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ABSTRACT OF THE DISSERTATION

Development of Robotic Systems for Bridge Deck

Inspection and Rehabilitation

By FEI LIU

Dissertation Director:

Jingang Yi

The condition of civil infrastructure such as bridges is of utmost importance for

the safety of traveling public and sustainability of the economic activity. The

bridge decks deteriorate faster than other bridge components due to their direct

exposure to tra�c and environmental loads. E�ective health monitoring, main-

tenance, repair, rehabilitation and replacement of the deteriorating civil infras-

tructure components are necessary to ensure the transportation safety. Current

assessment of concrete bridge decks still relies on visual inspection and use of sim-

ple nondestructive and destructive evaluations which are not capable to detect

defect in early stage. More advanced nondestructive evaluation (NDE) technolo-

gies, which can provide more comprehensive assessment, are not used on a regular

basis due to lower speed of manual data collection. On the other hand, the cur-

rent practice of repair of bridge deck only happen at the late stage resulting in
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extremely high cost. Also, there is currently no available system to treat early

stage defect such as delamination and internal cracking.

The goal of this dissertation is to provide a integrated solution for e�cient and

e�ective bridge deck inspection and maintenance with emphasis on �ve interlaced

topics: (i) development of an autonomous bridge deck inspection platform, (ii)

automated data processing for bridge deck image data, (iii) development of an

autonomous bridge deck rehabilitation platform focusing on early stage delami-

nation, (iv) modeling of the bit-concrete interaction for the rehabilitation proce-

dure, (v) strategies for simultaneously deployment of the bridge deck inspection

and rehabilitation robots. In the �rst part, we present a robotic system for bridge

deck data collection. The robot integrates multiple NDE techniques that enable

the characterization of three most common deterioration types in concrete bridge

decks: rebar corrosion, delamination, and concrete degradation. The autonomous

navigation and precise data registration are enable by a robust localization sys-

tem that fusing two GPS and wheel odometry through Extended Kalman Filter

(EKF). In the second part, we present a new automated image mosaicing sys-

tem for bridge deck surface reconstruction. By combining the navigation data

and feature-based image registration in the graph optimization framework, our

proposed approach inherits the drift-less nature from GPS while still maintains

local accuracy of feature-based image registration. In the third part, we develop

a robotic system for non-destructive rehabilitation (NDR) targeting the early de-

lamination on bridges such as internal cracking. The NDR system is composed of

an omni-directional mobile base, a 5 degree of freedom manipulator and a custom-

made end-e�ector that performs the rehabilitation procedures including drilling

and �lling. Motion planning algorithm is developed for the mobile manipulator

to perform GPS guided rehabilitation procedures.In the fourth part, we present
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a dynamic model of pure percussive drilling for autonomous robotic rehabilita-

tion for concrete bridge decks. We derive the minimum static force to enable

e�ective percussive drilling which provide us guidance for the mobile manipulator

drilling in the previous part. A dry friction-based pure percussive drilling model

is then presented to describe the drilling process characteristics and to capture

the in�uence of drilling conditions and parameters on the penetration rate. In

the �fth part, we present the strategies to simultaneously deploy the inspection

and rehabilitation robot on the bridge decks. We adopt the Gaussian process ap-

proach to generate the global and local delamination map online. The inspection

robot dynamically determine the step size based on the local prediction uncer-

tainty that accelerate the data collection. Moreover, we design a target planning

algorithm based on the global delamination map for the rehabilitation robot to

choose the next target to repair. The algorithms proposed are validated through

a multi-robot simulation system that could take real bridge inspection data.
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Chapter 1

Introduction

1.1 Motivation

One of the biggest challenges the United States faces today is infrastructure like-

bridges inspection and maintenance. The threat to safety of aging bridges has

been recognized as a growing problem of national concern to the general public.

There are currently more than 600,000 bridges in the U.S. [5] with average age of

45 years and four in 10 are 50 years or older. The condition of those bridges are

critical for the safety of the traveling public and economic vitality of the coun-

try. According to the National Bridge Inventory there are about 150,000 bridges

through the U.S. that are structurally de�cient or functionally obsolete due to

various mechanical and weather conditions, inadequate maintenance, and de�-

ciencies in inspection and evaluation [37], and this number is growing. Numerous

bridges collapsed recently have raised a strong call for e�cient bridge inspection

and evaluation [75]. The cost of maintenance and rehabilitation of the deteriorat-

ing bridges is immense. The cost of repairing and replacing deteriorating highway

bridges in U.S. was estimated to be $123 billions in 2017 [5].

Concrete bridge deck deteriorate faster than other bridge components due to

their direct exposure to environment and tra�c loads. Between 50 and 85% of

bridge maintenance funds are spent to repair or replace portions of the nation's
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(a) (b)

Figure 1.1: Bridge collapse accident: (a) At I-35W Mississippi River bridge,
Minnesota, 2007; (b) At I-5 Skagit River Bridge, Washington, 2013[75]

2.8 billion square feet of bridge decks [124]. Conservative estimate is that more

than $5 billion is spent annually to maintain, repair and replace bridge decks.

Therefore, condition monitoring and timely implementation of maintenance and

rehabilitation procedures are needed to reduce future costs associated with bridge

management.

More economical management of bridges can be achieved through early prob-

lem detection and mitigation. The most common cause of deterioration is corro-

sion that will typically lead to concrete delamination and spalling [51]. As shown

in Figure 1.2. the deterioration start from rebar corrosion which could due to rea-

sons such as moisture penetration. The oxide from the corrosion lead to expansion

and start causing small crack in the neighbor region around the rebar area. The

repeated tra�c load further expand the cracks and form more severe delamina-

tions. Only at the late stage the delamination develop into visually observable

defects such as spalling. The ability to detect and �x deterioration before the

late stage is crucial in �ghting the hidden risk and avoiding hectic cost in bridge

repair in the late stage.

Non-Destructive Evaluation (NDE) and Non-Destructive Rehabilitation (NDR)

has emerged as a promising solution for the early bridge deck defect detection and
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Figure 1.2: Typical concrete bridge deck deterioration and damage: (left) Rebar
corrosion; (middle) Delamination; (right) Deck spalling.[51]

mitigation. NDE approach has been proven in the last decade as it could pro-

vide much more accurate assessment for the bridge deck condition [52]. However,

most of NDE and NDR techniques are still used as manual through a group of

engineers in a closed section of road. Those practices can't meet the increasing

demand for frequent bridge deck inspection and rehabilitation and therefore limit

the deployment of NDE techniques. Despite the manual

The goal of this dissertation is to address these challenges with �ve intertwined

research directions. More speci�cally, this dissertation focuses on: (i) the develop-

ment of autonomous bridge deck inspection robot; (ii) automated data processing

of large volume of inspection data; (iii) the development of autonomous bridge

deck rehabilitation robot; (iv) understanding percussive drilling process for ef-

fective rehabilitation (v) the development of strategies to enable simultaneously

deployment of the bridge deck inspection and rehabilitation robots.

1.2 Background

The autonomous bridge deck inspection and rehabilitation is a novel �eld that

brings the innovative solution from di�erent �elds. Each of these �ve research

topics will be discussed and covered individually in the following chapters. Here

we introduce the background of the research and the related work of each topic.
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1.2.1 Autonomous bridge deck inspection

As the most weathered part, the bridge deck deteriorate over time as a result of

excessive loading, environmental exposure, material aging and inadequate main-

tenance. Therefore, bridge deck inspection is conducted to identify the bridge

deterioration condition and further facilitate the appropriate maintenance or re-

habilitation procedures. The current practice for concrete bridge deck evaluation

in the large part still relies on human visual inspection or use simple evaluation

tools. Figure 1.3 shows common bridge evaluation practice such as visual in-

spection, chain dragging and hammer sounding. As pointed out in [48], there

are justi�ed reservation regarding the accuracy and objectivity of those prac-

tices. Non-Destructive Evaluation (NDE) has emerged as a promising approach

in the last decade as it could provide much more accurate assessment for the

bridge deck condition[52]. There are a number of the NDE technologies that

have been currently used for bridge health evaluation, such as ground penetrat-

ing radar (GPR)[28], impact echo[54], electrical resistivity[6] and high-de�nition

camera [116]. Each NDE techniques has its strength and limitation and is best

suited for characterization particular defect type. During evaluation, each NDE

technique is conducted manually through a group of engineers in a closed section

of road as showed in Figure 1.4. The manual inspection procedure is not only

time-consuming causing extended slowdown for the tra�c �ow, but also pose po-

tential safety risk for the human inspectors. Those drawbacks further limited the

extensive deployment of NDE method for bridge inspection.

To overcome the limitation of manual NDE, automated bridge deck inspec-

tion become a promising approach in civil infrastructure application. Automated

bridge inspection would be e�cient and reliable in the data collection and safe for

the inspector. There are several attempts to bring the automation and robotics

into the bridge deck inspection. German Federal Institute for Material Research
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Figure 1.3: State of practice in bridge deck inspection: (left) Visual inspection;
(middle) Chain dragging; (right) Hammer sounding

Figure 1.4: Manual NDE bridge deck data collection through a group of engineers
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and Testing (BAM) have attempt to automate data collection through developing

NDT-Stepper [128]. The NDT-Stepper is an automated cart that equipped with

single pneumatically actuated impact echo and ultrasonic probes. It moves in

constant increments at the speed of 2�3 m/min and collect the data at each stop.

BAM has later developed a robotic system BETOSCAN based on the widely

used Mobile Robot Pioneer platform for inspection of reinforced concrete slabs

[129, 117]. BETOSCAN implements multiple NDE techniques including ultra-

sonic, potential mapping, microwaves, cover meter and thermometers, therefore

could scan the slabs for presence of delamination, corrosion activity and moisture.

[84] used the same Pioneer platform to develop a system using vision that can au-

tomatically detect and map cracks in concrete slabs. [81] develops a mobile robot

by integrating single channel ground penetrating radar on the Seekur Jr platform

which is slightly larger than the Pioneer platform. In view of all the previous ef-

fort to integrate only limited NDE techniques, we develop the RABIT robot that

bringing complementary NDE sensor arrays to a heavy payload robotic system.

The RABIT robot also fuses the multiple navigation sensor to provide a robust

pose estimation which enable the fully autonomous inspection. That enables us

to provide a comprehensive view of the bridge deck e�ciently and e�ectively.

1.2.2 Automatic data processing for collected image

To provide a comprehensive view of health condition of the bridge, the RABIT

robot collects multiple non-destructive evaluation (NDE) sensors including impact

echo, ground penetrating radar, resistivity probe and high de�nition camera. One

of challenges faced in building the bridge deck health system is to process large

volume of inspection data. Among all the techniques, a detailed panorama image

of the bridge provides the cornerstones for the civil engineers to assess the bridge

condition. A well formed panorama image can help researchers and engineers
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to identify the area with deterioration and cross-validate with other NDE sensor

measurement.

Cameras are widely used in bridge deck or road scanning [18]. The scan is

done using either line scan camera [91] or area camera [99]. Line scan cameras

are known for its short exposure time and fast data acquisition rate, thus often

integrated onto specialized vehicles to scan the road surface [91]. The line scan

cameras are often triggered by encoder pulses and require synchronization between

the the camera and registration data. One drawback for line scan cameras is

that it is di�cult to attain perfect match due to no overlap between line scans.

In contrast with line cameras, area cameras, which are widely available, take

discrete snapshot of the ground plane. The images taken sequentially usually

have overlapped area. An image registration algorithm is later performed to

assemble multiple images into a panorama image. This process is referred as

image stitching, or in the planar case image mosaicing.

Image mosaicing could be categorized as a special case of scene reconstruction

where images are related by planar homography only. In [44], an in-depth re-

view is provided for the existing image mosaicing algorithms. Mosaicing involves

two major step in processing: registration and blending. Registration refers to

the process of align multiple images to the reference coordinate based on the

calculated geometric transformation. Though attempts have been made to over-

come the registration errors by utilizing blending, the signi�cance of accurate

registration in image mosaicing still remains unquestionable [44]. There are two

major ways for frame to frame image registration: area-based registration and

feature-based registration [123]. Feature-based method, such as [12], relies on the

extracted salient feature from the images to compute the geometric transforma-

tion between images. It is considered more robust than the area-based method in

case of illumination variation and doesn't have the convergence range problem.
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But in real application scene, it is necessary to choose between di�erent blob-like

features, e.g. SURF [9] and corner-like features, e.g. ORB [118] to achieve good

result.

Navigation information could also be helpful for the registration since it con-

tains the relative transformation information between two frames. But navigation

information alone is not accurate enough for image stitching in most case. It is

sometimes used jointly with image registration, such as in aerial imaging [131] or

seabed imaging [36]. In [131], position is only used heuristically to determine the

potential overlapped image. In [36], navigation information is used as the initial

guess for the optimization to align the images.

Another closely related �eld is visual SLAM which has received signi�cant

advancement in the past decades. In [101], a SLAM system using ORB feature

was proposed and represents the most reliable SLAM system up to date. A graph

optimization framework g2o [74] was used to carry the local and global bundle

adjustment. SLAM usually rely on video input which assumes relative small

frame to frame movement.

In this dissertation, we propose an image mosaicing system that speci�cally

tailored for creating panorama image from the collected bridge deck images. By

incorporating the navigation data, our proposed approach inherits the drift-less

nature from GPS while still maintains local accuracy of feature-based image reg-

istration.

1.2.3 Autonomous bridge deck rehabilitation

The current practice of repairs of concrete bridge decks often happens in the late

stages of delamination. The partial- or full-depth repairs involve labor intensive

and expensive process including removal of damaged concrete and other deterio-

rating materials from reinforcing steel as shown in Figure 1.5a and placement of
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(a) (b)

Figure 1.5: State of practice in bridge deck rehabilitation: (a) Removal of dam-
aged concrete; (b) Placement of new repair material

the repair material as shown in Figure 1.5b. We introduce RABIT, the bridge

inspection robot, that could detect early deterioration and this should comple-

ment with early mitigation approach for the maximum bene�t. It is estimated

that early intervention could lead to a longer bridge deck life and hence increase

the current average of 20-25 years to about 50 years of deck life [34]. Therefore,

we develop the non-destructive rehabilitation (NDR) system is aiming at deliv-

ering a non-destructive, rapid, cost e�ective rehabilitation at an early stage of

deterioration.

Delaminations are basically horizontal cracks in the concrete that occur mainly

due to rusting of steel rebars. Since they normally do not have any surface

openings before the late stage such as spalling, they are very di�cult to detect

and repair in the early stage. [71] [70] demonstrated that certain mixes of alkali

alumina-silicate matrices reinforced with nano/micro �bers could give a material

with good mechanical properties and had desired �ow for the hair-line cracks as

thin as 0.03 inches. But their method is manual prone and has special requirement

for injection �xture which limit the large scale deployment. We're aiming for an

automated and minimally invasive procedure that could replace the current state

of practice.

Robotics and automation technologies have increasingly gained attention for
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bridge inspection, maintenance, and rehabilitation. Mobile robot- or vehicle-

based inspection and maintenance systems are developed for vision based crack

detection and maintenance of highways and tunnels[126][92][136]. Robotic reha-

bilitation systems that remove defective concrete have also been reported in [17].

A robotic system was developed for removing the paint of bridge bottom. In [90],

a similar system was used for imaging the bottom surface of bridge. Those sys-

tems usually are the integration of industrial robot with the peeper crane which

still require human intervention. Most of these work mainly focus on the use of

robots for inspection or simple maintenance such as painting etc., rather than the

complex robotic hammer drilling for repairing concrete defects.

1.2.4 Percussive drilling model

The NDR system use a minimal invasive procedure to rehabilitate the defect area.

One critical step for the rehabilitation procedure is to drill holes to reach the defect

by using a modi�ed rotary hammer on a manipulator. The rotary hammer uses

impact, rather than thrust forces or torques, as the main source to crush the bristle

concrete materials. For high-quality robotic drilling on concrete, modeling of the

drilling process is a critical step to design the robotic control systems. However,

understanding the mechanisms in concrete drilling is a challenging task due to the

complicated energy transfer and complex bit-concrete interactions during impact.

Although studies of metal drilling process, including the robotic manipula-

tor drilling, are reported extensively in the past several decade[106], there is few

work that discusses the robotic drilling model and control for concrete or rocks.

On the other hand, understanding and modeling of percussive drilling in rocks

and concrete is not a new subject and the early studies are reported about four

decades ago. In [62, 65, 27, 39], empirical percussive drilling models are proposed
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to capture the drill bit impact interactions with rocks. A hysteresis relation-

ship between the drill bit penetration and applied force is commonly assumed

known in these models. Computational approach, such as �nite element method

or other impact energy-based simulation, are also used to study the percussive

drilling in [109, 107, 22, 21]. Several analytical models are proposed to capture the

impact energy as wave transmission between the drill bit and the rock [95, 94].

In these models, both the penetration-force relationship and the impact wave

form are needed to completely solve the percussive drilling problem. In [108, 29],

computational approach is used to calculate the energy and impact interactions

between various components in hammer drills used in practice.

For viewpoint of control system design of hammer drill bit-concrete interac-

tions, all of the above mentioned percussive drilling models are not desirable.

The empirical model cannot give the physical interpretation and connection with

drilling process parameters in practice, the computational models are too compli-

cated for control design purposes, while the impact wave propagation models are

too simpli�ed for capturing the actual hammer drill systems. Instead, we pro-

pose a dry friction-based percussive drilling model that is inspired and extended

from the model in [73] and the work in [109]. The proposed model is compact

in mathematical representation and therefore, is desirable for use of designing

control systems for drill bit-concrete interactions. Moreover, the model captures

the penetration-force relationship through the dry friction characteristics and can

readily be used to interpret the rock crush/chipping phenomena [109].
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1.2.5 Simultaneous bridge deck inspection and rehabilita-

tion

Bridge deck inspection should be accompanied by bridge deck rehabilitation to

increase the life span of the bridge. Having bridge deck problems exposed and

�xed at the same time could further reduce the interruption of tra�c and labor

cost. However, simultaneous deployment of the bridge deck inspection and re-

habilitation robot is not trivial in three aspect. First, the rehabilitation requires

a high precision delamination map that could be generated online while the in-

spection is still in process. Second, high precision usually requires the inspection

robot to stop more frequently which largely increase the inspection time. Third,

there are always resources con�ict problem when deploy multi-robot system[132].

We design our strategies to tackle the delamination mapping and planning

problem around the Gaussian process regression[130]. Gaussian Processes have

been long used to model temperatures and other spatial phenomena[26]. It be-

comes a popular approach in the robotics society as it provide posterior estima-

tion with uncertainty that facilitate the stochastic motion planning and control.

[57][58] use Gaussian process to model the uncertainty of the ship hull and plan

the optimal path for the underwater inspection vehicle. [96] present an informa-

tive planning algorithm with Gaussian process to enable an autonomous marine

vehicle to perform persistent ocean monitoring. [119] propose an algorithm for

exploration with Gaussian process in unknown environments.

We want our inspection robot to stop less frequently without sacri�cing the

precision of delamination map. This is closely related to the problem of adaptive

sampling [58] which the goal is to choose observation locations that maximize

the information gain and minimizing prediction uncertainty. Early work such

as tackling the next-best-view problem [25] focus on the geometry approach for
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searching for the informative views. More recent approach has been adopt the

probabilistic modeling, such as information gain [138] and Gaussian process[96].

The coordination between the inspection and rehabilitation is related to �eld

of multi-robot systems. Our system could be categorized as heterogeneous and

cooperative multi-robot system as pointed out in [132]. Similar system such as

[14][121] use ground and aerial robot together to search for a target. Despite

the di�erence, the central problem lies in the multi-robot system is the resource

con�ict[132].We implement an framework similar to lead-follower scheme to avoid

resource con�ict such as collision between robots.

1.3 Dissertation outline and contribution

There are seven chapters in this dissertation. Chapter 1 presents the introduction

and background. In Chapter 2, we presents the development of the bridge inspec-

tion robot. In Chapter 3, we presents the an image mosaicing system specially

tailored for images collected from the bridge inspection robot. In chapter 5, we

present the development of the bridge rehabilitation robot that focus on early

delamination mitigation. We present the strategies that enable simultaneous de-

ployment of the bridge inspection robot and rehabilitation robot in Chapter 6.

Conclusion of the dissertation and discussion of the future work are presented in

Chapter 7. The content of each chapter is described as follows.

In chapter 2, we present the design and development of the autonomous bridge

inspection robot. We �rst introduce the non-destructive evaluation (NDE) tech-

nologies implemented including GPR, impact echo, and electrical resistivity. We

then present the hardware and software integration of robotic system and NDE

technologies. After introducing the whole system, we focus on the robust pose

estimation system that enable the autonomous inspection. The pose estimation
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is done through fuse multiple navigation sensors information and provide a ro-

bust estimation when the noise present. We demonstrate the performance of the

inspection robot through extensive �eld deployment.

In chapter 3, we present a new image mosaicing system for the bridge deck

surface reconstruction. By fusing the navigation data with feature-based image

registration in the graph optimization framework, our proposed approach inherits

the drift-less nature from GPS while still maintaining local accuracy of feature-

based image registration. We evaluate the accuracy through quantitative test

on real bridges and show our system is robust to interference in the outdoor

environment such as illumination variation.

In chapter 4, we present the design and development of autonomous bridge re-

habilitation robot that focus on provide minimal invasive rehabilitation for early

bridge deck delamination. We �rst present the hardware design of the robot

including the omni-directional mobile robot platform, a 5 degree of freedom ma-

nipulator and a custom made end-e�ector for drilling and �lling procedures. We

then discuss planning algorithm for the mobile manipulator and drilling and �ll-

ing procedures. The robotic system performance was validated through extensive

experimental testing and �eld deployment.

In chapter 5, we present a mathematical model of a pure percussive drilling

process that is critical procedure for the rehabilitation process. A modi�ed dry

friction-based drilling model was presented to capture three major phenomenon

in the drilling process: the elastic deformations, crushing and chipping of the

penetrated material. We analyzed the drilling model and presented a set of ana-

lytical formulation for the critical drill bit kinetic energy and the penetration rate

per impact. The model parameters were physically interpreted with the experi-

mental testing and the values of these parameters were estimated experimentally.

