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ABSTRACT OF THE DISSERTATION

Multidimensional Radar Signal Processing Based on Sparse

Fourier Transforms

By SHAOGANG WANG

Dissertation Director:

Athina P. Petropulu and Vishal M. Patel

The conventional radar signal processing typically employs the Fast Fourier Transform

(FFT) to detect targets and identify their parameters. The sample and computational

complexity of the N -point FFT are O(N) and O(N logN), respectively. In modern Dig-

ital Beamforming (DBF) and Multiple-Input Multiple-Output (MIMO) radars, N is large

due to the increased dimensions of processing (i.e., range, Doppler and angle) and the need

for high radar resolution in each dimension. Hence, the FFT-based radar processing is

still challenging for DBF/MIMO radars of constrained computation resources, such as the

state-of-the-art automotive radars.

Sparse Fourier Transform (SFT) is a family of low-complexity algorithms that implement

Discrete Fourier Transform (DFT) for frequency-domain sparse signals. State-of-the-art SFT

algorithms achieve sample complexity of O(K) and computational complexity of O(K logK)

for a K-sparse signal. When K << N , the sample and computational savings of SFT are

significant as compared with that of the FFT. In radar applications, the number of radar

targets is usually much smaller than the number of resolution cells in the multidimensional

frequency domain, i.e., the radar signal is sparse in the frequency domain; thus, it is tempting

to replace the FFT with SFT to reduce sample and computational complexity of signal
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processing. However, applying SFT in radar signal processing is not trivial for the following

reasons:

• Most existing SFT algorithms are designed for one-dimensional, ideal signals, which

are noiseless and contain on-grid frequencies; those SFT algorithms are not practical

for radar applications as the radar signals are multidimensional, noisy, and contain

off-grid frequencies.

• The signal processing schemes of different radar architectures need to be properly

designed to support the application of SFT. When the radar signal is not naturally

sparse, proper preprocessing is required to sparsify the signal.

• The application of SFT in radar signal processing involves tradeoffs between sam-

ple/computational savings and radar detection performance. Such tradeoff needs to

be characterized and the design of various parameters of SFT algorithms need to be

investigated to achieve the optimal tradeoff.

This dissertation aims to formulate SFT-based frameworks for radar signal processing

and address the above issues by proposing two new SFT algorithms, and adapting them

to DBF and MIMO radars. The proposed SFT algorithms are the Robust Sparse Fourier

Transform (RSFT) and MultidimensionAl Random Slice based Sparse Fourier Transform

(MARS-SFT).

RSFT extends the basic SFT algorithm to multidimensional, noisy signals that contain

off-grid frequencies. By incorporating Neyman-Pearson detection, frequency detection in the

RSFT does not require knowledge of the exact sparsity of the signal and is robust to noise.

The computational savings versus detection performance tradeoff is investigated, and the

optimal threshold is found by solving a constrained optimization problem. The application

of RSFT in DBF and MIMO radars is investigated. A uniform processing scheme based

on RSFT is proposed for MIMO radar that employs fast-time coded and slow-time coded

pulse-compression waveform.

Although RSFT-based radar signal processing achieves significant computational sav-

ings as compared to FFT-based processing, it does not offer sample complexity savings.
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To reduce sample as well as computational complexity, we propose MARS-SFT, a sparse

Fourier transform for multidimensional, frequency-domain sparse signals, inspired by the

idea of the Fourier projection-slice theorem. MARS-SFT identifies frequencies by operating

on one-dimensional slices of the discrete-time domain data, taken along specially designed

lines; those lines are parametrized by slopes that are randomly generated from a set at run-

time. The DFTs of the data slices represent DFT projections onto the lines along which the

slices were taken. On designing the line lengths and slopes so that they allow for orthogonal

and uniform frequency projections, the multidimensional frequencies can be recovered from

their projections with low sample and computational complexity. To apply MARS-SFT to

real-world radar signal processing, which involves noisy signals and off-grid frequencies, we

propose the robust MARS-SFT, and demonstrate its performance in digital beamforming

automotive radar signal processing. In that context, the robust MARS-SFT is used to iden-

tify range, velocity and angular parameters of targets with low sample and computational

complexity.

Finally, we propose a new automotive radar architecture. Such radar achieves high res-

olution in range, range rate, azimuth and elevation angles of extended targets by leveraging

two orthogonally-placed digital beamforming linear arrays of a few channels. A deep learning

based beam matching method is developed for the proposed radar to address the beam as-

sociation challenges. In sparse scenarios, the proposed robust MARS-SFT can be employed

in the beamforming, and range-Doppler imaging procedures to reduce computation.
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Chapter 1

Introduction

In this chapter, we cover radar basics and provide the necessary background of the conven-

tional Digital Beamforming (DBF) and collocated Multi-Input Multi-Output (MIMO) radar

signal processing. Those state-of-the-art radar architectures enjoy better target parameter

identifiability compared to conventional phased array radars as they provide more degrees of

freedom in the angular domain. However, this is at the expense of more complex processing

due to a larger amount of data. We thus are interested in reducing the sample and compu-

tational complexity of such radar signal processing by employing Sparse Fourier Transform

(SFT) based approaches, aiming to enable the real-time processing with low-cost hardware.

SFT is a family of low-complexity algorithms for the implementation of the Discrete

Fourier Transform (DFT) of signals that are sparse in the frequency domain. The SFT

algorithms can be divided into one-dimensional (1-D) and multidimensional algorithms.

Here, we provide a high level review of SFT. Specifically, we review simple and practical

SFT [4] and the Sample-Optimal SFT (SO-SFT) [5] algorithms, which are examples of 1-D

and multidimensional SFT algorithms, respectively. The two SFT algorithms also form the

basis of our proposed SFT algorithms, i.e., Robust Sparse Fourier Transform (RSFT) and

MultidimensionAl Random Slice based Sparse Fourier Transform (MARS-SFT), respectively.

The notations used throughout the dissertation are listed in Section 1.8.

1.1 Radar Basics

Radars are electrical devices that leverage electromagnetic waves to detect targets and esti-

mate their parameters including range, range rate (radial velocity), and Direction of Arrival

(DOA). To this end, radars use transmit antennas to transmit modulated waveforms, which
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propagate through space, and are reflected back from targets. The reflected waves are cap-

tured by the receive antennas, from which the information about the targets are extracted

by the receiver chains and processing pipelines of radars.

To illustrate basic principles of range and range rate estimation, let us consider a monos-

tatic pulse radar configuration, where the transmit and receive antennas are collocated. The

transmit waveform is modeled in a complex form, expressed as [6]

x(t) , s(t)ej2πft = a(t)ejφ(t)ej2πft, 0 ≤ t ≤ τ, (1.1)

where f, τ are the carrier frequency and the pulse width, respectively. The term s(t) =

a(t)ejφ(t) represents the baseband signal, and a(t), φ(t) are its amplitude and phase compo-

nents, respectively. The simplest form of a pulse waveform is the rectangular pulse where

s(t) = 1 within [0, τ ] and 0, otherwise.

The simplest model of a target is a stationary point; the reflected signal from such target

is modeled as

r(t) , αx(t− t0) + n(t) = αs(t− t0)ej2πft + n(t), (1.2)

where α is a complex-valued constant, representing the amplitude attenuation and phase

rotation of the transmit waveform due to antenna gains, target radar cross section (RCS),

and propagation losses. The term n(t) is the additive noise; in the simplest form, it is

modeled as the zero-mean white Gaussian noise. The time delay t0 is introduced by the

round-trip distance between the antennas and the target. Assume that the one-way distance

is R, and the waves travel at the speed of light of c, then, the target range can be calculated

as

R =
ct0
2
. (1.3)

Note that the phase rotation term of the carrier sinusoid introduced by t0, i.e., e−j2πft0 is

absorbed by α.

If the target moves at a radial velocity of v with respect to the radar, then, such movement

introduces an additional time-delay of 2vt
c , and the received signal is expressed as

r(t) , αs(t− t0 −
2vt

c
)ej2πf(t− 2vt

c
) + n(t). (1.4)
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Such target movement yields a frequency shift of fd, called the Doppler frequency, and

fd ,
2v

λ
=

2vf

c
, (1.5)

where λ is the wavelength.

The effect of the time-delay to the baseband signal due to target movement can be

neglected under the narrow-band assumption, i.e., [7]

2vτ

c
<<

1

B
, (1.6)

where τ,B are the pulse width and bandwidth of the baseband signal of s(t), respectively.

Hence, (1.4) is simplified to

r(t) ≈ αs(t− t0)ej2πf(t− 2vt
c

) + n(t) = αs(t− t0)ej2π(f−fd)t + n(t). (1.7)

The estimation of t0, fd and hence R, v is ideally achieved by a matched filtering process,

where the received signal is convolved with the conjugate of the transmit signal to maximize

the output Signal-to-Noise Ratio (SNR), mathematically

m(u, ν) =

∫ ∞
−∞

r(t)x∗(t− u)e−j2πνtdt

= α̃A(u− t0, ν − fd) +

∫ ∞
−∞

n(t)s∗(t− u)e−j2π(f+ν)tdt,

(1.8)

where α̃ = aej2πfu, and

A(u, ν) ,
∫ ∞
−∞

s(t)s∗(t− u)ej2πνtdt. (1.9)

|A(u, ν)| is the ambiguity function [8] of the baseband waveform s(t), which characterizes

the most important properties of the waveform. The peak location of |m(u, ν)| corresponds

to the estimate of (t0, fd) in the u − ν plane, which is the maximum likelihood estimation

under the assumption that the noise is Gaussian [7]. When multiple targets present, multiple

peaks can be detected from |m(u, ν)|, with each peak location representing the time-delay

and Doppler frequency of each target, respectively.

In real-world radar signal processing, the above two-dimensional (2-D) matched filtering

process is usually implemented by two consecutive one-dimensional (1-D) matched filtering

process to reduce computation. To achieve this, a pulse radar transmitM consecutive pulses
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with a repetition interval of T . The time within each repetition interval is called fast-time,

while the time across repetition intervals is called slow-time. The matched filtering in the

range domain is computed at the fast-time for each repetition interval, while the matched

filtering in the Doppler domain is computed across the slow-time for M intervals at each

range bin. Subsequently, a detection process is applied jointly in the range and Doppler

domains.

1.2 FMCW Radar

While pulse radars are appealing in long range applications, Continuous Waveform (CW)

radars play an important role in near range applications for the following reasons [9, 10]

• Monostatic pulse radars suffer from the blind range problem since transmission and

reception cannot work simultaneously; CW radars do not have a blind range.

• CW radars are cost effective due to their simple structure and low power.

The CW radar without modulation cannot be used for ranging as its baseband signal is

a constant. To enable the ranging capability, various waveforms can be used, among which,

(linear) Frequency Modulation Continuous Waveform (FMCW), also known as the chirp, is

the most widely used one. As will be explained in the following, FMCW achieves high range

resolution with low cost.

The transmit FMCW with unit amplitude is modeled as [11]

x(t) , ej2π(ft+ ρt2

2
), 0 ≤ t ≤ T, (1.10)

where ρ = B/T is the chirp rate, and B, T are bandwidth and modulation period, respec-

tively. It is clear that the frequency of x(t) is changing linearly along time.

The noiseless received signal from a stationary point target is modeled as

r(t) , αej2π(f(t−t0)+
ρ(t−t0)

2

2
), (1.11)

where α ∈ C represents the attenuation factor. (1.11) is a t0-delayed version of the transmit

signal as illustrated in Fig. 1.1. By absorbing the constant phase terms into the amplitude,
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(1.11) is simplified to

r(t) = α̃ej2π(ft+ ρt2

2
−t0ρt), (1.12)

where α̃ = αej2π(
ρt20
2
−ft0).

t

f

B

T MT

Transmit

Receive

t0

fr

Figure 1.1: FMCW waveform. The signal frequency changes linearly in time, with a repeti-
tion interval T . A coherent processing interval (CPI) contains M repetitions. The received
signal is a delayed version of the transmitted signal.

To demodulate the chirp, we multiply the received signal with the conjugate of the

transmit signal, and the demodulated signal is expressed as

b(t) , r(t)x∗(t) = α̃ej2πt0ρt = α̃ej2πfrt. (1.13)

This is a sinusoid with frequency fr = ρt0; such frequency is called the beat frequency [11],

which can be trivially evaluated by the Fourier transform (FT), subsequently, the target

range can be deduced from the beat frequency by

R =
cfr
2ρ
. (1.14)

The above demodulation-FT process is the matched filtering of FMCW in the range

domain. The demodulation process is implemented in the Radio Frequency (RF) front-

end by mixing the received signal with the coupled transmit signal followed by a low-pass

filter, while the FT is implemented digitally after sampling the demodulated signal. In

near range applications, the maximum time-delay, tmax, introduced by the maximum target
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range, Rmax, is much shorter than the modulation period, i.e., tmax << T . As a result,

the bandwidth of the beat frequency, Bb = ρtmax, is significantly smaller than the signal

bandwidth B. Hence, low speed Analog-to-Digital Converters (ADCs) can be used to sample

the demodulated signal, and the beat frequencies can be computed by the Fast Fourier

Transform (FFT) with low-cost Digital Signal Processors (DSPs) or Field Programmable

Gate Arrays (FPGAs).

The range resolution of FMCW is determined by the signal bandwidth B. To understand

this, let us rewrite (1.14) as follows

∆R =
c∆fr

2ρ
, (1.15)

where ∆R,∆fr denote the range resolution and beat frequency resolution, respectively.

Since beat frequencies are evaluated over the modulation period T , we have

∆fr =
1

T
, (1.16)

therefore

∆R =
c

2ρT
=

c

2B
. (1.17)

Hence, conventional FMCW radars could achieve high range resolution with low-cost hard-

ware. For instance, with B = 1GHz, the range resolution equals 0.15m. A 50MHz ADC

is sufficient for T = 100us and Rmax = 300m, since Bb = 40MHz. This makes FMCW

radars be popular in automotive applications, in which the FMCW radar is adopted as one

of primary sensors in automotive driver assistance systems (ADAS) and self-driving systems.

To measure the radial velocity of a moving target, similar to pulse radars, FMCW radars

transmit M consecutive chirps as illustrated in Fig. 1.1; the noiseless demodulated signal

from the m-th, m ∈ [M ], pulse is expressed as [11]

b(t,m) , ãej2π(fr+fd)(t−mT ), (1.18)

from which the Doppler frequency, fd, is evaluated across the slow time for each range bin

via FT. In fact, the ranges and Doppler frequencies of targets are usually evaluated via a

2-D FFT. Notably, when Doppler presents, the range and Doppler of the FMCW radar is

coupled as shown in (1.18). In automotive radar scenarios, such range-Doppler coupling can
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be usually neglected since the Doppler shift is usually smaller than the resolution of the beat

frequency, i.e., fd < ∆fr.

1.3 Digital Beamforming Radar

In the above sections, we have discussed range and range rate estimation in radars. Another

important target parameter estimation problem is the DOA estimation. The DOA of targets

can be measured at azimuth and (or) elevation depending on the configuration of antennas.

Conceptually, the DOA estimation is to find the bearing direction of the beam, where the

output yields the maximum SNR. Modern radar systems use a set of arrays to transmit

and receive waveform, which allows the radar form beam patterns that point to different

directions without physically steering the antennas. This can be achieved by the phased

array and DBF approaches [12, 13]. The former electrically steers different beams in a time-

duplex manner by changing the phases of each antenna during transmitting and receiving,

while the latter simultaneously forms multiple reception beams in the digital signal processor

(DSP). The advantage of the latter is that the DBF radar could see targets everywhere within

its field-of-view (FOV) at anytime without (physical) beam steering [14].

Let us consider a typical automotive DBF radar configuration illustrated in Fig. 1.2 [11],

where a broad transmit beam pattern is achieved by an omni-directional transmit antenna,

and multiple narrow beams are formed simultaneously by a Uniform Linear Array (ULA)

of N antenna elements. The geometry of the incident signal and the ULA is illustrated in

Fig. 1.3, where the antenna element-wise spacing is d. Assume that a stationary target is

located in the far field and its distance to the nearest receive antenna is R, and the round

trip delay is t0 = 2R
c , then, the noise-free receive signal at the i-th, i ∈ [N ] array element

can be written as

ri(t) , αs(t− t0 −
id sin(θ)

c
)ej2πf(t− id sin(θ)

c
). (1.19)

Under the assumption that the maximum time-delay between the two most distant an-

tennas is much smaller than the reciprocal of the bandwidth of s(t), i.e., [15]

(N − 1)d

c
<<

1

B
, (1.20)
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the received signal from the i-th array element can be simplified to

ri(t) ≈ αs(t− t0)ej2π(ft−iκ), (1.21)

where λ is the wavelength. The term κ is known as the spatial frequency [7], defined as

κ ,
d sin(θ)

λ
. (1.22)

For any time snapshot, the samples from all the antennas can be viewed as samples of

a complex sinusoid with the (spatial) frequency of κ. Hence, such spatial frequency can be

evaluated by DFT, subsequently, the target DOA is calculated as

θ = arcsin

(
κλ

d

)
. (1.23)

Note that the largest unambiguous range of θ is [−90◦, 90◦], which corresponds to the half-

wavelength element-wise spacing, i.e., d = λ
2 .

Rx BeamTx Beam

Tx

AD AD AD

DSP
DDS

Figure 1.2: DBF radar system architecture. A broad beam pattern is formed with an
omnidirectional transmit antenna, while multiple narrow beams are formed simultaneously
by the receiving array. Each receiving channel is mixed with a coupled signal from the
transmitter to demodulate (de-chirp) the FMCW signal, before AD conversion. The digitized
received signal is processed by a Digital Signal Processor (DSP), while the transmit waveform
is generated by a Direct Digital Synthesizer (DDS).
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Figure 1.3: DOA estimation with a ULA.

Now, let us assume that the FMCW depicted in Fig. 1.1 is employed in the DBF radar,

for the i-th, i ∈ [N ] antenna element and them-th,m ∈ [M ] chirp, the noiseless demodulated

signal of (1.18) is extended to

b(t,m, i) , ãej2π((fr+fd)(t−mT )+iκ). (1.24)

This can be viewed as a 3-dimensional (3-D) complex sinusoid, whose frequencies correspond

to the range (coupled with the Doppler), range rate, and DOA of the target. After AD

conversion of each receiving channel, we can use the processing scheme shown in Fig. 1.4

to detect the targets as well as estimate their range, velocity and DOA. More specifically,

grid-based versions of fr, fd, κ can be calculated by applying a 3-D FFT on the windowed

data cube [11], followed by a detection procedure.

1.4 MIMO Radar

The DBF radar configuration in Fig. 1.2 with one transmit antenna and multiple receive

antennas can be viewed as a Single-Input-Multi-Output (SIMO) radar. By increasing the

degree of freedom of the transmit channels, such SIMO radar becomes a collocated MIMO

radar [14, 16] as illustrated in Fig. 1.5. For collocated MIMO radars, the transmit and receive

antennas are closely located and thus the target RCS experienced by different transmit and

receive pairs could be viewed as identical; this allows collocated MIMO radars to exploit

phase differences in target returns induced by transmit and receive antennas, i.e., employ
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Figure 1.4: Conventional FFT-based processing scheme for the DBF FMCW radar.

coherent processing to effectively increase the array aperture and achieve high resolution as

well as high SNR.

Another kind of MIMO radars are distributed MIMO radars [17, 18, 19], where the

transmit and receive antennas are widely separated from each other compared with their

distance to the targets. In such scenario, the transmit antennas emit independent waveforms,

which propagate through independent paths from transmitters to receivers via the targets.

As a result, distributed MIMO radars enjoy spatial diversity to reduce the RCS scintillation

of targets.

In the following, we illustrate a basic collocated MIMO radar. Let us consider the MIMO

radar configuration of Fig. 1.5, where the transmission and reception are accomplished by

two ULAs ofMt andMr antenna elements, respectively. The element-wise spacing of the two

arrays are assumed to be dt, dr, respectively. During transmission, a set of orthogonal Code

Division Multiple Access (CDMA) waveforms are transmitted by each transmit antenna.

The L-coded discrete baseband signal transmitted by the uth, u ∈ [Mt] antenna is expressed

as

su(t) ,
1

Tb

L−1∑
l=0

sulRect[t− (l − 1)Tb], 0 ≤ t ≤ T, (1.25)

where Rect() is the rectangular window of width Tb, and Tb, T represent the sub-pulse and

pulse duration, respectively; sul is the l-th, l ∈ [L] code, and the code vector transmitted
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AD AD AD

DSP

Rx Rx Rx

DA DA DA

DDS

Tx Tx Tx

Figure 1.5: Collocated MIMO Radar System with ULA. Each transmit antenna transmits
an orthogonal waveform, which is generated by a DDS. The orthogonality of the waveforms
results into an omni-directional transmit beam pattern, while multiple narrow beams are
formed simultaneously by beamforming in the DSP.

from the u-th antenna is denoted as

su , [su0, · · · , su(L−1)]
T . (1.26)

Let us assume that the code is unimodal [20], i.e., |sul| = 1, u ∈ [Mt], i ∈ [L]. Ideally,

code vectors transmitted from different antennas are mutually orthogonal, i.e., 1
LsTu sv = 1

if u = v, otherwise 0, hence
1

L

∫ T

t=0
su(t)sv(t)dt = δuv. (1.27)

From the i-th, i ∈ [Mr] receive antenna, the noiseless received baseband signal from a

stationary point target is a t0-delayed version of the superposition of the Mt transmitted

signals, modeled as

ri(t) , α

Mt−1∑
u=0

su(t− t0)ej2π(uκt+iκr), (1.28)

where α ∈ C absorbs the constants, and

κt ,
dt sin(θ)

λ
,

κr ,
dr sin(θ)

λ
,

(1.29)
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are the spatial frequencies introduced during transmission and reception, respectively, with

θ, λ representing the target DOA and wavelength, respectively.

Owning to the orthogonality of waveforms, each transmit waveform of (1.28) can be

separated through matched filtering with a filter bank of Mt filters, i.e., correlating the

received signal with su(t), u ∈ [Mt]. For the snapshot corresponding to t0, the matched

output of the receive array is expressed as

r = ãvr(κr)
⊗

vt(κt), (1.30)

where ã is a constant, and

vr(κr) , [0, e−j2πκr , · · · , e−j2πκr(Mr−1)]T ,

vt(κt) , [0, e−j2πκt , · · · , e−j2πκt(Mt−1)]T ,

(1.31)

are the receive and transmit steering vectors, respectively.

When dr = Mtdt,

r = ã[0, e−j2πκt , · · · , e−j2πκt(MtMr−1)]T , (1.32)

which can be viewed as the response from a virtual array of MtMr antennas with element-

wise spacing of dt; this achieves savings ofMtMr−Mr−Mr antennas and subsequent receive

chains as compared to a conventional ULA of the same resolution. Fig. 1.6 illustrates a

virtual array of 6 elements is formed by 3 transimit antennas and 2 receive antennas.

The output of the matched filter bank can be also arranged in a matrix format as

R = ã



0, e−j2πκt , · · · , e−j2πκt(Mt−1)

e−j2πκr , e−j2π(κr+κt), · · · , e−j2π(κr+κt(Mt−1))

...
...

. . .
...

e−j2πκr(Mr−1), e−j2π(κr(Mr−1)+κt), · · · , e−j2π(κr(Mr−1)+κt(Mt−1))


, (1.33)

which is a 2-D complex sinusoid, whose discrete (spatial) frequency, (κr, κt), can be evaluated

by a 2-D DFT. This is the 2-D transmit and receive beamforming. Unlike phased array

radars that form transimit beams at transmission, collocated MIMO radars are able to form

transmit beams at reception [14]. Compared to DBF radars with the same receive aperture

that only apply receive beamforming, the two-way beamforming of MIMO radars increases

SNR and achieves a narrower two-way beam pattern [14].
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Tx

dt dt dr = 3 dt

Rx

dt dt dt dtdt

Virtual Array

Figure 1.6: Virtual array. Mt = 3,Mr = 2, dr = Mtdt.

1.5 Sparse Fourier Transform

As discussed in the preceding sections, conventional radar signal processing methods involve

multidimensional DFT, which are typically implemented by the FFT. The sample complexity

of the FFT is O(N), whereN is the number of samples in the multidimensional sample space.

For N equal to a power of 2, the computational complexity of the FFT is O(N logN).

Recently, by leveraging the sparsity of signals in the frequency domain, a series of SFT

algorithms have been proposed [4, 5, 21, 22, 23, 24, 3, 25, 26, 27, 28, 29, 30, 31, 32]; this

is a family of low-complexity DFT algorithms. The state-of-the-art SFT algorithms [3, 32]

achieve sample complexity of O(K) and computational complexity of O(K logK) for exactly

K-sparse (in the frequency domain) signals. When K << N , those SFT algorithms achieve

significant savings both in sample and computation compared to the FFT. SFT algorithms

have been investigated for several applications including a fast global positioning system

receiver, wide-band spectrum sensing, and bio-medical signal processing [33, 34, 2, 1].

In SFT algorithms, the reduction of sample and computational complexity is achieved

by reducing data samples. This is usually implemented via a well designed subsampling

procedure, which leverages the resulting frequency domain aliasing. We demonstrate such

technique in the following trivial example, where the signal is 1-sparse in the frequency
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domain, i.e., only contains a single frequency, f ∈ [N ]. Such signal is expressed as

x(n) , aej
2π
N
fn, n = 0, 1, · · · , N − 1. (1.34)

The N -point DFT of (1.34) yields

x̂N (k) ,
N−1∑
n=0

x(n)e−j
2π
N
nk, k = 0, 1, · · · , N − 1. (1.35)

It is clear that x̂(k)/N equals to a when k = f , and 0, otherwise. An example of x(n), x̂(k)

with N = 15, f = 11, a = 1 is shown in Figs. 1.7 (a) and (b), respectively.

Let us assume that B ∈ N divides N , and L = N/B. The L-subsampled version of (1.34)

is expressed as

xB(n) , x(nL) = aej
2π
B
fn, n = 0, 1, · · · , B − 1. (1.36)

The B-point DFT of such subsampled signal becomes

x̂B(k) ,
B−1∑
n=0

xB(n)e−j
2π
B
nk =

B−1∑
n=0

ae−j
2π
B
n(k−f), k = 0, 1, · · · , B − 1. (1.37)

We can see that x̂B(k)/B = a when k ≡ f mod B, and 0, otherwise. In another words, the

N frequency buckets of x̂N (k) is aliased to B buckets of x̂B(k), such that

x̂B(k) =
B

N

L−1∑
l=0

x̂N (lB + k), k = 0, 1, · · · , B − 1. (1.38)

Now, let us assume special cases when N can be factorized into a series of relative

prime (co-prime) numbers, e.g., N = 15 = 3 × 5. We then compute x̂3(k), k = 0, 1, 2 and

x̂5(k), k = 0, 1, · · · , 4. Next, for some k1 ∈ [3], k2 ∈ [5], we obtain

x̂3(k1)/3 = x̂5(k2)/5 = a. (1.39)

Since

k1 ≡ f mod 3,

k2 ≡ f mod 5,

(1.40)

one can uniquely determine f due to the Chinese Reminder Theorem, which is stated as

follows [22, 35].
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Theorem 1. (Chinese Reminder Theorem): Any integer x is uniquely specified mod-

ulo N by its remainders modulo m relatively prime integers p0, p1, · · · , pm−1 as long as∏
i∈[m] pi ≥ N .

To complete the example, let us assume that k1 = 2, k2 = 1, then, there exists unique

u, v ∈ [N ], such that

3u+ 2 = 5v + 1 = f. (1.41)

This allows us to solve f = 11. In this case the frequency and its DFT coefficient is calculated

using 3 + 5 = 8 samples and via two short DFTs. Thus, compared to the conventional 15-

point DFT, savings in samples and computation are achieved. Such Chinese Remainder

Theorem based time domain subsampling and the resulting frequecy domain aliasing is

illustrated in Fig. 1.7.

The above 1-sparse case is the simplest scenario for SFT. In a general K-sparse case,

multiple original frequencies may land into a same frequency bucket of short DFTs due to

aliasing. This is refereed to as frequency collision; this prevents us to associate the same

frequencies from different copies of short DFTs, which results into failures of frequency

recovery. One commonly used technique in SFT algorithms to detect frequency collision

and solve the frequency from a non-collision bucket is called phase encoding or OFDM-

trick [22, 3]. To illustrate this, let us consider a 2-sparse case, i.e., the signal contains two

frequencies f0, f1 ∈ [N ], and

x(n) , aej
2π
N
f0n + bej

2π
N
f1n, n = 0, 1, · · · , N − 1. (1.42)

Let us extract two L-subsampled versions of (1.42) with the same subsampling rate of

L but different offsets, i.e., 0 and 1. The two sabsampled version for n = 0, 1, · · · , B − 1, is

expressed as

xB,0(n) , x(nL),

xB,1(n) , x(nL+ 1).

