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ABSTRACT OF THE DISSERTATION

Modeling Bio-Networks in Multiple Scales

by SEAN MCQUADE

Dissertation Director:

Benedetto Piccoli

A network facilitates the description of selective interactions among the variables of

a system. In this work, networks are used to depict selective interactions between

molecules, cells, and agents. This research leverages the structure of a network to

model biological systems using Ordinary Differential Equations.

The first bio-network investigated is a metabolic network (the nano scale). Metabolism

can be captured as a directed graph of nodes and edges. The nodes represent bio-

molecules or metabolites, and each edge corresponds to a chemical reaction in which

the nodes at the tail of the edge are reactants and nodes at the head of the edge are

products. The goal is to develop a methodology to accurately simulate large networks.

This methodology has been named Linear-In-Flux-Expressions (briefly LIFE).

The second class of bio-network investigated is a cell lineage (the micro scale).

This is a network of daughter cells from an embryo. The goal is to develop an

analytical procedure which can be used on data regarding potential cis-regulatory

modules(briefly CRMs) to determine which are active CRMs, as well as where (which

cell in the organism) and when (which cell generation) a CRM was active. From this

analysis we predict how perturbations of spatial activity will impact the data, and

confirm predictions with simulation.
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The third class of bio-network investigated is a collection of interacting agents (the

macro scale). In opinion formation models, these agents often represent a multidi-

mensional opinion held by an intelligent organism. The goal is to model the evolution

of opinions over time as they are influenced by other opinions. Models of this type

study the emergence of global patterns driven by local interactions. This work on

opinion formation models has two aims: 1. construct a mathematical framework to

define classical opinion formation models on the more complex state space of a gen-

eral compact Riemannian manifold, and 2. investigate the effects of dynamics which

govern how influential each agent is.
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Introduction

Biological phenomena at different scales such as 1. The metabolism of an organism

(the nano scale), 2. Cell proliferation and differentiation (the micro scale), and 3.

Selective local interactions among intelligent animals leading to emergent behavior

(the macro scale). The systems can all be studied by organizing the interacting

variables according to a network in this thesis.

In this work we study graphs defined from a given network. Each chapter corre-

sponds to a biological network of different scale. In the nano scale, the graph will

indicate reactants and products of a chemical reaction; in the micro scale the graph

shows a cell lineage; in the macro scale the graph indicates which agents influence

one another. This object is a simple way of describing essential information for the

selective interactions studied in this work.

Metabolic systems

Ordinary Differential Equations (briefly ODEs) are used to model metabolism. Ad-

ditional parameters must be determined in order to study the system. The evolution

of the system is determined by two vectors; the vector of fluxes and initial metabolite

levels. Among these parameters are the speed of each reaction which we call the

flux, and the initial metabolite levels. The flux is a vector of values, one for each

edge, and the vector of initial metabolites along with the structure of the network

will determine the evolution of the system. Researchers are increasingly implement-

ing pharmacology simulators for early drug discovery in order to reduce costs and

increased accuracy. These simulators have an arguably more valuable goal, which is

to predict human response to treatment at the resolution of groups of patients with

similar phenotype. The further step is the holy grail of personalized medicine; this is

being able to establish results at the resolution of the individual patient.
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With Quantitative Systems Pharmacology(QSP) and a new methodology called

linear-in-flux-expressions, we can elucidate how important parameters of the model

are correlated. This has the effect of fewer independent parameters and small de-

viation among similar virtual patients. This is also advantageous for modeling very

large metabolic networks where data is incomplete.

Cis-regulatory modules

Cis-regulatory modules(briefly CRMs) are fragments of DNA which work as an on

switch to activate a collection of genes in a cell at a particular time. Researchers study

the process of gene regulation by observing the presence of CRMs in the genome of an

organism. CRMs can tell us which genes work together to manifest different cell types

and accomplish other essential biological processes. Generally CRMs activate genes

that are relatively nearby on a strand of DNA, so they contain information about po-

tential genes that they regulate. The traditional methods of studying CRMs are time

consuming and tedious because one CRM is studied at a time. A high-throughput

experiment has potential to analyze many CRMs at the same time. By introducing

many DNA fragments (transfected DNA) that may be CRMs to an organism one

can observe if any of those fragments produced RNA. By labeling these fragments,

proper analysis allows us to study spatial and temporal CRM expression in one large

experiment.

The structure of the cell lineage allows us to deduce the time and place of an

incorporation event of a putative CRM. The time resolution is enough to provide the

cell generation of the event, and the spatial resolution of this procedure is enough

to yield a group of cells, or in some cases a single cell. The analytical procedure

along with information contained in the cell lineage allows this deduction. The cell

lineage network can be specified by a graph where the nodes at the head of the

edge are daugter cells, and the cell group at the tail are parent cells. To refine the
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deduction technique the cell lineage of the purple sea urchin was recreated in matlab,

and a simulation was built to model a practical experiment. The simulation of the

experiment could be run many times to observe how incorporation events in specific

target cells (specified a priori) affected the outomes. Observing the results with

different sets of target cells revealed the effects of different targets. In the cell lineage,

the different growth speed of some cells was necessary to deduce spatial information.

We used the cell lineage given by [1] to test our procedure.

Opinion formation models

In opinion formation models, there are many ways to define how an agent interacts

with others. The interaction network of such a model informs us which agents ex-

perience dynamics from a given agent. This network is an especially useful when we

discuss topological opinion models versus metric ones. In a topological model, an

agent only interacts with a specified number of closest other agents, and in a metric

model, an agent only interacts with other agents that are within a given distance.

Researchers study the emergence of a group’s global behavior from local interac-

tions. Global configurations such as consensus, alignment, and clustering of agents

and the local interactions that generate these configurations common considerations

in the field of opinion formation models. We discuss a framework to understand these

interactions for models defined on compact Riemannian manifold. A Riemannian

manifold is a more general state space than euclidean space, and there are challenges

to defining consistent interaction dynamics. These challenges and approaches to over-

come them are discussed in detail in sections 3.1 to 3.6.

The remaining sections of chapter three discuss metric opinion models for which

the interaction weight for each agent may change with time. These weights correspond

to an edge in the graph of the interaction network. We describe four different time

varying models in detail, and show how they can be applied. We explain how their
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behavior differs from classical opinion models, such as the well known Hegselmann-

Krause model [2] and provide simulations to show how these models impact the

chance and speed of consensus. Then, we explore emergent behavior that results

from heterophilious dynamics.



Chapter 1

Linear-in-flux-expressions

1.1 Introduction to Linear-in-flux-expressions

Researchers and pharmaceutical companies have recognized the advantages of using

in silico models to replace various practical experiments. In the case of drug devel-

opment, their are at least two main advantages, 1. In silico models are much less

expensive to perform than animal drug trials. These experiments are expensive in

both time and money. 2. In silico models are becoming more advanced, and will be-

come more accurate in predicting the human response to a treatment, possibly able

to achieve predicting different responses of individuals based on patient physiology.

Such personalized therapies are more easily classified as safe and effective for an in-

vididual patient [3, 4, 5]. Quantitative systems pharmacology (QSP) is attempting

to simulate a patients metabolism to predict the safety and effectiveness of poten-

tial drugs in early phase drug discovery. Parameters of the model are informed by

a combination of different data sources such as clinical studies with human patients

and animal models in the absence of human data. In a collaboration between the

Center for Computational and Integrative Biology at Rutgers Camden and A French

multinational pharmaceutical company, Sanofi, we have developed a new approach to

5
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QSP models called Linear-In-Flux-Expressions (briefly LIFE). Using LIFE, one can

determine how key parameters of the model are structurally related. Understanding

the structural relationship between these parameters brings us closer to more rigorous

parameter estimation and calibration of QSP models. This is especially important

for very large metabolic networks becuase the large number of parameters relative

to available data presents obstacles to traditional model fitting paradigms useful for

smaller models [6, 4]. By including detail in the model about the behavior and kinet-

ics of the biochemical pathways that will be directly targeted by the treatment, and

connecting these pathways to clinical outcomes, QSP models are an important tool for

identifying components of the biological background that will alter the effectiveness of

a drug. In this way, QSP models can be used to investigate new targets for treatment,

and suggest potential combination therapies that would improve treatment.

In this chapter we explain how to implement LIFE methodology on a given

metabolic network. The network must be defined as a directed graph first where the

nodes are metabolites and the edges are metabolic reactions. Each edge has a flux

assigned to it which represents the speed of the chemical reaction. LIFE methodology

is demonstrated on a portion of the human cholesterol metabolism network. Then

we explain how to generate a population of virtual patients with a specified patient

type and how this differs from traditional methods. Results about general networks

are given which provides a deeper understanding of metabolic networks, such as the

dimensionality of important subspaces of the flux space.

1.2 Methodology

The technique presented here is referred to as the “Linear-In-Flux-Expressions” method

(briefly LIFE). The LIFE method begins by precisely defining a network of biochem-

ical reactions (metabolism) as a graph, where the nodes are reactants/products of
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metabolic reactions; the edge labels represent reaction rate constants. We describe

a system of Ordinary Differential Equations (ODEs) which governs the quantities of

biochemical molecules over time.

A general system of ODEs which governs the quantities of biochemical compounds

(x) and fluxes (f) is written as

dx

dt
= F (x, f),

df

dt
= G(x, f).

The dynamics of the state of the compounds is a relatively fast process compared

to the dynamics of fluxes in a biochemical system [9, 10]. We can assume G(x, f) ≈ 0.

In the LIFE method, we consider

dx

dt
= S(x)f x ∈ Rn, f ∈ Rm. (1.1)

S(x) is called the Stoichiometric Matrix. Note that the system is linear in fluxes,

but S(x) is not necessarily linear in x. The nullspace of S(x) is denoted by K(S(x))

(or K(x) for brevity), it is a subspace of the space of fluxes, and a mapping of the

state to the corresponding nullspace can be written x ∈ Rn → K(x) ∈ Rm.

K(x) = {f : S(x)f = 0}.

In Figure 1.3, a simple graph of a metabolic network is shown. In this network are

six metabolites X = xi|{i = 1, 2, ..., 6}. ẋi indicates the time derivative of metabolite,

xi. While the system itself can be generally nonlinear, it is linear with respect to the

flux, and we represent the system as a matrix multiplied by a vector of fluxes.
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Ẋ =



1 0 0 −x1 0 0 0 0 0 0

0 1 0 0 −x2 0 0 0 0 0

0 0 1 0 0 −x3 0 0 0 0

0 0 0 x1 x2 x3 −x4 −x4 0 0

0 0 0 0 0 0 x4 0 −x5 0

0 0 0 0 0 0 0 x4 x5 −x6


·



f1

f2

f3

f4

f5

f6

f7

f8

f9

f10



(1.2)

In Figure 1.3, the fluxes inside rectangles (f1, f2, f3) represent constant source

terms, whereas those in circles are the rates of first order reactions. Specifically, the

amount of x1 (in units of nmol) molecules increases at a rate of f1 (in units of nmol/h).

This gives us the first term on the right hand side (RHS) of ẋ1. The other term in ẋ1

is “x1 · f4.” This term represents the conversion of metabolite x1 into x4 at the rate

f4. All six equations ẋ1, ..., ẋ6 govern the dynamics of our example system. We write

this system as:

Ẋ = S(X) · f

S(X) is a matrix dependent on metabolite values, X. S(X) is referred to as the

“Stoichiometric matrix”. Traditionally, this type of system is modeled differently,

whereby the system is written Ẋ = S(f) ·X, as in [7].

For this example, S(X) is a 6 × 10 matrix. The entries of this matrix are either

real numbers or algebraic expressions of variables (representing metabolite values),

and f is a vector composed of all ten rate constants, called fluxes: (f1, ..., f10) (Fig.

1.3). A similar method for modeling biochemical networks is explained in [8].
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We may write this system of six ODEs from our example matrix in (1.2). One

advantage of writing our system this way is we can calculate the nullspace for large

systems, as in [8]. We calculate the nullspace of S(x) for figure 1.3 in equation (1.3).

f̂ = a1



x6

0

0

x6
x1

0

0

0

x6
x4

0

1



+ a2



0

0

0

0

0

0

x5
x4

−x5
x4

1

0



+ a3



−x3

0

x3

−x3
x1

0

1

0

0

0

0



+ a4



−x2

x2

0

−x2
x1

1

0

0

0

0

0



=



a1x6 − a3x3 − a4x2

a4 · x2

a3 · x3

a1x6
x1
− a3x3

x1
− a4x2

x1

a4

a3

a2x5
x4

a1x6
x4
− a2x5

x4

a2

a1



(1.3)

In equation (1.3) we see the nullspace for our matrix from the system shown in

Figure 1.3. Note that there are four free variables, a1, a2, a3, a4, in this nullspace for

any fixed set of metabolite levels, X. We call these free variables, “core parameters.”
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Let f̂i be the ith element of f̂

f̂5 = a4,

f̂6 = a3,

f̂9 = a2, (1.4)

f̂10 = a1.

Writing our system as (1.3) allows one to identify fluxes in the model that are

independent, as well as fluxes that are dependent on other fluxes. The independent

subset of fluxes becomes the reduced set of parameters. The system evolves according

to the randomly sampled fluxes, and the evolution of metabolites values is called a

trajectory. Fewer parameters will reduce the variation between trajectories, thus

providing a more precise prediction of metabolite levels.

Remark: The basis (four vectors) shown in (1.3) is not unique, however, we view

the nullspace of the system with respect to these fluxes.

With analysis of the nullspace of S(x) in (1.1), we investigate fluxes that keep

the system in equilibrium. Generally, biological systems are composed of subsystems

which have a faster dynamics than the larger system, and it is reasonable to assume

that the state x is not far from equilibrium [10].

We use generalized idea of a directed graph, where we allow inflows to a graph

from a general source, and outflows from the graph to a general sink. We say graph

for brevity in this chapter.

Definition 1 The indegree of a node is the number of directed edges for which the

node is the terminal vertex. The outdegree of a node is the number of directed edges

for which the node is the initial vertex.

Definition 2 A source of a graph is a directed edge with a node representing a com-
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pound only at the terminal end; the initial vertex has outdegree 1, indegree 0 and is

not represented in our system. This is equivalent to an exchange reaction entering the

system [8]. A sink of a graph is a directed edge with a node representing a compound

only at the initial end. The terminal vertex has indegree 1 and outdegree 0, and is

not represented in the system. This is equivalent to an exchange reaction leaving the

system.

Definition 3 The stoichiometric matrix depends on a state variable x, and is denoted

S(x), (or S for brevity). (S)ij = sij can be defined from a graph. If the edge fj has

initial vertex xi and terminal vertex xk, then
sij = −xi

skj = xi.

If the edge fj is a source with terminal vertex xk,

skj = 1.

If the edge fj is a sink with initial vertex xi,

sij = −xi.

Definition 4 A Weakly Connected Component of a graph is a maximum subgraph

such that an undirected path exists between every pair of nodes. A graph is weakly

connected if there exists such a path between every pair of nodes.

Definition 5 The grassmannian G(k, V ) is the k-dimensional linear subspace of a

space of dimension V .

The nullspace of dimension d of a system is a subset of the Grassmannian(d,m).

We study the map x→ K(x) as it relates to perturbations of stable systems.
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Lemma 1 Let x be the initial state for system (1.1), f ∈ K(x). Assume that all

eigenvalues of the jacobian matrix of the system at x have negative real part. Then

there exists ε > 0 such that if y = x+ δ, |δ| < ε, y(·) is the solution starting at y

lim
t→+∞

y(t) ∈ K−1(f).

Proof 1 The assumption on the eigenvalues of the jacobian matrix imply the system

is Lyapunov stable at x, see theorem 4.1.2 of [11], which implies limt→+∞ S(y(t))f = 0

; we conclude limt→0 y(t) ∈ K−1(f).

Lemma 1 motivates our investigation of K−1(f) and will determine candidate states

to which a stable system will return after a perturbation.

Two main problems are investigated in this chapter.

• Problem 1: Define a methodology that reveals correlations among the fluxes of

a system based on a choice of key independent fluxes.

• Problem 2: Investigate structural properties of metabolic networks, such as the

intersections of the nullspace for different metabolic states, i. e. for x 6= y

determine the intersection of the nullspaces K(x) ∩K(y).

• Problem 3: Given x, f ∈ K(x) study K−1(f) to understand perturbations of

K(x).

By exploring the map x→ K(x) we will characterize K(x)∩K(x̃) for some perturba-

tion of the state, x̃ 6= x. We show that for a fixed state x, K(x)∩K(x̃) can have any

dimension depending on x̃. That is, there exists x̃ such that dim(K(x) ∩K(x̃)) = 1,

and for some other x̃, dim(K(x) ∩K(x̃)) = 2, etc.
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Traditional approach for virtual patient generation

To demonstrate the advantages of the LIFE method, we contrast our approach for

generating virtual patients to a standard approach used in the literature. In both ap-

proaches, we begin with a parameterization of the model that has been calibrated to

the average patient response. In the traditional approach, key fluxes that have been

identified to prominently contribute to variability in the model are sampled to cre-

ate a patient population. Typically, bounds are placed on the parameters of interest

based on experiments or guidelines in the literature, and some type of optimization

or weighting is used to narrow down which parameter values within these bounds are

feasible based on how simulated trajectories compare to clinical data [12, 13, 14]. In

this work, we aim to evaluate the performance of the LIFE method, rather than to

validate the QSP model to which this method is applied, so we use a simpler tradi-

tional VP method for comparison. The traditional approach we implement does not

utilize clinical data to tailor results, but generates all results proscribed by the model

based on the parameter values given, and constrained by physiological knowledge of

plausible output ranges. We sample key flux values from lognormal distributions,

using the optimized parameter values as the mean, and the same sigma value (set to

0.25 in these simulations). Once the key flux values are chosen, the simulation is run

to generate VP response.

LIFE method approach

We again start with the objective of introducing variability into the identified key

fluxes of the model, but do this by directly varying the core fluxes in the nullspace

which control the variability of the key fluxes (4). If multiple fluxes in the nullspace

control variability for a key flux, we choose to vary the nullspace flux with the largest

effect. In inducing variability in the nullspace flux parameters, our goal is to sample

randomly from a lognormal distribution. To sample from a distribution that reflects
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variability in the clinical data, our approach needs to envelope the observed variability,

while remaining within known physiological bounds and maintaining positivity for all

fluxes.

A sample flux s, is called “suitable” if it satisfies the inequality:

0.5× f̄ ≤ s ≤ 1.5× f̄ (1.5)

where f̄ is the average value of the flux we are sampling.

For a parameter, our goal is to find a standard deviation for our sampling dis-

tribution such that it will generate a “suitable” s with a 95% confidence interval. A

standard deviation for a parameter is found when all fluxes dependent on the param-

eter generate “suitable” sample at least 95% of the time.

To evaluate the standard deviation of a parameter (a1) we use a simplified “impor-

tance sampling.” [15] We choose equally spaced values from the 2.5th percentile of the

lognormal distribution to the 97.5th percentile. From these chosen values, we observe

which fluxes, which are dependent on a1, are “suitable” fluxes. This is depicted in

Figure 1.4. If the total number of “suitable” fluxes dependent on a1 is below 95%, we

decrease our standard deviation, σ, effectively narrowing the sampling distribution;

if the number of “suitable” fluxes is above 95%, we increase σ.

For example, in (1.3) the fluxes dependent on a1 are f̂1, f̂4, f̂8, and f̂10

For each VP, extra bounds may be needed to ensure that all fluxes are positive.

The nine fluxes we sample determine other flux values to guarantee that our system

has a steady state.

The standard deviations in table 1 do provide more than 90% confidence that

all fluxes are between 0.5f̄ and 1.5f̄ , however, for simple cases we add several strict

bounds to be sure a flux isn’t sampled in a way that will cause another flux to be

negative (Supp Table 1).



15

We use this algorithm separately for each of nine fluxes that we intend to sample.

This method generated the following standard errors shown as σ
µ
in Table 1. Once

we have determined the distributions of each of the core nullspace fluxes to use for

our virtual patient population, we use the following steps to run simulations of the

virtual patient population:

1. Sample each core nullspace flux value from its distribution, to generate values

for these fluxes for each virtual patient.

2. Calculate values for all fluxes in the model, using the VP specific core flux

values, and the constant values for the remaining fluxes in the nullspace and

the steady state species values.

3. Run the simulation for each VP.

1.3 Results

We have developed the LIFE method to create virtual patient populations which are

informed by the biological structure represented in the QSP model. Our approach has

three main methodological advantages over the traditional approach (see Methods for

details on both LIFE and traditional methods for VP generation). LIFE first allows

us to identify a subset of parameters which represent variability along the pathways

controlling mechanistic phenotypes of disease, rather than leaving the choice of pa-

rameters to be more empirically evaluated. Once parameters are identified, LIFE

allows us to represent the relationships between parameters so that their interde-

pendence is systematically taken into account, and we do not need to assume that

parameters are independent. Finally, when a perturbation is introduced into the sys-

tem (such as a drug), the LIFE method gives us a mechanistic way of understanding

the impact of this perturbation on the network.
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To compare the performance of our method to the traditional method used to sim-

ulate virtual patient response to therapy, we apply both approaches to a QSP model

of cholesterol metabolism, which encompasses the processes of lipoprotein creation

and transfer of cholesterol, the role of PCSK9 in regulating LDL-receptor levels, and

the action of statin or PCSK9 inhibitor therapy in this system [16]. In the origi-

nal development of the model, we identified 12 parameters which could be used to

define two typical patient profiles (Table 2) – the first represents a patient treated

effectively by statin therapy (‘Statin Responder’), the second of which represents a

patient who is poorly treated by statins (‘Statin Non-responder’). While the creation

of these two patients allowed us to gain insight into the most important individual

mechanisms for statin response, these patient profiles represented extreme examples

of response or non-response, and do not give us an understanding of how a represen-

tative population of patients with different underlying biological characteristics would

fall between these extremes. It further did not allow us to predict which of these pa-

tient populations would be best treated by a different therapeutic intervention, such

as PCSK9 inhibitors, which could be beneficial for patients on statin with elevated

levels of PCSK9 [17]. We demonstrate here how the performance of the traditional

vs. the LIFE virtual population methods compare in generating populations of statin

responders and non-responders in terms of the three key areas described above: identi-

fication of key model parameters, representation of relationships between parameters,

and prediction of the systemic effect of a perturbation to the model.

1.3.1 Identification of key mechanistic pathways

We represent the model at steady state as a network of “fluxes”, representing the rates

at which different biological processes are carried out. This representation allows us to

see the interconnections between these processes and to calculate how a change in one

rate can be compensated by changes in the kinetics of other processes to maintain the
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same steady state biology. The placement of the identified typical patient parameters

within the network representation of the cholesterol model is shown in Figure 4a.

Within this network, all independent fluxes defining the nullspace are on the left side

of the graph; fluxes past this left side of the graph are defined as a linear combination

of the independent fluxes. Some subnetworks can be identified in this depiction, such

as the cluster of fluxes controlling absorption of dietary cholesterol in the top left

corner (f1-f9) and the cluster of fluxes related to the antibody (in green). Overall,

one can see that there are many interconnections between different processes in the

model and that fluxes chosen to define PD variability in virtual patients are located

in different places throughout the network (colored in red, Fig. 4a).

Using LIFE, we found the 10 core independent parameters included in the nullspace

of the system, controlling variability in the 12 identified typical patient fluxes (Table 2

and Fig. 4b). Some of the fluxes identified to define virtual patients were confirmed to

be core parameters, such as those fluxes controlling reverse cholesterol transport (f34

and f35). In other instances, core parameters differed from the identified parameters,

and may appear to be less evenly distributed across different parts of the network.

This is because in subsections of the model without any core parameters, variability

could be induced through interconnections to other parts of the model (Fig. 4b).

We also represent the pharmacokinetic parameters in the model as fluxes in part

of the larger network (In green, Fig. 4a). The drug dose is included as a flux, and

is connected only to the rate of drug absorption (Fig. 4c, f72 and f73, respectively).

The other parameters defining the PK model for the anti-PCSK9 antibody are depen-

dent on the steady state level of PCSK9, but form an interconnected network that

is independent of the fluxes involved in the pharmacodynamics part of the model.

We choose to vary the rate of MAb-PCSK9 elimination to simulate variability in pa-

tient processing of drug (indicated in the network as f80 in Fig. 4c) which will be

propagated through to the two direct connections of this flux, f74 and f76.
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1.3.2 LIFE approach results in less variation in metabolic tra-

jectories

We induced variability in the key model parameters using the LIFE method or the

traditional VP approach. Lognormal distributions were created for each of the identi-

fied parameters through both methods, but the distributions were noticeably different

for some parameters (Fig. 5a). The LIFE method generates variability in the values

of core parameters that govern the variability in the original 12 VP fluxes rather

than the original parameters themselves(Table 2, Fig. 5b), which contributes to the

different distributions seen in seven of the identified VP parameters which are not

directly varied in LIFE (Fig. 5a, bottom row and last 3 plots of middle row). For

the other five identified VP parameters, particularly for the bile cholesterol secre-

tion, hepatic cholesterol production, and PCSK9 plasma clearance rates (Fig. 5b),

distributions generated by LIFE are significantly narrower (10-fold lower in range)

due to restrictions on what parameter values are physiologically relevant when pa-

rameter relationships are considered (distribution parameters given in Table 1 and

further constraints imposed to ensure positivity of all fluxes given in Supp. Table

1). This is of key importance in creating virtual populations which distinguish the

statin responder and non-responder virtual populations. Because of the very limited

range for the bile cholesterol secretion rate and hepatic cholesterol production rate

generated by the LIFE method, we can clearly distinguish that the distinct values

for these parameters define the main difference between statin responders and non-

responders across the identified fluxes (Fig. 5c, top left plots). This distinction is

strongly reduced in the traditional VP method because of the uniformly wide dis-

tributions generated for all parameters (Fig. 5d). Using the traditional approach,

the distribution of bile cholesterol secretion rates is nearly identical between statin

responders and non-responders, and the intersection between distributions generated

for hepatic cholesterol production, and hepatic and peripheral LDLR production rates



19

is noticeably larger in the traditional method. Comparing the virtual population pa-

rameterizations generated by these two methods (Fig. 5c-d), we can predict that the

distinct responses of statin responder and non-responder subpopulations will not be

well preserved using the traditional approach.

In order to gain insight from these parameterizations of the model into how each

patient will react to a PCSK9 inhibitor therapy, we can look at parameters altered

in the production and clearance pathways that are most important in controlling re-

sponse to the new therapy (Fig. 6). Using the traditional individual fluxes approach,

we see that some of the identified parameters lie in the PCSK9 and LDL pathways,

including PCSK9 plasma clearance, PCSK9 intracellular production, PCSK9-LDLR

dissociation, and HDL to LDL exchange rate, and will likely generate some variability

in response to this new therapy. In the LIFE method, many of the core parameters

used to control variability in the identified parameters are in the PCSK9/LDL path-

ways themselves, such as PCSK9-LDLR peripheral uptake (Fig 6a, bottom right plot).

In addition to these parameters, we see that variability has been propagated to all

other parameters involved in PCSK9 production and clearance in the model using the

LIFE method (Fig. 6a), suggesting that PCSK9 biology is highly involved in statin

response and that there is likely to be a variability in response to PCSK9 inhibitor

therapy as well (Fig 5). Using LIFE, there is variability generated for five out of eight

parameters controlling LDL flux, whereas, only HDL to LDL exchange rate is varied

in the traditional approach (Fig. 6b).

In the pharmacokinetic portion of the model, the same flux was utilized in both

the traditional and LIFE VP approaches, the MAb-PCSK9 elimination rate(Fig 6c).

However, in the LIFE method, variability was generated in two additional fluxes

of the PK model due to connections across the network, representing relationships

between parameters (Fig. 6c). The implementation of the TMDD model in the LIFE

framework and propagation of variability through parameters that will affect both the
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model PK (through MAb) and PD (through PCSK9) shows that the LIFE method

can be used to represent relationships not only within the PD vs. PK compartment,

but to represent covariance of parameters across these categories.

