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ABSTRACT OF THE DISSERTATION

Development of Advanced Data Mining Algorithms for

the Analysis of Directed Networks

By ALİ TOSYALI

Dissertation Director:

Myong K. Jeong

There are many systems which can be represented as a network, where the parts of the

system are nodes and the connections between the parts are the edges. Researchers pro-

posed numerous different network types such as internet networks, citation networks,

and transportation networks. Also, numerous analysis tools have been introduced to

investigate the structures and pattern of connections of networks. However, existing

research is mostly focused on undirected and static networks and analysis of directed

dynamic networks, especially citation networks, has received little attention from the

researchers.

In this dissertation, we present new methodologies for the analysis of directed net-

works. We first propose an anomaly (outlier) detection technique based on nonnegative

matrix factorization for directed patent citation network (PCN). We have developed

a clustering method based on NMF, and an anomaly score function that exploits the

clustering result. The proposed outlier ranking method leverages the patent-level anal-

ysis as well as group-level analysis in order to measure the graph-based outlierness

of a patent. We validate our proposed anomaly ranking methods using small artifi-

cial datasets. We then conduct experiments using real-world patent citation network.

Results reveal that the proposed outlier ranking and detection method outperforms
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existing approaches.

Secondly, we present a regularized asymmetric nonnegative matrix factorization

(RANMF) algorithm for clustering in directed networks. The proposed algorithm as-

sumes that if two nodes are similar to each other in the original basis, their represen-

tatives in new basis should be close to each other. Therefore, similar nodes appear in

the same cluster. The proposed algorithm is for clustering nodes in a given directed

network under the guidance of prior similarity information of the network and SVD-

based initialization. We also provide proof of the convergence of RANMF algorithm and

real-world experiments to show its performance. The experiments reveal that RANMF

algorithm is a better solution for clustering in directed networks compared to other

clustering algorithms.

Finally, we develop a time-aware ranking method for the identification of impor-

tant and influential patents in dynamic patent citation network. While the existing

ranking methods fail to distinguish the citing and cited patent for the importance of

cited patent, the proposed ranking method successfully distinguish them by exploiting

the time information of not only citing patent but also the time information of cited

patent. We present the performance of our method on real-world patent citation data

and compare it to other ranking metrics. The results reveal that our proposed method

not only successfully rank the patents in importance but also successfully identifies the

influential patents in a dynamic patent citation network.
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Chapter 1

Introduction

1.1 Overview

Network analysis is a collection of tools for investigating systems of interests which can

be represented by a network. Researchers introduced many different types of networks

(Newman, 2018). Many researchers have proposed methods to analyze undirected net-

works. However, analysis of directed networks has gained little attention from the

researchers. For example, patent citation networks are one of the commonly known

directed networks and analysis of directed patent citation networks is very important

for decision makers to be able to discover technology opportunities.

One of the crucial tasks in directed network analysis is finding outliers in a given

network. Moonesinghe and Tan (2006) propose an algorithm which determines the

outlierness of nodes in a given network based on the values of the dominant eigenvector

of the transition probability matrix. Transition probabilities are obtained by trans-

forming the edge weights of the underlying graph data. Xu et al. (2007) introduce a

cluster-based algorithm to identify the node outliers, which groups the nodes in a net-

work based on their similarities to each other. Akoglu et al. (2010) present the OddBall

algorithm to find the outliers in the network, which identifies the outliers by finding

the nodes that do not follow the patterns.

Another important task for directed network analysis is partitioning the nodes into

some sort of logical groupings, which is called as clustering in data mining and machine

learning communities. Researchers proposed numerous methods to identify clusters in

a given network (Kernighan and Lin, 1970, Newman, 2006). However, there is little

research which has been focused on clustering in directed networks. Recently nonneg-

ative matrix factorization (Lee and Seung, 2001) have become popular as a clustering
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technique, since it is fairly easy to interpret and its relationship to k-means has been

studied (Ding et al., 2005). Wang et al. (2011) propose a community detection algo-

rithm based on nonnegative matrix factorization techniques for clustering in directed

networks. The algorithm, which is called as asymmetric nonnegative matrix factoriza-

tion (ANMF), identifies the clusters by factorizating the simple adjacency matrix of a

given directed network.

In directed network analysis, another crucial task is ranking nodes based on their

importance. Therefore, researchers proposed various types of importance measures for

networks. Some of these methods are also known as centrality metrics (e.g., degree,

eigenvector). These importance measures are for static networks, whose topology do

not change over time. However, some of the networks are changing over time such

as patent citation networks (PCN). In PCN, new patents and new edges can emerge

over time. To identify important nodes in this kind of dynamic networks, researchers

present new importance measures. For example, Walker et al. (2007) propose CiteRank

algorithm, which is a modified version of PageRank algorithm (Page et al., 1999) to

citation networks. CiteRank simulates the dynamics of a large number of researchers

and approximates the traffic to an individual node. Lerman et al. (2010) present an

algorithm, which counts the number of direct and consecutive indirect edges to a par-

ticular node. Ghosh et al. (2011) introduce another importance measure for dynamic

networks, which counts the number of direct and indirect edges to a node by giving less

weight to older edges.

In this dissertation, we present new methodologies for the analysis of directed net-

works. We first propose SVD initialized asymmetric nonnegative matrix factorization

for node anomaly detection in directed patent citation networks. Outlier detection is

a crucial task for network data analysis, which identifies abnormal entities that devi-

ate from the rest of the dataset. Ranking in outlierness is often used for identifying

abnormal nodes in directed citation networks containing citation relationship among

nodes. A challenging issue in outlier ranking is how to leverage the rich graph data

of complex citation networks. To address this challenge, we propose a cluster-based

outlier score function to identify outliers in citation networks based on nonnegative
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matrix factorization (NMF). We first represent the citation data as a directed graph

and cluster the directed graph into logical groupings of nodes using NMF. Based on the

clustering results, we obtain the outlier score and ranking for each node using the pro-

posed outlier scoring function. The proposed method leverages the direct and indirect

citation links between nodes to measure the graph-based outlierness. We validate the

proposed outlier ranking method using small artificial dataset and the real-world U.S.

patent data.

Secondly, we present regularized asymmetric nonnegative matrix factorization for

clustering in directed networks. There are various methods to cluster nodes in undi-

rected networks, however, little is known about clustering in directed networks. We

propose a regularized asymmetric nonnegative matrix factorization (RANMF) algo-

rithm for clustering in directed networks. In a given directed network, the RANMF

exploits the pairwise similarity of nodes to make close nodes belong to the same cluster

under the guidance of prior information of the network. We also prove the convergence

of the RANMF algorithm and provide real-world experiments to show its performance.

The experimental results show the superiority of our RANMF algorithm in terms of

several clustering validity indices.

Finally, we develop a new dynamic importance measure for dynamic patent citation

networks to identify influential patents. Ranking patents is a crucial task in patent

analysis as it relates to evaluating the firms’ policy regarding R&D processes, assessing

the level of technology development in a specific area, and estimating the technological

strengths and weaknesses of competitor firms. Existing patent ranking methodologies

either do not take advantage of network analysis tools or fail to distinguish the effect

of citing and cited patents for the importance of cited patent. The proposed method

exploits the time information of both citing and cited patents and dynamic character-

istics of patent citation network to distinguish the effects of patents on the importance

of a particular patent. The experimental results using a real-world patent citation data

show that our proposed ranking method outperforms other metrics.
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1.2 Dissertation outline

The rest of the dissertation is structured as follows: we first present a node anomaly de-

tection algorithm based on NMF to identify outlier patents in a directed patent citation

network. Second, we introduce a novel NMF-based clustering algorithm for directed

networks. We then propose a time-aware ranking methodology for the identification

of influential patents in a dynamic patent citation network. Finally, we present the

contributions of the dissertation and discuss future research opportunities.
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Chapter 2

New Node Anomaly Detection Algorithm based on

Nonnegative Matrix Factorization for Directed Citation

Networks

2.1 Introduction

Outlier detection aims to identify unusual entities that deviate from the rest of the

dataset, which has been researched within diverse areas and application domains (Codetta-

Raiteri and Portinale, 2015, Duan et al., 2009, Banker et al., 2017). Recently, there

have been numerous researches on graph mining to investigate the patterns in net-

worked systems such as social networks, transportation networks, and patent citation

networks (Xu et al., 2007, Holder and Cook, 2009, Zou et al., 2010, Kang et al., 2013,

Džamić et al., 2017). Graph mining approaches analyze data represented as a graph,

which consist of nodes and edges, to have better understanding of the structure and

behaviors in data. The goal of outlier ranking is to score and rank objects to the

degree of deviation from the majority of dataset in a graph data. In general, outlier

ranking in a graph data corresponds to identifying exceptional nodes, edges, or clusters

(or subgraphs). In this chapter, we focus on ranking nodes to identify interesting or

exceptional nodes in a citation network.

Patent citation provides an effective explanation for how new technologies are re-

lated to other works (Michel and Bettels, 2001, Newman, 2018). These relationships

can be presented in a patent citation network (PCN) with nodes as patents and directed

edges as citation between patents. In patent data analysis, outlier patent detection is

often used as a starting point to investigate possible technological opportunities includ-

ing the identification of potentially promising trends.

There have been growing attempts to detect outlier nodes in graphs. The OutRank
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algorithm transforms the edge weights of the underlying graph into transition probabili-

ties, where weighted edges represent the similarities between node objects (Moonesignhe

and Tan, 2006). The OutRank determines the outlierness of each node object based on

the values of the dominant eigenvector of the transition probability matrix. Xu et al.

(2007) present a cluster-based method (also referred to as community-based method) to

find outliers through grouping similar nodes into clusters, which is called the structural

clustering algorithm for networks (SCAN) algorithm. The SCAN algorithm is applied

to undirected and unweighted graphs and the outliers come from the nodes that do

not belong to any clusters in a given network. Akoglu et al. (2010) propose Oddball

algorithm for identifying outliers using the subgraphs expanded from a node to the

neighboring nodes of the corresponding node. Given a graph, the OddBall identifies

outliers by finding the nodes that do not follow the observed patterns in the graph with

respect to density, weights, and principal eigenvalues. Sun et al. (2010) apply the SCAN

to weighted graph using the weight of edges between common neighbors to measure the

similarity between two nodes.

Recently, nonnegative matrix factorization (NMF) has been used for data cluster-

ing in various applications (Zhi et al., 2011, Ma et al., 2016). Cao et al. (2013) use

nonnegative matrix factorization to find communities in undirected graphs, and then

detect hub and outlier nodes in the communities. Tong and Lin (2011) introduce non-

negative residual matrix factorization method to detect link anomalies in a bipartite

graph. The residual matrix in their approach shows the deviations of the low rank fac-

torization from the original matrix. Along these lines, the entries of the residual matrix

are required to be nonzero in their matrix factorization algorithm to give a meaningful

and intuitive view on the significance of the deviation. Aggarwal (2015) introduces a

spectral method to complement the matrix factorization method, where the node-link

adjacency matrix is augmented into a positive semi-definite matrix and is decomposed

using the singular value decomposition methods. The author then follows the residual

matrix idea introduced above and finds the anomaly links. To the best knowledge of the

authors of this article, this is the first work to employ nonnegative matrix factorization

for node outlier ranking on directed citation networks.
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A directed graph offers a rich information about the underlying system. This rich in-

formation includes (1) pairwise relationship between the components, (2) the direction

of relationship between components (i.e., a directed edge between two patents shows

citing and cited patents), (3) the intrinsic relationship between the groups of compo-

nents in the system of interest. Leveraging all this information in a given directed

graph to identify the outlier nodes is challenging because it requires identification of

group of nodes in the graph and quantification of relationship between these groups.

To address this challenge, we propose a new node outlier detection algorithm based on

matrix factorization techniques. For this purpose, we utilize the citation structure of

a given citation network. Using asymmetric nonnegative matrix factorization (ANMF)

algorithm (Wang et al., 2011), we factorize the citation matrix to find the relevant in-

formation for clusters, and then, score the nodes with the values of factorized matrices

which evaluate the likelihood of node anomalies. The quality of the clusters has signif-

icant impact on the quality of anomalies detected. We validate our proposed anomaly

ranking method using the real-world U.S. patent citation dataset.

