors perfectly2. Predictions of this model, however, will

hold so long as for i “ R, S : U i
11 ă 0, U i

12 ą 0, where subscripts denote for partial

derivatives.

2This so-called “uniform-quadratic” specification is employed by many studies in the strategic
information transmission literature (Adams and Ferreira, 2007; Kamenica and Gentzkow, 2011) for
its tractability. In the case that shareholders observe a noise signal, it can be shown that the equilibria
has the same structure as described below, provided that the conditional distribution of soft information
F p¨|z1q dominates F p¨|zq in the first stochastic sense for z1 ą z. In our case that z “ U ` ε, this is true.
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A.1.2 Equilibrium

Following CS it is possible to show that the CRA’s action in equilibrium is:

y˚ “ V `

Npbq
ÿ

i“1

aipbq ` ai`1pbq

2
1taipbq ď m ă ai`1pbqu (A.3)

where m is the message received from the shared owner and the breakpoints ai is

parametrized by

ai “
i

Npbq
` 2bipNpbq ´ iq, i “ 0, 1, ¨ ¨ ¨ , Npbq, a0 “ 0, aN “ 1 (A.4)

and Npbq, the number of information partition, is the smallest integer greater or equal

to ´1
2
` 1

2

b

1` 2
b
. On the other hand, the shared owner’s advising rule qpm|Uq is

uniform, supported on rai, ai`1s for U P pai, ai`1q
3.

A.1.3 Implication

Looking at the equilibrium action in (A.3), the CRA can at most ascertains an interval

pai, ai`1q wherein the soft information U lies and conjectures that U to be the midpoint

of that interval4. Intuitively the finer this information partition is, the more accurate

the CRA can learn the soft information. In terms of the model, Npbq represents the

efficiency of the information transmission, which would decrease as the shareholder

3In fact, CS shows that the model has multiple equilibira for every 1 ď N ď Npbq. Here I focus
exclusively on the Most Informative Equilibrium, that N “ Npbq, because (i) for a given b, any other
equilibrium with N ă Npbq is Pareto-inferior (Theorem 3 of Crawford and Sobel (1982)), and (ii) there
are ample empirical evidence suggesting CRAs utilize information outside the issuer’s financial reports
to adjust their initial ratings. As noted in Kraft (2014), “soft adjustments” are frequently made on ratings
to incorporate factors such as management quality, aggressive accounting, weak controls, governance
risk, industry structure, and managerial bondholder friendliness. According to the model, one important
information source for these soft adjustments is shared owners who have private information about the
issuer’s soft quality. It is foreseeable that ratings should have incorporate some information obtained
from shared owners, as a result of the proposed information transmission mechanism.

4The CRA chooses the midpoint as a result of the assumption that U is uniformly distributed. Once
this assumption is relaxed, the CRA will choose another action, but still within pai, ai`1q, to maximize
its expected utility
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bias increases (i.e., b is larger). In the extreme case when b ą 1{4, communicating

with the shared owner does not convey any meaningful information. To see this, it is

easy to verify from (A.4) that with a0 “ 0, aNpbq “ 1, Npbq “ 1 when b ą 1{4. In

this case, the CRA’s strategy is to set y˚ “ V ` 1{2 no matter what the realization of

U is. Therefore the only equilibrium left is the “babbling equilibrium” in which no

information is transmitted.

Importantly, the game-theoretical model predicts a nonlinear relationship between

shareholder bias b and the estimated default risk y˚. From the equations (A.3)

and (A.4), b affects y˚ through two aspects: the set of cutoff points aipbq and the

discontinuous mapping Npbq. In regions where a increase in b does not change Npbq,

a larger bias always induces a lower estimated default risk ceteris paribus (e.g., for

fixed hard and soft information). This implication is consistent with the empirical

observation that the CRA assigns more favorable ratings to firms that are associated

with its own large shareholders (Kedia et al., 2017). However, I show that such

relationship is not monotonic everywhere: when a marginal increase in shareholder

bias reduces the number of intervals Npbq, the net effect on ratings depends on the

soft information U . Moreover, when the shareholder bias exceeds some threshold (in

this case, 1/4), an increasing bias no longer affects the credit rating decision because

the only equilibrium left is the “babbling equilibrium”. That is, due to a high conflicts

of interest, the CRA does not believe anything that the common shareholder say,

so the common shareholder’s (biased) advice has no impact on the rating outcome.

To convey more intuition, I present one simple example in which a larger bias

indeed makes ratings more conservative (induces a lower credit rating). Consider

the uniform quadratic case with b increases from 2{15 to 1{4. One can verify that

when b0 “ 2{15, the only break point a “ 1{2 ` 2 ˚ 2{15 “ 23{30, resulting in a

information partition tp0, 23{30q, r23{30, 1su. The optimal rating decision y˚pV,mq,

depicted by the red solid line, is given by V ` 23{60 when U ă 23{30 and V ` 53{60

when U ą 23{30. When the bias increases to b1 “ 1{4, the game is in the babbling
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equilibrium with N=1, so the optimal rating function, depicted by the blue solid line,

is constant V ` 1{2. It is clear that a larger bias (from 2/15 to 1/4) induces a lower

predicted default, and thus a higher credit rating, only when U ą 23{30.

0 a1p2{15q “ 23{30 1

The bond’s default risk π “ V ` U

y˚pV,mq when b0 “ 2{15

y˚pV,mq when b1 “ 1{4

U

y˚pV,mq

A.1.4 The equilibrium strategy beyond the uniform-quadratic

model

In a more general model wherein the utilities are not quadratic and U is not uniformly

distributed, it can be shown that the CRA’s perceived default risk takes the form of y˚ “

V ` Hpb, Uq, where b is a parameter that represents the common shareholder’s bias.

Based on the discussion above, the following theoretical claims about this function

Hp¨, ¨q can be made:

Prediction 1-H. HpU, bq is a nonseparable.

Prediction 2-H. The (marginal) impact of b on y˚ is not globally monotone and



98

affected by the based level b0, so that a larger bias may lead to rating deflation.

By analyzing this game-theoretical model, I demonstrate that the impact of conflicts

of interest on ratings is not monotonic and depends on the private information U in an

unobservable way. Therefore, in terms of econometric modeling, it is essential to take

the potentially non-separability of b and U into account.

A.2 Econometric notations and preliminaries

To establish the large sample results in the next section, I require some standard

assumptions and a more formal discussion about the conditional expectation estimator

P kpvq and its econometric properties. For presentation simplicity, I use Z to denote

the shared-ownership relation proxy MFOI .

A.2.1 Definitions and Notations

D.1 Trimming Functions: WithWik as the i th observation on a continuous variable,

Wk, k = 1,...K, Let τ̂ik ” 1tâk ă Wik ă b̂ku and τ̂i “
ś

k τ̂ik, where âk b̂k are,

respectively, lower and upper sample quantiles for Wk. when Wik “ Xik, we

refer to τix as X-trimming; With V̂i as the estimated index, when Wik “ V̂i, we

refer to τiv as index trimming5.

D.2 Kernels: Let v denotes a fixed point of the index and Vj the index value for

observation j, define Kjpvq “ Πd
s“1φp

Vj´v

h
q{h where φp¨q is the density of

standard Gaussian and h is the window size that vanishes to zero at rate N´r.6

5In case when a smooth trimming function is needed, define

τpz, δq ” p1` expp´plnpNq ˚ lnpNq ˚ pz ´ δqqqq´1 (A.5)

as a smoothed approximation to an indicator on z ě δ. A smoothed indicator on z P ra, bs is then
defined as τpz, aq ˚ τpb, zq.

6The choice of r will be different depending on the nature of the estimator, and will be discussed in
the corresponding asymptotic theorem.
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D.3 Density Estimator: Let gpvq denotes the joint density of the indices at a point

v, a (leave-one-out) kernel weighted density estimator ĝpvq is defined as

ĝpvq “
1

N ´ 1

N
ÿ

j“1

Kjpvq (A.6)

D.4 Estimated Probability Referring to D.1, a initial estimator for PKpvq is defined

as

pIKpvq ”

1
N´1

ř

j Y
K
j Kjpvq

ĝpvq
(A.7)

Based on this initial estimator at v and another sample point Vj of the indices,

the final estimator for PK
i pvq is defined as

pPK
pvq ”

ř

jrY
K
j ´ ∆̂jpvqsKjpvq

ĝpvq
“ f̂pvq{ĝpvq (A.8)

where ∆̂jpvq “ pIKpVjq ´ pIKpvq is an estimate of the localization error. See

section A.2.3 below for a detailed description for this estimator.

D.5 Quantile Trimming Define tqj to be the true quantile trimming function which

takes value 1 only if Z is in a given quantile: tqj ” 1tqpλ1q ă Z ă qpλ2qu,

where λs are the upper and lower bound for that quantile and qpλ1q, qpλ2q

the corresponding population quantile for Z. Similarly, we define an estimated

quantile trimming function as t̂qj ” 1tq̂pλ1q ă Z ă q̂pλ2qu by replacing

the population quantiles qpλq “ pqpλ1q, qpλ2qq with the sample quantiles

pq̂pλ1q, q̂pλ2qq.

