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Human motion analysis is the systematic study of human maotibich is employed for
understandingthe mechanics of normal and pathologicabtion, investigatingthe
efficiency of treatmentsand proposing effectiveehabilitation exercisesTo analyze
human motion, accurate kinematics data should be extracted using motion capture
systems The established statef-the-art method for human motion capter in
biomechanis applicationsis using maker-based systes whichareexpensive to setup,
time-consuming in process, amequire controllecenvironmentAs a result, dring the

past decads researchson markerless human motion captuhave gaed increasing
interest.In this thesis by utilizing advances in comput&ision and machine learning

techniques, in particulaDeep Neural Networks (DNNsye poposenovelmarkerless



human motioncapture methodsnd explore their applicability for two biomechanics
applications.

In the first studywe design and implement aankerlesssystem for detecting nen
ergonomic movements in the workplaces with the ainprefventinginjury risks and
trainingwor kers on proper techniques. Qur prop
as the input and estimattheir 3D body pose using a DNN. Then, critical joint loads are
calculated fromresulting 3D body poseisng inverse dynamics technique and are
compared with human body capacity to pregiatentialinjury risks Results demonstrate
highaccuracy, whiclis comparable with markdsased motion capture systerwkreover,
it addressesnarkerbased motion capture system limitatidnseliminatingthe need for

controlled environment amattaching markers onto the subject body

In the second studwe design andnplement anthermarkerlesssystem fordetecting
gaitabnormalities of patients and elderly people with the aim of early disease diagnosis
and proposing suitable treatments in a timely manner. We propose a computationally
efficient DNN to estimate 3D bguopose from input videos arttlen classifythe results
into predefined pathologgroups Results demonstrate higihassificationaccuracyand
rare false positive and false negative ragnce the system uses digital cameras as the
only required equipmenit can be employed in patients and elderly peaumestic
environmers for consistenthealthmonitoring and early detection of gait alteratians

assessing treatment outcomes progress

The ultimate goal of this study is providinga®kfor Ambient Assisted LivingAmbient
Assisted Living is the use @&échnology, in particulaArtificial Intelligence,i n peop | e 0 s

daily life with the goalof recognizing actionand detecting eventgithin an environment.



It enables a remote health miring of patients with chronic conditions and senior adults

andhelps thenlive independently for as long as possible.
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CHAPTER 1. Introduction

1.1. Overview

Human motion analysis is the systematic study of humaiomand it isftundamentain
biomechanicstudies The outcome is utilized famderstanihg the mechanics of normal

and pathological wtion, investigatingthe efficiency of treatmentsand proposing

effective rehabilitation exercisesTo analyze human motiomccuratekinematics data

should be extractedusing motion capturesystems.The most common method for

accurate capture of 3D kinematidatais using markebased motion capture systems.

These systems use reflective markers and optical cameras to track body movements. A

set of multiple synchronized camera are positioned arcumdubject and the reflective

mar kers are attached on the subjectds boc

generated near the camera lenses and their 3D coaslamatcaptured by the system.

Markerbased motion capture systems are considerededisble and accurate system,
howeve; their widespread use is lined due to itsdrawback. First, they require
expensive motion captueguipment second, attaching markers
time-consuming and can obstrubes u b j e c t 6. 3hirg thay requirei conéraled

environment and cannot be employed outside of the laboratories.

Markerless motion capture technicgizave thereforegained increasing interest during

the past decades, and a variety of computer vsnahmachine learninglgorithms have



been proposed for 3D human motion tracking and pose estimBgspite the increasing
interest in marketess motion captureechniquesandthe aforementioned limitations of
the markeibased motion capture systemsarkerbased systems are still preferred for
biomechanicspplications which require higher accuracy and robustness cordgare
other applicationsThe purpose of this studyg leveraging advances in computer vision
and machine learning techniquesptopose novel markerless motion capture methods,
suitablefor biomechanicsapplications. We explore two applications of human motion

analysis in biomechanics including injury prevention and disease diagnosis.

1.2. Human Motion Analysisfor Injury Prevention

Occupational injuries are commonly observed among workers involved in material
handling tasks such as lifting. According to the Department of Labor Statistics, in 2012
2016, material handling tasks were the leading cause of occupational injuries, even more
than slips, trips, and fall§lotion analysis provides information ababemagnitude and

rates of joint loads, which can be used iftentifying excessive joint loads on the body

that could predispose to injupue D the limitations of the markdrased motion capture
systems, specifically its laboratory requirement, it is macpcal to utilize them inside

the workplaceIn this thesis we investigate the potential of the proposed maldss
motion capturenethods for constant monitoring of weiisinside the workplacewith

the aim ofdetecting injury risks anttaining workerson proper techniques likefting.

1.3. Human Motion Analysis for Disease Diagnosis

Human motion analysis and in particular gait analiisis been widely used detection

anddifferentialdiagnosis of diseases, which is an imporfaetrequisite to treat patients.



Gait analysis is aystematicstudy of human walking for recognizing of gait pattern
abnormalities, postulating its causes, and proposing suitableneetst. The process of
clinical gait analysis can be facilitated through the ofsmarkerbased motion capture
systems, which allow an accurate movement measurement, however; the aforementioned
drawbacks of these systems make them infeasible emf@oyedi n pati ent s o
living environments and outside of the lab and prevent a continuous gait monitaring

this thesis we investigatethe potential of the proposed markess motion capture
methods foconstant and ubiquitous gait monitoriofgpatierts in their home setting with

the aim ofdetecting potential diseases in their early stages.

1.4. Dissertation Outline

In this chapter, a brief overview of human motianalysis and itshiomechanics
applications was provided Furthermore the work done in thisdissertationwas
introduced In chapter 2related computewision and machine learningnethods for
human motion tracking and pose estimation will be discudse@hapter 3we present
our first markerless motion capturenethod and investigate its applicability for
workplace injury prevention. ¥perimental results are reported ahifting dataset and
resultsarecompared witha markerbased motion capture system as a gold standard. We
employ the results for further biomechadianalysis i.e. lower back joint loads
estimation, which is considered as iamportant criterion to identify anon-ergonomic
lifting task In chapter4, we propose anothenarkerless motion capturenethodfor
human pose estimation and utilize it for gaassification. We validate the results for

mo st common neur ol ogi c adiseasg Stske @ saddgion ito. e .

P
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orthopedic disordersChapter5 includes the concluding remarks and future research

plans for extending theurrent study.



CHAPTER 2. Human Motion Capture: Literature Review

2.1. Introduction

Over the lasseveral centuriegur understandingf human movement has beehvays

a function of the available human motion capture methods at th¢ZjnEhese methods
have improved over time and in recent decades, several sy&teoapturing3D bady

pose were developed, which roughly can be categorized into three groups: direct
measurement, observational methods, and mdelssr motion capture systems. In the
following sections, we first provide a brief overview of different human motion capture
techniques. Then, we will present a detailed survey of mddssrhuman motion capture
systems andfinally, a detailed literature review of markkrss human motion capture

methods fobiomechanicapplicationswill be presented

2.2. Direct Measurement Systens

Direct measurement systems are the most common methods for accurate 3D body pose
capturing, which require markers or sensors attachment on the €slijedly and are
performed in a laboratory environmefthey are usuallyategorized into optical and
non-optical systens. Optical systems consist of a set of synchronizacheradocated

around the subjecivhich capturghe centers of the marker images fromfrared light

emitted by the LED's markers or the light reflected from coated markers. Thed3ion

of eachmarkeris then measured bghe matched centers of the maker images from



different camera views usingidngulation. More recently, neoptical systems like
inertia systems have gained increasatgention for human motion capter Inertia
systems use Inertial Measuremenntitd (IMUs), typically composed of accelerometers
and gyroscopeso measure therientation of the bodgegmentshat IMUs are attached
to. These dentation dataresent wirelessly to aomputer, where they apgocessed and
translated to the 3D sensor positio@ampare to the optical motion capture systems,
inertia sensors are more cagtective and need smaller workspaceAlso, they are not
subject to occlusionra contrast or reflectivity probtes. However;IMUs suffer from
time-varying biases and noises, which lead to a qdrdk after a few seconds amdakes

the measurement unreliab[@]. Human motion can also be captured directly with
alternative methods, which remove the néadattaching markers or sensor on to the
subjectds body. T h e s e [3]mand dngled danei floocokcapice b o n
technique$4]. While these methods provi@gadirect measurement of the human motion,
they are highly invasive and even expose the subject to doses of radtatittrermore,
many of the previously mentioned methods for direcasaeement of human motion can
obstruct t he subj ect os natur al patterns
musculoskeletal structures. As a result, although these dineeisurementnotion
capture systems are accurate and the establisheeb&theart, but considering their
disadvantageslongwith the availability of cheap and higiuality cameragustify the
interestgrowth for the visiorbased huma motion capture systems like observational
methods and markdess motion capture systems. Thesision-based methods will be

reviewed in the following sections.



