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THESIS ABSTRACT

Variably Trained Generative Adversarial Network

By VIBHA SRIDHAR

Thesis Director:

Dr. Desmond Lun

Since their introduction in 2014, Generative Adversarial Networks (GAN), have been

a hot topic in the AI field. Although the original implementation of GAN is for

the generation of images, researchers have progressed beyond that and have created

GAN variants that can generate music, perform style transfer and much more. One

pitfall of GANs is that they are challenging to train. Many tricks have since been

suggested for improved training. In this thesis, we combine these techniques with

a state-of-the-art GAN variant in an attempt to improve GAN performance. We

implement the Variably Trained GAN (VT-GAN) that combines the features of an

Auxiliary Classifier GAN with a deep convolutional neural network architecture, and

Label Smoothing and Minibatch Discrimination layer techniques to improve and sta-

bilize GAN training, to generate realistic high quality images. The evaluation metric

used is the Inception Score that gives a quantitative value measuring the realness

of an image. Although it takes longer for VT-GAN to train due to the addition of

complex mathematical operations, for the same amount of training, the VT-GAN

performs approximately 3% better than the AC-GAN with respect to the Inception

Score produced.
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Chapter 1

Generative Adversarial Networks

Generative Adversarial Networks (GAN), first proposed in 2014 by Ian Goodfellow et

al. [7] is an architecture based on a generative network that is adversarially trained.

GANs comprise of two neural networks (NN), a ’Generator’ network G and a

’Discriminator’ network D, that compete against each other. The Generator creates

or generates data that is to be fed to the discriminator. The Discriminator predicts if

its input data is real (i.e., from a test/train data set) or ’generated’. The Generator

aims to fool the discriminator, for which it needs to generate data that looks identical

to the real data as possible. The discriminator seeks to distinguish between the real

and fake data as accurately as possible. This thus results in the generator learning

to generate data that is indistinguishable from real data to the discriminator.

GANs can learn to imitate any distribution of data. So, in the perfect equilibrium,

the generator would capture the general training data distribution. As a result, the

discriminator would always be unsure of whether its inputs are real or not [25].
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What GANs do is essentially play a minimax game between the two players,

the Generator and the Discriminator. The Generator is the generative model, that

performs the mapping z 7→ G(z) = x′, where z is some random noise. The Generator’s

goal is to produce samples, x′. The Discriminator, performs a mapping x 7→ D(x)

= (0, 1). Its goal is to look at input images, and determine if they are real samples

(D(x) closer to 1) or synthetic samples from the generator (D(x) closer to 0). D(x)

can be interpreted as the probability that the image is a real training example. The

Generator tries to win the game by producing images that look indistinguishable from

the real images to the discriminator.

The Generator, G(z), has parameters θ(G), and the Discriminator, D(x), has pa-

rameters θ(D), where they control their respective parameters [5].

The solution to this zero-sum minimax game is called the Nash equilibrium. For

G(z) and D(x), the Nash equilibrium corresponds to achieving the following:
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• The Generator draws samples from, the original distribution of the data i.e the

generated data is realistic enough to fool the Discriminator.

• The Discriminator cannot discriminate between what is real and what is gener-

ated so D(x) = 1
2
, for all x.

Let pdata denote the data distribution and let pmodel denote the distribution of

samples from the Generator. Note that the Discriminator does not have access to

pdata and pmodel initially, it is learnt as D goes through the training process. Then,

the Discriminator’s cost is:

L(D) = −1

2
Ex∼pdata [log D(x)]− 1

2
Ex′∼pmodel

[log (1−D(x′))]

= −1

2
Ex∼pdata [log D(x)]− 1

2
Ex′∼pmodel

[log (1−D(G(z)))]

This is just the standard cross-entropy cost that is minimized when training a stan-

dard binary classifier with a sigmoid output. The loss will be zero if D(x) = 1 for

all x ∼ pdata and D(x′) = 0 for all x′ ∼ pmodel, i.e., generated from G(z).

In this context, a Nash equilibrium is a tuple (θ(D), θ(G)) that is a local minimum

of L(D) with respect to θ(D) and a local minimum of the Generator’s loss L(G) with

respect to θ(G).