D.6 Quantile Marginal Effects Estimators: Let V pθ̂q ” rXF1 ` X 1
F θ̂

F
0 , XB1 `

X 1
B θ̂

B
0 , Zs be the estimated index. For an observation with Yi “ K, an estimator
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for the marginal effect MEipθ0, Zi, Kq defined in the main text is:

m̂jpθ̂, Kq ”

K´1
ÿ

k“1

r pP k
i pVF pθ̂q, VBpθ̂q, Z ` δq ´

pP k
i pVF pθ̂q, VBpθ̂q, Zqs

Referring to the above definition for quantile trimming tq, we define the quantile

marginal effect QMEK
q and its estimator by:

QMEK
q ”

Ertqjmjpθ0, Kqs

Ertqjs
(A.9)

{QME
K

q ”

řN
j“1 t̂qjm̂jpθ̂, Kq
řN
j“1 t̂qj

(A.10)

D.7 Bahadur Representation: Referring to the above definitions, with gZp¨q be the

marginal density for Z, let:

Bj ”

»

–

p1tZ ď qpλ2qu ´ λ2q{gZpλ2q

p1tZ ě qpλ1qu ´ λ1q{gZpλ1q

fi

fl

The Bahadur representation (Bahadur, 1966; David, 1981) can now be defined

as:
?
N rq̂pλq ´ qpλqs “

?
NB` opp1q, B ”

1

N

N
ÿ

j“1

Bj (A.11)

D.8 First- and Second-stage estimator Based on the above definitions, we define:

θ̂1 “ argmax
θ

Q1pθq, Q1pθq “ N´1
N
ÿ

i“1

xτixt
n
ÿ

k“1

Y k
i LnpP̂

k
i qu, (A.12)

θ̂2 “ argmax
θ

Q2pθq, Q2pθq “ N´1
N
ÿ

i“1

xτivt
n
ÿ

k“1

Y k
i LnpP̂

k
i qu, (A.13)

D.9 Quantile trimming Let W P rX,Zs be the variable whose quantile marginal

effects we are interested in. Define tqj to be the true quantile trimming function

which takes value 1 only if W is in a given quantile: tqj ” 1tqpλ1q ă W ă
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qpλ2qu, where λs are the upper and lower bound for that quantile and qpλ1q, qpλ2q

the corresponding population quantile for W.

D.10 Quantile Marginal effects estimators Let V pθ̂q ” rXF1 ` X 1
F θ̂

F
0 , XB1 `

X 1
B θ̂

B
0 , Zs be the estimated index. For an observation with Yi “ K, the true

cumulative marginal effect CMEipθ0;Kq defined in (2.6) can be estimated by:

m̂jpθ̂q ”

L
ÿ

k“1

tYi ě kurP̂ ka
i pVF pθ̂q, VBpθ̂q, Z ` δq ´ P̂

ka
i pVF pθ̂q, VBpθ̂q, Zqs

Refer to D.7 for quantile trimming tq, we define the quantile marginal effect

CMEK
q and its estimator by:

QMEK
q ”

Ertqjmjpθ0qs

Ertqjs
(A.14)

{QME
K

q ”

řN
j“1 t̂qjm̂jpθ̂q
řN
j“1 t̂qj

(A.15)

D.11 Bahadur Representation Refer to D.3 and D.6, with gZp¨q be the marginal

density for Z, let:

Bj ”

»

–

p1tZ ď qpλ2qu ´ λ2q{gZpλ2q

p1tZ ě qpλ1qu ´ λ1q{gZpλ1q

fi

fl

The Bahadur representation (Bahadur, 1966; David, 1981) can now be defined

as:
?
N rq̂pλq ´ qpλqs “

?
NB` opp1q, B ”

1

N

N
ÿ

j“1

Bj (A.16)

To obtain convergence properties for the proposed probability estimator in D.4 and

asymptotic normality for the index and quantile marginal effect estimators in the main

text, we make the following assumptions.
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A.2.2 Assumptions

A.1 DGP: The vector (Y k
i ,Xi) is i.i.d. over i “ 1, ¨ ¨ ¨ , N for each k in t1, ¨ ¨ ¨ , Lu,

and takes on values in a compact and finite support7. The columns of Xi “

rFi, Bi, Zis are linearly independent with probability 1. In addition, we assume

observations are grouped into g “ 1, ¨ ¨ ¨ , G clusters.

A.2 The error term: The error term Ui is conditionally independent of Xi:

Erui|Xis “ 0, and error independence across clusters is assumed so that for

i ‰ j:

Eruiguig1 |Xig, Xig1s “ 0, unless g “ g1 (A.17)

Errors for bonds belonging to the same group may be correlated, with quite

general heteroskedasticity and correlation.

A.3 Index Assumption Write the vector of indices V pθ0q ” rF1 ` F 1θF0 , B1 `

B1θB0 , Zs
1 “ rVF , VB, Zs, which depends on two vector, F and B, and a

continuous variable Z. We further assume that F1 and B1 are continuous and

functionally independent, and the following index assumption holds:

ErY k
i “ 1|Fi, Bi, Zis “ ErY k

i “ 1|V pθ0qs (A.18)

A.4 Parameter space The vector of true parameters values θ0 ” rθF0 , θ
B
0 s for the

model in lies in the interior of a compact parameter space, Θ.

A.5 Conditional densities With V defined in A.4, denote gpt|y, x, zq as its density

conditioned on Y = y and X = x, Z = z. Denote ∇dgpt|y, x, zq as the partials or

cross partials up to order d, with∇0gpt|y, x, zq ” gpt|y, x, zq. With g defined on

7Since X denotes variables like firm’s asset, leverage ratio...which seems to be naturally bounded
from above
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a compact support, we assume g ą 0 and ∇dgpt|y, x, zq uniformly bounded for

d = 0,1,2,3 on the interior of its support.

A.1-A.5 are standard in the literature. Namely we require each index has at least one

continuous variable A.4 and densities for continuous variables and the indices must be

sufficiently smooth, as implied by A.5. Additional window conditions will be required

and stated directly in the theorems for which they are needed.

A.2.3 The estimator for P kpvq and its convergence property

Let Vj “ rF1j ` F 1jθ
F
0 , B1j ` B1jθ

B
0 , Zjs denotes the vector of indices at θ0, and v is a

fixed point. Consider the regression model in the main text: ErY k
j |Vjs “ PKpVjq in a

“localized form” for the jth observation:

Y k
j “ P k

pVjq ` εj with εj “ Y k
j ´ ErY

k
j “ 1|Vjs (A.19)

“ P k
pvq ` rP k

pVjq ´ P
k
pvqs

looooooooomooooooooon

∆jpvq

`εj

where Y k
j is a binary variable that takes value one if bond j is rated as category K. This

object ∆jpvq ” P kpVjq ´ P
kpvq is termed as the “localization error”.

As described in the main text, one kernel estimator for P kpvq, which becomes a

parameter after localization, is usually obtained by minimize the weighted squared

sum of Y k
j ´ P

Kpvq in the following way:

Îkpvq “ argminα
ÿ

j

pY k
j ´ αq

2KhpVj ´ vq (A.20)

ùñ Îkpvq “
N´1

ř

j Y
k
j KhpVj ´ vq

N´1
ř

jKhpVj ´ vq
(A.21)

The kernel KhpVj ´ vq is employed to downweight observations with index values far

away from v. This estimator Îkpvq, after scaled by ĝpvq ” N´1
ř

jKjpVj ´ vq, has

a bias of order h2, where h is the window size parameter. In a recent paper, Shen and
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Klein (2017) show that by removing an estimate of the localization error, the following

estimator:

pP k
pvq ”

N´1
ř

jrY
k
j ´ ∆̂jpvqsKjpvq

N´1
ř

jKjpVj ´ vq
“ f̂1pvq{ĝpvq (A.22)

has a “better” convergence property than Îkpvq from Lemma A.4.1.

Lemma A.2.1 (Convergence Properties of Estimated Probability after Recursive

Differencing). The following convergence properties hold for the conditional

probability estimator defined above:

(1) supvEtpĝpvqrP̂ kpvq ´ ErP̂ kpvqssq2u|θ“θ0 “ Opp
1

Nh3
q

(2) supv|ErĝpvqpP̂ kpvq ´ P kpvqqs|θ“θ0 “ Oph4q

(3) supv,θ∇t
θ|P̂

kpvq ´ P kpvq| = Opph
4q `Opp

1
N1{2h3`t q, with t “ 0, 1, 2

Proof. See Theorem 1 and Lemma 11 in Shen and Klein (2017).

In particular, they demonstrated that a lower order of bias can be achieved after

estimating the localization error and subtracted from Y k
j , without causing the order of

variance to shoot up. As illustrated in the first two results, the order of the variance

here is the same compared to that with a regular kernel, while a lower order bias is

obtained (h4 vs h2). In addition, they also derive the uniform rate that this estimated

probability and its derivatives goes to the truth. More importantly, they show that by

repeating this process, the bias of estimating P kpvq can be reduced to any order.

A.2.4 “Residual Property” of∇θErY
k
i “ 1|Vipθqs|θ“θ0

Lemma A.2.2. Under the index assumption: ErY k
i “ 1|Xis “ ErY k

i “ 1|Vipθ0qs, we

have Er∇θErY
k
i “ 1|V pθq|θ“θ0ss “ 0.
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Proof. This property is formally stated and proved in Klein and Shen (2010), and the

authors thank Whitney Newey for mentioning a key idea in a private communication.

This property plays a key role in reducing the bias of θ̂. To exploit this property as

a bias control, however, one needs to estimate the model twice: first obtain a consistent

estimate of θ0, denote it as θ̂1 and calculate the estimated index as V pθ̂1q. Then,

estimate θ0 again but based the trimming on V pθ̂1q.