(1.43)
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Figure 1.7: Time domain subsampling and frequency domain aliasing. (a) The real part of
a time domain single tone, i.e., (1.34) with N = 15, f = 11, a = 1. (b) 15-point DFT of
(1.34). (c) 5-subsampled version of (1.34), i.e., x3(n), n = 0, 1, 2. (d) x̂3(k), k = 0, 1, 2. (e)
3-subsampled version of (1.34), i.e., x5(n), n = 0, 1, · · · , 4. (f) x̂5(k), k = 0, 1, · · · , 4.
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Then, for k = 0, 1, · · · , B − 1, their B-point DFTs are computed as

x̂B,0(k) ,
B−1∑
n=0

xB,0(n)e−j
2π
B
nk = a

B−1∑
n=0

e−j
2π
B
n(k−f0) + b

B−1∑
n=0

e−j
2π
B
n(k−f1),

x̂B,1(k) ,
B−1∑
n=0

xB,1(n)e−j
2π
B
nk = aej

2π
B
f0

B−1∑
n=0

ae−j
2π
B
n(k−f0) + bej

2π
B
f1

B−1∑
n=0

e−j
2π
B
n(k−f1),

(1.44)

respectively. Note that additional phase shift terms are introduced to each frequency in

x̂B,1(k) due to the shift (by 1) in time-domain subsampling.

Next, let us investigate each bucket of x̂B,0(k) and x̂B,1(k). There are three cases:

• Case 1: There is no frequency landed in the bucket, as a result, |x̂B,0(k)| = |x̂B,1(k)| =

0.

• Case 2: Either f0 or f1 lands in the bucket, i.e., either k ≡ f0 mod B or k ≡

f1 mod B. Without loss of generality, let us assume that the former is true, then,

|x̂B,0(k)| = |x̂B,1(k)| = a. Moreover

f0 =
B

2π
φ (x̂B,1(k)/x̂B,0(k)) , (1.45)

where φ(x) is the phase of x.

• Case 3: Both f0 and f1 land in the same bucket, i.e., frequency collision. This can be

detected by |x̂B,0(k)| 6= |x̂B,1(k)|.

Therefore, the OFDM-trick provides a low-complexity (O(1)) operation to detect fre-

quency collision from short DFTs, while solving original frequencies from 1-sparse bins. The

collided frequencies in one short DFT maybe separated from another short DFT applied on

another copy of subsampled signal using a different sabsampling rate, which introduces a

different aliasing pattern in the frequency domain.

Generally, SFT admits a subsampling-localization-estimation procedure. First, the orig-

inal signal is subsampled, then, the significant (dominant) frequencies contained in the

original signal are localized and the corresponding DFT coefficients are estimated with low-

complexity operations. Such subsampling-localization-estimation procedure is carried out
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in an iterative manner in several SFT algorithms [21, 22, 3, 32], while for other SFT algo-

rithms [4, 2, 1], the localization and estimation are implemented in one-shot after gathering

sufficient copies of subsampled signals corresponding to different subsampling parameters,

e.g., subsample rate, offset and number of samples; this approach makes the one-shot based

SFT algorithms less sensitive to noise as compared to the iterative method, since the accu-

mulation of many copies of the subsampled signal effectively reduces the noise [4]. However,

iterative-based SFT algorithms usually exhibit lower complexity as compared to one-shot

based SFT algorithms, since in the former, in each iteration, the contribution of the re-

covered frequencies are removed from the signal, which yields a sparser signal (an easier

problem) in the next iteration. High level illustrations of one-short and iterative-based SFT

are shown in Fig. 1.8.

Subsampling, length B 

Tentative frequencies

Recover K frequencies

T iterations

Input Signal, length N

(a)

Subsampling, length B 

Remove recovered frequencies

Recover frequency subset

T iterations

Input Signal, length N

(b)

Figure 1.8: SFT high level illustration. (a) One-shot based SFT. (b) Iterative-based SFT.

Most of existing SFT algorithms are designed for 1-D signals; unlike the FFT, the exten-

sion of 1-D SFT to multidimensional SFT is usually not straightforward; this is because the

SFT algorithms are not separable in each dimension due to the fact that operations such as

detection of significant frequencies in the subsampled signal within an SFT algorithm must

be considered jointly for all the dimensions [36]. In the following, we review simple and

practical SFT [4] and SO-SFT [3], which belong to 1-D and multidimensional SFT, respec-

tively. Simple and practical SFT is based on the one-shot approach, while the SO-SFT is

an iterative method. Those two SFT algorithms form the foundation of our proposed RSFT

[36] and MARS-SFT [37] algorithms, respectively.
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1.5.1 Simple and Practical SFT

As opposed to the SFT introduced in the above section that leverages the time-domain

subsampling to reduce sample and computational complexity, simple and practical SFT

leverages the frequency domain subsampling achieved by the time-domain aliasing of data.

Before outlining such algorithm, we provide some key definitions and properties for signal

x ∈ CN .

Definition 1. (Permutation): Let σ ∈ [N ], with σ being invertible, i.e., there exists

σ−1 ∈ [N ], such that

[σσ−1]N = 1. (1.46)

Then, a permutation of x is defined as

[Pσ,bx]i = [x][σi+b]N , (1.47)

where b ∈ [N ]; Pσ,b ∈ {0, 1}N×N is the permutation matrix, which reorders entries of x

modularly.

The permutation has the following property.

Property 1. A permutation of the data in time domain results in a modular dilation in the

frequency domain introduced by σ, and a phase term introduced by b. Let x̂ be the N -point

DFT of x, then

[P̂σ,bx][σi]N = [x̂]ie
−jb∆ωN , (1.48)

where ∆ωN , 2π/N .

Note that since the phase rotation introduced by b does not contributes to the localization

of frequencies in our algorithm, in the following, we will assume that b = 0, and simplify the

notation of the permutation matrix as Pσ.

Definition 2. (Time-domain aliasing): Let y ∈ CB, with N multiple of B. For L =

N/B, a time-domain aliased version of x is defined as

[y]i =
L−1∑
j=0

[x]i+Bj, i = 0,1, · · · ,B− 1. (1.49)
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Property 2. Aliasing in the time domain results in down-sampling in the frequency domain.

If ŷ is the B-point DFT of y, then

[ŷ]i = [x̂]iL. (1.50)

Definition 3. (Mapping): Let i, σ ∈ [N ], where σ satisfies (1.46). We define the mapping

M(i, σ) ∈ [B] such that

M(i, σ) ≡ [bB
N

[iσ]Ne]B. (1.51)

Definition 4. (Reverse-mapping): Let σ−1 ∈ [N ], σ−1 satisfies (1.46), and j ∈ [B].

Define R(j, σ−1) a reverse-mapping such that

R(j, σ−1) ≡ {[σ−1u]N | u ∈ S}, (1.52)

where

S , {v ∈ [N ] | jN
B
≤ v < (j + 1)

N

B
]}. (1.53)

At a high level, simple and practical SFT runs two loops, namely the Localization loop

and the Estimation loop. The former finds the indices of the K most significant frequencies

from the input signal, while the latter estimates the corresponding Fourier coefficients. Here,

we emphasize on Localization more than Estimation, since the former is more relevant to

the radar application that we consider; the Localization step provides frequency locations,

which in the radar case are directly related to target parameters.

In the Localization loop, as illustrated in Fig. 1.10, a permutation procedure reorders

the input data x in the time domain, causing the frequencies to also reorder. The permuta-

tion causes closely spaced frequencies in x̂ to appear in well separated locations with high

probability. Then, a frequency-domain flat-window (flat-window hereafter) [4], as illustrated

in Fig. 1.9, is applied on the permuted signal. The flat-window is a sinc-like function in

the time domain; the multiplication of the time-domain signal to such window is equiva-

lent to convolving the signal spectrum to a boxcar in the frequency domain; this extends

a single frequency into a (nearly) boxcar of width L = N/B in the frequency domain, for

a reason that will become apparent in the following. The flat-windowed data are aliased,

as in Definition 2. The frequency domain equivalent of this aliasing is undersampling by L
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(see Property 2). The flat-window used at the previous step ensures that no peaks from the

significant frequencies are lost due to the effective down-sampling in the frequency domain.

After this stage, an FFT of length B is employed.
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Figure 1.9: A frequency domain flat window. N = 1024, B = 16. (a) Time domain. (b)
Frequency domain. Shifted by N/2.

The permutation and the aliasing procedure effectively map the discrete signal frequen-

cies from the set SN , {0,∆ωN , · · · , (N − 1)∆ωN} to SB , {0, 2π
B , · · · ,

(B−1)2π
B }, where

the first stage detection procedure finds the significant frequencies’ peaks, and subsequently

their locations are reverse-mapped back into SN to restore the frequency resolution. How-

ever, the reverse-mapping yields not only the true locations of the significant frequencies,

but also L ambiguous locations for each frequency. To remove the ambiguity, multiple iter-

ations of Location with randomized permutation are performed. Finally, the second stage

detection procedure locates the K most significant frequencies from the accumulated data

after running T iterations.

Simple and practical SFT is designed for 1-D signal, which is not applicable for multidi-

mensional signal processing. Moreover, simple and practical SFT assumes that we know the

exact sparsity level, K, and those K frequenceis are all on the grid; those assumptions are

not practical in real-world radar signal processing. We address those problems in Chapter

2, where we propose the RSFT.
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Figure 1.10: Illustration of simple and practical SFT. The left part of the figure shows the
main steps of the localization loop of the SFT algorithm, while the right part shows the
signal representations in the discrete frequency domain due to each step.
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1.5.2 SO-SFT

Multidimensional SFT algorithms are investigated in [3, 1, 2]. The SO-SFT [3] follows the

subsampling-localization-estimation iteration, while the SFT algorithms of [1, 2] are one-

shot approaches. The idea behind those SFT algorithms is to reduce a multidimensional

DFT into a series of 1-D DFTs along slices extracted from the input multidimensional data.

SO-SFT achieves the sample and computational complexity lower bounds of all known SFT

algorithms, i.e., O(K) and O(K logK), respectively, by reducing a 2-D DFT into 1-D DFTs

along a few columns and rows of a data matrix.

Let us consider the following 2-D signal model, which is a superposition ofK 2-D complex

sinusoids, i.e.,

x(n) ,
∑

(a,ω)∈S

aejn
Tω, n , [n0, n1]T ∈ X , [N0]× [N1], (1.54)

where N0, N1 denote the sample length of the two dimensions, respectively. (a,ω) represents

a 2-D frequency whose amplitude is a with a ∈ C, a 6= 0 and frequency is ω , [ω0, ω1]T ,

[2πm0/N0, 2πm1/N1]T with [m0,m1]T ∈ X . The set S with |S| = K includes all the 2-D

frequencies. We assume that the signal is sparse in the frequency domain, i.e., K << N ,

N0N1. We are interested in the recovery of all the frequencies from samples of x(n).

In SO-SFT, in order to recover S, 1-D DFTs are applied on a subset of columns and rows

of the data matrix. The N0-point DFT of the i-th, i ∈ [N1] column of the data equals

ĉi(m) ,
1

N0

N0−1∑
l=0

x(l, i)e
−j 2π

N0
ml

=
1

N0

∑
(a,ω)∈S

N0−1∑
l=0

ae
j 2π
N1

m1ie
j 2π
N0

l(m0−m)

=
∑

(a,ω)∈S

ae
−j 2π

N1
m1iδ(m−m0), m = 0, 1, · · · , N0 − 1,

ω = [2πm0/N0, 2πm1/N1]T , [m0,m1]T ∈ X ,

(1.55)

where δ(·) is the unit impulse function. Hence ĉi(m0) can be viewed as the summation of

modulated amplitudes of 2-D sinusoids whose row frequency indices equal to m0. Hence

ĉi(m),m = 0, 1, · · ·N1 − 1 is a projection of the 2-D spectrum, x̂(m0,m1), [m0,m1]T ∈ X ,
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onto the column. Similarly, the N1-point DFT applied on a row of (1.54) is a projection of

the 2-D spectrum on the row.

Since the signal is sparse in the frequency domain, if |ĉi(m)| 6= 0, with high probability,

there will be only one significant frequency projected to the frequency bin of m; in other

words, the frequency bin is ‘1-sparse’, and ĉi(m) is reduced to ĉi(m) = ĉi(m0) = ae
j 2π
N1

m1i.

In such case, a = ĉ0(m0), and the other frequency component, m1, can be solved by the

OFDM-trick, i.e., m1 = φ (ĉ1(m0)/ĉ0(m0)) N1
2π .

The contribution of the recovered sinusoids is removed from the signal, so that the

following processing can be applied on a sparser signal, which is easier to solve in the

subsequent processing.

A frequency bin that is not 1-sparse based on column processing might be 1-sparse based

on row processing. Because the removal of sinusoids in the column (row) processing may

cause bins in the row (column) processing to be 1-sparse, SO-SFT runs iteratively and

alternatively between columns and rows and the algorithm stops after a finite number of

iterations. Such iterative recovery of frequencies is illustrated in Fig. 1.11.

SO-SFT succeeds with high probability only when the frequencies are very sparse, and

requires that either a row or a column of the DFT contains a 1-sparse bin. However, in many

applications, the signal frequency exhibits a block sparsity pattern [38], i.e., the significant

frequencies are clustered. In those cases, even when the signal is very sparse, 1-sparse bin

may not exist; this is referred to as a ‘deadlock’ case [3]. As shown in Fig. 1.12, neither

column nor row DFT yields a 1-sparse bin in the two cases, hence the frequencies, although

are sufficiently sparse, cannot be recovered. Such problem is addressed in Chapter 4, where

we propose the MARS-SFT. By projecting multidimensional frequencies to lines of random

slopes and offsets extracted from the data cube, MARS-SFT could resolve the deadlocks

encountered by the SO-SFT. SO-SFT and MARS-SFT deals with ideal signals, i.e., noiseless

signals containing only on-grid frequencies. In Chapter 5, we propose the robust MARS-

SFT, which addresses noisy signals with off-grid frequencies arising from real-world radar

signal processing applications.
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Figure 1.11: Illustration of SO-SFT [3]. Frequencies are recovered iteratively by alternatively
applying DFT along rows and columns of the data matrix.

Figure 1.12: Deadlock situations for SO-SFT
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1.6 Contribution of the Dissertation

1.6.1 SFT Algorithms that Address Real-World Multidimensional Signals

We propose multidimensional SFT algorithms that address real-world signals, which lay a

foundation for SFT-based radar signal processing. The proposed algorithms are summarized

in the following:

• In Chapter 2, we propose the RSFT to address multidimensional signals that contain

noise and off-grid frequencies. The Neyman-Pearon (NP) detection is introduced in the

RSFT to achieve the optimal detection while requires less computation as compared

to the FFT-based approach. The tradeoff study in the context of the RSFT provides

an extra degree of freedom in system design to trade off the computation with the

detection performance.

• In Chapter 4, we propose MARS-SFT. MARS-SFT iteratively recovers multidimen-

sional sparse frequencies by randomly projecting those frequencies into a 1-D frequency

domain; such projection and recovery procedure has low sample and computation

complexity. The abundance of degrees of freedom in random projection enables the

MARS-SFT to efficiently deal with less sparse scenario, and even cases where frequen-

cies are clustered. MARS-SFT achieves the sample and computation complexity lower

bounds of SFT algorithms, i.e., O(K) and O(K logK), respectively for K-sparse ideal

signals (noiseless signals that only contain on-grid frequencies).

• Based on MARS-SFT, in Chapter 5, we propose the robust MARS-SFT, which handles

real-world noisy signals that contain off-grid frequencies, while enjoys low-complexity

property of MARS-SFT.

Those works have been published in

• Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. “The robust sparse Fourier

transform (RSFT) and its application in radar signal processing.” IEEE Transactions

on Aerospace and Electronic Systems 53.6 (2017): 2735-2755.
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• Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. “Multidimensional Sparse

Fourier Transform Based on the Fourier Projection-Slice Theorem.” IEEE Transac-

tions on Signal Processing 67.1 (2019): 54-69.

• Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. “A practical high-dimensional

Sparse Fourier Transform.” 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2017.

• Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. “FPS-SFT: A multidimen-

sional sparse Fourier transform based on the Fourier projection-slice theorem.” 2018

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2018.

1.6.2 SFT-based Radar Signal Processing Frameworks for DBF and MIMO

Radars

Based on the proposed RSFT and robust MARS-SFT, in Chapters 3 and 5, we formu-

late SFT-based signal processing frameworks for modern digital beamforming (DBF) and

MIMO radars. Especially, we consider automotive radar and near range applications for the

following reasons:

• The low-complexity SFT-based radar processing is mostly beneficial to radar appli-

cations of restricted hardware; automotive radars fall into such category due to their

small size and low cost.

• Compared to FFT-based processing, SFT-based processing involves tradeoff between

complexity and SNR. Generally, the more savings the SFT-based processing achieves,

the higher SNR the system requires. Automotive radars work at near range, which is

much easier to gain high SNR as compared to long-range radars; this allows SFT-based

processing to achieve high savings.

This work has been published in

• Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. “RSFT: A realistic high

dimensional sparse Fourier transform and its application in radar signal processing.”
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MILCOM 2016-2016 IEEE Military Communications Conference. IEEE, 2016.

• Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. “MIMO-RSFT radar: A

reduced complexity MIMO radar based on the Sparse Fourier Transform.” 2017 IEEE

Radar Conference (RadarConf). IEEE, 2017.

• Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. “Robust sparse Fourier

transform based on the Fourier projection-slice theorem.” 2018 IEEE Radar Confer-

ence (RadarConf18). IEEE, 2018.

1.6.3 Two-dimensional DBF Radar with Orthogonal Linear Arrays Based on

SFT and Deep Learning

In Chapter 6, we propose a new automotive radar architecture that achieves high resolution

in range, range rate, azimuth and elevation DOA estimation, while requires a smaller antenna

aperture and fewer reception channels as compared to conventional DBF planar arrays. The

receive aperture of the proposed radar is composed of two orthogonally-placed uniform linear

arrays (ULAs). In sparse scenarios, such radar architecture leverages the robust MARS-

SFT to implement an efficient coarser beamforming for each ULA, while computes an high

resolution range-Doppler image (RDI) for each beam, where each scatterer from targets

can be resolved with high probability. Next, a deep-learning based method is employed to

match azimuthal and elevational radar beams that associate with the same targets; such

beam matching problem is converted to a image matching problem in the RDI domain.

Part of this work has been published in

• Wang, Shaogang, Chen, Honglei, Vishal M. Patel, and Athina Petropulu. “Two-

Dimensional beamforming automotive radar with orthogonal linear arrays.” 2019

IEEE Radar Conference (RadarConf19). IEEE, 2019.

1.7 Outline of the Dissertation

The dissertation is organized as follows.

In Chapter 2, based on simple and practical SFT introduced in Section 1.5.1, we propose
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the RSFT algorithm that addresses real-world multidimensional signal that contains noise

and off-grid frequencies.

In Chapter 3, based on the proposed RSFT algorithm in Chapter 2, we formulated the

signal processing framework for DBF and MIMO radar.

In Chapter 4, we propose the MARS-SFT, which extends the SO-SFT introduced in

Section 1.5.2, and achieves the lower bounds of sample and computational complexity of

SFT in less sparse scenarios for ideal signals.

In Chapter 5, we propose the robust MARS-SFT, which extends the MARS-SFT to

handle noisy signals containing off-grid frequencies; based on that, we investigated the ap-

plication of the robust MARS-SFT in automotive DBF radar signal processing.

In Chapter 6, we propose 2-D DBF automotive radar with orthogonal linear arrays; the

proposed radar architecture takes advantage of the robust MARS-SFT and deep learning,

and achieves high resolution in range, range rate, azimuth and elevation angular domains

with reduced hardware.

Finally, Chapter 7 contains conclusions and possible future research directions.

1.8 Notation

We use lower-case (upper-case) bold letters to denote vectors (matrices). (·)T and (·)H

respectively denote the transpose and conjugate transpose of a matrix or a vector, and x∗

is the conjugate of x. ‖ · ‖ is Euclidean norm for a vector. ‖W‖1, ‖W‖2 are the l1 and l2

norm of matrix W, respectively. [a]i is the ith element of vector a, while [A]i,j is the (i, j)th

element of matrix A. All operations on indices in this dissertation are taken modulo N ,

denoted by [·]N . We use b·e to denote rounding to the nearest integer. [S] refers to the set of

indices {0, ..., S−1}. The cardinality of set S is denoted as |S|. We use {0, 1}B to denote the

set of B-dimensional binary vectors. We use diag(v) to denote forming a diagonal matrix

from the vector v and use E{·} to denote expectation. The DFT of signal x is denoted as

x̂. We denote the least common multiple of N0, N1 as LCM(N0, N1).
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Chapter 2

Robust Sparse Fourier Transform

In this chapter, we propose the Robust Sparse Fourier Transform (RSFT), a tool that en-

ables the application of the Sparse Fourier Transform (SFT) to a real world, noisy setting.

The RSFT can accommodate off-grid frequencies in the data. Furthermore, by incorporat-

ing Neyman-Pearson (NP) detection in the SFT stages, frequency detection in the RSFT

does not require knowledge of the exact sparsity of the signal and is robust to noise. We

analyze the asymptotic performance of the RSFT, and study the computational complexity

versus detection performance tradeoff. We show that by appropriate choice of the detection

thresholds, the optimal tradeoff can be achieved.

2.1 Introduction

Simple and practical SFT algorithm of [4] achieves a substantial computational reduction

of computing DFT compared with the FFT and meanwhile provides a robust frequency

localization based on the property of modular inverse that is less affected by the noise

compared with the SFT algorithms (e.g., [21, 5]), whose frequency localization relies on the

phase information. Such property of simple and practical SFT is attractive in the radar

application. However, simple and practical SFT has two main constraints:

• It assumes that the significant frequencies contained in the signal are on the grid of

the N -point DFT, where N is the original input data length.

• The detection of the significant frequencies in the two detection stages of simple and

practical SFT algorithm assumes the exact knowledge of the number of the significant

frequencies, K.

In real-life radar applications, however, the signal frequencies that relate to the target
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parameters (e.g., rang, velocity and DOA) are typically off-grid; also, the number of sig-

nificant frequencies, representing the number of the targets in the radar beam coverage, is

typically unknown and subject to change. The consequence of off-grid frequencies is the

leakage to other frequency bins, which essentially reduces the sparsity of the signal. The

incomplete knowledge of the number of significant frequencies makes the frequency detec-

tion difficult. Also, the off-grid frequencies further complicate frequency detection; when the

dynamic range of the signal frequencies is high, which is typical in the radar application, the

leakage from strong frequencies can mask weak frequencies; thus, even if the exact sparsity

of the signal was known a priori, it would not help the task of frequency detection.

We follow simple and practical SFT framework for frequency-domain sparse signal de-

tection and propose RSFT, which addresses the aforementioned limitations of simple and

practical SFT. RSFT employs a pre-permutation window to reduce leakage from the off-grid

frequencies, and NP detection to determine the detection thresholds for the signal frequen-

cies. We also extended the one-dimensional RSFT into multidimensional, which makes the

RSFT suitable for multidimensional signal processing applications.

The contributions in the context of the proposed RSFT are summarized as follows:

• The proposed RSFT algorithm does not need the frequencies to be on-grid. Also, it

does not require exact knowledge of the number of frequencies to be estimated. The

leakage due to off-grid frequencies, which typically reduces the sparsity of the signal,

is controlled via a simple windowing operation.

• Frequency detection is put in an NP detection framework. Based on the signal model

and other design specifications, we provide (asymptotically) optimal thresholds for the

two detection stages of RSFT. Since the output of the first stage of detection serves

as the input of the second stage, the two stages are interconnected. The detection

thresholds are jointly found by formulating and solving a constrained optimization

problem. The objective function maximizes the probability of detection for the weak-

est frequency contained in the signal, and the constraints connect the probability of

detection and false alarm rate for both two stages.

• A quantitative measure of the computational complexity and detection performance
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tradeoff is provided, which can serve as a concrete design reference for RSFT-based

applications.

2.2 Signal Model and Overview of the RSFT Algorithm

We model a continuous-time signal as a superposition of K sinusoids in additive white

noise. We sample the signal uniformly, both in I and Q channels, with a sampling frequency

above the Nyquist rate. We segment the obtained samples into T consecutive equal length

segments, each containing N samples. We choose N so that K << N . The sampled signal

over the time segment s = 0, 1, · · · , T − 1, can be expressed in vector form as

rs =
∑
i∈[K]

bi,sv(ωi) + ns, (2.1)

where v(ωi) denotes for the i-th complex sinusoid with normalized frequency ωi ∈ [0, 2π),

i.e.,

v(ωi) = [1 ejωi · · · ej(N−1)ωi ]T . (2.2)

We further assume that ωi is unknown, deterministic and remains constant during all T

segments, while the corresponding complex amplitude, i.e., bi,s is a random variable. Here,

over the various segments, bi,s is taken to be independent, identically circularly symmetric

Gaussian distributed, i.e., bi,s ∼ CN (0, σ2
bi). The coefficients of different sinusoids are taken

to be independent. The ns represents noise, and is distributed as ns ∼ CN (0, σ2
nI), where 0

is an N -dimensional zero vector, and I ∈ RN×N is the identity matrix. We also assume that

each sinusoid’s amplitude and the noise are uncorrelated. The spacing of two neighboring

frequencies is assumed to be greater than ηm∆ωN , where ∆ωN , 2π/N , and ηm ∈ N

is the main-lobe broadening parameter due to a window that will be applied on rs. Let

SNRi = σ2
bi/σ

2
n be the SNR of the i-th sinusoid. The worst case SNR, best case SNR

and dynamic range are respectively defined as SNRmin , mini∈[K](SNRi), SNRmax ,

maxi∈[K](SNRi), D , SNRmax/SNRmin.

Estimating the frequencies in rs is a classical spectral analysis problem. In non-parametric

techniques, this is done by employing the DFT [39]. The DFT of length N is a sampled

version of the Discrete-Time Fourier Transform of the signal, with sampling interval ∆ωN .
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A normalized frequency ωi in rs corresponds to a DFT peak at index k = [bωiN2π e]N . The

presence of a frequency in the DFT can be determined using an NP test [40]. The DFT

can be effectively computed by the FFT, whose complexity for N equal to a power of 2

is O(N logN). However, when N is large, the computation of the FFT is still demanding

especially in a real-time processing scenarios.

To apply the SFT in a realistic scenario related to detection and estimation of multiple

frequencies, we propose the RSFT algorithm, which employs a pre-permutation windowing

procedure to suppress leakage from the off-grid frequencies and leverages the NP criterion

in the two stages of detection to solve for the optimal thresholds. The RSFT algorithm is

summarized in Algorithm 1.

Algorithm 1 RSFT algorithm
Input: complex signal rs, s ∈ [T ]
Output: frequency locations of input signal, o ∈ {0, 1}N

1: procedure RSFT(rs)
2: Generate a set of permutation parameters σs, s ∈ [T ] randomly
3: ā← 0
4: for s← 0 to T − 1 do
5: Apply pre-permutation windowing: ys ←Wrs
6: Apply permutation: ps ← Pσsys

7: Apply flat-windowing: zs ← Wps
8: Aliasing: fs ← Aliasing(zs)
9: Take B-point FFT: f̂s ← FFT(fs)

10: First stage detection: cσs ← NPdet1(|f̂s|2)
11: Reverse mapping: aσs ← Reverse(cσs)
12: Accumulation: ā← ā + aσs
13: end for
14: Second stage detection: o← NPdet2(ā)
15: return o
16: end procedure

2.3 Leakage Suppression of Off-grid Frequencies

In real world applications, the significant frequencies ωi are continuous and can take any

value in [0, 2π). When fitting a grid on these frequencies, leakage occurs from off-grid fre-

quencies, which can diminish the sparsity of the signal. Sparsity in the discrete frequency
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domain related to N -point DFT is here defined as follows. On applying some linear op-

erations (e.g., permutation and windowing), represented by L ∈ CN×N , on the signal of

(2.1), the resulting spectrum equals x = E{|L̂r|2} ∈ RN . Let [x]i correspond to the peak of

the sinusoid with SNRmin, i.e., the weakest sinusoid. Sparsity is defined as the number of

entries in x, whose values are greater than or equal to [x]i.

As the leakage due to strong frequency components can mask the contributions of weak

frequency components, it is difficult to determine the frequency domain peaks after permu-

tation. This is illustrated in Figs. 2.1 (a) and (b), where the amplitude of a 1024-point

DFT of the signal before and after permutation, respectively, is shown. The original signal

contains two significant frequencies located at ω1 ≈ 1.8 and ω2 ≈ 4.2, and the former is

35dB stronger than the latter. The permutation does not alter the sparsity of the signal,

which equals to 30. However, the originally concentrated leakage frequencies are shuffled by

permutation, which makes it difficult to detect weaker significant frequencies. To address

this problem, we propose to multiply r point-wisely with a window w ∈ CN before per-

mutation. We will refer to this step as pre-permutation windowing. Windowing suppresses

side-lobes, thus can confine the leakage within a small number of frequency bins, and thus

preserving sparsity to some extent. As shown in Figs. 2.1 (c) and (d), after multiplying the

signal before permutation with a Dolph-Chebyshev window[41] with 77dB peak to side-lobe

ratio (PSR), the sparsity of the signal reduces from 30 to 6.

After applying the pre-permutation window, the side-lobes of the strongest frequency

should be lower than the noise level by δw (e.g., δw = 20dB), so that their contribution to

the noise level can be neglected. Hence, the PSR of the pre-permutation window w should

satisfy

pw = 10 log(N) + 10 log(D) + 10 log(SNRmin) + δw, (2.3)

where the first term of the right side is due to the N -point DFT, and the unit of pw, δw is

dB.

