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Rubella is an infection caused by rubella virus. Rubella virus belongs to the Togaviridae family 

and is a single stranded positive sense RNA virus of about 9,762 nucleotides. Rubella, once 

known as German Measles, causes an iconic red rash all over the body and the teratogenic 

congenital rubella syndrome in pregnant women. Due to Measles-Mumps-Rubella vaccination 

rates falling throughout the developed world and measles and mumps becoming resurgent, the 

evolution of rubella virus is important to study prior to its potential resurgence. The E1 gene of 

the rubella virus is responsible for interaction with the human immune system, and it is the 

antigen to which antibodies are formed. The evolutionary rate of E1 along with the full rubella 

genome was determined using phylodynamic analysis. Both the whole genome and the E1 gene 

were evolving in a clocklike manner, and the evolution of both were successfully analyzed with 

BEAST2 software. A difference between the best-fitting priors between the two datasets was 

the kind of molecular clock preferred: the whole genome was best fit by a relaxed molecular 

clock, while the E1 gene preferred the strict molecular clock.  This difference had some impact 

on the results, with the estimated evolutionary rate for the E1 gene from the strict clock being 
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lower than the whole genome, but still within the 95% highest posterior density range at 1.08 x 

10-3 substitutions per site per year (ssy) while the whole genome had an evolutionary rate of 

1.60 x 10-3 ssy with a 95% Highest Posterior Density (HPD) of 1.06 x 10-3 to 2.18 x 10-3 ssy. 

Reconducting the E1 analysis with a relaxed molecular clock resulted in a similar evolutionary 

rate as the whole genome of 1.51 x 10-3 ssy with a 95% HPD of 1.23 x 10-3 to 1.80 x 10-3 ssy.  This 

is one of the first cases where there was a statistically significant difference in substitution rate 

(non-overlapping HPDs) between analyses of the same dataset calculated with different clock 

priors.  The relaxed clock estimates of nucleotide substitution rate are higher than has been 

estimated for rubella virus in the past and agrees with the more rapid rate of evolution seen in a 

single decade in China.  These results suggest that rubella evolves faster than expected, though 

it is not undergoing substantial positive selection, and that choice of clock model is a more 

significant determinant of substitution rate than previously considered.  
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Section 1: Introduction 

1.1 History of Rubella: 

The infection known as rubella, also sometimes known as German Measles or three-day 

measles, is caused by the rubella virus. In the mid 1700s and early 1800s, the infection was 

commonly mistaken to either be scarlet fever or some derivative of measles, due to their 

commonality in sharing the iconic red rash of these infections (Cooper, 1985). It wasn’t until 

George Maton, a German physician working in England, suggested that rubella could potentially 

be a distinct illness due to not sharing several key characteristics of scarlet fever or measles and 

thus gave it a name, Rötheln (Wesselhoeft, 1947). While this is the first instance in which the 

disease was named, the more common name of the disease that we use today was not 

developed until later. In 1866 an English surgeon by the name of Henry Veale was in India where 

he witnessed an outbreak of the virus within schoolchildren, and gave it the distinct name 

rubella, as he believed that the German word Rötheln was a harsh word (Veale, 1866). With 

clinical observations of the disease showing differences from measles and scarlet fever, the 

International Congress of Medicine met in 1881 and officially recognized rubella as a distinct 

disease (IMC, 1881).  

With the discovery and study of viruses underway in the 1890s, infection by rubella was first 

proposed to be caused from a virus in 1914 by Alfred Hess, who inoculated monkeys with the 

blood of children infected with rubella (Hess, 1914). This was later confirmed to be true in 1937 

when the disease was passed successfully to children from people with severe cases of the 

infection (CDC, 2015). While rubella was initially thought to be a mostly harmless rash that 

quickly passed (hence the name, three-day measles), later clinical observations proved this to be 

false. A potential link between the rubella infection and serious birth defects happened in 1940 

when it was discovered that babies who were born to mothers who contracted rubella had high 
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rates of cataracts, which led to the belief that the infection played a role (Gregg, 1941). These 

initial findings were later shown to be supported in several studies where the rate of newborn 

deformities were much higher in women who contracted rubella during pregnancy compared to 

women who did not contract rubella (Fox and Bortin, 1946, Ober et al, 1947, Mackenzie et al, 

1948).This outbreak and subsequent observation of birth defects in children was instrumental as 

it illuminated the study of viruses to be included as possible teratogenic agents, or things which 

can cause birth defects (O’Connell, 2013). Finally, the rubella virus, which was already believed 

to be the causative agent of rubella, was finally isolated in tissue culture in 1962 which allowed 

for it to be studied in lab (Cooper, 1985).  

Since the discoveries of fetal abnormalities associated with rubella infections during pregnancy, 

congenital rubella syndrome (CRS) has become the most troubling effect of rubella infections. 

CRS occurs when a pregnant woman is infected with the rubella virus and transfers the infection 

to her developing fetus, resulting in either a stillborn, miscarriage, or a baby with several 

defects. These defects include cataracts, mental retardation, hearing loss, congenital heart 

disease, bone disease, and more (Lanzieri et al, 2018). CRS typically has the highest chance of 

occurring when a pregnant woman is infected in her first trimester, with the chance going down 

significantly as gestation period increases (Lee and Bowden, 2000). The current prevalence of 

congenital rubella syndrome is not globally reported; however, it was estimated that in 2001, 

over 100,000 cases of congenital rubella syndrome occurred with a global prevalence that year 

of 836,321 cases (Robertson et al, 2003). This makes the spread of rubella an important global 

concern to prevent the transmission of rubella to pregnant women.  
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Figure 1. Current global range of countries immunizing for rubella or planning to immunize for 
rubella as of 2019. Adapted from WHO immunization schedule.  

1.2 Modern Significance and Reach: 

Increased availability of vaccines against rubella along with vaccination programs and control 

strategies carried out throughout an increasing number of countries has led to a global decrease 

of the number of rubella cases in the 21st century. The number of global reported cases of 

rubella has fallen from 670,894 cases in 2000 and 836,356 cases in 2001 to 22,361 cases in 2016 

(Grant et al, 2016, Robertson et al, 2003). Although still endemic to many regions of the world, 

particularly those with no implemented vaccination strategies against rubella (gray countries in 

Figure 1), many regions are making massive gains into the elimination of the disease. As of 2015, 

rubella has been declared eliminated from the region of the Americas (CDC, 2015). In the United 

States, children are routinely vaccinated with a trivalent vaccine against measles, mumps and 

rubella (MMR), which contains a live attenuated vaccine for rubella (CDC, 2019).  Worldwide, a 

variety of live attenuated vaccines are given for rubella, and vaccination campaigns were 
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adopted more slowly than for measles or mumps.  For instance, China only started offering 

rubella vaccinations beginning in 1993 and it entered the nationwide immunization schedule in 

2008 (Su et al, 2018). Further expansion is continuing throughout the world, with 4 different 

countries planning to add rubella vaccination to their immunization schedule in 2019 (yellow 

countries in Figure 1). Despite this, further expansion into Africa is sorely needed as they are the 

last continent and major region within the world still with a significant number of countries and 

population at risk for rubella outbreaks and epidemics (WHO, 2016).  