A.3 Proofs of Asymptotic Results

A.3.1 Proof of Theorem 2.4.1

Proof. Let {Iki pθ0q be a standard Nadaraya-Watson estimator for the conditional

expectation Ek
i pθ0q:

{Iki pθ0q “
N´1

ř

j Y
k
i KhpVj ´ viq

N´1
ř

jKhpVj ´ viq
” f 0

i {gi (A.23)

The strategy is to show that ĝpv, θqB is asymptotically equivalent to another object:

ĝpvi, θqB
˚
” N´1{2

N
ÿ

i“1

L
ÿ

k“1

ĝpvi, θqτir
{Iki pθ0q ´ E

k
i pθ0qswi

where the “weight function” wi ” ∇θE
k
i |θ“θ0αi. This object, as shown in Klein and

Shen (2010), is a second-order degenerate U -statistics. Recall from above that

ĝpvi, θqB ” N´1{2
N
ÿ

i“1

L
ÿ

k“1

ĝpvi, θqτir
{Ek
i pθ0q ´ E

k
i pθ0qswi

Put it differently, I’m establishing an equivalence result between the recursive

differencing estimator {Ek
i pθ0q and the regular kernel estimator {Iki pθ0q, for the purpose

of estimating index coefficient.
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Note also that for each category k, the B component in the gradient has the

same structure. Therefore we focus only on a single representative category without

worrying about the summation over k. We proceed by first defining two intermediate

objects that will simplify the analysis:

pf 0pv, θ0q ” ĝpvi, θq
{Iki pθ0q “

1

N

ÿ

j

Y k
j KhpVj ´ vq ”

1

N

ÿ

f0jpv, θ0q

pf 1pv, θ0q ” ĝpvi, θq
{Ek
i pθ0q “

1

N

ÿ

j

rY k
j ´ δjpvqsKhpVj ´ vq ”

1

N

ÿ

j

fjpv, θ0q

To establish the equivalence result, it is sufficient to show that for each k:

ĝpvi, θqrB
˚
´Bs “ (A.24)

N´1{2
ÿ

i

r {f 0pvi, θ0q ´
{f 1pvi, θ0qsτiwi ď

?
N sup

v
|rf̂ 0

pv, θ0q ´ f̂
1
pv, θ0qsτiwi| “ opp1q

Using a “residual property” of∇θE
k
i |θ“θ0 provided in Appendix A, it can be shown

thatErτif1jpv, θ0qwis “ Erτif2jpv, θ0qwis “ 0. Therefore, withGnpvq as the empirical

CDF and Gpvq the true density of Vj at θ0, we have

rf̂ 0
pvq ´ f̂ 1

pvqsτiwi “ f̂ 0
pvqτiwi ´ Erf̂

0
pvqτiwis ´ f̂

1
pvqτiwi ` Erf̂

1
pvqτiwis

“

ż

Vj

f0jpv, θ0qτiwidrGnpvq ´Gpvqs ´

ż

Vj

f1jpv, θ0qτiwidrGnpvq ´Gpvqs

“

ż

Vj

rτipf0jpv, θ0q ´ f1jpv, θ0qqwisrdGnpvq ´ dGpvqs (A.25)

“

ż

Vj

rτiδjpvqKhpVj ´ vqwisrdGnpvq ´ dGpvqs (A.26)

Integrating-by-parts, the above integral equals

τiδjpvqKhpVj ´ vqwirGnpvq ´Gpvqs|VjPBΩ ´

ż

Vj

rGnpvq ´GpvqsdrδjpvqKhpVj ´ vqwpvqs

The first boundary term vanishes because the kernel function Kh decays very fast

when Vj is evaluated at boundary and v is a fixed point. For the second term, one can
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factor supv |Gnpvq ´ Gpvq|8 outside of the integral. Then, since
ş

VjPΩ
drδjpvqKpVj ´

vqwpvqs is opp1q, the result claimed in (A.24) follows. That is, supv|pf̂ 0pv, θ0q ´

f̂ 1pv, θ0qqτiwi|| “ oppN
´1{2q.

A.3.2 Proof of Theorem 2.4.2

Proof. We first “stack” observations by each firm g “ 1, 2, ¨ ¨ ¨ , NF , and rewrite the

quasi-likelihood function in (??) as:

rQpθq “

NF
ÿ

g“1

xτiv
ÿ

iPg

gipYi|θq (A.27)

with gipYi|θq ”
řL
k“1 Y

K
i LnpP̂

kpViqq. It is important to note that even though

each gi is correlated within firm g, the summation over each firm g,
ř

iPg gipYi|θq is

independent across firms. From a taylor expansion of the estimated gradient on θ̂ and

the fact that the estimated gradient is zero evaluated at θ0, we have

a

NF pθ̂ ´ θ0q “ ´Ĥpθ`q´1
a

NF Ĝpθ0q θ` P pθ0, θ̂q (A.28)

“ ´Ĥpθ`q´1
a

NF

NF
ÿ

g“1

Ĝgpθ0q{N (A.29)

where Ĝpθq “ ∇θ1
pQ2pθq, Ĥpθq “ ∇θ1θ

xQ2pθq, and Ĝgpθq “ ∇θ1
ř

iPg gipY
K
i |θq for

any θ in its support. From Lemma A.4.5, Ĥpθ`q converges in probability to H0 ”

8This term is OppN
´1{2q according to Nadaraya (1965); Eddy and Hartigan (1977)
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ErHpθ0qs. We let P k
i ” P kpViq to simplify the notation,

a

NF Ĝpθ0q ”
a

NF

NF
ÿ

g“1

ÿ

iPg

xτiv
ÿ

k

Y k
i

P̂ k
i

BP̂ k
i

Bθ
|θ“θ0 (A.30)

“
a

NF

NF
ÿ

g“1

ÿ

iPg

xτiv
ÿ

k

Y k
i ´ P̂

k
i

P̂ k
i

BP̂ k
i

Bθ
|θ“θ0 (A.31)

“
a

NF

NF
ÿ

g“1

ÿ

iPg

xτivr
Y 1
i ´ P̂

1
i

P̂ 1
i

BP̂ 1
i

Bθ
|θ“θ0 (A.32)

`
Y 2
i ´ P̂

2
i

P̂ 2
i

BP̂ 2
i

Bθ
|θ“θ0 ` . . . s (A.33)

The first equality above follows from the fact that
ř

k
BP̂k

i

Bθ
“

B
ř

k P̂
k
i

Bθ
“ B1

Bθ
“ 0. As

the first term in (A.33) and all remaining terms have the same structure, it suffices to

analyze the first term. From standard argument in Pakes and Pollard (1989) and Klein

and Spady (1993), the estimated trimming function xτiv can be replaced by the truth

asymptotically. With xwki ”
BP̂k

i

P̂k
i Bθ
|θ“θ0 , we may write this term as:

a

NF

NF
ÿ

g“1

ÿ

iPg

τivrY
k
i ´ P̂

k
i s
xwki “

a

NF r

NF
ÿ

g“1

ÿ

iPg

τivrY
k
i ´ P

k
i s
xwki {N

looooooooooooooomooooooooooooooon

D1

(A.34)

´

NF
ÿ

g“1

ÿ

iPg

τivrP̂ k
i ´ P

k
i s
xwki {N

looooooooooooooomooooooooooooooon

D2

s (A.35)

By making use of the fact that the residual Y k
i ´ P k

i has zero conditional expectation,

D1 could be replaced by N´1
ř

i τivpY
k
i ´ P

k
i qw

k
i through a mean-square convergence

results (Klein and Spady, 1993). For D2, with 1{12 ă r ă 1{8, from Lemma A.4.7,

we have

a

NF pD2 ´D
˚
2 q “ opp1q, D˚2 ”

NF
ÿ

g“1

ÿ

iPg

τivrP̂ k
i ´ P

k
i sw

k
i {N (A.36)
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so that the estimated weight w can be replaced by the truth asymptotically. Recall that

the probability P k
i is estimated by a ratio of kernels according to D.4:

pP k
pvq ”

řN
j“1rY

K
j ´ ∆̂jpiqsKjpvq
řN
j“1Kjpvq

“ f̂{ĝ (A.37)

where ∆̂jpiq “ pIKpVjq ´ pIKpvq is an estimate of the localization error. Applying

Lemma A.4.7 again, we have
?
NF pD

˚
2 ´ UNq “ opp1q where

UN ”
1

N

NF
ÿ

g“1

ÿ

iPg

pf̂i{ĝi ´ Piqτviw
k
i

ĝi
gi

(A.38)

“
1

N

NF
ÿ

g“1

ÿ

iPg

pf̂i ´ Piĝiqτvi
wki
gi
` opp1q (A.39)

Let ρij ” rY k
j ´ ∆̂jpiq ´ PisKijτviw

k
i {gi, we can rewrite UK in the form of a second

order U-statistic:

UN “
1

NpN ´ 1q

NF
ÿ

g“1

ÿ

iPg

ÿ

jěi

ρ˚ij with ρ˚ij “
ρij ` ρji

2
(A.40)

After applying the standard approximation theory of U-statistics (Serfling, 2009;

Powell et al., 1989), we obtain
?
NF pUN ´ ÛNq “ opp1q where

a

NF ÛN ”
a

NF

NF
ÿ

g“1

ÿ

iPg

pErρij|Obsis ` Erρji|Obsisq{N “ T1 ` T2 (A.41)

It can be shown that for each term in T1:

Ertermis ” EitErρij|Obsisu “ Erρijs “ EVi,VjtErρij|Vi, Vjsu “ 0

V arrtermis “ Op1q

T1 is therefore opp1q from standard sample mean property. T2 “ 0 from the law of

iterated expectation and the residual property of wki . Therefore, since UN converges in
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probability to zero, we have

a

NF Ĝpθ0q “
a

NF

NF
ÿ

g“1

ÿ

iPg

τiv
Y k
i ´ P

k
i

P k
i

BP k
i

Bθ
{N ` opp1q (A.42)

Then, referring to the expression in (A.28),
?
NF pθ̂ ´ θ0q has an asymptotic linear

form:

a

NF pθ̂ ´ θ0q “ H´1
0

a

NF

NF
ÿ

g“1

Ggpθ0q{N ` opp1q (A.43)

Ggpθ0q ”
ÿ

iPg

L
ÿ

k“1

τiv
Y k
i ´ P

k

P k

BP k

Bθ
|θ“θ0 (A.44)

Since each cluster g consists of different number of observations, the term Ggpθ0q is

independent but not identically distributed. We apply the Lindberg-Feller CLT and

obtain:

a

NF pθ̂ ´ θ0q
d
Ñ Np0, H´1

0 r

NF
ÿ

g“1

Ggpθ0qG
1
gpθ0qsH

´1
0 q (A.45)

A.3.3 Proof of Theorem 2.4.3

Proof. For consistency, it can be shown that the estimated quantile trimming function

t̂qj will converge in probability to the truth. Since GMEK
q is a continuous function of

the estimated probability, and supθ|P̂kpθq ´ Pkpθq|
p
Ñ 0 for all k, consistency follows

from continuous function theorem and Theorem 3.1. To derive the estimator’s limiting

distribution, defining a term

yMk
q ”

řN
j“1 t̂qjr

xP k
i pVF , VB, Z ` δ; θ̂q ´

xP k
i pVF , VB, Z; θ̂qs

řN
j“1 t̂qj
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so it follows that

a

NF pGMEK
q ´

{GMEK
q q “

a

NF

K´1
ÿ

k“1

pyMk
q ´M

k
q q (A.46)

In the following proofs, all of the summation
řN
j“1 should be taken as

řNF

g“1

ř

jPg.

