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Significant increases in energy prices and price volatility, worsening global 

warming, adverse environmental footprints of fossil fueled energy and recent advances in 

energy system technologies have significantly elevated interest in clean distributed energy 

resources (DERs) and energy storage. Over the past decade, various forms of DERs, such 

as combined heat & power, fuel cells, hybrid power systems, microturbines, photovoltaic 

systems and reciprocating engines have been successfully integrated to the electric 

distribution systems. Moreover, environmental concerns have been urging for more and 

more integration of distributed renewable energy resources into the overall energy 

infrastructure. However, many challenges still remain; for instance, renewable generation 

(such as wind and solar) is not dispatchable and its production is not necessarily coincident 
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with system demand. As a result, cheap renewable may not efficiently be utilized at all 

times. In this context, battery energy storage systems can provide operation flexibility by 

storing excess renewable energy when there is low demand and dispatching it when its 

needed the most. With this in mind, the Federal Energy Regulatory Commission (FERC) 

recently enacted FERC Order 841, which attempts to remove barriers to the participation 

of electric storage resources in the capacity, energy, and ancillary service markets operated 

by Regional Transmission Organizations (RTO) and Independent System Operators (ISO).  

In this work, a Distributed Network-Aware Planning and Control System is 

developed aiming at optimal sizing, capacity allocation and planning and control of energy 

storages using real-time information. A storage node in such network can be a single 

functional unit or an aggregation of multiple units (e.g. modular network of energy 

storages) owned by either a utility company or by a third party. Capacity of storage nodes 

in the network can be static and deterministic or change dynamically due to units’ 

degradation and/or unavailability. For instance, a parking facility with EVs and Vehicle to 

Grid (V2G) charging stations can be a good example of an aggregate storage node. Arrival 

and departure of vehicles to this facility, permission for V2G by vehicle owners, and 

vehicles’ scheduling and charging requirements all together define a complex stochastic 

process that govern the overall capacity of the facility’s energy storage. We build a model 

that describes such a process and determines energy storage capacity of the aggregate node. 

The underlying model closely connects to business opportunities that such a facility can 

present to individual vehicle owners or to the facility operator.  

The planning and control scheme, introduced in this dissertation has significant 

impacts on overall energy network performance and efficiency by balancing dynamic 
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demands with energy supply, and can be utilized to address a range of energy storage 

applications including power quality and network reliability. The undertaken research in 

this dissertation can provide guidance on DER and energy storage operation and 

maintenance (O&M) strategies which can be utilized as a means for supporting microgrid 

operators, regulators and utility capacity planners towards strategic planning decisions. 
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CHAPTER 1: INTRODUCTION AND RESEARCH 

BACKGROUND  

1.1. Objectives 

This thesis intends to construct an integrated framework to model the behavior of complex 

power network and use it in the optimal short-/long-term planning, real-time operation and 

control of distributed energy resources (DERs). In this work, we are particularly interested 

in energy storage and the interaction of it with other network assets.  The following lists 

the main features of such framework: 

• Distributed network-aware control module for long-term planning, real-time 

operation and control of complex and interconnected power distribution network; 

A distributed control model is developed that utilize real-time communication and 

shared state knowledge of nodes to optimize operational efficiency.   

• Optimal short-/long-term planning module for power distribution networks (or 

micro-grids); The operation of such network is formulated as a dynamic programming 

model. The objective is to minimize the operation cost (supply and delivery cost of 

power) of power distribution network, and to maximize assets performance (measured 

by value generated for power distribution network) over a short-/long-term planning 

time horizon.     

• Supervised learning approach to construct the real-time adaptive control module 

for network real-time operation; A control model is formulated with the objective of 

minimizing the cost of operation in power networks. 
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• Utilization of operational information for planning purposes at the asset level; A 

continuous time Markovian model is developed to determine optimal maintenance 

planning for micro-grid assets with objective of minimizing ownership cost.  

• Stochastic representation of DER behavior; The purpose here is to capture stochastic 

behavior of DER nodes (state and availability) and utilize these behavioral 

characteristics in network controls.    

1.2. Brief Overview of Thesis Accomplishments 

Chapter 2 covers discussion on development of an integrated framework to determine the 

key factors of the behind-the-meter benefits, generated by individual and combined DERs 

with storage for various costumer facilities.  The value of energy storages is assessed by 

weighing the costs against financial gains and other benefits considering ancillary services 

in energy market. In this context, critical issues such as configuration of DERs (sizing), 

demand load profiles and pricing elements of energy providers were studied to specify their 

impact on energy storage value and total cost of the system. The results from this chapter 

will be used to motivate energy storage applications, and our formulations in the other 

chapters. 

Chapter 3 extends the current state of art in planning and control of a system with multiple 

storage nodes distributed over an arbitrary power distribution network. A set of simple but 

verifiable control strategies, which directly take into account network characteristics and 

states are developed. In the proposed Network-aware control model near optimal actions 

are taken in each individual storage unit based on the partial knowledge of the whole 
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network state. The supervised learning (classification) approach was adopted to construct 

the real-time adaptive control module for the network of energy storages.   

Chapter 4 provides an insight into potentials of using electric vehicle (EV) parking garages 

(as energy storage with dynamic capacity) to participate in ancillary markets or other 

applications. We developed an integrated model, which optimally dispatches EVs in a large 

parking facility to maximize the parking facility benefits. Moreover, the impact of such 

planning on the power distribution network was quantified. In the planning phase, a 

queueing model was used to estimate the available aggregate capacity of batteries in the 

parking facility (energy storage system (ESS) with dynamic capacity) during different 

times of a day. The risks associated to the stochasticity of the available capacity are also 

formulated. The hourly charging/discharging for the available capacity is formulated as a 

mix-integer optimization problem.        

In Chapter 5 we present an approach for optimizing operation and maintenance jointly for 

a microgrid (MG), which contains energy storage. A two-layered approach is developed. 

In the upper layer, we optimize the operation of MG by solving the optimal power dispatch 

within a MG network using mix-integer programming. In the bottom layer, by 

incorporating the upper layer information as input parameters, we use a continuous-time 

Markov chain model to calculate the optimal maintenance policy for the DERs. The 

proposed approach could be used in  stipulation process between micro-grid owner and 

DER maintenance provider to optimize economies for both sides. 
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1.3. Synopsis of Contributions 

1.3.1. Evaluation of the behind the meter benefits of energy storage systems 

with consideration of ancillary market opportunities (Chapter 2) 

In this chapter we develop an integrated framework to determine the key factors of the 

behind- the-meter benefits, generated by DERs coupled with energy storages for different 

facilities. We analyzed the value of energy storage system by weighting the cost elements 

against financial gains and other benefits considering ancillary services in energy market. 

Critical principals such as configuration of DERs (sizing), demand load profiles and energy 

pricing were studied to specify their impact on energy storage value. We suggest an 

integrated design approach in which electrical and heating loads and the generation sources 

are modeled, to take full advantage of excessive electricity and heat generated in the 

microgrid and enhance the overall system efficiency, by formulating a mixed-integer linear 

programming (MILP) model. We focus on three applications: (i) Energy Bill Management 

(EBM), (ii) Frequency regulation (iii) resiliency enhancement.  

1.3.2. Network-aware approach for energy storage planning and control in the 

network with high penetration of renewables (Chapter 3) 

In this chapter we present a novel network-aware approach in planning and control of a 

system with multiple storage nodes distributed over an arbitrary power distribution 

network. In such power network we are interested in the following problems: (i) Where to 

locate static storage nodes and how much capacity to allocate to each node for optimal 

sizing and operation; (ii) How to day-ahead plan for the charge and discharge of these 

nodes, and (iii) How to control their operation in a near real time basis. Planning and real 

time control decisions need to be made in reference to the characteristics and state of 
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constituent elements (nodes and arcs) of the network and the overall control objective. The 

state description of an element includes, among other attributes, the element’s availability 

and efficiency factors. We present two models: (i) A model for optimal location and 

capacity planning that also solves for day-ahead operational plan, and (ii) A model for 

optimal charge and discharge control of storage nodes in a near real time basis. We build a 

novel rule-based scheme for the near real time control of the storage network by mining 

the statistical relationship between input and optimal charge and discharge patterns. The 

supervised learning (classification) approach was adopted to construct the real-time 

adaptive control module for the network of energy storages.   

1.3.3. Energy storage system with dynamic capacity – EV parking lot model 

(Chapter 4) 

In this chapter we develop a novel approach for planning of energy storage with dynamic 

capacity. EV parking garage located in a distribution power network is considered as an 

energy storage node with dynamic capacity and stochastic charging demand. We provide 

an insight into potentials of using EV parking garage to participate in ancillary markets or 

other applications. We developed an integrated model, which optimally dispatches EVs in 

a large parking facility to maximize the parking facility benefits. Moreover, the impact of 

such planning on the power distribution network has been quantified. In the planning phase, 

a queueing model is adopted to estimate the available aggregate capacity of batteries in the 

parking facility during different times of the day. The risks associated with the stochasticity 

of the available capacity are also formulated. The hourly charging/discharging for the 

available capacity is formulated as a mix-integer problem. One key parameter in this 

problem is the permission from EV owners for vehicle-to-grid discharge. This parameter 
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is determined based on the incentive offered by the parking operator to the EV’s owner. 

1.3.4. Joint optimization of operation and maintenance policies for microgrid 

composing of energy storage system (Chapter 5) 

In chapter 5 we present a novel approach for joint optimization of  operation and 

maintenance of a microgrid (MG), composed of energy storage and considering the 

dependency between the operation and maintenance policies. The maintenance policies can 

evidently impact the availability of the DERs in a MG hence impacting its operational 

control policy. Moreover, an effective energy storage control policy reduces the downtime 

penalty if the stored energy can be used to satisfy demand during preventive maintenance 

or failure downtime. We introduce the term “operation dependency” for this problem. A 

two-layered approach was developed to address this dependency in MG operation and 

maintenance planning. In the upper layer, we optimize the operation of MG by solving the 

optimal power dispatch within the MG network using mix-integer programming. In the 

bottom layer, by incorporating the operation layer information as input parameters, we use 

a continuous-time Markov chain model to determine the optimal maintenance policy for 

the DERs.  

1.4. Motivation 

The reliability and aging of the US power grid, capacity constraints on transmission lines 

and the need for greener and more sustainable electricity have been driving the 

technological advances in this field. The penetration of renewable energy into the grid is 

increasing at a rapid pace. Carbon tax credits and emission control regulations, and the 

desire for higher degree of geographical proximity of generation to load are rapidly 

changing the face of the grid. The recent advances in electric battery technologies and the 
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reduced price of Electric Vehicles (EV) are significantly changing the adoption rate of EVs. 

These factors are shaping the supply and demand of electricity, and the changes are 

expected to happen at much higher pace between now and 2050. 

Over the past decade, a push has begun for distributed energy resources (DERs), including 

Combined heat power (CHP), fuel cells, hybrid power systems (solar hybrid and wind 

hybrid systems), microturbines, photovoltaic systems, reciprocating engines, and more. 

The rush to DER is fueled by environmental concerns, aging power grid infrastructure and 

lowered technology cost of renewables. An unprecedented increase of renewable 

resources, particularly PV systems, has happened in power distribution grids. However, 

major challenges still remain, including PV power generation volatility due to weather 

uncertainty; in particular, power production peak of PV or wind farms do not necessarily 

coincide with peak demand cycles. Therefore, large amounts of valuable renewable 

generation are usually wasted. Allocation of energy storage systems over the power 

distribution network increases the hosting capacity of PV and other renewable generations. 

Energy storage systems can provide multiple benefits to the grid, including the ability to 

levelize electricity demand, provide ancillary services, and provide reserve capacity. 

Moreover, installing energy storage improves the resiliency of the power grid. Recently to 

remove barriers to the participation of electric storage resources in the capacity, energy, 

and ancillary service markets operated by Regional Transmission Organizations (RTO) and 

Independent System Operators (ISO), the Federal Energy Regulatory Commission (FERC) 

enacted FERC Order 841, which increases the adoption of energy storage systems.  

With this background in mind, we are motivated to build the necessary tools to design, plan 

and control the complex network of energy storage systems. To the best of our knowledge, 
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there is a major gap in understanding how multiple storage units programmed for multiple 

applications should operate in a distribution network. The proposed approach is applicable 

to connected energy storage units in distribution networks with multiple applications.  

Capacity of each node could be static and deterministic or dynamic and stochastic. A good 

example of energy storage with dynamic capacity is a parking lot with multiple spaces for 

EV and V2G connections, where arrival and departure of vehicles are random and only a 

random portion of parked vehicles can serve vehicle to grid flow. Moreover, to the best of 

our knowledge the impact of energy storage operation on the performance degradation and 

maintenance strategy of other energy assets over the power distribution network or micro-

grid has not been investigated. In this dissertation we intend to fill these gaps by introducing 

a “Distributed Network-aware Planning and Control model” which aims to minimize the 

ownership cost of complex interconnected power distribution (or microgrid) network. The 

optimal planning (both maintenance and operational) and real-time control actions are 

taken in each individual node based on the partial knowledge of the whole network state, 

characteristics and state of constituent elements (nodes and arcs), and market condition. 

The following chapters are organized as follows: Chapter 2 focuses on the assessment of 

behind- the-meter value of energy storage system for different types of customer. Critical 

principals such as configuration of DERs (sizing), demand load profiles and pricing 

structure of energy providers are investigated to determine the key factors in energy storage 

evaluation. In Chapter 3, a novel network-aware approach is introduced for planning and 

control of a system with multiple storage nodes distributed over an arbitrary power 

distribution network, to determine where to locate storage nodes, how much capacity to 

allocate to each node, how to day-ahead plan for the charge and discharge of these nodes, 
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and how to control their operation in a near real time basis. Chapter 4 provides an insight 

into potentials of using electric vehicle (EV) parking garages (as energy storages with 

dynamic capacity) in energy market and the impact of such market participation on the 

power distribution network. Finally, Chapter 5 focuses on the impact of energy storage 

optimal operation on the long-/short- term maintenance planning of other DERs distributed 

over microgrid or power distribution network. The operational information produced by 

control module (introduced in chapter 3) is utilized to determine the optimal maintenance 

strategy for individual assets to minimize the total owner ship cost. 
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CHAPTER 2: EVALUATION OF THE BEHIND THE 

METER BENEFITS OF ENERGY STORAGE SYSTEM 

WITH CONSIDERATION OF ANCILLARY MARKET 

OPPORTUNITIES  

Abstract 

Significant increases in energy prices and price volatility, and recent advances in energy 

system technologies have raised interest in the potential economic opportunities for 

distributed energy resources (DERs) and energy storage. Moreover,  to remove barriers to 

the participation of electric storage resources in the capacity, energy, and ancillary service 

markets operated by Regional Transmission Organizations (RTO) and Independent System 

Operators (ISO), the Federal Energy Regulatory Commission (FERC) enacted FERC 

Order 841. Furthermore, increases in DER and energy storage adoption enhance the 

resiliency of the power grid. In this chapter, we analyze behind the meter benefits and 

resiliency capability of the price-taking energy storage devices in order to understand the 

impact of the facility's electricity and thermal demand behavior, energy providers pricing 

structure, DER configuration, storage capacity, and facility criticality on the storage 

evaluation assessment. We will the analysis for PJM territory and using simulated data 

from EnergyPlus reference models of DOE. These are validated models that are typically 

used for such studies. We develop an integrated design that accounts for different facilities 

with variant thermal and electrical loads, different DER configurations and different energy 

tariff structures. The energy storage evaluation projects, conducted by our research team at 

Rutgers Laboratory for Energy Smart Systems (RULESS) for New Jersey state, motivates 
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the research undertaken in this work.  The results from this chapter will be used to motivate 

energy storage applications, and our formulations in the subsequent chapters.  

2.1. Introduction  

Over the past decade, a move has begun on the use of the distributed energy resources 

(DERs),  including Combined heat power (CHP), fuel cells, hybrid power systems (solar 

hybrid and wind hybrid systems), microturbines, photovoltaic systems, reciprocating 

engines, etc. DER increasingly plays an important role in power distribution systems [1].  

Microgrid is a localized energy system which creates a platform for integrating different 

DERs into a balanced network to meet the local demand and provide reliable and affordable 

energy for communities such as commercial, industrial, and federal government consumers 

[2]. Moreover, at times of main macro-grid failure, a microgrid can operate independent of 

the larger grid and isolate its generation nodes and power loads from any disturbance 

without affecting the larger grid.    Having the ability to change between islanded mode 

and grid-connected mode [3-5] provides resiliency solutions to the grid and communities. 

Microgrids can also cut costs and allow communities to be more energy independent and 

more environmentally friendly [5]. 

Energy generation comprises many different types of renewable and non-renewable energy 

sources technologies [6, 7].  Integrating DERs along with storage systems gives flexibility 

to the microgrid. Energy storage such as chemical storage (primarily battery, including 

electric vehicles) and thermal storage (heating or cooling) have the ability to absorb energy 

from the main grid or local generation and return it later. In this context, energy storage 

technologies play a key role as they enable the increased use of renewable 

electricity generation to match energy production to energy demand and independency 
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from the grid by charging the storage during off peak hours and using it in peak hours [8]. 

Since some of the distributed generation technologies generate excessive heat, the thermal 

energy storage represents a fundamental element in the management of thermal demand 

and results in improving the overall efficiency of the microgrid [9]. Energy storage allows 

collection of renewable energy during daytimes and using it during nighttimes [10].  

Although energy storage devices make energy self-generation achievable by end users, the 

integration of the DERs along with the thermal and electrical storages create challenges for 

microgrid management [11]. DERs including Distributed Generations (DG) and storages 

can be managed and coordinated within a smart grid enabling a collection of energy 

resources to lower environmental impacts and improve security of supply. DER systems 

within a microgrid can employ renewable energy sources, such as solar power, wind 

power, solar biomass, and biogas to reduce the amount of carbon emission significantly. 

However, it should be noted that the supply of energy from renewable technologies is 

intermittent or stochastic in nature [12, 13] due to their reliance on weather conditions (i.e. 

sunlight, wind). The most important benefits of DERs include increased use of local energy 

resources toward the efficiency, reliability, and resiliency of energy network power in the 

microgrid, reduced carbon emissions and peak shaving [14]. These factors along with 

energy management strategies such as demand response, load shifting, and storage 

management will form a necessitating transition toward a smart grid, a framework for the 

generation mix of distributed energy resources (DERs) [15, 16]. Moreover, Storage and 

DR can be combined with DG technologies to achieve greater energy balance [17, 18]. 

Recently, a new and competitive business has been formed regarding the consumers’ 

enthusiasm for generating and managing their own electricity. In this regard, utilities are 
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exploring opportunities to provide ancillary services and innovative legislation like 

incentives, tax credits which are all moving in a direction that makes energy services more 

beneficiary and attractive. Ancillary service markets include frequency up and down-

regulation, net metering, reserve market and others each of which have a bidding structure 

and different rules, such as the time to react to a utility signal and the minimum asset size, 

depending on the ISO that the microgrids are operating within [19,20].  

Aggregating different DERs and energy storage technologies will be associated with 

various problems and challenges in control and operation of the microgrid which directly 

impact the evaluation process. One of the challenges in the smart grids is the scheduling of 

these integrated DERs and storages to optimize the energy flows within the microgrids to 

minimize costs. Several studies [21-24] have investigated the optimization of the high-

level design of microgrids with distributed generation and storage. In [25] a MILP model 

has been developed to determine the feasibility of investing in Thermal storage (TS) in 

interaction with other DERs. Recently, an optimization technique by the same group has 

been proposed adding cooling storage and electricity export to the model [26].  For isolated 

systems considering ancillary services a similar work has been done for the DERs’ plan 

and operation[27]. 

While several studies have considered mathematical modeling of DERs, a very little work 

has been done to assess the value of DERs and storage systems optimally selected with 

respect to the consumer’s territory as different energy providers have different pricing rate 

structures, facility demand load profile as well as the right sizing for the specific 

consumers. Each of these principals has been studied alone. In [28] the authors have shown 

the need for detailed knowledge of energy end use and their demand load profiles in 
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determining the capacity and operational strategy of DERs in order to achieve energy 

balance. From the literature reviewed, it was clear that an area of opportunity exists for a 

practical tool that can assist decision makers to evaluate the DER projects prior to the 

investment. 

The main objective of this study is to determine the key factors of behind the meter benefits, 

generated by the individual and combined DERs and energy storage for various consumers, 

by weighing the costs against financial gains and other benefits. It is also our objective to 

investigate the effects of these selected DERs on generation scheduling and total cost of 

the system considering ancillary services in energy market. In this context, critical 

principals such as configuration of DERs (sizing), different demand load profiles and 

pricing elements of energy providers have been studied to determine their impacts on 

DERs’ values and total cost of the system. We suggest an integrated design approach in 

which electrical and heating loads and the generation sources are modeled as mixed-integer 

linear programming (MILP). We will focus on the following applications: (i) Energy Bill 

Management (EBM), (ii) Frequency regulation (iii) resiliency enhancement.  

The rest of this chapter is structured as follows: In section II we introduce the general set-

up of micro-grid network and the major principles considered in this study.  Section III 

describes the modeling approach to optimize the operation of microgrid. In section IV two 

comprehensive sets of case studies are presented with simulations carried out based on real 

data for specific period with the results and key findings. Finally, section V presents the 

concluding remarks of the study. 
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2.2. Problem statement 

In this study, we consider a facility level micro-grid consisting of renewable resource (e.g. 

PV), CHP system, electric and thermal storages, which are installed behind the meter 

(BTM). The microgrid also connects to the grid (see Figure 1). The power and thermal 

energy produced by onsite generation assets – i.e. PV and CHP – will be used to meet 

electricity and thermal demand at the facility. Onsite generation output may exceed facility 

demand from time to time. Electric and thermal storage nodes absorb this excessive load. 

The energy charged from excessive energy can be used to reduce the cost of purchased 

energy from electricity distribution company (EDC) and gas distribution company (GDC). 

Moreover, DERs and electric storage can be used to increase the facility cash flow by 

increasing the net-metering (NM) revenue and participating in PJM frequency regulation 

market. The following figure depicts the energy flow in such facility level micro-grid.    

 

 

Figure 1- Energy flow in a facility level micro-grid 

To quantify and confirm the benefits of BTM DERs and energy storage, an integrated 

operation model has been developed to illustrate the micro-grid operation. To determine 
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the key factors in micro-grid evaluation the proposed methodology is demonstrated and 

verified through use cases along with a sensitivity analysis. The following factors are 

considered: 

1) Facility type: Three different facilities; namely “hospital”, “full-service restaurant” 

and “strip-mall” are considered in this study. These are commercial building 

benchmark models developed by US DOE. For compliance with geographical scope of 

this project (state of New Jersey), building’s load data is simulated using New Jersey 

weather data. An overview of these facilities along with their energy consumption 

characteristics is provided in the following table.   

Table 1- Customer segments information 

These three facilities have different hourly energy profiles, which are illustrated in Figure 

2. As shown in this figure, hospital and strip-mall have uncorrelated electricity and thermal 

demand, however full-service restaurant has correlated profiles. Hospital has the highest 

energy demand compared to other two facilities.  Moreover, hospital and strip-mall have 

Segment Floor area # floors 

Electricity Natural Gas 

Annual 

consumption (kWh) 

Peak load 

(kW) 

Annual 

consumption 

(Therm) 

Peak load 

(Therm) 

Hospital 241,351 5 6,500,906 1,262 97,684 38 

Strip mall 22,500 1 290,780 89 8,150 9 

Full service 

restaurant 

5,500 1 314,700 68 9,914 6.5 
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electricity profile with prolonged peak, but full-service has energy profiles with lots of hills 

and valleys.   

 

Figure 2- Hourly energy profiles for an average day 

In each facility the critical load is defined as the portion of the load that should be severed 

at emergency incidents during grid outage. Critical load is calculated based on break-down 
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of end-use electricity load using EnergyPlus building simulation tool and assigning a 

percentage for critical portion of each end-use. In the following table, critical load for each 

building segment is provided. It should be noted that defined percentages are not exclusive.  

Table 2- Critical loads as a percentage of electricity load of major end uses in building segments 

Strip mall Full service restaurant Hospital 

End use 

% of actual 

load 

End use 

% of actual 

load 

End use % of actual load 

Heating 80% Heating 80% Heating 80% 

Cooling 80% Cooling 80% Cooling 80% 

Interior Lights 50% Interior Lights 50% Interior Lights 50% 

Exterior Lights 10% Exterior Lights 10% Exterior Lights 10% 

Interior Equipment 50% Interior Equipment 50% Interior Equipment 50% 

Fans 80% Fans 80% Exterior Equipment 80% 

 

 

 

Pumps 80% Fans 80% 

Refrigeration 100% Pumps 100% 

 

 

 

Heat Rejection 70% 

Humidifier 80% 

Refrigeration 80% 

 

2) Energy tariff: Different locations based on major Electricity and Gas providers’ 

territories in NJ are defined in the set of scenarios. Different Electricity and Gas 

provider companies have different rating structure for electricity and gas, which affect 

the calculation in financial evaluation process. Three EDCs and two GDCs in NJ are 
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considered in this study. EDC billing components considered for analysis are delivery 

and supply charges. For supply charges, it is assumed that all customers have elected 

Rider BGS-CIEP indicating that they will be charged according to PJM hourly 

locational marginal prices (LMPs) for commodity. These three EDCs have completely 

different rating structures for delivery charges (both energy and demand charges).  

While EDC1 and EDC2 have seasonal tiered demand charge structure according to 

customer’s peak shared level (PSL), EDC3’s seasonal demand charge structure is not 

sensitive to customers’ PSL. Moreover, EDC1 assigns time-of-use (TOU) demand 

charge for their customers with PSL > 150kW. Following table, summarizes the rating 

structure across the three EDCs. 

Table 3- EDCs rate structure 

EDC1 EDC2 EDC3 

Customer differentiation factor: 

- PSL (150KW) 

Customer differentiation factor: 

- PSL (750KW) 

Customer differentiation factor: 

- N/A 

Supply demand charge structure: 

- BGS CIEP 

Supply demand charge structure: 

- BGS CIEP 

Supply demand charge structure: 

- BGS CIEP 

Supply energy charge structure: 

- BGS CIEP (real-time PJM 

LMP) 

Supply energy charge structure: 

- BGS CIEP (real-time PJM 

LMP) 

Supply energy charge structure: 

- BGS CIEP (real-time PJM 

LMP) 

Delivery energy charge structure: 

- Seasonal 

- Flat 

Delivery energy charge structure: 

- Seasonal 

- Tiered 

Delivery energy charge structure: 

- Seasonal 

- Flat 

Delivery demand charge structure: Delivery demand charge structure: Delivery demand charge structure: 
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- Seasonal 

- Tiered 

- TOU for PSL > 150KW 

- Seasonal 

- Tiered 

 

- Seasonal 

- Flat 

 

Aggregated KWH and KW charges ranking 

- KWH: EDC3 > EDC2 > EDC1 

- KW:    EDC1 > EDC2 > EDC3 

 

GDC billing components considered in this analysis are delivery and supply charges. For 

supply charges, it is assumed that all customers have elected Rider “A” for Basic Gas 

Supply Service (BGSS). GDCs have completely different rating structures for delivery 

charges (energy charges, demand charges and balancing charges). Following table 

summarizes the rating structure across two GDCs. 