For a specific window, determining the PSR also determines the main-lobe broadening

parameter ηm. Here, ηm is defined as the number of points whose magnitudes are larger

than the maximum side-lobe level in the magnitude of N -point DFT of the pre-permutation

window, i.e., |ŵ|. The larger the PSR of a window, the larger the ηm is. The DFT of
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a Dolph-Chebyshev window and its main-lobe broadening parameter ηm corresponding to

various PSR are shown in Fig. 2.2.
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Figure 2.1: The effect of pre-permutation windowing on sparsity of the signal in the discrete
frequency domain. The signal contains two significant frequency components, one of which
is 35dB stronger than the other; SNRmin = −8dB. A Dolph-Chebyshev window with
77dB PSR is applied. Windowed signal after permutation appears sparser in the frequency
domain as compared to the permuted signal without windowing. The spectrum is computed
via 1024-point DFT. (a) Spectrum of signal without windowing. (b) Spectrum of signal
without windowing after permutation with σs = 85. (c) Spectrum of windowed signal. (d)
Spectrum of windowed signal after permutation with σs = 85.
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Figure 2.2: Pre-permutation window. (a) 1024-point DFT of a Dolph-Chebyshev win-
dow with 77dB PSR. (b) Main-lobe broadening parameter ηm versus the PSR for Dolph-
Chebyshev windows with 1024-points DFT.

2.4 NP Detection in the RSFT

In simple and practical SFT, detection of the significant frequencies is needed in two stages.

If we know the number of the significant frequencies and all frequencies are all on-grid, the

detection of the signal can be accomplished by finding the K highest spectral amplitude

values. In reality, however, we do not have exact knowledge of K. Moreover, even if we

knew K, due to the leakage caused by the off-grid frequencies, the K highest spectral peaks

might not be correct representation of the signal frequencies. Finally, additive noise would

make signal detection even more difficult.

In order to solve the detection problem, we propose to use NP detection in the two

detection stages of RSFT. The proposed detection scheme does not require knowledge of

K, but instead, it uses a bound of the signal sparsity Kmax. Specifically, the NP detection

problem related to the design of the RSFT parameters is described next.

We consider the signal model of (2.1). For the given data length N , number of iterations

T , SNR corresponding to the weakest frequency SNRmin, false alarm rate of each frequency

bin in the second stage detection Pfa, sparsity bound Kmax, reduced data length B, noise

variance σ2
n, and signal dynamic range D, we shall design the pre-permutation window w,

flat-window w̄, the thresholds γ, µ for the first and the second stage of detection, respectively,
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so that the probability of detection for the weakest frequency in the second stage Pd is

maximized. We should note that assuming knowledge of noise variance, minimum SNR and

dynamic range is not a very restrictive assumption for real systems. For instance, in the

radar case, σ2
n corresponds to the receiver noise; SNRmin (SNRmax) of the sinusoids can be

calculated by the smallest (largest) Radar Cross Section (RCS) of targets at the maximum

(minimum) detection range. The RCS and range specifications are among the most import

specifications of designing radar systems, and are usually provided.

Applying NP detection in the RSFT is not a straightforward extension of simple and

practical SFT, in that the two stages are inter-connected, thus need to be studied jointly.

In the following, we investigate the two stages of detection separately, then summarize the

solution into an optimization problem.

2.4.1 The First Stage Detection

The first stage detection is performed on each data segment. After pre-permutation win-

dowing, permutation and flat-windowing, the input signal can be expressed as

zs = WPσsWrs, (2.4)

where σs ∈ Sp , {2k+1|k ∈ [N/2]} is the permutation parameter for the s-th data segment;

we assume that σs has an uniform random distribution. Pσs ∈ {0, 1}N×N is the permutation

matrix; W = diag(w), W = diag(w̄), where w, w̄ ∈ CN are pre-permutation window and

flat-window, respectively. The flat-window w̄ is defined so that its passband has width

2π/B, and its time duration is N samples.

The time domain aliasing can be described as

fs =
L−1∑
i=0

WiPσsWrs = Vσsrs, (2.5)

where L = N/B; Wi is the i-th sub-matrix of W, which consists of the iB-th to the

((i+ 1)B − 1)-th rows of W; and Vσs =
∑L−1

i=0 WiPσsW.

The B-point DFT operation on the aliased data fs can be expressed as

f̂s = DVσsrs, (2.6)
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where D ∈ CB×B is the DFT matrix. For the k-th entry of f̂ , we have

[f̂s]k = uHk Vσsrs, k = 0, 1, · · · , B − 1, (2.7)

where uk is the k-th column of D, i.e., uk = [1 e−jk
2π
B · · · e−jk(B−1) 2π

B ]T .

Substituting (2.1) into (2.7), we get

[f̂s]k =
∑
i∈[K]

bi,su
H
k Vσsv(ωi) + uHk Vσsn. (2.8)

Since [f̂s]k is a linear combination of bi,s, [n]j , i ∈ [K], j ∈ [N ], it holds that

[f̂s]k ∼ CN (0, σ2
fk), (2.9)

where

σ2
fk =

∑
i∈[K]

σ2
biα(k, σs, ωi) + σ2

nβ(σs), (2.10)

and

α(k, σs, ω) = |uHk Vσsv(ω)|2

β(σs) = ‖WPσsw‖2.
(2.11)

It is easy to see that σ2
fk is summation of weighted variance due to each signal and noise

component, with α, β the corresponding weights.

Without loss of generality, let us assume that ωm is the frequency corresponding to the

minimum SNR, i.e., SNRm ≡ SNRmin. After pre-permutation windowing, permutation,

flat-windowing, aliasing and DFT, ωm is mapped to bin p, given in the following lemma.

Lemma 1. For a complex sinusoid signal, i.e., v(ω), after pre-permutation windowing,

permutation with σs, flat windowing, aliasing and B-point DFT, the highest amplitude of

signal spectrum appears in [B] at location

p(ω, σs) = [bB
N

[σs[b
ω

∆ωN
e]N ]Ne]B. (2.12)

Please see the proof in Appendix A. A visualization of this process is shown in Fig. 2.3.

Due to the signal sparsity in the frequency domain, with high probability only ωm maps

to bin p. Also, due to the two stages of windowing, the side-lobes from the strong frequencies
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Figure 2.3: Windowing, permutation and aliasing. The frequency representation of the signal
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shown for conciseness.
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will be below the noise level. Thus, the effect of leakage from other sinusoids can be ignored.

Then we can approximate the variance of [f̂ ]p as

σ2
fp ≈ σ2

bmα(p, σs, ωm) + σ2
nβ(σs). (2.13)

In cases in which multiple frequencies are mapped to the same bin (collision), (2.13) gives a

underestimate of the variance. The probability of a collision occurring reduces as K << B.

The bin u ∈ [B], to which no significant frequency is mapped, contains only noise, and

the corresponding variance for [f̂ ]u is

σ2
fu ≈ σ2

nβ(σs). (2.14)

Hence, the hypothesis test for the first stage detection on [f̂ ]j , j = 0, 1, · · · , B − 1 is

formulated as

• H0: no significant frequency is mapped to bin j.

• H1: at least one significant frequency is mapped to bin j, whose SNR is at least

SNRmin.

The log likelihood ratio test (LLRT) is

log
Pfj |H1(x)

Pfj |H0(x)

H1
≷
H0
γ′. (2.15)

where Pfj |H1(x) and Pfj |H0(x) are the probability density function (PDF) of [f̂ ]j under H1

and H0 respectively, and γ′ is a threshold.

Substituting the PDF of [f̂ ]j under both hypothesis into (2.15), and after some manipu-

lations we get

|[f̂s]j |2
H1
≷
H0

γ′ − log
σ2
fu

σ2
fp

1
σ2
fu

− 1
σ2
fp

. (2.16)

Hence, |[f̂ ]j |2 is a sufficient statistics for the first stage detection. Since [f̂ ]j has circu-

larly symmetric Gaussian distribution, |[f̂ ]j |2 is exponentially distributed with cumulative

distribution function (CDF)

F|[f̂s]j |2(x, ζ2) =


1− e−

x
ζ2 , x ≥ 0

0, x < 0 ,

(2.17)
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where ζ2 equals to σ2
fu

under H0, and σ2
fp

under H1.

Based on (2.17), in the first stage of detection, the false alarm rate on each of B bins

and the probability of detection of the weakest sinusoid can be derived to be equal to

P̃fa(σs) = e
− γ

σ2nβ(σs) ,

P̃d(ωm, σs) = P̃
β(σs)

α(p,ωm,σs)SNRmin+β(σs)

fa ,

(2.18)

where γ is the detection threshold. Both P̃fa and P̃d depend on the permutation σs.

Since σs ∈ Sp has a uniform distribution, and |Sp| = N/2, by taking expectation with

respect to σs of both sides of (2.18), we have

P̄fa =
2

N

∑
σs∈Sp

e
− γ

σ2nβ(σs) ,

P̄d(ωm) =
2

N

∑
σs∈Sp

P̃
β(σs)

α(p,ωm,σs)SNRmin+β(σs)

fa .

(2.19)

2.4.2 The Second Stage Detection

Let cσs ∈ {0, 1}B denote the output of the first stage detection for the sth segment, with

permutation parameter σs. Each entry in cσs is a Bernoulli random variable, i.e., for j =

0, 1, · · · , B − 1,

[cσs ]j ∼


Bernoulli

(
P̃fa(σs)

)
, under H0,

Bernoulli
(
P̃d(ωm, σs)

)
, under H1.

(2.20)

Note that under H1, we assume that [cσs ]j corresponds to the weakest sinusoid. For the

other K − 1 co-existing sinusoids, since their SNR may be greater than SNRmin, their

probability of detection may also be greater than P̃d(ωm, σs) (see Lemma 3).

The reverse-mapping stage hashes the cσs ∈ {0, 1}B back to the aσs ∈ {0, 1}N . According

to Definition 4, it holds that

[aσs ]i = [cσs ]j , i ∈ [N ], j ∈ [B], i ∈ R(j, σ−1
s ). (2.21)

After accumulation of T iterations, each entry in the accumulated output is summation

of T Bernoulli variables with different success rate. Define ā as the accumulated output,

then for its i-th, i ∈ [N ] entry, we have

[ā]i =
T−1∑
s=0

[aσs ]i =
∑

i∈R(j,σ−1
s ),s∈[T ]

[cσs ]j . (2.22)
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Note that in (2.22), each term inside the sum corresponds to a different segment, i.e., [cσs ]j

is from the s-th segment. Since σs is drawn randomly for each segment, j may take different

values, and relates to i via a reverse-mapping. Fig. 2.4 gives a graphical illustration of the

mapping and reverse-mapping.

Now, the hypothesis test for the second stage detection on [ā]i, i ∈ [N ] is formulated as

• H0: no significant frequency exists in bin i.

• H1: there exists a significant frequency in bin i, whose SNR is at least SNRmin.

In the following, we investigate the statistics of [ā]i under both hypothesis in an asymp-

totic senses. Before that however, we will take a closer look at the mapping and the reverse

mapping by providing the following properties.

Property 3. (Reversibility): Let j ∈ [B], i, σ, σ−1 ∈ [N ]. σ and σ−1 satisfy Eq. (1.46).

If j =M(i, σ), then it holds that

i ∈ R(j, σ−1). (2.23)

Property 4. (Distinctiveness): Let i, j ∈ [B], i 6= j. If σ−1 ∈ [N ] and satisfies Eq.

(1.46), then it holds that

R(i, σ−1) ∩R(j, σ−1) = ∅. (2.24)

The proofs of those properties can be found in Appendices B and C. The two properties

simply reveal the following facts: a mapped location can be recovered by reverse mapping

(with ambiguities). Also, when applying reverse mapping to two distinct locations with the

same permutation parameter, the resulting locations are also distinct.

UnderH1, assuming that [ā]i corresponds to them-th sinusoid, i.e., the weakest sinusoid,

then each term inside the sum of (2.22) has distribution [cσs ]j ∼ Bernoulli
(
P̃d(ωm, σs)

)
, s ∈

[T ]. Then we present the following lemma.

Lemma 2. Under H1, and as T →∞,

[ā]i ∼ N(µa1(ωm), σ2
a1(ωm)), (2.25)

where µa1(ωm) = T P̄d(ωm), σ2
a1(ωm) ≤ T P̄d(ωm)(1− P̄d(ωm)).
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Figure 2.4: Mapping and reverse mapping. Due to the different permutations, a significant
frequency may be mapped into different locations in each iteration of the first stage detection.
The detected frequencies, including the false alarms in the first stage, are reverse mapped
to the original discrete frequency set. The true location of the significant frequency as well
as ambiguous frequencies are obtained. The occurrence on the true location grows steadily
during accumulation, provided that the SNR is high enough, and thus the true location
can be recovered in the second stage of detection with proper thresholding. However, false
alarms may also occur in the second stage detection, due to both ambiguous frequencies and
false alarms from the first stage of detection.
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Please see the proof in Appendix D.

The distribution of [ā]i under H0 is more complicated, and we have the following lemma.

Lemma 3. Under H0, and as T →∞,

[ā]i ∼ N(µa0(ωm), σ2
a0(ωm)), (2.26)

where

µa0(ωm) = FηpP̄d(ωm) + (T − F )P̄fa,

σ2
a0(ωm) ≤ FηpP̄d(ωm)(1− ηpP̄d(ωm))

+ (T − F )P̄fa(1− P̄fa),

(2.27)

and F = TKηm
B ; ηp ∈ [1, 1

P̄d(ωm)
] is a calibration parameter of the probability of detection for

the other K − 1 co-existing sinusoids.

Please see the proof in Appendix E.

Remark 1. From Lemmas 2 and 3, we notice that for the second stage detection, the LLRT

is obtained based on two Normal distributions. The test statistic under H1 is “stable”, because

it only depends on P̄d(ωm). However, under H0, the distribution depends on the number of

co-existing sinusoids K, as well as on each sinusoid’s SNR. A larger K and higher SNR will

“push” the distribution under H0 closer to the distribution under H1, hence degrading the

detection performance.

A natural extension of Remark 1 is Remark 2, which gives the condition under which

the RSFT will reach its limit.

Remark 2. Assuming that Pd ≥ Pfa, the RSFT will fail if Kηm ≥ B no matter how large

the SNRmin is.

Please see the proof in Appendix F.

2.4.3 The Optimization Problem

Based on the analysis of the two detection stages, the optimal probability of detection for

the weakest frequency P ∗d (ωm), and the optimal detection thresholds for the two stages, i.e.,

γ∗, µ∗, can be found as the solution of the following optimization problem:
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Maximize{γ,µ,P̄fa,P̄d} Pd(ωm)

Subject to

P̄fa =
2

N

∑
σs∈Sp

e
− γ

σ2nβ(σs) (2.28a)

P̄d(ωm) =
2

N

∑
σs∈Sp

P̃
β(σs)

α(p,ωm,σs)SNRmin+β(σs)

fa (2.28b)

Pfa =

∫ ∞
µ

ga0(u)du (2.28c)

Pd =

∫ ∞
µ

ga1(u)du (2.28d)

0 ≤ P̄fa, P̄d, Pfa, Pd ≤ 1 (2.28e)

γ, µ > 0, (2.28f)

where the first two constraints correspond to the detection for the first stage, while the

second two constraints correspond to the second stage of detection. The ga0(u), ga1(u) are

the asymptotic PDF of [ā]i under H0 and H1, respectively. We take the upper bounds of

the variances in both distributions.

To solve the problem of (2.28) we can use a brute force search for the first stage threshold

γ within (0, γmax) with a reasonable step size, where γmax corresponds to a small value of

P̄fa in (2.28a), such as P̄fa = 10−10. Specifically, with γ fixed, the P̄fa, P̄d can be solved via

(2.28a) and (2.28b). Next, the second stage threshold µ can be solved by (2.28c), and then

the Pd can be found by solving (2.28d). The largest value of Pd founded during the search

process, i.e., P ∗d , as well as the corresponding γ∗, µ∗ are the solution of (2.28).

Remark 3. In Lemma 3, we set a parameter ηp to calibrate the distribution of [ā]i under

H0. By setting ηp as 1 or 1
P̄d(ωm)

, we can get respectively the lower and upper bound of P ∗d

for the variation of SNR of other co-existing sinusoids. The upper bound of the sparsity

of the signal is Kmax, the optimal thresholds found by solving (2.28) provides the optimal

thresholds for the worst case. If the actual signal sparsity were less than Kmax, Pfa would

be lower than the expected value, while Pd would be unchanged according to Remark 1.
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By averaging out the permutation, asymptotically, P ∗d does not depend on the permuta-

tion. However, it still depends on ωm, as described in the following lemma.

Lemma 4. The dependence of P ∗d on ωm is due to the off-grid loss[41] from off-grid frequen-

cies. P ∗d attains its maximum when ωm is on-grid, i.e. ωm = k∆ωN , k ∈ [N ]. When ωm is

in the middle between two grid points, i.e., ωm = (k + 1
2)∆ωN , P ∗d attains its minimum.

Please see the proof in Appendix G.

2.5 Computational Complexity Analysis

We analyze the computational complexity of the RSFT algorithm by counting the number

of operations in its main stages, which is shown in Table 2.1. The RSFT has complexity

equal to

O

(
T (N +B +B logB +

KηmN

Bηp
) +N

)
. (2.29)

The FFT-based counterpart of the RSFT is the FFT-based Bartlett method followed

by an NP detection [40] (see Appendix M), whose complexity is O (TN(1 + logN) +N),

as shown in Table 2.2. Fig. 2.5 compares the RSFT’s complexity to that of Bartlett’s for

various B and K. One can see that the RSFT enabled savings are remarkable when B

is chosen properly. Specifically, from Fig. 2.5 one can see, the lowest complexity for K

equals to 5, 50, 100 is achieved when B equals to 32, 64, 128, respectively. Note that the

core operation in RSFT is still FFT-based, but on a reduced length. By leveraging the

existing high performance FFT libraries such as FFTW [42], the implementation of the

RSFT algorithm could be further improved.

Remark 4. The complexity of RSFT is linearly dependent on N,T,K, 1/ηp and ηm, hence it

is beneficial to choose a pre-permutation window with a small ηm, provided the attenuation of

the side-lobes is sufficiently large. We can also choose the optimal B from (2.29) to minimize

the computation. However, there are two additional constrains for B, one is B should be a

power of 2, the other is Kηm ≤ B, as stated in Remark 2.
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Table 2.1: Computational Complexity of RSFT

Procedure Number of Operations
Pre-permutation windowing TN

Permutation TN

Flat windowing TN

Aliasing TB(N/B − 1)

FFT T B
2 logB

Square TB

First stage detection TB

Reverse-mapping TKηmN
Bηp

Second stage detection N

Complexity O
(
T (N +B +B logB + KηmN

Bηp
) +N

)

Table 2.2: Computational Complexity of the Bartlett Method

Procedure Number of Operations
Windowing TN

FFT TN
2 logN

Square TN

Detection N

Complexity O (TN(1 + logN) +N)
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Figure 2.5: Comparison of complexity. N = 1024, T = 50, ηm = 2, ηp = 1, B ∈
{8, 16, 32, 64, 128, 256, 512, 1024}.

2.6 Multidimensional Extensions

In this section, we elaborate the extension of the RSFT into multiple dimensions; this is

referred as multidimensional RSFT in the following. Compared to the multidimensional

FFT, the implementation of multidimensional RSF is not straightforward, since the RSFT

is not separable in each dimension due to the two stages of detection. The detection should

be carried out jointly in all the dimensions, while other operations are separable in each

dimension. In the following, we elaborate on multidimensional RSFT for the 2-D case.

Windowing

In the pre-permutation windowing and the flat-windowing stages, the window for each di-

mension is designed separately. After that, the multidimensional window is generated by

combining each 1-D window. For instance, in the 2-D case, assuming that wx and wy are

the two windows in the x and y dimension, respectively, a 2-D window can be computed as

Wxy = wxw
H
y . (2.30)
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Permutation

The permutation parameters are generated for each dimension in a random way according

to (1.46). Then, we carry the permutation on each dimension sequentially. An example for

the 2-D case is illustrated in Fig. 2.6.
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Figure 2.6: Permutation and aliasing in 2-D. (a) Original 2-D data forms a 4 × 8 matrix.
(b) Permutation in x−dimension, σx = 3. (c) Permutation in y−dimension, σy = 3. After
permutation, data is divided into four 2×4 sub-matrices. (d) Aliasing by adding sub-matrices
from (c).

Aliasing

The aliasing stage compresses the high-dimensional data into much smaller size. In 2-D, as

shown in Fig. 2.6, a periodic extension of the Nx×Ny data matrix is created with period Bx

in the x dimension and By in the y dimension, with Bx << Nx and By << Ny, and the basic

period, i.e., Bx×By is extracted. Mathematically, [Y]i,j =
∑Nx

Bx
−1

u=0

∑Ny
By
−1

v=0 [X]i+Bxu,j+Byv,

where X ∈ CNx×Ny ,Y ∈ CBx×By are matrices before and after aliasing, respectively.
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First Stage Detection and Reverse-mapping

We carry first stage detection after taking the square of magnitude of high-dimensional

DFT on the aliased data. In the 2-D case, the first stage detection is applied by comparing

each data point of |Ŷ|2 ∈ RBx×By with the first stage threshold, and for those passing the

thresholds, their indices, i.e., (i, j), i = 0, 1, · · · , Bx − 1, j = 0, 1, · · · , By − 1 are reverse-

mapped to the original space, i.e., (u, v), u = 0, 1, · · · , Nx − 1, v = 0, 1, · · · , Ny − 1.

Accumulation and Second Stage Detection

As indicated in Algorithm 1, the loop from pre-permutation windowing to reverse-mapping is

repeated for T iterations with random permutation. The reverse-mapped frequency locations

are accumulated, which, in the 2-D case, forms A ∈ NNx×Ny , a matrix recording the

occurrences of each frequency. Finally, the second stage is applied on A, by comparing each

of its entry with the second stage detection threshold.

2.7 Numerical Results

In this section, we verify our theoretical findings via simulations. Unless stated otherwise, the

results refer to the following scenario: data length N = 1024, number of iterations T = 50,

sparsity bound Kmax = 16, reduced data length B = 128, SNR of the weakest signal

SNRmin = −8dB, signal dynamic range D = 30dB, calibration parameter for probability

of detection of co-existing frequencies ηp = 1/P̄d, false alarm rate Pfa = 10−6, location of

the weakest frequency ωm = 64.5∆ωN ≈ 0.4, and noise variance σ2
n = 1. The SNR of the

other three sinusoids is the same and larger than SNRmin by the designated dynamic range

D. We adopt a Dolph-Chebyshev window with 72dB PSNR for pre-permutation windowing.

The corresponding main-lobe broadening parameter ηm of such window is set equal to 5.

The flat window is created as follows. The N -point DFT of the Dolph-Chebyshev window

is convolved with a boxcar, whose width is N/B. A subsequent inverse N -point DFT is

applied to extract the time domain samples of the flat window.

Fig. 2.7 shows α(p, σs, ωm), β(σs) (see respectively (2.11) and (2.12)), for all possible

values of the permutation parameter σs. Recall that α(p, σs, ωm) and β(σs) are the weights
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for the variance of signal and noise component in the first stage detection, respectively.

Based on the figure, one can see that α(p, σs, ωm) is larger than β(σs) for all permutations.

Thus, due to the windowing, aliasing and DFT operations before the first stage of detection,

the gain of the signal component is always larger than the gain of the noise component (see

(2.13)).

With all the aforementioned parameters available, we are able to solve the optimal

probability of detection for the weakest signal, thresholds for the two stages of detec-

tion, i.e., P ∗d , γ
∗, µ∗, respectively, via (2.28). The solver executes a brute force search

of the first stage threshold γ; as suggested by Fig. 2.8, each value of γ corresponds to

a value of Pd, and the largest Pd corresponds to P ∗d . The obtained optimal values are

P ∗d ≈ 0.52, γ∗ ≈ 6.5× 10−3, µ∗ ≈ 38.2.

200 400 600 800 1000

σ
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0.6

0.8
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α

Figure 2.7: The values of α(p, σs, ωm), β(σs) with respect to all possible values of the per-
mutation parameter σs.

To verify the effectiveness of the detection with the optimal thresholds, we simulate the

specified signal and visualize the two stages of detection. The spectrum of the simulated

signal after pre-permutation windowing is shown in Fig. 2.9 (a). Figs. 2.9 (b) and (c) show
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Figure 2.8: Solving for P ∗d via a brute force searching of γ ∈ (0, 0.1), with a step size
∆γ = 5× 10−4.

that the thresholding with γ∗, µ∗ respectively in the two detection stages. The locations

of the detected frequencies from (c) coincide with the ground truth locations in (a), which

means that the detection is effective. Fig. 2.9 (d) shows the ROC curves corresponding to the

two stages of detection, respectively. Compared to the first stage, the detection performance

of the second stage improves significantly, which is due to the effective accumulation stage

in RSFT.

2.7.1 Improvement of Signal Sparsity by Pre-permutation Windowing

Here we verify the effectiveness of the pre-permutation window in improving the sparsity

level in the discrete frequency domain. In Fig. 2.1, we visualize the improvement of the

sparsity by applying a pre-permutation window on a signal that contains two significant

frequencies. In Table 2.3, we show the improvement of the sparsity by pre-permutation

windowing on a signal containing K = 4 significant frequencies with various dynamic range

values D. The PSR of the pre-permutation window varies with different values of D, which
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Figure 2.9: The two stages of detection. K = Kmax = 16. (a) Signal spectrum after pre-
permutation windowing. The magenta dot denotes the amplitude of ωm. (b) First stage
detection. (c) Second stage detection. Data and threshold are normalized by T . (d) ROC
curves of the two detection stages.
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is calculated by (2.3), with δw = 20dB. One can see that for signals with high dynamic

range, the improvement of the sparsity after permutation (SAP) compared to the sparsity

before permutation (SBP) is significant.

Table 2.3: Effect of Pre-permutation Window.

D (dB) PSR (dB) SBP SAP
0 42 4 4

10 52 7 7

20 62 16 13

30 72 46 16

40 82 127 16

50 92 168 20

2.7.2 The Effect of Signal Sparsity and SNR of the Co-existing Frequencies on

Detection Performance

According to Remarks 1 and 3, the sparsity K, the SNR of co-existing frequencies, and

the dynamic range of signal D affect the detection performance for the weakest frequency.

Larger values of K and D imply lower Pd(ωm). We verify those remarks by visualizing the

PDFs of two competing distributions in the second stage of detection for various values of

K and D. In Fig. 2.10 (a), by fixing D, the PDF ga0(u) under the null hypothesis H0 in the

second stage is evaluated for different values of K. In Fig. 2.10 (b), ga0(u) is calculated for

different values of D with fixed K. In all cases, the change of the PDF under the alternative

hypothesis H1, i.e., ga1(u), is minor, since ga1(u) is not directly affected by the co-existing

frequencies. From these figures, one can see that large values of K and D will cause ga0(u)

to move closer to ga1(u), resulting in the degradation of detection performance.

Fig. 2.10 (a) also shows that the detection is effective for unknown K, when K ≤ Kmax.

A smaller K causes ga0(u) to depart from ga1(u). However, since the threshold µ∗, which

is designed for the Kmax case, does not change, the actual false alarm rate Pfa deceases,

while Pd(ωm) does not change. Using the thresholds calculated for Kmax = 16 and all

other parameters the same as those used in Fig. 2.9, we test a simulated signal with K = 4

significant frequencies to show the detection performance whenK < Kmax. The thresholding

in the second stage detection is visualized in Fig. 2.10 (d). Compared to Fig. 2.9 (c), where
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K = Kmax = 16, the noise floor is much lower, hence the false alarm rate is reduced.

The detection performance related to different values of the sparsity bound Kmax is

also shown in Fig. 2.10 (c), in the form of ROC curves; the ROC curves show that, with

other parameters fixed, as Kmax increases, the detection performance degrades, which is as

expected.
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Figure 2.10: The effect of sparsity and SNR of co-existing frequencies on detection perfor-
mance. (a) Changing K for D = 30dB, ηp = 1/P̄d(ωm). (b) Changing D for K = Kmax =
10; ηp = 1 when D = 0dB, ηp = 1/P̄d(ωm) when D = 30dB and 50dB. (c) ROC curves for
various Kmax values. (d) The second stage detection when K = 4,Kmax = 16.

2.7.3 The Effect of Frequency Locations on Detection Performance

We verify the dependence of P ∗d (ωm) on the frequency location ωm, and quantify the detec-

tion performance due to the off-grid loss. Fig. 2.11 (a) shows that P ∗d fluctuates periodically

as ωm varies within [0, 4∆ωN ). As expected from Lemma 4, P ∗d attains its maximum and
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minimum when ωm is at the grid points and in the middle between the two neighboring grid

points, respectively. As a result, the detection performance, as characterized by the ROC

curves, also varies as ωm varies (see Fig 2.11 (b)). According to Fig. 2.11 (a), the varia-

tion of P ∗d (ωm) due to different locations of ωm is within 8%. To guarantee the detection

performance, a conservative design would assume that the unknown ωm is located at the

mid-point between grid points.
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Figure 2.11: The effect of frequency locations on detection performance. (a) The fluctuation
of P ∗d due to different locations of the frequency is mainly caused by the off-grid loss. (b)
ROC curves with respect to different locations of the frequency.

2.7.4 The Trade-off between Complexity and Detection Performance

In Section 2.5 we have investigated the computational complexity of RSFT, from which one

can see that a smaller value of B plays a central role in reduction of complexity. However,

such reduction of complexity comes at the cost of detection performance degradation. In

Fig. 2.12 we show the ROC curves with respect to different choice of B, from where one

can see that B affects the detection performance significantly. A large B provides better

detection performance. In applying the RSFT in real-world systems, the variation of B

provides a degree of freedom to trade off complexity and detection performance.

