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A primary purpose of cognitive diagnosis models (CDMs) is to classify examinees 

based on their attribute patterns. The Q-matrix (Tatsuoka, 1985), a common component of 

all CDMs, specifies the relationship between the set of required dichotomous attributes and 

the test items. Since a Q-matrix is often developed by content-knowledge experts and can 

be influenced by their judgment (de la Torre & Chiu, 2016), this can lead to 

misspecifications in the Q-matrix that can have unintended consequences on examinees’ 

classifications. Incorrect classification of examinees can have tremendous impact since 

some assessments are high-stake and are used to make important decisions about students, 

such as selection and placement. Previous research based on the Trends in International 

Math and Science Study (TIMSS) has predominantly focused on comparing the 

performances of participating countries using their average scores.  

This study focused on fitting data from the TIMSS with a CDM to obtain estimated 

attribute profiles that will provide information about skill proficiency of students in the 

participating countries. However, since the test is not specifically designed for use with a 

CDM, a provisional Q-matrix was developed with input from content experts. As a 
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preliminary analysis, the TIMSS data was first fitted with the generalized deterministic 

inputs, noisy, “and” gate (G-DINA) model to obtain examinees’ estimated attribute 

profiles. An evaluation of the estimated attribute profiles however indicated that there are 

inconsistencies in classification, which may be due to misspecification in the provisional 

Q-matrix. To ensure that the provisional Q-matrix is appropriately developed, this 

dissertation proposes one Q-matrix validation method that can be used to correct possible 

misspecifications in a Q-matrix, and one Q-matrix estimation method for estimating a Q-

matrix from scratch.  

The proposed methods both integrate the Q-matrix validation procedure (Chiu, 

2013) that is based on a nonparametric classification method.  The first method, the 

integrated Q-matrix validation (IQV) technique, uses a joint maximum likelihood 

estimation (JMLE) procedure for diagnostic classification models (Chiu, Köhn, Zheng, and 

Henson, 2016) to determine examinees’ attribute profiles that are then integrated into the 

algorithm of Chiu’s Q-matrix validation method to validate the Q-matrix. In the second 

method, the two-step Q-matrix estimation (TSQE) method, factor analysis is first applied 

to the correlation matrix to obtain a provisional Q-matrix. The provisional Q-matrix is then 

incorporated into the algorithm of Chiu’s Q-matrix validation method, to obtain the true 

Q-matrix.  

The viability of both methods was investigated using simulation studies with 

various conditions. The TIMSS data was re-analyzed with the G-DINA model using 

modified Q-matrices obtained from analysis with the proposed methods. An evaluation of 

the updated estimated attribute profiles indicated that some of the inconsistencies in 

classification that were previously identified have been resolved.  
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Chapter 1. Introduction  

Educational assessment based on traditional psychometric models such as classical 

test theory (CTT) and item response theory (IRT) use statistical frameworks that identify 

an examinee’s position along a latent ability continuum. The information obtained from 

these assessments is typically used for ranking or comparing examinees, and for 

determining how well examinees have performed based on specific standards. In contrast, 

cognitive diagnosis models (CDMs), sometimes also referred to as diagnostic classification 

models (DCMs; Rupp, Templin, & Henson, 2010), give information about examinees’ 

mastery or nonmastery of a set of fine-grained attributes required to respond correctly to 

test items (de la Torre, 2008).  Thus, the primary purpose of CDMs is to estimate 

examinees’ attribute profiles based on the attributes required to respond correctly to the 

items on a test. Although CDMs are predominantly developed and used to analyze 

educational assessments, they have also been applied to other fields. For example, they 

have been employed in clinical psychology to identify psychological disorders by using a 

multidimensional classification of examinees based on their behavioral dispositions 

(Templin & Henson, 2006).        

Many CDMs have been proposed in literature with the main difference between 

models being the assumptions about the relationship between items and attributes in 

determining the probability of a correct response. Some frequently used models are 

introduced in detail in the next chapter.  Despite the differences between models, all 

analyses with CDMs require a Q-matrix (Tatsuoka, 1985), a collection of q-vectors that are 

individually matched to each item on a test and define the attributes required to answer 

each item correctly. Given a CDM, information from a Q-matrix and examinees’ responses 
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are used to estimate examinees’ attribute profiles. These profiles indicate the attributes 

each examinee has mastered and the ones they are yet to master. Assessments based on 

CDMs can thus be used to evaluate examinees’ learning and progress, to improve 

instruction, and to identify appropriate intervention. Therefore, the Q-matrix is an 

important component of cognitive diagnostic analysis and the quality of the Q-matrix 

determines the validity of the assessment and inferences made based on the test results 

(Rupp & Templin, 2008; DeCarlo, 2011).  

However, a Q-matrix is often constructed based on the opinions of content experts 

and this subjective process may lead to misspecifications in the Q-matrix. In addition, many 

existing assessments are not designed for use with CDMs, and through a process of 

retrofitting an adhoc Q-matrix is often created based on information given in a test 

blueprint. However, this process can cause misspecifications in the Q-matrix. These 

misspecifications and inaccuracies in the Q-matrix often negatively impact model 

parameter estimations, which may result in the erroneous classification of students, and an 

inaccuracy of the inferences made based on test results. Since the development of a Q-

matrix is one of the most important aspects of using CDMs, Q-matrix validation and 

estimation methods have been developed to ensure that a Q-matrix is accurately specified. 

Q-matrix validation methods are used for identifying and correcting the misspecification 

and inaccuracies that may occur in a provisional Q-matrix due to the subjective process by 

which it is often developed. These methods are essential because a Q-matrix is often 

assumed to be correctly constructed and model fit analyses of CDMs often assume that a 

Q-matrix is correct without substantial evidence of its appropriateness (de la Torre, 2008). 

On the other hand, Q-matrix estimation methods are used for developing a Q-matrix from 
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scratch by relying only on information from examinees’ responses and the given CDM. Q-

matrix estimation methods are particularly useful in situations where content experts are 

not readily available to guide the process of developing a provisional Q-matrix such as 

during the process of retrofitting non-cognitive-diagnostic assessment for cognitive 

diagnostic purposes.  

Although several Q-matrix validation and estimation methods currently exist, some 

limitations have been identified with these methods. For example, some existing Q-matrix 

estimation methods (Barnes 2010; Liu, Xu, and Ying, 2012; Culpepper, Chen, and 

Douglas, 2018) have only been used with specific CDMs such as the Deterministic Input, 

Noisy “And” Gate (DINA; Haertel, 1989; Junker & Sijstma, 2001), Deterministic Input, 

Noisy ”Or” Gate (DINO; Templin & Henson, 2006), and a restricted version of the 

reparameterized unified model (RRUM: Hartz, 2002; Hartz, Roussos, & Stout, 2002). 

Furthermore, the robustness and generalizability of the model-based approach to the Q-

matrix validation (DeCarlo, 2012; Templin & Henson, 2006a) requires additional 

exploration especially for situations in which all the misspecified q-entries have not been 

detected. Results from the simulation study and real data analysis based on the Q-matrix 

validation method proposed by de la Torre (2008) shows that that the procedure has great 

potential, however it is unconfirmed if the procedure can be used with models other than 

the DINA model, and in particular, generalized CDMs. Although the general method of 

empirical Q-matrix validation (de la Torre & Chiu, 2016) overcomes the shortcoming of 

validation methods that cannot be used with more general CDMs, the use of the method 

has limited generalization because of the requirement for an arbitrary cutoff to stop the 

algorithm from over-correcting. It is therefore vital to develop additional methods of Q-
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matrix validation and estimation that are simple and easy to use under varying conditions 

and with a variety of CDMs.  

This study proposes one Q-matrix validation method and one Q-matrix estimation 

method that are ideal for use under a variety of conditions and with a variety of CDMs. 

The first method, the integrated Q-matrix validation (IQV) method, uses the Joint 

Maximum Likelihood Estimation (JMLE) for cognitive diagnostic models (Chiu, Köhn, 

Zheng, & Henson, 2016) to classify examinees and then validates the q-vectors by applying 

the Q-matrix validation method (Chiu, 2013). By using the JMLE algorithm to estimate 

examinees’ attribute profiles, the IQV method can be used with more general CDMs 

beyond the DINA and DINO models, unlike the Q-matrix validation method (Chiu, 2013) 

which is limited in use with only the DINA model. In the second method, the two-step Q-

matrix estimation (TSQE) method, a provisional Q-matrix is estimated by first applying 

the nonlinear factor analysis to examinees’ response data. This provisional Q-matrix is then 

used as the input for the Q-matrix validation method (Chiu, 2013) to obtain the modified 

Q-matrix. Apart from its simplicity and minimal computation time, the TSQE method can 

be used with a variety of CDMs and sample sizes. The performance of both proposed 

methods is evaluated using two simulation studies each. In addition to the simulation 

studies, the proposed methods are applied to a subset of the fourth-grade mathematics data 

from the 2011 Trends in International Mathematics and Science Study (TIMSS). First, the 

data are fitted with the G-DINA model to estimate examinees’ attribute profiles which are 

then evaluated to determine if there are discrepancies in the classification. The presence of 

discrepancies is evidence of a likely misspecification in the provisional Q-matrix 

developed in collaboration with content experts. The IQV method is then applied to 
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improve the issue of discrepancies in student classification and to correct the 

misspecifications in the provisional Q-matrix. Similarly, the TSQE method is applied to 

examinees’ response data to obtain the modified Q-matrix. Preliminary results show that 

both the IQV and TSQE methods have potential in correcting misspecifications in a 

provisional Q-matrix and in identifying the true Q-matrix respectively.   
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Chapter 2. Literature Review 

 

 

2.1 Overview of Cognitive Diagnosis Models 

 

Cognitive diagnosis models (CDMs) are latent class models in which classes are 

defined by examinees’ mastery or nonmastery of a set of skills. CDMs provide fine-grained 

diagnosis of examinees’ strengths and weaknesses in the form of an attribute profile, that 

can be used to direct instructional improvement plans, provide targeted intervention to meet 

students’ needs, and improve educational outcomes. CDMs can be classified based on 

some defining characteristics (Rupp & Templin, 2008): (1) the type of measurement scale 

of the observed response variables (dichotomous or polytomous), (2) the type of 

measurement scale used by the attributes or skills being measured (dichotomous or 

polytomous), (3) the way in which the attributes or skills are combined within each item 

(compensatory or noncompensatory), and how the probability of an examinee correctly 

responding to an item is determined (Conjunctive or disjunctive). For example, the DINA 

model, the DINO model and the Noisy Input, Deterministic “And” Gate (NIDA; Junker & 

Sijstma, 2001) models are based solely on dichotomous response data. Some others CDMs 

like the General diagnostic model (GDM; von Davier, 2005; Xu & von Davier, 2006) are 

designed to use both dichotomous and polytomous response data. In compensatory CDMs 

(e.g., DINO), the absence of an attribute can be compensated for by the presence of other 

attribute(s), while noncompensatory models (e.g., DINA, NIDA) require mastery of all 

attributes for an examinee to answer an item correctly.  Conjunctive models (DINA, NIDA; 

Hartz, 2002; Roussos, DiBello, Stout, Hartz, Henson, & Templin, 2007) require mastery 

of all necessary attributes for an examinee to have a high probability of answering an item 
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correctly, while in disjunctive models (e.g., DINO) only one attribute needs to be mastered 

for an examinee to have a high probability of answering an item correctly.  

Despite differences in their defining characteristics, all CDMs use a Q-matrix 

(Tatsuoka, 1983) with dimension 𝐽 × 𝐾.  The Q-matrix specifies the attributes required to 

answer each item on a test correctly.  Items are denoted by j = 1, . . . , J, attributes or skills 

are denoted by k = 1, . . . , K. Each item has a corresponding q-vector, q, that has a length 

of K. Since attributes are characterized as being discrete and dichotomous, they are either 

required or not required to answer an item correctly. If the kth attribute is required to solve 

the jth item, qjk = 1, otherwise qjk = 0.  The combination of skills that examinee i, possesses 

is represented by an attribute profile, 𝜶𝑖 = (𝛼𝑖1, … , 𝛼𝑖𝐾). The attribute profile is a latent 

vector with length K, in which a 1or 0 in the kth entry of the vector indicates mastery or 

nonmastery of the kth attribute respectively. For a test requiring K attributes, examinees 

will be classified into one of the possible 2K unique latent classes (c = 1, . . . , C), with each 

latent class representing a unique combination of  attribute mastery and nonmastery 

patterns. Thus, a primary purpose of CDMs is to appropriately classify examinees into one 

of the classes based on their mastery or nonmastery of required attributes. The rest of this 

section provides an overview of the Q-matrix and some commonly used CDMs. 

 

2.1.1 The Q-matrix 

The Q-matrix (Tatsuoka, 1983) is a necessary component for analysis involving 

CDMs as it specifies the attributes that are required to answer each item on a test correctly. 

The attributes indicate the specific skills, knowledge, or processes that are needed by an 

examinee to correctly respond to test items. Attributes are discrete and dichotomous which 
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implies that they are either required for examinees to correctly answer an item (qjk = 1) or 

not required for examinees to correctly answer the item (qjk = 0).  Each item is matched 

with a corresponding q-vector of length K. For example, the entry in the 3rd row of the Q-

matrix in Figure 1 indicates that an examinee must master attributes K2 and K3 to answer 

item 3 correctly. Thus, by defining the relationship between items and attributes a Q-matrix 

provides a cognitive specification for each item on a test  

 

Figure 2.1. Example of a Q-matrix to illustrate attribute requirement for items 

    K1 K2 K3 

Q =
1 0 0
0 1 0
0 0 1

 

For CDMs to be successfully used with educational asssesssment data, it is 

necessary that the Q-matrix for a test is identified and complete. Completeness is a 

fundamental requirement that ensures the identifcation of all possible attribute profiles for 

examinees (Chiu, Douglas, & Li, 2009; Köhn & Chiu, 2016). The Q-matrix for  a test based 

on the DINA or DINO model is said to be complete if  and only if it includes all possible 

single-attribute items. In contrast, the process of establishing compeleteness when other 

CDMs are used is more complicated. As such,  completeness is not assessed based on the 

structure of a Q-matrix but in reference to the specific CDM in use.  Due to this challenge 

and the difficulties associated with tests that have a large number of items or attributes, 

assessing the completeness of a Q-matrix is often difficult.  As a solution to this issue, 

Koehn and Chiu (2017) developed a procedure for assessing the completeness of Q-

matrices. The  procedure is based on the theoritical framework of more generalized CDMs 

and can therefore be used with CDMs that can be reparameterized as a general CDM. While 
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an incomplete Q-matrix will affect the identifcation of all possible attribute profiles, 

problems such as misspecifciations and inaccuracies in the Q-matrix can adverely impact 

model parameter estimation and lead to misclassification of examinees. To ensure that 

appropriate inferences about examinees are made based on analysis involving CDMs, it is 

essential to verify that all required attributes are included in the Q-matrix, and that 

attributes are appropriately specified for each item on the test. However, the construction 

of the Q-matrix for most assessments relies heavily on the judgment of content experts, 

which may lead to errors in the Q-matrix. It is therefore important to develop  Q-matrix 

validation and estimation procedures  to ensure  that Q-matrices are accurately specified. 