Table 4- GDCs rate structure 

GDC1 GDC2 

Customer differentiation factor: 

- Monthly consumption peak (3000Therm) 

Customer differentiation factor: 

- DG installation 

- Annual consumption (5000Therm) 

Supply charges structure: 

- Rider “A” BGSS 

Supply charges structure: 

- Rider “A” BGSS 

Delivery charges structure: 

- Energy: Seasonal 

- Demand & balancing: Flat 

Delivery charges structure: 

- Energy: Seasonal 

- Demand & balancing: Flat 

Aggregated per Therm, per demand Therm and per balancing Therm charges ranking 
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- Per Therm: GDC1 > GDC2  

- Per demand therm:  GDC2 > GDC1 

- Per balancing therm:  GDC1 > GDC2 

 

- ** GDC2 incentivizes distributed generation (DG) owner by assigning lower charges  

 

 

3) DER configuration: Different combinations and sizes of CHP, PV, ES and TS are 

considered across the use cases. Moreover, since prime-movers have significant impact 

on CHP efficiency, two different technologies and prime movers are considered in this 

study: 

a. Fuel cell (SOFC) with heat recovery 

b. Reciprocating engine 

Different CHP technologies/prime-movers have different operation and financial 

characteristics.  Following table summarizes the parameters and characteristics of these 

technologies. 

Table 5- CHP prime mover characteristics 

Prime mover 

Average 

electric. 

efficiency 

Average heat 

to power ratio 

 

Average total 

efficiency 

Average installation 

and maintenance cost 

over lifecycle ($/kW) 
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FC 47%1 0.87 87.9% 9,500 

Reciprocating 

Engine (RECIP) 

38% 1.3 

87.4% 

5,500 

 

2.3. Modeling methodology 

The operation of facility micro-grid is formulated as a mixed-integer optimization problem 

to estimate the optimal value generated from DER and storages installation compared to 

the base-line. This value, along with the other cost elements such as project installation 

cost, will feed to a cost-benefit analysis model to determine the cost-effectiveness of the 

project. The model accounts for statistical nature of loads and various technology features 

and operational conditions of DERs. The model also accounts for different application 

scenarios.  Detailed description of mathematical programming formulation including 

objectives and constraints for each application is provided next. 

As we discussed before three applications are taken into account as objectives of 

optimization problem. Energy storage (thermal and electrical) and CHP will be utilized to 

manage net energy consumption (both electrical and thermal) in the facility level. 

Moreover, electric energy storage and CHP system may participate in ancillary market 

such as frequency regulation to generate revenue for the facility owner. These are all behind 

the meter applications, which are the focus of this study. Furthermore, during the power 

                                                 

1http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Other_Reports/Other_Rep

orts/A_Review_of_Distributed_Energy_Resources_September_2014.pdf 

 

http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Other_Reports/Other_Reports/A_Review_of_Distributed_Energy_Resources_September_2014.pdf
http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Other_Reports/Other_Reports/A_Review_of_Distributed_Energy_Resources_September_2014.pdf
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outage event the facility level microgrid will be used to serve the critical demand in the 

facility, which results in resiliency enhancement. Therefore, two objective functions are 

pursued: 

a) Economic objective function: 

min𝑂𝑏𝑗𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 =∑[𝐶𝑡
𝐸 + 𝐶𝑡

𝑁𝐺 + 𝐶𝑡
𝐶𝐻𝑃 − 𝑅𝑡

𝑁𝑀 − 𝑅𝑡
𝐹𝑅]

𝑡

      (2.1) 

where 𝐶𝑡
𝐸is the electricity cost corresponding to the facility: 

𝐶𝑡
𝐸 = 𝑃𝑟𝑡

𝑒𝑙𝑒𝑐(𝑒𝑡
𝑑𝑒𝑚,𝑔

+ 𝑒𝑡
𝑐ℎ,𝑔

)           (2.2) 

𝑃𝑟𝑡
𝑒𝑙𝑒𝑐 denotes the electricity price during time step “t”. 𝑒𝑡

𝑑𝑒𝑚,𝑔
 and 𝑒𝑖

𝑐ℎ,𝑔
 are the purchased 

power from electricity distribution company (EDC) to meet electricity demand at the 

facility and to store in the electric storage respectively. 

𝐶𝑡
𝑁𝐺  is the cost related to purchasing natural gas from gas distribution company (GDC): 

𝐶𝑡
𝑁𝐺 = 𝑃𝑟𝑡

𝑁𝐺(ℎ𝑡
𝑑𝑒𝑚,𝑔

)         (2.3) 

where 𝑃𝑟𝑡
𝑁𝐺and ℎ𝑡

𝑑𝑒𝑚,𝑔
 denote the natural gas price and the heat energy purchased form 

GDC respectively. 

𝐶𝑡
𝐶𝐻𝑃 represents the operation cost related to CHP system: 

𝐶𝑡
𝐶𝐻𝑃 =

{
 
 

 
 𝑃𝑟𝑡

𝑁𝐺 (
𝑒𝑡
𝐶𝐻𝑃

𝜂𝑡
𝐶𝐻𝑃) + 𝛼𝑠𝑡         𝑖𝑓 𝑒𝑡

𝐶𝐻𝑃 > 0 𝑎𝑛𝑑 𝑒𝑡−1
𝐶𝐻𝑃 = 0

𝛼𝑠𝑑                                    𝑖𝑓 𝑒𝑡
𝐶𝐻𝑃 = 0  𝑎𝑛𝑑  𝑒𝑡−1

𝐶𝐻𝑃 > 0

𝑃𝑟𝑡
𝑁𝐺 (

𝑒𝑡
𝐶𝐻𝑃

𝜂𝑡
𝐶𝐻𝑃)                                                        𝑂.𝑊

               (2.4) 
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𝑒𝑡
𝐶𝐻𝑃 and 𝜂𝑡

𝐶𝐻𝑃denote the electric power generated by CHP system and CHP electric 

efficiency. Note that the power generated by CHP will be used to serve the electric demand 

at the facility and the excessive generation could be stored in the electric storage device. 

𝛼𝑠𝑡and 𝛼𝑠𝑑 represent CHP startup and shutdown cost respectively.   

𝑅𝑡
𝑁𝑀, 𝑅𝑡

𝐹𝑅 and 𝑅𝑡
𝑆𝑅 are the revenue generated for facility owner by doing net-metering, 

participating in frequency regulation market and spinning reserve market respectively.  

Net metering is enabled through directly selling power from either PV or electric storage 

(ES) to the grid: 

𝑅𝑡
𝑁𝑀 = 𝑃𝑟𝑡

𝑒𝑙𝑒𝑐(𝑒𝑡
𝑃𝑉,𝑔

+ 𝑒𝑡
𝐸𝑆,𝑔

)              (2.5) 

where 𝑒𝑡
𝑃𝑉,𝑔

 and 𝑒𝑡
𝐸𝑆,𝑔

 show the electric power flow from PV and ES to the main grid. 

In Frequency regulation (FR) application we assume that because of the fast response in 

ES, it generates revenue from participating in PJM fast regulation market (Reg D market) 

through capacity commitment and performance revenue. Moreover, CHP system makes 

benefit from participating in PJM traditional regulation market (Reg A market). Therefore: 

𝑅𝑡
𝐹𝑅 = 𝐹𝑅𝑡

𝐸𝑆 × 𝜌𝐸𝑆 ( 𝑅𝑀𝐶𝐶𝑃𝑡 +  𝛽𝑡
𝑅𝑒𝑔𝐷

× 𝑅𝑀𝑃𝐶𝑃𝑡)

+ 𝐹𝑅𝑡
𝐶𝐻𝑃 × 𝜌𝐶𝐻𝑃 ( 𝑅𝑀𝐶𝐶𝑃𝑡 + 𝛽𝑡

𝑅𝑒𝑔𝐴
×  𝑅𝑀𝑃𝐶𝑃𝑡)           (2.6) 

where, 𝑅𝑀𝐶𝐶𝑃𝑡 and 𝑅𝑀𝑃𝐶𝑃𝑡 denote Regulation market capacity clearing price ($/kWh) 

and regulation market performance clearing price ($/∆kW) which are available in PJM 

website. 𝛽𝑡
𝑅𝑒𝑔𝐷

and 𝛽𝑡
𝑅𝑒𝑔𝐴

 are PJM RegD and RegA mileage ratio (∆kW/kW). Note that 

𝛽𝑡
𝑅𝑒𝑔𝐴

= 1 in PJM market. 𝜌𝐸𝑆 and 𝜌𝐶𝐻𝑃 are performance score corresponding to ES and 

CHP unit, which indicate units’ performance in following the regulation signal. Since 
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battery storage response is quick, this performance score is close to 1 for ES however this 

score is around 0.6 for CHP unit. 𝐹𝑅𝑡
𝐸𝑆and 𝐹𝑅𝑡

𝐶𝐻𝑃are the capacity allocated for regulation 

at time step “t” by ES and CHP. 

b) Resiliency enhancement objective function: 

The objective is to serve critical load (CL) during outage hours. Penalty structure in the 

form of $/kWh of unserved CL is specified to minimize the unserved critical load to the 

extent possible. Net metering and ancillary services are disabled since the system is 

disconnected from the grid. 

min𝑂𝑏𝑗𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑦 =∑[𝑀𝑡
𝑝𝑒𝑛(𝐶𝐿𝑡

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑)]

𝑡

                  (2.7) 

where 𝐶𝐿𝑡
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑is the unserved critical load during time step “t”: 

𝐶𝐿𝑡
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 = 𝐶𝐿𝑡

𝑡𝑜𝑡𝑎𝑙 − 𝑒𝑡
𝐶𝐻𝑃,𝑑𝑒𝑚 − 𝑒𝑡

𝑃𝑉,𝑑𝑒𝑚 − 𝑒𝑡
𝐸𝑆,𝑑𝑒𝑚         (2.8) 

𝑒𝑡
𝑃𝑉,𝑑𝑒𝑚

 and 𝑒𝑡
𝐸𝑆,𝑑𝑒𝑚

 respectively represent the power flow from PV and ES to serve 

electricity demand at the facility. Moreover, 𝑒𝑡
𝐶𝐻𝑃,𝑑𝑒𝑚

 denotes the electric power flow from 

CHP system to demand node. 

The operational constraints regarding to different DER technologies are provided next: 

c) Operational constraints: 

Energy balance constraints at the facility: Both electrical and thermal demands have to 

be met during the normal operation. Therefor: 

𝐷𝑡
𝑒 − 𝑒𝑡

𝑑𝑒𝑚,𝑔
− 𝑒𝑡

𝐶𝐻𝑃,𝑑𝑒𝑚 − 𝑒𝑡
𝐸𝑆,𝑑𝑒𝑚 − 𝑒𝑡

𝑃𝑉,𝑑𝑒𝑚 = 0       (2.9) 
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where 𝑒𝑡
𝐸𝑆,𝑑𝑒𝑚

 and 𝑒𝑡
𝑃𝑉,𝑑𝑒𝑚

 represent the power flow from electric storage and PV to the 

facility. 

For the thermal demand we have: 

𝐷𝑡
ℎ − ℎ𝑡

𝑑𝑒𝑚,𝑔
− ℎ𝑡

𝐶𝐻𝑃,𝑑𝑒𝑚 − ℎ𝑡
𝑇𝑆,𝑑𝑒𝑚 = 0        (2.10) 

where ℎ𝑡
𝐶𝐻𝑃,𝑑𝑒𝑚

 and ℎ𝑡
𝑇𝑆,𝑑𝑒𝑚

 denote the heat flow from CHP system and thermal storage 

(TS) to serve the thermal demand at the facility.  

Constraints of CHP operation: Electrical and heat power produced by CHP system will 

be used to serve electrical and thermal demand at the facility. The excessive generated 

energy could be stored at the ES and TS units. Therefor: 

𝑒𝑡
𝐶𝐻𝑃,𝑑𝑒𝑚 + 𝑒𝑡

𝐶𝐻𝑃,𝐸𝑆 = 𝑒𝑡
𝐶𝐻𝑃           (2.11) 

ℎ𝑡
𝐶𝐻𝑃,𝑑𝑒𝑚 + ℎ𝑡

𝐶𝐻𝑃,𝑇𝑆 = ℎ𝑡
𝐶𝐻𝑃          (2.12) 

The maximum output power of CHP is limited to its nominal capacity and also the 

committed capacity to RegA market. In addition, if CHP output becomes less than a lower 

threshold, it should be turned off. The following inequality constraint represents this CHP 

operational limitation: 

𝑃𝑚𝑖𝑛
𝐶𝐻𝑃 + 𝐹𝑅𝑡

𝐶𝐻𝑃 ≤ 𝑒𝑡
𝐶𝐻𝑃 ≤ 𝑃𝑚𝑎𝑥

𝐶𝐻𝑃 − 𝐹𝑅𝑡
𝐶𝐻𝑃                 (2.13) 

The heat power produced by CHP system depends on the prime-mover technology and also 

the electric power generated by CHP: 

ℎ𝑡
𝐶𝐻𝑃 =

𝑒𝑡
𝐶𝐻𝑃

𝛾𝑡
𝐶𝐻𝑃            (2.14) 
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where 𝛾𝑡
𝐶𝐻𝑃is the power to heat ratio which depends on the prime-movers technology. Both 

𝜂𝑡
𝐶𝐻𝑃and 𝛾𝑡

𝐶𝐻𝑃are prime-movers specification and are related to part load ratio (PLR), ratio 

of electrical generation to maximum CHP power rating: 

𝛾𝑡
𝐶𝐻𝑃 = 𝑓ℎ (

𝑒𝑡
𝐶𝐻𝑃

𝑃𝑚𝑎𝑥
𝐶𝐻𝑃)             (2.15) 

𝜂𝑡
𝐶𝐻𝑃 = 𝑓𝑒 (

𝑒𝑡
𝐶𝐻𝑃

𝑃𝑚𝑎𝑥
𝐶𝐻𝑃)            (2.16) 

Two polynomial functions of degree-1 are assumed for 𝑓ℎ(. ) and 𝑓𝑒(. ). 

Constraints of Electrical Storage device: The total amounts of inflow and outflow 

electricity for ES unit is limited based on its rated capacity: 

𝑒𝑡
𝐸𝑆,𝑑𝑒𝑚 + 𝑒𝑡

𝐸𝑆,𝑔
+ 𝑒𝑡

𝐶𝐻𝑃,𝐸𝑆 + 𝑒𝑡
𝑃𝑉,𝐸𝑆 + 𝑒𝑡

𝑐ℎ,𝑔
 ≤  𝑃𝑚𝑎𝑥

𝐸𝑆               (2.17) 

where 𝑃𝑚𝑎𝑥
𝐸𝑆 is the rated capacity of ES. 

Energy level in ES unit (we define it as state of charge -SOC- in kWh) is moved from one 

time step to the next. Storage level updating at the end of time step based on the amount of 

charged and discharged energy.  

𝑆𝑂𝐶𝑡
𝐸𝑆 = 𝑆𝑂𝐶𝑡−1

𝐸𝑆 + 𝜂𝑡
𝐸𝑆,𝑐ℎ × (𝑒𝑡

𝐶𝐻𝑃,𝐸𝑆 + 𝑒𝑡
𝑃𝑉,𝐸𝑆 + 𝑒𝑡

𝑐ℎ,𝑔
)

−
𝑒𝑡
𝐸𝑆,𝑑𝑒𝑚 + 𝑒𝑡

𝐸𝑆,𝑔

𝜂𝑡
𝐸𝑆,𝑑𝑖𝑠

                         (2.18) 

where 𝜂𝑡
𝐸𝑆,𝑐ℎ

 and 𝜂𝑡
𝐸𝑆,𝑑𝑖𝑠

 are the charging and discharging efficiency of ES unit, which are 

degraded according to ES aging. 
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It is obvious that storage level cannot exceed its maximum capacity. Also, 20% of safety 

reserve capacity is considered for storage units. Moreover, the committed capacity in RegD 

market has to be considered in the ES operational constraints: 

0.2 × 𝐸𝑚𝑎𝑥
𝐸𝑆 + 𝐹𝑅𝑡

𝐸𝑆  ≤ 𝑆𝑂𝐶𝑡
𝐸𝑆 ≤ 𝐸𝑚𝑎𝑥

𝐸𝑆 − 𝐹𝑅𝑡
𝐸𝑆               (2.19) 

where 𝐸𝑚𝑎𝑥
𝐸𝑆  is the maximum energy capacity of ES (kWh). 

Constraints of Thermal Storage (TS) device: 

The total amounts of heat charged and discharged in TS unit are limited based on its 

characteristics: 

ℎ𝑡
𝐶𝐻𝑃,𝑇𝑆  ≤  𝑄𝑚𝑎𝑥

𝑇𝑆,𝑐ℎ              (2.20) 

ℎ𝑡
𝑇𝑆,𝑑𝑒𝑚  ≤  𝑄𝑚𝑎𝑥

𝑇𝑆,𝑑𝑖𝑠              (2.21) 

where 𝑄𝑚𝑎𝑥
𝑇𝑆,𝑐ℎ

 and 𝑄𝑚𝑎𝑥
𝑇𝑆,𝑑𝑖𝑠

 are the maximum thermal storage charging and discharging 

power. 

Thermal energy level in TS unit is moved from one time step to the next. Storage level 

updating at the end of time step based on the amount of charged and discharged thermal 

energy.  

  𝑆𝑂𝐶𝑡
𝑇𝑆 = 𝜂𝑡

𝑇𝑆,𝑠𝑡𝑜𝑟𝑒 × 𝑆𝑂𝐶𝑡−1
𝑇𝑆 + 𝜂𝑡

𝑇𝑆,𝑐ℎ × (ℎ𝑡
𝐶𝐻𝑃,𝑇𝑆) −

ℎ𝑡
𝑇𝑆,𝑑𝑒𝑚

𝜂𝑡
𝑇𝑆,𝑑𝑖𝑠                          (2.22) 

where 𝜂𝑡
𝑇𝑆,𝑠𝑡𝑜𝑟𝑒

 is the efficiency ratio for storing heat for one time step in TS unit, which 

are degraded according to TS aging. 

Again, the thermal energy stored in TS cannot exceed its maximum capacity: 

0 ≤ 𝑆𝑂𝐶𝑡
𝑇𝑆 ≤ 𝐸𝑚𝑎𝑥

𝑇𝑆                (2.23) 



29 
 

    
 

where 𝐸𝑚𝑎𝑥
𝑇𝑆  is the maximum energy capacity of thermal storage. 

Constraints of PV system: 

Electricity generated in renewable unit is used to serve electric demand and charge the ES 

unit. 

𝑃𝑡
𝑃𝑉  ≥  𝑒𝑡

𝑃𝑉,𝑑𝑒𝑚 + 𝑒𝑡
𝑃𝑉,𝐸𝑆         (2.24) 

where 𝑃𝑡
𝑃𝑉 is the power generated by PV system at time step “t”. Note that the amount of 

electricity generated by PV is a function of solar radiation and nominal capacity of installed 

system. 

2.4.  Illustrative example 

In this section, two combinations of DERs are illustrated as case studies. In each case study 

the impact of DER capacity and characteristics, energy tariff rate and facility energy 

profiles are studied. These two combinations are listed as below: 

I) PV and electric storage (PV-ES) 

II) CHP, electric storage and thermal storage (CHP-ES-TS) 

2.4.1. PV and electric storage (PV-ES) 

Different configurations of PV-ES systems are considered across three mentioned 

facilities. For PV system, it is assumed that installed capacity supplies 80% of annual 

electric consumption (AEC). For ES system, rated capacities of 50% and 100% of peak 

critical load (PCL) are considered. In addition, for each rated capacity, duration parameters 

ranging from 30 min to 5 hours are considered. Analysis of PV-ES system with respect to 

both resiliency and economics objectives are conducted for each facility, configuration and 
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EDCs. Detailed cash flow streams for all sizing configurations and EDCs are presented for 

each facility. Moreover, NPV per installed capacity of ES and resiliency evaluation across 

different sizing configuration are illustrated. It is worth noting that: 

1. For ES resource, round trip efficiency (inverter and storage modules) is set to 90%.  

2. Fixed costs associated to ES are: factory cost (~ 400$/kWh), installation (~ 47% of 

factory cost), invertor (~300$/kW), and O&M (~18$/kW w/ 2% annual growth) costs. 

3. Random outrage events are generated using Monte Carlo (MC) simulations. 1000 MC 

simulations are performed.   

4. Net metering is done through two resources: directly from PV to grid and discharging 

ES to grid. It is assumed that net metering will be credited back according to EDC 

energy tariffs.  

5. In outage hours the objective of operation optimization is to serve critical portion of 

load. Unserved critical load is penalized on $/kWh basis.  

6. It is assumed that PV system is operational during power outage.   

7. The investment tax credit (ITC) is included in NPV calculation. 

8. NPV calculation is based on facility cash flow improvement compared to the base case, 

which there is only PV system (without ES) installed at the facility.   

Case 1.1- Hospital; PV-ES 

Cash flow stream for different configurations of PV-ES systems in a typical hospital 

facility has been analyzed. Following figures show the net present value of PV-ES project 

per installed capacity over the period of 4 years according to different EDCs’ electricity 

tariff. 
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Figure 3- Hospital-EDC1; PV-ES; NPV/kW 

 

Figure 4-Hospital-EDC2; PV-ES; NPV/kW 
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Figure 5-Hospital-EDC3; PV-ES; NPV/kW 

As illustrated, increasing the duration of ES system improves the resiliency capability of 

installed system. Moreover, since EDC 3 has the higher energy charge ($/ consumed kWh) 

and this facility has high level of energy consumption, PV-ES system is more beneficial 

for the customers located in EDC 3 territory. It is also worth to mention that, bigger system 

with higher duration results in higher cash flow values, however, the additional operational 

value out of larger systems does not justify the higher up-front cost for these systems. 

Therefore, the NPV/installed kW is lower for bigger systems.     

Case 1.2- Full-service restaurant; PV-ES 

Following figures show the net present value of PV-ES project at a typical full-service 

restaurant per installed capacity over the period of 4 years according to different EDCs’ 

electricity tariff. 
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Figure 6-Full service restaurant-EDC1; PV-ES; NPV/kW 

 

Figure 7-Full service restaurant-EDC2; PV-ES; NPV/kW 



34 
 

    
 

 

Figure 8-Full service restaurant-EDC3; PV-ES; NPV/kW 

As shown in Figure 2, full-service restaurant demand profile has several peaks and valleys. 

Therefore, increasing the duration of ES system doesn’t have significant impact on the 

facility revenue. In other words, increasing the duration of ES system results in less 

NPV/installed kW. 

Case 1.3- Strip mall; PV-ES 

NPV/kW values for a typical strip-mall facility are illustrated in the following figures.  

 

Figure 9-Strip mall-EDC1; PV-ES; NPV/kW 
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Figure 10-Strip mall-EDC2; PV-ES; NPV/kW 

 

 

Figure 11-Strip mall-EDC3; PV-ES; NPV/kW 

As illustrated, the installed system makes more revenue in the territory of EDC 1. The 

reason is that, stirp-mall has a high consumption after PV peak hours. Therefore, ES will 

generate more value if EDC 1 has the high demand charge ($/kW demand).   
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According to the results presented for PV-ES case studies (NPV/kW), the following 

findings are worth mentioning: 

1) Larger ES systems (both rated capacity and energy capacity) result in higher cash 

flows. However, the additional operational value out of larger systems does not justify 

the higher up-front cost for these systems. 

2) Monetary benefits of larger ES systems depend on customers load shape characterized 

by peak time, peak duration, and number of peaks.  

3) ES systems with higher discharging duration result in higher values in the facilities 

with prolonged peak. 

4) ES systems with higher rated capacity are more beneficial in facilities with after-hours 

peak. 

5) Larger ES configurations are more capable for the resiliency purpose during the outage 

events, however they cannot be cost effective during the normal operation. That’s why 

critical facilities such as hospitals need incentive for ES installation in their facility to 

justify the high up-front cost for these configurations. 

2.4.2. CHP, Electric storage and Thermal storage (CHP-ES-TS) 

For each CHP technology, two different sizing approaches are considered: 

1) Biggest rectangular method based on the facility electricity demand. 

2) Biggest rectangular method based on the facility heat demand. 

Basically, electricity (thermal) demand values are sorted in decreasing order and placed in 

a load-duration diagram. Then the dimensioning method (which is based on “biggest 

rectangle” method) was applied. The intersection of the biggest rectangle with the vertical 
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axis represent the useful electricity (thermal) output of CHP system. For Electric and 

thermal storage, rated capacity of 100% CHP electricity and use-full thermal output are 

considered, respectively. Moreover, one-hour duration is assumed for storage systems. 

Analysis of CHP-ES-TS system with respect to economics objective is conducted for each 

facility, CHP technology, configuration and energy provider. Two technologies; namely 

solid-oxide fuel cell (FC) and reciprocating engine (RECIP), and three combinations of 

EDC and GDC (according to energy utilities territory map in NJ) are considered. Net-

metering is not enabled in this case study. Value of installed configurations and the 

corresponding pay-back period are illustrated for each use case. Note that all cost saving 

and additional regulation revenue are calculated by comparing the corresponding 

configuration and the base configuration (only CHP system), there for these numbers 

represent the value of ES-TS system.  

Case 2.1- Hospital; CHP-ES-TS 

Annual cost saving and revenue for different configurations of CHP-ES-TS with different 

prime-mover technologies and sizing methods in a typical hospital facility located in NJ 

have been analyzed. Following table demonstrates the economics of these cases.  
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Table 6- CHP-ES-TS Economics; Hospital 

 

As illustrated in Table 6: 

1) Energy storage system coupled with FC generates more value compared to energy 

storage coupled with RECIP. The reason is more output power of FC due to its higher 

electricity efficiency. This results in lower pay-back-period of storage system coupled 

with FC. 

2) The additional value out of larger storage systems justifies the higher up-front cost for 

these systems, therefore, their pay-back-period are lower compared to the smaller 

systems. The major contributor in bigger system revenue is the frequency regulation 

market participation. 

Case 2.2- Full-service restaurant; CHP-ES-TS 

Annual cost saving and revenue for different configurations of CHP-ES-TS with different 

prime-mover technologies and sizing methods in a typical restaurant facility located in NJ 

have been analyzed. Following table demonstrates the economics. 