2.7.5 Comparison of RSFT and SFT

We compare RSFT and SFT in terms of their performance in localizing the significant

frequencies. Clearly, since we only measure the localization error, the `2-norm metric used
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Figure 2.12: The effect of the reduced length B on detection performance when Kmax = 4.
A large B provides a better detection performance.

in the SFT literature for computing the approximation error between the original and the

recovered signal is not a good metric. The average `1 and `∞ norm between the ground truth

frequency locations and the estimated values, which are typically used in harmonic analysis

literature (e.g., [29, 43]), are also not good metrics for our problem due to the following

reasons: 1) the estimated frequencies typically do not exactly match the ground truth due

to the grid; 2) a cluster of frequencies might appear in the vicinity of the true location of

any significant frequency due to leakage and windowing; 3) there might be miss detections;

and 4) there might be false alarms. In light of the above observations, we propose a metric

for the localization error, defined as follows:

lerr(L) ,
1

P

∑
ω̂i∈Sl

1

Li

∑
ω̃l∈Si(L)

|ω̂i − ω̃l|+ Cmdn/N + Cfam/N, (2.31)

where the first, second and third terms on the right side represent the averaged `1 distance

between the ground truth and the localized frequencies, the cost of miss detection, and the

cost of false alarm, respectively. Specifically, for each true discretized frequency ω̂i = bωiN2π e ∈

Sl, we look at the average `1 error between ω̂i and all detected frequencies ω̃l ∈ Si(L) (with
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Li = |Si(L)|) that fall in the L-neighborhood of ω̂i. P represents the number of detected

true frequencies (P ≤ K). We consider the average of all errors corresponding to all true

frequencies. Missed frequencies contribute to the error via the term Cmdn/N , where Cmd

is the cost parameter for miss detection and n is the number of missed true frequencies.

Similarly, the false alarm frequencies contribute via the term Cfam/N , where Cfa is the

cost parameter for false alarm and m is the number of false frequencies. A false frequency

appears outside the L-neighborhood of each ω̂i.

The localization error comparison of the RSFT and the SFT is shown in Fig. 2.13,

where the error is obtained by averaging 100 Monte Carlo runs. In each run, the signal is

generated based on 4 randomly located significant frequencies, and the RSFT is employed

to obtain the frequency set SRSFTe and the corresponding localization error lRSFTerr . For the

SFT-based processing, we need to determine the number of peaks to count in the two stages

of detection, i.e., p1 and p2. Since these numbers are unknown, we test different values of

p1, p2 and compute the corresponding lSFTerr . The results are shown in Figs. 2.13 (a) and

(b). The error components averaged `1 distance, cost of miss detection and cost of false

alarm are also displayed. We observe that, while fixing L, as p1, p2 are increased, the cost

of the averaged `1 distance increases and the cost of miss detection decreases as expected.

For a fixed p2 (p1), there exist an optimal range for p1 (p2), which leads to a lower lSFTerr .

However, the lowest lSFTerr is still larger than lRSFTerr calculated for the same setting. The

lerr is influenced by the half width of the vicinity window L. In Figs. 2.13 (c) and (d), we

show that lRSFTerr is stable when L exceeds 2. For lSFTerr , as L increases, the cost from the

false alarm decreases, while the averaged `1 distance increases. This is mainly due to the

frequency leakage in the vicinity of a strong frequency.

2.7.6 The Variance and Its Upper Bound for [ā]i

The random variable under test in the second stage detection is [ā]i, i ∈ [N ]. For solving

(2.28), we approximate the variances of [ā]i under both hypotheses by their upper bounds.

In this section, we show via simulations that the actual variances are close to their upper

bounds. Hence, we study the variance under H1, i.e., σ2
a1(ωm). The case for σ2

a0(ωm) can

be similarly studied. As shown in (2), the discrepancy of σ2
a1(ωm) from its upper bound
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Figure 2.13: Comparison of localization error for RSFT and SFT. B = 256, Cmd = Cfa = 1.
The localization error may be decomposed into averaged `1 distance, cost of miss detection
and cost of false alarm. (a) The impact of p1 on lSFTerr when p2 = 20, L = 6. (b) The impact
of p2 on lSFTerr when p1 = 40, L = 6. (c) The impact of L on lRSFTerr when p1 = 40, p2 = 20.
(d) The impact of L on lSFTerr when p1 = 40, p2 = 20.
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is due to the P̃d’s dependence on σs, which is caused by β and α’s dependence on σs (see

Fig. 2.7). Monte Carlo simulations, presented in Fig. 2.14 indicate that the normalized

approximation error, i.e., T P̄d(ωm)(1−P̄d(ωm))−σ2
a1(ωm)

σ2
a1(ωm)

decreases as T grows, since a larger T

causes the difference of P̃d(ωm, σs) between different permutations to average out. Moreover,

even for a small T , such as T = 10, one can see that the error is as small as about 1.6%,

which means the approximation is reasonable.
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Figure 2.14: Normalized approximation error between the actual variance σ2
a1(ωm) and its

upper bound, versus number of iterations.

2.7.7 SNR Loss due to RSFT as Compared with the FFT-based Method

The counterpart of the RSFT-based signal processing is the FFT-based Bartlett method

followed by an NP detection procedure [39, 40] (see Algorithm 2 for details). To compare

the two methods, in Section M we derive the relationship between the Pd and the Pfa for

the Bartlett method using the same signal model as that of the RSFT.

As compared with the FFT-based Bartlett method, the reduction of complexity of RSFT

is achieved at a cost of degradation of detection performance; such degradation can be
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compensated by increasing the SNR of the weakest sinusoid, i.e., SNRmin. The tradeoff

between complexity and SNRmin involves the reduced data length, B. Typically, a smaller

B yields lower computational complexity and requires a larger SNRmin; this is shown in

Fig. 2.15 for different sparsity level, K. A small K requires a lower SNRmin. The case for

the FFT-based Bartlett method to achieve the same detection performance as that of RSFT

is also shown. When B = 128,K = 5, the computation savings of RSFT as compared with

the Bartlett method is approximately 7dB, meanwhile, the SNRmin required by the former

is approximately 11dB greater than the latter.

Note that when B = N , the complexity of the RSFT is greater than that of the Bartlett

method, also, the detection performance of former is worse than the latter. This is due to

the two stages of windowing in RSFT degrade the SNR. Hence, in the case of B = N , one

would adopt the FFT-based, rather than RSFT-based processing.
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Figure 2.15: Worst case SNR and complexity tradeoff. N = 1024, T = 50, D = 0dB,B =
{8, 16, 32, 64, 128, 256, 512, 1024}, Pd = 0.9, Pfa = 10−6,K = {5, 10, 100}, ωm = ∆ωN/2.
The red dot shows the performance of the Bartlett method.
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2.7.8 Characterize the Detection Performance for K Targets

We use the recall and precision [44] to quantify the detection performance; those metrics

are widely used in the detection of multiple objects . The recall is defined as the ratio of

the number of true positives to the number of frequencies existed in the signal, i.e., K. The

precision is defined as the ratio of the number of true positives to the number of detected

frequencies. The higher the recall and the precision, the better performance of the system.

In Fig. 2.16, we show the recall and precision versus SNR for different K. For a fixed

K value, we compute the Pd for different SNR when Pfa = 10−2 using (36) of [36]; here,

we use a relatively large Pfa for the purpose of visualization. Based on this, the recall and

precision can be predicted, i.e., the recall should be the same to Pd, while the precision can

be computed as

P =
PdK

PdK + (N −K)Pfa
. (2.32)

We compare the predicted recall and precision values with the experimental results. For the

experiments, we generate signals containing K significant frequencies at various SNR values.

The locations of the frequencies are random, and we guarantee that the spacing between two

frequencies are large enough so that the RSFT can resolve. We use the computed optimal

thresholds to detect the frequencies. After detection, due to windowing, each continuous-

valued frequency may be represented by a cluster of frequencies. We extract the center

location of each cluster and compare it with the ground truth location. A detection is

regarded as a true positive if the center location of the cluster is within ±1 neighboring

bins of the ground truth location. The center locations of clusters which do not fall into

the neighborhood of any ground truth locations are regarded as false alarms. Fig. 2.16

shows that, as expected, the recall and precision become larger as SNR grows. The recall

for K = 5 is always greater than that the cases when K = 50 for a same SNR due to that

the Pd of the former is always greater than the latter. On the other hand, the precision

of the former is worse than that of the latter, which can be explained by (2.32). While

the recall calculated from experiments matches well with the predicted values, the precision

calculated from experiments are slightly better than the predicted results, which suggests

the number of actual false alarms are smaller than expected.
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Figure 2.16: Recall and precision versus SNR for different K. Pfa = 10−2, D = 0dB, T =
50, N = 1024, B = 256,K = Kmax.

2.8 Summary

We have proposed a robust version of the simple and practical SFT algorithm, i.e., RSFT.

RSFT employs a pre-permutation window and NP detection to address the off-grid fre-

quency and frequency detection problems arising in the application of SFT in real-world

situations. We have shown that the RSFT is robust in detecting frequencies when exact

knowledge of signal sparsity is not available. The optimal design of parameters in RSFT

have been analyzed, and the tradeoff between detection performance and computational

complexity has been investigated. Such analysis has revealed that RSFT could provide an

extra degree of freedom in design to trade off the system’s ability to detect weak signals

and complexity. Some interesting properties of the RSFT have also been revealed by our

analysis. In particular, the performance of detection not only relies on the frequency under

examination, but also depends on other co-existing significant frequencies. This is because

the co-existing frequencies generate ambiguity locations in the reverse-mapping procedure,

which raises the noise floor in the second stage detection.
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Chapter 3

RSFT-based DBF and MIMO Radar Signal Processing

Conventional radar signal processing employs multidimensional Discrete Fourier Transform

(DFT) to compute frequencies that are related to target parameters including range, range

rate and Direction of Arrival (DOA). The DFT is usually implemented by the Fast Fourier

Transform (FFT). The sample and computational complexity of the FFT is O(N) and

O(N logN), respectively, where N is the number of samples. For modern Digital Beam-

forming (DBF) and Multiple-Input Multiple-Output (MIMO) radar systems, N is large due

to increasing of the dimension of processing and increased resolution in each dimension. Fur-

thermore, some radar systems such as automotive radars have highly constrained hardware

due to limited size and the low-cost requirement. Hence, the real-time signal processing of

those radar systems remains a challenging problem. This motivates us to employ SFT-based

radar signal processing to reduce the complexity of radar signal processing.

In Chapter 2, we proposed the Robust Sparse Fourier Rransform (RSFT), which en-

joys low computational complexity as compared with the conventional FFT-based method,

while addresses noisy signals containing off-grid frequencies. In this chapter, we formulate

RSFT based radar signal processing frameworks for DBF radars using (linear) Frequency

Modulation Continuous Waveform (FMCW), and MIMO radars using pulse-compression

waveforms. To this end, the radar signal processing schemes are designed to support the

application of RSFT, and the proper pre-processing is adopted to sparsify signals in cases

when signals are not naturally sparse in a specific domain.
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3.1 RSFT-based DBF Radar

3.1.1 Conventional Signal Processing of DBF Radar

A DBF radar can see targets everywhere at anytime. Unlike a traditional phased array radar

which has to steer its beams, in DBF radars, a broad transmitting beam pattern is achieved

by an omni-directional transmitter and multiple narrow beams are formed simultaneously

after receiving the reflected signal. The beam pattern of an DBF radar is shown in Fig. 1.5

with a Uniform Linear Array (ULA) configuration.

Near range DBF radars are important both in military and civilian vehicular applica-

tions. In military applications, for instance, such kind of radars are well suited in active

protection systems [45], allowing sensors on a vehicle to detect and locate the warheads of

a closely fired rocket-propelled grenade within milliseconds. In addition to its wide angle

coverage, high precision of measurement and all-weather operation render the DBF radar

an ideal sensor for active protection system. In civilian applications, DBF radars play a

more and more important role in Automotive Driver Assistance Systems (ADAS) and self-

driving applications, where the radar offers high precision measurement in range, range rate,

and DOA domains; this provides important information of surroundings to the perception

systems of ADAS and self-driving systems [46, 11, 47].

In order to achieve high range resolution and cover near range, in the aforementioned

applications, the DBF radar usually utilizes the FMCW waveform, as introduced in Section

1.2. Let us assume that the transmit waveform is grouped into bursts, with each burst

contains M Repetition Intervals (RIs). Mathematically, the transmitted waveform can be

expressed as

s(t, v) = A cos(2π(fc(t− vTp) + πρ(t− vTp)2), (3.1)

where Tp is the RI, v ∈ [M ] denotes the v-th RI, A is amplitude of the signal, fc is the

carrier frequency and ρ is the chirp rate. Furthermore, without loss of generality, we assume

that the initial phase of the signal is zero.

Upon reception, a de-chirp process is implemented by mixing the received signal with

the transmitted signal, followed by a low-pass filter. The received signal is a delayed version

of the transmitted one, hence by mixing the two signals, the range information of the targets
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is linearly encoded in the difference of the frequencies. Hence in the s-th, s ∈ [T ] burst, for

the i-th, i ∈ [N ] receiving channel (corresponding to an N -element ULA of half-wavelength

element-wise spacing), the de-chirped signal of the v-th RI is expressed as

ri,s(t) =

K−1∑
k0

a[k](s) cos
(

2π((f [k]
r + f

[k]
d )(t− vTp) + iπ sin θ[k]

)
+ n(t), (3.2)

which is a superposition of K sinusoids (corresponding to K targets) and additive noise n(t).

For the k-th sinusoid, a[k](s) represents its amplitude, which can be modeled as a Gaussian

random process. More specifically, the amplitude is assumed to be static within a burst,

and independent between bursts. This assumption is consistent with the Swerling-I target

model [9], which represents a slow fluctuation of the target RCS. f [k]
r , f

[k]
d are the frequency

components respect to target’s range and velocity respectively, i.e.,

f [k]
r =

2ρr
[k]
t

c
,

f
[k]
d =

2v
[k]
t

λ
,

(3.3)

where r[k]
t , v

[k]
t , c are the k-th target’s range, velocity and speed of wave propagation respec-

tively. After analog-to-digital (AD) conversion, the received signal of each channel becomes

R samples within each RI, with each sample representing a range bin.

The DOA of the k-th target, i.e., θ[k] is defined as the angle between the line of sight

(from the array center to the target) and the array normal. Assuming that the element

wise spacing is λ/2, under the narrow-band signal assumption, θ[k] will cause an increase of

phase at the neighboring array element equal to π sin θ[k]. We omit the constant phase term

in each sinusoids of (3.2), since they are irrelevant to the performance of the algorithm.

After AD conversion of each receiving channel, we can use the processing scheme shown

in Fig. 3.1 to detect the targets as well as estimate their range, velocity and DOA. More

specifically, grid-based versions of f [k]
r , f

[k]
d , π sin θ[k] can be calculated by applying a three

dimensional (3-D) FFT on the windowed data cube [11], and then, after accumulation of

T iterations (a different burst of signal is processed in each iteration), the NP detection

procedure can be performed.
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Figure 3.1: Conventional FFT-based processing scheme for FMCW DBF radars.

3.1.2 RSFT-based DBF Radar Signal Processing

The RSFT algorithm is suitable for reducing the computational complexity of the DBF

radar using FMCW for the following reasons:

• The number of targets is usually much smaller than the number of resolution cells

in 3-D range, Doppler and DOA space, which implies that the signal is sparse after

proper translation.

• With a ULA and digitization of each received element, the signal is uniformly sampled

both in spatial and temporal domain.

• The short range coverage implies that moderate high SNR is easy to achieve as com-

pared with long range radars.

The RSFT-based DBF radar processing architecture is shown in Fig. 3.2. Compared

to the conventional processing in Fig. 3.1, the 3-D FFT is replaced with a 3-D RSFT, in

which the aliasing procedure reduces the data cube size from R × N ×M to B × C × D,

with B < R,C < N,D < M . The 3-D FFT operated on the smaller data cube could reduce

the computation time significantly.

Based on the radar architecture described by Fig. 1.2, we verify the feasibility of the

RSFT-based DBF radar processing and compare it to simple and practical SFT based pro-

cessing via simulations. The main parameters of the system are listed in Table 3.1. The
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Figure 3.2: RSFT-based processing scheme for the DBF radar.

design of the system can guarantee non-ambiguous measurements of the target’s range and

velocity, assuming the maximum range and velocity are less than 1.5km and 300m/s, re-

spectively.

We generate signals from 4 targets according to (3.2). The range, velocity and DOA

of targets can be arbitrarily chosen within the unambiguous space, which implies that the

corresponding frequency components do not necessarily lie on the grid. The targets’ para-

meters used in the simulation are listed in Table 3.2. For targets 3 and 4, we use the same

range and velocity values but set their DOA to be 4◦ apart; this is close to the theoretical

angular resolution after windowing for the Bartlett beamforming. To compare RSFT and

simple and practical SFT for different scenarios, we adopt two sets of SNR for targets. For

the first set, we use the same SNR, i.e., −10dB for different targets, while for the second set,

we assign different SNR values to different targets, which is closer to a realistic scenario.

Simple and practical SFT is a 1-D algorithm. In order to use it for reconstructing targets

in the 3-D space, we extend it along the lines of the multidimensional RSFT, as described
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Table 3.1: DBF radar parameters

Parameter Symbol Value
Number of range bins R 2048

Number of receiving channels N 64

Number of RI M 32

Wave length λ 0.03m

Wave propagation speed c 3× 108m/s

Bandwidth Bw 150MHz

Repetition interval Tp 5× 10−5s

Maximum range Rmax 1.5× 103m

Chirp rate ρ 3× 1012Hz/s

Sampling frequency (IQ) fs 41MHz

Reduced data length in range B 128

Reduced data length in DOA C 32

Reduced data length in velocity D 16

Table 3.2: Target Parameters

Target Range (m) Velocity (m/s) DOA (◦) SNR (dB)
1 1000 100 30 −10/0

2 500 50 0 −10/− 10

3 350 240 −16 −10/− 20

4 350 240 −20 −10/− 20

in Section 2.6. For simple and practical SFT, due to existence of the large number of

peaks from leakage, even if the exact number of targets is known, it is still not clear how

one can determine the number of peaks to be counted. Hence, in the implementation of

simple and practical SFT in the experiment, we gradually increase the number of peaks

that are counted until all the targets are recovered. This is not realistic in real-world radar

applications because we will never know that if all the targets within radar coverage are

detected. On the other hand, the RSFT can do effective detection by knowing the SNR

of the weakest frequency, dynamic range, noise variance and a sparsity bound. Typically,

these parameters can be found in the design specifications or from the field test of the radar.

For the case of the same SNR setting, all the targets are recovered after around 20 peaks

are counted in simple and practical SFT. For the second SNR setting, simple and practical

SFT needs to count nearly 200 peaks to recover the weakest targets (Targets 3 and 4).

Figs. 3.3 and 3.4 show the target reconstruction results for the two settings, respectively.

The former shows that both simple and practical SFT and RSFT can perfectly recover all
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the targets that have the same SNR. From targets 3 and 4 we can see that simple and

practical SFT based method achieves a better resolution than its RSFT counterpart, which

is expected since the former does not require a pre-permutation window. Such reduction in

resolution is common and usually inevitable in many DFT-based applications that utilize the

windowing technique to reduce frequency leakage; the reduction is usually minor and can be

compensated by a proper system level design. For example, to compensate for the resolution

reduction in the range domain, one can extend the bandwidth of the waveform to a desired

level. In the second scenario, simple and practical SFT based method shows the side-lobes of

the stronger targets, while the RSFT-based method only recovers the (extended) main-lobes

of all the targets.

The simulation shows that the RSFT-based approach is better than its simple and practi-

cal SFT counterpart for a realistic scenario, within which the signal has a reasonable dynamic

range. We should emphasize that in a real radar system, determining the number of peaks

to be counted for simple and practical SFT based method lacks a theoretical foundation,

while the thresholding approach in the RSFT is consistent with the conventional FFT-based

processing, both of which are based on the Neyman-Pearson criterion.

3.2 RSFT-based MIMO Radar

As introduced in Section 1.4, MIMO radars employ multiple transmit and multiple receive

antennas to simultaneously form multiple beams. Compared to DBF radars, collocated

MIMO radars [14, 16] enjoys improved parameter identifiability due to he increased degree

of freedom in transmission.

The MIMO radar’s wide angle coverage shown in Fig.1.5 is achieved by multiple chan-

nels for transmitting and receiving. During the transmission, a set of mutually orthogonal

waveforms are transmitted by each array element with an omni-directional beam pattern;

after the signal is received from each digitized receiving channel, multiple narrow beams are

formed in the Digital Signal Processor (DSP) using beamforming methods.

The implementation of MIMO radars usually involves high cost, which is mainly due to:

1) the large number of transmit and receive Radio Frequency (RF) channels; and 2) the high
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Figure 3.3: Target reconstruction via 3-D simple and practical SFT and RSFT; all tar-
gets have the same SNR. Both simple and practical SFT and RSFT based methods can
reconstruct all the targets, while simple and practical SFT has better resolution.

Figure 3.4: Target reconstruction via 3-D simple and practical SFT and RSFT with different
SNR for the 4 Targets. Simple and practical SFT based processing recovers the side-lobes of
the stronger targets, while the RSFT-based method only recovers the main-lobes of targets.
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data throughput and complex processing, which results in costly DSPs. The cost of the RF

channels can be reduced by sharing the transmit and receive antennas, i.e., each antenna

element can be used both for transmitting and receiving in a pulse mode [14]. Here, we will

assume such configuration and address the reduction of the cost of DSP.

Modern pulse radars usually employ the Pulse Compression (PC) technique to increase

their sensitivity (ability to detect weak signals) and range resolution. To implement PC in

MIMO radars, the waveforms must have good cross- and auto-correlation properties [20],

which are properties needed for PC and Waveform Decoding (WD). WD is a process that

separates the orthogonal waveforms from each transmitter, so that the so called transmit

beamforming [14] can be applied subsequently to compensate for time delay caused during

transmission. To this end, Code Division Multiple Access (CDMA) waveforms [20, 48] are

usually adopted. Depending on the application, the baseband CDMA code sequences can

be applied on the slow-time (time across pulses) or on the fast-time (time within a single

pulse), yielding different processing schemes and computational complexities.

The high degrees of freedom in MIMO radars result in high dimensional computations.

For the MIMO radar of Fig. 1.5, in order to detect targets and estimate their range and

DOA, we need to do processing in a 3-D space, i.e., range, transmit DOA and receive

DOA. Although parametric methods yield in general better resolution, conventional, Fourier

transform-based methods are often preferable in practice due to their robustness to noise and

their lower computational complexity [49]. In fact, matched filtering for range processing,

and transmit and receive beamforming for DOA processing can be effectively implemented

via the FFT (see e.g., [6]), which has a complexity of O(RN2 log(RN2)) for each pulse

repetition interval (PRI), where N,R are the number of array elements and the number

of the range bins, respectively. When N,R are large, or, when the dimension of signal

processing continuous to increase (for instance, when both azimuth and elevation DOA are

considered), the computation of the FFT becomes costly. This motivates the application

of the RSFT in MIMO radar signal processing. We formulate RSFT-based MIMO signal

processing framework, and make the following contributions:

• We propose MIMO-RSFT radar, a reduced complexity MIMO radar that employs the

RSFT to reduce the cost of the DSP.
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• We explore slow-time and fast-time coded waveforms that support PC for MIMO

radars. The implementation of the RSFT and the resulting computational savings are

investigated for both cases.

• We provide the key steps of deriving the optimal detection thresholds for the MIMO-

RSFT radar based on the signal model.

3.2.1 Signal Model

Let us consider the MIMO radar configuration of Fig. 1.5. During transmission, a set of

orthogonal CDMA waveforms are transmitted by each antenna element. Let us denote the

discrete baseband signal, which is transmitted by the u-th, u ∈ [N ] element in the s-th,

s ∈ [T ] PRI by su,s ∈ CM . Suppose that there are K targets within the radar coverage. For

simplicity, we do not incorporate Doppler in our signal model, thus implicitly assuming that

the targets are moving slowly and their Doppler can be neglected. Note that including the

Doppler processing in the MIMO-RSFT radar is straightforward, and is briefly discussed in

Section 3.2.7. The received signal of the i-th, i ∈ [N ] receiving channel (after quadrature

demodulation and AD conversion) is ri,s ∈ CR, which is a superposition of the signals that

are returned from K targets, i.e.,

ri,s =

K−1∑
k=0

(
bk,se

jiπ sin θk

N−1∑
u=0

au,s(tk)e
juπ sin θk

)
+ ns, (3.4)

where tk ∈ [R −M ], θk ∈ [−π/2, π/2] denote sample delay and DOA (the angle between

the line-of-sight of target and the array normal) of the kth target, which are unknown de-

terministic quantities and are assumed to be stationary within T PRIs. The phase terms

ejiπ sin θk and ejuπ sin θk are respectively caused by the channel-wise time delay during recep-

tion and transmission, by assuming that the signal is narrow-band and the array elements

are spaced apart by half wavelength. We use au,s(tk) ∈ CR, R > M to represent the

fast-time data samples within the sth PRI, which contains a delayed by tk version of su,s,

i.e., [au,s]v+tk = [su,s]v, v ∈ [M ], and the other entries of au,s equals to zero. The bk,s

is the complex amplitude of the kth target, which is circularly symmetric Gaussian and

distributed as bk,s ∼ CN (0, σ2
bk); the noise ns is temporal and spatial white, distributed



74

as ns ∼ CN (0, σ2
nI), where 0 is R-dimensional zero vector, and I ∈ RR×R is the identity

matrix.

Let Rs = [r0,s, r1,s, · · · rN−1,s] represent the data collected by all antennas. The data

collected over T pulses, i.e., Rs, s = 0, 1, · · · , T − 1, will be used to detect the targets and

estimate their range and DOA. The conventional processing schemes for slow-time and fast-

time coded waveforms are presented in Fig. 3.5 (a) and Fig. 3.6 (a), where WD and PC

are implemented sequentially and simultaneously, respectively. Conceptually, WD separates

each au,s(tk)e
juπ sin θk component in ri,s, while PC convolves au,s(tk) with su,s to achieve

high range resolution. After that, the transmit and receive beamforming are implemented

along the transmit and receive channel, respectively. Subsequently, after a non-coherent

accumulation, a detection procedure on each resolution cell is applied.

The FFT and inverse FFT (IFFT) can be employed in various stages of the processing,

however, the complexity is still high due to high dimensional data. In what follows, we

explain how one can use the RSFT in both slow-time and fast-time coding schemes to save

computation.

3.2.2 Slow-time and Fast-time Coded Waveforms Processing

Let us consider the transmit waveforms to be unimodal [20], i.e., |[su,s]i| = 1, i ∈ [M ]. First,

we discuss the orthogonality and PC requirements for such waveforms. Based on that, we

compare the processing schemes for slow-time and fast-time coded waveforms and derive

their computational complexities.

The correlation between su,s and sv,s at lag n, n ∈ [M ] equals to cu,v,s(n) = c∗v,u,s(−n) =∑M
i=n+1[su,s]i[sv,s]

∗
i−n. The slow-time orthogonality requires that the pulses emitted from

different transmitters be uncorrelated within L consecutive PRIs, i.e.,
L−1∑
s=0

cu,v,s(0) = 0, u, v ∈ [N ], u 6= v, (3.5)

while the fast-time orthogonality requires that L = 1 in (3.5). Note that (3.5) guarantees

that: 1) the transmit beam-pattern is omni-directional within L PRIs; and 2) the WD can

be applied upon reception.

PC requires the auto-correlation of each pulse at different non-zero lags be below certain
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level, i.e., |cu,u,s(n)| < ε, n ∈ [M ] \ 0, where 0 ≤ ε << |cu,u,s(0)| = M .

Slow-time Coding

The slow-time coding scheme [48] can employ any pulse waveform s that supports PC (e.g.,

the Barker code waveform) as its base waveform. To achieve (3.5), the antennas transmit

T/L bursts, assuming that T is divisible by L; a burst is composed of L consecutive pulses,

i.e., su,s, u ∈ [N ], s ∈ [L], whose initial phases are coded by N mutually orthogonal unimodal

sequences (e.g., the Hadamard sequences [48]), which is denoted as hu ∈ CL, u ∈ [N ]. Hence

su,s = [hu]ss. Upon reception, WD is applied for each receiving channel on the burst basis

by correlating ri,s, s ∈ [L] with hu, yielding wi,u ∈ CR, u ∈ [N ], i.e.,

wi,u = [ri,0 ri,1 · · · ri,L−1]hu = L
∑
k∈[K]

bke
j(i+u)π sin θka(tk) + ñ, (3.6)

where a(tk) is tk-delayed version of s; ñ is the noise part. The WD process for each burst has

a complexity of O(N2LR). Subsequently, PC is applied by matched filtering wi,u with s.

With the matched filtering being implemented in the frequency domain for efficiency, PC for

each burst has a complexity of O(N2R logR). The subsequent transmit and receive beam-

forming for each burst, when implemented with FFT, has a complexity of O(RN2 logN2).

Therefore, the complexity of processing each burst is O(UL + U logU), where U = RN2.

Clearly, for T PRIs (T/L bursts), the processing scheme in Fig. 3.5 (a) gives a complexity

of O(T (U + U
L logU) + U).