Finally, we validated the model prediction with experiments through extensive
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drilling tests.

In chapter 6, we present the approach to simultaneously deploy the inspection

and rehabilitation on the bridge decks. We solve the online delamination map

generation by Gaussian process regression. We take a multi-threading approach

to create two training sessions: a local Gaussian process training with only local

data to ful�ll real-time requirement and a global Gaussian process training with

all the data available. In order to reduce the stop frequency of the inspection

robot, we implement an adaptive step size approach to dynamically determine the

step size based on the prediction uncertainty in the front path of the inspection

robot. Moreover, we design a target planning algorithm based on the global

delamination map for the rehabilitation robot to choose the next target to repair.

The algorithms proposed are validated through a custom simulation system that

could take real bridge inspection data.

The main contribution of the dissertation are described in details as follows.

1. A novel autonomous bridge inspection robot is developed to provide a com-

prehensive view of bridge health condition e�ciently and e�ectively. The

developed platform improved the data collection speed dramatically com-

pared to conventional NDE deployment which will further enable the fre-

quent bridge inspection in a large scale. During the development of the

robot, we address two major challenges which is a robust navigation system

and a robust NDE data collection.

2. A new automatic image mosaicing system is developed for bridge deck sur-

face reconstruction. This system is specially tailored for the bridge inspec-

tion task to enable the automatic processing of large volume image data.

This is realized by combining the image and navigation information in the

graph optimization frameworks.
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3. A novel autonomous bridge deck rehabilitation robot is developed to pro-

vide minimal invasive repair for the early defect such as delamination. The

system features a mobile manipulator and a custom-made end-e�ector could

function as drilling and �lling modules. To our best knowledge, this repre-

sent the �rst autonomous robotic system targeting at early defect mitiga-

tion.

4. A new percussive drilling model is proposed to describe the complicated en-

ergy transfer and complex bit-concrete interactions during concrete drilling.

This model is mathematically compact therefore it's suitable for designing

and optimizing the control of drilling process in concrete or rocks. The

model also provides a means to further design, optimize and enhance the

drilling performance for applications such as robotic bridge deck rehabilita-

tion.

5. A set of new strategies is presented to solve the problem of simultaneously

deployment of inspection and rehabilitation robot. We propose a separate

local and global Gaussian process training scheme to overcome the training

speed issue and achieve online delamination map generation. A new adap-

tive step determination based on local uncertainty is proposed to accelerate

the inspection progress. A new target planning algorithm based on global

delamination map is proposed for the rehabilitation robot to determine the

next target while avoiding resource con�ict with the inspection robot. We

also create a simulator that could take in real bridge data to validate our

algorithms.
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Chapter 2

Bridge Deck Inspection Robot

2.1 Introduction

The condition of bridges are essential to ensure the transportation safety. As the

most weathered part, the bridge deck deteriorate over time as a result of excessive

loading, environmental exposure, material aging and inadequate maintenance.

Therefore, bridge deck inspection is conducted to identify the bridge deteriora-

tion condition and further facilitate the appropriate maintenance or rehabilitation

procedures. The current practice for concrete bridge deck evaluation in the large

part still relies on human visual inspection or use simple evaluation tools. There

are justi�ed reservation regarding the accuracy and objectivity of those prac-

tices as pointed in [48]. Non-Destructive Evaluation (NDE) has emerged as a

promising approach in the last decade as it could provide much more accurate

assessment for the bridge deck condition. Besides the comprehensive overview,

the NDE techniques also enable the accurate monitoring of deterioration progres-

sion [52]. There are several NDE technologies that have been currently used for

bridge deck health evaluation, such as ground penetrating radar, impact echo,

electrical resistivity and high-de�nition camera. Each NDE techniques has its

strength and limitation and is best suited for characterization particular defect

type. During evaluation, each NDE technique is conducted manually through a

group of engineers in a closed section of road as showed in �g 2.1. Those practices

can't not meet the increasing demand for cost-e�ective and safe evaluation as in
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the following aspect. First, the speed of manual NDE is slow leading to extended

slowdown for the tra�c �ow. Second, due to speed, in most cases only one NDE

technique is deployed which subject to the limitation of that technique and could

not provide comprehensive evaluation of the bridge. Third, signi�cant labor work

are required to perform the manual NDE test resulting in high inspection cost.

Fourth, the human inspector are exposed to the vehicles runs in the adjacent

lanes which poses potential safety risk. Fifth, the manual NDE techniques are

still prone to human error and subject to inspector experience.

To overcome the limitation of manual NDE, automated bridge deck inspec-

tion become a promising approach in civil infrastructure application. Automated

bridge inspection would be e�cient and reliable in data collection and safe for

the inspector. There are several attempts to bring the automation and robotics

into the bridge deck inspection. German Federal Institute for Material Research

and Testing (BAM) have attempt to automate data collection through developing

NDT-Stepper [128]. The NDT-Stepper is an automated cart that equipped with

single pneumatically actuated impact echo and ultrasonic probes. It moves in

constant increments at the speed of 2�3 m/min and collect the data at each stop.

BAM later developed a robotic system BETOSCAN based on the widely used

Pioneer platform from Adept MobileRobots for inspection of reinforced concrete

slabs [129, 117]. BETOSCAN implemented multiple NDE techniques including

ultrasonic, microwaves, cover meter and thermometers, therefore could scan the

slabs for presence of delamination, corrosion activity and moisture. [84] used the

same Pioneer platform to develop a system using vision that can automatically

detect and map cracks in concrete slabs.

Inspired by previous e�ort, the Robotics Assisted Bridge Inspection Tool (RA-

BIT) is developed for fully autonomous bridge deck inspection by bringing mul-

tiple NDE sensor arrays to a much bigger robotic system [50, 75, 79, 77, 76, 47].
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There are two major challenges in the RABIT development. One is to seamless

integrate NDE sensors with the mobile robot base for automated data collec-

tion. This involves deploying the contact or contact-less NDE sensors through

the electro-pneumatic system. This also involves design e�ective and coordinated

robot movement to enable reliable data collection. The other major challenge

comes from building an accurate and robust system for localization and navi-

gation. Since the robot need to navigate on the narrow bridge deck, it need a

localization system up to centimeter grade. Although high-accuracy GPS could

reach the requirement with the real-time kinematic (RTK) correction, the GPS

signals are not always reliable and robust especially on bridges with supporting

structure such as steel cable and truss elements.

The rest of the chapter is organized as follows. In the next section, we give an

overview of the robotic system and its software hardware integration. In Section

2.3, we introduce the NDE sensors integrated with the robot. In Section 2.4, we

introduce the robot hardware and software design for the robotic integration of

the NDE sensors. In Section 2.5, we present the robust localization algorithm

that fused multiple navigation sensors and the planning and control. The system

and the proposed localization algorithm is validated through outdoor experiment

in Section 2.6.

2.2 Overview

The RABIT robot could be divided into the NDE system and robotic system.

The system overview diagram is shown in Figure 2.2. The NDE system is respon-

sible for triggering the NDE sensor data collection while doing the online post-

processing. The robotic system is responsible for the navigation, motion planning

and various actuation of the pneumatic and electrical parts of the robot. Those
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Figure 2.1: Manual practice of NDE through a group of engineers

two systems need to work seamlessly to ensure successful data collection.

The robotic system composed of one industrial standard embedded computer

running Linux, the omni-directional Seekur mobile base, the navigation sensor

suite including two Novatel RTK GPS and wheel odometry, and the electro-

pneumatic control system that placing the NDE sensors to the right data col-

lection position. The robotic system is responsible for the navigation, motion

planning, mobile base movement and actuation of the electro-pneumatic control

system for placing NDE sensors.

The NDE system composed of two industrial standard embedded computers

and NDE sensors including impact echo, ground penetrating radar, resipot and

high de�nition surface imaging camera. The NDE sensor arrangement is shown

in Figure 2.3The two computers are running NDE data collection software in

Windows system that perform interfacing with the NDE sensors, post-processing

and visualization. In addition to NDE system, the van transporting the RABIT

also doubles as the monitor station as shown in 2.4. The human inspector is able

to inspect the data collection progress and quality.

The successful data collection requires the close coordination between the

NDE system and robotic system. Due to software driver availability, the NDE



21

Figure 2.2: An overview of the bridge deck inspection robot RABIT

system software is implemented in windows, while the robotic system software

is wrote in Linux system. The intra-system communication is enabled through

Ethernet for those two di�erent operating system .

In each data collection attempt, the robotic system �rst stop the robot and

actuate the electro-pneumatic system to place the sensors in contact with the

ground. The robotic system computer then send command through TCP/IP

protocol to the NDE system computer indicating the NDE sensors are ready for

data collection. The command also contains the current pose of the the robot.

The NDE system computers then send command through various NDE sensor

interfaces and collect the response data. Once all the data collection is completed,

a con�rmation message is sent to the robotic system computer. At the same time,

the NDE computers post-process the data and send to the transportation van for

the human inspector to check the data quality and progress.
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Figure 2.3: RABIT robot NDE sensors and Navigation sensors. Yellow tiles
indicate the NDE sensors and blue tiles indicate robot navigation sensors. Top-
left: the front view of the RABIT; Top-right: the back view of RABIT; Bottom-
left: a close-up of the impact echo array in the data collection position; Bottom-
right: the folding position for transportation convenience.

Figure 2.4: Transportation van and command center. Left: unloading the robot
from the van for data collection; Right: human monitor center inside the van
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2.3 NDE sensors

2.3.1 Ground penetrating radar (GPR)

Ground penetrating radar is a geophysical method that uses electromagnetic

waves to inspect the subsurface condition. The GPR based condition assessment

of concrete bridge decks has been described in many publications [98, 7, 113, 53,

127]. When the electromagnetic wave emitted from the source encounter metal-

lic objects such as rebars, the re�ection waves could be detected by a receiving

antenna. Based on the attenuation of electromagnetic waves, GPR can provide a

qualitative condition assessment of bridge decks on the top rebar level. The GPR

is also used as a quality assurance tool for new construction or rehabilitation.

The RABIT robot equipped with two Hi-Bright ground-coupled GPR arrays

manufactured by Ingegneria Dei Sistemi (IDS), Italy. The two Hi-Bright GPR

arrays have 32 bow-tie type antenna with 2.0 GHz center frequency. Each GPR

array box contains eight pairs of dual-polarization antennas in the orthogonal

orientation, as illustrated in 2.5. Dual polarization antennas can facilitate GPR

data analysis in the situation that the top rebar is not in the preferred orientation.

There is 10 cm spacing between antennas which six times higher spatial resolution

than 0.6 m spacing that required by FHWA Program protocols [47]. A minor loss

of spatial resolution with the current antenna arrangement is the spacing between

the end antennas of the two arrays, which is about 25 cm.

During scanning, the two GPR arrays mounted on the rear end of the RABIT

are pressed by pneumatic mechanism to be in close contact with the ground.

When the RABIT moves forward, the encoder attach to the mobile base wheel

generate pulses that trigger the data collection of the ground penetrating radar.

2.6 shows the continuous imaging of one channel. The parabola shape in the image

are re�ection of the rebar which is used to access the rebar corrosion condition
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Figure 2.5: IDS ground penetrating radar array and layout[47]

[28].

Figure 2.6: Visualization of ground penetrating radar that shows the steel rebar
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2.3.2 Impact echo and ultrasonic surface wave

2.3.2.1 Impact echo

The impact echo method is used to detect discontinuities in concrete and measure

the concrete thickness. Delamination is the horizontal cracking that are common

defect in bridge deck. As an elastic-wave based method, the impact echo are used

to detect and characterize delamination in the concrete bridge decks in terms of

depth, spread, and severity [86, 120, 16, 45, 49]. It can be also used to detect

debonding of overlays on bridge decks[77].

The impact echo method measures the transient vibration response of a me-

chanical impact on a plate-like structure[78]. The mechanical impact generates

longitudinal and transverse body waves, and surface-guided waves such as Lamb

and Rayleigh surface waves propagated in the plate. The transient time response

of the solid structure is commonly measured with a contact sensor such as ac-

celerometer that is close to the impact source. As shown in Figure 2.10, the

frequency response of the measured transient time-signal is obtained through

Fast Fourier Transform (FFT). The peak frequencies on the amplitude spectrum

corresponds to particular resonance modes as shown in Figure 2.8. To interpret

the severity of the delamination in a concrete deck with the IE method, a test

point is described as solid if the dominant frequency corresponds to the thickness

stretch modes (Lamb waves) family [45]. In that case, the frequency of the fun-

damental thickness stretch mode is the zero-group-velocity frequency of the �rst

symmetric (S1) Lamb mode, or also called the IE frequency (fIE). The frequency

can be related to the thickness of a plate H for a known P-wave velocity Cp of

concrete by

H =
β1Cp
fIE
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Figure 2.7: Physical interpretation of how impact echo method identify various
delamination condition[78]

where β is a correction factor that depends on Poisson's ratio of concrete, rang-

ing from 0.945 to 0.957 for the normal range of concrete. A delaminated point

in the deck will theoretically demonstrate a shift in the thickness stretch mode

toward higher values because the wave re�ections occur at shallower depths. De-

pending on the extent and continuity of the delamination, the partitioning of the

wave energy re�ected from the bottom of the deck and the delamination may

vary. Progressed delamination is characterized by a single peak at a frequency

corresponding to the depth of the delamination. In case of wide or shallow delam-

inations, the dominant response of the deck to an impact is characterized by a low

frequency response of �exural mode oscillations of the upper delaminated portion

of the deck. The typical way of interpreting the severity of the delamination in a

concrete deck is shown in 2.7.

2.3.2.2 Ultrasonic surface waves (USW)

The USW test is utilized to assess concrete quality and, thus, possible concrete

degradation, by measuring concrete modulus [102]. Instances of signi�cant drops
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in the measured modulus will often be an indication of presence of delamination or

other major defects [137]. Low modulus is often related to concrete degradation or

delamination. However, lower modulus values are also observed in new decks as a

result of material variability and concrete placement procedures. Therefore, only

periodical assessment of concrete modulus can be used to detect a deterioration

process [78].

The USW technique is the Spectral Analysis of Surface Waves (SASW) to

evaluate material properties (elastic modulus) in the near surface area. As shown

in 2.8, the SASW uses the phenomenon of surface wave dispersion (i.e., velocity

of propagation as a function of frequency and wave length, in layered systems to

obtain the information about layer thickness and elastic modulus). A SASW test

consists of recording the response of the deck, at two receiver locations, to an

impact on the surface of the deck. The surface wave velocity can be obtained by

measuring the phase di�erence between two di�erent sensors as

C = 2πf
d

∆φ

where f is frequency, d is distance between two sensors. The USW test is identical

to the SASW, except that the frequency range of interest is limited to a narrow

high-frequency range in which the surface wave penetration depth does not exceed

the thickness of the tested object. Signi�cant variation in the phase velocity will

be an indication of the presence of a delamination or other anomaly. In cases of

relatively homogeneous materials, the velocity of the surface waves does not vary

signi�cantly with frequency. The surface wave velocity can be precisely related

to the material modulus, or concrete modulus in the case of bridge decks, using

either the measured or assumed mass density, or Poisson's ratio of the material. In

the case of a sound and homogeneous deck, the velocity of the surface waves will

show little variability. An average velocity is used to correlate it to the concrete

modulus. Signi�cant variation in the phase velocity will be an indication of the
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Figure 2.8: Physical interpretation of how ultrasonic surface wave measure con-
crete modulus[78]

presence of a delamination or other anomaly.

2.3.2.3 Implementation

The developed robotic system integrates more than a dozen of the impact echo

sensors. The acoustic arrays are two boxes of size 0.9m×0.2m, each containing

seven accelerometers and four impact sources. The arrangement of the sources

and receivers is shown in 2.9. The sources are linear solenoid type impactors,

while the receivers are accelerometers. The acoustic arrays were designed and

manufactured by Geomedia Research and Development, Inc. As illustrated in

2.9, each acoustic array enables the conduct of eight impact echo (IE) and up to

six ultrasonic surface waves (USW) tests. The spacing between a source and near

receiver is 7.5 cm (3 in.). The spacing between the sensors allows delamination

assessment with a resolution of 15 cm (0.5 ft) in the deck's transverse direction,

which is four times higher than the one according to the LTBP Program protocols

for data collection (0.6 m) using manual IE devices.

The RABIT stop every 2 feet to collect the acoustic data. During each stop,

the acoustic arrays are pneumatically pressed against the deck surface to achieve

uniform coupling between the sensors and deck surface. The hammering action
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Figure 2.9: Impact echo array and sensor layout. The red dot are the the source
generating the hammering action. The blue dot are sensors that measure the
re�ection wave.

is triggered from the source in consequence and the accelerator picks up the

re�ected sound wave. In 2.10, the measured transient time signal on the left

hand are transformed to frequency domain on the right hand side through fast

Fourier transform. The frequency response represent particular resonance modes.

The SASW takes the same time signals recorded at two receiver locations for a

single impact on the surface of the deck.

2.3.3 Electrical resistivity

Electrical resistivity sensor measures concrete's electrical resistivity, which is a

re�ection of the corrosive environment of the bridge deck [13, 46]. The presence

of water, chlorides, salts, or other contaminants reduces concrete's resistivity,
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Figure 2.10: Impact Echo time and frequency response. The left shows the time
history of 8 response signals that caused by 4 impact and the right shows the
corresponding amplitude spectrum. Each chart contains the 2 sensor response
with respect to the same impact

and facilitates corrosive processes in bridge decks. By measuring the electrical

resistivity, the corrosion rate of reinforcing rebars can be estimated . To ensure

good coupling between the electrodes of the resistivity probe and concrete, water

is lightly sprayed on the electrodes.

There are four ER probes of Wenner type attached to the front end of acoustic

arrays. The Resipod probes manufactured by Proceq have four electrodes with a

50 mm (2 in.) spacing between them. The spacing between the probes is about

45 cm (22 in.). As illustrated in 2.11a, electrical current is induced through two

outer electrodes and the potential of the generated electrical �eld measured using

two inner electrodes. The two are used to calculate the electrical resistivity. To

establish the electrical contact between the deck surface and probes, the probes'

electrodes are being continuously moistened using a spraying system. The spray-

ing system as shown in 2.11b sprays water on each of the electrodes using very

�ne copper tubes at the end of each data collection cycle.
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(a) (b)

Figure 2.11: (a) Physical interpretation of electrical resistivity sensor
measurement[78]; (b) The spray system used to moisture of the electrical re-
sistivity sensor.

2.3.4 Visual detection of surface cracks

Two wide-lens Cannon cameras are used to capture the bridge deck surface images

which could be used for crack detection and mapping. The two cameras are

mounted on two linear actuators on the front side of the RABIT. During data

collection the two actuators are fully extended to make the camera image free

of occlusion of RABIT parts such as impact echo arrays. During transportation,

the rod could retrieving back for easy moving and transport. The robot collects

images at every 2ft (0.61cm). Each of the cameras covers an area of a size of 1.83m

Ö 0.6m as shown in 2.12c. To enable image stitching, the images simultaneously

collected by these two cameras have about 30 percent overlap area and the images

captured in two sequential stops for the same camera have an overlap area of

20 percent. Each camera is equipped with a �ash to remove shadow at night

time and mitigate shadow at day time. Moreover, one 360 degree �eld of view

panoramic camera is used to capture the surveyed area. The panoramic camera

is mounted on retractable pneumatically actuated mast that controlled by the

robot computer.
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(a) (b) (c)

Figure 2.12: (a) Canon EOS Rebel T3; (b) Camera with panorama lens; (c) Deck
image on the bridge joint

Figure 2.13: Graphical monitor interface that visualize the data for ground pene-
trating radar, impact echo, electrical resistivity, camera image and robot location

2.3.5 GUI and monitor station

A remote graphic user interface (GUI) is developed for the inspector to monitor

the NDE data collection as shown in Figure 2.13. Through the GUI, robot opera-

tors and �eld engineers can remotely control the data collection in several modes:

manual, semi-autonomous, and fully autonomous. All of the collected NDE data

and robot navigation information the can be saved in the remote computers for

data processing and analysis.
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2.4 Robotic integration

2.4.1 Omni-directional mobile base

The robotic system with integrated NDE technologies is shown in 2.3. The Seekur

robot from Adept Mobile Robot Inc is modi�ed to use as the mobile base. The

Seekur robot has four independent actuated wheel and each wheel has two elec-

tric motors for driving or steering. Those omni-directional wheels enable the

high-agility maneuver such as parallel movement and zero radius turn which are

much needed on narrow bridge decks. Moreover, the seekur robot are rated for

payload up to 150 kg which is suitable to carry NDE sensor arrays. Besides that,

the Seekur robot is an all-weather outdoor platform that is desirable for out-

door bridge inspection applications. The Seekur features a separate lower level

controller and a higher level motion planner. The higher level motion planner sup-

ported by the user provide the 2D planar linear velocity and yaw rate as the input

to the lower level controller. The real-time lower level controller is responsible for

coordinating the steering and driving motors for the desired movement.

2.4.2 Navigation sensors

To achieve autonomous operation on bridge, a precise and robust localization

system is required for motion planning of the mobile base. Since the NDE sensors

all have �xed transformation with respect to the robot base, the registration of

NDE data also requires precise and robust localization.

We design a redundant navigation system by integrating two systems. The

�rst system is the di�erential global positioning system (DGPS) with real-time

kinematic (RTK) correction. The DGPS consists of a �xed base-station GPS

receiver and two moving GPS rovers. The base station GPS is placed on a �xed

tripod during data collection, typically on the side of the bridge within a 100 m
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distance from the robot. Two moving GPS receivers are mounted at the front

and back of the robot about 1.8 meter apart from each other. All the GPS

units are manufactured by Novatel, Inc. The GPS rovers on the robot receive

both the location signal from satellites and a correction signal from the base-

station GPS in real time through a separate radio station from Freewave FGR

series. The RTK algorithm compensates the GPS signal errors and produces

a more precise positioning. The third system is wheel odometry that enables

accurate distance measurement. The wheel odometry is calculated from four

optical wheel encoders mounted on the wheels. The information coming from the

three navigation components is fused using an extended Kalman �lter (EKF).