With the rise of the internet making information widely available, the spread of misinformation 

has infected the discussion regarding vaccinations. Misinformation, misleading claims, 

misinterpretation of data, and fraudulent data are easily spread amongst the populace and in 

certain cases become engrained within public discourse despite being demonstrably false. In 

1998, former doctor Andrew Wakefield along with a number of other researchers published a 

now redacted paper in which it was concluded that the MMR vaccine was the probable cause of 

developmental delays in children, which was described as autism (Wakefield et al, 1998). 

Despite unethical practices, scientific misconduct, and fraud that was later revealed which 

caused the paper to be retracted and Andrew Wakefield’s medical license to be revoked, the 

lasting damage and mistrust of vaccines spawned from this paper are still felt to this day. The 

findings and conclusions within the paper were immediately proven false (Taylor et al, 2000) 

and no follow up studies have corroborated Wakefield’s claims. Very recently, another study has 

corroborated the findings that the MMR vaccine has no links to development of autism within 

children, showing that 21 years later there is still no evidence for Wakefield’s claims (Hviid et al, 

2019). However, as vaccine compliance has fallen in many developed countries, measles has 

become resurgent (Phadke et al, 2016), with sporadic outbreaks of mumps (CDC, 2018). Rubella 

is less common than these other diseases included in the MMR vaccine with measles and 



5 
 

 
 

mumps being more common, especially in the US (WHO, 2016) but it would not be unexpected 

to see a rubella outbreak in the USA in upcoming years. The CDC currently recommends a 

targeted vaccination rate of 95% for the MMR vaccine to prevent widespread outbreaks of 

measles, mumps, and rubella. As of 2017, only 6 states have higher than 95% of children aged 

19-35 months inoculated with the MMR vaccine, with 16 states falling below 90% vaccination 

rate for MMR (CDC, 2017).  With measles and mumps outbreaks being widespread with low 

MMR vaccination rates, rubella may be expected to make a comeback in the US, as is already 

speculated in places such as France (Beraud, 2018). What was once thought of a disease that 

would eventually be eradicated due to vaccination now has a high chance of making a 

resurgence and due to this it is imperative that the evolution of the rubella virus can be 

understood to help control and prevent future outbreaks. 

 

Figure 2. Graphical representation of the rubella virus along with structural proteins (CP,E1, and 
E2) being shown in their correct positions. The trimer formed by the E1 and E2 proteins are 
shown in yellow on the surface of the virus. Image from Viralzone: www.expasy.org/viralzone, 
SIB Swiss Institute of Bioinformatics, 2017. Image CC4.0 BY-NC-ND 
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1.3 Rubella Virus: 

The etiological agent of rubella, the rubella virus or rubivirus, is a 9,762-nucleotide single 

stranded RNA mammalian virus. It belongs to the viral family Togaviridae which are defined by 

being spherical viroids, single stranded, linear, positive sense RNA viruses with a 5’ methyl cap 

and 3’ polyadenylated tail. This methyl cap and polyadenylated tail allow it to be easily 

translated when within a host as this mimics mRNA (Jose et al, 2009). Like other viruses within 

the Togaviridae family, the rubella virus has non-structural proteins encoded within the 5’ end 

of the virus while the envelope and capsid proteins are encoded at the 3’ end (ViralZone, 2019) 

The rubella virus genome consists of genes that encode for two RNA replication proteins, p150 

and p90, along with three structural polyproteins, E1, E2, and the capsid protein. The E1, E2, and 

capsid protein are constructed as a polyprotein with the proteins being cut by signal peptidase, 

and the p150 and p90 proteins are also encoded as a polyprotein with them being cut by p150 

(Frey, 1994). The E1-E2 trimer that is formed on the surface of the virus is especially important 

in the infection with rubella virus. The complex that is formed from the E1 and E2 proteins 

coming together has been shown to be necessary in transfer out of the endoplasmic reticulum, 

through the Golgi apparatus, and to the cell membrane (Yang et al, 1998). The E1 protein also 

specifically has been shown to be the protein directly responsible for attachment and fusion into 

human cells (Yang et al, 1998). In addition to this, the E1 protein is especially important as the 

human immune system forms antibodies targeting antigens against the E1 protein, both from 

natural infection and through vaccination (Chaye et al, 1992).  

1.4 Rubella virus evolution: 

Recent literature regarding the evolutionary rate of the rubella virus has mainly focused on 

country specific outbreaks and genotypes of the rubella virus (Zhu et al, 2012, Zhu et al, 2015, 
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Yalcinkaya, 2015) Additionally, the studies mostly focus on the 739-nucleotide window within 

the E1 gene recommended by the WHO for rubella genotype classification (WHO, 2015). The 

studies that have been done generally see the rate of evolution of the E1 gene increasing as 

time progresses, with significantly higher rates being reported depending on year of the study 

along with very little to no recombination being present within rubella (Cloete et al, 2014, Zhu et 

al, 2012, Jenkins et al, 2002). In China, it has also been found that the E1 gene has been evolving 

at even a significantly higher rate than E1 isolates globally (Zhu et al, 2012, Zhu et al, 2015).  

The genotypes of rubella are typically divided into two distinct clades. Clade 1 contains 10 

genotypes, these being 1a, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, and 1J with 1a being a provisional 

genotype while clade 2 contains 3 genotypes, these being 2A, 2B, and 2C (WHO, 2005). The 

most common current circulating rubella genotypes globally are 1E, 1G, 1J and 2B with 1E and 

2B being global while 1G is more restricted to Africa and 1J more restricted to Asia (Abernathy 

et al, 2011, Zheng et al, 2003). Identification of the genotype is important for characterization by 

the WHO into these genotypes, however it is argued whether more precise genotypes should be 

established between the most common genotypes (Rivailler, 2017).  

1.5 Molecular Modeling: 

In order to effectively and accurately gauge a given nucleotide substitution rate over time, 

several models are able to be selected from regarding rate, time, and effective population sizes. 

Among these are the site model, which determines rates of change within specific sites of a 

genome, the molecular clock model, which infers a given model of divergence at a certain time 

and then bases the evolution rate over time from that, and the prior models, which are 

associated with the population of a genomic dataset.  
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There are several different nucleotide substitution models available for use, although the one 

used within the context of this study was the Generalized Time Reversible Model (GTR). The GTR 

model assumes that the frequency of each base is different, and that all pairings of nucleotides 

have independent substitution rates (Tavare, 1986). It does not allow each potential substitution 

to have an independent rate because that would require a priori knowledge of the root of the 

tree – and would make the model not time reversible. Additionally, modeling included within 

the different site models themselves are used to show different rates of variation within 

different sites in the sequence. These two additional models are the gamma distribution 

models, typically denoted by the letter G, and the proportion of invariable sites, typically 

denoted by the letter I. The gamma distribution, from its name gives a changing probability 

distribution within the nucleotide substitution rates. The proportion of invariable sites examines 

the number of sites within a genome that have very low rates of evolution or are highly 

conserved and takes into account their impact on analysis (Huelsenback, 2001).  