As this is a zero-sum minimax game, the sum of the Generator’s loss and the

Discriminator’s loss is always zero, and hence the Generator’s cost function L(G) =

−L(D) This minimax objective function can be realised as:

min
θ(G)

max
θ(D)

1

2
Ex∼pdata(x) [logD(x)] +

1

2
Ez∼pz(z) [log(1−D((G(z))))]
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Note that Ez∼pz(z) [log(1−D((G(z))))] is the log probability of D predicting that

G’s generated data is not genuine and that Ex∼pdata(x) [logD(x)] is the log probability

of D predicting that real-world data is genuine. The discriminator wants to maximize

the objective such that D(x) is close to 1 and D(G(z)) is close to zero. The generator

wants to minimize the objective so that D(G(z)) is close to 1.

The training process consists of simultaneous stochastic gradient descent. On each

step, two minibatches are sampled: a minibatch of x values from the dataset and a

minibatch of z values drawn from the model’s prior over latent variables. Then two

gradient steps are made simultaneously: one updating θ(D) to reduce L(D) and one

updating θ(G) to reduce L(G)

Figure 1.1 represents all the losses that are involved in this system.

Figure 1.1: Losses

Generative Adversarial Nets [7] the paper that introduced GANs contain further

explanation of the GAN value functions. NIPS 2016 Tutorial: Generative Adversarial

Networks [5], is another excellent source that further delves into the mathematical

functions, that are beyond the scope of this thesis.

Figure 1.2 captures the essence of a vanilla GAN, and showcases the most basic

GAN architecture.
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Figure 1.2: Basic GAN Architecture
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Chapter 2

Related Work

Since their introduction, researches have proposed many different variants of GANs.

Radford et al. in 2015 [22] introduced Deep Convolutional GAN (DCGAN) whose

architecture is based on Deep Convolutional Neural Networks. Another extension

relevant to this work is the introduction of Conditional GANs (cGAN) [17], where

the Generator and Discriminator are conditioned on some external information like

class labels. InfoGAN [1] is an information-theoretic extension of GAN that allows

learning of meaningful representations, which are competitive with representations

learned by some supervised methods. SRGAN [11] proposed by Christian et al.

can recover photo-realistic textures from down-sampled images. SeqGAN [28] is a

sequence generative framework, which can directly generate sequential synthetic data,

and achieved significant performance in speech and music generation. Jiwei Li et al.

[12] applied generative adversarial network approach to generate human-like dialogue.

Let us take a quick look at the GAN variants on which the thesis is based.
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2.1 Auxiliary Classifier GAN (AC-GAN)

The Auxiliary Classifier Generative Adversarial Network (AC-GAN) shown in Figure

2.1, is a GAN variant proposed by Odena et al. in their 2017 ICML paper [20]. In this,

the Discriminator has two different outputs. The first output layer is to determine

if the input image is real or generated. The second is the ’Auxiliary Classifier’ that

has the output dimension equivalent to the number of image classes and the values

determine which class the input belongs to.

Let Xreal represent the real images sample, Xgen the generated sample, S the

probability distribution if real or generated, and C the probability distribution for

the class labels. The objective function of the AC-GAN has two parts:

• The log-likelihood of the correct source, i.e. real or generated LS

• The log-likelihood of the correct class, LC

LS = E[log P (S = real |Xreal)] + E[log P (S = generated |Xgen)]

LC = E[log P (C = c|Xreal)] + E[log P (C = c |Xgen)]

The minimax game played between the Discriminator and Generator is thus ap-

proximated by training the Discriminator/auxiliary classifier to maximize Lc + Ls

and training the Generator to maximize Lc − Ls.

Figure 2.1: AC-GAN
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2.2 Deep Convolutional GAN

DCGANs build the Discriminator D with convolutional network and the Generator

G with the transposed convolutional network [22]. The paper proposes a family of

architecture based upon convolutional neural networks that increase the stability of

GAN training.

The following has been suggested for improved training :

• Do not use Pooling layers. Instead, use strided and fractionally strided convo-

lutions for the Discriminator and the Generator respectively.

• Batch Normalization is to be used

• Remove any connected layers

• Utilize ReLU activation function in all layers of the Generator except for Tanh

function in the output layer

• Use LeakyReLU activation function in the Discriminator for all layers.

Apart from these suggestions, the paper also explores using the convolutional

layers of the Discriminator as a feature extractor and further visualizing these features.

