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ABSTRACT OF THE DISSERTATION

Cohomological Field Theories

and Four-Manifold Invariants

by IURII NIDAIEV

Dissertation Director: Professor Gregory W. Moore

Four-dimensional cohomological quantum field theories possess topological sectors of

correlation functions that can be analyzed non-perturbatively on a general four-manifold.

In this thesis, we explore various aspects of these topological models and their implications

for smooth structure invariants of four-manifolds.

Cohomological field theories emerge when one considers topological twisting of ordi-

nary quantum field theories with extended (N = 2 in the context of this thesis) supersym-

metry. The global scalar supersymmetry of these theories allows one to use integrals/sums

over their quantum vacua as a tool for their exact analysis. In the case of pure SU(2)

N = 2 gauge theory this has lead to remarkable success of Witten’s field theory formula-

tion of Donaldson invariants and discovery of Seiberg-Witten invariants which are the best

presently available tool for distinguishing smooth structures on four-manifolds with fixed

topological type. In chapter 3 of this thesis we analyze a new prescription for defining the

integral over a Coulomb branch of vacua in Donaldson-Witten theory as well as discuss

possible treatment of IR divergences associated with certain BRST-exact operators. Chap-
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ter 3 of the thesis is based on the work reported in [20] (arXiv:1901.03540 [hep-th]) and

partly has been extracted from that paper.

On general grounds one expects that topological twisting of any N = 2 supersymmet-

ric theory defines a smooth structure invariant. However, examples of Lagrangian theories

strongly suggest that topological partition functions of Lagrangian theories are expressible

through the classical cohomological invariants and Seiberg-Witten invariants. Therefore,

the search for new 4-manifold invariants has to be restricted to so-called "non-Lagrangian"

N = 2 theories. Though full non-Lagrangian theories are, at present, difficult to analyze due

to their strongly-coupled nature and the lack of action principle, in chapter 4 we show how

one can derive the topological partition function of a simplest non-trivial non-Lagrangian

theory discovered by Argyres and Douglas and known as AD3 theory. We obtain a for-

mula for the partition function of topologically twisted version of the AD3 theory on any

compact, oriented, simply connected, four-manifolds without boundary and with b+
2 > 0.

The result can be, once again, expressed in terms of classical cohomological invariants and

Seiberg-Witten invariants. We argue that our results hint at the existence of four-manifolds

of new, presently unknown, type as well as narrow the search for new field theory invariants

of four-manifolds to Non-Lagrangian superconformal points that admit Higgs branches.

Chapter 4 of this thesis is based on the work reported in [40] (arXiv:1711.09257 [hep-th])

and partly has been extracted from that paper.

Finally, in chapter 5 we derive a twisted (0,2) two-dimensional model by putting the

abelian low energy theory of single M5 brane described by the PST action on a direct prod-

uct of a Riemann surface and a four-manifold. The resulting two dimensional topological

model can potentially be used as a tool refining the u-plane integral to study topologically

twisted N = 2 theories of class S .
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Chapter 1

Introduction

In 1988 Witten [1] discovered the mechanism that allows correlation functions of cetrain

quantum field theories to be independent of the background metric. The goal was to find

field theoretic formulation of Donaldson theory, which describes a set of powerful invari-

ants of smooth four-manifodls allowing one to distinguish different differential structures

that can be assigned to a given four-manifold topology by means of intersection theory on

instanton moduli spaces. Such formulation was found by Witten to be given in terms of

topologically twisted N = 2 supersymmetric Yang Mills theory and the general idea behind

that relation formed the foundation of what is known now as cohomological quantum field

theory.

Models of cohomological field theory have been of immense importance in the last

thirty years in both physics and mathematics. Besides the Donaldson theory, their applica-

tions involve Gromov-Witten invariants [2], geometric Langlands program [3], evaluation

of central charges in superconformal theories [4], etc.

The defining property of cohomological field theory is existence of (at least one) scalar

fermionic symmetry (generated by scalar fermionic operator) Q. Given an action S of such

theory it must satisfy Q(S ) = 0. By acting with Q one more time one obtains Q2(S ) = 0,

so Q2 has to be among bosonic symmetries of the action.
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One of the key observations of [1] was that at the formal level correlation functions

of operators in the image of Q (known also as Q-exact operators) all vanish, while Q-

invariant (also known as Q-closed) operators are decoupled from the Q-exact ones. That

is, correlation functions of the form 〈Q(a) · b〉 where a is any combination of the fields

and b is Q-closed are identically zero. Such property implies, in particular, that correlation

functions of Q-invariant operators are invariant under Q-exact deformations of the theory’s

action. It turns out that among such Q-exact deformations one typically finds variations

of the coupling constant as well as deformations of the background metric g with energy

momentum tensor

δgS =
1
2

∫
X

√
g δgµν T µν, Tµν = Q(λµν), (1.1)

Thus, the Q-symmetry drastically simplifies the theory: it implies the existence of topo-

logical (metric independent) sector of observables identified with the Q-cohomology. It

also allows one to use several methods to obtain exact results for the sector of Q-invariant

correlators such as evaluation via localization to Q-fixed points (the Mathai-Quillen formal-

ism [5]), extension of results obtained at weak coupling, evaluation based on low energy

effective description [6,7]. However, the validity of these methods relies on the existence of

action as well as on the behaviour near the field space boundary that determines the precise

meaning of the Q-closed vs Q-exact decoupling.

Analysis of the decoupling of Q-exact and Q-closed operators

In chapter 3 we study the decoupling of Q-exact and Q-closed operators (by which we mean

vanishing of correlation functions of the form 〈Q(a) b〉 for any a and Q-closed b) in the

context of low energy effective theory on the Coulomb branch of topologically twisted N =

2 sypersymmetric Yang-Mills (SYM) theory with SU(2) gauge group. The corresponding
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path integral is known [7] to localize to a subtle but finite dimensional integral over the

Coulomb branch of vacua known also as u-plane integral.

The Q-closed vs Q-exact decoupling can be obstructed by a contribution from the

boundary of the space of vacua. In chapter 3 we show that vacuum expectation values

of Q-exact operators can be expressed as u-plane integrals whose integrands can be written

as a total derivative after integration over the auxiliary field and the fermionic zero modes.

In the case of the pure SU(2) Donaldson-Witten theory there is a relation between the

Coulomb branch integral and integrals over a modular fundamental domain (this relation is

reviewed in section 3.1), the vacuum expectation value (vev) of any Q-exact operator takes

the following form

〈[Q,O}〉 =

∫
F∞

dτ ∧ dτ ∂τFO, (1.2)

where F∞ = H/SL(2,Z) is a fundamental domain for the modular group SL(2,Z) and FO

admits a q-expansion of the form

∑
s

y−s
∑
m,n

cs(m, n) qmq̄n, (1.3)

where
∑

s is a sum over finite number of s values and q = e2πiτ.

Such boundary contributions to correlation functions 〈Q(a)b〉 can be non-zero. An

example of finite value of 〈Q(a)b〉 is given by the well known wall crossing property of the

Coulomb branch contributions.

For some a and b the contribution of the cusp at τ→ +i∞ can be divergent and requires

careful interpretation. In chapter 3 we study possible resolutions of such divergences by

regularizing modular integrals of the form

Lm,n,s =

∫
F∞

dτ ∧ dτ qmq̄ny−s, (1.4)
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where f is a non-holomorphic modular form of weight (2 − s, 2 − s). The integral (1.4)

is finite for m + n > 0 and for m + n = 0 with Re s > 1, but diverges exponentially for

y = Im τ → ∞ when m + n < 0. For a large class of such (m, n), namely when one of the

two numbers is non-negative, the integral can be consistently evaluated using a, by now

standard, prescription [8–10] to carry out the integral over x = Re τ first and the integral

over y second.

Our main example of operators in Donaldson-Witten (DW) theory which lead to diver-

gent integrals of the form (1.4) with both m and n negative is

∫
S
{Q,Tr φ̄ χ}, (1.5)

where S is a two-cycle in the underlying four-manifold and φ̄, χ are the scalar and self-dual

fermion fields of DW theory. This operator was studied previously in the context of the

CohFT interpretation of Witten-like indices [18], and more recently for the evaluation of

Coulomb branch integrals using indefinite theta functions in [19]. Due to presence of both

m < 0 and n < 0 in the τ-plane integrand of (1.2) the standard prescription of integrating

over x first and over y second does not help to remove the infinity. Therefore we formulate

a new prescription for defining such correlation functions [20], which is based on analytic

continuation of the incomplete Gamma function. 1.

Topological partition function of AD3 theory.

Given Witten’s remarkable application of the Seiberg-Witten solution of pure SU(2) N = 2

supersymmetric Yang-Mills theory [21] to the theory of four-manifolds, the natural ques-

tion arises whether other (topologically twisted) 4d N = 2 theories can be sensitive to new

(other than Seiberg-Witten) four-manifold invariants. This was the main motivation for

1This prescription was considered recently by Bringmann-Diamantis-Ehlen [11] in the context of inner
products of weakly holomorphic modular forms (see also [12] and [13]). Such integrals have also been
studied in the context of one-loop amplitudes in string theory [14–16], and in mathematics as the (Petersson)
inner product for cusp forms [17].
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the works such as [22]. The main conclusion of [22] was that, the topological partition

functions for twisted Lagrangian 4d N = 2 theories, while intricate and interesting, will

nevertheless be expressible in terms of the classical cohomological invariants and Seiberg-

Witten (SW) invariants of a four-manifold. This narrows the search for new invariants

to non-Lagrangian superconformal theories. Again, this was the motivation for [23, 24].

Those papers failed to discover new invariants, but did manage to show that the very ex-

istence of superconformal theories is related to nontrivial sum rules on the Seiberg-Witten

invariants, now known as the "superconformal simple type condition".

The superconformal theory used in [23, 24] is the simplest nontrivial Argyres-Douglas

theory and is denoted here as AD3 (it is sometimes also denoted as the (A1, A2) theory). It

arises in special points of the Coulomb branch of pure SU(3) SYM [25] and in the Coulomb

branch of SU(2) SYM coupled to a single hypermultiplet in the fundamental representa-

tion [26]. In chapter 4 we complete the story of [23, 24] by giving an explicit formula

(4.14) for the topological partition function of the twisted AD3 theory on compact, ori-

ented, simply-connected (b1(X) = 0), four-manifolds without boundary with b+
2 (X) > 0,

henceforth denoted by X. For manifolds with b+
2 (X) > 1 the general formula (4.14) simpli-

fies to (4.109). This formula, once again, expressed in terms of the SW invariants and does

not provide new four-manifold invariants.

A standard four-manifold X with b+
2 (X) > 1 is said to be of Seiberg-Witten simple

type if the Seiberg-Witten invariant associated to a spin-c structure is only nonvanishing

when the moduli space of solutions to the Seiberg-Witten equations is of dimension zero

(for mathematical discussions see [31, 32]). Strangely enough, all known standard four-

manifolds X are of Seiberg-Witten simple type. Assuming that X is of Seiberg-Witten

simple type (SWST) the formula (4.109) simplifies dramatically to the following equation

〈epO+O(S )〉AD3
X = C2

∑
λ∈H2(X,Z)+ 1

2 w2

eiπλ·w2S W(λ)
[
B(B − 1)

24
S 2(S · λ)B−2 + (S · λ)B

]
, (1.6)
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where B = −
−7χ−11σ

4 , χ, σ,w2 are respectively the Euler characteristic, signature and inte-

gral lift of the second Stiefel-Witney class of X, S ⊂ X is a two-cycle associated with the

surface observable O(S ) and C2 is a constant factor. The right hand side of (1.6) is inde-

pendent of p meaning that the 0-observable on a manifold of SWST always lead to zero

correlation function. This property is in sharp contrast with the general formulae (4.14),

(4.109) for those hypothetical manifolds that are not of SWST. In the absence of any com-

pelling reason for the 0-observable to be a null-vector, we conjecture that there are in fact

standard four-manifolds that are not of SWST.

Our result does not imply that topologically twisted N=2 theories can not lead to new

four-manifold invariants, although it restricts the search for new invariants. Whether or

not other theories lead to new invariants, the computation of these partition functions is

an interesting challenge and we expect that our method to be applicable to other non-

Lagrangian superconformal points that appear in theories with one dimensional Coulomb

branch.
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Chapter 2

Review of the field theory approach to

four-manifold invariants

2.1 Twisted N = 2 SYM in four dimensions

Consider the Lagrangian of N = 2 SYM on a four-manifold X

L =
1

4π
Im Tr

[
τ0

∫
d2θWαWα +

∫
d4θΦ†e2gVΦ

]
; τ0 =

θ

2π
+

4πi
g2 (2.1)

Its expansion for a particular value of θ-angle can be written in the following form

L = Tr
[
−

1
4

(
F+, F+) +

1
2

(
∇φ†,∇φ

)
+

1
2

D2 +
1
2

D[φ†, φ]

− iψ
a
∇̂ψa −

i
2
εab[ψa, ψb]φ† −

i
2
εab[ψ

a
, ψ

b
]φ

] (2.2)

where ( , ) is invariant pairing on p-forms (α, β) = ∗ (α ∧ ∗β), ∇ - covariant derivative

and ∇̂ := σ̄µ∇µ, F+ = F + F̃. Lets fix our convensions by specifying ∇µψa
α = ∂µψ

a
α −

i[Aµ, ψ
a
α]− i(ωµ)

β
αψ

a
β, where α, β are spinor indices and ωµ is the spin connection compatible

with veilbein en
µ. In the following we will be using mostly Lorentz indices n,m, ... = 1, .., 4.
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Recall that the N = 2 supersymmety generators Qa
α, Q̄

a
α̇ have the following non-zero

commutation relations

{Qa
α, Q̄

b
β̇
} = 2εab(σµ)αβ̇P

µ (2.3)

{Qa
α,Q

b
β} = 2

√
2εαβZab (2.4)

where Pµ is the momentum operator and Zab are the central charges of the theory 1. The

matrix of central charges Zab is skew-symmetric, so the only non-zero component is Z ≡

Z12 = −Z21. We also have the following non-zero commutators

[Jµν,Qa
α] = −(σµν) β

α Qa
β

[Jµν, Q̄a
α̇] = −(σµν)β̇α̇Q̄a

β̇

[Qa
α,R] = Qa

α

[Q̄a
α̇,R] = −Q̄a

ȧs

(2.5)

where Jµν denotes the generators of the SO(4) rotations and σm are the Pauli matrices

σ0 =

 1 0

0 1

 , σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1


and σmn is given by

σmn =
1
4

(σmσ̄n − σnσ̄m), (2.6)

with σ̄m the complex conjugate of σm.

Besides the gauge symmetry and general covariance the Lagrangian above possesses

global bosonic symmetry with generators Jmn,Rab,U that represent Lorentz, R-symmetry

su(2)R rotations ψa →
(
e−

i
2σ

ini
)a

b
ψb and u(1) R-transformations. Writing Poincare algebra

1Here µ = 1, ..., 4, α and α̇ are SO(4) indices and a, b = 1, 2 are SU(2)R indices.
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generated by Jmn as su(2)− ⊕ su(2)+ fields in this Lagrangian decompose in the following

representation of the bosonic subalgebra su(2)− ⊕ su(2)+ ⊕ su(2)R

bosons Am, φ, φ
†: (2, 2, 1)0 ⊕ (1, 1, 1)2 ⊕ (1, 1, 1)−2

fermions ψa
α, ψ

a
α̇: (2, 1, 2)1 ⊕ (1, 2, 2)−1

and auxiliary boson D is a singlet. Supersymmetry generators Qa
α, Q̄

a
α̇ transform in the same

way as ψa
α, ψ

a
α̇.

The quantum theory is defined by the formal Feynmann functional integral carried over

the orbits of gauge transformation in the field space

〈O〉e =

∫
D[A, ψ, ψ, φ, φ†,D] exp

(
−

1
g2

∫
X

vol · L
)
· O

This quantum average a priori depends on the veilbein e.

Due to the presence of spin connection Lorentz symmetry su(2)− ⊕ su(2)+ is extended

to a gauge symmetry. The twisted version of N = 2 SYM was first considered in [1] and is

defined by turning on a connection (background gauge field) Ωab for the su(2)R symmetry.

This boils down to changing the covariant derivative on fermions (since only fermions

transform non-trivially with respect to su(2)R) as follows

∇̂ → σµ∇ab
µ := σµ

(
δab∇µ − iΩab

µ

)
(2.7)

Besides the new R-symmetry connection, ∇̂ contains the spin connection that consists

of two components, (ωµ)
β
α and (ω̄µ)

β̇
α̇ which correspond respectively to su(2)− and su(2)+

parts of the Lorentz symmetry. We then set the new connection Ωab
µ to be equal to the

right-handed part of the spin connection, namely Ωab
µ := (ω̄µ)a

b. This effectively means

that we have modified the right-handed part of the Lorentz symmetry to be su(2)′+ :=

su(2)diag =su(2)+⊕su(2)R.
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Since bosonic fields don’t feel the su(2)R rotations all the twisting operation does is

changes coupling of the right-haned fermions to gravity. However, the effect it makes on

the N = 2 supersymmetry charges is that

left-handed Qa
α ∈ (2, 1, 2)1 → Qµ ∈ (2, 2)1

right-handed Q̄a
α̇ ∈ (1, 2, 2)−1 → (Qµν,Q); Qµν ∈ (1, 3)−1 and Q ∈ (1, 1)−1

In other words index a that was an R-symmetry index turns into ȧ spinor index with respect

to the new Lorentz symmetry su(2)−⊕su(2)diag and certain combination of the supercharges,

namely Q := 1
2δ

α̇
a Q̄a

α̇, becomes scalar with respect to the new Lorentz symmetry. Quite

analogously, ψȧ
α turns into a vector fermionic field ψµ via ψȧ

α = (σ̄µ)αȧψµ and ψ
a
α̇ decomposes

into a self-dual 2-tensor fermion χµν and a scalar η via ψ
ȧ
α̇ = i(σµν)ȧ

α̇χµν+ 1
2δ

ȧ
α̇η, where σµν =

1
4 [σµ, σ̄ν]. One can combine these supercharges into three operators valued in differential

forms on X: Q ∈ Ω0(X), K = Kµdxµ ∈ Ω1(X), and L = Lµνdxµ ∧ dxν ∈ Ω2,+(X).

Lets write down the Lagrangian for twisted theory. The only terms that change under

the twist are −iψ
a
∇̂ψa; −iεab[ψa, ψb]φ†; −iεab[ψ

a
, ψ

b
]φ. After integrating out the auxiliary

scalar field D and writing it in the new notations the Lagrangian is given by

L = Tr
[
1
4

(F+, F+) +
1
2

(∇φ,∇φ†) − iφη2 −
1
8

[φ, φ†]2

+i(∇η, ψ) + i(∇ ∧ ψ, χ) −
i
4
φ(χ, χ) − iφ†(ψ, ψ)

] (2.8)

The same redefinition of indices for supercharges leads to Q̄a
α̇ = 1

2

(
δa
α̇Q + (σµν)a

α̇Qµν

)
.

Scalar fermionic symmetry Q := δα̇a Q̄a
α̇ is of special interest for us. Unlike Qa

α, Q̄
a
α̇ in the

untwisted N = 2 SYM, Q does not transform when we go from one chart of the covering

on X to another. Thus it defines invariant differential operator, an odd vector field on the

space of fields and one can formally consider integration over the orbit of its action as a
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part of our path integral. In coordinates this vector field has the following form

δA = iεψ, δψ = −εDφ, δχ = εF+, δφ = 0, δλ = 2iεη, δη =
1
2
ε[φ, λ]

Q =

∫
X

vol Tr
[
−ψ(x)

δ

δA(x)
− iDφ(x)

δ

δψ(x)
+ iF+(x)

δ

δχ(x)
− 2η(x)

δ

δλ(x)
+

i
2

[φ, λ](x)
δ

δη(x)

]
(2.9)

In the Hamiltonian formalism Q corresponds to a canonical transformation {QY , } for cer-

tain functional QY that can be found from Noether theorem to be

QY =

∫
Y
∗J; Jµ = Tr

[
F+
µνψ

ν − ηDµφ − χµνDνφ −
1
2
ψµ[φ†, φ]

]
(2.10)

where Y is a certain three-cycle incide X.

Using equation of motion for χµν field, namely 2(D ∧ ψ)+ = [φ, χ] one finds

Q2 =

∫
d4x eTr

[
iDµφ(x)

δ

δAµ(x)
+ [ψµ, φ]

δ

δψµ(x)
−

i
2

[φ, χ]
δ

δχµν
− i[φ, η](x)

δ

δη(x)

]
(2.11)

It is not hard to see that Q2 is a vector field representing gauge transformation parametrized

by field φ.

The crucial property of the twisted N = 2 SYM is that its energy-momentum tensor2 is

Q-exact:

Tµν = Q(λµν), where

λµν = Tr
(
F(µ,σχ

σ
ν) −

1
4

gµνFστχ
στ + ψ(µDν)φ

† −
1
2

gµνψσDσφ† +
1
4

gµνη[φ, φ†]
) (2.12)

Therefore metric variation of correlation functions of Q-closed operators under small de-

formation of background metric

δ〈O1 . . .Ok〉 = −
1
g2

∫
X

d4xe δgµν〈Q(λµν)O1 . . .Ok〉 (2.13)

2Since self-duality equation for field χ is not invariant with respect to metric variation, for the calculation
of energy-momentum tensor metric variation has to be accompanied with variation of field χ such that (δχ +

δg)χ = (δχ + δg) ∗ χ.
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2.2 Topological sectors of twisted N = 2 SYM

Correlators local Q-closed operators 〈O(0)
1 (x1) . . .O(0)

n (xn)〉 are independent on the choices

of points xp. For example, differential of a local operator O(0)(x) = 1
2Trφ2 has Q-exact

form

dO(0) = TrφDφ = iQ(Trφψ), (2.14)

so that

O(0)(x) − O(0)(x′) =

∫ x

x′
dO(0) = iQ

( ∫ x

x′
O(1)

)
(2.15)

with O(1) := Trφψ being a 1-form. In fact, one can proceed further and define O(i), i = 1, 2, 3

starting from O(0):

dO(1) := Q(O(2))

dO(2) = Q(O(3))

dO(3) = Q(O(4))

O(2) := Tr
(
1
2
ψ ∧ ψ + iφ ∧ F

)
O(3) := iTr (ψ ∧ F)

O(4) := −
1
2

TrF ∧ F

(2.16)

dO(4) = 0, so this sequence stops. Every O(k) for 0 ≤ k ≤ 4 is a k-form with ghost number

equal to 4 − k. For a closed k-cycle γ on X integral O(γ) =
∫
γ
O(k) is Q-closed since

Q(O(γ)) = −i
∫
γ

dO(k−1) = 0. Also O(γ) changes by Q-exact term when we change γ by

a boundary O(γ + ∂β) = O(γ) + iQ
( ∫

β
O(k−1)) and thus each homology k-cycle defines

BRST-closed observable O(γ).

An alternative way to define the observables O(i) is to recall that the supersymmetry

generators of the twisted theory belong to (1, 1)+1 ⊕ (2, 2)−1 ⊕ (1, 3)+1 representation of

SU(2)′+×SU(2)−×U(1)R and the second term (2, 2)−1 corresponds to the one-form operator

K that satisfies {Q,K} = d. Such K provides a canonical solution to the following descent

equations

Q(O(i+1)) = dO(i), i = 0, . . . , 3, (2.17)
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by setting O(i) = KiO(0) [7]. Integration of these operators over i-cycles then gives another

representation of topological observables O(γ).