 

2.1.2 The DINA Model 

The deterministic inputs, noisy “and” gate (DINA) model (Haertel, 1989; Junker & 

Sijtsma, 2001) is a conjunctive model since an examinee must possesses all required 

attributes to answer an item correctly. For each item, the DINA model partitions examinees 

into two latent groups: examinees in one group have all the required attributes to solve an 

item correctly, while the examinees in the other group lack at least one of the attributes 

required to solve the item correctly. This can be attributed to the conjunctive nature of the 

model, since an examinee must possess all required attributes to correctly answer an item. 

In the DINA model, the relationship between the latent response variables is represented 

as follows.  

𝜂𝑖𝑗 = ∏ 𝛼
𝑖𝑘

𝑞𝑗𝑘

𝐾

𝑘=1

 

where ηji, the ideal item response, shows whether examinee i has mastered all the attributes 

required to answer item j correctly.  ηij = 1 if examinee i has mastered all the required 
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attributes for item j., while ηij = 0 implies that examinee i is missing at least one attribute. 

The item response function (IRF) for the model is shown below. 

𝑃(𝑌𝑖𝑗 = 1|𝛼𝑖) = (1 − 𝑠𝑗)𝜂𝑖𝑗𝑔
𝑗

1−𝜂𝑖𝑗
 

Yij is the observed response for item j and examinee i and (1 – sj) is the probability of a 

correct response by an examinee that has all the required skills. However, since the process 

is stochastic, examinees can get the item right without having all the required attributes. In 

addition, examinees can get the item wrong even when all required attributes have been 

mastered. This is due to the error probabilities, 𝑠𝑗 and gj, the slipping and guessing 

parameters respectively, which are defined as follows. 

𝑔𝑗 = 𝑃(𝑌𝑖𝑗 = 1|𝜂𝑖𝑗 = 0)  

  𝑠𝑗 = 𝑃(𝑌𝑖𝑗 = 0|𝜂𝑖𝑗 = 1) 

 𝑔𝑗 represents the probability of 𝑌𝑖𝑗 =  1  when at least one attribute is lacking, and 𝑠𝑗 shows 

the probability of 𝑌𝑖𝑗 =  0 when all required attributes are present. In the DINA model, the 

number of parameters for an item is always two, regardless of the number of attributes 

represented in a Q-matrix. Although the DINA model is one of the most parsimonious 

CDMs, it is easy to use and interpret (de la Torre, 2008). However, a disadvantage of the 

model can be attributed to its simplicity since it partitions examinees into two equivalent 

classes per item and missing one attribute is equivalent to missing all required attributes 

(Henson & Douglas, 2005).   
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2.1.3 The NIDA Model 

In contrast to the DINA model which does not differentiate between examinees 

who lack only one of the attributes and those who have not mastered any of the attributes, 

the noisy input, deterministic, “and” gate (NIDA) model (Maris, 1999; Junker & Sijtsma, 

2001) makes a distinction between students who have mastered different combinations of 

the attributes required to answer an item correctly. Unlike the DINA model, the slipping 

and guessing parameters in the NIDA model occur at the attribute level, and each attribute 

uses one slipping parameter and one guessing parameter.      

𝑆𝑘 = 𝑃(𝜂𝑖𝑗𝑘 = 0|𝛼𝑖𝑘 = 1, 𝑞𝑗𝑘 = 1) 

𝑔𝑘 = 𝑃(𝜂𝑖𝑗𝑘 = 1|𝛼𝑖𝑘 = 0, 𝑞𝑗𝑘 = 1) 

 

ηijk indicates whether examinee i has mastered the kth attribute required for responding to 

item j.  

When an examinee applies attribute k correctly for item i, ηijk = 1. ηijk = 0 when the 

examinee does not apply attribute k correctly. Just like in the DINA model, the parameter 

αik is an indicator of attribute mastery for examinee i. The guessing parameter (gk) is the 

probability of the correct application of attribute k in the context of item j even though the 

attribute has not been mastered. Likewise, the slipping parameter (sk) is the probability of 

the incorrect application of attribute k in the context of item i even though the attribute has 

been mastered. The IRF of the NIDA model is represented as follows. 

𝑃(𝑌𝑖𝑗 = 1|𝛼𝑖) = ∏(

𝐾

𝑘=1

1 − 𝑠𝑗𝑘)𝛼𝑖𝑘  𝑔𝑗𝑘
(1−𝛼𝑖𝑘)

𝑞𝑗𝑘

 

 

qjk indicates whether attribute k is measured by item i in the Q-matrix, and (1 – sk) is the 

probability of not slipping for attribute k.  Since the model assumes that the IRF must be 



12 

 

 

the same for all items that require mastery of the same attributes, the NIDA model is 

restrictive. An implication of this restriction is that item difficulty for many items will be 

identical, which is implausible in practice. 

 

2.1.4 The DINO Model 

 

The deterministic input, noisy, “or” gate (DINO) model (Templin & Henson, 2006) 

is the disjunctive equivalent of the DINA model and just like the DINA model, it has two 

parameters for each item. The slip parameter (sj) refers to the probability that examinee i, 

who mastered at least one of the required attributes for item j, answered it incorrectly, while 

the guessing parameter (gj) refers to the probability of a correct response when an examinee 

has not mastered any of the required skills. The slip and guessing parameters are 

represented as follows.  

𝑠𝑗 = 𝑃(𝑥𝑖𝑗 = 0|𝜔𝑖𝑗 = 1) 

 

𝑔𝑗 = 𝑃(𝑥𝑖𝑗 = 1|𝜔𝑖𝑗 = 0) 

 

𝜔ij indicates whether at least one of the attributes required to answer an item correctly has 

been mastered. Two groups of examinees are represented in the DINO model; examinees 

that have at least one of the required attributes (ωij = 1), and examinees who do not have 

any of the required attributes (ωij =0). 

𝜔𝑖𝑗 = 1 − ∏[(

𝐾

𝑘=1

1 − 𝛼𝑖𝑘)𝑞𝑗𝑘   

 

The IRF for the DINO model is defined as follows. 
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𝑃𝑗(𝜔𝑖𝑗) = 𝑃(𝑋𝑖𝑗 = 1|𝜔𝑖𝑗) = (1 − 𝑠𝑗)𝜔𝑖𝑗𝑔
𝑗

(1−𝜔𝑖𝑗)
 

Therefore, in the DINO model the probability of a correct response, given mastery of at 

least one skill, does not depend on the number and type of skills that are mastered.  

 

2.1.5 The Reduced RUM Model (RRUM)  

 

The reduced reparametrized unified model, RRUM (Hartz, Roussos, & Stout, 2002; 

Hartz, Roussos, Henson, & Templin 2005; DiBello et al., 2007) is a reduced version of the 

RUM model in that it omits the Rasch component of the RUM model. RRUM is a 

generalization of the NIDA model since it allows parameters to differ item-by-item (Chiu, 

2013). In the RRUM model, each attribute contributes differently to the probability of a 

correct response, and the extent to which an attribute contributes to the probability of 

success can vary from item to item. The model is also based on the assumption that an 

examinee must master all required attributes to answer an item correctly (Henson et al, 

2009). Thus, the RRUM also resolves the issue in the DINA model in which all examinees 

who have not mastered at least one of the required attributes have the same probability of 

answering an item correctly. As a result, the RRUM provides for a more flexible impact of 

attribute mastery on item response probabilities (Rupp, Templin & Henson, 2010). In the 

item response function, the probability of a correct answer to item j given that an examinee 

possesses the required attribute pattern αj is represented as follows. 

𝑃(𝑌𝑖𝑗 = 1|𝛼𝑖) = 𝜋𝑗
∗ ∏ 𝑟𝑗𝑘

∗𝑞𝑗𝑘( 1−𝛼𝑖𝑘  )

𝐾

𝑘=1

 

 

The RRUM model includes two parameters, π∗
j and 𝑟𝑗𝑘

∗ . 
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𝜋𝑗
∗ = ∏ 𝜋

𝑗𝑘

𝜂𝑗𝑘

𝐾

𝑘=1

 

𝑟𝑗𝑘
∗ =

𝑟𝑗𝑘

𝜋𝑗𝑘
 

π∗
j, the baseline parameter, is the probability of a correct response to item j provided that 

an examinee has mastered all the required attributes for the item. πjk is the probability of 

correctly using the mastered attribute, k, to respond to item j, and not slipping at the 

attribute level. A large value of π∗
j for item j indicates that an examinee’s response 

correlates with the attributes required to answer item j correctly. The penalty parameter r∗
ik, 

denotes the amount of reduction to the probability of a correct response to item j because 

of nonmastery of attribute k. rik, is the probability of guessing for attribute k when 

responding to item k. When r∗
jk for attribute k is small, the probability of a correct response 

is greatly reduced when the attribute is not mastered. Thus, smaller levels of rik yields 

higher discrimination levels.  

 

 

2.1.6 The G-DINA Model 

The generalized deterministic inputs, noisy, “and” gate (G-DINA) model, a 

generalization of the DINA model with more relaxed assumptions, is equivalent to other 

general models for cognitive diagnosis based on an alternative identity link function (de 

la Torre, 2011). The G-DINA model incorporates an item-by-item model estimation based 

on design and weight matrices, and a component for item-by-item model comparison 

based on the Wald test (de la Torre, 2011).  In the G-DINA model, when an examinee has 

mastered at least one of the required attributes, there is an increase in the examinee’s 
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probability to correctly answer the item. Unlike the DINA model which has 2 parameters 

for each item j, the G-DINA model has 2𝐾𝑗
∗

 parameters for item j, where K*
j is the number 

of attributes required to answer item j correctly. This accounts for its greater generality 

whenever  𝐾𝑗
∗ > 1. The DINA model and G-DINA models are however the same when K*

j 

=1. The probability of success in the G-DINA model based on the identity link is as 

follows. 

𝑃(𝑌𝑗 = 1|𝛼𝑙1, 𝛼𝑙𝐾) = 𝛿𝑗0 + ∑ 𝛿𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1
+ ∑ ∑ 𝛿𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾
𝑗−1
∗

𝑘=1

𝐾𝑗
∗

𝑘′=𝑘+1
…+𝛿𝑗12 … 𝐾𝑗

∗ ∏ 𝛼𝑙𝑘
𝐾𝑗

∗

𝑘=1
 

 

where: 

δj0 is the intercept for item j, i.e., the baseline probability of a correct response when an 

examinee does not possess any of the required attributes for item j 

δjk is the main effect due to αk i.e., the change in the probability of a correct response when 

an examinee has mastered a single attribute 

δjkk is the interaction effect due αk and αk’ i.e., the change in probability of a correct response 

when an examinee masters both αk and αk’ . 

δj12···K
∗

j is the interaction effect due to α1, . . . , αK
∗

j , i.e., the change in the probability of a 

correct response when an examinee  masters all the required attributes.  

 

The parameter estimation of the G-DINA model is obtained using marginalized maximum 

likelihood estimation which requires maximizing the log-marginalize likelihood of the 

response data.  

𝑙(𝑌) = log [𝐿𝑌)] = 𝑙𝑜𝑔 ∏ ∏ 𝐿(𝑌𝑖

𝐿

𝑙=1

𝐼

𝑖−1

|𝛼𝑙)𝑝(𝛼𝑙) 

 

where 

𝐿(𝑌𝑖|𝛼𝑙) = ∏ 𝑃
𝐽

𝑗=1
(𝛼𝑙𝑗)𝑌𝑖𝑗[1 − 𝑃(𝛼𝑙𝑗)](1−𝑌𝑖𝑗) 

 

 

is the likelihood of the response vector of examinee i given the attribute vector 𝛼𝑙. 

P(𝛼𝑙) is the probability of 𝛼𝑙 

P(𝛼𝑙𝑗) is the probability of a correct response on item j and can also be written as P(𝛼𝑙𝑗
∗ ) 
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2.2 Q-matrix Validation and Estimation Methods 

 Although Q-matrix validation and estimation are important aspects of using CDMs 

and several methods of Q-matrix validation and estimation currently exist, limitations 

associated with some of these methods makes it necessary to develop additional procedures 

that can be used with a wide variety of CDMs and with more generalizable application 

under a variety of conditions.  While there are several Q-matrix validation methods that are 

suitable for use with simple CDMs, the general method of Q-matrix validation (de la Torre 

& Chiu, 2016) is one of the very few well developed methods of Q-matrix validation that 

are available for identifying misspecifications in a Q-matrix and that can be used with more 

complex CDMs. However, the requirement of an arbitrary cutoff to stop the algorithm is a 

major concern. Q-matrix estimation methods are used for developing a Q-matrix based 

only on examinees’ response data without requiring a provisional Q-matrix. Liu, Xu, and 

Ying (2012), developed the data-driven approach to identifying a Q-matrix and estimating 

the associated model parameters. The method is grounded on an estimator that uses the 

information of the dependence structure of item responses and does not require information 

about the distribution of the attributes or the slipping or guessing parameters. Some 

concerns with the use of the method include the need for a sufficiently large sample size 

which is often unattainable, the excessive computation time which makes the method 

impractical, and the inappropriateness of the method when both the slipping and guessing 

parameters are unknown, which is the common practice in reality. In addition, while the 

approach has been used with the DINA, DINO, and a restricted version of the R-RUM 

models, the method has not been used with more complex CDMs.  
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Building on the work of Liu et al (2012), Culpepper, Chen, and Douglas (2018), 

used the Bayesian framework to develop a Q-matrix estimation method for the DINA 

model, that is based on the identifiability theory proposed by Chen, Liu, Xu, and Ying 

(2015). The framework implements an effective Markov chain Monte Carlo (MCMC) 

algorithm to estimate the Q-matrix by investigating all possible Q-matrices. The method 

proved to be effective in identifying the Q-matrix both for simulation studies and for 

empirical applications compared to the method proposed by Chen et al (2015). In addition, 

unlike the method proposed by Liu et al. (2012), this method eliminates the need for an 

initial Q-matrix developed by content experts. Since the method estimates the Q-matrix by 

identifying the one with the most frequent occurrence in the Markov chain, this may be of 

concern in analysis involving a large number of attributes and examinees. 

Q-matrix validation methods (de la Torre, 2008; DeCarlo, 2012; Close, Davison, 

and Davenport Jr., 2012; Chiu, 2013; de la Torre & Chiu, 2016; Chen, 2017) in contrast, 

fall in a related but somewhat different category compared to Q-matrix estimation methods. 

A requirement of these methods is that a provisional Q-matrix associated with the test be 

known. De la Torre (2008) proposed an empirically based method of Q-matrix validation 

(the 𝛿 method) that is implemented with the DINA model. In the δ method, the difference 

in the probabilities of a correct response by examinees who have all the attributes required 

to answer an item correctly (ηj = 1) and examinees who do not have at least one of the 

required attributes (ηj = 0) is based on an item discrimination index, φj. φj is computed for 

each item and changes as the q-vector of items changes. A correctly specified q-vector for 

an item is assumed to be the one for which φj is highest since it maximizes the difference 

between the probabilities of success for the two groups. In contrast, the misspecification of 
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any q-entry reduces the difference due to either a higher guessing or slipping 

parameter.  By modifying the rule for classifying examinees into groups (ηj = 1, and ηj = 

0), the method can also be adapted for use with the DINO model. However, the 

appropriateness of the method with more general CDMs is yet to be determined. DeCarlo 

(2012) introduced a Bayesian model-based method of Q-matrix validation for data based 

on the reparameterized DINA (R-DINA; DeCarlo, 2010) model. The method requires a 

prior identification of q-entries that are likely to be misspecified. These q-entries are 

identified as random variables and estimated along with other parameters. Although the 

method showed positive results, further studies are recommended to evaluate its robustness 

and generalizability and especially in situation in which all misspecified q-entries were not 

identified (DeCarlo, 2012).  