They further explore the vector arithmetic properties of the Generator and combine

properties of different images to generate new images that contain certain aspects of

each of these images, as shown in Figure 2.2.
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Figure 2.2: Exploiting Vector Arithmetic Properties of Generator
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Chapter 3

Variably Trained Generative

Adversarial Networks

Implemented in this thesis, is a Variably Trained GAN (VT-GAN), which combines

the features of an AC-GAN, and the techniques suggested in Improved Techniques

for Training GANs by Tim Salimans et al. [24] for a much superior performance and

stable training. AC-GAN is being utilized because it has achieved state-of-the-art

Inception Score performance of 8.24 even without these additional techniques for im-

proved training. Hence, it can be seen that providing class information enables the

model to learn better and generate a variety of realistic images. VT-GAN borrows the

class conditioned property of the AC-GAN and in addition, includes Label Smooth-

ing and a Minibatch discrimination layer. These additions have been implemented

to stabilize GAN training and to try and improve the quality and diversity of the

generated images. The addition of these two techniques has been explored in the
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upcoming sections. VT-GAN consists of a Generator and a Discriminator network,

both of these are designed as Deep Convolutional Neural Nets. The Discriminator

has an auxiliary classifier, that classifies the input image into the class it belongs to.

The introduction of the Minibatch Discrimination layer also changes the way the

Discriminator is trained. First, the real images are fed in together, and then the

generated images are given. This is different from the way the input is typically

given, where the real and generated images are mixed and fed as input.

The implementation of this thesis has been done in Keras [2] with Tensorflow [16]

back end. Google Colaboratory was used for the execution. Google Colaboratory

provides access to Google’s GPU with a Virtual Machine instance that is active for

12 hours before it is completely reset.

3.1 Data set

This network has been designed to be trained on the CIFAR-10 [9] database, and

subsequently generate images from the classes present in this. CIFAR-10 consists

of 60000 colour images that are 32x32 pixels. Each image belongs to one of the 10

classes, with 6000 images per class. The images are split into 6 batches - 50000

training images and 10000 test images. The classes are mutually exclusive with no

overlap between the classes. Figure 3.1 shows sample images from the CIFAR-10 data

set.

The following information is present in each batch :

• Data: 10000x3072 as numpy array. Each row of the array stores a 32x32 colour
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image.

• Labels: a list of 10000 numbers in the range 0-9.

Figure 3.1: CIFAR10 Data set

3.2 Discriminator

The Discriminator takes as input, real or generated images (CIFAR10 in this case)

that pass through a series of strided - convolutional layers instead of pooling layers

as it lets the network learn its own pooling function. This is essentially a binary

classifier that is implemented as a CNN. The Discriminator design is shown in Figure

3.2. Leaky ReLU activation function is used in all layers here. In the end, we use a

Sigmoid function is used in the end to generate the probability distribution for the

input to be generated or real image. Followed by a Softmax function to determine

the class that the input image belongs to.

Convolutional Layer

In order to fully understand the workings of a Convolutional Neural Network, the

terms used to describe the networks are explained below :

• Kernel Size: It defines the field of view of the convolution. A kernel size of 3

indicates 3x3 pixels.
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Figure 3.2: Discriminator Design

• Stride: It defines the step size of the kernel when traversing the image. A stride

of 2, indicates that the kernel slides by 2.

• Padding: The padding determines how to handle the border of an input.

This layer helps in extracting features from the input, considering spatial pixel

relationship.

The convolutional layer can be easily implemented via a library in Keras with

Tensorflow backend. It is merely a matter of invoking the conv2D function with the

required parameters for kernel size, padding, and strides.

3.3 Generator

The Generator takes as input a uniform D-dimensional noise vector and produces or

generates sample images. The Generator implemented here has fractionally-strided

convolutional layers [22].
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Leaky ReLU activation function is used in all the layers except for the last one

which uses the Tanh function. This is then followed by Batch Normalization to

stabilize the outputs of each layer (except for the last), as shown in Figure 3.3. The

architecture closely follows the one proposed in [22] to ensure stable training.

Figure 3.3: Generator Design

Transposed Convolutional Layer

Transposed Convolutional Layers or Fractionally Strided Convolutional Layers are

used in the Discriminator for up-sampling an input image. The input image - be it a

real one or a generated image is 32x32, and this needs to be expanded to enable the

Discriminator to learn to identify the objects present. A transposed convolutional

layer carries out a regular convolution but reverts its spatial transformation.
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3.4 Activation Function

Activation functions enable a Neural Network to learn and understand the non-linear

mappings between the inputs and response variables. They introduce non-linear

properties into the Network. They are used so that the network learns to differentiate

between the outputs and learns to adapt with the data.