The presence of the wheel odometry is essential in the areas where GPS signal

occasionally dropout.

2.4.3 Software

Three industrial standard embedded computers (from Versalogic, Inc.) are in-

stalled inside the robot. These computers can operate functionally in high tem-

perature environment (up to 80 �C) for all-season �eld testing. High-speed Eth-

ernet connections are used among these computers and each computer can also be

reached individually through high-speed wireless communication by the remote

computers. The NDE data and images are also transmitted in real time to the

remote computers for visualization and data analysis purposes. The remote visu-

alization and data analysis computers are located inside a full-size cargo van that

is also used to transport the robotic system.

The software onboard could be divided into NDE system software running on

the two Windows computer and robotic system software running on one Linux

computer. The NDE system software and robotic system software communicate

over Ethernet through the TCP/IP network protocols.
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The NDE software is a multi-threading program that enable the simultane-

ously collect and monitor the data. The software is developed under Qt frame-

works using C++. For each NDE computer, it runs an instance of the program

responsible for the data collection on one side. The software consists the master

thread providing the user interface and �ve slave thread that communicating with

NDE sensors and robotic system. The �ve slaves thread are as follows:

� Robot thread: This thread is responsible for communicating to the Linux

robotic computer for coordination. It receive sensor triggering command

from the robotic computer and return with a acknowledgment signal through

TCP/IP. It also receive the pose information from the robotic computer and

the pose information is associated with collected sensor data for registration.

� Acoustic thread: This thread connects to the control board of impact echo

through USB connection. The acoustic thread receives triggering command

from the master thread and sending command to the control board for actual

data collection. When control board receives the triggering command, it

will �re the hammering in consequence and collect the response from the

accelerometer. The time history data collected are saved sent back to the

acoustic thread for further data processing. The time series data are then go

through fast Fourier transform (FFT) and send to the master GUI thread

for real-time monitoring purpose.

� Ground penetrating radar thread: This thread communicates with IDS ven-

dor software through TCP/IP protocol. The GPR thread is responsible for

start and stop command at the beginning and end of the pass and also

streaming the data from the server.

� Camera thread: This thread uses the Canon SDK to trigger the shot and
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changing the parameters such as �ash and white balance. It's also responsi-

ble for retrieving the collected image from the SD card and send back data

to the GUI thread once the image collection is successful.

� Electrical Resistivity thread: This thread communicates with the Proceq

Resipot through USB connection. The electrical resistivity are measured in

a short period of time and averaged value of the measurement is sent back

to the master thread for data logging and display.

The robotic software is running on the Linux windows computer. The software

is developed using Robotic Operating System (ROS) framework. ROS organized

the functional module as nodes. When launched, nodes are separate nodes and

could communicate with each other through messaging. There are �ve nodes as

follows:

� Robot node: This node connects to the low level controller of Seekur mobile

robot through the RS232 serial port. It reads various robot base status and

sensor information such as odometry data and bumper status etc and send

out 2D velocity command and rotation speed command to the low level

controller. The odometry data is shared with sensor fusion node for pose

estimation.

� GPS sensor node: The GPS node connects to the Novatel GPS through

RS232 serial port. The GPS receives GPS location from two GPS unit and

share the data with sensor fusion node for further processing

� Sensor fusion node: The sensor fusion node receive the GPS data and odom-

etry data from the above nodes and fuse the sensor information through Ex-

tended Kalman Filter (EKF) for accurate and robot pose estimation. The

pose output is shared with other node inside the ROS.
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� Motion planning node: The motion planning node takes in the boundary

information of the scan area and calculate the desired route for the robot

to follows. It then �nd out the immediate next pose for the robot to stop,

typically a position where NDE sensor data need to be collected. This pose

information is sent to the vehicle tracking controller to execute. Once the

vehicle is stopped at the desired position, it will send out command to relay

board node to press the acoustic array to the ground and then send out

command to NDE computers to trigger data collection.

� Vehicle tracking controller node: This node is responsible for moving the

vehicle from the current pose to the desired pose. It retrieves real-time

pose information from the sensor fusion node and desired pose information

from the motion planning node and send out planar velocity command and

rotation speed command to robot node. When the desired point is reached,

it send out con�rmation to the motion planner node.

� Relay board node: The relay board node is responsible for control of various

electric and pneumatic actuators on the robot. It controls the pneumatic

lift and press of the acoustic and GPR array, the solenoid for controlling

the water spray to moisture the tip of the electrical resistivity sensor, the

linear actuator that extend the camera and the pneumatic mast that lift

the panorama camera.
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2.5 Robot navigation

2.5.1 Robot localization

Since the robotic system needs to cover the narrow deck surface, it is required

that the localization and navigation accuracy be within a range of a few centime-

ters. Although high-accuracy global positioning system (GPS) with a real-time

kinematic (RTK) correction can reach the requirement, it is well known that

GPS signals are not always reliable and robust, especially on bridges with par-

tial coverage, steel cables, truss elements, or other support structures. Therefore,

we design a redundant pose estimation system that composed of two RTK GPS

units and four wheel encoders. Similar to the approaches in [3, 133, 2], dual RTK

GPS antennas are used on the developed mobile robot platform. With two sets

of RTK GPS antenna mounted with enough o�set, it is feasible to estimate the

orientation direction of the robot by assuming the robot as a rigid body. A naive

way to estimate the angle information would be calculate the angle of the line

connecting the front and back GPS. But this naive method is only valid when the

position variance is relative small compared to the distance between the two GPS,

however this is not always the truth. Therefore, the developed navigation system

also fuses the GPS measurements with the wheel odometry information through

an extended Kalman �lter (EKF) design [104, 134, 105]. The robotic system is

equipped with four wheel encoders that able to generate 2D odometry pose data

from the low level controller. The accuracy of the wheel odometry of the all-wheel

steering platform is much higher than those of other types of mobile robots (e.g.,

car-like or skid-steered mobile robots) due to the small wheel slippages in oper-

ation [59, 134]. As robot travels the odometry error accumulated, therefore the

odometry data would be better used as relative measurement in the short dis-

tance instead of the global positioning data. With the odometry-enhanced GPS
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navigation, the robotic system has demonstrated high-accuracy localization that

meets the inspection requirements weak GPS environments.

2.5.1.1 Sensor fusion through Extended Kalman Filter (EKF)

The problem could be formulated as 2D planar pose estimation problem with in-

put from the front and rear GPS and the wheel odometry. The GPS provide 2D

position information at 10Hz in Longitude Latitude Altitude (LLA) format. The

LLA measurement is converted to the initial frame with East-North-Up (ENU)

orientation through the Universal Transverse Mercator (UTM) conformal projec-

tion. The origin of initial frame is set on the location where the robot is initiated.

Those measurement have independent measurement error and didn't accumulate

error over time. We use the dilution of precision (DOP) from the Novatel GPS as

the estimated noise variance. On the other hand, the odometry provide 2D linear

and angular velocity estimation at 20Hz in the body frame.

We de�ne the robot initial frame coordinates I and represent the robot pose

as q(k) = [x(k), y(k), θ(k)]T ∈ se(2), where θ is the yaw angle. In order to

design the Extended Kalman Filter (EKF), we derived the system equation and

measurement equation. The state vector are set as robot pose q and the measure-

ment comes from the front and rear GPS are represented as measurement vector

z(k) =
[
zfx(k), zfy (k), zrx(k), zry(k)

]T
.The The discrete system dynamic equation

could be formulated as

q(k) = q(k − 1) + B(k)u(k) + w(k)

where the input vector

u(k) = [∆xb,∆yb,∆θb(k)]T
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represent the relative pose from odometry. The odometry data represent the cen-

ter of the robot base. To alleviate the aggregated error, we only use the relative

odometry data with respect to the last received odometry data. The odometry

data is represented in the reference world frame as zo(k) =

[
xo(k) yo(k) ψo(k)

]
∈

se(2), u(k) ∈ se(2) is corrected using relative pose

u(k) = z−1o (k) ◦ zo(k − 1)

the input matrix B(k) is the transformation matrix that project from the body

coordinate to the initial frame as

B(k) =


cos θ(k − 1) − sin θ(k − 1) 0

sin θ(k − 1) cos θ(k − 1) 0

0 0 1


The process noise w(k) is assumed to be drawn from a zero mean multivariate

normal distribution

w(k) = [wx(k), wy(k), wθ(k)]T ∼ N
(
0,∆2

d(k)Qk

)
where ∆d(k) =

√
∆x2b(k) + ∆y2b (k). Here we assume the variance is proportional

to the change of position.


x(k) = x(k − 1) + ∆xb(k) cos θ(k − 1)−∆yb(k) sin θ(k − 1) + wx(k)

y(k) = y(k − 1) + ∆xb(k) sin θ(k − 1) + ∆yb(k) cos θ(k − 1) + wy(k)

θ(k) = θ(k − 1) + ∆θb(k) + wθ(k)

∆zb(k) = [∆xb,∆yb]
T

w(k) = [wx(k), wy(k), wθ(k)]T is the process noise at time k which is assumed

to be drawn from a zero mean multivariate normal distribution N (0,∆2
d(k)Qk)

where. The variance here re�ect our estimate of the change of the data. Here
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we assume big variance on the position data and yaw angle since the data would

most likely to change while the robot is moving. We assign small variance on roll

and pitch angle because our robot is moving on a roughly �at surface so the roll

and pitch angle won't change much.

The measurement equation is used to represent the front and rear GPS mea-

surement in the initial frame z(k) = [zf , zr]
T =

[
zfx(k), zfy (k), zrx(k), zry(k)

]T
. Here

the front and rear GPS location have constant o�set l from the center of the robot

base and could be computed from robot pose q. It's represented as



zfx(k) = x(k) + l cos θ(k) + vzfx (k)

zfy (k) = y(k) + l sin θ(k) + vzfy (k)

zrx(k) = x(k)− l cos θ(k) + vzrx(k)

zry(k) = y(k)− l sin θ(k) + vzry(k)

vo(k) =
[
vzfx (k), vzfy (k), vzrx(k), vzry(k)

]T
∼ N

(
0,∆2

t (k)Qk

)
where vo(k) is the measurement noise at time k which is assumed to be drawn from

a zero mean multivariate normal distribution N
(
0,∆2

t (k)Rk

)
. We introduce∆t

to represent the time elapsed between k and k− 1 timestamp and the variance of

vo will increase with time.

Another challenge for the EKF design is that sensor data come at di�erent

frequency. In order to accommodate this need, we design the Asynchronous EKF

algorithm that shows in 1. The algorithm will only update the �lter when at

least one measurement of each sensor arrived with a timestamp later since last

updated timestamp. The update timestamp t is set as the minimum of three

latest timestamp for each sensor. We get each sensor measurement at the update

timestamp through interpolation. Then the prediction step and update step of

the EKF is executed to update the pose and uncertainty at timestamp t.
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Algorithm 1 Asynchronous Extended Kalman Filter

1: Input : time series ∆zb = (∆xb,∆yb,∆θb), zf =
(
zfx , z

f
y

)
, zr =

(
zrx, z

r
y

)
2: Output : time series q = (x, y, θ)
3: while at least one measurement of each sensor (∆zb(to), zf (tf ), zr(tr)) arrived

since told do
4: t = min(to, tf , tr)
5: ∆zb(t)← Interpolation (∆zb(to), t)
6: zf (t)← Interpolation (zf (tf ), t)
7: zr(t)← Interpolation (zr(tr), t)
8: q← Update (OdometryModel, zc(t))
9: q← Update (TwoGPSMeasurementModel, zf (t), zr(t))
10: told = t
11: end while

Figure 2.14: Bridge deck inspection robot coverage path planning[76]

2.5.2 Motion planning and control

The goal of the motion planning and control is to generate the desired trajectory

for the robot and then to control the robot to follow the trajectory precisely. We

�rst plan the coverage path for the bridge deck surface to generate a series of way

points. We then implement a simple controller for waypoint following.

2.5.2.1 Path planning

The inspected bridge is assumed to be straight and the bridge deck area is as-

sumed to be of a rectangular shape which are valid for most bridges. The robot

motion planning is indeed a coverage planning problem [80]. A boustrophedon de-

composition, also the so-called �ox plowing motion� or trapezoidal decomposition
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in robotics research, is used. 2.14 illustrates the robot motion on a bridge and a

brief description is presented here to illustrate how to generate the robot motion

trajectory. To cover the desired deck area, say the half of the bridge deck surface

shown in Fig. 2.14, three GPS points at the rectangle corners noted as points

A, B, and C are �rst obtained either through google map or in �eld measure-

ment. Using the GPS coordinates of these three corners, the zigzag-shape robot

motion trajectories are computed by the trapezoidal decomposition algorithm, as

the arrows indicate in the �gure. Waypoints are generated by interpolation with

constant interval along the road direction and each waypoint represent the data

collection location required by the NDE sensors.

2.5.2.2 Robot motion control

The path planning module generate a series of waypoint for the robot to follows.

To complete the task from current pose to the desired pose which is the next

waypoint, we implement a feed-forward and feedback framework for the trajectory

controller. The controller output a speed to the low level controller provided by

vendor for execution. A trapezoidal acceleration and deceleration algorithm is

used to generate the desired linear and angular velocity vrv. This desired velocity

is used as feed-forward signal together with the pose feedback controller which is

essentially a P controller.

2.6 Experimental results

2.6.1 Localization experiment

The robot navigation system was extensively tested on Rutgers Busch campus

before it was deployed on bridge decks. Fig. 8 illustrates one example of the
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Figure 2.15: Comparison between pure odometry integration and extended
kalman �lter (EKF) with odometry and GPS combinations without noise in GPS.
(topleft) EKF with odometry and two GPS; (topright) Pure odometry integra-
tion; (bottomleft) EKF with both front and back GPS; (bottomright) EKF with
odometry and front GPS.

comparison of the results of the navigation systems based on the EKF design dis-

cussed in Section IV-A. To show the redundancy e�ect, we evaluate performance

of navigation system on odometry only, EKF based on two GPS, EKF based on

one GPS and odometry and EKF based on two GPS and odometry. We recorded

actual data on the campus parking lot for simulation and the average of the front

and rear GPS position are used as the ground truth. First, It is clearly shown in

the top right plot in 2.15 that the odometry only method accumulate signi�cant

error along the whole trace while that the EKF-based navigation system based on

combination of GPS and odometry shows a close agreement with ground truth.

We then add simulated noise to the front GPS signal in order to evaluate the

robustness of the navigation system. We could see from 2.16 and 2.17 the EKF

based on two GPS and odometry shows the closest agreement with ground truth

while others are a�ected if the �lter include corrupted front GPS measurement.
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Figure 2.16: Comparison between extended kalman �lter (EKF) with odometry
and GPS combinations with noisy front GPS. (topleft) EKF with odometry and
two GPS; (topright) EKF with odometry and back GPS; (bottomleft) EKF with
both front and back GPS; (bottomright) EKF with odometry and front GPS.

Figure 2.17: Closeup comparison between extended kalman �lter (EKF) with
odometry and GPS combinations with noisy front GPS: (topleft) EKF with
odomety and two GPS; (topright) EKF with odometry and back GPS; (bot-
tomleft) EKF with both front and back GPS; (bottomright) EKF with odometry
and front GPS.
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Figure 2.18: Google Map Location of bridge surveyed during trip to Washington
state and Oregon state

2.6.2 Field Deployment

The RABIT has been deployed to more than 50 bridges across United States.

2.18 shows the inspected bridge during a trip to Washington State and Oregon

state where we inspected 8 bridges in two weeks.

One of the example NDE survey results for the bridge are shown in 2.19. The

top plot shows the resistivity map from the electrical resistivity sensor that indi-

cating the corrosion rate. The middle plot shows the GPR condition essentially

the re�ection wave attenuation from the top rebar level which is an indication

about corrossive environment and possible delamination. The bottom plot shows

the impact echo condition map that correspond to the delamination condition.

The numbers shown in these maps are calculated by using the NDE sensing data.

The plotting colors are based on these calculated numbers to indicate the dif-

ferent deterioration severity levels with respect to delamination, corrosion rate,

and the overall condition. Hot colors (reds and yellows) are an indicator of de-

lamination, while cold colors (greens and blues) are an indicator of likely fair or

good conditions. The bene�ts of having the condition maps from multiple com-

plementary NDE sensors are obvious. We could conclude from three plot the

bridge is in bad condition as all three condition map show large area of red. The
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Figure 2.19: (top) Electrical resistivity map; (middle) GPR condition map; (bot-
tom): Impact echo map[50]

bottom right of the electrical resistivity map and GPR map have dominant red

areas indicating highly corrosive environment and thus probable high corrosion

rate. The same area in the impact echo map shows severe delaminations. These

correlations con�rm that the primary cause of deterioration and delamination is

the highly corrosive conditions at these locations.

2.7 Conclusion

The development an autonomous robotic system were presented for bridge deck

inspection and evaluation. The main objective of the autonomous robotic NDE

system is to increase the inspection e�ciency, accuracy, and reduce the risk to

bridge inspectors. The developed autonomous inspection system was built on a

omni-directional mobile robot platform and integrated with multiple NDE tech-

nologies such as GPR, impact echo, and electrical resistivity. The robust robot
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localization system was built on the EKF-based fusion of the RTK GPS, and

wheel odometry measurements. The robot motion control was designed through

the combination of feed-forward and feedback control. The robotic system perfor-

mance was validated through extensive experimental testing and �eld deployment.
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Chapter 3

Automatic Image Mosaicing For Bridge Deck

Surface Reconstruction

3.1 Introduction

The bridge scanning robot integrates multiple non-destructive evaluation (NDE)

sensors including impact echo, ground penetrating radar, resistivity probe and

high de�nition camera. Among all the techniques, a detailed panorama image of

the bridge provides the cornerstones for the civil engineers to assess the bridge

condition. A well formed panorama image can help researchers and engineers

to identify the area with deterioration and cross-validate with other NDE sensor

measurement. There are numerous researches conducted in the past decades in the

�eld of image stitching or, in the planar scene case, image mosaicing [44], but the

main focus is on generating a visually appealing panorama. In our application,

our goal is to generate a geo-referenced panorama that serves as the reference

for other NDE data source. Therefore, unlike traditional image stitching, we

focus more on accuracy of the image registration. Also there is limited overlap

between images since the image data collection need to be coordinated with other

NDE sensors. This poses a challenge on the robustness of the image mosaicing

algorithm and aggravating the error accumulation. Another challenge comes from

the concrete bridge deck appearance which don't have many reliable features

preventing traditional method to perform reliably.

In this chapter, we present a new image mosaicing system for bridge deck
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surface reconstruction. A framework of the image mosaicing system is proposed

consisting function modules, such as frame registration, local map optimization,

global optimization, and panorama creation. SURF blob detector and binary fea-

ture descriptors BRIEF are chosen to extract the corresponding features between

neighboring images. Navigation data introduced in the feature-based image regis-

tration gives a huge performance boost in terms of feature matching accuracy and

speed. By combining the navigation data and feature-based image registration in

the graph optimization framework, our proposed approach inherits the drift-less

nature from GPS while still maintains local accuracy of feature-based image reg-

istration. We validate the accuracy of the system through physical experiment

on real bridges. This work has been published in [89] and the author contribute

to the majority of research and writing.

The rest of the chapter is organized as follows. We �rst review the related

work in the �eld of image stitching and bridge deck scanning. We then introduce

our bridge scanning robot setup in section 3.3. We start presenting our mosaicing

algorithm in the overview section 3.4, followed by registration of individual frame

in section 3.5, local map optimization in section 3.6 and global optimization in

section 3.7. Image blending process is described in section 3.8. Validation of our

method on real bridge test data is presented in section 3.9 before the conclusive

summary in section 3.10.

3.2 Related works

During the past two decades, various robots were developed for bridge inspection

and maintenance. In [92], a robotic system was developed for removing the paint

of bridge bottom. In [90], a similar system was used for imaging the bottom

surface of bridge. Those systems usually are the integration of industrial robot
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with the peeper crane which still require human intervention. In [77][76], the

Robotics Assisted Bridge Inspection Tool (RABIT) was developed for autonomous

nondestructive bridge deck inspection. Up to date, the RABIT system have been

used to scan more than �fty bridges across the states.

Cameras are widely used in bridge deck or road scanning [18]. The scan is

done using either line scan camera [91] or area camera [99]. Line scan cameras

are known for its short exposure time and fast data acquisition rate, thus often

integrated onto specialized vehicles to scan the road surface [91]. The line scan

cameras are often triggered by encoder pulses and require synchronization between

the the camera and registration data. One drawback for line scan cameras is

that it is di�cult to attain perfect match due to no overlap between line scans.

In contrast with line cameras, area cameras, which are widely available, take

discrete snapshot of the ground plane. The images taken sequentially usually

have overlapped area. An image registration algorithm is later performed to

assemble multiple images into a panorama image. This process is referred as

image stitching, or in the planar case image mosaicing.

Image mosaicing could be categorized as a special case of scene reconstruction

where images are related by planar homography only. In [44], an in-depth review

is provided for the existing image mosaicing algorithms. Mosaicing involves two

major step in processing: registration and blending. Registration refers to the

process of align multiple images to the reference coordinate based on the calcu-

lated geometric transformation. Though attempts have been made to overcome

the registration errors by utilizing blending, the signi�cance of accurate registra-

tion in image mosaicing still remains unquestionable [44]. There are two major

ways for frame to frame image registration: area-based registration and feature-

based registration [123]. Area-based method, such as [93], computes the pixel

similarity between windows of two images. It is sometimes preferred because it
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makes the optimal use of information available since it measures the contribution

of every pixel. But this also make it vulnerable to the illumination change. It

also has a limited range of convergence comparing with feature-based method.

Feature-based method, such as [12], relies on the extracted salient feature from

the images to compute the geometric transformation between images. It is con-

sidered more robust than the area-based method in case of illumination variation

and doesn't have the convergence range problem. But in real application scene,

it is necessary to choose between di�erent blob-like features, e.g. SURF [9] and

corner-like features, e.g. ORB [118] to achieve good result.