Of the molecular clock models this study included the strict clock model, the relaxed logarithmic 

clock model, and relaxed exponential clock model, each corresponding to how the rubella virus 

potentially evolved over time. The strict clock model assumes that evolutionary rate is constant 

throughout time. The relaxed clock models both allow for each branch in the phylogeny to have 

its own evolutionary rate regardless of placement within a phylogenetic tree. The differences 

between the log normal and exponential models are in distribution of the rates of the 

nucleotide substitutions. 

Different tree priors are also tested for their use in demographic reconstruction of the rubella 

virus over time. The constant coalescent tree prior assumes a constant effective population size 

over the time period of samples whereas the exponential coalescent model assumes an 

exponentially increasing population size. Bayesian skyline utilizes sampling at posterior trees at 



9 
 

 
 

different time points to accurately assess effective population size. Extended Bayesian skyline is 

quite similar but is better fit for bottleneck events, which one might expect if there exist events 

that would rapidly decrease transmission.  

Section 2: Methodology 

2.1 Acquisition of Data: 

A total of 63 whole genome isolates of rubella virus originating between 1961-2013 from 12 

different countries were available in GenBank in February 2018, downloaded and saved. 

Separately, in a Microsoft Excel worksheet, details of isolation and passaging of the virus were 

noted. Of the 63 whole genomes, 17 were excluded from further phylogenetic analysis due to 

potential issues clouding the accuracy in any further analysis. Substitution rate analyses require 

sequences with rigorous dates of isolation from its global gene pool (Rioux and Belloux, 2016) so 

genome sequences without sufficient details of the year of their isolation, extensive passaging in 

the lab prior to sequencing which would allow for changes in genome to occur within lab, and 

sequences derived from vaccine strains cannot be used for accurate analyses of the natural rate 

of rubella virus evolution. Further, known recombinant sequences are not appropriate for 

phylogenetic analyses in general, and were excluded from this study (Cloete et al, 2014). 

Sequences were named to reflect their GenBank accession number, country of isolation (ISO 

two letter country code), and year of isolation. 

Following similar methodology as described above, a total of 309 E1 gene sequences from 1961-

2013 in 15 different countries were downloaded and saved from GenBank along with similar 

details about isolation. Of the 309 E1 gene sequences, 67 were excluded from further analysis 

due to similar reasons mentioned above. Sequence names were changed to reflect GenBank 

accession number, country of isolate, and year of isolation. The 242 E1 isolates used included 46 
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E1 genes from the whole genome dataset.  It should be noted that there is a primer-amplified 

739 base region of E1 that covers just over half (51.2%) of the full E1 gene that is frequently 

sequenced and deposited into GenBank (WHO, 2005). More than a thousand such sequences, 

most with rigorous dates of isolation, were available in February 2018, which likely would have 

exceeded the time limits of analyses allowed on the CIPRES Gateway server that was used. 

2.2 Alignment: 

Multiple sequence alignment was done using Clustal Omega for both the whole genomes and 

the E1 isolates (Chojnacki et al, 2017). Alignment outputs were saved in both the clustal and 

nexus formats for further use. E1 isolates were imported into Geneious Prime v.2019.1.1 

(Geneious, 2019) and the E1 gene regions from the whole genomes were extracted and cut 

using the sites of start and stop codons from reference sequences in GenBank. Using Geneious 

Prime, neighbor joining trees were built from the whole genome dataset and the E1 dataset for 

further use. Of the 1443 nucleotide E1 gene region, the first 27 nucleotides were excised from 

most sequences to match the shortest E1 sequences in the dataset, allowing each sequence to 

have equal information content (final alignment length = 1416 nt). A third dataset (WGE1), of 

simply the extracted E1 gene region (minus the first 27 nt to match the size of the larger E1 

dataset) from the whole genome alignment was made as a control for the larger E1 analysis. 

2.3 Recombination Detection: 

Recombination is a means of increasing genetic variance that is important to test for prior to 

phylodynamic analysis because recombination can blur the phylogenetic history of the isolates 

used. Recombination within datasets has been shown to diminish both phylogenetic accuracy 

and cause overestimation of nucleotide substitution rates (Posada and Crandall, 2002, Schierup 

and Hein, 2000, Lanier and Knowles, 2012). Recombination was tested for using RDP4 which 
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uses seven different independent detection methods to find recombination, if present, within a 

dataset (Martin et al, 2015). The seven detection methods that were used were RDP (Martin and 

Rybicki, 2000), GENECONV (Padidam et al, 1999), Bootscan/Rescan (Martin et al, 2005), MaxChi 

(Smith, 1992), Chimaera (Posada and Crandall, 2001), SiScan (Gibbs et al, 2000), and 3Seq (Lam 

et al, 2018). Of the seven detection algorithms used, at least three of the algorithms needed to 

detect an event of recombination in order to be considered significant. The general settings of 

the RDP4 detection methods that were implemented were analysis of linear sequences with a p 

value threshold of 0.05 and use of Bonferroni correction, which is necessary when making many 

multiple comparisons for recombinant detection. Additional settings changes included using the 

Kimura model (instead of the Jukes-Cantor model) for the Bootscan detection method to help 

be used in nucleotide substitution rates regarding transitions and transversions. (Kimura et al, 

1980). Recombinant sequences were removed from the dataset to prevent inaccurate 

phylogenetic analysis. 

2.4 Temporal Signal Detection: 

In order to determine whether or not further phylodynamic analysis would be appropriate with 

these datasets, we determined whether these rubella sequences were evolving in a clock-like 

manner. This is done by using different sequences isolated at different points in time in order to 

see whether they have a measurable amount of genetic divergence that correlates positively 

with time. TempEst v.1.5.1 was used to measure this correlation, using a tip-dated (year of 

sequence collection) neighbor joining tree. Genetic differences between taxa create a root to tip 

linear regression graph that shows correlation of genetic divergence over years since divergence 

(Rambaut et al, 2016). The neighbor joining trees previously made using Geneious Prime of the 

whole genome and E1 datasets were used as input files for TempEst and dates were manually 

inputted to run the program.  
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2.5 Phylodynamic models to assess rate of evolution: 

To use BEAST2 (Bouckaert et al, 2014) to estimate rates of evolution and other population 

parameters for rubella virus, first the most appropriate priors had to be selected for each 

dataset.  The best fitting nucleotide substitution model was chosen by JModelTest v2.1.6 

(Darriba et al, 2012). JModelTest utilizes five different model selection strategies with each 

allowing for rate variation to make a likely estimate of the best fitting nucleotide substitution 

model given the dataset. Path sampling in BEAST2 first determined (by marginal likelihood 

estimates) the best fitting molecular clock model (assuming a constant viral population size) and 

then using the chosen clock, the best fitting demographic model was chosen. There were three 

different clock models used: a strict molecular clock model that assumes that every branch of a 

phylogenetic tree has the same rate of evolution, a relaxed lognormal clock model that assumes 

that evolution occurs as a lognormal function among branches, and a relaxed exponential clock 

model that assumes that substitutions vary following an exponential function amongst 

branches. After the best fitting clock was selected (assuming a constant viral population size), 

four different tree priors were tested for each of the datasets. These included constant 

population size, exponentially growing population size (as would match many emerging viruses), 

allowing the BEAST2 analysis to determine population sizes at different time periods during the 

analysis (Bayesian skyline), and the extended Bayesian skyline, which accommodates smaller 

numbers of sequences using the original Bayesian skyline model. BEAUTi v2.5.0 was used for the 

generation of the XML files for path sampling and subsequent analyses (Bouckaert et al, 2014). 