Fast-time Coding

As opposed to slow-time coding that applies orthogonal coding on the inter-pulse basis,

the fast-time coding implements the coding on the intra-pulse basis. However, since the

ideal cross- and auto-correlation properties cannot be achieved at the same time [20], the

orthogonality and the non-zero lag cross-correlation for the fast-time coded waveforms are

approximate, i.e., |cu,v,s(n)| < γ << M for n ∈ [M ], u 6= v. Upon reception, WD and PC

can be simultaneously achieved by matched filtering ri,s with su,s, u ∈ [N ], which yields

yi,u = su,s ∗ ri,s ≈
K−1∑
k=0

bke
j(i+u)π sin θk(su,s ∗ au,s(tk)) + n̄, (3.7)



76

where n̄ is the noise component. When the matched filtering is implemented in the frequency

domain (see Fig. 3.6 (b)), the complexity is O(U logR). The subsequent transmit and

receive beamforming has a complexity of O(U logN2), therefore, the complexity of fast-

time coding processing for T PRIs (Fig. 3.6 (a)) is O(T (U logU) + U).

3.2.3 RSFT-based Collocated MIMO Radar Signal Processing

The conventional processing for slow-time and fast-time coding schemes (see Fig. 3.5 (a)

and Fig. 3.6 (a)) share a similar structure, except that their WD and PC processing are

different. By packing some of the operations in WD and PC into a so called range pre-

processing procedure, we are able to present a uniform RSFT-based processing structure for

both coding schemes as shown in Fig. 3.7, which simplifies our discussion on MIMO-RSFT

radar for both coding schemes.
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Figure 3.5: Conventional MIMO radar signal processing for slow-time coded waveforms.
The red arrows indicate the dimension of related processing. (a) Overview of MIMO radar
processing for slow-time coded waveforms. WD, PC, transmit and receive beamforming are
processed on the burst basis. For better detection performance, a non-coherent accumulation
over T/L bursts is applied. (b) Range pre-processing for slow-time coded waveforms.
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Figure 3.6: Conventional MIMO radar signal processing for fast-time coded waveforms. (a)
Overview of MIMO radar processing for fast-time coded waveforms. The matched filtering,
transmit and receive beamforming are applied in each pulse. A non-coherent accumulation
over T pulses is applied. (b) Matched filtering and range pre-processing for fast-time coded
waveforms.
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3.2.4 Range Pre-processing

For slow-time coded waveforms, the range pre-processing includes WD and the front-end

of PC, which contains the FFTs on the decoded waveform wi,u and the multiplications

between ŵi,u and â∗, as shown in Fig. 3.5 (b). For fast-time coded waveforms, the range

pre-preprocessing contains the front-end of the frequency domain implementation of matched

filtering, i.e., the FFTs on ri,s and the multiplications between r̂i,s and â∗u,s, as shown in

Fig. 3.6 (b).

3.2.5 A Uniform Processing Structure for MIMO-RSFT Radar

Since the baseband signal is not sparse in the time domain nor in the frequency domain,

the RSFT cannot be directly applied on the range domain. However, after PC, the signal

becomes sparse in the time domain, which suggests that the backend of PC, i.e., the IFFT

can be replaced by the RSFT. Moreover, since the signal is sparse in the DOA domain,

both transmit and receive beamforming can be implemented with the RSFT. Hence, after

the range pre-processing, we apply a 3-D RSFT on the signal to implement the detection

and estimation. The processing scheme for the RSFT-based MIMO (MIMO-RSFT) radar

is shown in Fig. 3.7. Note that, since we summarize the difference of the slow-time and

fast-time coding processing in the range pre-processing, the processing structure of Fig. 3.7

can be applied to both coding schemes.

3.2.6 Complexity Analysis for MIMO-RSFT Radar

The complexity of the RSFT is shown in (2.29). Thus, based on the processing scheme

of Fig. 3.7, the complexity of RSFT-based processing for slow-time and fast-time coding

schemes are O
(
T
L (UL+ U logR+ φ) + U

)
and O (T (NR logR+ φ) + U), respectively.

Remark 5. The computational savings of the slow-time coding scheme are not significant,

mainly due to its WD, whose most computational intensive part cannot take advantage of

the RSFT. On the other hand, since the fast-time coding scheme can use the RSFT in all

stages, the corresponding reduction of complexity can be significant.
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Figure 3.7: MIMO-RSFT radar signal processing for both slow-time and fast-time coding
schemes. In each iteration, the input for slow-time and fast-time coding is a burst of pulses
and a single pulse, respectively.

3.2.7 Doppler Processing for the Fast-time Coded Waveform

The Doppler frequency adds an additional dimensionality in the processing. For fast-time

coded waveform processing, The received signal Rs, s = 0, 1, · · · , T − 1 are partitioned into

T/P Coherent Processing Intervals (CPIs), with each CPI contains P consecutive received

data matrices. The Doppler processing, for example, the Moving Target Detector (MTD)

are applied on the same range, transmit DOA, receive DOA resolution cell within a CPI. In

conventional processing, the MTD can be effectively implemented via FFT, hence including

of MTD in the fast-time coded MIMO-RSFT radar is straightforward, i.e., the range pre-

processing for each CPI generates a 4-D tensor of size R ×N ×N × P , then the following

4-D RSFT procedures are carried out on such tensor.

3.2.8 Simulation

Targets Reconstruction

We verify the feasibility of MIMO-RSFT radar and compare to the FFT-based and simple

and practical SFT based processing via simulation. The main parameters of the system are

listed in Table 3.3. We generate a signal from 4 targets according to (3.4). The targets’

parameters used in the simulation are listed in Table 3.4. Note that we set targets 3 and
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4 being close to each other in range and DOA to test the resolution of the MIMO-RSFT

radar.

In the 3-D RSFT and SFT processing, we choose B = 128, C = 32, D = 32, respectively.

The results are shown in Fig. 3.8. Comparing to the FFT-based processing, the 4 targets are

reconstructed exactly via the RSFT-based processing, while the SFT-based method results in

many false alarms due to the ineffective detection and the high side-lobes from the strongest

target (Target 1) in the range and transmit DOA plane. Furthermore, compared to the

conventional FFT-based processing, the resolution of the MIMO-RSFT does not degrade.

Table 3.3: DBF radar parameters

Parameter Symbol Value
Number of range bins R 1024

Number of antenna elements N 128

Length of CDMA Code M 256

Number of PRI T 32

Wave length λ 0.03m

Wave propagation speed c 3× 108m/s

PRI Tp 25.6ms

Maximum range Rmax 156.6km

Sampling frequency (IQ) fs 1MHz

Table 3.4: Target Parameters

Target Range (km) DOA (◦) SNR (dB)
1 14.8 20 0

2 90 −28 −5

3 44.8 5 −10

4 45 8 −10

Computational Savings

We compare the computational savings obtained by the MIMO-RSFT with that of the

FFT-based processing both for slow-time and fast-time coded waveforms. The complexity

of both slow-time and fast-time coding schemes is affected by the number of samples in the

reduced space, i.e., V = BCD and the signal sparsity K. A smaller V and K will lead to

more computational savings of the MIMO-RSFT radar. For the slow-time coding scheme,

Fig. 3.9 (a) shows that the RSFT-based processing does not save much even when V is
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(a)

(b)

Figure 3.8: Target reconstruction via 3-D FFT, RSFT and SFT. Comparing to the 3D-FFT,
3D-RSFT can recover the targets exactly, while the recovery via the 3D-SFT results into
many false alarms due to the leakage from Target 1. (a) FFT vs RSFT. (b) FFT vs SFT.
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small, and when V becomes larger, its complexity is even higher than that of the FFT-

based processing. On the other hand, for the fast-time coding scheme, Fig. 3.9 (b) shows

that the computational savings of the RSFT-based method is significant. We shall point

out that since the RSFT trades off complexity and sensitivity, more savings in computation

will result in a larger degradation of sensitivity, and the MIMO-RSFT radar offers an extra

degree of freedom for designing a MIMO radar by trading off complexity with sensitivity.
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Figure 3.9: Complexity Ration, simple and practical FFT over RSFT. U = 224, V =
{210, 214, 218, 222}, ηm = 4, ηp = 1. Other parameters are the same as in Table 3.1. (a)
slow-time coding. L = N,T = 4L. (b) fast-time coding.

3.3 Summary

We have proposed RSFT-based signal processing frameworks for DBF radar that employs

FMCW, and MIMO radars that use pulse-compression waveform. For the RSFT-based

MIMO radar, the slow-time and fast-time coded waveforms are studied and a unified pro-

cessing scheme based on RSFT is proposed for both waveforms. The computational savings

by employing RSFT has been analyzed and the performance of the proposed processing

schemes are demonstrated via simulations.
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Chapter 4

Multidimensional Random Slice Based Sparse Fourier
Transform

In this chapter, we propose MultidimensionAl Random Slice based Sparse Fourier Transform

(MARS-SFT), a sparse Fourier transform for multidimensional, frequency-domain sparse

signals, inspired by the idea of the Fourier projection-slice theorem. MARS-SFT identifies

frequencies by operating on one-dimensional slices of the discrete-time domain data, taken

along specially designed lines; those lines are parametrized by slopes that are randomly

generated from a set at runtime. The Discrete Fourier Transform (DFT) of the data slices

represent DFT projections onto the lines along which the slices were taken. On designing

the lengths and slopes so that they allow for orthogonal and uniform frequency projections,

the multidimensional frequencies can be recovered from their projections with low sample

and computational complexity. We show theoretically that the large number of degrees of

freedom of frequency projections allows for the recovery of less sparse signals. Although the

theoretical results are obtained for uniformly distributed frequencies, empirical evidences

suggest that MARS-SFT is also effective in recovering clustered frequencies.

4.1 Introduction

SFT is a family of low-complexity Fourier transform based algorithms that achieves signifi-

cant reduction in sample and computational complexity in the implementation of DFT. The

reduction of sample and computational complexity of SFT is achieved by reducing the input

data samples. This is implemented via a well designed, randomized subsampling procedure,

which leverages the resulting frequency domain aliasing. The significant frequencies con-

tained in the original signal are then localized and the corresponding DFT coefficients are
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estimated with low-complexity operations. Such subsampling-localization-estimation proce-

dure is carried out in an iterative manner in several SFT algorithms [21, 22, 3, 32], while in

other SFT algorithms [4, 2, 1, 36], localization and estimation are implemented in one-shot

after gathering sufficient copies of subsampled signals corresponding to different subsam-

pling parameters, e.g., subsample rate, offset and number of samples. Generally, iterative

based SFT algorithms exhibit lower complexity as compared to one-shot based SFT algo-

rithms, since in the former, in each iteration, the contribution of the recovered frequencies

are removed from the signal, which yields a sparser signal (an easier problem) in the next

iteration.

Multidimensional signal processing requires multidimensional SFT algorithms. Most of

the existing SFT algorithms, however, are designed for one-dimensional (1-D) signals and

their extension to multidimensional signals is typically not straightforward. This is because

the SFT algorithms are not separable in each dimension due to the fact that detection of sig-

nificant frequencies in the subsampled signal must be considered jointly for all the dimensions

[36]. Multidimensional SFT algorithms are investigated in [3, 1, 2]. The sample-optimal SFT

(SO-SFT) of [3] follows the subsampling-localization-estimation iteration, while the SFT al-

gorithms of [1, 2] are one-shot approaches. SO-SFT achieves the sample and computational

complexity lower bounds of all known SFT algorithms by reducing a 2-dimensional (2-D)

DFT into 1-D DFTs along a few columns and rows of a data matrix; in the frequency do-

main, this results into projections of 2-D frequencies onto the corresponding columns and

rows of the matrix. Under the assumption that the frequencies are sparse and uniformly

distributed, the 2-D frequencies are not likely to be projected to the same bin (we will refer

this as collision), and thus the 2-D frequencies can be effectively recovered from their 1-D

projections. The DFT along columns and rows provides two degrees of freedom; a frequency

collision has low probability to occur both in the column and row direction. However, when

frequencies are less sparse, or when they are clustered, there is a high probability that a set

of frequencies will collide both in row and columns directions; this is referred to as ‘deadlock’

situation [3] and results in unrecoverable frequencies (see Fig. 4.1).

To reduce the probability of a deadlock, the SFT of [1, 2] introduces more degrees of

freedom in projections by applying 1-D DFT to data samples extracted along some lines of
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predefined and deterministic slopes as well as along the axes of the data cube. However,

the limited choice of line slopes in [1, 2] is still an obstacle in addressing less sparse signals.

Moreover, the sample and computational complexity of [1, 2] are higher than that of SO-SFT,

as the former applies the one-shot approach for frequency recovery, while the latter recovers

the frequencies iteratively. In addition to the iterative approach, the low-cost frequency

localization technique adopted in SO-SFT further contributes to the low-complexity of the

algorithm. Specifically, SO-SFT applies the phase encoding (OFDM-trick) [5, 22], which

effectively encodes the significant frequencies into the phase difference of a pair of DFTs

applied on two datasets, obtained by subsampling the data with the same subsample rate

but different offsets. In the exactly sparse case, the encoded frequencies can be decoded

trivially with a low-complexity (O(1)) operation (see Section 1.5.2 for details).

In this chapter we propose MARS-SFT, which enjoys low complexity while avoiding

the limitations of the aforementioned methods, i.e., it can handle less sparse data in the

frequency domain and accommodate frequencies that are non-uniformly distributed. MARS-

SFT uses the low-complexity frequency localization framework of SO-SFT and extends the

multiple slopes idea of [1, 2] by using lines parameterized by slopes that are randomly

generated from a set of sufficiently large support at runtime. This is not trivial since the

line length and slope set should be carefully designed to enable an orthogonal and uniform

frequency projection.

MARS-SFT can be viewed as a low-complexity, Fourier projection-slice approach for sig-

nals that are sparse in the frequency domain. In MARS-SFT, the DFT of an 1-D slice of the

data is the projection of the D-dimensional (D-D) DFT of the data on that same line along

which the time-domain slice was taken. The classical Fourier projection-slice based method

either reconstructs the frequency domain signal via interpolation of frequency-domain slices

or reconstructs the time-domain samples by solving a system of linear equations relating the

DFT along projections and the time-domain samples. Different from the Fourier projection-

slice based methods, the proposed MARS-SFT aims to reconstruct the signal directly based

on frequency domain projections with low-complexity operations; this is achieved by lever-

aging the sparsity of the signal in the frequency domain.

Another body of related works, referred to as SFT based on rank-1 lattice sampling [26,
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27, 50] also consider the problem of fast reconstruction of the underlying multidimensional

signal based on samples along rank-1 lattices, i.e., lines. In [26, 50], the coefficients of

the multidimensional DFT of the data can be efficiently calculated by applying DFT on

samples along suitable lines, provided that the frequencies are known. In particular, in [26],

the exact evaluation of the DFT coefficients can be accomplished by calculating the DFT

along a single line; such a line is called the reconstructing rank-1 lattices and can be found

for any given sparse frequency set [26]. However, finding a reconstructing rank-1 lattice is

non-trivial when the frequency set is unknown. That unknown frequency case is addressed

in [27], at the expense of high complexity due to the complication of finding a reconstructing

rank-1 lattice.

Compared with the algorithms of [26, 50], the proposed MARS-SFT does not assume

that the underlying frequency set is known. The frequency set as well as the corresponding

DFT coefficients are estimated via DFT along lines progressively. Compared with the SFT of

[27], MARS-SFT is based on multiple lines of randomized parameters and does not pursue

to reconstruct the signal using a single line, which avoids the complication of locating a

reconstructing rank-1 lattice and thus achieves a low complexity. In addition, the rank-1

lattice-based SFT algorithms assume that samples of the signal can be obtained at any

arbitrary location, which is rather difficult to achieve in hardware[51]. In contrast, the

MARS-SFT assumes that the samples are extracted from a predefined uniform sampling

grid. Hence, MARS-SFT is less restrictive in sampling and more applicable to existing

systems, which employ uniform sampling in each dimension.

The contribution of the proposed MARS-SFT algorithm is summarized as follows.

MARS-SFT is a multidimensional, low-complexity SFT algorithm that is based on the

Fourier projection-slice theorem. Compared to the SFT algorithms of [3, 2, 1] that project

multidimensional DFT of data onto deterministic lines, the frequency-domain projections

in MARS-SFT are randomized. We show theoretically that the large number of degrees of

freedom of frequency projections allows for the recovery of less sparse signals. Although the

theoretical results are obtained for uniformly distributed frequencies, empirical evidences

suggest that MARS-SFT is also efficient for recovery of clustered frequencies. Also, while

the SFT of [3, 2, 1] requires the data to be equal-sized in each dimension, MARS-SFT applies
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to arbitrary-sized data, which is less restrictive.

4.2 Signal Model

For simplicity, we will present the ideas for 2-D signals. The generalization to higher dimen-

sions, i.e., D-D cases with D > 2, is straightforward (see Section 4.5.1).

Let us consider the following 2-D signal model, which is a superposition ofK 2-D complex

sinusoids, i.e.,

x(n) ,
∑

(a,ω)∈S

aejn
Tω, n , [n0, n1]T ∈ X , [N0]× [N1], (4.1)

where N0, N1 denote the sample length of the two dimensions, respectively. (a,ω) represents

a 2-D sinusoid whose amplitude is a with a ∈ C, a 6= 0 and frequency is ω , [ω0, ω1]T ,

[2πm0/N0, 2πm1/N1]T with [m0,m1]T ∈ X . The set S with |S| = K includes all the 2-D

sinusoids. We assume that the signal is sparse in the frequency domain, i.e., K << N ,

N0N1, and that the frequencies are uniformly distributed.

4.3 Overview of MARS-SFT

The proposed MARS-SFT is a generalization of SO-SFT discussed in Chapter 1. SO-SFT

reduces a 2-D DFT into 1-D DFTs of the columns and rows of the input data matrix. The

columns and the rows can be viewed as 1-D slices taken along discrete lines with slopes ∞

and 0, respectively. In this section, by proposing MARS-SFT, we reduce the 2-D DFT into

1-D DFTs of the data slices taken along discrete lines with random slopes.

The proposed MARS-SFT is an iterative algorithm; each iteration returns a subset of

recovered 2-D sinusoids. After T iterations, the MARS-SFT returns a set, Ŝ, which is an

estimate of S of (4.1). As in SO-SFT, the sinusoids recovered in previous iterations are

passed to the next iteration, and their contributions are removed from the signal in order

to create a sparser signal.

Within each iteration, the signal of (4.1) is sampled along a L-length line, E(α, τ , l), l =

0, 1, · · · , L− 1, with α , [α0, α1]T , τ , [τ0, τ1]T , which satisfy the following equations

[α0l + τ0]N0 = n0, [α1l + τ1]N1 = n1, l = 0, 1, · · · , L− 1. (4.2)
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Figure 4.1: Demonstration of projection of 2-D frequencies onto 1-D. The colored blocks
mark significant frequencies. The projection onto the column or the row causes collisions,
while the projection onto the diagonal creates 1-sparse bins.

where

n1 =

[
α1

α0
(n0 − τ0) + τ1

]
N1

. (4.3)

Hence, E(α, τ , l), l = 0, 1, · · · , L − 1 is a discrete line segment with slope α1/α0 and offset

τ .

The sampled signal, representing a slice of the data along E(α, τ , l), l = 0, 1, · · · , L− 1,

can be expressed as

s(α, τ , l) , x([α0l + τ0]N0 , [α1l + τ1]N1)

=
∑

(a,ω)∈S

ae
j2π

(
m0[α0l+τ0]N0

N0
+
m1[α1l+τ1]N1

N1

)
, l = 0, 1, · · · , L− 1.

(4.4)

Note that a slice can ‘wrap around’ within x(n),n ∈ X due to the modulo operation, and

the sampling points along the line are always on the grid of X , since α, τ are on grid.

Taking an L-point DFT of the data slice defined in (4.4), for all m ∈ [L], we get

ŝ(α, τ ,m) ,
1

L

∑
l∈[L]

s(α, τ , l)e−j2π
lm
L

=
1

L

∑
(a,ω)∈S

ae
j2π

(
m0τ0
N0

+
m1τ1
N1

) ∑
l∈[L]

e
j2πl

(
m0α0
N0

+
m1α1
N1
−m
L

)
.

(4.5)
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Let us assume that for all m ∈ [L] and α, [m0,m1]T ∈ X ,

f̂(m) ,
1

L

∑
l∈[L]

e
j2πl

(
m0α0
N0

+
m1α1
N1
−m
L

)
∈ {0, 1}. (4.6)

The above assumption holds when m0α0
N0

+ m1α1
N1
− m

L is multiple of 1/L, which can be

expressed as [
L

N0
m0α0 +

L

N1
m1α1

]
L

= m. (4.7)

It is clear that L = LCM(N0, N1) satisfies (4.7), since in that case L/N0, L/N1 are integers.

Moreover, LCM(N0, N1) is the minimum length of a line, L, that satisfies (4.7) for arbitrary

α, [m0,m1]T ∈ X ; this can be proved using contradiction as follows.

Assume that there is length L such that L < LCM(N0, N1), then at least either L/N0

or L/N1 is not an integer. Without loss of generality, let us assume that L
N0

/∈ Z. Then,

the right hand side of (4.7) equals [L/N0]L /∈ [L] for m0 = 1, α0 = 1,m1 = 0, which is

contradictory to the premise that (4.7) holds for any [m0,m1]T , [α0, α1]T ∈ X .

When f̂(m) = 1, i.e.,[
m0α0

N0
+
m1α1

N1
− m

L

]
1

= 0, [m0,m1]T ∈ X , (4.8)

(4.5) can be simplified as

ŝ(α, τ ,m) =
∑

(a,ω)∈S

ae
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, m = 0, 1, · · · , L− 1, (4.9)

which can be viewed as the 1-D projection of the 2-D frequencies satisfying (4.8). The

solutions of (4.8) with respect to m are equally spaced points lie on line

E([α1L/N1,−α0L/N0]T , [m′0,m
′
1]T , l), l = 0, 1, · · · , L′ − 1, (4.10)

where [m′0,m
′
1]T ∈ X is one of the solutions of (4.8). The line of (4.10) is orthogonal to the

line of (4.2). The orthogonality is necessary for the projected 2-D frequencies to be exactly

recoverable.

Moreover, for certain choices of α, such projection is uniform, and L′ = N/L. The

uniformity of the projection means that the DFT coefficients of N grid locations of the

N0 × N1-point DFT are uniformly projected to the L entries of the L-point DFT along a

line. Compared with a non-uniform projection, the uniform projection creates more 1-sparse

bins, which allows for fewer iterations of MARS-SFT to exactly reconstruct the signal. The

condition for orthogonal and uniform projection is stated in the following lemma.

Lemma 5. (Condition for orthogonal and uniform projection): Consider the slice
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of the signal of (4.1), as defined in (4.4), with L = LCM(N0, N1), α ∈ A ⊂ X , τ ∈ X where

A , {α : α ∈ X ; (α0, α1), (α0, L/N1), (α1, L/N0) are co-prime pairs}. Then each entry of

(4.9) is the projection of samples of x̂(m), m ∈ Pm ⊂ X , where Pm, m ∈ [L] contains sample

locations satisfying (4.8). Moreover, |Pm| = N/L, Pm ∩ Pm′ = ∅ for m 6= m′, m, m′ ∈ [L].

Thus, x̂(m), m ∈ X is uniformly projected to (4.9).

Proof. Please see Appendix H.

A slice satisfying Lemma 5 is the longest slice that does not contain any duplicated

samples. Thus, the L-point DFT along such slice captures the maximum information in the

frequency domain with the least number of samples. The set A defined in Lemma 5 contains

a large number of elements, providing sufficient randomness for frequency projection. For

example, when N0 = N1 = 4, A = {[1, 1]T , [1, 2]T , [1, 3]T , [2, 1]T , [2, 3]T , [3, 1]T , [3, 2]T }. This

means that |A||X | ≈ 44% of all the possible values of α yield uniform projections. When

N0 = N1 = 256, |A| = 39636 and |A||X | ≈ 60%.

Fig. 4.2 shows an example of a time domain line designed to allow an orthogonal and

uniform projection (red circle). The corresponding frequency domain line satisfying (4.8) for

m = 1 is also shown (black circle); the two lines are orthogonal to each other and intercept

at [11, 1]T . The lengths of the time domain and the frequency domain lines are 16, 8,

respectively. Each line is composed of several line segments due to the modulo operation.

Remark 6. In the L-point DFT of samples along a time-domain line with slope α1/α0, each

entry represents a projection of the 2-D DFT along the line with slope −α0N1/(α1N0) in the

N0 × N1-point DFT domain; the DFT-domain line is orthogonal to the time-domain line.

This is closely related to the Fourier projection-slice theorem, which states that the Fourier

transform of a projection is a slice of the Fourier transform of the projected object. While

the classical projection is in the time domain and the corresponding slice is in the frequency

domain, in the MARS-SFT case, the projection is in the DFT domain and the corresponding

slice is in the sample (discrete-time) domain. The important difference between the Fourier

projection-slice theorem and MARS-SFT is that while the former reconstructs the frequency

domain of the signal via interpolation of frequency-domain slices, or reconstructs the time-

domain samples by solving a system of linear equations relating the DFT along projections
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Figure 4.2: An orthogonal pair of time and frequency domain lines. N0 = 16, N1 = 8, L =
16,α = [1, 3]T , τ = [0, 0]T .

and the time-domain samples, the latter efficiently recovers the significant frequencies of the

signal directly based on the DFT of time-domain 1-D slices, i.e., samples along lines; this

involves lower complexity.

As it will be explained in the following, the efficiency of MARS-SFT is achieved by

exploring sparsity in the frequency domain.

Let us assume that the signal is sparse in the frequency domain, i.e., |S| = O(L) << N .

Then, with high probability, |ŝ(α, τ ,m)| = |ŝ(α, τ0,m)| = |ŝ(α, τ1,m)| 6= 0, where τ0 ,

[[τ0 + 1]N0 , τ1]T , τ1 , [τ0, [τ1 + 1]N1 ]T . Thus, the m-th bin is 1-sparse, and it holds that

ŝ(α, τ ,m) = ae
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, (a,ω) ∈ S. (4.11)

In such case, the 2-D sinusoid, (a,ω), can be ‘decoded’ as

m0 =

[
N0

2π
φ

(
ŝ(α, τ0,m)

ŝ(α, τ ,m)

)]
N0

,

m1 =

[
N1

2π
φ

(
ŝ(α, τ1,m)

ŝ(α, τ ,m)

)]
N1

,

a = ŝ(α, τ ,m)e−j2π(m0τ0/N0+m1τ1/N1).

(4.12)

This is the OFDM-trick adapted to MARS-SFT; such design requires sampling along three
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lines of the same slope but different offsets, allowing the frequency components to be decoded

independently in each dimension.

In order to recover all the sinusoids in S efficiently, each iteration of MARS-SFT adopts

a random choice of line slope from the set of A defined in Lemma 5. Furthermore, the con-

tribution of the recovered sinusoids in the previous iterations is removed via a construction-

subtraction approach so that the signal becomes sparser in subsequent iterations. Specifi-

cally, assuming that for the current iteration the line slope and offset parameters are α, τ ,

respectively, the recovered 2-D frequencies are projected into L frequency bins to construct

the DFT of the slice taken along the line of E(α, τ , l), l = 0, 1, · · · , L−1, i.e., ŝr(α, τ ,m) ,∑
(a,ω)∈Im ae

j2π
(
m0τ0
N0

+
m1τ1
N1

)
, m = 0, 1, · · · , L− 1, where Im, m ∈ [L] represent the subsets

of the recovered frequencies, i.e., Im , {(a,ω) : ω satisfies (4.8)}, m ∈ [L]. Next, the L-

point inverse DFT (IDFT), multiplied by L, is applied on ŝr(α, τ ,m), m = 0, 1, · · · , L− 1,

from which the slice, sr(α, τ , l), l = 0, 1, · · · , L− 1, is constructed based on the previously

recovered sinusoids. Subsequently, the constructed slice is subtracted from the slice of the

current iteration. The pseudo-code of the MARS-SFT algorithm can be found in Appendix

N.

4.4 Convergence of MARS-SFT

In this section, we investigate the convergence of MARS-SFT. First, let us look at a special

case, where N0, N1 are co-prime.

Theorem 2. (One-projection theorem of MARS-SFT): Consider the signal model

of (4.1), where N0, N1 are co-prime and 0 ≤ K ≤ N . The exact reconstruction of S via

MARS-SFT only takes one iteration.

Proof. Please see Appendix 2.

In the Fourier projection-slice theorem, a band-limited signal of size N0 × N0 can be

exactly reconstructed by a single projection in the time domain. In the frequency domain,

exact reconstruction is possible based on a single slice, provided that the slope parameters,

α0, α1, of the line, along which the slice is evaluated are co-prime and the equality α0m0 +
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α1m1 = α0m
′
0 +α1m

′
1 holds only for m0 = m′0, m1 = m′1 when m0, m

′
0, m1, m

′
1 ∈ [N0]; this

is referred to as the one-projection theorem [52]. Theorem 2 is the one-projection theorem of

MARS-SFT and provides the conditions for exact recovery of a signal with arbitrary sparsity

level using only one projection in the frequency domain.

Remark 7. The classic one-projection theorem and the one-projection theorem of MARS-

SFT establish an unambiguous one-to-one mapping from a 2-D sequence to a 1-D sequence.

Specifically, the former establishes the mapping of 2-D time-domain samples to the projected

1-D time-domain samples of length N2
0 ; each entry of the DFT of the projection can be

represented by a weighted summation of the N2
0 samples. Hence, exact recovery of the time

domain samples requires inverting a linear equation system containing at least N2
0 equations.

