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ABSTRACT OF THE DISSERTATION

Multidimensional Radar Signal Processing Based on Sparse

Fourier Transforms

By SHAOGANG WANG

Dissertation Director:

Athina P. Petropulu and Vishal M. Patel

The conventional radar signal processing typically employs the Fast Fourier Transform

(FFT) to detect targets and identify their parameters. The sample and computational

complexity of the N -point FFT are O(N) and O(N logN), respectively. In modern Dig-

ital Beamforming (DBF) and Multiple-Input Multiple-Output (MIMO) radars, N is large

due to the increased dimensions of processing (i.e., range, Doppler and angle) and the need

for high radar resolution in each dimension. Hence, the FFT-based radar processing is

still challenging for DBF/MIMO radars of constrained computation resources, such as the

state-of-the-art automotive radars.

Sparse Fourier Transform (SFT) is a family of low-complexity algorithms that implement

Discrete Fourier Transform (DFT) for frequency-domain sparse signals. State-of-the-art SFT

algorithms achieve sample complexity of O(K) and computational complexity of O(K logK)

for a K-sparse signal. When K << N , the sample and computational savings of SFT are

significant as compared with that of the FFT. In radar applications, the number of radar

targets is usually much smaller than the number of resolution cells in the multidimensional

frequency domain, i.e., the radar signal is sparse in the frequency domain; thus, it is tempting

to replace the FFT with SFT to reduce sample and computational complexity of signal
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processing. However, applying SFT in radar signal processing is not trivial for the following

reasons:

� Most existing SFT algorithms are designed for one-dimensional, ideal signals, which

are noiseless and contain on-grid frequencies; those SFT algorithms are not practical

for radar applications as the radar signals are multidimensional, noisy, and contain

off-grid frequencies.

� The signal processing schemes of different radar architectures need to be properly

designed to support the application of SFT. When the radar signal is not naturally

sparse, proper preprocessing is required to sparsify the signal.

� The application of SFT in radar signal processing involves tradeoffs between sam-

ple/computational savings and radar detection performance. Such tradeoff needs to

be characterized and the design of various parameters of SFT algorithms need to be

investigated to achieve the optimal tradeoff.

This dissertation aims to formulate SFT-based frameworks for radar signal processing

and address the above issues by proposing two new SFT algorithms, and adapting them

to DBF and MIMO radars. The proposed SFT algorithms are the Robust Sparse Fourier

Transform (RSFT) and MultidimensionAl Random Slice based Sparse Fourier Transform

(MARS-SFT).

RSFT extends the basic SFT algorithm to multidimensional, noisy signals that contain

off-grid frequencies. By incorporating Neyman-Pearson detection, frequency detection in the

RSFT does not require knowledge of the exact sparsity of the signal and is robust to noise.

The computational savings versus detection performance tradeoff is investigated, and the

optimal threshold is found by solving a constrained optimization problem. The application

of RSFT in DBF and MIMO radars is investigated. A uniform processing scheme based

on RSFT is proposed for MIMO radar that employs fast-time coded and slow-time coded

pulse-compression waveform.

Although RSFT-based radar signal processing achieves significant computational sav-

ings as compared to FFT-based processing, it does not offer sample complexity savings.
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To reduce sample as well as computational complexity, we propose MARS-SFT, a sparse

Fourier transform for multidimensional, frequency-domain sparse signals, inspired by the

idea of the Fourier projection-slice theorem. MARS-SFT identifies frequencies by operating

on one-dimensional slices of the discrete-time domain data, taken along specially designed

lines; those lines are parametrized by slopes that are randomly generated from a set at run-

time. The DFTs of the data slices represent DFT projections onto the lines along which the

slices were taken. On designing the line lengths and slopes so that they allow for orthogonal

and uniform frequency projections, the multidimensional frequencies can be recovered from

their projections with low sample and computational complexity. To apply MARS-SFT to

real-world radar signal processing, which involves noisy signals and off-grid frequencies, we

propose the robust MARS-SFT, and demonstrate its performance in digital beamforming

automotive radar signal processing. In that context, the robust MARS-SFT is used to iden-

tify range, velocity and angular parameters of targets with low sample and computational

complexity.

Finally, we propose a new automotive radar architecture. Such radar achieves high res-

olution in range, range rate, azimuth and elevation angles of extended targets by leveraging

two orthogonally-placed digital beamforming linear arrays of a few channels. A deep learning

based beam matching method is developed for the proposed radar to address the beam as-

sociation challenges. In sparse scenarios, the proposed robust MARS-SFT can be employed

in the beamforming, and range-Doppler imaging procedures to reduce computation.
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Chapter 1

Introduction

In this chapter, we cover radar basics and provide the necessary background of the conven-

tional Digital Beamforming (DBF) and collocated Multi-Input Multi-Output (MIMO) radar

signal processing. Those state-of-the-art radar architectures enjoy better target parameter

identifiability compared to conventional phased array radars as they provide more degrees of

freedom in the angular domain. However, this is at the expense of more complex processing

due to a larger amount of data. We thus are interested in reducing the sample and compu-

tational complexity of such radar signal processing by employing Sparse Fourier Transform

(SFT) based approaches, aiming to enable the real-time processing with low-cost hardware.