1.3.3 LIFE allows us to differentiate variability in patient re-

sponse from variability in baseline values

While the traditional approach generates patient profiles with different baseline levels

of lipoproteins and PCSK9 which can then be weighted or optimized based on the

baseline distribution of patients in clinical trials, the LIFE method allows us to create

a population of patients with the same baseline levels of lipoproteins and PCSK9 but

with fundamentally different biology, based on the structure of the network repre-

sented in the model itself. We used both the traditional and LIFE approach, for both

statin responder and statin non-responder patients to simulate population response

to PCSK9 inhibitor treatment (Fig. 7). Subcutaneous administration of a 150 mg

dose of the PCSK9 inhibitor was simulated every 2 weeks from baseline to 90 weeks.

At this point, outputs of the LIFE method appeared to be in a steady state (on

drug), but there were some continuing downward trends in the VLDL levels of vir-

tual patients created by the traditional approach. Overall trends predicted by both

approaches where similar; MAb therapy had an effect on all virtual patients, but of

varying degrees. However, there were some key differences in the simulated outputs

from virtual populations created under the two approaches.

The traditional approach consistently inflated variability predicted for lipoprotein

outputs over the LIFE methodology. This is readily apparent by comparing pre-

dictions of HDL using the LIFE approach (Fig. 7d,l) and the traditional approach

(Fig. 7h,p). The LIFE approach predicts a very small level of variability in HDL

throughout treatment, whereas the traditional approach creates a virtual population

where the standard deviation of the distribution is 10% of the mean value. This is
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likely due to the variability added to parameters controlling transfer of cholesterol

from HDL to LDL and VLDL through the RCT pathway (Fig. 5a-b, Fig. 6b). In the

traditional approach, this variability is not compensated for by changes to any other

parameters in the model and has a disproportionate effect on HDL at baseline, which

contributes to the wide HDL variability throughout the simulation. In contrast, the

LIFE approach imposes variability across RCT related parameters to balance out the

HDL level (Fig. 6b). Larger variability can also be seen in the populations predicted

for LDL and VLDL using the traditional approach (Fig. 7f,g,n,o). The final standard

deviation across VP simulations of LDL is 4.6 times larger (58.56 v. 12.62) using

the traditional approach compared to the LIFE approach, for the statin-responder

population, and the standard deviation of VLDL is 3.9 times larger (3.17 v. 0.82).

Again, this is a combination of variability at baseline and in response to drug. More

virtual patients created this way develop unrealistic levels of LDL over time compared

to the LIFE approach: 0 statin responder and 2 statin non-responder VPs had final

LDL levels > 300 mg/dL using the LIFE approach compared to 38 and 13 VPs using

the first approach.

Overall, the LIFE approach allows us to better distinguish between the statin

responder and non-responder populations once a drug is given. The populations

created by the traditional approach have a lot of variability in their response to drug,

to the point where these two populations cannot be clearly distinguished. HDL and

VLDL response seems to be nearly the same in both virtual patient populations,

and the range of LDL levels predicted for the statin non-responder population by

the traditional approach seems to correspond to the LDL in a subset of the statin-

responder population (Fig. 7n,o,p vs. Fig. 7f,g,h). Using the LIFE methodology,

the population responses can be more clearly distinguished for statin responder and

non-responder populations. LDL and VLDL mean response is observably higher for

statin responders after MAb treatment, and there is little overlap in the ranges of
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responses for both virtual patients (Fig. 7b,c vs Fig. 7j,k). As we noted, the overlap

between parameter distributions in statin responders and non-responders generated

by the traditional approach makes the parameterizations of these virtual populations

less distinguishable, and thus generates patient responses that are not distinct (Fig.

5d vs. Fig. 5c).

LDLR expression level is key to the efficacy of PCSK9 inhibitor therapy. By exam-

ining LDLR levels at the cell surface and degradation of LDLR in both approaches,

we can get insight into the mechanism of action of the therapy. We find that the

statin non-responder population gains a higher level of LDLR at the cell surface with

treatment than the statin-responder population(Figure 8a,d,g,j), in accordance with

the better response of this population to PCSK9 inhibitor therapy. In examining the

degradation of LDLR in endosomes when it is alone or in complex with PCSK9 (Fig.

8b-c,e-f,h-i,k-l), we find that there is a similar range of LDLR degraded independently

of PCSK9 for both virtual patient populations, but that there is more variability in

the amount of LDLR degraded in complex with PCSK9 over time for statin non-

responders using both approaches. For both populations again, more variability is

present in simulations using the traditional approach than in simulations from LIFE.

Finally, we can see the contribution of PK v. PD variability throughout the

system using the LIFE method. We ran simulations of the model for 90 weeks of

bi-weekly treatment with a 150 mg dose of the antibody. We compared outputs

from simulations which included only PD variability to outputs where both PK and

PD variability was used (Fig. 9) and found that the additional influence of PK

variability was evident in some but not all outputs. Because the pharmacokinetics

of the antibody are represented as a TMDD model and are dependent on the levels

of PCSK9 in plasma, there is some variability in the MAb-PCSK9 compound in the

simulation where only PD variability is used (Fig. 9a,d). This variability is noticeably

enhanced when the PK variability is added (Fig. 9g,j). Other MAb outputs from
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the model, such as free MAb in the plasma, did not noticeably change when PK

variability was added (data not shown). Similarly for lipoproteins, the effect of the

included PK was not always noticeable, but in PCSK9 we noted an increase in the

variability of predicted levels when PK was added (Fig. 9h,k,i,l compared to 9b,e,c,f).

Moreover, as we have consistently showed, the simulations of the traditional VP

approach have much larger variability compared to the LIFE approach in both PK

and PD simulations, inflating the contribution of PD variability on PK outputs like

MAb-PCSK9 concentration (Fig. 9d), and making it more difficult to distinguish

variability in response to treatment from variability in the original population.

1.3.4 Structural investigation of metabolic networks

Lemma 2 Let S ∈ Mn×m, n < m, be a stoichiometric matrix and G the associated

directed graph. Assume G to be weakly connected with no sources or sinks. Denote

by si the ith row of S. Then we have,

α1 = α2 = · · · = αn ⇐⇒
n∑
i=1

αisi = ~0.

Proof 2 Because G has no sources and sinks S will have exactly two nonzero elements

in each column. This is because each column represents a flow from one node to

another.

⇐= ) Fix a column j and let a, b be the rows with nonzero entries. Consider a

linear combination of the rows of S such that

n∑
i=1

αisi = ~0. (1.6)

Recall from definition (3) we have sa,j = −sb,j. Because a, b are the only nonzero
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entries in column j, the jth entry of
∑n

i=1 αisi satisfies

αasa,j + αbsb,j = 0 =⇒ αa = αb.

Because G is weakly connected there exists a path between any pair of nodes. Select

two arbitrary nodes in the graph G and label them v,v′. Let W be the path between v

and v′ and label the nodes on the path W as v = v1, v2, . . . , vp−1, vp = v′. Let ji be the

edge connecting vi and vi+1. Then for any i, the jith column satisfies


si,ji = −si+1,ji

sk,ji = 0, for k 6= i, i+ 1.

Assume (1.6) then,

αisi,ji + αi+1si+1,ji = 0 =⇒ αi = αi+1.

Because ji can represent any edge on path W , we have α1 = α2, α2 = α3, . . . , αp−1 =

αp =⇒ α1 = α2 = · · · = αp. Because v, v′ were arbitrary nodes,

n∑
i=1

αisi = ~0 =⇒ α1 = α2 = · · · = αn. (1.7)

=⇒ ) We assume that α1 = α2 = · · · = αn. As before, fix a column j and let a, b

be the rows with nonzero entries. From definition (3) we have sa,j = −sb,j. Now

consider the jth column of
∑n

i=1 αisi,

n∑
i=1

αisi,j (1.8)
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which simplifies to

αasa,j + αbsb,j = αasa,j − αbsa,j = (αa − αb)sa,j = 0

This is true for each column, which gives us
∑n

i=1 αisi = ~0.

Proposition 1 Let S ∈Mn×m, n < m, be a stoichiometric matrix and G the associ-

ated directed graph. Assume G to be weakly connected with no sources or sinks. Then

we have,

Rank(S) = n− 1.

Proof 3 The ( =⇒ ) of lemma 2 implies Rank(S) < n.

Now we show that Rank(S) ≥ n − 1. Consider the submatrix S∗ constructed by

removing the nth row from S. Then for s∗i the ith row of S∗,

n−1∑
i=1

αis
∗
i =

(
n∑
i=1

αisi

)
∣∣αn=0

. (1.9)

by (1.9) and lemma 2 It follows that

n∑
i=1

αis
∗
i = ~0 =⇒ αi = 0 for all i ∈ {1, . . . , n− 1}.

Therefore, Rank(S∗) = n− 1 =⇒ n− 1 ≤ Rank(S) < n and so Rank(S) = n− 1.

Proposition 2 Let S ∈ Mn×m, n < m, be a stoichiometric matrix and G the asso-

ciated directed graph. Assume G to be weakly connected with at least one source and

no sinks. Then we have,

Rank(S) = n.

Proof 4 First we show that for a graph G with a single source and no sinks, that

for S, the stoichiometric matrix for G, Rank(S) = n. Let the source be called fm+1
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and the terminal vertex of fm+1 be called x1. Let G∗ be the subgraph of G without the

source, and S∗ be the matrix for G∗. S∗ is a submatrix of S excluding the column

containing the source. We have rank(S∗) = n − 1. We can use elementary row

operations to change a row in S∗ without changing the rank of S∗. We replace the first

row of S∗ with
∑n

i=1 s
∗
i = ~0 and call this new matrix S1, rank(S1) = rank(S∗) = n−1.

Similarly, if we append a column of zeros to the right side of S∗1 the rank will not

change. We call the matrix with the added column S2, rank(S2) = rank(S1) =

rank(S∗) = n − 1. S2 is S with the first row of S set to ~0. Now we replace the first

row of S2 with (s1,1, s1,2, . . . , s1,m−1, s1,m = 1) which gives us S. Because the first row

is independent to all others:

rank(S) = rank(S2) + 1 = n.

For ease of proof the graph contained no sinks. However, adding sinks to the

graph will not change the rank of the S. This is because S is already full rank and

adding a sink will append a new column to S. A graph with sources and no sinks is

not realistic as it will have continuous accumulation of metabolites.

Proposition 3 Let S be the stoichiometric matrix and G the associated directed

graph. Assume G to be weakly connected with no sources or sinks. Consider the kernel

of S, K(x), and assume that x̃ = cx for some c ∈ R. Then we have, K(x) = K(x̃).

Proof 5 Let f̂ ∈ K(x), and f̆ ∈ K(x̃) then

S(x)f̂ = 0 =⇒ cS(x)f̂ = S(x̃)f̂ = 0

S(x̃)f̆ = 0 =⇒ cS(x)f̆ = 0.

(1.10)

Proposition 4 Let S be a stoichiometric matrix for a graph containing a directed

path along three nodes, and the middle node has only one incoming and one outgoing
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edge. For a state x and different state x̃, if x̃ 6= cx for c ∈ R then

K(x) ∩K(x̃) = {~0}. (1.11)

Proof 6 G has directed path along three nodes, initial node x1, middle node x2, ter-

minal node x3; call edge connecting x1 to x2 as f1 the other edge is f2. Then the

second row of S is s2 = (−x1, x2, 0, . . . , 0) and

S(x)f = 0 =⇒ f1x1 = f2x2 =⇒ f1 = f2
x2

x1

S(x̃)f = 0 =⇒ f1x̃1 = f2x̃2 =⇒ f1 = f2
x̃2

x̃1

f ∈ K(x) ∩K(x̃), f 6= {~0} =⇒ f2
x2

x1

= f2
x̃2

x̃1

=⇒ x̃ = cx.

Proposition 5 Let S ∈Mn×m, n < m, be a stoichiometric matrix and G the associ-

ated directed graph. Assume G to be weakly connected with one source and no sinks.

Let S∗ ∈ Mn×m−1, be a submatrix of S where the source is removed. (WLOG let

the source in G be represented by the last column of S). Consider the kernels of S

and S∗, K(x) and K∗(x) respectively and let B∗ be a basis of K∗(x). Let B be the

collection of vectors such that each b ∈ B is equal to a b∗ ∈ B∗ with a 0 appended as

the last entry for each vector. Then B is a basis for K(x).

Proof 7 We prove:

1. for b ∈ B, Sb = ~0 and so b ∈ K(x).

2. B is an independent set with number of elements equal to dimension of K(x).

Let e be an n× 1 column vector containing a single 1 and the other entries 0.

Sn×(m+1)b =

(
S∗|e

) b∗

0

 .
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Let bj be the jth entry of vector b. For Ai, the ith entry of the solution to Sb.

Ai =
m∑
j=1

Sijbj =
m−1∑
j=1

S∗ijb
∗
j + Si m · 0 = 0.

Appending a 0 to each vector of a linearly independent set gives an linearly indepen-

dent set. From propositions 1 and 2 we know that

Rank(S∗(x)) = n− 1, Rank(S(x)) = n.

The dimension of each kernel is the same (dim(K∗(x)) = (m − 1) − (n − 1) and

dim(K(x)) = m − n. The cardinality of B∗ = cardinality of B = dim(K(x)) =

dim(K∗(x)) because B is a basis and both kernels have the same dimension (though

the dimension of their ambient space differs), we conclude that B is a basis for K(x).

Here we show a complete solution to problem 1. In this section we explore the kernel

of an example network. The initial state of the kernel will be characterized, and

the intersection of this kernel with the kernels of perturbed metabolic states will be

analyzed.

x1 x2

x3x4

f1

f2

f3

f4

f
5 f 6

Figure 1.1: A directed graph representing a biochemical system.



29

S(x) is the stoichiometric matrix associated to the graph in Fig. 1.1

S(x) =



−x1 0 0 x4 −x1 0

x1 −x2 0 0 0 −x2

0 x2 −x3 0 x1 0

0 0 x3 −x4 0 x2


.

From proposition 1 we have rank(S) = 3, which implies the dimension of the kernel

is 3. The basis for the kernel is

(v1|v2|v3)T =


0 −1 −x2

x3
0 0 1

−1 −x1
x2

0 0 1 0

x4
x1

x4
x2

x4
x2

1 0 0

 .

A perturbation of x → x̃ will alter the basis vectors and thus change the kernel

K(x) → K(x̃). K(x̃) may have some non trivial intersection with K(x). Any flux

in the perturbed kernel can be represented by the perturbed basis vectors. For all

f ∈ K(x̃) : f = λ̃1ṽ1 + λ̃2ṽ2 + λ̃3ṽ3 where each ṽi represents a perturbed basis vector

and each λ̃i ∈ R.

A flux f ∈ K(x) ∩K(x̃) can be found as a solution to the following equation:

λ1v1 + λ2v2 + λ3v3 = λ̃1ṽ1 + λ̃2ṽ2 + λ̃3ṽ3.

Comparing the equation by components, we have the conditions that must be satisfied

for any flux in the intersection.

λ1 = λ̃1, λ2 = λ̃2, λ3 = λ̃3 (1.12)
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λ1

x4
x1
− λ2 = λ̃1

x̃4
x̃1
− λ̃2

λ1
x4
x2
− λ2

x1
x2
− λ3 = λ̃1

x̃4
x̃2
− λ̃2

x̃1
x̃2
− λ̃3

λ1
x4
x3
− λ3

x2
x3

= λ̃1
x̃4
x̃3
− λ̃3

x̃2
x̃3
.

(1.13)

With (1.12), we simplify system (1.13) to

x4

x1

=
x̃4

x̃1

(1.14)

λ1

(
x4

x2

− x̃4

x̃2

)
= λ2

(
x1

x2

− x̃1

x̃2

)
(1.15)

λ1

(
x4

x3

− x̃4

x̃3

)
= λ3

(
x2

x3

− x̃2

x̃3

)
. (1.16)

Depending on which of the conditions are met the dimension of the intersection

(dim(K(x)∩K(x̃))) can be determined. Different perturbations of x will be considered

that satisfy only some of these conditions. The following cases ((I) through (V)) show

results specific to which condition are satisfied.

(I) Let x̃ be a perturbation such that (1.14) is not satisfied, the intersection will be

trivial and dim(K(x) ∩K(x̃) = 0.

(II) Let x̃ be a perturbation which satisfies (1.14) and

(
x4

x2

− x̃4

x̃2

)(
x1

x2

− x̃1

x̃2

)
6= 0,

(
x4

x3

− x̃4

x̃3

)(
x2

x3

− x̃2

x̃3

)
6= 0.

This allows equations (1.15) and (1.16) to be arranged in the following manner.

λ2 = λ1

x4
x2
− x̃4

x̃2
x1
x2
− x̃1

x̃2

, λ3 = λ1

x4
x3
− x̃4

x̃3
x2
x3
− x̃2

x̃3

.

This shows a relationship where both λ2 and λ3 depend on λ1 and the metabolites

xi. λ1 is the only free variable and so dim(K(x) ∩K(x̃)) = 1.

(III) Let x̃ satisfy (1.14). And also let
(
x4
x3
− x̃4

x̃3

)(
x2
x3
− x̃2

x̃3

)
6= 0, x4

x2
− x̃4

x̃2
= 0, x1

x2
−
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x̃1
x̃2

= 0. Then (1.15) is satisfied regardless of the value of λ2. λ2 is a free variable

in addition to λ1 while λ3 is still dependent on the state x̃ and λ1. With two free

variables dim(K(x) ∩K(x̃)) = 2.

(IV) Let x̃ satisfy (1.14) and also let

x4

x3

− x̃4

x̃3

= 0,
x2

x3

− x̃2

x̃3

= 0 (1.17)

(
x4

x2

− x̃4

x̃2

)(
x1

x2

− x̃1

x̃2

)
6= 0. (1.18)

Upon further inspection, however, we find that (1.14) and (1.17) implies
(
x4
x2
− x̃4

x̃2

)
=(

x1
x2
− x̃1

x̃2

)
= 0 which contradicts (1.18). Thus the perturbation given by case (IV)

doesn’t exist.

(V) Let x̃ satisfy (1.14). And let

x4

x2

− x̃4

x̃2

=
x1

x2

− x̃1

x̃2

=
x4

x3

− x̃4

x̃3

=
x2

x3

− x̃2

x̃3

= 0.

Equations (1.14), (1.15) and (1.16) are satisfied for any value of λ1, λ2 and λ3. With

three free variables dim(K(x) ∩ K(x̃)) = 3. Fig. 1.2 shows states x̃ for which

K(x) ∩ K(x̃) is non trivial. The reference state x is shown, and the entire space

represents other states x̃ such that equation (1.14) is satisfied.

This work exploits the linearity of some metabolic systems with respect to fluxes.

Namely, we are able to see systematic relationships among fluxes at equilibrium as

opposed to treating all fluxes as independent. Propositions concerning the rank of

our stoichiometric matrix are presented, from which the dimension of the kernel may

be easily deducted.
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1.4 Discussion

We present a virtual patient methodology which leverages the QSP model structure to

derive relationships among parameters and uses these relationships to create virtual

patient populations, thus systematically taking into account the interdependence of

parameters in the model. We show a method for sampling parameter values, which

creates distributions for each parameter of interest that maximizes variability in the

parameter space while constraining fluxes in the nullspace to produce biologically

reasonable values for all fluxes in the model. This will ensure that the majority of

simulations will produce results within the physiological range. The LIFE method

propagates variability in key model parameters to other fluxes in the model, gener-

ating more variability in pathways of interest. These pathways can be analyzed with

a view to a new therapeutic intervention, to predict the range of responses expected

to a different type of treatment. Our methodology generates virtual patients with

tighter ranges of variability around model outputs than the traditional method of

virtual patient creation, which uniformly predicts large variance in all model out-

puts. In this way, our method better maintains separation between distinct patient

populations and allows us to see clearly what outputs will differ across virtual pa-

tients in response to treatment and which should not. We show that variability in

both PK and PD parameters can be incorporated using this methodology, so that

interdependence of PK and PD parameters can be taken into account as well. This

representation will allow us to systematically analyze whether patient response is due

to properties of the drug that can be altered to make treatment more effective, or

whether there is an underlying biological cause of non-responsiveness. Finally, it is

important to note that virtual patients generated by the LIFE methodology can have

the same baseline values, but different responses to drug, because drug response is

dictated by the underlying processes which give rise to this state. By enabling us to

systematically identify and analyze the factors controlling the different responses of
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patients with similar baseline clinical measurements to treatment, the LIFE method

enables us to better understand what clinical data is needed to accurately identify

drug responders.

A virtual patient consists of a set of specific parameter values which represent

different kinetic rates in a patient’s biology. To determine how the parameter values

should vary across virtual patients, different approaches are used. Generally, a typical

value or an upper and lower bound are set for each parameter based on what is

known in the literature, and each parameter is sampled from a normal or uniform

distribution within these bounds [13, 14, 12]. From this initial set of virtual patients,

a subset is selected by comparing model predictions for these virtual patients to

clinical baseline or time course data of key outputs, and using a weighting scheme

such as prevalence weighting [18] to select patients which replicate the distribution

of this data [13, 14, 12, 19]. Thus, the distributions of parameters can be examined

after the virtual population is defined, but there is no fundamental understanding

of what the distribution and covariance of parameters should be. Using the LIFE

methodology, we sample parameters in a directed way from a lognormal distribution,

and calculate the feasibility of the resulting parameter set by considering the values

of other parameters generated from the core fluxes. We use a cost function which

considers feasibility of the parameter set generated rather than the feasibility of the

baseline patient values, because we know that the baseline values will be equal to

the steady state values that we put into the LIFE method. Using this procedure,

we demonstrated how the LIFE method can be useful for discerning the differential

impact of key parameter values and treatment responses in distinct virtual patient

populations.

The LIFE method allows us to systematically include the structural relationship

of parameters in the model by representing the relationships between the parameters

at steady state. This representation tells us which parameters can be independently
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varied, and how these independent fluxes will propagate variability to other parts of

the model through these relationships. This way of representing interdependence in

the model is an advantage over current VP methodologies where this interdependence

must be empirically explored for sets of parameters [14, 13], or potentially estimated

from the dataset [19]. The LIFE method allows the interdependence to be an intrinsic

part of the parameter calculation. As shown in Figures 7,8, and 9, this results in

outputs which have more realistic variability. This also helps to reduce the number of

parameters in the model which can be used to generate variability in a VP response,

better informing the initial choice of parameters to define a VP. Finally, it gives us

mechanistic insight into how clinical steady state levels will change based on different

parameter values or on treatment with a new drug before we run the model.

Extensive work has been done in the field of population pharmacokinetics to model

inter-individual variability of parameters in the model by fitting the variance and

covariance of pharmacokinetic and simple pharmacodynamic parameters to clinical

data [20]. Many virtual patient cohorts developed from QSP models are created

by varying pharmacodynamics parameters affecting intrinsic patient biology, with-

out considering pharmacokinetic variability [19, 13]. Work by Gadkar, et al. [12]

simulates variability in both pharmacodynamic and pharmacokinetic parameters by

using the prevalence weighting method, but covariance between these parameters is

not mentioned. The LIFE methodology is a novel approach to enable modeling of

variability in pharmacokinetic and mechanistically-specific pharmacodynamic param-

eters, where interdependence among these parameters is handled in the same coherent

way as interdependence among pharmacodynamics parameters. This approach more

accurately represents the different factors that can alter patient response. It is espe-

cially important for Target-Mediated Drug Distribution models, such as the one used

for the anti-PCSK9 antibody in this work, because the clearance and transport of the

drug is inextricably linked to the target.
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Virtual patient methods in the literature focus on generating patients with a range

of initial output values that are similar to the clinical range and distribution for each

output [14, 12]. This approach seeks to replicate the range of patients who enter into

a trial, with different baseline levels across patients for key parameters. The LIFE

method can be used to create population of subjects with a distribution of baseline

measurements. However, the LIFE method was developed with the knowledge that

patients with the same baseline levels may have vastly different responses to drug,

meaning that the LDL and HDL of a patient at baseline is not enough to predict

the efficacy of treatment for this patient. The LIFE method enables us to advance

mechanistic hypotheses on the factors driving this variable drug response. We can

create populations with the same baseline values but different biology to analyze the

effect of biological and pharmacokinetic variability on treatment outcome. Previous

work by Hosseini et al. [13] shows some analysis of virtual patients with different

parameterizations but a similar time course of disease progression, which speaks to

this idea. Our methodology gives the user an analytical representation of this set of

patients and an understanding of how they relate, so that we can efficiently generate a

population of these virtual patients by utilizing the flux relationship structure rather

than numerically determining individual patient profiles empirically. This is of key

importance in identifying responder sub-populations so that we can better target trial

populations to include patients who have a higher probability of being treated by drug

because of their underlying biology. This approach can also be connected to a disease

progression model, to help us predict how patients with the same clinical endpoint

levels in the short term will have different long term outcomes.

We have demonstrated here the ability of the LIFE method to create virtual pa-

tient populations and the advantages that it has over existing virtual population de-

velopment methods, including more restricted variability in key identified parameters,

enhanced variability in other parameters in relevant pathways, and more applicable
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range of therapeutic outcomes when both PK and PD parameters are varied. Our

ultimate goal is to use this method to match clinical data for different patient sub-

groups, and to hypothesize mechanistic characteristics likely to lead a patient to best

respond to therapy. Existing methods for virtual patient generation have been used to

this effect [13, 12, 19], and we would like to see what additional information can come

from our understanding of the model as a system of connected fluxes. Our method

can give insight into key parameters to use in optimizing parameter values and in gen-

erating virtual patients. In the QSP model presented here, from an original set of 101

parameters, our method generates 49 core fluxes which are independently responsible

for variability in the model and can be used for virtual patient creation. We would

like to further develop our method to determine from these 49 parameters, which are

most important to vary, and how many parameters are necessary to encompass all

variability seen in the clinical data. We believe that the LIFE method can make a

significant contribution towards improving the efficiency and robustness of existing

virtual patient methods and ultimately allowing for more comprehensive QSP simula-

tors that advance mechanistic hypotheses ascertaining a drug’s mechanism of action,

and disease mechanisms commensurate with drug mechanism of action, linking the

right drug to the right patient.
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Figure Legends

Figure 1.3 Example metabolic network. Each node represents a biomolecule, or

metabolite and each edge represents a rate constant, or flux. From this graph we

obtain a system of Ordinary Differential Equations that govern metabolite levels over

time.

Figure 1.4 An example of “importance sampling.” The blue curve is a sampling

distribution of a flux f. To estimate the range of fluxes resulting from a sample, we

calculate fluxes dependent on f using the red tick marks, which are equally spaced

from 2.5 percentile to the 97.5 percentile.

Figure 4 From the original set of identified virtual patient-defining parameters, LIFE

method determines a core set of parameters which control this variability in the model.

The QSP model of cholesterol synthesis can be represented as a network of fluxes (f

’s). The nullspace defines a connectivity matrix between all reaction rates (f ’s) of the

model and the core f’s controlling the variability in the model. Fig 4(a) highlights (in

red) the 12 reaction rates originally identified to define virtual patients within this

network context. Fig 4(b) shows core fluxes (in red) used to control variability in

network approach. The TMDD model of anti-PCSK9 inhibitor is incorporated into

the model (green nodes)and is shown in isolation in Fig 4(c). One flux was used to

create variability in the PK portion of the model (shown in red).

Figure 5 Both LIFE and traditional VP methods generate variability around pa-

rameters originally identified to define VPs. However, the LIFE method also creates

variability in other key model parameters, and it generates different parameter dis-

tributions for identified parameters. Parameter distributions were generated either

by individually varying identified VP-defining fluxes (blue,cyan) or by using LIFE
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method (red,yellow) to vary core fluxes controlling variability in the network and to

calculate values for parameters dependent on these fluxes. Plots show overlaid his-

tograms of the parameter value distributions generated with both approaches for (a)

identified VP-defining parameters, defining the statin responder population, and (b)

core parameters controlling variability in the model for the statin responder popula-

tion. In (c-d), identified VP-defining parameter distributions are shown for (c) the

LIFE method, using parameter values for a typical statin responder (red) vs. non-

responder (yellow) patient and for (d) the traditional method, using parameter values

for a typical statin responder (cyan) vs. non-responder (blue) patient. Unstable or

unphysiological simulations (with final LDL > 300 mg/dL) were excluded from plots.