Since all terms within the above summation have the same structure, it suffice to

analyze just one term for any k. To simplify notation, let

xmk
j ” xP k

i pVF , VB, Z ` δ; θ̂q ´
xP k
i pVF , VB, Z; θ̂q (A.47)

mk
j ” P k

i pVF , VB, Z ` δ; θ0q ´ P
k
i pVF , VB, Z; θ0q (A.48)

N̂q ”
ÿ

t̂qj (A.49)

and we proceed with the following decomposition:

a

NF p
yMk

q ´M
k
q q ”

a

NF p

řN
j“1 t̂qjm̂

k
j pθ̂q

řN
j“1 t̂qj

´

řN
j“1 tqjm

k
j

řN
j“1 tqj

q

“
a

NF p∆1 `∆2 `∆3 `∆4q (A.50)

where ∆1 “ pN{N̂qq
1

N

ÿ

j

t̂qjpm̂
k
j pθ̂q ´m

k
j pθ0qq

∆2 “ pN{N̂qq
1

N

ÿ

j

mk
j pθ0qpt̂qj ´ tqjq

∆3 “ pN{N̂qqp
1

N

ÿ

j

tqjm
k
j pθ0q ´ ErtqjsM

k
q q

∆4 “ pN{N̂qq
1

N

ÿ

j

pErtqjs ´ t̂qjqM
k
q

In what follows, we study the limit of these four ∆ terms respectively. Loosely

speaking, ∆1 reflects the estimation uncertainly from the parameter θ0. We show that

∆1 can be characterized as the sum of one term related with the limiting distribution of

θ̂´θ0 and another third order U-statistic that vanishes asymptotically. Both ∆2 and ∆4

are related with estimation uncertainty from quantiles, which fortunately is a problem
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that received fair amount of attention in the literature of statistics and econometrics.

We apply results from Pakes and Pollard (1989); Shen and Klein (2017) and derive

their probability limits. There is no estimated components in ∆3, so a central limited

theorem can be applied directly.

Limiting distribution of ∆1:

For ∆1, note that

a

NF∆1 ” ∆11 `∆12 (A.51)

∆11 ” pN{N̂qq

?
NF

N

ÿ

j

pt̂qj ´ tqjqpm̂jpθ̂q ´mjpθ0qq (A.52)

∆12 ” pN{N̂qq

?
NF

N

ÿ

j

tqjpm̂jpθ̂q ´mjpθ0qq (A.53)

∆11 is opp1q in a fashion identical to the term ∆11 in Theorem 5 of Shen and Klein

(2017). Turning to ∆12, we furthur decompose ∆12 into four pieces:

∆12 “ pN{N̂qq
a

NF pT1 ` T2 ´ T3 ´ T4q

T1 “
1

N

N
ÿ

j“1

tqjr
xP k
j pVF , VB, Z ` δ; θ̂q ´

xP k
j pVF , VB, Z ` δ; θ0qs

T2 “
1

N

N
ÿ

j“1

tqjr
xP k
j pVF , VB, Z ` δ; θ0q ´ P

k
j pVF , VB, Z ` δ; θ0qs

T3 “
1

N

N
ÿ

j“1

tqjr
xP k
j pVF , VB, Z; θ̂q ´ xP k

j pVF , VB, Z; θ0qs

T4 “
1

N

N
ÿ

j“1

tqjr
xP k
j pVF , VB, Z; θ0q ´ P

k
j pVF , VB, Z; θ0qs (A.54)

For T1, from a Taylor expansion around θ0, we have:

a

NFT1 “
1

N

N
ÿ

j“1

tqj∇θ
xP k
j |θ“θ˚

a

NF pθ̂ ´ θ0q ` opp1q (A.55)

“ Ertqj∇θP
k
j pVF , VB, Z ` δ; θ0q|s

a

NF pθ̂ ´ θ0q ` opp1q (A.56)
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The second equality follows from the convergence of sup|∇θP̂ k
ipθq ´∇θP

k
i pθq|

p
Ñ 0

in Lemma A.4.4. Turning to T2, in Lemma A.4.9 we show that
?
NT2 can be written

as the sum of two pieces U1 and U2. In Lemma A.4.10 we proceed to show U1 is a

degenerate third order U-stat which would vanish asymptotically. In Lemma A.4.11

we show that U2 can be approximated by a sample mean of iid terms. Therefore we

have:

?
NT2 “

?
NpU1 ` U2q

“
1
?
N

N
ÿ

j“1

Ertqj|VF , VB, Z ` δsε
δ
j ` opp1q (A.57)

where εδj ” Y k
j ´ ErY k

j |VF , VB, Z ` δs. The proof strategy for T3 and T4 mimic the

ones for T1 and T2:

T3 “ Ertqj∇θP
k
j pVF , VB, Z; θ0q|s

?
Npθ̂ ´ θ0q ` opp1q (A.58)

T4 “
1
?
N

N
ÿ

j“1

Ertqj|VF , VB, Zsεj ` opp1q (A.59)

Combining (A.56)(A.57)(A.58)(A.59), we have

a

NF∆12 “
a

NF pT1 ´ T3 ` T2 ´ T4q

“
Ertqj∇θP

k
j pVF , VB, Z ` δ; θ0q|s ´ Ertqj∇θP

k
j pVF , VB, Z; θ0q|s

Ertqjs

a

NF pθ̂ ´ θ0q

`
1

Ertqjs
?
N

N
ÿ

j“1

Ertqj|VF , VB, Z ` δsε
δ
j ´ Ertqj|VF , VB, Zsεj ` opp1q (A.60)
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Limiting distribution of ∆2 and ∆4:

Both ∆2 and ∆4 in (A.50) are related to quantile estimation uncertainty. Turning to

∆4, we have, up to opp1q:

∆4 “ pN{N̂qq
1

N

ÿ

j

pt̂qj ´ ErtqjsqCMEk
q (A.61)

“ pN{N̂qq
1

N

ÿ

j

pt̂qj ´ tqjqCMEk
q (A.62)

` pN{N̂qq
1

N

ÿ

j

ptqj ´ ErtqjsqCMEk
q (A.63)

Both ∆2 and the first piece of ∆4 take the form pN{N̂qq
1
N

ř

Wjpt̂qj ´ tqjq where Wj

is either iid term over j or constant. From Lemma 3 of Shen and Klein (2017), who

exploits an important result from Pakes and Pollard (1989), the Bahadur representation,

and the convergence of N{N̂q to 1{Ertqjs, we have:

?
N∆2 “

1

Ertqjs
∇qErtqjmjpθ0qs

?
NB` opp1q (A.64)

?
N∆4 “

1

Ertqjs
∇qErtqjGMEqs

?
NB (A.65)

`
GMEq
?
NErtqjs

N
ÿ

j“1

ptqj ´ Ertqjsq ` opp1q (A.66)

Note that the normality of B, the sample average of Bj has been derived by Bahadur

(1966) and widely used in the econometric literature. The second piece of ∆4 is an

average of iid terms and therefore could be handled by CLT.
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Limiting distribution of ∆3:

∆3 in (A.50) is exactly an sample average of iid terms minus its expectation. From

Lindeberg-Levy CLT, we shall have

?
N∆3 “ pN{N̂qqp

1

N

ÿ

j

tqjmjpθ0q ´ ErtqjsGMEqq (A.67)

“
1

?
NErtqjs

ÿ

j

ptqjmjpθ0q ´ ErtqjsGMEqq (A.68)

After incorporating the results of all four ∆s and the asymptotic linear structure of
?
NF pθ̂´ θ0q in (A.43), the vector of yMk

q ´M
k
q , where k=1,2,3...L, has an asymptotic

linear form:

a

NF pM
k
q ´

yMk
q q “

?
NF

N

NF
ÿ

g“1

rΨk
1g `Ψk

2g `Ψk
3g `Ψk

4gs ` opp1q

Ψk
1g ”

Ertqj∇θP
k
j pVF , VB, Z ` δ; θ0qs ´ Ertqj∇θP

k
j pVF , VB, Z; θ0qs

Ertqjs
H´1

0 Ggpθ0q

Ψk
2g ” t∇qErtqjmjpθ0qs ´∇qErtqjCMEk

q su
ÿ

jPg

Bj

Ertqjs

Ψk
3g ”

Ertqj|VF , VB, Z ` δsε
δ
j ´ Ertqj|VF , VB, Zs

ř

jPg εj

Ertqjs

Ψk
4g ”

ÿ

jPg

tqjmjpθ0q ´ ErtqjsCMEk
q

Ertqjs
´
tqj ´ Ertqjs

Ertqjs
CMEk

q (A.69)

and after applying the Central Limited Theorem to that vector, we have:

a

NF

»

—

—

—

—

—

—

—

–

yM1
q ´M

1
q

yM2
q ´M

2
q

...

yML
q ´M

L
q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

d
Ñ Z „ Np0,Ωq (A.70)

where Ω ” ErpΨk
1g ` Ψk

2g ` Ψk
3g ` Ψk

4gq
1pΨk

1g ` Ψk
2g ` Ψk

3g ` Ψk
4gqs and each Ψk

g

is a L X 1 column vector calculated from the formula above. By construction, the
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object of interest
?
Np ˆQME

K

q ´ QMEK
q q can be obtain from the following linear

transformation on the above vector. With A “ p1, 1, ...1, 0, 0, 0q, an 1 X L dimension

row vector with the first K-1 component equals one and the rest equals zero, we have

?
Np ˆQME

K

q ´QMEK
q q “

?
NA

»

—

—

—

—

—

—

—

–

yM1
q ´M

1
q

yM2
q ´M

2
q

...

yML
q ´M

L
q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

d
Ñ AZ „ Np0, A1ΩAq (A.71)

Then the normality result follows.