Navigation information alone is not accurate enough for image stitching in

most case. It is sometimes used jointly with image registration, such as in aerial

imaging [131] or seabed imaging [36]. In [131], position is only used heuristically

to determine the potential overlapped image. In [36], navigation information is

used as the initial guess for the optimization to align the images.

Visual SLAM has received signi�cant advancement which is closely related

to the image mosaicing �eld. In [101], a SLAM system using ORB feature was

proposed and represents the most reliable SLAM system up to date. A graph

optimization framework g2o [74] was used to carry the local and global bundle

adjustment. SLAM usually rely on video input which assumes relative small

frame to frame movement. While it's not directly applicable to our setup, our

system builds on the graph optimization framework and the concept of local map

in [101].
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(a) (b)

Figure 3.1: (a) Inspection robot camera in the extended position for scanning;
(b) Ox-plow scan trajectory

3.3 Image mosaicing for bridge scanning robot

3.3.1 Bridge scanning using camera

The bridge inspection robot is equipped with two high de�nition Nikon DSLR

camera to capture the scene with the capture area overlapped about 30 percent.

Figure 3.1a shows the camera in the inspection mode where two linear actuators

extend the camera rods to the scanning position. The scanning pattern is shown

in Figure 3.1b. The robot follows a coverage trajectory and will change heading

direction when shifting scanning lanes. The robot stops roughly every 2 feet to

capture the sensor data including taking photos, while at the same time GPS

location of robot is stored and associated with the sensor data. In practice, the

accuracy of GPS varies between 5cm to 30cm. The stop pattern results in 20

percent of overlap between sequential images. There is also about 25 percent

overlap in the images between neighboring lanes.

There are several coordinate system involved here. GPS data could be con-

verted to the Cartesian UTM coordinate with respect to the UTM zone. Since

the surveyed bridge is usually far from the UTM origin, large number in coor-

dinates will lead to poor numerical stability in the later optimization stage. For

this reason, we need to convert UTM coordinate to a close world coordinate. The
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world coordinate is setup on the ground with origin at the robot initial position

as shown in Figure 3.1b, with x axis pointing towards tra�c direction and y axis

pointing across the bridge. The x− y plane in the world coordinate is also used

as the composting plane for output of the �nal panorama. The robot body frame

is setup in the center of the robot where the GPS measures. The camera frame is

the frame with the origin in the camera optical center and ∆ ∈ R3 represent the

constant o�set of the camera in the robot body frame. This o�set is measured

manually and used as a constant parameter in our setup.

3.3.2 Problem statement

We consider the image mosaicing problem for the bridge scanning robot. The

following assumption is made: 1. The robot make stops roughly every 2ft; 2.

GPS data is logged together with the captured images when stops; 3. The robot

make parallel runs and patterns are known. Our goal is to accurately stitch the

images and generate a geo-referenced panorama image for the whole bridge.

3.4 Method overview

3.4.1 Feature detector and descriptor choice

There are numerous feature detector and descriptors invented in the last decades

for �nding the correspondence point between images. Feature detectors are look-

ing for salient point or regions in the image and could be roughly grouped as

corner detectors and blob detector. Given that we have a high de�nition image of

the bridge deck, blob detector could detect more features since the concrete sur-

face is tend to have more blobs than corners. Moreover our test shows that SURF

extracts a more evenly distributed feature points set than the corner feature de-

tector such as ORB. For those features detected, we need to extract descriptors
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that re�ecting the local region of the feature. Here instead of using the origi-

nal SURF descriptor, we use the binary feature descriptors BRIEF to generate

the descriptor. We �nd out that BRIEF descriptor not only outperforms SURF

descriptor in speed and accuracy [15], but it is also more robust to illumination

changes which is suitable for our the outdoor environment with plenty of shade

and illumination change. We validate the feature performance in our test scene

in the experiment section.

In order to improve the robustness and speed of feature matching, we take

advantage the special pattern of our motion planning to use the orientation in-

dependent feature descriptor. This is done by pre-aligning images in orientation

with the compositing plane. The robot has roughly the same heading direction

within one scanning lane and change heading direction only when shifting lanes.

This enables us to discard the orientation information in the descriptor and receive

a performance boost in terms of feature matching accuracy and speed.

3.4.2 Map representation: data structure for map points

and frames

The map is represented as a graph of frames and map points. For each image

captured using left or right camera, a frame Fi is created to store:

� The camera rigid body pose Twi ∈ SE(3).

� Map points set Mi detected in the frame.

� The navigation data including 2D position and heading direction associated

with the frame when captured.

� Image Ii , which is undistorted and pre-aligned roughly in orientation with

respect to the compositing plane.
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� The camera intrinsic matrix Ki for image Ii including focal length and

principal point. Ki is transformed from original camera intrinsic matrix K

since Ii is pre-aligned in orientation with respect to the compositing plane.

K is obtained through camera calibration for both left and right camera.

� A plane Pi that represent local planar surface.

� Neighboring frames and relative transformations.

A map point mj is created by triangulating corresponding feature points in dif-

ferent images. A map point mj stores:

� 3D position Xmj
∈ R3 in the world coordinate system.

� The image frames that observe this map point and its corresponding feature

location and octave in that image. We avoid storing store every SURF

feature and its descriptor, instead we save the �index� of the SURF point.

� The reference frame that the map point is �rst triangulated. We rely on

the reference frame to infer the point after the pose graph optimization.

3.4.3 System overview

Our system, as show in Figure 3.2, includes �ve main modules: individual image

registration, local map optimization, global optimization including pose graph op-

timization and global map optimization, and �nal stitching. When a new image

is retrieved from the database, it goes through the image registration for ini-

tial pose estimation. The new image is �rst prepossessed to create the frame Fi

with proper data structure association and pre-aligned with compositing plane.

We then search in the frame database for the closest frame with Fi. Here frame

database includes all the frames that have been successfully registered. The initial
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Figure 3.2: Image mosaicing system Overview

pose of Fi and its associated map points Mi are obtained through the feature-

based alignment with the closet frame. The initial pose of Fi is used for searching

the potential overlap frames and uses feature based method to �nd the relation-

ships between Fi and its neighbors. A local map optimization module is used to

re�ne the Fi and the local map. The �nal step of the registration is using the

pose graph optimization to further re�ne all the frames in the database. Before

creating the �nal panorama, an optional global map optimization could be carried

out to �ne tune the map points and frame poses.

3.5 Image registration for individual frame

When a new image is retrieved from the data set, we need to align the image

with the images already registered. We use a two step approach to register the

image. We �rst search for the closest frame in the frame database based on

navigation data. The closest frame is used to estimate the initial pose of the

new frame. We then estimate the relative transformation between the new frame
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and its potential neighbors. This constructs a more densely connected graph and

increases the robustness in the optimization stage. Map points are triangulated

based on the relative pose estimation. In the second step, we use a local bundle

adjustment to further re�ne the pose of the new frame and new map points.

Relative pose is stored between neighboring frame and later used for the pose

graph optimization.

3.5.1 Corresponding feature extraction

For a pair of potential neighbor frames, feature extraction serves as a foundation

for the pose estimation. To estimate the pose robustly, the corresponding feature

points extracted need to have low false correspondence rate and well spread across

the overlapping area. We choose SURF blob detector to detect the features

and the orientation independent BRIEF descriptor to extract the features as

described above. By incorporating the navigation data, we could further improve

the performance by reducing the search region in the image.

To make sure the feature detected is well spread even in case of presence of

shade and illumination variation, we set a low Hessian threshold for the SURF

blob detector and generate a dense set of feature candidates. In the matching

stage, Hamming distance is used to match the BRIEF descriptor of SURF point.

Ratio test and symmetry test are applied to suppress the false correspondence,

providing cleaner data for the pose estimation. The above procedure extract

plenty of corresponding feature points across the overlapping area but may with

variable density. This variability could cause overweighting in the correspondence

rich region of the images. Also excessive number of map points will increase

the burden of optimization procedure with map points. So we use non-maximal

suppression to downsize the detected correspondences with uniform density while

keeping the more salient ones.
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3.5.2 Relative camera pose estimation

Since we assume a locally planar scene between overlapping images, we could

estimate the homography from the corresponding feature points. Homography

matrix Hri represents the relationship between two images of the planar scene

Hri

 pi

1

 =

 pr

1


where pi and pr are the corresponding feature point in the new image Fi and ref-

erence image Fr. Here we estimate Hri through 4-point RANSAC algorithm [38]

from the corresponding features. The homography matrix alone de�nes relation-

ship between images and so it is used to stitch the images [123]. This approach

only works for a few images but will fail in case of large image set if the accu-

mulated error is not addressed. So in our approach, we further decompose the

homography to estimate the transformation between images. This provide us the

advantage to address the accumulated error in the optimization stage by incor-

porating navigation data. Hri is related to the transformation elements Rri and

tri and to the normal of the plane nri through

λHri = Kr(Rri + trin
T
ri)K

−1
i

where Ki and Kr are the camera calibration matrix for the aligned image. Here

Ki and Kr are transformed from the original camera intrinsic matrix K because of

images went through clockwise or counter-clockwise rotation in the initial align-

ment. Here camera pose R and t could be recovered up to scale through SVD

decomposition.

A number of veri�cations are then performed to ensure that this homography

corresponds to a valid camera motion:

1. Check that the relative pose does not include improper rotations.
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2. Check the normal of the local planar scene are within certain range.

3. The number of SURF correspondences between the two images must be

larger than a certain threshold.

3.5.3 New map point creation

We then triangulate point according to the feature point correspondence. If the

feature point is already associated with a map point, then that map point is

recaptured with new observation otherwise we create the new map point by tri-

angulation. The triangulated point should be roughly on one plane, so any point

far from the plane will be discarded. Since the pose estimation only recovers the

pose up to scale, we re-scale the cameras and feature points by adjust the camera

to plane distance to a measured value. This provides a good initial guess for the

optimization which will further re�ne the map point position and camera pose.

3.6 Local map optimization

Local map optimization is often referred as local bundle adjustment. A bundle

adjustment procedure will optimize the map points positions and camera poses

by minimizing a cost function. Local bundle adjustment is used to make sure

the new camera position and map points are coherent with the existing camera

positions and map points. Using the neighboring frames and points only, we avoid

optimizing on too many edges and vertexes in the graph optimization which takes

a much longer time to process.

3.6.1 Neighbor frames search

Before constructing a local map, we need to get the relationship between the

new frame and its neighbors. To get the potential neighbors, we search in the
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frame database for the candidates within radius r of the new frame based on both

the navigation data and estimate pose. We iterate the process in section 3.5 to

�nd out the relationship between neighboring frames and co-visible map points.

Those �ndings add more constraints in the optimization stage to form a strong

connection between frames.

3.6.2 Local map construction

One of the key steps for the local bundle adjustment is to construct a local map.

The local map should strike a balance between complexity and completeness. Our

local map contains the currently processed frame, all the neighboring frames, and

all the map points observed by those frames. All other frames that see the map

points but are not neighbors to the currently processed frame are included in the

optimization but remain �xed [101].

3.6.3 Constraints

Constraints represent the relationships between frames and map points. The

constraints de�ned here are not only used for local map optimization, but also

for the pose graph optimization and global map optimization.

3.6.3.1 Map point observation constraints

For every map point included in the optimization, it corresponds to several obser-

vations that made from neighboring frames. Each observation forms a constraint.

We de�ne the world coordinate of map point mj as Xmj
= (xmj

, ymj
, zmj

) and ith

frame poses as Tiw ∈ SE(3), where w denotes the world reference. ui,j ∈ R2 is

the observation of the map point j in the image frame i. The error term for this
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observation is

ei,j = ui,j − π(Tiw,Xmj
)

where πi is the projection function

π(Tiw,Xmj
) =

 ui,j
wi,j

vi,j
wi,j



ui,j

vi,j

wi,j

 = Ki(RiwXmj
+ tiw)

where Riw ∈ SO(3) and tiw ∈ R3 are the rotation and translation parts of Tiw,

and Ki is the camera intrinsic parameter matrix associated with frame Fi. The

cost function to be minimized given the map point set M is

EM =
∑

mj∈M

∑
Fi∈Fj

∥∥eTi,jΩ−1i,j ei,j
∥∥
δ

where Ωi,j is the covariance matrix associated with the octave at which the key-

point was detected, Fj is the frame set that seen the map point mj and ‖�‖δ is

the Huber norm

∥∥r2∥∥
δ

=


r2

2δ
if |r| 6 δ

|r| − δ
2

otherwise

3.6.3.2 Plane constraints

A plane Pi is associated with each frame Fi representing the planar surface ob-

served. The plane constraint is added to ensure all the map points in the same

image stay roughly on one plane during optimization. This constraint is neces-

sary whenever we add the map point constraints. Di�erent from highly overlapped

frame used in SLAM problem, the frames here have little overlap in between caus-

ing the scale to drift from frame to frame. The plane constraint helps to maintain
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the scale between two frames by forcing the map points observed in one image

stay in one plane. For each map point mj, we add the point to plane constraint

that restrain the point to lie on the plane. The error term is

ei,j = nTi Xw,j + di

where ni is the unit normal of the plane and di is distance from the world origin

to the plane. The cost function is

EP =
∑
Pi∈P

∑
mj∈Mi

∥∥λe2i,j
∥∥
δ

where λ is a scalar representing the con�dence in the local �atness of the observed

scene. Huber function is used again to mitigate the in�uence of the outlier. Since

ei,j is represented in meters and we assume the map point lies within 1cm from

the plane, we set the δ = 0.01 and λ = 100 empirically.

3.6.3.3 Navigation data constraints

The navigation information especially the position is coming from the GPS. Al-

though accuracy varies, the GPS measurements are not subject to the accumu-

lated error. Our frame to frame estimate from the image is quite accurate thanks

to the high de�nition camera but even small errors could build up causing drift

in the long run. Those two source of pose estimation are mutually complement,

so we try to combine the best of both. Here we add the navigation constraints to

reduce the drift of the image registration. For each frame Fi we use the position

from the navigation data and forming the error function as

ei = twi − (RN
w∆ + tNw )

here RN
w and tNw represent navigation data in the world coordinate and ∆ ∈ R3

represent the constant o�set of the camera in the robot body frame. The cost
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function for the given set of frames F is

EN =
∑
Fi∈F

eTi Σ−1i ei

here Σi represent the covariance of the navigation data. For the isolated frames

which don't have overlap with any other frames, the navigation constraint serves

as the only constraint to the frame.

3.6.3.4 Co-visible frame pose constraints

For two neighboring frames Fi and Fj, we could de�ne the error as

ei,j = logSE(3)(TijTjwT−1iw )

where Tij is the relative transformation computed from the local bundle adjust-

ment, Tiw and Tjw are the world pose of frame Fi and Fj, and logSE(3) transforms

the error to the tangent space so that the error ei,j ∈ R6. The cost function to

be optimized is

EG =
∑

eTi,jθi,jIei,j

where θi,j is the weight of the edge and could be set as the number of common

map points. In the map point triangulation step, we perform a non-maximal

suppression to keep the map point evenly distributed. The number of retained

corresponding feature points is based on the area of bounding rectangle of all the

corresponding feature points in the frame. This procedure is try to maintain a

constant map point density across the map. Therefore the weight θi,j of the edge

is roughly proportional to the overlapped area.

3.6.4 Cost function for local map optimization

Given the local map consisting local map points ML and local frame set FL, the

cost function of the local bundle adjustment could represent as the combination of
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map point observation constraints, plane constraints and navigation constraints

E = EML
+ EPL

+ ENL

where PL and NL are the planes constraints set and navigation constraints set

associated with the local frame set FL respectively.

3.7 Global optimization

After performing the local map optimization, we use global optimization to re�ne

the estimation of map. We implement a fast routine optimization using the pose

graph and navigation data and an optional global map optimization procedure

that include all the frames and map points.

3.7.1 Pose graph optimization

An undirected weighted graph is used to represent the pose graph that connect

all the neighboring frames. Each node is a frame and an edge between two frames

exists if they share enough observations of the same map points. The edge con-

tains the relative pose information that obtained from local bundle adjustment.

Performing a pose graph optimization would distribute the error along the graph.

The pose graph optimization includes the navigation data constraints to eliminate

drift. So the cost function for the pose graph optimization would be

E = EG + EN

where EG is the graph constraints set for the whole pose graph and EN is the

navigation constraints set for all the nodes.
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3.7.2 Global map optimization

After all the frames are registered, we could do an optional map optimization to

further re�ne the estimate of map points. The whole map optimization include all

the frames and map points and take a longer time to process. The cost function

of the global map optimization includes the map point observation constraints,

local plane constraints and navigation constraints

E = EM + EP + EN

where P and N denote the plane constraints set and navigation constraints set

associated with the all the frames, and M denotes all the map points.

3.8 Panorama image creation

In order to obtain a panorama image, we need to project the images onto a planar

surface. The x−y plane in the world reference frame is chosen as the compositing

surface. So we need to estimate the homography for each frame Fi that serves

the projection

Hwi


ui,j

vi,j

1

 =


xmj

ymj

1

 , for mj ∈Mi

where ui,j = (ui,j, vi,j) is the image coordinates of the map point mj observed in

frame Fi. Again, we could use the RANSAC method to estimate Hwi from the

map point setMi associated with each frame Fi.

We then use simple feathering to blend the projected images. Feathering is

a blending technique to do a weighted average with a distance map. It weights

pixels near the center of the image more heavily and down-weights pixels near the

edges. Therefore, we could mitigate the di�erence caused by small mis-alignment

and illumination change.
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3.9 Results

3.9.1 Feature detector and descriptor comparison

We compare the blob feature detector SURF and corner detector ORB in Figure

3.3. We choose a example scene including plenty of illumination change which

re�ect the typical outdoor experiment. We adjust the parameters so that SURF

and ORB detected roughly the same amount of feature points. From Figure 3.3,

we could see ORB corners are concentrated in the region with high texture but

didn't generate enough point in low texture area. Especially in the shading area

where the contrast is low compared the non-shaded area, there are only a few

points generated. In comparison, the SURF detector generally well spreads the

points with no short-coming in the shaded area.

Table 3.1: Comparison of di�erent feature descriptors in point correspondence

detection

SURF U-SURF BRIEF BRIEF Guided

Corr. Correspond. 915 1763 4435 4628

Corr. Ratio 77% 90% 95% 96%

Comp. time (sec) 21.1 14.6 14.2 7.2

We compare our navigation-guided corresponding point extraction with SURF,

Upright SURF (U-SURF) and BRIEF descriptor in Table 3.1. The comparison

uses brutal force matcher to match the points detected by SURF detector. We use

L1-norm to match the descriptor in the SURF and U-SURF case and Hamming

distance in the BRIEF case. From Table 3.1, we can see that orientation inde-

pendent descriptor U-SURF and BRIEF, enabled by initial alignment, perform
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better and faster than the original SURF. Meanwhile, more than two times point

correspondences are extracted using BRIEF than U-SURF. Our BRIEF method

guided by navigation performs the best which outperform the original BRIEF in

processing time and also extract more correspondences.

3.9.2 Validation of image registration accuracy

In order to assess the accuracy of image registration, we paint an array of dots

manually on the bridge that are evenly spaced with 2 feet. Here we assumed the

painted dots are accurate and used as benchmark to evaluate the �nal panorama.

The test scene is a 110ft×10ft area of a concrete bridge scene with plenty of shade

and illumination change. A zoomed-in portion in the panorama is in shown in

Fig 3.4 including 13 × 4 images. The grid is added later on to show how the

dot deviated from its nominal position. The white dots in the whole panorama

are then extracted from the image and compared with a grid in Figure 3.5. We

can see from both Figure 3.4 and Figure 3.5 that dots are correctly aligned with

the grid. The error term representing the distance from nominal positions is

distributed as normal distribution N (1.51in, 0.54in2). The results indicate our

proposed algorithm could generate an accurate mosaicing image even in presence

(a) (b)

Figure 3.3: Feature detector comparison shows blob detectors are more evenly
spread than corner detector. (a) ORB corner detector; (b) SURF blob detector
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Figure 3.4: Validation experiment based on painted point arrays

Figure 3.5: Dots extracted from the panorama compared with grid for its nominal
positions

of shade and illumination change.

3.9.3 Stitched panorama

Here we also provide a complete stitched panorama for the north bound of OR

213 (HWY 160) over Rock Creek, as shown in Figure 3.6. The test was performed

on a overcast day so there is little shadow in the image set. The bridge surface

measured as 68ft × 20ft including 240 images. Each image has the resolution of

3456×2306 pixels. We could see the structure lines including bridge joints remain

straight with little distortion which is an indication of good registration.

Figure 3.6: Produced panorama image for one side of the bridge deck
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3.10 Conclusion

In this chapter, we present a new image mosaicing system for the bridge deck

surface reconstruction. By fusing the navigation data with feature-based image

registration in the graph optimization framework, our proposed approach inherits

the drift-less nature from GPS while still maintaining local accuracy of feature-

based image registration. We evaluate the accuracy through quantitative test

on real bridges and show our system is robust to interference in the outdoor

environment such as illumination variation. Given the accuracy achieved, our

system could not only be used to generate geo-referenced panorama but also

serve as the reference for other NDE sensor data registration.
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Chapter 4

Bridge Rehabilitation Robot

4.1 Introduction

Defects such as delaminations are one of the biggest problems in deterioration

of bridge decks. They are basically horizontal cracks in the concrete that occur

mainly due to rusting of steel rebars. These delamination reduce the strength of

the concrete signi�cantly. Figure 4.1 below shows a core from a bridge that shows

the delamination. Since they normally do not have any surface openings before

the late stage such as spalling, they are very di�cult to detect and repair in the

early stage.

The state of the art practices of repairing delamination are extremely high cost

and labor intensive. Figure 4.2 shows an example of the current practice to repair

a block of damaged bridge deck. The repair process is completely manual and

involves removing and then replacing the entire patch of damaged bridge deck.

This process is time consuming leading to extended lane closure, low e�ciency

Figure 4.1: Cored samples from a bridge deck showing delamination
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Figure 4.2: Current late stage defect repair practices

since it also remove some portion that still in good condition, and posing safety

risk to the �eld engineer and construction workers.