The XML files were modified for path sampling by replacing the run command with:  

<run spec='beast.inference.PathSampler' chainLength="2000000" alpha='0.3' rootdir='/tmp/' 

burnInPercentage='50' preBurnin="0" deleteOldLogs='true' nrOfSteps='100'> 
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cd $(dir) 

java -cp $(java.class.path) beast.app.beastapp.BeastMain $(resume/overwrite) -java -seed 

$(seed) beast.xml  

(Adapted from github.com/BEAST2-Dev/BEASTLabs/examples/testPathSampler.xml) 

The downgraded v.2.5.0 version of BEAST2 and BEAUTi were used for XML file generation and 

analysis due to several infinity errors within the marginal likelihood estimates which terminated 

several runs when attempted with the most updated version of BEAST2. Additionally, chain 

lengths and logs were standardized at 2,000,000 and 10000, respectively. All analyses were run 

through the CIPRES Science Gateway (Miller et al, 2010).  

2.6 Bayesian Phylogenetic Analysis 

Using the best fit clock model-prior pairing as identified by previously done path sampling, BEAST2 

was run for the whole genomes, E1 genes, and E1 genes solely for the whole genomes. When a 

dataset did not select the Bayesian skyline demographic prior as the best fit, it was run in parallel 

with the selected analysis to visualize the effective viral population over the timespan of the 

sampled sequences. The xml files for the final runs were generated in BEAUTi v2.5.0 using the 

parameters defined by previously done path sampling. A chain length of 1 billion with logs being 

filed every 10,000 steps was done for each of the final runs as these settings have been previously 

shown to produce sufficiently resolved results (Njagi, 2018). Two independent runs of each 

dataset were done to ensure that the analysis converged on the same outputs. All analyses were 

run through the CIPRES Science Gateway (Miller et al, 2010). Log and tree output files of the BEAST 

runs for each datatset were imported into Tracer which allows for visualization and creation of 

skyline plots from the completed BEAST2 runs (Rambaut et al, 2018). Nucleotide substitution rates 

were recorded from the finalized clockRate value (strick clock prior) or ucedMean value (relaxed 
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clock prior). Lastly, maximum clade credibility (MCC) trees were constructed using TreeAnnotator 

v1.8.4 from the BEAST2 package software. Trees were then viewed and colored according to 

country of isolation using FigTree v1.4.4 (Rambaut, 2018) 

2.7 Selection Pressure Analysis: 

Positive and negative selection of the E1 dataset was conducted using three separate analyses 

using the Datamonkey server (Weaver et al, 2018, Delport et al, 2010, Pond et al, 2005). The three 

analyses used were Mixed Effects Models of Evolution (MEME), Fast Unconstrained Bayesian 

Approximation (FUBAR), and Single Likelihood Ancestor Counting (SLAC). The FUBAR analysis 

measures the nonsynonymous (dN) and synonymous (dS) substitution rates of a dataset and takes 

into account large numbers of varying site classes which allows the evolutionary rate to be 

different although this also assumes a constant diversifying pressure (Murrell et al, 2013). The 

MEME analysis observes both pervasive and episodic positive selection throughout a dataset at 

an individual site level (Murrell et al, 2012).  The SLAC analysis also measures dN and dS 

substitution rates and assumes constant selection pressure through maximum likelihoods and 

counting approaches (Pond and Frost, 2005). The p value thresholds for each analysis was set at 

less than 0.1.   
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Figure 3. Flowchart of the methods used along with file formatting for the analysis of the whole 
genome and E1 rubella datasets. Greyed out symbols indicate exclusion of isolates, black 
symbols indicate correct file formatting, red parallelograms indicate necessary side steps before 
continuation, and blue rectangles represent main sequence of events. 
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Section 3: Results 

3.1 Alignment: 

After vigorous background vetting of several whole genome and E1 isolates, 46 whole genome 

isolates were used for analysis. Almost half of the 242 E1 gene isolates used for alignment were 

slightly smaller than the full gene, as they were missing the 27 nt at the 5’ end of the gene.  We 

excluded these 27nt from all isolates. Clustal Omega produced good alignments that did not 

need to be corrected by hand; there were few insertions or deletions in the whole genome 

alignment (9778 nt) and none in the trimmed E1 alignment (1416 nt). The whole genome had a 

94% pairwise identity score and the E1 dataset had a 95% pairwise identity score. The G/C 

content of the whole genome was 69.7% and 66.2% for the E1 gene dataset, which is very high 

for an RNA virus but quite normal for rubella virus (Takkinen et al, 1988). A full list of whole 

genome sequences used is given Appendix 1.  In addition to the E1 portion of all sequences in 

Appendix 1, the E1 gene sequences used are given in Appendix 2. As one whole genome isolate 

had already been excluded due to previous evidence of recombination (Cloete et al, 2014), no 

recombination was detected within the whole genome or E1 datasets. 

3.2 Temporal Signal Detection: 

Correlation coefficients for both the whole genome and E1 datasets were extremely high. The 

whole genome dataset had a correlation coefficient of the best fitting root to tip of 0.9246, 

indicating that the whole genome dataset is evolving in a strongly clocklike manner (Figure 4). 

For the E1 gene dataset, the correlation coefficient was 0.8461, also providing good evidence 

that rubella’s E1 gene is evolving in a predictable, clocklike manner (Figure 5). These datasets 

were appropriate for further phylodynamic analysis.  The WGE1 dataset, which was extracted 
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from the whole genome alignment, was assumed to have a positive correlation between genetic 

divergence and time.  

 

Figure 4. Temporal signal detection of the 46 whole genome isolates using best fitting root-to- 
tip divergence. The correlation coefficient for the best fitting root to tip was 0.9246 with an r 
squared value of 0.8549. 
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Figure 5. Temporal signal detection of the 242 E1 gene isolates using best fitting root-to-tip 
divergence. The correlation coefficient for the best fitting root to tip was 0.8461 with the r 
squared value being 0.7158. 
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3.3 Phylodynamic modeling selection: 

The best fitting site model for both the whole genome and the E1 datasets based on the 

marginal likelihood estimate was the GTR I + G model (chosen by the corrected Akaike 

Information Criterion), indicating that gamma distribution and proportion invariant additions 

are necessary in accurately determining nucleotide substitution rate.  