CHP prime-

mover
EDC GDC

CHP 

rated cap 

(kW)

Battery 

capacity 

(kW)

Thermal storage 

capacity (US-

Therm)

Energy cost 

saving ($)

Energy cost 

saving (%)

Regulation added 

value ($)

Total added annual 

value by storage 

system ($)

Simple Pay-back-

period for storage 

system (year)

FC 1 1     504.57     504.57                        4.92     23,130.54             4.61                20,318.29                 43,448.83                                4.46 

FC 1 1     771.94     771.94                        7.53     31,837.26             7.94                36,579.34                 68,416.60                                4.26 

FC 2 2     504.57     504.57                        4.92     17,162.59             4.09                20,428.13                 37,590.72                                5.16 

FC 2 2     771.94     771.94                        7.53     24,895.33             7.61                36,532.47                 61,427.80                                4.74 

FC 3 2     504.57     504.57                        4.92     18,294.35             3.64                19,870.28                 38,164.63                                5.08 

FC 3 2     771.94     771.94                        7.53     32,197.57             9.08                35,131.57                 67,329.14                                4.33 

RECIP 1 1     328.07     328.07                        7.56     18,528.68             3.13                13,718.87                 32,247.55                                4.22 

RECIP 1 1     504.57     504.57                      11.63     23,535.87             4.51                19,322.10                 42,857.97                                4.76 

RECIP 2 2     328.07     328.07                        7.56     13,453.66             2.65                14,052.51                 27,506.17                                4.95 

RECIP 2 2     504.57     504.57                      11.63     17,661.20             4.02                19,754.03                 37,415.23                                5.45 

RECIP 3 2     328.07     328.07                        7.56     11,707.28             1.80                14,630.81                 26,338.08                                5.17 

RECIP 3 2     504.57     504.57                      11.63     17,649.17             3.39                20,071.09                 37,720.25                                5.41 

Hospital
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Table 7- CHP-ES-TS Economics; Full-service restaurant 

 

As illustrated in Table 7 since full-service restaurant has high thermal demand (see Figure 

2), second sizing method, which is based on thermal demand suggests very big system. 

This bigger system increases the energy cost saving and frequency regulation revenue 

significantly therefor, it has much lower pay-back period. It is worth to mention that the 

contribution of frequency regulation revenue is more than energy cost saving.   

Case 2.3- Strip mall; CHP-ES-TS 

Annual cost saving and revenue for different configurations of CHP-ES-TS with different 

prime-mover technologies and sizing methods in a typical strip-mall located in NJ have 

been analyzed. Following table summarizes the economics. 

 

CHP prime-

mover
EDC GDC

CHP 

rated cap 

(kW)

Battery 

capacity 

(kW)

Thermal storage 

capacity (US-

Therm)

Energy cost 

saving ($)

Energy cost saving 

(%)

Regulation added 

value ($)

Total added annual 

value by storage 

system ($)

Simple Pay-back-

period for storage 

system (year)

FC 1 1       34.22       34.22                       0.33     3,081.33                          8.86                     1,228.00                    4,309.33                            5.22 

FC 1 1     176.45     176.45                       1.72   12,322.47                        26.58                   12,939.17                  25,261.64                            2.94 

FC 2 2       34.22       34.22                       0.33     2,005.77                          8.02                     1,221.23                    3,227.00                            6.97 

FC 2 2     176.45     176.45                       1.72     8,362.72                        25.29                   12,971.79                  21,334.51                            3.48 

FC 3 2       34.22       34.22                       0.33     2,266.92                          8.42                     1,265.91                    3,532.82                            6.36 

FC 3 2     176.45     176.45                       1.72   11,049.92                        30.91                   12,970.81                  24,020.73                            3.09 

RECIP 1 1       34.22       34.22                       0.79     3,014.77                          8.49                     1,191.19                    4,205.97                            5.51 

RECIP 1 1       74.99       74.99                       1.73     4,516.54                        14.21                     5,468.92                    9,985.46                            3.89 

RECIP 2 2       34.22       34.22                       0.79     1,986.34                          7.76                     1,189.03                    3,175.37                            7.29 

RECIP 2 2       74.99       74.99                       1.73     2,856.97                        12.56                     5,477.19                    8,334.16                            4.66 

RECIP 3 2       34.22       34.22                       0.79     2,154.37                          7.84                     1,266.97                    3,421.33                            6.77 

RECIP 3 2       74.99       74.99                       1.73     3,268.32                        14.11                     5,483.72                    8,752.03                            4.44 

Full-service Restaurant
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Table 8- CHP-ES-TS Economics; Strip-mall 

 

As illustrated in Table 8, second sizing method, which is based on thermal demand suggests 

very big system, which increases the annual revenue significantly. As shown in Table 8, 

the contribution of energy cost saving is much higher (look at the energy cost saving 

percentage). The reason is that, since in electricity and thermal demand profiles are 

uncorrelated (see Figure 2) the excessive heat generation during day-time could be stored 

in the thermal storage and used early morning (peak-time for thermal demand). This 

phenomenon makes the bigger storage system more beneficial in energy cost saving.  

According to the results presented for CHP-ES-TS case studies, the following findings are 

worth mentioning: 

1) Larger storage projects generate higher revenue and their pay-back-periods are smaller 

compared to smaller projects.   

2) In general, storage systems coupled with FC are more beneficial compared storages 

coupled with RECIP. The reason is higher output power of FC due to its higher electric 

efficiency.  

CHP prime-

mover
EDC GDC

CHP 

rated cap 

(kW)

Battery 

capacity 

(kW)

Thermal storage 

capacity (US-

Therm)

Energy cost 

saving ($)

Energy cost 

saving (%)

Regulation added 

value ($)

Total added annual 

value by storage 

system ($)

Simple Pay-back-

period for storage 

system (year)

FC 1 1       49.10       49.10                       0.48      3,511.38            12.41                    2,940.69                         6,452.07                                4.32 

FC 1 1     253.90     253.90                       2.48   24,195.50            43.05                  17,857.33                      42,052.84                                2.44 

FC 2 2       49.10       49.10                       0.48      2,234.02            11.20                    2,940.53                         5,174.55                                5.39 

FC 2 2     253.90     253.90                       2.48   16,636.91            40.22                  17,906.31                      34,543.22                                2.97 

FC 3 2       49.10       49.10                       0.48      2,447.11            11.94                    2,955.18                         5,402.29                                5.16 

FC 3 2     253.90     253.90                       2.48   24,897.99            50.17                  17,905.99                      42,803.98                                2.40 

RECIP 1 1       49.10       49.10                       1.13      3,465.34            11.61                    2,879.84                         6,345.18                                4.55 

RECIP 1 1     107.91     107.91                       2.49      6,733.81            22.36                    7,588.39                      14,322.20                                3.60 

RECIP 2 2       49.10       49.10                       1.13      2,255.97            10.68                    2,886.44                         5,142.41                                5.62 

RECIP 2 2     107.91     107.91                       2.49      4,705.41            21.48                    7,611.83                      12,317.24                                4.18 

RECIP 3 2       49.10       49.10                       1.13      2,415.28            11.17                    2,943.39                         5,358.67                                5.39 

RECIP 3 2     107.91     107.91                       2.49      6,817.17            28.39                    7,624.76                      14,441.93                                3.57 

Strip Mall
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3) Energy storage systems bring more energy cost saving opportunities in facilities with 

uncorrelated thermal and electricity demand profiles. The excessive electricity or 

thermal generation could be stored in storage devices and utilized when demand is high. 

4) Revenue generated according to frequency regulation market participation is highly 

dependent on the capacity of electric storage system. Therefore, bigger systems are 

more beneficial in frequency regulation market.   

2.5. Conclusion 

This study proposed an integrated design approach to model both electrical and heating 

loads with generation sources. The idea is to take full advantage of excess heat in microgrid 

and enhance the overall system efficiency. Behind the meter benefits and resiliency 

capability of energy storage devices located in the PJM territory were analyzed in order to 

understand the impact of the facility's electricity and thermal demand behavior, energy 

providers pricing structure, DER configuration, storage capacity, and facility criticality. 

Energy bill management, frequency regulation, and resiliency enhancement were taken 

into account as the energy storage applications. We concluded that the economic benefits 

of energy storage are highly related to the technology and configuration of other DERs 

within the facility. For instance, PV-ES system is more beneficial in facilities with after 

hour electricity peak, but storage devices coupled with CHP system bring more energy cost 

saving opportunities to facilities with uncorrelated thermal and electricity demand profiles. 

Moreover the capacity of storage devices has significant impact on resiliency capability 

and economics of the project. For instance, larger solar powered ES systems result in higher 

resiliency enhancement, however, their higher up-front cost doesn’t justify the economics 

of project. This emphasizes the vital importance of incentive programs for energy storage 
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systems to increase the resiliency of power grid during the major outage events. It is worth 

mentioning that pricing structure of energy carriers also affect the economics of DER-

storage significantly.   
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CHAPTER 3: NETWORK-AWARE APPROACH FOR 

ENERGY STORAGE PLANNING AND CONTROL IN THE 

NETWORK WITH HIGH PENETRATION OF 

RENEWABLES 

Abstract 

In this chapter, we consider multiple energy storage nodes distributed over a power 

distribution network and are purposed for multiple applications. The research problems of 

interests are to optimally locate these nodes over the distribution network and to create 

day-ahead plans according to planned applications. The two problems are formulated as 

stochastic optimization problems, and hourly and time-aggregated approximate solutions 

are presented. The approximation identifies time periods where load and generation 

patterns demonstrate low variability and marks the whole period as a single time zone, thus 

significantly reducing the number of decision variables and the overall problem size. We 

show that aggregate and hourly planning solutions are close. The planning problem can 

handle any number of storage nodes with general topology and load connections, and 

deterministic or stochastic capacities. In this chapter, we focus on network of static energy 

storages with deterministic capacity.  Finally, we build a novel rule-based control scheme 

for the near real time operation of the storage network by mining the statistical relationship 

between input and optimal charge and discharge patterns.  
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Nomenclatures 

𝑡 Time index 

s Static storage node index 

j Demand node index 

k Renewable node index 

𝑖 Temporal Zone index 

d Day index 

y Year index 

Sc Scenario (cluster) index 

b Tree index in tree-bagging method 

CL Number of clusters 

𝛾 Annual inflation rate (%/year) 

𝛼 Annual discount rate (%/year) 

𝐸𝑛𝑠,𝑚𝑎𝑥 Storage unit s energy capacity (kWh) 

𝑃𝑠,𝑚𝑎𝑥 Energy storage s rated capacity (kW) 

𝐼𝑛𝑣𝑠
𝐶𝑎𝑝

 Investment unit cost on storage capacity ($/kWh) 
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𝐼𝑛𝑣𝑠
𝑃𝑅 Investment unit cost on power rating ($/kW) 

𝐿𝑆𝑐(𝑗, 𝑖) 
Total electricity demand during zone 𝑖 at demand node j for cluster 

Sc (kWh)  

𝑅𝑆𝑐(𝑘, 𝑖) 
Total renewable generation during zone 𝑖 at renewable node k for 

cluster Sc (kWh) 

𝐿𝑑,𝑦(. ) Demand matrix for day “d” in year “y” 

𝑅𝑑,𝑦(. ) Renewable generation matrix for day “d” in year “y” 

𝑃𝑟𝑑,𝑦(. ) Electricity price matrix for day “d” in year “y” 

𝐿𝑆𝑐(. ) Representative demand matrix for cluster Sc 

𝑅𝑆𝑐(. ) Representative renewable generation matrix for cluster Sc 

𝑃𝑟𝑆𝑐
 (. ) Representative electricity price matrix for cluster Sc 

𝑒𝑠,𝑖,𝑆𝑐
𝑐ℎ,𝑔

 

Total energy charged from grid during zone 𝑖 in storage unit s for 

cluster Sc (kWh) 

𝑒𝑠,𝑘,𝑖,𝑆𝑐
𝑐ℎ,𝑟

 

Total energy charged from renewable node k during zone 𝑖 in 

storage unit s for cluster Sc (kWh) 

𝑒𝑠,𝑗,𝑖,𝑆𝑐
𝑑  

Total energy discharged during zone 𝑖 from storage s to demand 

node j for cluster Sc (kWh) 
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𝑒𝑗,𝑖,𝑆𝑐
𝑑𝑒𝑚,𝑔

 

Total energy from grid during zone 𝑖 to demand node j for cluster Sc 

(kWh) 

𝑒𝑗,𝑘,𝑖,𝑆𝑐
𝑑𝑒𝑚,𝑟

 
Total energy from renewable k during zone 𝑖 to demand node j for 

cluster Sc (kWh) 

𝑐𝑖,𝑗 Configuration number between nodes 𝑖 and j 

𝐸𝑓𝑓𝑐ℎ,𝑠 Energy storage “s” charging efficiency 

𝐸𝑓𝑓𝑑𝑖𝑠,𝑠 Energy storage “s” discharging efficiency 

𝑃𝑟𝑆𝑐
𝑤(𝑖) 

Average electricity whole sale price during the hours of zone i for 

cluster Sc ($/kWh) 

𝑃𝑛𝑠𝑢𝑏 

Penalty for damage to substation due to reverse flow of power 

($/kWh) 

𝐷𝑒𝑚 Demand charge for peak demand ($/kW) 

𝑆𝑂𝐶𝑠,𝑖 Storage s energy level at the end of zone 𝑖 (kWh) 

𝑑𝑟𝑖 Duration of temporal zone i 

𝐸𝑛𝑚𝑎𝑥 Maximum energy reservoir capacity 

𝑃𝑚𝑎𝑥 Maximum power rating 

𝑆𝐹𝑠 Safety reserve capacity for storage unit s  
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ESL Storage - Demand Eligibility Matrix 

ERS Renewable - Storage Eligibility Matrix 

ERL Renewable - Demand Eligibility Matrix 

𝑆𝑇𝑡 Network state vector at time t 

𝜋𝑠 Control policy for storage s 

𝑎𝑡
𝑠 Control action of storage s at time t 

𝑟𝑤𝑡
𝑠(ST,𝑎𝑡

𝑠) Reward function for storage s when action 𝑎𝑡
𝑠 is taken in state ST 

𝑉𝜋
𝑠
 Value storage s under control policy 𝜋𝑠 

𝑌 Classification response vector (Control action vector) 

LR Level of on-site renewable generation 

LD Level of demands 

EP Electricity price 

X Classification feature matrix 

B Number of bags 

τ Memory window in control module 

𝑑𝑛 nth digit in control action code 
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3.1. Introduction  

Energy storage (ES) has the potential to offer a new means of added flexibility on the 

electricity distribution systems. This flexibility can be used in a number of ways, including 

adding value towards asset management, power quality and reliability. An important factor 

in evaluating the feasibility of ES technology is the application(s) for which the storage is 

used for [29]. ES can provide local level services such as, peak shaving and renewable 

integration ([30] and[31]), and network level services, such as voltage and frequency 

control [32]. It can also be utilized for loss minimization and deferral of network 

infrastructure upgrades. With the use of energy storage in a distribution networks for 

multiple applications, however, comes the challenge of determining how best to control 

these storage units under load and system state uncertainties.  For example, with increasing 

number of Electrical Vehicles (EVs) the uncertainty in the electricity demand rises due to 

EV charging demand [33], [34] and [35]. But, on the other hand, Vehicle-to-Grid (V2G) 

technology, while mitigating some of this uncertainly, can add system dynamics 

complexities to the network [36], [37] and [38].   

Han, et al. [39] and Wong, et al. [40] provide control algorithms to maximize EV owner’s 

profit, which comes from selling power to grid and participating in the frequency regulation 

market. They formulate the problem as a discrete-time Markov decision process and solve 

it by introducing an online learning algorithm which iterates every hours based on available 

information. Koutsopoulos, et al. [41] study the optimal energy storage control problem by 

taking the point of view of a utility operator and focuses on arbitrage application of energy 

storage. The authors show that the model can be extended to account for a renewable source 

that feeds the storage device. The same problem was considered in [42], where the cost of 
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energy is minimized subject to both user’s demands and prices using a Markov Decision 

Process. Dufo-Lopez, et al. [43] consider the energy storage in private facility to reduce 

the electricity bill. They conclude that electricity price variation has a great effect on the 

profitability of storage system. Renewable resource integration is an important application 

of energy storage, and charge-discharge control policy of energy storage to serve this 

application is presented by Wang, et al. [44]. Renewable energy sources are considered by 

Teleke, et al. [45] too, where an open-loop optimal control scheme was developed which 

incorporates the operating constraints of battery energy storage. They use the battery 

energy storage in a smoothing application where a wind farm is dispatched on an hourly 

basis based on the forecasted wind conditions.  

Earlier works on component sizing or optimal operation employ different approaches, 

which are differentiated by decisional variables. Studies that take into account both sizing 

and scheduling problems are generally scarce. Ru, et al. in [46] determine the optimal size 

of a grid-connected PV-battery system which is used in an arbitrage application. Their 

objective is to minimize the net power purchase cost plus battery capacity loss, without 

considering any initial capital investment. Khalilpour, et al. [47] introduce a decision 

support tool for sizing and operation of PV-battery system in a single facility, with the 

objective of maximizing the net present value generated by bill reduction.  Zhang et al. [48] 

introduce a rule based charge and discharge strategy which simultaneously optimizes the 

battery sizing and operation in a  bill management applicaton. The introduced rule-based 

approach works well for a single PV-battery system with in the facility, however the 

interaction between multiple battery units in more complex distribution network has not 

been investigated. The similar problem was considered by Brekken et al. [49], where sizing 



 

    
 

50 

and control methodologies for a battery-based energy storage system is presented for wind 

farm applications. The sizing problem of distributed generator and energy storage system 

(single application – electricity cost reduction) for demand response applications in smart 

households has been studied in [50] and [51]. Andreotti et al. [52] consider a network of 

renewable generation units and formulate a single-objective optimization problem whose 

objective function is power loss minimization while satisfying constraints on active and 

reactive power at the interconnection bus. Nick et al. [53] studied the optimal allocation of 

storage systems in an active distribution network by defining a multi-objective 

optimization problem. The application of renewable generation integration is also 

considered in [54], [55], [56] and [57]. Van de ven et al. [58] present a battery control 

policy, which minimizes the total discounted costs, taking into account arbitrage 

application of energy storage. Jayawarna et al. [59] studied the energy storage power 

reliability application and present the concept of using central energy storage system as the 

main fault current source in micro-grid islanded mode. 

To the best of our knowledge, there is a major gap in understanding how multiple storage 

units programmed for multiple applications should operate in a distribution network. This 

chapter intends to fill this gap by developing simple but verifiable control strategies, which 

directly take into account system characteristics and states. The proposed approach is 

applicable to connected energy storage units in distribution networks with multiple 

applications.  More specifically, we consider a system with multiple storage nodes 

distributed over an arbitrary power distribution network, and given that there are 

infrastructure limitations on the use of energy storage over this power network. Capacity 

of each node is assumed to be static and deterministic. Stochastic energy storage nodes are 
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also possible, and will be examined in chapter 4. A good example of energy storage with 

dynamic capacity is a parking lot with multiple spaces for EV and V2G connections, where 

arrival and departure of vehicles are random and only a random portion of parked vehicles 

can serve vehicle to grid flow [32]. In this chapter, energy storage is considered as a node 

with two main parameters, namely; energy capacity (in kWh) and rated capacity (in kW). 

The behavior of storage nodes is deterministic. We also assume that the voltage of nodes 

across the distribution network will be maintained in the proper feasible region by network 

operator.    

Figure 1 gives an example of a power distribution network with multiple loads or demand 

nodes, storage nodes, and renewable generation nodes as well as connectivity to a macro 

power grid. We are interested in the following problems: (i) Where to locate static storage 

nodes and how much capacity to allocate to each node for optimal sizing and operation; 

(ii) How to day-ahead plan for the charge and discharge of these nodes, and (iii) How to 

control their operation in a near real time basis. In this chapter, we use a network-aware 

distributed planning and control approach to solve these problems. Network-aware 

planning and control is an approach for near real time control of assets in an arbitrary 

interconnected network. Such a network has multiple nodes with different functionality 

and criticality. Planning and real time control decisions need to be made in reference to the 

characteristics and state of constituent elements (nodes and arcs) of the network and the 

overall control objective. The state description of an element includes, among other 

attributes, the element’s availability and efficiency factors. We will present two models: 

(i) A model for optimal location and capacity planning that also solves for day-ahead 

operational plan, and (ii) A model for optimal charge and discharge control of storage 
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nodes in a near real time basis. This chapter is structured as follows. In Section 2, we 

describe the first model. Some illustrative case studies for planning phase are demonstrated 

in Section 3. Section 4 gives a data-driven network-aware control scheme with a number 

of case studies. To investigate the impact of behavior changes of stochastic input processes 

on the network planning and control we include sensitivity analysis in section 5. 

Conclusion and future work are explained in Section 6.   

3.2. Optimal Planning  

In this study, we consider a power distribution network, which could be utility-owned or a 

community level micro-grid, with high penetration of renewable resources, such that 

renewable output may exceed system load from time to time (see Figure 12). The reverse 

flow of power, resulting from the high level of renewable output and inability to absorb 

excessive power at loads, could damage the distribution network infrastructure. The storage 

nodes absorb this excessive power and mitigate the damages (Renewable reverse flow 

reduction). The energy charged from excessive renewable output can be used to reduce the 

cost of purchased energy from grid during peak hours, given that renewable peak and price 

peak do not coincide (Time of Use). The energy charged from renewable during off-peak 

hours can be utilized during on-peak hours to shave the peak demand as well (Peak 

Reduction).  
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Figure 12: An example circuit with multiple storage units, renewable resources and demand nodes 

Here we formulate a stochastic optimal planning problem that takes into account the long-

term cost of investment on a network of storage nodes and their short-term operation costs 

calculated on the basis of day-ahead planning schemes. The formulation is general in such 

a way that time units can vary from sub-hourly to hourly to more aggregate temporal zones 

that are constructed on the basis of stochastic pattern changes of some or all of the input 

sources (e.g., electricity price and power demand). The aggregation is done in a way that 

the designated input processes have small variations within these temporal zones. Figure 

13 illustrates a simple example of the temporal aggregation scheme over three stochastic 

input processes, namely, renewable generation, demand (in this specific example our 

network has two demand nodes) and electricity price. Coefficient of variation is used to 

measure the variation of the stochastic processes. In order to aggregate several hours into 

one temporal zone, we start from the first time slot (hour 1). The consecutive time slots 

(hours) are aggregated into a single temporal zone as long as the coefficient of variation 

(CV) for each input parameter (namely, demand, on-site power generation and electricity 

price) remains less than the selected threshold (0.3 in this example) for that temporal zone. 

If adding the next hour increases the inputs’ CVs for the current temporal zone to more 

than 0.3 (in either of the input parameter), that hour is then considered for the next temporal 
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zone. It is intuitive that decreasing (or increasing) the threshold value for coefficient of 

variation increases (or decreases) the number of zones in the aggregate model.  

Figure 13 (a), (b) and (c) show the example patterns of stochastic input processes. We note 

that within each temporal zone the input patterns are fixed at their average values (Figure 

13.d, 2.e and 2.f). The advantage of the temporal aggregation over common hourly mixed 

integer programming is that, in the aggregate model, the planning period is decomposed 

into zones (usually in several hours), and the only variable which is moved from one zone 

to the next is the state of charge at the end of the zone. By the virtue of this decomposition, 

a problem with long planning periods and a complex network configuration does not suffer 

from excessive computational times. 
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Figure 13-Temporal Zone Aggregation Example 

Hereafter, we will use the term temporal zone to commonly refer to a time unit (sub-hourly 

or hourly). The objective function is the total operation and investment cost defined over 

these temporal zones, and energy storage capacity (both energy capacity and rated 

capacity), aggregate charge and discharge amounts within each zone (in kWh) are the 

decision variables. Multiple applications of energy storage are considered, namely, “Time 

of Use”, “Renewable Reverse Flow Reduction” and “Peak Shaving”. We borrow ideas 

from the classical multi-period inventory control problem [61], where each temporal zone 

represents a single period and the remaining energy in storage at the end of each period 

defines the storage state of charge at the beginning of the next period.  
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The total cost function is measured in net present value and includes the present value of 

investment costs and operation costs of the installed nodes during a lifetime period. That 

is,  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑂𝐵𝐽𝐼𝑛𝑣  + 𝑂𝐵𝐽𝑜𝑝)                           (3.1) 

For the investment part we have 

𝑂𝐵𝐽𝐼𝑛𝑣 = ∑ (𝐶𝐴𝑃𝑆 ×𝑠 𝐼𝑛𝑣𝑠
𝐶𝑎𝑝 + 𝑃𝑆 × 𝐼𝑛𝑣𝑠

𝑃𝑅)                       (3.2)                

where 𝐼𝑛𝑣𝑠
𝐶𝑎𝑝

 is investment cost related to the capacity of storage node s (measured in 

$/kWh) and 𝐼𝑛𝑣𝑠
𝑃𝑅 is cost related to power rating of the node (measured in $/kW). For the 

short-term operation costs, we must cover the uncertainties over the planning horizon. We 

assume that input daily profiles of demand, renewable power generation and electricity 

price each follow a stochastic pattern, and together they can be clustered into groups of 

profiles over the planning horizon. We note that one can always form such clusters using 

historical data over the subject distribution network.  

Total operation cost (𝑂𝐵𝐽𝑜𝑝) of network will be the sum of daily operation costs over the 

planning horizon.  Daily operation cost is stochastic because of the uncertainty in daily 

profile of demand, renewable power generation and electricity price.  

𝑂𝐵𝐽𝑜𝑝 =∑[(
1 + 𝛾

1 + 𝛼
)
𝑦−1

×∑𝐷𝑎𝑖𝑙𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑑, 𝑦)

365

𝑑=1𝑦

]                      (3.3) 

For the above problem, stochastic scenarios are generated over the stochastic inputs 

namely, demand, electricity price and renewable power generation, and on the basis of 

historical data from several years (we choose 3 for illustration). To reduce the 

computational complexity, we apply a high-dimensional data clustering method [62] to 
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group these profiles and reduce the number of scenarios [53]. Daily demand profile, 

electricity price and renewable power generation are considered as features in this 

clustering. Suppose that a total of “CL” clusters of input profiles exist. In each cluster we 

consider the representative average profile (over a cluster) for each demand node, 

renewable resources and electricity price. Now, depending on the size of each cluster the 

chance of its occurrence is calculated (𝑃𝑟𝑜𝑏𝑆𝑐): 

𝑂𝐵𝐽𝑜𝑝 =∑[(
1 + 𝛾

1 + 𝛼
)
𝑦−1

× ∑ 365 × 𝑃𝑟𝑜𝑏𝑆𝑐

𝐶𝐿

𝑆𝑐=1𝑦

× 𝐷𝑎𝑖𝑙𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (𝑆𝑐)]     (3.4) 

where 𝛾 and 𝛼 are annual inflation and discount rates (%/year), “Sc” is the index of 

scenarios according to the input data and 𝑃𝑟𝑜𝑏𝑆𝑐 is the probability of scenario “Sc”. 

𝐷𝑎𝑖𝑙𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑆𝑐) is the daily operation cost given scenario “Sc”, which is the 

representative scenario for cluster “Sc”. Since multiple applications are considered, the 

daily operation cost includes multiple sections as described below:  

1- Within each zone a portion of electricity at each demand node is served by the 

renewable nodes, which are connected to it. Also, a percentage of demand at that 

demand node is served by discharging energy from its connected energy storage 

nodes. The rest of the demand plus any amount to be stored in storage nodes are 

supplied by purchasing electricity from the grid. 

 

2- The owner of the distribution system is usually charged for peak demand. High 

peak demand could also cause more depreciation of distribution devices. Charging 

storage nodes during off-peak hours and discharging during on-peak hours reduce 

the peak. Demand charge is usually defined in a monthly term. Here, we use the 



 

    
 

58 

same concept in daily planning. In order to consider the hourly peak demand in 

time aggregate approach we assume that the aggregate power flow is distributed 

uniformly within each zone. 

