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Rubella is an infection caused by rubella virus. Rubella virus belongsTodhgiridagdamily

and is a single strandgbsitive sensé&kNA virus of about 9,26 uclectides. Rubellance

known as GermaMeasles causesn iconic red rash all over the bodpd theteratogenic
congenital rubella syndromi@ pregnant women. Due to BaslesMumpsRubellavaccination
rates fallingthroughout the developed worldnd measles and mumgp®comingresurgert, the
evolution of rubella virus is importanb study prior to itgpotential resurgence. The E1 geofe
the rubella virus is responsible for interaction with the human immune syséem it is the
antigen to which antibodies are formed. Taeolutionary rate of Elalong with the full rubella
genomewas determired using phylodynamic anaigsBoth the whole genome and the E1 gene
were evolving in a clocklike mannemnd the evolution of both were successfully analyzed with
BEAST?2 software. A difference between thetifigting priors between the two datasets was
the kind of molecular clock preferred: the whole genome was best fit by a relaxed molecular
clock, while the E1 gene preferred the strict molecular clock. This differenceohaelmpact

on the results, witlthe estimated evolutionary rate for the E1 gefnem the strict clockeing



lower than the whole genomébut still within the 95% highest posterior density range aB8x0
103 substitutions per site per yedssy) while the whole genome had an evolutioneate of
1.60x 103 ssy with a 95%ilighest Posterior DensitidPD of 1.06 x 1§ to 2.18 x 16 ssy.
Reconducting the E1 analysis with a relaxed molecular clock resulted in a similar evolutionary
rate as the whole genomef 1.51 x 10° ssy with a 95% HIPof1.23 x 16 to 1.80 x 16 ssy This
is one of thefirst cases where there wasstatistically significant difference in substitution rate
(nonoverlapping HPD$etween analyses of the same dataset calculated whitterent clock
priors. The relaxé clock estimates of nucleotide substitution rate are higher than has been
estimated for rubella virus in thpast andagrees with the more rapid rate of evolution seerain
single decade in China. These results suggest that rubella evolves fasterpghatedxthough

it is not undergoing substantial positive selection, and that choice of clock model is a more

significant determinant of substitution rate than previously considered.
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Sectionl: Introduction
1.1 History of Rubella:

The infection known as rubellalso sometimes known as German Measlethree-day

measlesis caused by the rubella viruls themid 1700sand early 1800s, the infection was
commonly mistaken to either be scarlet fever or some derivativeedisles, due to their
O2YY2ylLtAdGe Ay aKINAYy3d GKS A02yA0 NBR NI &K
George Maton, &ermanphysician working in England, suggested that rubella could potentially
be a distinct illnesdueto not sharing seeral key characteristics atarlet fever or measleand

thus gave it a namd®theln (Wesselhoeft, 199. While this is the first instance in which the
disease was named, the more common name of the disease that we use today was not
developed until laterin 1866 an English surgeon by the name of Henry Weadein India where

he witnessed an outbreak of the virus within schoolchildren, and gave it the distinct name
rubella, as he believed that the German word Rétheln was a harsh word (Veale, 1866). With
clinical observations of the diseashowing differencefrom measles and scarlet fever, the
International Congress of Medicine met in 1881 and officially recognized rubella as a distinct

diseaselMC, 1881).

With the discovery and study of viruses undeyia the 1890s, infection by rubella was first
proposed to be caused from a virus in 1914 by Alfred Hess, who inoculated monkeys with the
blood of children infected with rubelliHess, 1914). This was later confirmed to be true in 1937
when the disease wasassed successfully to children from people with severe cases of the
infection (CDC, 2®&). While rubella was initially thought to be a mostly harmlesshthat

quickly passed (hence the name, thréay measles)ater clinical observations proved this be
false A potential link between the rubella infection and serious birth defects happened in 1940

when it was discovered that babies who were born to mothers who contracted rubella had high

2 ¥



rates of cataracts, which led to the belief that the infectjgayed a role (Gregg, 194These

initial findings were later shown to be supported in several studies where the rate of newborn
deformities were much higher in women who contracted rubella during pregnancy compared to
women who did not contract rubellFox and Bortin, 194®ber et al, 194,Mackenzie et al,
1948).This outbreak and subsequent observation of birth defects in children was instrumental as
it iluminated the study of viruses to be included as possible teratogenic agents, or things which
canOl dzA4 S 0 A NIi K RS T SFaily thedrhbglla dArysywdithiwas aleady belieded

to be the causative agent of rubella, wiaglly isolated in tissue culture in 1962 which allowed

for it to be studiedn lab(Cooper, 1985).