For the clock models tested, the relaxed exponential clock model was the best fitting clock 

model for the whole genome dataset, which accommodates the substitution rate varying over 

branches of the phylogenetic tree. The best fitting clock model for the E1 dataset was the strict 

clock model, which requires each branch on the phylogenetic tree of the E1 dataset to evolve at 

the same rate. As the E1 dataset did not have as good of a fit to a linear correlation as the whole 

genomes in TempEst (Figures 4 and 5), this was surprising.  

With the constant population size being used to test which clock model is best to then go on and 

test the other tree priors to see which the best population dynamic is, further tree prior testing 

for each clock model is not needed. However, for the whole genome dataset, each and every 

clock model and tree prior pairing was tested in order to confirm that the best fitting clock 

model selection did not differ based on tree priors being used. This factorial approach was not 

taken for the E1 and WGE1 datasets, thus the exponentially increasing, Bayesian, and extended 

Bayesian tree prior models were not tested for the relaxed lognormal clock model in either the 

E1 dataset or the whole genome E1 dataset. Additionally, the exponentially increasing and 

extended Bayesian priors were not tested for the relaxed exponential clock model. Regardless of 

best model choice, the Bayesian skyline model was run as subsequent BEAST2 analysis with the 

selected clock model because that produces estimates of rubella virus effective population size 

over time. Tables 1-3 show the clock models and tree priors tested with their marginal likelihood 
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estimates. The differences in marginal likelihoods were not always large, meaning that 

potentially multiple priors could be appropriate. The whole genome dataset showed a very clear 

best fitting clock model and tree prior pairing which was the relaxed exponential clock model 

with a constant population size. The full E1 dataset preferred the strict clock model with the 

Bayesian skyline tree prior. The WGE1 dataset, despite coming from the whole genome dataset 

which favored a relaxed molecular clock preferred the same strict clock and Bayesian skyline 

priors as the larger E1 dataset.  

 

 

 

 

 

Table 1. Path sampling analysis of the whole genome dataset. Marginal likelihood estimates are 
listed for each tree prior and clock model pairing with best selected model bolded. 

 
Molecular Clock Models Tested 

Tree Priors Strict  Relaxed LogNormal  Relaxed Exponential  

Constant 

Population 

-48634.7 -46786.2 -45677.6 

Exponentially 

Increasing 

Population 

-45708.0 -45856.2 -45696.6 

Bayesian 

Skyline 

-45707.6 -45998.8 -45710.1 

Extended 

Bayesian 

-45707.4 -46028.0 -45753.4 
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Table 2. Path sampling analysis of the E1 gene dataset. Marginal likelihood estimates are listed 
for each tree prior and clock model pairing with best selected model bolded. Further tree priors 
were not tested for the relaxed lognormal and two priors were not tested for the relaxed 
exponential molecular clock. 

 Molecular Clock Models Tested 

Tree Priors Strict  Relaxed LogNormal  Relaxed Exponential  

Constant 

Population 
-13663.3 -13665.6 -13665.6 

Exponentially 

Increasing 

Population 

-13655.4 - - 

Bayesian 

Skyline 
-13650.1 - -13664.5 

Extended 

Bayesian 
-13651.9 - - 

 

Table 3. Path sampling analysis of the Whole Genome E1 dataset. Marginal likelihood estimates 
are listed for each tree prior and clock model pairing with the best selected model bolded. 
Further tree priors were not tested for the relaxed lognormal and two priors were not tested for 
the relaxed exponential molecular clock. 

 Molecular Clock Models Tested 

Tree Priors Strict Relaxed LogNormal Relaxed Exponential 

Constant 

Population 
-6722.8 -6733.6 -6733.6 

Exponentially 

Increasing 

Population 

-6721.8 - - 

Bayesian 

Skyline 
-6720.7 - -6730.9 

Extended 

Bayesian 
-6733.6 - - 
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3.4 Nucleotide Substitution and Analysis: 

The mean nucleotide substitution rate per year of the whole genomes using the relaxed 

exponential clock model with constant population tree prior resulted in a rate of 1.60 x 10-3 

substitutions per site per year (ssy) with the 95% Highest Posterior Density (HPD) interval range 

being from 1.06 x 10-3 to 2.18 x 10-3 ssy (Figure 6). The effective population size visualized using 

the Bayesian skyline plot (Figure 7), shows us that over time the effective population size for the 

whole genome dataset has remained fairly constant, giving further credence to the constant 

population size being the best tree prior to use.  

For the E1 dataset, the strict clock model with the Bayesian prior resulted in a mean nucleotide 

substitution rate of 1.08 x 10-3 ssy with a 95% HPD interval of 9.50 x 10-4 to 1.21 x 10-3 ssy. This 

rate is lower than the mean substitution rate of the whole genome, but due to the overlap 

between the two HPDs should be considered a similar rate.  Genes that interact with 

mammalian immune systems tend to not evolve slowly and often are under positive selection 

due to a co-evolutionary arms race (Stern and Sorek, 2010), so as a control BEAST2 analyses 

were run on the E1 gene from the whole genome alignment only (WGE1). Surprisingly, WGE1 

had a substantially lower rate of evolution than both the whole genome dataset (8.72x10-4 ssy, 

95% HPD 7.26x10-4-1.02x10-3 ssy, Figure 6) and the full E1 dataset.  The WGE1 HPD does not 

overlap with the HPD of the whole genome at all, showing that the E1 of the whole genomes is 

evolving significantly more slowly than the rest of the genome. 

As this is an atypical result for antigenic proteins in mammalian viruses (Hicks and Duffy, 2014), 

we employed relaxed molecular clocks on these two E1 datasets as well.  Previous substitution 

rate analyses of rubella virus E1 had used relaxed molecular clocks along with the Bayesian 
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skyline prior (Padhi and Ma, 2014, Cloete et al, 2014, Zhu et al, 2012, Jenkins 2002), and the E1 

dataset had showed less of a fit to a strict linear relationship between genetic divergence and 

time in TempEst (5). The two E1 datasets were reanalyzed with relaxed molecular clocks and the 

Bayesian skyline demographic priors. 

These parameters resulted in a rate of 1.507 x 10-3 substitutions per sites per year with a 95% 

HPD interval of 1.23 x 10-3 to 1.80 x 10-3 ssy which is quite similar to the substitution rate of the 

whole genomes. Incredibly, the rate estimated with the relaxed molecular clock has non-

overlapping HPDs with the rate estimated with the strict molecular clock meaning that it is 

statistically significantly higher. The reanalyzed WGE1 dataset estimated a higher substitution 

rate of 1.643 x 10-3 ssy with the 95% HPD interval range being from 1.04 x 10-3 to 2.287 x 10-3 

ssy, which is again statistically significantly higher than the estimate from the same dataset 

using a strick clock prior. Importantly, both E1 analyses with relaxed molecular clocks showed 

evidence that the relaxed clock was a necessary assumption for analyzing the datasets. Both 

analyses’ distribution of results for the coefficient of variation (CoV) around the molecular clock 

excluded zero, which is what the CoV would frequently be for a dataset evolving in a strict 

clocklike manner. The CoV results indicate that the relaxed clock model was more appropriate 

to use than a strict molecular clock.  