The Automated Non-destructive Evaluation and Rehabilitation System (AN-

DERS) project supported by National Institute of Standards and Technology

(NIST) aims to provide a uniquely comprehensive tool that will transform the

manner in which bridge decks are assessed and rehabilitated. While the Non-

Destructive Evaluation (NDE) robot RABIT introduced in the �rst chapter pro-

vided a solution for early stage defect detection, the non-destructive rehabilitation

(NDR) system is aiming at delivering a non-destructive, rapid, cost e�ective re-

habilitation at an early stage of deterioration. The NDR system uses robotics

and automation for precision and rapid delivery of novel inorganic composite of

alkali alumina-silicate matrices reinforced with nano/micro �bers for rapid, non-

destructive repair and rehabilitation of bridge decks.

The rest of the chapter is organized as follows. In the next section, we give an

overview of the NDR system developed for the ANDERS project. In section 3,

we introduced the end-e�ector design of the drilling and �lling system. In section

4, we introduce the mobile manipulator system and its planning algorithm. In

section 5, we present the various experimental validation result for the NDR



73

system.

4.2 Overview

In order to achieve precise minimal invasive rehabilitation on the bridge deck,

we design the NDR system composed of three main parts the mobile robot base,

the 5 degree of freedom manipulator and customized designed end-e�ector for

robotic drilling and grout �lling. We use the same Seekur robot from Adept

Mobile Robots Inc. as the RABIT inspection robot introduced in Chapter II. The

seekur robot have zero turning radius and high payload which is suitable executing

the heavy duty repairing on the narrow bridge surface. To further improve the

precision in rehabilitation, we mount a 5DoF manipulator from Schunk on mobile

base to position the end-e�ector at the desired pose. The manipulator helps to

o�set the positioning error from the mobile base and could reach the precision of

5cm. Moreover, we design the end-e�ector to ful�ll the requirement of minimal

invasive rehabilitation which involves drilling and �lling module. The end-e�ector

requires a compact design that satisfy the payload and power constraint of the

mobile manipulator design.

The operating procedure of NDR system start once received the targeted

defect location in GPS coordinate. The on-board motion planning algorithm plan

the motion path and control the mobile base to pose that ensure the targeted

defect location is within the workspace of the manipulator. This relieve the

precision control requirement for the mobile base which subject to heavy load and

slower response. At the defect locations, the robotic manipulation will �rst use

the drilling unit to drill several small holes with a pre-speci�ed geometry (e.g.,

triangle) at certain depths to reach the crack locations inside the bridge deck.

The feeding of the drill unit is provided by a separate motion control unit, rather
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Figure 4.3: (a) Mobile manipulator-based autonomous rehabilitation platform;
(b) Closed-up view of the customized end-e�ector

than by the manipulator. The same robot manipulator will rotate its end-e�ector

such that through the drilled holes, the material �lling mechanism mounted on

the same end-e�ector will facilitate delivery repair materials into small hairline

crevasses and form strong and durable bonds with the parent material of the

bridge decks.

4.3 End-e�ector design

The early-stage deterioration of bridge decks starts beneath the surface. To repair

the delamination inside concrete deck, we drill 3/8 inch holes on the concrete and

high-strength concrete grout is injected and �lled these cracks. The end-e�ector

is designed to complete the drilling and �lling that rehabilitate the defect area.

The end-e�ector is composed of the drilling module, �lling module and the linear

stage that provide the progression of the drilling unit and also apply suitable

force to the seal of the �lling unit. The weight of end-e�ector is constrained by

payload capacity of the manipulator and hence we want to reduce the weight on

the end-e�ector and make it as compact as possible.
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4.3.1 Drilling module

4.3.1.1 Drill selection

To drill on concrete or rocks, hammer drill should be used. Besides the drill bits

are di�erent in geometry, the di�erence between a hammer drill and a regular drill

for metal is that a hammer drill creates vibratory motion of the drill bit while

it rotates. There are two types of hammer drills, one with a simple mechanical

component to generate the vibratory motion of the drill bit and the rotary hammer

drill which uses a pneumatic piston to create a powerful impact to drive the

drill bit. Fig. 4.4 shows a drilling time comparison in experiments to drill a 6

mm (diameter) hole on concrete mortar with a depth of 76 mm using a regular

hammer drill and a rotary hammer drill sets. Various thrust forces are used in

the experiments. From the results shown in the �gure, it is clearly observed that:

(a) it takes much less time for the rotary hammer drill than that for the regular

hammer drill set for drilling the same hole; and (b) the drilling time for the rotary

hammer drill is independent with the applied thrust force, while for the regular

hammer drilling, a larger thrust force results in a shorter drilling time. The

impact-induced drilling process such as the one generated by rotary hammer drill

is also called percussive drilling. In chapter 5, we present the models to capture

the percussive drilling and also use these modeling development to interpret and

optimize the drilling performance.

From the experiments shown in Fig. 4.4, it is obvious that the rotary hammer

drill is the choice for a faster drilling process than the regular hammer drill though

the former is more expensive than the latter.
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Figure 4.4: Comparison of drilling time for drilling a hole on concrete mortar
with a depth of around 76 mm.

4.3.1.2 Drill customization

The rotary hammer drill is a powerful tool and usually has a bigger size than the

regular hammer drill. Considerable e�ort is made to reduce the bulky size while

adding additional sensor.

The Bosch drill is stripped out the battery and controller part as shown in

Figure 4.5a. We only keep the essential mechanical component and the driving

motor of the rotary hammer. The manual trigger is replaced by the digital and

analog output from the onboard computer. The battery is moved to the inside of

the mobile robot to reduce the payload of the drill. The drill is clamped around

the gearbox housing by two piece of customized mounting plate as shown in Figure

4.5b. Those two mounting plate also serves as the mounting point for additional

sensors.

In order to monitor the drill motor speed, we need to add an encoder to the

drill. The encoders with friction wheel is too big to �t with the drill, we therefore

decided to measure the drill speed from the back through co-axis mounting. We
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(a) (b)

Figure 4.5: (a) Bosch rotary hammer drill exposed for modi�cation and control;
(b) Custom drilling unit assembled with sensors such as encoder, force torque
sensor, ultrasonic distance sensor and accelerometer.

Figure 4.6: Custom drill speed measurement. (left) 3D printed cap for connection
of the motor back shaft and encoder; (middle) Encoder from US Digital that could
measure up to 25000 rpm; (right) 3D printed �xture that attach the encoder with
the drilling unit.

�rst measure the shaft speed of the drill chuck through friction wheel encoder and

determined as 6300-6500 rpm. Since the gear ratio between the motor and the

chuck is 42:13, therefore the maximum rotation speed of the motor is determined

as around 21000 rpm. In order to measure the high rpm, we select the digital

encoder from US Digital E4P-125-250-N-S-D-T as shown in the middle of Figure

4.6. We 3D print the shaft cap according to the contour of the motor back as

show on the left side of Figure 4.6 and glued to the back of the motor. We also

3D print the mounted structure of the rotary encoder as shown on the right side

of Figure 4.6 and the shaft is tightly �tted to the encoder rotary disk.



78

(a) (b)

Figure 4.7: (a) ATI force-torque sensor that measure the drilling and �lling force;
(b) Honeywell ultrasonic sensor that measure the distance from the end-e�ector
to ground

4.3.1.3 Force-torque Sensor

In order to measure and control the force applied to the drilling and �lling unit,

we add a force-torque sensor from ATI Industrial Automation (9105-TW-MINI45-

ERA-2.5) as shown in Figure 4.7a. The ATI force-torque sensor is selected for

its compact size and wide force range in z direction with a maximum allowable

over load of ±2300 lbf. The sensor is mounted between the clamping mounting

plate and the linear stage as shown in Figure 4.5b and Figure 4.3b with its z-axis

parallel to the drilling axis.

4.3.1.4 Ultrasonic sensor

Although we could estimate the height of end-e�ector through forward kinematics

of the mobile manipulator, that estimation is subject to de�ection of mobile robot

suspension and the resulting accuracy varies. We therefore add an ultrasonic

sensor to the end-e�ector for determine the distance of the end-e�ector to the

ground. The Honeywell's industrial ultrasonic sensor 943-F4Y-2D-1C0-300E as

shown in Figure 4.7b is chosen because it's small, dust-proof and waterproof. It

has a measure range of 3.9 inch to 31.4 inch which is suitable for the application.

It needed to be mounted facing down while drilling and hence it was mounted on

the drill mount as shown in Figure 4.5b.
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Figure 4.8: Custom made linear Stage that provide the feeding of the drilling and
�lling procedures

4.3.1.5 Linear stage

The use of the hammer drill for e�ectively and e�ciently drilling of concrete

materials will bring a large vibratory motion, which could potentially damage the

Harmonic Drive gearbox inside the manipulator. So we decide to use a linear

stage to provide the progressive motion while keeping the manipulator in the

magnetically locked position.

We designed our custom linear stage to move the drilling unit and �lling

unit as shown in Figure 4.8. We choose a high torque but low speed brushed

motor from Maxtor and a screw rail from Haydon-Kerk for its light weight and

compact design. The screw rail has a stroke length of 4 inch which could ful�ll

the requirement of drilling a 3 inch depth hole. A custom made c-clamp is used

to connect the linear guide with the drilling module through the ATI force torque

sensor. The c-clamp is also doubled as the trigger of the limit switches that

added to avoid collision between the moving stage and screw rail end. We use

aircraft grade Aluminum Alloy 7075 to construct all the mounting structure to

reduce weight and provide higher resistance to bending. Finally, the linear stage

is mounted to the manipulator using an adapter plate.
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4.3.1.6 Material delivery unit

Concrete repair usually use polymer resins as repair material. The polymer resins

is not mechanically compatible with concrete substrate and therefore the repairs

quality is questionable. Pumping these material into hairline cracks is very dif-

�cult due to high viscosity. The ANDERS material development team identi�ed

that the nano/micro inorganic composites for rapid, non-destructive repair of thin

delaminations was successful using alkali alumina-silicate matrices reinforced with

nano/micro �bers [71]. They demonstrated that certain mixes of these gave a ma-

terial with good mechanical properties and had desired �ow for the hair-line cracks

as thin as 0.03 inches [70].

Following the manual delivery result in [71], we design our automated material

delivery unit that could ful�ll the requirement to inject the matrices into the 3/8

inch hole that drilled by the rotary hammer. There are several constraints need

to ful�lled in this design. First the unit need to be small and light for robot

mounting. Second, the system need to provide 75 psi maximum pressure which

need for injecting the matrices into hairline crack. Third, the system should be

resistant to the highly alkaline alumina-silicate matrix.

We use the back-end of the drilling unit as the delivery side as shown in Figure

4.3b, so the manipulator only need to �ip the orientation the end-e�ector to do

�lling instead of drilling. To minimize the weight, the functional �lling part on the

end-e�ector is essentially a custom made seal and a solenoid valve to control the

�uid. The solenoid valve is connected through the 1/4 tube with the pump and

then the tank storing the matrices. The pump and tank are mounted remotely

on the mobile base.

The hole had to be properly sealed when the matrices was pumped into the

hole, therefore we custom designed our seal since the mechanical �xture presented

in [71] is infeasible due to the size. The seal is designed based on the concept
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(a) (b)

Figure 4.9: (a) Seal design three side view; (b) Diaphragm pump that used for
�lling unit

of vacuum cups as shown in Figure 4.9a. and . The seal was 3D printed using

silicone shore A40 by Stratsys µPrint.

We choose KNF's micro diaphragm liquid pump to provide the pumping as

shown in Figure 4.9b. This is a positive displacement type pump so any back-

�ow is essentially prevented. The pump delivers maximum 300 ml/min and can

operate at max 87 psi pressure. It has self-priming suction of about 8.86" Hg and

can run dry and is also extremely chemical resistant.

4.4 Mobile manipulator

The mobile manipulator combine the complement advantages of the mobile robot

and the manipulator. The mobile robot provides mobility to the manipulator

essentially extend the workspace of the manipulator to in�nity. The manipulator

provides extra degree of freedom to the mobile robot that enables more dexterous

task.

In the NDR task, the mobile manipulator is required to put the end-e�ector at

designated position and orientation. The position is required by the GPS location

of the defect and the speci�c orientation is required for either the drilling or �lling

task.
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Figure 4.10: 5 degree of freedom arm con�guration from Schunk

4.4.1 Mobile base

The mobile base shares similar design as the RABIT inspection robot. A omni-

directional Seekur robot from Adept is used as mobile base for its high payload

and tight turning radius. The robotic system is equipped with two RTK GPS

units and four wheel encoders. Similar as RABIT in Chapter 2, the GPS data

are fused with wheel encoder measurements through an EKF design and could

reach accuracy of 2cm.

4.4.2 Manipulator

The manipulator provide more �exibility to the system by adding extra degree

of freedom allowing for more delicate task. To achieve full 3D position and ori-

entation of the end-e�ector, we need a manipulator with at least 6 joints. But

since our task such as drilling and �lling are only concerning the 3D position and

direction, we could use a 5 joints manipulator to ful�ll our task requirement. We

choose the Schunk powercube arm as our manipulator for its high payload-weight

ratio and modular design. The con�guration of our arm is shown in Figure 4.10.

Forward kinematics and inverse kinematics are solved for the con�guration while

considering the collision constraint.
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4.5 Mobile manipulator planning

The mobile manipulator composed of the mobile base and manipulator provide

more �exibility for the task. The goal for mobile manipulator planning is to

enable e�cient planning to achieve desired accuracy of 2cm. Although the local-

ization system on the robot provide accuracy about 2cm, the movement accuracy

of mobile base is around 10-15 cm due to the large payload and limit in the low

level controller. The manipulator however could provide millimeter grade accu-

racy once the inverse kinematics are solved because of high precision joint motor

and rigid connection between joints. We design our mobile manipulator planning

algorithm as two decoupled steps for mobile base and manipulator separately.

First step is move the mobile base such that the desired defect location is within

the workspace of the manipulator. This step is guided by the mobile base motion

planner and EKF-based localization system. Second step is to move the manip-

ulator to the position for the rehabilitation based on the current mobile base

position and orientation. This step is executed by the inverse kinematic module

and joint motion planner.

As the �rst step to plan the motion of the mobile robot, we �rst de�ne three

region in the 2D plane in the world as shown in Figure 4.11a. The area I is the

manipulator end-e�ector workspace on the ground given the current mobile robot

position and orientation. This end-e�ector workspace on the ground describes the

ground area that could be reached by the tip of the drill bit in the uppermost po-

sition. The area I is generate through simulated inverse kinematic calculation and

it's actually an symmetric area between two co-concentric arcs. The workspace

is constrained by the geometry of the manipulator and also the collision between

links and mobile base. If the target hole position is within the workspace, the

robot will only command the manipulator to the desired position as shown in
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(a) (b)

(c) (d)

Figure 4.11: Mobile Manipulator Planning: (a) Workspace decomposition; (b)
Target in area I; (c) Target in Area II; (d) Target in Area III

Figure 4.11b. The area II is de�ned as the region within the central angle of the

workspace arcs but not belongs to area I. As shown in Figure 4.11c, when the

target falls in the area II, the robot will �rst command the mobile base move par-

allely to the location where the target fall in the new end-e�ector workspace area.

The robot then command the manipulator to move to desired position for the

drilling. The area III is de�ned as the rest of the 2D planar space. As shown in

Figure 4.11d, the robot �rst orient the base to the target defect position and then

move forward to the pose that the target is within the end-e�ector workspace.

Once the mobile robot moves to the position where the target falls in the

end-e�ector workspace, we don't move the tip of the drill directly on the ground

surface because the tip might be hitting the ground if the ground is not perfectly

�at. Therefore, we �rst move the manipulator to about 50cm above the desired

drilling position and then use the Honeywell ultrasonic sensor to measure the
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distance to the ground. The robot then moved the end-e�ector to drill the target

hole according to drilling procedure shown in Algorithm 3. Then the robot drill

three release holes around the center hole so that once the cracks are �lled up the

matrices will come out of the release holes. Once �nish the drilling, the robot start

the �lling procedure by using the �lling unit on the other end of the end-e�ector

as shown Algorithm 4.

Algorithm 2 GPS-guided drilling and �lling

1: Input: 2D GPS location in UTM Cartesian coordinate x, desired hole depth
d

2: repeat
3: OrientRobotTowardTarget(x);
4: MoveRobotTowardTarget(x);
5: until x in the workspace of manipulator
6: h← MeasureDistToGround(x);
7: DrillHole(x, h, d);
8: for i=0;i<3 do
9: ∆x←

[
r cos 2iπ

3
, r sin 2iπ

3

]
;

10: DrillHole(x + ∆x, h, d);
11: end for
12: FillHole(x, h, d)

4.5.1 Drilling procedure

The drilling procedure assumes the target is within the reach of the manipulator

and takes in the target location as UTM coordinate, the ground to drill tip dis-

tance measured from the ultrasonic sensor and the desire hole depth. The arm

moves the drill tip to be 1cm above the desired drilling position, the linear stage

then start to push the drill toward the ground. We will trigger the rotary hammer

once the static force applied measured from ATI force torque sensor is higher than

the threshold. This is necessary to avoid the drill bit wobbling on the concrete

surface causing awkward situations such as bending. The feeding motor will push

the drill until the drilling depth is above the required 3 inches and then pulled
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the drill up to the upper limit switch position.

Algorithm 3 Drilling procedure for DrillHole(x, h, d)

1: Input: 2D coordinate in UTM coordinate x, ground to arm distance h,
desired hole depth d

2: MoveArmOverDrill(x, h);
3: repeat
4: FeedingMotorFwd(P1);
5: until F > threshold;
6: TurnOnDrill(ω);
7: repeat
8: FeedingMotorFwd(P2);
9: until depth > d
10: repeat
11: FeedingMotorBwd(P3);
12: until back micro switch triggered
13: TurnO�Drill();

4.5.2 Filling procedure

The task for the �lling procedure as shown in Algorithm 4 is to grantee a smooth

matrices delivery by precisely aligning the nozzle with drilled hole and forming

proper seal while deliver the matrices. The �lling procedure takes in the distance

to the ground measured from the Honeywell ultrasonic sensor and the target

�lling position which is the center hole drilled in the drilling procedure. The robot

moves the �lling unit to the position where the seal is 5cm above the drilled hole

and aligned in the vertical direction. Since the �ll is at its back-most position

and the feeding motor start to push the seal towards the hole. Once the force

measured from the ATI force torque sensor is above the empirical threshold that

we could ensure the nozzle is properly sealed with hole, the feeding motor stops

the progression and the pump and solenoid is turned on to deliver the matrices

to the drilled hole. We used a �xed empirical time interval to determine the

�lling time and once the �lling stops, the feeding motor move the �lling unit to

its back-most position which de�ned by the limit switch.
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Algorithm 4 Filling procedure for FillHole(x, h)

1: Input: 2D coordinate in UTM Cartesian coordinate x, the distance to ground
h

2: MoveArmOverFill(x, h);
3: repeat
4: FeedingMotorBwd(P1);
5: until F > threshold
6: TurnOnFill(t);
7: repeat
8: FeedingMotorFwd(P3);
9: until front micro switch triggered

4.6 Experimental results

4.6.1 Drilling reliability test

Since the manipulator drilling system is subject to strong vibration, we test the

drilling system through extensive testing. We run marathon indoor testing to ver-

ify the drilling performance due to wearing of the drill bit and also the reliability

of the manipulator drilling. We drilled a total of 360 holes on 10 concrete blocks

without stop, the drill result is shown in Figure 4.12a. We also plot the drilling

time for each run in Figure 4.12b and we could see the drilling time doesn't change

with respect to the wearing. This could be contribute to the percussive motion

of the drill bit plays a major role in drill progression.

4.6.2 Material delivery test

In order to test the material delivery to the delaminations, we make our arti�cial

crack by gluing two bricks together using silicone and have a thin 3mm aluminum

plate as spacer as shown in Figure 4.13a. We drilled two holes on the concrete

block, one as �lling hole, the other as release hole. Figure 4.13b shows a successful

test where the matrices comes out of the release hole.
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(a) (b)

Figure 4.12: Marathon reliability test: (a) Drilled block after 360 drilling; (b)
Drilling time for 3 inches holes over 360 runs

(a) (b)

Figure 4.13: Material delivery test. (a) Arti�cial crack created by gluing two
concrete blocks; (b) Successful material delivery where matrix comes out of the
left release hole.
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Figure 4.14: Manipulator trajectory tracking performance

4.6.3 Manipulator trajectory tracking test

We test the trajectory tracking of our Schunk 5 degree of freedom manipulator

through following the 3D circle while maintaining the constant orientation of the

end-e�ector. We test on the same 3D circle but with di�erent period as 5 second

and 10 second. The result shows in 4.14 as the left is for the 5 second period circle

and the right is for the 10 second period circle. The bottom shows the tracking

error separate for two cases with varying speed reference trajectory.

4.6.4 Mobile manipulator rehabilitation precision test

We validate the precision of the mobile manipulator rehabilitation on campus as

shown in Figure 4.15b. We set up the 8 rehabilitation points along a circle with

3 meter radius as shown in Figure 4.15a. We measure the GPS locations of all

marked points and send to the robot through WiFi. The robot performs reha-

bilitation procedures at these 8 points in sequence. The drilling/�lling accuracy

is illustrated in the Figure 4.16 where we measure the accuracy of rehabilitation
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(a) (b)

Figure 4.15: On-campus navigated rehabilitation test: (a) Navigated rehabilita-
tion precision test setup (b) Test scene

Figure 4.16: Measuring navigate rehabilitation accuracy on campus

points. The mean and variance of the rehabilitation position error are 5.23 cm

and 2.46 cm, respectively.

4.6.5 On bridge �eld testing

4.6.5.1 Pohatcong bridge

We conduct our �eld rehabilitation test on the Pohatcong Creek bridge deck

in November of 2013 as shown in Figure 4.17a. The NDR system performed

smoothly to conduct the drilling and �lling tasks. The rehabilitation sites are

within 3-4 cm range of the targeted locations. Figure 4.17b shows one of the

three drilled/�lled holes and the red cross is the targeted location.
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(a) (b)

Figure 4.17: Pahatcong Creek bridge test: (a) Rehabilitation in process; (b) One
of three rehabilitation sites where the red cross mark is the required position and
the hole �lled with matrix is the actually rehabilitation position.