Since the discoves of fetal abnormalities associated with rubella infections during pregnancy,
congenital rubella syndrome (CRS) has become the most troubling effect of rubella infections.
CRS occurs when a pregnant woman is infected with the rubella virus and trahsfarfection

to her developing fetus, resulting in either a stillborn, miscarriage, or a baby with several
defects. Thesdefectsinclude cataracts, mental retardation, hearing loss, congenital heart
disease, bone disease, and m@kanzieri et al, 2018LRS typically has the highest chance of
occurring when a pregnant woman is infected in her first trimegsiéth the chance going down
significantly as gestation period increases (Lee and Bowden, 200Quitaet prevalence of
congenital rubella syndroe is not globallyeported; however, it was estimated that in 2001,

over 100,000 cases of congenital rubella syndrome occurred with a global prevalence that year
of 836,321 cases (Robertson et al, 2003)is makes the spread of rubella an important globa

concern to prevent the transmission of rubella to pregnant women.



Countries with Rubella vaccine in the national immunization
programme; and planned introductions in 2019
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Figurel. Current global range of countries immunizing for rubella or planning to immunize for
rubella as of 2019. Adapted from WHO immunization schedule.

1.2 Modern Significance and Reach

Increased availability of vaccines against rubella along with vaccination programs and control
strategies carried out throughout an increasing number of countries has led to a global decrease
of the number of rubella cases the 2F! century. The number of global reported cases of

rubella has fallen from 670,894 cases in 2800 836,356 cases in 206122,361 cases in 2016
(Grant et al, 2016Robertson et al, 2003\Ithough still endemic to many regions of the world,
particularly those with no implemented vaccination strategies against rubella (gray countries in
Figure 1) many regions are making massive gains into the elimination of the disease. As of 2015,
rubella has been declared eliminated from the region of the Acasr(CDC, 2015). In the United
States, children are routinely vaccinated with a trivalent vaccine against measles, mumps and
rubella (MMR), which contains a live attenuated vaccine for rub€l2Q, 2019 Worldwide, a

variety of live attenuated vaccinese given for rubella, and vaccination campaigns were



adopted more slowly than for measles or mumps. For instance, China only stéfegdg

rubella vaccinations beginning in 1988d it entered the nationwide immunization schedule in
2008(Su et al, 218). Further expansion is continuing throughout the world, with 4 different
countries planning to add rubella vaccination to thenmunization schedulen 2019 (yellow
countries in Figure 1Pespite this, further expansion into Africa is sorely needethay are the
last continent and major region within the world still with a significant number of countries and

population at risk for rubella outbreaks and epidemics (WHOGR01

With the rise of the internet making information widely available, theegor of misinformation

has infected the discussion regarding vaccinations. Misinformation, misleading claims,
misinterpretation of data, and fraudulent data are easily spread amongst the populace and in

certain cases become engrained within public discodespite being demonstrably false. In

1998, former doctor Andrew Wakefield along with a number of other researchers published a

now redacted paper in which it was concluded that the MMR vaccine was the probable cause of
developmental delays in children, wh was described as autism (Wakefield et al, 1998).

Despite unethical practices, scientific misconduct, and fraud that was later revealed which

OF dzZa SR GKS LI LISNI 4§42 0S NBGNI OGSR FYR ! YRNBEg 2
lasting damage and istrust of vaccines spawned from this paper are still felt to this day. The

findings and conclusions within the paper were immediately proven false (Taylor2€08),

FYR y2 F2ftt2¢ dzlJ aGdzRA Sa K VeaySecddthy Mihokhért@dyhad SR 2 | |
corroborated the findings that the MMR vaccine has no links to development of autism within

children, showing that 21 yealater there is still nevidenceF 2 NJ 2 | { ST AHSid&aa Of | A Y
2019).However, as vaccine compliance has fallen amyndeveloped countries, measles has

become resurgentPhadke et al, 20)6with sporadic outbreaks of mumpSDC, 2018 Rubella

is lesscommon than these other diseases included in the MMR vageithemeaslesand



mumps being more common, especially lire tUS (WHO, 2016t it would not be unexpected

to see a rubella outbreak in the USA in upcoming ydadre.CDC currently recommends a
targeted vaccination rate of 95%r the MMR vaccinéo prevent widespread outbrealaf

measles, mumps, and rubella. 852017, only 6 states have higher than 95% of children aged
19-35 months inoculated with the MMR vaccine, with 16 states falling below 90% vaccination
rate for MMR (CDC, 201 AVith measles and mumps outbreaks being widespread with low
MMR vaccination s, rubella may be expected to make a comeback in the US, as is already
speculated in places such as France (Beraud, 2018). What was once thought of a disease that
would eventually be eradicated due to vaccination now has a high chance of making a
resurgance and due to this it is imperative that the evolution of the rubella virus can be

understood to help control and prevent future outbreaks.