 

3- It is assumed that the remaining power from renewable creates a reverse flow at the 

substation if it is not absorbed by storage. Cost of damage to substation due to the 

reverse power is estimated by multiplying the remaining renewable output by a 

penalty factor (𝑃𝑛𝑠𝑢𝑏).    

The daily operation cost is then given by: 

𝐷𝑎𝑖𝑙𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑆𝑐)

=  (𝑤1 × 𝑂𝑏𝑗 1(𝑆𝑐) + 𝑤2 × 𝑂𝑏𝑗 2(𝑆𝑐) + 𝑤3 × 𝑂𝑏𝑗 3(𝑆𝑐))                 (3.5) 

𝑂𝑏𝑗 1(𝑆𝑐) =∑[𝑃𝑟𝑆𝑐
 (𝑖)(∑𝑒𝑗,𝑖,𝑆𝑐

𝑑𝑒𝑚,𝑔

𝑗

+∑𝑒𝑠,𝑖,𝑆𝑐
𝑐ℎ,𝑔

𝑠

)]

𝑖

 

𝑂𝑏𝑗 2(𝑆𝑐) = 𝐷𝑒𝑚 ×max
𝑖
{
1

𝑑𝑟𝑖
 (∑𝑒𝑗,𝑖,𝑆𝑐

𝑑𝑒𝑚,𝑔

𝑗

+∑𝑒𝑠,𝑖,𝑆𝑐
𝑐ℎ,𝑔

𝑠

)} 

𝑂𝑏𝑗 3(𝑆𝑐) =∑[𝑃𝑛𝑠𝑢𝑏 [∑𝑅𝑆𝑐(𝑘, 𝑖) − (∑𝑒𝑗,𝑘,𝑖,𝑆𝑐
𝑑𝑒𝑚,𝑟

𝑗

+∑𝑒𝑠,𝑘,𝑖,𝑆𝑐
𝑐ℎ,𝑟

𝑠

)

𝑘

]]

𝑖

 

 

where, 𝑃𝑟𝑆𝑐
 (𝑖) is the average electricity price during the hours of zone i for cluster Sc. 

𝑤1, 𝑤2 and 𝑤3 represent the importance of different storage applications in the planning 

phase.  The constraints of the above problem are defined in two categories: ESS installation 



 

    
 

59 

constraints and operation constraints. “j”, “k” and “s” representing sets of demand nodes, 

renewable nodes and static storage respectively.  

Installation Constraints: Constraints 3.6 and 3.7 show the maximum capacity (energy 

and power rating) of ESS that can be installed on possible node “s”.  

0 ≤ 𝐶𝐴𝑃𝑆 ≤ 𝐸𝑛𝑚𝑎𝑥   , ∀ 𝑠                                      (3.6) 

0 ≤ 𝑃𝑠 ≤ 𝑃
𝑚𝑎𝑥         , ∀ 𝑠                                      (3.7) 

Operation Constraints: Operation constraints are valid in every scenario (Sc). The total 

amount of inflow and outflow electricity for each static storage node is limited due to its 

power rating, 

 

𝑒𝑠,𝑖,𝑆𝑐
𝑐ℎ,𝑔

+∑𝑒𝑠,𝑘,𝑖,𝑆𝑐
𝑐ℎ,𝑟 +

𝑘

∑𝑒𝑠,𝑗,𝑖,𝑆𝑐
𝑑

𝑗

 ≤  𝑃𝑠 × 𝑑𝑟𝑖,𝑆𝑐         ∀ 𝑠, 𝑖, 𝑆𝑐                   (3.8) 

As we mentioned before, storage level (state of charge) is moved from one temporal zone 

to the next. Storage level at the end of a zone is calculated based on the amount of energy 

charged and discharged during that zone. It is obvious that storage level cannot exceed its 

maximum capacity. Also, SFs as a safety reserve capacity is considered for storage nodes. 

Since, according to (O.5), daily operation cost is calculated in objective function the initial 

state of charge in each individual day will be important. For daily optimization, we assume 

that all nodes have the  same initial state of charge (e.g., 80% of maximum energy capacity 

(𝐶𝐴𝑃𝑆)). Furthermore, the SOC of each storage at the end of a day is the same as its daily 

initial state.  

   



 

    
 

60 

𝑆𝑂𝐶𝑠,𝑖,𝑆𝑐 = 𝑆𝑂𝐶𝑠,𝑖−1,𝑆𝑐 + 𝐸𝑓𝑓𝑐ℎ,𝑠 × (𝑒𝑠,𝑖,𝑆𝑐
𝑐ℎ,𝑔

+∑𝑒𝑠,𝑘,𝑖,𝑆𝑐
𝑐ℎ,𝑟

𝑘

)

−
∑ 𝑒𝑠,𝑗,𝑖,𝑆𝑐

𝑑
𝑗

𝐸𝑓𝑓𝑑𝑖𝑠,𝑠
         ∀ 𝑠, 𝑖, 𝑆𝑐                (3.9) 

𝑆𝐹𝑠 × 𝐶𝐴𝑃𝑠 ≤ 𝑆𝑂𝐶𝑠,𝑖 ≤ 𝐶𝐴𝑃𝑠      ∀ 𝑠, 𝑖                 (3.10) 

We assume that the electricity load at each demand node has to be satisfied, so: 

𝐿𝑆𝑐(𝑗, 𝑖) =  ∑𝑒𝑗,𝑘,𝑖,𝑆𝑐
𝑑𝑒𝑚,𝑟

𝑘

+∑𝑒𝑠,𝑗,𝑖,𝑆𝑐
𝑑

𝑠

+ 𝑒𝑗,𝑖,𝑆𝑐
𝑑𝑒𝑚,𝑔

         ∀ 𝑗, 𝑖, 𝑆𝑐              (3.11) 

Electricity generated by a renewable unit is used to serve demand nodes and charge the 

storage nodes which are connected to it. The remaining generation from renewable creates 

a reverse flow of power at the substation. 

𝑅𝑆𝑐(𝑘, 𝑖) ≥  ∑𝑒𝑗,𝑘,𝑖,𝑆𝑐
𝑑𝑒𝑚,𝑟

𝑗

+∑𝑒𝑠,𝑘,𝑖,𝑆𝑐
𝑐ℎ,𝑟

𝑠

         ∀ 𝑘, 𝑖, 𝑆𝑐           (3.12) 

The power distribution network has “S” possible nodes for static ESS installation, “J” 

demand nodes and “K” renewable resources. Power can flow between two nodes if they 

are connected physically. The topology of the network is defined by configuration numbers 

(𝑐𝑖1,𝑖2). Configuration numbers have binary value; 1 means physical connection exists. 

𝑐𝑖1,𝑖2 = 1 means that nodes 𝑖1 and 𝑖2 are connected. Following equations illustrate the 

network configuration constraints:  

0 ≤ 𝑒𝑗,𝑘,𝑖,𝑆𝑐
𝑑𝑒𝑚,𝑟 ≤ 𝑀 × 𝑐𝑘,𝑗 (𝑖)            ∀ 𝑗, 𝑘, 𝑖, 𝑆𝑐 (3.13) 

0 ≤ 𝑒𝑠,𝑗,𝑖,𝑆𝑐
𝑑 ≤ 𝑀 × 𝑐𝑆𝑠,𝑑  (𝑖)          ∀ 𝑗, 𝑠, 𝑖, 𝑆𝑐 (3.14) 
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0 ≤ 𝑒𝑠,𝑘,𝑖,𝑆𝑐
𝑐ℎ,𝑟 ≤ 𝑀 × 𝑐𝑘,𝑆𝑠  (𝑖)          ∀ s, 𝑘, 𝑖, 𝑆𝑐 (3.15) 

where, “M” is a very big number (e.g. 10 millions).  

Solution methodology is illustrated using the following example. 

3.3. Illustrative Example  

A modified IEEE 13 node test feeder as a community level distribution system with high 

penetration of renewable resources is used as a case study (see Figure 14). We start with 

the clustering of stochastic input profiles and grouping of days in the planning horizon.  

Then we show optimal capacities for different network configurations with different 

applications. Finally, the day-ahead operation results will be demonstrated.  

 

Figure 14 - Distribution network 

As shown in Figure 14 eight demand nodes are considered in this network. Four residential 

sectors are considered in nodes D2, D5, D7 and D8. The other four demand nodes (D1, D3, 

D4 and D6) assumed to be commercial facilities. Four PV solar systems with generation 

rated capacity of, respectively, 1500 kW, 1600 kW, 800 kW and 600 kW are assumed as 

renewable resources at nodes R1 - R4. The hourly power generation of these nodes is 

related to hourly solar intensity (radiation). We assume the same solar radiation at the 
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locations of solar systems. Four nodes with renewable resources are considered as the 

potential nodes for energy storage installation.   

Following eligibility matrices are assumed in this case study: 

𝐸𝑆𝐿 =

 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8
𝑆1
𝑆2
𝑆3
𝑆4

[ 

  1   1
  0   0

  1   1   1   1   1   1
  1   1   1   1   1   1

  0   0
  0   0

  0   0   1   1   1   1
  0   0   0   0   1   1

]
 

𝐸𝑅𝐿 =

 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8
𝑅1
𝑅2
𝑅3
𝑅4

[ 

  1   1
  0   0

  1   1   1   1   1   1
  1   1   1   1   1   1

  0   0
  0   0

  0   0   1   1   1   1
  0   0   0   0   1   1

]
 

𝐸𝑅𝑆 =  

 𝑆1 𝑆2 𝑆3 𝑆4
𝑅1
𝑅2
𝑅3
𝑅4

[

 1  0  0  0
 0  1  0  0
 0
 0

 0
 0

 1  0
 0  1

]
 

 

As an example based on the defined eligibility matrices, storage at node S2 can be charged 

from renewable R2. Furthermore, this storage node can serve electricity demand in nodes 

D3 to D8. 

The following assumptions are considered in this case study: 

1- Sodium-Sulfur energy storage with 15 years lifetime is candidate technology to 

install as energy storage system. 

2- According to [63] 350 $/kWh and 350 $/kW are considered as investment unit cost 

related to ESS energy capacity and power rated capacity (𝐼𝑛𝑣𝑠
𝐶𝑎𝑝

 and 𝐼𝑛𝑣𝑠
𝑃𝑅). 

3- Both charging and discharging efficiency are assumed at 90%. 
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4- 5% power loss is assumed for long distance transmission. Note that nodes shown 

in Figure 14 are grouped into four classes, class 1 includes D1, D2, R1 and Storage 

1, class 2 contains D3, D4, R2 and Storage 2. D5, D6, R3 and storage 3 are in class 

3 and class 4 includes the other nodes. Transferring power between two different 

classes is considered as long distance transmission.  

5- 𝛾=2%/year and 𝛼=10%/year are assumed as annual inflation and discount rate [35]. 

Three years data for residential and commercial sectors, solar radiation and electricity price 

are grouped into several clusters. High Dimensional Data Clustering (HDDC) method is 

used to allocate input data into smaller number of groups [62]. This method is available in 

CRAN server and can be used in R. By applying HDDC algorithm, three years input data 

are grouped into forty-eight (48) clusters with each cluster associated with daily operation 

cost that varies in a small range. Figure 15 shows the input data with hourly mean value in 

one of these 48 clusters. More information about these clusters can be found in appendix 

“A1”. The cluster shown in Figure 15 (cluster 13) has population size of 41. All of these 

41 individual input data are within a heating season, specifically from December to 

February. Since the total sample size is 1095 (3 × 365), the probability of having inputs 

similar to data in cluster 13 is 41 1095⁄ = 0.0374. 
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Figure 15- Input data in cluster 13 

Next, we present our results for the optimal capacity planning with different weights for 

different storage applications. This will be followed by the optimal operation planning for 

some sample clusters.   

3.3.1. Capacity Planning  

The capacity planning optimization problem is solved using both hourly and aggregate 

temporal zones. The same optimal capacity plans were obtained from both cases; the reason 

being that the variation of stochastic input processes within each temporal zone is small, 

as per approximation scheme. Multiple applications of storage with weights w1, w2 and w3 

are considered in both cases. Note that each storage application has its own cost elements, 

and using these weights we are able to obtain a weighted objective function that includes 

multiple applications. Table 9.Error! Reference source not found. shows four different 
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combinations of storage applications with different weights. In the first three cases a single 

application is considered in planning and in the last case (Case 4) multiple applications are 

investigated. This table also shows the optimal capacity for these cases. 

Table 9-Capacity Planning Results 

Case (W1, W2, W3) Storage 1 Storage 2 Storage 3 Storage 4 

Capacity 

(kWh) 

Power 

Rate 

(kW) 

Capacity 

(kWh) 

Power 

Rate 

(kW) 

Capacity 

(kWh) 

Power 

Rate 

(kW) 

Capacity 

(kWh) 

Power 

Rate 

(kW) 

1 (0, 1, 0) 17000 1500 700 90 290 40 690 90 

2 (0, 0, 1) 0 0 0 0 80 20 1500 300 

3 (1, 0, 0) 6200 2000 6600 2200 1000 300 600 120 

4 (1, 1, 1) 10000 1500 2000 500 900 160 1800 300 

 

Clearly, capacity plans depend on the intended storage applications. For instance, for 

renewable reverse flow reduction application installing storage system in nodes S3 and S4 

is sufficient. The reason is that renewable R1 and R2, which respectively can charge 

storage S1 and S2, are serving more electricity demands, therefor there exist less excessive 

reverse power flow in these two nodes. In the following section the day-ahead planning 

results will be demonstrated for some sample clusters. The hourly model is used for the 

day-ahead planning problem. The results from the aggregate model are then compared to 

the results from the hourly model. 
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3.3.1.1. Aggregate model Validation 

In the aggregate model electricity flows from the main grid and DER resources are 

distributed uniformly within each temporal zone. Hence, the aggregate state of charge at 

storage nodes and the overall objective function are expected to closely approximate the 

hourly results. Moreover, one would expect that the computational complexity of the 

aggregate model to be significantly lower than the exact hourly model especially for large 

networks and higher temporal resolution. Next, we compare the results of aggregate model 

to the exact hourly model. Note that both aggregate and hourly models produce the same 

optimal sizing. We illustrate results from one of the representative clusters that we will 

later use for daily planning, as shown in Table 10. Figure 16 compares the state of charge 

of ESSs in hourly and aggregate models when the optimal configuration of case 3 (EBM 

application) is installed in the distribution network and inputs come from cluster 47.  

 

Figure 16-Aggregate model vs. Hourly model (SOC), Application: EBM 
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As demonstrated in the above figure the state of charges at the end of each temporal zone 

in aggregate model are close to the hourly model.  Table 10 compares the two models in 

different cases. As illustrated in Table 10 the values of objectives in aggregate and hourly 

model are close.  

Table 10- Aggregate model vs. Hourly model (inputs from cluster 47) 

Case Application Electricity Cost ($) Peak value (kW) Total Reverse Flow (kWh) 

Hourly Aggregate Hourly Aggregate Hourly Aggregate 

1 Peak shaving   7,331 7,849   

2 Reverse flow 

reduction 

    0 0 

3 EBM 46,246 47,498     

4 Bundle 46,940 48,044 7,696 7,912 0 0 

 

Recent table compares the objective values for different cases for one specific cluster. 

Analyzing the results from aggregate model shows the little error for all input clusters. 

Following Table 11 illustrates the mean value and standard deviation of error over all input 

clusters for each objective in different applications. 

Table 11 - Percentage error over all input clusters (Aggregate model vs. Hourly model) 

% error for each objective for different applications (average over all clusters) 

Case Application Electricity Cost ($) Peak value (kW) Total Reverse Flow (kWh) 
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Mean 

value 

Standard 

deviation 

Mean value Standard 

deviation 

Mean value Standard 

deviation 

1 Peak shaving   % 6 % 1.5   

2 Reverse flow 

reduction 

    % 0.2 % 0.05 

3 EBM % 3.5 % 0.8     

4 Bundle % 3 % 0.6 % 5.5 % 1.2 % 0.2 % 0.05 

 

Table 11 verifies that proposed aggregate model is a good approximation for exact hourly 

model in day-ahead planning. Using aggregate model lowers the computational complexity 

of optimization problem significantly. For instance, in our example case (Figure 14 - 

Distribution network, which is defined by configuration matrices ESL, ERS and ERL; there 

are 56 possible directions for power flow in the distribution network. Also as mentioned 

earlier 48 input clusters exist based on historical input data. Using hourly model results in 

56 × 48 × 24 = 64512 operational decision variables in the capacity planning problem, 

however, using the aggregate model reduces the decision variables to 56 × 672 = 37632  

(almost % 45 reduction). Reduction in the number of decision variables has a significant 

value especially in the complex and large networks. 

3.3.2. Daily Operation Planning 

In this section, daily operation planning for different capacity configuration are discussed 

for some sample input clusters. For each capacity arrangement the impact of different 
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application weighting values on daily operation planning are studied.  For daily operation 

planning analysis, we focus on three different clusters of input data (clusters 44, 46 and 47) 

-  Figure 17 shows the mean value of input data for these clusters. Cluster 44 has low level 

residential demand, but a high-level commercial demand. It also represents days with 

medium-level of solar intensity. Cluster 46 has low levels of residential and commercial 

demand with a high-level of solar intensity. Cluster 47 represents days with a high mean 

value and variance in hourly electricity price. Both residential and commercial nodes have 

a high-level of demand in this cluster.   

 

Figure 17- Average Input data in clusters 44, 46 and 47 

In each cluster, a 24-hours planning horizon is divided into temporal zones and used to find 

the optimal amount of charge and discharge for a given cluster representative profiles. 

Table 12 shows the number of zones and their duration (in hours) for each input cluster. 
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Table 12 - Local zones' duration for different clusters (Clusters 44, 46 and 47) 

Cluster Number Number of temporal zones Duration of temporal zones 

44 13 [1,4,1,1,1,1,1,2,2,1,1,1,7] 

46 16 [3,4,1,1,2,2,1,1,1,1,1,1,1,1,1,2] 

47 12 [6,1,1,1,1,1,2,1,1,4,1,4] 

 In this example, we assume that ESS units are installed for TOU application to reduce the 

cost of purchasing electricity from the main grid. So according to the capacity planning 

results, shown in Table 9, ESSs with capacities given by case 3 are installed in the subject 

distribution network. Based on capacity planning results, this configuration is optimal 

when reducing the cost of purchasing electricity from grid is the only goal for ESS 

installation.  Figure 18, Figure 19 and Figure 20 show the optimal power dispatch of DER 

assets (renewable resources and energy storages) to demand nodes 1 and 8 when the input 

data, respectively, come from clusters 44, 46 and 47. Note that aggregate model is used to 

find the optimal dispatch and aggregated amount of power is depicted uniformly within 

each temporal zone in these figures. 

 

Figure 18- DER optimal dispatch with input data from cluster 44 
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Figure 19- DER optimal dispatch with input data from cluster 46 

 

Figure 20-DER optimal dispatch with input data from cluster 47 

As illustrated in the above figures the optimal dispatch of DER resources is sensitive to 

input profile. For instance, in all the three clusters a major portion of demands are satisfied 

from renewable resources during the noon time when sunlight is available, and stored 

energy in ESSs is utilized in peak price periods. As shown in Figure 17 peak price times 

are different in the three representative clusters. In cluster 44 peak price is at 1:00 AM and 

as illustrated in Figure 18 during that period stored power in ESS is discharged to supply 

electricity demand and reduce the network electricity cost. The above figures also show 
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that the configuration of network affects the dispatch of DERs. For example, demand 8 is 

connected to all storage and renewable resources, but because of the higher power loss in 

long transmission, R4 and S4 are used to serve this demand node. As another example, D1 

could be served only by R1 and S1, so these two resources are used to provide electricity 

to D1. The optimal dispatch of DERs to other six demand nodes are presented in appendix 

“A2”. Finally Table 13 illustrates the interaction between storage application and optimal 

operation for input cluster 47.  

Table 13-peak value, total reverse flow and total electricity cost for different ESS applications 

Case Weights 

([w1,w2,w3]) 

Application Peak value 

(kW) 

Total Reverse 

Flow (kWh) 

Electricity 

Cost ($) 

1 [0,1,0] Peak shaving 7,849 955 48,499 

2 [0,0,1] Reverse flow reduction 9,313 0 50,376 

3 [1,0,0] EBM (Energy Bill Management) 8,559 374 47,498 

4 [1,1,1] Bundle 7,912 0 48,044 

3.4. Network-Aware Real-Time Control 

The above Day-ahead planning was performed based on the forecast of stochastic input 

processes. But what happens if the real-time inputs are not close to the forecast values? For 

real time control, one could always update the forecast values of input patterns and 

repeatedly carry online optimization by solving the optimization problem at some 

predefined time steps [64] and [65] (on-line optimization). Running on-line optimization 

for complex networks with large number of components and inputs is not practical, 
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however. Here, we propose a rule-based control approach that determines the optimal real-

time actions for each storage node by monitoring the state of components and inputs across 

the network. We adopt a reinforcement learning approach and build a control policy, which 

maps the actions and network state, by a supervised learning classification model.  

In the proposed Network-aware control model the near optimal actions are taken in each 

individual storage unit based on the partial knowledge of the whole network state. The state 

space 𝑆𝑆 of the distribution network is defined by: (i) electricity consumption trend at 

demand nodes, (ii) renewable power generation trend at renewable nodes, (iii) state of 

charge at each storage unit, and (iv) electricity price trend. That is,  

𝑆𝑇𝑡 = [𝐿𝐷𝑑,𝑡−τ, … , 𝐿𝐷𝑑,𝑡, 𝐿𝑅𝑘,𝑡−τ, … , 𝐿𝑅𝑘,𝑡, 𝐸𝑃𝑡−τ, … , 𝐸𝑃𝑡 , 𝑆𝑂𝐶𝑖,𝑡]
𝑇
𝜖 𝑆𝑆               (3.16) 

 𝑑𝜖 𝐷𝑒𝑚𝑎𝑛𝑑 𝑛𝑜𝑑𝑒𝑠, 𝑘𝜖 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒𝑠, 𝑖𝜖 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑢𝑛𝑖𝑡𝑠 

where 𝐿𝐷𝑑,𝑡 represents the level of electricity demand at node d at time step t, 𝐿𝑅𝑘,𝑡 

represents the level of power generation at renewable k at time step t, 𝐸𝑃𝑡 represents the 

electricity price at time step t and 𝑆𝑂𝐶𝑖,𝑡 represents the level of energy at storage node i at 

the beginning of time t. In order to investigate time series impact of these variables we 

define a new variable “τ” for a time window.  

At each time step t, control agent s (for storage s) receives state STt of the network and 

selects an action 𝑎𝑡
𝑠

 ϵ 𝐴𝑠(STt) ⊆ 𝐴𝑠, where 𝐴𝑠(STt) is the set of actions available for storage 

s in state STt and 𝐴𝑠 is the set of all possible actions for storage s.  𝐴𝑠is defined by the 

amount and direction of power at any given state. Since 𝐴𝑠 has a finite possible actions the 

amount of power has to be discretized. Power directions are: charging from grid, charging 

from different connected renewable nodes and discharging to different demand nodes. We 



 

    
 

74 

note that depending on the network topology, storage nodes will have different action 

spaces. For illustration, storage unit S4 in our example case study is connected to two 

demand nodes (D7 and D8), renewable node R4 and also main electricity grid (4 

directions). If the amount of power in each direction discretized into three levels, then 43 

will be the maximum number of actions in action set 𝐴4. We should note that some of these 

actions won’t be feasible because of rated capacity limit on storage unit, hence will be 

removed from the action set.     

Since our focus in this section is electricity bill management as a primary application of 

storage units, for each individual storage s, the reward function 𝑟𝑤𝑡
𝑠(𝑆𝑇𝑡, 𝑎𝑡

𝑠) during time 

interval t, is the saving in network electricity cost as a result of storage s. Since action (𝑎𝑡
𝑠) 

at time t affects the state of network at the next time step (𝑆𝑇𝑡+1), 𝑎𝑡
𝑠 should be taken in a 

way to maximize rewards during that and all future time intervals. For storage s we seek a 

control policy 𝜋∗𝑠, such that 𝑎𝑡
∗𝑠 = 𝜋∗𝑠(STt), which minimizes the overall network 

electricity cost. Value of the storage s under the control policy 𝜋𝑠 when network starts in 

state ST at time t is defined as: 

𝑉𝜋
𝑠
(𝑆𝑇) = 𝑟𝑤𝑡

𝑠(𝑆𝑇, 𝑎𝑡
𝑠) + 𝐸 {∑𝜀𝑖 × 𝑟𝑤𝑡+𝑖

𝑠 (𝑆𝑇𝑡+𝑖, 𝑎𝑡+𝑖
𝑠 ) 

∞

𝑖=1

}            (3.17) 

where, 

𝑟𝑤𝑡
𝑠(𝑆𝑇, 𝑎𝑡

𝑠) = 𝑃𝑟 
 (𝑡) × ( ∑𝑒𝑠,𝑗,𝑡

𝑑

𝑗

− 𝑒𝑠,𝑡
𝑐ℎ,𝑔

)        (3.18) 

𝑒𝑠,𝑡
𝑐ℎ,𝑔

 is the amount of power flow from grid to the storage s during time interval t and 

∑ 𝑒𝑠,𝑗,𝑡
𝑑

𝑗  represents the total amount of power flow discharged from storage s to serve 
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connected demand nodes. These quantities are determined according to action 𝑎𝑡
𝑠. Note 

that future states and rewards are not only dependent on the action taken by storage unit s, 

but also are dependent on the actions of the other agents. This brings uncertainty to the 

future rewards, hence, expected value of the value function is used. A threshold value 0 <

𝜀 < 1 is introduced to ensure convergence. The optimal policy 𝜋∗𝑠 then maximizes the 

value of storage s, so that, 

𝜋∗𝑠 = (𝜋𝑠      
𝐴𝑟𝑔 𝑚𝑎𝑥

𝑉𝜋
𝑠
(𝑆𝑇))          (3.19) 

The above optimal control problem is solved using the following three steps: 

(i) Compute the optimal hourly charging and discharging actions for each storage 

node in the network using the above hourly optimization model. Several points are 

in order: (a) Hourly model is used since control actions are to be made at the top 

of each hour; (b) The optimization model is run for 365 days per year times the 

number of years for which historical data exist. In practice the sample size (𝑁𝑆) 

can be very large. For illustration, we will use a sample size 𝑁𝑆 = 3 × 365 × 24 

hourly data each described by a state vector STt and a set of corresponding actions 

𝑎𝑡
𝑠 for storage unit s. For the illustrative distribution network, there are four storage 

units, so in each sample data there exist four sets of actions (𝑎𝑡
𝑠; ∀ 𝒔 𝜖 {1,2,3,4}).  

(ii) Construct simple rules that characterize the optimal actions as a function of 

network state and its stochastic input patterns. The output of this step is 𝜋∗𝑠 for all 

storage units (∀ 𝒔 𝜖 {1,2,3,4}) in illustrative case. The construction is carried out 

using a classification algorithm, which will be discussed next in details.   