A.4 Intermediate Lemmas and Proofs

Consider the mean regression model in the main text: ErY K
j “ 1|Vjs “ PKpVjq in a

“localized form” for the jth observation:

Y K
j “ PK

pVjq ` εj with εj “ Y K
j ´ ErY K

j “ 1|Vjs (A.72)

“ PK
pvq ` rPK

pVjq ´ P
K
pvqs ` εj (A.73)

where Y K
j is a binary variable that takes value one if bond j is rated as category K,

Vj “ rF1j ` F
1
jθ
F
0 , B1j `B

1
jθ
B
0 , Zjs denotes the vector of indices at θ0, and v is a fixed

point that we choose to localize on. This object PKpVjq ´ PKpvq is termed as the

“localization error”.

Normally a kernel estimator for PKpvq, which becomes a parameter after

localization, is obtained by minimize the weighted squared sum of Y k
j ´ PKpvq in
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the following way:

ÎKpvq “ argminα
ÿ

j

pY K
j ´ αq2Kjpvq (A.74)

ùñ ÎKpvq “

ř

j Y
K
j Kjpvq

ř

jKjpvq
(A.75)

The kernel Kjpvq is employed to downweight observations with index values far away

from v. This estimator ÎKpvq, after scaled by the density ĝpvq, has a bias of order h2,

where h is the window size defined in D.2. In a recent paper, Shen and Klein (2017)

suggest that the following estimator:

pPK
pvq ”

ř

jrY
K
j ´ ∆̂jpvqsKjpvq

ĝpvq
“ f̂pvq{ĝpvq (A.76)

has a “better” convergence property than ÎKpvq, as Lemma A.4.1 suggested. More

importantly, they show that by repeating this process, the bias of estimating PKpvq can

be reduced to any order.

Lemma A.4.1 (Convergence Properties of Estimated Probability after Recursive

Differencing). The following convergence properties hold for the conditional

probability estimator defined above:

(1) supvEtpĝpvqrP̂Kpvq ´ ErP̂Kpvqssq2u|θ“θ0 “ Opp
1

Nh3
q

(2) supv|ErĝpvqpP̂Kpvq ´ PKpvqqs|θ“θ0 “ Oph4q

(3) supv,θ∇t
θ|P̂

Kpvq ´ PKpvq| = Opph
4q `Opp

1
N1{2h3`t q, with t “ 0, 1, 2

Proof. See Theorem 1 and Lemma 11 in Shen and Klein (2017). In particular, they

demonstrated that a lower order of bias can be achieved after estimating the localization

error and subtracted from Y K
j , without causing the order of variance to shoot up. As

illustrated in the first two results, the order of the variance here is the same compared

to that with a regular kernel in Lemma A.4.3, while a lower order bias is obtained (h4
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vs h2). In addition, they also derive the uniform rate that this estimated probability and

its derivatives goes to the truth.

Lemma A.4.2 (Uniform Convergence of Estimates to Expectations). Let w be a K

dimensional vector and assume that m(w) is a sample average of terms m(w; zi), where

zi are i.i.d. Assume that with hÑ0, we have uniformly over N:

hr`1
|mpw; ziq| ă c, r ` 1 ą 0 and hs|Bmpw; ziq{Bw| ă c, s ą 0

Let E[m(w)] be the expectation of m(w) taken over the distribution of zi. Then, with w

in a compact set and for any α ą 0:

N p1´αq{2hr`1sup|mpwq ´ Ermpwqs|
p
Ñ 0 a.s.

Proof. See the proof of Lemma A.4.2 on pp 411 in Klein and Spady (1993). The proof

utilizes important implication in Hoeffding (1963) and Bhattacharya (1967).

Lemma A.4.3 (Uniform Convergence for Density Estimator and Its Derivatives). Let

ĝ be a estimated density with 3 indices defined as in D.3 and ∇r
θĝ be the r-th density

derivative with respect to θ, r = 0,1,2. If all x’s are bounded, then:

(A.4.3.1) supv,θEtp∇r
θĝpvq ´ Er∇r

θĝpvqsq
2su “ Opp

1
Nh2r`3 q

(A.4.3.2) supv,θ|Er∇r
θĝpvqs ´∇r

θgpvq| “ Opph
2q

(A.4.3.3) supv,θ|∇r
θĝpvq ´∇r

θgpvq| “ OppN
´ 1

2h´r´3q `Opph
2q

Proof. The bias and variance calculation is fairly standard in the literature. One can
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find them in Hansen (2009). We just outline the proof for r = 0. For the bias calculation,

Erĝpθqs “

ż 8

´8

1

h
Kp

Vipθq ´ vpθq

h
qgpvpθqqdv (A.77)

“

ż 8

´8

Kpuqgpv ` huqdu let u “
Vipθq ´ vpθq

h
(A.78)

After a second order taylor expansion on h=0 (A.79)

“

ż 8

´8

Kpuqrgpvq ` g1pv`qhu`
1

2
g2pv`qh2u2

sdu (A.80)

“ A1 ` A2 ` A3 (A.81)

Given that K is the regular Gaussian kernel defined in D.2, A1 “ gpvpθqq because
ş

Kpuqdu “ 1. A2 “ 0 since K is symmetric by D.4, so
ş

Kpuqudu “ 0. A3 “ Opph
2q

because the Gaussian kernel has variance of 1 and g2 is bounded by A.5. Therefore,

we have

Erĝpθqs ´ gpθq “ Opph
2
q (A.82)

The proof for density derivatives are similar. For the uniform convergence of ∇r
θĝpvq,

note that

supv,θ|∇r
θĝpvq ´∇r

θgpvq| ď supv,θ|∇r
θĝpvq ´ Er∇r

θĝpvqs|
looooooooooooooooomooooooooooooooooon

This piece is studied in Lemma A.4.2

(A.83)

` supv,θ|Er∇r
θĝpvqs ´∇r

θgpvq|
looooooooooooooooomooooooooooooooooon

The bias calculation

(A.84)

To utilize Lemma A.4.2 to the study the converge property of the first term, let

mpw;Ziq “ ĝpvq where w “ tv, θu. By the way that ĝpvq is defined in D.3, we

have h3`r∇r
θĝpvq “ Op1q, so it follows that the first term is OppN

´1{2h´r´3q

Lemma A.4.4 (Mean-square Convergence of Estimated Probability). Referring D.4

for the definition of P̂ kpvq, let ∇t
θP̂ be the t-th derivative with respect to θ, with t =
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0,1,2. Then, for h = N´r and under the conditions of Lemma A.4.2 and Lemma A.4.3,

1

N

ÿ

i

pP̂ k
ipθq ´ P

k
i pθqq

2
“ OppN

´1h´3
q `Opph

8
q (A.85)

Proof. Note that 1
N

ř

ipP̂
k
i pθq´P

k
i pθqq “

1
N

ř

ip
f̂i
ĝi
´
fi
gi
q ď supp 1

ĝi
q 1
N

ř

ipf̂i´P
k
i pθqĝiq.

Since we trim ĝi away from zero, 1/infpĝiq is clearly bounded from above. Due to the

recursive differencing structure in f̂ that we explained in Lemma A.4.1, we have that

for some constant B = Op1q,

1

N

ÿ

i

pP̂ k
i pθq ´ P

k
i pθqq

2
ď B2 1

N

ÿ

i

pf̂i ´ P
k
i pθqĝiq

2

“ B2 1

N

ÿ

i

pf̂i ´ Erf̂ s ` Erf̂ s ´ P
k
i pθqĝiq

2

“ B2 1

N

ÿ

i

pf̂i ´ Erf̂ sq
2

loooooooooomoooooooooon

variance of f̂

`B2 1

N

ÿ

i

pErf̂ s ´ P k
i pθqĝiq

2

loooooooooooooomoooooooooooooon

squared bias of f̂

` B2 2

N

ÿ

i

pf̂i ´ Erf̂ sqpErf̂ s ´ P
k
i pθqĝiq

looooooooooooooooooooooomooooooooooooooooooooooon

opp1q

“ O2
pp1qpOppN

´1h´3
q `Opph

8
qq

Lemma A.4.5 (Convergence of Hessian). Assume the window size h = N´r and

1{16 ă r ă 1{10. Then, under the conditions of lemma A.4.2 and C.2 and with

θ` P rθ̂, θ0s,

Ĥpθ`q´1 p
Ñ H0 “ ErHpθ0qs

Proof. Given that the Hessian is a continuous function on θ, the desired argument

Ĥpθ`q
p
Ñ ErHpθ0qs would follow if we have the following two conditions holds:

(a) θ` p
Ñ θ0 (b) sup|Ĥpθq ´ ErHpθqs|

p
Ñ 0. Condition (b) implies that Ĥpθ0q

p
Ñ

ErHpθ0qs. If (a) holds, then by the continuous mapping theorem we have Ĥpθ`q p
Ñ
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Ĥpθ0q
p
Ñ ErHpθ0qs. Condition (a) directly follows from consistency because θ` is

some intermediate point between θ0 and θ̂. To show (b), note that:

sup|Ĥpθq ´ ErHpθqs| ď sup|Ĥpθq ´Hpθq| ` sup|Hpθq ´ ErHpθqs|(A.86)

ď T1 ` T2 (A.87)

T2
p
Ñ 0 from Lemma A.4.2. Note that the hessian, by definition, is the second

derivative of the quasi-log-likelihood function:

Hpθ0q ”
1

N

ÿ

i

p
Y k
i

Pk,i
∇θ1θPk,i ´

Y k
i

P 2
k,i

∇θPk,iq

To make T1 uniformly converge to 0, we need ∇t
θP̂

k
i uniformly converge to its

associated estimand for t = 0,1,2, with the rate at t=2 being the slowest. From

Lemma A.4.3, r ă 1{10 ensures this is the case for t = 2. Therefore we have

Ĥpθ`q´1 p
Ñ H0 “ ErHpθ0qs.