Figure 6 The different VP approaches generate different levels of variability in key

pathways of interest. Virtual populations based on the statin responder profile were

created using the LIFE (red) and traditional (cyan) VP methods. Variability gener-

ated in (a). parameters controlling synthesis and clearance of PCSK9, (b) parameters

controlling synthesis and clearance of LDL, and (c) PK-related parameters is shown.

Unstable or unphysiological simulations (w final LDL > 300 mg/dL) were excluded

from plots.

Figure 7 LIFE Methodology minimizes variability by taking covariance between

parameters into account and creates populations with the same baseline values but

different drug responses. Simulations were run to simulate 90 weeks of Q2W dosing

with 150 mg anti-PCSK9 antibody. Predicted outputs are shown for Statin responder

(a-h) and non-responder (i-p) populations, created by fluxes using the traditional or

by using the LIFE network approach. Plots show the mean (in blue) +/- standard

deviation(dotted line) of the virtual patient responses generated from each simulation

of PCSK9 (a,e,i,m), LDL(b,f,j,n), VLDL(c,g,k,o), and HDL(d,h,l,p). Unstable or

unphysiological simulations (with final LDL > 300 mg/dL) were excluded from plots.
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Figure 8 Model predictions about LDLR again show increased variability predicted

from simulations of a virtual population created using the traditional approach com-

pared to the LIFE method. Simulations were run to simulate 90 weeks of Q2W dosing

with 150 mg anti-PCSK9 antibody. Predicted outputs are shown for Statin respon-

der (a-f) and non-responder (g-l) populations, created with the LIFE approach (a-c,

g-i) or the traditional approach (d-f, j-l). Plots of hepatic LDLR at the cell surface

(a,d,g,j) show the mean (in blue) +/- standard deviation of the virtual patient re-

sponses generated from each simulation. Plots of the amount of LDLR degraded in

the endosome per hour when isolated (b,e,h,k), or in complex with PCSK9 (c,f,i,l)

show time courses for each VP. Unstable or unphysiological simulations (with final

LDL > 300 mg/dL) were excluded from plots.

Figure 9 Key model outputs are influenced by both PK and PD variability. Simu-

lations were run after using either the traditional or the LIFE approach to generate

parameter distributions for use in the model. Simulations were based on the typical

statin responder profile. Parameters varied included PD parameters only (a-f) or PD

and PK parameters (g-l). The simulation was run over a period of 90 weeks. 2.5 sta-

ble cycles Q2W Mab dosing are shown, for simulated levels of Mab-PCSK9in plasma

(a,d,g,j) and PCSK9 in plasma (b-c,e-f,h-i,k-l) . The mean (blue) +/- standard devia-

tion (dotted black lines) are shown in plots (a-b,d-e,g-h, j-k), while individual virtual

patient predictions are overlaid on the same plot in (c,f,i,l). Unstable or unphysiolog-

ical simulations (with final LDL > 300 mg/dL) were excluded from plots.
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1.5 Tables

Standard error (σ
µ
, σ = standard deviation, µ = mean) of flux sampling distribu-

tions for each VP class.

• f1 = rate constant for the trafficking of newly synthesized LDLR to the surface

of peripheral cells.

• f2 = rate constant for the trafficking of newly synthesized LDLR to the surface

of hepatocytes.

• f3 = rate constant for the clearance of PCSK9 from the plasma.

• f4 = PC9 LDLR internalization rate in peripheral cells.

• f5 = rate constant for the exchange of cholesterol from HDL to LDL.

• f6 = rate constant for the exchange of cholesterol from HDL to VLDL.

• f7 = PCSK9 LDLR association rate in plasma.

• f8 = rate of cholesterol production by hepatocytes.

• f9 = rate constant for secretion of biliary cholesterol into the GI tract plus

bileacid cholesterol secretion rate k.

• f10 = PCSK9 intra cellular to plasma release rate in hepatocytes. f10 is depen-

dent on the sample flux f3.
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Table 1 f1 f2 f3 f4 f5 f6

VP0 1.2545 0.7855 0.2020 0.0466 152.1765 17.5696

VP1 1.3230 0.8745 0.2910 0.0365 97.6538 12.2185

VP2 1.2310 0.6585 0.2900 0.0365 97.6538 12.2185

VP3 1.3170 0.5575 1.0420 0.0361 97.6538 12.2185

VP4 1.4870 1.1310 0.0117 0.0370 97.6538 12.2185

Table 1 cont’d f7 f8 f9

VP0 0.7536 3.4829× 10−6 2.9733

VP1 0.7536 4.4700× 10−7 0.6412

VP2 0.7536 7.4850× 10−6 0.5211

VP3 0.7389 4.3671× 10−6 0.6154

VP4 0.7608 6.4475× 10−6 3.7740
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Supplementary Table 1

We have two general constraints on sampled parameters. Each VP will have additional

constraints. The description of fluxes f1, . . . , f9 are found in Table 1; f̄i is the average

value of flux fi.

1.) We will allow f4 only to decrease with the sampling algorithm:


f4 sampled from lognormal

f4 = 8.3, if sampled value is > 8.3

2.) For all virtual patients, for a given sample, f3 and f10 will be coupled in the

following way:

f3 − f̄3 = ε3, then let, f10 = f̄10 + ε3.

This is to say that the amount that a9 deviates from f̄3 is precisely the amount that

f10 will deviate from f̄10.

For VP0

3.) We apply a strict bound to f1. f̄1 = 0.2


f1 sampled from lognormal

f1 = 0.0985, if sampled value is < 0.0985

4.) We apply a strict bound to f2. f̄2 = 0.2


f2 sampled from lognormal

f2 = 0.1000, if sampled value is < 0.1000
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5.) We apply a strict bound to f2. f̄2 = 0.1


f3 sampled from lognormal

f3 = 0.1060, if sampled value is > 0.1060

6.) We apply a strict bound to f6. f̄6 = 0.0158


f6 sampled from lognormal

f6 = 0.0784, if sampled value is > 0.0784

7.) We apply a strict bound to f8. f̄8 = 70, 000


f8 sampled from lognormal

f8 = 1.0870e+ 05, if sampled value is > 1.0870e+ 05

8.) We apply a strict bound to f9. f̄9 = 0.0150


f9 sampled from lognormal

f9 = 0.0147, if sampled value is < 0.0147

For VP1

3.) We apply a strict bound to f1. f̄1 = 0.2


f1 sampled from lognormal

f1 = 0.0896, if sampled value is < 0.0896
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4.) We apply a strict bound to a8. f̄2 = 0.2


f2 sampled from lognormal

f2 = 0.0906, if sampled value is < 0.0906

5.) We apply a strict bound to f3. f̄3 = 0.1


f3 sampled from lognormal

f3 = 0.1048, if sampled value is > 0.1048

6.) We apply a strict bound to f6. f̄6 = 0.0238


f6 sampled from lognormal

f6 = 0.0985, if sampled value is > 0.0985

7) We apply a strict bound to f8. f̄8 = 100, 000


f8 sampled from lognormal

f8 = 1.6483e+ 05, if sampled value is > 1.6483e+ 05

8.) We apply a strict bound to f9. f̄9 = 0.0131


f9 sampled from lognormal

f9 = 0.0128, if sampled value is < 0.0128
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For VP2

3.) We apply a strict bound to f1. f̄1 = 0.2


f1 sampled from lognormal

f1 = 0.1097, if sampled value is < 0.1097

4.) We apply a strict bound to f2. f̄2 = 0.2


f2 sampled from lognormal

f2 = 0.1117, if sampled value is < 0.1117

5.) We apply a strict bound to f3. f̄3 = 0.1


f3 sampled from lognormal

f3 = 0.1048, if sampled value is > 0.1048

6.) We apply a strict bound to f6. f̄6 = 0.0238


f6 sampled from lognormal

f6 = 0.0977, if sampled value is > 0.0977

7) We apply a strict bound to f8. f̄8 = 40, 000


f8 sampled from lognormal

f8 = 6.9189e+ 04, if sampled value is > 6.9189e+ 04

8.) We apply a strict bound to f9. f̄9 = 0.0142
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f9 sampled from lognormal

f9 = 0.0139, if sampled value is < 0.0139

For VP3

3.) We apply a strict bound to f1. f̄1 = 0.2


f1 sampled from lognormal

f1 = 0.1245, if sampled value is < 0.1245

4.) We apply a strict bound to f2. f̄2 = 0.2


f2 sampled from lognormal

f2 = 0.1250, if sampled value is < 0.1250

5.) We apply a strict bound to f3. f̄3 = 0.05


f3 sampled from lognormal

f3 = 0.0545, if sampled value is > 0.0545

6.) We apply a strict bound to f6. f̄6 = 0.0238


f6 sampled from lognormal

f6 = 0.0985, if sampled value is > 0.0985

7) We apply a strict bound to f8. f̄8 = 70, 000


f8 sampled from lognormal

f8 = 1.3501e+ 05, if sampled value is > 1.3501e+ 05
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8.) We apply a strict bound to f9. f̄9 = 0.0117


f9 sampled from lognormal

f9 = 0.0114, if sampled value is < 0.0114

For VP4

3.) We apply a strict bound to f1. f̄1 = 0.2


f1 sampled from lognormal

f1 = 0.0405, if sampled value is < 0.0405

4.) We apply a strict bound to f2. f̄2 = 0.2


f2 sampled from lognormal

f2 = 0.0450, if sampled value is < 0.0450

5.) We apply a strict bound to f3. f̄3 = 0.3


f3 sampled from lognormal

f3 = 0.2983, if sampled value is < 0.2983

6.) We apply a strict bound to f6. f̄6 = 0.0238


f6 sampled from lognormal

f6 = 0.0958, if sampled value is > 0.0958
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7) We apply a strict bound to f8. f̄8 = 40, 000


f8 sampled from lognormal

f8 = 5.9096e+ 04, if sampled value is > 5.9096e+ 04

8.) We apply a strict bound to f9. f̄9 = 0.0177


f9 sampled from lognormal

f9 = 0.0173, if sampled value is < 0.0173
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Figure 1.2: A 3-D representation of the metabolic state space which highlights states
x̃ with nontrivial intersections with the kernel of the initial state (represented by
x). A three dimensional representation is appropriate because (1.14) implies that
x1 and x4 are proportional. The line α represents case (IV) where x̃1, x̃2, x̃3 are
proportional to x1, x2, x3 respectively. States x̃ on this line will have kernels such
that dimension(K(x) ∩ K(x̃)) = 3. The plane β represents case (III) where only
x̃1, x̃2 are proportional to x1, x2.



Chapter 2

Cis-regulatory module expression

profile

2.1 Introduction to CRM analysis

Cis-regulatory modules (CRMs) control gene expression in an organism. CRMs may

activate and deactivate over the organism’s lifetime, and may be active or inactive

across different cell types, or even individual cells in the organism. Using the purple

sea urchin as a model organism, we have constructed a procedure to detect the spatial

and temporal expression in the an organism in which putative CRMs fused to reporter

“barcodes” have been introduced. Moreover the analysis is tested by a simulation

programmed in Matlab. The code simulates the cell growth of the purple sea urchin

and the random integration of DNA fragments into it’s genome. Comprehension of

genetic regulatory networks requires understanding of many regulatory genes, their

target genes, and CRMs that control the interactions of regulatory genes and their

targets [21]. These three components comprise gene regulatory networks. Studying

CRMs has advantages over the other components, specifically 1. CRMs often control

genes that are physically close by on a strand of DNA which facilitates locating these

57
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target genes and 2. cell differentiation results from large groups of genes working

together that are often activated with shared CRMs. That is, CRMs play a critical

role in development and can uncover genetic mechanisms that result in a fully formed

adult organism.

Cis-regulatory analysis measures temporal and spatial activities of CRMs in or-

ganisms that grow from normal and perturbed embryos. The conventional approach

for a cis-regulatory analysis follows:

1. Build a reporter construct that contains a wild-type or mutated CRM, a core

promoter that can bind RNA polymerase II, a reporter gene such as green

fluorescent protein (GFP), and a core poly-(A)denylation signal.

2. Inject reporter constructs into cells or embryos.

3. Examine expression of the reporter gene.

4. Compare reporter expression with gene expression patterns to build a cis-

regulatory model for gene expression control [22].

While this approach has been effective for the current understanding of cis-regulatory

mechanisms, it is relatively slow compared to the progress in genomics for measuring

gene expression patterns. Because many eukaryotic genes are controlled by multiple

CRMs, experimentally studying one CRM at a time and exhausting all possibilities is

impractical. This approach alone would lead to incomplete gene regulatory models.

It follows that a high through-put method to analyze thousands of CRMs would help

fill in the gaps of knowledge left by approaches relegated to a single CRM at a time.

Regarding the advantages of high-throuput analysis, several new assay methods

for CRMs have been developed [23, 24, 25, 26, 27, 28, 29]. The new approaches

take advantage of the immense diversity of DNA oligomers to barcode and track

many CRMs in parallel. However, application of these methods has been limited to

quantitative measurement of CRM activities in cells or embryos.
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Here, using sea urchin embryos, we describe a procedure to analyze a different

high-throughput and highly scalable experiment. It is called Multiplex and Mo-

saic Observation of Spatial Information encoded in Cis-regulatory modules (MMO-

SAIC). This method simultaneously measures both quantitative and spatial activities

of CRMs. MMOSAIC is based on two well-known observations in a variety of model

systems:

• Stochastic and mosaic incorporation of linear reporter constructs into only one

cell in an early embryo.

• Unequal clonal replication of the incorporated reporter constructs depending on

cell lineages during embryogenesis [30, 31, 32].

The level of reporter expression in a mosaic embryo is determined by the combination

of intrinsic activity of a given CRM as well as specific cells that harbor the construct

before the time of measurement. Since a large sample size neutralizes the effect of

random mosaic DNA incorporation, the hypothesis is that the quantitative profiles of

single-embryo resolution reporter expressions measured in a sufficiently large number

of embryos is determined by spatial activity of a given CRM. Using a new single-

embryo resolution reporter assay method, it is shown that the quantitative profile of

single-embryo resolution reporter expressions measured in a large number of mosaic

embryos can be used for spatial cis-regulatory analysis. To understand the proposed

analytical procedure, the underlying experiment that is analyzed must be elaborated

on.
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2.2 Experimental set up

2.2.1 Preparing reporter constructs

The size of CRMs used in this study ranges from 351 bp to 2716 bp, and the majority

of the CRMs are 2 kb-long. Reporter constructs were generated in two steps:

• Fuse individual putative CRMs with unique identifier (ID) secquences. These

are referred to as CRM::ID constructs.

• The CRM::ID construct receives an additional ‘extreme’ barcode, which is a

random 25-mer.

The ’extreme’ barcode is added to the with one cycle of Polymerase Chain Reaction

(PCR). To generate a large number of CRM::ID constructs, a pre-barcoded library of

empty reporter vectors that already contain a promoter fused to a green fluorescent

protein (GFP) pre-labeled with approximately 100 million random “barcodes” (25

base pairs long). The abundance of CRM constructs allows a very high probability

that a sample contains no duplicate barcodes. Our analysis will assume that no

duplicate barcodes will become integrated into the growing embryo.

2.2.2 Incorporation of barcoded reporter constructs

Equal amounts of pooled CRM::ID are introduced to an embryo of an organism as

described in [23]. The expected number of unique barcodes delivered per putative

CRM ≥ 1500 in the entire pool of embryos to be injected. The many differently

barcodes per CRM leads to many experiments done simultaneously to see how the

CRM can be expressed in the organism.

After the CRM::ID constructs are injected into the embryo, there is a chance that

a construct will become incorporated into the DNA of the organism. From the time

of this “incorporation event” onward, the CRM can be expressed as if it were part of
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the original organism’s genome. It is expected that such an incorporation event may

happen only during mitosis (when the organism’s DNA is exposed to the cytoplasm),

and it will happen in one specific daughter cell. If the CRM::ID is contained in the

DNA of a cell where the CRM will be expressed, transcription of the putative CRM

and the attached barcode is expected to occur. Once the DNA is incorporated into a

cell, it will duplicated during mitosis, and all daughter cells will contain the barcoded

CRM.

2.2.3 Rank ordered profiles

From the integration events of CRM::ID constructs, the CRM and barcode will be

copied to the next generation of cells. Therefore, to know in which cell generation a

barcoded CRM was incorporated, it is a simple matter of measuring the relative copies

of barcoded DNA in the organism after it grows. The cell lineage becomes relevant

here, because not all cell types grow at the same rate in our example organism,

the purple sea urchin. Ignoring this detail for a moment, it is easy to see that an

integration event which occurred in the second to last cell generation will result in

twice as much barcoded DNA that was incorporated, and an integration event that

occurs two cell generations before the end of the experiment would lead to four times

as much barcoded DNA (the amount of DNA was doubled twice, see Fig. 2.4).

Just as we can use analysis to determine when the incorporated DNA was inte-

grated into the organism, we may also understand in which cells incorporated CRMs

were expressed. The putative CRMs will be incorporated randomly into different

cells. Randomly, a CRM will become incorporated in cells. If one of these expresses

this CRM, there will be RNA transcribed from the CRM and the reporter. These

copies of RNA for a barcode are called expressed barcodes. By observing the ratio

of expressed barcodes to incorporated barcodes and considering the different speeds

that cells grow and divide in the cell lineage, one can eliminate possible cells where
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expression could not occur. With enough trials we can pinpoint which cell group and

which cell generation expression of a barcode occurred. We now know that the CRM

attached to the barcode is active in these cells.

To organize our data of expression over incorporation, we plot all barcodes along

the x axis with their expression ratio (expressed barcodes to incorporated barcodes)

on y axis so that as the highest ratios are plotted on the left of the x axis with

descending ratios to the right. If there are any instances of no expression for the

given CRM, these will be plotted to the far right on the x-axis. This plot is called

a rank ordered profile (ROP). With a very large number of incorporation events,

resulting ROPs contain the information needed to deduce which cell types and which

cell generations a CRM was expressed.

2.3 Simulation Details

A simulation of the experiment described in section 2.2 was constructed in MAT-

LAB. With the simulation, one can investigate An in silico version of the previously

described experiment whereby one could specify the cells which would express a CRM.

With this tool, we observe what the ROPs should look like when pre-selected cells

drive the expression of a CRM. The MATLAB program simulates many random

incorporation events according to the uniform probability over all cells which would

undergo mitosis in each cell generation. The program then generates ROPs according

to simulated experiments. This gave us a framework to test CRMs active in specific

target cells will affect ROPs. The framework also let us test how the ROPs change if

the expressed cells where spatially or temporally perturbed.
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Figure 2.1: figure showing hypothetical example of random incorporation events lead-
ing to CRMs being incorporated in cells which sometimes express the CRM, and
sometimes not. From many different barcodes fused to the same CRM we can con-
struct a rank ordered profile which tells us how often a specific CRM is expressed and
the ratio of expression to incorporation.
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2.3.1 Reproducing the cell lineage

The cell lineage reproduced by my program was of a purple sea urchin, referenced from

the book, “Development of Sea Urchins, Ascidians, and other invertebrate Deuteros-

tomes: Experimental Approaches,” by Charlse A. Ettensohn, Gary M. Wessel, and

Gregory A. Wray [1] shown in Fig. 2.2.

The purple sea urchin embryo does not grow larger until later in the life cycle

beyond the cell generations with which our experiment is concerned. During early

generations, when the cell divides, it is by way of cell cleavage, where the two daughter

cells are half the size of the parent cell. The cell cleavage can occur in three different

ways:

1. A horizontal cleavage of a group of cells results in two groups with the same

distribution of DNA in each group.

2. A vertical cleavage will result in two groups with potentially different DNA

distributions.

3. An oblique cleavage is a combination of horizontal and vertical cell cleavages.

Horizontal cell cleavage and oblique cell cleavage are shown in Fig. 2.3.

As a simplifying assumption which sidesteps the inherent ambiguity of oblique cleav-

age, all oblique cleavages in the simulation were written as horizontal cell cleavages.

A cell group (represented by a node in Fig. 2.2) in the simulation is a vector of zeros,

and the length of the vector doubles when the group undergoes a cleavage.

2.3.2 Simulated incorporation of barcoded CRMs

In the actual experiment, many incorporation events all with different barcodes will

happen in a single embryo, and there are many embryos in the experiment. However
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we assume that these incorporation events are independent, and so my in silico rep-

resentation will simulate one barcoded CRM incorporation event at a time. In other

words, any CRM behaves like any other with the exception of the cells which drive

expression.

The simulation begins with a single number ’0’. When this cell undergoes mitosis,

the next generation will be represented by two 0’s. The ’0’s double according to the

cell lineage of the organism. With this scheme, one can represent a growing embryo.

During the growth of the embryo, there is a random chance for a barcoded CRM to

become incorporated into the DNA of a cell. For an incorporation event the specific

cell in a given generation is chosen uniformly, however the generation in which it

occurs is not uniform, and the simulation replicates this probability distribution for

incorporation events (shown in Fig. 2.4).

A randomly generated number determines the generation in which a barcoded

CRM becomes incorporated. After the generation is randomly chosen, every cell in

this generation has an equal chance to be the cell in which the CRM incorporates.

Each cell group is represented in the simulation as a vector of zeros, and when an

incorporation event happens in a cell, the 0 representing this cell becomes a 1. Daugh-

ter cells of all cells designated by a ’1’ are also designated as a ’1’ which indicate the

cells containing the barcode in all cell generations.

2.4 Results

2.4.1 Constructing a library of ROPs for known CRMs

Perhaps the most obvious result from this work is that one can catalog the rank

ordered expression profiles of known CRMs. When a new putative CRM is verified to

be active in an organism, the ROP can be compared to the catalog, and if the ROP
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matches that of another CRM, then we know that our putative CRM is active in the

same cells (see Fig. 2.7). In the case that a ROP doesn’t match exactly then we still

estimate information about the cells where the putative CRM is active.

To test the similarity of ROPs derived from CRMs which are expressed in similar

or different cell groups of our simulation we define distance between ROPs for CRM1

and CRM2 as:

DCRM1,CRM2 =
1

N

N∑
n=1

|BCRM1,n −BCRM2,n |
(BCRM1,n

+BCRM2,n)
2

(2.1)

where BCRM1,n and BCRM2,n are the nth ranked barcode expression for two CRMs

respectively. This is the absolute difference of expression for the nth ranked barcode

normalized to the mean expression of the two.

Simulations were run that calculated the distance between ROPs from a CRM

active in the Nodal gene, Nodal_5P and Nodal_INT. The distance was small com-

pared to the distance between the ROP corresponding to a CRM active in the Nodal

gene and one active in the Delta gene (shown in Fig. 2.5).

2.4.2 High-throughput cis-regulatory analysis at single-embryo

resolution

The new quantitative method for single-embryo resolution cis-regulatory analysis be-

gins by delivering each uniquely barcoded reporter construct into only one embryo

during the entire experiment. Many embryos are pooled with mosaic DNA incorpo-

ration (hereafter called mosaic embryos), transcripts of a unique barcode originate

from one embryo. Note that a single embryo can contain many different reporter

constructs, as long as each barcode is unique. The practical experiment requires new
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‘extreme’ barcoding technology, with which one can add many billions of unique ran-

dom 25-mers (N25) to established constructs that already contain unique identifier

(ID) sequences (Fig. 2A). Delivering a small sampling of the reporter constructs into

embryos means that probabilistically each unique barcode is introduced into only one

embryo.

To measure reporter expression and to correct for DNA copy number at a desired

stage, total DNA and total RNA is extracted from the same lysate of embryos (Fig.

2C). PCR with a pair of universal primers selectively amplifies the entire set of bar-

codes from total genomic DNA and total cDNA, and next-generation sequencing is

used for counting the relative copy numbers of barcodes. Because the sequence reads

also contain IDs specific to individual CRMs, each N25 barcode can be computa-

tionally assigned to a CRM. Relative expression level of a unique barcode in a single

embryo (B) is computed by the following equation.

B =
E

I
(2.2)

where E is the number of sequence reads originated from expressed unique barcode

and I the number of sequence reads from incorporated unique barcode. Note that I

is proportional to the number of cells that carry the barcode within a single embryo,

as each barcode is present in only one embryo. One can also estimate the traditional

and averaged relative CRM activity (A) measured by reporter expressions using the

following equation.

A =
(E1 + E2 + E3 + . . .+ EN)

(I1 + I2 + I3 + . . .+ IN)
(2.3)

where EN and IN respectively are the numbers of sequence reads from expressed and

incorporated Nth unique barcode, and N the total number of unique barcodes driven

by a given CRM. Because the scales of B and A also depend on the number of sequence

reads, we further normalize the data to the background activity measured by using
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a co-injected inactive DNA fragment. The advantages of background normalization

are reduction of variations among samples and elimination of the need for measuring

absolute levels [23, 24]. Nodal_3P fragment is used to measure background activ-

ity, because there was no detectable positive or negative activity observed with the

fragment [33].

2.4.3 Temporal DNA profile

At the end of the last cell generation to be analyzed, the organism’s cells are lysed

and we numerically examing relative numbers of sequence reads from the lysate. In

the underlying experiment, the copy number of a barcode cannot exceed the number

of cells in the organism (a barcode found in every cell would signify an incorporation

even occurring in the very first cell before mitosis, and this is the maximum example).

The relative amount of sequence reads of the lysate will reflect the generation in which

the incorporation event occurred, as well as the cell fate of the first cell to harbor

the barcode. Referencing the purple sea urchin cell lineage map (Fig. 2.2) , one can

see that the number of cells after each cell generation increases by a factor close to

2. After the first cell division there are 2 cells, then 4, 8, 16, 32 ,60 ,96, 104, 216,

424 (this is a correction to the typo “408” written on the original picture), 808. The

factor is not exactly 2 because of the different speeds at which some cell types divide.

One can find the average copy number of an incorporated barcode is 400
cn

where cn

is the total number of cells in the embryo at the time of the incorporation event.

The number of sequence reads are proportional to the number of copies of a barcode.

One can bin the number of reads by which cell generation the incorporation event

happened in. As you can see in Fig. 2.2 after the fifth cell division, the occurrence of

mitosis becomes less synchronous across cell groups.



69

2.4.4 Spatial DNA profile

For a known ROP for a given CRM, one can anticipate the effect of perturbations

to the spatial regions of cells which drive expression. Simulations were run where

the region of cells driving CRM expression was perturbed, and P-values are given

for each comparison. The CRM responses have not been confirmed by independent

experiments.
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Figure 2.2: The cell lineage of the purple sea urchin as given by [1]. The nodes of
the graph indicate a group of cells, and the numbers indicate the number of cells in
the group. Some groups are labeled as a particular cell type. In the cell count just
below the cell lineage, the count of 408 should be 424, the original picture was kept
for citation purposes.
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Figure 2.3: When cells cleave, they may do so in different ways. The cell with the
yellow cross contains a barcoded CRM. The top shows a horizontal cleavage (identi-
fied by a circle with a horizontal line). The cartoon depicts how the two groups of
daugter cells will cleave from the parent cells. The bottom shows an oblique cleavage
(identified by a circle with a diagonal line) which is a combination of horizontal and
vertical cleavages. The cell with the cross is cleaved vertically, and so both daughter
cells end up in the same cell group.

Figure 2.4: (A) When a cell is randomly incorporated, the stage of incorporation
will determine how many copies of barcoded CRMs there are. (B) The distribution
describing the empiricle frequency of incorporation events shows that incorporation
events are more likely to happen in some cell generations than others.
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Figure 2.5: (A) We compare serveral ROPs for similarity. ROPs driven by cells in the
same cell groups appear similar to each other. (B) The distance between two ROPs
is calculated with equation (2.1) in order to quantify their similarity.

New CRM

Profile matching

CRM1 CRM2

CRM4CRM3

Figure 7

Figure 2.6: Figure depicting the ability to reference a catalog of ROPs which provides
information on newly discovered CRMs
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Figure 2.7: (A) Expected changes in ROPs when region of activity expands or
contracts. (B) Delta_5P expression and Delta_5P expanded by nodal MOE. (C)
Nodal_5P expression and expanded expression. (D) Nodal_INT expression and ex-
panded expression.