(iii) Monitor and match the real-time values of inputs and the network state to the most 

similar stored patterns computed in step (i). Use rule set from Step (ii) to take the 
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optimal actions. After a predefined time window (usually a day), the state space 

and action spaces will be updated and rules will be reconstructed (repeat steps (i) 

and (ii)). This will ensure that the control model is robust to the changes in the 

input patterns.    

Algorithm 1 - Offline classifier construction algorithm:  

Estimate the optimal control policy 𝝅∗𝒔  

For  (∀ 𝒔) repeat:  /storage index/ 

1.1- Construct the response vector: Y= [𝒂𝟏
𝒔 , 𝒂𝟐

𝒔 , ⋯ ,𝒂𝑵𝑺
𝒔 ]T 

1.2- Construct the feature matrix: X= [𝑺𝑻𝟏, 𝑺𝑻𝟐, ⋯, 𝑺𝑻𝑵𝑺]
T 

For (∀ 𝒃) repeat: /tree index in tree bagging method (denoted by “B”)/ 

1.3- Calculate classifier 𝝅𝒃
𝒔 (𝑺𝑻) based on bootstrapped training data set 

(𝑿𝒃, 𝒀𝒃)  

End 

1.4- Calculate 𝝅∗𝒔(𝑺𝑻) =  
𝟏

𝑩
 ∑ 𝝅𝒃

𝒔(𝑺𝑻)𝑩
𝒃=𝟏                    (𝟑. 𝟐𝟎)  

       End 

As described in “Algorithm 1” a classification technique is used to characterize the optimal 

actions as a function of state of the network components and stochastic inputs. The hourly 

optimization model is utilized to generate the required data for classification. The hourly 

decision variables of the day-ahead optimization problem, namely, charge and discharge 

quantities for each storage node, are the designated response variables in the classification 
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(optimal control actions). A unique class label is then assigned to each action for the 

classification purposes. We note that the number of classes changes according to the 

configuration and topology of distribution network.  The response of the classification for 

each storage system is a vector with labels associated with optimal actions for that storage 

unit. Tree bagging technique [66] is used to build a classification model to predict the 

optimal action in each individual storage node as a function of stochastic input values and 

the SOC of ESSs in the entire network. Tree bagging creates and ensembles decision trees 

for predicting response variable (optimal action at each time step) as a function of 

predictors (network state). Given a training set of predictors with corresponding responses, 

tree bagging repeatedly selects a random sample with replacement of the training set and 

fits trees to these samples (Algorithm 1 - step 1.3). Number of trees “B” is not a critical 

parameter with bagging; using a very large number of “B” will not lead to overfitting [66]. 

We used a sufficiently big number (e.g., 500) to achieve a good performance with low out-

of-bag error. After training, predictions for unseen samples may be created by taking the 

average of predictions from all the individual trees (equation (5) in step 1.4). Since the 

classification model is built based on the optimization model, which has been solved for 

all available data in historical data set, this classifier is expected to be a good estimation of 

optimal control policy. However, this control policy is updated continuously according to 

the new occurred network state as described below in “Algorithm 2”. 

Algorithm 2 - Online monitoring and classification:  

Assign the optimal action 𝒂𝒕
𝒔 

For  (∀ 𝒅) repeat:  /day index/ 
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                   For  (∀ 𝒕) repeat:  /time interval index/ 

                   2.1- Monitor the state of the network; 𝑺𝑻𝒕 

                   For  (∀ 𝒔) repeat:  /storage index/ 

            2.2- Assign action 𝒂𝒕
𝒔 = 𝝅∗𝒔(𝑺𝑻𝒕) to storage unit s  

     End 

End 

2.3-  Solve the exact optimization problem for day “d” and update the state space 

SS and action space 𝑨𝒔;  ∀ 𝒔 (𝒔𝒕𝒐𝒓𝒂𝒈𝒆 𝒊𝒏𝒅𝒆𝒙) 

2.4- Repeat the steps in “Algorithm 1” with updated response vector and feature 

matrix and update the optimal policy 𝝅∗𝒔(𝑺𝑻) ∀ 𝒔 (𝒔𝒕𝒐𝒓𝒂𝒈𝒆 𝒊𝒏𝒅𝒆𝒙) 

       End 

 

Next, the proposed control algorithm is applied to our example distribution network. The 

configuration defined in “Case 3” with electricity cost reduction application is considered 

for the illustration. To devise a classifier, we explore the relationship between stochastic 

patterns of input variables and optimal actions.  This is followed by a discretization process 

according to the network configuration and topology. We also discuss the accuracy of the 

control model using sensitivity analysis.  

Our hypothesis is that there exists a strong correlation between the stochastic input patterns 

and optimal charge and discharge actions. Here we investigate this hypothesis by analyzing 

input patterns in a time window defined by (t-τ;t). In Figure 21 and Figure 22 (with τ=4) 
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we show the average patterns for these inputs with two different actions at storage node 1.  

We assume that the solar radiation at renewable nodes are close (due to the same 

geographical zone), therefore, there is no need to consider separate levels of renewable 

electricity generation for different PV systems in the classification phase. Hence, instead 

of analyzing the level of generation at the renewable nodes we look at the solar intensity 

patterns. 

 

Figure 21-Stochastic Input pattern when charging from grid is the optimal action for ESS1 
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Figure 22-Stochastic Input pattern when discharging to D1 is the optimal action for ESS1 

Figure 21 and Figure 22 confirm the correlation between charge/discharge controls of 

electricity storage and input patterns. According to Figure 21-a and Figure 21-d, charging 

from grid actions of S1 should follow decreasing trends in electricity price and solar 

radiation.  This is expected since electricity storage application is intended to reduce the 

electricity bill.  Figure 22-a to Figure 22-d illustrate that discharging to commercial demand 

D1 follow the increasing trends in demand profiles and electricity price.  

According to the illustrative network configuration, the possible directions for power flow 

in storage “S4” are: discharge to demand nodes D7 and D8, charge from renewable R4 and 

charge from grid. In each of these directions the amount of electricity flow is discretized 

into three levels based on power rating:  at 0%, between 0% and 50% and greater than 50%. 

As a result, there are 34 (=81) total possible actions for storage “S4” during a given time 

step. A four-digit number in turnary (the base-3 numeral) system (𝑑
1
𝑑2𝑑3𝑑4)3

 is used to 

represent each action for this storage. Each digit represents the amount of electricity flow 
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in specific direction. The following table shows the meaning of each digit for control 

actions in storage 4. 

Table 14- Storage 4 control action representation 

Value of each 

digit (𝑑𝑛; 

n=1,2,3 and 4) 

𝑑1(level of 

charging from grid) 

𝑑2(level of 

charging from R4) 

𝑑3(level of 

discharging to D7) 

𝑑4(level of 

discharging to D8) 

0 0% of rated power2 0% of rated power 0% of rated power 0% of rated power 

1 50% of rated power 50% of rated power 

50% of rated 

power 

50% of rated 

power 

2 

100% of rated 

power 

100% of rated 

power 

100% of rated 

power 

100% of rated 

power 

For example, action number 3, which is represented as (0010)3in turnary system, 

represents discharging to D7 with 50% power rating. Control actions for other storage units 

are defined similarly. It is obvious that some of these actions (for instance, multiple 

charging and discharging during same time step) are not feasible because of the limitation 

on the power rating (see Eq. (7)).  

Finally, we note that, in addition to state of charge of ESSs at time “t”, the level of 

renewable generation, electricity demands and electricity price from time “t-τ” to “t” will 

be considered as classification features. Furthermore, we expect that higher values of τ will 

improve the misclassification and control errors. Next, we present the above methodology 

for our case study network with two different values of τ.  

                                                 
2 in the focused case in control problem (case 3) rated power is 120 kW for storage 4 
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First, we assume τ=0, which means that no memory is considered for the control algorithm. 

Therefore, only the current state of charge of ESS nodes, electricity generation in 

renewable nodes, electricity demand and electricity price are taken into account. Two-third 

(2/3) of the sample data (the same three years historical data) is used to train the 

classification model. The daily cost is calculated for each individual day and the deviation 

from optimal daily cost is also calculated. Figure 23-a shows the histogram chart of daily 

cost deviation when τ=0. The mean value of the cost deviation from optimal case (with 

exact information) is 6%, which means that by using approximation rule-based control 

(with zero-hour memory); on the average, the daily operation cost will be 6% more than 

the optimal cost. 

Repeating the above for τ=4 demonstrates that deviation from the optimal cost reduces 

significantly with the size of time memory window (Figure 23-b).  

 

Figure 23- Daily Cost Deviation (%) – a) τ= 0 - b) τ= 4 
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The mean value of the cost deviation from optimal case (with exact information) is 4% 

when memory window of 4 hours considered for control algorithm. As expected, by 

increasing the memory window the error of model decreases. In the following Figure 24-a 

the amount of electricity required to be purchased from the main grid as a result of 

executing control actions (for both τ=0 and τ=4) during an example day are illustrated. 

Figure 24-b shows the electricity price this example day.  

 

Figure 24- Example day electricity price and outputs profile - (a) Purchased electricity from grid, (b) 

electricity price 

Figure 24-a shows that by increasing the memory window the rule-based control assigns 

charge and discharge actions to storage nodes in a way to reduce the purchasing electricity 

from grid during the peak hours. Note that, none of controllers (τ =0 and τ =4) has 

information about future and they assign control actions according to their prediction 

ability. But it seems that higher sizes of the memory window improve the future prediction 

capability of patterns, which results in less daily cost and better performance of the control 

model. 
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3.5. Sensitivity Analysis on stochastic parameter changes 

Thus, far, the planning and real-time controlling models have been made based on the 

available historical data.  In this section, we conduct a sensitivity analysis and investigate 

the impact of load changes on planning decisions and control actions. We will experiment 

with data of Figure 25 which gives the hourly profile boxplot for two demand nodes in our 

distribution network during cooling season and heating seasons. 

 

Figure 25- Hourly demand profile boxplot (Heating season and cooling season) 

We fit a multi-variate log-normal distribution to each demand data and compute mean 

value and covarriance matrix. We consider 5%, 10%, 15% and 20% growth in demand for 

each node and investigate the impact of these increases on capacity planning and control 

for distribution network. We focuse on energy bill management application.  
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The following table confirms that increasing in electricity demand results in higher value 

of investment in energy storage, therefore capacity planning model suggests higher 

capacity of energy storages.  

Table 15- Capacity planning for different electricity demand growth 

Growth in 

elec. 

demand  

Storage 1 Storage 2 Storage 3 Storage 4 

Capacity 

(kWh) 

Power 

Rate 

(kW) 

Capacity 

(kWh) 

Power 

Rate 

(kW) 

Capacity 

(kWh) 

Power 

Rate 

(kW) 

Capacity 

(kWh) 

Power 

Rate 

(kW) 

Baseline 

(0%) 

6200 2000 6600 2200 1000 300 600 120 

5% 6500 2200 6800 2300 1000 300 600 120 

10% 6900 2300 7200 2400 1100 350 600 130 

15% 7200 2500 7500 2500 1150 350 650 130 

20% 7500 2600 7800 2600 1200 400 650 130 

 

Now let’s move to the proposed network aware control model. Capacity of storage units 

are same as baseline (no growth in electricity demand). The initial control policy is 

determined based on base-line demand scenario (Step “A” in Algorithm 1). Now consider 

that the level of demand is increasing with 5% growth. This results in new state vectors 

which do not exist in the initial state space. As described in steps B-3 and B-4 in algorithm 

1, the control policy will be updated continuously according to the new occurred states to 

adjust control actions with new states and maintain the performance of control module. 
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Following Figure 26 demonstrates the deviation from optimal cost as a result of applying 

proposed network aware control algorithm on the new state space with %5 growth in 

electricity demand. The mean value of the cost deviation from optimal case is %4.5. 

 

Figure 26- Deviation from the daily optimal cost when elec. Demand increase by 5% -  τ= 4 

3.6. Conclusion 

This chapter proposed “Network-aware planning and control approach” for multiple 

energy storage nodes distributed over power distribution network. We were interested in 

optimally locate these storage units over distribution network and to create day-ahead plans 

according to planned application. An approximation model has been proposed for planning 

purpose, which lowers the computational complexity of optimization problem by 45 % in 

our illustrative example (in terms of number of decision variables). Two types of storage 

system with static and dynamic capacity are considered in the planning model.  

Furthermore, a novel rule-based control scheme for the near real time operation of the 

storage network has been built. Tree-bagging classification technique is utilized to 



 

    
 

87 

determine the near optimal control policy, which maximizes the value of storage nodes. In 

the proposed Network-aware control model the near optimal actions at a time “t” are taken 

in each individual storage unit based on the partial knowledge of the whole network state 

from time “t-τ” to “t. Comparing the daily costs of approximate control model with the 

exact optimal case when τ =0 shows 6% difference in average. Increasing the memory (τ) 

of the model from 0 hours to 4 hours reduces this deviation to 4%. In the proposed model 

the control policy is being updated frequently to adjust the control rules with any changes 

in network components’ behavior and increase the robustness of control module.  
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3.7. Appendices  

3.7.1. Appendix “A1” 

Following table shows the population size and corresponding probability value for each 

cluster.  

Cluster number Population size Cluster probability 

1 11 0.01005 

2 43 0.03927 

3 10 0.00913 

4 14 0.01279 

5 14 0.01279 

6 9 0.00822 

7 11 0.01005 

8 42 0.03836 

9 34 0.03105 

10 12 0.01096 

11 33 0.03014 

12 19 0.01735 

13 41 0.03744 
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14 12 0.01096 

15 11 0.01005 

16 21 0.01918 

17 40 0.03653 

18 12 0.01096 

19 49 0.04475 

20 11 0.01005 

21 45 0.04110 

22 49 0.04475 

23 12 0.01096 

24 13 0.01187 

25 13 0.01187 

26 41 0.03744 

27 52 0.04749 

28 45 0.04110 

29 14 0.01279 

30 11 0.01005 

31 12 0.01096 
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32 9 0.00822 

33 15 0.01370 

34 28 0.02557 

35 44 0.04018 

36 22 0.02009 

37 12 0.01096 

38 9 0.00822 

39 11 0.01005 

40 22 0.02009 

41 11 0.01005 

42 41 0.03744 

43 16 0.01461 

44 40 0.03653 

45 18 0.01644 

46 16 0.01461 

47 13 0.01187 

48 12 0.01096 
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3.7.2. Appendix “A2” 

Optimal dispatch to different demand nodes in different example clusters: 

 

Figure 27- Optimal dispatch to 8 demand nodes (Cluster 44) 

 

Figure 28- Optimal dispatch to 8 demand nodes (Cluster 46) 
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Figure 29- Optimal dispatch to 8 demand nodes (Cluster 47) 
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CHAPTER 4: ENERGY STORAGE SYSTEM WITH 

DYNAMIC CAPACITY – EV PARKING LOT MODEL 

Abstract 

The recent advances in electric battery technologies and the reduced price of Electric 

Vehicles (EV) are significantly changing the adoption rate of EVs.  With the increasing 

number of EVs on the roadways the demand for power increases. New emerging Vehicle-

to-Grid (V2G) technology brings the opportunity for large facilities, such as EV parking 

garages, to participate in wholesale energy and ancillary markets such as frequency 

regulation to dampen the effect of increase in EV load by allowing energy flow from these 

vehicles to the grid at times of stress and peak loads. In this study, we propose an integrated 

framework which optimally dispatches EVs in a large parking facility to maximize the 

parking facility benefits. It also offers economic benefits to EV owners through reduced 

parking fees or discounted charging fees which compensate the additional degradation of 

the vehicle battery. Moreover, this framework is capable to quantify the impact of such 

planning on the power distribution network. In this study, we show that optimal charging 

and discharging of EVs in a large garage with 120 charging stations reduces the peak 

demand of the facility by almost 40%. In the planning phase, queueing model is adopted 

to estimate the available aggregate capacity of batteries in the parking facility (energy 

storage system (ESS) with dynamic capacity) during different times of the day. The risks 

associated to the stochasticity of the available capacity are also formulated. The hourly 

charging/discharging for the available capacity is formulated as a mix-integer problem.        
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4.1. Introduction 

The recent advances in battery related technologies and the reduced price of Electric 

Vehicles (EV) are significantly changing the landscape of roadway transportation  [67] and 

[68], and more than ever before, the nexus between transportation and energy becomes 

evident.  With the increasing number of EVs on the roadways and the flexibility to charge 

at home, or at public and private facilities, the demand for power increases and load 

uncertainty widens [69] [70] [71].  The recent advances in Vehicle to Grid (V2G) 

technology and the lowering cost of bi-directional charging units bring new investment 

opportunities, especially in the emerging energy storage market. To remove barriers to the 

participation of electric storage resources in the capacity, energy, and ancillary service 

markets operated by Regional Transmission Organizations (RTO) and Independent System 

Operators (ISO), the Federal Energy Regulatory Commission (FERC) enacted FERC 

Order 841 [72]. Large facilities, such as EV parking garages, can participate in wholesale 

energy and ancillary markets such as frequency regulation to dampen the effect of increase 

in EV load by allowing energy flow from these vehicles to the grid at times of stress and 

peak loads [72], [73] and [74]. It can also offer economical benefits to electric vehicle 

owners through reduced parking fees or some income sharing schemes. Such a facility can 

also be part of a larger but modular network of energy storages, or an Energy Storage 

System (ESS), at power distribution network. An ESS can provide multiple distribution 

applications such as facilitating renewable integration, load leveling, peak shaving, along 

with participation in wholesale energy and ancillary markets [75]. All these benefits come 

with strings attached, though, for instance, it is generally perceived that batteries residual 

life has a strong correlation with the number of charge-discharge cycles and the depth of 
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discharge. Furthermore, the random nature of vehicle arrivals and departures, and the initial 

and final required State of Charge (SoC) for individual vehicles complicate the behavior 

of the ESS that a parking garage is member of.  These random patterns along with other 

unplanned failures and planned maintenance events will make the overall capacity of the 

ESS stochastic and dynamic as perceived by the distribution network that is serving.  

This chapter provides an insight into potentials of using such facilities to participate in 

ancillary markets or other applications. We propose a model, which determines the upper 

bound for the value of a parking garage as an energy storage with dynamic capacity. Mixed-

integer programming is utilized to find the maximum value of this modular storage system. 

One key parameter in this problem is the permission from EV owners for V2G connections. 

This parameter is determined based on the incentive offered by the parking operator to the 

EV’s owner. We formulate a queueing model to estimate the vehicles arrival time for the 

next day. This is crucial for day-ahead wholesale market participation since it gives an 

insight regarding the available capacity. The queueing model comes very handy in 

predicting the number of vehicles in the facility at any time bucket during a day. We also 

compute the quantity risks of the day-ahead commitments.  

EV integration studies in the literature mainly focused on analyzing the impacts of EV 

adoption on electricity demand and the required upgrades in generation, transmission and 

distribution systems to meet the demand [76] and [77]. The increased peak load demand 

due to plugged-in EVs may also overload service transformers resulting in transformer 

overheating and subsequent deterioration [78] and [79]. EV charging is also likely to cause 

power quality problems, including, under-voltage conditions, voltage and current 

harmonics, and etc. [80], [81] and [82]. To mitigate the negative impacts of EV charging 
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[83] and [84] proposed customer incentives by utilities to charge their EVs during off-peak 

hours. The idea is that assigning Time-Of-Use (TOU) electricity pricing will help utility to 

control the charging actions indirectly [85] and [86] proposed utility owned smart controls 

aiming to maximize utility and costumers’ benefits.  [87] considers the problem of 

maximizing the profits for the EV owners by selling excessive energy to the grid. [88] and 

[89] provided control algorithms to maximize EV owner’s profit earned from selling power 

to grid and participating in a frequency regulation market. The coordination of large-scale 

EV charging in a parking garage emerges as a more promising candidate for demand 

response (DR) and ancillary services. The aggregated charging load of EVs in parking 

garage with flexible and interruptible characteristics brings opportunity in DR market. Yao, 

et.al. in [90] analyzed the EV charging coordination based on both price-based and 

incentive-based DR programs. Moreover, aggregated capacity of batteries in EV parking 

garage can also be used in ancillary market. The impact of a unit unavailability on the 

overall system capacity depends on configuration and series/parallel connections among 

individual batteries or storage units [91], [92] and [93]. 

Although there have been many studies investigating the EV charging coordination, 

advanced managed charging and V2G control; However, to the best of our knowledge, 

there is a major gap in understanding how the EV parking facility as a large energy storage 

with dynamic and uncertain capacity should operate in a distribution network. Moreover, 

the cost and benefit of such parking facility for parking owner, EV owners and power 

distribution network require being investigated. 

The rest of the chapter is structured as follows. Section 2 states the problem and explains 

the queue model which has been deployed to simulate the behavior of EV parking garage 
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as a dynamic storage system. The day-ahead stochastic planning problem is formulated in 

section 3. This section continues with risk formulation associated to operational 

stochasticity of the facility. In section 4, mixed-integer programming formulation for the 

operational control is demonstrated. Section 4 concludes with EV garage Cost and benefit 

analysis. In section 5 a set of example case studies are illustrated to evaluate the proposed 

integrated framework.  

4.2. Problem Statement and preliminaries 

The problem we are trying to solve here has multiple facets: The facility owner wants to 

maximize his/her revenue by optimally controlling bi-directional power flow in the facility. 

For this to happen, the facility owner must have vehicle owner’s permission, which is 

partially dependent on what this owner receives in return, either as discount for the use of 

the facility or as an expedited payback. The vehicle owner needs to weigh this return 

against battery degradation. On the other hand, for the owner to participate in wholesale 

energy and ancillary market such as frequency regulation, the facility (as an energy storage) 

must conduct day-ahead plans, which is contingent on vehicle queues. With the underlying 

stochastic queueing process, the day-ahead plan will be subject to uncertainties and risks. 

To tackle this multifaceted problem, as depicted in Figure 30, queueing model has been 

developed that explains vehicle arrivals and departures. With the number of vehicles in the 

facility computed from the queueing model, a day-ahead planning model is then formulated 

that simulates the facility participation into frequency and energy markets (see Figure 30; 

day-ahead stochastic planning block). The day-ahead model assumes optimal operational 

control for each of many scenarios that are generated according to the stochastic inputs. 

We also formulate risks associated with a plan and compute damages to distribution 
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network as a result of operational stochasticity of the facility (Figure 30; Distribution 

network impact model block). The developed optimal operational control model, governs 

bi-direction power flow in the facility. This model works closely with a facility and vehicle 

owner’s revenue model. Following figure illustrates the holistic view of proposed 

approach.  

 

Figure 30- Schematic diagram of the proposed model 

Without loss of generality, we assume two equally likely common capacities (kWh) for EV 

battery. The initial SoC of an EV battery is a random variable that follows truncated normal 

distribution bounded from below, with mean and variance as functions of vehicle’s arrival 

time. EVs that arrive earlier have higher mean value and lower variance. It is assumed that 

EVs should reach to the owner-defined SOC upon departure. In the time between arrival 

and departure times, EV can be part of the parking lot’s modular energy storage system if 

the V2G permission is granted by the EV owner. It should be noted that, the overall storage 

capacity of this energy system is stochastic which is the function of the arrival and 

departure of EVs as well as the V2G connections.  
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The facility has a finite number of parking spaces for EVs. We assume that the facility is 

empty (𝑆𝑡0 = 0) at the beginning of the day (time 𝑡0 = 0).  EVs arrive according to a 

general stochastic process and occupy a parking spot for a random period of time, which 

also follows a general probability distribution. Underlying arrival distributions change with 

time of the day, and time-to-stay distributions vary from one EV to another.  Furthermore, 

arrival and departure SOC levels depend on individual vehicles characteristics.  

From a queueing point of view, this parking facility works like a G/G/K/0 queue, where 

the first two G’s are general distribution designations for inter-arrival time and time-to-

stay of vehicles, respectively. K is the number of parking spaces and capacity of the facility. 

Since exponential distribution has memory-less property, suppose that arrival times follow 

a Markovian process with exponentially distributed inter-arrival times and time dependent 

parameter 𝜆𝑖, where 𝑖 is the ith time interval. Let us denote the duration of ith
 interval by 

∆𝑡𝑖 ≜ 𝑡𝑖 − 𝑡𝑖−1.  The probability of  𝑛 vehicle arrivals during the ith time interval is then 

given by: 

𝑃{𝑁𝑖 = 𝑛} =
[𝜆𝑖 × ∆𝑡𝑖]

𝑛

𝑛!
× 𝑒−𝜆𝑖×∆𝑡𝑖    ∀ 𝑛 = 0,1,2, … , 𝐾            (4.1) 

and the expected number of arrival during the interval is: 

𝐸[𝑁𝑖] = ∑
[𝜆𝑖 × ∆𝑡𝑖]

𝑛

(𝑛 − 1)!
× 𝑒−𝜆𝑖×∆𝑡𝑖

𝐾

𝑛=0

         (4.2) 

Let us assume that the time to stay of any EV, which arrives during the ith interval, is a 

random variable that follows an exponential distribution with mean value 
1

µ𝑖
. Define µ′

𝑖
 as 

the vehicle departure rate from the facility during the ith interval from the perspective of an 
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outside person. This time dependent departure rate is the function of time to stay of EVs, 

which arrived during prior intervals.  µ′
𝑖
 can be calculated by the weighted average of the 

times to stay of all vehicles that are at the facility, and is given by: 

µ′
𝑖
= 
∑ 𝑤𝑗

𝑖 × µ𝑗
𝑖−1
𝑗=1

∑ 𝑤𝑗
𝑖𝑖−1

𝑗=1

             (4.3) 

where weight 𝑤𝑗
𝑖 is defined as the expected number of vehicles which arrived in the jth 

interval and remained in the facility till 𝑡𝑖−1: 

𝑤𝑗
𝑖 = 𝜆𝑗  ×  ∆𝑡𝑗  ×  𝑒

−µ𝑗×(𝑡𝑖−1−𝑡𝑗)       (4.4) 

Then the probability of 𝑛 vehicles departing the facility during the ith interval given 𝑚 

vehicles are in the parking-lot at time 𝑡𝑖−1 is: 

𝑃{𝐿𝑖 = 𝑛|𝑆𝑡𝑖−1 = 𝑚} =
[𝑚 × µ′

𝑖
× ∆𝑡𝑖]

𝑛

𝑛!
× 𝑒−𝑚 × µ

′
𝑖×∆𝑡𝑖     ∀ 𝑛 = 0,1,2, … ,𝑚         (4.5) 

where 𝑆𝑡𝑖−1 indicates the number of occupied spaces at time 𝑡𝑖−1. The expected number of 

departing vehicles during the ith interval is then given by: 

𝐸[𝐿𝑖|𝑆𝑡𝑖−1 = 𝑚] = ∑
[𝑚 × µ′

𝑖
× ∆𝑡𝑖]

𝑛

(𝑛 − 1)!
× 𝑒−𝑚 × µ

′
𝑖×∆𝑡𝑖     

𝑚

𝑛=0

     (4.6) 

Expected number of EVs in the parking lot at the end of ith interval is given by: 

E[𝑆𝑡𝑖] = 𝑆𝑡𝑖−1 − 𝐸[𝐿𝑖|𝑆𝑡𝑖−1] + 𝐸[𝑁𝑖]        ∀ 𝑖 = 1,2,3, … ,24    (4.7)   

The above queueing model will be used to plan a day ahead and also formulate the overall 

facility operational and revenue models.  
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4.3. Day-ahead stochastic planning 

Facility owner may benefits from participation in wholesale energy and ancillary market 

such as frequency regulation (FR). To estimate potential market benefits, mixed-integer 

economic dispatch model has been developed with respect to PJM fast regulation market 

(RegD) rules. The facility owner would want to commit a maximum capacity in peak-

priced hours while ensuring that sufficient capacity is available at the facility level to 

provide both regulation down (ES charging) and regulation up (ES discharging) services. 