2.3. Observational Methods

Observational methodseatypically based on the visuakamination of the human body
performingaspecific task They are carried out either on location in the field or via video
recording[5-7]. Using recorded videos instead of the live assessmentsttak@rocess
unable tobe performed real time but it enables slow motions and freezame
capabilities[8], which make the analysis more practical and accundigeo-based
observational systems use recorded videos of the subject and extract a few key frames
from them.Then, raters estimate the body pose by making an optimal fit of a predefined
digital manikin to the selected video frames. Finally, using the estimated body pose data
and time information x@racted from the videos, joint trajectories generated for the

entire task by applying a motion pattern prediction algoritf®h Video-based
observational systems are simpler to learn and less expensive cdripdhe direct
measurement systems add not encumber the subject in ampy. But the major
drawbacks of these systems are their low accuracy compare to direct measurement
systems, especially when joints angle become close to the posture boufti@kies

Moreover they can easily become laborious as the number of key frames indieHses

2.4. Marker -less Motion Capture Systems

An ideal motion capture system should be accurate andnvasive and also allow
measuring subjects in their natur@hvironmentwithout encumbeng their movements

[1]. These requirements have led to the mat&ss motion capture systems, which utilize
computer visionand machine learninglgorithmsto estimate 3D human pos$em
images or videos. They eliminate the need for attaching markers onto the subject body or

hiring raters to estimate the pose. Even though a variety of computer argianachine



learning algorithms have been proposed for 3D human pose estimatidrtacking
during the last decades, it continues to be an active researctiugrea its challenges.
The challenges of thmarkerlesshuman pose estimaticend trackingresult from the
following reasons. Firsthuman body limb have a large number of degiefreedons
(DoFs) @30 joints and 244 Dolrsaand thus the search space is usually huge and high
dimensional. Second, seaitclusion created by limbs and objeciclusioncreated by the
objects in the environmendre very common.Self-occlusionand objectocclusioncan
affect the robustness and accuracy of the resditsrd, ambguity from 3D to 2D
projectionmakes the problem challenging. When a 3D body pose is projected onto a 2D
image, depth information is lost aiada resulf there might be completeldifferent 3D
pose candidates correspond to a single image. Fimbffgrences in body style, clothing,
lighting condition, and camera noise could add to the complexity.

Existing computer vision and machine learnaigorithms for human pose estimation
are comprehensively studied in various surjégs14]. These surveys classifige human
pose estimation literaturdeased on differentaxonomies including the interpretation of
body structure (modddased and moddtee),theinput signal (monocular and muitiew
images/videos), and output space dimension (2D and 3D pose estimatitg section,
we usethe firsttaxonomyandstudy available papers in two separate categories: model
based (generative) and modede (discriminative)algorithms Additionally, we study
Deep Neural Network (DNNglgorithmsfor human pose estimatioBNNs have achieved
growing attention recently due to their highrformancdor several vision tasks such as

human activity recognitiof15, 16} medical image analysifl7], and human pose



estimation[18-21]. At the end ofthis section, we provide a summary of the receniNDN
methods foBD human pose estimation.

2.4.1. Generative Methods

Generative methods utilize the analysissynthesis approach, which means thabae
hypothesis is applietb a prior model of the humarolly to generata synthetic imagen

the camera plane. Tisgnthetic image ithenevaluated based on an approprigelihood
function to analyze how well it fits the real image. Given the initial pose hypothesis, local
searches are performed around it to find the optimal pose corresponding to the real image.
Human body models usually includ&inematic tree (skeletg) and appearance (flesh and
skin). The knematic tree consists gegments, which are linked by joints with different
DOFs consistent with the human bodyodés ant:
usually defined with simple geometric primitives likpheres22], cylinders[23], or
taperecconeq24]. For defining likelihood function,dges and silhouettes are widely used

in the literaturg25-27]. Color descriptarcan be added into the likebbd functionto
identify and segment body limbs or handling occlusi@s30]. More complicated image
desciptors are also employed the literature inluding Scale Invariant Featufeansforms
(SIFT) [31], andShape Context (Sd32]. Many advanced optimization algorithms have
been proposed for recovering poses in the local searBleegscheret. al. [33] used
AnnealedParticle Filter (APF) algorithm to find the optimal pose at each frame. Particle
Filter (PF) and some flavors of it are largely used in the later studies [24aiB436].
Particle Swarm Optimization (PSO) and its imats is another type of optimization
algorithm that has received much atteniiorarious field4d37-39] includinghumanpose

estimation andracking during the past yegdr#0-42]. Studies have also combined PF and
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PSO to overcome the weaknesses of each algorithm. For exd4®}letilized a PSO
algorithm in PF to shifthe particles toward more promising configurations of the human
model.In a study by{44], PF and PSGre combinedo constrain particles to the most
likely region ofthe pose space and reduce the generation of invalid particlastition,
optimization algorithms such aBartition Sampling (PS)45], Interacting simulated
annealing (ISA)30], and Genetic Algorithm (GA)46, 47]areused forestimating3D
humanpose Generative models are easier and more flexible cordpardiscriminaive
methods. Their flexibilitys the result of using partial knowledge about the solution space
and exploiting the body model to explor@li8]. One of the major dvebacks of generative
methods is that they are proteget trapped in a local minimuand return premature
convergence. They aldend tobe computationallynmore expensivethan discriminative
methods.

2.4.2. Discriminative Methods

Discriminative methosl infa 3D pose directly frommage features. They can be either
learningbasedin which a mapping function is leadbetween the pose space and a set
of image featured49-51], or examplebased where the 3D pose is estimated by
interpolating the input imag® a set of stored erplars with their corresponding image
featured52, 53] Various image features like silhouet{éd, 55} Histograms of Oriented
Gradients (HOGs)56], andHMAX [57] are used in discriminative ppaches. A few
representative techru@s for learning mappingetweerthe pose space and image features
include support vector machingSVM) [54], Gaussian Proceg®7], and Mixture of
Experts[58]. Although human motion tracking is a high dimensional problem, most of

human motions carbe presented in a low dimensional space using dimensionality
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reduction techniques. Therefore, learning low dimensional manifold to represent a specific
motion is also commonly used in discriminative methods. Several studies attempted to
learn a low dimesion subspace or manifold of human poses for a specific activity using
nonlinear dimensionality methods including Locally Linear Embedding (L[3®),
Isomap[60], Coordinate Mixture of Fact¢61], and Charting26]. Manifold learning has

been also used in other ndgid deformation studief$2, 63] For instance64] proposed

to learn instancelependent manifold embedding to addressobsiample testing inputs

and estimate 3D head pose in a co#nsiine manner{65]. In another study by66],
manifolds were learnt to model the temporal constraint in sequential faces. These low
dimensionalmanifolds capture key kinematic information of poses in the dataset, while
preserving the inference continuity. In other words, similar poses are mapped to close
locations on the manifold and different poseslacated far from each otheFhe main
advanage of discriminative methods is their execution time and they can be very fast once
trained properly. However, in some cases, they are less accurate than gemethideks

[67], because generative methods can generalize better and handle complex human body
configuration with clothing and accessorj&4].

2.4.3. Deep Learning Methods

Earlier computer visioapproaches for 3D human pose estimation used a discriminative or
generative method to learn a mapping from the image features to the 3D human pose. All
of these approaches utilize lthorafted image features e.g. HO66], SIFT [31], et.
Approaches based on the hasrdfted image features are not able to handle heterogeneou

or complex dataset[68, 69] With the emergence and advances of deep learning
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techniques, approaches that employ deep neural netteddarn the imge featureshave
become the standard in the domain of the vision tasks

More recent DNNoased methadfor 3D human pose estimation tend to learn artend
endframeworkto regress directlfrom the images to the 3D joinbardinakes In [70], an
endto-end framework s usel to regress joint coordinatas 3D space from the input
images. In[71], an auteencoder todarn body joints dependenciesintegrated with a
DNN architecture to regress 3D joint coordina®sauet. al.[20] utilize a network similar
to AlexNet[72] to estimate 3D body pose directly from a monocular image as the input.
Pose estimation is tackled as a classification probldi#8inwhere an entb-end DNN is
applied to relate each image to a pose class obtainedHetraining dataset. Their method
needs alarge training set to achieve high performance, which is provided by data
augmentation.