Lemma A.4.6 (Double Convergence). Let ai,bi be some iid quantity, and âi, b̂i be their

estimator respectively. If 1
N

ř

ipâi ´ aiq
2 “ OppN

´α1q, 1
N

ř

ipb̂i ´ biq
2 “ OppN

´α2q,

then 1
N

ř

ipâi ´ aiqpb̂i ´ biq “ OppN
´α2´α1q

Proof. The proof follow directly from the Cauchy-Schwarz:

1

N

ÿ

i

pâi ´ aiqpb̂i ´ biq ď

d

1

N

ÿ

i

pâi ´ aiq2

d

1

N

ÿ

i

pb̂i ´ biq2 (A.88)

Lemma A.4.7 (Convergence rate for double sums). With h “ Oph´rq, 1{12 ă r ă

1{8, then with P̂ ” f̂ki{ĝki and M̂ as (i) ĝ or (ii) ŵ ” B ˆPk,i

Bθ
{P̂ :

∆ ”
?
N

1

N

ÿ

i

pP ´ P̂ qpM ´ M̂q “ opp1q
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Proof. To show (i), note that 1?
N

ř

ipf̂´P ĝqpg´ĝq{gĝ ď
1

g inf pgq
?
N

ř

ipf̂´P ĝqpg´ĝq.

Therefore it suffices to show that 1?
N

ř

ipf̂´P ĝqpg´ĝq “ opp1q since infpgq is bounded

below from zero due to trimming. From the Cauchy-Schwarz inequality:

1

N

ÿ

i

pf̂ ´ P ĝqpg ´ ĝq ď

d

1

N

ÿ

i

pf̂ ´ P ĝq2
1

N

ÿ

i

pg ´ ĝq2

“

g

f

f

f

f

e

1

N

ÿ

i

pf̂ ´ Erf̂ s ` Erf̂ s ´ P ĝq2

looooooooooooooooooomooooooooooooooooooon

This piece is studied in Lemma A.4.4

1

N

ÿ

i

pg ´ Erĝs ` Erĝs ´ ĝq2

looooooooooooooooomooooooooooooooooon

This piece is studied in Lemma A.4.3

“

b

pOpph8q `Opp1{Nh3qqpOpph4q `Opp1{Nh3qqq

“ oppN
´1{2

q given that 1{12 ă r ă 1{6

To show (ii), apply (i) and note it suffice to show that 1?
N

ř

pf̂ ´P ĝqpw´ ŵq “ opp1q.

Again from Cauchy-Schwarz, we have

1

N

ÿ

i

pf̂ ´ P ĝqpw ´ ŵq ď

d

1

N

ÿ

i

pf̂ ´ P ĝq2
1

N

ÿ

i

pw ´ ŵq2

“

g

f

f

f

f

e

1

N

ÿ

i

pf̂ ´ Erf̂ s ` Erf̂ s ´ P ĝq2

looooooooooooooooooomooooooooooooooooooon

This piece is studied in Lemma A.4.4

ˆ Oph8
q `Op1{Nh5

q
loooooooooomoooooooooon

By Lemma 10 of Shen and Klein (2017)

Therefore the results will be opp1q, if

$

&

%

rOpph
4q `Opp1{N

1{2h3{2qsˆ

rOpph
4q `Opp1{N

1{2h5{2qs

,

.

-

= oppN´1{2q.

This condition is satisfied with 1{16 ă r ă 1{8.

Lemma A.4.8 (Residual Property). Under the index assumption: ErY k
i “ 1|Xis “

ErY k
i “ 1|Vipθ0qs, we have Er∇θErY

k
i “ 1|V pθq|θ“θ0ss “ 0.

Proof. This property is stated and proved in Theorem 1 of Klein and Shen (2010),

and the authors thank Whitney Newey for mentioning a key idea in a private

communication. This property plays a key role in reducing the bias of θ̂. To be specific,

recall that in analyzing the gradient term in (A.34), we show that the D2 piece can be
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approximated by a U-statistic which looks like the sum of two terms T1 and T2. Using

the law of iterated expectation after conditioning on the index Vj , T2 has the form of:

T2 “
a

NF

NF
ÿ

g“1

ÿ

iPg

EVj rErρji|Obsi, Vjss{N (A.89)

where ρji ” rY k
i ´ ∆̂ipjq ´ PjsKjiτvjw

k
j {gj with wkj ” ∇θErY

k
i “ 1|V pθq|θ“θ0s{Pj .

Once conditional on the i’th observation and Vj , the inner expectation becomes

trY k
i ´ ∆̂ipjq ´ PjsKjiτvj{PjgjuEr∇θErY

k
i “ 1|V pθq|θ“θ0s|obsi, Vjs

looooooooooooooooooooomooooooooooooooooooooon

“0 by the residual property

(A.90)

so it follows that T2 is zero.

However, using this residual property as a bias control has a cost. Note that the

expectation operator can slide through pji and hit wkj only if the trimming function τ

is based on the index (We discussed the index-trimming and X-trimming in D.1). To

perform index trimming, we need to estimate θ0 in a two-stage process: first obtain a

consistent estimate of θ0, denote it as θ̂1 and calculate the estimated index as V pθ̂1q.

Then, estimate θ0 again but based the trimming on V pθ̂1q. In Theorem 3.1, we show that

the estimator in the second stage is asymptotically normal, but the first stage estimator

(based on X-trimming) is not due to the bias from the U-statistic term.

Lemma A.4.9. Refering to T2 in (A.54),
?
NT2 “

?
NpU1 ` U2q ` opp1q, where

U1 ”
1

?
NpN ´ 1qpN ´ 2q

N
ÿ

j“1

ÿ

i‰j

ÿ

s‰i‰j

ρjis (A.91)

U2 ”
1
?
N

N
ÿ

j“1

Ertqj|VF , VB, Z ` δsε
δ
j ` opp1q (A.92)

ρjis “
δj
gj
Kijr

1

gj
pYsKjs ´ PjKjsq ´

1

gi
pYsKis ´ PjKisqs (A.93)
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Proof. To simplify notation, let δj “ tqj and Pj “ P k
j pVF , VB, Z ` δ; θ0q.

?
NT2 “

?
N

N

N
ÿ

j“1

rP̂j ´ Pjsδj (A.94)

“

?
N

N

N
ÿ

j“1

r
fj
gj
´
f̂j
ĝj
sδj (A.95)

“

?
N

N

N
ÿ

j“1

rf̂j ´ Pj ĝjs
δj
gj
` opp1q (A.96)

“

?
N

NpN ´ 1q

N
ÿ

j“1

ÿ

i‰j

rYi ´ ∆̂ipjq ´ PjsKij
δj
gj

(A.97)

“

?
N

NpN ´ 1q

N
ÿ

j“1

ÿ

i‰j

rYi ´ P̂i ` P̂j ´ PjsKij
δj
gj

(A.98)

“

?
N

NpN ´ 1q

N
ÿ

j“1

ÿ

i‰j

rPi ´ P̂i ` ε
δ
i ` P̂j ´ PjsKij

δj
gj

(A.99)

“

?
N

NpN ´ 1q

N
ÿ

j“1

ÿ

i‰j

r∆ipjq ´ ∆̂ipjq ` ε
δ
i sKij

δj
gj

(A.100)

The equality of (A.95) and (A.96) follows from double convergence. For the

transformation from (A.96)-(A.99), recall that we have a δ-localized model: (The same

localized model but conditioning on Z+δ. Denote V δ
i ” pVFi, VBi, Zi ` δq)

Yi “ P pV δ
i q ` ε

δ
i pNote: εδi “ Yi ´ ErYi|V

δ
i sq (A.101)

“ P pV δ
j q ` P pV

δ
i q ´ P pV

δ
j q ` ε

δ
i (A.102)

” P pV δ
j q `∆ipjq ` εi (A.103)

and a localized bias reducing estimator:

P̂ pV δ
j q ”

f̂j
ĝj
“

1
pN´1qh

ř

i‰jpYi ´ ∆̂ipjqqKij

1
pN´1qh

ř

i‰jKij

(A.104)

Kij ” Kp
V δ
j ´ V

δ
i

h
q (A.105)

∆̂ipjq ” P̂i ´ P̂j ( difference of first stage estimator) (A.106)
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Proceed from (A.100), note that both P̂i, P̂j could be estimated by the first stage kernel

estimator, so the difference of ∆s in (A.100) could be replaced by

∆ipjq ´ ∆̂ipjq “ p
fj
gj
´
f̂j
ĝj
q ´ p

fi
gi
´
f̂i
ĝi
q (A.107)

“
1

gj
pf̂j ´ Pj ĝjq ´

1

gi
pf̂i ´ Pj ĝiq (A.108)

“
1

pN ´ 2qgj

ÿ

s‰i‰j

pYsKjs ´ PjKjsq (A.109)

´
1

pN ´ 2qgi

ÿ

s‰i‰j

pYsKis ´ PiKisq (A.110)

“
1

pN ´ 2qgj

ÿ

s‰i‰j

Csj ´
1

pN ´ 2qgi

ÿ

s‰i‰j

Csi (A.111)

So substitute the expression in (A.111) into (A.100) yields the following:

?
NU “

?
NpU1 ` U2q (A.112)