On the other hand, latter establishes the one-to-one mapping from the coefficients of the

N0 ×N1-point DFT of the 2-D data to the coefficients of the N -point DFT of a slice of the

2-D data; such slice can be viewed as an ordering of the 2-D data into an 1-D sequence.

The exact recovery of the N0 ×N1-point DFT of the data is achieved by the low-complexity

OFDM-trick under the framework of MARS-SFT. We should note that if N0, N1 are co-

prime, the N0 × N1-point DFT can also be implement via an N -point DFT based on the

Good-Thomas mapping [53], where the unambiguous mapping is achieved via the Chinese

Remainder Theorem-based indexing.

Next, the following theorem concludes the convergence of MARS-SFT for the general

case. Compared to the special case, i.e., Theorem 2, the general case assumes K/N << 1

and applies for arbitrary N0, N1.

Theorem 3. (Convergence of MARS-SFT): Consider the application of MARS-SFT

on the signal model of (4.1). Then the average number of iterations required to recover S ,

i.e., T , can be found by evaluating the following inequality∑
i∈[T ]

Mi ≥ K, (4.13)

where Mi = QiKi is the number of the recovered frequencies in the i-th iteration; Ki =

K
∏
k∈[i](1−Qk), with K0 = K, is the number of remaining frequencies that have not been

recovered in the i-th iteration; Qi = (1 − Ki/N)N/L−1 is the probability of a remaining

significant frequency to be projected into a 1-sparse bin, and thus be recovered in the i-th
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iteration.

Proof. Please see Appendix J.

Fig. 4.3 shows the relationship between T and K/L. When K/L is small, e.g., K/L = 3,

T is small; this results in a low “big-Oh” overhead [3] of the algorithm. However, T grows

super-linearly with K/L; the growth rate increases as K/N increases. In a non-sparse

scenario, i.e., as K/N approaches 1, T is too large for MARS-SFT to be applicable. With

the exception of the scenario in which N0, N1 are co-prime, MARS-SFT can fail in a non-

spare scenario, in which none of the projection creates a 1-sparse bin.
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Figure 4.3: Number of iterations of MARS-SFT versus K/L.

Although in order to prove Theorem 3 we assume that the frequency distribution in the

signal model of (4.1) is uniform, i.e., in the average case [3], as we will see in Section 4.6.4,

numerical results show no significant difference in the convergence of MARS-SFT when the

frequencies are clustered. This is because the multidimensional clustered frequencies are

uniformly projected to one dimension due to the randomly generated line slopes of MARS-

SFT.
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4.5 Multidimensional Extension and Complexity Analysis

4.5.1 Multidimensional Extension

For the D-D (D > 2) case with the data cube size of N0 × N1 × · · ·ND−1, the line length

can be set as L = LCM(N0, · · · , ND−1); the slope and offset parameters [α0, · · · , αD−1]T ,

[τ0, · · · , τD−1]T is randomly taken from XD , [N0] × [N1] × · · · [ND−1]. Each iteration

extracts D + 1 L-length lines with a same random slope but different offsets from the D-D

data cube. The 0-th line offset is set to be [τ0, · · · , τD−1]T , while for the (i+ 1)-th line with

0 ≤ i ≤ D − 1, the offset for the i-th dimension is set to be [τi + 1]Ni . With such offset

parameters, the frequencies can be decoded independently for each dimension.

4.5.2 Complexity analysis

MARS-SFT executes T iterations; in the 2-D case, each iteration uses 3L samples, since 3

L-length slices, with L = LCM(N0, N1) are extracted in order to decode the two frequency

components of a 2-D sinusoid (see (4.12)). Hence, the sample complexity is O(3TL) =

O(TL). The core processing is the L-point 1-D DFT, which can be implemented via an FFT

with the computational complexity of O(L logL). The L-point IDFT in the construction-

subtraction procedure can also be implemented via an FFT. In addition to the FFT, each

iteration needs to evaluate up to L frequencies. Hence the computational complexity of

MARS-SFT is O(T (L logL + L)) = O(TL logL). If we let T equal to Tmax ∈ N, which is

a sufficiently large constant to allow convergence for a given signal size and a range of K,

then, the sample and computational complexity become O(L) and O(L logL), respectively.

For K = O(L), MARS-SFT achieves the lowest sample and computational complexity, i.e.,

O(K) and O(K logK), respectively, of all known SFT algorithms [3, 32].

In general, in the D-D case, according to the multidimensional extension [54], it is

easy to see that the sample and computational complexity of MARS-SFT are O(DK) and

O(DK log(DK)), respectively when K = O(L).
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4.6 Numerical Results

In this section, we provide some numerical results to verify the theoretical findings related

to the proposed MARS-SFT. Unless stated otherwise, the size of the test data is set equal

to N0 = N1 = 256. We simulate cases for frequencies which are uniformly distributed and

also for frequencies which are clustered; for clustered cases, we consider clusters of 9 and

25 frequencies. The experimental results are averaged over 100 iterations of Monte Carlo

simulation.

4.6.1 Comparison between MARS-SFT and SO-SFT

We compare the performance of SO-SFT and the proposed MARS-SFT for the 2-D case.

For MARS-SFT the line length is set to L = N0, and each iteration uses 3N0 samples. We

limit the number of iterations to Tmax = N/(3L) ≈ 85, which corresponds to roughly 100%

samples of the input data. Fig. 4.4(a) shows the probability of exact recovery versus the level

of sparsity for the two methods. When the signal is very sparse, i.e., K < N0/2, SO-SFT

has high probability of exact recovery, while for moderate level of sparsity, i.e., K > N0

, SO-SFT fails with high probability. Moreover, SO-SFT only works for the scenario in

which the frequencies are distributed uniformly, while it fails when there exists even a single

frequency cluster. On the contrary, MARS-SFT applies to signals with a wide range of

sparsity levels. For instance, its success rate is almost 97% when K = 5N0. In all cases,

the success rates drop to 0 when K = 6N0, since then, the exact recovery needs roughly

100 iterations, which exceeds Tmax. Fig. 4.4 (b) shows the ratio of samples used by the

MARS-SFT and SO-SFT for exact recovery over the total number of data samples, N . The

figure shows that the sparser the signal, the fewer samples are required by MARS-SFT;

for example, when K = N0, only 5.9% of the signal samples are required. SO-SFT only

needs 1.6% of signal samples in very sparse scenarios, while it fails in less sparse, or non-

uniformly distributed frequency cases. The performance of MARS-SFT is similar for both

uniformly-distributed and clustered frequency cases at the same sparsity level; this is due

to the randomized projections that can effectively isolate the 2-D frequencies into 1-sparse

bins, even when the signal is less sparse (K is large) and the frequencies are clustered. Note
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that the super linearity in the growth of the ratio of samples with K arises because of the

super-linear of the number of iterations of MARS-SFT with K.
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Figure 4.4: Comparison between MARS-SFT and SO-SFT. (a) Probability of exact recovery
versus sparsity level, K. (b) Ratio of samples needed for exact recovery versus K.

4.6.2 Comparison between MARS-SFT and the SFT of [1, 2]

We compare MARS-SFT and its robust extension with the SFT of [1, 2] in 2-D cases. The

main difference between the SFT of [2] and the SFT of [1] is that the former takes the slices

only from the borders and the diagonals from the input data matrix, while the latter also

takes slices along many lines with predefined slopes; this increases the degrees of freedom of

projecting 2-D frequencies onto 1-D lines.

Fig. 4.5 (a) shows the frequency localization performance of SFT of [1, 2] versus K in

noiseless cases. Compared to MARS-SFT, the SFT of [1, 2] only succeeds in very sparse

scenarios. For instance, when K = 50, the best success rate that the SFT of [1] can achieve

is approximately 67%, while the success rate of MARS-SFT is 100%. One way to increase

the success rate of SFT of [1] is to use a larger T at the expense of increasing complexity.

However, the success rate saturates when T grows beyond a certain value. For instance, the

success rates corresponding to T = 20 and T = 30 are similar.

Aside from sensitivity to sparsity level, the SFT of [1, 2] is more robust to noise than the

proposed robust MARS-SFT. For instance, in Fig. 4.5 (b), one can see that when K < 30,
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Figure 4.5: Comparison between MARS-SFT and SFT of [1, 2]. The robust MARS-SFT
is adopted in noisy cases. (a) Localization success rate versus K in noiseless cases. (b)
Localization success rate versus K in noisy cases. Frequencies are on the grid.

the success rate of the SFT of [1] for SNR equal to −5dB is similar to that of robust MARS-

SFT applied to SNR of 9dB. However, when the SNR is greater than 11dB, the success

rate of robust MARS-SFT approaches 100%.

The computation of the SFT of [1, 2] is significantly slower as compared to that of robust

MARS-SFT, as the computation complexity of the former is O((N + K3) logN) [1] in the

2-D case; this is even greater than that of the FFT.

4.6.3 Line Slope of MARS-SFT

From Lemma 5, choosing the line slope parameters α randomly from the set A for each

iteration of MARS-SFT, as opposed to choosing them at random from the set X , results in

reduced number of iterations for exact recovery. This is because as compared to the latter

case, in the former case, more 1-sparse bins are likely to be created in each iteration due

to the uniformity of projections. In Fig. 4.6 (a), we compare the number of iterations of

MARS-SFT when α is chosen from A and X . The figure confirms the expectation from

Lemma 5.

The high probability of exact recovery of MARS-SFT in less sparse cases is due to the

abundance of degrees of freedom in frequency projection, which requires a sufficiently large

|A|. When N0 = N1 = 256, it is easy to verify that |A| = 39639. Fig. 4.6 (b) shows the

probability of exact recovery versus sparsity when we use subsets of A of different support
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sizes. The slope parameter set, A′, in each experiment, is created by randomly picking a

subset of A with a specific size of support. The figure shows that the less sparse the signal

(the larger the K), the larger size of A′ is needed to achieve a high probability of exact

recovery. |A′| should be large enough so that for each iteration of MARS-SFT, a distinct

slope can be obtained from A′ with high probability. Compared to the uniformly distributed

frequency cases, the clustered frequency cases require a larger |A′|, since the latter requires

larger degrees of freedom than the former in order to isolate the clustered frequencies by

randomly projecting those frequencies to distinct 1-sparse bins of the DFT along lines.
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Figure 4.6: Effect of the line slope to the MARS-SFT. (a) Number of iterations of exact
recovery versus sparsity. (b) Effect of the size of the slope parameter set (|A′|) to the exact
recovery probability.

4.6.4 Convergence of MARS-SFT

We verify the average number of iterations of MARS-SFT in order to exactly recover the

signal (see Theorem 3).

The relationship between the number of iterations, T , and sparsity level, K, for different

data dimensions of the same number of samples (i.e., different N0, N1 but the same N) are

shown in Fig. 4.7 (a); the figure shows the theoretical values based on Theorem 3 and also

the results of simulations. As expected, for all cases, T increases as K increases; the rate of

increase in the cases of N0 = N1 = 256 is greater than the cases when N0 = 512, N1 = 128

and N0 = 1024, N1 = 64. Also, the former case requires more iterations than the latter two

cases. This is because for the three cases the the line length, L, equals 256, 512 and 1024,
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respectively. A larger L leads to a higher probability of creating more 1-sparse bins in each

iteration of MARS-SFT, which results in faster convergence of the algorithm. The clustered

frequencies do not require larger T as compared to the uniformly distributed frequencies,

which suggests that MARS-SFT is efficient in solving non-uniformly distributed frequencies.

The number of samples used by MARS-SFT depends both on T and L. Fig. 4.7 (b) shows

that when the signal is very sparse, i.e., K < 640, the equal-length case (N0 = N1) uses

the least number of samples, while for less sparse cases, the number of samples required by

MARS-SFT is less in the cases when N0 = 512, N1 = 256 and N0 = 1024, N1 = 64 than the

case when N0 = 256, N1 = 256.
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Figure 4.7: Number of iterations of MARS-SFT. (a) Number of iterations versus sparsity.
(b) Ratio of samples versus sparsity.

According to Theorem 2, when N0, N1 are co-prime, the set S of the signal model (4.1)

can be reconstructed exactly based on only one iteration of MARS-SFT. Fig. 4.8 shows that

the one-projection based reconstruction is exact even when the frequencies are not sparse,

i.e., K/N ≈ 0.65.

4.7 Summary

We have proposed MARS-SFT, a multidimensional sparse Fourier transform that is inspired

by the Fourier projection-slice theorem. We have shown that MARS-SFT can handle less

sparse data in the frequency domain, and enjoys low sample and computational complexity.

The sample and computational complexity of MARS-SFT achieves the lowest complexity
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Figure 4.8: Original (red circles) and recovered frequencies (black dots) using one iteration
of MARS-SFT. N0 = 32, N1 = 31,K = 20N0 = 640.

among all know SFT algorithms when the sparsity is of the same order of the slice length.

The relationship between MARS-SFT and the Fourier projection-slice theorem has been dis-

cussed. Especially, the connections between the one-projection theorems under the context

of MARS-SFT and the Fourier projection-slice theorem has been exploited; the classic one-

projection theorem and the one-projection theorem of MARS-SFT establish an unambiguous

one-to-one mapping from a 2-D sequence to a 1-D sequence.
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Chapter 5

Robust MARS-SFT and Its Application in DBF Radar

The MultidimensionAl Random Slice based Sparse Fourier Transform (MARS-SFT) is an

efficient implementation of the Discrete Fourier Transform (DFT) for multidimensional sig-

nals that are sparse in the frequency domain. For a K-sparse signal, MARS-SFT achieves

sample complexity of O(K) and computational complexity of O(K logK). While MARS-

SFT considers the ideal scenario, i.e., exactly sparse data that contain on-grid frequencies, in

this chapter, we propose the robust MARS-SFT, which applies to noisy signals that contain

off-grid frequencies; such signals arise in radar applications. The proposed robust MARS-

SFT employs a windowing step and a voting-based frequency decoding step; the former

reduces the frequency leakage of off-grid frequencies below the noise level, thus preserving

the sparsity of the signal, while the latter significantly lowers the frequency localization

error stemming from the noise. The performance of the proposed method is demonstrated

both theoretically and numerically. We apply the robust MARS-SFT to automotive Digital

Beamforming (DBF) radar signal processing, which achieves significant savings in sample

and computational complexity.

5.1 Introduction

While the MARS-SFT considers the ideal scenario, i.e., noiseless frequency-domain sparse

data containing frequencies on the DFT grid, in realistic applications, the data is usually

noisy and contains off-grid frequencies. One example of such data is the received signal

of the DBF automotive radar, which usually employs a Frequency Modulation Continuous

Waveform (FMCW). After demodulation of the returned signal, each radar target can be

expressed as a D-dimensional (D-D) complex sinusoid [47], whose frequency in each dimen-

sion is related to target parameters, e.g., range, Doppler and direction of arrival (DOA).
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When the number of targets is much smaller than the number of samples, such signal is

sparse in the D-D frequency domain. Due to the continuous nature of those parameters,

the frequencies are also continuous and thus are typically off-grid. Meanwhile, the radar

signal contains noise, which makes the signal approximately sparse. MARS-SFT suffers

from the frequency leakage caused by the off-grid frequencies; also, the frequency local-

ization procedure of MARS-SFT is prone to errors since the OFDM-trick is sensitive to

noise [22]. We address these issues by extending MARS-SFT to a robust version. Robust

MARS-SFT employs a windowing technique to reduce the frequency leakage caused by the

off-grid frequencies and a voting based frequency decoding procedure to significantly reduce

the localization error stemming from noise.

The off-grid frequencies are also addressed in the Robust Fourier Transform (RSFT)

proposed in Chapter 2. In RSFT, the computational savings are achieved by folding the

input D-D data cube into a much smaller data cube, on which a reduced sized D-D FFT

is applied. Although the RSFT is more computationally efficient as compared to the FFT-

based methods, its sample complexity is the same as the FFT-based algorithms. Essentially,

the high sample complexity of RSFT is due to its two stages of windowing procedures, which

are applied to the entire data cube to suppress the frequency leakage. In the proposed

robust MARS-SFT, instead of applying the multidimensional window on the entire data,

the window, while still designed for the full-sized data, is applied on samples along lines

only, which does not cause overhead in sample complexity.

5.2 Signal Model

The signal model (4.1) of MARS-SFT assumes that the frequencies lie on a grid, and there is

no noise. A more realistic signal model, addressing continuous-valued frequencies in [0, 2π)2

and also noise, is the following

r(n) = y(n) + n(n) =
∑

(a,ω)∈S′
aejn

Tω + n(n), n ∈ X , [N0]× [N1], (5.1)

where y(n) ,
∑

(a,ω)∈S′ ae
jnTω is the superposition of K ′ = |S′| continuous-frequency sinu-

soids; (a,ω) denotes a significant 2-D sinusoid in S′, whose complex amplitude and frequency

are a,ω , [ω0, ω1]T ∈ [0, 2π)2, respectively, and it holds that 0 < amin ≤ |a| ≤ amax. The
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noise, n(n), is assumed to be i.i.d., circularly symmetric Gaussian, i.e., CN (0, σn). The SNR

of a sinusoid with amplitude a is defined as SNR , (|a|/σn)2.

Conventionally, S′ can be estimated via a 2-D N0×N1-point DFT applied on signal (5.1),

after windowing the signal with a 2-D window w(n), used to suppress frequency leakage

generated by off-grid frequencies. Assuming that the peak to side-lobe ratio (PSR) of the

window is large enough, such that the side-lobes of each frequency in S′ can be neglected

in the DFT domain, then the signal contribution in the DFT domain corresponds to a set

of on-grid frequencies, i.e., S , {(a,ω) : ω , [2πm0/N0, 2πm1/N1]T , [m0,m1]T ∈ X} with

K ′ < K = |S| << N . Hence, the sample domain signal component associated with the

window w(n) and S can be approximated by (4.1). Note that since the windowing degrades

the frequency resolution, each continuous-valued frequency in S′ is related to a cluster of

digital frequencies in S; S can be estimated from the DFT of the signal, and then lead to

the frequencies in S′ via quadratic interpolation [55].

5.3 Window Design

To address the issue of off-grid frequencies, we apply a window w(n),n ∈ X on the signal of

(5.1). The Peak-to-Sidelobe Ratio (PSR) of the window, ρw, is designed such that the side-

lobes of the strongest frequency are below the noise level, hence the leakage of the significant

frequencies can be neglected and the sparsity of the signal in the frequency domain can be

preserved to some extent. Lemma 6 reflects the relationship between ρw and the maximum

SNR of the signal.

Lemma 6. (Window design for the robust MARS-SFT): Consider r̂(m), which is

the N0 × N1-point DFT of the windowed signal of (5.1). Let W ∈ RN0×N1 be the matrix

generated by the window function of w(n),n ∈ X . In order to achieve a sufficient suppression

of frequency leakage, the PSR of the window, ρw, should satisfy

ρw >
2‖W‖1√
π‖W‖2

√
SNRmax, (5.2)

Where SNRmax , a2
max/σ

2
n, and amax, σn is defined in (5.1).

Proof. Please see the proof in Appendix K.
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Note that while the window is designed for the entire data cube, the windowing is applied

only to the sampled locations, which does not increase the sample complexity of the robust

MARS-SFT.

5.4 Voting-Based Frequency Decoding

When the signal is approximately sparse, the frequencies decoded by (4.12) are not integers.

Since we aim to recover the gridded frequencies, i.e., S of (4.1), the recovered frequency

indices are rounded to the nearest integers. When the SNR is low, the frequency decoding

could result in false frequencies; those false frequencies enter the future iterations and gen-

erate more false frequencies. To suppress the effect of false frequencies, motivated by the

classical m-out-of-n radar signal detector [9], the robust MARS-SFT adopts an nd-out-of-ns

voting procedure in each iteration. Specifically, within each iteration, ns sub-iterations are

applied; each sub-iteration adopts randomly generated line slope and offset parameters and

recovers a subset of frequencies, Si, i ∈ [ns]. Within those frequency sets, a given frequency

could be recovered by n out of ns sub-iterations. For a true significant frequency, n is

typically larger than that of a false frequency, thus only those frequencies with n ≥ nd are

retained as the recovered frequencies of the current iteration. When (ns, nd) is properly

designed, the false frequencies can be reduced significantly.

5.5 Lower Bound of the Probability of Correct Localization and Conver-

gence of Robust MARS-SFT

The probability of decoding error is related to the SNR, signal sparsity and also the para-

meters (ns, nd) of the robust MARS-SFT. In the following, we provide a lower bound for

the probability of correct localization of the significant frequencies for each iteration, from

which one can study convergence of robust MARS-SFT, i.e., the number of iterations needed

in order to recover all the significant frequencies with sufficient SNR.

As explained in Section 5.2, a 2-D continuous-valued sinusoid (a,ω) ∈ S′ of (5.1) is

associated with a cluster of 2-D on-grid sinusoids S0 ⊆ S of (4.1). Let us assume that

the sinusoid (ad, 2π[m0/N0,m1/N1]T ) ∈ S0 with [m0,m1]T ∈ X has the largest absolute
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amplitude among all members of S0. In addition, let us assume that the SNR of (a,ω) is

sufficiently high. Then the probability of correctly localizing (ad, 2π[m0/N0,m1/N1]T ) in

each iteration is lower bounded by

Pd ,
ns∑

n′d=nd

(
ns
n′d

)
(P1Pw)n

′
d(1− P1Pw)ns−n

′
d , (5.3)

where P1 , (1−|S′′|/N)N/L−1 with L = LCM(N0, N1) is the probability of a frequency in S′′

being projected to a 1-sparse bin, and S′′ with S′′ ⊆ S represents the remaining frequencies

to be recovered in subsequent iterations; Pw , (1 − Pu)(1 − Pv) is the lower bound of the

probability of correct localization for a 2-D frequency that is projected into an 1-sparse bin

in one sub-iteration; Pu, Pv are the upper bounds of the probability of localization error for

the two frequency components, m0,m1, respectively, which are defined as

Pu ,
(
σp(1− f|an|(δu))

)2
,

Pv ,
(
σp(1− f|an|(δv))

)2
,

(5.4)

where δu , aπ‖W‖1/(2NN0), δv , aπ‖W‖1/(2NN1), with W ∈ RN0×N1 denoting the

window applied on the data; σp, with 1
2 ≤ σp ≤

1
2π is the parameter determined by the phases

of the error vectors contained in the 1-sparse bin; f|an|(x) is the cumulative distribution

function of the Rayleigh distribution, which is defined as

f|an|(x) , 1− e−x
2/(2σ2

a′n
)
, x > 0, (5.5)

where σ2
a′n

, σ2
n‖W‖22/(2NL).

The proof of (5.3) can be found in Appendix L. Essentially, (5.3) represents the comple-

mentary cumulative binomial probability resulted from the nd-out-of-ns voting procedure,

where the success probability of each experiment, i.e., localizing (ad, 2π[m0/N0,m1/N1]T )

in each sub-iteration of robust MARS-SFT is P1Pw. When K = |S| is known, (5.3) can be

applied to estimate the largest number of iterations (the upper bound) of robust MARS-SFT

in order to recover all the frequencies in S since the least number of recovered frequencies

in each iteration can be estimated by |S′′|Pd.
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5.6 Numerical Results

5.6.1 Effect of Windowing on Frequency Localization of Robust MARS-SFT

For data that contains off-grid frequencies, the PSR of the window, ρw, should be sufficiently

large in order to reduce the side-lobes of the significant frequencies (see Lemma 6). However,

the larger the ρw, the wider the main-lobe of the window, which results in larger frequency

clusters in the DFT domain, and thus larger |S| of the signal model of (4.1), i.e., a less sparse

signal. Moreover, the larger the ρw, the smaller the SNR of the windowed signal, which leads

to larger frequency localization error. Fig. 5.1 (a) shows the performance of windows with

various ρw for signals of various SNRmax and sparsity level, K ′ = |S′| (see (5.1)). According

to (5.2), for signals with SNRmax equal to 20dB and 30dB, the ρw of the window should

be larger than 56dB and 60dB, respectively. In those two cases, the frequency localization

success rate, i.e., the ratio of number of correctly localized frequencies over the number of

remaining significant frequencies in each iteration of robust MARS-SFT appears to be the

highest when ρw equal 60dB and 70dB, respectively.

Fig. 5.2 demonstrates localization of off-grid 2-D frequencies of robust MARS-SFT using

the Dolph-Chebyshev window, for various values of ρw. A window with insufficient ρw leads

to miss detections and false alarms (see Fig. 5.2 (a)), while a window with sufficiently

large ρw yields good performance in frequency localization, with a tradeoff of causing larger

frequency cluster sizes (see Fig. 5.2 (b)).

5.6.2 Effect of Voting on Frequency Localization of Robust MARS-SFT

The nd-out-of-ns voting in frequency decoding procedure of robust MARS-SFT can signifi-

cantly reduce the false alarm rate. For a fixed ns, larger nd/ns results in smaller false alarm

rate. However, the smaller the false alarm rate, the larger the number of the iterations

required to recover all the significant frequencies. Figs. 5.3 and Fig. 5.2 (b) show the

examples of 2-D frequency recovery using different values of (ns, nd). In Fig. 5.3 (a), we

set (ns, nd) = (1, 1), which reduces the frequency localization of robust MARS-SFT to that

of MARS-SFT, i.e., without voting. In this case, one can see that many false frequencies

are generated. Figs. 5.3 (b), (c) show the frequency localization result with (ns, nd) equal
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Figure 5.1: Frequency localization success rate of the first iteration of robust MARS-SFT
versus window PSR. The Dolph-Chebyshev windows with various PSR is applied. (ns, nd) =
(3, 2).
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Figure 5.2: 2-D frequency recovery with different windows. K ′ = 10, σn = 1, amin = amax,
SNRmax = 30dB, (ns, nd) = (3, 2), T = 30. The ground truth represents the discrete
frequency clusters of S. The PSR of the window equals 45dB in (a) and 70dB in (b).
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to (3, 1), (3, 3), respectively; while the former generates large amount of false frequencies,

the latter exhibits miss detection, which implies the insufficiency of number of iterations of

robust MARS-SFT used in this case. Fig. 5.2 (b) shows the ideal performance when (ns, nd)

is designed as (3, 2).
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Figure 5.3: Effect of voting on 2-D frequency recovery. K ′ = 10, σn = 1, amin = amax,
SNRmax = 30dB. T = 30. Dolph-Chebyshev windows with ρw = 70dB is applied. (a)
(nd, ns) = (1, 1). (b) (nd, ns) = (3, 1). (c) (nd, ns) = (3, 3).

5.6.3 Effect of SNR and Sparsity Level on the Convergence of Robust MARS-

SFT

The average number of iterations of robust MARS-SFT to recover all the significant fre-

quencies is affected by the SNR and the sparsity level of the signal. A low SNR and less

sparse signal require a large number of iterations. As discussed in Section 5.5, we are able

to estimate the largest number of iterations that recover all the significant frequencies of
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sufficient SNR. Fig. 5.4 shows the theoretical and simulated number of iterations of robust

MARS-SFT for signals with various SNR and sparsity level; the upper bounds of number of

iterations are consistent with the simulated results.
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Figure 5.4: Effect of SNR and sparsity level on the convergence of robust MARS-SFT.

5.6.4 Amplitude and Overall Error of the Robust MARS-SFT

We investigate the amplitude and overall error between the original signal and the signal

recovered by the robust MARS-SFT.

Let us define the set of C as the intersection of the reconstructed sinusoids Sr and the sinu-

soids contained in the windowed original signal, i.e., S′ of (5.1), and C , {ar, a,ω : (ar,ω) ∈

Sr, (a,ω) ∈ S′}. Then the amplitude error is defined as
∑
|a− ar|2/

∑
|a|2, where the sum-

mation is over the set of C. The overall error is defined as ‖y(n)−rw(n)‖22/‖rw(n)‖22, n ∈ X ,

where y(n) and rw(n) are the reconstructed and windowed original signal, respectively.

Fig. 5.5 shows the amplitude error and the overall error with respect to SNR for both

on-grid and off-grid cases. For all the cases, the error decrease as SNR increases. The

on-grid cases yield smaller error than that of the off-grid cases, and also tolerates lower
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SNR; this is because the application of the Dolph-Chebyshev windows in the off-grid cases

reduces SNR. The overall error of the former is much smaller than that of the latter. For

instance, when SNR equal 14dB, the overall error of the former is less than 0.01, which is

contributed by the noise energy. On the contrary, for the latter, the overall error reaches 0.2

for SNR = 20dB and K ′ = 10; this is because the Dolph-Chebyshev window of large PSR

smears the peaks of significant frequencies, a significant portion of signal energy spreads

across the frequency spectrum. As a result, the robust MARS-SFT only recovers signal

energies that are concentrated around the main lobes of significant frequencies. This is not

a problem in applications such as radar signal processing, where only the frequency locations

are needed in order to estimate target parameters.
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Figure 5.5: Amplitude and overall error of the robust MARS-SFT. (ns, nd) = (3, 2). Dolph-
Chebyshev windows are applied for the off-grid cases, while the rectangular window is used
in the on-grid cases. (a) Amplitude error. (b) Overall error.

5.7 MARS-SFT Based DBF Radar

With the rapid developments in the advanced driver-assistance systems and self-driving

vehicles, the automotive radar plays an increasingly important role in providing multidi-

mensional information of the dynamic environment to the perception system of the vehicle.