Other DNN approaches, on the other hand, have studied frameworks that employ 2D
pose estimation as an intermediate step and lez¢naginformation to infeBD posefrom
it. Due to the accurate networks for 2D pose estimation, proposed in the last fejv4ears
76], these approaches usually work better and have been the focus of the recent papers.
Chen et. al[77] suggests that 2D pose is a useful intermediate representation and can aid
the 3D pose estimatiolVhile [77-80] represents interndgate 2D pose as 2D coordinates
of the joints,[21, 81, 82]define it by a set of heatmagisat encode the probability of
observing a specific joint at the corresponding image locatibhe advantage of the
heatmap over direct 2D coordination is that it mostly avoids problems with predicting real
values and can represent uncertaif@$], however; it increases the computation time

significantly due tancreasing the inpulimension.Tome et. a[82] proposes mulistage
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DNN architecture combined with a probabilistic knowledge of 3D human pdsehw
estimates 2D joinheatmap and 3D pose simultaneously to improwtbtasks. Pavlakos

et. al.[81] trainaDNN with 2D joints heatmaps as an intermediate representation to predict
per voxel likelihood for each joint in the 3D space instead of directly ssigpge the 3D

joint coordinates. They usecoarsdo-fine technique to overcome the high dimensionality
problem of the volumetric representatidmferring a 3Dpose from jointheatmap as the

only intermediate supervision ignores image informadiodtherefore discards potentially
important3D cues that could help resolve ambigui8&s2D projection.

As a result, some studi¢®l, 84] suggest combining 2D joints heatmaps with image
features for the intermediate representationake advantage ohage cues along with the
reliably detected heatmapBbekin et. al.[21] propose a novel network consistingtefo
streamsThefirst streamcomputeD jointheatmap and infes the 3D poses from it. The
second stream is designed to produce feafuoes input images. Both streams are then
fused together along the way to complement each other for computing final 3D pose. They
showed an increase imbustness and accuracy mwionocular 3D pose estimation by
combiningimage cuesnd?2D joint heatmap. Althoughthe performance of the proposed
DNN methods for 3D human pose estimatifivom single or multiview imagesis
promising, thisis still an open research area and many researchers are working on it to

improve the accuracy of the results.

2.5. Marker -less Motion Capture Systemsin Biomechanics

Existing computer visioand machine learnirgpproaches offer great potential foarker
less human motion captutajtthey are nowidely studied for biomechaniegpplicatiors,

which require higher accuracy anobustness in comparisavith the other applications
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[1]. The focus ofthe majority of therecentresearchesre on monocular imagesind
challenging setting e.g. wild environment and mp#rson pose estimatidi5, 86}
Monocular images can be captured just by a single camera and are the preferred setup for
surveillance and entertainment applications, but they suffer fficon performance due to
the ambiguousnature of3D-2D projection Self-occlusion is a importantcause ofthis
ambiguities and it can beaddressedby utilizing multiple cameras As a result,
biomechanics applicatiortgpically need multiple cameras to capture muiéw images
and improve the pose estimation or tracking aacyr

There are few studiesvhich haveexplored the field of computer visiand machine
learningand proposed markéess methosl for biomechanicapplications In particular,
Corazza et. al[87] and Sandau et. di88] havedeveloped a generative methodfitoa
predefined 3D body model to a visual hull constructed from aighteras. The fitting
process isormulated as an dimization problem and they usedy part segmentation and
leastsquares optimization to estimate the jointtee positions. The san@ea s taken to
develop an underwater motion capture system for the analysis of arm movements during
front crawl swimming89]. Despite the high accuracy of these methods, they critically rely
on background subtraction, which requires a controlled environment and lighting
conditions. Furthermor@large number of caaras is needed to construct a precise visual
hull surfaceln another study bfprory et al.[90], a discriminativamethodis developedo
find a mappmng directly from a monoculamage to body pose parameters by utiligin
training data. Their method tested for full body kinematics estinmatiof a cyclist and it
is shown that it is capable of estimating 2D pose accurately. However;ntathod

performanced not tested for the 3D body pose estimation. These studies demonstrate the
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feasibility of computer visiorand machine learningpproaches for the biomechesi
applicationsbut their results are not validated for further biomechanical as&ygijoints
force and moment estimation. Furthermore, it remains unknown if&8dNhe statef-
the-art approach in the vision domain can be employed for this felthis thesis, we
investigate the possibility of employingNINs to propose novemarke-less motion
capture methods for ®@mechanicsapplicationsand validate the results for joint loads

estimations (chapter 3) and gait classification (chapter 4).
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CHAPTER 3. Marker -lessHuman Motion Analysis for

Injury Prevention

3.1. Introduction

In this chapter, we propesand validate a novel DNMethod formarkerless3D human
pose estimation from multiiew imagesOur proposed DNMhethod(Figure3-1) consists
of t wo subnet wor ks: a n2D ©pose estimator
independently fromeachimagew; whi |l e a 03D pose generator
information from all available views to predict accurate 3D po€me of the key
components of the proposed network is hierarchical skip connections that ardatedied
inside the firstsulmetwork and globally between two subnetworké/e carry out
comprehensive experints to compare different variants of our desigd will show that
by feeding these hierarchical skip connections td@igiz pose generatosubnetwork, the
network performance improves significanfbi].

We apply the proposadethodon a lifting dataset and compare the results with a marker
based motion capture systeam a referenceResults show that the propose@thodis
capable oéstimatirg the3D poseawith an accuracy comparable to the maitk@sed motion
capture systemand addregy] their limitations After estimating 3D body pose using the
proposed DNN method, we employ thesults for further biomechanical analysis i.e.

calculating lower back joint loads, whichadsnsidered as an important criterion to identify
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3D Pose

N 2D Pose Estimator Subnetwork

D 3D Pose Generator Subnetwork

»~ "~ ~a&  Hierarchical Skip Connections

Figure 3-1- An overview of ourproposed networkNote that the hierarchical skip
connections are not only shared locally instte first subnetwork but alsglobally
between two subnetworks for efficient and effective feature embedding.

norrergonomicmovement in the workplaces. The contribution of this chapter can be

summarized as follow:

1) Proposinga novel DNN method to estimate accurate 3D body pose from-multi
view images.
2) Performing comprehensive experiments to evaluate different variants of our
nework design
3) Investigate the validity of the proposed methimal lower bak joint loads
estimation fowvarious type of lifting tasks.
Chapter LayoutThis chapter is organized as followise dataset utilized in this chaptis
introduced in section 3.Zection3.3presents fA2D pose estimator
34presents the A3D pose generator subnet wor

our proposed network, which is the hierarchidp connectionsSection3.5 reports the
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results and expenental evauationfor 3D pose estimatiorin section3.6, the resultare
utilized and validated for calculating lower back joint lodésally, in Section3.7 we

summarize our work and suggest ideas for future work.

3.2. Lifting Datasets:

We evaluatehe performance of our proposeetworkfor 3D humanpose estimatiofrom
multi-view images ora fA Li f t i dajaseDrad reasodhatdifting is chosen for
evaluationis its high frequently use in the waplaces and its associdtesk factors of
workplace injurieq7, 92].

Ourl i fting dataset consi sts of 12 healt hy
1.74 N 0.07 m; weight 84.50 N 12.70 kg) pe
lifting tasks in a laboratory while being filmed by both camcorder arsynchronized
motion tracking system that directly measutkdr body maement. 45 Reflective markers
ae attached to the 1ifter s &erdbdorthythedifingme nt s
tasks @& measured by a motion tracking system (Mo#\malysis, Santa Rosa, CA) with
a sampl i ng zrTlaetraav 3D toordinat® datadedfiltered with a fourtkorder
Butterworthlowpass f il ter at 8 <H@R8500,WWC, thpag)iwitha | ca
720 1 4 8yAchrprizadavith the motion tlking system also recotttie lifting from
two views, 90° (side view) and 135° positioRsgure 3-2 shows the experimental setup
for collecting this datase

Participantdit a pl astic 2fate) ( ¥@i bhB higphdshelfk g anc

without moving their feetAll the lifting trials startwith participants standing in front of a

plastic crate. The initial horizontal distance of the ptastate and the lifting speedea
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Figure3-2-Ex per i ment al setup for the simulated |
body represents markers which are used for capturing gitoutidmotion data. Three of

ten used digital cameras thfe motion tracking system can be seen in this picture. One of

two used digital camcordermstalled on the side views also shown.

chosen by the lifters without constraifithey performthree vertical lifting ranges from
floor to knuckle height (FK), knite to shoulder height (KS) and floor to shoulder height
(FS) Each vertical lifting rangesicombined with threasymmetricangles (0, 30 and 60
degres), which is defined as the angle of the end position relative to the starting position
of the box(Figure 3-3). For each combination of thdting task, two repetitions ra
performed, providing a total of 18 lifts (3 x 3 x Because two video clipgeamissed
during theexperiment (repetition two of Fi&ith 0 and 30 degreasymmetricangles for

subject 9) 214 video clipg18 x 12- 2) are used for thexperiment

3.3. 2D Pose Estimator Subnetwork

In the proposed method, we use 2D pose as an intermethatee. we first estimate 2D

pose for the input image and then lift it to a 3D pd$e2D pose is a useful intermediate
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Sheematic Top View

Figure 3-3- Starting and end position of the crate for the floor to shouidaght lifting
task. The bp row shows the starting position of the crate and second to fourth rows show
the end position of the crate for 0Oe, 30e¢,

representation and can aid 3D pose estimdiai. Rn2D pose estimator
extracts rich information independently from each viesvich includes not only 2D pose

but also hierarchical texture informatiaamd leverage for 3D pose inference in the next
step.Each 2D body pose is represented by J heatmaps, where J is the number of body joints.
Each value in the heatmaps presentspttodability of observing a specific joint at the
correspondingcoordinate (Figure 3-4). The advantage of the heatmaps over direct
regression of x andlyody joint coordinate@D joint landmarksjs that it handles multiple

instances in the image and can represent uncertainty. Given a single RGBthraagm

oftheA 2D poseod est b math detemmkne thesprecise pixelcation of the

bodyjoints in the image along with several texture feature maps as extra cues f@e3D po

inference in the next stepetaw N A Ydplo p( ph7 © mip be the input RGB
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Head Right Elbow

Left Elbow Right Knee Left Knee

o I - .