SFT is a family of low-complexity algorithms for the implementation of the Discrete

Fourier Transform (DFT) of signals that are sparse in the frequency domain. The SFT

algorithms can be divided into one-dimensional (1-D) and multidimensional algorithms.

Here, we provide a high level review of SFT. Specifically, we review simple and practical

SFT [4] and the Sample-Optimal SFT (SO-SFT) [5] algorithms, which are examples of 1-D

and multidimensional SFT algorithms, respectively. The two SFT algorithms also form the

basis of our proposed SFT algorithms, i.e., Robust Sparse Fourier Transform (RSFT) and

MultidimensionAl Random Slice based Sparse Fourier Transform (MARS-SFT), respectively.

The notations used throughout the dissertation are listed in Section 1.8.

1.1 Radar Basics

Radars are electrical devices that leverage electromagnetic waves to detect targets and esti-

mate their parameters including range, range rate (radial velocity), and Direction of Arrival

(DOA). To this end, radars use transmit antennas to transmit modulated waveforms, which
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propagate through space, and are reflected back from targets. The reflected waves are cap-

tured by the receive antennas, from which the information about the targets are extracted

by the receiver chains and processing pipelines of radars.

To illustrate basic principles of range and range rate estimation, let us consider a monos-

tatic pulse radar configuration, where the transmit and receive antennas are collocated. The

transmit waveform is modeled in a complex form, expressed as [6]

x(t) , s(t)ej2�ft = a(t)ej�(t)ej2�ft; 0 � t � �; (1.1)

where f; � are the carrier frequency and the pulse width, respectively. The term s(t) =

a(t)ej�(t) represents the baseband signal, and a(t); �(t) are its amplitude and phase compo-

nents, respectively. The simplest form of a pulse waveform is the rectangular pulse where

s(t) = 1 within [0; � ] and 0, otherwise.

The simplest model of a target is a stationary point; the reflected signal from such target

is modeled as

r(t) , �x(t� t0) + n(t) = �s(t� t0)ej2�ft + n(t); (1.2)

where � is a complex-valued constant, representing the amplitude attenuation and phase

rotation of the transmit waveform due to antenna gains, target radar cross section (RCS),

and propagation losses. The term n(t) is the additive noise; in the simplest form, it is

modeled as the zero-mean white Gaussian noise. The time delay t0 is introduced by the

round-trip distance between the antennas and the target. Assume that the one-way distance

is R, and the waves travel at the speed of light of c, then, the target range can be calculated

as

R =
ct0
2
: (1.3)

Note that the phase rotation term of the carrier sinusoid introduced by t0, i.e., e�j2�ft0 is

absorbed by �.

If the target moves at a radial velocity of v with respect to the radar, then, such movement

introduces an additional time-delay of 2vt
c , and the received signal is expressed as

r(t) , �s(t� t0 �
2vt

c
)ej2�f(t� 2vt

c
) + n(t): (1.4)
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Such target movement yields a frequency shift of fd, called the Doppler frequency, and

fd ,
2v

�
=

2vf

c
; (1.5)

where � is the wavelength.

The effect of the time-delay to the baseband signal due to target movement can be

neglected under the narrow-band assumption, i.e., [7]

2v�

c
<<

1

B
; (1.6)

where �;B are the pulse width and bandwidth of the baseband signal of s(t), respectively.

Hence, (1.4) is simplified to

r(t) � �s(t� t0)ej2�f(t� 2vt
c

) + n(t) = �s(t� t0)ej2�(f�fd)t + n(t): (1.7)

The estimation of t0; fd and hence R; v is ideally achieved by a matched filtering process,

where the received signal is convolved with the conjugate of the transmit signal to maximize

the output Signal-to-Noise Ratio (SNR), mathematically

m(u; �) =

Z 1
�1

r(t)x�(t� u)e�j2��tdt

= ~�A(u� t0; � � fd) +

Z 1
�1

n(t)s�(t� u)e�j2�(f+�)tdt;

(1.8)

where ~� = aej2�fu, and

A(u; �) ,
Z 1
�1

s(t)s�(t� u)ej2��tdt: (1.9)

jA(u; �)j is the ambiguity function [8] of the baseband waveform s(t), which characterizes

the most important properties of the waveform. The peak location of jm(u; �)j corresponds

to the estimate of (t0; fd) in the u � � plane, which is the maximum likelihood estimation

under the assumption that the noise is Gaussian [7]. When multiple targets present, multiple

peaks can be detected from jm(u; �)j, with each peak location representing the time-delay

and Doppler frequency of each target, respectively.