The weak coupling regime

Yet another important property of the twisted N = 2 SYM is that the variation of the

coupling constant g2 of the twisted N = 2 SYM action is Q-exact:

δ

∫
X

vol · L = QΨ; Ψ :=
∫

X
vol · Tr

[
1
4

(
F+, χ

)
+

1
2

(
ψ,Dφ†

)
−

1
4
η[φ, φ†]

]
(2.18)

Variation of 〈O1 . . .On〉 with Q-closed O’s with respect to g2 vanishes. Therefore, we can

extract such correlation functions from the classical/weak coupling limit g2 → +0 in which

the path integral is dominated by minima of the action. Minimisation of the first term

1
4 (F+, F+) reduces us to the (anti-)instanton equation F+ = 0.

If our manifold admits F+ = 0 solutions, the instantons have moduli space MASD ={
[A] ∈ space of gauge connections/group of all gauge transformations | F+(A) = 0

}
. Tan-

gent space TAMASD corresponds to gauge equivalence classes of deformations A→ A+δA

that preserve the anti-self-dual equation

(1 + ∗)DδA = 0 (2.19)

In the case of a generic point (that is not invariant under any gauge transformation) in the

instanton moduli space the formal dimension of tangent space at this point is equal

dM := dimMASD = 8k − 3(b+
2 − b1 + 1) (2.20)

where k = 1
8π

∫
X

Tr F∧2 is instanton number (the second Chern class of the principal gauge

bundle), b1 is the first Betti number and b+
2 is the second self-dual Betti number.
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Index theorem implies that the number of ψ zero modes minus number of (η, χ) zero

modes in the instanton background is equal dM. Thus the path integral measure has definite

but non-zero charge under the U(1)R R-symmetry

D[A, ψ, χ, ...] = ddMadnψψ0dnηη0dnχχ0 ·D[A′, ψ′, χ′, ...]; nψ − nη − nχ = dM (2.21)

where a, ψ0, η0, χ0 represent bosonic and fermionic zero modes while A′, ψ′, etc repre-

sent topologically trivial field configurations (non-zero modes). Only correlation functions

with operator insertions of total ghost number (charge under the U(1)R) equal dM can

be non-vanishing, the correlation functions total ghost number other than dM vanish due

to fermionic zero modes. In particular, unless MASD consist of discrete isolated points

the partition function is zero. Otherwise, if dM = 0 the partition function provides field

theoretic definition of one of the four-manifold invariants originally introduced by Don-

aldson [31]. Integrating out the non-zero modes the path integral measure D[A, ψ, χ, ...]

reduces to just ddM[a, ψ0]. The functional integral is Gaussian in the weak coupling limit

and given by the ratio
Pfaff (DF)
√

det ∆B
(2.22)

of Pfaffian of fermionic modes (a section of Pfaffian line bundle over the space of gauge

equivalence classes of zero modes) and determinant of the bosonic ones. Due to the scalar

Q-symmetry between bosons and fermions they cancel each other up to a sign. Donaldson

proved orientability of the moduli space and therefore triviality of the Pfaffian line bundle.

Thus one can consistently integrate this ratio over MASD and fix the sign ambiguity by

picking up +1 for some instanton solution.

Cancelation of non-zero modes reduces the path integral to a finite dimensional integral

over MASD that can be viewed as integral of a certain forms on MASD.

〈

r∏
i=1

∫
γi

O(ki)〉 =

∫
ΠTMASD

ddM[a, ψ0] · Φi1...idM
ψi1 ...ψdM =

∫
MASD

Φ (2.23)
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Note that χ, φ† and η are absent in topological operators O(ki), so only ψ zero modes can

appear in (2.23). For the same reason there are no Wick-theorem contractions between

different factors in
∏r

i=1

∫
γi
O(ki), so at least in perturbation theory, the correlation functions

factorize as

〈O1O2〉 = 〈O1〉 · 〈O2〉 (2.24)

for any Q-closed O1 and O2 that are made of O(i)’s. This property is violated by non-

perturbative effects as there appear contact terms of the surface observables [7, 37]. Gaus-

sian integration over fixed zero mode configurations leads to the following averages

〈φA(x)〉′
g2→0
→ −i

∫
MASD

√
g
(

1
∇µ∇

µ

)AB

(x, y)
[
ψ0,α, ψ

α
0
]

B (y)

〈ψ〉′
g2→0
→ ψ0 〈F〉′

g2→0
→ Finst(a)

(2.25)

This gives field theory version of the Donaldson map ωD : Hk(X) → H4−k(MASD) [31]

given by

ωD(γ) = 〈O(γ)〉twisted N = 2 SYM (2.26)

In particular, one has γ = x; ωD(x) = 1
2Tr〈φ(x)〉2, ωD(γ) =

∫
γ

Tr〈φ(x)〉 ∧ ψ0, γ =

S ; ωD(S ) =
∫

S
Tr

(
1
2ψ0 ∧ ψ0 + i〈φ(P)〉 ∧ Finst(a)

)
.

Given a gauge bundle such that dM is positive, choose homology cycles γ1, ..., γr of

dimensions k1, ..., kr such that dM =
∑r

k=1(4 − kr). Then correlation functions of periods of

O(kr) over these cycles 〈
∏r

i=1

∫
γi
O(ki)〉 are given by intersection numbers on MASD

PD((γ0)l(γ2)k) :=
∫
MASD

ωD(γ0)lωD(γ2)k (2.27)

Such observables in Donaldson-Witten theory match the mathematically defined Donald-

son polynomials [1, 31].
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2.3 Low energy effective theory of N = 2 SYM

The approach based on the full UV theory sketched in the previous section is rather formal

and is not well suited for explicit calculations. A much more powerful approach based on

the low energy effective description became available after the Seiberg-Witten solution [21]

of N = 2 gauge theories was discovered. This section reviews several things used in the

IR representation of the Donaldson-Witten theory: low energy models of abelian N = 2

vector multiplets and their topologically twisted versions, as well as the Seiberg-Witten

geometry [21] describing the vacua of the non-abelian N = 2 SYM with SU(2) gauge

group.

Aspects of general low energy models of abelian N = 2 vector multiplets

• An abelian vector multiplet consists of a gauge field A, a pair of (chiral, anti-chiral)

spinors (ψ, ψ̄), a complex scalar Higgs field φ (valued in the complexification of

the Lie algebra), and an auxiliary scalar field Di j (symmetric in i and j). possible

matter representations. These can be combined into a single N = 2 chiral superfield

Ψ(x, θ, θ̃)

• The supersymmetry algebra of the theory contains a central charge Z ∈ Hom(Γ,C)

where Γ is the lattice of electric and magnetic charges

Z(ne, nm) = nea + nmaD, (2.28)

where (ne, nm) ∈ Γ is the pair of electric-magnetic charges, and the pair (a, aD) ∈ C2

are the central charges for a unit electric or magnetic charge. The central charge

determines the mass of BPS states, mBPS = |Z|.
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• A most general two-derivative action respecting the N = 2 supersymmetry of the

vector multiplet is given by a single holomorphic function F

S =

∫
X

d4x
√

g
∫

d2θd2θ̃F (Ψ(x, θ, θ̃)) (2.29)

• Given the function F the parameters a and aD are related as

aD =
∂F (a)
∂a

, (2.30)

• The quadratic term in the expansion of the F function determines the effective cou-

pling constant τ = θ
π

+ 8πi
g2 ∈ H,

τ =
∂2F
∂a2 . (2.31)

where θ is the angle, g the Yang-Mills coupling and H is the complex upper half-

plane.

• In case of multiple abelian vector multiplets Ψi(x, θ, θ̃), i = 1, . . . , r the story gener-

alizes as
S =

∫
X

d4x
√

g
∫

d2θd2θ̃F (Ψ1(x, θ, θ̃), . . . ,Ψ1(x, θ, θ̃))

Z = ne,iai + ni
maD,i

aD,i =
∂F (a)
∂ai

τi j =
∂2F
∂ai∂a j

(2.32)

Topologically twisted low energy effective theory

The field content of the low energy topological twisted theory is a one-form gauge potential

A, a complex scalar a, together with anti-commuting (Grassmann valued) self-dual two-

form χ, one-form ψ and zero-form η. The auxiliary fields of the non-twisted theory combine
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to a self-dual two-form D. The action of the BRST operator Q on these fields is given by

[Q, A] = ψ, [Q, a] = 0, [Q, ā] =
√

2iη,

[Q,D] = (dψ)+, {Q, η} = 0, {Q, ψ} = 4
√

2 da, (2.33)

{Q, χ} = i(F+ − D).

For later use, it will be useful to express Q as a derivative in field space,

Q =

∫
X

(
ψ
∂

∂A
+ (dψ)+

∂

∂D
+ 4
√

2da
∂

∂ψ
+
√

2iη
∂

∂ā
+ i(F+ − D)

∂

∂χ

)
. (2.34)

The low energy Lagrangian of the Donaldson-Witten theory is given by [7]

L =
i

16π
(τF+ ∧ F+ + τF− ∧ F−) +

y
8π

da ∧ ∗dā −
y

8π
D ∧ ∗D

−
1

16π
τψ ∧ ∗dη +

1
16π

τη ∧ d ∗ ψ +
1

8π
τψ ∧ dχ −

1
8π
τχ ∧ dψ

+

√
2i

16π
dτ
dā
ηχ ∧ (F+ + D) −

√
2i

27π

dτ
da
ψ ∧ ψ ∧ (F− + D)

+
i

3 · 211

d2τ

da2ψ ∧ ψ ∧ ψ ∧ ψ −

√
2i

3 · 25π

{
Q, χµνχνλχ

µ
λ

} √
g d4x.

(2.35)

Seiberg-Witten solution in terms of modular forms of Γ0(4)

The Coulomb branch of vacua B is parametrized by a single order parameter,

u =
1

16π2

〈
Tr φ2

〉
, (2.36)

where the trace is taken over the adjoint representation of the gauge group. The renor-

malization group flow relates the Coulomb branch parameter u and the effective coupling

constant τ.
u(τ)
Λ2 =

ϑ4
2 + ϑ4

3

2ϑ2
2ϑ

2
3

=
1
8

q−
1
4 +

5
2

q
1
4 −

31
4

q
3
4 + O(q

5
4 ), (2.37)
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where q = e2πiτ and ϑi(τ) = ϑ j(τ, 0), where ϑ j(τ, v) are the standard Jacobi theta functions

(see appendix A). At the cusps τ → 0 (respectively τ → 2) a monopole (respectively a

dyon) becomes massless, and the effective theory breaks down since new additional degrees

of freedom need to be taken into account.

The Seiberg-Witten curve of the pure SU(2) N = 2 SYM is an elliptic curve for Γ0(4) ⊂

SL(2,Z) [21]. It implies that the τ-plane can be identified with a fundamental domain of

Γ0(4) in the upper-half plane H, which we choose as the images of the familiar key-hole

fundamental domain of SL(2,Z) under τ 7→ τ + 1, τ + 2, τ + 3, τ + 4, −1/τ and 2 − 1/τ

displayed in Figure 2.1.

−1 − 1
2 0 1

2 1 3
2 2 5

2 3 7
2

F∞

SF∞

TF∞ T 2F∞

T 2SF∞

T 3F∞

Re(τ)

Im(τ)

Figure 2.1: The effective coupling constant plane for pure SU(2) N = 2 SYM as the fun-
damental domain of the duality group D = Γ0(4) (shaded) - it consists of six copies of the
fundamental domain for SL(2,Z) denoted F∞ (bounded by blue).
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2.4 Basics of four-manifold topology

In dimensions higher than 4, fixing the topology will fix the differential structure up to

finitely many choices.

Four-manifolds with b+
2 = 1

Let X be a smooth, simply connected, compact four-manifold without boundary. Its basic

topological numbers are its Euler character χ(X) = 2−2b1(X)+b2(X) and signature σ(X) =

b+
2 (X) − b−2 (X), where b1(X) = dim(H1(X,R)) and b±2 (X) = dim(H2(X,R)±). We will omit

the dependence on X unless a confusion may arise. We will restrict in the following to

four-manifolds with b+
2 = 1, since the u-plane integral only contributes for this class of

four-manifolds. A four-manifold X with b+
2 = 1 admits an almost complex structure, since

any simply connected four-manifold with b+
2 odd does [34]. We denote the canonical class

of X by KX ∈ H2(X,Z), which equals the second Stiefel-Whitney class w2(X) modulo

H2(X, 2Z).

The intersection form on the middle cohomology provides a natural bilinear form ( , ) :

H2(X,R) × H2(X,R)→ R that pairs degree two co-cycles,

(λ1, λ2) :=
∫

X
λ1 ∧ λ2, (2.38)

and whose restriction to H2(X,Z) × H2(X,Z) is an integral bilinear form with signature

(1, b2 − 1). The bilinear form provides the quadratic form Q(λ) := (λ, λ) ≡ λ2, which can

be brought to a simple standard form [34, Section 1.1.3]. We denote the period point by ω,

i.e. the harmonic two-form, satisfying

∗ ω = ω ∈ H2(X,R), ω2 = 1. (2.39)
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with ∗ the Hodge ∗-operation. Using the period point, we can decompose elements λ ∈

H2(X) to its self-dual and anti-self-dual components: λ+ = ω (λ, ω) and λ− = λ − λ+. the

anti-self-dual part of λ. For later use, we mention that the canonical class is a characteristic

vector of H2(X,Z) and satisfies

K2
X = σ + 8. (2.40)

2.5 Coulomb branch contribution

The path integral Zu in the topologically twisted Seiberg-Witten theory on a simply con-

nected four-manifold3 reduces to a finite dimensional integral over the zero modes λ, χ,

η, a0, ā0, b [7], i.e. the fermionic and bosonic non-zero modes cancel due to the scalar

Q-symmetry:

F = 4πλ + dA, D = b + D′, a = a0 + a′, ā = ā0 + ā′

χ = χ0 + χ′, η = η0 + η′
(2.41)

Thus the partition function of such theory boils down to a finite dimensional integral over

the Coulomb branch

Zω
u =

∫
B

dadā
∫

dηdχ
∫
R

b+
2

db A(u)χ B(u)σ eU+S 2T (a) Ψω
λ0,ξ
,

Ψω
λ0,ξ

=
∑

U(1) fluxesλ

e2iπλi·ξie−S 0+O(S )
(2.42)

where S 0 and O(S ) are the action (2.35) and two-observable restricted to zero modes:

S 0 = iπτi j(λi
+, λ

j
+) + iπτi j(λi

−, λ
j
−) +

1
8π

Im τi jbib j −
i
√

2
16

∂τi j

∂āk η
iχ j(bk + 4πλk

+)

O(S ) = −iVi(S , λi
−) −

i
4π

Vi(S , ω)bi

(2.43)

3Simply connectedness implies that the manifold does not admit zero modes of the ψ field. This assump-
tion significantly simplifies the number of contact terms that one has and, on the other hand, is usually made
in the considerations about four-manifolds.
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The measure factors

A := α

(
det

i j

∂ui

∂a j

)1/2

B := β∆1/8 (2.44)

correspond to the terms in the low energy effective action on the Coulomb branch describ-

ing the coupling of the U(1) vectormultiplet to the Euler character χ and the signature σ.

Here ∆ =
∏

s(u − us) is a holomorphic function with first order zeroes at the discriminant

locus {us} where a hypermultiplet becomes massless. 4 The factors α, β are independent of

u but can depend on the theory, the scale Λ, and the masses.

The sum over U(1) fluxes λ goes over the lattice Γ := H2(X; Λr)/Tors, where Λr is the

root lattice of the gauge group and Tors is the torsion subgroup of H2(X; Λr). The ’t Hooft

flux and the phase (−1)λi·ξ
i
will be specified in details in the case rank one case below.

The Coulomb branch integral (2.42) vanishes for b+
2 > 1 due to fermionic integrations

- there is only one η for any value of b+
2 that enters the integral only via the last term in S 0.

The Coulomb branch integrand depends on a choice of Riemannian metric on X for

b+
2 = 1, but the dependence only enters through the cohomology class of a self-dual two-

form ω ∈ H2(X,R), so ω = ∗ω. We can normalize it such that
∫

X
ω ∧ ω = 1. When b+

2 = 1

there is a Lorentzian signature on the quadratic space H2(X,R), and we must choose a

component of the lightcone, which we can call the "forward light cone", in order to specify

ω uniquely. Such ω is sometimes calles a period point.

Rank one u-plane integral. It is referred to informally as the “u-plane integral.” For

additional background and discussion of the u-plane integral see [19, 36, 38].

The original discussion of [7] applied just to SU(2) Yang-Mills coupled to N f ≤ 4

fundamental hypermultiplets or one adjoint hypermultiplet, but in fact the measure makes

sense for any one-dimensional Coulomb branch.5 Although the integral is, conceptually,

best written as an integral over the u-plane, the path integral derivation leads more naturally

4One should, in general, distinguish the "physical discriminant" from the "mathematical discriminant".
5What is far less obvious is whether the measure is single-valued on the u-plane and whether the integral

over the u-plane is well-defined for other SW families of curves.
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to an integral over a special coordinate a so that it becomes

Zω
u =

∫
dadā AχBσ e2pu+S 2T (a)Ψ

Ψ :=
∑

λ∈λ0+Γ

e2πiλ·ξNλ

Nλ :=
dτ
dā

e
S 2

+
8πy ( du

da )2

√
y

e−iπτλ2
+−iπτλ2

−−i du
da (S ,λ−)

[
λ+ +

i
4πy

du
da

S +

] (2.45)

Let us explain the main ingredients of (2.45)

The sum Ψ is, essentially, the classical partition function of the U(1) gauge field on the

four-manifold. We think of Γ as embedded in the quadratic vector space H2(X;R). We have

introduced a shift λ0 and a phase ξ. In the case of SU(2), N f = 0 we have λ0 = 1
2w2(P)

where P is a principal SO(3) bundle, and ξ = 1
2w2(X) and the overline denotes an integral

lift. When τ→ ∞ as u→ ∞, 2ξ must be a characteristic vector on Γ for the measure to be

well-defined. In this case we can write λ = v + λ0, v ∈ Γ and the phase

e2πi(λ−λ0)·ξ = (−1)v·w2(X) (2.46)

In the case of SU(2) SYM with N f > 0 hypermultiplets we must take w2(P) = w2(X) so

we should take 2λ0 = 2ξ0 to be an integral lift of w2(X). Note that all anti-holomorphic

dependence and all metric dependence of the integrand is subsumed in the expression Nλ.

p is a fugacity conjugate to the insertion of the 0-observable O = u in the twisted par-

tition function. S ∈ H2(X;Z) is a homology class and determines a canonical 2-observable

O(S ) :=
∫

S
K2u, via the descent formalism [7]. Here K is a one-form supercharge such that

[K,Q] = d. The expression Zω
u should be viewed as a formal power series in p, S and it is

the contribution of the Coulomb branch to the correlation function 〈epO+O(S )〉 in the twisted

theory on X. a is a special coordinate suitable to a duality frame at u→ ∞. It is the period

of the Seiberg-Witten differential on a cycle that is invariant (up to a sign) under the path
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u→ e2πiu. Once we choose a B-cycle we have τ = x + iy, decomposed in terms of real and

imaginary parts. In the case of SU(2) with N f < 4 this is a frame in which y = Im τ→ +∞.

T (a) depends on the choice of duality frame and is known as a "contact term" it is given

by

T (a) = −
1
24

E2(τ)
(
du
da

)2

+ H(u) (2.47)

It is claimed in [7] that H(u) = u/3 for the case of SU(2) SYM with N f < 4. For systematic

treatments of such contact terms in twisted 4d N = 2 theories see [35–37].

2.6 Wall crossing and Seiberg-Witten contributions

A systematic derivation of the Witten conjecture of four-manifold theory (equation (2.14) of

[6]) relating the Donaldson and Seiberg-Witten invariants was presented in [7]. It involves

an integral over the Coulomb branch of the SU(2) N f = 0 theory. 6

The topological partition function of the twisted theory on X

Z = 〈e2pu+O(S )〉, (2.48)

where O(S ) =
∫

S
K2u is the canonical 2-observable associated to S , is a sum of the u-plane

integral with contributions that guarantee that the contribution of the vacua near u � us:

Z = Zu + ZS W , (2.49)

where

ZS W =
∑

s

Z(us) (2.50)

and the sum over s is a sum over the discriminant locus of the family of Seiberg-Witten

curves. When the family of elliptic curves in a neighborhood of us is of Kodaira type I1

6Mathematically rigorous proofs of the Witten conjecture have been given in [47] for complex algebraic
manifolds and in [48] for all standard four-manifolds of Seiberg-Witten simple type.
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(i.e., the discriminant has a first order zero at u = us while the Weierstrass invariants g2, g3

are nonzero at us) the method used in [7] can be applied.

ZSW,s = const·eiφs
∑

λ∈H2
Z+ξ

e2πiλλ0SW(λ)
∮
as=0

das

as
a−

1
2λ

2+ 1
8 (2χ+3σ)

s C(u)
λ2
2 P(u)

σ
8 L(u)χhe2pu+Ts S 2−i du

das
(S ,λ)

(2.51)

The ±1 jumps of SW invariants for b+
2 = 1 occur at ω such that there exists λ ∈ H2

Z + 1
2wX

satisfying (λ, ω) = 0, λ2 < 0. These are the same ω for which Z disc.
u jumps by the following

amount

∆Z disc
u = eiφseπiλwX

(±1)
∮
qs=0

dqs

qs
q−

1
2λ

2+σ
8 +1

s (q−1
s ∆)

σ
8

du
dqs

(das

du

)σ
2 −1

e2pu+Ts S 2−i du
das

(S ,λ) (2.52)

Therefore, for the functions C, P, L we obtain

C(u) a−1
s = q−1

s

P(u) · as = qs

(das

du

)4
(q−1

s ∆)

L(u) ·
das

as
as =

dqs

qs
qs

du
dqs

(das

du

)−1

⇒

C(u) =
as

qs

P(u) =
qs

as

(das

du

)4
(q−1

s ∆)

L(u) =
( du
das

)2

(2.53)

As a result the Seiberg-Witten contribution associated with singularity u = us is given by

Z(us) =αχβσ e2πi(λ0
2−ξs·λ0,s) eiϕs

∑
λ∈λ0,s+Γ

e2πiλ·ξs(−1)n(λ)SW(λ)·

(as

qs

)χh−1 du
dqs

(
∆

qs

)σ/8 (
das

du

)1−χ/2

e2pu+S 2Ts(as)−iλ·S du
das q−n(λ)

s


q0

s

(2.54)

Here λ0,s and ξs are the theta characteristics resulting from the duality transformation ap-

plied to Ψ in the neighborhood of us. Similarly, eiϕs is a root of unity arising from the

multiplier system in that duality transformation. The expression only makes sense for

λ0,s = 1
2w2(X) so that the sum on λ can be interpreted as a sum over the characteristic class
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of spin-c structures on X. 7 Then SW(λ) is the corresponding SW invariant associated with

the SW moduli space of dimension 2n(λ) where

n(λ) =
1
2
λ2 −

σ

8
− χh (2.55)

and χh := (χ + σ)/4. (For a complex surface χh is the holomorphic Euler characteristic.)