Figure 3-4- The input image and corresponding heatmaps for five selected joints. Each
value in the heatmaps presents the probability of observing a specific joint at the
corresponding coordination.

image for view i N A i phB A be sth texture feature map for view i, and
(N g T pt8 R be jth joint heatmap for view i. Thei 2 D poseod est i m;
sutmetwork "C for i-th view is a mapping as follow:

TRFCheB e Qo op

Parameter®f the network can be leagdby minimizing the loss function. By assuming

that 2D joints annotations are available for training dataset, the loss function can be defined

as

P, 00 oR,

, where ||.|| is Euclidean distance (1& rendered from the ground truth 2D pose tgiou

a Gaussian kernel with mean equal to the ground truth and variance one.
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In the rest of this section, we first provide a brief summary of the ré&dghk-based
methods for 2D pose estimation from a single image. Then the network architecture

employed in our proposed methwill be presented in details.

3.3.1. DNN-based Methods for 2D Pose &imation

There has been a recent surge of interest in methods that utilizelutmnad neural
networksfor 2D pose estimation from a single RGB imageshev et. al[93] is one of
the first work that ust convolutionalneuralnetworks todirectly regresghe Cartesian
coordinates of the body jointBompson et al94], on the other hand, proposed generating
heatmaps by running an image through a hybrid architecture that consistdeep a
convolutionalneural network and a Markov Random Fieldhere are sevdratudies,
which proposesuccessive predictions for posstimationin order to refine the estimated
pose further at each iteratidfor example, Carreira et 5] train a deemeuralnetwork
that iteratively refines pose estimation using error feedbaAttkle [95] usea Cartesian
representation[76] employ a sequential prediction framework to estimate confidence

heatmaps in order tagserve the spatial uncertainty.

Autoencodemetwork architecturés another type of network employed feemantic
segmentatiof6], image generatiof®7], and human pose estimatifgib]. In autoencoder
networls, theinput imageis taken by thencoderpart andt is transforned to a very low
resolutionand abstract representatjdime lowresolution representation of thgut image
is then used byatoderpart to generate the outpiihe work of[75] is kuilt uponthe idea
of theautoencodemetwak. They proposeepeating a ses ofautoencodenetworks along
with the residual connectiofi88] for 2Dhuman pose estimatidrom a monocular image

Theyrefer to their networlasii St a ¢ k e d ddedtaits gymraesris topology between
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encoderand decder parts Stacked Hourglass netwofk5] has achieved statd-the-art
performance on large scale human pie@asetsnd we follomthe same network structure

forour @A 2D po&sabneawork.i mat or

3.3.2. Stacked Hourglass Ntwork

Stacked hourglass netwofK5] consists of multipleautoencodemodules, which are
placed together entb-end.Encoderpart processes the input image with convolution and
pooling layers to generate lesg@soltion feature maps and the decoplartprocessebw-
resolution feature maps with +gampling and corolution layers to construchigh-
resolution heatmaps for eachnp Design of the network is motivated by the need to
capture information at every scale. In other words, to estimate the finalrpadédition to

the local features like faces and hand, we require a coherent understanding of the full body
e. g. pogentationnaddsrelationsetween adjacent jointEigure 3-5 illustrates the
design of a single Hoglass network. As it is showrthe topology of the network is
symmetric and for every layer on teacoderpart, there is a corresponding layer on the
dewmderpart. Furthermore, standard convolutional layers with large filters are replaced by
a stack of residual learning modul&8], which makes the network deeper. In order to
overcome the gradient vanishing problem in very deep networks, Houngtagsrk use

skip connectionsin other words, it directly addhe feature maps before each pooling
layer, to the counterpart in the deeopart. These hierarchical skip connections of the
network share rich texture information in different scaldseyshowed by adding these
skip connections, the network performance improves and it prevents the loss-of high

resolution information in the encodaart[75]. In our proposed methpdieextend the idea
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Figure3-5- Left: lllustration of a single Hourglass network. Each blue rectangle represents

a residual module as seen in the right column. The number of features is consistent across
the whole Hourglass. Right: Residual learning modules design. The number on each
convolutional layer showthe number of channels x filter size.

of skip connections more by sharing them between two subnetfaorksmore efficient
3D inference. We will show this way, walow for a richer gradient signal and can provide

more 3D cuesompare to using only 2D joint heatmaps.

3.4. 3D Pose Generator Subnetwork

The A3D pose generatoro subnetwork integr
synthesize 3D pose estimation. After estimating 2D pose for each view separately, we
concatenate the joint heatmaps and hierarchical skip connections across the views and feed
them to the A3D pose generatoro subnetwor
subnetwork is the 3D pose ihe global coordinatesach 3D pose skeletny ¥ s is

defined as a set of joint coordinates3D space. S6 3 D pos e sghaatweon(Ct or o

is a mapping as follow:

NH C# O FQ B ¢ 18 Fo oty
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Parameters of the network can be legthy minimizing the loss function. By assuming
that 3D joints annotations are available for training dataset, the loss function can be defined

as

, wheren andnHare ground truth and estimated 3D coordinate of joint j, respectively.

3.4.1. Network Architecture

We propose a bottomp datadriven architecturethat directly generates the 3D pose
skeleton from the outputs of the2 D p o0 s eosesetworknEh& @D peonseer agt or 0
sulmetwork is @signed as an encoder. We tesb types of encoders: first, an encoder
consists of a series of convolutional layers with kernel and stride size of 2 in which the
resolution of the feature maps are half at each layer; second, an encoder similar to the first
part of the Hourglass netwof75], which include maxpooling layers and standard
convolutional layers are replaced by a stack of residual learning mg@é8]e# the rest

of thischaptey we call the first and senobndenet wol
A h éhlofu r g tespectvely. Foboth network architectures, the encoder output is then
forwarded to a fullyconnected layer witlan output size of 3xJ for estimating 3D pose
skeleton and measuring thess function for trainingFigure 3-6 shows the schematic
comparison of simple encoder and Hatiurglass architecture in a simplified setting. It will

be shown that halfiourglassarchitecturethat benefits from residual modulesida
periodically insert othe maxpooling layer can provide me accurate 3D possmpare

to the simple encodarchitecture



26

56x8x8

128x16x16
512x4x4
1024x2%2

o 3
r‘l = \'
—|d X z R
] «;—
45

Joints Heatmap 3D Pose Jomts Heatmap 45 3D Pose
Jx 64 x 64

U Convolutional Layer || Residual Module [] Fully Connected Layer l Max Pooling Layer

Layers Annotation

Figure3-6- Architecture comparison dfiesimple encoder (left) and hatiourglass (right)

for A3D pose generatoro subnetwor k. The
corresponding size of the feature maps (number of channels x resolution) for convolutional
layers and residual modules and thember of neurons for fully connected layers. The
architecture of the residual modules is similaFigure3-5.

3.4.2. Hierarchical Skip Connections

Inferring a 3D pose from joints heatmap as the only intermediate supervision, which is a
widely used strategy in previous studi@d, 99] is inherently ambiguous. This ambiguity

comes from the fact that usually multiple 3D pos@sesponded to a single 2D pose exist.

In order to overcome this challenge in 3D pose estimation, joints heatmaps can be
combined with either input image or its lowayer feature$21, 100]as the intermediate
supervision. While taking the input image into aatbcan provide more information

compare to only joints heatmap, combining hierarchical texture informationetifaom

the input image, extract additional cy&80]. So we propose leveragihgerarchical skip
connections of the Hourglass netwdgdé]t o i3 D pose generator o ¢
proposed framework, each of the foulpskonnections produced in the encoplart of the

Hourglass networl{75], is processed with residual modules and summed with the
counterpart i n t he workDnopmer o dandieenmidiiewasetapr 0 s ub

each joint heatmap and skip connection should be temated acrosgews beforebeing
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provided as i nputs for t hFguregB-3 hows the wholg ener a

framework design for the case of tw@w images.