De la Torre & Chiu (2016) developed the general discrimination index (GDI), ϛ2, 

that can be used to validate the Q-matrix with general CDMs. A primary difference 

between the GDI method and the 𝛿 method is that the GDI method can be used with a wide 

class of CDMs. The GDI first identifies the misspecifications and then substitutes the 

misspecified entries in a q-vector one q-entry at a time. The method is based on the 

principle that a correct q-vector should yield homogeneous latent groups with respect to 

the probability of success (de la Torre & Chiu, 2016). This method was found to be 

effective in identifying and replacing misspecified q-entries while retaining the correct q-

entries. However, despite the benefits of the method such as its generalizability, a major 

shortcoming of the method is the need to determine in advance an arbitrary cutoff to stop 

the algorithm. In addition, results of the study based on the method was limited in 

generalizability because it used specific conditions and did not explore the effect of factors 



19 

 

 

such as test length, number of attributes, or number of examinees. Chen (2017) developed 

the residual-based appproach to empirically validate a Q-matrix. The method builds on the 

absolute fit statistics that is based on the residuals between the observed and expected 

response patterns (Chen, de la Torre, & Zhang, 2013). Although the approach is suitable 

for use with several reduced and saturated CDMs that use dichotomous and polythomous 

attriubtes, additional evidence to support the effecitveness of the fit measures and the 

process of item adjustment under diverse conditions is required (Chen, 2017).  

The Q-matrix validation method proposed by Chiu (2013) is, grounded on the 

principle that the residual sum of squares (RSS) of a correct q-vector is less than the RSS 

of the other misspecified vectors for a specific item. The RSS of item j for examinee i is 

computed from the observed item response and the ideal item response as shown,  

𝑅𝑆𝑆𝑖𝑗 = (𝑌𝑖𝑗 − 𝜂𝑖𝑗)2 

where Yij and 𝜂ij are the observed and ideal item response of examinee i to item j 

respectively. Across all examinees, the RSS of item j is computed as  

𝑅𝑆𝑆𝑗 = ∑ ∑ (𝑌𝑖𝑗 − 𝜂𝑗𝑚)2

𝑖∈𝐶𝑚

2𝑘

𝑚=1

 

where Cm represents examinees’ attribute profile m. The method uses the nonparametric 

classification (NPC) procedure (Chiu & Douglas, 2013) to classify examinees. The 

algorithm for the method initially determines the q-vector that is most likely to be 

misspecified by identifying the item with the highest RSS. The process begins with the 

initialization of the search pool and the input Q-matrix which is used to estimate 

examinees’ attribute profiles based on the nonparametric classification method (Chiu & 

Douglass, 2013). From the estimates of the ideal item responses for obtained, the mean 
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RSS for each item is determined across examinees for all pairs of observed and ideal 

responses. The q-vectors for the item with the highest RSS are ranked based on their RSS, 

and the q-vector with the lowest RSS is added to the input Q-matrix to replace the q-vector 

for that item.  This updated Q-matrix now serves as the input Q-matrix. The input Q-matrix 

is updated with the q-vector with the lowest RSS for each item and the process is repeated 

until the RSS of each item remains the same. An advantage of the method is related to its 

nonparametric nature because the performance of an assessment is not dependent on the 

quality of the parameter estimations. The method is suitable for use with small and medium 

sized testing programs because it does not require a large sample size or computation time. 

Another advantage of the method is that it requires only a few iterations involving (2𝐾 −

 1) 𝑥 𝐽  computations to refine and validate the Q-matrix. As a result, despite situations that 

may compromise the possibility of obtaining a global optimum, the method is more 

efficient than other currently proposed algorithms such as Liu et al, 2012 (Chiu, 2013). The 

method is also viable not only for observed item responses that correspond to the DINA 

model, but with any CDM that incorporates the ideal item response η, or any ideal item 

response. 

 

2.3 Joint Maximum Likelihood Estimation (JMLE) for Diagnostic Classification 

Models 

 

Joint maximum likelihood estimation (JMLE) is a commonly used approach for 

estimating parameter estimates from response data.  In the JMLE approach, both the person 

parameters θi and the item parameters aj are considered as fixed effects and their estimates 

are obtained by maximixzing the joint likelihood  function, L(α, Θ; Y). 

𝐿(𝛼, Θ;  Y) =  ∏ 𝐿𝑖(𝛼, Θ; 𝑌𝑖) =  ∏ ∏ 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝛼𝑖  )𝐽
𝑗=1

𝑁
𝑖=1

𝑁
𝑖−1 , 
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where Y represents the 𝑁𝑋𝐽 matrix of observed item resposnes, yi represents the observed 

item response pattern, and (Θ =  𝜃1, 𝜃2, . . . , 𝜃𝐽)     represents the matrix of item parameters. 

However in general, JMLE estimators are typicallystatistically incosistent, and in analysis 

with IRT, estimates for examinees who did not answer any item correctly and examinees 

who answered all items correctly are excluded (Baker & Kim, 2004; Haberman, 2004). As 

a result, the JMLE approach is not often used. Chiu, Koehn, Zheng, and Henson (2016) 

developed a JMLE for CDMs based on Birnbaum’ paradigm two-step procedure that 

resolves the inconsistency issue by using the NPC method (Chiu & Douglas, 2013) to 

estimate  examinees’ attribute profiles which are then used as the initial input in the JMLE 

algorithm. The JMLE for CDM method considers examinees’ attribute profiles and item 

parameters as two distinct entities, with one known and the other unknown. In this case, 

the known set of parameter is the estimates of examinees atrribute profiles obtained using 

the NPC method. This reduces the joint likelihood to a function of only the item parameters 

and the estimates of Θj are obtained by maximizing the logarithm of the item likelihood 

𝐿𝑗(𝜃𝑗; 𝑦𝑗 , 𝛼).  

log 𝐿𝑗(𝜃𝑗; 𝑦𝑗, 𝛼) = ∑ log (𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝛼𝑖)

𝑁

𝑖=1

 

The item parameters estimates from the above process are then used for re-estimating 

examinees’ attribute profiles by maximizing the (reduced) log-likelihood L(𝛼; 𝑌, 𝛩). The 

updated examinees attribute profiles are used as input to update the parameter estimates, 

and through a process of iterations, the examinee attribute profiles and parameter estimates 

are updated until the estimates converge.  
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The estimators of item parameters for methods based on the marginal maximum 

likelihood estimation (MMLE-EM) algorithm or Markov chain Mote Carlo (MCMC) 

techniques experience computational restrictions when used with complex CDMs, thereby 

making analysis with large number of replicated datasets unachievable. The JMLE 

algorithm can overcome this issue for simpler models such as the DINA and DINO models, 

because the estimators of the item parameters have closed form, which ensure speedy and 

effective implementations of the EM algorithm (Chiu, Köhn, Zheng, & Henson, 2015). 

 

2.4 The Trends in International Mathematics and Science Study (TIMSS) 

 

2.4.1 Overview of TIMSS 

The Trends in International Mathematics and Science Study (TIMSS) is a large-

scale international assessment developed and administered by the International Association 

for the Evaluation of Educational Achievement (IEA), an international organization 

comprised of research institutions and government agencies. In the United States, the 

National Center for Education Statistics (NCES) has the primary responsibility of 

collecting, analyzing, and reporting data on international educational systems to assist local 

and national education bodies in evaluating the effectiveness of teaching and learning 

processes, identifying areas in need of improvement, creating educational policies, and 

making international comparisons (Mullis et al, 2012). Since its first occurrence in 1995, 

TIMSS has been administered every four years to measure mathematics and science 

achievement of fourth-grade and eighth-grade students in participating countries. By 

assessing student achievement in multiple content areas, IEA can gather information that 

provides insight into the educational processes within individual countries and across 
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national boundaries. The assessment uses a cross-sectional and quasi-longitudinal 

nonexperimental design which ensures that the same group of fourth-grade students are 

assessed in eighth grade. The IEA purposes to use TIMSS to stimulate curricular reforms 

based on students’ performance when they are in fourth grade and to evaluate the 

effectiveness of the reforms when the students are in eighth grade. Thus, TIMSS uses an 

international perspective to direct educational policy and practice related to mathematics 

and science. Since the framework for the assessment is based on broadly defined 

curriculum, the assessment is generally aligned to curriculum of the participating countries 

and education systems (Mullis et al, 2012). In addition to the subject-related questions on 

the assessment, students, teachers, school administrators, and in some instances, parents, 

provide background information about the instructional contexts of their institutions and 

factors that affect learning such as characteristics of students, resources available in 

schools, instructional practices, and family and home support.  

To measure student achievement, the assessment is administered to a representative 

sample of students in each country and educational system. TIMSS 2011, the fifth 

administration of the assessment, included 57 countries and education systems at the 

fourth-grade level. The mathematic test is based on a content dimension which focuses on 

the subject matter and evaluates students in areas such as number, geometric shapes and 

measures, and data display. The cognitive dimension is based on skills such as knowing, 

applying, and reasoning. The TIMSS 2011 mathematics assessment consists of 14 blocks 

of math items with approximately 10-14 items each, from which student booklets are 

organized. 8 of the 14 blocks are from the 2007 assessment and are used for measuring 
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trends in the 2011 test. The remaining 6 blocks are made up of released items, from which 

items used in this study were obtained.  

 

2.4.2 Research on TIMSS Fourth-grade and Eighth-grade Mathematics 

Since its inception in 1995, many researchers and organizations, including the 

NCES, have analyzed the TIMSS data to evaluate fourth and eighth grades students’ 

achievement in mathematics and science. The NCES typically provides results based on 

performance by average scores and performance on international benchmarks. Reports 

from the analysis of the 2011 TIMSS by NCES (Mullis et al, 2012) show that average 

mathematics score for the United States was higher than the international TIMSS scale 

average. According to the report, the United States was one of the top 15 education system 

in mathematics, with 8 education systems (Singapore, Korea, Hong Kong-CHN, Chinese 

Taipei-CHN, Japan, Northern Ireland-GBR, North Carolina-USA, and Belgium (Flemish)-

BEL) having higher averages and 6 nations having similar scores. The United States also 

scored higher on average than 42 education systems. In addition, the report showed an 

increase in average scores over time for the United States in 2011 compared to 1995 (23 

points higher) and 2007 (12 points higher). Differences in performance were also noted 

within the United States, with North Carolina scoring above the TIMSS scale average and 

the United States national average in mathematics, while Florida scored above the TIMSS 

scale average but was not measurably different from the United States national average.  

Using a diagnostic-based model, the rule-space method, Tatsuoka et al (2004) 

analyzed the mathematics data from the revised TIMSS-R, 1999 test. The analysis 

compared mastery of 23 attributes among 20 countries including the United States. The 
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result showed significant differences among the countries in their mastery of the attributes. 

For example, students from the United States showed strong quantitative reading skills but 

were weaker in areas such as geometry.  In their analysis of the 2007 fourth-grade TIMSS 

mathematics data, Lee et al (2011) focused on the results of two benchmark participants, 

Massachusetts and Minnesota, with a goal to provide comparison both within and across 

the United States. The research was based on 25 items encompassing 15 attributes and 

estimated with the DINA model. The results showed that although both states significantly 

outperformed the United States in general, there were significant differences in the 

proportion of items correctly answered and the level of skill mastery.  The study also 

included an evaluation of the model fit between the DINA model and IRT models. The 

comparison showed that the DINA model had a better model fit and provides more 

reliability and integrity in terms of the interpretation and meaning of the results (Lee et al, 

2011).  

Park and Lee (2011) used a cluster analysis to analyze items from the TIMSS 2007 

fourth-grade mathematics assessment. To conduct K-means clustering and hierarchical 

agglomerative cluster analysis (HACA), the study clustered attributes by mapping item 

responses to an attribute matrix (Park & Lee, 2011). In the study, countries were classified 

based on their average scale scores as high-performing (Hong Kong SAR and Chinese 

Taipei), average-performing (Denmark, Sweden, and the United States), and low-

performing (Colombia, Kuwait, Qatar, and Yemen). The results indicated that attribute 

structure for higher-performing countries were explicit and had a more hierarchical 

structure than the structure of attributes evident in the lower-performing countries. Choi et 

al (2015) used the DINA model to reanalyze the TIMSS 2003 eighth-grade mathematics 
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test to compare the performance of students in the United States and Korea. According to 

the authors, the Q-matrix was specifically constructed for the assessment, by specifying 

attributes based on the Principles and Standards for School Mathematics published in 2000 

by the National Council of Teachers of Mathematics (Choi et al, 2015). The standards were 

adapted to fit the concepts specified in the items on the assessment. The result compared 

the discrimination index of the two countries. Based on the findings of the study, the DINA 

model is recommended for use in empirical research involving large-scale assessments.  

Previous research using the TIMSS data focused mostly on comparing the 

performance of participating countries and educational system using their average scale 

scores, and retrofitting CDMs to TIMSS data to identify differences in attribute mastery 

among countries and educational systems. These studies however did not include the 

estimation or validation of the Q-matrices to ensure that the Q-matrices are correctly 

specified. The goal of this study is to fit the data to a CDM to identify and correct possible 

discrepancies in student classification. The proposed Q-matrix validation and estimation 

methods will then be used to identify the correct Q-matrix after which the data will again 

be fitted to a CDM to correct possible discrepancies in student classification. 
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Chapter 3. Analysis of the TIMSS 2011 Fourth-Grade Mathematics Dataset: Part I 

The primary purpose of this dissertation study is to analyze a subset of data from 

TIMSS using a cognitive diagnostic model and an adhoc Q-matrix developed through a 

process of retrofitting.  In the first part of the analysis shown in this chapter, data from 

eleven countries and educational systems is organized into three groups, with the USA in 

a fourth group by itself. The data is first analyzed to provide a description of the data set 

and information about how examinees in each group performed on the test based on their 

average scores. The data are then fitted with the G-DINA model to obtain examinees’ 

estimated attribute profiles. Part I of the analysis includes a summary of the descriptive 

statistics, a comparison of group performance by item and by attribute, and examinees’ 

estimated attribute profiles obtained from fitting the data set with the G-DINA model. The 

estimated attribute profiles will be reviewed with the proportion correct by attribute to 

ensure that there no discrepancies in classification.  

 

3.1 The Dataset 

 

The study analyzes examinee data for the United States, Singapore, Hongkong, 

Republic of Korea, Chinese Taipei, Japan, Finland, England, Denmark, Germany, Canada, 

and Australia. To ensure adequate sample sizes, the countries excluding the United States 

are classified into three groups based on their average scores provided in the National 

Center for Education Statistics (NCES) report 2013. The three identified groups are high-

performing (Singapore, Korea, Hong Kong, Chinese Taipei), mid-performing (Japan, 

Finland, England, and Denmark), and low-performing (Canada, Germany, and Australia). 
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Table 3.1 shows the countries and educational systems in each group and the average score 

for each country and educational system. 