For demonstration purposes, we use 2016 PJM day-ahead regulation market data (both 

capacity and performance clearing prices are applied). For wholesale arbitrage, the facility 

owner may charge EV batteries when electricity price is low and sell it back to the grid 

when electricity price is high, provided that the EV SoC demands are met.   

FR capacity commitment and net injected power (aggregate charge minus aggregate 

discharge) must be considered in the planning phase (e.i. day-ahead planning).  As depicted 

in Figure 31, the day-ahead planning is performed based on the expected number of EVs, 

types of batteries, initial SOC and final desired SOC of batteries. Moreover, market 

variables such as electricity price and FR credit could influence planning. These input 

variables are stochastic, hence stochastic optimization is applied. The output of day-ahead 

planning function is the optimal discount factor assigned to EVs (for V2G permission), 

aggregated planned capacity for FR commitment (during each time step), aggregated 

amount of electricity required to charge EVs and aggregated amount of discharged 

electricity during each time step (see Figure 31). The following equation explains the inputs 

and outputs for stochastic planning function 𝑓𝑝(. ).   
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[{𝑅𝑒𝑔𝑡; ∀𝑡}, {𝑄𝑡;  ∀𝑡}, {𝑃𝑡;  ∀𝑡}, 𝜑]

= 𝑓𝑝([{𝑆𝑡;  ∀𝑡}, {𝐶𝑎𝑝𝑡;  ∀𝑡}, {𝑅𝐶𝑎𝑝𝑡;  ∀𝑡}, {𝑃𝑟𝑡;  ∀𝑡}, {𝐹𝑅 𝐶𝑟𝑒𝑑𝑖𝑡𝑡; ∀𝑡}, … 

{𝑆𝑂𝐶𝑖𝑛𝑖𝑡
𝑖 ;  ∀𝑖}, {𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙

𝑖 ;  ∀𝑡}])   (4.8) 

where {𝑅𝑒𝑔𝑡;  ∀𝑡} is the timeseries output for the aggregated planned capacity for FR 

commitment; {𝑄𝑡;  ∀𝑡} and {𝑃𝑡;  ∀𝑡} represent time-series for the aggregate planned 

discharged and charged power for the parking facility; and 𝜑 is the optimal planned 

discount factor for the V2G enabled EVs. The following figure illustrates the functional 

diagram for day-ahead planning phase. 

 

Figure 31- day-ahead planning - functional diagram 

To capture the stochasticity of input variables in the day-ahead planning, a Monte-Carlo 

(MC) simulation generates sample paths according to stochastic input distributions, one of 

which is vehicle arrival process as captured by the queueing model.  For each sample path, 

we then seek the optimal planning outputs (discount factor, aggregated planned capacity 

for FR commitment, aggregate amount of electricity required to charge EVs and aggregate 

amount of discharged electricity). The optimization problem is basically as same as the 
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model that we have used for operational purposes – this is described in a later section. For 

now, we assume the optimal plan 𝑓𝑝(. ) exists. Optimal results for each MC path will be 

used to find the distribution for output variables in planning phase.   

Next, we illustrate day-ahead planning model for a commercial parking facility with 120 

parking spaces. EV arrivals are assumed Markovian as formulated above. The capacity of 

batteries, their initial and final SOC are also generated randomly according to their 

stochastic distribution while market information (namely; FR credit and electricity price) 

are unchanged. The following figure demonstrates the box whisker plots for the number of 

EVs and the aggregated capacity of batteries parked in the parking facility based on the 

100 MC sample paths. 

 

Figure 32- a) Boxplot- Number of EVs  b) Boxplot - Aggregate capacity of batteries 

Note that the parking facility is almost fully-occupied during 4-6 PM. The market data 

remains fixed for all scenarios and as given in Figure 33.  
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Figure 33- a) Electricity price profile; b) Frequency regulation market clearing price 

Given the market data, optimal plans are calculated for each sample path, and results from 

all paths are compiled into distributions; see the figures below for Reg. Cap, Charging and 

discharging power amounts over 24 hours period. 

 

Figure 34 - a) Boxplot - FR capacity; b) Boxplot - elec. power required for charging; c) Boxplot - elec. 

power to discharge 
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As illustrated in Figure 33Figure 34 optimal decisions during the planning phase is highly 

sensitive to the market values. For instance, although there is relatively more available 

capacity at 4 PM compared to 3 pm, FR committed capacity is less at 4 pm. This is due to 

the higher RMCP value at 3 pm compared to 4pm. As the other example, as shown in 

Figure 5.c sell to grid is an optimal decision at 6 PM when electricity price is high. The 

day-ahead plan is estimated by taking average over all scenarios. The planned capacity for 

FR participation and net demand (charging - discharging) are shown in Figure 6. 

 

Figure 35- a) Planned FR capacity; b) Planned net injected power 

Uncertainty in Day-ahead planning: The following sources of uncertainty exist in the 

planning phase: 

• If the FR market participants are called for regulation service but they fail to provide 

the requested capacity (because of overestimation in the planning phase) they get 

penalized by the market operator. Thus, there is a risk associated with the day-ahead 

plan calculated as the probability that the actual available capacity for FR participation 

becomes less than the planned capacity; 𝑃𝑟α = Pr(𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑅 𝑐𝑎𝑝 <
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𝛂% 𝑜𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝐹𝑅 𝑐𝑎𝑝) where α represents the planning risk. Figure 36 illustrates 

planning risks over 24 hours period.   

 

Figure 36- FR planning risk during different hours of the day 

As illustrated in Figure 36 the risk related to FR planning capacity is negligible during 

the peak time when parking facility is almost fully-occupied. However, FR planning 

based on the average scenario has higher risk during the off-peak hours (6-8 AM and 

8-10 PM).   

• The actual net demand is different from the planned one, which could affect the bus 

voltage in distribution network. If the bus voltage falls out of the standard level it may 

cause damage to the distribution network. To avoid this, other generation (or demand) 

nodes must adjust their operation or the static storage needs to be installed at the bus to 

balance the actual and planned demand. 

In the medium/high voltage distribution network the real/imaginary part of bus voltage 

could be approximately calculated according to the following equations [94]: 
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𝑉𝑟𝑛,𝑡 = 𝑉0 +
1

𝑉0
∑(𝑍𝑟𝑛,𝑛′ . 𝑃𝑔𝑛′,𝑡 + 𝑍𝑖𝑛,𝑛′ . 𝑄𝑔𝑛′,𝑡)

𝑛′≠𝑁

      (4.9) 

𝑉𝑖𝑛,𝑡 =
1

𝑉0
∑(𝑍𝑖𝑛,𝑛′ . 𝑃𝑔𝑛′,𝑡 − 𝑍𝑟𝑛,𝑛′ . 𝑄𝑔𝑛′,𝑡)

𝑛′≠𝑁

        (4.10) 

where: 

𝑉𝑟𝑛,𝑡 / 𝑉𝑖𝑛,𝑡: Real / Imaginary part of node “n” voltage at time “t” 

𝑉0: voltage of slack bus which is connected to the main grid at the substation 

𝑍𝑟𝑛,𝑛′ / 𝑍𝑖𝑛,𝑛′: Real / Imaginary term of Z-bus for line (n, n’) 

𝑃𝑔𝑛′,𝑡 / 𝑄𝑔𝑛′,𝑡: Real / Imaginary term of net injected power in node “n’ ” at time 

“t” 

In order to demonstrate the impact of planning phase uncertainty on the distribution 

network we assume that our parking facility is located in the 12kV micro-grid 

shown in Figure 37. This micro-grid is composed of 5 nodes with 3 buildings. 

Building load profiles are generated based on EnergyPlus simulation database [95]. 

A commercial parking facility with 120 EV chargers is located at node 3. Moreover, 

three static storage systems (5,500 kWh, 1,700 kWh and 6,700 kWh) are 

respectively installed at node 1,2 and 4. 
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Figure 37- Example 5-node micro-grid 

Changes in the actual injected net power at bus 3 (parking facility) may propagate 

across the distribution network and create disruptive voltage fluctuations. Voltage 

fluctuations within 90% to 110% of slack bus voltage and voltage phase between -

0.15 and 0.1 radians are assumed as safe operational regions, note. Since node 5 is 

the slack bus we calculate the per-unit (p.u) when 𝑉𝑟5,𝑡 = 1 𝑝. 𝑢 ∀𝑡 & 𝑉𝑖5,𝑡 =

0 𝑝. 𝑢 ∀𝑡. Figure 38 illustrates the boxplot related to the magnitude and phase of 

network nodes through MC scenarios.  
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Figure 38 - voltage magnitude and phase at different nodes 

For this illustration, as shown in Figure 38, the uncertainty in the parking facility 

net demand doesn’t seem to have significant impacts on the network; i.e., that all 

node voltages remain in their feasible region. The reason is the existence of 

distributed energy storage systems with static capacity which dampen the 

fluctuation in nodal voltage.   

Impact of V2G control on power distribution network- Lastly, we determine how V2G 

plans impact a distribution network. Consider the commercial parking-lot with 120 parking 

spaces. We compare two V2G scenarios. In the first scenario we assume that V2G system 

is not enabled and EVs only consume electricity to charge their batteries. In the second 

scenario the V2G system is active which enables parking owner to send electricity back to 
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the main grid. Following Figure 39 illustrates the facility net demand (net injected power) 

over all EV arrival scenarios in the MC simulation, for these two V2G cases.   

 

Figure 39- Parking facility net demand (net injected power): a) without V2G; b) with V2G 

As demonstrated in Figure 39 the peak demand in enabled V2G scenario is much lower 

compared to the case without V2G. The reason is the flexibility in charging and discharging 

of batteries due to bi-directional V2G technology. The facility operator is able to manage 

the power flow in a way to reduce peak demand which results in lower electricity cost.   

Following figure shows the average demand profile (net injected power) at the parking 

facility bus in these two V2G scenarios. 
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Figure 40- Average net demand profile 

Figure 40 shows that using V2G system will reduce the peak demand by almost 40 %. 

Lower peak demand results in: 

a) Lower transmission loss in the network. 

b) Lower required capacity at the node. 

c) Lower required capacity for transmission lines.  

4.4. Formulation of Optimal Facility Operational Control 

Service offering and corresponded cash flow streams are illustrated in Figure 41.  

 

Figure 41- Money flow and offered services in the proposed business platform 

There are three main sources of revenue: 
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1- FR credit: FR credit in PJM RegD market is based on the capability offered as well as 

the performance provided. The capability credit is related to the hourly integrated 

regulation capacity. The performance credit is related to how fast ESS can response to 

the PJM regulation signal. The integrated committed capacity, 𝑅𝐸𝐺𝑡 at time t, receives 

credit 𝐹𝑅 𝐶𝑟𝑒𝑑𝑖𝑡𝑡 according to the following equation: 

𝐹𝑅 𝐶𝑟𝑒𝑑𝑖𝑡𝑡 =  𝑅𝐸𝐺𝑡 × 𝜌 ( 𝑅𝑀𝐶𝐶𝑃𝑡 +  𝛽𝑡 × 𝑅𝑀𝑃𝐶𝑃𝑡)          (4.11) 

where, 𝑅𝑀𝐶𝐶𝑃𝑡 and 𝑅𝑀𝑃𝐶𝑃𝑡 denote Regulation market capacity clearing price ($/kWh) 

and regulation market performance clearing price ($/kWh) available at PJM website 

(http://www.pjm.com/markets-and-operations/ancillary-services.aspx). 𝜌 is a score 

between 0 to 1 that indicates a unit’s performance in following the regulation signal. Since 

battery storage response is quick, this performance score is close to 1. Note that 𝑅𝐸𝐺𝑡 is 

defined as: 

𝑅𝐸𝐺𝑡 = ∑ 𝐹𝑅𝑖,𝑡
𝑁𝐸𝑉
𝑖=1           (4.12) 

where, 𝐹𝑅𝑖,𝑡 is the committed capacity to FR market from EV “i” during time step “t”. 𝛽𝑡 

is PJM mileage ratio and is defined by:  

𝛽𝑡 =
𝑅𝑒𝑔𝐷 𝑀𝑖𝑙𝑒𝑎𝑔𝑒

𝑅𝑒𝑔𝐴 𝑀𝑖𝑙𝑒𝑎𝑔𝑒
         (4.13) 

𝑅𝑒𝑔𝐷 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 and 𝑅𝑒𝑔𝐴 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 are the mileage corresponding to fast regulation and 

traditional regulation signals, respectively. Mileage is defined as the movement requested 

by the regulation control signal. For example, the RegD mileage over a time period over N 

steps is defined as: 

𝑅𝑒𝑔𝐷 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 =  ∑ |𝑅𝑒𝑔𝐷𝑖 − 𝑅𝑒𝑔𝐷𝑖−1|
𝑁
𝑖=1           (4.14) 
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where, 𝑅𝑒𝑔𝐷𝑖 is the fast regulation capacity signal in the i’th step. 

2- Sell back electricity to the main grid: The facility operator may sell electricity back 

to the grid by discharging EV batteries using V2G technology. PJM 2016 day-ahead 

locational marginal price (LMP) data is used which denoted by 𝑃𝑟𝑡 in this chapter. 

Parking owner benefit as a result of selling electricity to the main grid in time step ‘t’ 

is calculated as: 

 

   𝑆𝐵 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 =  𝑃𝑟𝑡 × 𝑄𝑡          (4.15) 

where, 𝑄𝑡 is aggregated amount of discharged electricity at time ‘t’ which has been sold 

back to the grid (kWh).  

3- Charging EVs: The facility will sell electricity to EVs for battery charging. We assume 

that EV pays the average electricity price during the time it is parked in the facility to 

the parking operator. Moreover, EVs which give the V2G permission to the parking 

operator will pay less. The amount of money that the individual EV i pays to the 

operator ($) ( 𝐸𝑉𝑖
𝑐ℎ) is calculated based on the following equation: 

    𝐸𝑉𝑖
𝑐ℎ = (1 − 𝑉2𝐺𝑖 ×  𝜑) ×  𝑃𝑟̅̅ 𝑖̅  ×  𝐷𝑒𝑚𝑖          (4.16) 

where 𝑃𝑟̅̅ 𝑖̅ and 𝐷𝑒𝑚𝑖 denote the average electricity price during the EV “i” parking time 

($/kWh) and EV “i” electricity demand (kWh). 𝑉2𝐺𝑖 is a binary variable and is equal to 1 

only and only if EV “i” gives the V2G permission to the facility operator. 𝜑 is a variable 

between 0 and 1 and represents the discount factor offered by operator to the EV owners 

in exchange for V2G permission.  
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The only daily operation cost element for the facility is the cost of buying electricity from 

the main power grid to charge EV batteries. Here we assume PJM hourly day-ahead LMP 

as a unit price of electricity. This cost element is calculated as: 

𝑃𝐸 𝐶𝑜𝑠𝑡𝑡 =  𝑃𝑟𝑡 × 𝑃𝑡          (4.17) 

where 𝑃𝐸 𝐶𝑜𝑠𝑡𝑡 and 𝑃𝑡 represent the cost of purchasing electricity ($) at time ‘t’ and the 

amount of purchased electricity (kWh) during time step ‘t’.  

EV owners may make revenue by reducing the cost of charging EV’s battery if they give 

the V2G permission to the operator. So as mentioned before, EV “i” revenue ($) ,𝐸𝑉𝑖
𝑅𝑒𝑣, 

is calculated as: 

𝐸𝑉𝑖
𝑅𝑒𝑣 = 𝜑 ×  𝑃𝑟̅̅ 𝑖̅  ×  𝐷𝑒𝑚𝑖          (4.18) 

The cost element related to the EV owner is the excessive degradation of battery because 

of V2G permission. We assume that battery degradation is proportional to the extra time 

that EV is parked in the garage. The amount of time that a vehicle stays in the facility in 

excess of time it needs for charging can be considered as committed capacity to the FR 

market. Deployment of EV battery in FR market or arbitrage during this extra time causes 

the excessive degradation, which results in earlier replacement of EV battery. We convert 

this degradation to dollar value by using following equation: 

𝐸𝑉𝑖
𝐷𝑒𝑔𝐶𝑜𝑠𝑡

= 𝛾𝑖  ×  𝐸𝑥𝑇𝑖  ×  
𝑅𝐶𝑎𝑝𝑖

2×𝐸𝐶𝑎𝑝𝑖
 ×  

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐶𝑖

𝑁
𝑖
𝐶𝑦𝑐𝑙𝑒            (4.19) 

where 𝐸𝑥𝑇𝑖 is the extra parking time corresponding to EV “i”. 𝑅𝐶𝑎𝑝𝑖and 𝐸𝐶𝑎𝑝𝑖 

respectively represent the rated capacity (kW) and energy capacity (kWh) of battery in EV 

“i”. Expression “𝐸𝑥𝑇𝑖  ×  
𝑅𝐶𝑎𝑝𝑖

2×𝐸𝐶𝑎𝑝𝑖
” illustrates the number of full cycle the battery may have 
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during the extra time. 𝛾𝑖 is the fraction of time that battery in EV “i” is deployed by parking 

operator. 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐶𝑖 is the capital cost ($) of battery in EV “i” and 𝑁𝑖
𝐶𝑦𝑐𝑙𝑒

 represents the 

maximum number of cycle that battery could be charged and discharged. Equation 4.9 

illustrates the portion of battery capital cost that can potentially be used for V2G 

permission. We assume that EV monitoring system is smart enough to estimate the 

degradation cost (equation 3.9) and also the revenue as a result of V2G permission 

(equation 3.8). EV owner will give V2G permission if  𝐸𝑉𝑖
𝑅𝑒𝑣 > 𝐸𝑉𝑖

𝐷𝑒𝑔𝐶𝑜𝑠𝑡
. In other 

words: 

𝑉2𝐺𝑖 = {1 𝑖𝑓   𝐸𝑉𝑖
𝑅𝑒𝑣 > 𝐸𝑉𝑖

𝐷𝑒𝑔𝐶𝑜𝑠𝑡

0 𝑜.𝑤
             (4.20) 

We now formulate an optimization problem aiming at maximizing facility owner’s revenue 

subject to V2G permissions from EV owners which is dependent on a fee discount factor 

and battery degradation cost. The decision variables are as follows:  

- 𝜑: discount factor offered by operator to EV owners in exchange for V2G 

permission 

- 𝑝𝐸𝑉→𝐺
𝑖,𝑡

: power flow from EV “i” to the main grid during time step “t” (kWh) 

- 𝑝𝐺→𝐸𝑉
𝑖,𝑡

: power flow from main grid to EV “i” during time step “t” (kWh) 

- 𝐹𝑅𝑖,𝑡: Committed capacity from EV “i” to FR participation during time step “t” 

(kWh)  

In the case that onsite renewable generation such as Photovoltaic (PV) exist in the facility, 

more decision variables will be added to the list: 

- 𝑝𝑃𝑉→𝐺
𝑡 : power flow from PV to the main grid during time step “t” (kWh) 
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- 𝑝𝑃𝑉→𝐸𝑉
𝑖,𝑡

: power flow from PV system to EV “i” during time step “t” (kWh) 

The objective function is defined as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 

{∑(𝐹𝑅 𝐶𝑟𝑒𝑑𝑖𝑡𝑡 + 𝑆𝐵 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 − 𝑃𝐸 𝐶𝑜𝑠𝑡𝑡 + 𝑃𝑟𝑡 × 𝑝𝑃𝑉→𝐺
𝑡 )

24

𝑡=1

+ ∑𝐸𝑉𝑖
𝑐ℎ

𝑁𝐸𝑉

𝑖=1

} 

 (4.21)  

The remaining sets of constraints related to the optimization problem are defined next. As 

mentioned before 𝑄𝑡 and 𝑃𝑡 are integrated power flow due to discharging or charging, and 

are given by: 

𝑄𝑡 = ∑ 𝑝𝐸𝑉→𝐺
𝑖,𝑡𝑁𝐸𝑉

𝑖=1      ∀  𝑡          (4.22) 

The quantity allocated to FR market reduce the maximum power flow for charging for 

discharging: 

𝑝𝐸𝑉→𝐺
𝑖,𝑡 + 𝐹𝑅𝑖,𝑡  ≤  𝐴𝑣𝑎𝑖𝑙 𝑡

𝑖  ×  𝑅𝐶𝑎𝑝𝑖         ∀ 𝑖 𝑎𝑛𝑑 𝑡           (4.23) 

𝑝𝐺→𝐸𝑉
𝑖,𝑡 + 𝑝𝑃𝑉→𝐸𝑉

𝑖,𝑡 + 𝐹𝑅𝑖,𝑡  ≤  𝐴𝑣𝑎𝑖𝑙 𝑡
𝑖  ×  𝑅𝐶𝑎𝑝𝑖         ∀ 𝑖 𝑎𝑛𝑑 𝑡           (4.24) 

where, 𝑅𝐶𝑎𝑝𝑖 is the rated power of battery in EV “i” which indicates the maximum amount 

of power that could be charged into or discharged form the battery during each hour. 

𝐴𝑣𝑎𝑖𝑙 𝑡
𝑖  is a binary parameter and is equal to one during a time step t if EV “i” is parked in 

the garage during that time step. The SoC of EV battery is limited by its capacity minus 

the allocated capacity to the FR market: 

  𝐹𝑅𝑖,𝑡  ≤  𝑆𝑂𝐶 𝑡
𝑖  ≤  𝐸𝐶𝑎𝑝𝑖 − 𝐹𝑅𝑖,𝑡        ∀ 𝑖 𝑎𝑛𝑑 𝑡           (4.25) 
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If arrival time and departure time of EV “i” are denoted by 𝑇𝑖𝑛𝑖𝑡
𝑖  and 𝑇𝑓𝑖𝑛𝑎𝑙

𝑖 , the level of 

electricity in EV battery is updated at each time step “t” according to the following 

equation: 

𝑆𝑂𝐶 𝑡
𝑖 = 𝑆𝑂𝐶 𝑡−1

𝑖 + 𝜂𝑐 × (𝑝𝐺→𝐸𝑉
𝑖,𝑡 + 𝑝𝑃𝑉→𝐸𝑉

𝑖,𝑡 ) − (
1

𝜂𝑑
) × 𝑝𝐸𝑉→𝐺

𝑖,𝑡       ∀ 𝑖 𝑎𝑛𝑑 𝑡 ∈ [ 𝑇𝑖𝑛𝑖𝑡
𝑖 +

1, 𝑇𝑓𝑖𝑛𝑎𝑙
𝑖 ]   (4.26) 

𝜂𝑐 and 𝜂𝑑 are battery charging and discharging efficiencies.   

The initial level of energy in EV battery is random depending on the arrival time. The 

departure time and the final level of SoC are defined according to EV owner.  We assume 

that if EV stays long enough in the parking the owner will request for the full charge. If the 

level of energy in the battery of EV “i” at arrival and departure time are denoted by 𝑆𝑂𝐶 𝑖𝑛𝑖𝑡
𝑖  

and 𝑆𝑂𝐶 𝑓𝑖𝑛𝑎𝑙
𝑖 : 

𝑆𝑂𝐶 
𝑡=𝑇𝑖𝑛𝑖𝑡

𝑖
𝑖 = 𝑆𝑂𝐶 𝑖𝑛𝑖𝑡

𝑖         ∀ 𝑖              (4.27) 

𝑆𝑂𝐶 
𝑡=𝑇𝑓𝑖𝑛𝑎𝑙

𝑖
𝑖 = 𝑆𝑂𝐶 𝑓𝑖𝑛𝑎𝑙

𝑖         ∀ 𝑖              (4.28) 

As mentioned before discount factor 𝜑 is a number between 0 and 1. 

0 ≤  𝜑 ≤ 1           (4.29) 

Moreover, power flow form EV to grid and the capacity allocation to FR market is 

allowable according to the EV owner permission. Therefor: 

 0 ≤  𝑝𝐸𝑉→𝐺
𝑖,𝑡  ≤  𝑉2𝐺𝑖   ×  𝑅𝐶𝑎𝑝𝑖         (4.30) 

0 ≤  𝐹𝑅𝑖,𝑡  ≤  𝑉2𝐺𝑖   ×  𝑅𝐶𝑎𝑝𝑖         (4.31) 
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0 ≤  𝑝𝐺→𝐸𝑉
𝑖,𝑡  ≤   𝑅𝐶𝑎𝑝𝑖         (4.32) 

0 ≤  𝑝𝑃𝑉→𝐸𝑉
𝑖,𝑡  ≤   𝑅𝐶𝑎𝑝𝑖         (4.33) 

0 ≤   𝑝𝑃𝑉→𝐺
𝑡  ≤  𝐺𝑒𝑛𝑡

𝑃𝑉         (4.34) 

0 ≤  𝑝𝑃𝑉→𝐸𝑉
𝑖,𝑡  ≤  𝐺𝑒𝑛𝑡

𝑃𝑉         (4.35) 

Where, 𝐺𝑒𝑛𝑡
𝑃𝑉 is the PV output power generated during time step “t”. PV output depends 

on the rated capacity (kW) PV system and also the solar intensity during time “t”. The 

parking operator optimization problem is summarized as problem (P1): 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 

{∑(𝐹𝑅 𝐶𝑟𝑒𝑑𝑖𝑡𝑡 + 𝑆𝐵 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 − 𝑃𝐸 𝐶𝑜𝑠𝑡𝑡  +  𝑃𝑟𝑡  ×  𝑝𝑃𝑉→𝐺
𝑡 )

24

𝑡=1

+ ∑𝐸𝑉𝑖
𝑐ℎ

𝑁𝐸𝑉

𝑖=1

}   

(𝑃1) 

         𝑆. 𝑇. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (4.11) − (4.18), (4.22) − (4.35) 

In the next section, the solution approach to solve the defined optimization problem is 

introduced. The non-linear rule described of Equation 4.10 makes the optimization problem 

non-linear. In order to solve this mix-integer nonlinear problem we propose the following 

iterative approach: 

Solution approach 

For  ( 𝒌 = 𝟏: 𝟏𝟎𝟏) repeat:  / 𝒌 / 

1- 𝝋̂𝒌 =
𝒌−𝟏

𝟏𝟎𝟎
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2- Solve optimization problem P1 given that 𝝋 = 𝝋̂𝒌  

3- 𝒐𝒃𝒋𝒌 = 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝑷𝟏 𝒊𝒏 𝒌
′𝒕𝒉 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 (𝝋 =

𝝋̂𝒌) 

       End 

      𝝋∗ =
𝒂𝒓𝒈𝒎𝒂𝒙

𝝋̂𝒌
 
{𝒐𝒃𝒋𝒌}
 

 

  

The above algorithm solves the optimization problem for many values of 𝝋 between 0 and 

1, and compares the value of objective function in these iterations. The optimal discount 

factor  𝜑∗ is the one results in the higher objective value. In each iteration by assigning the 

value to 𝝋 and determining the V2G binary variable according to 4.10, the problem is 

converted to a mix-integer linear problem. The equivalent problem is solved by using 

YALMIP toolbox in the MATLAB based platform [96]. The algorithm can be carried out 

on a daily basis yielding different hourly optimal discount factors.  