The special coordinate as vanishes at us and the coordinate qs = e2πiτs → 0 as u→ us. The

contact term Ts(as) is obtained from T (a) by duality transformation.

7(2λ) is the characteristic class of the spin-c structure, modulo torsion.
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Chapter 3

Divergent Q-exact operators on the

Coulomb branch via modular integrals

The Coulomb branch integral is quite subtle and requires careful definition. The integrand

is typically very singular at points u = us in the u-plane corresponding to zeroes of the

discriminant, as well as at u = ∞. The standard method (proposed in [7]) of defining it

is to reformulate it as an integral over the values of effective coupling constant τ = x + iy

valued in the fundamental domain H/D of the duality group D of the theory. The resulting

integral can be represented as a sum of modular integrals of the form

Lm,n,s =

∫
F∞

dτ ∧ dτ qmq̄ny−s, (3.1)

where m, n, s are real numbers such that m− n ∈ Z. For a large class of such (m, n), namely

when one of the two numbers is non-negative, the integral can be defined using a, by now

standard, prescription [9,10,15] to carry out the integral over x = Re τ first and the integral

over y second. Under this definition Lm,n,s is finite for m + n > 0 and s ∈ R or m + n = 0

with s > 1, but diverges exponentially for y = Im τ→ ∞ when m + n < 0.

Another prescription considered recently by Bringmann-Diamantis-Ehlen [11] in the

context of inner products of weakly holomorphic modular forms (see also [12] and [13]),
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employs analytic continuation of the incomplete Gamma function1. In this chapter we

review and compare the first and second definitions following [38].

3.1 The integrand on the fundamental domain

Making use of Matone’s formula [33]

du
dτ

=
4π
i

(u2 − 1)
(
da
du

)2

(3.2)

together with identities (2.37) and

da
du

(τ) =
ϑ2(τ)ϑ3(τ)

Λ
, (3.3)

one arrives at the following expression for the Coulomb branch integral for pure SU(2)

N = 2 theory:

Zω
λ0

=

∫
H/Γ0(4)

dτdτ ν̃(τ)Ψω
λ0,ξ

[K0]
(
τ, τ,

du
da

S
2π
, 0

)
. (3.4)

The holomorphic "measure term" ν̃(τ) is explicitly given by

ν̃(τ) := −8i(u2 − 1)
da
du
ϑ4(τ)σ . (3.5)

It transforms under the generators S T−1S : τ 7→ τ
τ+1 and T 4 : τ 7→ τ+ 4 of Γ0(4) as follows

ν̃
(

τ

τ + 1

)
= (τ + 1)2−b2/2e−

πiσ
4 ν̃(τ),

ν̃(τ + 4) = −ν̃(τ).

(3.6)

Near the weak coupling cusp τ → i∞ one has ν̃(τ) ∼ q−
3
8 , and near the monopole cusp

τD = −1/τ→ i∞ ν̃(τ) ∼ q1+σ
8

D .

1Such integrals have also been studied in the context of one-loop amplitudes in string theory [9, 14, 15],
and in mathematics as the (Petersson) inner product for cusp forms [17].
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The sum over U(1) fluxes can be conveniently expressed in terms of a Siegel-Narain

theta function Ψω
λ0,ξ

[K] : H→ C

Ψω
λ0,ξ

[K](τ, τ, z, z̄) =
∑

λ∈Γ+λ0

K(λ) (−1)(λ,ξ)q−
1
2λ

2
− q̄

1
2λ

2
+ exp (−2πi(z, λ−) − 2πi( z̄, λ+)) . (3.7)

where the lattice Γ � Zb2 is identified with H2(X,Z), λ0 = 1
2w2(E) ∈ 1

2Γ is the t’Hooft flux,

K : Γ→ C is a summation kernel

K = y−1/2(λ, ω) +
i

4πy3/2

du
da

(S , ω). (3.8)

z and z̄ are elliptic variable related to the surface observable and given by

z =
du
da

S
2π
, z̄ = 0 (3.9)

Modular invariance of the integrand under Γ0(4) transformations is an important

requirement for (3.4). The effect of inserting the kernel K into Ψω
λ0,ξ

is to increase the

weight by ( 1
2 ,

3
2 ) as the factor 1/

√
y contributes ( 1

2 ,
1
2 ) and (λ, ω) contributes (0, 1) to the

total weight. Then using (3.3), the modular transformation of Ψω
λ0,ξ

(A.12) as well as the

fact that ξ2 = w2(X)2 = 8+σ one finds that the integrand of (3.4) is invariant under τ 7→ τ
τ+1

transformation.

For the other generator of Γ0(4) τ → τ + 4, if (λ0,w2(X)) = 0modZ τ 7→ τ + 4 leads

to multiplication of the integrand by −1. However, one can show that Ψω
λ0,ξ

[K0] vanishes

in this case, so there is no problem with modular invariance2. We conclude therefore that

the Coulomb branch integral (3.4) is well defined since the measure dτdτ transforms as a

mixed modular form of weight (−2,−2) while the product ν̃Ψω
λ0,ξ

[K] is a mixed modular

2The derivative da
du transforms under the generators S TS and T 4 of Γ0(4) as

da
du

(τ + 4) = −
da
du

(τ),
da
du

(
τ

τ + 1

)
= (τ + 1)

da
du

(τ). (3.10)
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Modular form Mixed weight
dτdτ (−2,−2)
y (−1,−1)
∂τ raises (`, 0) to (`, 2)
ν̃(τ) (2 − b2/2, 0)
Ψω
λ0,ξ

[K0] (b2/2, 2)

Table 3.1: Modular weights of various ingredients for the u-plane integral. Transformation
are in SL(2,Z) for the first three rows, while in Γ0(4) for the last three rows.

form of weight (2, 2) making the integrand modular invariant. We close this section with

table 3.1 that collects the weights of the various modular forms that appear in the context

of u-plane integrals.

3.2 Regularization of modular integrals

Having transformed the u-plane integral to an integral over τ-domainH/Γ0(4) the integrand

becomes a function admitting Lauren expansion in powers of q1/4, q̄1/4. In fact, for fixed

number of operator insertions the Lauren series has only finitely many negative powers.

One can further map the integral over H/Γ0(4) to an integral over F∞ = H/SL(2,Z) with

elements 1, S , T , T 2, T 3, T 2S of SL(1,Z). As a result of this the u-plane integral can be

written as a finite sum of formal integrals of the form

I f =

∫
F

dτ ∧ dτ y−s f (τ, τ), (3.11)

where f is a non-holomorphic modular form of weight (2 − s, 2 − s), and F = H/SL(2,Z)

is a fundamental domain for the modular group SL(2,Z). In this section we consider sit-

uations when in I f is divergent and revisit a regularization of such integrals, which has

been developed in the mathematical literature in the context of inner products for weakly

holomorphic modular forms [11], i.e. modular forms that are holomorphic on the interior

of H but diverge when τ→ i∞∪ Q.
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To begin with, consider integral of a single term qm q̄n in the Fourier expansion of f .3

To this end, consider the set T of triples (m, n, s), defined by

T = {m, n ∈ R, s ∈ Z/2 |m − n ∈ Z} . (3.12)

For (m, n, s) ∈ T , we define

Lm,n,s =

∫
F∞

dτ ∧ dτ y−s qmq̄n, (3.13)

where F∞ is the common keyhole fundamental domain F = H/SL(2,Z) pictured in Figure

2.1. Since F∞ is non-compact and the integrand may diverge for y→ ∞, this is an improper

integral. It should be understood as the limiting value of integrals over compact domains,

which approach F∞. To this end, we introduce the compact domain FY by restricting

Im τ ≤ Y for some Y ≥ 1.4 The boundaries of FY are given by the following arcs

1 : τ = 1
2 + iy, y ∈ [1

2

√
3,Y],

2 : τ = x + iY, x ∈ [−1
2 ,

1
2 ],

3 : τ = −1
2 + iy, y ∈ [ 1

2

√
3,Y],

4 : τ = i eiϕ, ϕ ∈ [−π6 ,
π
6 ].

(3.14)

In the limit, limY→∞ FY we recover F∞. We then define Lm,n,s(Y) as

Lm,n,s(Y) =

∫
FY

dτ ∧ dτ y−s qmq̄n, (3.15)

for (m, n, s) ∈ T , and define

Lm,n,s = lim
Y→∞

Lm,n,s(Y), (3.16)

3We will justify in section 3.3 that the Fourier series and the integral can be exchanged.
4One may consider a more general upperbound with Y being a function of Re τ = x. This will not affect

the final result.
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provided the limit exists. To study the dependence on Y , we split the compact domain FY

into F 1 plus a rectangle [−1
2 ,

1
2 ] × [1,Y] as shown below in Figure 3.1, which yields

− 1
2

1
2

Y

Re(τ)

Im(τ)

Figure 3.1: Splitting of FY into F1 (the blue region) and the rectangle RY (gray region).

Lm,n,s(Y) =

∫
F1

dτ ∧ dτ y−s qmq̄n − 2i
∫ +1/2

−1/2

∫ Y

1
dx ∧ dy y−s qmq̄n. (3.17)

The first term on the right hand side is finite and independent of Y , while integration over

x ∈ [−1
2 ,+

1
2 ] in the second term yields

− 2i δm,n

∫ Y

1
dy y−s e−4πmy. (3.18)
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Therefore limY→∞ Lm,n,s(Y) converges, except for m = n < 0, or m = n = 0 with s ≤ 1. Let

us denote this set by D,

D = {(m, n, s) ∈ T |m = n < 0} ∪ {(0, 0, s) ∈ T | s ≤ 1} . (3.19)

As we will see below in section 2.5, there exist Q-exact operators whose contribution

on the Coulomb branch contains (m, n, s) ∈ D, and therefore diverges. This indicates a

dangerous IR divergence in presence of such operators.

One way of dealing with the cases m = n < 0 is to consider a regularized version Lr
m,n,s,

of Lm,n,s for all (m, n, s) ∈ T . Let us note that the limit of the sum

lim
Y→∞

[
Lm,n,s(Y) + 2i δm,n

∫ Y

1
dy y−s e−4πmy

]
= Lm,n,s(1) (3.20)

is finite. In the definition for Lr
m,n,s, we will subtract from the two terms in the brackets, a

regularized counter part of the second term. To this end, let us introduce the generalized

exponential integral E`(z) defined for Re z > 0 by

E`(z) =

∫ ∞

1
e−z tt−`dt. (3.21)

E`(z) for ` shifted by an integral value can be related to the original E`(z) by partial inte-

gration

e−z = z E`(z) + ` E`+1(z). (3.22)

We can also express E`(z) in terms of the incomplete Gamma function Γ(k, z),

Γ(k, z) =

∫ ∞

z
e−t tk−1dt = zkE1−k(z). (3.23)
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With the analytic continuation of Γ(k, z), we can extend the domain of E`(z) to the full

complex plane. We define

E`(z) =



z`−1
∫

z

∞

e−t t−` dt, for z ∈ C∗,

1
` − 1

, for z = 0, ` , 1,

0, for z = 0, ` = 1,

(3.24)

where for non-integral ` we fix the branch of t−` by specifying that the argument of any

complex number ρ ∈ C∗ is in the domain (−π, π]. For s ∈ R+, we have Im E`(−s) = −π s`−1

Γ(`) .

In terms of this function E`(z), we finally define Lr
m,n,s for all (m, n, s) ∈ T as

Lr
m,n,s =

∫
F1

dτ ∧ dτ y−s qmq̄n − 2i δm,n Es(4πm), (3.25)

This can be used to replace Lm,n,s for (m, n, s) ∈ D.

3.3 Modular invariant integrands

Let us start with the integral of a modular form over the fundamental domain,

I f =

∫
F∞

dτ ∧ dτ y−s f (τ, τ), (3.26)

where f (τ, τ) is a non-holomorphic modular form for SL(2,Z) of weight (2− s, 2− s), with

Fourier expansion

f (τ, τ) =
∑

m,n�−∞

c(m, n) qmq̄n, (3.27)

given by coefficients c(m, n) that, by the requirement that f is a modular form, are only

non-zero when m − n ∈ Z. We will in fact assume that f is in fact a function on H × H̄
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satisfying

f
(
aτ + b
cτ + d

,
aσ + b
cσ + d

)
= (cτ + d)2−s(cσ + d)2−s f (τ, σ), (3.28)

where for s ∈ Z+ 1
2 , we specify the branch of the square root by requiring that the argument

of cτ + d is in (−π, π]. For a single factor (cτ + d)2−s, consistency of the square root and

SL(2,Z) requires a non-trivial multiplier system. For f (τ, σ), the multiplier systems for τ

and σ are complex conjugate and multiply to 1 on the rhs of (3.28).

We allow f to have only finite number of terms with negative n + m, i.e. there is an

M ∈ Z such that c(m, n) = 0 if m + n < M. However, due to the terms with m + n ≤ 0, the

integrand in (3.26) diverges at y → +∞. If there are no terms with m = n < 0, the integral

is defined using a well-known regularization [9, 10, 15]. For m = n < 0 we introduce a

cut-off Y for Im τ as in section 3.2, and define I f (Y) as an integral of f over the domain FY

(3.14),

I f (Y) =

∫
FY

dτ ∧ dτ y−s f (τ, τ). (3.29)

We regularize the divergence of I f (Y) by subtracting terms involving the generalized

exponential function Es(z) defined in (3.24). More precisely, we replace I f by I r
f defined

as

I r
f = lim

Y→∞

I f (Y) − 2i
∑

m�−∞

c(m,m) Y1−sEs(4πmY)

 . (3.30)

Let us verify that the limit is well-defined. Since the domain FY is compact and the

sum over m and n is absolutely convergent on FY , we can exchange the double integral and

the sum. Thus,

I f (Y) =
∑

m,n�−∞

c(m, n) Lm,n,s(Y), (3.31)

with Lm,n,s(Y) as in (3.17). We substitute this expression in (3.30). Using

∫ Y

1
dy y−s e−4πmy = Es(4πm) − Y1−sEs(4πmY),
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we arrive at

I r
f =

∑
m,n�−∞

c(m, n) Lr
m,n,s , (3.32)

with Lr
m,n,s as in (3.25). This is finite since there are at most a finite number of terms with

m = n < 0, and the sum over other m and n is absolutely convergent by the above made

assumptions about f .

3.4 The case of total derivative integrands

If we assume that the integrand can be expressed as a total derivative with respect to τ, we

can evaluate the integral using Stokes’ theorem, and we will find that I r
f takes an elegant

form in this case. To this end, let us write y−s f (τ, τ) as

∂τ̂h(τ, τ) = y−s f (τ, τ), (3.33)

such that the integrand of (3.26) is in fact exact and equal to −d(dτ ĥ). Note that this

does not imply that dτ ∂τ̂h is exact, since d̂h = dτ ∂τ̂h + dτ ∂τ̂h. For our application to

modular integrals, ĥ(τ, τ) transforms as a modular form of weight two. Equation (3.33) can

be integrated using E`(z). For s , 1,

ĥ(τ, τ) = h(τ) + 2i y1−s
∑

m,n�−∞

c(m, n) qm−nEs(4πny), (3.34)

while for s = 1, the terms with n = 0 in the sum should be replaced by

−2i log(y)
∑

m�−∞

c(m, 0) qm.
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The c(m, n) in (3.34) are the Fourier coefficients of f (3.27), and h is a (weakly) holomor-

phic function with Fourier expansion

h(τ) =
∑
m�−∞

m∈Z

d(m) qm. (3.35)

Since there are no holomorphic modular forms of weight two for SL(2,Z), h(τ) is uniquely

determined by the coefficients d(m) with m < 0. However, since the d(m), m < 0, are

not determined by the c(m, n), the space of weakly holomorphic modular forms of weight 2

gives an ambiguity in h(τ). We will discuss below (3.39), that the integral I r
f is independent

of this ambiguity.

The modular properties of ĥ(τ, τ) imply interesting transformations for h(τ). Let us

consider this for the case that f depends on both τ and τ, but is such that the c(m, n) in

(3.34) are only non-vanishing for n > 0 (or n ≥ 0 and s > 1). We can then express ĥ as

ĥ(τ, τ) = h(τ) + 2s
∫ i∞

−τ

f (τ,−v)
(−i(v + τ))s dv. (3.36)

Note that the two terms on the right hand side are separately invariant under τ → τ + 1,

while the transformation of the integral under τ→ −1/τ implies for h(τ),

h(−1/τ) = τ2
(
h(τ) + 2s

∫ i∞

0

f (τ,−v)
(−i(v + τ))s dv

)
. (3.37)

Let us return now to the generic case with f (τ, τ) of the form (3.27) and evaluate I r
f .

The integral over FY can then be carried out using Stokes’ theorem, which reduces to a

contribution from the interval [−1
2 + iY, 1

2 + iY]. We thus find that the integral over FY in

(3.30) equals for s , 1,

d(0) + 2i lim
Y→∞

∑
m�−∞

Y1−s c(m,m) Es(4πmY), (3.38)
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using expression (3.34) for ĥ. For s = 1, we apply the renormalization by analytic contin-

uation in s mentioned below (3.19), which gives the same result.

The last step is to combine (3.38) with the other term in equation (3.30), which yields

I r
f = d(0). (3.39)

As a result the only contribution to the integral arises from the constant term of h(τ).

Recall that there is an ambiguity in h due to the possibility to add a weakly holomorphic

modular form of weight two. To see that the result (3.39) does not depend on this ambiguity,

let us note that a basis of weakly holomorphic modular forms of weight 2 is given by

derivatives of powers of the modular invariant J-function, ∂τ
(
J(τ)`

)
, ` ∈ N, which all have

vanishing constant terms.

3.5 Q-exact operators as total derivatives

Note that the zero-mode Lagrangian (2.43) can be written as

S 0 = 2πiτ(λ, λ) + Q(W), with W = −

√
2

16π
τ χ (F+ + D) (3.40)

Let us define Õ := O e−Q(W) and write Q(O) e−S 0 as Q
(
Õ

)
q−λ

2/2. Assuming b+
2 = 1 we

expand Õ in terms of η and χ yields

Õ(S ) =
∑

m=0,1

Õm,0 η
m +

∑
m=0,1

Õm,1 η
m (χ, ω), (3.41)

where Õm,n are functions of a, ā, λ and b.

Q
(
Õ(S )

)
=
√

2i∂āÕ0,0 η +
√

2i∂āÕ0,1 η (χ, ω) − i(λ+ − b)
∑

m=0,1

Õm,1 η
m. (3.42)
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Only the term with Õ0,1 survives the integration over fermion zero modes,

∫
dη dχQ

(
Õ(S )

)
= −
√

2i (S , ω) ∂āÕ0,1, with Õ0,1 = O0,1 q−λ
2
−/2q̄λ

2
+/2 exp

y
8π

b2.

(3.43)

We thus find that the Coulomb branch contribution to any Q-exact insertion can be written

as

〈Q(O)〉C.B. =

∫
dτdτ ∂τ

−i
√

2(S , ω)ν̃
∑

λ∈Γ+λ0

(−1)λ·ξq−λ
2
−/2q̄λ

2
+/2

∫
dbO0,1(b, λ) exp

y
8π

b2


(3.44)

for any Q-exact insersion Q(O).

Q-exact operators with finite non-zero contribution. As an example of how the bound-

ary term (3.44) can have sensible non-zero contribution consider ω-derivative of the zero-

mode action:

∂S
∂ωα

= Q(aα), where aα = χ

(
iy(λ−)α +

1
4π

du
da

(S −)α

)
(3.45)

The wall-crossing formula for the Coulomb branch part of 〈e2pu+O(S )〉 implies that the ω-

derivative of 〈e2pu+O(S )〉C.B. is given by

∂

∂ωα
〈e2pu+O(S )〉C.B. =

∑
λ∈Γ+λ0

(−1)λ·ξ ·
(
−

1
2

)
δ(λ+)

 q−
1
2λ

2 du
dτ

(
du
da

) 1
2 b2

∆
σ
8 e2pu−i du

da (S ,λ)+TS 2


q0

(3.46)

(3.46) on the other hand equals 〈Q(aα)e2pu+O(S )〉C.B..
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3.6 Divergent Q-exact operators

Consider the following operator in the UV description

I+(S ) = −
1

4π

∫
S

{
Q,

[
L,Tr φ̄2

]}
= −

1
2π

∫
S

{
Q,Tr φ̄ χ

}
,

(3.47)

where S ∈ H2(X, Z̄) is a two-cycle, and L is the twisted supersymmetry generator discussed

in section 2.3. The subscript + is to indicate that it involves a self-dual two-form field, and

is in a sense a self-dual counterpart of the holomorphic, anti-self dual Donaldson observable

O(S ) [19]. Using the action of L, we can determine the image of I+(S ) on the Coulomb

branch, denoted by Ĩ+(S ), in terms of the IR fields

Ĩ+(S ) = −
1

4π

∫
S

{
Q,

dū
dā
χ

}
= −

i
√

2π

∫
S

1
2

d2ū
dā2η χ +

√
2

4
dū
dā

(F+ − D)
 . (3.48)

Integration over b and fermion zero modes yields dτ
dā K+(λ), where K+(λ) is given by

K+(λ) :=
2 (S , ω)
√

y

(
−

1
2

d2ū
dā dτ

+
i

8 y
dū
dā

+
πi
2

dū
dā

λ2
+

)
. (3.49)

The sum over the U(1) fluxes can be written in a compact form as a total derivative with

respect to τ

Ψω
λ0,ξ

[K+](τ, τ) = −∂τ

(
(S , ω)
√

y
dū
dā

Ψω
λ0,ξ

[1](τ, τ)
)
. (3.50)

This expression demonstrates that Ψω
λ0,ξ

[K+] vanishes for (λ0,KM) = 1
2modZ, since Ψω

λ0,ξ
[1]

vanishes in this case. If non-vanishing Ψω
λ0,ξ

[K+] has the required modular properties: it

transforms with modular weight (b2
2 , 2), and changes sign under τ 7→ τ + 4.
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For the one-point function of Ĩ+(S ), we arrive at the integral

〈Ĩ+(S )〉 = −

∫
H/Γ0(4)

dτ ∧ dτ ∂τ

(̃
ν

(S , ω)
√

y
dū
dā

Ψω
λ0,ξ

[1]
)
. (3.51)

We can easily evaluate this integral using Stokes’ theorem. This reduces to arcs close to

the three cusps of H/Γ0(4), τ → i∞, 0 and 2. But here is where the surprise occurs: since

dū
dā diverges as q̄−

1
8 for τ→ ∞ and ν̃(τ) as q−

3
8 , we find integrals Lm,n,s (3.1) with both m and

n < 0 for the cusp at i∞! The standard prescription of integrating over x first and over y

second therefore does not cure the divergence if Ψω
λ0,ξ
∼ q

1
4 for τ→ i∞.