 

Table 3.1. Average Mathematics Scores of 4th-grade Students on the TIMSS 2011  

by country and educational system 

 

Group Country/Educational 

System 

Average score 

(Number domain)  

Number of 

Examinees  

1 High Performing Singapore 619 428 

 Republic of Korea 606 279 

 Hongkong 604 245 

 Chinese Taipei- CHN 599 259 

2 Mid performing Japan 584 272 

 Finland 545 241 

 England 539 192 

 Denmark 534 162 

3 Low performing Quebec-CAN  531 215 

 Germany 520 199 

 Ontario-CAN  504 266 

 Australia 508 341 

 Alberta-CAN 505 205 

4 USA United States of 

America 

543 798 

 

The data set consists of responses to 15 released multiple-choice and open-ended 

items from booklet 6 of TIMSS 2011 fourth-grade mathematics assessment. 8 of the 15 

items are multiple choice items and 7 are open-ended items that require students to compute 

a number or to draw a diagram to illustrate a pattern. Correct responses to the multiple-

choice items were coded as 1 and incorrect responses as 0. Correct responses to the open-

ended items, were coded as 1 while incorrect responses and responses with partial credits 

were coded as 0. Information for students with omitted responses is not included in the data 

set.  Items on the TIMSS fourth-grade mathematics test are broadly categorized into two 

domains: (1) content domains which identify students’ knowledge of subject matter and 
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(2) cognitive domains, which describe thinking processes that are required to answer the 

items.  The content domain includes topics such as number, geometric shapes and 

measures, and data display, each of which cover 50%, 35%, and 15% of the test 

respectively. The cognitive domain test skills such as knowing, applying, and reasoning, 

each covering 40%, 40%, and 20% of the test respectively. Each item on the TIMSS is 

classified into both domains, however for this analysis, only the content domain is 

considered, and all 15 items test examinees’ knowledge of topics related to the number 

content domain. The items require students to use addition, subtraction, multiplication, and 

division skills to solve problems involving whole numbers and fractions. 

 

3.2 Construction of the Q-matrix 

The framework for the TIMSS fourth-grade mathematics assessment includes 15 

objectives in the number domain that relate to the content matter covered in the 

mathematics curriculum of participating countries. To determine the attributes that would 

be included in the Q-matrix, first each item on the test was matched to an objective in the 

framework.  However, since the 15 items were matched to 11 of the objectives in the 

framework, objectives that require similar skills were consolidated with the help of a 

mathematics content specialist to avoid overlap and to reduce the number of attributes that 

will be represented in the Q-matrix. Table 3.2 outlines the objectives in the number domain 

with the corresponding items and attributes. 
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Table 3.2. TIMSS fourth-grade mathematics framework for number domain showing 

items and attributes that correspond to each objective  

 Domain Objective  Item Attribute 

Whole 
Numbers 1. Demonstrate knowledge of place value, including 

recognizing and writing numbers in expanded form and 
representing whole numbers using words, diagrams, or 

symbols 

N/A 

N/A 

2. Compare and order whole numbers. J2,  

K1 
3. Compute with whole numbers (+, −, ×, ÷) and 
estimate such computations by approximating the 

numbers involved 

J4 

4. Recognize multiples and factors of numbers.  

     

J3, J7, 

J10, J14 
K2 

5. Solve problems, including those set in real-life 

contexts and those involving measurements, money, 

and simple proportions 

J15 

K4 

Number: 

Fractions 

and 

Decimals 

6. Show understanding of fractions by recognizing 

fractions as parts of unit wholes, parts of a collection, 

locations on number lines, and by representing 

fractions using words, numbers, or models.  

J8 

 

 

K5 
 

 

 
 

 

 

7. Identify equivalent simple fractions; compare and 

order simple fractions 

J5 

 

8. Add and subtract simple fractions. J9 

11. Solve problems involving simple fractions or 
decimals  

J9 

10. Add and subtract decimals. N/A 

 

N/A 
9. Show understanding of decimal place value 

including representing decimals using words, numbers, 
or models. 

N/A 

Number 

Sentence

s with 
Whole 

Numbers 

12. Find the missing number or operation in a number 

sentence (e.g., 17 + ■ = 29). 

J1, J11 

K3 
13. Model simple situations involving unknowns with 

expressions or number sentences. 

J12 

Number 
Patterns 

and 

Relations
hips 

14. Extend or find missing terms in a well-defined 
pattern, describe relationships between adjacent terms 

in a sequence and between the sequence number of the 

term and the term. 

J6, J10, 
J13 

K6 15. Write or select a rule for a relationship given some 
pairs of whole numbers satisfying the relationship and 

generate pairs of whole numbers  

following a given rule (e.g., multiply the first number 
by 3 and add 2 to get the second number) 

J7, J14 
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These 6 attributes define the skills required to correctly solve the 15 items included 

in this study. While some attributes are a direct match to one objective, other attributes 

cover more than one objective. For example, attribute K5 requires skills related to fractions 

and covers four of the objectives in the framework. As shown in Table 3.3, 12 of the items 

require examinees to master a single attribute to correctly answer the items, while 3 of the 

items require multiple attributes.  

 

Table 3.3. Items and Q-matrix  

 
Item 

(J) Identification number/Item Description 

Q-Matrix 
K1 K2 K3 K4 K5 K6 

1 M041107: Identify the correct number sentence 0 0 1 0 0 0 

2 M041011: Compare numbers 1 0 0 0 0 0 

3 M041122: Circle the factors of 12 0 1 0 0 0 0 

4 M041041: Estimate the product of two numbers 1 0 0 0 0 0 

5 M041320: Identify the equivalent of a fraction 0 0 0 0 1 0 

6 M041115A: Draw the missing pattern 0 0 0 0 0 1 

7 M041115B: Determine the number of squares in a given pattern 0 1 0 0 0 1 

8 M031210: Compare fractions 0 0 0 0 1 0 

9 M031009: Word problem - fractions 0 0 0 0 1 0 

10 M031252: Finding missing number in a pattern of 3 6 9 12 0 1 0 0 0 1 

11 M031316: Find the missing number 0 0 1 0 0 0 

12 M031317: Find the missing number 0 0 1 0 0 0 

13 M031079B: Find the missing number pattern 0 0 0 0 0 1 

14 M031079C: Determine the number of circles in a given pattern 0 1 0 0 0 1 

15 M031043: word problem (time) 0 0 0 1 0 0 

K1 = comparing whole numbers, computing with whole numbers, and estimating 

K2 = recognizing multiples and factors 

K3 = find the missing number or missing operation 

K4 = solve real-life problems involving measurements, money, and time 

K5 = understanding of fractions, fraction equivalent, and solving problems involving 

simple fractions 

K6 = describing relationship in patterns, their extension, and generating numbers based on 

a given rule 

 

 

 

 

 

 



32 

 

 

3.3 Results 

3.3.1. Descriptive Statistics 

Table 3.4 provides a summary of the descriptive statistics for the dataset. The 

average score for the high-performing group is 57 points higher than the average score for 

the mid-performing group, while the mid-performing group has an average score that is 

about 37 points higher than the low-performing group. USA has an average score that is 

about 30 points higher than that of the low-performing group, but 7 points lower than that 

of the mid-performing group. The range, the differences between the lowest and highest 

average score for each group, shows that the largest difference occurs in the mid-

performing group. There are also large differences between the median average scores of 

the high-performing and low-performing groups. 

 

Table 3.4. Summary of Descriptive Statistics 

 USA 

High-

Performing 

Group 

Mid-

Performing 

Group 

Low-

Performing 

Group 

Number of examinees 798.00 1211.00 867.00 1226.00 

Mean 543.00  607.00 550.50 513.60 

Median   605.00 542.00 508.00 

Standard Deviation     8.52 22.78 11.63 

Min   606.00 534.00 504.00 

Max   619.00 584.00 531.00 

Range    20.00 50.00 27.00 

Skewness     0.48 0.66 0.49 

Kurtosis    -1.82 -1.75 -1.82 

 

The standard deviation estimates imply that there is more variability in the performance of 

examinees in the mid-performing group. The variability of the average scores is also 

illustrated by the boxplots in Figure 3.1. Based on the skewness and kurtosis values, both 



33 

 

 

distributions are slightly skewed to the right and lightly tailed relative to a normal 

distribution.  

 

Figure 3.1. Box Plot Comparing Group Average Scores  

 
 

3.3.2 Comparison of group performance by item and by attribute 

      Table 3.5 provides information about how well each group performed on the items and 

the proportion of examinees from each group that answered each item correctly. Items 1 

and 11 had the highest number of examinees that responded correctly. Both items require 

K3 (finding the missing number or missing operation), which may indicate generally that, 

most examinees in all participating countries are proficient in that specific skill or that the 

items are easy. On the other hand, the items in which each group performed the poorest 

was different across groups.  For example, examinees in USA performed poorly on items 

3 and 14, the high-performing group performed poorly on items 3 and 9, the mid-

performing group performed poorly on items 3, 12, and 14, while the low-performing 

group performed poorly on items 3 and 12. This may possibly be a result of the proficiency 



34 

 

 

level of each group, differences in content emphasized in their curriculum, or the difficulty 

level of the items for the examinees.  

 

Table 3.5. Proportion of Items Correct by Group 

  

 

 

 

 

 

 

 

 

 

 

 

Table 3.6 shows the attribute prevalence estimates, denoted as Pk, for k = 1,…, 6, 

indicating the proportion of examinees in each group who have mastered attribute k. P6 is 

highest for all groups, P5 is lowest for the mid-performing group, and P2 is lowest for the 

other three groups. This could be interpreted that in all countries, most examinees have 

mastered the concept of patterns and relationships, while most of them are yet to reach 

proficiency in factors and multiples (K2). The result might also suggest that items requiring 

examinees to use knowledge of patterns and relationships are relatively easier than the 

items that require examinees to use their knowledge of factors and multiples.  Examinees 

in the high-performing group were more proficient on all 6 attributes compared to the other 

Item Required 

attribute  

USA High- 

performing 

group  

Mid-

performing 

group 

Low-

Performing 

group 

J1 K3 0.94 0.95 0.94 0.63 

J2 K1 0.82 0.93 0.77 0.51 

J3 K2 0.47 0.60 0.28 0.20 

J4 K1 0.72 0.82 0.73 0.51 

J5 K5 0.81 0.82 0.71 0.41 

J6 K6 0.72 0.86 0.80 0.54 

J7 K2, K6 0.64 0.80 0.62 0.42 

J8 K5 0.66 0.68 0.65 0.38 

J9 K5 0.49 0.57 0.63 0.37 

J10 K2, K6 0.86 0.88 0.84 0.56 

J11 K3 0.89 0.97 0.90 0.57 

J12 K3 0.52 0.80 0.48 0.20 

J13 K6 0.77 0.93 0.88 0.59 

J14 K2, K6 0.46 0.69 0.48 0.28 

J15 K4 0.60 0.82 0.66 0.40 
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three groups. A comparison of the other three groups shows that the mid-performing group 

had higher attribute prevalence for K1, K2, K3, K4, and K6, while the United States had a 

higher attribute prevalence for K5. This result suggests that examinees from the mid- 

performing group may have found items that require K5 difficult or that they have not 

really mastered concepts related to fraction. This result is also of note because although  

 

Table 3.6. Attribute Prevalence Estimates by Group 

 

 USA 

High- 

performing 

group  

Mid-

performing 

group 

Low-

Performing 

group 

K1 0.68 0.80 0.68 0.61 

K2 0.56 0.69 0.61 0.52 

K3 0.60 0.75 0.70 0.61 

K4 0.55 0.73 0.63 0.54 

K5 0.59 0.73 0.58 0.54 

K6 0.69 0.82 0.73 0.69 

 

there is a large difference in average scores between the mid-performing group (584) and 

the United States (543), examinees from United States seem to be more proficient in K5, 

fractions, than the examinees in the mid-performing group. A comparison of the attribute 

prevalence estimates for the low-performing group and the United States shows that 

although the United States has higher estimates for the 6 attributes, the number of 

examinees who have mastered for K3, K4, and K6 are very similar for both groups.  

 

3.3.3 Review of examinees’ estimated attribute profiles  

To obtain examinees’ estimated attribute profile, the data for each group was fitted 

with the G-DINA model using the provisional Q-matrix.  The model fitting procedure was 

implemented in the R package G-DINA (Ma & de la Torre, 2018). Examinees’ estimated 
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attribute profiles were evaluated by reviewing examinees’ estimated attribute profiles and 

proportion correct by attribute. to gain more insight into whether examinees with the same 

proportion correct for an attribute are classified the same for that attribute. The proportion 

correct by attribute is a measure of the number of times an examinee correctly applied an 

attribute. For example, K3 is required for items 1, 11, and 12. An examinee with a 

proportion correct estimate of 0.67 for K3, successfully applied this attribute 2 out of the 3 

required times. 

 

Table 3.7. Estimated attribute profiles, item response profiles, and proportion correct 

estimates for a random sample of examinees 

 
Examinee 

ID 

Estimated 

Attribute 

Profiles 

Item Response 

Profile 

Proportion Correct by Attribute 

1065 111000 110100111111100 1.00 0.50 1.00 0.00 0.67 0.60 

3130 111111 110100111111101 1.00 0.50 1.00 1.00 0.67 0.60 

1500 100101 110101011110111 1.00 0.50 0.67 1.00 0.67 0.80 

2111 100101 110101011110111 1.00 0.50 0.67 1.00 0.67 0.80 
1060 111111 110101011111111 1.00 0.50 1.00 1.00 0.67 0.80 

163 000000 110110000111100 1.00 0.25 1.00 0.00 0.33 0.40 

226 111101 110110000111111 1.00 0.50 1.00 1.00 0.33 0.60 
4028 111100 110111000111001 1.00 0.25 1.00 1.00 0.33 0.40 

1235 101101 110111000111101 1.00 0.25 1.00 1.00 0.33 0.60 

3439 000001 110110100110110 1.00 0.75 0.67 0.00 0.33 0.80 
1092 111111 110110101110101 1.00 0.50 0.67 1.00 0.67 0.60 

3155 111110 110110011110101 1.00 0.25 0.67 1.00 1.00 0.40 

1931 100010 110110011110110 1.00 0.50 0.67 0.00 1.00 0.60 

3136 101010 110110010111100 1.00 0.25 1.00 0.00 0.67 0.40 
4075 111110 110110010111101 1.00 0.25 1.00 1.00 0.67 0.40 

3252 100011 110111111110100 1.00 0.50 0.67 0.00 1.00 0.80 

 

 

The results for a random sample of examinees from each group shown in Table 3.7 

indicates that there are discrepancies in classification and that there may be some 

inconsistencies in the estimated attribute profiles. For example, examinees 1065 and 3130 

have the same proportion correct by attribute for K5 and K6, indicating that the two 
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examinees applied the attributes correctly the same number of times. While examinee 3130 

is shown to have mastered both attributes, examinee 1065 is classified as nonmastery for 

both. Similarly, the proportion correct estimates for K2 and K5 are the same for examinees  

1500, 2111, and 1060. However, examinee 1060 is shown to have mastered the two 

attributes while the other two examinees are classified as nonmastery for the attributes. 