A typical DBF automotive radar uses uniform linear array as the receive array (see Fig.

1.2). Let us assume that the array has N2 half-wavelength-spaced elements. The radar

transmits an FMCW waveform with a repetition interval Tp. We also assume that there
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exist K ′ targets in the radar coverage. After de-chirping, sampling (N0 samples are obtained

within an repetition interval) and analog-to-digital conversion for both I and Q channels,

the received signal within N1 repetition intervals can be expressed in (5.1) [47], where the

vectors are 3-dimensional (3-D). The 3-D frequency ω = [ω0, ω1, ω2]T relates to the target

parameters as

ω0 = 2π(2ρr/c+ fd)/fs,

ω1 = 2πfdTp,

ω2 =


π sin θ, θ ∈ [0, 90◦)

2π + π sin θ, θ ∈ [−90◦, 0).

(5.6)

where ρ, c, fs, fd are chirp rate, speed of wave propagation, sampling frequency, and Doppler

frequency, respectively; the chirp rate is defined as the ratio of the signal bandwidth and

the repetition interval. When K ′ << N , the target parameters embedded in ω can be

estimated via the robust MARS-SFT . Conventional processing requires a multidimensional

FFT, which is still computationally challenging as the increasing of the data size due to the

increasing array size and also the increasing of dimensionality (e.g., the beamforming along

both azimuth and elevation).

We simulate the target reconstruction for an automotive DBF radar via robust MARS-

SFT, and compare against the FFT and RSFT based methods. The main radar parameters

are listed in Table 5.1. Such radar configuration represents a typical long-range DBF radar

[47], except that we set the number of antenna elements to be moderately large to provide a

better angular resolution performance. Fig. 5.6 shows the target reconstruction of 3 radar

targets via a 3-D FFT, RSFT and the robust MARS-SFT. All three algorithms are able to

reconstruct all targets. Compared to the FFT and RSFT, the robust MARS-SFT requires

approximately 3% of data samples, and thus exhibits low sample complexity. Also, the

computation via the robust MARS-SFT is more efficient. However, we note that the robust

MARS-SFT requires higher SNR than the FFT and RSFT based methods. In near range

radar applications, such as automotive radar, high SNR is relatively easy to obtain.
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Table 5.1: Radar Parameters

Parameter Symbol Value
Center frequency fc 76GHz
Pulse bandwidth bw 200MHz

Pulse repetition time Tp 89us
Number of range bins N0 512

Number of PRI N1 256
Number of antenna elements N2 16

Maximum range Rmax 300m
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Figure 5.6: Radar target reconstruction via FFT, MARS-SFT and RSFT. (a) Reconstruction
of three targets. (b) Details of the frequency locations reconstructed for one of the three
targets.

5.8 Summary

We have proposed the robust MARS-SFT, an extension of the SFT algorithm based on

Fourier projection-slice theorem. We have shown that the robust MARS-SFT can address

multidimensional data that contains off-grid frequencies and noise, while enjoys low com-

plexity. Hence the proposed robust MARS-SFT is suitable for the low-complexity imple-

mentation of multidimensional DFT based signal processing, such as the signal processing

in DBF automotive radar, provided that the scenarios are sparse.
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Chapter 6

Two-Dimensional DBF Automotive Radar with Orthogonal
Linear Arrays

We propose a new automotive radar architecture that achieves high resolution in range, range

rate, azimuth and elevation angles, while requires a smaller antenna aperture and fewer re-

ception channels as compared to conventional Digital Beamforming (DBF) planar arrays.

This is achieved by leveraging two orthogonally-placed DBF arrays using the Frequency

Modulation Continuous Waveform (FMCW). The high-resolution Range-Doppler Images

(RDI) generated by azimuth and elevation beams of the two arrays isolate each physical

scatterer, thus, the azimuth and elevation angles can be precisely measured. Such beam-

forming and RDI-generation procedure requires multidimensional Discrete Fourier Trans-

fomr (DFT), which is ususally implemented by the Fast Fourier Transform (FFT). As the

increasing of the resolution in each domain, such FFT-based method is still computational

challenging. In sparse scenarios, the robust MARS-SFT proposed in Chapter 5 can be em-

ployed to replace the FFT to reduce the complexity. To match the measurements of an

object from azimuth and elevation beams, a deep learning based beam matching method is

proposed, which converts the beam matching problem to an image patch matching problem

in the range-Doppler domain. Furthermore, a new radar resource management algorithm is

proposed, which schedules radar jobs by their time urgency as well as beam locations. Jobs

fall into the same beams are scheduled together to optimally use the radar time resource

and also reduces the computation introduced by the beam matching procedure.

6.1 Introduction

Automotive radars play an increasingly important role in self-driving vehicle applications.

As compared with other sensors, such as lidar and camera, radars are less affected by
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adverse weather conditions. In addition, radars provide informative 4-dimensional (4-D)

measurements, i.e., range, range rate, azimuth and elevation angles, which are important

in perception applications. However, while the state-of-the-art automotive radars achieve

high range and range rate resolution, their angular resolution is lower as compared to lidars.

This is one of the main limitations of the automotive radars [56].

The basic architecture of modern beamforming automotive radars [11] is composed of a

transmit antenna, and a reception Uniform Linear Array (ULA) with digitized channels. The

transmit antenna forms a broad beam pattern, which covers a large Filed-of-View (FOV),

while the reception array forms multiple beams simultaneously, covering the same FOV of

the transit beam pattern. The angular resolution is determined by the beamwidth of the

reception array, which is fundamentally limited by the antenna aperture. The larger the

aperture, the narrower the beamwidth. Also, for non-ambiguous angular measurements in

a large FOV, the array elements must be closely spaced. The largest FOV that an ULA

can achieve, i.e., ±90◦ corresponds to the half-wavelength array element-wise spacing. The

higher the angular resolution and the larger the FOV, the greater the number of channels

are required. For instance, to achieve 3◦ resolution within an FOV of ±60◦ requires ap-

proximately 40 channels for a 77GHz radar. It is even harder to have both high angular

resolution in azimuth and elevation while covering a large FOV. In that case, a planar array

of NaNe channels is required, where Na, Ne are the number of channels in azimuth and

elevation, respectively; this is not realistic for the automotive radar application, where the

hardware and cost are highly constrained.

One way to achieve simultaneous azimuth and elevation angle measurements and also

savings in the number of channels is to leverage two linear, orthogonally placed arrays

[57, 58, 59]. Compared to the planar array that uses NaNe reception channels, the two

orthogonal linear arrays only have Na+Ne channels. However, to form thin fan beams either

in azimuth or in elevation for a large FOV, the number of channels is still large. To reduce

the number of channels, in [58], the ESPRIT super-resolution algorithm is adopted for an

orthogonal-array system which only has 4 channels in each array. However, ESPRIT requires

higher SNR and is less robust to noise as compared to conventional beamforming. Moreover,

[58] does not address the association problem related to the array architecture. Specifically,
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the measurements of the two arrays should be associated to the same scatterers to form a

joint measurement. In [59], a geometric matching based association algorithm is proposed

to match the measurements from azimuth and elevation beams; such method constructs two

sets of 3-dimensional locations of a scatterer in the Cartesian coordinate from the range and

angular measurements of the two arrays, then, the matching is determined by the Euclidean

distance of the two locations. Such matching method requires that only a few scatterers

existing at a same range ring, otherwise, the pairwise matching is computationally infeasible.

This is not applicable for high resolution automotive radar in a dense environment. For high

resolution radar, each target is represented as an extended target that is composed of a large

number of scatterers. Thus, there are a large volume of scatterers existing in both azimuth

and elevation beams, which makes the association challenging. Hence, reducing the number

of channels and addressing the measurement association in a dense environment with low

computational complexity in the orthogonal array architecture are still open problems.

In this chapter, to address the aforementioned problems, we propose a new 2-dimensional

(2-D) beamforming automotive radar, which, based on a small number of reception channels

achieves high resolution measurement in range, rang rate, azimuth and elevation angles in a

dense environment. The proposed radar employs two orthogonally-placed, collocated ULAs

with Na and Ne channels in azimuth and elevation, respectively. Unlike the orthogonal

arrays in [57] and [58] that achieve high resolution in the angular domain directly either via

a large aperture or resorting to high-resolution algorithm such as ESPRIT, here, we take a

two-step approach to resolve angles indirectly, which lends itself to a much smaller aperture

and more robust angular measurement. The two-step approach is following. First, a coarse

angular measurement is obtained by forming Na and Ne fat beams in azimuth and elevation,

respectively. Next, within each beam, a finer angular resolution is achieved by leveraging the

high-resolution RDIs generated by 2-D FFT in the range and Doppler domain. In sparse

scenarios, i.e., the number of scatterers is much smaller than the number of resolution

cells in the range, Doppler and DOA domains, we can leverage the robust MARS-SFT to

implement the DBF and RDI-generation procedure to significantly reduce the sample and

computational complexity. Owning to the large-bandwidth, long-time coherent processing

FMCW, each pixel of the RDIs is highly likely to represent a single scatterer from an object.
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Subsequently, the azimuth and elevation angle of scatterers can be precisely measured using

the monopulse technique [60], which is more robust to noise as compared with the ESPRIT

algorithm applied in [58]. The high resolution RDI not only helps to resolve angles, but also

leads to a novel approach of measurement association, which is described in the following.

To match the azimuth and elevation beams that cover the same objects, we propose

a deep learning based approach. The main idea here is that the range-Doppler signature

(pattern) of the same object at the same time, corresponding to the two beams generated

by the two arrays, should be similar. Hence, the beam matching problem is converted to

an image patch matching problem in the range-Doppler domain. State-of-the-art image

patch matching leverages the Convolutional Neural Networks (CNN) [61]; specifically, the

so-called “Siamese-net” [62] is employed to identify the similar or dissimilar image patterns.

The Siamese-net is composed of a pair of identical, shared-weights CNNs. During the

training, the network is fed into pairs of matched and non-matched image patches, which

contain similar and dissimilar patterns, respectively. The two CNNs convert the input image

patches to feature vectors; the Euclidean distance of the two feature vectors depends on the

similarity of the patterns contained in the image pairs. After training, such neuron-network

can generalize to unseen patterns, which is excellent for the beam matching application.

Compared to the point-to-point association approach of [59] that works in a sparse scenario

or within a narrow beam, the proposed pattern-based matching approach works for matching

two broad beams that contain dense points.

The beam matching processing could be computationally heavy in a dense environment.

In the worst case, each search frame would generate NaNeP matching pairs, where P is the

number of patches in each RDI. In order to reduce the computation and optimally utilize

the radar resource, we introduce a radar resource management method for the proposed

radar architecture. Radar resource management techniques are widely used in phased array

radars with narrow beamwidth, whose FOV is covered by different beams in a time sharing

manner. Such time-sharing scheme is scheduled by a resource manager. A popular schedul-

ing algorithm implemented in real-life radar systems is the time-balanced algorithm [63];

such algorithm considers the urgency of each radar job and guarantees that the more urgent

a job is, the higher priority it obtains. Based on the time-balanced algorithm, we propose a
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new scheduling algorithm, which adapts to the proposed radar architecture. Specifically, in

addition to considering the urgency of jobs, the proposed algorithm also considers the beam

positions of the tracking jobs; the tracking jobs which fall into the same beam are grouped

and executed together; this achieves significant savings of radar time in dense environment.

Moreover, since the tracking jobs are already associated with the corresponding azimuth

and elevation beams, no beam matching computation is required; this enables computa-

tional savings. The advantage of the proposed radar is demonstrated by simulations.

6.2 System Model

6.2.1 Target Model

We model an extended target as a collection of independent scatterers lying on a 3-D grid

of a cuboid, i.e., Ω , {−L/2,−L/2 + ∆L, · · · , L/2} × {−W/2,−W/2 + ∆W, · · · ,W/2} ×

{−H/2,−H/2 + ∆H, · · · , H/2}, where L,W,H are the length, width and height of the

target, respectively, and ∆L,∆W,∆H denotes the spacing of grid points along the length,

width and height dimensions, respectively. The reflection coefficient of each scatterer is

ρ , psρse
jφ, where ps, ρs and φ are random variables, which are distributed according to

Bernoulli, Gaussian and uniform distributions, respectively. A target whose geometric center

is located at xt = [xt, yt, zt]
T ∈ R3 can be expressed as

T (x− xt) =
∑

x0∈Ω

ρ(x0)δ(x− xt − x0), (6.1)

where x = [x, y, z]T ,x0 = [x0, y0, z0]T ,x,x0 ∈ R3; δ(·) is the unit impulse function. We also

assume that the velocity of the target center is v = [vx, vy, vz]
T ∈ R3. Assuming that the

radar location is at the origin and its velocity is 0, the radial velocity of each target scatterer

with respect to the radar is

v(x0) = vT (xt + x0)/‖xt + x0‖, x0 ∈ Ω. (6.2)

The range, azimuth and elevation angle of each scatterer are calculated as follows

r(x0) = ‖xt + x0‖,

φa(x0) = arctan(
yt + y0

xt + x0
),

φe(x0) = arcsin ((zt + z0)/r(x0)) , x0 ∈ Ω.

(6.3)
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6.2.2 Radar Architecture

The proposed radar architecture is illustrated in Fig. 6.1 (a). The radar contains a trans-

mission antenna and a pair of reception antenna arrays, which are two orthogonally placed

ULAs. The two arrays are named as azimuth and elevation array, and have Na, Ne ele-

ments, respectively. The transmit antenna forms a wide beam pattern, which covers the

FOV of the radar, while the azimuth and elevation arrays form Na, Ne beams in azimuth

and elevation, respectively. Each reception channel is mixed with a coupled signal from the

transmitter to de-chirp the received FMCW signal. The digitized received signal is processed

by the Processing and Control Unit (PCU). The arrays of the radar are to cover a large

FOV in azimuth, e.g., ±60◦ and a smaller FOV in elevation, e.g., 30◦. The beam pattern

corresponding to such design is illustrated in Fig. 6.1 (b).

6.2.3 Signal Model

Based on the target model and the radar architecture, for a single extended target, after

demodulation, the received signal for the uth, u ∈ [Na] azimuth channel of the pth, p ∈ [P ]

pulse can be expressed as [11]

su(t) =
∑
x0∈Ω

ρ(x0)ej2π(fr(x0)t+pTfd(x0)+ida sin(φa)/λ), (6.4)

where t ∈ (0, T ), and T is the pulse repetition interval. fr(x0) is the frequency related to

r(x0); fd = 2v(x0)/λ is the Doppler frequency; λ is the wavelength, and da is the element-

wise spacing of the azimuth array.

In general, when multiple targets are present, the received signal can be expressed as the

superposition of the signal generated by each target and noise. The signal received from the

elevation array takes a similar form. Classic signal processing extracts target parameters,

i.e., range, range rate and angle by applying DFT to the digitized signal in each dimension

[11], however, the closely spaced scatterers are not resolvable in the angular domain. Also,

how to associate the measurements of the two arrays is challenging for a large number of

scatterers. In the next section, we propose the unique signal processing method to address

those problems.
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Figure 6.1: The proposed radar architecture. (a) Radar architecture. (b) Beam positions.
The radar forms Na, Ne (Na = Ne = 4) beams in azimuth and elevation, respective.
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6.3 Signal and Data Processing

6.3.1 Overview

The overview of the signal and data processing of the proposed radar is shown in Fig. 6.2.

Upon reception of the signal from the two arrays, digital beamforming is applied to form

azimuth and elevation beams as shown in Fig. 6.1 (b). Next, the RDI is computed for each

beam using DFT; the beamforming and RDI-generation can be implemented by the FFT and

robust MARS-SFT in dense and sparse scenarios, respectively. Subsequently, detection is

applied on the RDIs generated from each azimuth beam. A successful detection triggers the

beam matching procedure, which will be discussed in detail in Section 6.3.3. The matched

azimuth and elevation angles are subsequently measured using monopulse. Next, the 4-

D measurements of targets are forwarded to a multi-object, extended target tracker [64],

which proposes and maintains tracking tasks. The resource manager is adopted to schedule

searching and tracking jobs; this is discussed in detail in Section 6.3.4.
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Figure 6.2: Overview of signal and data processing.

6.3.2 SFT-based Pre-processing

In dense scenarios, we use DFT to form azimuth and elevation beams and compute RDIs for

each beam. In a sparse scenario, i.e., when the number of scatterers is much smaller than the

number of resolution cells in the range, range rate, and angular domains, the robust MARS-

SFT can be adopted to implement the DFT to reduce the computation. Specifically, a 3-D
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robust MARS-SFT is employed to simultaneously form Na azimuth beams and compute the

RDI for each beam. The output is a set of 3-D sinusoids whose frequenices represent the

spatial frequency, range, and Doppler of each scatterer. The RDI images can be trivially

constructed from such set. The similar processing is applied to the elevation channels.

6.3.3 Beam Matching via Deep Learning

Matching the azimuth and elevation beams associated to the same targets is not trivial espe-

cially in a dense environment. In [59], the beam matching is applied on the scatterer-basis,

i.e., the association is between each range-angle pairs of measurements from the azimuth

and elevation arrays. This approach is not computational feasible in scenarios where the

number of measurements is large.

The same target has a similar pattern in the RDI of the corresponding azimuth and

elevation beams, hence, it is possible to match the beams based on patterns rather than

measurements of each scatterer. While similar, the range-Doppler patterns of a target in

different beams are not exactly the same, due to different FOV of the azimuth and elevation

beam, and different SNR of different channels. We take a deep learning based approach

to address those challenges. Specifically, we adopt CNN to match targets from different

azimuth and elevation channels based on range-Doppler patches generated from different

azimuth and elevation beams. We call this as Beam Matching Net (BMN). The overall

structure of the BMN is shown in Fig. 6.3 (a).

The goal of BMN is to match targets detected in any azimuth beam to those detected

in the elevation beams. To achieve this, the RDI of the uth, u ∈ [Na] azimuth beam is

divided into p × q patches; the size of each patch is R/p × D/q, where R × D is the size

of the RDI. Detection is applied to each patch. The detection can be implemented by

comparing the energy of a patch to a predefined threshold. If targets are detected in the

(i, k)th, i ∈ [p], k ∈ [q] patch of the uth azimuth beam, such image patch is forwarded to

a CNN to extract a feature vector denoted as fui,k. Meanwhile, the (i, k)th image patch of

each elevation channel is forwarded to the same CNN, which outputs Ne feature vectors,

i.e., gvi,k, v ∈ [Ne]. Next, the Euclidean distance between fui,k and gvi,k, v ∈ [Ne] is computed;
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124

the elevation channel corresponding to the minimum distance is the matched channel, i.e.,

vm = argminv∈[Ne] = ‖fui,k − gvi,k‖. (6.5)

The design of the CNN in BMN is based on the LeNet architecture [65], which is com-

posed of cascade of multiple convolutional layers followed by pooling layers. Several fully

connected layers are appended, which outputs a feature vector. To adapt LeNet in our ap-

plication, we change the input layer as R/p×D/q and the output layer as a 64-dimensional

vector.

The proposed BMN needs to identify the same and different range-Doppler patterns. In

computer vision problems, such pattern matching problem is often addressed by the Siamese-

net (see Fig. 6.3 (b)) [66]. The Siamese net is composed of a pair of identical weight-sharing

feature extraction CNNs (feature net). The input of the feature nets are pairs of image

patches, containing similar or dissimilar patterns. During the training, the contrastive loss

[66] is used to enforce the feature net to output similar features for identical patterns and

different features for different patterns. After training, the Siamese net can generalize to

unseen patterns.

6.3.4 Resource Management

The beam matching processing could be computational heavy in a dense environment. In

the worst case, each frame covering the whole FOV would generate NaNeP matching pairs,

where P is number of patches in each RDI. In order to reduce the computation of the

proposed radar architecture and optimally utilize the radar resource, we introduce the radar

resource management to optimally schedule radar jobs in the processing.

The proposed scheduling algorithm shown in Fig. 6.4 is an extension of the time-balanced

scheduling algorithm, which is adapted to the proposed radar architecture. Time-balanced

scheduling algorithm prioritizes the radar jobs based on their urgency, i.e., the more urgent

a job, the higher priority it obtains. The urgency of a radar job is characterized by the

time-balance, i.e., tb, tb ∈ Z. When a job is proposed, such job is not time-ready, and

tb is set to be a negative value; as the time elapses, tb increases. If tb ≥ 0, such job is

time-ready and requires to execute as soon as possible. Here, in addition to considering

the urgency of jobs, the track locations are also taken into account. Specifically, the tracks
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that fall into the same azimuth and elevation beams are grouped together; those tracks can

be updated by a single tracking job, which saves radar time as compared to updating each

track individually. Moreover, since tracking jobs are already associated to specific azimuth

and elevation beams, no beam matching procedure is required; this results into a significant

computational savings. To save radar time and computation, it is preferred to group as

many tracks as possible into the smallest number of beams. Thus, the scheduler would

prefer to delay the scheduling of the time-ready tasks and gather as many time-ready tasks

as possible. However, the delay of scheduling of tracking tasks would cause a lower updating

rate. To trade off the savings and the update time delay of tracking jobs, we propose the

following cost function

f = α
∑
i∈[J ]

ti +B/J, (6.6)

where α ∈ (0, 1) is the weight of the cost introduced by the time balance of J tracking jobs;

the time balance of the ith job is denoted as ti. The cost of the grouping is denoted by

B/J , where B is the number of groups (beams). In the best case, all the tracking jobs can

be grouped into a single group; the cost of the grouping in such scenario is 1/J , while in

the worst case, all tracking jobs fall into individual non-overlapping beams, and the cost of

grouping is 1.

The resource management algorithm shown in Fig. 6.4 is executed at a fixed rate (fixed

schedule interval); such rate is the same as the radar frame update rate, e.g. 20Hz. For

each iteration, the procedure is summarized as follows:

1. The tb of each tracking task is increased by 1.

2. If there exists tracking tasks whose tb is greater or equal to 0, then the resource

manager asks the tracker to predict the jobs’ beam locations at the execution time.

Otherwise, the resource manager generates a search job.

3. Group all the tracking jobs that are requesting to execute into B beams; each beam

is an intersection of a azimuth beam and a elevation beam.

4. Calculate the cost function based on (6.6). If the cost is greater than the threshold

C, then schedule those tracking jobs. Otherwise, generate a search job and then enter
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the next iteration.
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Figure 6.4: The proposed resource management algorithm.

6.4 Simulation

In this section, we verify the proposed radar architecture via simulations. The parameters

of the simulated radar are show in Table 6.1. The FOVs corresponding to the azimuth and

elevation arrays are ±60◦ and ±15◦, respectively.

6.4.1 RDI Patch Matching

We generate RDI patches corresponding to targets of various shape, position and velocity

at different SNR. The size of each patch is 32× 32. Those patches are grouped into pairs of
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Table 6.1: Radar Parameters

Parameter Symbol Value
Center frequency fc 76GHz
Pulse bandwidth bw 1GHz

Pulse repetition time T 90us
Number of range bins Nr 512

Number of PRI P 256
Maximum range Rmax 100m

Number of azimuth antenna elements Na 4
Number of elevation antenna elements Ne 4
Element-wise spacing of azimuth array da 0.58λ
Element-wise spacing of elevation array de 1.93λ

similar and dissimilar patterns. A pair of similar patterns corresponds to the same target

of different SNR. A training sample contains a pair of patches and a label; the label is 0

and 1 for the pairs of similar and dissimilar patterns, respectively. Examples of similar and

dissimilar pairs are shown in Fig. 6.5.
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Figure 6.5: Examples of similar and dissimilar range-Doppler patches. (a) Similar patch.
(b) Dissimilar patch.

We generated 5000 pairs of training samples and divided them into a training set and

an evaluation set, which contains 4000 and 1000 samples, respectively. The training set

contains 7 different patterns, while the testing set contains 3 different patterns which do not

appear in the training set. We then use the TensorFlow to train and test the model. After

training, we extract the 64-dimensional feature vectors from each RDI patch in the training

and the test set and project them into 2-D vectors for visualization. Fig. 6.6 shows the
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visualization of the clustering of the 2-D feature vectors in the training and testing set. One

can see that the feature vectors of the 7 different patterns are clustered, hence the Euclidean

distance within a same pattern is small. Moreover, even though the patterns in the testing

set do not appear in the training set, they are still clustered in the feature space, which

shows the generalization of the CNN. Such simulation is for the proof of concept. To obtain

a better performance in practical systems, a much larger training set containing much more

different patterns is required.

(a) (b)

Figure 6.6: Clustering of feature vectors from the train and test set. (a) Train. (b) Test.

6.4.2 Target Reconstruction

We simulate two targets whose locations in the spherical coordinate, (r, φa, φe), are (5m, 20◦, 5◦),

(20m, 25◦, 4◦), respectively, while their velocities (vx, vy, vz) are (30, 5, 1)m/s, (15, 5, 1)m/s,

respectively. The size of each target is (L,W,H) = (2, 2, 1)m and ∆L = ∆W = ∆H = 0.5m.

The azimuth-range and elevation-range measurements after beam matching are shown in

Figs. 6.7 (a), (c), and the positions for each scatterers in the Cartesian coordinate are

shown in Figs. (b), (d). Compared with that of the elevation array, the reconstructed posi-

tions in the Cartesian coordinate from the azimuth array is closer to the ground truth. This

is due to that the Doppler spreading for each scatterer is more prominent in azimuth than

in elevation; as a result, the azimuth angel measurement of each scatterer is more precise

than that of the elevation angle. The 3-D reconstruction is shown in Fig. 6.8.
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Figure 6.7: Measurement and reconstruction from individual array. (a) Azimuth-range
measurement from the azimuth array. (b) Reconstruction in X-Y. (c) Elevation-range mea-
surement from the elevation array. (d) Reconstruction in X-Z.
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Figure 6.8: Reconstruction in the X-Y-Z coordinate.

6.4.3 Resource Management

In a dense environment, such as driving in urban areas, each search job of an automotive

radar can create many tracking jobs. With the conventional time-balanced job scheduling,

those jobs are stored in a queue, and been scheduled one by one according to their priorities

(urgency). This means that it may take a long time to clear the queue even without any

new tasks come in. On the other hand, in the proposed scheduling algorithm, since we

combine the jobs that can fall in the same beam, the queue can be cleared much faster,

i.e, compared to the time balance algorithm, more tracking jobs can be scheduled by the

proposed algorithm in the same time frame. Fig. 6.9 (a) shows that with 37 tracking jobs

in queue, the proposed algorithm can finish scheduling these tracking jobs in 9 intervals

compared to the 37 intervals required by the conventional time balance algorithm. Fig. 6.9

(b) shows the performance of the proposed algorithm with respect to various values of α.

The smaller the α, the smaller the penalty applied to the time-balance part of the cost

function (see (6.6)), which results into more jobs than can be grouped into the same beams;

this involves savings of radar time and computational at the expense of longer delays of
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updating of tracking jobs.
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Figure 6.9: Comparison of resource management algorithms. (a) Comparison of the proposed
algorithm and the time-balanced algorithm. (b) Effect of the cost function. The unit of
average and maximum delay is number of schedule intervals. C = 3.

6.5 Summary

We have proposed a new automotive radar for perception applications in self-driving sce-

narios. Such radar achieves high resolution measurements in range, range rate, azimuth and

elevation angles of extended targets by leveraging two orthogonally-placed digital beamform-

ing linear arrays of a few channels. The deep learning based beam matching method and

a resource management algorithm have been developed for the proposed radar architecture

to address the beam association and the related computational challenges. In sparse sce-

narios, we have leveraged the robust MARS-SFT to reduce the sample and computational

complexity in beamforming and range-Doppler image computation.
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Chapter 7

Conclusions and Future Research Directions

7.1 Conclusions

The dissertation has formulated SFT-based signal processing frameworks for automotive

digital beamforming (DBF) and MIMO radars that archive substantial reduction in sample

and computational complexity in sparse scenarios, i.e., when the number of targets are

significantly less than the number of resolution cells in the range, Doppler, and direction of

arrival (DOA) domains.

Compared to the FFT, existing state-of-the-art SFT algorithms have achieved significant

savings in sample and computation for signals that are sparse in the frequency domain.

However, those SFT algorithms are usually one-dimensional, and suffer from noise and

off-grid frequencies arising in real-world radar signals. To address those problems, we have

proposed multidimensional SFT algorithms that are robust to noise and off-grid frequencies.

First, we have proposed the RSFT algorithm. RSFT employs a pre-permutation window

and Neyman-Pearson (NP) detection to address the off-grid frequency and frequency detec-

tion problems arising in the application of SFT in real-world situations. We have shown that

the RSFT is robust in detecting frequencies when exact knowledge of signal sparsity is not

available. The optimal design of parameters in RSFT have been analyzed, and the tradeoff

between detection performance and computational complexity has been investigated. Such

analysis has revealed that RSFT could provide an extra degree of freedom of design in

trading off the system’s ability to detect weak signals and computational complexity.

We have applied the proposed RSFT to DBF radar that employs Frequency Modulation

Continuous Waveform (FMCW), and MIMO radars using pulse-compression waveforms.

The architecture of the radar processing has been designed to adapt the application of the
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proposed RSFT algorithm. For MIMO radars that employ pulse-compression waveforms,

the signal is not naturally sparse in the range domain, we thus have investigated the pre-

processing methods to sparsify the signal, so that the RSFT can be applied to the subsequent

processing. The RSFT-based processing has achieved substantial computational reduction

as compared to the FFT-based approach, however, the sample complexity of the former is

the same as the latter.