The time of most recent common ancestor was also reported in BEAST2, with very similar 

findings for the E1 and whole genome datasets. For the whole genome, the most recent 

common ancestor was estimated at about 111 years ago (105 years before 2013, the most 

recent tip date in the analysis), which would be around 1908 with a 95% HPD intervals between 

1846-1951. The E1 dataset had a time of most recent common ancestor estimated of about 92 

years ago (86 years before 2013, the most recent tip date in the analysis), which would be 

around 1927 with 95% HPD intervals between 1881-1957.  
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Figure 6. Log10 graph of nucleotide substitution rates of whole genome (WG), E1, and whole 
genome E1 (WGE1) with 95% HPD intervals. Substitution rates indicated by a (*) were taken 
from Cloete et al, 2014, Zhu et al, 2012, and Jenkins et al, 2002. 

 

 

 



25 
 

 
 

Ef
fe

ct
iv

e 
P

o
p

u
la

ti
o

n
 S

iz
e 

 

Figure 7. Bayesian skyline plot of the whole genome relaxed exponential clock model. The Y axis 
is showing the effective population size with the x axis showing the timeline with the numbers 
representing number of years from 2013. Mean nucleotide substitution rate for the whole 
genomes was 1.595 x 10-3 sites/year. 

 

Figure 8. Bayesian skyline plot of the E1 gene relaxed exponential clock model. The Y axis is 
showing the effective population size with the x axis showing the timeline with the numbers 
representing number of years from 2013. The mean nucleotide substitution rate for the E1 
dataset was 1.507 x 10-3 sites/year.  
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3.5 Phylogenetic resolution: 

Maximum Clade Credibility (MCC) Trees constructed (Figures 9 and 10) show grouping primarily 

based on genotype and country of origin. While not all genotypes were able to be identified for 

all of the isolates, a significant majority were still able to be found. For the E1 gene, 10 of the 

genotypes present within the E1 clade were present within the dataset and 2 of the 3 genotypes 

present within clade 2 were present. The notable exception was the absence of the 2A genotype 

in the entire sample. There was very strong support for the branching and clades in the E1 and 

whole genome MCC trees. This is supported by the isolates coming together highly based on 

genotype. The only genotypes observed that were not monophyletic were 1a, 1B, and 1D, 

although these genotypes are not common. The two clades of genotypes for rubella cluster 

quite distinctly for both the E1 and WG datasets.  
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Figure 9. Maximum Clade Credibility (MCC) Tree of the Whole genome dataset. Taxa are scaled 
to time of isolation; branch lengths are in years. Branches showing less than 0.9 probability were 
collapsed and were color coded by country (also given by two letter ISO country code): 
Argentina China Germany Israel Italy Japan Korea Mexico New Zealand Russia United States 
Vietnam. 
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Figure 10. Circular Maximum Clade Credibility (MCC) tree of the full E1 dataset. Taxa are scaled 
to time of isolation. Branches showing less than 0.9 probability were collapsed and were color 
coded by country (also given by two letter ISO country code): Argentina Belarus Bosnia and 
Herzegovina China France Germany Great Britain Israel Italy Japan Korea Mexico New Zealand 
Portugal Russia United States Vietnam 

3.6 Selection Analysis: 

Of the three selection analyses used, no significant positive/diversifying selection was found in 

any of the three methods. SLAC analysis also showed that 0 sites were undergoing positive 
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selection within the E1 gene and 254 sites were undergoing negative selection. FUBAR analysis 

revealed 0 sites undergoing positive selection and 382 sites undergoing negative selection, 

confirming pervasive purifying selection along the E1 gene. Only MEME analysis showed that 1 

site was undergoing positive/diversifying selection (254th codon in these alignments, 263rd in the 

E1 gene), the only indicator that any positive selection is occurring in recent rubella virus 

evolution. The evolution of the E1 protein is dominated by purifying selection. 

Section 4: Discussion 

The mean nucleotide substitution rates of 1.60 x 10-3 ssy for the whole genome and 1.50 x 10-3 

ssy for the E1 gene reveal that the whole rubella virus genome – with both more variable non-

coding regions and highly conserved genes such as for the RNA polymerase – is evolving at the 

same rate as the gene responsible for interaction with the mammalian immune system. This 

result is confirmed by the E1 genes from only the 46 whole genome isolates having an identical 

substitution rate to the whole genome (1.64 x 10-3 ssy). This similarity is understandable 

because the E1 gene isn’t experiencing much positive selection over the studied timeframe; E1 

isn’t experiencing more substitutions per site per year than the other genes in rubella virus. RNA 

virus substitution rates are typically between 10-2 to 10-5 ssy (Hicks and Duffy, 2014) putting the 

evolutionary rate of the E1 gene and whole genome of the rubella virus well within that range.  

The genome of rubella virus and the E1 gene in particular are both evolving at a faster rate than 

previously thought. Recently, a portion of the E1 gene was found to be evolving at around 1.19 x 

10-3 nucleotides per year and the whole genome evolving at a rate of around 0.70 x 10-3 ssy 

(Cloete et al, 2014, Figure 6). Going back even further in the literature, the same portion of the 

E1 gene was found to be evolving at a rate of 0.61 x 10-3 ssy (Jenkins et al, 2002, Figure 6). This is 

showing a trend of faster estimates of E1 evolution over time. The nucleotide substitution rate 
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found within this study for the E1 gene is however much more in line with a finding that showed 

the rate of evolution of a couple of E1 genotypes over an eight-year period, in China alone, is 

around 1.6 x 10-3 ssy (Zhu et al, 2012). The faster E1 substitution rate in this study may be due, at 

least in part, to the combination of these faster evolving Chinese sequences with the global and 

historical distribution of rubella virus sequences. This would not explain, however, the faster 

estimate of the whole genome’s substitution rate. While only one group has previously looked 

at the evolution of the whole rubella virus genome, this study’s estimate is statistically higher 

than their rate (also estimated with a relaxed molecular clock, Figure 6). Some of the whole 

genome sequences used in the previous study did not pass the filtering process in this study: 

some sequences were used were from commercial vaccines and were extensively passaged in 

the laboratory.  Including these lab-derived and lab-adapted sequences that are not from the 

natural distribution of rubella viruses may have affected their estimates. It is known that BEAST 

estimates with shallow TMRCAs have artifactually higher substitution rates (e.g., the Chinese 

only study (Zhu et al, 2012)), but nothing in the literature suggests that adding additional years 

of sequences, as happened here in this update of the rate of rubella virus substitution rate, 

would affect estimates of viral substitution rates that coalesce 100 years or more ago (O’Brien et 

al, 2008). This study provides strong evidence that the rubella virus genome is continuously 

experiencing a higher substitution rate than previously thought. Rubella genomes, however, are 

still evolving more slowly than the other viruses in the MMR vaccine: measles (0.78 x 10-2, Kuhne 

et al, 2006) and mumps (1.86 x 10-2, Cui et al, 2009).  