Capsid protein
(CP) Membrane

Figure2. Graphical representation of the rubella virus along with structural prot€sE1, and
E2) being shown in their correct positions. The trimer formed by the E1 and E2 proteins are
shown in yellow on the surface of the virus. Image from Viralzamev.expasy.org/viralzone
SIB Swiss Institute of Bioinformatics, 2017. Image CCANTBND




1.3Rubella Virus:

The etiological agent of rubella, the rubella virus or rubivirus 9i§ @2nucleotidesingle

stranded RNA mammalian virus. It belongs to the viral fahtityaviridaewhich are defined by

being spherical viroids, single strandédA Y S+ NE LR AAGA DS aSyasS wb! GAN
FYR 0Q LRfteélIRSyeflrGdSR GFrAftod ¢KAA YSikKet OFLI Iy
translated when within a host as this mimics mRNA (Jose et al, 2009). Like other viruses within

the Togavirida family, the rubella virus has nen G NHzO (G dzN> £ LINPiSAya Sy O2RS
2F (GKS OANHzA oKAES (GKS Sy@gSt 2L VigRne018)a A R LINE
The rubella virus genome consists of genes that encode for two RNA replipadi@ins, p150

and p90, along with three structural polyproteins, E1, E2, and the capsid protein. The E1, E2, and
capsid protein are constructed as a polyprotein with the proteins being cut by signal peptidase,

and the p150 and p90 proteins are also enedés a polyprotein with them being cut by p150

(Frey, 1994). The EA2 trimer that is formed on the surface of the virus is especially important

in the infection with rubella virus. The complex that is formed from the E1 and E2 proteins

coming together ha been shown to be necessary in transfer out of the endoplasmic reticulum,

through the Golgi apparatus, and to the cell membrane (Yang et al, TRS8E1 proteimlso

specifically has been shown to be the protein directly responsible for attachmenuarmhfinto

human cellgfYang et al, 1998In addition to this, the E1 protein is especially important as the

human immune system forms antibodisgeting antigens against tielprotein, both from

natural infection and through vaccination (Chaye et8b2).
1.4 Rubella virus evolution

Recent literature regarding the evolutionary rate of the rubella viras mainly focused on

country specific outbreaks and genotypes of the rubella virus (Zhu et al, 2012, Zhu et al, 2015,



Yalcinkaya, 201%dditionall, the studies mostly focus on tif&9-nucleotidewindow within

the E1 gene recommended by the WHO for rubella genotype classification @UHS, The
studies that have been done generally see the rate of evolution of the E1 gene increasing as
time progresses, with significantly higher rates being reportighending on year of the study
along with very little to no recombination being present withirbella Cloete et al, 2014, Zhu et
al, 2012, Jenkins et al, 200®) China, it has also been found tha¢ Bl gene has been evolving

at even a significantly higher rate than E1 isolates globally (Zhu et al, 2012, Zhu et al, 2015).

The genotypes of rubella are typically divided into two distinct clades. Clade 1 contains 10
genotypes, these being 1aB11C, D, 1E, 1F, 1G, 1H, 11, and 1J with 1a being a provisional
genotype while clade 2 contains 3 genotypes, these being 2A, 2B, and 2C (WHO, 2005). The
most common current circulating rubella genotypes globally are 1E1JgBd 2B with 1E and

2B being globakhile 1G is more restricted to Afrieand 1J more restricted to AsjAbernathy

et al, 2011, Zheng et al, 2008)entification of the genotype is importafior characterization by
the WHO into these genotypes, however it is argudebther more precise geotypes should be

established between the most common genotypes (Rivailler, 2017).

1.5Molecular Modeling:

In order to effectively and accurately gauge a given nucleotide substitution rate over time,
several models are able to be selected from regarding, tame, and effective population sizes.
Among these are the site model, whidatermines rates of change within specific sites of a
genome, the molecular clock model, which infers a given model of divergence at a certain time
and then bases the evolutiaate over time from that, and the prior models, which are

associated with the population of a genomic dataset.



There are several differemucleotide substitutiormodels available for use, although the one
used within the context of this study was therig@ealized Time Reversible Model (GTR). The GTR
model assumes that the frequency of each base is differamd that all pairings of nucleotides
have independent substitution ratg3 avare, 1986)t does not allow each potential substitution
to have an indpendent rate because that would requiaeprioriknowledge of the root of the

tree ¢ and would make the model not time reversibkdditionally, modeling included within

the different site models themselves are used to show different rates of variatitmrwi

different sites in the sequence. These two additional models are the gamma distribution
models, typically denoted by the letter G, and the proportion of invariable sites, typically
denoted by the letter I. The gamma distribution, from its name givelsaamging probability
distribution withinthe nucleotide substitution rates. The proportion of invariable sites examines
the numberof sites within a genome that have very low rates of evolution or are highly

conserved and takes into account their impantanalysis (Huelsenback, 2001).