The structure of our work is organized as follows. Section 2.2 provides the back-

ground on NMF and asymmetric NMF in graph data. Section 2.3 presents the new

node anomaly scoring functions. Section 2.4 presents a data description of the artificial

and real-world data used in the experiments along with the experimental results for

anomaly ranking. Finally, Section 2.5 concludes this chapter and presents the future

research directions.

2.2 Nonnegative matrix factorization

Matrix factorization is a process of decomposing a matrix into two or more matrices,

indicating linear combinations of entries in different matrices. Therefore, the multi-

plications of the factorized matrices are equivalent to the original matrix. In various

applications, the matrix factorization is used to explore the latent features through

combining different types of entities. Nonnegative matrix factorization is a matrix fac-

torization method that focuses on the analysis of data matrices whose elements are

nonnegative. Table 2.1 shows the commonly used symbols of this chapter and their
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descriptions.

Table 2.1: Notation summary

Symbol Description

C ∈ <n×n+ Citation matrix with nonnegative components
A ∈ <n×n+ Adjacency matrix with nonnegative components
[A]ij ijthe value of A
[A]i∗, [A]∗j vectors at ith row and jth column of A
W,H Lower rank factorized matrices used in ANMF
|| · ||, || · ||F Euclidean norm, Frobenious norm
r Factorization rank
1r Column vector whose all r elements are one
AN(i) Anomaly score for node i

Let <+ denotes the set of nonnegative real numbers. For a given nonnegative matrix

X ∈ <m×n+ , NMF seeks two lower rank matrices, W ∈ <m×r+ and H ∈ <r×n+ , where

r < min{m,n}, that approximate X ≈WH by solving the optimization problem

min
W,H≥0

||X−WH||2F ,

where || · ||F denotes the Frobenious norm and all elements of both W and H are

nonnegative. Since the objective function ||X−WH||2F is not convex in both W and H,

NMF solves a non-convex optimization problem. Thus, it is impossible to find the global

minimum. ? suggest an iterative algorithm and prove that their approach could find a

local optimal value. Their updating process has been demonstrated to be non-increasing

in terms of the Euclidian distance, which often leads to local optimal solutions. When

we introduce orthogonal constraints on H, that is HHT = HTH = I, the NMF problem

can be equivalent to the k-means clustering, except for the nonnegativity constraints

(Ding et al., 2005).

Apart from the general expression of the NMF, researchers have found different

types of matrix factorization methods for graph and network data based on adjacency

matrix. One main purpose of the modification of NMF is to utilize the characteristics

of the dataset in order to find useful patterns through matrix factorization. Symmetric
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NMF requires that the factorization results should be the multiplication of one matrix

and its transpose leading to advantage in factorizing symmetric matrices (Wang et al.,

2011). The asymmetric nonnegative matrix factorization (ANMF) method has been

developed for analyzing directed graph data by transforming a symmetric NMF into a

specific expression that could be applied to an asymmetric square matrix, which shows

wider applications in handling the graph problems (Wang et al., 2011). Given a directed

adjacency matrix A ∈ <n×n, ANMF approximates A with two nonnegative matrices

W ∈ <n×r and H ∈ <r×r as follows:

min
W,H

||A−WHWT ||2F

s.t. W ∈ <n×r+ ,H ∈ <r×r+ ,

(2.1)

where r is the predetermined low-rank matrix size. Wang et al. (2011) develop an

iterative algorithm and prove that their approach could find a local optimal value.

Accordingly, the multiplicative updating rules for the ANMF are

[W]ij ←[W]ij

(
[AWHT + ATWH]ij

[BWHT + BTWH]ij

)1/4

,

[H]ij ←[H]ij
[BT ]ij

[WTBW]ij
,

where B = WHWT . The updating rules make the objective function in equation (2.1)

to be non-increasing and converge to a local optimal solution.

2.3 New scoring method for anomaly detection in directed graph

In this section, we introduce a new node anomaly scoring method for patent citation

network.

2.3.1 Citation matrix

Let G = (V,E) be a directed graph as shown in Fig. 2.1, where V is a set of n nodes

and E is a set of m edges, by which nodes in the graph are connected to the other

nodes.
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Figure 2.1: Representation of direct and indirect citations.

GraphG can be represented as a directed adjacency matrix A ∈ <n×n whose element

[A]ij is 1 if node i is directed to node j. In a directed graph, edges have direction which

indicates a one-way relationship between the nodes. The adjacency matrix of the sample

graph in Fig. 2.1 is

A =



0 1 1 0 0

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0


.

In citation network, a node can cite another node directly or indirectly. For example,

as shown in Fig. 2.1, node 4 cites node 2 directly but it cites node 1 indirectly with

length 2. We can capture this direct and indirect citation structure of a given citation

network by using citation matrix defined as

C =
∞∑
l=1

βlAl (2.2)

where 0 < β < 1 is the discounting factor and Al ∈ <n×n is the matrix product of
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l copies of A, where an element [A]lij represents the number of paths with length l

from node i to node j. Since we assume that two nodes cannot cite each other (i.e.,

the former published patent cannot cite the later ones), the directed graph is acyclic.

Proposition 1 shows that the adjacency matrix A is nilpotent and the citation network

C is rewritten as βA(I− βA)−1. Proof of proposition 1 is in Appendix A.

Proposition 1. If A is the adjacency matrix of an acyclic directed graph, there exists a

constant value τ > 0 such that Al = 0,∀l > τ . Then the citation matrix C is rewritten

as C = βA(I− βA)−1.

By using (2.2), we give more weight to direct citations and less weight to indirect

citations. A citation with less weight means that the path length between two nodes

is long. We can write the C matrix for the sample graph in Fig. 2.1 with discounting

factor β = 0.6 as

C =



0 0.6 0.6 0.72 0.36

0 0 0 0.6 0

0 0 0 0.6 0.6

0 0 0 0 0

0 0 0 0 0


.

The non-zero values in C indicate that there exists at least one direct or indirect citation

between corresponding patents. For example, take [C]12 and [C]15 into consideration.

These two values are non-zero because there are paths from node 1 to node 2 and node

5. Moreover, [C]15 is less than [C]12 because less weight is given to indirect citations

by using discounting factor, which reflects the strength of connectivity between nodes.

2.3.2 ANMF with citation matrix

ANMF is a factorization method that can be used on citation matrix. Applying the

algorithm proposed by Wang et al. (2011), we could obtain two factorized matrices, W

and H such that C ≈ WHWT , where W,H ≥ 0. The factorized matrices W and

H give useful interpretation for the given graph based on clustering. W denotes the
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within-cluster node weight matrix whose element [W]ik is the weight for inclusion of

node i in cluster k for i = 1, . . . , n and k = 1, . . . , r. H shows the between-clusters

weighted directions, whose element [H]pq is the weight of the direction from cluster p

to cluster q for 1 ≤ p, q ≤ r. The diagonal elements of H are interpreted as the weight

of self-direction caused by the nodes directing to the other nodes in the same cluster.

The matrix W could be normalized by columns and WT normalized by row respec-

tively with the following formula:

WHTT = (WD−1)(DHDT )(WD−1)T (2.3)

where D = diag(d1, . . . , dk), where dj = 1Tn [W]∗j =
∑n

i=1[W]ij . A component dj of the

diagonal matrix D could be considered as the weight of the jth row vector of the matrix

W. For simplicity, let W∗ = WD−1 and H∗ = DHDT , where W∗ is the normalized W

by transferring the diagonal matrix D to H. The matrix W∗ could provide r clusters of

the original graph and the members of each cluster are decided by the non-zero entries

in each column of matrix W∗. Since this study mainly deals with anomaly detection,

the exact clustering methods and the quality of clustering are not discussed in details.

Rather, we group all the nodes with corresponding entries larger than a predetermined

value in each column into a cluster.

2.3.3 Proposed scoring method for anomaly detection

The entries in W∗ matrix represent the normalized weight of each node within one

cluster, showing the link behavior. For example, if [W∗]ij is large, then node i links

to other nodes within cluster j and such link behavior is stronger compared to that

of other nodes in the same cluster. The W∗T matrix, on the other hand, reflects the

linked behavior. H∗ matrix shows the nodes’ link behavior between two clusters (i.e.

connectivity between the clusters). For example, if [H∗]ij 6= 0, then some nodes can

be found in cluster i links to some nodes in cluster j. Higher value means that such

connectivity is strong, i.e., an edge (1-step path) exits between the nodes of two clusters.

Besides, the diagonal terms in H∗ matrix could represent the importance of a cluster
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in terms of the whole graph. Therefore, if we only consider such link behavior, the

importance of one node in the graph is determined by how that node links to other

nodes in the clusters.

Thus, we can obtain the score for each node as O1 = W∗H∗. The row element

gives the score value of one node in each community, and we will use the row sum as

the anomaly score for the link behavior as

AS1(i) =

k∑
j=1

[W∗H∗]ij (2.4)

where 1 ≤ i ≤ n. The nodes with less score values in this scenario tend to be anomalous.

Nevertheless, in a directed graph, considering only the link behavior is not sufficient

because it describes the behavior of edges that merely point from one node to the other

nodes. Due to the possibly asymmetric adjacency matrix and the asymmetric edge

directions between two nodes in directed graph, it may be also necessary to consider

the linkage of edges pointing from the other nodes to a given node or the linked behavior.

Instead of W∗ matrix, W∗T matrix will be used to describe how one node is linked to

other nodes. Following the similar idea as above, the expression O2 = H∗W∗T could

be used to score the linked behavior, and the row sum could be used to represents the

scoring function for each nodes as

AS2(i) =
k∑
j=1

[W∗H∗T ]ij , (2.5)

where 1 ≤ i ≤ n. To keep the format as in the AS1(i), we take the transpose of O2

matrix, O2 = (H∗W∗T )T = W∗H∗T . The nodes with less score values in this scenario

tend to be anomaly.

Based on the discussion above, the connectivity, or the structure of the original

graph could be decomposed into link behavior and linked behavior. Both behaviors

are important for finding detecting anomaly. The sum of the AS1(i) and AS2(i) could

give a simple overall score function. However, the importance of these two behaviors

may not be the same in different graphs with the actual needs of anomaly types. For
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example, in patent citation network, the patents are more likely to be anomalies if they

are cited by few other patents so that the linked behavior may be more important in

this situation; for email contact network, an email address which keeps sending high

volume of emails to other users may be treated as anomalous/spam source so that the

link behavior could be more important. To separate the importance, we introduce the

weighted scoring function for node anomaly detection as follows:

AN(i) = α

k∑
j=1

[W∗H∗]ij + (1− α)

k∑
j=1

[W∗H∗T ]ij (2.6)

where 0 ≤ α ≤ 1. Algorithm 1 describes the node anomaly detection procedure using

the proposed outlier scoring method and ANMF.

Algorithm 1 Proposed outlier scoring procedure

Given: A, r, α, β

1: Calculate citation matrix using A and β
2: Use ANMF method to factorize C matrix and obtain the output matrix W and H

following the algorithm introduced by Wang et al. (2011).
3: Normalize the W and H matrix in terms of columns to obtain W∗ matrix and H∗

matrix.
4: Find the anomaly score for each node using (2.6).
5: Sort the AN(i) score in ascending order.
6: Lock the score values smaller or equal to a predetermined threshold δ and pick out

the respected nodes as anomalies.

2.3.4 Initialization based on modified SVD

NMF algorithms needs good initialization strategy as good initialization result in fast

convergence and low cost of computational process (Boutsidis and Gallopoulos, 2008).

In general, NMF algorithms are initialized using random initialization approach, which

requires several instances of the algorithm with different initial matrices and then select

the best solution or the average solution in the case of random initialization. Therefore,

the overall process can become quite expensive. In order to overcome the issue from

the random initialization for general NMF problems, Boutsidis and Gallopoulos (2008)

propose a novel initialization algorithm, Nonnegative Double Singular Value Decompo-

sition (NNDSVD), based on the singular value decomposition (SVD), which computes
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the approximation of a matrix C factorized by two nonnegative matrices with rank r.

The NNDSVD first computes a decomposition of C using the SVD, where C = USVT ,

then extracts positive sections of respective matrices and initializes the nonnegative fac-

torization. The NNDSVD leads to rapid error reduction and faster convergence than

random initialization.