Chapter 3

Opinion formation models

3.1 Introduction to opinion formation models on Rie-

mannian manifolds

The emergence of a group’s global behavior from local interactions among individ-

ual agents is called emergent behavior. When local rules imply global patterns in a

population, we are observing a phenomenon called self-organization. Traditionally,

researchers focus on understanding the complex rules of interacting opinions which

lead to certain global configurations, such as classic consensus, alignment, clustering,

or the less studied dancing equilibrium [34]. Many different types of opinion mod-

els have been studied, such as bounded-confidence models like the one proposed by

Hegselmann and Krause, the radius of interaction determines the clustering of the

system [2]. Motsch and Tadmor studied the influence of the shape of the interaction

potential on the convergence to consensus of the Hegselmann-Krause system [35]. Ha,

Ha and Kim looked at the Cucker-Smale second-order alignment model and provided

a condition on the interaction potential ensuring convergence of the system to align-

ment [36]. Cristiani, Frasca and Piccoli studied the effect of anisotropic interactions

on the behavior of the group [37].

74
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The dynamics of an opinion model depend on the state-space [38] and interaction

network [2]. Models on the Euclidean space in one dimension (for opinion dynamics)

or in two or three dimensions (with applications to groups of animals or robots)

have been extensively studied and are well understood. However, such models are

locally linear, which may limit the ability to capture more complex phenomena and

represent reality [39]. In this vein, the Kuramoto model on the circle S1 addresses the

problem of synchronizing a large number of oscillators [40, 41]. There exist numerous

applications to this model [42, 43, 44, 45]. Similarly, applications to automobiles or

satellite coordination have motivated the development of models on special orthogonal

groups [46, 47]: satellites evolve on SO(3) while automobiles evolve on SE(2) or

SE(3). A nonlinear model of opinion formation on the sphere was also developed in

[34].

The present work defines a general model of opinion dynamics on a compact

Riemannian manifold. We investigate how the manifold on which the model is defined,

i.e. the state space, affects the global configurations resulting from opinion dynamics.

These are the first steps to constructing a mathematical framework for the theory of

opinion dynamics on general Riemannian manifolds.

Perhaps the most apparent difficulty in defining opinion dynamics on a general

Riemannian manifold is the possible lack of unique geodesics between two points.

Using the Riemannian distance, an agent will move towards a point by along this

geodesic, which are well defined only locally. This problem arises even after we

assume that one can overcome the vast complexity of computing geodesics, even on a

relatively simple manifold such as the torus [48]. A method to bypass this issue is to

consider the embedding of the manifold into a Euclidean space. Each agent’s velocity

is defined by projection of the other agents’ influence onto the tangent space at that

point. This is the choice made in [34].

Other than the mentioned practical convenience, there is theoretical reasoning
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behind choosing to define the model in terms of geodesic distance versus a distance

involving an embedding using projections through euclidean space. When evolving

along the geodesics of the manifold, one assumes that each agent has a global under-

standing of the manifold’s geometry and is able to choose the shortest path among

all possible ones. This method imbues each agent with a comprehensive knowledge of

the state space, whereas the projection-based approach restricts each agent’s spatial

understanding to its own point of view, that is the “view” of the manifold from its

tangent space.

These two specific approaches for a generalized model are explored. The first

method, Approach A, uses projections in the Euclidean space in which the manifold

is embedded. The second method, Approach B, uses only geodesics defined on the

manifold to define strength and direction of interaction. Then the properties of the

interaction matrix that lead to specific types of equilibria are investigated. Simula-

tions and examples compare the two methods. Dancing equilibria for Approach B

are shown (dancing equilibria were studied for Approach A in [34]).

The sphere and torus are used as example manifolds to evaluate these approaches.

Specifically, simulations are given for dynamics on S1,S2, and T2. These examples

allow one to directly compare the two approaches, and see if an approach is more

practical for a given manifold. The influence of the manifold’s geometry on the

dynamics is examined by observing the dynamics resulting from the same interaction

matrix in S2, T2 and R2.

Opinion dynamics trajectories can resemble solutions to the n−body problem.

Opinion dynamics trajectories along such orbits are referred to as “Social Choreog-

raphy.” This occurs when agents are driven along orbits which either are periodic,

or have a periodic feature, and that may be shared by multiple agents. A simple

example of Social Choreography in R2 is shown to not hold on S2 or T2, see Figures

3.10 and 3.11. For R2 initial conditions and properties of the interaction matrix which
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give rise to Social Choreography are investigated.

Another interesting feature of opinion models the ability to describe phenomena

where agents are not equally influential. In this type of model, it is not only the

distance separating agents that governs the influence of one agent over another, but

also an a priori decision about which agents are more influential. We can introduce

such heterogeneity of influence by prescribing a weight to an agent. A higher(lower)

weight means that the agent is more(less) influential on all other agents.

The second half of this chapter considers a framework for which, in addition to

the pairwise interaction function, a time-varying weight of influence is attributed to

each agent. This weight allows us to model a dynamic, social hierarchy within a

population, where the most influential agents (i.e. those with the larger weights) may

not be known initially. The dynamics of the weights can be prescribed in a number of

ways. We present different models coupling the opinions’ dynamics and the weights’

dynamics. We refer to Piccoli and Rossi [49] for a recent model with time-evolving

masses for pedestrian dynamics.

3.2 Choice of the model

This work will primarily discuss two approaches to define opinion dynamics on a

Riemannian manifold. Let M be a Riemannian manifold. Let N ∈ N represent the

number of agents with opinions evolving onM . We denote by x := (xi)i∈{1,...,N} ∈MN

the set of opinions. For each i ∈ {1, ..., N}, ẋi ∈ TxiM . The opinions xi evolve

according to the following general dynamics:

ẋi =
N∑
j=1

aijΨ(d(xi, xj))νij (3.1)

where
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• aij ∈ R is the interaction coefficient of the pair of agents i and j,

• Ψ : R→ R is the interaction potential,

• d(·, ·) : M ×M → R+ represents the distance between opinions,

• νij ∈ TxiM is a unit vector giving the direction of the influence of j over i.

Each of these terms is further specified in the following.

3.2.1 Approaches

The evolution of each agent’s opinion depends on the opinions of all other agents, with

influences weighted by the interaction coefficients aij. More specifically, an agent xj’s

influence on xi is determined by two elements: the direction of influence νij ∈ TxiM

and the magnitude of influence Ψ(d(xi, xj)) ∈ R+. We propose and study two different

approaches for the choices of d and νij. Approach A uses the embedding of M in Rn

to define d(xi, xj), whereas Approach B is intrinsic to M , with distance and direction

of influence based on geodesics.

Approach A Assume that M of dimension m is embedded in a Euclidean space

Rn, with n ≥ m. Agent xj acts on agent xi via a projection onto TxiM ⊂ Rm. Now

considering points (xi, xj) ∈ M2 as points of Rn, the difference xj − xi is a vector of

Rn. Given a vector subspace Y of Rn, we denote by ΠY y the projection of y ∈ Rn

onto Y ⊂ Rn and define dP (·, ·) as follows:

dP (xi, xj) = ‖ΠTxiM
(xj − xi)‖ (3.2)
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where ‖ · ‖ denotes the Euclidean norm on Rn. The same projection also defines the

direction of influence of xj on xi:

νij =


ΠTxiM

(xj−xi)
‖ΠTxiM

(xj−xi)‖ if ΠTxiM
(xj − xi) 6= 0

0 otherwise.
(3.3)

With the specific choice Ψ ≡ Id, system (3.1)-(3.2)-(3.3) becomes:

ẋi =
N∑
j=1

aijΠTxiM
(xj − xi). (3.4)

This is the approach used in [34], applied to the sphere S2.

Notice that the magnitude of influence, dP (xi, xj), is symmetric for the sphere in

the sense that dP (xi, xj) = dP (xj, xi), but not symmetric for a general Riemannian

manifold (see Figure 3.1). However, it is a continuous function defined for all pairs of

points (xi, xj) ∈M2. The originality of this approach is that the influence of xj on xi

is not related to a notion of distance between the points. The use of the projection

of xj − xi onto TxiM reflects the concept of “local visibility.” For the situation of

two agents evolving on a one dimensional manifold, if xj − xi ⊥ TxiM , then a local

displacement of xi does not affect the distance between the points ‖xi− xj‖. Indeed,

a first order Taylor expansion gives: xi(ε) = xi(0) + εẋi(0) + o(ε).

Supposing that xj is fixed, we have:

‖xi(ε)− xj‖2 = 〈xi(ε)− xj, xi(ε)− xj〉

= 〈xi(0)− xj, xi(0)− xj〉+ 2ε〈ẋi(0), xi(0)− xj〉+ o(ε)

(3.5)

so if xj − xi(0) ⊥ Txi(0)M , then ‖xi(ε) − xj‖2 = ‖xi(0) − xj‖2 + o(ε). Hence if xi

only has local visibility, all directions of displacement seem equivalent (at first order),

which justifies the influence of xj over xi to be zero if their difference is orthogonal
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xj − xixj xi

Figure 3.1: An example of a manifold M such that dp(xi, xj) 6= dp(xj, xi), Using
system (3.4), an agent is subject to “local visibility”, and movement of xi along TxiM
(dashed line through xi) will not bring xi closer to xj in this local sense.

to the tangent space of M at xi. This is illustrated in Figure 3.1.

Approach B This second approach defines d and νij using the manifold M itself,

and does not require any reference to the space in which M is immersed. This would

make Approach B a natural way to define system dynamics, however the complete

knowledge of the geodesics between any two points on the manifold must be knowable

by the agents which may be unrealistic. Furthermore, the geometry of the manifold

may introduce difficulties to the uniqueness of νij, particularly at the cut-locus of a

point.

Definition 6 The cut locus of a point q ∈ M is the set of points CL(q) ⊂ M for

which there are multiple geodesics between q and p ∈ CL(q) (see also [50]).

Let γij : [0, 1]→M denote a geodesic connecting xi to xj, γij(0) = xi and γij(1) =

xj. We then define the distance between xj and xi as the length of a geodesic, i.e.

denoting by gy : TyM × TyM → R+ the Riemannian metric at point y ∈M ,

dG(xi, xj) =

∫ 1

0

√
gγij(s)(γ̇ij(s), γ̇ij(s))ds. (3.6)
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The direction of influence is determined by the same geodesic:

νij =


0 if xj = xi or if xj ∈ CL(xi)

γ̇ij(0)√
gxi (γ̇ij(0),γ̇ij(0))

otherwise.
(3.7)

Unlike in Approach A, the magnitude of influence is a symmetric function: dG(xi, xj)

= dG(xj, xi). Furthermore, this approach ensures that the magnitude of influence

of one agent on another is a function of the exact Riemannian distance between the

agents.

Interaction networks. In finite-dimensional systems such as system (3.1), the set

of interacting agents can be described by vertices of a graph. A directed edge exists

from a vertex i to a vertex j if and only if aij 6= 0. The system depends on the

interaction network, and likewise, if the coefficients aij are chosen to be functions of

the state, the interaction network may change as a result of the dynamics. Two main

types of interaction networks have been proposed in the literature: metric interac-

tions and topological interactions. If interactions between agents occur only locally,

only the neighbors of agent i influence agent i. Metric interactions define the set of

neighbors of agent i, given a radius r > 0, as

Sri (x) = {j ∈ {1, . . . , N}, d(xi, xj) ≤ r}, (3.8)

where d(·, ·) can represent either the projection or the geodesic distance, as specified

in each of the two approaches described above (see equations (3.2) and (3.6)). The

other main type of interactions specifies that an agent is influenced by only its k

closest neighbors. We call these topological interactions [38]. We define the relative

separation between two agents as αij = card{k : d(xi, xk) ≤ d(xi, xj)}, The set of

neighbors of agent i is then defined as the set of its k closest neighbors, i.e. for a
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Figure 3.2: The set of agents that influence x1 depends on how the interaction network
is defined. In (a) and (b) the dashed lines show the projection of agents onto the
tangent space of xi, (TxiS1). The agents depicted in red with larger dots influence x1.
With the same configuration on S1, four combinations are possible (approach {A,B}
type {Metric, Topological}). Each combination implies x1 interacts with a different
set of agents.

given k ∈ N,

Ski (x) = {j ∈ {1, . . . , N}, αij ≤ k}. (3.9)

Figures 3.2 and 3.3 illustrate differences between the metric and topological networks

for the specific example of S1, with each of the approaches A and B.

x1
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x5

x6

x1

x2

x3

x4
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x1

x2

x3

x4

x5

x6

Figure 3.3: The agent x1 is influenced by different agents depending on how the
interaction network is defined. These networks may change as the dynamics move
the agents on S1. Each agent xj, j ∈ {1, . . . , 6} will have a network describing which
other agents influence xj. The interaction networks corresponding to systems from
Figure 3.2.

Resolution of discontinuities. The definitions of νij for approaches A and B

(given by equations (3.3) and (3.7)) allow discontinuities of νij at certain points.

Thus, one must impose conditions on the interaction potential Ψ ∈ C0(R+,R+), in

order to ensure the continuity of the right-hand side of the system (3.1), and hence

the existence and uniqueness of a solution. Table 3.1 lists the discontinuities of νij

and gives necessary conditions on Ψ to ensure the continuity of Ψ(d(xi, xj))νij.

Firstly, notice that in both approaches, νij is discontinuous at the point xi = xj.
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Indeed, if xi = xj, νij = 0, whereas almost everywhere else, ‖νij‖ = 1. To ensure the

continuity of Ψ(d(xi, xj))νij at this point, we impose the following condition:

Ψ(0) = 0. (3.10)

In Approach A, we created a discontinuity of νij at the points xj ∈ N (xi), where

we denote by N (q) the set N (q) := {q ∈ M | ΠTpM(q − p) = 0}. For convenience of

notation, we will use interchangeably the notations N (xi) and Ni. More specifically,

we have limxj→Ni
‖νij‖ = 1 but ‖νij‖ = 0 if xj ∈ Ni (see also Table 3.1). However,

from the definition of dP (see equation (3.2)), we have limxj→Ni
dP (xi, xj) = 0 and

d(xi, xj) = 0 for xj ∈ Ni. Hence a sufficient condition for Ψ(d(xi, xj))νij to be

continuous is again:

Ψ(0) = 0. (3.11)

In Approach B, there is a discontinuity for xj ∈ CL(xi). Denoting by Bgeo(p, ρ)

the geodesic ball of center p and radius ρ, we require the following condition on the

influence function Ψ:

Ψ(d) = 0 for all d ≥ ε (3.12)

where ε := inf{ρ > 0 | ∀p ∈ M,Bgeo(p, ρ) ∩ CL(p) = ∅}. This distance ε, also known

as injectivity radius, is known to exist and be greater than 0 for any compact Rie-

mannian manifold (see [50]).

Approach A B A and B
Critical points xj ∈ Ni xj ∈ CL(xi) xj = xi
Discontinuities lim

xj→Ni

‖νij‖ = 1 lim
xj→CL(xi)

‖νij‖ = 1 lim
xj→xi

‖νij‖ = 1

‖νij‖ = 0 for xj ∈ Ni ‖νij‖ = 0 for xj ∈ CL(xi) ‖νii‖ = 0
Condition on Ψ Ψ(0) = 0 Ψ(d) = 0 for all d ≥ ε Ψ(0) = 0

Table 3.1: Possible discontinuities of the right-hand side of (3.1). The bottom row of
the table show conditions for Ψ so that the system is continuous.
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Notice that in the case of the geodesics approach (Approach B), the condition

Ψ(d) = 0 for all d ≥ ε is incompatible with the use of the topological network (3.9).

Indeed, if agent j is among the k closest neighbors of agent i, the topological network

would require: aij 6= 0. However, the interaction between i and j would be canceled

if dG(xi, xj) > ε. On the other hand, the metric interaction network as defined by

(3.8) is compatible with Approach A, and with Approach B if the interaction radius

is smaller than the injectivity radius: r ≤ ε. For simplicity purposes, in the rest of

this paper, we will consider that the interaction coefficients aij are constant, thus not

requiring the need to differentiate between metric and topological networks. While

models with constant interaction coefficients are our focus here, these models are

quite restrictive, and exclude all models with dynamic interactions.

3.2.2 Definitions and general results

Definition 7 The configuration x1 = ... = xN is called consensus. On the sphere,

Sn, A configuration such that, for every j ∈ {2, . . . , N}, either xj = x1 or xj = −x1,

which is not a concensus is called antipodal equilibrium.

Proposition 6 The consensus configuration is an equilibrium for system (3.1).

Proof 8 In both approaches A and B, if xi = xj, then νij = 0. Hence if x1 = ... = xN ,

then for all i ∈ {1, . . . , N}, ẋi = 0.

Proposition 7 Let N > d+ 1. Then for every x̄ = (x̄1, . . . , x̄N) ∈ MN , there exists

a square matrix A = (aij)i,j∈{1,...,N} such that x̄ is an equilibrium for system (3.1).

Proof 9 The configuration x̄ = (x̄1, . . . , x̄N) is an equilibrium if and only if

d

dt
x̄i =

N∑
j=1

aijΨ(d(x̄i, x̄j))νij = 0.
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This is a system of at most Nd equations in the N2 −N unknowns aij, i 6= j, notice

that Ψ(d(xi, xi)νii = 0, and diagonal values of A do not change the system. So if

N > d + 1 there exists a nontrivial choice of the interaction coefficients for which x̄

is an equilibrium.

Definition 8 The kinetic energy of System (3.1)-(3.2)-(3.3) is the quantity

EP (t) :=
1

2

N∑
i=1

‖ẋi(t)‖2. (3.13)

The kinetic energy of System (3.1)-(3.6)-(3.7) is the quantity

EG(t) :=
1

2

N∑
i=1

gxi(ẋi(t), ẋi(t)). (3.14)

Proposition 8 Let M be a general Riemannian compact manifold. Consider the

dynamics given by projection onto the tangent space (Approach A) given by (3.4). If

the interaction matrix A = (aij)i,j∈{1,...,N}2 is symmetric, then

lim
t→∞

EP (t) = 0. (3.15)

Proof 10 Let F (t) = 1
2

∑N
i=1

∑N
j=1 aij‖xi−xj‖2. Using the symmetry of A, we prove

that
d

dt
F (t) = 4EP (t). (3.16)

Indeed, notice that

∇xi(
N∑
j=1

aij‖xi − xj‖2) = 2ΠTxiM

N∑
j=1

aij(xj − xi) = 2ẋi.
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Then we compute

d

dt
F (t) =

N∑
k=1

〈∇xk

1

2

N∑
i,j=1

aij(‖xi − xj‖2), ẋk〉

=
N∑
k=1

〈∇xk

[
1

2

N∑
i=1

aik(‖xi − xk‖2) +
1

2

N∑
j=1

akj(‖xk − xj‖2)

]
, ẋk〉

=
N∑
k=1

〈2∇xk

1

2

N∑
i=1

aik(‖xi − xk‖2), ẋk〉 =
N∑
k=1

〈2ΠTxkM

N∑
j=1

akj(xj − xk), ẋk〉

= 2
N∑
k=1

‖ẋk‖2 = 4EP (t).

(3.17)

where the third equality uses the property: aij = aji for all i, j.

Since EP (t) ≥ 0, F (t) is a non-decreasing function. Moreover F (t) and d2

dt2
F (t)

are bounded, since M is a compact manifold. Hence F (t) converges as t→∞.

Now,
∫ +∞

0
EP < ∞ and there exists c > 0 such that supt

d
dt
EP (t) < c. By con-

tradiction, assume lim supEP = α > 0, then there exists a sequence (tn) such that

tn+1 > tn + α
2c

and EP (tn) ≥ α
2
. Then

∫∞
0
EP >

∑
n
α
c
· α

2
· 1

2
= +∞. Hence

lim suptEP (t) = 0.

This shows that d
dt
F (t)→ 0 when t→∞, which implies that limt→∞EP (t) = 0.

Remark 1 Propositions 7 and 11 are generalizations of results proven for the case

M = S2 in [34].

Remark 2 Proposition 11 assumes that Ψ ≡ Id which creates a discontinuity for

Approach B (see Table 3.1). A result is shown for the more restricted case of M = S2

and Ψ(·) ≡ sin(·), (Corollary 1).

Definition 9 Let x solve the differential equation (3.1). A dancing equilibrium is a

configuration in which for all pairs of agents (i, j), the distance dP (xi, xj) (in Approach
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A) or dG(xi, xj) (in Approach B) is constant. In the context of a system of oscillators,

this equilibrium is also known as a phase-locked state or entrainment state [51].

Remark 3 This definition is a generalization of the concept of dancing equilibrium

described in [34].

Remark 4 It follows immediately from definition 9 that the kinetic energy of a sys-

tem in dancing equilibrium is constant.

3.3 Analysis and simulations on S1

3.3.1 Models

We study both approaches A and B in the case M = S1, i.e. for the one-dimensional

sphere embedded in R2. Let (θi)i∈{1,...,N} ∈ [0, 2π]N such that for all i ∈ {1, ..., N},

xi = (cos θi, sin θi)
T .

Approach A The projection onto an agent’s tangent space can be rewritten as:

ΠTxi

N∑
j=1

aij(xj − xi) =
N∑
j=1

aij〈

cos θj

sin θj

−
cos θi

sin θi

 ,

− sin θi

cos θi

〉
− sin θi

cos θi


=

N∑
j=1

aij(− sin θi cos θj + sin θj cos θi)

− sin θi

cos θi


=

N∑
j=1

aij sin(θj − θi)

− sin θi

cos θi

 .

(3.18)
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So System (3.1)-(3.2)-(3.3) becomes:

for alli ∈ {1, . . . , N},

θ̇i

− sin θi

cos θi

 =
N∑
j=1

aijΨ(| sin(θj − θi)|) sgn(sin(θj − θi))

− sin θi

cos θi

 (3.19)

where sgn(·) is the sign function defined by:

for all x ∈ R, sgn(x) =


1 if x > 0

−1 if x < 0

0 if x = 0.

(3.20)

We can then specify:

for all (i, j) ∈ {1, . . . , N}2, dP (xi, xj) = | sin(θj − θi)|, νPij = sgn(sin(θj − θi)).

(3.21)

This gives the system of scalar equations:

for all i ∈ {1, . . . , N}, θ̇i =
N∑
j=1

aijΨ(| sin(θj − θi)|) sgn(sin(θj − θi)). (3.22)

In particular, in the case Ψ ≡ Id, the system becomes the Kuramoto model [40].

for all i ∈ {1, . . . , N}, θ̇i =
N∑
j=1

aij sin(θj − θi). (3.23)

Approach B For M = S1, the geodesics distance dG and the vector νGij are given

by:

dG(xi, xj) = arccos(cos(θj − θi)) , νGij = sgn(sin(θj − θi)). (3.24)
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System (3.1)-(3.6)-(3.7) is written:

for all i ∈ {1, . . . , N}, θ̇i =
N∑
j=1

aijΨ(arccos(cos(θj − θi))) sgn(sin(θj − θi)). (3.25)

In order for the system to be well defined, the interaction function Ψ must satisfy the

conditions given in Table 3.1. Notice that the injectivity radius is constant over S1,

with ε = π. Possible choices involve choosing Ψ from a family of function defined as

follows:

Ψa(d) =


1
a
d for d ≤ a

d−π
a−π for d > a

(3.26)

where a ∈ (0, π) (see Figure 3.8).

Another possible choice is: Ψ : x 7→ sin(x). Notice that for the specific choices

Ψ = Id for Approach A and Ψ : x 7→ sin(x) for Approach B, the two approaches A

and B are equivalent.

3.3.2 Analysis

We first examine the different equilibria for both approaches.

Theorem 1 Consider Approach A, System (3.22). Let N ∈ N be even. Suppose that

for all i ∈ {1, . . . , N} for all j ∈ {1, . . . N
2
}, aij = ai(j+N

2
). Then any configuration

that is centrally symmetric, i.e.

for all j ∈ {1, . . . , N
2
}, θj+N

2
= θj + π

is an equilibrium.
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Proof 11 Using the hypotheses from Theorem 1, we can easily compute:

θ̇i =
N∑
j=1

aijΨ(‖ sin(θj − θi)‖) sgn(sin(θj − θi))

=

N/2∑
j=1

[aijΨ(‖ sin(θj − θi)‖) sgn(sin(θj − θi))+

ai(j+N
2

)Ψ(‖ sin(θj+N
2
− θi)‖) sgn(sin(θj+N

2
− θi))]

=

N/2∑
j=1

[aijΨ(‖ sin(θj − θi)‖) sgn(sin(θj − θi))+

aijΨ(‖ sin(θj + π − θi)‖) sgn(sin(θj + π − θi))] = 0.

Interestingly, Theorem 1 is not applicable to Approach B. We illustrate the dif-

ferent behaviors of the two systems by studying the specific example of four agents

initially in a rectangular configuration. According to Theorem 1, this configuration is

an equilibrium for Approach A, independently of the choice of interaction function Ψ.

However, one can easily prove that in the geodesics-based Approach B, with N = 4

and the choice Ψ := Ψa with a = 3π
4
, the only equilibrium for which all agents have

pairwise distinct positions is obtained by a regular polygon, i.e. all agents are evenly

spaced out on the circle. This is illustrated by numerical simulations shown in Figure

3.4.

This highlights the fundamentally different behaviors of the systems (3.1)-(3.2)-

(3.3) and (3.1)-(3.6)-(3.7) in the case M = S1.

In both approaches A and B, conditions on the interaction matrix A can be found

such that the system forms a dancing equilibrium (see Definiton 9).

Theorem 2 Consider the dynamics on S1 given by:

for all i ∈ {1, . . . , N}, θ̇i =
N∑
j=1

aijΨ(d(xi, xj))νij (3.27)
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Figure 3.4: Initial (empty circles) and final positions (filled circles) of 4 agents initially
on the vertices of a rectangle with Approach B (left) and Approach A (right), withA =
1, Ψ ≡ Id (Approach A) and Ψ = Ψ3π/4(Approach B) (see equation (3.26)). Notice
that with Approach A, initial and final positions are identical since any rectangle
configuration is an equilibrium. However, with Approach B, the system reaches a
square configuration, the only possible equilibrium with pairwise distinct positions.

where d(·, ·) and ν are given either by Approach A (3.21) or Approach B (3.24). Let

C ∈ R and suppose that for all i ∈ {1, . . . , N},

aij =


C

Ψ(d(xi(0),xj(0)))
νij if Ψ(d(xi(0), xj(0))) 6= 0

0 otherwise.
(3.28)

Then the system is in a dancing equilibrium.

Proof 12 If the interaction matrix satisfies (3.28), then at t = 0,

for all i ∈ {1, . . . , N}, θ̇i(0) =
N∑
j=1

C = CN

so for all (i, j) ∈ {1, . . . , N}2, θ̇i(0) − θ̇j(0) = 0. Then d(xi, xj) does not change in

time, and (3.28) holds for all time.

Numerical simulations show the evolution of the system (3.27) with condition

(3.28) for the projection or the geodesic distance, see Figures 3.5 and 3.6.
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Figure 3.5: Evolution of the system (3.27) with Approach A (left) Approach B (center)
when the interaction matrix satisfies condition (3.28) for the projection distance.
Right: Kinetic energy.
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Figure 3.6: Evolution of the system (3.27) with Approach A (left) Approach B (center)
when the interaction matrix satisfies condition (3.28) for the geodesic distance. Right:
Kinetic energy.

3.4 Analysis and simulations on S2

3.4.1 Models

We study both approaches A and B for M = S2, i.e. for a two dimensional sphere

embedded in R3. We use spherical coordinates: let (θi)i∈{1,...,N} ∈ [0, 2π]N , and

(φi)i∈{1,...,N} ∈ [0, π]N such that for all i ∈ {1, ..., N},

xi = (cos θ sinφ, sin θ sinφ, cosφ)T .