In real-world radar signal processing, the above two-dimensional (2-D) matched filtering

process is usually implemented by two consecutive one-dimensional (1-D) matched filtering

process to reduce computation. To achieve this, a pulse radar transmitM consecutive pulses
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with a repetition interval of T . The time within each repetition interval is called fast-time,

while the time across repetition intervals is called slow-time. The matched filtering in the

range domain is computed at the fast-time for each repetition interval, while the matched

filtering in the Doppler domain is computed across the slow-time for M intervals at each

range bin. Subsequently, a detection process is applied jointly in the range and Doppler

domains.

1.2 FMCW Radar

While pulse radars are appealing in long range applications, Continuous Waveform (CW)

radars play an important role in near range applications for the following reasons [9, 10]

� Monostatic pulse radars suffer from the blind range problem since transmission and

reception cannot work simultaneously; CW radars do not have a blind range.

� CW radars are cost effective due to their simple structure and low power.

The CW radar without modulation cannot be used for ranging as its baseband signal is

a constant. To enable the ranging capability, various waveforms can be used, among which,

(linear) Frequency Modulation Continuous Waveform (FMCW), also known as the chirp, is

the most widely used one. As will be explained in the following, FMCW achieves high range

resolution with low cost.

The transmit FMCW with unit amplitude is modeled as [11]

x(t) , ej2�(ft+ �t2

2
); 0 � t � T; (1.10)

where � = B=T is the chirp rate, and B; T are bandwidth and modulation period, respec-

tively. It is clear that the frequency of x(t) is changing linearly along time.

The noiseless received signal from a stationary point target is modeled as

r(t) , �ej2�(f(t�t0)+
�(t�t0)2

2
); (1.11)

where � 2 C represents the attenuation factor. (1.11) is a t0-delayed version of the transmit

signal as illustrated in Fig. 1.1. By absorbing the constant phase terms into the amplitude,
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(1.11) is simplified to

r(t) = ~�ej2�(ft+ �t2

2
�t0�t); (1.12)

where ~� = �ej2�(
�t20

2
�ft0).

t

f

B

T MT

Transmit

Receive

t0

fr

Figure 1.1: FMCW waveform. The signal frequency changes linearly in time, with a repeti-
tion interval T . A coherent processing interval (CPI) contains M repetitions. The received
signal is a delayed version of the transmitted signal.

To demodulate the chirp, we multiply the received signal with the conjugate of the

transmit signal, and the demodulated signal is expressed as

b(t) , r(t)x�(t) = ~�ej2�t0�t = ~�ej2�frt: (1.13)

This is a sinusoid with frequency fr = �t0; such frequency is called the beat frequency [11],

which can be trivially evaluated by the Fourier transform (FT), subsequently, the target

range can be deduced from the beat frequency by

R =
cfr
2�
: (1.14)

The above demodulation-FT process is the matched filtering of FMCW in the range

domain. The demodulation process is implemented in the Radio Frequency (RF) front-

end by mixing the received signal with the coupled transmit signal followed by a low-pass

filter, while the FT is implemented digitally after sampling the demodulated signal. In

near range applications, the maximum time-delay, tmax, introduced by the maximum target
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range, Rmax, is much shorter than the modulation period, i.e., tmax << T . As a result,

the bandwidth of the beat frequency, Bb = �tmax, is significantly smaller than the signal

bandwidth B. Hence, low speed Analog-to-Digital Converters (ADCs) can be used to sample

the demodulated signal, and the beat frequencies can be computed by the Fast Fourier

Transform (FFT) with low-cost Digital Signal Processors (DSPs) or Field Programmable

Gate Arrays (FPGAs).

The range resolution of FMCW is determined by the signal bandwidth B. To understand

this, let us rewrite (1.14) as follows

�R =
c�fr

2�
; (1.15)

where �R;�fr denote the range resolution and beat frequency resolution, respectively.

Since beat frequencies are evaluated over the modulation period T , we have

�fr =
1

T
; (1.16)

therefore

�R =
c

2�T
=

c

2B
: (1.17)

Hence, conventional FMCW radars could achieve high range resolution with low-cost hard-

ware. For instance, with B = 1GHz, the range resolution equals 0:15m. A 50MHz ADC

is sufficient for T = 100us and Rmax = 300m, since Bb = 40MHz. This makes FMCW

radars be popular in automotive applications, in which the FMCW radar is adopted as one

of primary sensors in automotive driver assistance systems (ADAS) and self-driving systems.