The activation functions used in the creation of this system are: Sigmoid, Tanh,

Leaky ReLU and Softmax activation functions. These have been described below.

Sigmoid Activation Function

Sigmoid Activation functions are used when the required output is a probability, as

the sigmoid function only has values within the [0,1] range. Additionally, as the

function is differentiable, the slope of the sigmoid curve can be found at any two

points. This function has been plotted in Figure 3.4.

Tanh Activation Function

The Tanh(x) function, shown in Figure 3.5 can be viewed as a re-scaled version of the

sigmoid, with output in the interval of (1, 1). Although the Tanh function saturates

like the Sigmoid function, its output is zero-centered unlike the sigmoid. Therefore,

in practice, the tanh non-linearity is always preferred to the sigmoid nonlinearity.

f(x) = tanh(x) =
ex − e−x

ex + e−x
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Figure 3.4: Sigmoid Function

Figure 3.5: Tanh Function

ReLU (Rectified Linear Unit) Activation Function

The ReLU function as described in [18] was introduced as an activation function in

[10], it is half rectified i.e, ReLU is linear for all positive values, and zero for all
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negative values.

ReLU is sparsely activated since ReLU is zero for all negative inputs, it’s likely for

any given unit to not activate at all. Sparsity generates models that often have better

predictive power and less overfitting as it’s more likely that neurons are processing

essential parts of the problem [13]

One issue with this function is that it suffers from the "Dying ReLU" problem.

A ReLU neuron is “dead” if it’s stuck in the negative side and thus unable to climb

back up to the positive side keeps on generating 0 as the result. Because the slope of

ReLU in the negative range is also 0, once a neuron gets negative, it’s unlikely for it

to recover. This might over the time end up causing a large part of the network to

do nothing. The dying problem is likely to occur when the negative bias is significant

or if the learning rate is very high. Figure 3.6 demonstrates the ReLU function.

Figure 3.6: ReLU Function
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LeakyReLU Activation Function

LeakyReLUs is a way to solve the dying ReLU problem when utilizing the ReLU

activation function. LeakyReLUs have a small positive gradient for negative inputs,

instead of 0, this can be seen in Figure 3.7.

y =


0.01 ∗ x, when x < 0

1, when x ≤ 0

Figure 3.7: Leaky ReLU Function

Softmax Activation Function

The Softmax function is used when the desired output is the probabilities over a

range of classes. These probabilities together sum to 1. In order to determine the
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class of the input image, the softmax function is used. This function assigns larger

probabilities to the classes that the network thinks the input image belongs to.

3.5 Batch Normalization

As the distribution of the activation constantly changes during training in the in-

termediate layers, each layer must learn to adapt itself to a new distribution, thus,

slowing down the training process; this is called internal covariate shift. One way to

overcome this would be to ensure that the input of every layer has approximately the

same distribution in every training step.

Batch normalization [8] is a method we can use to normalize the inputs of each

layer, to fight the internal covariate shift problem. Batch normalization potentially

helps the neural network converge faster and get higher overall accuracy by shifting

inputs to zero-mean and unit variance, which makes the inputs of each trainable

layer comparable across features. Thus it also prevents early saturation of nonlinear

activation functions such as TanH and Sigmoid not to get stuck in the saturation

mode, i.e. where the gradient is almost 0. In practice, networks that use batch

normalization are more robust to bad initialization [8].

During training time, a batch normalization layer does the following using:

• Calculate the mean and variance of the layer’s input

• Normalize the layer inputs using the previously calculated batch statistics

• Scale and shift in order to obtain the output of the layer
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Batch Normalization is implemented directly in Keras via a library. This function

is invoked after implementing each layer except for the last, as there is no further

input once at the end.

3.6 Minibatch Discrimination Layer

A common failure mode of Generative Adversarial Networks (GANs) is ’mode col-

lapse’ in which the Generator fools the Discriminator by synthesizing generated data

that looks exactly the same across one batch. The Generator thus does not learn to

create different images, and the Discriminator does not learn to identify this image

as a generated sample.

To solve this problem, a concept called ’Minibatch Discrimination’ was proposed.