Choice of influence function We choose an influence function Ψ(d) between two

agents xi and xj so that the right-hand side of the system is continuous, the disconti-

nuities are shown in Table 3.1. For Approach B, the only point in CL(xi) for a given

xi is the antipodal point (this is an end point of a diameter for which xi is the other

end point.) As in the case of S1, for Approach B, we choose a function Ψ from a
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family of functions of the form Ψa , see equation (3.26) (choices of Ψ are shown in

Figure 3.8).

Approach A On S2, the derivative for system (3.1)-(3.2)-(3.3) with Ψ ≡ Id reduces

to the sum of all projections onto the tangent space of agent xi, weighted by the

corresponding interaction term aij. This is rewritten as:

ΠTxi

N∑
j=1

aij(xj − xi) = ΠTxi

N∑
j=1

aij(xj) =
N∑
j=1

aij(xj − 〈xj, xi〉xi) =

N∑
j=1

aij

(


cos θj sinφj

sin θj sinφj

cosφj

−
〈

cos θj sinφj

sin θj sinφj

cosφj

 ,


cos θi sinφi

sin θi sinφi

cosφi


〉

cos θi sinφi

sin θi sinφi

cosφi


)
.

Approach B The geodesic distance dG(xi, xj) from (3.6) between two points xi,

and xj on S2 is given by:

dG(xi, xj) = 2 arcsin

(
‖xi − xj‖

2

)
,

and the direction toward xj from xi is

νij =
xj − 〈xj, xi〉xi
‖xj − 〈xj, xi〉xi‖

,

where ‖ · ‖ is the standard norm in R3.

Noticing that for S2, Approach A with Ψ ≡ Id is equivalent to Approach B with

Ψ ≡ sin, we extend the results of Proposition 11.

Corollary 1 Consider the dynamics given by geodesic distance (Approach B) on S2,

system (3.1)-(3.6)-(3.7), and let Ψ ≡ sin. If the interaction matrix A = (aij)i,j∈{1,...,N}2

is symmetric, then

lim
t→∞

EG(t) = 0. (3.29)
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Proof 13 System (3.1)-(3.6)-(3.7), with Ψ(·) ≡ sin(·) reads:

ẋi =
N∑
j=1

aij sin(dG(xi, xj))νij. (3.30)

Considering the embedding of the system in R3, we notice that for all i, j ∈ {1, . . . , N},

aij sin(dG(xi, xj))νij = aijΠTxiM
(xj − xi), (3.31)

thus the system is (3.4), and by proposition 11, limt→∞EP (t) = 0.

Finally,

lim
t→∞

EP (t) = 0 =⇒ lim
t→∞

ẋi = 0 for all i =⇒ lim
t→∞

EG(t) = 0. (3.32)

3.4.2 Simulations

We use a fourth order Runge-Kutta scheme to approximate the trajectories. The

derivative is calculated as a vector in R3, and then we express this vector in spherical

coordinates, θ̇tθ and φ̇tφ where tθ and tφ are the unit vectors in the direction of the

azimuth angle(θ̇) and the polar angle(φ̇) respectively for the ith agent. {tθ, tφ} form

an orthonormal basis for the tangent space of xi. Using the angular derivatives avoids

having to calculate the agent’s trajectory in R3 and then project onto the sphere for

every iteration which would cause significant numerical errors.

For an agent xi = (θi, φi) we can write tθi and tφi as

tθ =


− sin θ

cos θ

0

 , tφ =


cos θ cosφ

sin θ cosφ

− sinφ

 .
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We express the derivative of an agent as

ẋi =
∂xi
∂θi

θ̇ +
∂xi
∂φi

φ̇. (3.33)

By direct computation, we get:

∂xi
∂θi

=


− sin θi sinφi

cos θi sinφi

0

 ,
∂xi
∂φi

=


cos θi cosφi

sin θi cosφi

− sinφi

 .

We can also express the derivative of xi as the projection of the derivative in R3 with

tθi and tφi

ẋi = 〈ẋi, tθi〉tθi + 〈ẋi, tφi〉tφi . (3.34)

It follows from (3.33) and (3.34) that

θ̇i =
1

sinφi
〈ẋi, tθi〉tφi and φ̇i = 〈ẋi, tφi〉tφi . (3.35)

Singularities: In (3.35), the factor 1
sinφ

causes a singularity around φ = kπ for

a non-negative integer k. To avoid this practical problem, before each iteration of

the RK4 scheme, we identify critical agents that have a polar angle close to 0 or π

(φ = kπ), for non-negative integer k; for these critical agents, we rotate all agents π
2

around the x-axis to calculate the derivative. This is a concern for both Approach A

and Approach B.

An additional concern is singularities for agents forming consensus. In equations

(3.3) and (3.7), νij is normalized, and when agent i and agent j are very close together,

dividing by dP and dG causes a singularity. We avoid this problem in our simulations

by defining a minimum distance dmin between agents for the sake of the normalization
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term in the denominator. When d(xi, xj) < dmin then

νij =
xj − 〈xj, xi〉xi

dmin

3.4.3 Examples

We ran simulations using different choices of Ψ to see how this choice can impact

the system. We show two simulations, the first uses Approach A (Figure 3.7); the

second uses Approach B (Figure 3.9). In both pictures the same interaction matrix

is used (given in the appendix), and we see that our choice of Ψ (Figure 3.8) may

dramatically change the system behavior. The second example shows the effect of

curvature on the system (Figure 3.10) for comparison to T2 and R2 (Figure 3.11).

Another example in the appendix shows unexpected behavior using Approach A.
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Figure 3.7: A dancing equilibrium for Approach A. The energy becomes constant in
time after initial fluctuations.

Example 3.4.1 Five agents with a general interaction matrix A and Ψ as defined in

(3.26) with a ∈ {π
4
, π

2
, 3π

4
}. The behavior of the system can change dramatically from

our choice of Ψ (Figure 3.8), and dancing equilibria may arise from A with certain



97

configurations, (Figure 3.9).
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Figure 3.8: The left side shows candidates for the choice of function Ψ. The right
side shows how choice of function determines the energy of the system, for the case
of a = 3π

4
the system forms an antipodal equilibrium.

Figure 3.9: A comparison of the effect of the choice of influence function for Approach
B. For a = 3π

4
an antipodal equilibrium occurs (see Definition 7).

Example 3.4.2 To assess the influence of the curvature of S2 on the dynamics, ob-

serve a simple case involving 3 agents evolving according to the interaction matrix:

A =


0 1 −1

−1 0 1

1 −1 0

 (3.36)

In Section 3.6.2, we prove that those dynamics in R2 lead to periodic trajectories on a
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single orbit shared by all three agents, the orbit’s parameters being fully determined by

the initial conditions (see Theorem 4). However, the same dynamics on the sphere do

not give rise to periodic trajectories. In sections 3.5.3, we also discuss the dynamics

with this interactions matrix on T2, to assess the effect of curvature of the manifold.

Figure 3.10: Dynamics with Approach A on S2, using the interactions matrix (3.36).
If the agents’ initial positions are close enough to each other, the agents with will
form trajectories that remain in a neighborhood of their initial position.

3.5 Analysis and simulations on T2

We now study how the general dynamics given by equation (3.1) apply to the specific

case of the torus T2 ⊂ R3. Let (ex, ey, ez) denote the Euclidean basis of R3. Let

(R, r) ∈ (R+)2, with R > r. We define the manifold T2 as the torus obtained by

rotating the circle (x− R)2 + z2 = r2 around the z-axis. Hence T2 is defined by the

equation (R−
√
x2 + y2)2 + z2 = r2. The parametric equations for such a torus are:


x = (R + r cos θ) cosφ

y = (R + r cos θ) sinφ

z = r sin θ

for (φ, θ) ∈ [0, 2π)2.
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The angles φ and θ are respectively referred to as the toroidal and poloidal angles. A

set of points with the same toroidal angle is called a meridian.

3.5.1 Model

We first investigate the behavior of system (3.1) with Approach B (using the geodesic

distance) in the case of T2. Unlike in the cases of S1 and S2 presented in the sections

3.3 and 3.4, there exists no simple expression for the geodesic distance between two

points on the torus. In 1903, Bliss studied and classified the different kinds of geodesic

lines on the standard torus [52], using elliptic functions. Gravesen et al. determined

the structure of the cut loci of a torus of revolution [48].

Several challenges arise when defining Approach B on T2. Firstly, computing the

Riemannian distance between two points is highly non-trivial. One could consider

approximating it numerically, but in the numerical discretization of equations (3.1)-

(3.6)-(3.7), N(N − 1)/2 geodesics would have to be computed per time-step. That

would require tremendous computing power.

Secondly, assuming that one is able to efficiently compute the geodesics on T2, one

must take into account the cut-loci of each point to ensure that the dynamics (3.1)-

(3.6)-(3.7) are well-defined. A method to guarantee well-defined dynamics would be

to use a bounded confidence model [2], where the neighborhood of influence for an

agent xi at point p is of smaller radius than the closest element in the cut locus of

p. See section 3.2 for conditions on Ψ to make the right hand side of equation (3.1)

continuous.

For simplicity, we thus focus on Approach A, where the dynamics are a function of

the projection of each vector xj − xi onto the tangent space at xi. We will show that

some restrictions still apply to the interaction function Ψ, but they are less restrictive

and more easily determined than in Approach B.
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Equations (3.1)-(3.2) reads:

ẋi =
N∑
j=1

aijΨ(‖ΠTxiT2(xj − xi)‖)νij, i ∈ {1, . . . , N}. (3.37)

The vector νij depends on the influence that xj has over xi. It is zero if ΠTxiT2(xj −

xi) = 0, and it is a unit vector otherwise. Let Ni be the set of points that have no

influence on xi (see Table 3.1). Then, given i, j ∈ {1, . . . , N}, νij has the following

expression:

νij =


ΠTxiT

2 (xj−xi)
‖ΠTxiM

(xj−xi)‖ if xj /∈ Ni

0 if xj ∈ Ni.
(3.38)

Let xi ∈ T2. We start by determining the set Ni. For all i, we define the vectors uφi =

cosφiex + sinφiey and uθi = cos θiuφi + sin θiez, so that each agent’s position vector

reads: xi = Ruφi+ruθi .With these notations, uθi is the normal to the tangent space at

the point xi. A basis for the tangent space at a point xi(φi, θi) is given by the two tan-

gent vectors tφi = (− sinφi, cosφi, 0) and tθi = (− sin θi cosφi,− sin θi sinφi, cos θi).

Notice that 〈xi, tφi〉 = 0. Hence the condition ΠTxiT2(xj − xi) = 0 reads:


〈xj, tφi〉 = 0

〈xj − xi, tθi〉 = 0.

After computations, we get:

〈xj, tφi〉 = 0 ⇐⇒ sin(φj − φi) = 0 ⇐⇒ φj = φi + kπ, k ∈ Z.

If φj = φi, the second condition becomes:

〈xj − xi, tθi〉 = 0 ⇐⇒ sin(θj − θi) = 0 ⇐⇒ θj = θi + kπ, k ∈ Z.
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If φj = φi ± π, the second condition becomes:

sin(θi + θj) = −2R

r
sin θi.

Notice that this last equation only has a solution if | sin θi| ≤ r
2R

. The set of po-

sitions that have no influence on xi thus comprises up to four points on the torus,

depending on the values of r, R and sin θi. We then have: Ni = {(φi, θi), (φi,−θi),

(−φi,−θi− sgn(sin θi) arcsin(|2R
r

sin θi|)), (−φi, π−θi+sgn(sin θi) arcsin(|2R
r

sin θi|))}.

To ensure the continuity of the right-hand side of equation (3.37), one must impose

the conditions of table 3.1.

We now go back to equation (3.37). We study the specific case where Ψ ≡ Id,

which indeed satisfies (3.1). Then the system becomes:

ẋi = ΠTxiT2

(
N∑
j=1

aij(xj − xi)

)
. (3.39)

Hence the velocity reads:

ẋi =
N∑
j=1

aij(xj − xi)− 〈
N∑
j=1

aij(xj − xi), uθi〉uθi

= αi − 〈αi, uθi〉uθi −

(
N∑
j=1

aij

)
〈xi, tθi〉tθi

where αi :=
∑N

j=1 aijxj is the sum of the influences of all agents on agent i. Notice

that with the same notation, the system does not reduce to the simple form ẋi =

αi− 〈αi, xi〉xi for the same dynamics on the sphere (see [34]). This is due to the fact

that on the torus, the position vector xi does not define the normal to the tangent

space at xi, unlike in the cases of S1 and S2.
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The velocity of each agent is given by:

ẋi =


−φ̇i sinφi(R + r cos θi)− rθ̇i sin θi cosφi

φ̇i cosφi(R + r cos θi)− rθ̇i sin θi sinφi

rθ̇i cos θi

 = φ̇i(R+r cos θi)tφi +rθ̇itθi . (3.40)

From (3.39) and (3.40) we get the angular velocities:


φ̇i = 1

(R+r cos θi)
〈
∑N

j=1 aij(xj − xi), tφi〉

θ̇i = 1
r
〈
∑N

j=1 aij(xj − xi), tθi〉.
(3.41)

Notice that unlike in the case of S2, see equation (3.35), here the derivatives φ̇i and

θ̇i are not singular. This makes numerical simulations straightforward, not requiring

the approximations described in Section 3.4.2.

3.5.2 Properties

We now analyze the dynamics (3.1)-(3.2)-(3.3) on T2. We identify families of initial

conditions that trivialize the dynamics.

Proposition 9 Consider the dynamics (3.1)-(3.2)-(3.3) on M = T2. Let Pz :=

{(x, y, z)

∈ R3 | z = 0}. Let xi(t) be the position of the ithe agent at time t. If for

all i ∈ {1, . . . , N}, xi(0) ∈ T2 ∩ Pz, then for all t ≥ 0, for all i ∈ {1, . . . , N},

xi(t) ∈ T2 ∩ Pz.

Proof 14 Suppose that for all i ∈ {1, . . . , N}, xi(0) ∈ T2 ∩ Pz. Then for all i ∈
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{1, . . . , N}, θi(0) = 0 or θi(0) = π. Hence, for all i, j ∈ {1, . . . , N},

tθi(0) =


0

0

±π

 and xj(0)− xi(0) =


(R + r cos θj) cosφj − (R + r cos θi) cosφi

(R + r cos θj) sinφj − (R + r cos θi) sinφi

0


From equation (3.41) we get: for all i ∈ {1, . . . , N}, θ̇i = 0. By uniqueness of

solution, for all i ∈ {1, . . . , N}, θi(t) = θi(0). All the initial velocities belong to the

plane Pz. Hence all agents remain on Pz at all time.

Remark 5 As a consequence of Proposition 9, if all agents are initially in T2 ∩ Pz,

all agents initially on the bigger circle θ = 0 remain on the major circle at all time

and all agents on the minor circle θ = π remain on the minor circle at all time. In

particular, if all agents are initially all on the same circle (i.e. for all i ∈ {1, . . . , N},

θi = 0 or for all i ∈ {1, . . . , N}, θi = π), then the torus dynamics simplify to the

dynamics on S1 given by (3.22) or (3.23).

Proposition 10 Consider the dynamics (3.1)-(3.2)-(3.3) onM = T2. Let φ̃ ∈ [0, 2π]

and let Pφ̃ := {(x, y, z) ∈ R3 | y = tan(φ̃)x}. If for all i ∈ {1, . . . , N}, xi(0) ∈ T2∩Pφ̃,

then for all t ≥ 0, for all i ∈ {1, . . . , N}, xi(t) ∈ T2 ∩ Pφ̃.

Proof 15 Suppose without loss of generality that φ̄ = 0. Similarly to the proof for

Proposition 9, we can show that for all i ∈ {1, . . . , N}, φ̇i(0) = 0. By uniqueness of

solution, for all i ∈ {1, . . . , N}, φi(t) = φi(0). Hence all agents remain in Pφ̃ at all

time.

Remark 6 As a consequence of Proposition 10, if all agents are initially in T2 ∩Pφ̄,

all agents initially on the circle φ = φ̄ remain on that circle at all time and all

agents on the circle φ = −φ̄ remain on that circle at all time. In particular, if all

agents are initially all on the same circle (i.e. for all i ∈ {1, . . . , N}, φi = φ̄ or
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for all i ∈ {1, . . . , N}, φi = −φ̄), then the torus dynamics simplify to the dynamics

on S1 given by (3.22) or (3.23).

3.5.3 Simulations

To assess the influence of the curvature of the manifold on the dynamics, we compare

a simple case involving 3 agents evolving according to the interaction matrix given

in equation (3.36). As in the case of S2, the dynamics on the torus do not give rise

to periodic trajectories (as opposed to the dynamics in R2, see Theorem 4). Instead,

since T2 can locally be identified with R2, if the initial mutual distances are small

enough, the dynamics resemble those in R2. More specifically, the trajectories are

quasi-periodic with a gradual shift of the center of mass (see Figure 3.11). However,

if the initial distances between agents are large, the geometry and curvature of the

torus changes radically the behavior of the system.
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Figure 3.11: Trajectories of three agents interacting according to the matrix A given
in (3.36). Left: Dynamics in R2, with periodic trajectories on a unique orbit. Center:
Dynamics on M = T2 with small initial mutual distances. Right: Dynamics on
M = T2 with large initial distances.

3.6 Social choreographies

As seen in Sections 3.3 and 3.5.3, when the interaction matrix A satisfies certain

properties, for instance given by (3.28) on S1 or by (3.36) in R2, then the trajectories

exhibit special properties of symmetry or periodicity. In [34], configurations on S2

in which all mutual distances between agents remain constant were named dancing
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Figure 3.12: Evolutions of the coordinates of the three agents evolving on T2 with
interaction matrix A from equation (3.36), with small initial mutual distances. Left:
Evolution of φ. Center: Evolution of θ. Right: Evolution of the kinetic energy.

equilibrium.

In this section, we investigate systems with similar properties of periodicity or

symmetry. We use the term social choreography, drawing a parallel with the well-

known “n-body choreographies” discovered by Moore [53, 54] in the context of point

masses subject to gravitational forces. In the n-body problem, the interaction poten-

tials between masses are predetermined, as they depend exclusively on the masses and

distances between agents. Hence the conditions for a n-body choreography to occur

only depend on the initial state of the system. In the case of social choreography,

there are more degrees of freedom, as we design the interaction matrix as well as to

set the initial conditions.

We study sufficient conditions on the interaction matrices for the trajectories of

the system to be periodic or symmetric by focusing on the Euclidean space R2, with

the specific choice of interaction potential Ψ ≡ Id. A future direction of this paper

can consist in extending these results to general Riemannian manifolds. In R2 and

with Ψ ≡ Id, both approaches A and B are equivalent and the system simply reads

as:

for all i ∈ {1, . . . , N}, ẋi =
N∑
j=1

aij(xj − xi). (3.42)
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We define the kinetic energy E = EG = EP as in Definition 8:

E(t) :=
1

2

N∑
i=1

‖ẋi(t)‖2. (3.43)

A simple case of social choreography is that of a system with periodic trajectories,

which we define as follows:

Definition 10 Let (xi)i=1...N be a solution of (3.42). We refer to the system as

having periodic trajectories if there exists τ > 0 such that

for all i ∈ {1, ..., N}, for all t > 0, xi(t+ τ) = xi(t).

We will examine possible periodic behaviors of the system in sections 3.6.2, 3.6.3

and 3.6.4.

3.6.1 Rotationally invariant system

We now give sufficient conditions on the interaction matrix and on the initial condi-

tions for the system to be invariant by rotation.

Theorem 3 Let k ∈ N such that k divides N . Let Pk =

 0 IN−k

Ik 0

 be the matrix

of change of basis from (e1, . . . , eN) to (ek, . . . , eN , e1, . . . , ek−1). Let R(θ) denote the

rotation matrix in R2 for the angle θ ∈ [0, 2π). Suppose that initially, the system is

invariant by rotation of angle 2kπ
N

, that is:

for all i ∈ {1, . . . , N}, R(
2kπ

N
)xi(0) =

 xi+k(0) if i+ k ≤ N

xi+k−N(0) if i+ k > N
.

Suppose that the interaction matrix A is invariant by change of basis, i.e. P−1
k APk =
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A. Then the system remains invariant by rotation of angle 2kπ
N

at all time:

for all t > 0, for all i ∈ {1, . . . , N}, R(
2kπ

N
)xi(t) =

 xi+k(t) if i+ k ≤ N

xi+k−N(t) if i+ k > N
.

Proof 16 Let A ∈ MN(R) be the interaction matrix, i.e. A = (aij)i,j=1,...N , and

define D = diag(
∑

j aij). Let x = (x1, . . . , xN) denote the set of all xi’s. It is a vector

of length N with entries in R2. Let X ∈ MN×2(R) denote the corresponding matrix

of RN×2 such that for all i ∈ {1, . . . , N}, for all j ∈ {1, 2}, Xij is the j-th coordinate

of xi. With these notations, Ẋ = ÃX, where Ã = A−D. We denote by (e1, . . . , eN)

the canonical orthonormal basis of (R)N such that X =
∑N

i=1 eix
T
i .

From the definition of the matrix X, the condition

for all i ∈ {1, . . . , N}, R(
2kπ

N
)xi(0) =

 xi+k(0) if i+ k ≤ N

xi+k−N(0) if i+ k > N

can be rewritten as: PkX(0) = (R(2kπ
N

)X(0)T )T . Let Y := PkX and Z := (R(2kπ
N

)XT )T .

From the theorem’s hypotheses, Y (0) = Z(0). Let us show that Y and Z have the

same evolution. One can easily prove that P−1
k ÃPk if and only if P−1

k APk. Then

notice that

Ẋ = ÃX = P−1
k ÃPkX.

From that we compute:

Ẏ = PkẊ = Pk(P
−1
k ÃPkX) = ÃPkX = ÃY.

Similarly,

Ż = (R(
2kπ

N
)ẊT )T = (R(

2kπ

N
)(ÃX)T )T = (R(

2kπ

N
)XT ÃT )T = ÃZ.
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Since Y and Z satisfy the same differential equation and Y (0) = Z(0), then Y (t) =

Z(t) for all t ≥ 0. This implies that at all time,

for all i ∈ {1, . . . , N}, R(
2kπ

N
)xi(t) =

 xi+k(t) if i+ k ≤ N

xi+k−N(t) if i+ k > N
.
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Figure 3.13: Left: Evolution of 12 agents with the conditions of Theorem 3, with
k = 3, resulting in diverging trajectories. Dark to light color scale indicates earlier to
later time. Right: corresponding exploding kinetic energy. The interaction matrix A
and the initial positions were generated according to a random algorithm, with the
conditions of Theorem 3.

3.6.2 Unique orbit

Another example of social choreography is that of a system in which all agents share

one unique orbit. Such choreographies have been discovered in the context of the

n-body problem, for instance the “figure 8” orbit for three equal masses [53].

Definition 11 Let (xi)i=1...N be a solution of (3.42). We say that the system has a

unique orbit if the orbits of all points are identical, i.e.

for all i, j ∈ {1, ..., N}, {z ∈M |∃t > 0, xi(t) = z} = {z ∈M |∃t > 0, xj(t) = z}.

To illustrate Theorem 3, we study the evolution of N agents initially positioned at



109

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time = 1.0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

0 0.2 0.4 0.6 0.8 1

Time

0

0.5

1

1.5

2

2.5

3

3.5
Kinetic Energy

Figure 3.14: Left: Evolution of 12 agents with the conditions of Theorem 3, with
k = 3, resulting in convergence to consensus. Dark to light color scale indicates
earlier to later time. Right: corresponding kinetic energy converging to zero. The
interaction matrix A and the initial positions were generated according to a random
algorithm, with the conditions of Theorem 3.

regular intervals on a circle, with an interaction matrix and initial conditions given

by:

A =



0 1 0 . . . 0 −1

−1 0
. . . . . . . . . 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0

0
. . . . . . . . . . . . 1

1 0 . . . 0 −1 0


and for all i ∈ {1, . . . , N}, xi(0) =

cos(2iπ
N

)

sin(2iπ
N

)

 .

(3.44)

Notice that Ã = A, and the system satisfies the conditions of Theorem 3 with k =

1. Hence for all i ∈ {1, . . . , N−1}, R(2π
N

)xi(t) = xi+1(t) and R(2π
N

)xN(t) = x1(t). The

2N -dimensional system then reduces to a 2-dimensional one for the two coordinates
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x11 and x12 of x1, and all the other variables can be recovered by rotation of x1:

ẋ1 = x2 − xN = R(
2π

N
)x1 −R(−2π

N
)x1.

This can be written as:ẋ11

ẋ12

 =

 0 −2 sin(2π
N

)

2 sin(2π
N

) 0


x11

x12

 .

Solving this linear system yields:

x11(t) = x11(0) cos(2 sin(2π
N

)t)− x12(0) sin(2 sin(2π
N

)t) = cos(2 sin(2π
N

)t)

x12(t) = x11(0) sin(2 sin(2π
N

)t) + x12(0) cos(2 sin(2π
N

)t) = sin(2 sin(2π
N

)t)
.

This proves that all agents share one common circular orbit, and their trajectories

are periodic of period 2π(2 sin(2π
N

))−1. Figure 3.15 provides a numerical illustration

of this behavior, with 10 agents initially positioned at regular intervals on the unit

circle.
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Figure 3.15: Evolution of 10 agents with initial conditions and interaction matrix
given in (3.44). The agents have periodic trajectories along one shared circular orbit.

Another interesting example is that of 3 agents interacting according to the inter-
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action matrix given previously, which, reduced to N = 3, gives:

A =


0 1 −1

−1 0 1

1 −1 0

 . (3.45)

Theorem 4 Let N = 3. Consider the system (3.42) with interaction matrix given by

(3.45). Then there exists a unique orbit shared by all agents, and all three trajectories

are periodic.

Proof 17 The x and y-coordinates of the systems are decoupled, so that the 6-

dimensi-

onal system can be reduced to two 3-dimensional ones. Notice that Ã = A. Then

for each coordinate j ∈ {1, 2}, the system reads:


x1j

x2j

x3j

 (t) = exp(tA)


x0

1j

x0
2j

x0
3j


with

etA =

1

3


1 + 2 cos(

√
3t) 1− cos(

√
3t) +

√
3 sin(

√
3t) 1− cos(

√
3t)−

√
3 sin(

√
3t)

1− cos(
√
3t)−

√
3 sin(

√
3t) 1 + 2 cos(

√
3t) 1− cos(

√
3t) +

√
3 sin(

√
3t)

1− cos(
√
3t) +

√
3 sin(

√
3t) 1− cos(

√
3t)−

√
3 sin(

√
3t) 1 + 2 cos(

√
3t)

 .

Due to the special structure of etA, this can be rewritten as:


x1j

x2j

x3j

 (t) =
1

3


x0

1j x0
2j x0

3j

x0
2j x0

3j x0
1j

x0
3j x0

1j x0
2j




1 + 2 cos(
√

3t)

1− cos(
√

3t) +
√

3 sin(
√

3t)

1− cos(
√

3t)−
√

3 sin(
√

3t)

 .
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This shows that all three trajectories are periodic, or period 2π√
3
. One can compute the

positions of each agent after a third of a period and notice that:


x1j

x2j

x3j

 (t+
2π

3
√

3
)

=
1

3


x0

1j x0
2j x0

3j

x0
2j x0

3j x0
1j

x0
3j x0

1j x0
2j




1− cos(
√

3t)−
√

3 sin(
√

3t)

1 + 2 cos(
√

3t)

1− cos(
√

3t) +
√

3 sin(
√

3t)

 =


x2j

x3j

x1j

 (t).

This shows that there is one unique shared orbit.

3.6.3 Coupled periodic trajectories

Other conditions on the interaction matrix A give rise to different kinds of periodic

behaviors. Here we provide sufficient conditions for the system to exhibit periodic

trajectories, such that each orbit is shared by two agents.

Theorem 5 (Coupled periodic trajectories) Let N be even. Suppose that ini-

tially, the system is invariant by rotation of angle 4π
N
, that is:

for all i ∈ {1, . . . , N}, R(
4π

N
)xi(0) =

 xi+2(0) if i+ 2 ≤ N

xi+2−N(0) if i+ 2 > N
.
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Let a, b > 0 and let

A =



0 a 0 . . . 0 −b

−a 0 b
. . . . . . 0

0 −b . . . a
. . . ...