3.5. Experimental Results

In this sectionwe first provide details kmout the data preprocessing, error metric, and
training strategy Then, we report the resutté 3D pose estimatioan our Lifting dataset
Finally, we execute various experiments to study the effeatifiérent factorson the
accuracy of the results

3.5.1. Data Pre-processing

To prepare the data, we first extrattaiges from each video frameach video includes
200 frames vth 30 fps rate. We dowsamplethe video from 30 fps to 15 fps for both the
training and testing sets to reduce redundaAdyof the images are adjusted to 256x256

pixels and are cropped sutttat the subject is located at the center.

3D joints annotation are provided by ation capture system. We selectrddrkers to
definel5 joint centers including head, neck, left/right shoulder, left/right elbow, left/right
wrist, leftkight hip, left/richt knee,left/right ankle and L5/S1 joint, and only ugbe
trajectory of these joints for tramj the network. The coordinate$ each jointare

normalized from zero to one over the whole dataset.

2D joints annotation are provided by registering 3Dt®annotation in motion capture
coordinate system, into image coordinates systecardpresents 3D annotation of jott
in motion capture coordinate system aakpresents the 2D annotation of the same joint

in image coordinate system, then thédwing relation holds:

g #U oR
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Hicrarchical Skip Connections
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3D Pose

Max Pooling Layer Fully Conneeted Layer

I:I Average Pooling Layer 2D Pose Estimator
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Input Images

Hierarchical Skip Connections

Figure3-7- Our DNN framework design for the case of twiew images: input images go
through the A2D pose estimatoro subnetwor
hierarchical texture feature maps. 2D joi
gener at ovorloand hietamrchecal skip connections are summed at specific layers.

The output is the estimated 3D pose in the global coordinate system. The numbers inside
each layer illustrate the corresponding size of the feature maps (number of channels x
resolution)for convolutional layers and residual modules and the number of neurons for
fully connected | ayers. Detailed networKk
modules are shown fRigure3-5.

, whereO is the camera matrix. In order to calculate the camera matrix, first for a few
images we find 2D joints annotation manually. Then, having the corresponding 3D
annotation for the same joints, we solve the above equation and fing 0 inally, for
therest of the images, 2D joints annotation can be fosinththecaculated camera matrix
(6) and 3D joints annotation available from motion capture system. We refeatier to
this work[101] for more information about the camera matalculation.

After preprocessing, the data structure consists of the cropped int@yessponding
2D joints annotatiorand normalized 3D joints annotatidrotal number of images is equal
to 43200 (12 subjects x 9 lifting tasks x 2 repetitions x 2 views x 100 frames per video),
where 50% of datar€petition one of all lifting trialsare used as training dataset &mel

remaining 50%rgpetition two of allifting trials) as testing dataset.
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3.5.2. Error Metric
We evaluate the performance of the praabmethod in terms of 3D posea, awidely
applicable and relatively fast to competeor measurg24], which is defined aaverage

Euclidean distance, between estted 3D joint coordinate¢n* 1 and corresponding

groundtruth date | obtainedirom a marketbased motion capture systexs below:

0 po n n-u o 8

3.5.3. Training Strategy

The deep learning platform used in this study is Pytorch andnigaand testing are
implementedbon a machine with NVIDIA Tesla K40c and 12 GB RAM. The network is
trained in a fullysupervised way with L2 loss function and using Adaptive Moment
Estimation (Adam)102] as the optimization metial (f Tt T8y w ovith Random
Parameters Initialization from the normal distribution.

We propose a twsstage training strategy that we found more effective instead of an end
to-end training for the wile network from scratch. At thigst stage, we use the prained
single Hourglass netwoilk5] on MPII[103] and finetune it on our lifting dataset with
learning rate of 0.00025 for five epocWe utilize data augmentation i.e. scaling {0.8
1.2), and rotation (+/20 degrees) to add variation into the training dataset and prevent
overfitting. Finetuning of this stage takes about 4000 seconds 21 per epoch (20,000

seconds total).

At the second st agedelistiabhdd frgmossrach gneonrdiftingt or 0

dataset using twweiew images and corresponding normalized 3D pose skeldtoe
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models ardrained in a fullysupervised way witl learning rate of 0.0005 for 50 epochs.

Training of this tage takes about 800 secompas epoch (40,000 seconds total).

3.5.4. 3D Pose Estimation Results

The accuracy of the estimated 3D pose is measured by comparing the wasuthose
are obtained fronthe markerbased methodTlable 3-1 shows the average 3D pose error
on our Lifting dataset usingur proposed DNN metho@he average and varianceé3D
poseerras on the whole datasate14.7+3.0mm.For qualitative resultsye have provided
representative 3D poses predicted by our proposed metheidure 3-8. It can be seen

that even for posture with sedtcclusion, our method is able to predict the pose accurately.

Table3-1- Average 3D pose error (mm) for each video of the lifting dataset. The first row
shows the liftingheightsandthe secand row presents the asymmetaiogles. NA: video
clips were missed during the experiment.

FK KS FS
SUbjeCt 0 0 0 0 0 0 0 0 0
1 138 164 140 | 147 95 163 | 134 106 146
2 125 104 142 | 10.2 168 148 | 169 17.0 19.7
3 13.0 146 19.2 | 155 147 147 | 243 147 18.0
4 174 156 150 | 20.8 145 19.1| 198 16.8 17.2
5 136 16.0 159 | 111 122 16.6 | 12.8 14.7 19.0
6 126 11.0 150 | 158 13.7 148 | 154 142 176
7 159 143 164 | 99 146 19.0| 129 142 1838
8 124 134 146 | 10.8 148 152 | 13.6 151 17.0
9 NA NA 163 | 13.0 144 164 | 122 204 214
10 10.8 108 130 | 131 7.7 103|136 115 125
11 153 153 142 | 119 105 113 | 126 125 144
12 111 111 180 | 128 115 169 | 174 17.7 145
Average| 13.5 135 155 | 1833 129 154 | 154 149 171
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Figure 3-8- Qualitative results ohifting dataset. Each dashed box represents a scenario;
Left: multi-view images, Right: corresponding estimated 3D pose.

3.5.5. Impact of 3D Pose Generator Input Variants

In order to assess how the method performance changes by feeding moes 3D this
subnetworkwe testt hr ee vari ants of A 3 DOnpyisoireladinggener a
joint heatmaps, joints heatmaps plus input images, and joints heatmaps plus skip
connectionsAs shown inFigure3-9, summing up skip connaons with feature maps in

between residual modulesan achieve the highest accuratiie error reductionf input
imagescombinedwith joints heatmaps is only %@9.8+3.8mm vs 18.7+3.3 mm),

compare to %26 (19.8£3.8 mm vs 14.7+810n) error reduction by combining skip
connections and joint heat ma pubnetwask. Whilep ut t ¢
input images might provide noisy information for the netwohHese skip connection

features can extract semantic information at multiple levels of 2D pose estimation and

provide more cues.
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Figure3-9- Average 3D pose error of different subjects for three variarfisD p o s e
generatoro inputs. Bars show the variance.

3.5.6. Impact of 3D Pose Generator Architectures

We tesedt wo networ k structures for A3D pose g
encoder and halfiourglass, to evaluate the influence of using 4paaling and residual
learning modules instead of standard convolutional layers on our dd&tagee 3-10
illustrates the 3D pose error of different subjectstiesimple encoder and hdfourglass
architectures. The average erower the whole dataset is 26.0+6n and19.8+3.8mm

for these architectures, respectively. We found that usiedalf-hourglassarchitecture
that benefits from residual modules and periodically insert ofpaaking layer reduces
the error by %24. This happens due to the fact thatarksawith residual modules gain
accuracy fronthegreatly increased depth and addressing the degradation pri@&rim
addition, inserting maypooling layer inbetween successive convolutional layers reduces

the number of parameters and computatiaénnetwork, and control overfitting.
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Subjects
W Simple Encoder W Half Hourglass

Figure3-10- Average 3D pose error of different subjectstfoesimple encoder and half
hourglass architecture. Bars show the variance.