Minibatch discrimination [24] is defined to be any method where the Discriminator is

able to look at an entire batch of samples in order to decide whether they come from

the Generator or the real data, instead of looking to a single input. The single mode

collapse can then be easily spotted, by the Discriminator which will understand that

whenever all the samples in a batch are very close to each other, the data is fake.

This will thus make the Generator synthesize different image in each batch.

The following steps [4] are implemented to realize the Minibatch Discrimination

layer :

• Output of an intermediate layer, the desired number of kernels and its dimension

is fed into the Minibatch Discrimination layer as input.
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• This input is multiplied by a 3D tensor to produce a matrix of size num_kernels

x kernel_dim.

• L1-distance between rows in this matrix across all samples in a batch is com-

puted. A negative exponential is then applied to this.

• The Minibatch Features are then computed as the sum of these exponentiated

distances.

• The input to the minibatch layer is then concatenated with the newly created

Minibatch Features

• This is the output of this layer which is then fed as input to the next layer of

the Discriminator.

This is implemented using the existing Python implementation by Keras, which

has been integrated here.

3.7 Label Smoothing

Label Smoothing [23] [26] regularizes a model based on a softmax with k output values

by replacing the hard 0 and 1 classification targets with targets of ε
k
and 1 − k−1

k
ε,

respectively. In other words, label smoothing is the practice of assigning each class

some weight, instead of assigning the ground truth label the full weight. As the

network will over fit less on the training labels, it should be able to generalize better,

hence also making it easier for the network to recover better from a false label [6].
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3.8 Loss Function

A loss function is the objective to measure the compatibility between a prediction and

the ground truth label. Cross-entropy loss, or log loss, measure the performance of a

classification model whose output is a probability value between 0 and 1 [14]. If the

predicted probability diverges from the true label, the cross-entropy loss increases.

Although Cross-entropy and log loss are slightly different depending on the context,

they resolve to the same value when calculating error rates between 0 and 1 as they

do in this context.

Binary Cross Entropy Loss

Binary Cross entropy loss is used when classifying the input image as real or generated

- which is binary classification. It is also known as the Sigmoid Cross Entropy Loss

as it incorporates both the Sigmoid Activation function and the Cross-Entropy loss.

Sparse Categorical Cross Entropy Loss

Sparse Categorical cross entropy loss is used when the problem is single-label multi-

class. This is used so that the Discriminator can classify the input image to one of

the 10 classes. We use this over just Categorical Cross Entropy Loss as the targets

are not one-hot encoded, hence just integer results indicating the classes suffice.
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Chapter 4

Results

A significant problem faced here is how best to evaluate these kinds of generative

models. Although one way is to examine the quality of the generated samples physi-

cally, this does not entirely satisfy us due to its non-quantitative nature. In the text

domain, this becomes even more challenging. Generative models based on maximum

likelihood training may use some metric based on likelihood (or some lower bound

to the likelihood) of unseen test data, but that is not applicable here. Some GAN

papers have produced likelihood estimates based on kernel density estimates from

generated samples, but this technique seems to break down in higher dimensional

spaces. Another solution is to only evaluate on tasks such as classification, that are

well studied.
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4.1 Inception Score

First proposed by Salisman et al. in [24] the Inception score (IS) is based upon

Google’s Inception classifier and has since become a popular metric for judging the

outputs of GANs that are trained to generate images based on Imagenet-1k classes.

IS uses the pre-trained Inception Network classifier to capture the following properties

of generated samples:

• The quality of the generated images

• The diversity of the generated images

As the IS is a metric that correlates with a human’s judgement, it measures the

realness of images created by a GAN.

The Inception classifier takes as input, images, and returns the probability distri-

bution of labels for the image. The input to calculate IS is a list of images, and the

result is a single floating point number, which is the score. The score will be high

when the following two conditions are true :

• The distribution of classes for an image has low entropy - i.e. the image should

contain clear objects that enable the Inception network to be confident that

there is a single object in the image.

• The overall distribution of classes across the sampled data has high entropy,

implying that there is diversity of images from all the classes.

The score drops low if either one of them is false or if both are false. A higher

score is desired as that is an indication that the GAN can generate a large number of
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different distinct images. The lowest score possible is zero, and theoretically, while the

highest possible score is infinity, in practice there will probably emerge a non-infinite

ceiling. Here, we take the IS over real images (CIFAR-10) as the upper bound.