Additional inconsistencies observed with examinees 163 and 226 show that examinee 226 

is classified as mastery for K1 and K3 while examinee 63 is classified as nonmastery for 

both even though the proportion correct estimates are the same. In another situation, 

examinees 1235 and 4028 have the same proportion correct estimate for K2. Examinee 

4028 is classified as mastery while examinee 4028 is classified as nonmastery for the 

attribute.   

These inconsistences in examinee classification may be due to reasons such as 

misspecifications in the provisional Q-matrix or model misfit. Since the provisional Q-

matrix was developed through a process of retrofitting based on the judgement of content 

experts, the question of possible misspecifications in the Q-matrix arises. One way to 

resolve this issue is to use a Q-matrix validation procedure to correct potential 

misspecifications in the provisional Q-matrix or to use a Q-matrix estimation method to 

establish the Q-matrix from scratch. Although there are several existing methods of Q-

matrix validation and estimation, only very few well-developed methods of Q-matrix 

validation are available for identifying misspecifications in a Q-matrix (de la Torre & Chiu, 

2016). In the chapters that follow, one Q-matrix validation procedure and one Q-matrix 

estimation procedure are proposed that can be used to correct the misspecifications in the 

provisional Q-matrix and estimate a Q-matrix using examinees item response profiles, 
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respectively.  The TIMSS data will be analyzed again in a later chapter using the modified 

Q-matrices obtained from the proposed methods. Examinees’ updated estimated attribute 

profiles will then be re-evaluated with the special focus of investigating whether the 

inconsistencies discovered in the Part I analysis were remedied.  
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Chapter 4. Methods 

 

In this chapter, the algorithms for the integrated Q-matrix validation (IQV) method 

and the two-step Q-matrix estimation (TSQE) method will be explained.  

 

4.1 The Integrated Q-matrix validation (IQV) Method 

 

The algorithm for the IQV method consists of a two-part procedure that integrates joint 

maximum likelihood estimation (JMLE) for cognitive diagnostic models (Chiu, Koehn, 

Zheng, & Henson, 2016) and the Q-matrix validation method (Chiu, 2013). The primary 

purpose of the JMLE algorithm for CDMs is to estimate examinees’ attribute profiles using 

the provisional Q-matrix that was developed based on content expert knowledge. The 

examinee attribute profile estimates are then used in the Q-matrix validation method (Chiu, 

2013) to recover the misspecified Q-matrix. The steps of the IQV method are as follows. 

1) Examinees’ attribute profiles, which will serve as the input into the JMLE function, 

are estimated using the nonparametric classification (NPC) method (Chiu & 

Douglas, 2013). The NPC method estimates examinees’ attribute profiles by 

comparing their observed response profiles with each of the ideal response profiles 

of all possible proficiency classes as follows. 

a) For each examinee, determine the ideal response for item j, where j = 1,…, J. 

Compare each of the ideal response profiles of the possible attribute classes 

with examinees’ observed item response profiles. 

b) Determine the NPC estimator ᾶ by minimizing the distance between the ideal 

item response profiles and observed item response profile.   

2) Examinees’ attribute profiles, ᾶ, obtained from step 1 then serve as input to 

initialize the JMLE algorithm. Because examinees’ attribute profiles have now 
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been determined, item parameter estimates βj0, βjk, and βjkk’ are obtained using 

Equation 18 in Chiu, Koehn, Zheng, and Henson (2016). Through a process of 

iterations, ᾶ is then updated. 

3) The Q-matrix refinement method is then applied to obtain the corrected Q-matrix. 

The examinees’ attribute profile estimates obtained at the completion of step 2 

serves as input for the initial step of the Q-matrix refinement method. The mean 

residual sum of square (RSS) for each item across examinees are computed for each 

observed response and corresponding ideal response to each item. Starting with the 

item with the highest RSS, the q-vectors are updated through a series of steps and 

the correct q-vector for each item is obtained by minimizing the RSS for each item. 

The corrected Q-matrix is identified when the RSS of each item remains the same. 

A primary advantage of the IQV method is that, it can be used with more general CDMs 

beyond the DINA and DINO models. In addition, compared to the general method of Q-

matrix validation (de la Torre & Chiu, 2015) which can also be used with more general 

CDMs, the IQV method does not involve the process of determining an arbitrary cutoff in 

advance to stop the algorithm. 

 

4.2 The Two-Step Q-matrix Estimation (TSQE) Method 

The two-step Q-matrix estimation (TSQE) method is grounded in nonlinear factor 

analysis (FA) and the Q-matrix refinement method (Chiu, 2013). FA is a multivariate 

statistical approach that can be used to determine the variability among observed, 

correlated variables by reducing a large number of variables into a smaller set of variables, 

based on the loadings of the variables on the factors. FA determines both the number of 



41 

 

 

factors within a set of variables and the extent to which each variable is representative of 

the factors (i.e., the loading values). The loadings show the extent to which each of the 

variables contributes to the variance. Attributes that are required to answer each item 

correctly are identified based on a predetermined factor loading threshold value λ. The 

purpose of the threshold value is to determine variables that load onto a factor adequately 

and can be considered as being associated to the factor. The threshold value also establishes 

when variable loads onto too many factors in which case the variable can be marked as not 

being representative of any factors (Howard, 2016). For this study, λ values of 0.8 and 0.9 

were used.   

To estimate the Q-matrix, the matrix of tetrachoric correlations between variables are 

first computed. This pairwise correlation matrix X, is then used as the input for FA to obtain 

an initial Q-matrix. The Q-matrix refinement method is applied as a second procedure to 

estimate the true Q-matrix. Since the attributes are dichotomous, the tetrachoric correlation 

is appropriate for computing the pairwise correlation estimates for each pair of variables. 

The algorithm is described in the following steps. 

1) First the tetrachoric correlation matrix for all item pairs is computed.  

2) FA is applied to obtain a provisional Q-matrix.  

a) Maximum likelihood estimation is used to find the common factors of the data, 

where the common factors represent the attributes in the Q-matrix.  

b) The communality, the amount of variance explained by FA, is computed as one 

minus the uniqueness for item j, is estimated. 

1 − 𝑒𝑗 = ∑ 𝑙𝑗𝑘
2

𝐾

𝑘=1
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where 𝑒𝑗 is the uniqueness of item j and 𝑙𝑗𝑘
2  is the squared loading for the jth 

item and the kth attribute.  

c) To determine which attributes load on item j, first the squared loadings of each 

item is ranked from largest to smallest: 𝑙𝑗(𝐾)
2 , … , 𝑙𝑗(1)

2 . 

d) The cumulative sums of the ordered squared loadings (𝑠𝑗) are calculated. 

𝑠𝑗1 = 𝑙𝑗(𝐾)
2 ,   𝑠𝑗2 = 𝑙𝑗(𝐾)

2 + 𝑙𝑗(𝐾−1)
2 , …,   𝑠𝑗(𝐾) = ∑ 𝑙𝑗(𝑘)

2

𝐾

𝑘=1

 

e) The cumulative sums are divided by the commonality to determine the 

proportion of the variance explained by the addition of each attribute.  

𝐴𝑗𝑘 =  
𝑠𝑗𝑘

1 − 𝑒𝑗
 

where: 𝐴𝑗𝑘denotes the squared loadings  𝑙𝑗(𝐾)
2 , … , 𝑙𝑗(1)

2  that explains at least 𝜆 

percent of the explained variance. 

f) For each item, the cumulative sum for which 𝐴𝑗𝑘 ≥ 𝜆 represents the sum of 

variances of the attributes that are required to answer the item correctly. 

Specifically, 

𝑞𝑗𝑘 = {
1 for 𝐴𝑗𝑘 ≥ 𝜆

0 for 𝐴𝑗𝑘 < 𝜆
 

g) All attributes that contribute to the squared loadings for which 𝐴𝑗𝑘 ≥ 𝜆 are 

designate in the Q-matrix as 1 (required), while attributes that did not contribute 

are designated as 0 (not required). 
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3) The initial Q-matrix obtained at the end of step 2 is used as the input for step 0 of the 

Q-matrix refinement method to estimate examinees’ attribute profiles. Through a series 

of steps, the mean residual sum of square (RSS) across examinees for each observed 

response and corresponding ideal responses to each item are computed, and the q-

vector with the lowest RSS is identified for each item. 

It is important to note that when FA is applied, the factors are ordered in decreasing 

order of loadings and includes both factors that are considered relevant and those that are 

assumed to reflect measurement error or noise. Therefore, a rotation is required to simplify 

the interpretation of the factors that are considered relevant. After a varimax orthogonal 

rotation, an attribute or attributes that contribute to the specified threshold value (𝜆) of the 

explained variance of an item are considered as the attribute(s) required to correctly answer 

the item. Although FA is primarily used for analyzing latent variables with continuous 

distributions and CDMs analyze discrete variables, this compatibility issue is resolved by 

using tetrachoric correlation instead of Pearson correlation as the input for FA. The 

calculation of tetrachoric correlation is based on the assumption that the variables are 

dichotomous.  

There is currently limited research on the use of FA for Q-matrix estimation and 

the criteria for determining the threshold value. However, a review of research using FA 

in the context of cyberpsychology and human-computer interaction (Hinkin, 1995, 1998; 

Costello and Osborne, 2005; Tabachnik and Fidel, 2001, 2007; Hair, Black, Babin, 

Anderson, and Tatham, 2006) provides several recommendations for determining λ, the 

threshold value, with suggested values ranging from 0.32 to above 0.45, (as cited in 

Howard 2016).  Howard (2016) also recommends that satisfactory variables should have 
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loadings of above 0.4. Since preliminary analysis using the proposed TSQE method 

showed no difference between high λ values, 0.8 and 0.9 were used as the threshold for 

this study to ensure that attributes identified as required for each item are highly correlated 

to the items.  
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Chapter 5. Simulation Studies 

 

To evaluate the performance of the proposed methods, simulation studies were 

designed across a variety of conditions and with different CDMs. The first two studies 

evaluate the effectiveness of the IQV method for validating a provisional Q-matrix that is 

developed based on the judgment of content-area experts, by comparing this Q-matrix with 

a modified Q-matrix obtained through the validation process. The third study evaluates the 

effectiveness of the TSQE method for estimating a Q-matrix from scratch by using only 

the information from examinees’ responses. The fourth study was designed to compare the 

performance of the proposed methods under the same conditions. 

 

5.1 Simulation Studies for the Integrated Q-Matrix Validation (IQV) Method 

 

The performance of the IQV method is evaluated with two simulation studies using 

the DINA and G-DINA models. Study 1 evaluates the effect of the percentage of 

misspecifications on the recovery of the Q-matrix, while study 2 evaluates the effect of the 

type of misspecification on recovery of the Q-matrix. 

 

5.1.1 Simulation Study 1  

  

5.1.1.1 Simulation Study Design  

The simulation studies were conducted with four J by K Q-matrices with J = 20 or 

30, and K = 3 or 5. These four Q-matrices were used to generate data for the study. For 

each item, the number of required attributes were between 1 and 5, while for each dataset 

the number of examinees N ranged between 1000 to 3000. The misspecified Q-matrices 

were constructed by randomly changing 10% or 20% of q-entries in a correct Q-matrix 

from 0 to 1 or from 1 to 0. Data generation and model specification were carried out using 
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R programming language (R Core Team, 2016), a freely available software. Each condition 

consisted of 25 replications. Examinee responses were generated from the DINA or G-

DINA models. The slipping (sj), and guessing (gj), parameters ranged between 0.1 and 0.3. 

Examinees’ attribute profiles were generated based on the multivariate normal threshold 

model, in which the attributes are correlated instead of being independent, and attribute 

patterns do not have equal probabilities of occurrence. Variances and covariances were set 

to 1.0 and 0.5 respectively 

 

Table 5.1. Q-matrices: J=20; K=3 

 Correct 

Q-matrix 

10% Misspecified Q-

matrix  

Item # K1 K2 K3 K1 K2 K3 

1 1 0 0 1 0 0 

2 0 1 0 0 1 0 

3 0 0 1 1 0 1 

4 1 1 0 0 1 0 

5 1 0 1 1 0 1 

6 0 1 1 0 0 1 

7 1 1 1 1 1 1 

8 1 0 0 1 0 0 

9 0 1 0 0 1 0 

10 0 0 1 0 1 1 

11 1 1 0 1 1 0 

12 1 0 1 1 0 1 

13 0 1 1 0 1 1 

14 1 1 1 1 1 0 

15 0 0 1 1 0 1 

16 0 1 0 0 1 0 

17 0 1 1 0 1 1 

18 0 1 1 0 1 1 

19 1 1 1 1 1 1 

20 1 1 1 1 1 1 

 

 

.  
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The simplest of the correct Q-matrices, where J = 20 and K = 3, includes 8 one-

attribute, 8 two-attribute, and 4 three-attribute items, as shown in the left panel of Table 

5.1 The Q-matrix when J = 20 and K = 3, includes 5 each of one-attribute, two-attribute 

and three-attribute items, 4 four-attribute items, and 1 item with five attributes. The 

misspecified Q-matrix where J = 20 and K = 3 is shown on the right panel of Table 5.1. 

The misspecified Q-matrices served as the input for Step 0 of the Q-matrix refinement 

method algorithm. 

 

5.1.1.2 Measures 

The results of the analysis will be evaluated using the mean recovery rate (MRR), 

the sensitivity rate (SEN), and the specificity rate (SPE). The MRR is the average 

percentage of q-entries in the modified Q-matrix that are identical to the q-entries in the 

correct Q-matrix. High MRRs indicate the effectiveness of the method to recover the 

correct Q-matrix from a misspecified one. 

 

𝑀𝑅𝑅 =
∑ ∑ ∑ 𝐼𝐽

𝑗=1
𝐾
𝑘=1 [𝑞𝑗𝑘𝑟 = 𝑞̂𝑗𝑘𝑟]25

𝑟=1

𝐾 × 𝐽 × 25
 

where: 

𝑞𝑗𝑘𝑟= q-entries in the correct Q-matrix  

𝑞̂𝑗𝑘𝑟= q-entries in the modified Q-matrix 

The sensitivity rate (SEN), a measure of the proportion of misspecified q-entries that are 

corrected and the specificity rate (SPE), a measure of the proportion of correct q-entries 

that are retained, are computed as follows. 

𝑆𝐸𝑁 =  
𝑓𝑝

𝑓𝑝 + 𝑡𝑛
 

𝑆𝑃𝐸 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
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where:  

tp represents true positive, the number of correctly specified q-entries that were retained  

fp represents false positive, the number of misspecified q-entries that were corrected 

fn represents false negative, the number of correctly specified q-entries that changed 

tn represents true negative, the number of misspecified q-entries that were not corrected  

 

MRR, SEN, and SPE close to or equal to 1 are desirable. 