We modify the SVD-based initialization procedure for the ANMF. When C is a

n × n matrix, then U, S, and V are also n × n matrices, and the SVD can be repre-

sented as C = U(SVTU)UT , since U and V are orthogonal matrices. Let [X]+∗j be the

nonnegative section of the jth column vector of X ∈ <n×n+ and [X]−∗j be the nonpositive

section of [X]∗j , then [X]∗j = [X]+∗j−[X]−∗j . We also define [X]∗,1:r as the first r columns

of matrix X and [X]1:r,1:r as the first r rows and columns of X. In Algorithm 2, we

obtain the initial matrices W0 and H0 as W0 = [Ũ]∗,1:r and H0 = [S̃Ṽ
T
Ũ]1:r,1:r.

Algorithm 2 SVD-based initialization for ANMF

Given: Citation matrix C and factorization rank r

1: Compute SVD of C : USVT = C
2: for j = 1 : n do
3: Set u+ = [U]+∗j , v

+ = [V]+∗j , u
− = [U]−∗j , v

− = [V]−∗j .

4: if ||u+|| · ||v+|| ≥ ||u−|| · ||v−|| then
5: u = u+||u+||
6: v = v+||v+||
7: σ = ||u+|| · ||v+||
8: else
9: u = u−||u−||

10: v = v−||v−||
11: σ = ||u−|| · ||v−||.
12: end if
13: Set [Ũ]∗j = u, [Ṽ]∗j = v, and [S̃]jj = σ[S]jj
14: end for
15: Set W0 = [Ũ]∗,1:r and H0 = [S̃Ṽ

T
Ũ]1:r,1:r

2.3.5 Complexity analysis

Matrix multiplication usually takes O(n3) time for the multiplication of two n × n

matrices. However, since the citation networks are represented by very sparse matrices,

it takes O(s0.7n1.2+n2+o(1)) time [28] to multiply two very sparse n×n matrices, where

n is the total number of nodes and s is the number of non-zero elements (i.e., edges).
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Singular value decomposition of an n × n matrix takes O(n3) time. It takes O(nrt)

time to factorize an n× n matrix using ANMF algorithm, where r is the factorization

rank and t is the number of iterations for the ANMF algorithm to converge.

2.3.6 An illustrative example

In this section, we present an illustrative example for our proposed algorithm. The

specific steps of the proposed method are shown in Fig 2.2.

In this section, we present an illustrative example for our proposed algorithm for

better understanding of it. The graph for this illustrative example is shown in Fig. 2.1.

Citation matrix has already been calculated in Section 2.3.1. First we obtain the initial

matrices W0 and H0 by using modified SVD method as:

W0 =



0 0.7415

0.3238 0.3062

0.3238 0.4751

0.7302 0

0.4020 0


,H0 =

 0.0025 0

1.5791 0.0001

 .

Using these initial matrices in ANMF method in order to approximate C matrix with

factorization rank 2, we obtain W∗ and H∗ matrices as:

W∗ =



0 0.4869

0.1819 0.2011

0.1819 0.3120

0.4103 0

0.2253 0


,H∗ =

 0.0080 0

4.2798 0.0002

 .

By using these results in our proposed score function; we obtain the outlier scores for

nodes in this small illustrative example as shown in Table 2.2. In the results, higher

score means less outlier.
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Figure 2.2: Proposed node anomaly scoring flowchart
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Table 2.2: Outlier score and rank of 5-node illustrative example

Rank Node AS1(i) AS2(i) Score

1 5 0.0018 0.9684 0.1468
2 4 0.0033 1.7592 0.2666
3 2 0.8621 0.7801 0.8498
4 3 1.3367 0.7801 1.2532
5 1 2.0840 0.0001 1.7714

The number of citations (i.e., direct and indirect citations) of node 1 is greater than

the number of citations of other nodes. Therefore, it is expected to be the least outlier

node. In similar way, node 3 is the next least outlier node. Notice that even though

node 4 and 5 have no link to them, they obtain different scores, since node 5 cites

only node 3, but node 4 cites both node 2 and 3. Our proposed algorithm is able to

distinguish leaf nodes by considering both link and linked structure of a given directed

graph.

2.4 Experimental results

In this section, experimental results have been presented based on an artificial dataset

and a real-world citation network. We first use small artificial dataset to compare

our proposed algorithm with well-known anomaly detection algorithms, OutRank and

OddBall. Then, we compare our method with OutRank and OddBall using a real-world

patent citation data.

2.4.1 Artificial dataset: 14-node network

In this dataset, there are 14 nodes and 16 edges as shown in Fig. 2.3. Note that it is

possible for any pair of nodes to have more than one path between them either directly

or indirectly.

The ANMF algorithm with r = 4 finds four clusters using W∗ matrix, of which each

column contains the cluster information. The non-zero elements of each column in W∗

matrix indicate that these corresponding nodes are involved in the same cluster. Using

the ANMF, nodes, that are not directly connected, can be contained in the same cluster
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Figure 2.3: Network structure of artificial dataset
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Figure 2.4: Four clusters obtained based on the matrix factorization results. Each color
and shape represent a different cluster.
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due to the structural information of the original graph. Fig. 2.4 shows the four clusters

obtained by the ANMF algorithm, which reveals an interesting relationship between

clusters. For example, there exist paths merely from nodes in cluster 3 to nodes in

cluster 2, i.e., node 2 in cluster 3 to nodes 4 and node 5 in cluster 2. Similarly, there

are paths from nodes in cluster 2 to nodes in cluster 1 when we ignore the overlapped

nodes. Such relationship could be explained by the values in H∗ matrix.

Using the factorization results, we compare our proposed algorithm with existing

outlier detection algorithms. For the experiment, we set α = 0.8 and β = 0.6 in the

proposed algorithm. Table 2.3 shows the comparison results for the artificial dataset.

The proposed algorithm finds that the top two outliers are nodes 6 and 13, since both

nodes are not cited by the others and both cite only one node. Node 6 has higher score

than node 13, since node 6 has a single path only from node 3, but node 13 has several

paths from the other nodes. The experimental result demonstrates that our algorithm

performs well and identifies the desired anomalies successfully. For a fair comparison,

we transform the adjacency matrix of the directed network to that of the undirected

network by ignoring the directions for the best use OutRank and OddBall algorithms

as they work best on undirected networks. The OddBall cannot distinguish the nodes

based on anomaly scores, since all scores are equal to zero. The Outrank provides

rank in outlierness, but the result is different from what we have expected, since node

3 has the second highest score in outlierness. We cannot say node 3 is more outlier

than node 13, since node 3 is cited by two other nodes, but node 13 is not cited by

others. Hence, results suggest that our method is advantageous in detecting anomalies

in artificial dataset.



22

Table 2.3: Comparison of the proposed algorithm, OutRank, and OddBall using 14-
node patent citation network

Proposed OutRank OddBall

Rank Node ID Score Node ID Score Node ID Score

1 6 0.1212 6 0.0263 1 0
2 13 0.2577 3 0.0356 2 0
3 14 0.4900 13 0.0441 3 0
4 11 0.5652 1 0.0623 4 0
5 12 0.5652 14 0.0631 5 0
6 10 1.0683 8 0.0646 6 0
7 3 1.1495 9 0.0764 7 0
8 5 1.4087 10 0.0764 8 0
9 9 1.4642 11 0.0806 9 0
10 8 1.5601 12 0.0806 10 0
11 7 1.6014 5 0.0851 11 0
12 1 2.1966 7 0.0917 12 0
13 2 3.1407 2 0.0930 13 0
14 4 3.328 4 0.1202 14 0

2.4.2 Real-world dataset: U.S. patent citation network

In this section, we evaluate the performance of our proposed method on the US Patent

Citation Network. The dataset is a directed and unweighted graph consisting of 750

nodes and 1376 directed edges. Performance evaluation is a difficult task for the outlier

detection algorithms because of the inexistence of ground truth anomaly labels. One

way to handle this issue is to inject synthetic anomalies to the real-world dataset. In this

work, we inject 79 synthetic anomalies into our PCN data and show the performance

evaluation of our algorithm based on how well it detects the anomalies.

As for the performance metric, we employ the F1 score and accuracy index. F1

score is defined as

F1 = 2 ·
TP

TP+FP ·
TP

TP+FN
TP

TP+FP + TP
TP+FN

,

where TP is the number of correctly labeled positive nodes, FP is the number of

positive labeled nodes while the true labels are negative, TN is the number of correctly

labeled negative nodes, and FN is the number of negative labeled nodes while the true

labels are positive. The highest and the lowest values that F1 score can get are 1 and
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0, respectively. Higher the score, better the results. Accuracy is defined as

ACC =
TP + TN

TP + TN + FP + FN
.

We first A. Using A, we calculate the citation matrix, C, as shown in Proposition

1 with β = 0.9. After SVD based initialization of W and H matrices, we factorize

the C using ANMF algorithm with factorization rank r = 5. Then, anomaly scores of

each node are obtained as shown in (2.6) with α = 0.3. Finally, ground truth anomaly

labels and predicted anomaly labels are compared for each algorithm. Table 2.4 shows

the performance evaluations of outlier detection algorithms. The results reveal that

our proposed algorithm outperforms Oddball and Outrank algorithms in terms of both

performance metrics.

Table 2.4: Comparison results of the proposed, OutRank and OddBall algorithms on
real-world U.S. Patent Citation Network

F1 score Accuracy

OutRank 0.8960 0.8118
Oddball 0.8947 0.8094
Proposed 0.9107 0.8384

2.4.3 Parameter sensitivity

Our proposed node anomaly detection algorithm has two parameters: β and α. In this

section, we present the sensitivity of the proposed method to these two parameters.

Figures 2.5-2.8 show the performance of the proposed method on PCN dataset with

varying β and α values. The results show that the performance of our method is stable

with respect to the parameter values and it outperforms the other methods with varying

parameter values.

2.5 Conclusion

The present study proposes a novel node anomaly detection algorithm using the non-

negative matrix factorization technique. Experimental results with the artificial data
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Figure 2.5: Sensitivity of our method to varying α values in terms of accuracy on US
PCN dataset.
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Figure 2.6: Sensitivity of our method to varying α values in terms of F1 score on US
PCN dataset.



26

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.80

0.81

0.82

0.83

0.84

0.85

0.86

Ac
cu

ra
cy

ANMFG
OutRank
Oddball

Figure 2.7: Sensitivity of our method to varying β values in terms of accuracy on US
PCN dataset.
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Figure 2.8: Sensitivity of our method to varying β values in terms of F1 score on US
PCN dataset.
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and real-world patent citation network show that the proposed algorithm detects out-

lier nodes successfully. Moreover, we present meaningful interpretations by studying

the graphs with anomalies which have provided real meaning on the results.

As for the future research, the performance of our proposed algorithm needs to be

tested with more real-world datasets. This may help not only compare the perfor-

mance of different algorithms with different cases but also accumulate more experience

on the selection of factorization rank r. Furthermore, we consider the possible known

attributes of the nodes and edges in graphs when designing the algorithms. There are

possible ways to make use of the node attributes like the anomaly detection approaches

for continuous or discrete data. Therefore, future study can be made on the performance

of our algorithm and the updated version by considering the node attributes.
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Chapter 3

Regularized Asymmetric Nonnegative Matrix

Factorization for Clustering in Directed Networks

3.1 Introduction

Over the past few years, numerous network models have been developed and network

analysis has become a crucial work for a better understanding of various types of net-

works (Newman, 2018). These networks include social networks, neural networks, cita-

tion networks, transportation networks, protein-protein interaction networks, etc.

Among various research areas in network analysis, clustering is a key task of parti-

tioning entities into logical groupings of components. In general, there are two clustering

approaches in networks (Schaeffer, 2007). One is clustering the nodes based on their

similarities and the other is clustering the set of subgraphs by considering each of them

as a separate object (Schaeffer, 2007). In this chapter, we focus on the former approach.

In this sense, we define the set of similar nodes in the context of network as a cluster

and clustering is grouping nodes based on their pairwise similarities in the context of

networks. Efficiently identifying clusters helps us understand the nature of a given net-

work. The vast amounts of algorithms have been proposed by the researchers in order

to cluster nodes in a given network (Liao et al., 2013, Gómez et al., 2015).