To measure the radial velocity of a moving target, similar to pulse radars, FMCW radars

transmit M consecutive chirps as illustrated in Fig. 1.1; the noiseless demodulated signal

from the m-th, m 2 [M ], pulse is expressed as [11]

b(t;m) , ~aej2�(fr+fd)(t�mT ); (1.18)

from which the Doppler frequency, fd, is evaluated across the slow time for each range bin

via FT. In fact, the ranges and Doppler frequencies of targets are usually evaluated via a

2-D FFT. Notably, when Doppler presents, the range and Doppler of the FMCW radar is

coupled as shown in (1.18). In automotive radar scenarios, such range-Doppler coupling can
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be usually neglected since the Doppler shift is usually smaller than the resolution of the beat

frequency, i.e., fd < �fr.

1.3 Digital Beamforming Radar

In the above sections, we have discussed range and range rate estimation in radars. Another

important target parameter estimation problem is the DOA estimation. The DOA of targets

can be measured at azimuth and (or) elevation depending on the configuration of antennas.

Conceptually, the DOA estimation is to find the bearing direction of the beam, where the

output yields the maximum SNR. Modern radar systems use a set of arrays to transmit

and receive waveform, which allows the radar form beam patterns that point to different

directions without physically steering the antennas. This can be achieved by the phased

array and DBF approaches [12, 13]. The former electrically steers different beams in a time-

duplex manner by changing the phases of each antenna during transmitting and receiving,

while the latter simultaneously forms multiple reception beams in the digital signal processor

(DSP). The advantage of the latter is that the DBF radar could see targets everywhere within

its field-of-view (FOV) at anytime without (physical) beam steering [14].

Let us consider a typical automotive DBF radar configuration illustrated in Fig. 1.2 [11],

where a broad transmit beam pattern is achieved by an omni-directional transmit antenna,

and multiple narrow beams are formed simultaneously by a Uniform Linear Array (ULA)

of N antenna elements. The geometry of the incident signal and the ULA is illustrated in

Fig. 1.3, where the antenna element-wise spacing is d. Assume that a stationary target is

located in the far field and its distance to the nearest receive antenna is R, and the round

trip delay is t0 = 2R
c , then, the noise-free receive signal at the i-th, i 2 [N ] array element

can be written as

ri(t) , �s(t� t0 �
id sin(�)

c
)ej2�f(t� id sin(�)

c
): (1.19)

Under the assumption that the maximum time-delay between the two most distant an-

tennas is much smaller than the reciprocal of the bandwidth of s(t), i.e., [15]

(N � 1)d

c
<<

1

B
; (1.20)
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the received signal from the i-th array element can be simplified to

ri(t) � �s(t� t0)ej2�(ft�i�); (1.21)

where � is the wavelength. The term � is known as the spatial frequency [7], defined as

� ,
d sin(�)

�
: (1.22)

For any time snapshot, the samples from all the antennas can be viewed as samples of

a complex sinusoid with the (spatial) frequency of �. Hence, such spatial frequency can be

evaluated by DFT, subsequently, the target DOA is calculated as

� = arcsin

�
��

d

�
: (1.23)

Note that the largest unambiguous range of � is [�90�; 90�], which corresponds to the half-

wavelength element-wise spacing, i.e., d = �
2 .

Rx BeamTx Beam

Tx

AD AD AD

DSP
DDS

Figure 1.2: DBF radar system architecture. A broad beam pattern is formed with an
omnidirectional transmit antenna, while multiple narrow beams are formed simultaneously
by the receiving array. Each receiving channel is mixed with a coupled signal from the
transmitter to demodulate (de-chirp) the FMCW signal, before AD conversion. The digitized
received signal is processed by a Digital Signal Processor (DSP), while the transmit waveform
is generated by a Direct Digital Synthesizer (DDS).
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Figure 1.3: DOA estimation with a ULA.

Now, let us assume that the FMCW depicted in Fig. 1.1 is employed in the DBF radar,

for the i-th, i 2 [N ] antenna element and them-th,m 2 [M ] chirp, the noiseless demodulated

signal of (1.18) is extended to

b(t;m; i) , ~aej2�((fr+fd)(t�mT )+i�): (1.24)

This can be viewed as a 3-dimensional (3-D) complex sinusoid, whose frequencies correspond

to the range (coupled with the Doppler), range rate, and DOA of the target. After AD

conversion of each receiving channel, we can use the processing scheme shown in Fig. 1.4

to detect the targets as well as estimate their range, velocity and DOA. More specifically,

grid-based versions of fr; fd; � can be calculated by applying a 3-D FFT on the windowed

data cube [11], followed by a detection procedure.