 

 

5.1.1.3 Results  

The results for examinee responses generated from the DINA model indicates that 

all misspecified q-entries were corrected and all correct q-entries were retained, since 

MRR, SEN, and SPE are 1.0 for all conditions. The results for the G-DINA model are 

summarized in Table 5.2. MRRs for Q-matrices with 10% misspecification were between 

0.82 and 0.87, and between 0.81 to 0.86 for Q-matrices with 20% misspecifications. A 

decrease in MRR, SEN, and SPE is observed as K increases from 3 to 5 for all values of N  

 

Table 5.2. Simulation Study 1: Mean Recovery Rate (MMR): G-DINA Model 

 

   
 10% Q-matrix 

Misspecification  

 20% Q-matrix 

Misspecification 

N J K  MRR SEN SPE  MRR SEN SPE 

1000 20 3  0.87 1.00 0.86  0.85 0.83 0.86 

  20 5  0.82 0.90 0.81  0.81 0.80 0.81 

  30 3  0.87 0.89 0.87  0.85 0.89 0.84 

  30 5  0.82 0.87 0.81  0.80 0.87 0.78 

2000 20 3  0.85 0.83 0.85  0.84 0.83 0.84 

  20 5  0.83 0.80 0.83  0.83 0.80 0.84 

  30 3  0.87 1.00 0.86  0.84 0.89 0.83 

  30 5  0.86 0.87 0.86  0.84 0.83 0.84 

3000 20 3  0.88 0.83 0.89  0.85 0.83 0.86 

  20 5  0.82 0.80 0.82  0.82 0.75 0.84 

  30 3  0.87 1.00 0.86  0.86 0.83 0.87 

  30 5  0.83 0.87 0.83  0.80 0.83 0.84 
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and J. The results also show that MRR increases as J increases, while N does not seem to 

influence MRR, SEN, or SPE.  Higher SEN and SPE rates were also noted when J = 30. 

Similar trends were observed for simulation with 20% Q-matrix misspecifications. 

However, MRR and SEN were lower than for the simulations with 10% Q-matrix 

misspecifications. While SEN were observed to decrease as the percentage of 

misspecification increased, no distinct association was noted between SPE and the 

percentage of misspecifications. 

 

5.1.2 Simulation Study 2  

 

The goal of Study 2 is to determine the effect of q-entry misspecification and q-vector 

misspecification on the recovery of the Q-matrix.  

 

5.1.2.1 Simulation Study Design  

Two correct Q-matrices with J = 30 and K = 3 or 5 from Study 1 were modified by 

introducing misspecifications either by q-entry denoted as Qmis.e, or by q-vector denoted as 

Qmis.v. To create the Q-matrices with misspecified q-vectors, the number of misspecified 

q-entries in a q-vector was fixed to 1 and the number of misspecified q-vectors in each Q-

matrix ranged from 1 to 10. To create Q-matrices with misspecified q-entries, the number 

of misspecified q-vectors in each Q-matrix was fixed at 10. The first Q-matrix had one 

misspecified q-entry in each q-vector. For each subsequent Q-matrix, an additional q-entry 

misspecification was included within one of the 10 misspecified q-vectors. In total, 21 Q-

matrices with between 10 to 30 misspecifications were used for the study. Examinee 

responses were generated from the G-DINA models and examinees’ estimated attribute 

profiles were generated based on the multivariate normal threshold model, with variances 
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and covariances set to 1.0 and 0.5 respectively. The R programming language (R Core 

Team, 2016) was used for data generation and model specification. Each condition 

consisted of 25 replications.  

 

5.1.2.2 Results 

The results for Study 2 are evaluated using the measures described in Study 1. The 

result for Qmis.v summarized in Table 5.3 shows that when K = 3, MRR reduced as the 

number of misspecifications increased. All misspecified q-entries were corrected for Q-

matrices with up to 7 misspecifications, while Q-matrices with 8 to 10 misspecifications 

had 1 or 2 unrecovered q-entries. Similar results were noted for the Q-matrix with K = 5 

however, only Q-matrices with up to 6 misspecifications had all misspecified q-entries 

recovered. Higher MRR, SEN, and SPE were obtained when K = 3. While N does not seem 

to influence MRR, SEN, or SPE, no clear association was noted between SPE and the 

number of misspecifications. 
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Table 5.3. Simulation Study 2: Mean Recovery Rates (MRR) for the G-DINA model (Q-

matrix misspecified by q-vector, Qmis.v)  

# of 

Misspecified 

q-vectors 

  J = 30, K = 3  J = 30, K = 5 

N  MRR SEN SPE  MRR 
 

SEN 

 

SPE 

 1 1000  0.88 1.00 0.89  0.87 1.00 0.86 

2000  0.88 1.00 0.89  0.87 1.00 0.86 

3000  0.88 1.00 0.89  0.86 1.00 0.85 

2 1000  0.87 1.00 0.89  0.86 1.00 0.85 

2000  0.88 1.00 0.88  0.87 1.00 0.86 

3000  0.87 1.00 0.89  0.87 1.00 0.86 

3 1000  0.88 1.00 0.89  0.86 1.00 0.85 

2000  0.87 1.00 0.89  0.87 1.00 0.86 

3000  0.87 1.00 0.89  0.87 1.00 0.86 

4 1000  0.87 1.00 0.88  0.86 1.00 0.85 

2000  0.87 1.00 0.89  0.86 1.00 0.85 

3000  0.87 1.00 0.88  0.86 1.00 0.85 

5 1000  0.86 1.00 0.88  0.85 0.80 0.84 

2000  0.87 1.00 0.88  0.86 1.00 0.85 

3000  0.87 1.00 0.88  0.86 1.00 0.85 

6 1000  0.88 1.00 0.88  0.85 1.00 0.83 

2000  0.87 1.00 0.88  0.85 0.83 0.83 

3000  0.85 1.00 0.88  0.85 1.00 0.83 

7 1000  0.87 1.00 0.88  0.84 0.86 0.84 

2000  0.86 1.00 0.86  0.84 0.86 0.84 

3000  0.86 1.00 0.86  0.83 0.86 0.83 

8 1000  0.86 0.88 0.86  0.83 0.88 0.82 

2000  0.87 0.88 0.85  0.83 0.88 0.82 

3000  0.86 0.88 0.85  0.83 0.88 0.82 

9 1000  0.86 0.89 0.85  0.83 0.89 0.82 

2000  0.85 0.89 0.85  0.83 0.89 0.82 

3000  0.85 0.89 0.84  0.83 0.89 0.82 

10 1000  0.86 0.90 0.85  0.83 0.80 0.84 

2000  0.85 0.90 0.85  0.83 0.80 0.83 

3000  0.86 0.90 0.85  0.84 0.80 0.84 
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The results in Table 5.4 show the effect of q-entry misspecifications on the recovery of the 

Q-matrix. When K = 3, MRR decreased as the number of misspecifications increased, 

while the number of unrecovered q-entries increased as the number of misspecifications 

increased. All misspecified q-entries were corrected for Q-matrices with up to 12 

misspecifications. In addition, sample size does not seem to affect MRR, SEN, or SPE.  

Likewise, when K = 5, MRR and SEN decreased as the number of misspecifications 

increased. However, there were more unrecovered q-entries when K = 5. SPE was not 

affected by N or the number of misspecifications. Based on these results, q-entry and q-

vector misspecification showed similar effects on MRR, SEN, and SPE. 
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Table 5.4. Simulation Study 2: Mean Recovery Rates (MRR) for the G-DINA model   

(Q-matrix misspecified by q-entry, Qmis.e) 

Number of 

misspecified 

q-entries 

  J = 30, K = 3 J = 30, K = 5 

N MRR SEN SPE MRR SEN SPE 

10 

1000 0.87 0.90 0.86 0.87 0.90 0.87 

2000 0.87 0.90 0.86 0.87 0.90 0.87 

3000 0.90 1.00 0.89 0.86 0.90 0.86 

12 

3000 0.88 1.00 0.86 0.87 0.92 0.87 

2000 0.87 0.92 0.86 0.85 0.92 0.84 

3000 0.88 0.92 0.87 0.86 0.83 0.86 

14 

1000 0.87 0.93 0.85 0.86 0.79 0.87 

2000 0.87 0.86 0.87 0.86 0.79 0.87 

3000 0.88 0.86 0.88 0.85 0.86 0.85 

16 

1000 0.87 0.88 0.86 0.85 0.81 0.85 

2000 0.87 0.88 0.87 0.85 0.88 0.84 

3000 0.87 0.88 0.87 0.85 0.88 0.84 

18 

1000 0.86 0.89 0.85 0.85 0.78 0.86 

2000 0.86 0.83 0.86 0.83 0.83 0.83 

3000 0.85 0.83 0.85 0.83 0.78 0.84 

20 

1000 0.85 0.85 0.85 0.84 0.80 0.85 

2000 0.85 0.85 0.85 0.83 0.85 0.83 

3000 0.86 0.80 0.88 0.81 0.85 0.81 

22 

1000 0.85 0.86 0.85 0.83 0.77 0.84 

2000 0.84 0.82 0.85 0.83 0.77 0.84 

3000 0.85 0.82 0.86 0.83 0.82 0.83 

24 

1000 0.84 0.83 0.84 0.83 0.79 0.83 

2000 0.84 0.83 0.85 0.83 0.83 0.82 

3000 0.84 0.83 0.85 0.82 0.79 0.82 

26 

1000 0.83 0.81 0.84 0.82 0.81 0.82 

2000 0.83 0.85 0.82 0.82 0.77 0.83 

3000 0.83 0.81 0.84 0.82 0.77 0.83 

28 

1000 0.82 0.82 0.82 0.82 0.79 0.83 

2000 0.83 0.79 0.85 0.81 0.79 0.81 

2000 0.83 0.79 0.85 0.82 0.79 0.83 

30 

1000 0.84 0.80 0.86 0.81 0.80 0.81 

2000 0.83 0.80 0.85 0.80 0.77 0.81 

3000 0.84 0.80 0.86 0.81 0.80 0.81 
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5.2 Simulation studies for the Two-step Q-Matrix Estimation (TSQE) Method  

 

The performance of the TSQE method is evaluated with two simulation studies using the 

DINA model and RRUM. In addition to determining the effectiveness of the method, the 

impact of the percentage of misspecification on the estimation of the Q-matrix will be 

investigated in Study 3, while Study 4 will assess the performance of the TSQE method 

and the IQV method. 

 

5.2.1 Simulation Study 3 

The goal of Study 3 is to determine the effectiveness of the method in estimating a Q-

matrix with the DINA model and RRUM. 

 

5.2.1.1 Simulation Study Design  

Study 3 was conducted with four correct Q-matrices with J, K, and N the same as 

the Q-matrices used for Study 1.  Data generation and model specification was also carried 

out using R programming language (R Core Team, 2016). Examinees’ responses were 

generated for the DINA model and RRUM, with the slipping (sj), and guessing (gj), 

parameters generated from the uniform distribution. Examinees’ attribute profiles were 

generated based on the multivariate normal threshold model, with variances and 

covariances set to 1.0 and 0.5 respectively. To determine the effect of the threshold value 

(𝜆) on MRR, 𝜆 values of 0.7, 0.8, and 0.9 were considered for the studies.  The effect of 

item quality on MRR was investigated by using slipping (sj) and guessing (gj) parameter 

estimates of 0.1, 0.2, and 0.3. For the RRUM, the baseline parameter (𝜋𝑖
∗) and the penalty 

and the penalty parameter (𝑟𝑖𝑘
∗ ) were set to 0.9 and 0.6 respectively. The effect of sample 
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size was investigated for N = 1000, 3000, and 5000. Table 5.5 shows the two Q-matrices 

with 20 items. When K = 3, there are 9 one-attribute items, 9 two-attribute items, and 2 

three-attribute items. When K= 5, the Q-matrix consists of 5 each for one-attribute and 

three attributes items, and 10 items with two attributes. Each condition included 25 

replications. 

 

Table 5.5. Q-matrices for Simulation Study 3 

 

 Attributes (K=3)   Attributes (K=5) 

Item K1 K2 K3  Item K1 K2 K3 K4 K5 

1 1 0 0  1 1 0 0 0 0 

2 0 1 0  2 0 1 0 0 0 

3 0 0 1  3 0 0 1 0 0 

4 1 1 0  4 0 0 0 1 0 

5 0 1 1  5 0 0 0 0 1 

6 1 0 1  6 1 1 0 0 0 

7 1 0 0  7 1 0 1 0 0 

9 0 0 1  9 1 0 0 0 1 

10 1 1 0  10 0 1 1 0 0 

11 0 1 1  11 0 1 0 1 0 

12 1 0 1  12 0 1 0 0 1 

13 1 1 1  13 0 0 1 1 0 

14 1 0 0  14 0 0 1 0 1 

15 0 1 0  15 0 0 0 1 1 

16 0 0 1  16 1 1 1 0 0 

17 1 1 0  17 1 1 0 1 0 

18 0 1 1  18 1 1 0 0 1 

19 1 0 1  19 0 1 1 1 0 

20 1 1 1  20 0 1 1 0 1 

 

 

 

5.2.1.2 Results 

Tables 5.6 and 5.7 summarize the results from study 3. The results show that the 

TSQE method is efficient in estimating a Q-matrix, yielding MRR estimates as high as 

100% by q-entry, and for both CDM model. The results in Table 5.6 also show that for the 
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DINA model, MRR was the highest when sj and gj are fixed at 0.1 for all conditions, which 

is as expected since accuracy rate should improve as item quality increases (i.e., low 

slipping and guessing parameters). There is a drop in MRR as K increases and an increase 

in MRR as J increases. The results show that MRR is higher when 𝜆 = 0.7 or 0.8, with little 

difference between MRR for both 𝜆 values, especially when item quality is good. Sample 

size did not seem to have any impact on MRR as similar results were obtained across the 

different values of N.  

 For data generated based on RRUM shown in Table 5.7, the results show similar 

MRR for all values of 𝜆. MRR increases as J increases but decreases as K increases. 

However, there seems to be no effect on MRR as sample size increases.  

 

Table 5.6. Study 3: Mean Recovery Rate (MRR): DINA Model  

 

    N = 1000  N = 3000  N = 5000 

J K s, g 
 

λ = 

0.7 

λ = 

0.8 

λ = 

0.9  

λ = 

0.7 

λ = 

0.8 

λ = 

0.9 

 λ = 

0.7 

λ = 

0.8 

λ = 

0.9 

20 

3 

0.1  0.91 0.91 0.84  0.90 0.90 0.87  0.91 0.92 0.87 

0.2  0.91 0.91 0.81  0.91 0.92 0.80  0.92 0.92 0.81 

0.3  0.88 0.86 0.83  0.89 0.89 0.81  0.88 0.89 0.82 

5 

0.1  0.85 0.88 0.86  0.86 0.87 0.86  0.87 0.86 0.86 

0.2  0.84 0.85 0.85  0.85 0.85 0.86  0.84 0.88 0.85 

0.3  0.81 0.76 0.80  0.78 0.76 0.79  0.77 0.78 0.84 

30 

3 

0.1  0.98 0.99 0.98  0.97 0.98 0.98  0.98 0.99 0.98 

0.2  0.97 0.99 0.96  0.97 0.98 0.96  0.97 0.98 0.95 

0.3  0.93 0.96 0.97  0.94 0.97 0.95  0.94 0.98 0.95 

5 

0.1  0.90 0.90 0.87  0.88 0.89 0.87  0.90 0.89 0.87 

0.2  0.90 0.89 0.86  0.87 0.89 0.86  0.87 0.89 0.86 

0.3  0.82 0.84 0.83  0.86 0.85 0.86  0.80 0.85 0.86 
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Table 5.7. Study 3: Mean Recovery Rate (MRR): RRUM Model   

 

   N = 1000  N = 3000  N = 5000 

J K 
 

λ = 

0.7 

λ = 

0.8 

λ = 

0.9  

λ = 

0.7 

λ = 

0.8 

λ = 

0.9 

 λ = 

0.7 

λ = 

0.8 

λ = 

0.9 

20 3  0.87 0.87 0.86  0.87 0.88 0.87  0.86 0.87 0.86 

 5  0.84 0.84 0.84  0.87 0.88 0.86  0.84 0.86 0.84 

30 3  0.88 0.89 0.88  0.87 0.87 0.86  0.88 0.88 0.88 

 5  0.86 0.86 0.86  0.84 0.85 0.84  0.86 0.86 0.86 

 

 

 

 

5.2.2 Simulation Study 4 

 

The goal of study 4 is to compare the effectiveness of the IQV and TSQE in 

validating and estimating Q-matrix respectively. 