Figure 4.18: The NDR robot on the testing bridge on September 12, 2016.

4.6.5.2 Bridge No. 1618152

Following the suggestions of the NDE testing results, we selected Bridge No.

1618152 as the NDR �eld testing site. The �eld test was conducted on September

12, 2016. As shown in Figure 4.18, the NDR robot was transferred to the bridge.

Two delamination sites #4 and #6 were selected to conduct the NDR tasks. The

locations of these two sites are presented in the NDE section.

Figure 4.19 shows the top view of the NDR repaired deck surface for two

delamination sites #4 and #6. The drilling process was run smoothly. However,

the grout delivery was not successful for either site. The main problem seems
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(a) (b)

Figure 4.19: Top view of the NDR �eld testing results from the deck surface. (a)
Delamination site #4. (b) Delamination site #6.

to be that either the delamination thicknesses are not large enough to let the

grout �ow through, or the debris or other materials block the delivery of the

grout. During the grout delivery process, we have applied signi�cantly large back

pressure and tried to pump the grout into the crack zone. But eventually it was

not successful to inject the grout materials into the bridge decks. As we can see

from the �gures, the grout materials were spread out from the nozzle on the deck

surface. During the pumping process, we did not see any grout coming out of any

of the three facilitating holes, in contrast to that we observed in the on-campus

testing. We also tried to apply vacuum at the facilitating holes to possibly help

create low pressure inside the crack zone for easily grout �ow. The results were

not improved. To test the connectivity of the crack zone among the four drilled

locations, we used water (low viscosity) rather than repairing grout on site #4

and it was found that water cannot be pumped into the bridge decks. Because

of unsuccessfully delivery of repairing grout at these two sites, the robotic NDR

testing did not continue on any other detected delamination sites.
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4.6.5.3 Post rehabilitation assessment

The post-rehabilitation assessment of the NDR rehabilitated sections involved

assessment of why the repairing grout materials cannot be delivered to the de-

lamination sites. It would also provide valuable diagnosis and also possible further

suggestions to improve the robotic NDR systems and process design. We consid-

ered to take cores at the rehabilitated sections as a direct, e�ective way for the

NDR performance evaluation and possibly trouble-shooting and diagnosis of the

NDR process.

We conducted coring of the same bridge on October 3, 2016 and one core

was taken at site #4. Figure 4.20(a) shows the core extracted from site #4 and

Figure 4.20(b) shows the top view of the deck surface after the core extracted.

From the core shown in Figure 4.20(a), we clearly observed that injected grout

was only stayed inside the delivery hole and did not spread out on any part of

the crack zone. Indeed, two layers of cracks existed at this site and the grout

failed to spread out into either one of these two crack zones. The main reason

of this failure of grout delivery is primarily clogged interface between the drilled

hole and the crack zones. One possible cause of the clogged crack zone is highly

likely the small-size debris generated by the drilling process. The debris cannot

be removed and cleaned through blowing high-pressure air after these holes are

created.

Since we also tried to use water (instead of the repairing grouts) in the �lling

process and the water still cannot go through the crack zone, we believe that the

viscosity of the grout is not the primary reason that causes the delivery failure.

We also observed that the crack zone surfaces were not smooth and there were

many small debris on the crack zone surfaces. It is not clear whether enough gap

spaces existed inside the crack zones and this could be another possible reason

for the failure to deliver any �uids into the delamination areas.
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(a) (b)

Figure 4.20: A sample extracted core at site #4. (a) The extracted core (broken
due to two delamination layers). (b) Top view of the deck surface after the core
extraction.

4.7 Conclusion

The development and demonstration of an autonomous Non-Destructive Rehabil-

itation robot was presented for provide minimal invasive rehabilitation for bridge

deck delamination. The main objective of the autonomous robotic system is to

improve the e�ciency and accuracy of bridge deck rehabilitation and reduce the

risk to bridge workers. The developed NDR system integrate an omni-directional

mobile robot platform, a 5 degree of freedom manipulator and a custom made end-

e�ector for drilling and �lling procedures. In this chapter, the mechatronic design

to integrate the various sensors and actuators with the mobile robot platform and

motion planning algorithm were mainly presented for enabling precise bridge deck

rehabilitation. The robotic system performance was validated through extensive

experimental testing and �eld deployment.
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Chapter 5

Modeling Of Percussive Drilling For Bridge Deck

Rehabilitation

5.1 Introduction

The bridge rehabilitation robot is targeted to deliver a nondestructive, rapid, cost

e�ective rehabilitation at early stage of deterioration. The early-stage deteriora-

tion of bridge decks starts beneath the surface that cannot be reached directly as

shown in the cored sample of Figure 4.1. Therefore a minimally invasive robotic

drilling into bridge decks is a necessary step to e�ectively reach the locations

where defects initiate[125].

Concrete drilling is di�erent with metal drilling process that has been studied

extensively in the past (e.g., [106]). While metal drilling uses thrust forces or

torques for cutting, concrete drilling uses impact as the main source to crush the

bristle concrete materials which commonly known as hammer drill. Because of

this fundamental di�erence, understanding the mechanisms in concrete drilling

is a challenging task due to the complicated energy transfer and complex bit-

concrete interactions during impact. For high-quality robotic drilling on concrete,

modeling of the drilling process is a critical step to design the robotic control sys-

tems. The goal of this chapter is to present a concrete drilling model and a

mechatronic design for autonomous, highly-e�cient robotic bridge decks rehabil-

itation. This work has been published in [88] and the author contribute to the

majority of research and writing.
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5.1.1 Related works

In [62, 65, 27, 39], empirical percussive drilling models are proposed to capture the

drill bit impact interactions with rocks. A hysteresis relationship between the drill

bit penetration and applied force is commonly assumed known in these models.

Computational approach, such as �nite element method or other impact energy-

based simulation, are also used to study the percussive drilling in [109, 107, 22, 21].

Several analytical models are proposed to capture the impact energy as wave

transmission between the drill bit and the rock [95, 94]. In these models, both the

penetration-force relationship and the impact wave form are needed to completely

solve the percussive drilling problem. In [108, 29], computational approach is used

to calculate the energy and impact interactions between various components in

hammer drills used in practice.

For viewpoint of control system design of hammer drill bit-concrete interac-

tions, all of the above mentioned percussive drilling models are not desirable.

The empirical model cannot give the physical interpretation and connection with

drilling process parameters in practice, the computational models are too compli-

cated for control design purposes, while the impact wave propagation models are

too simpli�ed for capturing the actual hammer drill systems. Instead, we pro-

pose a dry friction-based percussive drilling model that is inspired and extended

from the model in [73] and the work in [109]. The proposed model is compact

in mathematical representation and therefore, is desirable for use of designing

control systems for drill bit-concrete interactions. Moreover, the model captures

the penetration-force relationship through the dry friction characteristics and can

readily be used to interpret the rock crush/chipping phenomena [109]. Compared

to the results with only analysis and simulation in [73], we here present a more

comprehensive model with extensive experimental validation. We also provide
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physical interpretation for the model parameters and estimation of these parame-

ters can be easily obtained through commonly used mechanics experiments. The

main contribution of the work presented in this chapter lies in the new percus-

sive drilling model that is attractive for designing and optimizing the control of

drilling process in concrete or rocks. The model also provides a means to further

design, optimize and enhance the drilling performance for applications such as

robotic bridge deck rehabilitation.

The rest of the chapter is organized as follows. In Section 5.2, we brie�y

describe the mechanical mechanism of the rotary hammer drill. The hammer

drill kinematics and the minimum force deduction are presented in Section 5.3.

We then present the percussive drilling model in Section 5.4. Experimental results

are discussed in Section 5.5 and we �nally summarize in Section 5.6.

5.2 Rotary hammer drill mechanism

We use a compact rotary hammer drill (model RHH180-01 from Bosch Group)

for the experiment. To illustrate how the rotary hammer drill generates the high-

energy impact, Fig. 5.1 shows the internal mechanism of the drill unit used in

experiments. A high-speed brushless motor is used to drive both the rotational

and vibratory motions for a compact design. A pair of gears is used to directly en-

gage the motor output rotation to drill bit. A cam-crank mechanism is employed

to simultaneously convert the rotational motion into the linear motion and then

drive the piston-anvil pair for vibratory impact motion for the drill bit. There

is a switch to dis-engage the cam-crank mechanism so that the vibratory motion

of the drill bit is disabled and the drill behaves the same as a regular drill. The

impact-induced drilling process such as the one generated by rotary hammer drill

is also called percussive drilling. In the following sections, we present the models
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motor
Brushless Cam crank

mechanism
Speed reduction

gear set

chamber
Speed reduction
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Figure 5.1: Mechanism of a commercial rotary hammer drill.

to capture the percussive drilling and also use these modeling development to

interpret and optimize the drilling performance.

5.3 Hammer drilling kinematics and minimal thrust force

Figure 5.2 illustrates the mechanical structure of the hammer drill unit and also

the percussive drilling process. The impact motion is produced by the piston-anvil

pair and driven by the cam-crank mechanism. The piston is �rst accelerated and

hits the anvil. The anvil then hits the drill bit at high speed to generate the

impact on concrete. Once the drill bit bounces back from the concrete after

impact, it pushes back the anvil and then the piston back to its original position

for the next impact cycle. Two limit (rubber) blocks are used to restrict the anvil

motion.

For analysis convenience and explicitly clear, we only consider the steady-state

cyclic drilling process. Let mp, mb, and Md denote the mass for the piston, the

drill bit and the entire drill unit, respectively. The mass of the anvil is relatively

small and we assume a perfect energy and momentum transfer during its impact
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Figure 5.2: A snapshot of percussive drilling process for the rotary hammer drill.

with the drill bit. We also denote the applied thrust force on the drill unit is

Ft and the period of cyclic impact is T . During the period T , the bit-concrete

impact happens within a short period TI and we also denote TNI = T − TI . To

analyze the piston-anvil-bit motion and their kinematics, we assume that during

each impact cycle, the piston is accelerated to the same velocity vp0 relative to

the drill housing before it hits the anvil. We denote the drill bit velocities before

and after bit-concrete impact as vb0 and vb1, respectively. The velocity of the drill

housing just before the bit-rock impact is denoted as vM0 and its velocity after

the bit bounces back and hits the anvil and the housing is denoted as vM1.

Assuming that the conservation momentum during the piston-anvil-bit inter-

actions, we have

mbvb0 = mava0 = mp(vM0 + vp0), (5.1)

where ma and and va0 are the anvil's mass and velocity after piston-anvil impact.

After anvil-bit impact, the drill bit keeps its velocity vb0 until it hit the concrete.

After penetrating into the concrete for distance d0, it bounces back to hit the
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anvil with velocity vb1. The kinetic energy of the drill bit is partly dissipated in

the bit-concrete impact and thus, we have

1

2
mbv

2
b0 >

1

2
mbv

2
b1 =⇒ |vb0| > |vb1|. (5.2)

During the bit-concrete impact, the impulse momentum can be calculated as

II =
∣∣∣ ∫ TI

0

FI(t)dt
∣∣∣ = mb (vb0 − vb1)

where FI(t) is the bit-concrete interaction force during the impact. In the above

calculation, we de�ne the positive velocity as downward. Using (5.1) and above

calculation, it is straightforward to obtain

mbvb0 < II < 2mbvb0. (5.3)

After the drill bit bounces back and hits the anvil, we assume that the drill

bit travels along with the drilling unit at velocity vM1 and therefore, we have the

momentum balance equation

mbvb1 +MdvM0 = (mb +Md)vM1 ≈MdvM1,

where in the last step, we use the fact mb � Md. After the impact time period

TI , the entire drilling unit, including the bit, travels under the thrust force Ft and

gravitational forceMdg, g is the gravitational constant, that is, under acceleration

ad = Ft

Md
+ g. Under such acceleration, the entire drill unit moves downward and

such motion depends on thrust force Ft. If we de�ne the threshold thrust force Fth

under which the entire drill unit travels exactly the same as the bit penetration

distance d0 within time period TNI , then we have

d0 =
1

2
(vM1 + vM0)TNI , (5.4)

where we use the kinematic relationship of the drill unit under constant acceler-

ation ad with initial and �nal velocity vM0 and vM1, respectively. On the other
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hand, under Fth, considering the drilling unit and the drill bit as one body, vM1

and vM0 can be obtained from the momentum balancing equation during time

periods TI and T as follows.

MdvM1 = (Fth +Mdg)TI − II , (5.5)

MdvM0 = (Fth +Mdg)T − II . (5.6)

Since TI � T , we therefore approximate TNI ≈ T and thus, Fth is obtained by

solving (5.4)-(5.6) as

Fth =
2d0Md

TNI(TI + T )
+

2II
TI + T

−Mdg

<
2d0Md

T 2
+

2mpvp0
T

−Mdg

Using inequality (5.3), we obtain the range of Fth as

2d0Md

T 2
+
mpvp0
T
−Mdg < Fth <

2d0Md

T 2
+

2mpvp0
T

−Mdg.

From the above discussion, it is straightforward to know that if the thrust force

is larger than the threshold value, i.e., Ft > Fth, the drill unit is pushed down

even before the bit bounces back and therefore, the bit will be in contact all time.

If the thrust force is small or negative (i.e., pulling the drill unit upwards), for

each steady-state, we have the momentum balancing equation

(Ft +Mdg)T − II = 0.

Therefore, the minimum thrust force Ftmin to maintain a steady-state percussive

drilling needs to satisfy the following equality.

Ftmin +Mdg =
II
T

Using (5.3), from the above equation we obtain

mpvp0
T
−Mdg < Ftmin <

2mpvp0
T

−Mdg. (5.7)
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Experimental results will be used to validate the above calculation in Section 5.5

and it is validated that for the portable rotary hammer drill unit, it is required a

small thrust force to perform e�cient drilling.

5.4 Percussive drilling model

5.4.1 Modi�ed dry friction-based drilling model

Figure 5.3 illustrates the dry friction-based percussive drilling model for the bit-

concrete interactions. The drill bit is modeled as a mass mb with initial velocity

vb0. It hits the mass-less concrete surface S1 and then moves together downwards.

The actual penetration into the concrete is captured by the displacement of mass

less surface S2. The displacements of S1 and S2 are denoted as x1 and x2, re-

spectively. The spring with constant k1 is used to model the elastic e�ect of the

concrete materials. The output forces of dry friction elements P1 and P2 have the

property with their displacements x2 and x3 as

P1(x2) =


Fk1 if Fk1 ≤ P10

P10 otherwise

and

P2(x3) =


Fk2 if Fk2 ≤ P20

P20 − k3x3 if Fk2 > P20 and x3 ≤ P20

k3

0 x3 >
P20

k3

(5.8)

where P10 and P20 are constants, k3 > 0 is a constant, and Fk1 and Fk2 are

the forces for the springs with constants k1 and k2, respectively. By the above

de�nitions, the nonlinear output forces of dry friction elements P1 and P2 are

dependent on the applied forces (i.e., spring forces) and for P2, its output force

also depends on the displacement x3 of the mass less surface S3 while P1 does not
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depend on x2.

S2

F

x2

S3P1

S1

k1

k2

P2

x1

v0

x3

m1

Figure 5.3: Modi�ed dry friction-based percussive drilling model for bit-concrete
interactions.

The purpose of introducing two dry friction elements P1 and P2 is to capture

the crushing and chipping e�ects, respectively, in percussive drilling process[109].

P10 represents the threshold for the crushing force on concrete, P20 indicates the

threshold for the chipping force on the concrete, and k1 is the elastic constant

of concrete materials. The spring constants k2 and k3 are used to capture the

crushing and chipping e�ects and we will discuss later. The attractive property

of using the nonlinear dry friction model is that the force-penetration relationship

shows the similar commonly reported hysteresis characteristic [62, 27, 39]. in the

following, we discuss detailed analysis and present the physical interpretation for

the model parameters.

Due to the discontinuous forces introduced by P1 and P2, we consider the

force-displacement relationship into �ve stages depending on the initial kinetic

energy of the drill bit, that is, vb0.

Stage I: Elastic deformation. In this case, neither of P1 and P2 is in motion and
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vb0 is not large enough to generate impact force FI > P10, namely,

FI = k1x1 ≤ P10, x3 <
P20

k3
.

The motion equations for the bit-concrete interactions are

mbẍ1 + k1x1 = 0, x2 = 0, x3 = 0.

A linear relationship exists between FI and x1 and its slope is dFI

dx1
= k1.

Stage II: Crushing process. In this case, surface S2 moves but surface S3 does not

move. The two springs k1 and k2 act in series and therefore,

P10 + P20 ≥ FI = k1(x1 − x2) > P10, x3 <
P20

k3
.

The motion equations are given as

mbẍ1 + k1(x1 − x2) = 0, x3 = 0

and k1(x1 − x2) = P10 + k2x2. Using the above equation, we obtain impact force

FI = k1k2x1+k1P10

k1+k2
and the slope of the FI-x1 curve

dFI
dx1

=
k1k2
k1 + k2

=: k′2.

Stage III: Chipping process 1. In this case, all S1, S2, and S3 move and x3 ≤

P20/k3. By (5.8), we have

FI = k1(x1 − x2) ≥ P10 + P20 =: P ′20.

The motion equations are

mbẍ1 + k1(x1 − x2) = 0, k2(x2 − x3) = P20 − k3x3,

and k1(x1 − x2) = P10 + k2(x2 − x3). Similar to the previous case, we obtain the

slope of the FI-x1 curve as

dFI
dx1

=
k3k

′
2

k3 − k′2
=: k′3 < 0
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by the choice of k3 < k′2.

Stage IV: Chipping process 2. Similar to Stage III, the condition for this stage is

P
′

20 > FI = k1(x1 − x2) ≥ P10, x3 >
P20

k3

and the motion equations are

mbẍ1 + k1(x1 − x2) = 0, k1(x1 − x2) = P10, x3 = x2.

The slope of the FI-x1 curve is
dFI

dx1
= 0.

Stage V: Elastic relaxation. In this case, both S2 and S3 do not move and only S1

re-bounces back and this represents the concrete's elasticity. Thus, FI = k1x1 <

P10 and the motion equations are

mbẍ1 + k1(x1 − x2) = 0, ẋ2 = 0, x3 = x2.

The slope of the FI-x1 curve is
dFI

dx1
= k1.

5.4.2 Drilling performance with the dry friction-based model

Depending on the initial kinetic energy of the drill bit, i.e., vb0, the bit penetration

follows the motion calculation as described in Stages I-V in the previous section.

In this section, we explicitly present the penetration analysis and calculation using

the dry friction-based model in Section 5.4.1.

Using the results provided by the dry friction-based percussive drilling model,

Figure 5.4 illustrates the relationship between the drill bit-concrete impact force

FI and bit traveling displacement x1 for Stages I-V (i.e., from elastic deformation

to elastic relaxation) discussed in the dry friction-based drilling model. Corre-

sponding to Stages I (elastic deformation) to V (elastic relaxation) in sequence,

lines OA, AB, BC, CD, and DE indicate their FI-x1 relationships. Although

each piecewise line segment indicates one stage, for a given bit impact energy
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Figure 5.4: Schematic of the bit-concrete impact force FI and the deformation
x1. The actual concrete penetration distance is x2 and is related to x1.

the changes of the FI-x1 relationship follows the progressive process from Stage

I to V, that is, following the ordered curve
−−−−−−−→
OABCDE. If the bit impact energy

cannot sustain for all �ve stages, say only reaching Stage II at point F in the

�gure, then the concrete relaxation will follow the linear elastic relationship as

that in Stage I, that is, following line FG. In this case, the FI-x1 relationship

will follow the ordered line segment
−−−−→
OAFG. When the drill bit is re-loaded for

the next impact cycle, it will follow the same elastic slope, such as that of
−→
GF .

Similar discussions and interpretation are also reported in early literature about

percussive drilling, such as those in [62, 109].

The drill bit penetration x is indeed modeled as the displacement x2 of surface

S2 in the dry friction-based model. Depending on which stage a particular drilling

process reaches, the penetration distance x is di�erent. For a drilling process only

in Stage I, the bit-concrete interaction only involves the elastic deformation and

no actual penetration is achieved, that is,

xIp(vb0) = 0, (5.9)
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where xip is denoted the drilling penetration x for the ith Stage, i =I, II, · · · , V.

In this case, the initial kinetic energy of the drill bit is less than the potential

energy threshold at which the crushing process begins, namely,

1

2
mbv

2
b0 ≤

1

2

P 2
10

k1
,=⇒ vb0 ≤ vIb0 := P10

√
1

mbk1
. (5.10)

If only the crushing process happens in percussive drilling, that is, Stage II,

the FI-x1 follows
−−−−→
OAFG in Figure 5.4. In this case, the initial kinetic energy of

the drill bit satis�es

1

2

P 2
10

k1
<

1

2
mbv

2
b0 ≤

1

2

P 2
10

k1
+

1

2

P ′20P20

k′2

and thus

vIb0 < vb0 ≤ vIIb0 :=

√
vIb0

2
+
P ′20P20

mbk′2
. (5.11)

The penetration distance is

xIIp (vb0) =
P10

k2


√√√√ k1
k1 + k2

(
1 +

v2b0

vIb0
2

k2
k1

)
− 1

 . (5.12)

When a drilling process both crushes and chips the concrete, i.e., in Stage III,

the initial kinetic energy for the drill bit must meet the following requirements.

1

2
mbv

II

b0

2
<

1

2
mbv

2
b0 ≤

1

2

P 2
10

k1
+
P10 + P ′20

2

(
P20

k
′
2

− P20

k′3

)
.