1.4 MIMO Radar

The DBF radar configuration in Fig. 1.2 with one transmit antenna and multiple receive

antennas can be viewed as a Single-Input-Multi-Output (SIMO) radar. By increasing the

degree of freedom of the transmit channels, such SIMO radar becomes a collocated MIMO

radar [14, 16] as illustrated in Fig. 1.5. For collocated MIMO radars, the transmit and receive

antennas are closely located and thus the target RCS experienced by different transmit and

receive pairs could be viewed as identical; this allows collocated MIMO radars to exploit

phase differences in target returns induced by transmit and receive antennas, i.e., employ
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Figure 1.4: Conventional FFT-based processing scheme for the DBF FMCW radar.

coherent processing to effectively increase the array aperture and achieve high resolution as

well as high SNR.

Another kind of MIMO radars are distributed MIMO radars [17, 18, 19], where the

transmit and receive antennas are widely separated from each other compared with their

distance to the targets. In such scenario, the transmit antennas emit independent waveforms,

which propagate through independent paths from transmitters to receivers via the targets.

As a result, distributed MIMO radars enjoy spatial diversity to reduce the RCS scintillation

of targets.

In the following, we illustrate a basic collocated MIMO radar. Let us consider the MIMO

radar configuration of Fig. 1.5, where the transmission and reception are accomplished by

two ULAs ofMt andMr antenna elements, respectively. The element-wise spacing of the two

arrays are assumed to be dt; dr, respectively. During transmission, a set of orthogonal Code

Division Multiple Access (CDMA) waveforms are transmitted by each transmit antenna.

The L-coded discrete baseband signal transmitted by the uth; u 2 [Mt] antenna is expressed

as

su(t) ,
1

Tb

L�1X
l=0

sulRect[t� (l � 1)Tb]; 0 � t � T; (1.25)

where Rect() is the rectangular window of width Tb, and Tb; T represent the sub-pulse and

pulse duration, respectively; sul is the l-th, l 2 [L] code, and the code vector transmitted
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Rx BeamTx Beam

AD AD AD

DSP

Rx Rx Rx

DA DA DA

DDS

Tx Tx Tx

Figure 1.5: Collocated MIMO Radar System with ULA. Each transmit antenna transmits
an orthogonal waveform, which is generated by a DDS. The orthogonality of the waveforms
results into an omni-directional transmit beam pattern, while multiple narrow beams are
formed simultaneously by beamforming in the DSP.

from the u-th antenna is denoted as

su , [su0; � � � ; su(L�1)]
T : (1.26)

Let us assume that the code is unimodal [20], i.e., jsulj = 1; u 2 [Mt]; i 2 [L]. Ideally,

code vectors transmitted from different antennas are mutually orthogonal, i.e., 1
LsTu sv = 1

if u = v, otherwise 0, hence
1

L

Z T

t=0
su(t)sv(t)dt = �uv: (1.27)

From the i-th, i 2 [Mr] receive antenna, the noiseless received baseband signal from a

stationary point target is a t0-delayed version of the superposition of the Mt transmitted

signals, modeled as

ri(t) , �

Mt�1X
u=0

su(t� t0)ej2�(u�t+i�r); (1.28)

where � 2 C absorbs the constants, and

�t ,
dt sin(�)

�
;

�r ,
dr sin(�)

�
;

(1.29)
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are the spatial frequencies introduced during transmission and reception, respectively, with

�; � representing the target DOA and wavelength, respectively.

Owning to the orthogonality of waveforms, each transmit waveform of (1.28) can be

separated through matched filtering with a filter bank of Mt filters, i.e., correlating the

received signal with su(t); u 2 [Mt]. For the snapshot corresponding to t0, the matched

output of the receive array is expressed as

r = ~avr(�r)
O

vt(�t); (1.30)

where ~a is a constant, and

vr(�r) , [0; e�j2��r ; � � � ; e�j2��r(Mr�1)]T ;

vt(�t) , [0; e�j2��t ; � � � ; e�j2��t(Mt�1)]T ;

(1.31)

are the receive and transmit steering vectors, respectively.

When dr = Mtdt,

r = ~a[0; e�j2��t ; � � � ; e�j2��t(MtMr�1)]T ; (1.32)

which can be viewed as the response from a virtual array of MtMr antennas with element-

wise spacing of dt; this achieves savings ofMtMr�Mr�Mr antennas and subsequent receive

chains as compared to a conventional ULA of the same resolution. Fig. 1.6 illustrates a

virtual array of 6 elements is formed by 3 transimit antennas and 2 receive antennas.

The output of the matched filter bank can be also arranged in a matrix format as

R = ~a

266666664

0; e�j2��t ; � � � ; e�j2��t(Mt�1)

e�j2��r ; e�j2�(�r+�t); � � � ; e�j2�(�r+�t(Mt�1))

...
...