3.5.7. Impact of lifting conditions

In order to examine the effect of lifting conditiares lifting verticalheight and asymmetry
angle on resultsaccuracy a repeatedmeasures analysis of variance (ANOVA) test is
conducted. We perform a tweay repeated measures ANOVA withe type of lifting
condition erticalheight and asymmetry angle) as witisimbject factors and 3D pose error
as dependent variabl€¢Fable 3-2). ANOVA results reveal that there is a significant
difference in 3D pose error between lifting conditiobsit there is not a significant
interaction betweenvertical height and asymmetry angle. Among three different
asymmetry angl es, pogéreramdarmond liftirgerticalhgighesssthe 3 D
highest errocorresponds$o FS This is likelyhappening due to the higher pose variation
for these lifting taks. Moreover, most part of tieovement in lifting task happens in the
sagittal plane, whilé o r asgn@rgetry angle lifting, ther@re small movements in frontal
and rotation planeas well. Estimating body jointoordinates in these planase more

difficult considering the position and number of the camgt@4]. It is worth noting that
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although the error difference from lifting conditions is significant, the magnitude of the

erroris small for all ofthe lifting conditions Table3-2).

3.6. Lower Back Joint Loads Estimation

Work-related Musculoskeletal Disorders (WMSDs) are commonly observed among the
workers involved in material handling tasks such as occupational lifting. In an
epidemiology study by Manchikanti et. 4L05], it was found that heavy lifting is a
predictor of future back pain. Kuiper et. HI06] and Da Costa etl. [107] alsoshowed

with reasonable evidence that lifting is one of the main risk factors for lower back, hip and
knee WMSD. To imrove worlplace safety and decrease the risk of WMSD, it is necessary
to analyze biomechanical risk exposures associated with theséyasksturinghe body

pose and assessiogtical joint stressef order to compare the reswith the limit of a

personbs capacity

One of the important factors to identthe risk of a lifting tasks the mechanical loading
on the lower back, in particulart5/S1 joint[108]. Therefore in this section, wengloy
the results of the proposed DNN methmdinvestigatethe validity of the method for

estimating

Table3-2- Outcomes of a twavay repeated measure ANOVA test fbe effect of lifting
conditions on 3Dpose estimation error. Bold numbers indicate significant differences
(p<0.05). SS= Sum of Squares, DF= Degree of Freedom, MS= Mean square.

Factor SS DF MS F Prob>F
Vertical height 76.74 2 38.37 5.38 0.0061
Asymmetry angle 10235 2 51.17 7.18 0.0012

Vertical height x Asymmetry angle 1.91 4 0.48 0.07 0.9916
Error 691.31 97 7.13
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L5/S1 joint loads i.e. force and momeAs a referencewe also calculate theb/S1loads

using grounetruth body pose obtained from a marka&sed motion capture systeimthe

rest of this section, we firprovide details about L5/S1 joint loads calculation method from
3D body pose. Then, the results on the lifting dataset will be presented and validated with

the reference.

3.6.1. Methods

The workflow of the method for calculag L5/S1 joint loads is summarized in

Figure 3-11. As shown in the figure, in the offline phase, the training dataset is
preprocessed and used to train the proposed DNN method to estimate the 3D body pose
i.e. 3D joint centecoordinates. Inhe online phasehe testing dataset is introduced into

the trainedDNN, and estimated 3D body pps al ong wi & anthfogometris ub | e c
information isutilized to calculate body segments parameters. Finally, L5/S1 joint kinetic

is determined by a tegown inverse dynamic algorithm according to the estimated 3D

body pog and body segments parametétse proposed DNN model has been presented

in details n the previous section. In this section, we explain the remaining steps e.g. body

segment parameters calculation and inverse dynamics.

a) BodySegment Parameters Calculation

We defineahuman body with 11 body segments including head, trunk, pelvis, uppgr ar
forearms, thighs, and shanks. Distal and proximal joints of each segment are defined based

on the approaches proposedb§9]. Gi ven 3D coordinates of t
gender, and total body mass, all of the body segment parameters including segments length,
massthe position of the center of mass (COM), and inertia tensor are calculated based on

the suggested values [#09].
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Figure3-11- Workflow of the method for calculating L5/S1 joint loads from estimated 3D
body pose.

The length of the segme™@ ¢ is calculated as the Euclidean distance between its
corresponding distal and proximal joint centers. 0 )d,plo pi( ph7 © tip be the

subj ect 6s & »bethd segma@mss, them d
a i 0 oD

, Wherei | is the mean relative mass of the segn‘@gtven in the literaturel09]. The

3D position of the segment i's COMD £ ¢ is located on the line that connects its
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corresponding distar) and proximaln joint center and can be calculated based
on the mean longitudinal distance of the COM from its proximal jointet i, [109],

as follow:

wéE & N 1 n n o

Finally, the inertial tensor of the segmen™. (can be calculated as follow:

D a ¢l ol

,whereiT iiFFi, isthe mean relative radius of gyration of the segment i about each
axis[109].

b) Inverse Dynamics

To catulate jointkinetics from the estimated joinkinematics (position, velocity, and
acceleration), a tedown inverse dynamics modgl10] is used A global equation of
motion is applied to estimatet forces™®  and momentsd at L5/S1 joint in the

global coordinate system, as described1iy]:

o 0 a c a w oo
0 o 0 [ a Q
i a @ e oP !
, Wherei andi are the vectors to the position of the external force and L5/S1 joint

respectively, an’Ois the external force vectd .is the vector to the COM of segmeQt
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Qis the number of segments of the upper body up to L5/S1 joint (i.e. head, trpek, up
arms, and forearms), ai! and® are the linear and angular acceleration vectorseof th
COM of segmen™Qrespectively. As it can be seen in tl9) and (.10), in order to
calculate®™ anc0 , external force information arequired. In the toglown model,
external forces information can be calculated based on the mass and acceleraion of t
box. Inthebottomup model, orthe other hand, force plates data can be used to measure
the external forces, external moments and th@nts of application. So using a tolpwn
model instead of a bottounp model for the inverse dynamics process seems more practical

for an onsite biomechanical analysis, since it removes the need for the force[pldtgs

3.6.2. Experimental Results
In this section, we first provide details about¥hédation metricanddata normalization
Then, we report the results threLifting datasetind validate the results for both joint loads

time series and peak values.

a) Validation Metrics

The performance of our proposed method is validated against the reference iafterms
accuracy of the estimated 3D L5/S1 joint moment and force values. Thatialids
performed by calcul ating Root Mean Squarec
coefficient (R).While some studies focus average L5/S1 joint moment across the entire
job as the risk factor of back injuri¢s12, 113] others focus on peak values and assume
injuries happen as soon as joint loads exceed the body capddify 15] As a result, we
also validate our method fd5/S1 joint moment and forcpeakvalues In other words,
for each of the lifting trial, absolute peak values over the whole lifting cycle is extracted

from the estimated L5/S1 moment and force series and is compared to the corresponding
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values obtained by theference using RMSE and R. Finally, for absolute peak values of
all lifting trials together, intraclass correlation coefficients (ICC) are calculated. For all of
the ICC calculation, ICCs less than 0.40 are assumed poor, ICCs between 0.40 to 0.75 are

goodand ICCs greater than 0.75 are considered as exddllit
b) Lifting Cycle Normalization

To evaluate the performance of the proposed method, independent of the subjects,
estimated forces and moments are normalized with respect to the body mass and body mass
x stature, respective[{t17]. However, in order to make the kinetic values mareaally-
meaningbl, normalized kinetic valuegemultiplied by mean body mass and mean body

x stature mass across subjedt$8]. Finally, all kinetic values & timenormalized to

100% of a lifting cycle. The lifting cycle is defined as timeet that a subject grabs the box

to the time that the box is left on the shelf.

C) L5/S1 dint Moment Time Series Results

Results show a good agreement between the estimated L5/S1 joint moments in each of the
three planes and the references. The grand m&d) @ the total moment absolute errors
across all the subjects and trials is 3.34 (+2.81) Ngure3-12 presents a typical example

of a lifting trial, showing the L5/S1 joint moment time series calculated based on the
proposed DNN method and the reference. For dominant moment component (sagittal
moment), R coeitient for all lifting trials ae high (ostly above 0.8) and RMSEare

small petween 3.3 Nm to 8.5 Nm(Table 3-3). For nondominant L5/S1 moment
components (lateral and rotation moment) on the other hand, R aedulesver tharthe

dominantmoment component. HowevdRMSEs are also small rhostly below 5Nm).
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Figure 3-12- Estimated versus reference L5/S1 joint moment F&r and 60 degree
asymmetry angle lifting trial (left). The total moment is the vector summation of the L5/S1
moments atwerythree planes (right).

Table3-3- Estimated versus reference L5/S1 joint moment for each lifting trial, and plane
separately. lat. = lateral, sag. = sagittal, rot. = rotation. Lifting trials are shown as their
Averheigt alasymmetry angl eo. RMSE = dandot me a
deviation of the error. R = Pearsonb6s corr

Plane Latt Sag. Rot. Lat. Sag. Rot. Lat. Sag. Rot.