4.5. Illustrative case study 

In order to demonstrate the impact of parking facility peak-hours and number of EV 

parking spots on the ESS evaluation, the following cases are considered:  

• Case 1: A commercial parking garage (peak hours: around noon) with 80 parking 

spaces for EVs  

• Case 2: A commercial parking garage (peak hours: around noon) with 120 parking 

spaces for EVs 
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• Case 3: A residential parking garage (peak hours: night) with 80 parking spaces for 

EVs 

• Case 4: A residential parking garage (peak hours: night) with 120 parking spaces 

for EVs 

One of the distinguishing characteristics among the illustrative cases is the application of 

garage facility. Two types of parking are considered: a) commercial parking, b) residential 

parking. Figure 42 shows the average aggregated capacity of batteries parked in the facility 

and the percentage of occupied parking spaces for commercial and residential parking 

garage. As illustrated in Figure 42 the commercial parking garage is almost fully occupied 

during noon times, however the peak hour in residential garage is during the night time.  

 

Figure 42: a) Dynamic storage aggregated capacity (kWh); b) % of occupied EV parking spaces 

The other difference between these two types of parking facility is the average parking 

occupation time. In the residential garage, usually vehicles arrive during the evening time 
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and stay in the facility till the next morning. Therefore, as shown in Table 16, on the 

average, EVs stay in the residential garage for a longer duration.  

Table 16 – parking lot characteristics 

Case Average number of Evs coming 

into the facility in a day 

Average parking duration for 

Evs (hrs.) 

1 193 4.33 

2 295 4.73 

3 80 10.62 

4 120 11.07 

 

We run several scenarios for each case, and each of these scenarios corresponds to the 

different hourly LMP, 𝑅𝑀𝐶𝐶𝑃 and 𝑅𝑀𝑃𝐶𝑃 profiles. Figure 43 shows the average hourly 

LMP and frequency regulation market clearing price which are inputs for the simulated 

scenarios.  
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Figure 43: a) Average hourly LMP; b) Average hourly FR credit 

Moreover, for each scenario the arrival and stay time of EVs are generated randomly 

according to the queueing model. We also assume two battery capacities (60kWh and 90 

kWh) with equal probabilities. All chargers are assumed to be level-2 with 15 kW power 

rating. 90% efficiency is assumed (both charging and discharging) for all EV batteries.  

Having run the optimal operational control model, we obtain Table 2 that gives the dollar 

amount from different sources for each of illustrative cases. Note that for annual net benefit 

calculation, the cost of electricity to charge EVs is included.  

Table 17- Annual revenue (for all 4 cases) 

Case Case 1 Case 2 Case 3 Case 4 

Average optimal discount factor  𝜑∗ 45% 56% 60% 67% 

Annual FR credit $ 48,868 $ 90,744 $ 51,180 $ 53,753 

Annual sell-back revenue $ 199 $ 393 $ 1,016 $ 2,501 
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Annual EV charging revenue $ 24,203 $ 28,141 $ 11,445 $ 12,047 

Annual total net benefit $ 27,496 $ 55,568 $ 39,255 $ 46,647 

 

It is worth to mention the following observations: 

1) Capacity commitment in frequency regulation market in the commercial parking 

garage is more valuable compared to the residential parking. The reason is the 

higher FR credit during the day times (Figure 43.b). Capacity requirement for 

frequency regulation service is more during a day compared to the night times, 

therefor commercial garage is able to make more revenue by participating in FR 

market. 

  

2) Selling back electricity to the main grid is more beneficial in the residential facility. 

The reason is the higher variation in the hourly LMP prices during night times (9PM 

to 9AM – see Figure 43.a). The facility operator can charge EVs when electricity 

price is low and discharge to the grid when electricity price is high. Furthermore, 

as mentioned before, in the residential facility EVs are parked for a longer duration, 

which results in more opportunities for doing arbitrage and selling electricity to the 

main grid when electricity price is high.   

 

3) In the residential parking facilities, the optimal discount factor is higher compared 

to the commercial ones. Therefore, the facility owner revenue from charging EVs 

in the residential case is less than the commercial case. 



 

    
 

124 

   

4) Overall, the commercial facilities generate more revenue. This observation is due 

to the higher revenue from the FR market participation compared to selling 

electricity back to the grid. Note that after discharging electricity to the main grid 

the parking operator has to recharge the batteries to the full SOC per EV owners’ 

requests. 

For more clarification on the impact of FR credit and electricity price on the parking facility 

evaluation, we dive more into individual samples and compare the daily value of different 

types of EV parking facilities. As illustrated in the previous section the value of frequency 

regulation credit is one of the significant factors in EV facility valuation. Also, it has been 

discussed that in many scenarios the FR credit is higher during the day-time which causes 

higher revenue for a commercial garage. There are also some days that FR credit is higher 

during the night time. Figure 15 shows the hourly LMP and FR credit for some sample 

days according to the PJM data. As illustrated in Figure 44 the FR credit is much higher 

during the day-time for April 18th and 19th. 

 

Figure 44- LMP and FR credit (18/4 - 19/4) 
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Moreover Figure 45 shows that FR credit is higher during the night time in February 

2nd and 3rd.    

 

Figure 45- LMP and FR credit (2/2 - 3/2) 

Following table shows the April 18th and February 2nd revenue for different cases, which 

illustrates that the FR credit has the significant impact on the daily value. On the April 18th, 

FR clearing price is much higher than LMP. Therefore, commercial facility with noon-time 

peak is more beneficial. However, as illustrated in Figure 45, on February 2nd, LMP and 

FR clearing price are in the same range during the noon time, but there is more variation 

in LMP during the night-time (9PM-9AM) which brings arbitrage opportunities. Therefore, 

during this specific day residential facility is more beneficial.    

Table 18 - April 18th total revenue in different cases 

Case 
Case 1 Case 2 Case 3 Case 4 

Total revenue ($) – April 18th 
495 $ 890 $ 230 $ 310 $ 

Total revenue ($) – February 2nd 
145 $ 270 $ 340 $ 405 $ 
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As discussed in the previous sections frequency regulation credit and electricity price affect 

the EV parking garage revenue. In order to consider these pricing elements during the peak-

hours of parking facility, we define four new terms as follows: 

𝐸𝑃 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =∑𝐴𝑔𝑔 𝐶𝑎𝑝𝑡 ×

24

𝑡=1

𝑃𝑟𝑡    (4.36) 

𝐸𝑃 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 =∑𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑠𝑡 ×

24

𝑡=1

𝑃𝑟𝑡       (4.37) 

𝐹𝑅 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =∑𝐴𝑔𝑔 𝐶𝑎𝑝𝑡 ×

24

𝑡=1

𝐹𝑅 𝐶𝑟𝑒𝑑𝑖𝑡𝑡          (4.38) 

𝐹𝑅 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 =∑𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑠𝑡 ×

24

𝑡=1

𝐹𝑅 𝐶𝑟𝑒𝑑𝑖𝑡𝑡      (4.39) 

Where, 𝐴𝑔𝑔 𝐶𝑎𝑝𝑡 and 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑠𝑡 denote the aggregate capacity of batteries 

parked in the garage and the percentage of occupied parking spaces at time t respectively. 

Figure 16 shows the correlation between these 4 new factors and the daily revenue of 

garage. 
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Figure 46- correlation analysis 

As illustrated in Figure 46 parking facility daily revenue has strong correlation with the 

weighted FR credit (both capacity weighted and occupied spaces). However, this figure 

doesn’t show strong correlation between electricity price and daily value. Following figure 

shows the correlation value between these 4 factors and daily value of EV garage.  

Table 19- Correlation value 

Factor Correlation with daily revenue 

𝐸𝑃 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 0.45 

𝐸𝑃 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 0.46 

𝐹𝑅 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  0.89 

𝐹𝑅 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑  0.87 
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Analysis of daily EV parking revenue for all of the four cases shows that the electricity 

prices and frequency regulation credit during the peak-hour of the parking has impact on 

the value of parking facility. Moreover, it has been illustrated that FR credit has the most 

significant impact on the evaluation process. In other words, high FR credit during the busy 

hours of parking causes high value for the parking operator. Furthermore, more capacity 

for EVs in the parking results in more revenue for the facility operator. 

As part of this analysis, it has been observed that with the current state of arbitrage and 

regulation markets, commercial parking facilities (with noon-time peak) are more 

beneficial from the parking operator point of view. The reason is high regulation market 

clearing price during the day-time which coincides with peak-hours of commercial parking 

facilities. Moreover, V2G capability is able to reduce the peak electricity demand by almost 

40% which reduces the power loss in power distribution network and defers the needs for 

capacity upgrade. As the EV owners’ perspective the discount they receive from the 

parking operator, compensates the additional battery degradation cost. Moreover, EV 

owners (same as the all rate-payers in the distribution network) could benefit from the 

lower electricity tariff-rate which is expected because of peak reduction in the grid.           

4.6. Conclusion 

This study proposed an integrated framework which optimally plans for the charge and 

discharge of EVs in a large parking facility to maximize the parking facility benefits. 

Economic benefit to EV owners through reduced parking fees or discounted charging fee 

has been also taken into the account, which compensates the additional degradation of the 

vehicle battery. The proposed model is capable to quantify the impact of such facility on 

the power distribution network. Almost 40% electricity peak reduction has been observed 
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for the commercial parking facility which has V2G-enabled charging stations. This reduces 

the power loss in the power distribution network and defers the needs for T&D capacity 

upgrades. The analysis shows that, with the current state of arbitrage and regulation market, 

commercial parking facilities are more beneficial from the parking operator point of view 

compared to residential parking (which are occupied during the night time). The reason is 

high regulation market clearing price during the noon time which coincides with peak-

hours of commercial parking facilities. 
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CHAPTER 5: JOINT OPTIMIZATION OF OPERATION 

AND MAINTENANCE POLICIES FOR MICROGRID 

COMPOSING OF ENERGY STORAGE SYSTEM 

 

Abstract  

In a solar-powered microgrid (MG), the optimal maintenance strategy is influenced by the 

downtime cost of the photovoltaic (PV) system, which in turn depends on the operation PV 

within the MG network. Also, the dispatch policy used in the MG will influence the 

economic feasibility of maintenance plans. In this chapter, we present an approach for 

optimizing the operation and maintenance policy jointly for a solar-powered MG 

considering the dependence between the two policies. The two-layered approach presented 

in this work seeks to unify the practicality of simulation and the efficiency of analytical 

models. In the upper layer, we optimize the operation of MG by solving the optimal power 

dispatch within the MG network using linear programming approach. Then, we calculate 

the penalty costs under the aging conditions of PV systems. In the bottom layer, by 

incorporating the penalty costs as input parameters, we use a continuous-time Markov 

chain model to calculate the optimal maintenance policy for the PV system. The proposed 

approach could be used in the stipulation process between MG owner and PV system 

maintenance provider to minimize the money waste on both sides. 

Nomenclature 

d Index of day 
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t Index of time interval 

k Index of renewable node 

s Index of energy storage unit 

l Index of demand node 

g Main power grid 

𝐶𝐴𝑃𝑠 Storage s energy capacity (kWh)  

𝑃𝑠 Energy storage rated capacity (kW) 

𝐿𝑑(𝑙, 𝑡) Total demand during time interval 𝑡 at node l in day d  

𝑅𝑑(𝑘, 𝑡) Total generation during time interval 𝑡 at renewable node k in scenario 𝑠𝑐  

𝑒𝑔,𝑠(𝑑, 𝑡) Total energy charged from the grid during 𝑡 in storage unit s in day 𝑑  

𝑒𝑘,𝑠(𝑑, 𝑡) Total energy charged from renewable node k during 𝑡 in storage unit s in day 

𝑑 

𝑒𝑠,𝑙(𝑑, 𝑡) Total energy discharged during 𝑡 from storage s to demand node l in day 𝑑 

𝑒𝑔,𝑙(𝑑, 𝑡) Total energy from the grid during time interval 𝑡 to demand node l in day 𝑑  

𝑒𝑘,𝑙(𝑑, 𝑡) Total energy from renewable k during 𝑡 to demand node l in day 𝑑  

𝜂𝑠 Energy storage s one-way efficiency 
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𝐸𝑃𝑑(𝑡) Electricity price in time interval t for day 𝑑  

𝑆𝑂𝐶𝑠(𝑑, 𝑡) Storage s energy level (kWh) at the end of time interval 𝑡 in day 𝑑 

SF Safety reserve capacity for energy storage unit  

𝑒𝑠𝑙𝑠,𝑙  (𝑡, 𝑑) Storage “s”-Demand “l” eligibility number (day “𝑑” - time interval “t”), 

binary 

𝑒𝑟𝑠𝑘,𝑠 (𝑡, 𝑑) Renewable “k”-Storage “s” eligibility number (day 𝑑 - time interval “t”), 

binary 

𝑒𝑟𝑙𝑘,𝑙 (𝑡, 𝑑) Renewable “k”-Demand “l” eligibility number (day 𝑑 - time interval “t”), 

binary 

𝐷𝑂𝐶𝑑 Optimal daily operation cost in day 𝑑 

𝑏(𝛼)  The threshold of major maintenance activity for the 𝛼𝑡ℎ photovoltaic system 

𝑚(𝛼) The number of degradation states of the 𝛼𝑡ℎ photovoltaic system 

𝑛(𝛼) The number of failure sudden modes of the 𝛼𝑡ℎ photovoltaic system 

𝜆𝑚
(𝛼)

 The deterioration rate for the 𝛼𝑡ℎ photovoltaic system 𝛼 at state 𝑚 

𝐶𝑠,𝑙
′(𝛼)

 Cost for each corrective maintenance after mode 𝑙 sudden failures on the 

𝛼𝑡ℎ photovoltaic system 
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1

𝜇𝑠,𝑙
(𝛼)

 
Duration of corrective maintenance after mode 𝑙 sudden failures on the 

𝛼𝑡ℎ photovoltaic system 

1 λF⁄  Mean time between two successive mode𝑙 sudden failures on the 

𝛼𝑡ℎ photovoltaic system 

Cin
’   Cost for each inspection of the 𝛼𝑡ℎ photovoltaic system 

1

𝜆𝑖𝑛
(𝛼)

 
Mean time between two successive inspections on the 𝛼𝑡ℎ photovoltaic 

system 

1 μin⁄  Mean duration of inspection on photovoltaics α 

𝐶𝑀
′(𝛼)

 Cost for each major maintenance activity of the 𝛼𝑡ℎ photovoltaic system 

1 μM⁄   Mean duration of major preventive maintenance on the 𝛼𝑡ℎ photovoltaic 

system 

𝐶𝑅
′(𝛼)

 Cost for each replacement activity of the 𝛼𝑡ℎ photovoltaic system 

1 μR⁄   Mean duration of replacement on the 𝛼𝑡ℎ photovoltaic system 

𝐶𝑝
(𝛼)

 Planned per unit downtime cost for the 𝛼𝑡ℎ photovoltaic system 

𝐶𝑢
(𝛼)

 Unplanned per unit downtime cost for the 𝛼𝑡ℎ photovoltaic system 

𝐶𝑣,𝑖
(𝛼)

  Penalty caused by the performance degradation of the 𝛼𝑡ℎ photovoltaic 

system. 
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𝜋𝑖,𝑗
(𝛼)

 Probability of the 𝛼𝑡ℎ photovoltaic system being in state (i, j) 

𝐶𝑆
(𝛼)

 Time-averaged operating cost of the 𝛼𝑡ℎ photovoltaic system 

𝐶𝐺  The overall expected operational and maintenance cost for the microgrid 

5.1. Introduction 

Microgrids (MGs) are small-scale power networks composed of multiple energy resources 

and, in some cases,  distributed energy storage devices (ESDs). They are seen to be 

increasingly important to achieve a reliable, flexible, and sustainable electricity network. 

In this chapter, we focus on two aspects that influence the cost-effectiveness of microgrids 

– the operation control and maintenance policies – and the relationship between them. In 

particular, we examine the significance of ESDs on the policies and hence the overall 

operational cost of the MG. In such type of MGs, ESDs play a role of storing energy when 

surplus energy is produced and discharging to support demands when needed. Due to the 

uncertain nature of the power generation by renewable sources [97-98] and demand 

profiles within the MG, it poses a challenge on managing the operation of MGs. To 

overcome this challenge, the related advancement has been achieved on supporting MG 

owners to decide whether or not to use ESDs, optimizing the size of ESDs [99], [100] and  

[101], and scheduling the charge and discharge times for these ESDs [102] and [113].  

In general, ESDs could improve the reliability and power quality of a MG. Moreover, it is 

capable of providing an economic benefit in a deregulated energy market [103]. It 

encourages utility company to shift and shave peak load [102]. In the light of this, the 

operation and control of a MG need to be taken into account the power flow between 
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entities within the MG, as well as the power flow between MG and main grid. Khalilpour 

and Vassallo [98] developed a decision support tool for scheduling of PV-battery systems 

based on a detailed power flow model. Cost saving through simultaneously managing 

energy production and demand is another aspect that has been focused on [104]. The latest 

development in this area enables a near-real-time optimal charge and discharge control 

policies for a MG with multiple ESDs [105]. 

Maintenance is also an important issue in MGs, which may have a  major impact on the 

overall ownership costs of the grid. As studied by [106], good maintenance and inspection 

policies are essential for improving the financial viability of the MG. A particular focus in 

the area is to examine the safety hazards [107], failure and performance deterioration [108] 

of photovoltaic (PV) systems in MGs. Hence, an online monitoring system may appear 

beneficial as it may improve the maintenance performance of PV systems within a MG and 

in turn increase the profit of the MG. In [109], authors developed a continuous-time 

Markov chain model for PV systems that are subject to deterioration and failure. The study 

had shown implementing condition monitoring is more favorable for both MG owner and 

maintenance provider by comparing with manual inspections.  

In a MG, maintenance policies that control the availability of PV systems can subsequently 

influence the energy generation and operation policy of the MG. Moreover, an effective 

energy storage policy can reduce the downtime penalty cost, if the stored energy can be 

used to satisfy demand during the downtime of PV systems caused by preventive 

maintenance or failure. However, the interplay/dependence between operation policy and 

maintenance policy is still underexplored in the context of the microgrid. In this chapter, 
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we refer such type of dependence between operation and maintenance as “operation 

dependence”. The work presented in this chapter consists of following five novelties: 

1. It is a two-layered approach that includes an upper layer for simulating the operation 

of MG and a lower layer for modeling the deterioration and maintenance of PV 

systems. Through such layer separation, the mathematical tractability of the lower layer 

is preserved. 

2. In the upper layer, we formulate the operation of a MG as an optimal dispatch problem. 

The discharging and charging of ESDs are optimized in a way to maximize the value 

of MG. The model formualtes the power flow of the MG with details. Moreover, the 

model is capable of integrating historical data on demand profiles, solar radiation, and 

electricity price, which indicates a good applicability in practice.  

3. In the lower layer, the deterioration and maintenance of the PV systems are formulated 

by continuous-time Markov chain. Both the performance degradation caused by the 

malfunction of PV arrays and invertor failure are considered. Also, the model considers 

the maintenance duration. 

4. We have applied our approach on a practical MG to test the practicality. The value of 

ESDs is demonstrated from operation and maintenance perspectives through a 

comparative study.  

5. Finally, our study could provide insights for both maintenance service providers and 

MG owners. A warranty contract that based on the performance of PV systems could 

be mutually beneficial for both sides compared with a fixed amount warranty contact. 

Our operation and maintenance model can support both sides to this end.  
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The rest of chapter is structured as follows: In section II, we introduce the general set-up 

of the MG and the mechanism for failure and performance degradation for the PV systems 

within the MG. Section III describes the modeling approach to optimize the operation and 

maintenance of the MG. Section IV validates the approach by applying it to a practical 

solar-powered MG in the US. The optimal operation and maintenance strategies are 

demonstrated. Moreover, an analysis is provided on the value of ESDs in this context. 

Finally, section V presents the concluding remarks of the chapter. 

5.2. System description 

We consider a grid-connected community level MG, with PV resources as the source of 

power as illustrated in Figure 47. The PV output may differ from the system load from time 

to time. When the PV output is greater than the load, the ESDs absorb this excessive power. 

Hence, the energy charged from PV resources during off-peak hours can be utilized during 

peak hours to shave the peak demand.  

 

Figure 47: An illustrative example of a MG configuration 

The demands of the community are primarily satisfied by the power generated on-site by 

the PV systems and ESDs within the grid. Alternatively, the main grid can also supply 

power to the community. In this case, the operation cost of the MG is the expenditure on 
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purchasing electricity from the main grid to supplement and satisfy the electricity demands 

in the community. We assume that the owner of the MG participates in the wholesale day-

ahead market. Due to the cost of buying electricity from the main grid is varying throughout 

the day, the total operation cost can be reduced by optimizing the charging and discharging 

time of ESDs. In our approach, the operation policy depends on the demand level, on-site 

generated power, electricity price as well as the performance and availability of PV 

systems.  

The PV system is configured in multiple arrays. As illustrated in Figure 48 multiple PV 

modules are serially connected within each array.  

 

Figure 48: Configuration of PV systems 

The failure of a PV module will stop its array from operating. Thus, despite the low failure 

rate of PV modules, the failure rate of serially connected PV arrays is still non-negligible 

[115] and  [116]. The energy generation capability of the PV system is proportional to the 

number of functional arrays. Consequently, the failure of a PV module will result in 

performance degradation of the PV system. In new system, the PV module may also be 

bypassed by diodes due to an open failure or shading effect. The bypass of PV module 
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generally could lower the output of a string, rather than causing an outage of the string. 

Even though the proposed maintenance model is capable to deal with such system, in this 

study, we do not consider the bypass of modules [116]. All PV arrays are connected to a 

DC/AC inverter. The inverter is used to convert the electricity generated by the PV system 

to the regulated AC voltage. The failure of the inverter will immediately disconnect the PV 

system from the MG. Such type of failure is formulated as a sudden failure in our designed 

maintenance model. The unavailability or performance degradation of PV systems will 

affect the operational decision of ESDs. We assume that the performance of PV systems 

can be observed and analyzed by grid operator continuously.  

The objective of operation policy is to determine the optimal power dispatch among 

different nodes within the MG, according to the performance level and availability of PV 

systems. Taking into account the operation dependence, the objective of maintenance 

policy is to identify the optimal maintenance threshold (a degradation threshold triggering 

replacement of the failed PV modules) for the PV systems so that the expected annual 

ownership cost (operation cost and maintenance cost) of the MG is minimized.  

5.3. Modeling Approach 

Our modeling approach contains two layers. The upper layer aims to optimize the operation 

of the MG under different types of operation constraints by optimally charge/discharge 

ESDs. The output of this model is the operation cost of MG under different conditions of 

PV systems. This output then forms a part of the input to the lower layer, which aims to 

optimize the maintenance policies for the PV systems in the long term. A holistic view of 

the top-down approach is illustrated in Figure 49.  
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Figure 49: Schematic diagram of the top-down approach  

In the upper layer model, we compute the optimal power dispatch problem using linear 

programming under different condition states of the PV systems and for each individual 

day based on the historical data. Days are distinguished by three stochastic variables, 

namely electricity demand, solar radiation, and electricity price. Three years’ historical 

data (available on PJM website) have been used to characterize hourly profiles of demand, 

electricity price and solar radiation each day. The operation model optimizes the amount 

of charged and discharged energy (as decision variables) of ESDs during the different time 
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intervals for each individual day. This optimal solution also depends on the state of network 

elements. such as the degradation state (condition) of PV systems and the network 

configuration (connectivity of different nodes). The output from operation model is the 

lower bound for the microgrid operation cost for each individual day existed in historical 

dataset under different conditions of PV systems. By comparing the operation cost of the 

MG in the good condition state of PV systems (100% performance) with any individual 

degraded state (or failure state) of the PV system, we can calculate the penalty cost due by 

performance degradation (or failure) of PV systems. This information is used to formulate 

of maintenance policy of PV systems. In this way, we link the operation policy and the 

maintenance policy of the MG. In the lower layer, we consider the situation where the 

maintenance policy of one PV system changes its availability and may in turn influence 

the downtime penalty cost of other PV systems and sequentially affect the optimization of 

maintenance policies. We use an iterative approach to synchronize the maintenance 

policies of PV systems so that they can reach the optimal solution simultaneously. The 

final output of the model is the optimal ownership cost of the MG. In the next subsections, 

we will describe the formulation of the upper and lower layer models.  

5.3.1. Upper layer (system operation model) 

The objective of the upper layer is to minimize the operation cost of the MG by adjusting 

the charging and discharging of ESDs based on the scenario and performance of PV 

systems. We apply the linear programming to optimize the operation of the MG for each 

scenario. The detail of the objective function and different types of operational constraints 

of the MG will be explained with more details in equations (1) and (2)-(8) respectively.  
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Objective function: The daily operation is optimized for each scenario. A scenario 

contains the information of the electricity demand, generation profile of PV systems and 

electricity price profile in the given day “d”. The objective function then expresses as (5.1): 

min{∑ [𝐸𝑃𝑑(𝑡) (∑ 𝑒𝑔,𝑙(𝑑, 𝑡)𝑙 +𝑡

∑ 𝑒𝑔,𝑠(𝑑, 𝑡)𝑠 )]}  

(5.1) 

The decision variables are the amount of energy charge and discharge by an ESD in a unit 

time (hour). Note that we assume the voltages of different nodes are maintained in the 

feasible region. The objective function is to minimize the overall expenditure on 

purchasing electricity from the main grid. The purchased electricity is used to either charge 

storages (𝑒𝑔,𝑠)  or supply demands (𝑒𝑔,𝑙) .  The minimization process is subject to multiple 

types of constraints, which are listed as below: 

Storage operation constraints: In each scenario, the total amount of inflow and outflow 

electricity for each storage node in each time interval is limited to its rated power capacity. 