Using the regularization of section 3.2, we can show that the correlation functions of

the form 〈{Q,O}〉 vanish. At this point recall that 〈{Q,O}〉 can be expressed as

〈{Q,O}〉 =

∫
F∞

dτ ∧ dτ ∂τFO, (3.52)

with

FO(τ, τ) = y−s
∑
m,n

c(m, n) qmq̄n, (3.53)

where only a finite number of c(m, n) , 0 for m + n < 0. Let us first evaluate (3.52) using

section 3.4. Since

∂τFO = −i y−s
∑
m,n

c(m, n) (2π n + 1
2 s y−1) qmq̄n, (3.54)

we can identify FO with ĥ1 + ĥ2 following (3.33). Here ĥ1 is of the form (3.34) and ĥ2 as

well, but with s replaced by s + 1. FO is a (non-holomorphic) modular form of weight 2,

and the discussion in section 2.5 did not include a holomorphic function h1 + h2. Indeed,

since FO is a modular form of weight 2, vanishing of h1 + h2 is consistent with the modular

properties. The sum of constant terms d1(0) + d2(0) thus vanishes, which demonstrates that

〈{Q,O}〉 vanishes.
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Alternatively, one may start from (3.30) with f = ∂τFO, such that 〈{Q,O}〉 reads

〈{Q,O}〉 = lim
Y→∞

[∫
FY

dτ ∧ dτ ∂τFO

−2Y−s
∑

m�−∞

c(m,m)(2πm Y Es(4πmY) +
s
2

Es+1(4πmY))

 . (3.55)

To evaluate the integral over FY , we use Stokes’ theorem. Modular invariance of the inte-

grand implies that only the arc at Im τ = Y contributes. Using (3.22) for the second line,

we obtain

〈{Q,O}〉 =
∑

m

c(m,m) lim
Y→∞

[
Y−s e−4πYm − Y−s e−4πYm

]
= 0. (3.56)

We have thus demonstrated that the correlation function of a generic Q-exact observable

vanishes with the current prescription.
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Chapter 4

Topological partition function of

Argyres-Douglas theory

Recall that the u-plane integral can be written in a form that applies to any one-dimensional

Coulomb branch. In this chapter we will apply it to the SU(2), N f = 1 family (4.1) and the

AD3 family (4.4), in which case we will write ZS U(2),N f =1
u and ZADFamily

u , respectively.

Our basic line of reasoning is the following. From reference [26] we know that in the

SU(2) N f = 1 theory at a special value of the quark mass, m = m∗, the IR physics near a

special vacuum u = u∗ is described by the AD3 theory. Moreover there is no noncompact

Higgs branch for the SU(2) N f = 1 theory so if we take the m → m∗ limit of the partition

function we should be able to extract the AD3 partition function. In section 4.2 below we

will make this more precise. In section 4.4 we explain that on manifolds with b+
2 = 1 the

topologically twisted AD3 partition function is, in fact, not diffeomorphism invariant, but

varies continuously with the metric. In section 4.7 we discuss implications of the main

formulae (4.109), (4.111) for four-manifolds.
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4.1 SU(2) N f = 1 and AD3

Seiberg-Witten geometry of N f = 1 and AD3 theories

The Seiberg-Witten curve Σ for SU(2) theory coupled to a single hypermultiplet in the

fundamental representation was first presented in [59]. The class S presentation of this

curve is

λ2 =

(
Λ2

z
+ 3u + 2Λmz + Λ2z2

) (
dz
z

)2

(4.1)

where Λ is the dynamically generated scale, m is the mass of the hypermultiplet, u is a

coordinate on the Coulomb branch, and z ∈ C � C∗ is a coordinate on the UV curve C. The

Seiberg-Witten curve is a subset of T ∗C where the restriction of the canonical Liouville

one-form on T ∗C to Σ is the canonical Seiberg-Witten differential λ = x
z dz.

As observed in [26] when m = 3
2ωΛ, with ω a third root of unity, three branch points of

the curve collide and the discriminant of the curve has a multiple zero. For definiteness we

consider the limiting behavior as m → m∗ := 3
2Λ, so the discriminant has a double zero at

u = u∗ := Λ2 where two roots u±(m) collide. To define a scaling limit we change variables:
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Figure 4.1: Collision of singularities in the Coulomb branch of N f = 1 theory at critical
value of the UV quark mass m = m∗.

ms =
3
2

Λs + δm u = Λ2
s + δu z = −1 + z̃ (4.2)
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Define

z̃ = −εzAD

4Λδm − 3δu = 3ε2Λ2
AD

2Λδm − 3δu = −ε3uAD

λ = ε5/2λAD

(4.3)

and take ε → 0 holding all quantities with subscript AD fixed. The result (now and in

what follows we drop the AD subscript for readability) is the AD3 family of curves as used

in [50]:

λ2 = (z3 − 3Λ2z + u)(dz)2 (4.4)

The AD3 theory is described by the limit Λ→ 0 at the origin of the Coulomb branch u = 0.

A key point made in [26] is that at the points u±(m) of the SU(2), N f = 1 family, the

hypermultiplets with mutually nonlocal U(1) charges become massless. Therefore, when

m → m∗ and u → u∗ there are massless particles coupled to the U(1) gauge field and its

dual and the low energy effective theory cannot be described by a Lagrangian. It is, in fact,

the AD3 theory weakly coupled to other degrees of freedom in the SU(2), N f = 1 theory.

We remark that the AD3 theory was first discovered at a point in the Coulomb branch of

pure SU(3) N = 2 SYM [25]. However, in that case the U(1) flavor symmetry associated

with the mass parameter is gauged and therefore integrated over. For our purposes it is

much better to keep it as a free parameter.

The U(1)R charge anomaly of AD3

There is a simple conceptual reason for the selection rule U = 0 we have found: It is

the selection rule enforced by the the U(1)R symmetry of a superconformal theory. It

was pointed out that such U(1)R selection rules would apply to twisted superconformal

collerators in [22] although the background charge for the AD3 theory deduced from the
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measure of the SU(3) Coulomb branch was incorrectly stated in that paper to be −χ/10.

The correct determination of the background charge from the measure, expressed in terms

of the conformal anomaly coefficients a and c, was derived in [52]. We briefly recall the

derivation here.

The result of [52] is based on the fact that the U(1)R current is in a superconformal

supermultiplet with the energy-momentum tensor. (See [58] for a useful discussion.) The

result of [52] can equivalently be summarized in the anomaly eight-form [27]

A = (a − c)(c1(R)p1(T X) − c1(R)3) − (4a − 2c)(c1(R)c2(E)) (4.5)

where a, c are the usual anomaly coefficients of the Weyl anomaly, R is a U(1)R symmetry

line bundle and E is the SU(2)R symmetry bundle.

Applying the usual descent formalism and plugging in the AD3 values a = 43/120 and

c = 11/30 gives indeed the expected value

−
1
20

(7χ + 11σ) (4.6)

The U(1)R charge of the canonical 0-observable is 6/5 and hence that of the 2-observable

Q(S ) is 1/5. 1 Therefore, dividing the selection rule U = 0 by 5 gives the expected U(1)R

symmetry selection rule:

6
5
` +

1
5

r =
χh − c2

1

5
= −

1
20

(7χ + 11σ) (4.7)

Remark: When b1 is nonzero we can also introduce 1- and 3-observables Q(γ) =
∫
γ

Ku

and Q(Σ) =
∫

Σ
K3u, for γ ∈ H1(X;Z) and Σ ∈ H3(X;Z), respectively. The selection rule

1To see this note that λ and Z have U(1)R charge +1, the supersymmetry operator K has charge − 1
2 .
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now becomes

12
10

n0 +
7

10
n1 +

2
10

n2 −
3

10
n3 =

χh − c2
1

5
= −

1
20

(7χ + 11σ) (4.8)

The notable feature here is that the expression on the left-hand side can now be negative,

and moreover the relative minus sign allows the possibility of infinitely many nontrivial

correlation functions, in strong contrast to the simply connected case.

4.2 Topological partition function for AD3

In order to extract the partition function of the AD3 theory from that of the SU(2), N f = 1

theory we use the following principles:

1. The limit of ZS U(2),N f =1 as m → m∗ must exist since there are no noncompact Higgs

branches. (Noncompact Higgs branches are the only source of IR divergences given

that X is compact and the contribution from u→ ∞ is finite.)

2. The resulting path integral must be an integral over all Q-invariant field configura-

tions.

3. According to [26] those Q-invariant configurations include the supersymmetric

"states" of the AD theory, perhaps coupled to other degrees of freedom in the theory.

However, at m = m∗ those couplings should be arbitrarily weak in the scaling region

of the u-plane near u∗.

4. We can therefore isolate the AD configurations by focusing on the contribution from

an infinitesimally small neighborhood of the colliding singularities u±(m) plus the

SW contributions associated with those points.

When m = m∗, the family (4.1) has a singularity at u = u∗, where two singularities

u±(m) have collided, and another singularity u0 far away from the scaling region. Since
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the definition of the integral requires a subtle regularization over the noncompact regions it

turns out that

ZS U(2),N f =1
u −

∫
dudū lim

m→m∗

(∣∣∣∣da
du

∣∣∣∣2AχBσe2pu+S 2T (u)Ψ

)
(4.9)

has a nonzero Laurent expansion in power of λ0
1/4 around µ = 0 where µ := (m − m∗)/Λ1.

Here the integral of the m → m∗ limit of the integrand of ZS U(2),N f =1
u is defined by cutting

out disks around u0 and u∗ and taking the limit as the disks shrink. The singular terms in

expansion (4.9) will cancel against similar singular terms from ZS W . The constant term (i.e.

the coefficient of µ0) is in general nonzero and does not cancel against the constant term

from ZS W .
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Figure 4.2: The neighborhood B(ε; u∗) for sufficiently small (m − m∗) << ε and ε << Λ

corresponds to the AD family of curves.

The quantity (4.9) comes from the integration over an infinitesimal region near u = u∗.

Indeed, for any ε > 0 let B(ε; u∗) be a disk around u∗ with |u−u∗| < ε. When m is sufficiently

close to m∗ the two colliding singularities u±(m) will be inside this disk. Therefore, for any

fixed ε > 0:

lim
m→m∗

∫
C−B(ε;u∗)

dudū
(∣∣∣∣da

du

∣∣∣∣2AχBσe2pu+S 2T (u)Ψ

)
=

∫
C−B(ε;u∗)

dudū lim
m→m∗

(∣∣∣∣da
du

∣∣∣∣2AχBσe2pu+S 2T (u)Ψ

)
(4.10)

Therefore, in view of the limiting behavior reviewed in section 4.1 we should attribute the

difference to the contribution of the AD partition function on four-manifolds with b+
2 = 1.
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In the SU(2) N f = 1 family when m → m∗ and u → u∗ the AD3 theory is still weakly

coupled to other degrees of freedom in the original gauge theory. The detailed considera-

tions of section 4.5 show that we should extract a factor e2p(u∗+ 2
3µ)+S 2T∗ to account for these

couplings. Here and henceforth we will choose units so that Λ1 = 1. The peculiar shift by

2µ/3 in the coefficient of p is due to the linear combinations (4.2). Thus we consider the

constant term in the Laurant expansion around µ = 0:

[
e−2p(u∗+ 2

3µ)−S 2T∗

(
ZS U(2),N f =1

u −

∫
dudū lim

m→m∗

(
AχBσe2pu+S 2T (u)Ψ

))]
µ0

(4.11)

Again, the detailed considerations of section 4.5 strongly motivate the following conjec-

tures:

1. The constant term in (4.11) is in fact a polynomial in p and S , in striking contrast to

the partition functions of Donaldson-Witten theory. We will denote in by P1(p, S ).

2. Furthermore, if we define a grading of the polynomial P1(p, S ) by "R-charge" with

R[p] = 6 and R[S ] = 1 then the highest degree is given by 6` + r = B := −1
4 (7χ +

11σ).

3. If one considers the u-plane integral for the AD3 family (4.4) it has a similar expan-

sion in powers of Λ
1/2
AD around ΛAD = 0 and the constant term PAD(p, S ) is also a

polynomial in p and S .

4. Finally, defining Ptop
1 (p, S ) be the sum of terms with maximal R-charge we have:

Ptop
1 (p, S ) = NPAD(n0 p, n2S ) (4.12)

for suitable constants N, n0, n2.2

2We interpret the terms of lower R-charge in the polynomial P1(p, S ) as effects arising from the coupling
of the AD3 theory to other degrees of freedom in the SU(2) N f = 1 theory. It would certainly be useful to
understand the physics of the lower order terms better.
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The results of sections 4.5 and 4.4 are enough to prove all the above claims for the

difference of u-plane integrals for any two choices of metric. Moreover, they establish the

above claims absolutely when X has a homotopy type so that the u-plane integral has a

vanishing chamber in the sense explained in section 5 of [7].

These considerations motivate our central formula for how to extract the physics of the

AD3 theory from the expansion around µ = 0 of the SU(2) N f = 1 partition function3:

Z̃AD :=
[
e−2p(u∗+ 2

3µ)−S 2T∗

(
ZS U(2),N f =1

u −

∫
dudū lim

m→m∗

(
AχBσe2pu+S 2T (u)Ψ

))]TopR−charge

µ0

+

[
e−2p(u∗+ 2

3µ)−S 2T∗
(
ZS U(2),N f =1

S W (u+(m)) + ZS U(2),N f =1
S W (u−(m)))

)]TopR−charge

µ0

(4.13)

On the other hand, a very natural way to define the partition function of the AD3 theory is

to use directly the family of curves (4.4) and define:

ZAD = lim
ΛAD→0

[
ZAD f amily

u + ZAD f amily
S W

]
(4.14)

We conjecture that, up to an overal constant and renormalization of p and S , we have

Z̃AD = ZAD. Again, a full proof of this statement follows from the considerations of section

4.5, if we consider the difference of partition functions for two metrics, or if we consider a

homotopy type X admitting a vanishing chamber. Moreover, if b+
2 > 1 then the statement

is an easy consequence of the relationship of the two curves described in section 4.1.

Our main conjecture is that

ZAD = 〈epQ+Q(S )〉 (4.15)

for the topologically twisted AD3 theory on four-manifolds X with b+
2 > 0.

3Several arguments show that for the AD3 theory H(u) = 0.
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4.3 The u-plane integrand as total derivative

In this section we will show that if we consider the difference of two u-plane measures

at different period points ω and ω0 then the measure can naturally be written as a total

derivative of a well-defined one-form on the u-plane. Our approach here was strongly

influenced by [19].

Up to an overall constant the measure on the u-plane can be written as

dµωCoulomb = dudū ĤΨ, where

Ψ = −4i
∑

λ∈Γ+λ0

(−1)(λ−λ0)ξ
(

d
dū

E(ρωλ , ρ0)
)

e−iπτλ2−i du
da (λ,S )

Ĥ =

(
du
da

)1−σ/2

∆σ/8e2pu+TS 2
E(ρ, ρ0) :=

∫ ρ

ρ0

dt e−2πt2

(4.16)

The period point ω is explicitly written in the notation of the measure in (4.16) since the

dependence on ω will be important in what follows. The lower bound ρ0 in the contour

integral E(ρωλ , ρ0) is fairly arbitrary. It can depend on λ, u, etc, but not on ū.

Consider the difference of u-plane measures for two different metrics with period points

ω and ω0. Then we can write

dµωCoulomb − dµω0
Coulomb = dΩω,ω0 (4.17)

where Ωω,ω0 is a (1, 0) form:

Ωω,ω0 = −du ĤΘ̃ω,ω0

Θ̃ω,ω0 = Θ̃ω,ω0(ξ, λ0, τ, z) :=
∑

λ∈Γ+λ0

(−1)(λ−λ0)ξE(ρωλ (z), ρω0
λ (z))e−iπτλ2−2πi(z,λ)

z =
1

2π
S

du
da

(4.18)
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The indefinite theta series Θ̃ω,ω0 is both absolutely convergent and satisfies the modular

transformation properties

Θ̃ω,ω0(ξ, λ0; τ + 1, z) = e−iπλ2
0Θ̃ω,ω0

(
ξ −

1
2

(w2 + 2λ0), λ0; τ, z
)

Θ̃ω,ω0(ξ, λ0;−
1
τ
,

z
τ

) = eiπ/2(−iτ)b2/2e−2πiλ0·ξe−iπz2/τΘ̃ω,ω0(λ0,−ξ; τ, z)
(4.19)

where b2 is the rank of Γ. It now follows that the difference of u-plane integrals can be

written as
Zω

u − Zω0
u =

∫
u-plane

d
(
duĤΩω,ω0(ξ, λ0; τ, z)

)
=

( ∮
|u|=1/ε

−
∑

s

∮
|u−us |=ε

)
duĤΩω,ω0(ξ, λ0; τ, z)

(4.20)

We now use the contour integral representation (4.19) to show that there is a formal

series in p, S expressed as a contour integral, and denoted Gω(p, S ), or just Gω, such that

Zω
u − Zω0

u = Gω −Gω0 (4.21)

The point here is that Gω only depends on a single point and is expressed as a contour

integral. Before deriving (4.21) let us draw from it some useful consequences.

First, (4.21) implies that Zω
u = Gω+ω-independent power series in p and S . As we will

see in the derivation of (4.21) the formula is only valid when ω and ω0 are in the same

component of the light cone in H2(X;R). On the other hand, Zω
u is defined for ω in either

component and moreover Z−ω = −Zω. Therefore we conclude that

Zω
u = Gω + C(p, S )sign(ωt) (4.22)

where C(p, S ) is independent of ω and ωt is the "time component" of ω.

It remains to prove (4.21). We begin with the contribution of a finite point us and

assume that Im τs → +∞ and assume that das/du is finite as u → us. Then, provided the

metric so that there is no λ with λ+ = 0, the indefinite theta function in (4.18) simplifies
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and we can replace the difference of error functions by 1
√

8
(sign(λ · ω) − sign(λ · ω0)). But

now we note that if ω and ω0 are in the same component of the lightcone then their time

components ωt and ωt
0 have the same sign and hence sign(λ · ω) − sign(λ · ω0) = 0 when

λ2 ≥ 0. Therefore, in evaluating the residue integral around u = us in (4.20) we can replace

Θ̃ω,ω0 by Fω
s − Fω0

s where

Fω
s :=

1
√

8

∑
λ2<0

sign(λ, ω)e−iπτλ2−2πiz·λ · (−1)(λ−λ0)·ξ (4.23)

Note that because of the restriction λ2 < 0 this sum converges absolutely. Moreover it is a

function purely of ω and not of ω0. Let Gω
s be the corresponding contour integral

Gω
s :=

∮
us

duĤFω
s . (4.24)

We would like to do something similar to write the integral around u = ∞ but there are

two cases

1. For SU(2) N f < 4 we have du/da→ ∞ as u→ ∞.

2. For the conformal theories of interest we have τ → τ∗ as u → ∞ and Im(τ) does

not go to infinity so we cannot replace the error functions by differences of sign

functions.

To deal with this complication we note that the u-plane integral really only has meaning

as a formal power series in p and S . Therefore, we should use the expansion of the error

function

E(r + a) = E(r) − 2πe−2πr2
∞∑

n=1

(−2πa)n

n!
Hn−1(2πr) (4.25)
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where Hn(x) are the standard Hermite polynomials. Applying (4.25) gives:

Θ̃ω,ω0 : =
∑

λ∈Γ+λ0

(
E(
√

yλ · ω) − E(
√

yλ · ω0)
)
e−iπτλ2−2πiz·λ(−1)(λ−λ0)ξ

+

∞∑
n=1

(Θω
n − Θω0

n )
(4.26)

where the θωn come from the n-th term in the sum in (4.25) and are absolutely convergent

as sums in λ. For a fixed monomial p`S r only a finite number of such terms will contribute

so we do not need to worry about the convergence of the sum on n in
∑

n Θn. Now, since

we are considering a contour on a circle whose radius goes to infinity, if y → +∞ we can

replace this expression by Fω
∞ − Fω0

∞ where

Fω
∞ :=

∑
λ2<0

sign(λ · ω)e−iπτλ2−2πiz·λ(−1)(λ−λ0)·ξ +

∞∑
n=1

Θn (4.27)

is a well defined function of a single period point ω. In the conformal case when y → y∗

has a finite limit as u→ ∞ we write

E(
√

yλ · ω) − E(
√

yλ · ω0) = E(
√

yλ · ω;∞) − E(
√

yλ · ω0;∞) (4.28)

Now we can separate terms and obtain a well defined function Fω
∞.

Finally, let Gω
∞ denote the contour integral of duĤFω

∞ around the circle at infinity and

let

Gω := Gω
∞ +

∑
s

Gω
s (4.29)

This completes the proof of (4.21).
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4.4 The u-plane contribution to ZAD

We now turn to the u-plane integral ZAD3Family
u . We will find that, once again, the coefficient

of Λ0
AD in the expansion around ΛAD → 0 is a polynomial with terms satisfying the selaction

rule U = 0. (In particular, it vanishes for manifolds such that S 2×S 2 and CP2, cases where

the corresponding intgerals in Donaldson theory are quite interesting.)

We do not know how to give a general contour integral expression for the result of

the u-plane integral, but one key feature can be immediately noticed: in the AD3 family

the τ-parameter approaches a finite value τ∗ as u → ∞. Just as in the case of the SU(2),

N f = 4 theory studied in [7] this results in continuous metric dependence: The general

arguments for invariance of the topological partition function fail utterly. We expect this

to be a generic property of topologically twisted superconformal partition functions on

four-manifolds with b+
2 = 1.

Note that for the AD3 family, even when ΛAD , 0 for u → ∞ we have, in any duality

frame

a→ κu5/6 + . . .

aD → κτ∗u5/6 + . . .

(4.30)

where κ is a nonzero constant and τ∗ is in the PS L(2,Z) orbit of eiπ/3. For concreteness, we

will choose a frame so that τ∗ = eiπ/3. This means that da/du ∼ u−1/6 + . . . is not single-

valued on the u-plane. It is quite nontrivial, and somewhat remarkable, that the u-plane

measure is in fact well-defined at u → ∞. Nevertheless, one can indeed check that it is

well defined by directly making the modular transformation of the integrand by (TS )−1.

From the physical viewpoint it is quite important that the measure be well-defined on the

u-plane and not just on some cover.

As explained in section 4.5, it is possible to write the u-plane integral as a sum of

contour integrals when we consider the difference of integrals for two period points ω and
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ω0. The continuous metric dependence for the AD3 family comes from the contour at

u → ∞ and this difference can be written as Gω
∞ − Gω0

∞ where Gω
∞ is a contour integral

depending on ω and not both ω,ω0. Using the expansions in (4.50) et. seq. we can be quite

explicit. Up to an overall normalization factor we have:

Gω
∞ = −

∮
γ∞

du
u

u−B/6e−
w2
24 E2(τ∗)∑

λ

∫ ∞

√
y∗λ·ω

e−2πt2dt
 e−iπτ∗λ2−iw·λ(−1)(λ−λ0)·w2

+2π
∞∑

n=1

(
iw·ω
2
√

y∗

)n

n!

∑
λ

Hn−1(2π
√

y∗λ · ω)e−iπτ∗λ2
+−iπτ∗λ2

−−iw·λ(−1)(λ−λ0)·w2

(4.31)

where w = κ2u1/6S , the constant κ2 is given in equation (4.54), and Hn are standard Hermite

polynomials.