In most cases, networks are directed such as citation networks, hyperlinked struc-

ture of the web, lateral gene transfer networks, etc. and there has been little research

conducted on partitioning nodes in a directed network (Malliaros and Vazirgiannis,

2013). Clustering in directed networks is a complicated process compared to clustering

in undirected networks. Characterization is based on the asymmetrical matrices con-

trast to undirected cases. As a result, this makes spectral analysis much more difficult

(Fortunato, 2010). For clustering in directed networks, several different approaches
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have been proposed such as naive graph transformation approaches, transformation ap-

proaches that maintain directionality, and approaches that extend objective functions

of clustering problem in undirected networks to directed networks (Malliaros and Vazir-

giannis, 2013). One common way for clustering in directed networks is simply ignoring

the directionality of edges and then applying algorithms designed specifically for undi-

rected networks (Malliaros and Vazirgiannis, 2013). On one hand, this approach may

lose unique and useful information that the network structure provides. On the other

hand, since this approach results in eigenvalue decomposition problem, it is hard to tell

the physical meaning of resultant eigenvectors, which are used to identify clusters, in

real-world applications (Wang et al., 2011).

More recently, nonnegative matrix factorization (NMF) draws attention as a power-

ful tool for data representation and interpretation (Wang and Zhang, 2013). It has been

applied to various research areas successfully such as image processing (Lee and Seung,

1999, Cai et al., 2011), acoustic signal analysis (Virtanen, 2007), document clustering

(Shahnaz et al., 2006), music analysis (Févotte et al., 2009), community discovery (Cao

et al., 2013, Wang et al., 2011), etc. Since it is very easy to interpret and it has simi-

larity with k-means clustering (Ding et al., 2005), various versions of NMF have been

proposed for clustering (Guan et al., 2011, Shiga and Mamitsuka, 2015). Wang et al.

(2011) propose asymmetric nonnegative matrix factorization (ANMF) to find the com-

munities (clusters) of nodes in directed networks. The ANMF algorithm, in particular,

is designed for clustering in directed networks based on simple adjacency matrix. How-

ever, due to simple structure of adjacency matrix, it fails to capture critical information

of the data such as similarity and connectivity between nodes. Consequently, some sim-

ilar nodes are often located in different clusters. In addition, the ANMF algorithm is

computationally expensive when the dataset is large due to random initialization.

In this study, we propose regularized asymmetric nonnegative matrix factorization

(RANMF) algorithm for clustering in directed networks. The aim of the present study

is to cluster set of nodes in a given directed network by taking advantage of prior

similarity information of nodes. To achieve this, we incorporate the prior similarity in-

formation into ANMF algorithm as an additional regularization term and design a new
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objective function for matrix factorization. We also develop multiplicative updating

rules to solve the proposed objective function. Convergence proof of updating rules is

presented.

The main contributions of this study are as follows:

• While ANMF algorithm considers only simple adjacency matrix of a given di-

rected network, the proposed RANMF algorithm exploits the pairwise similarity

of nodes. Thus, if two nodes are similar to each other in the original space, their

representatives in new basis should be close to each other. Consequently, they

belong to the same cluster.

• Existing NMF algorithms take much time to run algorithms repeatedly and to

obtain a stable solution since they use random initialization. In order to overcome

this issue, the RANMF algorithm is developed with singular value decomposition

(SVD) based initialization approach (Boutsidis and Gallopoulos, 2008), which is

computationally inexpensive and results in stable solution.

• With the proposed framework, one can leverage other types of prior information

besides similarity information (e.g. class label information for patent citation

networks)

The overall structure of this chapter is as follows. Section 3.2 summarizes the NMF

on clustering. Section 3.3 introduces the proposed RANMF algorithm. In Section

3.4, we apply the proposed algorithm to real-world and synthetic datasets, and then

compare its performance with other methods. We also provide convergence analysis of

the RANMF algorithm. Finally, Section 3.5 concludes the chapter and presents future

work.

3.2 Nonnegative matrix factorization on clustering

For a given nonnegative matrix B ∈ <n×m+ , nonnegative matrix factorization seeks an

approximation given by nonnegative matrices W ∈ <n×r+ and X ∈ <r×m+ by solving the

optimization problem

min
W,X≥0

||B−WX||2F . (3.1)
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where r < min{n,m} is a predetermined rank for the factorized matrices and || · ||F is

the Frobenious norm. Although the problem in (3.1) is nonconvex in both W and X,

it becomes convex in W given X, and vice versa. To obtain the approximated B, the

multiplicative updating rules (Lee and Seung, 2001) optimize (3.1) with respect to W

and X by iteratively updating each of the matrices as

[W]ik ← [W]ik
[BXT ]ik

[WXXT ]ik
, [X]kj ← [X]kj

[WTB]kj

[WTWX]kj
. (3.2)

In (3.2), each element of the matrices is updated following a rescaled gradient descent

scheme and a local minimum of the objective function in (3.1) can be found by the

multiplicative updating rules (Lee and Seung, 2001).

Given n observations represented as the rows of B, the NMF groups the observations

into r clusters. The ith row in W denotes the assignment of the ith observation to the

clusters in terms of the cluster centroids shown as the columns of X. In particular, the

clustering result from the NMF is closely related to k-means clustering (Kim and Park,

2008), and, in the case of the symmetric NMF (i.e., X = WT ), the clustering from the

NMF even becomes equivalent to kernel k-means clustering (Ding et al., 2005).

A directed network with n nodes can be represented by its adjacency matrix, A ∈

<n×n+ , where [A]ij is 1 if there is a directed edge connecting node i to node j, 0 otherwise.

The NMF is computed with an adjacency matrix A for the clustering in a network. It

is worth noting that the additivity of the NMF facilitates understanding the shape of

the clusters in the graph. That is, the entire graph is made up of the summation of r

clusters where the partial networks for the kth cluster for k = 1, 2, . . . , r are illustrated

by the outer products between the kth column in W and the kth row in X.

Furthermore, replacing X with HWT in (3.1) where H ∈ <r×r+ , the optimization

problem can be written as

min
W,H≥0

||A−WHWT ||2F . (3.3)

With this formulation, we can induce not only entry-level grouping information from W

but also cluster-level information from H. To be specific, in the case of an undirected
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network represented by a symmetric A, H is obtained as a diagonal matrix whose

diagonal elements show the connectivity within the clusters (Wang et al., 2011). On

the other hand, in the case of a directed network with an asymmetric A, the elements

in H shows the inter-cluster directness. For example, [H]pq has a non-zero value if

the pth cluster (and its nodes) is directed to the qth cluster (and its nodes). For

the problem in (3.3) with a directed network, ANMF method (Wang et al., 2011) is

proposed optimizing (3.3) with the following multiplicative updating rules:

[W]ik ← [W]ik

(
[AWHT + ATWH]ik

[WHWTWHT + WHTWTWH]ik

) 1
4

[H]kj ← [H]kj
[WTAW]kj

[WTWHWTW]kj
.

(3.4)

Although a directed network (i.e., its adjacency matrix) is successfully approximated

by the ANMF method in (3.3), the intrinsic attribute of directed networks is overlooked

for clustering. To be specific, the approximated A is represented by the combination

of the additive subnetworks, and each subnetwork consists of the nodes involved in

the group corresponding to the column in W. However, the connection between the

nodes in each subnetwork is not guaranteed wherein the optimization with (3.4) is

only for the representation of A without consideration for the connectivity within the

resulted group despite the original clustering task. Thus, some groups identified by

the ANMF method may consist of disconnected nodes within the subnetworks. In

addition, the computation of most NMF models, including the ANMF, is based on

random initialization, and such randomness causes unstable clustering results in that

multiplicative updating rules converge on local minima (Wang et al., 2011). This may

lead to heavy computation as discussed in Section 3.2.

3.3 Regularized asymmetric nonnegative matrix factorization

This section proposes RANMF algorithm. The proposed RANMF algorithm consid-

ers the pairwise similarities between nodes in a given directed network and adds a
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regularization term to ANMF in order to cluster nodes by exploiting the prior simi-

larity information. We then propose the multiplicative updating rules of the RANMF

algorithm. The convergence of our proposed updating rules is also proved in Appendix.

3.3.1 Optimization problem

Let E ∈ <r×r be a diagonal matrix whose kth element is the sum of kth column of

W. Then factorized matrix W can be normalized as W∗ = WE−1, where W∗ is the

normalized W matrix and
∑

i[W
∗]ik = 1 for k = 1, 2, . . . , r (Wang et al., 2011). W∗

gives useful interpretation for clustering in a given network (Cao et al., 2013). It denotes

the within-cluster node weight whose element [W∗]ik is the weight for inclusion of node

i in cluster k and ith row of W, wi, is the representation of node i in new basis.

𝑤𝑛1

𝑤𝑛2

𝑤𝑛1

𝑤𝑛2

a) b)

Figure 3.1: Representatives of nodes in new basis. 10 nodes and 2 clusters. Each shape
represents different cluster.

One can naturally assume that the representatives of nodes in the same cluster

should be close to each other and far from the nodes in the other clusters, which means

that the higher similarity between nodes should lead to smaller distance between cor-

responding representatives as shown Fig. 3.1-a) rather than 3.1-b). Existing ANMF

algorithm is not able to capture this prior similarity information of a given network.

Thus, it might happen that similar nodes are assigned to the different clusters or vice

versa. To adapt this prior similarity information of a given network, we suggest adding
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a regularization term to the objective function of asymmetric nonnegative matrix fac-

torization as

f(W,H) = min
W,H≥0

||A−WHWT ||2F +
λ

2
ω(W), (3.5)

where ω is a penalty that varies based on the information being considered. Since the

similarity between two nodes in the original space is considered as prior information to

our clustering algorithm, ω(W) can be written as follows:

ω(W) =

n∑
i=1

n∑
j=1

d(wi,wj)[S]ij , (3.6)

where S is the similarity matrix whose i, j entry, [S]ij , denotes the similarity of nodes

i and j and d(wi,wj) is the distance between representatives of nodes i and j in new

basis.

The distance between two nodes in a graph indicates how close the nodes are based

on the structural information of the graph. Nodes in the same cluster are supposed to

be closer to each other than the nodes in different clusters. A larger closeness between

two nodes in a graph means a shorter distance between them. The typical method

to measure the closeness of two data points is Euclidean distance. We use Euclidean

distance to obtain the closeness of the representations of two nodes in new basis as

d(wi,wj) = ||wi −wj ||2. (3.7)

There are several similarity measures to obtain the similarity matrix S. The ad-

jacency matrix is the simplest way to present the similarity between nodes. Simply,

[S]ij is 1 if there is an edge directed from node i to node j, and 0 otherwise. This

is commonly known as the unweighted adjacency matrix. One can consider weighted

adjacency matrix such that [S]ij is the number of edges directed from node i to node j.

Katz centrality is also one of the commonly used similarity measures to compute

similarity between two nodes, which counts every path in a given graph with a weighting
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scheme and it can be shown as

S =
∞∑
l=0

(βA)l = (I− βA)−1, (3.8)

where 0 ≤ β ≤ 1 is a weight parameter, which guarantees that longer paths have less

value than shorter ones (Newman, 2018). Using Katz centrality, nodes i and j are

similar when they are connected either by a few short paths or by many long paths.

Another way of measuring similarity between two nodes is counting the number of

common neighbors. Cosine similarity does it with the following formulation:

[S]ij =
cij√
oioj

, (3.9)

where oi is the number of edges node i has and cij is the number of common neighbors

of nodes i and j. Cosine similarity of nodes i and j is the ratio of the number of common

neighbors of these two nodes to the geometric mean of their degrees (Newman, 2018).

Different similarity measures can be used for different situations. Since [S]ij is for

only measuring the pairwise similarity between nodes i and j, we do not treat similarity

measures differently in the following description.

Considering similarity measures and given an adjacency matrix A ∈ <n×n, our

RANMF algorithm aims to solve the following optimization problem.

f(W,H) = min
W,H≥0

||A−WHWT ||2F +
λ

2

n∑
i=1

n∑
j=1

||wi −wj ||2[S]ij . (3.10)

By adding the second term on the right hand side of (3.10), we consider both similarity of

two nodes in original space and closeness of their representations in new basis. Similarity

of nodes i and j in the original space leads their representatives to be close to each other.

The regularization term in (3.10) can be rewritten as:

λ

2

n∑
i=1

n∑
j=1

||wi −wj ||2[S]ij = λTr(WTDW)− λTr(WTSW),

where Tr(·) is the trace of a matrix (for the detailed derivation of regularization term,
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please see the Appendix B). Thus, (3.10) can be rewritten as:

min
W,H≥0

||A−WHWT ||2F + λTr(WTDW)− λTr(WTSW), (3.11)

where D is diagonal matrix with diagonal entry di, which is the sum of ith row of S.