?
NU1 “

?
N

NpN ´ 1qpN ´ 2q

N
ÿ

j“1

δj
gj

ÿ

i‰j

Kijr
1

gj

ÿ

s‰i‰j

Csj ´
1

gi

ÿ

s‰i‰j

Csis

?
NU2 “

?
N

NpN ´ 1q

N
ÿ

j“1

δj
gj

ÿ

i‰j

εiKij

Lemma A.4.10. Refering to the proof in Lemma A.4.9,
?
NU1 “ opp1q

Proof. With the definition of U1 in (A.113), and

ρjis “
δj
gj
Kijr

1

gj
pYsKjs ´ PjKjsq ´

1

gi
pYsKis ´ PjKisqs (A.113)

we have:

?
NU1 ”

1
?
NpN ´ 1qpN ´ 2q

N
ÿ

j“1

ÿ

i‰j

ÿ

s‰i‰j

ρjis (A.114)
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letting

ρ˚jis “ rρjis ` ρijs ` ρisj ` ρsij ` ρjsi ` ρsjis{6 (A.115)

we can write (A.114) as a centered U-statistic:

?
NU1 “

?
N

ˆ

N

3

˙´1 N
ÿ

j“1

ÿ

i‰j

ÿ

s‰i‰j

ρ˚jis (A.116)

From the approximation theory of Serfling (2009) and Powell et al. (1989),

?
NpU1 ´ Û1q “ opp1q (A.117)

Û1 “
1

N

N
ÿ

j“1

Erρ˚jis|obsjs (A.118)

we show
?
NU1 is opp1q through the following steps:

(a) Erρjis|obsjs “ opN´1{2q

(b) Erρ˚jiss “ opN´1{2q

(c)
?
NÛ1 is opp1q

For (a), we may write Erρjis|obsjs as E1 ´ E2 where

E1 ” Et
δj
gj
Kij

1

gj
pYsKjs ´ PjKjsq|obsju (A.119)

E2 ” Et
δj
gj
Kij

1

gi
ErpYsKis ´ PiKisq|Vis|obsju (A.120)
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For the interior expectation in E2 term, we have:

ErpYsKis ´ PiKisq|Vis “ E
Vs
ErpYsKis ´ PiKisq|Vi, Vss (A.121)

“ E
Vs
pErYs|VssKis ´ PiKisq|Vss

“

ż

pPs ´ PiqKp
Vi ´ Vs
h

qgpVsqdpVsq

“

ż

pP pVi ` zhq ´ P pViqqKpzqgpVi ` zhqdpzq

“ r
gpViqsupwp∇2P pwqq

2
` supwp∇P pwq∇gpwqqsh2

`Oph4
q

where∇ and∇2 denote a first(second) derivative taken with respect to Vi. Substituting

this expression into (A.120) yields:

E2 “ Et
δj
gj
Kij

1

gi
rr
gpViqsupwp∇2P pwqq

2
` supwp∇P pwq∇gpwqqsh2

`Oph4
qs|obsju

“
δj
gj
EtKij

1

gi
rr
gpViqsupwp∇2P pwqq

2
` supwp∇P pwq∇gpwqqsh2

`Oph4
qs|obsju

“ h2 δj
gj
r
gpVjqsupwp∇2P pwqq

2
` supwp∇P pwq∇gpwqqs `Oph4

q

Turning to the E1 term, through a similar derivation, we shall have:

E1 “ Et
δj
gj
Kij

1

gj
|obsjuEtYsKis ´ PjKis|obsju

“
δj
g2
j

rgj ` h
2 supwpg

2pwqq

2
`Oph4

qs ˚

rr
gpVjqsupwp∇2P pwqq

2
` supwp∇P pwq∇gpwqqsh2

`Oph4
qs

“ h2 δj
gj
r
gpVjqsupwp∇2P pwqq

2
` supwp∇P pwq∇gpwqqs `Oph4

q

Therefore we have E1 ´ E2 “ Oph4q “ opN´1{2q with h “ OpN´1{7.99q.

For (b), the proof follows immediately from (a) and the fact that all terms in

ρ˚ijk have the same unconditional expectations. For (c), since (b) would imply that

Er
?
NU1s “ opp1q and it can be shown that V arp

?
NU1q “ opp1q, the result
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?
NU1 “ opp1q now follows.

Lemma A.4.11. the U2 piece :
?
NU2 “

1?
N

řN
j“1Ertqj|V

δ
j sε

δ
j ` opp1q

Proof. Refer to U2 in (A.113), defining ρij ”
δj
gj
εδiKij , we have:

?
NU2 “

1
?
NpN ´ 1q

N
ÿ

j“1

ÿ

i‰j

δj
gj
εiKij (A.122)

“
?
N

ˆ

N

2

˙´1 N
ÿ

j“1

ÿ

iěj

rρji ` ρijs{2 (A.123)

“
2
?
N

N
ÿ

j“1

Erρji ` ρij|Yj, Xjs{2` opp1q (A.124)

“
1
?
N

N
ÿ

j“1

Erρij|Yj, Xjs ` opp1q (A.125)

“
1
?
N

N
ÿ

j“1

Er
δi
gi
Kji|Yj, Xjsε

δ
j ` opp1q (A.126)

“
1
?
N

N
ÿ

j“1

Er
Erδi|V

δ
i s

gi
Kji|Yj, Xjsε

δ
j ` opp1q (A.127)

“
1
?
N

N
ÿ

j“1

Erδj|V
δ
j sε

δ
j ` opp1q (A.128)

The third equality follows from standard U-statistics projection theorem. (A.127)

follows from an iterated expectation conditioning on Vi. The last equality follows from

a Taylor expansion on Erδi|Vis. When defining the localized model, recall that we let

εδj “ Yj ´ ErYj|V
δ
j s, therefore:

?
NU2 “

1
?
N

N
ÿ

j“1

Erδj|V
δ
j srYj ´ ErYj|V

δ
j ss ` opp1q (A.129)
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Appendix B

Supplemental Materials to Ordered Response
Models with Unobserved Correlated
Thresholds

B.1 Evidences of Endogenous Characteristics

In this part, we will first provide the definition and identification results of structural

and nonstructural rating probability functions. We also show that the disparity

between the two functions could be seen as evidence of endogenous selection of bond

characteristics. And this point is further confirmed with our data.

B.1.1 Structural and Nonstructural Probabilistic Rating

Functions

We first define the non-structural conditional rating probability function in Eq. (B.1)

for any v P R

P n
j pvq ” PrpYi ď j|V0i “ vq “

ż

tv ď TjudFTj |V0“vptq, j “ 0, 1, ¨ ¨ ¨ , J ´ 1 (B.1)

where FTj |V0“vp¨q is the conditional cumulative distribution function of Tj given the

risk index V0 “ v. P n
j p¨q measures the probability of being rating equal or above

notch j given some true risk index. However, P n
j p¨q is non-structural as the marginal

effects of changes in bond characteristics on the this probability are confounded with

the effect from changes of conditional distribution functions. This confoundedness is
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attributed to the dependency between the risk index and thresholds that consist of the

hidden adjustment at bond level. Those probabilities and probability functions of this

type are always computed in empirical works. However, its validity of predictions and

causal effects would not generally be true.

This paper suggests a more interesting object, which only capture the partial effect

on the probabilities due to the change in V0i while holding the thresholds distributions

fixed. This effect is summarized by the structural cumulative conditional rating

probability function in Eq. (B.2) given V0i “ v,

P s
j pvq ” Prpv ď Tjq “

ż

tv ď TjudFTjptq, j “ 0, 1, ¨ ¨ ¨ , J ´ 1 (B.2)

where FTjp¨q is the marginal distribution of Tj . P s
j pvq corresponds to the average

structural functions considered in Blundell and Powell (2004); Imbens and Newey

(2009). In our example, Pjpvq calculates the probability of being rated less than or

equal to notch j, holding the threshold distribution unchanged for some default risk v.

For models with only exogenous variables, P s
j pvq and P n

j pvq coincide with each other

but diverge if the soft adjustment considered here does exist and its effect cannot be

ignored.1 Based on this observation, one can even have a test for the endogeneity.

The identification result of average structural functions for nonseparable models

often relies critically on a large support condition in A-I.3.

A-I.3 Large Support. R “ Rv, @v P R, a.s. where R “ supppRiq,Rv “

supppRi|V0i “ vq.

A-I.3 requires the conditional support ofRi to be the same as the unconditional support.

This large support condition is often invoked in the control function literature to obtain

point identification results of average structural functions. We require A-I.3 only for

the point identification of P s
j p¨q. But for identification of index parameters and soft

1The structural probability function of being rated exactly at notch j given V0 “ v can be obtained
straightforwardly by PrpTj´1 ă v ď Tjq “ P s

j pvq ´ P
s
j´1pvq, j “ 0, 1 ¨ ¨ ¨ , J .
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adjustment alone, A-I.3 is not necessary. Proposition A states that Pjpvq in Eq. (B.2)

can be identified if the large support condition is invoked. The identification is achieved

by marginally integrating out Ri for each index value v P R. The proof is standard and

we leave it in the appendix.

Under Assumption A-I.1 and A-I.3, P s
j pvq are identified for each v P R and j P Y .

Proof of Proposition A. The proof resembles the line of reasoning in Blundell and

Powell (2003) and Imbens and Newey (2009) for the identification of average structural

functions.

Finally, consider estimators of the structural and non-structural conditional

probability functions defined in Eq. (B.1) and Eq. (B.2). Proposition A shows that

P s
j pvq can be identified by integrating the conditional expectation function with respect

to the CDF of Ri. Substitution with their consistent estimators gives us the estimators,

pP s
j pvq, for each j. Consider the partial mean estimator in Eq. (B.3).

pP s
j pvq “

1

N

N
ÿ

i“1

pPjpv,Rippαqq (B.3)

In contrast, the nonstructural conditional probability functions can be straightforwardly

estimated as the conditional expectation function in Eq. (B.4) in which pE denotes the

local constant estimator

pP n
j pvq “

pEptYi ď ju|Vippβq “ vq (B.4)

In the next section, we plot pP n
j pvq against pP s

j pvq to empirically examine the

endogeneity issue of bond characteristics.
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B.1.2 Empirical Evidence of Endogenous Characteristics

The key implication of our structural bond rating model is that some firm and bond

characteristics are endogenously determined as issuers tend to form expectations of

CRAs’ soft adjustment conditional on its own private information. If this is true, then

traditional estimators without taking into account the omitted soft adjustment could be

biased. But the validity of above story remains to be verified by empirical evidences.