Of the molecular clock models this study inclddiee strict clock model, the relaxed logarithmic
clock model, and relaxed exponential clock model, each corresponding to how the rubella virus
potentially evolved over timeThe strict clock modelssumes that evolutionary rate is constant
throughout time. The relaxed clock models both allowdach branch in the phylogeny to have

its own evolutionary rate regardless of placement within a phylogenetic tree. The differences
between the log normal and exponential models @raistribution ofthe rates of the

nucleotide substitutions.

Different tree priors are also tested for their use in demographic reconstruction of the rubella
virus over time. Theonstant coalescent tree i assumes a constant effective population size
over the time period of samples whereas the exponential coalescent nasdeimes an

exponentially increasing population size. Bayesian skyline utilizes sampling at posterior trees at



different time points toaccurately assess effective population size. Extended Bayesian skyline is
guite similar butis betterfit for bottleneck events, which one might expect if thenestevents

that would rapidly decrease transmission.

Section 2 Methodology

2.1 Acquisitionof Data:

A total of 63 whole genome isolates of rubella viouginating betweerl961-2013from 12
different countries werevailable inGenBank in February 201&wnloadedand saved.
Separately, in a Microsoft Excel worksheet, details of isolation asggging of the virus were
noted. Of the 63 whole genomes, 17 were excluded from further phylogenetic analysis due to
potential issues clouding the accuracy in any further analysis. Substitution rate analyses require
sequences with rigorous dates of isatat from its global gene pooR{oux and Belloux, 20160
genome sequences withogufficientdetails of theyearof their isolation, extensive passaging in
the lab prior to sequencing which would allow for changes in genome to occur withiandb
sequences derived from vaccine strains cannot be used for accurate analygesnatural rate

of rubella virus evolutionFurther, known recombinant sequences are not appropriate for
phylogenetic analyses in general, and were excluded from this study (€loate2014).
Sequences were named to reflect their GenBank accession number, country of isolation (ISO

two letter country code), and year of isolation.

Following similar methodology as described above, a total of 309 E1 gene sequences frem 1961
2013 in 1Xdifferent countries were downloaded and saved from GenBank along with similar
details about isolation. Of the 309 E1 gene sequences, 67 were excluded from further analysis
due to similar reasons mentioned above. Sequence names were changed to refleeinenB

accession number, country of isolate, and year of isolation. The 242 E1 isolates used included 46
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E1 genes from the whole genome datasktshould be noted that there is a primamplified
739 baseaegion of E1 that covers just over half (51.2%heffull E1 gen¢hat is frequently
sequenced and deposited into GenBawkHO, 2005)More than a thousand such sequences,
most with rigorous dates of isolation, were available in February 2018, wkétywould have

exceeded the time limits of analyseléosved on the CIPRES Gateway setliat was used.

2.2 Alignment

Multiple sequence alignment was done using Clustal Omega for both the whole genomes and
the E1 isolates (Chojnacki et al, 2017). Alignment outputs were saved in both the clustal and
nexus famats for further use. E1 isolates were imported into Geneious Prime v.2019.1.1
(Geneious2019 and the E1 gene regions from the whole genomes were extracted and cut
usingthe sites of start and stop codons framference sequences in GenBank. Using Gersei
Prime, neighbor joining trees were built from the whole genome dataset and the E1 dataset for
further use. Of the 1443 nucleotide E1 gene region, the first 27 nucleotides were excised from
most sequences to match the shortest E1 sequences in the datdkmsving each sequence to
have equal information content (final alignment length = 1416 Athird dataset (WGEL1), of
simply the extracted E1 gene region (minus the first 27 nt to match the size of the larger E1

dataset) from the whole genome alignntamas made as a control for the larger E1 analysis.

2.3 RecombinationDetection

Recombinatiorisa means of increasing genetic variarieat is important to test fomprior to
phylodynamic analysis because recombination can blupthgogenetic history athe isolates
used Recombination within datasetBas been shown to diminish both phylogeneitcuracy
and causeverestimation of nucleotide substitution rates (Posada and Crandall,, Zab@erup

and Hein, 2000_anierand Knowles2012). Recombinatiowas tested for using RDP4 which
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uses seven different independent detection methods to find recombination, if present, within a
dataset (Martin et al, 2015 he seven detection methods that were used were RDP (Martin and
Rybicki, 2000), GENECONYV (fRadid al, 1999), Bootscan/Rescan (Martin et al, 2005), MaxChi
(Smith, 1992), Chimaera (Posada and Crandall, 2001), SiScan (Gibbs et al, 2000), and 3Seq (Lam
et al, 2018)Of the seven detection algorithmsed,at leastthree of thealgorithmsneeded to
detectan event of recombination in order to be considered significahe general settings of

the RDP4 detection methods that were implemented were analysis of linear sequences with a p
value threshold of 0.05 and use of Bonferroni correction, which is negegdgen makingnany
multiple comparisons for recombinant detection. Additional settings changes included using the
Kimura model (instead ¢he JukesCantor modél for the Bootscan detection method to help

be used in nucleotide substitution ratesgardingtransitions and transversionifmura et al,
1980).Recombinant sequences were removed from the dataset to prevent inaccurate

phylogenetic analysis.