 

5.2.2.1 Simulation Study Design  

Study 4 was conducted with a provisional Q-matrix with J = 30, and K = 5. Item 

responses conforming to the RRUM were generated based on the provisional Q-matrix for 

N = 1000, 3000, and 5000 examinees. The baseline parameter (𝜋𝑖
∗) and the penalty 

parameter (𝑟𝑖𝑘
∗ ) were set to 0.9 and 0.6 respectively. To evaluate the performance of the 

methods with different CDMs, the data were fitted with the DINA and G-DINA models. 

To compare the effect of Q-matrix misspecification on the performance of the proposed 

methods, two Q-matrices with 10% and 20% misspecifications were included in the study. 

Since study 3 showed that MRR is best when 𝜆 = 0.8, this threshold value was used for the 

TSQE method.  
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5.2.2.2 Results 

 

Table 5.8 summarizes the MRR for Q-mod IQV and Q-mod TSQE, and the 

proportion of identical q-entries between the two modified Q-matrices. The results for the 

DINA model from analysis using the IQV method shows that all misspecified q-entries 

were recovered for all conditions, while MRR decreased as the percentage of 

misspecification increased for analysis with the TSQE method. For the G-DINA model, 

there is also a decrease in MRR as the percentage of misspecification increased, while 

MRR for Q-mod IQV is generally higher than for Q-mod TSQE. A comparison of the MRR 

by model shows that higher MRR were obtained for the DINA model and for both proposed 

methods. A review of the proportion of identical q-entries between the two modified Q-

matrices indicates a higher number of matches for analysis with the DINA model. The 

proportion of identical q-entries between the two modified Q-matrices does not seem to be 

influenced by N or by the percentage of misspecification.  

 

Table 5.8. Study 4: Comparison of modified Q-matrices obtained from the IQV and TSQE 

methods 

 

   DINA Model  G-DINA Model 

   

Q-

mod 

IQV 

Q-mod 

TSQE 

IQV vs 

TSQE  

Q-

mod 

IQV 

Q-mod 

TSQE 

IQV vs 

TSQE 

Percentage of 
Misspecification N  MRR MRR 

Proportion 

of 

identical 
q-entries  MRR MRR 

Proportion 

of 

identical 
q-entries 

10% 

1000  1.00 0.85 0.85  0.87 0.83 0.84 

3000  1.00 0.85 0.85  0.87 0.84 0.85 

5000  1.00 0.83 0.83  0.85 0.82 0.83 

20% 

1000  1.00 0.81 0.81  0.84 0.79 0.77 

2000  1.00 0.80 0.80  0.83 0.76 0.82 

3000  1.00 0.80 0.80  0.84 0.78 0.79 
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Chapter 6. Analysis of the TIMSS Dataset: Part II 

In this chapter, the provisional Q-matrix used for the analysis in Chapter 3 will be 

validated using the IQV method and the Q-matrix will be estimated from scratch using the 

TSQE method developed in the dissertation. The subset of the TIMSS data will then be re-

analyzed with the G-DINA model using the Q-matrices modified by the two proposed 

methods. In addition to verifying the effectiveness of both methods, the modified Q-

matrices will be evaluated for appropriateness from a content perspective, and the updated 

estimated attribute profiles will be reviewed to determine if the inconsistencies in 

classification identified during the first part of the analysis have improved.  

 

6.1 Procedure for the TIMSS Data Analysis  

 

To correct any possible misspecifications in the provisional Q-matrix (Q-prov) 

obtained through retrofitting, two separate analyses were carried out for each group using 

the IQV and TSQE methods. In addition to the group analysis, an analysis combining all 

data was completed using both proposed methods. The purpose of including the combined 

analysis is to determine if there are any significant differences in the modified Q-matrices 

(Q-mod) obtained from the group analysis and from the combined analysis. Each Q-mod 

is evaluated from a content perspective and compared with Q-prov and the other Q-mods. 

For each method, the modified Q-matrix that is most interpretable will be used for the rest 

of the analysis. The data is then fitted with the G-DINA model using the selected modified 

Q-matrices to determine examinees’ updated estimated attribute profiles. Finally, the 

estimated attribute profiles are examined to establish if the inconsistencies in classification 

that were previously identified have improved.  
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6.2 Results 

The results for the analysis include a review of the factor loadings and provisional 

Q-matrix obtained from the first step of the TSQE method, a comparison of the proportion 

of identical q-entries in the provisional and modified Q-matrices, SEN and SPE rates by 

method, an evaluation of the modified Q-matrices from a content perspective, and an 

evaluation of examinees’ estimated attribute profiles. 

 

6.2.1 Review of the Provisional Q-matrix obtained from the factor analysis step of the 

TSQE method 

 

As outlined in the methods section (page 40), in the first part of the TSQE 

procedure, FA is applied to the correlation matrix to obtain the provisional Q-matrix (Q-

prov FA). In Q-prov FA, factors that contribute to the cumulative sum of the loading equal 

to or greater than the threshold value, λ = 0.8, are specified as the attributes required to 

answer each item correctly. Table 6.1 shows the loadings for each factor after rotation and  

 

Table 6.1. Review of the Provisional Q-matrix obtained from analysis with the TSQE 

method 

 
 Factor Loadings Cumulative 

loadings 

Q-prov FA 

J 

1 2 3 4 5 6 K1 

K

2 K3 K4 K5 K6 
1 0.06 0.19 0.14 0.05 0.13 0.53 0.86 0 1 1 0 0 1 
2 0.33 0.66 0.07 0.25 -0.02 0.12 0.98 1 1 0 0 0 0 
3 0.14 0.97 0.04 0.01 0.16 0.06 0.97 0 1 0 0 0 0 
4 0.16 0.09 0.11 0.11 0.31 0.95 0.95 0 0 0 0 0 1 
5 0.63 0.23 0.08 0.07 0.18 0.21 0.86 1 1 0 0 0 0 
6 0.14 0.19 0.10 0.96 0.08 0.02 0.96 0 0 0 1 0 0 
7 0.25 0.25 0.21 0.46 0.02 0.29 0.81 1 1 0 0 1 1 
8 0.13 0.12 0.10 0.12 0.74 0.03 0.87 1 0 0 0 1 0 
9 0.31 0.29 0.16 0.18 0.50 0.04 0.81 1 0 0 0 1 0 

10 0.27 0.12 0.20 0.04 0.58 0.17 0.85 1 0 0 0 1 0 
11 0.06 0.16 0.46 0.22 0.36 -0.05 0.82 0 0 1 0 1 0 
12 0.30 0.06 0.36 0.09 0.31 -0.09 0.98 1 0 1 0 1 0 
13 0.30 0.30 0.89 0.09 0.05 0.06 0.89 0 0 1 0 0 0 
14 0.02 0.70 0.10 0.14 0.02 0.32 1.02 0 1 0 0 0 1 
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15 0.36 0.18 0.15 0.34 0.25 0.10 0.95 1 0 0 1 1 0 

 

how they contribute to the cumulative loadings to determine the attributes required for each 

item. Q-prov FA is then used as input into the Q-matrix refinement method to obtain Q-

mod TSQE shown in Table 6.3. 

 

6.2.2 Mean Recovery Rates by q-entries, Sensitivity Rates, and Specificity Rates 

Table 6.2 summarizes the proportion of q-entries in Q-mod IQV and Q-mod TSQE 

that are identical to q-entries in Q-prov, and the SEN and SPE rates for the modified Q-

matrices. For each group, similar MRRs were observed in both modified Q-matrices. 

Higher SEN was observed for Q-mod IQV, and SPE was similar for both modified Q-

matrices. While Q-mod TSQE had the lowest SEN for two groups, SPE was lowest in two 

groups for Q-mod IQV. 

 

Table 6.2. Comparison of the Modified Q-matrices with the Provisional Q-matrix  

 

  Q-mod IQV  Q-mod TSQE 

Groups  MRR by 

q-entries 
SEN  SPE  

 MRR by 

q-entries 
SEN  SPE  

USA  0.90 0.78 0.91  0.90 0.67 0.92 

High-performing   0.92 0.78 0.94  0.90 0.67 0.93 

Mid-performing   0.91 0.89 0.91  0.93 0.89 0.94 

Low-performing   0.88 0.78 0.89  0.88 0.78 0.89 

Combined data  0.92 0.78 0.94  0.92 0.78 0.93 

 

 

6.2.3 Evaluation of the Modified Q-matrices 

An evaluation of the Q-matrices obtained by the IQV method showed differences 

across the four groups. For example, item 10 asks examinees to identify the missing 

number in a given pattern of numbers. Although the modified Q-matrices by groups are 
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not included in the results shown, for J10, Q-mod IQV for the mid-performing group 

indicates K2 (recognizing multiples and factors) as the required attribute, while Q-mod 

IQV for the low-performing group indicates K6 (describing relationships in patterns) as the 

required attribute. However, Q-prov indicates that both K2 and K6 are required to answer 

the item correctly. Generally, Q-mod TSQE showed more similarities across the groups 

than Q-mod IQV. For example, Q-mod TSQE for all groups specifies K6 as the required 

attribute for J14 while Q-mod IQV shows K2 as the required attribute for the high 

performing group, K2 and K6 for the low-performing group and USA, and K1, K2, and K6 

for the mid-performing group.  

In addition, some of the entries in the modified Q-matrices from the group analysis 

are not interpretable. For example, the Q-mod IQV for the low-performing group shows 

K1, K2, K3, and K4 as the required attribute for J3 (identify factors of 12). While skills 

noted in K1 (computing with whole numbers) and K2 (recognizing multiples and factors) 

may be used to answer the item, K3 (find the missing operation) and K4 (solve real-life 

problems) are both irrelevant in this situation. Also, Q-mod for USA indicates that K5 

(computing with fractions) is required for J10 (find the next number in a pattern with 

3,6,9,12). However, knowledge of computing with fractions is not relevant for identifying 

a given pattern. For both methods, the Q-mods for the individual analysis seem to have 

more errors than the Q-mods for the combined data. 

Since the two Q-mods obtained using the combined data show more consistent and 

interpretable results compared to the Q-mods obtained from the group analysis, results 

based on analysis with these two Q-matrices will be used for the rest of this study. Table 

6.3 provides a side-by-side comparison of the provisional Q-matrix and the two modified 
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Q-matrices. The attributes required to answer 5 items changed in Q-mod IQV. Of the 3 

items (J7, J10, J14) in Q-prov that require both K2 and K6, only J14 requires both attributes 

in Q-mod IQV, while J7 and J10 both require only K6. Likewise, the required attributes  

 

Table 6.3. Changes in the Q-matrix based on the analysis for the combined data  

 Q-prov Q-mod IQV Q-mod TSQE 
J 

K1 K2 K3 K4 K5 

K

6 K1 K2 K3 K4 K5 

K

6 K1 K2 K3 K4 K5 K6 

1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

2 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 
3 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

5 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 

6 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

7 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

8 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 

9 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 

10 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

11 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

12 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

13 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

14 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 
15 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

 

for 6 items changed in Q-mod TSQE, with all 6 items, including the 3 items in Q-prov that 

require both K2 and K6, now requiring only K6. The changes in the required attribute for 

three items (J4, J7, J10) were the same in both modified Q-matrices, while 2 items (J1, 

J11), have different required attributes specified in both modified Q-matrices. 

Further investigation by a content analysis showed that while in some instances (J3, 

J7, J10, J14), the changes in the modified Q-matrices are meaningful due to reasons such 

as the possibility of using multiple strategies or methods for solving a problem, in other 

instances, such as for J1, the change noted in Q-mod IQV does not seem meaningful from 

a content perspective. This is because J1 asks examinees to identify the correct number 

sentence and so requires K3 (find the missing number or missing operation) as specified in 
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Q-prov. However, as shown in Table 6.3, Q-mod IQV indicates that K4 (solve real-life 

problems involving measurements, money, and time) is required, while Q-mod TSQE 

indicates that K6 (relationships and patterns) is required. Since K3 is the most relevant for 

J1, K3 will be assigned in place of K4 to J1 in Q-mod IQV.  

 

6.2.4 Review of Examinee Attribute Profiles 

 

In this section, the estimated attribute profiles obtained from the preliminary 

analysis will be compared by attribute with the estimated attribute profiles obtained from 

the analyses using the modified Q-matrices. In addition, estimated attribute profiles 

obtained from the analyses with the modified Q-matrices will be evaluated to determine 

the extent to which the inconsistencies identified during the preliminary analysis might 

have been resolved.  

A comparison of the estimated attribute profiles from the analysis using the 

modified Q-matrices shows that 3454 of the 4102 examinees have identical estimated 

attribute profiles, while 2172 examinees from the analysis using the provisional Q-matrix 

and analysis based on the modified Q-matrices have identical estimated attribute profiles. 

Table 6.4 provides a summary of the proportions of identical classifications by attribute 

based on analysis with Q-prov and both Q-mods. A review of the proportion of examinees 

with identical classifications by attribute based on analyses with the modified Q-matrices 

shows that between 96% and 100% of examinees had identical classifications by attribute. 

This indicates that very similar results were obtained for analyses based on both methods. 

A comparison of examinee attribute patterns from the preliminary analysis and analysis 

using the modified Q-matrices shows similar results for all attributes expect K4. This 
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difference is most likely because mastery of K4 is required for two additional items in Q-

mod IQV method. The proportion of q-entries that changed from 0 to 1 were similar for 

both 

 

Table 6.4. Review of examinee attribute profiles 

 
 Q-mod 

IQV vs. 

TSQE 

Q-mod IQV vs. Q-prov Q-mod TSQE vs. Q-prov 

 

Proportion 

identical 

Proportion 

identical 

Proportion 

of q-entries 

changed 

from 0 to 1 

Proportion 

of q-entries 

changed 

from 1 to 0 

Proportion 

identical 

Proportion 

of q-entries 

changed 

from 0 to 1 

Proportion 

of q-entries 

changed 

from 1 to 0 

K1 0.98 0.98 0.01 0.01 0.98 0.02 0.01 
K2 0.99 0.78 0.01 0.20 0.78 0.02 0.20 

K3 1.00 0.84 0.03 0.13 0.84 0.03 0.13 

K4 0.99 0.90 0.08 0.01 0.99 0.00 0.01 

K5 0.98 0.98 0.01 0.01 0.98 0.01 0.01 

K6 0.96 0.95 0.02 0.03 0.94 0.03 0.03 

 

proposed methods for all attributes except K4, which had 0.08 proportion changed for 

analysis based on Q-mod IQV and 0.00 for analysis based on Q-mod TSQE method. K2 

and K3 had the highest proportion changed from 1 to 0 for analyses based on both modified 

Q-matrices. This high changes in proportion is expected because compared to the 

provisional Q-matrix, fewer items in the modified Q-matrices require mastery of K2 and 

K3. 