In Figure B.1, we plot the cumulative structural (in solid) and non-structural (in dash)

rating probability functions, defined in Eq. (B.2) and (B.1), for each category. To

produce the graph, we have to estimate both the risk parameter and control relationship

index first and then evaluate the conditional probability function nonparametrically.

Figure B.1 is generated using the entire sample. For example of Aa or above, shown

in the middle of the first row, the probabilities of being rated to Aa or above are

drawn against the negative default risk index. In the case of no endogenous bond

characteristics, one curve should match the other perfectly. However, this observation

is obviously untrue for most of our subplots, but Baa or Ba above. For Aaa, the two

functions diverge apart when the negative default risk index is large enough. For Aa or

above, the nonstructural one explodes rapidly, as opposed to the more stable structural

function. In general, the nonstructural tend to overestimate the probability at large

index values. A formal test is unnecessary here because rejections are not hard to find

as long as at least one of the categories does depart largely at some index value. Finally,

one caveat of this plot: the converges of curves is the sufficient but not necessary

condition for the presence of endogenous financial characteristics. Therefore, one

cannot rule out the possibility of endogenous bond attributes even for subplots Baa

or Ba above.
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Figure B.1: Structural and Nonstructural Conditional Rating Probabilities
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Note: 1. Data range is 2000-2016. 2. Estimates represent normalized coefficient
ratios with respect to log of asset and Mshare, respectively for financial and control
parameters. 3. Oprobit-R is estimated by MLE. Semi-X and semi-R are estimated
by pseudo-MLE. 4. The rule-of-thumb bandwidths, h “ 1.06s.d.pRqN´r are used,
with the optimal rate i.e. r “ 1{6 for double index models. 5. Standard errors are
in parentheses. 6. Significant level: *10 percent, **5 percent, ***1 percent.

B.2 Asymptotic properties

We now discuss the asymptotic properties for the two-stage estimators of both pθ and

p∆prq for each r in the support. In particular, the theorem below presents consistency

results on index parameter estimators and conditional relative thresholds estimators.

Asymptotic assumptions A-A.1 to A-A.6 are all standard in the non/semi-parametric

literature.

A-A.1. DGP. tpYi, X 1
i, R

1
i,T

1
iqu

N
i“1 P pY ,X ,R,J q is an i.i.d. vector of random

variables defined on a complete probability space pΩ,F , P q, where pYi, X 1
i, R

1
iq

are observed and T 1i are unobserved.

A-A.2. Smoothness. For each j P Y and pv, rq P R ˆ R, 0 ă Pjpv, rq ă 1. The

CDF FV and FR has the uniformly continuous and bounded Radon-Nikodym

second order density derivatives with respect to Lebesgue measure. i). fV is

continuous in v and fV |R is continuous in pv, rq. ii). There exists C ą 0 such
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that infR0 fV ą C and infR0 fV |R ą C.

A-A.3. Dominance. For each j P Y any r P R, Pjp¨, rq has all partial derivatives

up to 3rd order. Let OlPjpv, rq ”
BlPjpv,rq

pBvql
where l “ 1, 2, 3. OlPjp¨, rq is

uniformly bounded and Lipschitz continuous on R: for all v, rv P R, |OlPjpv, rq´

OlPjprv, rq| ď C||v ´ rv||, for some constant C ą 0, where || ¨ || is the Euclidean

norm.

A-A.4. Kernel. For some integer ν, the univariate symmetric kernel function k : RÑ

p0, 1q, satisfies i).
ş

uikpuqdu “ δi0, for i “ 0, 1, ¨ ¨ ¨ , ν ´ 1, where δij is the

Kronecker’s delta. ii).
ş

uνkpuqdu ă 8. iii). kpuq “ Opp1 ` u1`u`εq´1q for

some ε ą 0.

A-A.5. Bandwidth. As N Ñ 8, then hi Ñ 0, Nh4
i Ñ 8, for i “ 1, 2,

?
Nh6

1 Ñ 0

and
?
Nh2h

4
2 Ñ 0.

A-A.6. Parameter space. θ0 P Θ0, where Θ0 is the interior of the compact support Θ.

A-A.1 reiterates the data generating process. We do not need X and R to be compactly

supported as the trimming indicator will guarantee the density denominators away from

0. A-A.2 and A-A.3 are regularity conditions usually appearing in nonparametric

estimators. They indicate that densities and conditional expectations are smooth

enough and have partial derivatives up to 3rd order with respect to the index V . A-

A.4 is standard in kernel estimation. In this paper, the second-order kernels, ν “ 2,

mostly suffices to reduce the asymptotic bias. A-A.5 concerns bandwidths and window

parameters. A-A.6 restricts support of the finite and infinite-dimensional parameters to

be compact given point identification.

Theorem B.2.1 (Consistency). Under Assumption I.1-I.2 and A.1-A.6, then for any
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ε ą 0, as N Ñ 8, it follows that

aq. N1{2´ε
|pθ ´ θ0| “ opp1q

bq. pNh2q
1{2´ε

|p∆j,j´1prq ´∆j,j´1prq| “ opp1q, j “ 0, 1 ¨ ¨ ¨ , J ´ 2

To conserve space, we do not reiterate the proof of Theorem B.2.1 which can be

found in Klein and Sherman (2002). The proof of b). is based on the functional Delta

method approach. Our proof resembles Theorem 5.1 in Altonji and Matzkin (2005).

p∆j,j´1prq “
1

N

N
ÿ

i“1

”

pP´1
j´1

´

pPjpVippβq, rq, r
¯

´ Vippβq
ı

, j P t1, ¨ ¨ ¨ , J ´ 1u

A remark on bandwidth selection. As in Assumption A-A.5, bandwidths are allowed

to be different for estimating pθ and p∆prq. In order to eliminate the bias in the

theorem, bias-reducing techniques can be apply (Klein and Shen, 2010; Shen and

Klein, 2017, etc.). A nice finding shows that the limiting variances of the relative

thresholds estimators do not depend on the variability of the first-stage index estimators

because the latter converge at a faster
?
N rate than the nonparametric rate

?
Nh2

for the second-stage estimators. This property permits us to analyze the second stage

variability separately from the index estimators.

For single index control index, R “ R1iα0, the above asymptotic results would

still apply when replacing Ri with the estimated R1ipα, given the fact that pα is root-N

consistent.

B.3 Pattern of Thresholds over Shareholding Relations

In the upper panels of Figure B.2 and Figure B.3, we plot the estimated relationship

between the investment liaison with Moody or Mshare, and the soft adjustment,

holding Fshare at mean, under situations of no large shareholder (in left panel) and

at least one large shareholder (in right panel). Then we switch Mshare and Fshare in
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the lower panels. We first look at Figure B.2. For scenario 1, after fixing the investment

structure in firms and removing large shareholders, we lose the pattern completely. For

example, for the thresholds ∆10, it almost stays the same and invariant with respect

to Mshare. While in scenario 2, the reductions of thresholds start to emerge if at

least one large shareholder exists. This highlights the importance and contribution of

influential shareholders to the conflict-of-interest effect. Scenario 3 and 4 illustrate that

the dominant factor in the relationship is the total investment shares in bond-issuers

since Fshare drives the primary shapes of soft adjustment. The difference in Fshare

might reflect the hidden unobserved qualities of the bonds. Furthermore, this effect is

nonlinear. In particular, bonds of around median investment by common shareholders

obtains the most favorable treatment from the CRA. Note that this effect is further

magnified by having some influential shareholders in presence, according to scenario

4. In the upper panels of Figure B.3, the pattern is completely gone. It indicates that

even for a fairly strong connection with the CRA, no obvious soft adjustment is given

after the Dodd-Frank Act. Moreover, the partial effect of having large shareholders is

only minimal. In the lower panels, we can also conclude that the primary factor driving

the soft adjustment is Fshare, though the pattern is obvious for the top four notches. An

interesting observation is the increasing relationship for the lower two categories, ∆40

and ∆50. This may be due to the speculative nature of those bonds. They might have

undergone stricter evaluations and required more tightened criteria if more investors

want to speculate on their stocks.
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Figure B.2: Estimated Relationship in Various Scenarios before the Dodd-Frank Act

-35 -30 -25 -20 -15 -10 -5 0 5
-25

-20

-15

-10

-5

0
Scenario 1: Fshare=mean,largeSH=0

10

20

30

40

50

-40 -35 -30 -25 -20 -15 -10 -5 0
-25

-20

-15

-10

-5

0
Scenario 2: Fshare=mean,largeSH=1

10

20

30

40

50

-50 -40 -30 -20 -10 0 10 20
-25

-20

-15

-10

-5

0
Scenario 4: Mshare=mean,largeSH=1

10

20

30

40

50

-40 -30 -20 -10 0 10 20
-25

-20

-15

-10

-5
Scenario 3: Mshare=mean,largeSH=0

10

20

30

40

50

Note: 1. Sample period: 2000-2010. 2. Y-axis plots the estimated soft adjustment
as conditional mean thresholds relative to Aaa level. 3. X-axis plots various
percentiles of Mshare or Fshare. 4. largeSH=0: no large shareholders; largeSH=1:
at least one large shareholders. Fshare or Mshare=mean: fixed at mean.

Figure B.3: Estimated Relationship in Various Scenarios after the Dodd-Frank Act
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at least one large shareholders. Fshare or Mshare=mean: fixed at mean.
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