. . .
...

e�j2��r(Mr�1); e�j2�(�r(Mr�1)+�t); � � � ; e�j2�(�r(Mr�1)+�t(Mt�1))

377777775
; (1.33)

which is a 2-D complex sinusoid, whose discrete (spatial) frequency, (�r; �t), can be evaluated

by a 2-D DFT. This is the 2-D transmit and receive beamforming. Unlike phased array

radars that form transimit beams at transmission, collocated MIMO radars are able to form

transmit beams at reception [14]. Compared to DBF radars with the same receive aperture

that only apply receive beamforming, the two-way beamforming of MIMO radars increases

SNR and achieves a narrower two-way beam pattern [14].
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Figure 1.6: Virtual array. M t = 3 ; M r = 2 ; dr = M t dt .

1.5 Sparse Fourier Transform

As discussed in the preceding sections, conventional radar signal processing methods involve

multidimensional DFT, which are typically implemented by the FFT. The sample complexity

of the FFT is O(N ), whereN is the number of samples in the multidimensional sample space.

For N equal to a power of2, the computational complexity of the FFT is O(N logN ).

Recently, by leveraging the sparsity of signals in the frequency domain, a series of SFT

algorithms have been proposed [4, 5, 21, 22, 23, 24, 3, 25, 26, 27, 28, 29, 30, 31, 32]; this

is a family of low-complexity DFT algorithms. The state-of-the-art SFT algorithms [3, 32]

achieve sample complexity ofO(K ) and computational complexity of O(K logK ) for exactly

K -sparse (in the frequency domain) signals. WhenK << N , those SFT algorithms achieve

signi�cant savings both in sample and computation compared to the FFT. SFT algorithms

have been investigated for several applications including a fast global positioning system

receiver, wide-band spectrum sensing, and bio-medical signal processing [33, 34, 2, 1].

In SFT algorithms, the reduction of sample and computational complexity is achieved

by reducing data samples. This is usually implemented via a well designed subsampling

procedure, which leverages the resulting frequency domain aliasing. We demonstrate such

technique in the following trivial example, where the signal is1-sparse in the frequency
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domain, i.e., only contains a single frequency,f 2 [N ]. Such signal is expressed as

x(n) , aej 2�
N fn ; n = 0 ; 1; � � � ; N � 1: (1.34)

The N -point DFT of (1.34) yields

x̂N (k) ,
N � 1X

n=0

x(n)e� j 2�
N nk ; k = 0 ; 1; � � � ; N � 1: (1.35)

It is clear that x̂(k)=N equals toa when k = f , and 0, otherwise. An example ofx(n); x̂(k)

with N = 15; f = 11; a = 1 is shown in Figs. 1.7 (a) and (b), respectively.

Let us assume thatB 2 N divides N , and L = N=B . The L-subsampled version of (1.34)

is expressed as

xB (n) , x(nL ) = aej 2�
B fn ; n = 0 ; 1; � � � ; B � 1: (1.36)

The B -point DFT of such subsampled signal becomes

x̂B (k) ,
B � 1X

n=0

xB (n)e� j 2�
B nk =

B � 1X

n=0

ae� j 2�
B n(k� f ) ; k = 0 ; 1; � � � ; B � 1: (1.37)

We can see thatx̂B (k)=B = a when k � f mod B , and 0, otherwise. In another words, the

N frequency buckets ofx̂N (k) is aliased toB buckets of x̂B (k), such that

x̂B (k) =
B
N

L � 1X

l=0

x̂N (lB + k); k = 0 ; 1; � � � ; B � 1: (1.38)

Now, let us assume special cases whenN can be factorized into a series of relative

prime (co-prime) numbers, e.g.,N = 15 = 3 � 5. We then compute x̂3(k); k = 0 ; 1; 2 and

x̂5(k); k = 0 ; 1; � � � ; 4. Next, for somek1 2 [3]; k2 2 [5], we obtain

x̂3(k1)=3 = x̂5(k2)=5 = a: (1.39)

Since

k1 � f mod 3;

k2 � f mod 5;
(1.40)

one can uniquely determinef due to the Chinese Reminder Theorem, which is stated as

follows [22, 35].
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Theorem 1. (Chinese Reminder Theorem): Any integer x is uniquely speci�ed mod-

ulo N by its remainders modulom relatively prime integers p0; p1; � � � ; pm� 1 as long as
Q

i 2 [m] pi � N .