Then W and H can be solved by the following iterative multiplicative updating rules:

[W]ik ← [W]ik

(
[AWHT + ATWH + λSTW]ik

[WHWTWHT + WHTWTWH + 2λDTW]ik

) 1
4

[H]kj ← [H]kj
[WTAW]kj

[WTWHWTW]kj
.

(3.12)

For detailed derivations of multiplicative update rules, please see the Appendix C.

Theorem 1. The objective function in (3.11) is nonincreasing under the updating

rules in (3.12).

For the detailed proof of Theorem 1, please see the Appendix D. Theorem 1 shows

that multiplicative updating rules in (3.12) will converge to a stationary point.

3.3.2 SVD based initialization

Most NMF based algorithms use random initialization to set the values of factorized

matrices. In general, random initialization requires running the algorithm several times

to obtain a stable solution, since single run can generate bad initial matrices. This

approach may be computationally inefficient when the dataset is large. In order to

overcome this issue for general NMF problems, Boutsidis and Gallopoulos (2008) pro-

pose an initialization algorithm, Nonnegative Double Singular Value Decomposition

(NNDSVD), based on the SVD, which computes the approximation of a matrix A

factorized by two nonnegative matrices with rank r. The NNDSVD first computes a

decomposition of A using the SVD, where A = USVT , then extracts positive sections

of respective matrices and initializes the NMF. The NNDSVD leads to rapid error re-

duction and faster convergence than random initialization. In this study, we modify

the NNDSVD procedure for the RANMF algorithm. When A is an n× n matrix and

U, S, and V are also n × n matrices. Since U and V orthogonal matrices, the SVD
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can be represented as A = U(SVTU)UT . Let [Z]+∗j be the nonnegative section of the

jth column vector of Z ∈ <n×n+ and [Z]−∗j be the nonpositive section of [Z]∗j , then

[Z]∗j = [Z]+∗j − [Z]−∗j . We also define [Z]∗,1:r as the first r columns of matrix Z and

[Z]1:r,1:r as the first r rows and columns of Z. Then, we obtain the initial matrices W0

and H0 as shown in Algorithm 3.

Algorithm 3 SVD-based initialization for RANMF

Given: Adjacency matrix A and factorization rank r

1: Compute SVD of A : USVT = A
2: for j = 1 : n do
3: Set u+ = [U]+∗j , v

+ = [V]+∗j , u
− = [U]−∗j , v

− = [V]−∗j .

4: if ||u+|| · ||v+|| ≥ ||u−|| · ||v−|| then
5: u = u+/||u+||
6: v = v+/||v+||
7: σ = ||u+|| · ||v+||
8: else
9: u = u−/||u−||

10: v = v−/||v−||
11: σ = ||u−|| · ||v−||.
12: end if
13: Set [Ũ]∗j = u, [Ṽ]∗j = v, and [S̃]jj = σ[S]jj
14: end for
15: Set W0 = [Ũ]∗,1:r and H0 = [S̃Ṽ

T
Ũ]1:r,1:r

Algorithm 4 provides the overall procedure of our proposed algorithm. Given a

directed adjacency matrix A, similarity matrix S, factorization rank r and a stopping

criteria, our proposed RANMF algorithm first obtains the initial matrices W0 and H0

using SVD based initialization. Then updates the W and H matrices using multiplica-

tive updating rules in (3.12) until a predetermined stopping criteria is met. Finally, it

returns the W and H matrices.
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Algorithm 4 Regularized asymmetric nonnegative matrix factorization

1: procedure RANMF(A ∈ <n×n, S ∈ <n×n, 1 ≤ r ≤ n, ε)
2: SVD-based initialization of W0, H0

3: repeat
4: Update W as

[W]ik ← [W]ik

(
[AWHT + ATWH + λSTW]ik

[WHWTWHT + WHTWTWH + 2λDTW]ik

) 1
4

5: Update H as

[H]kj ← [H]kj
[WTAW]kj

[WTWHWTW]kj

6: until f(W,H) < ε
7: return W and H
8: end procedure

3.3.3 An illustrative example

In this section, we present an illustrative example for better understanding of our

RANMF algorithm. Figure 3.2 shows 13-node sample graph used in this illustration.

This example is suitable for a manual detection of expected clusters in a systematical

way.

It is attempting to group this sample graph into two clusters, C1 and C2. When

we group the graph into two clusters, one can expect that node 1 belongs to either C1

or C2 since it is the root node and linked by all the other nodes directly or indirectly;

nodes 2, 4, 5, 8, 9, and 11 belong to C1; nodes 3, 6, 7, 10, 12, and 13 belong to C2.

We first obtain initial matrices W0 and H0 using modified SVD method. Then we

used initial matrices in our RANMF method to approximate A with factorization rank

2 and regularization parameter λ = 100. The results shown in Table 3.1 demonstrates

that our RANMF algorithm performs well to meet the expectations for this sample

graph.
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Figure 3.2: 13-node sample graph
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Table 3.1: RANMF clustering results for 13-node sample graph

Node Expected Cluster RANMF Cluster

1 C1 or C2 C1

2 C1 C1

3 C2 C2

4 C1 C1

5 C1 C1

6 C2 C2

7 C2 C2

8 C1 C1

9 C1 C1

10 C2 C2

11 C1 C1

12 C2 C2

13 C2 C2

3.4 Experiments

In this section, we present experimental results based on real-world and synthetic

datasets. We compare our proposed RANMF algorithm with ANMF, community de-

tection by spectral clustering (Hespanha, 2004), and NCut (Shi and Malik, 2000). We

also compare it with random prediction. Sensitivity and convergence analyses for the

proposed algorithm is provided.

Different performance measures are employed to evaluate the clustering results of

the algorithms. We use distance-based quality function (Pitsoulis) and Davies-Bouldin

(DB) index (Davies and Bouldin, 1979) for datasets for which true labels are not avail-

able. Distance-based quality function measures the average distance between clusters

of an algorithm. Higher the score, the more separated the clusters. Higher scores mean

better clusters. DB index is the within cluster scatterness divided by the between

cluster separation. Therefore, a lower DB score means better clustering. As for the

datasets for which the true labels are available, we use Jaccard similarity, Normalized

Mutual Information (NMI) (Danon et al., 2005), and accuracy. Jaccard similarity is a

class-specific measure. For a given cluster, it is defined as the ratio of the predicted and

true labels intersection to their union. Accuracy is defined as the ratio of the number
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of correctly labeled nodes to the total number of nodes. NMI is open to information-

theoretically interpretation. It is defined as the amount of information that we get if

we know the cluster labels. Higher scores of Jaccard, NMI, and accuracy mean better

clusters.

As for the implementation of the proposed method, we first construct an n × n

directed adjacency matrix, where n is the total number of nodes in a given dataset.

Then, we obtain the similarity matrix S using one of the similarity measures explained

in Section 3.3.1. After initializing W and H with SVD based initialization, we iter-

atively update them until convergence using the updating rules in (3.12). As for the

distance measure, we used the Euclidean distance measure.

3.4.1 Patent citation network

Patents are needed to be cited like any other resources such as books, journal articles,

etc. when referenced in a document. This citation contains useful information for read-

ers to understand the relationship between corresponding patent and other patents.

Citation between two patents implies that citing patent is related to cited patent in

some way (Rodriguez et al., 2016). We show the performance of our algorithm using

patent citation network (PCN) with 149 nodes (patents) and 215 directed edges (cita-

tions). PCN is an example of directed acyclic networks in which there is no way to loop

back to a node i if we start at node i. Figure 3.3 shows the network structure of the

PCN dataset.

A citation to a previously published patent indicates an extension of the previous

technology or art. In a PCN, a direct citation of a patent is manifested as the use of

its neighbor information, and an indirect citation is as the use of information from a

non-immediate neighbor connected through one or more intermediate patents. Using

only immediate neighbor information is not enough to capture the similarities between

patents. Because direct citations indicated extension of recent technologies and indi-

rect citations indicate technological change over time. Therefore, we use Katz similarity

measure with β = 0.1 to obtain the similarity matrix S in order to capture the indirect

citations.
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Figure 3.3: Network structure of US patent citation dataset.
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Table 3.2: Comparison results of algorithms on PCN with different r values in terms
of distance-based quality function. Rnd and SVD stand for random initialization and
SVD-based initialization, respectively.

r = 2 r = 3 r = 4 r = 5 r = 6 r = 10 r = 15

Random Prediction 0.502 0.340 0.259 0.210 0.178 0.113 0.080
ANMF Rnd 0.763 0.490 0.390 0.317 0.271 0.181 0.134
ANMF SVD 0.772 0.499 0.426 0.310 0.267 0.234 0.167
NCut 0.583 0.346 0.261 0.243 0.221 0.152 0.107
Spect 0.503 0.358 0.298 0.211 0.168 0.164 0.103
RANMF Rnd 0.761 0.441 0.329 0.271 0.230 0.159 0.125
RANMF SVD 0.802 0.558 0.439 0.319 0.295 0.177 0.187

Table 3.3: Comparison results of algorithms on PCN with different r values in terms
of DB index.

r=2 r=3 r=4 r=5 r=6 r=10 r=15

Random Prediction 3.413 2.058 1.421 1.061 0.846 0.444 0.289
ANMF Rnd 1.468 1.500 1.194 0.935 0.751 1.123 8.042
ANMF SVD 1.431 1.127 1.123 0.902 0.735 0.825 0.303
Spect 2.488 1.488 1.242 0.917 0.783 0.426 0.255
Ncut 2.864 2.122 1.273 1.298 0.794 0.541 0.346
RANMF Rnd 1.458 1.621 1.189 0.890 0.721 0.410 2.397
RANMF SVD 1.418 1.264 0.880 0.867 0.713 0.341 0.243
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Tables 3.2 and 3.3 show the comparison results of clustering methods on PCN

dataset with varying number of clusters in terms of distance-based quality score and

DB index, respectively. For RANMF-SVD, we used λ = 0.1 and Katz similarity mea-

sure with β = 0.1. For RANMF-Rnd, we ran 100 instances of the algorithm with the

same parameters used for RANMF-SVD and different initial matrices at each time.

For ANMF-Rnd, we ran 100 instances of the algorithm with different initial matrices at

each time. For random prediction, we randomly assigned each node to a cluster and re-

peated this process 100 times. Results show that the clusters produced by our proposed

method are well separated and better than the clusters produced by the other methods

and random guessing in terms of within cluster scatter. Overall, NMF based methods

outperforms NCut and Spec clustering algorithms. To show the effect of initialization

approaches for NMF algorithms, we also ran the ANMF and RANMF algorithms using

SVD-based initialization and random initialization. Results reveal that SVD-based ini-

tialization improves the performances of each method in terms of distance-based quality

score and DB index. In Table 3.2 when r = 10 and in Table 3.3 when r = 3, ANMF with

SVD-based initialization has better results than of RANMF with SVD-based initializa-

tion. This might be the effect of using Katz similarity as considering non-immediate

neighbors increases the between-cluster distances and within-cluster scatterness.

3.4.2 World wide knowledge base datasets

World Wide Knowledge Base (WebKB) datasets contain web pages collected from 4

universities (Cornell, Wisconsin, Texas, and Washington). Nodes and directed edges

represent web pages and link information between web pages, respectively. Web pages

are classified into 5 categories including student, course, project, faculty and staff. Fig-

ures 3.4-3.7 show the network structure of WebKB datasets.

A good cluster is the one with less inter-cluster connectivity and more intra-cluster

connectivity. However, inter-cluster connectivity is very high in WebKB datasets, which

means that nodes have more connectivity between clusters than the within clusters.

This situation makes it difficult to detect the clusters for the clustering algorithms. In
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this kind of structures, using m-level links might be misleading to obtain the similari-

ties between nodes. Therefore, we use cosine similarity measure to obtain the similarity

matrix. The convergences of our RANMF algorithm for 5 datasets are shown in Fig

3.8. For Fig. 3.8, we ran RANMF algorithm with SVD-based initialization (with afore-

mentioned parameters for each dataset) until iteration number 200. At each iteration,

we observed the logarithm of the objective function in (3.11). Overall, the objective

value curves of RANMF converge on the stationary values are very fast.