2.4 Temporal Signal Detection:

In order to determine whether or not further phylodynamic analysis wowdppropriate with

these datasets, we determined whether these rubella sequences were evolving in dikaock
manner. This is done by using different sequences isolated at different points in time in order to
see whether they have measurableamount of gnetic divergence thatorrelates positively

with time. TempEst v.1.5.1 was usedmeasure this correlation, usingig-dated (year of

sequence collection) neighbor joinitrge. Genetic differencedbetween taxa create eoot to tip

linear regression gh that shows correlation of genetic divergermeer yearssince divergence
(Rambaut et al, 2016). The neighbor joining trees previously made using Geneious Prime of the
whole genome and E1 datasets were used as input files for TempEst and dates werdlymanua

inputted to run the program.
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2.5Phylodynamic models to assess rate of evolution:

To use BEASTRduckaert et al, 20040 estimate rates of evolution and other population
parameters for rubella virus, first the most appropriate priors had to be tsdfor each

dataset. The best fitting nucleotide substitution model was chosen by JModelTest v2.1.6
(Darriba et al, 2012)JModelTest utilizes five different model selection strategies with each
allowing for rate variation to make a likely estimate oé thest fitting nucleotide substitution

model given the dataset. Path sampling in BEAST2 first determined (by marginal likelihood
estimates) the best fitting molecular clock model (assuming a constant viral population size) and
then using the chosen clodke best fitting demographic model was chosen. There were three
different clock models used: a strict molecular clock model that assumes that every branch of a
phylogenetic tree has the same rate of evolution, a relaxed lognormal clock model that assumes
that evolution occurs as a lognormal function among branches, and a relaxed exponential clock
model that assumes that substitutions vary following an exponential function amongst
branches. After the best fitting clock was selected (assuming a constarpaenalation size),

four differenttree priors were tested for each of the datasets. These included constant
population size, exponentially growing population size (as would match many emerging viruses),
allowing the BEAST?2 analysis to determine populaines at different time periods during the
analysis (Bayesian skyline), and the extended Bayesian skyline, which accommodates smaller
numbers of sequencassingthe original Bayesian skyline modBEAUTi v2.5.0 was used for the
generation of the XML filder path sampling and subsequent analyses (Bouckaert et al, 2014).

The XML files were modified for path sampling by replacing the run command with:

<run spec='beast.inference.PathSampler' chainLength="2000000" alpha='0.3" rodrai/="/

burninPercentage'50' preBurnin="0" deleteOldLogs="true' nrOfSteps='100">
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cd $(dir)

java -cp $(java.class.path) beast.app.beastapp.BeastMain $(resume/overvqagn -seed

$(seed) beast.xml

(Adapted from github.com/BEAST2V/BEASTLabs/examples/testPathSampler.xml)

Thedowngraded v.2.5.0 version of BEAST2 and BEAUTI were used for XML file generation and
analysis due to several infinity errors within the marginal likelihood estimates which terminated
several runs when attempted with the most updated version of BEASTZtickhadly, chain
lengths and logs were standardized at 2,000,000 and 10000, respectively. All analyses were run

through the CIPRES Science Gateway (Miller et al, 2010).

2.6 Bayesian Phylogenetic Analysis

Using the best fit clock modelkior pairing as idetified by previously done path sampling, BEAST2
was run for the whole genomes, E1 genes, and E1 genes solely for the whole genomes. When a
dataset did not select the Bayesian skyline demographic prior as the best fit, it was run in parallel
with the seleted analysis to visualize the effective viral population over the timespan of the
sampled sequences. The xml files for the final runs were generated in BEAUTI v2.5.0 using the
parameters defined by previously done path sampling. A chain length of 1 billiofogs being

filed every 10,000 steps was done for each of the final runs as these settings have been previously
shown to produce sufficiently resolvedesults (Njagi, 2018). Two independent runs of each
dataset were done to ensure that the analysisieerged on the same outputs. All analyses were

run through the CIPRES Science Gateway (Miller et al, 2010). Log and tree output files of the BEAST
runs for each datatset were imported into Tracer which allows for visualization and creation of
skyline plotgrom the completed BEAST?2 ruRafnbautt al, 2018). Nucleotide substitution rates

were recorded from the finalized clockRate va(sgick clock priorpr ucedMean valuérelaxed
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clock prior) Lastly, maximum clade credibility (MCC) trees were congtdugsing TreeAnnotator
v1.8.4 from the BEAST2 package softwdmees were then viewed and colored according to

country of isolation using FigTree v1.4.4 (Rambaut, 2018)