Thus, we have

vIIb0 < vb0 ≤ vIIIb0 :=

√
vIIb0

2
+
P20 [P ′20(k

′
2 − k3) + P1k3]

mbk23
(5.13)

and the penetration distance is

xIIIp (vb0) =
P ′20
k3
− P10

k2
+
k3 − k2
k2k3√

mb

[
k1vIb0

2 − k′3
(
vIIIb0

2 − v2b0
)]
. (5.14)

Note that k′3 < 0 and also k3 < k′2 < k2 by the previous discussions.
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If the drilling process in Stage IV, that implies a large initial bit velocity vb0,

i.e., vb0 > vIIIb0 , and the penetration distance is

xIVp (vb0) =
mbv

2
b0

2P10

− P10

2k1
− P 2

20

2k3P10

. (5.15)

The detailed derivations and calculations of penetration functions (5.12) and (5.14)

are omitted here due to the page limit.

The value of the velocity bound vIIIb0 is typically large such that Stage IV

unlikely happens in percussive drilling process. Indeed, most literature such as [62,

109, 22, 21] do not discuss and report this observation. As show in Section 5.5,

in the portable rotary hammer drilling experiments, only �rst two stages are

observed and most the existing work only report the �rst three stages.

Summarizing the above discussion, Figure 5.5 shows the relationship between

the drill bit penetration per impact xp and its initial impact velocity vb0. Note

that the penetration per impact depends not only the bit initial impact velocity

vb0 but also on the properties of the bit-concrete interaction, such as sti�ness and

strength coe�cients that are re�ected by model parameters k1, k2, P10, etc. In

the next section, we discuss how to obtain the values of these parameters.

5.4.3 Estimation of the model parameters

To use the dry friction-based percussive drilling model, several model parameters

need to be identi�ed and estimated through experiments. In this section, we

brie�y discuss the physical meaning or interpretation of these parameters and

then present methods to estimate them.

Spring constant k1 represents the elastic deformation constant of the drill

bit-concrete interactions. The elastic deformation and relaxation happen in the

�rst and the last stage of the previously discussed drilling model. Because of

this understanding and assumption, the value of parameter k1 can be estimated
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Figure 5.5: Schematic of the relationship between the bit penetration xp and the
bit initial impact velocity vb0.

through the static loading testing when the drill bit starts to penetrate a �at

surface of the concrete material.

The estimates of parameters P10 and k
′
2 can be obtained through the obtained

experimental penetration per impact vs. bit initial velocity relationship. Assum-

ing the experimental data �t the analytical predictions in Stages I and II (curve

ÔAB) as shown in Figure 5.5, with known k1 value, values of P1 and k2 can be

obtained through (5.12) with a nonlinear least square �tting algorithm. A similar

approach can be used to estimate the values of parameters P20 and k3 with the

prediction function (5.14) in Stage III. However, in the experiments using the

portable rotary hammer drill set, the initial bit velocity is not large enough to

produce such experimental testing data.

5.5 Experimental results

In this section, we present the results from various experiments to validate the

pure percussive models and analysis discussed in previously sections.
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5.5.1 Drilling testing setup

Besides the robotic drilling end-e�ector, an indoor drilling testbed is built show

in Figure 5.6. The main reason of using this testbed for validating the percussive

models and analysis is the rigid support for the drill unit rather than the �exible

support of the robotic manipulator. We use the same modi�ed rotary hammer

drill unit as that shown in Figure 4.5a. To measure the drilling forces and torques,

a 6-DoF force/torque sensor (model Mini45 from ATI Inc.) is used in the testbed.

A cable potentiometer (model SP1-25 from Celesco Inc.) is used to measure the

feeding distance and also the penetration distance. An optical encoder is used to

monitor the drilling speed. The entire drilling �xture is mounted on a vertical

linear guide that is rigidly attached to the wall. A set of counter-weights are

used to adjust the drilling thrust force. We use the real-time xPC system (from

Mathworks Inc.) for data acquisition and drilling speed control with a data

acquisition card (model PCI-6221 from National Instruments Inc.) A drill bit

with a 6.35-mm diameter (i.e., 1/4 inch) is used in all experiments. Two di�erent

concrete materials are used in the experiments: homogeneous concrete mortar

samples and aggregated, heterogeneous concrete samples.

We disengage the cam-crank switch on the hammer drill so that only pure

percussive drilling tests are conducted in experiments. The values of the physical

parameters of the drill unit are listed in Table 5.1. The maximum impact fre-

quency for the hammer drill used in the lab is around is around 75 Hz and thus

the minimum percussive period Tmin = 1/75 = 13.3 ms as listed in Table 5.1.

Similar to the approach in [108], the maximum initial bit impact velocity is mea-

sured as vmax
b0 = 3.5 m/s. The initial bit impact velocity can be controlled by the

computer between 0 and vmax
b0 .
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Figure 5.6: The percussive drilling experimental setup.

Table 5.1: The values of the physical parameters of the drill unit

mp (kg) mb (kg) Md (kg) vmax
b0 (m/s) Tmin (s)

0.05 0.05 3.0 3.5 0.0133

5.5.2 Pure percussive drilling results

5.5.2.1 Minimum thrust force validation

The analysis and results of the minimum thrust force presented in Section 5.3

are validated through a set of pure percussive drilling experiments on mortar

samples. Figure 5.7 shows the average and standard derivation of the penetration

per impact (i.e., xp) under changing total thrust force Ft + Mdg and impact

frequency of 75 Hz. It is clear from the results shown in the �gure that all tests

with the total thrust force less than 31.1 N fail to penetrate into the concrete,

while all tests with the total thrust forces greater than that value perform almost

the same penetration per impact. The estimate of the minimum thrust force is

then Ftmin = 1.7 N, which is consistent with analytical result given in (5.7). The

penetration per impact xp under large thrust forces are slightly smaller than those
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under low thrust forces. This could be due to the accumulated drilling debris in

the experiments under large thrust forces.
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Figure 5.7: Penetration per impact on a mortar sample with various total thrust
forces Ft +Mdg.

5.5.2.2 Model parameter estimation

As we discussed early, a part of the model parameters are identi�ed based on

directly experimental measurements by their physical interpretation and the val-

ues for the other parameters are estimated using the analytical model to �t the

experimental data.

The value of the spring constant k1 can be obtained directly measuring the

slope of the force-penetration curves of the static indentation test. Figure 5.8

shows the indentation testing of the bit-mortar interaction. The results under

multiple loading/unloading cycles demonstrate a consistent, constant slope value

in the elastic region. Using these results, we estimate k1 = 3 × 106 N/m for the

mortar material. We also conduct the similar testing for the concrete sample and

the estimates of the parameter k1 are listed in Table 5.2.
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Figure 5.8: Experimental curve of the indentation testing using the drill bit on a
�at surface of the mortar sample.
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Figure 5.9: The experimental results of the penetration per impact xp vs. the
initial bit velocity vb0 for the mortar sample
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Figure 5.10: The experimental results of the penetration per impact xp vs. the
initial bit velocity vb0 for the concrete sample

Table 5.2: The estimated values of the dry friction-based drilling model parame-
ters

Sample type k1 (N/m) k2 (N/m) P10 (N)

Mortar 3× 106 1.36× 107 779

Concrete 4× 106 1.55× 107 1224

To estimate the values for parameters P10 and k2, we conduct a series of exten-

sive pure percussive drilling tests on both the mortar and the concrete samples.

In these tests, the bit's initial velocity vb0 is varying for each run and then we

record the penetration distance per impact xp. Figs. 5.9 and 5.10 show the ex-

perimental results. Under a �xed vb0, the drilling experiment is repeated four

times and the calculated mean and standard deviation of xp are plotted in these

�gures. As we discussed in Section 5.4.3, assuming the drilling process is within

Stages I and II, we can use these experimental data sets to estimate the values

of P1 and k2. The actual estimated values of P1 and k2 for both the mortar and

the concrete samples are listed in Table 5.2. Since the physical interpretation of

P1 is the crushing threshold of the pure percussive drilling material, its value can
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also be estimated by compressive strength testing results, that is, fc = 19.6 MPa

for the high-strength mortar sample and fc = 41.4 MPa for the normal concrete

sample, then we estimate the total forces Pm
10 = fc×π4d2 = 630 N for the mortar

sample and P c
10 = 1224 N for the concrete sample, where d = 6.35 mm for the

bit diameter. These values are consistent with the results in Table 5.2 that are

estimated by drilling experiments.

In the above value estimation for parameters P1 and k2, we assume that the

penetration-velocity characteristic happens within Stages I and II, that is, only

elastic and crushing processes. To validate such a treatment, we conduct a static

penetration test and demonstrate that no chipping happens with applied force

around 5000 N, which is consistent with the result reported in [109]. For the

given maximum bit initial velocity vmax
b0 = 3.5 m/s, we estimate the maximum

impact force Fmax
I ≈

√
mbk1 (vmax

b0 )2 = 1356 N, which is far less than the chipping

threshold. Therefore, using this drill unit, the values of other model parameters

such as P20 and k3 cannot be estimated and obtained.

Using the estimated model parameters, Figure 5.11 demonstrates a compari-

son between the experimental results and the model prediction of the penetration

distance for a pure percussive drilling run on the mortar sample. The highly agree-

ment results shown in this �gure clearly demonstrate that the dry friction-based

pure percussive drilling model captures the actual drilling penetration distance.

5.5.3 Discussion

From the results shown in Figs. 5.9 and 5.10, we can estimate the �rst critical bit

initial velocities for drilling on the mortar and the concrete samples are around

vIb0 = 2.01 m/s and 2.74 m/s, respectively. From the model prediction in (5.10),

vIb0 ∝ P10√
k1

and therefore, the critical penetration velocity is proportional to the

drilling material's compressive strength. This observation is validated by the
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Figure 5.11: Comparison of the experiments and the model prediction for a pen-
etration distance during one pure percussive drilling at vmaxb0 .

parameter values shown in Table 5.2 with the above estimated vIb0s for the mortar

and the concrete samples. Moreover, from (5.12), we obtain the slope of the

xIIp -vb0 curve at v
I

b0 is

dxIIp
dvb0

∣∣∣∣∣
vIb0

=
P10

(k1 + k2)vIb0
=

√
mbk1

k1 + k2
∝
√
k1

k1 + k2
, (5.16)

where Eq. (5.10) is used in the second step of the above equation. From (5.16),

the slope of the xIIp -vb0 curve only depends on the values of parameters k1 and k2.

From Table 5.1, the values of k2 are much larger than k1s for both the mortar and

the concrete samples. Thus, the ratio of the slopes between these samples is 1.02.

This calculation implies that though their material properties have signi�cant

di�erence, by increasing a unit of the initial bit velocity vb0, the gain of the

penetration per impact is almost the same. This interesting observation has been

con�rmed by comparing the results shown in Figs. 5.9 and 5.10.

Although the previously discussed model and its prediction results �t well

with the experiments, it only captures and explains the pure percussive drilling

process. In practice, the rotational motion of the drill bit plays a critical role for
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highly-e�cient and highly-e�ective drilling on concrete or rocks. Unfortunately,

the model presented in this chapter does not consider and contain the in�uence

of the bit rotation on the drilling performance. Understanding and modeling the

entire rotary-percussive drilling process remains as one ongoing research direction.

5.6 Conclusion

The use of recent advances in robotics and automation technologies in bridge

deck rehabilitation has motivated this study of autonomous percussive drilling on

concrete. In this chapter, we presented a mathematical model of a pure percussive

drilling process. A modi�ed dry friction-based drilling model was presented to

capture three major phenomenon in the drilling process: the elastic deformations,

crushing and chipping of the penetrated material. We analyzed the drilling model

and presented a set of analytical formulation for the critical drill bit kinetic energy

and the penetration rate per impact. The model parameters were physically

interpreted with the experimental testing and the values of these parameters

were estimated experimentally. Finally, we validated the model prediction with

experiments through extensive drilling tests. One of the natural extension of the

proposed work is to understand and include the drill bit rotational contribution

into the drilling model.
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Chapter 6

Simultaneous Bridge Deck Inspection And

Rehabilitation

6.1 Introduction

The progressive nature of the bridge deck deterioration requires early detection

and intervention. A successful bridge deck health management system should be

able to diagnose the problem and adopt appropriate approach to mitigate the

problem before it goes beyond repairable. Therefore e�ective solution for bridge

health management requires simultaneously identifying and �xing the problems.

Having problems exposed and �xed at the same time could also substantially

reduce the interruption of tra�c and labor cost.

The inspection and rehabilitation task are very di�erent in nature, therefore

instead of having a monolithic system solve everything, we could decouple the

inspection and rehabilitation problem to be addressed by a distributed system.

This distributed system include two agents one is responsible to evaluate the

bridge deck while the other is responsible to make the decision to choose the

defect to �x. While the two agents make their own decision on their own, they

could communicate wirelessly to share information for cooperation.

In previous chapter, we have introduced the RABIT inspection robot and

ANDERS rehabilitation robot. In order for the two robots to work cooperatively

as a complete solution for bridge deck inspection and rehabilitation, there are a

few challenges. First, the ANDERS robot must rely on the defect information
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provided by the RABIT robot therefore requires RABIT generate an accurate

defect map online. The online defect map requires the robot to render precised

mapping in a reasonable time scale. In the previous chapter, RABIT is using

a �xed step to inspect the bridge and generate an defect map o�ine. While

we could clean the data o�ine, those techniques are generally not available when

generating online map. Also since we need to perform operation on the bridge, we

require the online defect map to have enough accuracy for the rehabilitation task.

One way to boost precision is to reduce the step size which serves as sampling

frequency. But a step size too small would lead to excessive inspection time

which further blocking the tra�c. If the step size is too large, then precision and

con�dence of the online map are not guaranteed. After the defect map generation,

the rehabilitation robot need to determine the appropriate spots from the highly

non-convex shaped heat map area.

The rest of the chapter organize as follows. In the next section, we review

the related work including coverage planning and robot coordination. In section

2, we discuss the problem formulation and its assumptions and form two sub-

problems as mapping problems and planning problems. In section 3, we provide

an overview of the method. We then present how we use online Gaussian process

to provide both global and local delamination map in section 5. Later in section

6, we use the local delamination map to adaptively adjust the step size of the

inspection robot so we could accelerate the inspection process. In section 7, we

describe the planning algorithm of the rehabilitation robot based on the global

rehabilitation map. We provide simulation evaluation of the algorithms based on

real bridge data in section 8. The whole chapter is summarized in the last section.
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6.1.1 Related work

The problem for the inspection robot to determine the next sample position are

closely related to the problem of adaptive sampling [58] which the goal is to

choose observation locations that maximize the information gain and minimizing

prediction uncertainty. Early work such as tackling the next-best-view problem

[25] focus on the geometry approach for searching for the informative views. More

recent approach has been adopt the probabilistic modeling, such as information

gain [138] and [96].

Gaussian Processes have been used to model temperatures and other spa-

tial phenomena[26]. It becomes a popular approach in the robotics society as

it provide posterior estimation with uncertainty. [57][58] use Gaussian process

to model the uncertainty of the ship hull and plan the optimal path for the un-

derwater inspection vehicle. [96] present an informative planning algorithm with

Gaussian process to enable an autonomous marine vehicle to perform persistent

ocean monitoring. [119] propose an algorithm for exploration with Gaussian pro-

cess in unknown environments.

The coordination between the inspection and rehabilitation is related to �eld

of multi-robot systems. As pointed out in [132], multi-robot systems could divide

into homogeneous or heterogeneous based on robot capacity and competitive or

cooperative based on environment. Our system obviously falls in the heteroge-

neous and cooperative category. Ground and aerial robot are used together for

searching the target in [14][121]. Despite the di�erence, the central problem lies in

the multi-robot system is the resource con�ict [132]. We implement an approach

similar to lead-follower scheme to avoid resource con�ict such as collision between

robots.
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6.2 Background

6.2.1 Gaussian process

Gaussian process is a non-parametric non-linear estimator that perform learning

and inference from data. One of biggest advantage of Gaussian process is that it

predicts both mean value and covariance which facilitate probabilistic planning

and control. We brie�y introduce the Gaussian process in the context of 2D

spatial sensing in this section. Please refer to [130] for detailed introduction.

6.2.1.1 Gaussian process regression

A Gaussian process is a collection of random variables that any combination of

the variables forms a joint Gaussian distribution. A 2D spatial Gaussian process

f (x) : R2 → R1 is fully characterized by its mean value function µ (x) and

covariance function k (x,x′) for x ∈ R2

µ (x) = E [f (x)] ,

k (x,x′) = E [(f (x)− µ (x)) (f (x′)− µ (x′))]

The mean value function and covariance function is determined through model

and hyper-parameters.

Suppose the training data set includesN input output data pairsD = {xi, yi}Ni=1.

The output yi ∈ R is a noisy observation of the underlying function value with

zero mean Gaussian noise ω represented as

yi = f (xi) + ω, ω ∼ N
(
0, σ2

)
We de�ne the N -observation input design matrix as

X = [x1,x2, . . . ,xN ]T
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where xi ∈ R2 as the 2-dimensional spatial position. Give all the spatial position

in the N -observation input space, the corresponding observation vector is

y = [y1, y2, . . . , yN ]T

At a testing point x∗ ∈ R2, we want to predict the output value f∗ = f (x∗)

according to the training dataset D. If yi is a Gaussian process, then given N

training observations x1,x2, ...,xN and testing position x∗, the joint distribution

of the random variables y and f∗ is Gaussian could represent as y

f∗

 ∼ N
0,

 K + σ2IN K∗

KT
∗ K∗∗




where IN is N ×N identity matrix and the matrix Kis the N ×N kernel matrix

represent the covariance matrix between the training samples,K∗ is N×1 vector

represent the cross variance between testing point and training dataset, K∗∗ is

covariance of testing point. The covariance element K, K∗ and K∗∗ has the

element of the following form

K = [k (xi,xj)]i,j=1,...,N ,

K∗ = [k (x∗,xi)]i=1,...,N ,

K∗∗ = k (x∗,x∗) .

Gaussian process is often used as priors in the Bayesian setting, so the prob-

abilistic prediction of f∗ is represented as conditional distribution

f∗|x∗,D ∼ N (µ (x∗) ,Σ (x∗))

where the mean value µ (x∗) and the variance vector Σ (x∗) of the posterior

distribution are given by

µ (x∗) = KT
∗
[
K + σ2IN

]−1
y

Σ (x∗) = K∗∗ −KT
∗
[
K + σ2IN

]−1
K∗ (6.1)



123

6.2.1.2 Model selection and hyper-parameter learning

The Gaussian process is determined by the kernel function which also called

covariance function. The de�nition of the covariance function assumes the notion

of similarity, which means that we expect that closer points are more likely to be

similar. We focus our interest in stationary and isotropic covariance functions.

In regression problem, a kernel function corresponds to a set of basis feature

functions. The model selection choose the the kernel function that describes the

data relation between input space. The most widely used covariance functions in

machine learning are the radial basis covariance functions which represent as

k (xi,xj) = σ2
f exp

(
− 1

2l
(xi − xj)T (xi − xj)

)
+ σ2

noiseδij (6.2)

The hyper-parameters θ = {l, σf , σnoise} are a set of parameters serves as the

tuning knob of the covariance function and δij = 1 when xi = xj, otherwise

δij = 0. The radial basis function is stationary and isotropic because it only

depends on the distance between two data points but ignores the location of the

points. The radial basis function decreases as the distance between two points

increases where the speed and direction it decreases is governed by σ2
f and l. This

also indicate point close in the input space tend to have similar values. σnoise

represent the noise level estimation also serves a regularization term to prevent

over-�tting.

The hyper-parameters of the kernel are optimized during training by maxi-

mizing the log-marginal-likelihood which represent as

log (y|X) = −1

2
yT
(
K + σ2IN

)−1
y − 1

2
log
(
K + σ2IN

)
− N

2
log (2π)

An example 1D Gaussian process prediction is shown in Figure 6.1, where the

red dotted line is the function to be approximated as f (x) = x sinx, the red dot

are observations serves as the training set, the blue solid line is the prediction and
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Figure 6.1: Gaussian process 1D example.

the purple area is within the 95% con�dence interval. We could see around the

observation point, the variance is crushed. For the extrapolation, variance start

to increase as distance to the observation points increases.

6.2.2 Delamination condition map

The inspection robot is equipped with three kinds of NDE sensors GPR, resistiv-

ity probe and impact echo. The resistivity probe measures the resistance between

contact points on the ground and the resistance ohm value is a indication of exces-

sive moisture. A higher moisture are normally correlated with higher corrosion

rate which requires attention for monitoring purpose but no further active in-

tervention needed in this case. The GPR measures the corrosion condition of

the rebar which might originate small crack from rebar. Impact echo sensor is

measuring the frequency of the returned sound wave which is a direct indica-

tion of delamination underneath. These delaminations need to be addressed by

our rehabilitation robot before it goes beyond repairable. While the resistivity

probe and ground penetrating radar information related to the origination of the
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Figure 6.2: impact echo sensor in contact with the bridge deck surface at the data
collection position

delamination, the impact echo sensor data is a more direct indicator of the de-

lamination presence. So here we use only the impact echo sensor data to build

the delamination map which provide guidance for the rehabilitation operation.

The impact echo sensor is designed to measure through direct contact with

the bridge deck. A hammering action against the ground need to be triggered

to generating the re�ection wave that contains delamination information. The

inspection robot need to stop every few feet to take the measurement. For each

stop, the robot collect 14 points with 5.5 inch interval. The recordings are essen-

tially discrete points {x, y} and therefore need to be interpolated to generate a

delamination map.

6.2.3 Problem statement

We have two heterogeneous robot perform inspection and rehabilitation simul-

taneously on the bridge deck area. Both robot equipped with same computa-

tion resources and therefore computational load could be distributed between

two robots. Both inspection and rehabilitation robot are omni-directional and
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therefore easy to maneuver even in tight bridge space. We make the following

assumptions for the work site scenario:

1. The bridge surface is assumed to be �at for simplicity. It could also be

easily extended to curved bridge surface through projection.

2. We assume the delamination depth is within the reach of the drill bit and

therefore all the delamination area with various depth are projected to the

bridge surface which is a 2D euclidean space.

3. A low latency network communication is well established during the task.

In practice we have a WiFi network setup and if the bridge is more than

the single wireless router coverage area, a repeater could always be used to

extend the WiFi range.

4. We have no previous knowledge about the health condition of the bridge.

The inspection and rehabilitation robots have to rely on the data collected

for in-situ decision making.