Lifting Trial FK_00 FK_30 FK_60
RMSE 418 845 264 437 6.08 3.05 730 641 276
SD 251 578 174 272 430 223 4.08 4.16 1.79
R 098 096 057 099 099 0.60 1.00 0.99 0.75
Lifting Trial KS_00 KS_30 KS_60
RMSE 273 3.67 113 324 333 130 553 353 1.43
SD 1.73 233 078 198 212 082 329 229 0.92
R 096 099 087 099 098 090 0.99 0.99 0.96
Lifting Trial FS_00 FS 30 FS 60
RMSE 397 548 168 411 564 203 529 6.37 214
SD 247 375 1.12 248 399 141 280 4.43 1.45

R 096 099 083 099 099 0.78 100 0.99 0.84
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This likely happens due to a smaller moment in lateral and rotation planes during lifting,

which leads to a small moment variance in this p[ad8].

d) Peak L5/S1 Joint Moment Results

Absolutepeak values extracted fromoment time series are compared to corresponding
values of the reference across the whole lifting trigigure 3-13). The RMSE and R
coeffident of the peak total momemntea3.12 Nm and 0.997 respectively. Finally, ICCs of
peak moments over all pooled video datas2tsubjects, %fting trials, and 3 planesya

about 0.999 between the ee¢nce and the proposed metiiBjure 3-14).

e) L5/S1 Joint Force Time Series Results

For all of the Ifting trials, a good correspondence between 3D L5/S1 joint force obtained
from the reference and estimated from the proposed method is observed. For dominant
force component (vertical force), R values are mostly above 0.80 and RMS mostly below
20 N (Table3-4 andFigure3-15). The grand mean (xSD) tife total force absolute errors
across all the subjects and trials is 3.08 (£3.48) N. Fordoomnant L5/S1 force
components (anteriggosterior and mediolateral force), both R values and RMSE are

mostly smaller than dominant force component.

f) Peak L5/S1oint Force Results

Absolute peak values, extracted from the force time series of thegawpnethod are
compared tocorresponding values of the reference across thelewlifting trials
(Figure 3-16). RMSE and R coefficient of the peak total foraee 6.49 N and 0.98
respectively. Finally, ICCs of the peak forces over whole pooled video ddiaseijects,
9 lifting trials, and 3 planesy 0.999 between the reference atitk proposed method

(Figure3-17).
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Figure 3-13- Average of peak L5/S1 joint moment across subjects obtained from the
reference (blue) and the proposed DNN based method (red) for each of the lifting trial and

pl ane
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Figure 3-14- Scatter plot shows the relation between peak moments estimated by the
proposed DNN method and the reference. Data are pooled over the wholedatstse].

The solid line isthe linear regression line fittetirough the data points and the dashed
diagonal line is the identity line. ICC indicates the intl@ass correlation between the
reference and estimated peak moments.
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Figure3-15- Estimated versus reference L5/S1 joint forceHidrand 60 degree asymmetry
angle lifting trial (left). The total force is the vector summation of the L5/S1 moments at
everythree planes (right).

Table 3-4- Estimated versus reference L5/S1 joint force for each lifting, &uadl plane
separately. Ant. = anterignosterior, Med. = mediolateral,evt. = vertical. Lifting trials
are shown adseghtheasyfmmertycahgleo. RMSE
SD = standard deviation of the error. R

Plane Ant. Med. Vert. Ant. Med. Vert. Ant. Med. Vert.

Lifting Trial FK_00 FK_30 FK_60
RMSE  7.75 6.97 1468 7.69 849 1160 6.77 752 12.00
SD 478 449 1042 510 6.29 842 443 486 827
R 087 059 096 0.80 076 1.00 086 088 0.97
Lifting Trial KS_00 KS_30 KS_60
RMSE 550 5.11 499 564 564 473 593 725 501
SD 3.40 358 295 363 339 300 3.89 449 3.17
R 094 066 098 094 090 098 092 091 0097
Lifting Trial FS_00 FS 30 FS 60
RMSE  6.35 513 10.76 659 6.89 1220 6.17 7.97 12.05
SD 410 325 7.93 390 446 913 393 484 9.02

R 092 066 097 092 086 096 086 086 0.96
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Figure 3-16- Average of peak L5/S1 joint across subjects obtained from the reference
(blue) and the proposed DNN based method (red) for each of the lifting trial and plane
separately. Lifting trials are shown agth r f hegghtt i € ay mmet ry angl eo
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Figure3-17- Scatter plot shows the relation between peak forces estimated by the proposed
DNN method and the reference. Data are pooled over the whole testing ddtassailid

line isthe linear regression line fittedrough the data points and the dastiedjonal line

is the identity line ICC indicates the intralass correlation between the reference and
estimated peak moments.
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3.7. Conclusion and Future Work

In this chapter, we proposed a novel DNN method for fully automatic 3D human pose
estimation from mlti-view images. One of the key compoite of the proposed network
wasintegrating hierarchical texture information with estimated 2D joints heatmap to infer
3D pose, which was showran lead to higher performandexperimental resultshowed
thatour proposed method is capable of estimating 3D body pose with high accuracy from
onlyamulttvi ew i mage and without at thedg.hmakey any
our proposed method an alternative solution to the mdnksed motiorrapture methods
without being constrained to an expensive laboratory with controlled environment
conditions or obstructing subject movement by attaching markers. The most important
reason for the success of the DNNSs is the ability of the network to learn semantic and high
level image features from the input data, compare to traditional machine learning

algorithms, which require haratafted image features as an input.

We alsoinvestigated the validity of the results for L5/S1 joint kinetic estimation by
comparing the restd with those obtained from a markeased motion capture system. The
results showed a strong correspondence between the methods for estimated L5/S1 joint
kinetic during the whole lifting cycle as well as estimated peak vallles study
demonstrates thagpplicability of deep learning techniques in the context of biomechanical
analysis and can provide a reliable tool for detecting the risk of lower back injuries during

occupational lifting.

Besides the advantages of the proposed metherk area fewlimitations that have to
be addressed. First, the effecttb& number and position of cameras was not explored.

Camera number and placement can highly influence the accuracy of results, especially in
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thecase of self or object occlusion presence. Ik&ly that using more cameras placed all
around the subject could provide higher accuracy for arm joints, which are mostly blocked
by the ba or torso in the current setupecondthe presence of markers on the body may
alter the natural appearance of tieely and might make the network to be trained to detect
only the markers. One option to address this limitation could be covering tikerma
locations by a pixel maskinally, one important aspect of the biomechanical analysis for
different activities mcluding lifting is the measurement of intereaiternal joint rotation.

Since in the proposed method, each segment is represented by only two single points (distal
and proximal joints), it may not be enough for the measurement of inteteahal joint
rotation. It suggest extendng the proposed methoébr estimaing full 3D body mesh,

which represents the entire shape of the body with point clusters instead of a small number

of single pointdo make this measurement possible
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CHAPTER 4. Marker -lessHuman Motion Analysis for
Disease Diagnosis

4.1. Introduction

In the previous chapter, we proposedDAIN method for markeless human pose
estimation and validated the resultsliwer back joint loads estimation duritigevarious
type of lifting tasks Motivated bythe achievemerst of the proposed DNN method for
biomechanical analysis of liftingn this chapterywe modify andvalidate the method for
gait analysisThe aim of thischapteris developing an @omatic system fogaitrelated
health problemsletectionusing Deep Neural Networks.

The proposed systeroonsists of two DNNgFigure 4-1) . The first DNN
Esti mat o rtakbseiitleaal subjeashs the input and estimates & body pose
The resulting 3D body poseten ser i es are t hen atassifiegzed i |
N e t w q whicl glassifies input gait videos into differgaredefinedgroups including
healthy and pathology groupBhe proposed system removes the requirement of complex
and heavy equipment and large laboratory space and makes the systeral foatiome
use. Moreover, it does not need domain knowledge for feature engineering since it is
capable of extracting semantic and highel features from the input dat&/hereashe
system uses digital cameras as the only required equipment, iecamgpioyed irthe
domestic environment of patients and elderly peoplecémsistent gait monitoring and
early detection of gait alteration§he contribution of this chapter can be summarized as

follow:
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Figure 4-1- Overview of the proposed system. The input of the system is a video of the
subject recorded frorie sagittal plane. Pose Estimator network estimates 3D body pose
for each frame of the video and constructs correspondirgderies. Classifier network,

on the other hand, takése estimated time series as the input and classifies it into one of
the four predefined groups.

1) Proposingan automated system to detect -galated health problems from videos
captured by pervasiwdigital cameras and implemémy a thorough experimental
study to validate it.

2) Proposing a computationally efficient DNMethod to estimate 3D body pose
directly from videos and validatinthe results against a markesised motion
capture system

3) Developng a DNN classifier to detect health problems from estimated 3D body
pose.