2.7 Selection Pressure Analysis:

Positive and negative selection thife E1 dataset wasonducted using three separate analyses
using the Datamonkey server (Weaver et al, 2018, Delport et al, 2010, Pond et al, 2005). The three
analyses used werblixed Effects Models of Evolution (MEME), Fast Unconstrained Bayesian
Approximation (FUBAR), aringle Likelihood Ancestor Counting (SLAC). The FUBAR analysis
measures the nonsynonymous (dN) and synonymous (dS) substitution rates of a dataset and takes
into account large numbers of varying site classes which allows the evolutionary rate to be
different although this also assumes a constant diversifying pressure (Murrell et al, 2013). The
MEME analysisbserves both pervasive and episodic positive selection throughout a dataset at
an individual site level (Murrell et al, 2012). The SLAC analysisnakssures dN and dS
substitution rates and assumes constant selection pressure through maximum likelihoods and
counting approaches (Pond and Frost, 2005). The p valasholdsfor each analysis was set at

less than 0.1
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Figure3. Flowchart of the methods used along with file formatting for the analysis of the whole
genome and E1 rubella datasets. Greyed out symbols indicate exclusion of isolates, black
symbols indicate correct file formatting, red parallelograms indicate necgssde steps before
continuation, and blue rectangles represent main sequence of events.
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Section3: Results
3.1 Alignment:

After vigorous background vetting of several whole genome and E1 iscléteshole genome
isolateswere used for analysig&\lmos half of the 242 E1 gene isolates used for alignment were
at A3KGte avylfttSNIGKIYy (GKS FdzZt 3SySz la (GKSe@
excludd these 27nt from all isolate€lustal Omega produceagbod alignments that did not

need tobe corrected by hanahere were few insertions or deletions the whole genome
alignment (9778 nt) and none in the trimmed E1 alignment (1416Th® whole genome ltha

94% pairwise identity score and the E1 datasat a®5% pairwise identity scorehd G/C

content of the whole genome was 69.7% and 66.2% for the E1 gene dataset, which is very high
for an RNA virus but quite normal for rubella virus (Takkinen et al, 1888l list of whole

genome sequences used is givigopendix 1 In addition to he E1 portion of all sequences in
Appendixl, theElgene sequencessedare given ilAppendix2. As one whole genome isolate

had already been excluded due to previous evidence of recombination (Cloete et al, 2014), no

recombination was detected within th@hole genome or E1 datasets.
3.2Temporal Signal Detection:

Correlation coefficients for both the whole genome and E1 datasets were extremely high. The
whole genome dataset had a correlation coefficient of the best fitting root to tip of 0.9246,
indicating that the whole genome dataset is evolving istnglyclocklike mannefFigure 4)

For the E1 gene dataset, the correlation coefficient was 0.8di6bproviding good evidence
0KF G NHageSefs Bvbldng in a predictablelocklike manne(Figue 5). These datasets

were appropriate for further phylodynamic analysiehe WGE1 dataset, which was extracted
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from the whole genome alignment, was assumed to have a positive correlation between genetic

divergence and time.
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Figure4. Temporal signal detection of the 46 whole genome isolates using best fittinga-oot
tip divergence. The correlation coefficient for the best fitting root to tip was 0.9246 with an r
squared value of 0.8549.
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Figureb. Tenporal signal detection of the 242 E1 gene isolates using best fittingtoetgt
divergence. The correlation coefficient for the best fitting root to tip was 0.8461 with the r
squared value being 0.7158.
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3.3 Phylodynamianodelingselection:

Thebest fitting site model for both the whole genome and the E1 datasated on the
marginal likelihood estimatwas the GTR | + G modehosen by the corrected Akaike
Information Criterion) indicating that gamma distribution and proportion invariaudtions

are necessary in accurately determining nucleotide substitution rate.

For the clock models tested, the relaxed exponential clock model was the best fitting clock
model for the whole genome datasethich accommodates the substitution rate varyingeo
branches othe phylogenetic tree. The best fitting clock model for the E1 datasetheastrict
clock model, whichequireseach branch on the phylogenetic tree of the E1 datasetvolve at
the same rateAs the E1 dataset did not have as good 6f @ a linear correlation as the whole

genomes in TempEst (Figurkeand 5, this was surprising.