Table 3.4 and 3.5 show the comparison results of clustering algorithms for WebKB

datasets. For RANMF-SVD, we used Cosine similarity measure on all WebKB datasets;

λ = 10 on Cornell; λ = 1250 on Wisconsin; λ = 1 on Washington; and λ = 3220 on

Texas. Overall, our proposed method outperforms other methods with varying values

but we chose best values between 0 and 5000 for each dataset. For RANMF-Rnd, we

ran 100 instances of the algorithm with the same parameters used for RANMF-SVD on

WebKB datasets and different initial matrices at each time. For ANMF-Rnd, we ran

100 instances of the algorithm with different initial matrices at each time. For random

prediction, we randomly assigned each node to a cluster and repeated this process 100

times. The results show that RANMF is better than the other clustering algorithms and

random guessing in terms of Jaccard similarity, NMI, and accuracy indices. The results

reveal that SVD-based initialization improves the performance of the proposed method

in all datasets except the Cornell dataset. The Cornell dataset is more mixed compared

to the other datasets, which means that inter-cluster connectivity is very high. In this

kind of highly mixed structures, random initialization might perform better because in

some of the multiple runs, the algorithm might find a better local minimum. Results

also reveal that SVD-based initialization improves the performance of ANMF algorithm

in most cases.

We also present the accuracy of RANMF method with different λ values for Cornell,

Washington, Texas, and Wisconsin datasets. Figures 3.9-3.12 show that our proposed

method is stable with respect to λ and outperforms the other methods with varying

λ from 0.1 through 5000. For Figures 3.9-3.12, we ran the RANMF algorithm with
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Figure 3.4: Network structure of Cornell dataset.
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Figure 3.5: Network structure of Texas dataset.
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Figure 3.6: Network structure of Washington dataset.
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Figure 3.7: Network structure of Wisconsin dataset.



51

0 25 50 75 100 125 150 175 200
Iteration

4

6

8

10

12

Lo
g 

of
 o

bj
ec

tiv
e

PCN
Texas
Wisconsin
Washington
Cornell

Figure 3.8: Convergence curves of log of the objective function of RANMF algorithm
for PCN and WebKB datasets.
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Table 3.4: Comparison results of clustering methods using WebKB datasets. |V | is the
number of nodes, |E| is the number of edges, and r is the number of clusters.

Cornell
|V | = 195,

|E| = 304, r = 5

Texas
|V | = 187,

|E| = 328, r = 5
Jaccard NMI Accuracy Jaccard NMI Accuracy

Random Prediction 0.129 0.029 0.268 0.148 0.029 0.266
ANMF Rnd 0.183 0.143 0.363 0.213 0.147 0.367
ANMF SVD 0.187 0.097 0.353 0.347 0.224 0.550
Spect 0.189 0.042 0.323 0.218 0.024 0.342
NCut 0.132 0.016 0.277 0.149 0.018 0.262
RANMF Rnd 0.282 0.167 0.455 0.346 0.177 0.529
RANMF SVD 0.203 0.127 0.379 0.416 0.194 0.594

Table 3.5: Comparison results of clustering methods using WebKB datasets.

Wisconsin
|V | = 265,

|E| = 530, r = 5

Washington
|V | = 230,

|E| = 446, r = 5
Jaccard NMI Accuracy Jaccard NMI Accuracy

Random Prediction 0.140 0.023 0.257 0.140 0.024 0.259
ANMF Rnd 0.165 0.068 0.315 0.195 0.139 0.355
ANMF SVD 0.225 0.076 0.422 0.240 0.100 0.452
Spect 0.208 0.058 0.404 0.28 0.076 0.457
NCut 0.157 0.034 0.294 0.155 0.04 0.304
RANMF Rnd 0.239 0.078 0.457 0.286 0.169 0.475
RANMF SVD 0.270 0.085 0.502 0.375 0.209 0.543
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Figure 3.9: Accuracy score of RANMF using λ from 0.1 to 5000 using Cornell dataset.
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Figure 3.10: Accuracy score of RANMF using λ from 0.1 to 5000 using Texas dataset.
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Figure 3.11: Accuracy score of RANMF using λ from 0.1 to 5000 using Washington
dataset.
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Figure 3.12: Accuracy score of RANMF using λ from 0.1 to 5000 using Wisconsin
dataset.
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SVD-based initialization (with aforementioned parameters for each dataset) with vary-

ing λ values between 0 and 5000. When λ is high, the performance of our proposed

method is still good. Because the penalty term in (3.11) tends to revise the columns of

SVD-initialized W matrix only for the high values of S. If two nodes are highly similar

to each other in a network, then the penalty term will force the representations of those

nodes to be close to each other.

3.4.3 LFR synthetic graphs

In this section, we compared the clustering algorithms on LFR synthetic benchmark

graphs which are generated as described in (Lancichinetti and Fortunato, 2009). The

LFR benchmark graphs mimic the real-world networks by accounting for the hetero-

geneity of degree and cluster size. Therefore, like the real-world networks, the LFR

graphs have a skewed node degree distribution and a broad distribution of cluster sizes

with a tail that can be approximated by a power law, which results in clusters with

very different sizes (Lancichinetti and Fortunato, 2009). In LFR graphs, it is possible

to control the structure of the synthetic graph by mixing parameter µ. Mixing pa-

rameter controls the inter-cluster connectivity. Larger mixing paratemer means more

inter-cluster connectivity, which makes it more difficult to detect clusters for clustering

algorithm. We created three different network structures using three different mixing

parameters (µ = 0.1, 0.3, 0.5).

Tables 3.6-3.8 show the comparison results of algorithms on synthetic graphs. For

RANMF-SVD, we used λ = 0.1. For RANMF-Rnd, we ran 20 instances of the algo-

rithm with the same parameters used for RANMF-SVD on LFR graphs and different

initial matrices at each time. For ANMF-Rnd, we ran 20 instances of the algorithm with

different initial matrices at each time. For random prediction, we randomly assigned

each node to a cluster and repeated this process 100 times. Since ANMF-SVD was not

able to provide 33 clusters, we couln’t calculate the NMI for it using LFR graph with

µ = 0.5. The results show the superiority of our proposed method over the other meth-

ods and random guessing in terms of Jaccard similarity, NMI, and accuracy indices. As

for the calculation of S matrix, we employed different similarity measures. In the case
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Table 3.6: Comparison results of clustering methods on LFR graphs. µ = 0.1, |V | =
1000, |E| = 15662, and r = 32

similarity Jaccard NMI Accuracy

Random Prediction 0.016 0.158 0.102
ANMF Rnd 0.074 0.322 0.183
ANMF SVD 1.000 1.000 1.000
Ncut 0.394 0.886 0.621
Spec 0.619 0.880 0.797
RANMF Rnd 0.192 0.594 0.417
RANMF SVD cos 1.000 1.000 1.000
RANMF SVD katz 1.000 1.000 1.000
RANMF SVD adj 1.000 1.000 1.000

Table 3.7: Comparison results of clustering methods on LFR graphs. µ = 0.3, |V | =
1000, |E| = 15164, and r = 31

similarity Jaccard NMI Accuracy

Random Prediction 0.016 0.152 0.103
ANMF Rnd 0.105 0.450 0.278
ANMF SVD 0.867 0.976 0.940
Ncut 0.773 0.963 0.86
Spec 0.535 0.828 0.748
RANMF Rnd 0.095 0.432 0.284
RANMF SVD cos 0.925 0.982 0.955
RANMF SVD katz 0.925 0.982 0.955
RANMF SVD adj 0.925 0.982 0.955

Table 3.8: Comparison results of clustering methods on LFR graphs. µ = 0.5, |V | =
1000, |E| = 15249, and r = 33

similarity Jaccard NMI Accuracy

Random Prediction 0.015 0.167 0.103
ANMF Rnd 0.193 0.582 0.376
ANMF SVD 0.843 - 0.912
Ncut 0.367 0.895 0.674
Spec 0.642 0.865 0.815
RANMF Rnd 0.040 0.287 0.176
RANMF SVD cos 0.768 0.935 0.872
RANMF SVD katz 0.837 0.959 0.915
RANMF SVD adj 0.797 0.949 0.888
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compared to the random initialization.

3.5 Conclusion

In this chapter, we propose the RANMF algorithm for clustering in directed networks.

The proposed algorithm exploits the prior similarity information and incorporates it

as an additional regularization term into ANMF algorithm, which achieves the goal of

putting similar nodes in the same cluster and dissimilar nodes in different clusters. In

addition, we utilize SVD based initialization rather than random initialization since

random initialization is ming. Clustering results using real-world datasets and syn-

thetic datasets demonstrate that our proposed RANMF algorithm outperforms other

clustering algorithms in terms of several clustering validity indices.

Despite apparent outperformance of the proposed algorithm, here are some rooms

for further research. For example, a network can change dynamically over time. In

PCN, new patents appear continuously and new citations are added over time in prac-

tice. To address this issue, future work needs to investigate the dynamic characteristics

of networks and develop new algorithms.
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Chapter 4

A New Time-aware Ranking Method for Patents in

Dynamic Patent Citation Network

4.1 Introduction

With the rapid improvements of patent analysis tools, patent citation data has been

used for various purposes such as following the evolution of technology innovation. Fol-

lowing the evolution on technology is crucial for firms and significant number of decision

makers started to use patent citation data in order to give better decisions comparing

to their competitors. Therefore, patent analysis has started to be considered as a sig-

nificant management tool for firms in order to assess diverse aspects of technological

change. It has been used by numerous studies for various purposes such as understand-

ing the relationship between technological growth and economic growth or to evaluate

and analyze the firms R&D process, etc.

One of the major problems in patent analysis is to measure the importance of

patents in PCN. Ranking patents in importance and identifying the influential ones is

an important yet challenging task for understanding the current technological trends

and identifying the promising technological activities. Being able to know the influ-

ential patents may give some advantages to firms such as helping the firm to evaluate

its policy regarding R&D process, helping the firm to assess the level of technology

development in a specific area or helping the firm to estimate technological strengths

and weaknesses of its competitors.

Patents are needed to be cited like any other resources such as books, journal arti-

cles, etc. when referenced in a document. This citation contains useful information for

readers to understand the relationship between corresponding patent and other patents.

Citation between two patents implies that citing patent is related to cited patent in
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some way. In the past, patent citation counts, i.e. the number of citations that a patent

receives, have been one of the most important and widely used indicator for patent im-

portance and influence (Hall et al., 2005, Oh et al., 2012). Recently, since patents are

highly interdependent, network analysis tools have become popular for patent analysis

and have introduced new perspectives. Patent citations can be represented as a net-

work where nodes represent patents and directed edges represent the citations. Thus,

the problem of ranking and identifying influential patents in a given patent citation

network (PCN) can be solved by centrality metrics concept in network analysis.

Many studies have applied centrality metrics such as degree, closeness, betweenness,

and PageRank to rank the patents in influence and importance in a patent citation net-

work (Lukach and Lukach, 2007, Oh et al., 2012). While these methods provide a

systematic approach to ranking patents, they do not consider the dynamic character-

istic of patent citation networks. However, the patent citation network is an evolving

graph, which means that new patents and citations between patents appear over time.

Researchers have proposed centrality metrics which are extension of aforementioned

centrality metrics for ranking nodes in a dynamic network (Baeza-Yates et al., 2002,

Walker et al., 2007). While these metrics consider the dynamic characteristic of net-

work, since they are not designed specifically for patent citation networks, they still

fail to distinguish the citing and cited patents in terms of importance which could have

useful implications for the value of the cited patent.

In this study, we propose a new time-aware measure for ranking patents in influence

and importance. The proposed method is designed for dynamic patent citaion network

with directed unweighted edges (citations) between nodes (patents). Instead of using

simple adjacency matrix, we defined a new weighted adjacency matrix. Proposed cita-

tion weighting scheme exploits the time information of citations and distinguishes them

for the importance of cited patent. We did not exploit the time information of citing

patent only but also the time information of patents. To this extend, we also introduce

a weighting scheme to distinguish the patents based on their ages. To show the per-

formance evaluation of our method, we first form a dynamic patent citation network

using the real-world patent citation data from USPTO. We then rank the patents using
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our proposed method and other commonly used centrality metrics. Results reveal that

our proposed method outperforms other centrality metrics in terms of two performance

measures Spearman correlation of rankings and recommendation intensity.

This chapter is presented as follows: we first summarize the patent citation net-

works. We then introduce the proposed time-aware influence measure and evaluate its

performance using a real-world patent citation data from USPTO. Finally, we present

the concluding remarks and discuss future work.