... . . . . . . . . . . . . 0

0
. . . . . . . . . . . . a

b 0 . . . 0 −a 0


. (3.46)

Then the system is periodic of period τ = π√
ab sin(2π/N)

. Furthermore, if N is divisible

by 4, opposite agents share orbits two by two, i.e.:

for all t > 0, for all i ∈ {1, . . . , N
2
}, xi(t+ τ) = xi+N

2
(t),

and the kinetic energy is periodic with period τ/2.

Proof 18 First remark that the system satisfies the hypotheses of Theorem 3, so

for all t > 0, for all i ∈ {1, . . . , N}, R(
4π

N
)xi(t) =

 xi+2(t) if i+ 2 ≤ N

xi+2−N(t) if i+ 2 > N
.

Hence the system is entirely known from the positions of the first two agents, since

all others can be obtained by simple rotations. We show that this 2N-dimensional

problem can be rewritten as a 4-dimensional one. Indeed, using the fact that xN =

R(−4π/N)x2 and x3 = R(4π/N)x1, the system


ẋ1 = a(x2 − x1)− b(xN − x1)

ẋ2 = b(x3 − x2)− a(x1 − x2)
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becomes:

ẋ1 =

ẋ11

ẋ12

 = a


x21

x22

−
x11

x12


− b


 cos(4π

N ) sin(4π
N )

− sin(4π
N ) cos(4π

N )


x21

x22

−
x11

x12




ẋ2 =

ẋ21

ẋ22

 = b


cos(4π

N ) − sin(4π
N )

sin(4π
N ) cos(4π

N )


x11

x12

−
x21

x22


− a


x11

x12

−
x21

x22




.

This can be rewritten in matrix form as:



ẋ11

ẋ12

ẋ21

ẋ22


= A4



x11

x12

x21

x22


(3.47)

where

A4 :=



−a+ b 0 a− b cos(4π
N

) −b sin(4π
N

)

0 −a+ b b sin(4π
N

) a− b cos(4π
N

)

−a+ b cos(4π
N

) −b sin(4π
N

) a− b 0

b sin(4π
N

) −a+ b cos(4π
N

) 0 a− b





x11

x12

x21

x22


.

One can easily show that this reduced interaction matrix A4 has two purely imag-

inary conjugate eigenvalues, iλ and −iλ, each of multiplicity 2, where λ = 2
√
ab

sin(2π
N

). Hence the solution of the system (3.47) can be written as a weighted sum of

the functions t 7→ cos(λt) and t 7→ sin(λt). This implies that the system is periodic,

of period

τ =
2π

λ
=

π√
ab sin(2π

N
)
.

Furthermore, if N is divisible by 4, according to Theorem 3, xN
2

+1 = −x1 and xN
2

+2 =

−x2. This implies that for all t > 0, x1(t + τ) = −x1(t) = xN
2

+1(t) and x2(t + τ) =
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x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x1

x2

x3

x4

x5

x6

x7

x8

Figure 3.16: Left: Directed graph corresponding to the matrix A given in (3.44). Full
arrows represent positive coefficients (aij > 0) while dashed ones represent negative
coefficients (aij < 0). Right: Weighted directed graph corresponding to the matrix A
given in (3.46). Thin arrows represent the weighted edges |aij| = a while bold ones
represent the weight |aij| = b. Nodes with the same color and symbol share orbits
but are not directly connected in the graph.

−x2(t) = xN
2

+2(t), so the agents x1 and xN
2

+1 share an orbit, as well as all pairs of

agents xi and xN
2

+i for i ∈ {1, . . . , N2 }.

As a consequence, the kinetic energy is periodic, of period τE = τ = π/(
√
ab

sin(2π
N

)). If N is divisible by 4, every half period, the system is rotated by an angle π,

so the kinetic energy is periodic with period τE = τ/2.

Remark 7 Notice that the agents sharing orbits do not interact with one another,

as shown in Figure 3.16.

An example of such a choreography is given in Figure 3.17.
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Figure 3.17: Left: Periodic trajectories of 8 agents sharing orbits two by two, in the
situation of Theorem 5. Matrix A from (3.46) was constructed with (a, b) = (1, 3).
The initial positions x1(0) and x2(0) were randomly generated and the other 6 were
obtained by rotation. The period is τ = 2π/

√
6. Right: Corresponding kinetic energy,

of period τ/2.

Remark 8 As a slight generalization, we provide numerical simulations illustrating

a similar behavior, but with slightly different conditions: the periodic evolution of 9

agents on three distinct orbits shared three by three, see figures 3.18 and 3.19.

3.6.4 Helical trajectories

In sections 3.6.2 and 3.6.3, we provided conditions for the trajectories of the system

to be periodic. Here, we explore further the notion of periodicity by studying systems

with drift, displaying helical trajectories but periodic kinetic energy.

Definition 12 Let (xi)i=1...N be a solution of (3.42). We call the corresponding tra-

jectories helical trajectories if there exists v ∈ R2 and τ ∈ R∗ such that

for all i ∈ {1, ..., N}, for all t > 0, xi(t+ τ) = xi(t) + τv.

Notice that this definition generalizes the notion of periodic trajectories recalled in

Definition 10, which corresponds to the case v = 0. When v 6= 0, the system has a

drift term, meaning that the relative positions between agents remain periodic but
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Figure 3.18: Left: evolution of 9 agents with periodic trajectories, each orbit shared
by 3 agents. Right: periodic kinetic energy.

their absolute positions evolve in space.

Theorem 6 Sufficient conditions for helical trajectories. Let N = 4. Let (a, b, c, d) ∈

(R+)4 such that the interaction matrix reads

A =



0 a 0 −d

−a 0 b 0

0 −b 0 c

d 0 −c 0


. (3.48)
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Figure 3.19: Isolated orbits of the evolution shown in Figure 3.18. Left: trajectories
of agents 3, 6, 9. Middle: trajectories of agents 1, 4, 7. Right: trajectories of agents
2, 5, 8).

Then the system exhibits helical trajectories.

Proof 19 First notice that the first and second components xi1 and xi2 of the i-th

agent’s position are decoupled, so that the system in matrix form reads

ẋj =



ẋ1j

ẋ2j

ẋ3j

ẋ4j


=



d− a a 0 −d

−a a− b b 0

0 −b b− c c

d 0 −c c− d





x1j

x2j

x3j

x4j


:= Ã



x1j

x2j

x3j

x4j


, for j ∈ {1, 2}.

(3.49)

Hence the projections of x on the first and second axes solve the same differential

equation. The matrix Ã has three distinct eigenvalues:

λ1 = 0, λ2 = i
√

(a+ c)(b+ d) and λ3 = −i
√

(a+ c)(b+ d).

There is one eigenvector associated with λ1: v1 := (1, 1, 1, 1)T . One can show that

the vectors x(t) = v1 and x(t) = v1t + ν are both solutions of System (3.49), where,

denoting ∆ := bcd− abc+ abd− acd,

ν :=
1

∆
(ab+ bc+ ∆, ab− cd+ ∆, ab+ ad+ ∆,∆)T .

Let v2 denote the eigenvector associated with λ2 and let vR2 and vI2 denote respectively
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its real and imaginary components, i.e. v2 := vR2 + ivI2. Then the solution of System

(3.49) can be written as:

xj(t) = Cj
1v1 + Cj

2(v1t+ ν) + Cj
3

[
vR2 cos(λ2t)− vI2 sin(λ2t)

]
+ Cj

4

[
vR2 sin(λ2t) + vI2 cos(λ2t)

]
where (C1, C2, C3, C4) ∈ R4 are constants depending on the initial conditions. Let

τ = 2π
λ2
. Then for all t > 0, for all i ∈ {1, . . . , 4}, for all j ∈ {1, 2}, xij(t + τ) =

xij(t) + Cj
2τ . This can be rewritten as:

for all i ∈ {1, . . . , 4}, for all t > 0, xi(t+ τ) = xi(t) +

C1
2

C2
2

 τ.

0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Time = 5.0

1

2

3

4

0 1 2 3 4 5

Time

0

1

2

3

4

5

Kinetic Energy

Figure 3.20: Left: Trajectories of 4 agents with helical trajectories. Parameters for
matrix A (3.48) chosen to be (a, b, c, d) = (1, 2, 3, 4). Dark to light color indicates
earlier to later time. Right: Corresponding kinetic energy. The period is τ = 2π((a+
c)(b+ d))−1/2 = π/

√
6 (see proof of Theorem 6).
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Figure 3.21: Evolution of the first and second coordinates of 4 agents with helical
trajectories.

Theorem 7 A system with helical trajectories has periodic kinetic energy.

Proof 20 Supose that (xi)i=1...N has helical trajectories, i.e. there exists τ ∈ R,

v ∈ R2 such that for all i ∈ {1, . . . , N}, for all t ≥ 0, xi(t + τ) = xi(t) + τv. Then

ẋi(t+ τ) = ẋi(t) and so E(t+ τ) = E(t).

3.7 Introduction to opinion models with time-varying

influence

In this section we investigate opinion models where each agent has a time-varying

weight that determines the influence over other agents. We propose four different

models for which the influence evolves. For all models we impose the conservation of

the sum of the weights, so that the weights simply shift between agents. In Model

1, agents gain mass if they attract the other agents more than they are attracted in

pairwise interactions. This is achieved by looking at the midpoint dynamics. In Model

2, an agent gains mass if its stance or opinion is well received by many others. An

example could model a politician using a wholly popular idea to gain influence. Many

students and young voters may give support to free college in the United States which

increases the influence of the agent with this idea. In Model 3, an agent gains mass
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by attracting other influential individuals. This model is appropriate for modeling

opinions in the situation where very influential people appear to support opinions

publicly. An example is when a musician, movie star, or popular artist supports a

political candidate. The political candidate may gain influence because they appear to

attract other influential individuals. Lastly, Model 4 represents a continuous version

of Model 3, where we replace the set of most influential agents with a continuously

varying coefficient.

We first address the problem of existence of solutions. Our models are smooth in

the space variable but present natural discontinuities in the weight dynamics. Thus

we consider solutions in the Filippov sense and prove that the space trajectory is

always unique. This allows to prove that agents never coalesce in finite time and, for

Models 1 and 2, if we start with some agents in the same position we can replace

them by a single one whose weight is the sum of the weights.

We then prove some general properties of the system: the maximal norm of opin-

ions is contracting as well as the convex hull of opinions. We also provide estimates

on the diameter dynamics in terms of the interaction functional. We next focus on

specific properties of the interaction function. If the interaction does not vanish for

large distances, then consensus is always achieved exponentially fast in time. For

the bounded-confidence case we prove that clustering occurs using an appropriate

energy functional. We then deal with heterophilious dynamics, in the specific case of

a constant interaction function. In this simplified case, we highlight the main char-

acteristics and constitutive differences in the large-time dynamics of our four models.

For Model 1, the weights never vanish and have an a-priori lower bound. Therefore,

no agent looses completely its weight (not even asymptotically) and no agent gains

all the weight. On the contrary, for Model 2, a single agent will asymptotically gain

all the weight and such agent can be identified a priori. Finally, for Models 3 and 4,

equilibria exhibit two agents sharing all the weight and we conjecture that this are
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also the asymptotic states.

Then we turn our attention to numerical simulations. We show the behavior of all

models with various agents starting from random positions and with random weights.

We also measure the speed of convergence to consensus (when it is achieved) and show

that the weight dynamics tend to facilitate consensus and increase the convergence

speed for some of the proposed models. We then compare the clustering behavior of

the four models in the case of an interaction function with bounded support. Lastly,

we provide some conclusions and future directions.

3.8 General results

3.8.1 Notations and model definitions

Let (xi)i∈{1,··· ,N} ∈ (Rd)N represent the opinions (or positions) of a group of N agents.

A general opinion dynamics model, as introduced by Hegselmann and Krause[2], can

be written as:
ẋi(t) =

1

N

N∑
j=1

a(‖xi(t)− xj(t)‖) (xj(t)− xi(t)) ,

xi(0) = x0
i ,

i ∈ {1, · · · , N}, (3.50)

where a(·) represents the interaction function. This general system models the dy-

namics of a group of agents in which each agent j’s influence on another individual i

depends on the distance between them and on the position of j with respect to i.

We extend this model by attributing to each agent a weight of influence mi ∈ R+,

which evolves in time due to its own dynamics (note that we will also refer to it as

the agent’s mass). Let M :=
∑N

i=1 mi be the total weight (or mass) of the system. A
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general form of this augmented model will be written as:



ẋi(t) =
1

M

N∑
j=1

mj(t)a(‖xi(t)− xj(t)‖) (xj(t)− xi(t)) ,

ṁi(t) = Ψ(m(t), x(t),mi(t), xi(t)),

xi(0) = x0
i , mi(0) = m0

i ,

i ∈ {1, · · · , N},

(3.51)

where we denoted by m the vector of N weights m = (mi)i∈{1,··· ,N} and by x the

N opinions x = (xi)i∈{1,··· ,N}. In this new approach, an agent j’s influence on i no

longer depends solely on the vector xj − xi, but also on the weight mj. This time-

varying weight dynamics will be generally prescribed by a function Ψ depending on

the group’s opinions (xi)i∈{1,··· ,N} and weights of influence (mi)i∈{1,··· ,N}. From here

onward, for more simplicity we will denote by ψi the function Ψ evaluated at xi and

mi, i.e. ψi(m,x) := Ψ(m,x,mi, xi). We rewrite system (3.51) in the condensed form:


ẋi(t) = Xi(x(t),m(t)),

ṁi(t) = ψi(x(t),m(t)),

xi(0) = x0
i , mi(0) = m0

i ,

i ∈ {1, · · · , N}. (3.52)

where we denoted by Xi : (Rd)N × RN → (Rd)N the function

Xi : (x,m) 7→ 1

M

N∑
j=1

mja(‖xi − xj‖) (xj − xi) . (3.53)

Furthermore, we assume that for each i ∈ {1, · · · , N}, there exists a function ψi such

that

∀(x,m) ∈ (Rd)N × RN , ψi(x,m) = miψi(x,m). (3.54)
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We will also use the notations

X := (Xi)i∈{1,··· ,N}, ψ := (ψi)i∈{1,··· ,N}, and ψ := (ψi)i∈{1,··· ,N},

and from here onward we assume the following:

Hypothesis 1 The function s 7→ a(‖s‖)s is locally Lipschitz in Rd, and the function

ψ is locally bounded in (Rd)N × RN .

Remark 9 The fact that the mass dynamics satisfy (3.54) together with Hypothesis

1 implies that non-negative weights remain non-negative at all time.

We also require the following condition on the weight dynamics:

Hypothesis 2 For all (x,m) ∈ (Rd)N × RN ,

N∑
i=1

ψi(x,m) = 0. (3.55)

This implies that the total weight M of the group stays constant, so that the weight

distribution shifts between agents while the sum of the weights remains unchanged.

As a consequence, the weights satisfy m ∈ [0,M ]N , where M =
∑N

i=1m
0
i .

From here onward, unless we specify otherwise, all results concern the

general model with weights (3.52)−(3.53)−(3.54), together with Hypotheses

1 and 2.

We now present four specific models in which we prescribe the dynamics ψi of the

weights of influence. The models we build rely on giving a meaning to the following

quantities:

• xi, referred to as the opinion (or position) of agent i

• mi, referred to as the weight (or mass) of agent i
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• M =
N∑
i=1

m0
i , referred to as the total mass of the system

• a(‖xi − xj‖)‖xi − xj‖, referred to as the positional influence of i over j (and

symmetrically, of j over i)

• pi :=
∑N

j=1 a(‖xi− xj‖)‖xi− xj‖, referred to as the total positional influence of

i over the group

• eij := mja(‖xi−xj‖)‖xi−xj‖, referred to as the the influence of j over i (notice

that eij is obtained by multiplying the positional influence of j over i by the

weight of j)

• Ii := argmaxj∈{1,··· ,N} eij = {j ∈ {1, · · · , N} | ∀k ∈ {1, · · · , N}, eij ≥ eik},

representing the set of agents that have the largest influence on i

Model 1: Increasing weight by pairwise competition. In this first model, the

dynamics of an agent’s weight mi depend on the dynamics of the midpoints between

i and each other agent j:


ẋi =

1

M

N∑
j=1

mj a(‖xi − xj‖)(xj − xi)

ṁi =
mi

M

N∑
j=1

mj〈
ẋi + ẋj

2
, uji〉

i ∈ {1, · · · , N}, (M1)

where uji is the vector defined by:

uji =


xi−xj
‖xi−xj‖ if xi 6= xj

0 if xi = xj.

If the midpoint xi+xj
2

moves in the direction of xi, i.e. 〈 ẋi+ẋj2
,
xi−xj
‖xi−xj‖〉 ≥ 0, then i

gains influence and mi increases, proportionally to the projection of the velocity of
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the midpoint on the direction xi−xj
‖xi−xj‖ and proportionally to j’s own mass mj. Notice

that for compactness of notation, we expressed ṁi in terms of x, m and ẋ. However,

by plugging the expressions of ẋi and ẋj in the second equation of (M1), we recover

an equation of the form ṁi = ψi(x,m), so we are in the framework of the general

system (3.52)−(3.53)−(3.54).

Model 2: Increasing weight by positional influence. In this model, an agent’s

weight mi increases if the agent’s positional influence pi is higher than the weighted

average of the group’s positional influences. We write:


ẋi =

1

M

N∑
j=1

mj a(‖xi − xj‖)(xj − xi)

ṁi =
mi

M

(
pi

1
M

∑N
j=1 mjpj

− 1

) i ∈ {1, · · · , N}, (M2)

where pi :=
∑N

j=1 a(‖xi−xj‖)‖xi−xj‖ represents an agent’s total positional influence

on the group.

Model 3: Increasing weight by exerting the biggest influence on the most

influential. In this model, mi will increase if the agents that i influences the most

are themselves influential. We give:


ẋi =

1

M

N∑
j=1

mja(‖xi − xj‖)(xj − xi)

ṁi = mi

 ∑
j | i∈Ij

mj

|Ij|m
− 1

 i ∈ {1, · · · , N}, (M3)

where |Ij|m :=
∑

k∈Ij mk represents the weight of the agents that influence j the most.

As defined earlier, Ij = argmaxk∈{1,··· ,N} ejk is the set of agents that influence j the

most, with ejk = mka(‖xj − xk‖)‖xj − xk‖ representing the influence of k over j. A

sufficient condition for mi to increase is if there exists j with a greater weight than
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i (i.e. mj > mi) such that i is the most influential agent on j, i.e. Ij = {i}. More

generally, if #Ij = 1 for all j ∈ {1, · · · , N} (where # denotes the cardinality of a

set), ṁi > 0 if and only if the sum of the weights of all the agents for whom agent i

is the most influential is greater than its own weight mi. Indeed, in this case, i ∈ Ij

implies that |Ij|m = mi, and we get:

ṁi > 0 ⇔
∑
j | i∈Ij

mj

|Ij|m
> 1 ⇔

∑
j | i∈Ij

mj

mi

> 1 ⇔
∑
j | i∈Ij

mj > mi.

Model 4: Increasing weight by influencing the most influential. This last

model provides a “continuous” version of the topological model (M3):


ẋi =

1

M

N∑
j=1

mja(‖xi − xj‖)(xj − xi)

ṁi = mi

(
1

M

N∑
j=1

mj
eji

1
M

∑N
k=1mkejk

− 1

) i ∈ {1, · · · , N}, (M4)

where eji = mia(‖xi−xj‖)‖xi−xj‖ represents the influence of agent i on agent j. In

this model, an agent j contributes to increasing the weight of an agent i proportionally

to its own weight mj and to the strength of the influence of i on j relatively to the

weighted average of all influences on j. As opposed to Model (M3), in the evolution

of mi we consider not only the agents for which i has the strongest influence, but all

agents j, with a weight corresponding to how much i counts in the total influence

perceived by j.

3.8.2 Existence and uniqueness of solutions

We begin by establishing the existence of solutions to the general system (3.52)−(3.53)−(3.54).

Let us first recall the definition of Filippov set-valued maps[55]:

Definition 13 Let P(E) denote the collection of susbsets of the Euclidean space E.
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For a measurable vector field X : E → E, the Filippov set-valued map F [X] : E →

P(E) is defined by:

∀x ∈ E, F [X](x) :=
⋂
δ>0

⋂
S∈P(E), µ(S)=0

co{X(B(x, δ) \ S)},

where co{·} denotes the convex closure, µ denotes the Lebesgue measure, B(x, δ)

denotes the ball of center x and radius δ, and for all S ∈ P(E), X(S) := {X(x) | x ∈

S}.

Proposition 1 Consider the differential system (3.52)−(3.53)−(3.54) and suppose

that s 7→ a(‖s‖)s ∈ Liploc(Rd) and ψ ∈ L∞loc((Rd)N×RN). Then there exists a solution

(x,m) to system (3.52)−(3.53)−(3.54) in the sense of Filippov, i.e. an absolutely

continuous map (x,m) : [0, T ]→ (Rd)N × RN such that for almost all t ∈ [0, T ],

(ẋ, ṁ)(t) ∈ F [(X,ψ)](x(t), (m(t)),

where F [(X,ψ)] denotes the Filippov set-valued map of (X,ψ). Furthermore, for all

solutions (x,m) and (y, p) satisfying (x(0),m(0)) = (y(0), q(0)), if m ≡ q, then x ≡ y.

Proof 21 The existence of solutions is a direct application of the notion of Fil-

ippov solutions[55], since the local boundedness of (X,ψ) implies the upper semi-

continuity of F [(X,ψ)]. Uniqueness of solutions is not guaranteed since (X,ψ) is not

locally Lipschitz. However, for each solution t 7→ m(t), the first equation of system

(3.52)−(3.53)−(3.54) can be rewritten as:

ẋi = Xi(x,m(t)) := X̃i(x, t) (3.56)

where X̃ := (X̃i)i∈{1,··· ,N} is locally Lipschitz with respect to the `N1 − `d2 norm x 7→∑N
i=1 ‖xi‖, where ‖ · ‖ is the Euclidean norm of Rd. Indeed, let δ > 0, and let
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(x, y) ∈ (RdN)2 such that
∑N

i=1 ‖xi − yi‖ ≤ δ. Then for all (i, j) ∈ {1, · · · , N}2,

‖(xj − xi) − (yj − yi)‖ ≤ ‖(xj − yj)‖ + ‖(xi − yi)‖ ≤ δ, so there exists K ≥ 0 such

that for each i ∈ {1, · · · , N},

‖X̃i(t, x)− X̃i(t, y)‖ =

∥∥∥∥∥ 1

M

N∑
j=1

mj [a(‖xi − xj‖)(xj − xi)− a(‖yi − yj‖)(yj − yi)]

∥∥∥∥∥
≤ 1

M

N∑
j=1

mjK‖(xj − xi)− (yj − yi)‖

≤ K

M

N∑
j=1

mj(‖xj − yj‖+ ‖xi − xj‖) ≤ 2K
N∑
j=1

‖xj − yj‖.

Hence (3.56) admits a unique solution from each initial condition x0 ∈ (Rd)N .

An important property follows from the uniqueness of x given the weights t 7→

m(t): if two agents are clustered at some time T , i.e. xi(T ) = xj(T ), then they

are necessarily clustered at all time before and after T . As a consequence, in one-

dimension, the dynamics preserve the order.

Corollary 2 Let (x,m) : R+ 7→ (Rd)N × [0,M ]N denote a solution to system (3.51).

If for some T ≥ 0, xi(T ) = xj(T ), then xi(t) = xj(t) for all t ∈ R+. Hence, if d = 1,

if xi(0) ≥ xj(0), then xi(t) ≥ xj(t) for all t ∈ R+.

Proof 22 Suppose that for some T ≥ 0, xi(T ) = xj(T ). Then from (3.51), one easily

computes: ẋi(T ) = ẋj(T ). From Proposition 1, there is a unique solution x for each

m satisfying (3.51), hence xi(t) = xj(t) for all t ≥ T and t ≤ T .

From here onward, we will suppose that at initial time, x0
i 6= x0

j for all (i, j) ∈

{1, · · · , N}2. In two of the specific models defined in Section 3.8.1, this can be done

without loss of generality, as we show with the following:

Lemma 3 Let t 7→ (x(t),m(t)) ∈ RdN × RN and t 7→ (y(t), q(t)) ∈ Rd(N−1) × RN−1
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be two solutions to system (M1) (respectively (M2)). If the initial conditions satisfy


x0

1 = x0
N = y0

1

m0
1 +m0

N = q0
1

then y1 ≡ x1 ≡ xN , q1 ≡ m1 + mN , and for all i ∈ {2, · · · , N − 1}, yi ≡ xi and

qi ≡ mi.

Proof 23 First, from Corollary 2, it follows immediately that x1 ≡ xN , indepen-

dently of the weight dynamics. Secondly, let x̃ := (x1, · · · , xN−1) and m̃ := (m1 +

mN , · · · ,mN−1). We show that for each of the two models (M1) and (M2), (x̃, m̃)

and (y, p) solve the same differential systems. For Model (M1),


ṁ1 + ṁN =

m1 +mN

M

N−1∑
j=2

mj〈
ẋ1 + ẋj

2
, uj1〉

ṁi =
mi

M

(
(m1 +mN)〈 ẋi + ẋ1

2
, u1i〉+

N−1∑
j=2

mj〈
ẋi + ẋj

2
, uji〉

)
, 2 ≤ i ≤ N − 1.

For Model (M2), since x1 = xN , we have p1 = pN , and so


ṁ1 + ṁN =

m1 +mN

M

(
p1

1
M

((m1 +mN)p1 +
∑N−1

j=1 mjpj)
− 1

)

ṁi =
mi

M

(
pi

1
M

((m1 +mN)p1 +
∑N−1

j=1 mjpj)
− 1

)
, 2 ≤ i ≤ N − 1.

Then for either Model (M1) or Model (M2), (x̃, m̃) and (y, q) follow the same dy-

namics, and since the initial conditions are the same, (x̃, m̃) ≡ (y, q).

Hence, in Models (M1) and (M2), if for some (i, j) ∈ {1, · · · , N}2, x0
i = x0

j , we

remove xj from the system and replace m0
i by m0

i +m0
j . The same cannot be done in

the general case, when ψi depends explicitely on mi.

Proposition 2 The models (M1), (M2), (M3) and (M4) satisfy Hypothesis 2.
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Proof 24 We compute
∑N

i=1 ṁi for each model.

For Model 1, the property
∑N

i=1 ṁi = 0 follows easily from the antisymmetry of

the summed coefficients.

For Model 2,

N∑
i=1

ṁi =
1
M

∑N
i=1mipi

1
M

∑
j = 1Nmjpj

−
∑N

i=1mi

M
= 1− 1 = 0.

For Model 3,

N∑
i=1

ṁi =
N∑
i=1

mi(
∑
j | i∈Ij

mj

|Ij|m
− 1) =

N∑
j=1

mj

|Ij|m

∑
i∈Ij

mi −M =
N∑
j=1

mj

|Ij|m
|Ij|m −M = 0.

Lastly, for Model 4,

N∑
i=1

ṁi =
N∑
i=1

mi

(
1

M

N∑
j=1

mj
eji

1
M

∑N
k=1 mkejk

− 1

)
=

N∑
j=1

mj

∑N
i=1 mieji∑N
k=1 mkejk

−M = 0.

We show that although the four specific models defined in Section 3.8.1 have

generally discontinuous mass dynamics, some restrictions render ψ continuous, and

we can therefore consider their unique solutions in the classical sense.

Proposition 3 Let (x,m) be a Filippov solution to system (M1), with ψi(x,m) =

mi

M

∑N
j=1 mj〈 ẋi+ẋj2

, uji〉. If for all (i, j) ∈ {1, · · · , N}2, x0
i 6= x0

j , then along the dy-

namics, ψi is continuous with respect to x and m and (x,m) is the unique solution of

the Cauchy problem in the classical sense.