Next, to reduce both sample and computational complexity of SFT, we have proposed

MARS-SFT, a multidimensional sparse Fourier transform that is inspired by the Fourier

projection-slice theorem. We have shown that MARS-SFT could handle less sparse and

even clustered frequencies, while enjoys low sample and computational complexity. The

sample and computational complexity of MARS-SFT achieves the lowest complexity among

all know SFT algorithms when the sparsity is of the same order of the slice length. The

relationship between MARS-SFT and the Fourier projection-slice theorem has been dis-

cussed. Especially, the connections between the one-projection theorems under the context

of MARS-SFT and the Fourier projection-slice theorem has been exploited; the classic one-

projection theorem and the one-projection theorem of MARS-SFT establish an unambiguous

one-to-one mapping from a 2-D sequence to a 1-D sequence.

MARS-SFT is designed for ideal signals that is noiseless and contain only on-grid (digital)

frequenceis. To handle real-world radar signals, we have proposed the robust MARS-SFT,

which has employed a windowing step and a voting-based frequency decoding step to adress

the frequency leakage of off-grid frequencies, and reduce the frequency localization error

stemming from the noise. We have shown that the robust MARS-SFT can address mul-

tidimensional real-world signal, while enjoys low complexity. Hence the proposed robust

MARS-SFT is suitable for the mutidimensional signal processing in DBF automotive radars

that uses FMCW. We thus have demonstrated the application of the robust MARS-SFT in

such radar via simulation.

Finally, we have proposed a new automotive radar for perception applications in self-

driving scenarios. Such radar achieves high resolution measurements in range, range rate,

azimuth and elevation angular domains of extended targets (each target is modeled by a set

of scatterers) by leveraging two orthogonally-placed digital beamforming linear arrays of a
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few channels. The deep learning based beam matching method and a resource management

algorithm have been developed for the proposed radar architecture to address the beam

association and the related computational challenges. In sparse scenarios, the proposed

robust MARS-SFT has been leveraged in the beamforming, and range-Doppler imaging

procedures to reduce the complexity of the proposed architecture.

7.2 Future Research Directions

7.2.1 Clutter and Interference Suppression for SFT-based Radar Processing

One of the basic assumptions of the proposed SFT-based radar signal processing is that the

scenarios are sparse, i.e., the number of targets is significantly smaller than the number of

resolution cells in the range, Doppler, and DOA domain. In many real-life radar applica-

tions, clutters generated from stationary background objects (such as ground, buildings and

vegetation), and interference produced from other radiation sources of the similar frequency

band could occupy a substantial amount of resolution cells; this undermines the sparsity as-

sumption of SFT-based algorithms. In Chapter 3, we apply proper pre-processing methods

in order to sparsify signals that are not naturally sparse in the range domain for MIMO

radars. It is also important and interesting to investigate low-complexity pre-processing

methods for clutter and interference suppression that would sparsify radar signals, and al-

low SFT-based algorithms in the subsequent processing.

7.2.2 Deterministic SFT-based Method for Radar Signal Processing

The proposed RSFT and robust MARS-SFT based radar signal processing methods are

all based on some randomized approach to shuffle the frequencies to different buckets for

each iteration. Such randomization is necessary to avoid frequency collisions caused by

projecting high dimensional frequencies to a lower dimension. Due to such randomization,

those algorithms are probabilistic, whose successful rate upper-bound is a function of the

sparsity level K. There is another branch of SFT algorithms that are deterministic [67,

35, 68]. For failure intolerant and mission-critical radar applications, those deterministic

algorithms with zero probability of failure are highly desirable. However, the deterministic
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SFT algorithms usually have much stronger assumptions, and suffer a greater complexity

than randomized SFT algorithms. For instance, the deterministic SFT algorithm of [35]

assumes that we know K, and each sinusoid has different amplitude, so that the algorithm

can match frequencies calculated from a series of short DFTs of pre-designed length; such

assumption does not hold in real-life radar signal processing. In our future research, we’d

like to investigate the relaxation of the assumptions of the aforementioned deterministic

SFT methods as well as reduction of their complexity to allow their applications in radar

signal processing.

7.2.3 Characterization of Detection Performance for K frequencies in RSFT

In Chapter 2, we use Pfa, Pd to characterize the false alarm rate at each of N frequency

bins and the detection performance for the weakest frequency in the signal of N samples

for RSFT, respectively. However, setting the false alarm rate threshold for each individ-

ual frequency does not guarantee anything for the discovery probability of multiple targets.

Additional work is required to characterize the detection performance of RSFT for K sig-

nificant frequencies and the associated Pfa by considering all the N tests. As such, in the

future work, we would like to develop theoretical results by investigating metrics such as

family-wise error rate (FWER) [69] and false discovery rate (FDR) [70]. FWER and FDR

are metrics for false alarms usually employed in multiple comparison problems [69], arising

when one considers a set of N hypothesis testings, simultaneously. Since we also consider

N tests in RSFT, those metrics could help us to better quantify the detection performance

of RSFT.
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A Proof of Lemma 1

Proof. If we were applying N -point DFT to v(ω), the highest amplitude of the spectrum

would appear on the grid point closest to ω, i.e. [b ω
∆ωN
e]N . The pre-permutation windowing

will not change the position of the highest peak, provided the window is symmetric. Then

after permutation, the peak location dilates by σs modularly, and becomes [σs[b ω
∆ωN
e]N ]N .

Finally, after flat-windowing and aliasing, the signal is ideally down-sampled in the frequency

domain, and the data length changes from N to B. Then the B-point DFT exhibits the

highest peak on grid point p as desired.

B Proof of Property 3

Proof. According to Definition 3, the mapping can be split into two stages: 1) apply modular

multiplication to i, i.e., k = [σi]N ∈ [N ]; and, 2) convert k into j ∈ [B] with j = [bkB/Ne]B.

Similarly, according to Definition 4, the reverse-mapping also can be split into two stages:

1) dilate j ∈ [B] into S ≡ {v ∈ [N ] | jNB ≤ v < (j + 1)NB ]} ⊂ [N ]; and, 2) apply inverse

modular multiplication on S, i.e., R(j, σ−1) ≡ {[uσ−1]N | u ∈ S}.

The first stage of reverse-mapping is the inverse operation of the second stage of mapping,

and as a result, k ∈ S. Hence i = [kσ−1]N ∈ R(j, σ−1) as desired.

C Proof of Property 4

Proof. We use the two stages of the reverse-mapping in the proof of Property 3. The first

stage of the reverse-mapping for i and j yields S1 ≡ {v ∈ [N ] | iNB ≤ v < (i + 1)NB ]}

and S2 ≡ {v ∈ [N ] | jNB ≤ v < (j + 1)NB ]}, respectively. It is not difficult to verify that

S1 ∩ S2 = ∅, provided that i 6= j.

In what follows, we will prove that the second stage of the reverse-mapping also gives

distinct results. Assume that there exists m ∈ S1, n ∈ S2, such that [mσ−1]N = [nσ−1]N .

Modularly multiply both sides with σ yields that m = n, which is contradictory with

S1 ∩ S2 = ∅. Hence both stages of the reverse-mapping guarantee the results are distinct for

i 6= j.
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D Proof of Lemma 2

Proof. Since 0 < P̃d(ωm, σs)(1 − P̃d(ωm, σs)) < 1, for δ > 0, the Lyapunov Condition[71]

holds, i.e.,

lim
T→∞

1

σa1(ωm)2+δ

∑
s∈[T ]

E{|[cσs ]j(ωm)− P̃d(ωm, σs)|2+δ}

≤ lim
T→∞

1

σa1(ωm)2+δ

∑
s∈[T ]

E{|[cσs ]j(ωm)− P̃d(ωm, σs)|2}

= lim
T→∞

1

σa1(ωm)δ
= 0.

(1)

Therefore, according to the Lyapunov Central Limit Theory (CLT), as T goes to in-

finity, 1
σa1(ωm)

∑
s∈[T ]

(
[aσs ]i − P̃d(ωm, σs)

)
converges to the standard Normal distribution.

Equivalently, [ā]i conforms to the Normal distribution as indicated in (2.25). It also holds

that
σ2
a1(ωm) =

∑
s∈[T ]

P̃d(ωm, σs)(1− P̃d(ωm, σs))

= T P̄d(ωm)(1− P̄d(ωm))

−
∑
s∈[T ]

(P̃d(ωm, σs)− P̄d(ωm))2,

(2)

from which we get that σ2
a1(ωm) ≤ T P̄d(ωm)(1 − P̄d(ωm)), with the equality holding when

P̃d(ωm, σs) = P̄d(ωm).

E Proof of Lemma 3

Proof. Under H0, each term in (2.22) may be distributed differently. To illustrate this, we

consider a location i ∈ [N ] in the frequency domain of the input signal, which does not

contain a significant frequency, as shown in Fig. 2.4. Let j = M(i, σs) be the mapping.

There would be two cases for bin j: 1) bin j does not contain a significant frequency; or

2) bin j contains at least one significant frequency, with its SNR at least SNRmin. In

the former case, [cσs ]j ∼ Bernoulli
(
P̃fa(σs)

)
, i.e., [cσs ]j is under H0. For the latter case,

[cσs ]j ∼ Bernoulli
(
P̃d(ωm, σs)

)
, i.e., [cσs ]j is under H1. Due to the permutation being

uniformly random, on the average, the number of [c]j under H1 is F = TKηm
B , and the

number of [c]j under H0 is T − F . The parameter ηm reflects the fact that sparsity is

affected by the pre-permutation windowing. Since we assume that v(ωm) has the minimum
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SNR, i.e., SNRmin, other sinusoids with higher SNR will have larger P̄d. Hence we multiply

P̄d(ωm) with ηp to calibrate the successful rate of [cσs ]j under H1. If all the sinusoids’s SNR

were equal to SNRmin, then ηp = 1; on the other hand, if the co-existing sinusoids’ SNR

were sufficient high so that their P̄d approaches to 1, then ηp = 1
P̄d(ωm)

. Finally, the results

follows immediately by applying Lyapunov CLT.

F Proof of Remark 2

Proof. Assuming ηp = 1 and substituting Kηm = B into F yields F = T , which means that

the distributions under both hypothes are the same, hence the two hypothesis cannot be

discriminated. If ηp > 1, the assumption of Pd ≥ Pfa will be violated as Kηm approaching

B.

G Proof of Lemma 4

Proof. Assume r = v(ωm). Since the pre-permutation window w is symmetric, if we applied

the DFT to the pre-permuted data, the amplitude of the spectrum would attain its maximum

and minimum respectively when ωm is on-grid or in the middle between two grid points.

The subsequent permutation operation would not change the amplitude of the spectrum.

Also, since the flat-window is used, the down-sampling in the frequency domain, which is

a result of aliasing, will not affect the amplitude either. The on-grid frequency generates

highest amplitude, while the frequency in the middle of between grid points has the lowest

amplitude. As a result, the detection procedure would yield the highest P ∗d for on-grid

frequencies, and the lowest P ∗d for frequencies laying in the middle of between grid points.

H Proof of Lemma 5

This proof is organized as follows. First, by exploring Bézout’s lemma [72], we prove that

for the specified line parameters, i.e.,

L = LCM(N0, N1), [α0, α1]T ∈ A, [τ0, τ1]T ∈ X , (3)

each entry of (4.9) contains at least the projection of the DFT coefficient from one frequency

location (m′0,m
′
1) in X , i.e., |Pm| > 0,m ∈ [L]. Next, we prove that |Pm| ≥ N/L, followed
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by the proof of Pm ∩ Pm′ = ∅ for m 6= m′,m,m′ ∈ [L], and finally, we conclude that

|Pm| = N/L.

Let α′0 = α0L/N0, α
′
1 = α1L/N1. Since (α0, α1), (α0, L/N1), (α1, L/N0), and (L/N0, L/N1)

are co-prime pairs due to L = LCM(N0, N1), it is obvious that α′0, α′1 are also co-prime. Ac-

cording to Bézout’s lemma, there exist m0,m1 ∈ Z, such that

α′0m0 + α′1m1 = 1. (4)

By multiplying by m ∈ [L] the two sides of (4), we get α′0mm0 +α′1mm1 = m, which, using

the Euclidean division, can be written as

α′0(m′0 + k0N0) + α′1(m′1 + k1N1) = m, (5)

where m′0 = [mm0]N0 ,m
′
1 = [mm1]N1 and k0, k1 ∈ Z.

Since

[α′0k0N0 + α′1k1N1]L = [L(α0k0 + α1k1)]L = 0, (6)

on taking modulo-L of the two sides of Eq. (5), we have that

[α′0m
′
0 + α′1m

′
1]L = m, (7)

which is equivalent to (4.7). This means that there exists a frequency location [m′0,m
′
1]T ∈

X , whose DFT coefficient projects to ŝ(α, τ ,m), i.e., |Pm| > 0,m ∈ [L].

Next, let us explore the structure of the solution of (7). It is easy to see that the frequency

locations, [m′0 + kα′1,m
′
1 − kα′0]T , k ∈ Z, satisfy (7), i.e.,

[α′0(m′0 + kα′1) + α′1(m′1 − kα′0)]L = m, (8)

which can be written as

[α′0([m′0 + kα′1]N0 + k0N0) + α′1([m′1 − kα′0]N1 + k1N1)]L = m, (9)

where k0, k1 ∈ Z. Again, by employing (6), we have

[α′0[m′0 + kα′1]N0 + α′1[m′1 − kα′0]N1 ]L = m. (10)

Hence, the DFT coefficients at frequency locations [[m′0 + kα′1]N0 , [m
′
1 − kα′0]N1 ]T ∈ Pm ⊆

X , also project to ŝ(α, τ ,m); those frequencies are located along the line with slope −α0N1
α1N0

and offset [m′0,m
′
1]T ; such frequency-domain line is orthogonal to the time-domain line

defined in (4.2).

Next, we prove that |Pm| ≥ N/L. Assume that for k 6= k′, there exits two duplicated

frequency locations, i.e., [[m′0 + kα′1]N0 , [m
′
1 − kα′0]N1 ]T = [[m′0 + k′α′1]N0 , [m

′
1 − k′α′0]N1 ]T .
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It follows that

[kα′1]N0 = [k′α′1]N0 , [kα′0]N1 = [k′α′0]N1 , (11)

which can be rewritten as

kα′1 = k′α′1 + k0N0, kα
′
0 = k′α′0 + k1N1, (12)

where k0, k1 ∈ Z. It is easy to conclude that k1/k0 = α0/α1. Hence we have

kα′1 = k′α′1 + iα1N0, kα
′
0 = k′α′0 + iα0N1, (13)

where i ∈ Z, i 6= 0. It holds that

k − k′ = iN/L, (14)

which means that the frequency location, [[m′0 + kα′1]N0 , [m
′
1 − kα′0]N1 ]T , repeats every N/L

points. Hence, there exist at least N/L frequency locations whose DFT values are projected

to ŝ(α, τ ,m), i.e.,

|Pm| ≥ N/L. (15)

Next, we prove that Pm ∩ Pm′ = ∅ for m 6= m′,m,m′ ∈ [L]. On assuming that

[m0,m1]T ∈ Pm ∩ Pm′ , it can be seen that

[α′0m0 + α′1m1]L = m = m′, (16)

which is contradict with m 6= m′. Hence Pm ∩ Pm′ = ∅.

Finally, by combing Pm ∩ Pm′ = ∅, m ∈ [L], |Pm| ≥ N/L and |X | = N , we conclude

that |Pm| = N/L. This completes the proof.

I Proof of Theorem 2

Since N0, N1 are co-prime, L = LCM(N0, N1) = N0N1 = N . According to Lemma 5, each

entry of the L-point DFT contains exactly one distinct sample of x̂(m),m ∈ X . Hence,

x̂(m) can be recovered by only one iteration of MARS-SFT.

J Proof of Theorem 3

For the i-th, 0 ≤ i ≤ T , iteration of MARS-SFT, the probability of any entry of x̂r(m),m ∈

X containing a significant frequency is Ki/N , where x̂r(m),m ∈ X is the N0 × N1-point

DFT of (4.1) after removal of the contribution of the recovered frequencies in the previous

i iterations; Ki is the average number of frequencies in x̂r(m),m ∈ X . According to



142

Lemma 5, each entry of the L-point DFT along the line, i.e., ŝ(α, τ ,m),m ∈ [L] contains

projections of N/L distinct entries from x̂r(m),m ∈ X , where L = LCM(N0, N1). Since

the significant frequencies are assumed to be randomly distributed, if the m-th entry of

ŝ(α, τ ,m),m ∈ [L] is significant, i.e., |ŝ(α, τ ,m)| > 0, then the probability of such entry

being 1-sparse is Qi = (1 − Ki/N)M , with M = N/L − 1. Hence, due to the uniform

distribution of frequencies, the average number of significant frequencies being projected

into 1-sparse bin, and hence recovered in the i-th iteration is Mi = KiQi with K0 = K.

Ki is the average number of the significant frequencies that ‘survived’ in the previous i

iterations. The probability of non-recovery (surviving rate) for the i-th iteration is (1−Qi).

Hence Ki = K
∏
k∈[i](1−Qk).

The algorithm stops at the T -th iteration when all the K significant frequencies are

recovered, i.e.,
∑

i∈[T ]Mi ≥ K. This completes the proof.

K Proof of Lemma 6

After windowing, the maximum absolute amplitude of the strongest frequency in theN0×N1-

DFT domain becomes

|âw| =
amax
N

∑
n∈X

w(n) =
‖W‖1
N

amax. (17)

The noise in the DFT domain becomes

n̂w(m) =
1

N

∑
n∈X

w(n)n(n), m , [m0,m1]T ∈ X . (18)

Note that since n̂w(m) is a weighted summation of i.i.d. Gaussian noises, n̂w(m) is also

i.i.d. Gaussian, i.e.,

n̂w(m) ∼ CN (0, σ‖W‖2/N). (19)

The noise absolute amplitude, i.e., |n̂w(m)| is i.i.d. Rayleigh distributed with mean equal

to σn̂′w
√
π/2, where σn̂′w is the standard deviation of the real or the imaginary component

of n̂w(m), and σn̂′w = σ‖W‖2/(
√

2N).

Since we need the side-lobe level of the strongest frequency to be below the noise level,

i.e.,
‖W‖1
Nρw

amax <

√
πσ‖W‖2

2N
, (20)
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it holds that

ρw >
2‖W‖1√
π‖W‖2

√
SNRmax. (21)

L Proof of (5.3)

Let us consider the decoding of the frequency location component m0 from a 1-sparse bin.

The decoding of m1 is similar.

With noise, an 1-sparse bin contains the projection of one frequency (ad,ω) ∈ S and

noise component an, hence (4.11) becomes

ŝ(τ0, τ1) = ade
j2π(m0τ0/N0+m1τ1/N1) + an(τ0, τ1), (22)

where, for conciseness, we have ignored the line slope parameters [α0, α1]T and the bin

number m as they are irrelevant to the decoding process.

The noise component an is due to the noise frequencies that are projected to ŝ(τ0, τ1).

According to Lemma 5, an(τ0, τ1) is the summation of N/L samples of the N0 × N1-point

DFT of the i.i.d noise samples, which can be expressed as

an(τ0, τ1) =
∑

m∈Pm

n̂w(m)e
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, (23)

where m , [m0,m1]T ; Pm , {[m0,m1]T : m0,m1 satisfy (4.8)} represents the frequency set

that projects to the m-th bin of the DFT of the slice defined in (4.4) (see Lemma 5).

The same entry (them-th bin) of the DFT along the other line with delay [[τ0+1]N0 , τ1]T

can be decomposed as

ŝ(τ0 + 1, τ1) = ade
j2π(m0(τ0+1)/N0+m1τ1/N1) + an(τ0 + 1, τ1). (24)

The frequency location m0 is decoded as in (4.12). A graphical representation of the

components of (22) and (24) is shown in the Figure below, from where one can see that

the angular error φe changes with the rotation of the noise components an(τ0, τ1), an(τ0 +

1, τ1). The angular error due to decoding, i.e., ∆φ = |φ
(
ŝ(τ0+1,τ1)
ŝ(τ0,τ1)

)
− φ(ej2πm0/N0)| reaches

maximum when ŝ(τ0, τ1), ŝ(τ0+1, τ1) are out of phase and perpendicular to an(τ0, τ1), an(τ0+

1, τ1), respectively, as shown in the Figure. In such case, assuming that |ad| >> |an|, we

can use the following approximation:

∆φ = 2|φe| = 2asin(|an|/|ad|) ≈ 2|an|/|ad|. (25)

Since the localization error ∆u due to ∆φ has to be less than 1/2, i.e., ∆u = N0
2π ∆φ < 1

2 ,
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OFDM-trick for the 1-sparse bin with noise.

we need that
|ad|
|an|

>
2N0

π
. (26)

In the following, we derive the distribution of |an| in order to derive the decoding error

probability.

From (19) and (23), an also follows a circularly symmetric Gaussian distribution, i.e.,

an ∼ CN (0, σan), where σan = σ‖W‖2/
√
NL. Hence |an| follows a Rayleigh distribution

whose cumulative distribution function can be expressed as f|an|(x) = 1−e−x
2/(2σ2

a′n
)
, x > 0,

where σ2
a′n

= σ2
an/2.

After windowing, in the DFT domain the highest peak of a frequency with the amplitude

of a becomes |ad| = ‖W‖1a/N . By substituting into (26), the correct decoding needs that

|an| < δu , aπ‖W‖1/(2NN0). Hence, the decoding error for m0 is upper bounded by

Pu =
(
σp(1− f|an|(δu))

)2
, (27)

where σp with 1/2 ≤ σp ≤ 1/(2π) represents the probability of an(τ0, τ1), an(τ0 +1, τ1) being

out-of-phase; the lower bound of σp represents to the probability of an(τ0, τ1), an(τ0 + 1, τ1)

pointing to the opposite direction and the upper bound of σp represents an(τ0, τ1), an(τ0 +

1, τ1) pointing to the opposite direction and perpendicular to ŝ(τ0, τ1), ŝ(τ0 + 1, τ1), respec-

tively.
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Similarly, the decoding error for m1 is upper bounded as

Pv =
(
σp(1− f|an|(δv))

)2
, (28)

where δv , aπ‖W‖1/(2NN1). Hence the lower bound of the probability of correct decoding

of [m0,m1]T that projects to a 1-sparse bin is

Pw = (1− Pu)(1− Pv). (29)

Next, the probability of a frequency being project to a 1-sparse bin is determined by

P1 , (1− |S′′|/N)N/L−1, (30)

where L = LCM(N0, N1); S′′ is the set of remaining frequencies in the signal in each iteration

of robust MARS-SFT.

The success probability of the nd-out-of-ns voting decoding procedure can be expressed

as the complementary cumulative binomial probability of (5.3), whose success probability

of each experiment, i.e., localizing (ad,ω) in each sub-iteration is P1Pw. This completes the

proof.

M Detection Performance of the FFT-based Bartlett Method

The detection performance of the RSFT-based signal processing is characterized by (36)

of [36], which establishes the relationship between the probability of detection, Pd, of the

weakest sinusoid contained in the signal and the probability of false alarm, Pfa, of each

frequency bin.

The counterpart of the RSFT-based signal processing is the FFT-based Bartlett method

followed by an NP detection procedure [39, 40] (see Algorithm 2 for details). To compare

the two methods, first of all, we derive the relationship between the Pd and the Pfa for the

Bartlett method using the same signal model (see (2.1)) as that of the RSFT.

The analysis of the Bartlett method follows Algorithm 2. After windowing and FFT,

the signal becomes

ûs = DNWrs, s = 0, 1, · · · , T − 1, (31)

where DN ∈ CN×N is the DFT matrix.

Substituting (2.1) into (31), for the kth, k ∈ [N ] entry of ûs, we get

[ûs]k =
∑
j∈[K]

bj,sd
H
k Wv(ωj) + dHk Wns, (32)
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Algorithm 2 Bartlett Method algorithm
Input: complex signal rs, s ∈ [T ] in any fixed dimension
Output: o, frequency domain representation of input signal
1: procedure Bartlett(rs)
2: x← 0
3: for s = 0→ T do
4: Windowing: us ←Wrs
5: FFT: ûs ← FFT(us)
6: Accumulation: x← x + |ûs|2
7: end for
8: Detection: o← NPdet(x)
9: return o

10: end procedure

where dk is the kth column of DN , i.e., dk = [1 ejk∆ωN · · · ejk(N−1)∆ωN ]T , and ∆ωN =

2π/N .

Since [ûs]k is a linear combination of bi,s, [ns]j , i ∈ [K], j ∈ [N ], it is a circularly symmetry

Gaussian scalar with distribution

[ûs]k ∼ CN (0, σ2
uk). (33)

The hypothesis for each of N frequency bins are

• H′0: no significant frequency exists.

• H′1: there exists a significant frequency, with its SNR at least equals to SNRmin.

We assume the side-lobes of the significant frequencies are far below the noise level due

to windowing, then under H′1 and H′0, respectively, we have the following approximation

for σ2
uk

σ2
uk|H1 ≈ σ

2
bmα

′ + σ2
nβ
′,

σ2
uk|H0 ≈ σ

2
nβ
′.

(34)

where α′ = |dHk Wv(ωm)|2 and β′ = ‖w‖2.

The likelihood ratio test yields the sufficient statistics

lk =
1

T

∑
s∈[T ]

|[ûs]k|2
H′1
≷
H′0

γ. (35)

We study its asymptotic performance. Assume that T is moderately large, then after ap-

plying central limit theory, the test statistic are Normal distributions under both hypothesis,
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i.e.,

lk|H0 ∼ N (σ2
uk|H0,

σ4
uk|H0

T
),

lk|H1 ∼ N (σ2
uk|H1,

σ4
uk|H1

T
).

(36)

Finally, we can relate Pd and Pfa as

Pd = 1− Φ

(
β′Φ−1(1− Pfa)−

√
Tα′SNRmin

α′SNRmin + β′

)
, (37)

where Φ(·) is the cumulative distribution function (CDF) of standard normal distribution.

N Pseudo-code of robust MARS-SFT

The pseudo-code of robust MARS-SFT is shown in Algorithm 3. The input and output of

the algorithm are as follows.

Input: Input signal function r(n),n ∈ X ; window function w(n); data length for the two

dimensions, N0, N1; number of iterations T; threshold of detecting significant frequencies in

a slice ε; threshold for 1-sparsity detection γ; and parameters of nd-out-of-ns detection.

Output: the set S containing all the significant frequencies.

Note that the line length L and the set of slope parameters, A, can be precomputed for

efficiency. MARS-SFT can be viewed as a special case of the robust MARS-SFT, where the

input signal is given in (4.1); the window is the rectangular window; and ε = 0, γ = 0, nd =

ns = 1.

Algorithm 3 (Robust) MARS-SFT algorithm

1: procedure MARS-SFT(r, w,N0, N1, T, ε, γ, nd, ns)
2: L← LCM(N0,N1)
3: Compute the set of A defined in Lemma 5
4: S← ∅
5: for t ← 1 to T do
6: S′ ← SFT-INNER (r, w,N0, N1, S, L, ε, γ, nd, ns)
7: S← S ∪ S′
8: end for
9: return S

10: end procedure
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1: procedure SFT-Inner(r, w,N0, N1, Im, L, ε, γ, nd, ns)
2: S,S′ ← ∅
3: O(ω)← 0,ω ∈ X . Number of detection for a same location
4: for i ← 1 to ns do
5: Choose α uniformly random from A
6: Choose τ uniformly random from X
7: S0 ← SLICING (y, w,N0, N1, Im, L, ε,α, τ )
8: S1 ← SLICING (y, w,N0, N1, Im, L, ε,α, τ0)
9: S2 ← SLICING (y, w,N0, N1, Im, L, ε,α, τ1)

10: for (m, ŝ0) ∈ S0, (m, ŝ1) ∈ S1, (m, ŝ2) ∈ S2 do
11: if Var(|̂s0|, |̂s1|, |̂s2|) < γ then . 1-sparse
12: Decoding (a,ω) according to (4.12)
13: S′ ← S′ ∪ (a,ω), O(ω)← O(ω) + 1
14: end if
15: end for
16: end for
17: for (a,ω) ∈ S′ do
18: if O(ω) ≥ nd then
19: S← S ∪ (a,ω)
20: end if
21: end for
22: return S
23: end procedure

1: procedure SLICING(y, w,N0, N1, Im, L, ε,α, τ )
2: S← ∅
3: s(l)← y([α0l + τ0]N0 , [α1l + τ1]N1), l ∈ [L]
4: w(l)← w([α0l + τ0]N0 , [α1l + τ1]N1), l ∈ [L]
5: sw(l)← s(l) ∗ w(l), l ∈ [L]
6: sr(l)← CONSTRUCTION(Im,N0,N1,α, τ ,L)
7: d(l)← sw(l)− sr(l)
8: d̂(l)← 1

LDFT(d(l))

9: S← {(l, d̂(l)) : |d̂(l)| > ε}
10: return S
11: end procedure
1: procedure CONSTRUCTION(Im, N0, N1,α, τ , L)
2: ŝr(m)← 0,m ∈ [L]
3: for (a,ω) ∈ Im do
4: a′ ← aej2π(uτ0/N0+vτ1/N1)

5: m = [α0uL/N0 + α1vL/N1]L
6: ŝr(m) = ŝr(m) + a′

7: end for
8: sr(l)← L IDFT(ŝr(m)) . Inverse DFT
9: return sr(l), l ∈ [L]

10: end procedure
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