4.2 Patent citation network

A patent is a representative of an invention in a specific area and patent analysis is an

important task as it relates to managing the relationships between patents and search

complexities (Abbas et al., 2014). The rapid growth of patent information has made

the patent analysis a vital task for both managerial and legal parties. Thus, patent

data has been analyzed for various purposes such as understanding patent trends, tech-

nology opportunity discovery, identification of promising technologies, and competitor

identification (Abbas et al., 2014).

A patent contains two types of data: structured data and unstructured data. Figure

4.1 partially shows the typical data available in a patent.1 Unstructured data includes

text such as title, description, abstract of the patent. The structured data includes

citation information, inventors, application number, family ID, etc.

Recently, network analysis tools received much attention in the area of patent anal-

ysis. As shown in Figure 4.1, when a patent is published, it cites previously published

related patents and this citation reflects the innovative relationship between citing and

cited patents. If there is a citation between two patents, it means that the citing patent

is related to cited patent in terms of technological innovation. Expending this idea,

citations between patents can be represented by an evolving patent citation network

which provides useful information for the innovation process. For example, Figure 4.2

shows a graphical representation of citation between two patents and Figure 4.3 shows

1The screenshot has been taken from the website of USPTO.
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Figure 4.1: Raw patent data (partially shown).
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Figure 4.2: Graphical representation of a citation between two patents.

Figure 4.3: Graphical representation of a citations in raw patent data in Figure 4.1.
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the citation information depicted in raw patent data in Figure 4.1.

4.3 Proposed time-aware influence measure

Let Gt = (Vt, Et) represent a dynamic patent citation network, which consists of a

set of nodes (patents) Vt and a set of directed edges (citations) Et at time t. Figure

4.4 shows the evolution of a sample patent citation network over the observation time

interval [0, T ] as a sequence of non-overlapping time windows {[0, 0 + ∆t1], [t1, t1 +

∆t2], . . . , [tM−1, tM−1 + ∆tM ]}, where T = tM , M is the number of time windows, and

∆tm is the length of the mth time window, where m = 1, 2, . . . ,M .

Figure 4.4: Evolution of a sample patent citation network over the time interval [0, T ].

Each time window in the evolving graph can be represented by its own time-

dependent adjacency matrix Am,m = 1, 2, . . . ,M . Unlike majority of other dynamic

networks, the edges are persistent in the case of patent citation network. Once a ci-

tation occurs between two patents, it never disappears. Therefore, adjacency matrix

for time window m, Am, contains the citations occurred in previous time windows.

For example, sample PCN in Figure 4.4 can be represented by the following adjacency
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matrices as:

A1 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


A2 =



0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0


A3 =



0 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0


The number of direct and indirect citations is a strong indicator of a patent’s impor-

tance. The more citations (giving less weight to indirect citations) a patent has, the

more important that patent is. In the case of static network approach, Ar is used to

obtain the number of r-level paths that a patent has. In the case of dynamic network

approach, r-level paths of a patent can be obtained by

r∏
m=1

AM−m+1 (4.1)

Since AM is strictly lower triangular (all the entries on the main diagonal are 0),

Equation (4.1) reduces to Ar
M .

Since it assigns the same value to all citations, the simple adjacency matrix is not

enough to distinguish the effect of a citation to a patent’s importance. For example,

taking the small graph shown in Figure 4.5 into account, if we use the simple adjacency

matrix, it is not possible to distinguish effects of citations (p2, p1) and (p3, p1) to the

importance of patent 1. However, the citation from patent 3 to patent 1 should be more

important than the citation from patent 2 to patent 1 because patent 3 is published

more recently compared to patent 2.
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Figure 4.5: Difference in the effect of citation in terms of recency of citing patent.

In order to leverage citations from recently published patents, we propose a weighted

influence matrix, which assigns a value to a citation based on a decreasing function.

Thus, an element of the weighted influence matrix can be defined as:

[W]ji =

 f(τj , T ), if there is a citation from pj to pi

0, otherwise,
(4.2)

where f(τj , T ) = e−b(T−τj), b is the smoothing parameter, and τj is the time that patent

j is published. When b = 0, time information of citing patent is not considered.

A patent’s importance is proportional to the sum of the importance of its citing

patents. For instance, if a patent is being cited by many important patents, then it

also should be considered as an important patent. With this in mind, we propose a

new scoring scheme to identify the important and influential patents in a time-evolving

PCN, which can be defined as follows:

Ci = α
∑
j

[W]jiCj + β, (4.3)

where Ci is the score of patent i, and α and β are constants between 0 and 1. With

this scoring scheme, patents with many citations from recently published patents will

be considered important.
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Older patents naturally might have many direct/indirect citations and Equation

(4.3) tends to give more weight to older patents. However, a patent that is relatively

new and has many citations should be considered important. Therefore, we add a

decreasing function to Equation (4.3) as follows:

Ci = α · f(τi, T )
∑
j

[W]jiCj + β, (4.4)

where f(τi, T ) = e−a·(T−τi), a is the smoothing parameter. When a = 0, time informa-

tion of patent will not be considered. Equation (4.4) can be shown in matrix form as

follows:

c = αFWc + β1, (4.5)

where c is n-dimensional vector with elements Ci, i = 1, 2, . . . , n, n is the total number

of patents, F is n × n diagonal matrix with [F]ii = f(τi, T ), and 1 is n-dimensional

vector of ones. With this new scoring scheme, recently published patents with many

citations will be considered important and will have high centrality score.

4.3.1 Illustrative example

In this section, we use a small graph to illustrate the proposed centrality metric for

better understanding of it. Figure 4.6 shows the small graph that is used for illustration.

In this graph, time values are in years and T = 3.



67

Figure 4.6: 4-node sample graph.

We first obtain the influence score of each citation and weight of patents in our

sample PCN as shown in Equations (4.2) and (4.4). Tables 4.1 and 4.2 show the

influence scores of citations and weights of patents, respectively.

Table 4.1: Influence scores of citations in sample graph.

Citing Cited Influence (b = 0.5)

p2 p1 0.472
p3 p1 0.704
p4 p1 0.860
p4 p2 0.860

Table 4.2: Weights of patents based on their age in years.

Patent Weight (a = 0.3)

p1 0.472
p2 0.637
p3 0.810
p4 0.913

Based on the influence scores and weights shown in Tables 4.1 and 4.2, we obtain
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the weighted influence matrix, W, and F matrix as follows:

F =



0.472 0 0 0

0 0.637 0 0

0 0 0.810 0

0 0 0 0.913


W =



0 0 0 0

0.472 0 0 0

0.704 0 0 0

0.860 0.860 0 0


We then solve Equation (4.4) iteratively with initial vector c(0) = [1, 1, 1, 1]T , α = 0.6,

and β = 0.1 until convergence. The centrality scores of patents after convergence are

shown in Table 4.3. From the results, one can see that our proposed method is capable

of distinguishing patents and citations for the calculation of cited patent’s importance.

For example, patent 1 is cited by patent 2, patent 3, and patent 4. However, since

patent 4 is recently published compared to patent 2 and patent 3, its citation has more

effect on the importance of patent 1.

Table 4.3: Ranking result of patents in sample graph.

Rank Patent Score

1 p1 0.162
2 p2 0.132
3 (tie) p3 0.100
3 (tie) p4 0.100

4.4 Case study

In this section, we evaluate the performance of our proposed ranking method and

compare it to the other existing ranking schemes using a real-world patent citation

dataset from USPTO (Rodriguez et al., 2016). The dataset consists of 4,241 patents

and 18,385 citations among them. We form a citation network using the dataset, which

has a single connected tree structure and unweighted directed edges. Figure 4.7 shows

the network structure of the dataset.
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Figure 4.7: Network structure of patent citation dataset with 4241 patents and 18385
citations.
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4.4.1 Metrics

Comparison metrics that we used include degree centrality (Newman, 2018), closeness

centrality (Newman, 2018), betweenness centrality (Newman, 2018), PageRank (Page

et al., 1999), age-based PageRank (Baeza-Yates et al., 2002), and CiteRank (Walker

et al., 2007). Degree centrality counts the number of edges upon a node and can be

identified as in-degree and out-degree centrality. In-degree centrality is the number

of edges directed to the corresponding node, and out-degree centrality is the number

of edges from the corresponding node pointing to other nodes in the network. The

closeness centrality of a node is defined as the reciprocal of its farness (the sum of

the shortest path distances to nodes in the network). The betweenness centrality of a

node is the number of the shortest paths in the network that pass through the node of

interest. PageRank is developed to rank the webpages in terms of their importance and

it models the centrality of a node as a recursive function of its neighbors’ centralities.

Age-based PageRank is extension of PageRank algorithm. It considers the age of the

page and gives less weight to the older pages. CiteRank is developed for ranking nodes

in citation networks. The idea of CiteRank is similar to Age-based PageRank and it

assigns less weight to older publications based on a decreasing function of age.

4.4.2 Performance measures

As for the performance measures, we use Spearman rank-order correlation coefficient

and recommendation intensity (Jiang et al., 2012, Wang et al., 2014). The Spearman

correlation measures the monotonicity of the relationship between the ground truth

rankings and the returned rankings of a ranking method. Values of correlation varies

from -1 to 1. Higher the value, the better the ranking results. Recommendation inten-

sity assigns a score to each patent based on the rank of the patent in top-k returned

patents of a ranking method and the list of top-k ground truth patents. Thus, rec-

ommendation intensity of a list of top-k patents of a ranking method is summation of

recommendation intensities of all patents in the returned list.

Since the ground truth rankings of patents are not available, we use the following
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procedure to evaluate the performance of each ranking method. We first divided the

dataset into training and testing datasets. Training dataset consists of 80% of older

patents and testing dataset consists of the remaining 20% of patents. As for the ground

truth rankings of patents, we rank the patents in training dataset using the citations

only from the patents in testing dataset. We then rank the patents in training dataset

based only on the citations from the patents in training dataset using each ranking

method. Finally, we computed the Spearman correlation and recommendation inten-

sity for the returned list of patent ranks of each ranking method using the ground truth

rankings of patents. This way, we aim to see if the methods could rank the patents by

their potential to attract new citations from recent patents.

4.4.3 Results

This section presents the comparison results of ranking methods using the real-world

patent citation data from USPTO in terms of aforementioned performance measures.

We also present the top 10 identified patents in our real-world PCN.

We first obtain the W and F matrices of the PCN data. We then solve the Equation

(4.4) iteratively with initial scores c(0) = [1, 1, . . . , 1]T until convergence. Finally, we

obtain the Spearman correlation and recommendation intensity scores of the proposed

ranking method using the ranks of the patents after convergence. Table 4.5 shows the

comparison results of ranking methods in terms of Spearman correlation coefficient and

recommendation intensity score. As for the parameters of the proposed method, we

tried different set of values for each parameter and chose the values which provide the

best performance. As for the other methods, we used the parameter values as suggested

in the corresponding reference. As shown in Table 4.5, our proposed method outper-

forms all of the other ranking methods in terms of Spearman correlation coefficient and

recommendation intensity. The results reveal that our proposed method is capable of

both effectively ranking the entire patents and detecting the highly influential patents in

a given PCN. To show the sensitivity of our proposed method to k in recommendation

intensity score, we compared the ranking methods using varying k values. Table 4.6

shows the comparison results of ranking methods in terms of recommendation intensity
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Table 4.5: Comparison results of metrics in terms of Spearman correlation and recom-
mendation intensity scores.