Table 6.5 shows the item response profiles, estimated attribute profiles, and 

proportion correct by attribute for the sample of examinees from the preliminary analysis. 

The results indicate that the inconsistencies noted in the preliminary analysis have 

improved and examinees are more appropriately classified. For example, results from the 

preliminary analysis showed discrepancies in the classification for examinee 1065 and 

3130. However, their estimated attribute profiles based on the modified Q-matrices are 



66 

 

 

more consistent with the similarities in their proportion correct by attribute estimates. In 

the estimated attribute profiles from both modified Q-matrices, the only difference in their 

 

Table 6.5. Comparison of estimated attribute profiles and attribute prevalence estimates 

obtained from the analysis with Q-prov, Q-mod IQV, and Q-mod TSQE 

 

 

  Q-prov Q-mod IQV Q-mod TSQE 

ID  Item 

Response 
Profile 

𝛼̂ Proportion 

correct by 
attribute  

𝛼̂ Proportion 

correct by 
attribute 

𝛼̂ Proportion 

correct by 
attribute 

1065 11010011

1111100 

111000 1.00 0.50 1.00  

0.00 0.67 0.60 

101011 1.00 0.00 1.00 

0.67 0.67 0.60 

101001 1.00 0.00 1.00 

0.00 0.66 0.75 

3130 11010011

1111101 

111111 1.00 0.50 1.00  

1.00 0.67 0.60 

101111 1.00 0.00 1.00  

1.00 0.67 0.60 

101101 1.00 0.00 1.00 

1.00 0.66 0.75 

1500 11010101

1110111 

100101 1.00 0.50 0.67  

1.00 0.67 0.80 

100111 1.00 0.50 0.00  

1.00 0.67 0.80 

100111 1.00 0.00 0.00  

1.00 0.33 0.88 

2111 11010101

1110111 

100101 1.00 0.50 0.67  

1.00 0.67 0.80 

100111 1.00 0.50 0.00  

1.00 0.67 0.80 

100111 1.00 0.00 0.00  

1.00 0.33 0.88 

1060 11010101

1111111 

111111 1.00 0.50 1.00  

1.00 0.67 0.80 

101111 1.00 0.50 1.00  

1.00 0.67 0.80 

101111 1.00 0.00 1.00  

1.00 0.33 0.88 

163 11011000

0111100 

000000 1.00 0.25 1.00  

0.00 0.33 0.40 

101100 1.00 0.00 1.00 

0.67 0.33 0.40 

101010 1.00 0.00 1.00  

0.00 0.67 0.63 

226 11011000
0111111 

111101 1.00 0.50 1.00  
1.00 0.33 0.60 

101101 1.00 0.50 1.00  
1.00 0.33 0.60 

101111 1.00 0.00 1.00  
1.00 0.67 0.75 

4028 11011100

0111001 

111100 1.00 0.25 1.00  

1.00 0.33 0.40 

101100 1.00 0.00 1.00  

1.00 0.33 0.40 

101100 1.00 0.00 1.00  

1.00 0.33 0.63 

1235 11011100

0111101 

101101 1.00 0.25 1.00  

1.00 0.33 0.60 

101111 1.00 0.00 1.00  

1.00 0.33 0.60 

101111 1.00 0.00 1.00  

1.00 0.33 0.75 

3439 11011010

0110110 

000001 1.00 0.75 0.67  

0.00 0.33 0.80 

100101 1.00 0.50 0.00  

0.67 0.33 0.80 

100001 1.00 0.00 0.00 

0.00 0.33 0.88 

1092 11011010

1110101 

111111 1.00 0.50 0.67  

1.00 0.67 0.60 

100111 1.00 0.00 0.00  

1.00 0.67 0.60 

100111 1.00 0.00 0.00  

1.00 0.67 0.75 

3155 11011001

1110101 

111110 1.00 0.25 0.67  

1.00 1.00 0.40 

100110 1.00 0.00 0.00  

1.00 1.00 0.40 

100111 1.00 0.00 0.00  

1.00 1.00 0.63 

1931 11011001

1110110 

100010 1.00 0.50 0.67  

0.00 1.00 0.60 

100110 1.00 0.50 0.00  

0.67 1.00 0.60 

100011 1.00 0.00 0.00 

0.00 0.67 0.75 

3136 
11011001

0111100 
101010 

1.00 0.25 1.00 

0.00 0.67 0.40 
101010 

1.00 0.00 1.00  

0.67 0.67 0.40 
101010 

1.00 0.00 1.00  

0.00 1.00 0.63 

4075 
11011001
0111101 

111110 
1.00 0.25 1.00  
1.00 0.67 0.40 

101110 
1.00 0.00 1.00  
1.00 0.67 0.40 

101110 
1.00 0.00 1.00  
1.00 0.67 0.63 

3252 
11011111

1110100 
100011 

1.00 0.50 0.67  

0.00 1.00 0.80 
100111 

1.00 0.00 0.00  

0.67 1.00 0.80 
100011 

1.00 0.00 0.00 

0.00 0.67 0.88 

Attribute Prevalence Estimates 

 K1 K2 K3 K4 K5 K6 

Q-prov 0.68 0.58 0.61 0.62 0.62 0.73 
Q-mod IQV 0.69 0.39 0.50 0.69 0.62 0.71 
Q-mod TSQE 0.69 0.39 0.50 0.61 0.62 0.73 
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classification is that while examinee 1065 is classified as nonmastery for K4, examinee 

3130 is classified as mastery.  Likewise, the updated estimated profiles for examinee 2111 

and 1060 are more consistent, with the similarities in their proportion correct by attribute 

estimates. The only difference in their classification being that examinee 1060 is shown to 

have mastered K3 in the estimated attribute profiles obtained using the modified Q-

matrices. Again, the changes in the estimated attribute profile for examinee 163 are 

consistent with the similarities in the proportion correct by attribute estimates for examinee 

163 and 226. The estimated attribute profile for examinee 163 from the preliminary 

analysis showed nonmastery of all six attributes. However, estimated attribute profiles 

from both modified Q-matrices now indicate that the examinee has indeed mastered some 

attributes.  

Generally, examinees had similar estimated attribute profiles based on analysis 

with the modified Q-matrices. The differences in classification is accounted for by the 

differences in the specification of the Q-matrices.  For example, examinee 3252 is 

classified as mastery for K4 based on Q-mod IQV method and nonmastery based on Q-

mod TSQE for the same attribute. This is because as shown in Table 6.3, in Q-mod IQV, 

K4 is required to answer 3 items (J1, J11, J15) correctly, while in Q-mod TSQE, K4 is only 

required to answer J15. Therefore, an examinee who answers J1 and J11 correctly, and J15 

incorrectly, will have a proportion correct by attribute estimate of 0.67 for K4 based on 

analysis with the Q-mod IQV, and 0.0 based on analysis with Q-mod TSQE. 

The results from the above data analysis indicates that the IQV and TSQE methods are 

effective for validating and estimating a Q-matrix respectively. Although there are still 

some inconsistencies in examinee classification, examinee estimated attribute profiles 
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obtained from analysis using the modified Q-matrices show more clearly defined 

classifications compared to the estimated attribute profiles based on the provisional Q-

matrix.   
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Chapter 7. Implications and Limitations 

This study presents one method for validating a Q-matrix, one method for 

estimating a Q-matrix, and a detailed analysis of the TIMSS 2011 fourth-grade dataset. The 

Integrated Q-matrix Validation method (IQV) combines a technique that uses Joint 

maximum likelihood estimation (JMLE) procedure (Chiu et al, 2016) to estimate 

examinees’ attribute profiles with the nonparametric Q-matrix refinement method (Chiu 

2013) to obtain the corrected Q-matrix. In the two step Q-matrix estimation method 

(TSQE), the matrix of tetrachoric correlations is used as input for factor analysis to obtain 

an initial Q-matrix. As a second step, this initial Q-matrix is introduced into the Q-matrix 

refinement method to obtain an updated Q-matrix.  

The performance of the methods was examined with four simulation studies and a 

comprehensive analysis of a subset of data from TIMSS. The first two simulation studies 

evaluated the effectiveness of the IQV method to recover a Q-matrix using data based on 

the DINA and G-DINA models. In study 1, the effect of misspecifications on the recovery 

of the Q-matrix was evaluated by using Q-matrices with 10% and 20% misspecifications. 

The result showed that the IQV method can correct up to 100% of the misspecifications in 

a Q-matrix and retain up to 100% of the correct q-entries. Mean recovery rates (MRR) 

obtained for analysis with the DINA model were higher than for the G-DINA model. While 

test length, number of attributes, and percentage of misspecification influenced MRR, 

sample size seemed not to have any effect on MRR. Study 2 evaluated the effect of q-entry 

and q-vector misspecifications on the recovery of a provisional Q-matrix. The results 

showed that MRR and SEN decreased as the number of misspecified q-vectors and q-

entries increased, while SPE did not seem to be influenced by the number of 
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misspecifications. In addition, higher measures were obtained when K is small. All three 

measures were not affected by sample sizes. In study 3, the performance of the TSQE 

method was evaluated with the DINA model and RRUM. The results of the study showed 

MRR as high as 100% for analyses with both CDMs. As noted in studies 1 and 2, MRR 

was affected by J and K, while sample size showed no effect on MRR. In addition, similar 

MRRs were obtained for λ = 0.7 and 0.8. In study 4, the performance of the proposed 

methods was compared by using both methods to analyze data generated for RRUM and 

fitted with the DINA and G-DINA models. Higher MRR rates were obtained for analysis 

using the DINA model, while MRR for Q-mod IQV is generally higher than the MRR for 

Q-mod TSQE for both models.  

 The proposed methods were used for a detailed of analysis of the TIMSS data with 

a provisional Q-matrix developed by content experts through a process of retrofitting. A 

preliminary analysis of the data with the G-DINA model indicated the presence of 

inconsistencies in examinees’ estimated attribute profiles. To resolve this issue, the data 

was first analyzed using the IQV method to validate the provisional Q-matrix and the 

TSQE method to estimate a Q-matrix without using the provisional Q-matrix. The modified 

Q-matrices obtained from these analyses were then used to fit the data with the G-DINA 

model. An evaluation of the updated estimated attribute profiles showed that the 

inconsistencies observed in examinees’ estimated attribute profiles had reduced.  

 

7.1 Implications of the study 

Educational institutions seek to apply data-informed decision-making processes to 

make pedagogical decisions and to promote continuous improvements of their students. 

CDMs have become popular due to their ability to provide detailed information about 
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examinees’ strengths and weaknesses in form of an attribute profile. Since the information 

obtained from the attribute profiles can be used to tailor instruction to meet students’ needs, 

CDMs can be useful tools for supporting formative assessments and improving 

achievement. Most of the currently available assessments are however not compatible for 

use with CDMs, and to make CDMs more accessible, an adhoc Q-matrix is often created 

through a process of retrofitting. Developing Q-matrix validation and estimation 

techniques, like the IQV and TSQE methods, that do not require complex estimation 

processes can make CDMs more accessible for use.  

The IQV method unlike other Q-matrix validation methods does not require an 

arbitrary cut-off, which is a benefit for practitioners who do not have the technical know-

how to determine a cut-off. The performance of the methods with other reduced models 

can be predicted from the results obtained in this study since both methods were analyzed 

with a general model. In addition, the Q-matrices obtained from analysis using the 

proposed methods will enhance the work of content experts who develop Q-matrices. The 

results obtained from the analysis of the TIMSS data indicates that the proposed methods 

may be used as a model for future analysis of the assessment with CDMs.   

 

7.2 Limitations of the Study 

Although the proposed methods showed potential in their performance, some 

limitations have been identified. The Q-matrices that were used for the simulation studies 

consists of up to 30 items and 5 attributes and included all possible attribute patterns that 

require between 1 and 3 attributes.  In practice, an assessment may have more than 30 items 

and require examinees to show mastery of more than 5 attributes. In addition, not all 
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attribute patterns may be represented in a Q-matrix and the attribute patterns may not be 

equally distributed across the test. For all three CDMs used for the simulation studies, the 

results showed a decrease in MRR as the number of attributes in a Q-matrix increased from 

3 to 5. This might be of concern in practice, especially for assessments that tests examinees’ 

knowledge of more than 5 skills. Although the presented methods performed well with 

sample sizes between 1,000 and 5,000, it is not certain if this same kind of result will be 

achieved with sample sizes that are less than 1000 or greater than 5,000. In practice, school 

teachers have class sizes lower than 50 as such it is yet to be determined if these methods 

will be of any benefit under such conditions.  

Some of the attributes specified in the Q-matrix developed for the TIMSS analysis 

are general since in some instances, multiple objectives were consolidated into one 

attribute. For example, as shown in Table 3.2 (page 30), 5 objectives were consolidated 

into K5 (understanding of fractions, fraction equivalent, and solving problems involving 

simple fractions). This implies that an examinee whose attribute profile indicates mastery 

for K5 may not necessarily be proficient in all the consolidated objectives, while an 

examinee that is classified as nonmastery for the attribute may actually be proficient in one 

or more of the five objectives. The results of the TIMSS data analysis showed that the 

estimated attribute profiles obtained from the analysis with the modified Q-matrices 

showed more consistency than the estimated attribute profiles obtained using the 

provisional Q-matrix. However, the persistent presence of inconsistencies indicates that 

other issues, such as the presence of a hierarchical structure between attributes, may be 

responsible for the discrepancies in examinee classification.  An assumption of a 

hierarchical structure between attributes implies that an attribute may be a prerequisite for 
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another attribute. For example, in the provisional Q-matrix designed for the analysis with 

TIMSS, K2 (recognizing multiples and factors) and K6 (describing relationship in patterns, 

their extension, and generating numbers based on a given rule) mostly appeared together, 

which could imply that one of the attributes may be essential for learning the other.  

 

7.3 Possible Future Direction 

Additional investigation to resolve the inconsistencies in the estimated attribute 

profile will be helpful in ensuring that the provisional Q-matrix is appropriately specified, 

thus improving the recovery rate of the IQV method. The results from a scree test 

conducted during the initial analysis of the TIMSS data indicated that the Q-matrix should 

be developed with four attributes. However, based on consultations with content experts 

the provisional Q-matrix was developed with six attributes. Although it is currently not 

possible to establish a Q-matrix with four attributes due to limited resources, it would be 

interesting in future to develop a Q-matrix with four attributes and then compare the results 

of the analysis using the Q-matrix with the results from this study. Given the fact that the 

provisional Q-matrix was developed by consolidating objectives from the TIMSS 

blueprint, a future consideration would be to develop a Q-matrix that would not include 

any consolidated objecitves, thereby making the attributes more specific. The proposed 

methods can also be modified for use with polytomous attributes since assessments based 

on polytomous attributes provide additional diagnostic information that can inform 

instruction and improve student learning. Further studies on the effect of sample size on 

the recovery of the Q-matrix is also required to determine how well the methods will 

perform with sample sizes less than 1,000 and greater than 5,000. Studies will also be 
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designed to compare the proposed methods with existing Q-matrix validation and 

estimation methods.  
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