Proof 25 The only discontinuity of ψ occurs when xi = xj for some (i, j) ∈ {1, · · · , N}2.

However, if initially x0
i 6= x0

j , for all (i, j) ∈ {1, · · · , N}2, we have xi(t) 6= xj(t) for all

t ≥ 0. Hence along the dynamics, ψ is locally Lipschitz with respect to x and m and

each solution (x,m) is continuously differentiable and satisfies (M1) for all t ∈ R.
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Proposition 4 Let (x,m) be a Filippov solution to system (M2), with ψi(x,m) =

mi

M

(
pi(

1
M

∑M
j=1mjpj)

−1 − 1
)
, and suppose that a(·) is bounded away from zero. Then

ψi is only discontinuous at consensus, i.e. when xi = xj for all (i, j) ∈ {1, · · · , N}2.

If for all (i, j) ∈ {1, · · · , N}2, x0
i 6= x0

j , then along the dynamics, ψi is continuous

with respect to x and m, and (x,m) is the unique solution of the Cauchy problem in

the classical sense.

Proof 26 The only possible point of discontinuity is at (x,m) such that
∑M

j=1 mjpj =

0. From Proposition 2, there exists at least one i ∈ {1, · · · , N} such that mi 6= 0.

Then since for all j ∈ {1, · · · , N}, mj ≥ 0 and pj ≥ 0, we have pi = 0. Recall that

the positional influence pi is defined by pi =
∑N

j=1 a(‖xi−xj‖)‖xi−xj‖. Hence pi = 0

if and only if for all j ∈ {1, · · · , N}, ‖xi − xj‖ = 0, that is at a consensus point. We

now show that indeed ψi is discontinuous around consensus. Consider two sequences

(x,m) and (x̃, m̃) converging to consensus while satisfying the following:


x1(t)→t→∞ 0

xi(t) = 0 for all i ≥ 2

and


x̃2(t) = −x̃1(t)→t→∞ 0

x̃i(t) = 0 for all i ≥ 3.

We compute for the first and the second sequence respectively:


p1 = (N − 1)a(‖x1‖)‖x1‖

pi = a(‖x1‖)‖x1‖, i ≥ 2


p̃1 = p̃2 = (N − 2)a(‖x̃1‖)‖x̃1‖+ 2a(2‖x̃1‖)‖x̃1‖

p̃i = 2a(‖x̃1‖)‖x̃1‖, i ≥ 3

Then for the first sequence, for all i ≥ 2,

pi
N∑
j=1

mjpj

=
a(‖x1‖)‖x1‖

(M −m1)a(‖x1‖)‖x1‖+m1(N − 1)a(‖x1‖)‖x1‖
=

1

M + (N − 2)m1

.
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For the second sequence, for all i ≥ 3,

p̃i
N∑
j=1

m̃j p̃j

=
1

(M − m̃12) + m̃12(N−2
2

+ a(2‖x̃1‖)
a(‖x̃1‖) )

=
1

M + m̃12(N−4
2

+ a(2‖x̃1‖)
a(‖x̃1‖) )

,

where we denoted by m̃12 the sum m̃1 + m̃2. These quotients are in general different,

hence ψi(x,m) and ψi(x̃, m̃) converge to different limits as x and x̃ converge to con-

sensus. Therefore ψ is discontinuous for all (x,m) with x at consensus. However,

according to Proposition 2, if initially x0
i 6= x0

j , for all (i, j) ∈ {1, · · · , N}2, we have

xi(t) 6= xj(t) for all t ≥ 0. Hence along the dynamics, ψ is locally Lipschitz with re-

spect to x and m and each solution (x,m) is continuously differentiable and satisfies

(M1) in the classical sense. It is the unique solution to the Cauchy problem associated

with (M2).

Proposition 5 Let (x,m) be a Filippov solution to system (M4), with ψi(x,m) =

mi

(∑M
j=1

mj

M
eji(

1
M

∑M
k=1 mkejk)

−1 − 1
)
, and suppose that a(·) is bounded away from

zero. If for all (i, j) ∈ {1, · · · , N}2, x0
i 6= x0

j , then along the dynamics, ψi is continu-

ous with respect to x and m, and (x,m) is the unique solution of the Cauchy problem

in the classical sense.

Proof 27 The only possible points of discontinuity are the points (x,m) satisfying

M∑
k=1

m2
ka(‖xj − xk‖)‖xj − xk‖ = 0

for some j ∈ {1, · · · , N}. Unlike for Model (M2), as seen in Proposition 4, this

can occur for many configurations of the system, since the weights can be equal to

zero. However, from Proposition 2, if for all (i, j) ∈ {1, · · · , N}2, x0
i 6= x0

j , then

xi(t) 6= xj(t) for all t ≥ 0. Since for all time there exists k ∈ {1, · · · , N} such that
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mk(t) 6= 0, for all t ≥ 0 we have

M∑
k=1

mk(t)
2a(‖xj(t)− xk(t)‖)‖xj(t)− xk(t)‖ 6= 0.

Remark 10 We have proven that under the assumption that a is bounded below and

that the system is initially not clustered, the functions driving the weight dynamics of

models (M1), (M2) and (M4) are continuous along the trajectories of x and m. We

then consider solutions (x,m) in the classical sense. This is not the case for model

(M3) which is by nature discontinuous.

3.8.3 General properties of the system

Let

x0
max := max

i∈{1,··· ,N}
‖x0

i ‖. (3.57)

We show that the system is not expanding in time in the following sense:

Proposition 6 Let (x,m) be a solution to the general system (3.52)−(3.53)−(3.54).

For all t ∈ R+,

max
i∈{1,··· ,N}

‖xi(t)‖ ≤ x0
max. (3.58)

Proof 28 We show that maxi∈{1,··· ,N}(‖xi(t)‖) decreases with respect to time. For all

i ∈ {1, · · · , N}, if ‖xi(t)‖ 6= 0,

d

dt
‖xi‖ =

1

2‖xi‖
d

dt
(‖xi‖2)

=
1

‖xi‖
1

M

N∑
j=1

mja(‖xi − xj‖)〈xi, xj − xi〉

=
1

‖xi‖
1

M

(
N∑
j=1

mja(‖xi − xj‖)〈xi, xj〉 −
N∑
j=1

mja(‖xi − xj‖)‖xi‖2

)
.

(3.59)

Let i ∈ {1, · · · , N} such that ‖xi(t)‖ = maxj∈{1,··· ,N} ‖xj(t)‖. If ‖xi(t)‖ = 0, then
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(3.51) is trivial and ‖xi(t′)‖ = 0 for all t′ ≥ t. If ‖xi(t)‖ 6= 0, then from (3.59),

d
dt
‖xi(t)‖ ≤ 0, which proves (3.58).

An important consequence of the Lipschitz property of s 7→ a(‖s‖)s is that a

solution to (3.51) cannot form clusters in finite time, as we show in the following

proposition.

Proposition 7 Let (x,m) be a solution to system (3.52)−(3.53)−(3.54), with initial

condition x(0) = x0. Then there exists K ≥ 0 such that for all (i, j) ∈ {1, · · · , N}2,

‖xi(t)− xj(t)‖ ≥ ‖xi(0)− xj(0)‖e−Kt.

Proof 29 From Proposition 6, for all t ∈ R+, for all (i, j, k) ∈ {1, · · · , N}3, ‖(xk −

xi) − (xk − xj)‖(t) = ‖xi − xj‖(t) ≤ 2x0
max. Then from Hypothesis 1, there exists

K ≥ 0 (depending on x0
max) such that

d

dt
‖xi − xj‖2 =

2

M

N∑
k=1

mk〈xi − xj, a(‖xk − xi‖)(xk − xi)− a(‖xk − xj‖)(xk − xj)〉

≥ − 2

M

N∑
k=1

mk‖xi − xj‖‖a(‖xk − xi‖)(xk − xi)− a(‖xk − xj‖)(xk − xj)‖

≥ − 2

M

N∑
k=1

mk‖xi − xj‖K‖(xk − xi)− (xk − xj)‖ = −2K‖xi − xj‖2

and we conclude with Gronwall’s lemma.

We now examine the existence of solutions in the case of the four specific models

(M1), (M2), (M3) and (M4). Let x := 1
N

∑N
i=1 xi denote the average group opinion.

We also define X := 1
M

∑N
i=1 mixi the weighted average opinion. Recall that in

the classical opinion dynamics model (3.50), the average opinion x is constant with

respect to time.
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Proposition 8 For the augmented model with varying weights (3.52)−(3.53)−(3.54),

if the weights do not evolve in time (i.e. ψi ≡ 0 for all i ∈ {1, · · · , N}), then the

weighted average X = 1
M

∑N
i=1mixi is constant with respect to time.

Proof 30 If ṁi = 0 for all i ∈ {1, · · · , N},

d

dt
X =

1

M

N∑
i=1

miẋi =
1

M

N∑
i=1

N∑
j=1

mimja(‖xi − xj‖)(xj − xi) = 0

by antisymmetry of the summed coefficients.

We now investigate the propensity of the system to form consensus. Let us suppose

that for all (i, j) ∈ {1, · · · , N}2, ‖x0
i − x0

j‖ > 0. From Proposition 7, for all (i, j) ∈

{1, · · · , N}2, ‖xi(t)− xj(t)‖ ≥ ‖xi(0)− xj(0)‖e−Kt. From here onward we denote by

dmin(t) := min
(i,j)∈{1,··· ,N}2

‖xi(0)− xj(0)‖e−Kt (3.60)

the lower bound on the smallest distance between two agents at time t, i.e. for all

(i, j) ∈ {1, · · · , N}2, ‖xi(t)−xj(t)‖ ≥ dmin(t). Furthermore, according to Proposition

6, maxi∈{1,··· ,N} ‖xi(t)‖ ≤ x0
max. Then for all t ∈ R+, 0 < dmin(t) ≤ ‖xi(t) − xj(t)‖ ≤

2x0
max. Let us define the function t 7→ α(t) as

α(t) = sup
z∈[dmin(t),2x0max]

a(z). (3.61)

For all t ≥ 0, we then define a normalized interaction function z 7→ at(z) such that:

at(z) :=
a(z)

α(t)
. (3.62)

This normalized interaction function now satisfies the property 0 ≤ at(‖xi(t) −

xj(t)‖) ≤ 1 for all t ≥ 0 and all (i, j) ∈ {1, · · · , N}2. This will allow us to rewrite the
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system with a row-stochastic matrix (Aij)(i,j)∈{1,··· ,N}2 defined by:


Aij(t) =

mj(t)

M
at(‖xi(t)− xj(t)‖) if i 6= j

Aii(t) = 1−
∑

j 6=i
mj(t)

M
at(‖xi(t)− xj(t)‖).

(3.63)

Then for all t ≥ 0, for all (i, j) ∈ {1, · · · , N}2, 0 ≤ Aij(t) ≤ 1. Moreover, we have

constructed A in such a way that for all i ∈ {1, · · · , N},
∑N

j=1Aij(t) = 1, making it

row-stochastic as claimed above.

Then denoting by x(t) the opinion vector (xi)i∈{1,··· ,N}, the opinion dynamics of

system (3.51) can be rewritten in matrix form as:

ẋ(t) = α(t) (A(t)x(t)− x(t)) . (3.64)

Let Ω(t) denote the convex hull of x(t), defined as follows.

Definition 14 Let (xi)i∈{1,··· ,N}. Its convex hull Ω is defined by:

Ω =

{
N∑
i=1

ξixi | ∀i ∈ {1, · · · , N}, 0 ≤ ξi ≤ 1 and
N∑
i=1

ξi = 1

}
.

We show that Ω(t) contracts in time with the following proposition.

Proposition 9 The convex hull Ω(t) of x(t) is contracting in time in the sense that

Ω(t2) ⊆ Ω(t1) for all t2 ≥ t1 ≥ 0. (3.65)

This implies that there exists a convex compact Ω∞ such that

lim
t→+∞

Ω(t) = Ω∞.
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Proof 31 From Equation (3.64), we can rewrite the system as:

ẋi(t) = α(t)(xi(t)− xi(t)), i ∈ {1, · · · , N}, (3.66)

where xi :=
∑N

j=1Aijxj is a convex combination of the agents xj. Then, by definition,

xi is inside the convex hull of x, and ẋi is directed towards the convex hull, which

ensures the property (3.65).

Theorem 8 Let D : t 7→ D(t) := max(i,j)∈{1,··· ,N}2 ‖xi(t)−xj(t)‖ represent the diam-

eter of the system. Then it satisfies the concentration estimate

d

dt
D(t) ≤ −α(t)η(t)D(t), (3.67)

with

α(t) = sup{a(z) | z ∈ [dmin(t), 2x0
max]} and

η(t) := min
(i,j)∈{1,··· ,N}2

N∑
k=1

min{Aik, Ajk}
(3.68)

for the row-stochastic matrix A(t) defined in equation (3.63). and for the quantities

x0
max and dmin respectively defined in equations (3.57) and (3.60).

In particular, if limt→+∞
∫ t

0
α(s)η(s)ds = +∞, then limt→+∞D(t) = 0. Further-

more, if
∫ +∞

0
α(t) exp

(
−
∫ t

0
α(s)η(s)ds

)
dt < ∞, then all the agents converge to an

emerging consensus x∞ such that

‖xi(t)− x∞‖ ≤ exp

(
−
∫ t

0

α(s)η(s)ds

)
D(0). (3.69)

Proof 32 After writing the system in matrix form (3.64), where A is row-stochastic,

the proof is an easy adaptation of the proof of Theorem 2.2 of Motsch and Tadmor[56].
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Let us first show that

max
(i,j)∈{1,··· ,N}2

‖(A(t)x(t))i − (A(t)x(t))j‖ ≤ (1− η(t))D(t). (3.70)

Let (i, j) ∈ {1, · · · , N}2 and let ηijk := min{Aij, Ajk}. We omit the time t for conve-

nience of notation and compute:

‖(Ax)i − (Ax)j‖ =∥∥∥∥∥
N∑
k=1

Aijxk −
N∑
k=1

Ajkxk

∥∥∥∥∥ =

∥∥∥∥∥
N∑
k=1

(Aij − ηijk )xk −
N∑
k=1

(Ajk − ηijk )xk

∥∥∥∥∥
≤

N∑
k=1

(Aij − ηijk ) max
k∈{1,··· ,N}

‖xk‖ −
N∑
k=1

(Ajk − ηijk ) min
k∈{1,··· ,N}

‖xk‖

≤ (1−
N∑
k=1

ηijk )

(
max

k∈{1,··· ,N}
‖xk‖ − min

k∈{1,··· ,N}
‖xk‖

)
≤ (1− η) max

(i,j)∈{1,··· ,N}2)
‖xi − xj‖ = (1− η)D.

Let us now compute from (3.64):

d

dt
‖xi − xj‖2 = 2

〈
xi − xj, α

(
N∑
k=1

Aikxk − xi

)
− α

(
N∑
k=1

Ajkxk − xj

)〉

≤ 2α
(
−‖xi − xj‖2 + ‖(Ax)i − (Ax)j‖‖xi − xj‖

)
≤ 2α

(
−‖xi − xj‖2 + (1− η)D‖xi − xj‖

)
Let (i, j) ∈ {1, · · · , N}2 such that ‖xi − xj‖ = D. Then

d

dt
D(t)2 ≤ 2α(t)

(
−D(t)2 + (1− η(t))D(t)2

)
= −2α(t)η(t)D(t)2,

which implies (3.67). It follows that D(t) = D(0) exp(−
∫ t

0
α(s)η(s)ds), so

lim
t→+∞

∫ t

0

α(s)η(s)ds = +∞ ⇒ lim
t→+∞

D(t) = 0.
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Then the diameter of the system converges to zero. We further show that each agent

converges to consensus. Let i ∈ {1, · · · , N}, and let 0 ≤ t1 < t2.

‖xi(t2)− xi(t1)‖ =

∥∥∥∥∫ t2

t1

ẋidt

∥∥∥∥ =

∥∥∥∥∫ t2

t1

α(t) ((Ax)i(t)− xi(t)) dt
∥∥∥∥

≤
∫ t2

t1

α(t) max
(i,j)∈{1,··· ,N}2

‖xi(t)− xj(t)‖dt =

∫ t2

t1

α(t)D(t)

≤ D(0)

∫ t2

t1

α(t) exp

(
−
∫ t

0

α(s)η(s)ds

)
dt

Hence,

lim
τ→+∞

∫ τ

0

α(t) exp

(
−
∫ t

0

α(s)η(s)ds

)
dt < +∞⇒

lim
|t1−t2|→0

‖xi(t2)− xi(t1)‖ = 0,

(3.71)

which implies the convergence of xi to a consensus opinion x∞ satisfying equation

(3.69).

3.8.4 Consensus in the case of a positive interaction function

We now show that if the interaction function a is bounded below on the initial diam-

eter of the system, then the system converges to consensus.

Proposition 10 Let (x,m) be a solution to (3.52)−(3.53)−(3.54) and let t 7→ D(t)

be the diameter of the system as defined in Theorem 8. If inf{a(z) |z ≤ D(0)} :=

amin > 0 then the system (3.51) converges to consensus, with the rate

D(t) ≤ D(0)e−amint

Proof 33 Due to the assumption on a, at t = 0, since for all (i, j) ∈ {1, · · · , N}2,

‖x0
i − x0

j‖ ≤ D(0), we have a(‖x0
i − x0

j‖) ≥ amin. According to Theorem 8, for all
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t ∈ R+, D(t) ≤ D(0), so for all t ∈ R+, for all (i, j) ∈ {1, · · · , N}2, a(‖xi(t) −

xj(t)‖) ≥ amin. Consider (i, j) ∈ {1, · · · , N}2 such that D(t) = ‖xi(t) − xj(t)‖ =

max(k,l)∈{1,··· ,N}2 ‖xk(t)− xl(t)‖. We compute d
dt
D(t)2 = d

dt
‖xi(t)− xj(t)‖2:

d

dt

(
‖xi − xj‖2

)
=

2

M

N∑
k=1

mka(‖xi − xk‖) 〈xk − xi, xi − xj〉

− 2

M

N∑
k=1

mka(‖xj − xk‖) 〈xk − xj, xi − xj〉.

Because ‖xi(t) − xj(t)‖ = D(t), for all (k, l) ∈ {1, · · · , N}2, 〈xk − xi, xi − xj〉 ≤ 0

and symmetrically, 〈xk − xj, xi − xj〉 ≥ 0. Consequently,

d

dt

(
‖xi − xj‖2

)
≤

2

M

N∑
k=1

mkamin 〈xk − xi, xi − xj〉 −
2

M

N∑
k=1

mkamin 〈xk − xj, xi − xj〉

≤ − 2

M
amin

N∑
k=1

mk‖xi − xj‖2 ≤ −2amin‖xi − xj‖2.

Then D(t) ≤ D(0)e−amint, which implies that the system converges to consensus.

Remark 11 The condition on the boundedness away from zero of the interaction

function does not prevent the effective interactions mka(‖xi − xk‖) from being zero,

as the individual weights mk can tend to 0. However, due to the positivity of the

total mass of the system M > 0, the directed graph of interactions remains weakly

connected and consensus is still achieved.

3.8.5 Clustering in the case of an interaction function with

bounded support

In the previous section, we saw that a positive interaction function leads to consensus

of the system. We now explore the behavior of the system in the case of an interaction
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function with bounded support, i.e. we suppose the following:

Hypothesis 3 Suppose that there exists R ≥ 0 such that a satisfies


a(r) > 0 for all r ∈ (0, R)

a(r) = 0 for all r ≥ R.

(3.72)

In the case of the classical Hegselmann-Krause model (3.50), this was shown to lead to

clustering equilibria[57], i.e. states of the system in which for all (i, j) ∈ {1, · · · , N}2,

either ‖xi− xj‖ = 0 or ‖xi− xj‖ ≥ R, where R denotes the size of the support of the

interaction function. In this section, we prove that in the case of non-evolving positive

weights, we obtain the same result. The case of non-evolving positive weights is cov-

ered by the framework of type-symmetric and cut-balanced systems, and convergence

was shown by Hendrickx and Tsitsiklis[58]. Cut-balanced systems model situations

in which if a group of agents influences another group, then the first group is also

influenced by the second one by at least a proportional amount. In this paper, we

consider the opposite situation, by allowing a subgroup of agents to become the only

ones with influence. Our system is cut-balanced only when the weights are bounded

away from zero. We saw in Section 3.8.4 that as long as the total mass M is positive,

if the interaction function is positive, the system converges to consensus, even if some

weights vanish. We now examine the case of an interaction function with bounded

support. We show that we can adapt the work of Jabin and Motsch[57] to prove the

clustering of the system, with the strong condition that the weights are positive and

do not evolve. We also show that when the masses evolve and are allowed to vanish,

we cannot expect the results to hold.

Let the energy of the system be defined by:

E(x) =
1

M2

N∑
i=1

N∑
j=1

mimjΦ(‖xi − xj‖2), Φ : r 7→
∫ r

0

a(
√
s)ds. (3.73)
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Proposition 11 Consider the simplified system (3.52)−(3.53)−(3.54) with constant

masses, i.e. Ψi ≡ 0 for all i ∈ {1, · · · , N}. Then the energy decreases in time with:

dE

dt
= − 4

M

N∑
i=1

mi‖ẋi‖2 (3.74)

and

dE

dt
≤ − 1

M3

(
N∑
i=1

N∑
j=1

mimja(‖xi − xj‖)‖xi − xj‖2

)2

N∑
i=1

mi‖xi‖2

. (3.75)

Furthermore, the following inequality follows:

∫ +∞

0

m2
im

2
ja

2(‖xi(t)− xj(t)‖)‖xi(t)− xj(t)‖4dt ≤ CM (3.76)

where CM is a constant depending only on the total mass M .

Proof 34 For the equality (3.74), we compute the time derivative of the energy func-

tional when the masses are constant in time:

dE

dt
=

1

M2

N∑
i=1

N∑
j=1

mimja(‖xi − xj‖)2〈xi − xj, ẋi − ẋj〉

=
4

M2

N∑
i=1

N∑
j=1

mimja(‖xi − xj‖)〈xi − xj, ẋi〉 = − 4

M

N∑
i=1

mi‖ẋi‖2.

Furthermore, from the Cauchy-Schwarz inequality,

(
N∑
i=1

mi〈ẋi, xi〉

)2

≤

(
N∑
i=1

mi‖ẋi‖2

)(
N∑
i=1

mi‖xi‖2

)
= −M

4

dE

dt

(
N∑
i=1

mi‖xi‖2

)
,

from which we get

(
N∑
i=1

1

M

N∑
j=1

mimja(‖xi − xj‖)〈xj − xi, xi〉

)2

≤ −M
4

dE

dt

(
N∑
i=1

mi‖xi‖2

)
,
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so

(
1

2M

N∑
i=1

N∑
j=1

mimja(‖xi − xj‖)‖xi − xj‖2

)2

≤ M

4

dE

dt

(
N∑
i=1

mi‖xi‖2

)
,

and this gives the desired inequality (3.75). Lastly, from Proposition 6, the opinion

vector x is bounded at all time, so there exists CM such that

∫ +∞

0

N∑
i=1

N∑
j=1

m2
im

2
ja

2(‖xi(t)− xj(t)‖)‖xi(t)− xj(t)‖4dt ≤ CM ,

which implies the inequality (3.76).

Proposition 11 implies that the stationary states S of the system are the states sat-

isfying dE
dt

= 0, i.e. if a satisfies Hypothesis 3,

S = {x ∈ (Rd)N | ∀(k, l) ∈ {1, · · · , N}2, mkml = 0 or ‖xk−xl‖ = 0 or ‖xk−xl‖ ≥ R}.

We now prove that if the masses are all strictly positive, the system converges to an

equilibrium satisfying:

∀(k, l) ∈ {1, · · · , N}2, ‖xk − xl‖ = 0 or ‖xk − xl‖ ≥ R.

Proposition 12 Suppose that a(·) satisfies Hypothesis 3. Suppose that ψi ≡ 0 and

mi > 0 for all i ∈ {1, · · · , N}. Then for all ε > 0, there exists Tε such that for all

(i, j) ∈ {1, · · · , N}2, for all t ≥ Tε, ‖xi(t)− xj(t)‖ ∈ [0, ε] ∪ [R− ε,+∞).

Proof 35 By contradiction, suppose that there exists (i, j) ∈ {1, · · · , N} and {tn}n∈N

such that for all n ∈ N, ‖xi(tn) − xj(tn)‖ ∈ (ε, R − ε). From the hypotheses on a(·),

there exists δ > 0 such that for all r ∈ (ε, R − ε), a(r) ≥ δ. Furthermore, since

from Theorem 8, for all t ≥ 0, ‖xi(t)− xj(t)‖ ≤ D(0), from Hypothesis 1 there exists



145

C > 0 such that for all t ≥ 0, a(‖xi − xj‖)‖xi − xj‖ ≤ C. Then

‖ẋi‖ ≤
1

M

N∑
j=1

mja(‖xi − xj‖)‖xi − xj‖ ≤
1

M

N∑
j=1

mjC ≤ C,

so x is uniformly continuous in time. This implies that there exists τ > 0 such that

a(‖xi(t) − xj(t)‖) ≥ δ
2
and ‖xi(t) − xj(t)‖ ≥ ε

2
for all r ∈ [tn, tn + τ ], for all n ∈ N.

Then

lim
T→+∞

∫ T

0

m2
im

2
ja(‖xi(t)− xj(t)‖)2‖xi(t)− xj(t)‖4dt

≥ lim
k→+∞

k∑
n=1

∫ tn+τ

tn

m2
im

2
ja(‖xi(t)− xj(t)‖)2‖xi(t)− xj(t)‖4dt

≥ lim
k→+∞

k∑
n=1

τ
δ2

4

ε4

16
m4

min = +∞

where mmin := mini∈{1,··· ,N}{mi}. This contradicts the inequality (3.76).

The next corollary follows automatically from Proposition 12:

Corollary 3 If a satisfies (3.72), and ψi ≡ 0, mi > 0 for all i ∈ {1, · · · , N}, the

system forms clusters separated by a distance greater than R, i.e. for any (i, j) ∈

{1, · · · , N}2,

lim
t→+∞

‖xi(t)− xj(t)‖ = 0 or lim
t→+∞

‖xi(t)− xj(t)‖ ≥ R. (3.77)

Corollary 1 implies that the solution to (3.51) with constant positive weights forms

clusters, but it is not enough in order to prove its convergence. In dimension 1, the

convergence of the system is a direct consequence of the preserved order stated in

Proposition 2, of the clustering property stated in Corollary 3 and of the convergence

of the convex hull Ω stated in Proposition 9. The proof is identical to that of Theorem

4 in Jabin and Motsch[57], hence we do not provide the details. Instead, we focus on
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the multidimensional case, which is more complicated due to the fact that lost con-

nectivity between two agents can be recovered at a later time. To prove convergence

of the solution to system (3.51) with constant positive weights, we follow the method

introduced therein[57]. We start by refining the result of Proposition 11:

Proposition 13 Let (x,m) be a solution to the simplified system (3.52)−(3.53)−(3.54)

with constant masses, i.e. Ψi ≡ 0 for all i ∈ {1, · · · , N}. For all (i, j) ∈ {1, · · · , N}2,

for all T ≥ 0,

∫ T

0

mimja(‖xi(t)− xj(t)‖)‖xi(t)− xj(t)‖2dt ≤ M2

4
(x0

max)2. (3.78)

Proof 36 We start by writing (we omit (t) notation of function x for brevity):

∫ T

0

N∑
i=1

mi〈xi, ẋi〉dt =

∫ T

0

N∑
i=1

N∑
j=1

mimj

M
a(‖xi − xj‖)〈xi, xj − xj〉dt.

Then we have:

∫ T

0

N∑
i=1

N∑
j=1

mimj

M
a(‖xi − xj‖)‖xi, xj‖2dt = −1

4

∫ T

0

N∑
i=1

mi
d

dt
‖xi(t)‖2dt.

The right-hand side can be written as:

−1

4

∫ T

0

N∑
i=1

mi
d

dt
‖xi‖2dt = −1

4

[
N∑
i=1

mi‖xi‖2

]T
0

=
M

4
((x0

max)2 − (xTmax)2),

where we used the boundedness of ‖xi‖ proven in Proposition 6. Inequality (3.78)

follows from the non-negativity of each term.