𝑒𝑔,𝑠(𝑑, 𝑡) + ∑ 𝑒𝑘,𝑠(𝑑, 𝑡) +𝑘 ∑ 𝑒𝑠,𝑙(𝑑, 𝑡)𝑙 ≤

𝑃𝑠 , ∀ 𝑠, 𝑡, 𝑑  

(5.2) 

As illustrated in (2), multiple charging and discharging actions are allowable during each 

hour. However, the summation of inflow and outflow is limited by the rated capacity of 

the storage unit. The storage level at a given time interval is calculated by the storage level 

at the previous time interval and the charging and discharging energy during the time 

interval. 
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𝑆𝑂𝐶𝑠,𝑡,𝑑 = 𝑆𝑂𝐶𝑠,𝑡−1,𝑑 + 𝜂𝑠 × (𝑒𝑔,𝑠(𝑑, 𝑡) +

∑ 𝑒𝑘,𝑠(𝑑, 𝑡)𝑘 ) −
∑ 𝑒𝑠,𝑙(𝑑,𝑡)𝑙

𝜂𝑠
, ∀ 𝑠, 𝑡, 𝑑  

    

(5.3) 

We assume that at the beginning of the day storage level is at the 50% of maximum capacity 

and it has to reach to the same level at the end of the day. It is intuitive that the storage 

level cannot exceed the maximum capacity of the ESD (𝐶𝐴𝑃𝑠) and cannot reduce below 

the safety reserve capacity (𝑆𝐹𝑠).  

𝑆𝐹𝑠 × 𝐶𝐴𝑃𝑠 ≤ 𝑆𝑂𝐶𝑠,𝑡,𝑑 ≤ 𝐶𝐴𝑃𝑠 , ∀ 𝑠, 𝑡, 𝑑                  (5.4) 

 

On-site renewable resource constraint: Electricity generated by a renewable unit is used 

to serve demand nodes and charge the storage nodes which are connected to it. 

𝑅𝑑(𝑘, 𝑡) ≥  ∑ 𝑒𝑘,𝑙(𝑑, 𝑡)𝑙 + ∑ 𝑒𝑘,𝑠(𝑑, 𝑡)𝑠 ,

∀ 𝑘, 𝑡, 𝑑  

(5.5) 

Demand constraint: Electricity load at each demand node has to be satisfied. The portion 

of demands is satisfied by on-site generation and discharged electricity from storages, and 

the remain has to be satisfied by purchasing from the main grid. 

𝐿𝑑(𝑙, 𝑡) =  ∑ 𝑒𝑘,𝑙(𝑑, 𝑡)𝑘 +∑ 𝑒𝑠,𝑙(𝑑, 𝑡)𝑠 +

𝑒𝑔,𝑙(𝑑, 𝑡), ∀ 𝑙, 𝑡, 𝑑  

(5.6) 

Configuration and availability constraints: The configuration of the MG is defined by 

three binary matrices (ESL, ERL, and ERS). The value 1 indicates the two nodes are 

connected, and 0 indicates no connection. Sometimes, assets within the MG may become 
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unavailable. We use a binary number 𝑒𝑟𝑙𝑘,𝑙 (𝑡, 𝑑) to indicate the connection between 𝑘𝑡ℎ 

PV system and 𝑙𝑡ℎdemand node at time “t” in day “d”.  

0 ≤ 𝑒𝑘,𝑙(𝑑, 𝑡) ≤ 𝑀 × 𝑒𝑟𝑙𝑘,𝑙 (𝑡, 𝑑),

∀ 𝑙, 𝑘, 𝑡, 𝑑 

(5.7) 

0 ≤ 𝑒𝑠,𝑙(𝑑, 𝑡)

≤ 𝑀 × 𝑒𝑠𝑙𝑠,𝑙  (𝑡, 𝑑),         ∀ 𝑙, 𝑠, 𝑡, 𝑑 

(5.8) 

0 ≤ 𝑒𝑘,𝑠(𝑑, 𝑡)

≤ 𝑀 × 𝑒𝑟𝑠𝑘,𝑠 (𝑡, 𝑑),          ∀𝑠, 𝑘, 𝑡, 𝑑  

(5.9) 

where “M” is a very big number (e.g. 10 million). More details about the optimal operation 

and control of this network could be found in [105]. 

For given input profiles and performance of PV systems, the operation of the MG can be 

optimized. We refer the optimized daily cost under given day “d” and performance of PV 

systems as 𝐷𝑂𝐶(d, 𝑋(1), … , 𝑋(𝑘)).  𝑋(𝛼) is a random variable that indicates the 

performance of 𝛼th PV system. For a PV system with 𝑚𝛼 number of arrays, 𝑋𝑚𝛼

(𝛼)
 indicates 

all arrays are functional. 𝑋𝑖𝛼
(𝛼)

 indicates 𝑖𝛼 (𝑖𝛼 < 𝑚𝛼) number of arrays are functional. 

Therefore, we have 𝑋(𝛼) = {𝑋𝑚𝛼

(𝛼), … , 𝑋𝑖𝛼
(𝛼), … , 𝑋0𝛼

(𝛼)}. Let 𝐷𝑂𝐶∗ indicates the expected daily 

cost over all existed days in the historical data set when the PV system amongst the MG is 

ideal. We signified the overall number of days as 𝑁𝑑. Then 𝐷𝑂𝐶∗ can be expressed as: 

𝐷𝑂𝐶∗ =
∑ 𝐷𝑂𝐶(𝑑,𝑋𝑚1

(1)
,…,𝑋𝑚𝑘

(𝑘)
)

𝑁𝑑
𝑑=1

𝑁𝑑
                      (5.10) 
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We assume the planned preventive maintenance can be scheduled when the impact on the 

operation of the MG is minimized. 𝐷𝑂𝐶𝑝
(𝛼)

 is the expected the operation cost when 𝛼th PV 

system is offline due to preventive maintenance. 

𝐷𝑂𝐶𝑝
(𝛼) = min

𝑑
[𝐷𝑂𝐶(d, 𝑋0𝛼

(𝛼), 𝔼[𝑋(1), … , 𝑋(𝛼−1), 𝑋(𝛼+1), … , 𝑋(𝑘)])]          (5.11) 

 

𝔼[𝑋(1), … , 𝑋(𝛼−1), 𝑋(𝛼+1), … , 𝑋(𝑘)] is interrelated with the maintenance strategy of PV 

systems. It is computed with iteration. To initialize, we assign equal probability for all 

𝑋(1), … , 𝑋(𝑘). Therefore, the equation (5.12) is equal to as: 

𝐷𝑂𝐶𝑝
(𝛼) =

min
𝑑
[∑𝐷𝑂𝐶(d,𝑋0𝛼

(𝛼)
,𝑋(1),…,𝑋(𝛼−1),𝑋(𝛼+1),…,𝑋(𝑘))]

∏ 𝑋(𝑖)̿̿ ̿̿ ̿̿𝛼−1
𝑖=1 ∏ 𝑋(𝑖)̿̿ ̿̿ ̿̿𝑘

𝑖=𝛼+1

     (5.12) 

where 𝑋(𝑖)̿̿ ̿̿ ̿ indicates the cardinality of 𝑋(𝑖). 𝐷𝑂𝐶𝑢
(𝛼)

 is the expected operation cost when 

𝛼th PV system is unavailable due to the unplanned failure. We assume it may happen with 

an equal probability across all days: 

𝐷𝑂𝐶𝑢
(𝛼) =

∑ 𝐷𝑂𝐶(d,𝑋0𝛼
(𝛼)
,𝔼[𝑋(1),…,𝑋(𝛼−1),𝑋(𝛼+1),…,𝑋(𝑘)])𝑑

𝑁𝑑
     (5.13) 

Similarly, we can calculate the expected cost when 𝑋(𝛼) = 𝑋𝑖𝛼
(𝛼)

. 

𝐷𝑂𝐶𝑖
(𝛼) =

∑ 𝐷𝑂𝐶(d,𝑋𝑖𝛼
(𝛼)
,𝔼[𝑋(1),…,𝑋(𝛼−1),𝑋(𝛼+1),…,𝑋(𝑘)])𝑑

𝑁𝑑
     (5.14) 

In the operation model, we use 𝐷𝑂𝐶∗ as a benchmark. The penalty caused by preventive 

maintenance 𝐶𝑝
(𝛼)

, unplanned failure 𝐶𝑢
(𝛼) of  𝛼th PV system can be calculated equation 

(5.15) and (5.16) respectively. 
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𝐶𝑝
(𝛼)

= 𝐷𝑂𝐶𝑝
(𝛼)
− 𝐷𝑂𝐶∗                        (5.15) 

𝐶𝑢
(𝛼) = 𝐷𝑂𝐶𝑢

(𝛼) − 𝐷𝑂𝐶∗                        (5.16) 

The expected penalty caused by performance degradation due to only 𝑖𝛼 arrays are 

functional can be calculated by 𝐶𝑖
(𝛼)

. 

𝐶𝑣,𝑖
(𝛼) = 𝐷𝑂𝐶𝑖

(𝛼) − 𝐷𝑂𝐶∗                       (5.17) 

One complication of calculating the equations (5.11) - (5.14) is the 

𝔼[𝑋(1), … , 𝑋(𝛼−1), 𝑋(𝛼+1), … , 𝑋(𝑘)] is unknown and affected by maintenance policies of all 

PV systems due to operation dependence. In the developed approach, we calculate the 

expected performance of all PV systems through iteration. To initialize the computation, 

we first assign the equal probability to all performance states of PV systems. Then, we 

calculate the steady state probabilities for each PV system at the optimal maintenance 

strategy. The steady state probabilities are then used to update the expected performance 

of all PV systems. The process iterates until the expected performance of all PV systems 

coverage. In the next section, we focus on describing the lower layer maintenance model 

and expressing with the expected performance of PV systems in term of steady state 

probabilities of PV system maintenance model. 

5.3.2. Lower layer (asset maintenance model) 

The lower layer model is to tackle the maintenance problem considering the operational 

information received from the upper layer. The PV system in the MG is indexed as hyper-

index 𝛼. The model is generalizable to apply to different types of multi-array PV system. 

Inspired by [110] and [111], we formulate the condition-based maintenance model with a 
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continuous-time Markov chain. We model the failure of inverter as sudden failure and the 

malfunction of PV arrays as a performance degradation process of PV system. The state 

transition diagram for the condition-based maintenance is illustrated as Fig 4. 

 

 

Figure 50-The state transition diagram of PV system maintenance mode 

 

In Figure 50, the condition state of PV system is indicated as 𝑌𝑖,𝑗
(𝛼)

. When 𝑗 = 0, it indicates 

the performance degradation of the PV system. 𝑖 is an index for the number of functioning 

PV arrays. For a PV system consisting 𝑚 arrays (𝑚 > 0,𝑚 ∈ ℕ), 𝑖 = 𝑚 represents that the 

PV is at as good as new condition. 𝑖 = 0 demonstrates that all arrays in the PV system are 

failed. The transition between state 𝑌𝑖,0
(𝛼)

 to 𝑌𝑖+1,0
(𝛼)

 indicates the failure event of one array 

out of 𝑖 functioning arrays. We denote the transition rate as 𝜆𝑖
(𝛼)

. We assume the probability 
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of more than one arrays fail simultaneously is negligible. In practice, the PV modules are 

much more reliable than inverters [114]. However, due to the large number of serially 

connected PV modules in a PV array and additive failure rate of the fuse in dc combiner, 

the failure rate of PV arrays is non-negligible [115]. The performance degradation of the 

PV system is modelled as a competing processes of PV arrays. We assume the failure rate 

of each array is identical and denoted as 𝜆𝑑
(𝛼)

, then 𝜆𝑖
(𝛼) = 𝑖𝜆𝑑

(𝛼)
. States with 1 ≤ 𝑗 ≤ 𝑛 

indicate different inverter failure modes. The rate of 𝑙𝑡ℎ failure mode is represented as 𝜆𝑠,𝑙
(𝛼)

. 

We assume that all the inverter failures are self-announcing and disconnect the PV system 

from the grid; the duration for maintaining 𝑙𝑡ℎ failure mode is denoted as 𝜇𝑠,𝑙
(𝛼)

. The PV’s 

performance is assessed with a rate 𝜆𝑖𝑛
(𝛼)

. The duration for the performance assessment is 

signified as 𝜇𝑖𝑛
(𝛼)

. If less than 𝑏 PV arrays are functioning, the PV will be repaired to fully 

functional with a maintenance duration  𝜇𝑀
(𝛼)

. If all PV arrays are failed, it will be replaced 

with a duration  𝜇𝑅
(𝛼)

. The model is to determine the optimal threshold  𝑏 triggering the 

replacement of failed PV module in malfunctioned PV arrays. The analytical expression of 

steady state distribution for each state can be calculated through a list of equilibrium 

equations. All equilibrium equations could be formulated based on the concept that the sum 

of the input rates is identical to the sum of output rate at steady states. For the convenience 

of calculation, we first express all steady state probabilities in term of 𝜋𝑚,0
(𝛼)

 in equations 

5.18 – 5.22. 
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𝛑𝐢,𝟎
(𝛂)
=

{
 
 

 
 𝛌𝐦

(𝛂)

𝛌𝐢
(𝛂) 𝛑𝐦,𝟎

(𝛂) ,                                            𝐢 > 𝐛

∏
𝛌𝐣+𝟏
(𝛂)

𝛌𝐣
(𝛂)
+𝛌𝐢𝐧

(𝛂)
𝐛−𝟏
𝐣=𝐢

𝛌𝐦
(𝛂)
𝛑𝐦,𝟎
(𝛂)

𝛌𝐛
(𝛂)
+𝛌𝐢𝐧

(𝛂) ,                  𝐢 ≤ 𝐛

  

(5.18) 

𝜋0,0
(𝛼) =

𝜆1
(𝛼)

𝜇𝑅
(𝛼)
  ∏

𝜆𝑗+1
(𝛼)

𝜆𝑗
(𝛼) + 𝜆𝑖𝑛

(𝛼)

𝑏−1

𝑗=1

𝜆𝑚
(𝛼)𝜋𝑚,0

(𝛼)

𝜆𝑏
(𝛼) + 𝜆𝑖𝑛

(𝛼)
 (5.19) 

𝜋𝑖,𝑙
(𝛼) =

𝜆𝑠,𝑙
(𝛼)

𝜇𝑠,𝑙
(𝛼)
𝜋𝑖,0
(𝛼)

 (5.20) 

𝜋𝑖,𝑛+1
(𝛼) =

𝜆𝑖𝑛
(𝛼)

𝜇𝑖𝑛
(𝛼)
𝜋𝑖,0
(𝛼)

 (5.21) 

𝜋𝑖,𝑛+2
(𝛼) =

𝜆𝑖𝑛
(𝛼)

𝜇𝑀
(𝛼)
𝜋𝑖,0
(𝛼)

 (5.22) 

Because the sum of all steady states probabilities is equal to probability 1, we can calculate 

the 𝜋𝑚,0
(𝛼)

 as equation (5.23): 

𝜋𝑚,0
(𝛼) = [∑ (1 + ∑

𝜆𝑠,𝑙
(𝛼)

𝜇𝑠,𝑙
(𝛼)

𝑛
𝑙=1 +𝑚

𝑖=𝑏+1

𝜆𝑖𝑛
(𝛼)

𝜇𝑖𝑛
(𝛼))

 𝜆𝑚
(𝛼)

 𝜆𝑖
(𝛼) +

∑ ∏
𝜆𝑗+1
(𝛼)

𝜆𝑗
(𝛼)
+𝜆𝑖𝑛

(𝛼)
𝑏−1
𝑗=𝑖

1

𝜆𝑏
(𝛼)
+𝜆𝑖𝑛

(𝛼) 𝜆𝑚
(𝛼) (1 +𝑏

𝑖=1

(5.23) 
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∑
𝜆𝑠,𝑙
(𝛼)

𝜇𝑠,𝑙
(𝛼)

𝑛
𝑙=1 +

𝜆𝑖𝑛
(𝛼)

𝜇
𝑖𝑛
(𝛼) +

𝜆𝑖𝑛
(𝛼)

𝜇𝑀
(𝛼)) +

𝜆1
(𝛼)

𝜇𝑅
(𝛼)   ∏

𝜆𝑗+1
(𝛼)

𝜆𝑗
(𝛼)
+𝜆𝑖𝑛

(𝛼)
𝑏−1
𝑗=1

1

𝜆𝑏
(𝛼)
+𝜆𝑖𝑛

(𝛼) 𝜆𝑚
(𝛼)]

−1

  

By combining the computed operation cost in (5.15) - (5.17) with the steady state 

information in (5.18) to (5.23), the overall cost for PV system can be calculated by Equation 

(5.24): 

𝐶𝑆
(𝛼) = ∑ 𝐶𝑣,𝑖

(𝛼)𝜋𝑖,0
(𝛼)𝑚

𝑖=1 +

𝐶𝑝
(𝛼)(∑ 𝜋𝑖,𝑛+1

(𝛼)𝑚
𝑖=1 + ∑ 𝜋𝑖,𝑛+2

(𝛼)𝑏
𝑖=1 ) +

𝐶𝑢
(𝛼)(∑ ∑ 𝜋𝑖,𝑙

(𝛼)𝑛
𝑙=1

𝑚
𝑖=1 + 𝜋0,0

(𝛼)) +

𝐶𝑖𝑛
′(𝛼) ∑ 𝜇𝑖𝑛

(𝛼)𝜋𝑖,𝑛+1
(𝛼)𝑚

𝑖=1 +

𝐶𝑀
′(𝛼) ∑ 𝜇𝑀

(𝛼)𝜋𝑖,𝑛+2
(𝛼)𝑏

𝑖=1 +

∑ ∑ 𝐶𝑠,𝑙
(𝛼)𝜇𝑠,𝑙

(𝛼)𝜋𝑖,𝑙
(𝛼)𝑛

𝑙=1
𝑚
𝑖=1 + 𝐶𝑅

′(𝛼)𝜇𝑅
(𝛼)𝜋0,0

(𝛼)
  

(5.24) 

 

The overall cost for the 𝛼𝑡ℎ PV system is the summation of penalty of performance 

degradation, downtime due to maintenance and failures, inspection cost, major 

maintenance cost, replacement cost. By comparing the  𝐶𝑆
(𝛼)

 at different  𝑏 value, we can 

find the optimal maintenance threshold b to minimize the 𝐶𝑆
(𝛼)

. Then we can update the 

expected performance of 𝛼𝑡ℎ PV system with equations (5.25) and (5.26). 

𝔼[𝑋0𝛼
(𝛼)] = 𝜋0,0

(𝛼) + ∑ 𝜋𝑖,𝑛+2
(𝛼)𝑏

𝑖=1 + ∑ ∑ 𝜋𝑖,𝑗
(𝛼)𝑛

𝑗=1
𝑚
𝑖=1       (5.25) 



 

    
 

151 

𝔼[𝑋𝑖𝛼
(𝛼)
: 0 < 𝑖 ≤ 𝑚, 𝑖 ∈ ℕ] = 𝜋𝑖,0

(𝛼)
+ 𝜋𝑖,𝑛+1

(𝛼)
          (5.26) 

This process is applied to all PV systems and iterated until all 𝐶𝑆
(𝛼): 1 ≤ 𝛼 ≤ 𝑘 reaching to 

convergence. Then, the expected annual ownership cost of the MG 𝐶𝐺 can be calculated as 

equation (5.27). 

𝐶𝐺 = 𝐷𝑂𝐶∗ + ∑ 𝐶𝑆
(𝛼)𝑘

𝛼=1                         (5.27) 

5.4. Illustrative case study 

In this section, we demonstrate the applicability of the overall approach with an illustrative 

example. Consider a MG, as illustrated in Figure 47. Nodes D1 and D2 represent residential 

and commercial sectors, respectively. Two PV systems with rated capacities of, 

respectively, 300 kW and 1200 kW are denoted as nodes R1 and R2. Both R1 and R2 are 

multi-array PV systems with 5 and 20 arrays. 15 PV modules are considered in each array. 

The hourly output power in renewable nodes is determined according to hourly solar 

radiation. Three years’ historical data on demand profiles, solar radiation, and electricity 

price are considered. Nodes S1 and S2 represent ESSs with 300kWh/60kW and 

1600kWh/220kW (the first number is storage capacity and the second number indicates 

the maximum power capacity or power rating), which are determined according to [9]. 

Also, the following eligibility matrices show the configuration of the above network: 

𝐸𝑆𝐿 =
 𝐷1 𝐷2
𝑆1
𝑆2

[
1 1
0 1

]
2×2

 , 𝐸𝑅𝑆 =
 𝑆1 𝑆2
𝑅1
𝑅2

[
1 1
0 1

]
2×2

, 

𝐸𝑅𝐿 =
 𝐷1 𝐷2
𝑅1
𝑅2

[
1 0
0 1

]
2×2
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Table 20 shows the maintenance parameters and costs considered in this example (failure 

and maintenance rates are based on the real solar farm in a university campus in New 

Jersey. Cost values are adopted based on the study developed in [112]). According to this 

table, the maintenance duration is non-negligible (several days). Knowing the actual value 

of PV system in different days leads to better maintenance planning to avoid the high 

penalty cost of failure or performance degradation. As illustrated, maintenance action cost 

is a function of the number of modules that need to be replaced which is determined by the 

maintenance strategy.  

Table 20 - maintenance parameters and costs  

Parameters  Value (α=1, R1) Value (α=2, R2) 

𝑚(𝜶) 5 20 

𝑛(𝜶) 5 5 

1

𝜇𝑠,1
(𝜶)

 
6 days 6 days  

𝜆𝑠,1
(1)

 0.5/per year 0.5/per year 

𝐶𝑠,1
′(𝜶)

 2000 12000 

1

𝜇𝑠,2
(𝜶)

 
4 days 4 days 

𝜆𝑠,2
(𝜶)

 0.3/per year 0.3/per year 

𝐶𝑠,2
′(𝜶)

 2000 $ 12000 $ 
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1 𝜇𝑖𝑛
(𝜶)⁄  1 mins 1 mins 

1

𝜆𝑖𝑛
(𝜶)

 
1 day 1 day 

𝐶𝑖𝑛
′(1)

 0 0 

𝐶𝑅
′(𝜶)

 360,000 $ 1,440,000 $ 

1 𝜇𝑅
(𝜶)⁄  15 days 15 days 

𝐶𝑀
′(𝜶)

 3000 + 1920(m(1) − b(1)) 3000 + 1920(m(2) − b(2))  

1 𝜇𝑀
(𝜶)⁄  1 days 1 days 

 

In the following section, we present the average annual operation cost of a MG, described 

in Figure 47, in different performance degradations and failure states of R1 and R2 

(calculated in the upper layer). Then we present the optimal maintenance strategy for each 

of PV systems. Since the performance of PV systems is observable in real-time, the only 

decision variable in maintenance planning is determining the threshold state for major 

maintenance action (threshold state “b”). For comparative analysis, we run the top-down 

model for the MG without ESDs, and analyze the impact of ESDs on the MG’s 

maintenance planning. The existence of ESDs in a MG increases the value of PV systems, 

so we expect that the existence of ESDs brings the threshold stage earlier (higher “b” 

value).  

As mentioned earlier R1 and R2, respectively, consist of 5 and 20 PV arrays. Therefore, 

there exist 6 and 21 states of operation for R1 and R2. For example, renewable resource 
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R1 is operating with 0%, 20%, 40%, 60%, 80% and 100% of its maximum capacity 

according to the number of functioning PV arrays. Figure 51 shows the average annual 

operation cost of the example case when PV systems are operating in different states of 

deterioration.  

 

Figure 51: MG average annual operation cost with different performances of PV systems (in the 

existence of storage units) 

In the lower layer, the optimal threshold for major maintenance action is determined with 

considering these operation cost values received from the upper layer. The maintenance 

model results show that the optimal threshold state “b” for renewables R1 and R2 are 

respectively 4 and 18. It means that major maintenance action should be taken after 1st PV 

module failure in R1 and after 2nd PV module failure in R2. The optimal threshold state 

minimizes the average annual cost in the MG. It is worthwhile highlighting that the major 

novelty of the proposed model is that it is optimizing the long-term maintenance strategy 

of PV systems by considering the operational condition of the MG.  
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The value of the ESDs can be analyzed by comparative analysis. We consider the same 

MG in the previous example without any ESDs. In the absence of ESDs, the excessive 

output of renewable energy will be wasted. Hence, the value generated from PV systems 

decreases in the absence of storage units. Figure 52Figure 52 shows the MG’s expected 

annual operating costs in the absence of storage units. As illustrated, the expected annual 

operation costs are close to each other in deterioration stages above 16 in R2 and 1 in R1. 

Thus, we expect that the maintenance model postpones the major maintenance action to 

the smaller threshold state “b” in the absence of storages. Running a maintenance model 

for the new operational condition of the network shows the same results. The maintenance 

model suggests doing a major maintenance action after 4th PV module failure (threshold 

“b”,16) in R2 and after 3rd PV module failure (threshold “b”,2) in R1. 

 

Figure 52: MG average annual operation cost with different performances of PV systems (in the 

absence of storage units)  

Moreover, comparing the average annual total cost of a MG in these two examples (when 

optimal threshold “b” is selected) reveals the value that ESDs add to the PV systems in a 

MG. Figure 53 demonstrates the average annual cost of a MGin these two examples for 
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different values of threshold state “b”. As illustrated in Fig.6 (c) and (d) the minimum 

ownership cost in the existence and absence of storage units are about 2.11 × 105$ and 

2.98 × 105$ respectively. This implies that the existence of storage units approximately 

adds 8.7 × 104$  to the value generated by PV system R2 in the MG. 

The illustrative example shows that the maintenance strategy of PV systems should be 

optimized based on their value within the MG. A PV system’s value needs to be expressed 

by considering the operational condition of the network. By considering the network level 

information in asset level maintenance planning, it enables the network owner to plan the 

maintenance expenditure more efficiently.  

PV systems are generally serviced by their manufacturers and the warranty contracts are 

stipulated between the service provider and the PV system owner. Under such contracts, 

all material cost for the replacement of system components are covered by the service 

provider for the duration of the warranty period. Moreover, system owner pays the service 

provider a fixed amount of money for the warranty period which is usually relative to the 

system capacity. This kind of service contract does not consider the real value of the PV 

system within the MG and only consider the system size, which may lead to waste of the 

money for either side. This study suggests that the warranty contract between service 

provider and system owner should be based on the performance of the system within the 

MG. For instance, our illustrative example shows that the value of the same capacity PV 

system (R2) is more in the existence of ESD, which means that system owner should spend 

more on maintenance to maintain the output of system over 90%. However, in the absence 

of ESDs the owner should spend less on maintenance since 80% of performance is still 

economically beneficial. If the warranty contract between system owner and service 
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provider is stipulated based on the system performance (meaning that system owner pays 

a percentage of electricity cost saved as a result of PV system operation to the service 

provider in exchange for the maintenance service), then it is mutually beneficial for both 

service provider and system owner with such type of warranty contract.  

 

Figure 53: Comparing average annual total cost for different threshold states "b" of R1 and R2 in 

two examples 
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5.5. Conclusion  

In this work, we investigated the operation and maintenance policy for the grid-connected 

solar-powered MG composited by multi-array PV systems and ESDs. A top-down 

approach for optimizing the maintenance policies of PV systems is developed. In the upper 

layer, the maximum value of MG under different condition states of PV systems is 

calculated. This information is then utilized in the lower layer maintenance model. The 

long-term asset’s ownership cost of the MG could be expressed analytically by 

disaggregating the network level information. It enables us to compare the performance of 

different maintenance policies and find the optimal strategy to minimize the network 

ownership cost. Presented case studies illustrate that same PV systems in MGs with a 

different configuration should have different maintenance strategies. The proposed 

approach could be used in the stipulation process between MG owner and PV system 

maintenance provider to minimize the money waste on both sides. 
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