In particular, if σ = −7 so B = 0 the we have a nonzero constant:

Gω
∞ = −2πi

∑
λ

∫ ∞

√
y∗λ·ω

e−2πt2dt
 e−iπτ∗λ2−iw·λ(−1)(λ−λ0)·w2 (4.32)

and if σ = −8 so B = 1 then we have a linear function of S :

Gω
∞ = −2πκ2

∑
λ

∫ ∞

√
y∗λ·ω

e−2πr2
dr

 (S · λ)e−iπτ∗λ2−iw·λ(−1)(λ−λ0)·w2

+
π
√

y∗
S · ω

∑
λ

e−iπτ∗λ2
+−iπτ∗λ2

−(−1)(λ−λ0)·w2


(4.33)

and so on. Clearly, these expressions depend continuously on the metric and do not vanish

as ω approaches any boundary of the light cone.
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4.5 Details on the relation of SU(2), N f = 1 and AD3

Coulomb branch integrals

In this section we prove the claims made between equations (4.9) and (4.15) for the

Coulomb branch integrals of SU(2), N f = 1 and AD3 theories.

We consider a small disk B(u∗, ε) of radius ε around the critical point u∗. Let γε be the

counterclockwise oriented boundary. Set Λ1 = 1 so that u∗ = 1 and define the deviation

from the critical mass by m = 3
2 + µ. Then we cut out disks of radius δ, with δ << ε around

the colliding points u± in the discriminant locus and let γ± be the ccw oriented boundaries

of these discs. We are going to prove that

P1(p, S ) :=
[
e−2p(u∗+ 2

3µ)−T∗S 2

(∮
γε

Ω −

∮
γ+

Ω −

∮
γ−

Ω

)]
µ0

(4.34)

is a polynomial in p and S . Here it is understood that we take δ → 0 then ε → 0. As

mentioned above the quantity in square brackets might have divergent terms for µ → 0. It

has a Laurent expansion in µ1/4 around µ = 0. The singular terms will cancel against other

terms coming from the Seiberg-Witten contribution to the partition function. In any case,

our main focus here is on the constant term, i.e. the coefficient of µ0.

Moreover, we will compare the polynomial P1(p, S ) to the u-plane contribution for the

AD3 theory

PAD(p, S ) =

[(∮
γ∞

ΩAD −

∮
γAD

+

ΩAD −

∮
γAD
−

ΩAD

)]
Λ0

AD

(4.35)

where now γAD
± are small contours of radius ε around the two points in the AD3 discrim-

inant locus u± = ±2Λ3
AD. We will show that PAD(p, S ) is also a polynomial in p and S .

Furthermore, if we define a grading of the polynomial P1 by "R charge" with R[p] = 6 and

R[S ] = 1 then we will show that the highest degree is given by 6`+ r = B = −1
4 (7χ+ 11σ).

Finally, defining Ptop
1 (p, S ) to be the sum of terms with maximal R-charge we will show
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that

Ptop
1 (p, S ) = NPAD(n0 p, n2S ) (4.36)

for suitable constants N, n0, n2.

In the proof it is useful to note that for b+
2 = 1 we haveB = −7−σ and 1−χ/2 = σ/2−1

and we recall that, up to an overall normalization we have (4.17) with

Ω = du
(
du
da

)1−σ/2

∆σ/8e2pu+S 2T Θ̃ω,ω0(λ0, λ0; τ, z) (4.37)

where λ0 = 1
2w2(X). It will be crucial to compare expressions for du/da and u in the

relevant expansions in the N f = 1 and AD3 contour integrals.

We begin with the expressions in the N f = 1 theory

[
e−2p(u∗+ 2

3µ)−T∗S 2
∮
γε

Ω

]
µ0

(4.38)

Here we can set µ = 0 in the expressions for Ω so that the two points u± collide at u = u∗.

In evaluating this integral we expand the integrand in powers of (u − u∗) and perform the

contour integral. When µ = 0 we find that τ(u) approaches τ∗ = eiπ/3 as u→ u∗ and indeed

τ = τ∗ + PS ((u − u∗)1/3) (4.39)

where PS (x) means power series in positive powers of x that vanishes at x = 0. Similarly:

du
da

= κ1(u − u∗)1/6
(
1 + PS ((u − u∗)1/3)

)
(4.40)

with

κ1 =

−1
4

(
3
ρ

)2 (
−

4
9

)1/3

(E6(τ∗))−1/3

1/2

(4.41)
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Similarly,

du
(du
da

)1−σ/2
∆σ/8 = N 1

∞

d(u − u∗)
(u − u∗)

(u − u∗)−B/6(1 + PS ((u − u∗)1/3)) (4.42)

with

N 1
∞ = κ1−σ/2

1 (u∗ − u0)σ/8 (4.43)

and finally, T∗ = u∗/3 and

T − T∗ = −
κ2

1

24
E2(τ∗)(u − u∗)1/3

(
1 + PS ((u − u∗)1/3)

)
(4.44)

The integral over the phase of u − u∗ will kill all terms in the power series except those

proportional to
d(u − u∗)
(u − u∗)

(|(u − u∗)1/3|)n (4.45)

for some integer n, and in our expressions n is always nonnegative. However, since we also

take ε → 0 limit, inly the terms with n = 0 will contribute. We thus concentrate on the

Laurent expansion in (u − u∗)1/3 working to zeroth order in the power series expansion in

(ū − ū∗)1/3.

Now, since (τ − τ∗) and du/da are expansions in positive powers of (u − u∗)1/3 the

resulting contour integral is a polynomial in p and S . Moreover, S always multiplies du/da,

so by (4.40) if we assign charge +1 to S and +6 to p then the leading powers of (u − u∗)1/3

are governed by the natural grading 6` + r. The higher order terms in the expansions

in (u − u∗)1/3 above will contribute to lower degree terms in the polynomial P1. So the

contribution to Ptop
1 only comes from the leading order terms in the above expansions giving

the contribution to the polynomial:

Ptop
1,∞ = N 1

∞

∮
d(u − u∗)
(u − u∗)

(u − u∗)B/6e2p(u−u∗)F∞(κ1(u − u∗)1/6S ) (4.46)
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where

F∞(w) = e−
w2
24 E2(τ∗)

∑
λ∈Γ+λ0

(−1)w2·(λ−λ0)E (ρωλ (w); ρ0)e−iπτ∗λ2−iw·λ (4.47)

and here

ρωλ (w) :=
√

y∗λ+ −
i

2π
√

y∗
w+ (4.48)

Let us compare the above contribution to Ptop
1 with the corresponding expression in the

AD3 theory [∮
γ∞

ΩAD

]
Λ0

AD

(4.49)

Since we are after the constant tesm we consider the AD3 family with ΛAD → 0.

Equation (4.93) can be written as:

(E4(τ))3

(E6(τ))2 = 4
(
Λ3

u

)2

(4.50)

and (4.95) can be written as

(
du
da

)2

= −
1
6

(
3
ρ

)2 E4(τ)
E6(τ)

u
Λ2 (4.51)

Now, as u→ ∞,

τ − τ∗ = 22/3 (E6(τ∗))2/3

E′4(τ∗)

(
Λ3

u

)2/3 1 + PS

(Λ3

u

)2/3 (4.52)

and (
du
da

)
= κ2u1/6

1 + PS

(Λ3

u

)2/3 (4.53)

κ2 =

− 1
12

(
3
ρ

)2 22/3

(E6(τ∗))1/3

1/2

(4.54)

Similarly,

du
(
du
da

)1−σ/2

∆σ/8 = N AD
∞

du
u

u−B/6
1 + PS

(Λ3

u

)2/3 (4.55)
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with N AD
∞ = κ1−σ/2

2 .

Once again, since we are taking the contour to infinity, we can focus on the holomorphic

expansion in u1/6. All the higher order terms in the power series have positive powers of

ΛAD and hence, again, we need only consider the leading order terms to get the contribution

at Λ0
AD. We have

PAD,∞(p, S ) = N AD
∞

∮
∞

du
u

u−B/6e2puF∞(κ2u1/6S ) (4.56)

with the same function F∞ defined in (4.47).

Comparing the two expressions we will find an equality of the kind (4.36), for this

contribution to the polinomial, provided

N 1
∞(2p)`(κ1S )r = NN AD

∞ (2n0 p`)(n2κ2S )r (4.57)

for r + 6` = B. We solve for r in terms of ` and B and then since different powers of `

appear in th polynomial we must have

N 1
∞κ
B
1 = NN AD

∞ (n2κ2)B (4.58)

(
κ2

κ1

)6

=
n0

n6
2

(4.59)

Now we consider an analogous computation for the contributions from γ±. First we

consider [
e−2p(u∗+ 2

3µ)−T∗S 2
∮
γ±

Ω

]
µ0

(4.60)

in the N f = 1 theory. Here we will be writing the integrand as a power series in the local

duality frame q±.
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For small µ the two points in the discriminant locus have an expansion

u+ = 1 +
2
3
µ +

(
2
3

)5/2

µ3/2 + . . . (4.61)

u− = 1 +
2
3
µ −

(
2
3

)5/2

µ3/2 + . . . (4.62)

A subtle point is that if we take the limit at u → u∗ with µ held fixed then the expansions

for u and du/da involve an infinite series of increasingly divergent terms in µ. The correct

scaling limit 4 is to define

u = u± + µ3/2v (4.63)

and take the limit µ→ 0 holding v fixed. With this understood we have

e2pu = e2p(u∗+ 2
3µ)e±2pµ3/2(2/3)5/2E6/E

3/2
4 (1 + O(µ1/2)) (4.64)

where the Eisenstein series are expansions in q± in the standard way. Next we can write

du
da

= κ2E−1/4
4 µ1/4

(
1 + PS (µ1/2)

)
(4.65)

κ1 =

ζs

2

3
ρ

√
2
27

2
1/2

(4.66)

and similarly

du
(
du
da

)1−σ/2

∆σ/8 = N 1
±u−B/4

dq±
q±

H(q±)
(
1 + PS (µ1/2)

)
(4.67)

where the power series in µ1/2 has coefficients which are themselves power series in q±.

Here

H(q) :=

q d
dq

( E6

E3/2
4

) E−(σ+1)/4
4 (E2

6 − E3
4)σ/8 (4.68)

4This is a consequence of the linear combinations we found in equation (4.3) above.
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N 1
± = ±

(2
3

)5/2(1+σ/4)
κ1−σ/2

3 (u∗ − u0)σ/8 (4.69)

Now the expansion in p`S r comes with a power µ(r+6`)/4 so the µ0 term satisfies the

selection rule and the higher powers in the µ expansion contribute lower order terms. Thus,

the contribution to the polynomial from these two singularities is the sum over + and − of

Ptop
1 (p, S ) = ηN 1

±

[
µ−B/4

∮
dq±
q±

H(q±)e±2pµ3/2(2/3)5/2E6/E
3/2
4 F±(κ3µ

1/4E−1/4
4 S )

]
µ0

(4.70)

where

F±(w) =
1
√

8
e−

w2
24 E2(τ)

∑
λ∈Γ+µ

(−1)w2·(λ−µ)(sign(λ, ω) − E(ρω0
λ (τ0,s)))e−iπτλ2−iw·λ (4.71)

Finally we come to the contributions

[∮
γAD

+

ΩAD

]
Λ0

AD

(4.72)

in the AD3 family of curves.

In the AD3 family of curves we have the exact formulae for the expansions in q± near

u±:

u = ±2Λ3
AD

E6

E3/2
4

(4.73)

du
da

= κ4E−1/4
4 Λ

1/2
AD (4.74)

κ4 =

(
−ζs

1
6

(3
ρ

)2
)1/2

(4.75)

and we compute:

du
(
du
da

)1−σ/2

∆σ/8 = N AD
± Λ

B/2
AD

dq±
q±

H(q±) (4.76)

N AD
± = ±21+σ/4κ1−σ/2

4 (4.77)
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So these terms contribute to the polynomial

PAD,± = ηN AD
±

[
Λ
−B/2
AD

∮
dq±
q±

H(q±)e
±4pΛ3

AD
E6

E3/2
4 F±(κ4Λ

1/2
AD E−1/4

4 S )
]
Λ0

AD

(4.78)

Now to match these using the rescalings (4.36) we have the conditions

N 1
+

[
2p

(2
3

)5/2
)`

(κ3S )r = NN AD
+ (4n0 p)`(κ4n2S )r (4.79)

when 6` + r = B. In a way similar to (4.58) and (4.59) we obtain:

N 1
+κ
B
3 = NN AD

+ (n2κ4)B (4.80)

(κ4

κ3

)6
= 2

(3
2

)5/2 n0

n6
2

(4.81)

We now ask if there are constants N, n0, n2 that allow us to solve the four conditions (4.58),

(4.59), (4.80), (4.81). The conditions are not all independent, and in fact, there are such

constants iff we have (κ1κ4

κ2κ3

)4
= 2−3/235/2 (4.82)

N 1
∞

N 1
+

(κ1

κ3

)B
=
N AD
∞

N AD
+

(κ2

κ4

)B
(4.83)

Plugging the above values we can confirm that those conditions are indeed satisfied.

4.6 Seiberg-Witten contribution to ZAD

When X has b+
2 > 1 only ZS W contributes to the partition function. In this section we will

evaluate it fairly explicitly for the AD3 family (4.4) in the limit ΛAD → 0. Thus we are

starting from the definition (2.51).

To begin we put (2.51) in a form which is more suitable for explicit evaluation. In

fact our derivation of the result (4.109) below applies to any family of elliptic SW curves
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with a simple zero of the discriminant at u = us such that Weierstrass invariants g2, g3 are

nonzero at u = us (this is Kodaira type I1). We also assume λ0,s = ξs = 1
2w2(X). Thus

holds for the SU(2) N f = 1 family and therefore for the AD3 family. Moreover, the duality

transformations needed to transform from the duality frame at u = ∞ to u near us are all,

according to equation (11.17) of [49], conjugate to T . It turns out that the measure of all

the u-plane transforms by a character under S and T . Therefore the root of unity ηs is

independent of s and we will just denote it by η.

Now we can replace the sum over λ by the average over λ and −λ. Because Λ0,s = ξs =

1
2w2(X) we have

e−4πiλ·ξs = e−2πi(v+ 1
2 w2)·w2 = e−iπw2

2 = (−1)σ (4.84)

Moreover it is a standard result of SW theory that

S W(−λ) = (−1)χhS W(λ) (4.85)

so in the sum over λ in (2.51) we can freely make the replacement:

S W(λ)e2πiλ·λ0e−iλ·S du
das →

1
2

S W(λ)e2πiλ·λ0
(
e−i du

das
S ·λ + (−1)χh+σei du

das
S ·λ

)
(4.86)

The reason this is useful is that the expansion in S · λ only involves powers of du
das

of a

definite parity independent of λ. That will be important since, as we will see below, we

can readily determint the qs-expansion of
(

du
das

)2
near us, but taking the square-root could

be tricky. Equation (4.86) motivates us to define:

1
2

(
e−i du

das
S ·λ + (−1)χh+σei du

das
S ·λ

)
:=

∑
n≥0

ĉχh+σ
n (S )

(
das

du

)−n

(4.87)

with

ĉχh+σ
n (S ) =


1
n!

e−iπn/2(S · λ)n

0

n = (χh + σ) mod 2

n , (χh + σ) mod 2
(4.88)
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Now suppose we have a SW curve presented in the form:

y2 = x3 + A2x2 + A4x + A6 (4.89)

and there is a special coordinate as so that as → 0 but

das

du
=
ρ

π
ω1 (4.90)

is nonvanishing as qs = e2πiτs → 0. 5

In order to evaluate (2.51) we need to know the expansions

u = us + µ1qs + µ2q2
s + . . .

a = κ1qs + κ2q2
s + . . .

(4.91)

We now show how to extract these expantion - in principle - from the SW curve.

From A2, A4, A6 we can construct the standard Weierstrass invariants g2, g3. For SU(2)

theories and the AD3 family these will be polynomials in u. In general we have

(12)3 g3
2

g3
2 − 27g2

3

= j(τs) = q−1
s + 744 + 196884qs + 21493760q2

s (4.92)

Actually, for our purposes, this equation is more usefully written as

(27)
g2

3

g3
2

=
E2

6

E3
4

(4.93)

5Here ρ is a relative normalization between the standard periods ω of the elliptic curve and das
du . Its

value depends on the conventions used to normalize the cental charge. In the conventions of [50] the central
charge is Z(γ) = π−1

∮
γ
λ, so da

du = π−1
∮

A
dλ
du . Next, for an elliptic curve presented in the form (4.89) the

canonically normalized holomorphic differential is
√

2 dx
y . Finally, we note that for the AD3 family (4.3) we

have dλ
du = 1

2
dz
y . We thus conclude that for natural conventions for class S we have ρ = 1/

√
8. However, we

leave ρ undetermined above since it is different if one uses other conventions such as those of [49] and [7].
The results for different choices of ρ are simply related by a renormalization of S .
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Plugging (4.91) into either version gives a triangular system of equations from which we

can extract the coefficients µn. Next, if we have chosen a basis so that τ = ω2/ω1 then the

period ω1 is expressed in terms of coefficients of the elliptic curve τ by

ω2
1 = 2

(
π

3

)2 E6(τ)
E4(τ)

·
g2

g3
(4.94)

and hence (
das

du

)2

= 2
(
ρ

3

)2 E6(τ)
E4(τ)

·
g2

g3
(4.95)

Now we use the standard expansions of E4, E6 interms of qs and we expand the polynomials

g2, g3 of u around us and use (4.91). This gives κ2
1 and all the κn/κ1 for n > 1.

We also write ∆ = N u
math∆

math where ∆math is the mathematical discriminant of the

elliptic curve,

∆math = (e1 − e2)2(e1 − e3)2(e2 − e3)2 = 4(4g4
2 − 27g2

3) = 2−22
(
das

du

)−12

η(τs)24 (4.96)

where ei, i = 1, 2, 3 are the roots of the cubic. Putting all these things together we can write

(2.51) in the form

Z s
S W =

(√
32πβσαχ2−11σ/4(N u

math)σ/8η
)

∑
n≥0

∑
λ∈ 1

2 w2+Γ

eπiλ·w2(−1)n(λ)S W(λ) · ĉχh+σ
n (S )

 du
dqs

(
η(τs)24

qs

)σ/8 (
as

qs

)χh−1 (
das

du

)1−2χh−σ−n

e2pu+S 2Ts(qs)q−n(λ)
s


q0

s

(4.97)

This result is a slight generalization of, and improvement upon, equation (11.28) of [7].

We now specialize (4.97) to the AD3 family of curves. For the AD3 family we have

g2 = 3Λ2 and g3 = −u/2, ∆ is quadratic in u and so there are just two singularities u±. 6

6In this section we write Λ instead of ΛAD.
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Near each of them we have the expansion in qs:

u = us
E6

E3/2
4

(4.98)

with us = 2ζsΛ
3. Here ζs = ±1 at the two singularities and E6, E4 are power series in qs

beginning at 1. Fractional powers of Eisenstein series are to be interpreted as power series

in qs. Note that
du
dq

= −ζs(12Λ)3(q−1η24) · E−5/2
4 (4.99)

From (4.95) we obtain κ2
1 = −1

2 (12Λ)5ζs and

Ĕ1(q) :=
as/κ1

q
:= 1 +

∞∑
n≥2

κn

κ1
qn−1 (4.100)

is independent of s and satisfies the equation:

q
d

dq
(qĔ1(q)) = η24E−9/4

4 = (12)−3(E3
4 − E2

6)E−9/4
4 (4.101)

from which one may generate its q-series. There does not appear to be any simple ex-

pression for Ĕ1 in terms of E2, E4, and E6 and we will, regrettably, take the above as its

definition.

Using these formulae and (4.97) we obtain

ZAD f amily
S W = C1

∑
r1≥0

δr1

∑
λ

∑
ζs=±1

Λ
1
2 (r1−(χh−c2

1))eiπλ·w2(−1)n(λ)S W(λ)
(
√

24S · λ)r1

(4ρ)r1r1!

ζ
2χh+σ+r1−

1
2 (χh+σ+r1)

s

[
Ĕχh−1

1 (q−1η24)1+σ
8 E−

1
4 (2χh+σ+9+r1)

4 e4(ζsΛ
3 p)E6E−3/2

4 +(ζsΛ
(

S
4ρ

)2
)E2E−1/2

4

]
qn(λ)

(4.102)

where δr1 enforces the constraint r1 = (χh + σ) mod 2 and

C1 =
(√

32πβσαχη
) (
−i211/237/2ρ−1

)χh
(
i2−13/431/2ρ−1N u

math

)σ
(4.103)
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Next, we expand the terms with p and S 2 in the exponential. We find that the terms

proportional to (S · λ)r1(S 2)r2 p` come with the power ΛU/2 where 7

U := r1 + 2r2 + 6` −B B := χh − c2
1 = −

7χ + 11σ
4

(4.104)

This is, of course, a reflection of the U(1)R symmetry at the superconformal point.

Next, the entire dependence of the expression (4.102) on the two values s = + and

s = − is summarized by the power ζ
1
2 (σ+r1−χh)+`+r2
s , so the sum over ζs imposes the selection

rule U = 0 mod 4. (This selection rule implies that r1 = (χh + 2) mod 2 so we can now drop

that constraint.) The result of these considerations is that

ZAD3 f amily
S W = 2c1

∑
U mod 4

∑
λ

Λ
1
2 Ueiπλ·w2(−1)n(λ)S W(λ)

(
√

24S · λ)r1

(4ρ)r1r1!
(S 2)r2

(4ρ)2r2r2!
(4p)`

`![
Ĕχh−1

1 (q−1η24)1+σ
8 Er2

2 E−
1
4 (9+U−5χh)

4 E`
6

]
qn(λ)

(4.105)

where the first sum is over all integers r1, r2, ` ≥ 0 such that U = 0 mod 4.

Now we wish to take the Λ → 0 limit. We can organize the sum by the degree U.

Note that there are potentially negative powers of Λ is B > 0. Nevertheless, the correlators

should be finite in the Λ → 0 limit. This was the original argument of [23] used to derive

sum rules of SW inveriands. However, unlike [23], here we are not assuming that X is of

SW simple type. 8

For any given X there will be a finite number of sum rules, one for each nonnegative

integer k such that k − B < 0 and k = B mod 4. For each such k the sum, for fixed degree

U = k −B must vanish. To be concrete:
7The quantity B is very natural in this subject. The quantity 2B provides a lower bound for the number

of SW basic classes of X [23, 24].
8"Seiberg-Witten simple type" is often given the acronym SWST below.
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1. Suppose χh − c2
1 > 0 and χh − c2

1 = 0 mod 4. Then

0 =
∑
λ

eiπλ·w2(−1)n(λ)S W(λ)
[
Ĕχh−1

1 (q−1η24)1+σ
8 E−

1
4 (9+c2

1−6χh)
4

]
qn(λ)

(4.106)

2. Suppose χh − c2
1 > 1 and χh − c2

1 = 1 mod 4. Then the U = 1 − (χh − c2
1) only gets a

contribution from r1 = 1, r2 = ` = 0 and hence

0 =
∑
λ

eiπλ·w2(−1)n(λ)S W(λ)(S · λ)
[
Ĕχh−1

1 (q−1η24)1+σ
8 E−

1
4 (10+c2

1−6χh)
4

]
qn(λ)

(4.107)

3. Suppose χh − c2
1 > 2 and χh − c2

1 = 2mod4. Then the U = 2 − (χh − c2
1) gets a

contribution from r1 = 2, r2 = ` = 0 and r1 = 0, r2 = 1, ` = 0 hence

0 =
∑
λ

eiπλ·w2(−1)n(λ)S W(λ)

{
S 2

[
Ĕχh−1

1 (q−1η24)1+σ
8 E2E−

1
4 (11+c2

1−6χh)
4

]
−

1
2

(−24)
1
2 (χh+σ+1)(S · λ)2

[
Ĕχh−1

1 (q−1η24)1+σ
8 E−

1
4 (11+c2

1−6χh)
4

]
qn(λ)

} (4.108)

4. And so on: We get rather complicated polynomials in S 2 and S ·λwhich must vanish.

If we assume SWST then only the spin-c structures with n(λ) = 0 contribute and we

get the criteria of [23]. In this case the formulae simlify a lot because all the factors

of the form
[
Ĕχh−1

1 · · ·
]
qn(λ) can be put equal to 1.