We are now equipped to prove the convergence theorem. From Corollary 3, we

know that the agents form clusters separated by distances at least equal to R, the

support of the interaction function.
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Theorem 9 Let (x,m) be a solution to (3.52)−(3.53)−(3.54). Suppose that a(·)

satisfies Hypothesis 3, and ψi ≡ 0, mi > 0 for all i ∈ {1, · · · , N}. Let NC ≤ N

denote the number of clusters formed by the system. We denote by Ck the set of

agents forming the k−th cluster, by Mk :=
∑

i∈Ck
mi the mass of Ck, and by yk :=

1
Mk

∑
i∈Ck

mixi its barycenter. Then there exists a constant C such that for each

k ∈ {1, ..., NC}, for all T ≥ 0, the barycenter of Ck satisfies:

∫ T

0

‖ẏk(t)‖dt ≤ C. (3.79)

Hence the system (3.51) with constant weights converges as t→ +∞.

Proof 37 Let k ∈ {1, ..., NC}. We compute the velocity of the center of mass yk of

the cluster Ck:

ẏk =
1

Mk

∑
i∈Ck

miẋi

=
1

Mk

∑
i∈Ck

∑
j∈Ck

mimj

M
a(‖xi − xj‖)(xj − xi) +

∑
j /∈Ck

mimj

M
a(‖xi − xj‖)(xj − xi)

 .
The first term vanishes by antisymmetry of the summed coefficients. For the second

one, we sum over i ∈ Ck and j /∈ Ck. Then as a consequence of Corollary 3, there

exists T ′ ≥ 0 such that for all t ≥ T ′, ‖xi − xj‖ ≥ R
2
. Hence for all t ≥ T ′,

1
R
‖xi − xj‖ ≤ 2

R2‖xi − xj‖2. If T ′ ≤ T , the integral between T ′ and T can be bounded

as follows:

∫ T

T ′

∑
i∈Ck

∑
j /∈Ck

mimj

MMk

a(‖xi(t)− xj(t)‖)‖xj(t)− xi(t)‖dt

≤
∫ T

T ′

∑
i∈Ck

∑
j /∈Ck

mimj

MMk

a(‖xi(t)− xj(t)‖)
2

R
‖xj(t)− xi(t)‖2dt ≤ M2

2R
(x0

max)2

where we used the inequality (3.78). Furthermore, as a consequence of Hypothesis 1
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and of Theorem 8, there exists C ′ > 0 such that for all t ≥ 0, a(‖xi(t)−xj(t)‖)‖xj(t)−

xi(t)‖ ≤ C ′.

∫ T ′

0

∑
i∈Ck

∑
j /∈Ck

mimj

MMk

a(‖xi(t)− xj(t)‖)‖xj(t)− xi(t)‖dt ≤ T ′C ′.

Then (3.79) follows with C := M2

2R
(x0

max)2 + T ′C ′ if T ≥ T ′, and C := T ′C ′ if

T ′ ≥ T . We deduce that the barycenters yk of the clusters converge as t→ +∞, and

from Corollary 3, this implies that xi converges for each i ∈ {1, · · · , N}.

Remark 12 The proof of Theorem 8 follows closely the proof of Proposition 3.2 in

Jabin and Motsch[57]. The main difference is that we prove the convergence of the

barycenters of each cluster, instead of their centers. This allows us to recover a

symmetry property that greatly simplifies the computation of ẏk.

Hence the system with non-evolving positive masses behaves in the same way as

the non-weighted dynamics[57]. However, as soon as one mass vanishes, we may ob-

serve clusters separated by any distance. The following simple 1-dimensional example

shows such a case of equilibrium at a distance smaller than R.

Example 1 Let (x,m) be a solution to (3.52)−(3.53)−(3.54) with d = 1 and N = 3.

Suppose that a(·) satisfies Hypothesis 3, and |x1 − x2| = R, with m3 = 0. Then

ẋ1 = ẋ2 = 0, and the system is at equilibrium if ṁ1 = ṁ2 = ṁ3 = ẋ3 = 0, i.e. if

ψ1(x,m) = ψ2(x,m) = ψ3(x,m) = 0 and

m1a(|x1 − x3|)(x1 − x3) +m2a(|x2 − x3|)(x2 − x3) = 0.

Simplifying even further, if we consider Model (M1) and if we suppose a(r) = 1 for

all r ∈ [0, R), the system is at equilibrium if

|x2 − x3|
|x1 − x3|

=
m1

m2

.
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Figure 3.22: Evolution of the system corresponding to Example 2. Left: Evolution of
the positions {xi}i∈{1,...,4}. Right: Evolution of the masses {mi}i∈{1,...,4}. The dashed
line shows the constant average mass of the system.

Simulations in the case of time-evolving masses show other cases of equilibria with

clusters separated by distances smaller than R.

Example 2 Let d = 2 and N = 4. Suppose that a(r) = 1 for r ∈ [0, 3
2
) and 0

otherwise. We place three agents at the vertices of an equilateral triangle of side equal

to 2, with x1 = (0,
√

3), x2 = (−1, 0) and x3 = (1, 0). We suppose that m4 = 0

and we simulate the evolution of the system with the mass dynamics given by Model

(M2). The positions of the the first three agents stay invariant in time with ẋ1 = ẋ2 =

ẋ3 = 0, and the mass of the fourth agent remains equal to 0. Then the only variable

quantities are x4, and the three masses m1, m2 and m3. Simulations show that if

‖x4 − xi‖ < R is satisfied for all i ∈ {1, ..., 3}, the system tends to an equilibrium

given by m1 = m2 = m3 = 1
3
and x4 = ( 1√

3
, 0) being the center of the circumscribing

circle of (x1, x2, x3), see Figure 3.22. Furthermore, although the system converges

to equilibrium, we observe oscillations both in the mass evolution and in the spiral

trajectory of x4.
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3.9 Long-term behavior and equilibria for heterophil-

ious dynamics

We now focus on the specific case of a constant interaction function, for example

a ≡ 1. This models the case of heterophilious dynamics, as the influence of one

agent over another grows with the distance separating them[56]. We use this case

of simple interaction function to illustrate some fundamental differences between the

four models (M1), (M2), (M3) and (M4), more specifically in the long-term behavior

of the weights and in the existence of equilibria.

Proposition 14 Suppose that the interaction function is constant, a ≡ 1. Then the

solution to system (3.52)−(3.53)−(3.54) converges exponentially to consensus, and

we have:
d

dt
D(t) ≤ D(0)e−t. (3.80)

Furthermore, the system converges to the consensus opinion x∞ and

∀i ∈ {1, · · · , N}, ‖xi(t)− x∞‖ ≤ e−tD(0). (3.81)

Lastly,

∀(i, j) ∈ {1, · · · , N}2, xi(t)− xj(t) = e−t(x0
i − x0

j). (3.82)

Proof 38 With a ≡ 1, we have α ≡ 1 and the opinion dynamics can be written in

matrix form (3.64) with the row-stochastic matrix A defined as:


Aij(t) =

mj(t)

M
if i 6= j

Aii(t) = 1−
∑

j 6=i
mj(t)

M
.
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We apply Theorem 8 and calculate:

N∑
k=1

min{Aik, Ajk}

=
N∑

k 6=i,j

min{mk(t)

M
,
mk(t)

M
}+

min{1−
∑
k 6=i

mk(t)

M
,
mi(t)

M
}+ min{1−

∑
k 6=j

mk(t)

M
,
mj(t)

M
}

=
N∑

k 6=i,j

mk(t)

M
+
mi(t)

M
+
mj(t)

M
= 1.

Then η(t) = min(i,j)∈{1,··· ,N}2 1 = 1, and we get (3.80) from (3.67). Furthermore,

∫ +∞

0

exp

(
−
∫ t

0

η(s)ds

)
dt =

∫ +∞

0

e−tdt <∞,

so according to Theorem 8, all the agents converge to the consensus x∞ with the rate

given by (3.81). Lastly, we compute explicitly:

ẋi(t) =
1

M

N∑
j=1

mj(t) (xj(t)− xi(t)) = (X(t)− xi(t)), i ∈ {1, · · · , N},

which gives: ẋi(t)− ẋj(t) = −(xi(t)− xj(t)) and (3.82) follows.

Remark 13 For the classical weightless opinion dynamics (3.50) with constant in-

teraction function a ≡ 1, the system converges exponentially to consensus at the value

x with the same rate:

∀i ∈ {1, · · · , N}, xi(t) = x+ e−t(x0
i − x).

This is to be expected since the classical dynamics (3.50) are a special case of system

(3.52)−(3.53)−(3.54) with equal and constant weights.

We now further study the evolution of the weight distribution, and exhibit funda-
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mental differences in the behaviors of the three models (M1), (M2) and (M3).

Proposition 15 Consider Model (M1), with constant interaction function a ≡ 1.

Suppose that for all i ∈ {1, · · · , N}, mi(0) = m0
i > 0. Then there exist (µi)i∈{1,··· ,N}

positive constants such that for all t ≥ 0 for all i ∈ {1, · · · , N} the weights satisfy:

mi(t) ≥ µi > 0.

Proof 39 From (M1), the weights satisfy for all i ∈ {1, · · · , N}:

ṁi =
mi

M

N∑
j=1

mj

〈
ẋi + ẋj

2
,
xi − xj
‖xi − xj‖

〉
.

From Proposition 14,

∥∥∥∥ ẋi + ẋj
2

∥∥∥∥ =

∥∥∥∥X − xi + xj
2

∥∥∥∥ ≤ D(t) ≤ D(0)e−t.

From this we get:

ṁi ≥ −
mi

M

N∑
j=1

mj

∥∥∥∥ ẋi + ẋj
2

∥∥∥∥ ≥ −mi

M

N∑
j=1

mjD(0)e−t = −mie
−tD(0).

Integrating with respect to time yields:

ln

(
mi(t)

m0
i

)
≥ −

∫ t

0

e−sD(0)ds

from which we obtain:

mi(t) ≥ m0
i e
D(0)(e−t−1) ≥ m0

i e
−D(0) > 0.

This result shows that in the case of Model (M1), there is no saturation behavior:

if the weights are initially all positive, they remain bounded away from zero at all

time, which implies that they remain well-distributed among the agents. This is
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illustrated in the numerical simulations presented in Figures 3.23 and 3.27.

We now show that we have the opposite behavior in the case of Model (M2).

Proposition 16 Consider Model (M2) with the heterophilious interaction a ≡ 1. Let

p0
i = pi(0) =

∑N
j=1 ‖x0

i − x0
j‖. Suppose that for all (i, j) ∈ {1, · · · , N}2, p0

i 6= p0
j , and

let k := argmaxi∈{1,··· ,N} p
0
i . Then

lim
t→∞

mk(t) = M and ∀i 6= k, lim
t→∞

mi(t) = 0. (3.83)

Proof 40 From Proposition 14, for all i ∈ {1, · · · , N}:

pi(t) =
N∑
j=1

‖xi(t)− xj(t)‖ = e−t
N∑
j=1

‖x0
i − x0

j‖ = e−tp0
i .

Then from (M2),

ṁi(t) =
mi(t)

M

(
pi(t)

1
M

∑N
j=1 mj(t)pj(t)

− 1

)
=
mi(t)

M

(
p0
i

1
M

∑N
j=1mj(t)p0

j

− 1

)
.

Let k := argmaxi∈{1,··· ,N} p
0
i . Then p0

k ≥ 1
M

∑N
j=1mj(t)p

0
j , so ṁk(t) ≥ 0 for all t ≥ 0.

Since mk(t) ≤ M , there exists mk with 0 ≤ mk ≤ M such that limt→∞mk(t) = mk

and mk(t) ≤ mk for all t ≥ 0. Suppose that mk < M . More specifically, suppose that

there exists δ > 0 such that mk = M − δ. There also exists ε > 0 such that for all

i 6= k, p0
i ≤ p0

k − ε. We then write:

1
M

∑N
j=1mj(t)p

0
j

p0
k

=
1

p0
kM

(
mkp

0
k +

∑
j 6=k

mjp
0
j

)
≤ mk

M
+

(M −mk)(p
0
k − ε)

Mp0
k

≤ mk

M

(
1− p0

k − ε
p0
k

)
+
p0
k − ε
p0
k

≤ M − δ
M

(
1− p0

k − ε
p0
k

)
+
p0
k − ε
p0
k

≤ 1− δ

M

(
1− p0

k − ε
p0
k

)
= 1− δε

Mp0
k

.
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Let C := (δε)/(Mp0
k) > 0. We choose ε small enough that C > 1. Then

p0
k

1
M

∑N
j=1mj(t)p0

j

≥ 1

1− C
= 1 +

C

1− C
> 1,

and ṁk satisfies:

ṁk ≥
mk

M
(1 +

C

1− C
− 1) =

mk

M

C

1− C
.

By Gronwall’s lemma, for all t ≥ 0, mk(t) ≥ m0
ke

C
M(1−C)

t, which contradicts mk(t) ≤

M . Hence mk = M and because
∑N

i=1mi = M , for all i 6= k, limt→∞mi(t) = 0.

Hence in the case of Model (M2), the agent with the largest initial positional influence

p0
k becomes the leader: its weight tends to the total mass of the system M , while the

weights of all the other agents tend to 0. This is illustrated in Figures 3.24 and 3.28.

Models (M3) and (M4) exhibit a third behavior, different from those of Mod-

els (M1) and (M2): starting from random initial conditions, two agents gain in-

fluence while all the other weights go to zero. We prove that indeed the state

m = (M
2
, M

2
, 0, ..., 0) is an equilibrium for the weights.

Proposition 17 In models (M3) and (M4), any state satisfying


mI = mJ =

M

2

mi = 0 for all i 6= I, J

(3.84)

for any indices I 6= J , is an equilibrium for the weight dynamics, in the sense that

ṁi = 0 for all i ∈ {1, · · · , N}.

Proof 41 Without loss of generality, we reorder the agents so that I = 1 and J = 2.

For Model (M3), notice that for all i ∈ {3, ..., N}, ṁi = 0. Furthermore, I1 = {2}



155

and I2 = {1}, so from (M3),


ṁ1 = m1(m2

m1
− 1) = m2 −m1 = 0

ṁ2 = m2(m1

m2
− 1) = m1 −m2 = 0.

For Model (M4), again ṁi = 0 for all i ∈ {3, ..., N}. The agents with non-zero masses

satisfy:

ṁ1 = m1

(
m2

M

m1a(‖x1 − x2‖)‖x1 − x2‖
m2

1

M
a(‖x1 − x2‖)‖x1 − x2‖

− 1

)
= m2 −m1 = 0,

and symmetrically, ṁ2 = 0.

This is illustrated in Figures 3.25 and 3.29.

3.10 Numerical simulations

3.10.1 Behavior of the four specific models with constant in-

teraction function

We start by illustrating the behavior of each of the four models for d = 1. Figures

3.23, 3.24, 3.25 and 3.26 show the evolution of a group of 10 agents in R, with the

same initial conditions. The interaction function was chosen to be a ≡ 1. Notice

that in all cases, the order of the opinions is preserved, as shown in Proposition 2. It

is not the case for the order of the weights. As shown in Section 3.8.4, in all cases,

the system converges to consensus asymptotically. In each of the figures 3.23 to 3.30,

the plot on the left represents the evolution of the opinions, each represented by a

different color. The width of each curve is proportional to the agent’s weight. For

the one-dimensional plots (i.e. Figures 3.23 to 3.26), the dotted line represents the
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average position and the dashed line represents the weighted barycenter. The plot

on the right shows the evolution of the corresponding weights, with the dashed line

representing the average weight (constant by Proposition 2). Figure 3.23 illustrates

the behavior of Model (M1) proven in Proposition 15: the weights vary little and stay

bounded away from 0. Figure 3.24 illustrates the behavior of Model (M2) proven in

Proposition 16: one agent eventually gains the total mass of the system, and becomes

leader. Notice that consensus is achieved at a different value than in Figure 3.23,

due to the fact that one agent drags the group towards itself. Figures 3.25 and 3.26

illustrate the behaviors of Models (M3) and (M4), proven in Proposition 17: two

agents eventually share equally the total mass of the system, and become co-leaders.

Interestingly, with the same initial conditions, the two leaders are different in Model

(M3) and Model (M4).

Figures 3.27, 3.28, 3.29 and 3.30 show the evolution of a group of 10 agents in

R2, with the same initial conditions. The interaction function was also chosen to be

a ≡ 1. Notice that with Model (M2), consensus is reached before the leader gains the

total mass of the system (Figure 3.28). Hence it does not have time to influence the

position at which consensus is achieved. As in 1D, with Models (M3) and (M4), two

agents become co-leaders, but they are different for each of the models (see Figures

3.29 and 3.30).
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Figure 3.23: Evolution of opinions (left) and weights (right) of 10 agents in R with
(M1).
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Figure 3.24: Evolution of opinions (left) and weights (right) of 10 agents in R with
(M2).
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Figure 3.25: Evolution of opinions (left) and weights (right) of 10 agents in R with
(M3).
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Figure 3.26: Evolution of opinions (left) and weights (right) of 10 agents in R with
(M4).
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Figure 3.27: Evolution of opinions (left) and weights (right) of 10 agents in R2 with
(M1).
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Figure 3.28: Evolution of opinions (left) and weights (right) of 10 agents in R2 with
(M2).
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Figure 3.29: Evolution of opinions (left) and weights (right) of 10 agents in R2 with
(M3).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 10

0 1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Masses evolutions with respect to time

Figure 3.30: Evolution of opinions (left) and weights (right) of 10 agents in R2 with
(M4).

3.10.2 Behavior of selected models with bounded confidence

We now provide simulations for an interaction function with bounded support. In

Section 3.8.5, we showed that for a model with constant weights, the system forms

clusters separated by at least the distance of the support of the interaction function.

We also showed through simple examples that the same behavior cannot be expected

if the weights are allowed to evolve in time, and more specifically, to vanish. We now

show general simulations in 1D exhibiting the behavior of the system when a satisfies
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Hypothesis 3 with R = 0.2.

Figure 3.31 shows the evolution of the opinions and weights for Model (M2).

We observe cluster formation, with clusters separated by a distance greater than R,

the support of a. Interestingly, whereas the opinions quickly reach an equilibrium,

the weights keep oscillating between clusters (in the opinions plots, the width of

each curve is proportional to the agent’s weight). This is due to the fact that the

weight dynamics allow exchange of mass between clusters (the denominator in (M2)

sums over all agents, regardless of the distances between opinions). The weighted

barycenter is shown to oscillate (dashed line), whereas the average opinion converges

to an equilibrium (dotted line).

Figure 3.32 shows the evolution of the opinions and weights for Model (M3). Recall

that with a constant interaction function, the system was shown to converge to an

equilibrium in which two agents share equally the total mass of the system. This

behavior is observed again here, but now at the level of each individual cluster.

Figure 3.32 shows a situation where the system converges to three clusters. The one

that converge at position x = 0.84 is composed of three agents, but its mass is only

shared between the green and the yellow agents, as shown by the weights’ evolution.

Similarly, the second cluster (at x = 0.4) is composed of five agents, but only the

green and the orange agents gain the total mass of the cluster. Lastly, the third

cluster is only composed of two agents (red and blue) that share the mass equally.

3.10.3 Speed of convergence

In this section, we compare the speed of convergence to consensus in each of the four

models. We define the “dispersion” over time by:

∆(t) :=
1

N2

N∑
i,j=1

‖xi(t)− xj(t)‖2.
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Figure 3.31: Evolution of opinions (left) and weights (right) of 10 agents in R with
(M2), a satisfying Hyp. 3 with R = 0.2.
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Figure 3.32: Evolution of opinions (left) and weights (right) of 10 agents in R with
(M3), a satisfying Hyp. 3 with R = 0.2.

Simulations were run with N = 30 agents and d = 3 to test the effect of mass

dynamics on speed of convergence to consensus. We used the interaction function

a(·) ≡ 1. Recall that the system converges asymptotically to consensus, as seen in

Propositions 10 and 14. We fix a final time T = 10 and we consider that the system

has “reached consensus” if ∆(T ) < ε = 10−6. We denote by ω the number of times

that consensus was reached out of 100 simulations in 3 dimensions.

Two series of simulations were run. In the first one, whose results are shown in

Table 3.2, all 30 initial weights were sampled randomly from the uniform distribution

in [0, 1], and then normalized so that M =
∑30

i=1 mi = 1. The 30 initial positions

were sampled randomly from the uniform distribution in [0, 1]3.

In the second series, whose results are shown in Table 3.3, all 30 initial weights were
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Random initial mass ω τ ∆(10)
M1 100 6.6580 3.2003× 10−8

M2 100 6.8082 3.5569× 10−8

M3 100 6.5051 2.7298× 10−8

M4 100 6.4685 2.6024× 10−8

Model-NMD 100 6.6801 3.2298× 10−8

Table 3.2: Speed of convergence with randomly generated weights

Equal initial mass ω τ ∆(10)
M1 100 6.6996 3.2798× 10−8

M2 100 6.8559 3.7337× 10−8

M3 100 6.6664 3.2040× 10−8

M4 100 6.5616 2.8759× 10−8

Model-NMD 100 6.6886 3.2346× 10−8

Table 3.3: Speed of convergence with equal weights

set to be equal to mi = 1/30, thus still satisfying M = 1. The 30 initial positions

were sampled randomly from the uniform distribution in [0, 1]3.

We denote by τ the average time to consensus given that the system achieved

it. Additionally, ∆(10) represents the mean dispersion at the end of the simulation

(T = 10) for all 100 simulations. As a benchmark for time to convergence, “Model

NMD” shows statistics for the model with no mass dynamics. For Model (M1) the

time to consensus is very similar to Model-NMD. This is expected because Model (M1)

shows only weak mass dynamics in the sense that masses do not change dramatically

from their initial values, see also simulations shown in Figures 3.23 and 3.27. Model

(M2) shows greater average time to consensus. This suggests that having a leader

who is the only one to have influence on the group is not optimal. Interestingly,

Models (M3) and (M4) converge the fastest, which suggests that a system guided

by two leaders converges more efficiently to consensus than a system guided by one

unique leader, and than a system with no leader.
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3.10.4 Clustering of bounded confidence models with time-

varying mass

We now present simulations comparing the effect of each model’s mass dynamics on

the clustering behavior of the system. Ten simulations of each model (M1), (M2),

(M3), (M4) and (M-NMD) were run with N = 30 agents in three spatial dimensions

(d = 3). As in Section 3.10.3, M-NMD refers to the model with no mass dynamics, i.e.

Ψ ≡ 0. In order to observe clustering, we chose for these simulations an interaction

function a(·) with bounded support, satisfying Hypothesis 3 with an interaction radius

set to R = 0.4. More specifically,


a(r) = 1 for all r ∈ (0, R)

a(r) = 0 for all r ≥ R.

As in Section 3.10.3, we first generated 10 sets of initial conditions (IC0 through

IC9) with randomly generated opinions in [0, 1]3 and randomly generated masses

in [0, 1], satisfying M =
∑30

i=1mi = 1. The resulting number of clusters for each

model is shown in Table 3.4, where the rightmost column shows for each model the

mean number of clusters c̄ of all 10 simulations. As expected, Model (M1) has a

similar behavior to M-NMD because the mass dynamics are weak compared to those

of (M2), (M3), and (M4). It is notable that M-NMD forms the least number of

clusters on average. Mass seems to increase the speed at which nearby agents move

toward another, and this would cause a cluster to form such that the less massive

agents move toward more massive ones. These less massive agents would not have the

attraction to draw the clusters together. An important note about (M3) and (M4)

is that a high number of clusters arises. This can be explained by the fact that pairs

of co-leading agents drain the masses of all the other ones, as shown in Figure 3.32.

This affects clustering by leaving many singleton clusters of mass-less agents. Even if
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these agents are relatively close to each other (their distance being possibly less than

the interaction radius R), they will have no attractive effect on any agent.

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 c̄
M1 5 4 5 6 8 5 5 4 4 2 4.8
M2 5 4 7 6 6 5 5 5 4 5 5.2
M3 11 9 8 12 7 9 10 7 6 8 8.7
M4 8 6 7 9 7 9 6 5 5 7 6.9
M-NMD 5 3 5 6 7 5 4 4 4 3 4.6

Table 3.4: Clustering comparison of the five models with randomly generated weights

For comparison, we ran a corresponding set of ten simulations (IP0 through IP9)

with initial opinions chosen identically to those of simulations IC0 through IC9, but

with initially equally distributed masses mi = 1
N

for all i ∈ {1, · · · , N}. In this case,

model M-NMD is exactly the classical HK model (3.50). The clustering results are

displayed in Table 3.5. Several observations can be made by comparing the two tables.

Firstly, as mentioned previously, the equal distribution of weights tends to reduce the

number of clusters: for Models (M1), (M2), (M3) and M-NMD, the average number of

clusters is lower with initial conditions IP0-IP9 than with initial conditions IC0-IC9.

Moreover, observe that with initially equal masses, Model (M1) and Model M-NMD’s

performances are equivalent: even though they achieve different numbers of clusters

for each simulation, their average is the same.

Comparing these results with those of Section 3.10.3, it is interesting to note that

with a positive interaction function, Models (M3) and (M4) seem to achieve faster

convergence to consensus, whereas in the case of bounded confidence, they result in

greater clustering of the system. These first results might suggest ways to design

efficient control strategies to either drive the system to consensus, or on the contrary

to avoid clustering.
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IP0 IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP9 c̄
M1 5 5 5 6 3 5 3 3 4 3 4.2
M2 5 5 6 5 4 5 3 5 5 4 4.7
M3 10 6 6 11 7 8 8 6 5 9 7.6
M4 10 6 7 12 8 7 5 7 4 6 7.2
M-NMD 5 5 5 6 3 4 3 3 5 3 4.2

Table 3.5: Clustering comparison of the five models with initially equal weights

3.11 Appendix

An example using Approach A which shows unexpected behavior in the first example

(A.1), as well as the interactions matrix and initial positions used for simulations

shown in Figure 3.7 and 3.9.

Example 3.11.1 15 agents with a general interaction matrix A. We use the same

notion of a general interactions matrix as used in [34]. The interactions matrix A is

composed of integers aij that are uniformly chosen between -5 and 5 inclusive. Ψ ≡ Id.

Generally, a system with this kind of interaction matrix will exhibit simple oscillating

kinetic energy, as in [34]. We show a rare simulation using this general interactions

matrix A in the appendix (Figures 3.33 and 3.34).
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A =



−5 −1 1 0 4

−1 −5 1 1 0

−2 0 −5 −1 −2

−4 −1 −5 3 −4

−4 1 −2 2 1


X =



1.5755 1.7399

1.6523 0.5619

5.3026 2.7008

2.4971 0.7288

0.6571 0.5281

1.2180 0.0840

2.2812 1.0129

5.4949 1.7441

3.7685 2.5903

1.6218 2.5266

2.2521 0.0767

5.5766 1.1671

5.6582 1.5453

2.8146 1.4641

1.6892 0.1310


Example 3.11.2 Five agents with a general interaction matrix A and Ψ as defined

in (3.26). Simulations are shown in Figure 3.7 and 3.9 with a ∈ {π
4
, π

2
, 3π

4
}.

A =



−5 −1 1 0 4

−1 −5 1 1 0

−2 0 −5 −1 −2

−4 −1 −5 3 −4

−4 1 −2 2 1


X =



6.1743 2.8473

4.5883 2.7635

2.1606 2.5691

3.6698 0.8191

0.6771 138672
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Figure 3.33: Energy of the system using Approach A, 15 agents, and a general inter-
action matrix (left). A snapshot of the energy oscillations to match with trajectories
in Figure 3.34 (right).

Figure 3.34: An agent’s trajectory simulated with Approach A, 15 agents, and a
general interaction matrix. The trajectory in shown the top right is of a second
agent. The agents oscillate with amplitudes that increase with time, eventually the
trajectory approximates a great circle, after which the oscillations resume with smaller
amplitudes.
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