Parameters Spearman
Correlation

Recommendation
Intensity (top-10)

Degree N/A 0.339 10.5
In-degree N/A 0.447 10.5
Out-degree N/A -0.14 0
Closeness N/A 0.442 7.7
Betweenness N/A 0.387 3.6
PageRank α = 0.85 0.399 3.6
Age-based PageRank α = 0.85, A = 0.3, B = 0.005 0.422 3.6
CiteRankR α = 0.5, τdir = 2.6 0.145 7.6
Proposed α = 0.3, a = 0.06, b = 0.84 0.467 11.5

Table 4.6: Comparison results of metrics in terms of recommendation intensity for
varying k values.

k = 10 k = 20 k = 30 k = 40 k = 50 k = 100 k = 150 k = 200

Degree 10.500 25.150 37.70 51.450 60.420 96.280 123.00 137.50
In-degree 10.5 23.3 39.03 50.375 60.42 101.81 133.35 179.73
Out-degree 0 0 0 0 0 1.63 10.57 20.29
Closeness 7.7 21.5 32.93 44 56.28 95.45 129.64 154.95
Betweenness 3.6 8.25 15.66 25.275 28.92 65.3 101.82 128.09
PageRank 3.6 13.2 19.06 24.475 30.14 65.06 87.45 128.57
Age-based PageRank 3.6 13.2 19.06 24.475 30.14 65.06 89.18 130.42
CiteRank 7.6 10.4 14.13 16.15 20.46 33.75 45.84 64.83
Proposed 11.5 26.8 39.03 52.85 61.88 106.99 157.51 195.69
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Figure 4.8: Network structure of top 10 identified patents (shown partially).
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score with varying k values. The results reveal that our proposed method is robust

to the changes in k and still outperforms the other ranking methods. We also show

the top-10 identified patents using our proposed method. Table4.4 shows the top 10

patents identified in USPTO patent citation data by our proposed method and Figure

4.8 shows the network structure of these top 10 patents along with their immediate

neighbors. One can see from the results that, top 10 patents are highly connected in

their neighborhood. One can also see that except the patent with patent ID 5892900,

all other top patents have similar scores, which means that patent 5892900 dominates

this area.

Table 4.4: Top 10 patents identified in patent citation data by our proposed ranking
method.

Rank Patent ID Importance Score

1 5892900 0.883
2 5943422 0.679
3 5982891 0.658
4 6185683 0.638
5 5920861 0.617
6 6112181 0.606
7 5915019 0.582
8 5910987 0.579
9 5917912 0.569
10 5949876 0.543

4.4.4 Conclusion

In this chapter, we proposed a new time-aware ranking scheme to identify the important

and influential patents in a time-dependent PCN. The proposed method exploits the

time information of both citing and cited patents and successfully distinguishes the

effect of each citation to the importance of a cited patent. To show the superiority of

our proposed method over the well-known ranking methods, we compared our ranking

scheme with other metrics in terms of Spearman correlation coefficient of rankings and

recommendation intensity score using a real-world patent citation dataset from USPTO

in the area of digital information and security. The results reveal that our proposed

ranking method outperforms other metrics.



75

Chapter 5

Concluding Remarks and Future Research

5.1 Concluding remarks

In this dissertation, we proposed and develop advanced data mining methodologies for

the analysis of directed networks. To this extent, in Chapter 2, we propose a node

anomaly detection algorithm based on nonnegative matrix factorization to rank the

patents in outlierness in a patent citation network. The proposed method first clusters

the patents using all types of citations that a patent has with asymmetric nonnegative

matrix factorization - a clustering method specifically designed for directed networks.

To do so, we introduce a citation matrix which is the extension of tbe adjacency matrix

to exploit the information of direct and indirect citations. Then, the results of the

clustering algorithm are used as input to the proposed scoring function. The proposed

scoring function considers not only the individual patent relationships but also the link

and linked information of clusters. To show the implementation of the proposed method

in detail, we used an illustrative example with a small patent citation network. Then,

we show the performance evaluation of our method using a real-world patent citation

data. As for the performance measure, we injected synthetic outliers to the real-world

PCN and calculate the accuracy and F1 scores of the proposed method. We also com-

pare the proposed method with other outlier detection algorithms and results reveal

that our proposed method outperforms others in detecting anomalous patents.

In Chapter 3, we introduced a regularized asymmetric nonnegative matrix factoriza-

tion for clustering in directed networks. Asymmetric nonnegative matrix factorization

is designed specifically for clustering in directed networks. However, ANMF cannot

capture the intrinsic information hidden in the structure of the network. To address

this issue, we proposed to add a regularization term to ANMF. The regularization term
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aims to force the representatives of the nodes in new basis to be closer to each other if

the nodes are similar to each other in structural similarity and force the representatives

to be far from each other if the nodes are not similar to each other in the network

structure. Then, we propose updating rules for the new optimization problem. In

addition, ANMF algorithm is designed based on random initialization, which requires

the algorithm to be run several times to obtain a stable solution. However, running

several instances of the algorithm is very time-consuming in many cases. Therefore, we

propose to initialize our proposed RANMF algorithm using SVD-based initialization.

Since SVD-based initialization is specifically designed for NMF algorithms, we modify

it for the RANMF algorithm. To evaluate the performance of our proposed clustering

algorithm, we used real-world datasets and synthetic datasets. To capture the different

aspects of the proposed algorithm, we evaluate it using several popular clustering va-

lidity indices such as DB index, Jaccard index, and NMI. In most of the experiments,

our proposed clustering algorithm outperforms other clustering algorithms in terms of

all validity indices. We also prove the convergence of the multiplicative updating rules

numerically and theoretically. Sensitivity analysis of the proposed method is also pre-

sented. Our proposed method is robust to the changes in the parameter values.

Finally, in Chapter 4 we developed a time-aware importance and influence measure

for ranking patents in dynamic patent citation networks. There is currently no work

that considers the time information of citing and cited patents at the same time. The

proposed method is capable of distinguishing not only the citing patent but also cited

patent for the importance of cited patent in time-evolving patent citation network.

To show the effectiveness and performance of the proposed ranking scheme, we used

a real-world patent citation network. As for the evaluation of performance, we used

the Spearman correlation coefficient of rankings and recommendation intensity scores.

Spearman correlation coefficient calculates the correlation using entire dataset and rec-

ommendation intensity considers only top patents identified by a ranking method. Ex-

perimental results show that our proposed ranking method outperforms other ranking

metrics in terms of both ranking the entire patents in importance and identifying the

influential ones.
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5.2 Future research

Despite the satisfactory performance of the proposed methodologies in this dissertation,

there is still some room for further improvements. For the node anomaly detection re-

search, we didn’t consider the time information of patents. However, patent citation

networks are evolving graphs and new patents and new citations appear over time. Fu-

ture study should devise a new node anomaly detection algorithm which incorporates

the time information of patents.

For clustering research in directed networks, one can investigate the effect of the

different similarity measures on the performance of the proposed method. In addition,

the (1/4) term in the multiplicative updating rule makes the algorithm converge a little

slower. So, future research can devise new updating rules which converge faster.

As for the influential patent identification research, one can incorporate the at-

tribute information of the patents and devise a new ranking method. Currently, we

only consider the network structure of the patent citation data. However, patents have

rich information such as who owns the patent, class information of the patent, and

citations to/from non-patent sources.
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Appendix A

Proof of Proposition 1

Suppose that a graph G is acyclic directed graph with n nodes, then the largest value

of the length of the longest path in the graph can be n− 1. Let τ be the longest path

in the graph G. For l > τ and for all 1 ≤ i, j ≤ n, [A]
(l)
ij = 0 since there is no path with

length l from node i to node j. Therefore Al = 0, for all l > τ . Let C =
∑∞

l=1 β
lAl ,

then C =
∑τ

l=1 β
lAl . With 0 < β < 1, C can be rewritten as

C = βA + β2A2 + . . .+ βτ+1Aτ+1

= βA + βA(βA + . . .+ βτAτ )

= βA + βAC

⇒(I− βA)C = βA

⇒C = βA(I− βA)−1.
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Appendix B

Derivation of Regularization Term

λ

2

n∑
i=1

n∑
j=1

||wi −wj ||2[S]ij =
λ

2

n∑
i=1

n∑
j=1

(wi −wj)
T (wi −wj)[S]ij

=
λ

2

n∑
i=1

n∑
j=1

(wT
i wi[S]ij + wT

j wj [S]ij − 2wT
i wj [S]ij)

= λ
n∑
i=1

(wT
i wi)[D]ii − λ

n∑
i=1

n∑
j=1

(wT
i wj)[S]ij

= λTr(WTDW)− λTr(WTSW),
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Appendix C

Derivation of Multiplicative Updating Rules

We introduce multiplicative update rules to minimize the objective function in (3.11).

Regularization term in objective function in (3.11) can be rewritten as

λTr(WTDW)− λTr(WTSW) = λTr(WTLW) (C.1)

where L = D−S is the graph Laplacian (Chung, 1997). Thus, (3.11) can be rewritten

as

f(W,H) = min
W,H≥0

||A−WHWT ||2F + λTr(WTLW)

= Tr((A−WHWT )(A−WHWT )T )

+ λTr(WTLW)

= Tr(AAT −AWHTWT −WHWTAT + WHWTWHTWT )

+ λTr(WTLW)

= Tr(AAT )− Tr(AWHTWT )− Tr(WHWTAT )

+ Tr(WHWTWHTWT ) + λTr(WT LW)

(C.2)

We obtain the Lagrangian of (3.11) with Lagrangian multipliers Ψ1 and Ψ2 for the

nonnegativity of W and H as

L = Tr(AAT )− Tr(AWHTWT )− Tr(WHWTAT )

+ Tr(WHWT WHTWT )

+ λTr(WT LW)− Tr(Ψ1W
T )− Tr(Ψ2H

T )

(C.3)
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Taking partial derivatives of (C.3) w.r.t. W and H leads to

∂L
∂W

= −2AWHT − 2ATWH

+ 2WHWTWHT + 2WHTWTWH + 2λLTW−Ψ1

∂L
∂H

= −2WTAW + 2WTWWTHW−Ψ2

(C.4)

Let partial derivatives in (C.4) equal to 0. Using the KKT complementary slackness

conditions we obtain

[−2AWHT − 2ATWH + 2WHWTWHT + 2WHTWTWH + 2λLTW]ik[W]ik = 0

[−2WTAW + 2WTWWTHW]kj [H]kj = 0

(C.5)

Equations in (C.5) lead us to following multiplicative update rules

[W]ik ← [W]ik

(
[AWHT + ATWH + λSTW]ik

[WHWTWHT + WHTWTWH + 2λDTW]ik

) 1
4

[H]kj ← [H]kj
[WTAW]kj

[WTWHWTW]kj

(C.6)
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Appendix D

Proof of Theorem 1

We prove the theorem that objective function in (3.11) is nonincreasing under the up-

dating rules in (3.12) by using auxiliary funcion approach. We first write our objective

function in (3.11) with the help of simple linear algebra as

f(W,H) = Tr(AAT )− 2Tr(ATWHWT ) + Tr(WHWTWHTWT )

+ λTr(WTDW)− λTr(WTSW).

Based on the results from (Wang et al., 2011), we can obtain the following three in-

equalities as

Tr(BWTAW) ≤ 1

2
Tr(BYTAW̃) +

1

2
Tr(BW̃

T
AY)

Tr(PA) ≤ Tr(RAW̃
T

)

−Tr(BWTAW) ≤ −Tr(BW̃
T
AZ)− Tr(BZTAW̃)− Tr(BW̃

T
AW̃)

where [Y]ij = [W]2ij/[W̃]ij ; [R]ik = [W]4ik/[W̃]3ik; Pkl = [WTW]2kl/[W
TW]kl; and

[Z]ij = [W̃]ij . ln([W]ij/[W̃]ij). Using above inequalities,

f(W,H) ≤ 1

2
Tr(RHW̃

T
W̃HTW̃

T
+ RHTW̃

T
W̃HW̃

T
)

+
λ

2
Tr(RTDW̃ + RTDW̃)

− 2Tr(ATW̃HZT )− 2Tr(ATZHW̃
T

)

− 2Tr(ATW̃HW̃
T

)− λTr(W̃
T
SZ)

− λTr(ZTSW̃)− λTr(W̃
T
SW̃) + Tr(AAT )

=
def

G(W,W̃)
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where G(W,W̃) is an auxiliary function for W. Now let’s define as in (Lee and Seung,

2001)

W(t+1) = arg min
W

G(W,W(t))

where t stands for iteration number. Then we have

G(W(t),W(t)) ≥ G(W(t+1),W(t)) ≥ G(W(t+1),W(t+1)).

Thus, the objective function f(W(t),H) = G(W(t),W(t)) is monotonically decreasing.

Let L(W) = G(W,W̃) and by the below KKT condition

∂L
∂[W]ik

= 2
[W]3ik
[W̃]3ik

[W̃HW̃
T
W̃HT + W̃HTW̃

T
W̃H

+ 2λDTW̃]ik − 2
[W̃]ik
[W]ik

[ATW̃H

+ AW̃HT + λSTW̃]ik

which leads us to updating rules for W as in (3.12).

Since our regularization term is only related to W, we have the exact same updating

rule for H as it is in the original ANMF algorithm. Therefore, we proved the convergence

of updating rule, which shows that objective function in (3.11) is nonincreasing under

the updating rules in (3.12), only for W.
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