Now we consider the actual value at Λ = 0. According to our conjecture above, this

should give the partition function of topologically twisted AD3 theory on standard four-

manifolds. Technically, we simply keep the terms above with U = 0 so our formula is

〈epO+O(S )〉AD3
X = 2C1

∑
U=0

∑
λ

eiπλ·w2(−1)n(λ)S W(λ)
(
√

24S · λ)r1

(4ρ)r1r1!
(S 2)r2

(4ρ)2r2r2!
(4p)`

`![
Ĕχh−1

1 (q−1η24)1+σ
8 Er2

2 E−
1
4 (9−5χh)

4 E`
6

]
qn(λ)

(4.109)
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This is the generator of correlation functions of the twisted AD3 theory on four-

manifolds X with b1 = 0 and b+
2 > 1. It is only non-vanishing for B = χh − c2

1 ≥ 0.

We now assume that X has SWST so that only spin-c structures with n(λ) = 0 con-

tribute. Moreover, we will also assume that X is of superconformal simple type (SCST)

with B ≥ 4. According to [23], [24] this means that

∑
λ

eiπλ·w2S W(λ)(λ · S )k = 0 0 ≤ k ≤ B − 4 (4.110)

Therefore, given the constraint U = 0 the only terms that can contribute are r1 = χh−c2
1−2 =

B − 2, r2 = 1, ` = 0, and r1 = χh − c2
1 = B, r2 = ` = 0, and our partition function simplifies

to

〈epO+O(S )〉AD3
X = C2

∑
λ

eiπλ·w2S W(λ)
[
B(B − 1)

24
S 2(S · λ)B−2 + (S · λ)B

]
(4.111)

and to get the constant we observe that ∆math = −27(u2 − (2Λ3)2) so N u
math = −1/27. After

some computation we find:

C2 =

√
128πη′

B!

(
32βρ3/2

33/8

)σ (
29/4αρ3/2

)χ
(4.112)

where η′ is an eighth root of unity we have not determined. (One could probably use the

fact that SU(2) N4 = 1 theory is time-reversal invariant for Λ real to constrain this phase.)

4.7 Discussion

A striking property of equation (4.111) is that it does not depend on p. This comes about

because when the condition U = 0 is combined with the SCST condition, the only solutions

have ` = 0. This means the 0-observable is a "null vector" in the topological sector. That

is, insertions of O into correlators always vanish for such four-manifolds. Although it is
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certainly true that Oclassical = 0 is not obvious why this should be true in the quantum theory

(i.e. why quantum fluctuations can not have non-zero contribution).

It is important to recall that the very existence of the twisted partition function in the

limit m→ m∗ is nontrivial [23,24] and implies necessary conditions for its finiteness. These

are the conditions (4.106), (4.107), (4.108), et. seq. above in the special case of SWST.

These conditions are quite complicated so the authors of [23,24] also formulated the SCST

condition, namely, that either B ≤ 3 or (4.110) holds. The SCST condition is, a priori,

sufficient but not necessary condition for finiteness of the Λ→ 0 limit. As far as we know,

all known standard four-manifolds satisfy the SCST condition. It was conjectured and

checked in multiple examples [23,24] that in fact all standard four-manifolds are of SCST.

The work of [47] gave a different argument that complex algebraic manifolds are of SCST.

The more recent work [48] shows - subject to an unproven hypothesis - that for all standard

four-manifolds, SWST implies SCST. Therefore, (accepting the work of [48]), all standard

four-manifolds of SWST have the property that the topological correlators are given by

(4.111), and, in particular, the 0-observable is a "null-vector". That property is not true

for the general formula (4.109) corresponding to general four-manifold (not necessarily

satisfying the SWST condition). Why this should be so is mysterious at present. There

ought to be a good reason why the zero observable acts as a null vector.

The absence of a compelling reason for O to be a null-vector leads us to take seriously

the possibility that there might be standard four-manifolds that are not of Seiberg-Witten

simple type since if we drop the SCST condition (4.110) there are many more solutions

to U = 0, i.e. r1 + 2r2 + 6` = B which will contribute to (4.109). Some will include

` , 0, and the necessary conditions (4.106), (4.107), (4.108), et. seq. do not eliminate the

p-dependence.
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Chapter 5

u-plane integral from single M5 brane

The four dimensional N = 2 theories of class S are defined by means of:

1. Putting the hypothetical "non-Lagrangian" six-dimensional (2,0) theory [45, 46] on

C × X, where C is a Riemann surface and X is a four-manifold. The bosonic sym-

metry algebra of the resulting theory on C × X consists of so(5)R R-symmetry, two-

dimensional Lorentz algebra so(2)C and the usual four-dimensional Lorentz algebra

su(2)+ ⊕ su(2)−.

2. Partial topological twisting on C identifying the diagonal subgroup so(2)′C ⊂
diag

so(2)C ⊕ so(2)R, where so(2)R ⊕ so(3)R is a maximal subgroup of so(5)R as the new

Lorentz algebra.

3. Compactification on C, which given a direct product metric gC×X = t2
1gC ⊕ t2

2gX

corresponds to taking the limit t2
1 → +0.

As a result of these steps one obtains a broad family of four-dimensional N = 2 theories

some of which are can be described by Lagrangian and some are believed to have no de-

scription in terms of an action principle. Here our aim is to turn on the Donaldson-Witten

(DW) twist as well and identify su(2)′+ ⊂diag
su(2)+ ⊕ so(3)R as the Lorentz algebra of the
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twisted 4d theory. This corresponds to considering compactification of the fully twisted

(2,0) theory on C (with so(2)′C ⊕ su(2)′+ ⊕ su(2)− Lorentz algebra).

Assuming the usual metric independence properties of the fully twisted (2,0) theory on

C × X with gC×X = t2
1gC ⊕ t2

2gX the limits t2
1 → +0 and t2

2 → +0 must commute. Therefore,

DW-twisted class S theory is equivalent to a two dimensional theory on C [42] obtained by

compactifying the fully twisted (2,0) theory on X.

The IR limit of the fully twisted (2,0) theory on C×X is described by the effective theory

of small perturbations of a single M5 brane theory on Σ× X [43], where Σ ⊂ T ∗C plays the

role of Seiberg-Witten curve for the class S theory associated compactification on C. In the

fully twisted (2,0) on C × X theory one should topological partition function independent

of the overall scale of the metric and thus we expect to have ZUV = ZIR. Therefore, the

Seiberg-Witten effective field theory of any class S theory should be equivalent to a two-

dimensional model obtained by compactifying the single M5 on a branched cover Σ of C 1

with Σ playing the role of the Seiberg-Witten curve for the corresponding class S theory.

In the rest of this chapter we present calculation of the two-dimensional action starting

from the PST action [44] for single M5 brane.

5.1 PST action on four-manifold times Riemann suface

Low energy effective action of single M5 brane proposed by Pasti, Sorokin and Tonin [44]

is given by

S =

∫
M6

[√
−det

(
Gmn + iH̃mn

)
−

1
2

H∧α∧ ιvH +
1
2

C∧F + X∗C6

]
, (5.1)

where
1This reasoning is somewhat analogous to the motivation behind the AGT correspondence.
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• X = (Xm, θα) with m = 0, . . . , 10, α = 1, . . . , 32 is an embedding X : M6 → M11|32 of

the M5 brane’s worldvolume M6 (i.e. a bosonic manifold M6|0) into the superspace

M11|32 of eleven-dimensional supergravity.

• C3, C6, G and E are respectively 11|32 superfield extensions of the 3-form, 6-form,

metric and vielbein fields on M11|32. Also, C = X∗C3 and G = X∗G.

• F = dB is field strength associated with two-form field B and H = F +C.

• H̃ = ∗GιvH and α = da where a is an auxiliary field known as PST scalar and v is a

vector field vm = αm
√
αkαl

(see [44] for details).

• In what follows xm will be local coordinates on M6.

Here we consider the regime in which the bosonic embedding X can be decomposed as

Xm = Xm
0 + Ym, where Xm

0 (x) represents certain geometric configuration of the M5 brane

and Ym represents small fluctuations. The (six) tangential components of the fluctuations

Ym can be removed by fixing the reparametrization gauge symmetry, so there are in fact

only 5 scalar fields Y I where I labels normal directions to the background shape given by

Xm
0 . Expanding in fluctuations and keeping only relavant terms in the Lagrangian density

terms we obtain (see appendix (B) for derivation)

S =

∫
M6

{
−

1
2

F∧α∧ ιv(1 − ∗g)F +
1
2

GIJd∇Y I∧ ∗g d∇Y J

+
1
8

(1 + ∗g)(1 − α∧ ιv)F∧∂I(∗g)θ+ΓIΓ∧3θ+

+ 2θ+Γ∧∗g
(
d+

[
ω
]
µ1 +

([
ωI

]
µ−2−

1
8
∗−1

g ∂J(∗g)ΓIΓ
J
)
d∇Y I)θ+

+
4

2 · 4!
θ+Γ∧∗g

[
δ2
θω|ψ,F=0

]
µ1 θ+

}
(5.2)

Here gmn := ηABEA
M(X0,Y)EA

N(X0,Y)∂mXM
0 ∂nXN

0 is the metric induced from 11d by a purely

bosonic embedding X0.
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The last term in (5.2) is quartic in fermions. It is evaluated in section (B.1) and is given by

∫
M6

d 6x
√
−g

{1
2

RIJKL

(
θ+ΓmΓIJθ+θ+ΓmΓKLθ+ + θ+ΓmΓIJTθ+θ+ΓmΓKL

Tθ+

)
+ 2RmInJ

(
θ+ΓmΓIKθ+θ+ΓnΓ J

K θ+ +
1
2
θ+ΓmΓIS Tθ+θ+ΓnΓ J

S T θ+ −
1
6
θ+ΓmstΓIθ+θ+Γn

stΓ
Jθ+

)}
(5.3)

5.2 Decomposition of the action (5.2) on M6 = Σ × X

The 3-form field-strength on Σ×X can be decomposed as F = F1,2 + F0,3 + F2,1 where F1,2,

F0,3, F2,1 are elements of the corresponding subspaces:

Ω3
M6

= Ω1
Σ ⊗Ω2

X︸    ︷︷    ︸
F1,2∈

⊕Ω0
Σ ⊗Ω3

X︸    ︷︷    ︸
F0,3∈

⊕Ω2
Σ ⊗Ω1

X︸    ︷︷    ︸
F2,1∈

, (5.4)

Assuming the direct product metric the six-dimensional Hodge star product factorizes as

∗M6 = ∗Σ∗X, while the space of self-dual 3-forms on Σ × X can be decomposed as follows

(1+∗M6)Ω
3
M6

=
(
Ω1,+

Σ
⊗Ω2,+

X
)
⊕

(
Ω1,−

Σ
⊗Ω2,−

X
)
⊕ (1+∗Σ∗X)Ω2

Σ ⊗Ω1
X (5.5)

Corresponding decomposition of the PST action for chiral two-form:

−
1
2

F∧α∧ ιv(1−∗M6)F = −
1
2

F1,2
+ ∧α∧ ιv(1−∗Σ)F1,2

+

−
1
2

F1,2
− ∧α∧ ιv(1+∗Σ)F1,2

−

−
1
2

F0,3∧ (F2,1−VolΣ ∧ ∗X F0,3)

(5.6)

Decomposition of the kinetic term for scalars :

1
2

GIJ dY I∧ ∗M6 dY J =
1
2

VolX ∧Gi j dΣY i∧ ∗Σ dΣY j +
1
2

VolΣ ∧Gi j dXY i∧ ∗X dXY j

+
1
2

VolX ∧Gab dΣYa∧ ∗Σ dΣYb +
1
2

VolΣ ∧Gab dXYa∧ ∗X dXYb
(5.7)
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Our convensions for decomposition of gamma matrices are the following

Γµ = 14×4 ⊗ 12×2 ⊗ γ
µ, Γa = 14×4 ⊗ γ

a ⊗ γ(4), ΓI = γI ⊗ γ(2) ⊗ γ(4) (5.8)

where γi = σ3 ⊗ σ
i and γp = σp ⊗ 12×2.

Γ(6) = 14×4 ⊗ γ
(2) ⊗ γ(4), (5.9)

The charge conjugation matrix

C = Γ10Γ8Γ6Γ4Γ2 = iσ1 ⊗ ε ⊗ ε ⊗ 12×2 ⊗ ε, (5.10)

CΓi = iσ1σ3 ⊗ εσ
i ⊗ εσ3 ⊗ σ3 ⊗ ε,

CΓp = iσ1γ
p ⊗ ε ⊗ εσ3 ⊗ σ3 ⊗ ε,

CΓa = iσ1 ⊗ ε ⊗ εγ
a ⊗ σ3 ⊗ ε

(5.11)

The right hand sides of (5.10) is symmetric so one has (CΓm)T = CΓm.

Resulting decomposition of the Dirac term:

2θ+Γm∇
mθ+ = 2(D̃4×4)AB

(
(θA

+)T (γ0 ⊗ D4×4)(γa ⊗ γ
(4))∇aθB

+

+ (θA
+)T (γ0 ⊗ D4×4)(12×2 ⊗ γµ)∇µθB

+

)
 θA

+ =
1
2

ψ
A

ψ̃A

 , γµ =

 0 σµ

σµ 0

 , ψA = (ψA)Tγ0 ⊗ ε


=

1
2

(D̃4×4)AB

(
ψAγa ⊗ 12×2(∇aψ)B − ψ̃Aγa ⊗ 12×2(∇aψ̃)B

+ ψ̃A12×2 ⊗ σµ(∇µψ)B − ψA12×2 ⊗ σµ(∇µψ̃)B
)

(5.12)
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Decomposition of the CF term. The fermionic combination entering the CF term is

given by

θ+ΓµνΓaΓ
Iθ+dxa = (D̃4×4γ

I)AB(θA
+)T (γ0 ⊗ D4×4)(12×2 ⊗ γµν)(γa ⊗ γ

(4))θB
+dxa

= (D̃4×4γ
I)AB

ψ
A

ψ̃A


T

γ0γa ⊗

εσ[µσν] 0

0 −εσ[µσν]


ψ

B

ψ̃B

 dxa

= (D̃4×4γ
I)AB

(
ψAγ ⊗ σ[µσν]ψ

B − ψ̃Aγ ⊗ σ[µσν]ψ̃
B
)

(5.13)

where we have used σ[µσν] = 1
2εµνλρσ

[λσρ] and σ[µσν] = −1
2εµνλρσ

[λσρ].

The self-dual current can be written as

(1 + ∗M6)(1 − α∧ ιv)F = F0,3 +
1

VolΣ
∗X (F2,1 − α∧ ιvF2,1)

+ F2,1 + VolΣ ∧ ∗X F0,3

+ (1 + ∗Σ)(1 − α∧ ιv)F1,2
+

+ (1 − ∗Σ)(1 − α∧ ιv)F1,2
−

(5.14)

The resulting CF term is given by

1
8

∫
M6

(1 + ∗M6)(1 − α∧ ιv)F∧∂p(∗Σ) ∗X θ+Γ∧3Γpθ+

= −
1
8

∫
Σ

∫
X

VolX∧ (1 + ∗Σ)(1 − α∧ ιv)F1,2
+µν∧∂p(∗Σ)ψ̃Aγ ⊗ σ[µσν]ψ̃B(D̃4×4γ

p)AB

−
1
8

∫
Σ

∫
X

VolX∧ (1 − ∗Σ)(1 − α∧ ιv)F1,2
−µν∧∂p(∗Σ)ψAγ ⊗ σ[µσν]ψB(D̃4×4γ

p)AB

(5.15)
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Decomposition of the scalar-fermion interaction. The corresponding combination of

fermions can be decomposed as follows

θ+ΓaΓ
IΓJθ+dxa = (D̃4×4γ

IγJ)AB(θA
+)T (γ0⊗D4×4)(γ⊗γ(4))θB

+

= (D̃4×4γ
IγJ)AB

ψ
A

ψ̃A


T

γ0γ ⊗ 12×2 ⊗ ε

 ψ
B

−ψ̃B


= (D̃4×4γ

IγJ)AB

(
ψAγ ⊗ 12×2ψ

B − ψ̃Aγ ⊗ 12×2ψ̃
B
)

(5.16)

The resulting Yθ2 term is given by

−
1
4

∫
M6

∇Y I∧∂p(∗)θ+ΓIΓ
pΓθ+ =

= −
1
4

∫
Σ

∫
X
VolX∧∇Yq∧∂p(∗Σ)

(
ψAγ ⊗ 12×2ψ

B− ψ̃Aγ ⊗ 12×2ψ̃
B
)
(D̃4×4γqγ

p)AB

−
1
4

∫
Σ

∫
X
VolX∧∇Y i∧∂p(∗Σ)

(
ψAγ ⊗ 12×2ψ

B− ψ̃Aγ ⊗ 12×2ψ̃
B
)
(D̃4×4γiγ

p)AB

(5.17)

Quartic fermionic couplings:

∼ Rpquv :
1
2

Rpquv

(
+ θ+ΓaΓpqθ+θ+ΓaΓ

uvθ+

+ θ+ΓaΓpqΓiθ+θ+ΓaΓ
uvΓiθ+

+ θ+ΓµΓpqθ+θ+ΓµΓ
uvθ+

+ θ+ΓµΓpqΓiθ+θ+ΓµΓ
uvΓiθ+

) (5.18)

∼ Rapbq : 2Rapbq

(
− θ+ΓaΓpΓiθ+θ+ΓbΓqΓiθ+

+
1
2
θ+ΓaΓpΓi jθ+θ+ΓbΓqΓi jθ+

− θ+ΓaΓpuθ+θ+ΓbΓq
uθ+

+ θ+ΓaΓpuΓiθ+θ+ΓbΓq
uΓiθ+

−
1
6
θ+ΓaΓµνΓpθ+θ+ΓbΓµνΓ

qθ+ −
1
3
θ+ΓacΓµΓpθ+θ+Γb

cΓµΓ
qθ+

) (5.19)
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5.3 Donaldson-Witten twist on X and S -class twist on Σ

Donaldson-Witten twist on X boils down to replacing fields Y i, ψrȧ
α , ψ̃

rȧ
α̇ with Y+, ψ

r, ηr, χr
+

according to

σiY i = −
1
4
σ[µσν](Y+)µν, ψrȧ

α = (σµε)αȧψ
r
µ, ψ̃rȧ

α̇ = −iεα̇ȧη
r + (σkε)α̇ȧχ

r
k (5.20)

The resulting bosonic action can be written as:

Sbosonic =

∫
Σ

∫
X

{
−

1
2

F1,2
+ ∧α∧ ιv(1−∗Σ)F1,2

+ −
1
2

F1,2
− ∧α∧ ιv(1+∗Σ)F1,2

−

+
1
2

(
dΣY+∧ ∗Σ dΣY+ +VolΣ∧dXY+∧ ∗X dXY+

+ VolX∧Gab dΣYa∧ ∗Σ dΣYb +VolΣ∧Gab dXYa∧ ∗X dXYb
)}

(5.21)

The resulting fermionic action after the Donaldson-Witten twist:

Sfermionic =

∫
Σ

∫
X

VolX∧
{
− 4VolΣ · εrs

(
ψr
µγa∇

aψs,µ−ηrγa∇
aηs−

1
2
χr
µνγa∇

aχs,µν

+ηr
∇µψ

s,µ+χr
µν∇

µψs,ν−ψ
r
µ∇

µηs−ψ
r,µ
∇νχs

µν

)
+

1
4

(1
2

(1 + ∗Σ)(1 − α∧ ιv)F1,2
+ −∇Y+

)µν
∧∂p(∗Σ)(εγp)rsη

rγχs
µν

+
1
4

(1
2

(1 − ∗Σ)(1 − α∧ ιv)F1,2
− +∇Y+

)µν
∧∂p(∗Σ)(εγp)rsψ

r
µγψ

s
ν

+
1
2
∇Yq∧∂p(∗Σ)(εγqγ

p)rs

(
ψ

r,µ
γψs

µ − η
rγηs −

1
2
χr,µνγχs

µν

)
+ quartic terms

}

(5.22)

The S-class twist on Σ is implemented using the following decompositions (recall that

κ, r = 9, 10):

ψκr =

ψ++ ψ+−

0 0

 , ψ̃κr =

 0 0

ψ̃−+ ψ̃−−

 (5.23)
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γ(2) = iσ2σ1 = σ3, γ± = σ∓, εγ− = −P−, εγ+ = P+

γa = e+
aγ+ +e−aγ−, γp = E+

pγ+ + E−pγ−,
(5.24)

ψκr =
(
ψ++

1 + γ(2)

2
+ ψ+−γ−

)
κr
,

ψ̃κr =
(
ψ̃−+γ+ + ψ̃−−

1 − γ(2)

2

)
κr

(5.25)

The resulting fermionic action after the S-class twist

Sfermionic =

∫
Σ

∫
X

VolX ∧
{
VolΣ

(
e+

aψ+−µ∇
aψ

µ
++ − e+

aψ++µ∇
aψ

µ
+−

+ e−aη−−∇
aη−+ − e−aη−+∇

aη−−+
1
2

e−aχ
µν
−−∇

aχ−+µν −
1
2

e−aχ
µν
−+∇

aχ−−µν

+ η−+∇µψ
µ
+− − η−−∇µψ

µ
++ +χ

µν
−−∇µψ++ν − χ

µν
−+∇µψ+−µ

+ ψ
µ
++∇µη−− − ψ

µ
+−∇µη−+ +ψ++µ∇

νχ
µν
−− − ψ+−µ∇νχ

µν
−+

)
+

1
16

(1
2

(1 + ∗Σ)(1 − α∧ ιv)F1,2
+ −∇Y+

)
µν
∧

∂

∂Yp
(∗Σ)e−a dxa(E−pη−−χµν−− − E+

pη−+χ
µν
−+

)
+

1
16

(1
2

(1 − ∗Σ)(1 − α∧ ιv)F1,2
− +∇Y+

)
µν
∧

∂

∂Yp
(∗Σ)e+

a dxa(E+
pψ

µ
++ψ

ν
++ − E−pψ

µ
+−ψ

ν
+−

)
+

1
4
∇Yp∧

∂

∂Yp
(∗Σ)dxa

(
e+

aψ
µ
++ψ+−µ − e−aη−−η−+ −

1
2

e−aχ
µν
−−χ−+µν

)
+ quartic terms

}
(5.26)

Note that Ya transforms now as a vector under the twisted Lorentz group SO(2)′ on Σ.