To compute this score, the Kullback-Leibler (KL) divergence, DKL is used. Given

two probability distributions, KL divergence is a measure of how similar they are.

DKL is computed as follows given two probability distributions P and Q that are

defined on the same probability space:

DKL(P ||Q) =
∑

x∈X P (x) log
(
P (x)
Q(x)

)
When the distributions are not similar, i.e. when each generated image has distinct

labels and the overall set of generated images has a diverse range of labels, the KL

divergence has a high value.

In order to compute the Inception Score, the KL divergence between the label

distribution of an image and the marginal label distribution is computed.

Let y be the class label, x a generated image, E the expectation over the set of

generated images, DKL is the KL-divergence between the conditional class distribu-

tion p(y|x) and the marginal label distribution p(y). Then, the IS is computed as

:

IS(G) = exp(Ex DKL (p(y|x) || p(y)))

The marginal label distribution p(y) is computed as

p(y) = 1
N

∑N
n=1 p(y|xn = G(zn))



26

where N is the total number of images sampled and G(z) is the Generator output,

i.e. a generated image. Every individual sample’s label distribution (from the incep-

tion network’s classification output) is used to find the overall label distribution. If

this is uniform, then it implies that the Generator can produce images across different

labels showing diversity.

Figure 4.1: Variation of KL divergence value

Figure 4.1 [15] shows how the KL divergence value changes depending upon the

conditional label distribution and the marginal label distribution. The one resulting

in high KL divergence has low entropy for conditional label distribution and high

entropy for marginal label distribution. This means the input data has images where

each image has distinct labels and the overall set of generated images has a diverse

range of labels. Once the KL divergence is computed, it’s exponential is taken and

finally, this is averaged over all of the images to produce the Inception score for the

input images.

Due to the limited amount of resources available in terms of GPU and storage

restrictions, the Inception Score for the different architectures implemented has been

calculated for 1,507 images generated from networks that have been trained for ap-

proximately 500 epochs each. Ideally, the GAN should be trained for over several

thousand epochs and approximately 50,000 images are to be fed into the Inception

Network to compute the score so that the diversity between the images is captured

well, [24] also acknowledges this fact.
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Figures 4.2 and 4.3 exhibit samples of images from the AC-GAN trained for 500

epochs without the Minibatch Discrimination Layer.

Figure 4.2: 500 epoch images without Minibatch Discrimination Layer(AC-GAN) - 1

Figures 4.4 and 4.5 exhibit samples of images from the VT-GAN implemented in

this thesis that has been trained for 500 epochs and includes the Minibatch Discrim-

ination Layer.

The original AC-GAN implementation, computed the Inception score for 50,000

32x32 resolution samples that are split into 10 groups at random. This score is

produced by the best AC-GAN model obtained after performing a grid search across

27 hyper-parameter configurations. Splitting of the input into classes and averaging

the Inception Score over these classes is done following the protocol of evaluating
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Figure 4.3: 500 epoch images without Minibatch Discrimination Layer(AC-GAN) - 2

the average Inception score over 10 independent groups of 5,000 samples each, as

established by the paper that first proposed this score [24].

VT-GAN and AC-GAN were trained twice each for 500 epochs, and images were

generated for each model. We compute the Inception score for 1507, 32x32 resolution

samples from both the VT-GAN models, split into 10 groups at random. Similarly,

we compute the Inception score for 1507, 32x32 resolution samples from AC-GAN,

these are also split into 10 groups at random.

Following the method used by the original AC-GAN paper for reporting results,

we report the best model’s score and their respective standard deviations for VT-

GAN and AC-GAN in Figure 4.6. We further mention that the other VT-GAN
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Figure 4.4: 500 epoch images with Minibatch Discrimination Layer(VT-GAN) - 1

model produced an IS of 4.13±0.29 and our AC-GAN implementation’s other model

produced a score of 4.01±0.22.

From this we can see that the best VT-GAN model performs approximately 3%

better than our best AC-GAN. We believe that given more training, VT-GAN would

give a performance that is similar to or slightly better than the original AC-GAN

implementation, but given the hardware constraints, we are unable to increase the

training.
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Figure 4.5: 500 epoch images with Minibatch Discrimination Layer(VT-GAN) - 2

4.2 Issues Faced During Training

Training GANs is extremely tricky. They are challenging to train and require countless

hours of tweaking and modifying the architecture to prevent them from collapsing.