We're aiming to deploy inspection and rehabilitation robot simultaneously and

�nish the tasks as quickly as possible. In order to do that we need to solve three

sub-problems.

Problem 1 (Online mapping problem): Given the history of the discrete mea-

surement y1:i, we need to provide a delamination condition map along with the

prediction uncertainty map in an online manner. Both the delamination map and

con�dence map would be used for the planning of inspection and rehabilitation

robots.

Problem 2 (Inspection robot planning problem): The inspection robot follows

a �xed ox-plow route that pre-computed for the bridge deck. We need to design an

planning algorithm to change the stop interval adaptively to reduce the number

of stops but still keep high precision in prediction.
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Problem 3 (Rehabilitation robot planning problem): Given the updated de-

lamination condition map, plan for next rehabilitation point to maximize repair

e�ciency and minimize resource con�ict with the inspection robot.

6.3 System overview

In order to complete the inspection and rehabilitation tasks simultaneously, there

are several subsystem that work closely with each other. We �rst provide an

overview of the system and we will provide details in the next sections.

The inspection robot �rst start to inspect the bridge following the pre-de�ned

ox-plow pattern with the initial step size. The rehabilitation robot follow the

leader inspection robot to minimize the resource con�ict such as collision. In each

stop, the inspection robot collect impact echo data at 14 contact points. Once

data is collected, both the local prediction module and global prediction module

started the training procedure. The local prediction module is used to predict

the delamination condition in the area ahead of the inspection robot along the

pre-de�ned path. The prediction, particular the uncertainty, is used to determine

the step size of the inspection robot. In area of high variance in measurement,

the robot start to reduce the step size and vice versa. In order to predict the

local uncertainty and decide the step size, the local prediction module need to

complete the model training and prediction in real time. This is possible since

the local prediction module only use the data within a certain range for training,

therefore the training and prediction are fast and scalable.

In addition to the local prediction module, we also implement a global pre-

diction module on the rehabilitation robot which is used for determine the reha-

bilitation point for the rehabilitation robot. The global prediction module used

all the data accumulated during scanning and generate a prediction map for the
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delamination condition for the whole bridge. The raw impact echo data collected

by the inspection robot is passed through network to the rehabilitation robot.

Those data packets is small enough so there is no signi�cant delay to impact

the system performance. Since the global prediction map takes in all the data

collected, the training time is much longer than the local prediction map. While

the training is in process for all the inspection data, the local prediction map is

responsible for updating the global map where the data is already collected but

not included in the current session of global training.

Once the global map is generated, we need to �nd out the rehabilitation

point. The goal is to �nd the severe delamination area and large delamination.

We focus on large delamination to improve the e�ciency by reducing the number

of operations. We �rst apply a empirical threshold to the global prediction map

and extract all the areas [122] in the map that have delamination index higher

than the threshold. It result in binary map with the patches of various size

and shape. We want to focus on the larger patches for e�ciency, therefore we

calculate the area of each blob and �lter out smaller blobs by a threshold. Inside

each remaining blob, we need to �nd a point that close to the center that could be

best facilitate the material delivery. The centroid is not suitable for our scenario

since there exist non-convex shape and the centroid might even falls out of the

blob area. We therefore �x the rehabilitation point as the point furthest from the

edge. This approach is showed to be generate robust rehabilitation point.

The rehabilitation points feed to the rehabilitation robot task queue in the

sequence that it has been found. The rehabilitation robot perform the minimal

invasive procedure on the rehabilitation point queue in sequence.When there is

no rehabilitation point in the queue, the rehabilitation robot act as the simple

follower to the leader which is the inspection robot. Since the inspection robot

route has no overlap between passes and the rehabilitation robot is always in the
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Figure 6.3: Gaussian process based delamination map prediction

inspected area, so there is no collision concerns between two robots.

6.4 Gaussian process regression for delamination map

For each impact echo measurement, the robot acquires a normalized assessment

value Zi ∈ [−1.0, 1.0] in the measurement location xi, where the lower the assess-

ment value represent the worse delamination condition.

The Gaussian process is used to process the impact echo data to generate the

delamination map online. The generated map is used by the inspection and reha-

bilitation robot for planning purpose. The computation time of Gaussian process

regression will generally increase cubicly with number of training samples. While

we scanning the a 30m×10m bridge, it could take up to 10 secs for the onboard

computer to train the model. This couldn't provide the real-time computation

time that required for planning such as determine the next stop of inspection

robot.
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We keep two sets of Gaussian process model in our system. Those two models

are trained in separate threads where a high priority Gaussian process training

running on the inspection robot providing real-time local delamination uncer-

tainty map and a lower priority global Gaussian process training running on the

rehabilitation robot providing global delamination map. Once receive new data,

the local delamination uncertainty map could be updated in real-time with train-

ing and prediction in less than 100ms. This facilitate the inspection robot to

determine the next step size in real time. In contrast, the global map is mainly

updated by the global Gaussian process model when it �nished the training. In

areas where global model haven't been able to incorporate newly collected, the

local Gaussian process model would be responsible for updating. This makes the

global map generation more scalable to larger inspection area.

6.4.1 Local delamination uncertainty map

The local uncertainty map is used to determine the next stop along the inspection

route. The variance is a good representation of the uncertainty with regard the

prediction and we could get from the Bayesian Gaussian process prediction.

The local prediction window is a rolling rectangular area that along the path

of the inspection robot. As shown in Figure 6.4, the area start from the the

current location of the impact echo arrays and extend along the robot moving

direction. The area has the same width as the array and the length is set as

the maximum step size of the inspection robot. The local training window is

another rolling rectangular windows that centered in the prediction area. It is

used to include the data points collected in the past inspection route for the

local training dataset. This rectangular essentially enlarge the prediction area to

include more local samples that are relevant to the prediction. The local Gaussian

process model is trained on the local training dataset to predict the delamination
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V(s)
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Figure 6.4: Local rolling window for delamination and uncertainty training and
prediction. The yellow rectangular area represent the prediction area. The brown
area represent area where the training sample are included. The solid black line
is the route that has completed from inspection. The dashed black line is the
future inspection route. The plot describes the average variance increase w.r.t
the distance from current impact echo array position

and uncertainty in front of the inspection robot. This approach e�ectively reduce

the training time of the Gaussian process model to below 100ms since the amount

of training data point are constrained. It provides a good approximation to local

delamination condition with highly relevant local data. The uncertainty map

generated is used for determine the next step size of the inspection robot in

Section 6.5.

6.4.2 Global delamination map

The global delamination map is the prediction of the delamination condition for

area that has been surveyed by the inspection robot. It is used by the rehabili-

tation robot to determine the next rehabilitation point. The global delamination

map is mainly updated by the global Gaussian process model. The global Gaus-

sian process model uses all the data that collected at that time and the training

time will increase cubicly as the training sample increased. It could take up to

10 secs for the training for a bridge deck of size 30m×10m. During training, new
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data will still be collected from the inspection robot. Therefore the local Gaussian

process model is responsible for updating the map where the prediction from the

global Gaussian process haven't been able to update. In situation that there is

overlapping area between update from local Gaussian process at di�erent steps,

only the prediction with lower variance will be updated.

6.5 Adaptive step length planning for inspection robot

In order to collect delamination data, the inspection robot has to come to a full

stop and press the impact echo array in close contact with the bridge deck. This

is the most time consuming part of the inspection procedure.

The step size of the inspection robot essentially determined the density of the

sample points collected and the denser sample points could potentially lead to

a more precise delamination map. While we want build a precise delamination

map which is essential for the rehabilitation operation, we need to do trade o�

between the data collection time and accuracy. If the robot could increase the step

size in deck area with low variation in delamination condition, the robot could

potentially stop less frequently. This would greatly improve the data collection

e�ciency without sacri�cing precision.

The variance quantify the spatial dependency between the existing measure-

ments and predicted points. From the variance estimation 6.1 and kernel equation

6.2, we could see once the kernel function is �xed, the variance monotonically de-

crease with respect to the distance of the predicted points and measurement. The

hyper-parameter of the kernel function is optimized in each iteration. Particu-

larly the length scale l will be larger causing higher con�dence if the measurement

shows agreement with trend. The property is particular useful where the local

delamination map shows little to no variation which could potentially encourage
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larger step size and reduce the amount of samples required. In area with high

variation of measurement, the higher variance suggesting the robot should slow

down and increase sampling rate to measure more frequently. In all, the variance

allows us to adjust the sampling frequency, essentially the stop interval, to reach

desired accuracy of delamination map.

The variance in the Gaussian process regression is used to adaptively adjust

the step while scanning. The inspection robot still follows the ox-plow route

precomputed as in the previous chapter, but with a variable step size. Right

after collecting the data, the robot generate a prediction for the area in front of

the inspection robot as shown Figure 6.4. This area have the width of impact

echo array width and the length as the maximum step size set as 0.6 meter.

We divide the prediction area into grid of 1cm and we compute the grid-wise

prediction variance of the future area according to the optimized kernel parameter.

To simplify the problem, we use the average variance value V (s) to represent

uncertainty, which is calculated among all the lateral grid cells for distance s along

the moving axis. Therefore, we have a curve representing the mono-increasing

function between moving distance and average variance along lateral axis. We

take the step size which is equal to the pre-determined threshold value of the

variance. If the variance at the maximum step size is still lower than the threshold,

we take the maximum step. The step size could represent as

si = max
(
V −1i (α) , smax

)

where Vi (s) is the variance function respect to the distance si from the ith data

collection location, α is the threshold value for the acceptable prediction variance

and smax is maximum step size.
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6.6 Target planning for rehabilitation robot

The job of the rehabilitation robot is to �x the delamination area which detected

through inspection. The rehabilitation robot �rst start to follow the inspection

robot with a safety distance. Once a rehabilitation target is available, the re-

habilitation travels to the point to perform the minimal invasive rehabilitation

procedures. Once the job �nished, the rehabilitation robot check the global delam-

ination map again to see if there is any other rehabilitation point which haven't

been treated. When there is no job remains, the rehabilitation robot start to

following the inspection robot again.

6.6.1 Rehabilitation point determination from global de-

lamination map

Once a global delamination map is available, the rehabilitation robot queries the

geo-referenced delamination map to get the next untreated delamination region

for the next movement. The next rehabilitation point are then passed into the

motion planner to execute the procedures as shown in 2.

To determine the next delamination point for repairing, we �rst perform a

threshold operation to choose the region with medium to severe delamination.

This results in multiple patches with variable size. We apply an erode morpho-

logical operation to remove the thin connection such as dumbbell shape as shown

in Figure 6.5a, because the thin connection could provide additional resistance to

the disperse of the matrix. We then �lter out the smaller areas which might due

to false positive or just isolated points. If the isolated points or area is on the

edge of the known inspected area, that area could later been incorporated into a

larger delamination area when neighboring points is available in the later pass.

This reduces the total number of the rehabilitation procedures that required. We
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then threshold the global variance map and use that as mask to choose rehabili-

tation areas with high con�dence. As a last step, we also mask out the previously

treated region. If the treated region is later discovered to have a larger span, we

will still perform operation on the newly discovered area.

Once we have mapped out the area to perform the rehabilitation procedures,

we need to determine the point to drill and �ll inside the area. One possible

solution is to use the centroid which calculated by the momentum of heat map

area. However the individual region might be highly non-convex, a resulting

centroid might be outside the delamination region as shown in Figure 6.5b. Here

we propose to choose the furthest interior point from the region boundary. In

order to do that, we perform a distance transform to get the distance to the

boundary for every point. If multiple furthest points exists with the same distance

to the boundary, we choose the one closest to the centroid. This approach could

guarantee the drilling and �lling point is inside the boundary and as close as

possible to the center, and make sure the epoxy material disperse evenly to the

rest of delamination region. In practice, to reduce the computation to query the

distance to boundary for each point, we only perform calculation on the locations

where we collected data points. Those points have the highest con�dence and

could make sure we perform the rehabilitation operation on the right spot. We

then select the rehabilitation point with the earliest timestamp that have been

collected by the inspection robot as the next target.

6.6.2 Collision avoidance

In order for the rehabilitation robot to work together with inspection robot, we

need to design a coordination algorithm for the two. Since the inspection robot

follows an ox-plow route to perform coverage planning which is time consuming,

we tend to keep the motion of inspection robot unperturbed and make it as the
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(a) (b)

Figure 6.5: (a) Dumbbell shape that has thing connection between larger patches;
(b) Highly non-convex area where the centroid is out of the area

master in the coordination. The rehabilitation robot will try to avoid motion

plans that con�ict with the inspection robot. There are in general two modes for

the rehabilitation robot to follow: lead-follower mode and active rehabilitation

mode. The lead-follower mode is used when no targeted rehabilitation point is

available and the rehabilitation robot is just following the inspection robot in the

back so that when a delamination region is available it could quickly react to

that. The active rehabilitation mode is used when one or more delamination area

needed to be repaired. When travel to the target, the rehabilitation robot will

stay inside the inspected area and the inspection robot doesn't travel back to the

inspected area, so there is no risk of collision between two robots.

6.7 Experiment validation

6.7.1 Simulation environment

To validate the proposed algorithms, we build a simulation system in ROS Gazebo

to verify the performance. A real bridge delamination map is used as the ground

truth for the testing scene where we could closely mimic the delamination dis-

tribution on the bridge deck in the real-life scenario. Through the UI interface,

the user could specify the inspection area by de�ne a polygon. Inside simula-

tion system, the inspection and rehabilitation robot are modeled as a collection
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Figure 6.6: Simulation environment in ROS gazebo

of chained rigid bodies. The moving mechanism such as omni-directional wheel

for the robot base movement and kinematics of the manipulator are modeled as

kinematic chains in the ROS Gazebo. For collision check and visualization, the

CAD model of inspection and rehabilitation robot are converted to meshes and

matched with each moving rigid body.

Through the user interface, the user could selected the area to inspect as

showed in the green lines as shown in Figure 6.6. Then the coverage path planner

will plan the inspection route through Boustrophedon decomposition [24] shown

as blue lines for straight path and red arrows for pure rotation point in Figure

6.6.

6.7.2 Variable step size validation

We implement adaptive step size algorithm for the inspection robot in the sim-

ulator. The result is shown in Figure 6.7. The colored map is the ground truth

delamination map where warmer red color indicate more severe delamination and

cold blue color indicate no delamination. The dots arrays are the impact echo

data collection position. For each dotted straight line, it composed of 14 dots

representing 14 impact echo measurements in on stop. From the �gure, we could

see the bottom part of the image shows more variation in the delamination condi-

tion and the robot stops more frequently producing sensor dots. However, in the

top right corner where there mostly no delamination or low delamination, robot
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perform a larger stride. This shows our algorithm could adaptively decrease the

step size for more complex areas and increase the step size for less complex area.

6.7.3 Rehabilitation points determination

We show the rehabilitation points determination in Figure 6.8. Figure ?? shows

the ground truth delamination condition of the bridge deck and Figure 6.8a shows

the severe patches through thresholding. Figure 6.8b shows the path to repair

after the erode morphological operation and path size �ltering. The red crosses

are the rehabilitation points which could deal with highly non-convex shapes and

dumbbell shapes.

6.8 Conclusion

In this chapter, we addressed several problem in the simultaneous deployment of

the inspection and rehabilitation robots. To enable the prediction of the delam-

ination condition while collecting data, we �rst introduce two Gaussian process

prediction module based on local or global data. The variance output of local pre-

diction module is used to adaptively determine the next step size of the inspection

robot. The global delamination map goes through multiple image processing pro-

cedures to generate the rehabilitation point for the rehabilitation robot. In order

to validate the concept, we design the simulation system that simulate the coor-

dination of two robots on real impact echo data. The system is validated through

the customized simulation system that could take in the real bridge data.
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Figure 6.7: Delamination map generated through inspection with variable step
size
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(a)

(b)

Figure 6.8: Rehabilitation points determination. (a) Ground truth delamination
map; (b) Thresholded delamination map; (c) Delamination map after erosion and
size �ltering and the determined rehabilitation points
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Chapter 7

Conclusion And Future Work

7.1 Conclusions

In this dissertation. we focused on the development of the autonomous robotic

systems for the bridge deck inspection and early delamination rehabilitation. The

bridge deck is the most weathered part of the bridge due to its direct exposure

to running tra�c and environmental stress. Defects such as delamination could

develop long before it could be inspected visually at late stage where rehabilita-

tion cost is very high. Therefore a more economical way for bridge management

should go through frequent bridge deck inspection and early defect rehabilitation

that prevent the further defect development. For bridge deck inspection, non-

destructive evaluation has been emerged as a promising approach [52] however

the bottleneck lies in the low e�ciency manual deployment. On the other hand,

there is no available solution for early defect mitigation such as minimal invasive

rehabilitation. In this dissertation we try to bring the robotics technology to

the inspection and rehabilitation of the bridge deck which could enable massive

deployment.

We �rst developed the bridge inspection robot that equipped various non-

destructive evaluation technology that could provide a comprehensive view of

the bridge deck. We solved two challenging problems. One is the hardware

and software integration of various non-destruction evaluation sensors and the

robotic system. The other is that we achieve robust pose estimation in presence
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of noise which is safety critical and essential for the autonomous inspection. We

demonstrated the performance of the inspection robot through extensive �eld

deployment.

Another critical aspect for the bridge inspection is the automated data pro-

cessing process. We developed a new image mosaicing system to automatically

processing the massive image data collected from inspection. The system com-

bined the drift-less GPS information and feature-based frame to frame registration

in the graph optimization framework. We showed the accuracy of the proposed

algorithm through quantitative testing on the bridge decks.

To mitigate the early defect of bridge deck such as delamination, we developed

the autonomous rehabilitation robot that performs minimal invasive rehabilita-

tion. We integrated a 5 degree of freedom manipulator with mobile base that

could precisely deliver the procedures to the required rehabilitation point. We

designed a custom-made end-e�ector that could perform rehabilitation procedures

including rotary percussive drilling and material delivery. The robotic system was

validated through extensive testing and demonstrated the minimal invasive reha-

bilitation on real bridges.

One of the critical part of the rehabilitation procedure is rotary percussive

drilling which produce large vibration. We studied the percussive drilling to

identify the appropriate threshold force that maximize the drilling e�ciency. We

also proposed a dry friction-based model to capture the percussive drilling process.

We presented the analytical formulation of bit concrete energy transfer and the

analytical solution of the penetration rate. We validate the model prediction

through indoor testing on a custom test platform.

To further improve the e�ciency, we studied the problem to simultaneously

deploy the inspection and rehabilitation robot. We used Gaussian process to

predict the delamination condition based on the spatial discrete impact echo
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measurement. In order to solve the training speed issue of the Gaussian process,

we implemented a multi-threading scheme to create two training sessions for local

and global data separately. The prediction uncertainty local map enabled us

to adaptive change the step size of the inspection robot in real-time therefore

e�ectively shortening the inspection time to obtain a map precised enough for

rehabilitation. Also, we developed an algorithm to choose the next target for

the rehabilitation robot based on the global delamination map. This work was

validated through a custom made simulation that could take in real bridge data.

7.2 Future works

There are a few research directions that follow this dissertation work.

In chapter 2, we developed a bridge inspection robot that perform non-destructive

evaluation through contact measurement. During each stop, the impact echo ar-

ray need to be pressed against the ground to enable the hammering operation.

This procedure is the most time consuming part of the inspection which could

be potentially replaced by contact-less sensors. Also, the array itself could right

now tolerate slight curved ground by the spring mechanism, but the contact re-

quirement might not be ful�lled when moving at the edge of bridge deck where

more curved road surface is designed for drainage. Again, a contact-less sensor

again might be able to help in those situations. [69] has proposed an contact-less

air-coupled system that fused the impact echo with surface wave measurement.

Getting this technology integrated will allow the inspection robot to inspect the

bridge without stop and avoiding the associated acceleration and deceleration.

This will dramatically increase the inspection speed.

In chapter 3, we developed a image mosaicing system to reconstruct the bridge

surface. Our future work will include shadow removal from the panorama which
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is now impacting the visual appearance. It would also be interesting to adapt our

system for online panorama generation. Another possible direction is to integrate

with the crack detection algorithm to generate a crack map which will be very

useful in practice.

In chapter 4, we developed a bridge rehabilitation robot that use a mobile

manipulator to perform rehabilitation procedures essentially drilling small holes

and �lling with �uid material. In order to facilitate the material delivery, the

�lling procedures need to be more thoroughly studied. In one of the �eld test,

the material �lling are not successful even with manual �lling. It's possible that

debris result from percussive drilling could clogged the delivery opening as pointed

out in [34]. Preliminary approach such as a internal vacuum drill bit proposed in

[34] could be a solution to the potential problem but need further development

and evaluation. On the other hand, we only rely on open-loop �lling time that

proportionally to the estimated delamination size. However, this procedure should

be replaced by using computer vision techniques to monitor if any material comes

out of the release hole or the �lling seal.

In chapter 5, we proposed a dry friction model to capture the pure percussive

drilling during rehabilitation. This model should be extended to account the

rotary e�ect of rotary percussive drilling which helps to remove the pulverized

material after impact. Moreover, the model should be integrated with the robotic

manipulator control to improve the penetration rate or suppress the undesired

vibration.

In chapter 6, we proposed the online delamination prediction based on Gaus-

sian process that facilitate the simultaneous deployment of the inspection and

rehabilitation robot. Although the approach was validated through simulation,

however physical test should be conducted to con�rm the performance. Also, we

employ a probabilistic framework for the delamination mapping problem where
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we didn't assume any prior knowledge. Incorporating the previous inspection re-

sult in the probabilistic framework could be helpful for identifying the area prone

to delamination and accelerate the inspection. Moreover, although impact echo

measurement is most related to the delamination, we could also include the rele-

vant measurement such as ground penetrating radar and electric resistivity in the

probabilistic framework to further improve the delamination prediction quality.

Lastly, the inspection robot currently followed a �xed route with variable step size

essentially a 1D problem, however with more prior information the robot should

be able to determine the next target without need to following the pre-de�ned

inspection route. An informative planning problem need be further studied by

factor in the information gain and e�ort for the movement.
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