5.4 The two-dimensional model of single M5 brane com-

pactified on a four-manifold

In the limit t1/t2 → 0 we need to keep zero-modes on X only. For simplicity we consider

the case of simply-connected X, so terms containing ψ, F0,3 and F2,1 can be dropped.
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Remaining components of the 2-form’s field-strength can be written as

F1,2
+ = dΣBhωh + (F1,2

+ )′, F1,2
− = dΣB̃

h̃
ω̃h̃ + (F1,2

− )′ (5.27)

where ωh, h = 1, . . . , b+
2 are representatives of a basis of H2,+(X) and ω̃h̃, h̃ = 1, . . . , b−2 are

representatives of a basis of H2,−(X). Thus we obtain 2d scalar fields on Σ B+ and B̃− valued

in H2,+(X,R) and H2,−(X,R).

B+ = Bh[ωh], B̃− = B̃
h̃[ω̃h̃], (5.28)

Analogously, Y+, χ−+, χ−− lead to a 2d fields Y+, χ−+, χ−− valued in H2,+(X,R). The result-

ing two dimensional action is given by

S =

∫
Σ

{
−

1
2
〈dB+∧α∧ ιv(1−∗Σ)dB+〉 −

1
2
〈dB̃−∧α∧ ιv(1+ ∗Σ)dB̃−〉

+
1
2
〈dY+∧ ∗Σ dY+〉+

1
2

Gab dYa∧ ∗Σ dYb

+ VolΣ
(
ez̄

aηz̄∇
aη − ez̄

aη∇
aηz̄ +ez̄

a〈χz̄∇
aχ〉 − ez̄

a〈χ∇
aχz̄〉

)
+

1
16
〈
(1
2

(1 + ∗Σ)(1 − α∧ ιv)dΣB+− dΣY+

)
∧

∂

∂Yp
(∗Σ)ez̄

adxa(E z̄
pηz̄χz̄ − Ez

pηχ
)
〉

−
1
4
∇Yp∧

∂

∂Yp
(∗Σ)dxa

(
ez̄

aηz̄η + ez̄
a〈χz̄, χ〉

)
+ quartic terms

}
(5.29)

where the angular bracket 〈 · , · 〉 denotes the pairing
∫

X
· ∧ · : H2(X,R) ⊗ H2(X,R)→ R.

It is useful to note that (...)± components are just (anti-)holomorphic 1-form on Σ while

(...)−+ component is a scalar. Therefore, in (5.29) we used replacements

η−− → ηz, η−+ → η, χ−− → χz, χ−+ → χ (5.30)
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Chapter 6

Conclusions

In this thesis we have explored non-perturbative aspects of four-dimensional cohomolog-

ical field theories and their relation to four-manifold invariants. We have encountered a

remarkable phenomenon that topological correlation functions in a cohomological field

theory can have continuous metric dependence due to a contribution from the boundary of

the zero modes space.

We have revisited subtleties of defining integrals over non-compact Coulomb branch

of vacua and studied IR divergent operators associated with such non-compactness. We

have studied the divergent Q-exact operators requiring proper interpretation. We have seen

that the divergence comes entirely from zero momentum modes going to the non-compact

quasi-classical direction on the Coulomb branch. The meaning of such divergence in the

Hamiltonian formalism is the trace divergence over the continuum of vacua near with large

vev of Tr φ2 operator. This is a special case of the phenomenon of non-normalizable zero

modes. Analogous example is the divergence of the partition function of non-compact free

massless boson in 2d due to non-normalizable zero mode. However in our case the non-

normalizability arises only in presence of certain suficiently divergent operators such as

the operator Ĩ+. This probably indicates existence of IR instability in presence of operator

Ĩ+ and therefore we conclude that such operators are problematic as physical observables.
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Nevertheless, we have described a prescription that removes the infinity associated with

inserting Ĩ+ as inserting such operators has been proven to be useful in certain applications

in the theory of Mock modular forms ant iterated integrals of theta functions.

As the main result, we have proposed a new method for exracting topological parti-

tion function of the Argyres-Douglas non-Lagrangian models using its embedding into a

Lagrangian theory. The most unexpected outcome is that our procedure implies that the

resulting topological partition function of the AD3 theory can still be expressed through

the Seiberg-Witten invariants. Moreover, we have observed the mysterious vanishing of

the 0-observable on manifolds of superconformal simple type that requires further under-

standing.

Our results left many unanswered questions and suggest several directions for future

research.

1. Perhaps the most interesting and promising direction is to investigate other theories

with one-dimensional Coulomb branches. SCFT’s appearing in one-dimensional

Coulomb branches have been classified by Argyres, Lotito, Lu, Martone [28–30].

The classification is based on Kodaira type of singularity together with how the sin-

gularity splits under relevant deformations. It is important that according to [28–30]

all singularities admit maximal splitting, i.e. spliting to cusps where a single dyon

becomes massless. This makes the analysis of these cases very analogous to the AD3

case studied above.

However, the main new feature that should arise at more general rank one theories

is that in most cases there would be Higgs branches opening up at superconformal

points. The contribution of the superconformal vacua will now have to agree with

both, the Coulomb branch integral, and the Higgs branch integral in such a way that

the total partition function has proper continuity properties. This suggests the next

step in narrowing the search for new four-manifold invariants.
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2. The extension to manifolds with b1 , 0 is of interest for two reasons. First, in this

case the 3-form descendent of the 0-observable has negative ghost number and hence

the ghost number selection rule admits the possibility that there is an infinite number

of nonzero correlation functions, in strong contrast to the simply-connected case.

Moreover, non-simply connected manifolds are probably best suited for comparison

with the approach to computing topologically twisted d = 4 N = 2 partition functions

suggested in [27].

Monday, November 27, 2017 6:21 AM

   New Section 1 Page 1    

Figure 6.1: Mass deformation of superconformal points splits them into N cusp singulari-
ties.

3. Finally, the microscopic interpretation of our partition function in terms of mod-

uli spaces of traditional partial differential equations is an interesting open problem.

In principle one should be able to translate our formulae (4.14), (4.109), (4.111)

into some subtle aspect of intersection theory on the moduli space of the nonabelian

monopole equations.

4. The unknown coefficients α and β entering A and B couplings on the Coulomb branch

could depend non-trivially on the dynamically generated scale, masses, and on the

conformal manifold in the superconformal case. For example, they can depend on τ0

in the SU(2),N f = 4 and SU(2),N = 2∗ cases. It would be interesting to understand

these coefficients in detail, in particular for class S N = 2 theories.

5. The (0,2) two-dimensional model derived in chapter 6 can potentially be used as a

tool to study topologically twisted N = 2 theories of class S that refines the u-plane
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integral. It is important to keep in mind that all the non-trivial information about

the smooth structure sensitivity is stored in the defects inserted at the punctures on

Σ. Understanding this and other aspects of the (0,2) model is an interesting open

problem for future research.
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Appendix A

Modular forms and theta functions

In this appendix we collect certain aspects of the theory of modular forms and Siegel-

Narain theta functions that are used throughout the main text. See for more comprehensive

treatments for example [55–57].

The standard Jacobi theta functions ϑ j : H × C→ C, j = 1, . . . , 4 are defined as

ϑ1(τ, v) = i
∑

r∈Z+ 1
2

(−1)r− 1
2 qr2/2e2πirv,

ϑ2(τ, v) =
∑

r∈Z+ 1
2

qr2/2e2πirv,

ϑ3(τ, v) =
∑
n∈Z

qn2/2e2πinv,

ϑ4(τ, v) =
∑
n∈Z

(−1)nqn2/2e2πinv.

(A.1)

The function u(τ) is invariant under transformations τ 7→ aτ+b
cτ+d given by elements of

the congruence subgroup Γ0(4) ⊂ SL(2,Z). Recall that the modular group SL(2,Z) is the

group of integer matrices with unit determinant

SL(2,Z) =


a b
c d


∣∣∣∣∣∣∣∣ a, b, c, d ∈ Z; ad − bc = 1

 , (A.2)
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while the congruence subgroup Γ0(n) is defined as:

Γ0(n) =


a b
c d

 ∈ SL(2,Z)

∣∣∣∣∣∣∣∣ b = 0 mod n

 . (A.3)

The functions ϑ j(τ) form direct sum of a one dimensional representation (given by ϑ1(τ))

and a three dimensional representation (ϑi(τ) for i = 2, 3, 4) of Γ0(4):

ϑ2(τ + 4) = −ϑ2(τ), ϑ2

(
τ

τ + 1

)
=
√
τ + 1ϑ3(τ),

ϑ3(τ + 4) = ϑ3(τ), ϑ3

(
τ

τ + 1

)
=
√
τ + 1ϑ2(τ),

ϑ4(τ + 4) = ϑ4(τ), ϑ4

(
τ

τ + 1

)
= e−

πi
4
√
τ + 1ϑ4(τ).

(A.4)

Eisenstein series and Dedekind eta function The Eisenstein series for even k ≥ 2 de-

fined as q-series

Ek(τ) = 1 −
2k
Bk

∞∑
n=1

σk−1(n)qn, (A.5)

with σk(n) =
∑

d|n dk the divisor sum. For k ≥ 4, Ek is a modular form of SL(2,Z) of weight

k. In other words, it transforms under SL(2,Z) as

Ek

(
aτ + b
cτ + d

)
= (cτ + d)kEk(τ). (A.6)

The space of modular forms of SL(2,Z) forms a ring that is generated by E4(τ) and E6(τ),

while E2(τ) is a quasi-modular form, which means that the SL(2,Z) transformation of E2

includes a shift in addition to the weight,

E2

(
aτ + b
cτ + d

)
= (cτ + d)2E2(τ) −

6i
π

c(cτ + d) (A.7)

The Dedekind eta function η : H→ C is defined as

η(τ) = q
1

24

∞∏
n=1

(1 − qn) (A.8)
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It is a modular form of weight 1
2 under SL(2,Z) with a non-trivial multiplier system. It

transforms under the generators of SL(2,Z) as

η(−1/τ) =
√
−iτη(τ)

η(τ + 1) = e
πi
12η(τ)

(A.9)

Siegel-Narain theta functions Ψω
λ0,ξ

[K] : H → C form a large class of theta functions

of which the Jacobi theta functions are a special case. For our application, it is sufficient

to consider Siegel-Narain theta functions for which the associated lattice Γ is uni-modular

and Lorentzian, i.e. it has signature (1, n − 1). We denote the bilinear form by (λ1, λ2) and

the quadratic form Q(λ) ≡ (λ, λ) ≡ λ2. Also, let ξ be a characteristic vector of Γ, such that

Q(λ) + (λ, ξ) ∈ 2Z for each λ ∈ Γ. Given an element ω ∈ Γ ⊗ R with ω2 = +1, we may

decompose the space Γ⊗R in a positive definite subspace Γ+ spanned by ω, and a negative

definite subspace Γ−, orthogonal to Γ+. The projections of a vector λ ∈ Γ to Γ+ and Γ− are

then given by

λ+ = ω (λ, ω), λ− = λ − λ+. (A.10)

Then Ψω
λ0,ξ

[K] is defined as follows

Ψω
λ0,ξ

[K](τ, τ, z, z̄) =
∑

λ∈Γ+λ0

K(λ) (−1)(λ,ξ)q−
1
2λ

2
− q̄

1
2λ

2
+ exp (−2πi(z, λ−) − 2πi( z̄, λ+)) . (A.11)

Modular properties of the Siegel-Narain theta function. The modular properties of

Ψω
λ0,ξ

[K] depend on K. For K = 1 Ψω
λ0,ξ

[1] transformations under the generators T and S

of SL(2,Z) as follows

Ψω

λ0+ 1
2 ξ

[1](τ + 1, τ + 1, z, z̄) = eπi(λ0
2− 1

4 ξ
2)Ψλ0+ 1

2 ξ,ξ
[1](τ, τ, z + λ0, z̄ + λ0),

Ψω

λ0+ 1
2 ξ

[1]
(
−1
τ
,
−1
τ
,

z
τ
,

z̄
τ

)
= (−iτ)

n−1
2 (iτ)

1
2 eπi( −1

τ )z2+ 1
2 ξ

2+λ0·K) Ψω
1
2 ξ,λ0

[1](τ, τ, z − λ0, z̄ − λ0).

(A.12)
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Using the above SL(2,Z) transformations and Poisson resummation one verify that Ψω
λ0,ξ

[1]

is a modular form for the congruence subgroup Γ0(4). The transformations under the gen-

erators of this group are given by

Ψω
λ0,ξ

[1]
(

τ

τ + 1
,

τ

τ + 1

)
= (τ + 1)

n−1
2 (τ + 1)

1
2 exp

(
πi
4 ξ

2
)
Ψω
λ0,ξ

[1](τ, τ),

Ψω
λ0,ξ

[1](τ + 4, τ + 4) = e2πi(λ0,ξ) Ψω
λ0,ξ

[1](τ, τ),

(A.13)

where we have set z = z̄ = 0. Transformations for other kernels can be easily determined

from these expressions by acting with K( i
2π

∂
∂z ,

i
2π

∂
∂z ).
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Appendix B

Some formulae for compactification and

twisting of PST action

B.1 Superspace gauge completion of d = 11 supergravity

background

Supersymmetry transformations of d = 11 supergravity:

δεEa = iεΓaψ

δεC = εΓ∧2∧ψ

δεC̃ = εΓ∧5∧ψ + δεC∧C

δεψm = D̂mε +
1
4!

T rstu
m ε ·

(
F + α∧ ιv

(
∗11 F̃ − F)

)
rstu

ω
bc

m = E0[bEc]
0,m + E0[bEc]kGm0,k

(B.1)

Supersymmetry algebra:

[
δε1 , δε2

]
= δε3 + δgct(ξ) + δL(λrs) + δC(ξmn) (B.2)
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We want to represent supersymmetry transformations on superspace. For generic scalar

superfield we have

δεΦ = Ξ̂εΦ, Ξ̂ε = Ξm
ε

∂

∂Xm + Ξα
ε

∂

∂θα
(B.3)

Commutator of two supersymmetry transformations can be expressed through the super-

space vector field as

[
δε1 , δε2

]
Φ = δε1

(
Ξ̂ε2Φ

)
− (1↔ 2) =

[
Ξ̂ε2 , Ξ̂ε1

]
Φ + δε1

(
Ξ̂ε2

)
Φ − δε2

(
Ξ̂ε1

)
Φ (B.4)

Taking into account the commutation relation for δ(e) we obtain that in order to repre-

sent supersymmetry variation on superspace the vector field Ξ̂ must be a solution to the

following equation.

[
Ξ̂ε2 , Ξ̂ε1

]
+ δε1

(
Ξ̂ε2

)
− δε2

(
Ξ̂ε1

)
= 2ε2Γ

mε1∂m + Ξ̂ε3 −
1
4
λrs

3
(
Γrsθ

)α
∂α

for ε3 = −2ε2Γ
mε1ψm and λrs

3 = −2ε2Γ
mε1ω̂

rs
m +

1
72
ε2

[
ΓrstuklF̂tukl + 24ΓtuF̂rstu

]
ε1

(B.5)

This equation can be solved perturbatively in orders of θ

Ξ̂ε = Ξ̂(0)
ε + Ξ̂(1)

ε + Ξ̂(2)
ε + Ξ̂(3)

ε + . . . (B.6)

with the following initial condition

Ξ̂(0)
ε = εα

∂

∂θα
(B.7)

Taking zero’s order of equation (B.5) we obtain

Ξ
(0)α
[2 ∂αΞ

(1)m
1] ∂m + Ξ

(0)α
[2 ∂αΞ

(1)β
1] ∂β = ε2Γ

mε1 − ε2Γ
mε1ψ

α
m∂α, (B.8)
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(B.8) implies that the first order Ξ is given by Ξ
(1)m
ε = θΓmε and Ξ

(1)β
ε = −θΓmεψ

β
m. General

formula for k-th order correction to Ξ and commutator of two Ξ’s is the following:

Ξ(k) =

32∑
k=0

(
Ξ(k)m
ε ∂m + Ξ(k)α

ε ∂α
)

=

32∑
k=0

εβθα1 ...θαk

k!

(
Ξm
β|α1...αk

∂m + Ξα
β|α1...αk

∂α
)

1
2
[
Ξ̂2, Ξ̂1

](k)
=

(
Ξα

[2∂αΞ
β
1] + Ξm

[2∂mΞ
β
1]

)(k)
∂β +

(
Ξα

[2∂αΞ
m
1] + Ξn

[2∂nΞ
m
1]

)(k)
∂m

=
(
εα[2∂αΞ

(k+1)β
1] +

k∑
i=1

Ξ
(i)α
[2 ∂αΞ

(k−i+1)β
1] +

k−1∑
i=1

Ξ
(i)m
[2 ∂mΞ

(k−i)β
1] + Ξ

(k)m
[2 ∂mε

β
1

)
∂β

+
(
εα[2∂αΞ

(k+1)m
1] +

k∑
i=1

Ξ
(i)α
[2 ∂αΞ

(k−i+1)m
1] +

k−1∑
i=1

Ξ
(i)n
[2 ∂nΞ

(k−i)m
1]

)
∂m

(B.9)

Using (B.9) we can in principle iteratively compute corrections to superfields to any

given order. Second order correction to the bosonic components of the super-vielbein is

given by

δ2
θE

a
M = 2θΓa

(
−

1
4
ω̂

bc
m Γbc +

1
4!

F̂rstuT rstu
M

)
θ = 2θΓaD̂mθ (B.10)

This expression equals twice the second θ-order correction E(2)A
M and this equality agrees

with the general formula E(k)A
M = 1

k!δ
k
θE

A
M. For M5 brane’s action we need also the fourth

order term E(4)A
M = 1

4!δ
4
θE

A
M in the background with vanishing gravitino and tensor field

strength F. This term has to be proportional to the curvature 2-form, so in order to detect it

we can work in the locally flat coordinates:

δ2
θω̂

BC
M

∣∣∣
ψ,F=0

∼
1
2

ENBθΓC
EFθ∂[Mω

EF
N] −

1
2

EN
C θΓ

B
EFθ∂[Mω

EF
N] −

1
2

ELBEN
C ED

MθΓDEFθ∂Lω
EF

N

δ2
θ F̂RS TU

∣∣∣
ψ,F=0

∼ 3!θΓ[S T,ΓEFθ∂Rω
EF

U]

(B.11)
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Covariantising (B.11) we obtain the following θ4 order correction to the vielbein super-

field:

E
(4)a
m =

1
4!
δ4
θE

a
m =

2
4!
θΓaδ2

θD̂mθ, where δ2
θD̂m =

1
4

[
S rud

m θΓdbcθ + T rust
m θΓstbcθ

]
R bc

ru

S rud
m = −δ

[r
mΓu]d +

1
2

ΓruEd
m, T rstu

m =
1
12

(
Γ

rstu
m − 8δ[r

mΓstu])
(B.12)

Vielbein E on the 11d superspace. bosonic component:

E
a
m = Ea

m +
1
2
δ2
θE

a
m

∣∣∣
ψ,F=0

+
1
4!
δ4
θE

a
m

∣∣∣
ψ,F=0

+ . . .

E
a
α =

(
θΓa)

α

1
2
δ2
θE

a
m

∣∣∣
ψ,F=0

= θΓaωmθ

1
4!
δ4
θE

a
m

∣∣∣
ψ,F=0

=
2
4!
θΓa(δ2

θDmθ
)
ψ,F=0

(B.13)

Analogously, the fermionic component EαM is given by

E(1)α
M = δθE

α
M =

(
D̂Mθ

)α
E(3)α

M =
1
3!
δ3
θE

α
M =

1
3!

(
δ2
θD̂Mθ

)α (B.14)

Second supersymmetry variation of the spin connection:

δ2
θωm

∣∣∣
ψ,F=0

=
1
4

[
S rud

m θΓdbcθ + T rust
m θΓstbcθ

]
R bc

ru

S rud
m = −δ

[r
mΓu]d +

1
2

ΓruEd
m, T rstu

m =
1

12
(
Γ

rstu
m − 8δ[r

mΓstu]) (B.15)

Metric G on the 11d superspace:

G = dXmE
a
mdX0E

a
0 + 2dXmE

a
mdθαEa

α + . . .

= Gm0dXmdX0 + 2Ea
mdXmθ

(
d +dX0ω0

)
θ +

4
4!

Ea
mdXmθΓa(δ2

θD0θ
)
ψ,F=0dX0

(B.16)
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3-form field C on the 11d superspace:

δεCklm = −3!εΓ[klψm]

Cklm = Cklm +
1
2
δ2
θCklm

∣∣∣
ψ,F=0

+ . . .

Cklm = 0

1
2
δ2
θCklm

∣∣∣
ψ,F=0

= −3θΓ[kl,ωm]θ

(B.17)

6-form field C̃ on 11d superspace:

C̃m1..m6
= C̃m1..m6

+
1
2
δ2
θC̃m1..m6

∣∣∣
ψ,F=0

+
1
4!
δ4
θC̃m1..m6

∣∣∣
ψ,F=0

+ . . .

C̃m1..m5α
=

(
θΓm1..m5

)
α + . . .

δεC̃m1..m6
= −12εΓ[m1..m5

ψm6] − 3!εΓ[m1m2
ψm3

C̃m4..m6]

C̃m1..m6
= 0

1
2
δ2
θC̃m1..m6

∣∣∣
ψ,F=0

= −6θΓ[m1..m5
ωm6]θ

1
4!
δ4
θC̃m1..m6

∣∣∣
ψ,F=0

= −
12
4!
θΓ[m1..m5

(
δ2
θDm6]θ

)
ψ,F=0 + O(ω2)

(B.18)

B.2 Some details on the derivation of the action (5.2)

Metric induced by the embedding X of the M5 brane worldvolume M6 into M11|32

(
X∗G

)
mn =

(
X∗G

)
mn + 2θΓ(m(∂n) +ωn))θ +

4
4!
θΓ(n

(
δ2
θωm)θ

)
ψ,F=0(

X∗G
)

mn = Gm0∂mXm∂nX0 =
/
∂mXm = Tm

m + Nm
I ∇mY I

/
= gmn + GIJ∇mY I∇mY J,

where gmn = Gm0Tm
mT0

n, GIJ = Gm0Nm
I N0

J and Gm0Tm
mN0

I = 0

VolX∗G = Volg ·
(
1 +

1
2

gmn(X∗G−g)mn + . . .
)

(B.19)
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The 6-form coupling.

C̃m1..m6 = (X∗C̃)m1..m6 = ∂m1 Xm1 ...∂m6 Xm6C̃m1..m6
+ 6∂[m1 Xm1 ...∂m5 Xm5∂m6]θ

αC̃m1..m5α
+ . . .

= −6θΓ[m1..m5ωm6]θ −
12
4!
θΓ[m1..m5

(
δ2
θDm6]θ

)
ψ,F=0∫

X
X∗C6 =

∫
d6x (−det X∗G)

1
2 ·

1
6!

(−det X∗G)−
1
2 εm1..m6

(
X∗C6

)
m1..m6/ 1

5!
(−det X∗G)−

1
2 εm1..m6Γm1..m5 = −Γm6Γ(6)

/
=

∫
d6x
√
−g

(
θΓmΓ(6)(∂m +ωm)θ +

2
4!
θΓmΓ(6)(δ2

θωmθ
)
ψ,F=0

)
VolX∗G + X∗C6 = VolX∗G

(
1+θΓm

(
1+Γ (6))(∂n +ωn

)
θ
(
X∗G

)mn
+

2
4!
θΓm

(
1+Γ(6))δ2

θωnθ
(
X∗G

)mn
)

(B.20)

Scalar-fermion interaction.