Chapter LayoutThis chapter is organized as followsfe provide a summary of recent
methods for gaitelated health problems classification in seci¢h The datasets utilized

in this chapter, are introduced in sectéhB. Section4.4 presents our computationally
efficient method for markeess 3D pose estimati@ong with the new fusion technique

to combine the results across camera viesesctiond.5 presents the proposed classifier
network. Section4.6 reports the results and experimental evaluation. Finally, in Section

4.7 we summarize our work and suggest ideas for future work.
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4.2. Gait-related Health Problem Classification

Gait analysis is the systenmatstudy of human walking for recognizing of gait pattern
abnormalities, postulating its causes, and proposing suitable treatments. Gait analysis is
commonly used in clinical applications for recognition of a health problem or monitoring

ap at i recovier§ status. The traditional clinical gait analysis is performed by clinicians
who observe the patientsd gait character.i
method is subjective and depends on the experience and judgment of the clinician. As a
result, it can lead to confusion and has a negative effect on the diagnosis and treatment

decision making of pathologi¢$20].

The process of clinical gait analysis can be facilitated through the use of new
technologies, which allow an objective measurement and reduces the confusion and error
margin of the subjective methods. These new technologies include: optical motion capture
systems capable of detecting position of reflective markers placed on the surface of skin;
wearable inertia sensors, which measure body motion using a combination of
accelerometers and gyroscopes; force plate platforms imbedded on the walkway to report
ground reaction forces and torques; and finally Electromyography (EMG) sensors placed
on the surface of skin to monitor muscle activities. Kihematics and kinetics information
arethenextracted frontime series data obtained from these stéditthe-art technologies
and are analyzed by a clinicianittentify gait deviation@nddiagnosehealth problems
that are manifested in the gailowever, this approach is sesubjective andcannot

provide a reatime gait analysis.

As a resultMachine learning appaches such as Support Vectoadfines (SVM),

Artificial Neural Networks (ANN), and Logistic Regression, have been recently applied to
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the context of gait analysis to facilitate the automatid realtime classification of gait

related health pldems. Pevious studies utilizetechnologies such as motion capture
systemg121], force plate platformgl22, 123] Inertia Measurement Units (IMUE)24],

and a combination of thefd25] to collect gait data and define haadhfted features for
recognizing abnormal gait patie. In particular, Pogorelc et [dl21] used markebased

motion capture system to acquire bodtimo and defined 18andcrafted features based

on knowledge of medical experts. Then, several machine learning algorithms including k
nearest neighbors and SVM were applied for
hemi pl egi a, with Par kthebalg and with ghin 81 éhe@legeDue wi t h
to the unavailability of test subjects with actual target health problems, some of the data
were acquired by healthy subjects who were asked to imitate those abnormal gait
conditions. In another study by Shettyalt[123], raw data was collected by force plates

|l ocated under s ubj e-crafteddgaitffeatareés,such ds stnde, swang,i o u s
and double support intervals were extractemm raw data and SVM was applied to

di fferentiate Parkinsonds dAddteraly,eumtrous m ot h
studies have developed computational models of Parkinson's disease to investigate the
effects of Deep Brain Stimulationongdity sf uncti on i n [P26X28.i nsonod
These studies demonstrate the feasibility of machine learning approaches-feragyit

health problems classification, however; they require feature engineering to extract useful
information from input time series data. Feature engineering demandsargiabst
knowledge in normal and pathologic gait. It becomes more challenging when patients are

in the early stage of diseases and their walking patterns look similar to normal gait.

Furthermore, extracting harwlafted features from the input time seriegleto discarding
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a large amount of potentially meaningful information teaépresented by thehole time

series.

In thischaptey we propose aystemthat converts input video into 3D body pose time
series and theextract semantic features frotthemto performgait classification. Our
proposed systemsesdigital cameras as the only required equipmkimloes noheed any
feature engineeringince he whole3D body pos¢imes series are fed intdNN with the
capability of learning and extracting all the useful information from theme. proposed
systemprovides a tool for constant and ubiquitous gait monitoring of patients and elderly

people while living in their homsettings

4.3. Datasets

We evaluat¢he performance of our proposegstentor gait classificatioron clinical data

collected from real patientandwe callit A G a iatt a Brkig datasetargetsvarious

heal t h probl ems nbdbnclAdisntg S R agrikel arglsded Or t h o |
A He a Istibjectsaused as a referenddloreover,In order to be db to compare the of
resultsofi Pose Esti mat or 0 -ofiteetartvioethéds fari3D fumanipase st at
estimation, we ggly our method on a publicly available dsea (Human3.& [129]).

Human3.6n is a largescale dataset consist of 3.6 million 3D human poses and
corresponding images anccemmonly used by researchers for 3D human pose estimation

4.3.1. Gait Dataset

Our gait dataset includes walking pattern records9®fadults(53.65+14.30 years)
including2 3 patients with Parkinsonbdbs disease,
orthopedic problems, and records from 25 healthy control subjadtgects are asked to

walk on a treadmill for about one minute with two digital cameras recording their gait



52

patternwith 50 fps rateand a synchronized motion capture system directly measuring their
body movement. Digital cameras are located on both sides of the subjects (sagittal plane)
and had 480x640 pixels resolution. 8 Reflective markers are attached to the neck, chest,
left/right hips, left/right knees, and left/right ankles, which are traced by a motion capture

system with a sampling rate of 100 HEgure4-2).

4.3.2. Human 3.6m Dataset

Human3.6n [129] is a weltknown dataset for 3D human pose estimation and it is
commonly used by researchers in this fieldman3.6n consists of 7 subjects amtludes

more than 3 million images &b differentdaily activitiessuch asvalking with many types

of asymnetries, sitting and laying down poses, various types of waiting pesed-our

RGB camerasre placed in the corners of the capture spacetorecarth j ect s 6 act i
and a synchronized motion capture system measures their movement, which provides 3D
ground truth joints coordinates. We follow the standard protocol of the dataset and use

subjects 1,5,6,7, and 8 for training, and subjects 9 and 11 for testing.

4.4. Pose Estinator Network

Pose Estimator network takes videos as the input and estimates corresponding 3D body
pose for each frame mamera coordinates. Thesstimated 3D body poses are transferred

into global coordinates and fused across views to improve the accuracy of rEselts.
output of the networks ¢ 0time serieswherev representshe total number of joints

Each time series represetiteposition of one joint in one of the three directions (x, y, and

2).

Similar to the DNN method proposedtireprevious chaptewe useHourglass Network
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Figure4-2- Left: Schematic illustration of experiment setup and camera positions, Right:
Position for reflective markers of the motion capture system.

[75] to estimated 2D pose for each image and then lift 2D mbs¢éhe 3D pose However,

instead of using 2D joint heatmaps, we choose the coordinatethefitighest probability

(argmax) as the estimated 2D pasmrdinates While 2D posecoordinatescarry les

information compare to 2D heatmaps, their low dimensionality sakeem
computationally efficient and reduseverall training time significantlySince the datasets

that we use in this chapter are much biggerthap r evi ous chapter s da

a morecomputationally efficienethod seems highly required.

Figure4-3illustrates the Pose Estimator network architecture. As itis shown, estimated
2D joint coordinates are processed in a series of blocks comprised etdalected
layers, ReLU activation functiofi.30], batch normalizatiof131], dropout[132], and
Residual connectior98] to estimate 3D joint coordinateShe architecture of thblocks
is similar to the work by Martinez et. di80] for 3D human pose estimation from
monocular images. In threst of this sectigrwe explain our proposed technique to modify

their network desigrothandlethe multi-view setup.
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Figure 4-3- Ar chi t ecture of the fAPose Estimatoro
Network, which estimates 2D body pose from the input image and continues by a series of
blocks comprised of fullgonnected layers, RelLU activation function, batch
normalization, dropoutand Residual connection. The blocks are repeated four times.
Numbers under each fullgonnected layer illustrate the number of neurons. DNNs for each

view share the same architecture and parameters and are then fused together to estimate
3D body joint Ieations in the global coordinates

4.4.1. Multi -view Fusion
As mentioned beforeghe output of the Pose titsator network is the 3D joirgositiorsin
the camera coordinates. Given the location of the cameras (rotation and translation matrix),

the estimated 3D joints position can be transferred into the global coordinates as follow:
0 Y o TV P

, where'Y and”Vare rotation and translation matrix of can ‘@eespectivelyd and0
represent estimated 3D body pose in camera coordirf@sexl global coordinates,
respectively. Leta;Foy g denote x, y and z coordinates of jo@in view "Qand
Qe Fd‘-ﬁ Féﬁ denote x, y and z coordinates of ja'@h global coordinates calculated from

view "Qthend and0® are vectors with sizo 0, wherevis total number of joints
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