To complete the example, let us assume thatk1 = 2 ; k2 = 1 , then, there exists unique

u; v 2 [N ], such that

3u + 2 = 5 v + 1 = f: (1.41)

This allows us to solvef = 11. In this case the frequency and its DFT coe�cient is calculated

using 3 + 5 = 8 samples and via two short DFTs. Thus, compared to the conventional15-

point DFT, savings in samples and computation are achieved. Such Chinese Remainder

Theorem based time domain subsampling and the resulting frequecy domain aliasing is

illustrated in Fig. 1.7.

The above 1-sparse case is the simplest scenario for SFT. In a generalK -sparse case,

multiple original frequencies may land into a same frequency bucket of short DFTs due to

aliasing. This is refereed to asfrequency collision; this prevents us to associate the same

frequencies from di�erent copies of short DFTs, which results into failures of frequency

recovery. One commonly used technique in SFT algorithms to detect frequency collision

and solve the frequency from a non-collision bucket is calledphase encodingor OFDM-

trick [22, 3]. To illustrate this, let us consider a2-sparse case, i.e., the signal contains two

frequenciesf 0; f 1 2 [N ], and

x(n) , aej 2�
N f 0n + bej 2�

N f 1n ; n = 0 ; 1; � � � ; N � 1: (1.42)

Let us extract two L-subsampled versions of (1.42) with the same subsampling rate of

L but di�erent o�sets, i.e., 0 and 1. The two sabsampled version forn = 0 ; 1; � � � ; B � 1, is

expressed as

xB; 0(n) , x(nL );

xB; 1(n) , x(nL + 1) :
(1.43)
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(a) (b)

(c) (d)

(e) (f)

Figure 1.7: Time domain subsampling and frequency domain aliasing. (a) The real part of
a time domain single tone, i.e., (1.34) withN = 15; f = 11; a = 1 . (b) 15-point DFT of
(1.34). (c) 5-subsampled version of (1.34), i.e.,x3(n); n = 0 ; 1; 2. (d) x̂3(k); k = 0 ; 1; 2. (e)
3-subsampled version of (1.34), i.e.,x5(n); n = 0 ; 1; � � � ; 4. (f) x̂5(k); k = 0 ; 1; � � � ; 4.
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Then, for k = 0 ; 1; � � � ; B � 1, their B -point DFTs are computed as

x̂B; 0(k) ,
B � 1X

n=0

xB; 0(n)e� j 2�
B nk = a

B � 1X

n=0

e� j 2�
B n(k� f 0 ) + b

B � 1X

n=0

e� j 2�
B n(k� f 1 ) ;

x̂B; 1(k) ,
B � 1X

n=0

xB; 1(n)e� j 2�
B nk = aej 2�

B f 0

B � 1X

n=0

ae� j 2�
B n(k� f 0 ) + bej 2�

B f 1

B � 1X

n=0

e� j 2�
B n(k� f 1 ) ;

(1.44)

respectively. Note that additional phase shift terms are introduced to each frequency in

x̂B; 1(k) due to the shift (by 1) in time-domain subsampling.

Next, let us investigate each bucket of x̂B; 0(k) and x̂B; 1(k). There are three cases:

� Case1: There is no frequency landed in the bucket, as a result,jx̂B; 0(k)j = jx̂B; 1(k)j =

0.

� Case 2: Either f 0 or f 1 lands in the bucket, i.e., either k � f 0 mod B or k �

f 1 mod B . Without loss of generality, let us assume that the former is true, then,

jx̂B; 0(k)j = jx̂B; 1(k)j = a. Moreover

f 0 =
B
2�

� (x̂B; 1(k)=x̂B; 0(k)) ; (1.45)

where � (x) is the phase ofx.

� Case3: Both f 0 and f 1 land in the same bucket, i.e., frequency collision. This can be

detected by jx̂B; 0(k)j 6= jx̂B; 1(k)j.

Therefore, the OFDM-trick provides a low-complexity (O(1)) operation to detect fre-

quency collision from short DFTs, while solving original frequencies from1-sparse bins. The

collided frequencies in one short DFT maybe separated from another short DFT applied on

another copy of subsampled signal using a di�erent sabsampling rate, which introduces a

di�erent aliasing pattern in the frequency domain.

Generally, SFT admits a subsampling-localization-estimationprocedure. First, the orig-

inal signal is subsampled, then, the signi�cant (dominant) frequencies contained in the

original signal are localized and the corresponding DFT coe�cients are estimated with low-

complexity operations. Such subsampling-localization-estimation procedure is carried out
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in an iterative manner in several SFT algorithms [21, 22, 3, 32], while for other SFT algo-

rithms [4, 2, 1], the localization and estimation are implemented inone-shotafter gathering

su�cient copies of subsampled signals corresponding to di�erent subsampling parameters,

e.g., subsample rate, o�set and number of samples; this approach makes the one-shot based

SFT algorithms less sensitive to noise as compared to the iterative method, since the accu-

mulation of many copies of the subsampled signal e�ectively reduces the noise [4]. However,

iterative-based SFT algorithms usually exhibit lower complexity as compared to one-shot

based SFT algorithms, since in the former, in each iteration, the contribution of the re-

covered frequencies are removed from the signal, which yields a sparser signal (an easier

problem) in the next iteration. High level illustrations of one-short and iterative-based SFT

are shown in Fig. 1.8.