With the constant population size being used to test which clock model is best to then go on and
test the other tree priors to see which the best poputetidynamic is, further tree prior testing

for each clock mode$ not needed However, br the whole genome datasgeach and every

clock model and tree prior pairing was tested in order to confirm that the best fitting clock
model selection did not diffebased on tree priors being usethis factorial approach was not
taken for the Eland WGEHatases, thusthe exponentially increasing, Bayesian, and extended
Bayesian tree prior models were not tested for the relaxed lognormal clock model in either the
El dataset or the whole genome E1 dataset. Additionally, the exponentially increasing and
extended Bayesian priors were not tested for the relaxed exponential clock nieighrdless of
best model choice he Bayesian skyline model was as subsequenBEAT2analysiswith the
selected clock model because that produces estimates of rubella virus effective population size

over time.Tablesl-3 show the clock models and tree priors tested with their marginal likelihood
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estimates.The differences in marginakélihoods were not always largeeaning that

potentially multiple priors coulde appropriate The whole genome dataset showed a very clear
best fitting clock model and tree prior pairing which was the relaxed exponential clock model
with a constant poplation size. The full E1 datagaeferred thestrict clock model with the
Bayesiarskylinetree prior. TheWGEldataset despite coming from the whole genome dataset
which favored a relaxed molecular clock preferred the same strict clock and Bayesia@ skyl

priors as the larger E1 dataset

Tablel. Path sampling analysis of thdole genomedataset. Marginal likelihood estimates are
listed for each tree prior and clock model pairing with best selected model bolded.

MolecularClock Models Tested

Tree Priors Strict Relaxed LogNormal Relaxed Exponential
Constant -48634.7 -46786.2 -45677.6
Population
Exponentially
|ncreasing -45708.0 -45856.2 -45696.6
Population
Bayesian -45707.6 -45998.8 -45710.1
Skyline
Extended -45707.4 -46028.0 -45753.4

Bayesia
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Table2. Path sampling analysis of tB4 genadataset. Marginal likelihood estimates are listed

for each tree prior and clock model pairing with best selected model bolded. Further tree priors
were nd tested for the relaxed lognormal and two priors were not tested for the relaxed
exponential molecular clock.

Molecular Clock Models Tested

Tree Priors Strict Relaxed LogNormal Relaxed Exponential
constant -13663.3 -13665.6 -13665.6
Population
Expmentially

Increasing -13655.4 - -
Population

Bayesian -13650.1 - -13664.5

Skyline

Extended -13651.9 . i

Bayesian

Table3. Path sampling analysis of thi¢hole Genome Edlataset. Marginal likelihood estimates
are listed for eachree prior and clock model pairing with the best selected model bolded.
Further tree priors were not tested for the relaxed lognormal and two priors were not tested for
the relaxed exponential molecular clock.

Molecular Clock Models Tested

Tree Priors Strict Relaxed LogNormal Relaxed Exponential
Constant 6722.8 6733.6 6733.6
Population

Exponentially

Increasing -6721.8 - -
Population
Bayesian 6720.7 . 6730.9
Skyline
Extended 6733.6 ) -

Bayesian
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3.4 Nucleotide Substitution and Analysis:

The meamucleotide substitution rate per year of the whole genomes using the relaxed
exponential clock model with constant population tree prior resulted in a rateGff . 10°
substitutions per ge per year(ssy)with the 95%Highest Posterior DensitydPD interval range
being from 106 x 10°to 2.18 x 16 ssy(Figure §. The effective population siagsualized using
the Bayesian skyline plot (Figufe shows us that over time the effective population size for the
whole genome dataset has remained fairynstant, giving further credence to the constant

population size being the best tree prior to use.

For the E1 datasethe strict clock model with the Bayesian prior resulted in a mean nucleotide
substitution rate of 108 x 10% ssywith a 95% HPD interaf 950x 10*to 1.21x 103ssy This

rate is lower than the mean substitution rate of the whole genoimé due to theoverlap

between the two HPDshould be considered a similar rat&enes that interact with

mammalian immune systems tend to not éve slowlyand oftenare undemositive selection

due to a ceevolutionary arms racéStern and Sorek, 20)1,0s0 as a control BEAST2 analyses
were run on the E1 gene from the whole genome alignment only (WGE1). Surprisingly, WGE1
had a substantially lowenate of evolution than both the whole genome dataset (8.72%&8y,

95% HPD 7.26x1a1.02x10® ssy,Figure 6)and the full E1 datasetThe WGE1 HPD does not
overlap with the HPD of the whole genome at all, showing that the E1 of the whole genomes is

evaving significantly more slowly than the rest of the genome.