In response to global vaccination efforts seeking to eradicate rubella, one might think that the 

population size of the virus might decline, or alternatively, rapidly accelerate the speed in which 

the genome is evolving as rubella virus experienced diversifying selection to overcome vaccine-

induced immunity. Potentially both could occur – a population thinning that leaves only viruses 
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with a more derived E1 gene surviving. Vaccination in this sense can be a double-edged sword 

because it means that although immunity is conferred via vaccination, it puts pressure on the 

wild type versions of the virus to evolve faster or risk dying out (Hanley, 2011). This was not the 

case in this study, with the whole genome and E1 gene evolving at the same rate – E1 has not 

been experiencing diversifying selection or evolving faster. Additionally, the effective population 

sizes (or more precisely the effective number of genetically distinct individuals) of the rubella 

virus have been shown not to be decreasing in any significant manner. While the global number 

of cases of rubella has declined (WHO, 2018), effective population size cannot be accurately 

determined by the number of people with the infection (Frost and Volz, 2010). Instead, these 

results show that the genetic diversity of rubella virus genomes causing infections has been 

fairly constant over time. The E1 effective population size shows a bit more variation, though no 

statistically significant changes. There may have been an insignificant decrease in E1 diversity 

around 20-25 years ago when China first introduced the rubella vaccine, but this is more than 

compensated for an estimated increase in the most recent years.  

After excluding one recombinant genomic sequence that was previously identified (Cloete et al, 

2014, Abernathy et al, 2013, Vauloup-Fellous et al, 2010), this study found no evidence of 

recombination in rubella virus. RNA viruses often recombine at rapid rates in order to proliferate 

diversity (Lai, 1992). While the low levels of recombination over the last hundred years do not 

mean that more rubella virus couldn’t experience higher rates of recombination in the future, it 

implies that rubella relies mostly on mutation to increase its genetic diversity.    

A methodological issue revealed in this study is that there were substantially different rates of 

evolution calculated for the E1 and WGE1 datasets when different clock models were used. 

Using different clock models focusing on the rate of evolution typically yield results that are well 

within the 95% HPD intervals for each other, meaning that normally the choice of clock model 
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isn’t consequential for substitution rate estimation (Harrison et al, 2011, Brown and Yang, 

2011). While few researchers publish BEAST results from multiple different sets of priors in a 

paper, a survey of virus evolution papers revealed only one published example of a similar 

situation, where the choice of clock prior affected the results such that there were non-

overlapping HPDs (Brown and Yang, 2011). While path sampling showed that a strict clock was 

somewhat better fit to the E1 datasets than a relaxed clock, this was in opposition to all 

previous BEAST analyses of the partial E1 gene (Padhi and Ma, 2014, Cloete et al, 2014, Zhu et 

al, 2012, Jenkins 2002).  The internal confirmation of the distribution of CoV excluding a strict 

clock (as signified by zero variation in rates among branches) further confirmed the 

appropriateness of using a relaxed clock prior to model the evolution of rubella virus E1.  This is 

a cautionary result for the virus evolution community that path sampling may not always 

produce the most appropriate model priors for analysis. This result highlights that path sampling 

is not infallible and determining best fit models is not trivial. Model comparison in BEAST 

analyses was previously done using likelihood ratio tests, the Akaike information criterion 

(Akaike, 1974) or Harmonic Mean estimation (Newton and Raftery, 1994), all of which compare 

models to each other given a dataset while penalizing the more complex models.  Path sampling 

has been shown to be more accurate than all of these methods (Baele et al, 2013), but clearly it 

is not a perfect method, and it may be improved upon in the future.   

Section 5: Conclusions 

The rubella genome is evolving more quickly than previously reported. Vaccination does not 

appear to be driving a change in the substitution rate of the antigenic E1 gene, nor changing the 

effective population size of rubella virus. This persistent rapid evolution shows that rubella has 

high evolutionary potential and could rapidly change and adapt in the future. This has important 

global health implications, especially with falling vaccine coverage in developed countries and 
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many countries still lacking routine vaccination against rubella. While this study suggests that 

current vaccines against rubella remain effective, increased knowledge of the evolution of the 

rubella virus can help devise next generation strategies that might be necessary to combat a 

potential resurgence of rubella.  These include targeting the most emergent genotypes in both 

under vaccinated developed and developing countries.  The importance of rubella evolution will 

allow for better preparation in a future world where rubella is found once again in developed 

countries.  
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Appendix 1. Isolates used in the whole genome analysis. 

 
 

Accession Number Country Isolated In Year of Isolation Genotype 

JN635292 USA 2007 2B 

JN635295 USA 2009 2B 

JN635294 USA 2008 2B 

JN635281 USA 1961 1a 

JN635291 USA 1997 1J 

JN635293 USA 2000 2B 

JN635296 USA 2008 2B 

JN635290 USA 2005 1G 

JN635285 USA 1988 1D 

JN635284 USA 1998 1C 

JN635286 USA 2008 1E 

JN635289 USA 2007 1G 

JN635282 USA 1998 1B 

JN635288 USA 2008 1E 

JN635287 USA 1998 1E 

JN635283 USA 1991 1C 

AB928204 Vietnam 2012 2B 

AB928203 Vietnam 2012 2B 

AB928205 Vietnam 2011 2B 

KT962865 China 2011 2B 

JQ624624 China 2000 1F 

JQ624625 China 2000 1F 

KT962871 China 2013 1E 

KT962869 China 2012 1E 

KT962866 China 2011 1E 

KT962863 China 2009 1E 

KT962867 China 2005 1E 

KT962870 China 2002 1E 

KF201674 China 2002 1E 

KT962864 China 2001 1E 

KT962862 China 2000 2B 

KT962868 China 2008 2B 

DQ085340 Russia 1997 2C 

DQ388279 Russia 1967 2C 

AB860305 Japan 2003 1J 

AB588189 Japan 1968 - 

AB222609 Japan 1968 1a 

AB047330 Japan 1967 1a 

AB588190 Japan 1968 - 

DQ388280 Germany 1992 1G 

DQ085339 Argentina 1988 1B 

DQ085341 Mexico 1997 1C 
DQ085342 Korea 1996 2B 

DQ085343 Italy 1997 1E 

DQ388281 New Zealand 1991 1D 

DQ085338 Israel 1968 2B 
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Accession Number Country Isolated In Year of Isolation Genotype 