θΓm(
1+Γ (6))ωmθ = θgmnΓm

(
Tm

m +Nm
I ∇mY I)(1+Γ

(6)
0 +

1
5!

(−g)−
1
2 εr1..r6Γr1..r5ΓI∂r6Y

I + . . .
)(

T0
n +N0

I∇nY I)ω0θ

= θΓm
(
1+Γ

(6)
0

)[
ωm]

µ−2θ + θΓm
(
1+Γ

(6)
0

)[
ωm]

µ1θ

+ θΓm(
1+Γ

(6)
0

)
∇mY I[ωI

]
µ−2θ + θΓI

(
1+Γ

(6)
0

)
∇mY I[ωm]

µ−2θ − θΓmΓnΓ
(6)
0 ∇nY IΓI

[
ωm]

µ−2θ

(B.21)
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Using
[
ωm

]
µ−2 = −1

4Γbc
[
ω

bc
m

]
µ−2 = −1

8ΓnΓI ∂gmn
∂Y I and

[
ωm]

µ−2 = gmn[ωn
]
µ−2 = 1

8ΓIΓn
∂gmn

∂Y I

for the spin connection in the regime of small fluctuations we obtain

θΓm
(
1+Γ

(6)
0

)[
ωm]

µ−2θ = −
1
4
θ+ΓIΓmΓnθ+

∂gmn

∂Y I = θ+ΓIθ− ·
1
√
−g

∂
√
−g

∂Y I

θΓm(
1+Γ

(6)
0

)
∇mY I[ωI

]
µ−2θ = −

1
2
θ+ΓmΓJKθ+ · ∇mY I[ω JK

I
]
µ−2

θΓI
(
1+Γ

(6)
0

)
∇mY I[ωm]

µ−2θ =
1
4
θ−ΓIΓ

JΓnθ− · ∇mY I ∂gmn

∂Y J

θΓmΓnΓ
(6)
0 ∇nY IΓI

[
ωm]

µ−2θ = −
1
8
θ+ΓmΓnΓIΓ

JΓkθ+ · ∇nY I ∂gmk

∂Y J +
1
8
θ−ΓmΓnΓIΓ

JΓkθ− · ∇nY I ∂gmk

∂Y J/ 1
8
θ+ΓmΓnΓkΓIΓ

Jθ+ · ∇nY I ∂gmk

∂Y J =
1
4
θ+ΓmΓIΓ

Jθ+ · ∇nY I ∂gmn

∂Y J −
1
8
θ+ΓmΓkΓ

nΓIΓ
Jθ+ · ∇nY I ∂gmk

∂Y J

=
1
4
θ+ΓmΓIΓ

Jθ+ · ∇nY I ∂gmn

∂Y J +
1
8
θ+ΓnΓIΓ

Jθ+ · ∇nY Igmk∂gmk

∂Y J

/

= −
1
4
θ+ΓmΓIΓ

Jθ+ · ∇nY I 1
√
−g

∂
(√
−ggmn)
∂Y J +

1
4
θ−ΓmΓIΓ

Jθ− · ∇nY I 1
√
−g

∂
(√
−ggmn)
∂Y J

(B.22)

Adding the above listed contributions and setting θ− = 0 yields the Dirac+Yukawa

terms

θΓm(
1+Γ (6))(∂m +ωm)θ = 2θ+Γm

(
∂m +

[
ωm

]
µ1 +∇mY I[ωI

]
µ−2

)
θ+−

1
4
θ+ΓmΓIΓ

Jθ+∇nY I 1
√
−g

∂
(√
−ggmn)
∂Y J

(B.23)

The 3-form C. Leading order contribution to the pullback of the C-field:

[
Cpqr

]
µ3 = θΓ[pq

[
ωr]

]
µ−2θ =

1
8
θΓI ∂gst

∂Y I ΓtΓ[pqθgr]s (B.24)
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(C−∗g)m′n′l′ =
1
2

gm′mgn′ngl′l
(
gmpgnqglr −

1
3!
√
−g

εmnlpqr)Cpqr

=
1
8

1
2

( 4
3!2√−g

gm′mgn′ngl′lε
mnlpqr∂I(∗g) stu

pqr θ+ΓIΓstuθ+ −
4

3!
√
−g

∂I(
√
−g)θ−ΓIΓm′n′l′θ−

)
=

1
8

(
∗g ∂I(∗g)θ+ΓIΓ∧3θ+ −

1
2 · 3!

θ−Γ
IΓ∧3θ−∂I(log g)

)
m′n′l′

Analogously, (C+∗g)m′n′l′ =
1
8

(
∗g ∂I(∗g)θ−ΓIΓ∧3θ− −

1
2 · 3!

θ+ΓIΓ∧3θ+∂I(log g)
)

m′n′l′

(B.25)

A useful expression for C can be obtained by using the following identities

∂IgtsΓtΓ[pqgr]s
(
gmpgnqglr−

1
3!

(−g)−
1
2 ε pqrmnl) =

/ 1
2

Γpqε
pqrmnl = +(−g)

1
2 ΓrmnlΓ (6)

/
= ∂Igts(ΓtΓ

[mnδl]
s −

1
3

ΓtΓ
mnl

s Γ (6))
/

Γ(tΓs)mnl = gtsΓmnl − g(t,mΓs)nl − g(t,nΓs)ml − g(t,lΓs)mn = gtsΓmnl − 3g(t,[mΓnl],s)
/

=
2

3
√
−g

∂I(
√
−g)ΓmnlΓ (6) + ∂Igmm′gnn′gll′Γm′n′l′(1+Γ (6))

=
4

3!
√
−g

∂I(
√
−ggmm′gnn′gll′)Γm′n′l′

1 + Γ(6)

2
−

4
3!
√
−g

∂I(
√
−g)Γmnl 1 − Γ (6)

2/ √
−ggmm′gnn′gll′ =

1
3!
εmnlpqr(∗g) m′n′l′

pqr

/
=

4
3!2√−g

εmnlpqr∂I(∗g) m′n′l′
pqr Γm′n′l′

1 + Γ(6)

2
−

4
3!
√
−g

∂I(
√
−g)Γmnl 1 − Γ (6)

2
(B.26)

Kappa symmetry gauge fixing.

θ− = 0

Xm
0 = Xm

0 (x)

 ⇒

κ− = const (all of non-constant part of κ− was used to fix θ− = 0),

ε− = const (constant part of κ− or ε− is used to fix θ− = 0)

ε+ = 0 (is needed to preserve gauge fixing condition, otherwise δε+ Xm
0 , 0)

κ+ = 0 (is needed to preserve gauge fixing condition, otherwise δκ+
Xm

0 , 0)
(B.27)
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The gauge fixing condition θ− = 0 implies that

δε−X
m
0 = −ε−Γ

mθ− ∼ 0

δκ−X
m
0 = 2κ−Γmθ− ∼ 0

δε−θ− = ε− − θ−Γ
mε−

[
ωm

]
µ−2θ+ − θ+ΓIε−

[
ωI

]
µ−2θ− ∼ ε−

δε−Y
I = −ε−Γ

Iθ+

δκ−Y
I = 2κ−ΓIθ+

δκ−θ− = 2κ−

(B.28)

There are 16 remaining global supersymmetries δ̃ε− = 1
2δκ−=ε−−δε− preserving the gauge

fixing conditions θ− = 0 and Xm
0 = Xm

0 (x); i.e. δ̃ε−θ− = 0.

δ̃ε−Y
I = ε−Γ

Iθ+

δ̃ε−θ+ = −
1
2

(
Γ · dY IΓI +

1
3!

(
Γ∧3 · (1−α∧ ιv)F

))
ε− +

1
2
δ̃ε−Y

I[ωI
]
µ−2θ+

δ̃ε−B = ε−Γ
∧2θ+

(B.29)

Derivation of the quartic fermionic couplings (5.3).

4
[
δ2
θωm

∣∣∣
ψ,F=0

]
µ1 =−RmubcΓ

udθ+Γ
bc

d θ+︸                 ︷︷                 ︸
(1)m

+
1
2

RrubcΓ
ruθ+Γ

bc
m θ+︸                   ︷︷                   ︸

(2)m

+
1

12
RrubcΓ

rstu
m θ+Γ

bc
st θ+︸                        ︷︷                        ︸

(3)m

−
2
3

Rrubcδ
[r
mΓstu]θ+Γ

bc
st θ+︸                        ︷︷                        ︸

(4)m

(B.30)
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(1)m = −2RmInJΓ
JKθ+Γ nJ

K θ+ ⇒ θ+Γm(1)mθ+ = 2RmInJθ+ΓmΓIKθ+θ+ΓnΓ J
K θ+

(2)m =
1
2

RIJKLΓIJθ+Γ KL
m θ+ +

1
2

RnIkJ · 2ΓnIθ+ · 2Γ kJ
m θ+

⇒ θ+Γm(2)mθ+ =
1
2

RIJKLθ+ΓmΓIJθ+θ+ΓmΓKLθ+

(3)m =
1

12
RnIkJ · 2Γ

nJst
m θ+ · 2Γ

kJ
st θ+ +

1
12

RIJKLΓ
IJst

m θ+Γ
KL

st θ+

=
1
3

RnJkJΓ
nIS T

m θ+ΓkΓ J
S T θ+ +

1
3

RnIkJΓ
nst

m ΓIθ+Γ k
st ΓJθ+ +

1
12

RIJKL · 2ΓmnΓ
IJTθ+ΓnΓ KL

T θ+/
ΓmΓmn =

1
2

(6Γn − 2Γn + 6Γn) = 5Γn

/
θ+Γm(3)mθ+ =

5
3

RnJkJθ+ΓnΓIS Tθ+θ+ΓkΓ J
S T θ+ +

1
3

RnIkJθ+ΓmΓ nst
m ΓIθ+θ+Γ k

st ΓJθ+

+
5
6

RIJKLθ+ΓnΓ
IJTθ+θ+ΓnΓKL

Tθ+/
ΓmΓ nst

m = 3Γnst, ΓmΓ st
m = 4Γst

/
=

5
3

RmJnJθ+ΓmΓIS Tθ+θ+ΓnΓ J
S T θ+ + RmInJθ+ΓmstΓIθ+θ+Γn

stΓ
Jθ+

+
5
6

RIJKLθ+ΓmΓIJTθ+θ+ΓmΓKL
Tθ+

(B.31)

(4)m = −
2

3 · 4
Rrubc

(
δ

r
mΓstu − δ

s
mΓrtu − δ

t
mΓsru − δ

u
mΓstr)θ+Γ

bc
st θ+

= −
1
3

RmubcΓ
ustθ+Γ

bc
st θ+ +

1
3 · 2

RrubcΓ
rtuθ+Γ

bc
mt θ+ +

1
3 · 2

RrubcΓ
sruθ+Γ

bc
sm θ+

= −
2
3

RmInJΓ
IS Tθ+ΓnΓ J

S T θ+ −
2
3

RmInJΓ
stΓIθ+Γ n

st ΓJθ+

−
1
3

RIJKLΓIJTθ+ΓmΓ KL
T θ+ +

4
3

RnIkJΓ
ntΓIθ+Γ k

mt ΓJθ+

(B.32)

θ+Γm(4)mθ+ = −
2
3

RmInJθ+ΓmΓIS Tθ+θ+ΓnΓ J
S T θ+ −

2
3

RmInJθ+ΓmΓstΓIθ+θ+Γ n
st ΓJθ+

+
4
3

RnIkJθ+ΓmΓntΓIθ+θ+Γ k
mt ΓJθ+ −

1
3

RIJKLθ+ΓmΓIJTθ+θ+ΓmΓ KL
T θ+

(B.33)

∼ RIJKL :
1
2

RIJKL
(
θ+ΓmΓIJθ+θ+ΓmΓKLθ+ + θ+ΓmΓIJTθ+θ+ΓmΓKL

Tθ+

)
∼ RmInJ : 2RmInJ

(
θ+ΓmΓIKθ+θ+ΓnΓ J

K θ+ +
1
2
θ+ΓmΓIS Tθ+θ+ΓnΓ J

S T θ+ −
1
6
θ+ΓmstΓIθ+θ+Γn

stΓ
Jθ+

)
(B.34)
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Appendix C

Seiberg-Witten curves for pure N = 2

SYM with compact simple gauge groups

SW curve for classical gauge groups can be written as

F(x)
ζ

+ ζF̃(x) = Q(x) , (C.1)

where Q, F and F̃ are some polynomials. Note that for pure vector multiplets one always

has F = F̃, so

1
ζ

+ ζ =
Q(x)
F(x)

⇔ y2 = 4F(x)2
( Q(x)2

4F(x)2 − 1
)
, y =

2F(x)
ζ
− Q(x) (C.2)

The tilded variables below correspond to the variables used in the papers of Konishi et

all. Variables without tilde correspond to the variables used in Tachikawa’s review.
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An:

Λn+1

z
+ zΛn+1 = xn+1 + u2xn−1 + . . . + unx + un+1, λ =

x
z

dz

P(x) = xn+1 + u2xn−1 + . . . + unx + un+1, F(x) = Λn+1, y =
2F(x)

z
− P(x)

y2 = P(x)2 − 4Λ2n+2

(C.3)

Change of variables:

ỹ = y, x̃ = x, P(x) =

n+1∏
a=1

(x̃ − φa)2

ỹ2 =

n+1∏
a=1

(x̃ − φa)2 − Λ̃2n+2, Λ̃ = 2
1

n+1 Λ

(C.4)

N = 1 points:

ỹ2 = Λ̃2n+2(T 2
n+1(ξ) − 1), ξ =

x̃
2Λ̃
· 2

1
n+1 e−2πik/2(n+1), k = 0, 1, ..., n (C.5)

This is equivalent to the following condition on P(x):

1
2

Λ−n−1P(x) = Tn+1

(
x ·

1
2Λ̃
· 2

1
n+1 e−2πik/2(n+1)

)
(C.6)

The maximally degenerate curve in the Hitchin form:

1
z

+ z = 2Tn+1

(
x ·

1
2Λ

e−2πik/2(n+1)
)

(C.7)
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Bn:

x
(Λ2n−1

z1/2 + z1/2Λ2n−1
)

= x2n + u2x2n−2 + u4x2n−4 + . . . + u2n, λ =
x
z

dz

P(x) = x2n + u2x2n−2 + u4x2n−4 + . . . + u2n, F(x) = xΛ2n−1, y =
2F(x)
z1/2 − P(x)

y2 = P(x)2 − 4Λ4n−2x2

(C.8)

Change of variables:

ỹ = xy ⇒ ỹ2 = x2P(x)2 − 4Λ4n−2x4

x̃ = x2 ⇒ ỹ2 = x̃P(x̃)2 − 4Λ4n−2 x̃2, P(x̃) =

n∏
a=1

(x̃ − φ2
a)2

ỹ2 = x̃
n∏

a=1

(x̃ − φ2
a)2 − Λ̃4n−2 x̃2

(C.9)

N = 1 points:

ỹ2 = Λ̃4n−2 x̃2(T 2
2n−1(ξ) − 1), ξ =

√
x̃

2Λ̃
· 2

1
2n−1 e−2πik/2(2n−1), k = 0, 1, ..., 2n − 2 (C.10)

This is equivalent to the following condition on P(x):

1
2

Λ−2n+1x−1P(x) = T2n−1

(
x ·

1
2Λ̃
· 2

1
2n−1 e−2πik/2(2n−1)

)
, Λ̃ = 2

1
2n−1 Λ (C.11)

The maximally degenerate curve in the Hitchin form:

1
z1/2 + z1/2 = 2T2n−1

(
x ·

1
2Λ

e−2πik/2(2n−2)
)

(C.12)
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Cn:

Λ2n+2

z1/2 + 2Λ2n+2 + z1/2Λ2n+2 = x2(x2n + u2x2n−2 + u4x2n−4 . . . + u2n), λ =
x
z

dz

P(x) = x2n + u2x2n−2 + u4x2n−4 . . . + u2n, F(x) = Λ2n+2, y =
2F(x)
z1/2 − x2P(x) + 2Λ2n+2

y2 = x2P(x)(x2P(x) − 4Λ2n+2)
(C.13)

ỹ = yx−1 ⇒ ỹ2 = P(x)(x2P(x) − 4Λ2n+2)

x̃ = x2 ⇒ ỹ2 = P(x̃)(x̃P(x̃) − 4Λ2n+2), P(x̃) =

n∏
a=1

(x̃ − φ2
a)

ỹ2 =

n∏
a=1

(x̃ − φ2
a)

{
x̃

n∏
a=1

(x̃ − φ2
a) − Λ̃2n+2

} (C.14)

N = 1 points (for some reason there are two cases) :

even n: ỹ2 = 2
2n2
n+1 Λ̃4n+2

n/2∏
a=1

(ξ2−(ω[n+1]
a )2)

(
T 2

n+1(ξ)−1
)
, ξ = 2

1
n+1

√
x̃

2Λ̃
e−2πik/2(n+1), k = 0, 1, .., n

(C.15)

odd n: ỹ2 = Λ̃4n+2(−1)−
1

n+1 21− 2
n+1 (ξ − 1)U2

n−1
2

(ξ)T 2
n+1

2
(ξ), ξ = −2

2
n+1−1 1

Λ̃2
(x̃ −

1
2
φ2

n)e−2πik/2(n+1)

= Λ̃4n+2(−1)−
1

n+1 21− 2
n+1

1
4

(ξ − 1)U2
n(ξ)

= Λ̃4n+2(−1)1− 1
n+1 2−1− 2

n+1
1

1 + ξ

(
T 2

n+1(ξ) − 1
)

(C.16)

Dn:

x2
(Λ2n−2

z
+ zΛ2n−2

)
= x2n + u2x2n−2 + . . . + u2n

P(x) = x2n + u2x2n−2 + . . . + u2n, F(x) = x2Λ2n−2, y =
2F(x)

z
− P(x)

y2 = P(x)2 − 4Λ4n−4x4

(C.17)
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ỹ = yx ⇒ ỹ2 = x2P(x)2 − 4Λ4n−4x6

x̃ = x2 ⇒ ỹ2 = x̃P(x̃)2 − 4Λ4n−4 x̃3, P(x̃) =

n∏
a=1

(x̃ − φ2
a)2

ỹ2 = x̃
n∏

a=1

(x̃ − φ2
a)2 − Λ̃4n−4 x̃3, Λ̃ = 2

1
2n−2 Λ

(C.18)

N = 1 points:

ỹ2 = Λ̃4n−4 x̃3(T 2
2n−2(ξ) − 1), ξ = 2

1
2n−2

√
x̃

2Λ̃
e−2πik/2(2n−2), k = 0, 1, ..., 2n − 3 (C.19)

This is equivalent to the following condition on P(x):

1
2

Λ−2n+2x−2 P(x) = T2n−2

(
x · 2

1
2n−2

1
2Λ̃

e−2πik/2(2n−2)
)

(C.20)

The maximally degenerate curve in the Hitchin form:

1
z

+ z = 2T2n−2

(
x ·

1
2Λ

e−2πik/2(2n−2)
)

(C.21)

Exceptional cases

G2:

The curve is obtained in [71] using the prescription of Martinec-Warner [72]:

3
(
z −

µ

z
)2
− x8 + 2ux6 −

[
u2 + 6

(
z +

µ

z
)]

x4 +
[
v + 2u

(
z +

µ

z
)]

x2 = 0, λ =
x
z

dz

where u =
1
4

tr φ2, v =
1
6

tr φ6 −
1

96
[tr φ2]3

(C.22)
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N = 1 points:

uk = 2 · 3
1
4 Λ2eiπk/2, vk = −4 · 3−

9
4 Λ6e3iπk/2, k = 0, 1, 2, 3

3
(
ζ −

µ/Λ

ζ

)2
− ξ8 + 4 · 3

1
4 ξ6 −

[
4 · 3

1
2 + 6

(
ζ +

µ/Λ

ζ

)]
ξ4 +

[
− 4 · 3−

9
4 + 4 · 3

1
4
(
ζ +

µ/Λ

ζ

)]
ξ2 = 0,

where ξ =
x
Λ
, ζ =

z
Λ4 ,

µ

Λ
is a dimensionless number.

(C.23)

E6:

The curve was obtained in Lerch-Warner [73] (using the prescription of Lerch and

Warner):
1
2

x3τ2 − q1τ + q2 = 0, τ = z +
µ2

z
+ u6 , (C.24)

where

q1 = 270x15 + 342u1x13 + 162u2
1x11 − 252u2x10 + (26u3

1 + 18u3)x9 − 162u1u2x8

+ (6u1u3 − 27u4)x7 − (30u2
1u2 − 36u5)x6 + (27u2

2 − 9u1u4)x5 − (3u2u3 − 6u1u5)x4

− 3u1u2
2x3 − 3u2u5x − u3

2

q2 =
1

2x3 (q2
1 − p2

1 p2)

p1 = 78x10 + 60u1x8 + 14u2
1x6 − 33u2x5 + 2u3x4 − 5u1u2x3 − u4x2 − u5x − u2

2

p2 = 12x10 + 12u1x8 + 4u2
1x6 − 12u2x5 + u3x4 − 4u1u2x3 − 2u4x2 + 4u5x + u2

2

(C.25)
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Alternatively we can write the curve as τ = z +
µ2

z + u6 = 1
x3

[
q1 ± p1

√
p2

]
.

p2 =
(√

12(x5 + a1x4 + a2x3 + a3x2 + a4x + a5)
)2

⇒ u2 = u5 = 0, u3 =
1
2

u3
1, u4 = −

1
96

u4
1

= 12(x5 +
1
2

u1x3 +
1
24

u2
1x)2

x−3q1 = 270x12 + 342u1x12 + 162u2
1x8 + 35u3

1x6 +
3 · 29

32
u4

1x4 +
3

32
u5

1x2

x−3 p1
√

p2 = 2
√

3(78x8 + 60u1x6 + 14u2
1x4 + u3

1x2 +
1

96
u4

1)(x4 +
1
2

u1x2 +
1
24

u2
1)

τ = z +
µ2

z
+ u6 = . . .

(C.26)

E7:

This curve was obtained in [74] using the method based on ALE spaces.

(τ + v18)3 + A2(x)(τ + v18)2 + A1(x)(τ + v18) + A0(x) = 0 , (C.27)

where

A2 =
9

16x2 (6qp1 − 3p2)

A1 =
( 9
16x2

)2(9q2 p2
1 − 6rp1 p2 − 12qp1 p3 + 3qp2

2 + 3p2
3)

A0 = −
( 9
16x2

)3(4r2 p3
1 + 6qrp2

1 p2 + 9q2 p2
1 p3 − 6rp1 p2 p3 − 6qp1 p2

3 + 2rp3
2 + 3qp2

2 p3 + p3
3)

(C.28)

Here τ can be identified as z + 1
z , q and r are certain polynomials in x of degree 10 and 15

respectively, p1, p2 and p3 are polynomials in x of degree 10, 15, 20 (see section [74] for

details).

The authors of [74] claim that the curve (C.27) agrees with the prescription of Lerch

and Warner [73] applied for the R = 56 of E7. Namely, they claim that (C.27) can be
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written as

P56
E7

(x; v2, . . . , v14, v18 + τ) = 0 ,

where P56
E7

(x; v2, . . . , v14, v18) = −
x2

36 (v3
18 + A2(x)v2

18 + A1(x)v18 + A0(x))
(C.29)
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