Even then, a close eye has to be kept on them during training, to prevent mode

collapse. During the course of training the network, the following issues were faced

and subsequently most were overcome:

• Choosing the right Kernel size turned out to be a huge task. A Kernel size of

5 worked well with all layers of the Generator. Alternating between 3 and 5 in

the Discriminator turned out to be ideal, as using 3 in all the layers caused the
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Figure 4.6: Inception Scores

Discriminator to collapse.

• Just because a network is deep, it doesn’t automatically mean that it will work

perfectly. The Generator went through many rounds of altering the number of

layers, the filter sizes before settling on the current architecture.

• One major issue faced due to the limited availability of time and resources,

early stopping had to be implemented. We believe that if the network had been

trained for several thousand epochs, instead of stopping at 500, the generated

images would have definitely improved on quality.
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4.3 Visualizing the Losses

In order to track and understand the GAN performance, the losses incurred by the

Generator and the Discriminator may be visualized. Generation loss refers to the

Generator’s loss. This same term may be used to describe Discriminator’s loss as

well. This is the Binary Cross entropy Loss described in Chapter 3.

In a zero-sum game, the Nash Equilibrium is the same as the minimax solution.

Simply put, Nash equilibrium is when a network’s actions remain unchanged regard-

less of the other network’s actions. Hence, the convergence of the losses to the Nash

Equilibrium is desired as it implies that the system is stable and both the Generator

and the Discriminator are strong.

• Generation Loss per epoch during the Training Phase has been plotted in Figure

4.7 for the Generator and the Discriminator. It can be seen that they end up

converging pretty close to the Nash equilibrium as desired pretty early on.

• Generation Loss per epoch during Testing Phase is shown in Figure 4.8. An

observation point here is the fact that the Discriminator’s loss does not converge

to 0 - which shows stable training. When Discriminator’s loss goes to 0, it means

that it has become much stronger than the Generator, thus implying that the

Generator is performing poorly with respect to creating realistic images. Once

it’s loss goes to 0, the weights no longer change as the gradients being loss

derivatives stagnate, and hence the Generator cannot improve in the following

iterations.
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Figure 4.7: Generation Loss per epoch for Training Phase

Figure 4.8: Generation Loss per epoch for Testing Phase

• Auxiliary or Classification Loss for the Discriminator is the loss associated with

the Discriminator determining the correct label for the input image. This is
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the Sparse Categorical Cross Entropy Loss explained in Chapter 3. Figure 4.9

shows that although the Discriminator performs well and minimizes the loss

during the Training phase, it does not perform as well during the testing phase.

This would once again correlate to early stopping. Decrease is seen usually

when we hit a few thousand epochs.

Figure 4.9: Discriminator’s Classification Loss per epoch

• Auxiliary or Classification Loss for the Generator is shown in Figure 4.10. It

has to be noted that both the Generator and the Discriminator try to minimize

this value so that the Generator learns to generate better images that belong

to each class and the Discriminator can distinguish between the classes.
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Figure 4.10: Generator’s Classification Loss per epoch
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Chapter 5

Conclusion and Future Extensions

From the results obtained, it is observed that the addition of the Minibatch Dis-

crimination layer increases the execution time. It takes roughly the same amount

of time to reach epoch 350 with this layer as it does to reach epoch 520 without it.

This increase in execution time is to be expected as this additional layer incorporates

matrix multiplication and exponentiation for each batch of images. This leads us to

speculate whether the addition of this layer is meaningful or not. The answer to this

would, of course, depend on the restrictions one has for run time availability. If time

and computer resources for computation is plenty and not a matter of concern, it

makes sense to add in this layer for the sake of increased generated image quality and

much more stable GAN network.

We also note that no discernible performance difference has been observed with

using label smoothing as compared to an architecture without it. This might become

more noticeable if the number of training epochs reaches over a couple of thousand.
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There is a huge scope for future improvements in the area of using GANs to gen-

erate images. One suggestion would be to further explore the possibility of generating

never-before-seen creatures by exploiting the vector arithmetic property of the gener-

ators. This generator property could also be of excellent use for clothing companies

to design different variations of a clothing article to suit a wide variety of audiences.

Another would be to use a combination of loss functions such as Wasserstein distance

with L1 distance and with empirical study determine a middle ground that works

well.
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