AB285128 Japan 2003 - 
AB285129 Japan 2004 - 
AB285140 Japan 2004 - 
AB285138 Japan 2004 - 
AB285143 Japan 2004 - 
AB285144 Japan 2004 - 
AB285139 Japan 2004 - 
AB285142 Japan 2004 - 
AB285141 Japan 2004 - 
AB285131 Japan 2004 - 
AB285133 Japan 2002 - 
AB285134 Japan 2002 - 
AB285132 Japan 2002 - 
AB285135 Japan 2002 - 
AB285136 Japan 2002 - 
AB285130 Japan 2001 - 
AB285137 Japan 1994 - 
AY161378 Italy 1997 1E 
AY161374 Italy 1997 1E 
AY161379 Italy 1997 - 
AY161376 Italy 1997 - 
AY161368 Italy 1994 1G 
AY161364 Italy 1993 1G 
AY161366 Italy 1994 1G 
AY161367 Italy 1994 1G 
AY161361 Italy 1993 1G 
AY161365 Italy 1994 1G 
AY161371 Italy 1995 1G 
AY161372 Italy 1995 1G 
AY161373 Italy 1995 1G 
AY161357 Italy 1991 - 
AY161349 Italy 1991 - 
AY161355 Italy 1991 - 
AY161350 Italy 1991 - 
AY161351 Italy 1991 - 
AY161356 Italy 1991 - 
AY161359 Italy 1992 - 
AY161360 Italy 1992 1I 
KF792833 Italy 1992 1I 
AY161369 Italy 1994 - 
AY161358 Italy 1991 - 
AY161352 Italy 1991 - 
AY161353 Italy 1991 - 
AY161354 Italy 1991 - 
AY161375 Italy 1997 - 
AY161370 Italy 1994 2B 
AY161362 Italy 1993 2B 
AY161363 Italy 1993 2B 
FN546973 France 1997 1E 
FN546971 France 1997 1E 
FN546974 France 1997 1E 
FN546978 France 1997 1E 

Appendix 2. Isolates used in the E1 analysis, including of the whole genome. 
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Accession Number Country Isolated In Year of Isolation Genotype 

FN546983 France 1998 1E 
FN546987 France 1999 1E 
FN546995 France 2000 1E 
FN547002 France 2001 1E 
FN547008 France 2002 1E 
FN547010 France 2002 1E 
FN547012 France 2002 1E 
FN547006 France 2002 1E 
FN547018 France 2004 1E 
FN547019 France 2005 1E 
FN547020 France 2005 1E 
FN547007 France 2002 1E 
FN547013 France 2002 1E 
FN547015 France 2003 1E 
FN547016 France 2003 1E 
FN547011 France 2002 1E 
FN546990 France 1999 1E 
FN546991 France 1999 1E 
FN546993 France 1999 1E 
FN546994 France 2000 1E 
FN546997 France 2000 1E 
FN546990 France 2000 1E 
FN547000 France 2000 1E 
FN546988 France 1999 1E 
FN546989 France 1999 1E 
FN547003 France 2001 1E 
FN547009 France 2002 1E 
FN546992 France 1999 1E 
FN547004 France 2001 1E 
FN546996 France 2000 1E 
FN546975 France 1997 1E 
FN546977 France 1997 1E 
FN546980 France 1997 1E 
FN546967 France 1995 1E 
FN546982 France 1997 1E 
FN546970 France 1997 1E 
FN546972 France 1997 1E 
FN546981 France 1997 1E 
FN546979 France 1997 1E 
FN546985 France 1998 1G 
FN546968 France 1995 1H 
FN547005 France 2001 1B 
FN546966 France 1995 1B 
FN547017 France 2004 2B 
KJ683970 China 2010 1E 
KJ683962 China 2009 1E 
KJ683966 China 2010 1E 
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Accession Number Country Isolated In Year of Isolation Genotype 

KJ683991 China 2012 1E 
KJ683984 China 2012 1E 
KJ683988 China 2012 1E 
KJ683989 China 2012 1E 
KJ683963 China 2010 1E 
KJ683975 China 2011 1E 
KJ683959 China 2009 1E 
KJ683972 China 2011 1E 
KJ683974 China 2011 1E 
KJ683981 China 2012 1E 
KJ683976 China 2011 1E 
KJ683985 China 2012 1E 
KJ683990 China 2012 1E 
KJ683987 China 2012 1E 
KJ683955 China 2008 1E 
KJ683983 China 2012 1E 
KJ683951 China 2007 1E 
KJ683965 China 2010 1E 
KJ683967 China 2010 1E 
KJ683968 China 2010 1E 
KJ683979 China 2011 1E 
KJ683978 China 2011 1E 
KJ683973 China 2011 1E 
KJ683982 China 2012 1E 
KJ683980 China 2011 1E 
KJ683958 China 2009 1E 
KJ683971 China 2010 1E 
KJ683977 China 2011 1E 
KJ683949 China 2007 1E 
KJ683952 China 2007 1E 
KJ683964 China 2010 1E 
KJ683945 China 2006 1E 
KJ683953 China 2007 1E 
KJ683946 China 2006 1E 
KJ683957 China 2008 1E 
KJ683961 China 2009 1E 
KJ683943 China 2004 1E 
KJ683954 China 2008 1E 
KJ683969 China 2010 1E 
KJ683942 China 2003 1E 
KJ683944 China 2005 1E 
KJ683956 China 2006 1E 
KJ683948 China 2006 1E 
KJ683938 China 2001 1E 
KJ683941 China 2003 1E 
KJ683947 China 2006 1E 
KJ683960 China 2009 1E 
KJ683986 China 2012 1E 
KJ683940 China 2001 1E 
KJ683939 China 2001 1E 
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Accession Number Country Isolated In Year of Isolation Genotype 

KJ683950 China 2007 1E 
DQ255946 China 1984 - 
KJ683995 China 2011 2B 
KJ683996 China 2011 2B 
KJ684000 China 2011 2B 
KJ684008 China 2012 2B 
KJ683997 China 2011 2B 
KJ684009 China 2012 2B 
KJ684003 China 2011 2B 
KJ683998 China 2011 2B 
KJ684007 China 2012 2B 
KJ684006 China 2012 2B 
KJ684005 China 2012 2B 
KJ684001 China 2011 2B 
KJ683999 China 2011 2B 
KJ684002 China 2011 2B 
KJ684004 China 2012 2B 
KJ683992 China 2008 2B 
KJ683993 China 2008 2B 
KJ683994 China 2008 2B 

AM258954 Belarus 2004 1E 
AM258955 Belarus 2004 1E 
AM258957 Belarus 2004 1E 
AM258956 Belarus 2004 1E 
AM258944 Belarus 2005 1G 
AM258949 Belarus 2005 1G 
AM258950 Belarus 2004 1G 
AM258951 Belarus 2004 1G 
AM258952 Belarus 2004 1G 
AM258945 Belarus 2004 1G 
AM258946 Belarus 2005 1H 
AM258953 Belarus 2005 1H 
AM258947 Belarus 2005 1H 
AM258948 Belarus 2005 1H 

EF421978 Russia 2006 1E 
AY247018 Russia 1973 - 
EF421977 Russia 2004 1H 
AY247015 Russia 1967 2C 
AY247016 Russia 1968 2C 
AY247019 Russia 1997 2C 
FR717206 Bosnia 2009 2B 
FR717208 Bosnia 2009 2B 
FR717209 Bosnia 2009 2B 
KF792832 United Kingdom 1986 1I 
FN546984 Portugal 1998 1E 

 