As this is an atypical result for antigenic proteins in mammalian virtlieks(and Duffy, 20}4
we employed relaxed molecular clocks on these two E1 datasets as well. Previous substitution

rate analyses of rubella virus E1 had used relaxed molecular etmig with the Bayesian
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skyline prior(Padhi and Ma, 2014 loete et al, 2014, Zhu et al, 2012, Jenkins 2@0R) the E1
dataset had showed less of a fit to a strict linear relationshipvbeen genetic divergence and
time in TempEsts). The two E1 datasets were reanalyzed with relaxed molecular clocks and the

Bayesian skyline demographic priors.

These parametersesulted in a rate of 507x 10° substitutions persites per year with a 95%
HPD interval of 23x 10%to 1.80x 10%ssywhich isquite similarto the substitutionrate of the
whole genomeslncredibly, the rate estimated with the relaxed molecular clock has non
overlapping HPDs with the rate estimated with the strict molecalackmeaning thatt is
statistically significantly highefhe reanalyzed WE&1 dataseestimated ahighersubstitution

rate of 1.643 x 1®ssywith the 95% HPD interval range being from 1.04 Xtb®.287 x 16

ssy whichis again statistically sidigantly higher than the estimate from the same dataset
using a strick clock prior. Importantly, both E1 analyses with relaxed molecular clocks showed
evidence that the relaxed clock was a necessary assumption for analyzing the datasets. Both
Fy I f @ &illutiof of Rdulls for the coefficient of variation (CoV) around the molecular clock
excluded zero, which is what the CoV would frequently be for a dataset evolving in a strict
clocklike manner. The CoV results indicate that the relaxed clock model evasappropriate

to usethan a strict molecular clock

The time of most recent common ancestor was also reported in BEASTZ2, with very similar
findings for the E1 and whole genome dataséis the whole genome, the most recent
common ancestor wasstimatedat about 111 years agq105 years before 203, the most

recent tip date in the analysisyvhich would be around 1908 with95%HPD intervals between
1846:1951. The E1 dataskad a time of most recent common ancestor estimated of about 92
years agd86 \ears before 2013, the most recent tip date in the analysis), which would be

around 1927 with 95% HPD intervals between 1884%7.
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Figure6. Log10 graph of nucleotide substitution rates of whole genome (WG), E1, and whole
genomeEl (WGEL) with 95% HPD intervals. Substitution rates indicated by a (*) were taken
from Cloete et al, 2014, Zhu et al, 2012, and Jenkins et al, 2002.
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Figure7. Bayesian skyline plot of the whole genome relaxed exponentiekehodel. The Y axis
is showing the effective population size with the x axis showing the timeline with the numbers
representing number of years from 2BIMean nucleotide substitution rate for the whole
genomes was 1.595 x i8ites/year.
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Figure8. Bayesian skyline plot of the E1 gene relaxed exponential clock model. The Y axis is
showing the effective population size with the x axis showing the timeline with the numbers
representing number of years from 281The mean nucleale substitution rate for the E1
dataset was 1.507 x fG&ites/year.
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3.5Phylogenetic resolution:

Maximum Clade Credibility (MCC) Trees constru@féglires 9 and 10) show grouping primarily
based on genotype and country of origifthile not all genotype were able to bédentified for

all of the isolates, a significant majority were still able to be folrat the E1 gene, 10 of the
genotypes present within the E1 clade were present within the dataset and 2 of the 3 genotypes
present within clade 2 werpresent. The notable exceptiamas the absence of th2A genotype

in the entire sampleThere was very strong support for the branching and clades in the E1 and
whole genome MCC trees. This is supported by the isolates coming together highly based on
genotype. The only genotypes observed that were not monophyletic were 1a, 1B, and 1D,
although these genotypes are not common. The two clades of genotypes for rubella cluster

quite distinctly for both the E1 and WG datasets
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Figure9. Maximum Clade Credibility (MCC) Tree of the Whole genome dataset. Taxa are scaled
to time of isolation; branch lengths are in years. Branches showing less than 0.9 probability were
collapsed and were color coded by country (also given by two letterd&@rg code):
ArgentinaChinaGermanylsraelltaly JaparKoreaMexicoNew ZealandRussidUnited States

Vietnam
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FigurelO. Circular Maximum Clade Credibility (MCC) tree of the full E1 dataset. Taxa are scaled
to time of isolation Branches showing less than 0.9 probability were collapsed and were color
coded by country (also given by two letter ISO country colligjentinaBelarus

ChinaFranceGermanyGreat Britairlsraelltaly JaparKoreaMexicoNew Zealand
PortugalRussidJnited States/ietnam

3.6 Selection Analysis

Of the three selection analyses used, no significant positive/diversifying selection was found in

any of the three methodsSLAC analysis also showed that 0 sites were undergoing positive