(a) (b)

Figure 1.8: SFT high level illustration. (a) One-shot based SFT. (b) Iterative-based SFT.

Most of existing SFT algorithms are designed for1-D signals; unlike the FFT, the exten-

sion of 1-D SFT to multidimensional SFT is usually not straightforward; this is because the

SFT algorithms are not separable in each dimension due to the fact that operations such as

detection of signi�cant frequencies in the subsampled signal within an SFT algorithm must

be considered jointly for all the dimensions [36]. In the following, we review simple and

practical SFT [4] and SO-SFT [3], which belong to1-D and multidimensional SFT, respec-

tively. Simple and practical SFT is based on the one-shot approach, while the SO-SFT is

an iterative method. Those two SFT algorithms form the foundation of our proposed RSFT

[36] and MARS-SFT [37] algorithms, respectively.
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1.5.1 Simple and Practical SFT

As opposed to the SFT introduced in the above section that leverages the time-domain

subsampling to reduce sample and computational complexity, simple and practical SFT

leverages the frequency domain subsampling achieved by the time-domain aliasing of data.

Before outlining such algorithm, we provide some key de�nitions and properties for signal

x 2 CN .

De�nition 1. (Permutation): Let � 2 [N ], with � being invertible, i.e., there exists

� � 1 2 [N ], such that

[�� � 1]N = 1 : (1.46)

Then, a permutation of x is de�ned as

[P �;b x]i = [ x][�i + b]N ; (1.47)

where b 2 [N ]; P �;b 2 f 0; 1gN � N is the permutation matrix, which reorders entries ofx

modularly.

The permutation has the following property.

Property 1. A permutation of the data in time domain results in a modular dilation in the

frequency domain introduced by� , and a phase term introduced byb. Let x̂ be theN -point

DFT of x, then

[\P �;b x][�i ]N = [x̂ ]i e� jb� ! N ; (1.48)

where � ! N , 2�=N .

Note that since the phase rotation introduced bybdoes not contributes to the localization

of frequencies in our algorithm, in the following, we will assume thatb = 0 , and simplify the

notation of the permutation matrix as P � .

De�nition 2. (Time-domain aliasing): Let y 2 CB , with N multiple of B . For L =

N=B , a time-domain aliased version ofx is de�ned as

[y ]i =
L � 1X

j = 0

[x ]i+ Bj ; i = 0; 1; � � � ; B � 1: (1.49)
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Property 2. Aliasing in the time domain results in down-sampling in the frequency domain.

If ŷ is the B -point DFT of y , then

[ŷ ]i = [x̂ ]iL : (1.50)

De�nition 3. (Mapping): Let i; � 2 [N ], where � satis�es (1.46). We de�ne the mapping

M (i; � ) 2 [B ] such that

M (i; � ) � [b
B
N

[i� ]N e]B : (1.51)

De�nition 4. (Reverse-mapping): Let � � 1 2 [N ], � � 1 satis�es (1.46), and j 2 [B ].

De�ne R(j; � � 1) a reverse-mapping such that

R(j; � � 1) � f [� � 1u]N j u 2 Sg; (1.52)

where

S , f v 2 [N ] j j
N
B

� v < (j + 1)
N
B

]g: (1.53)

At a high level, simple and practical SFT runs two loops, namely theLocalization loop

and the Estimation loop. The former �nds the indices of the K most signi�cant frequencies

from the input signal, while the latter estimates the corresponding Fourier coe�cients. Here,

we emphasize on Localization more than Estimation, since the former is more relevant to

the radar application that we consider; the Localization step provides frequency locations,

which in the radar case are directly related to target parameters.

In the Localization loop, as illustrated in Fig. 1.10, a permutation procedure reorders

the input data x in the time domain, causing the frequencies to also reorder. The permuta-

tion causes closely spaced frequencies in̂x to appear in well separated locations with high

probability. Then, a frequency-domain �at-window (�at-window hereafter) [4], as illustrated

in Fig. 1.9, is applied on the permuted signal. The �at-window is a sinc-like function in

the time domain; the multiplication of the time-domain signal to such window is equiva-

lent to convolving the signal spectrum to a boxcar in the frequency domain; this extends

a single frequency into a (nearly) boxcar of widthL = N=B in the frequency domain, for

a reason that will become apparent in the following. The �at-windowed data are aliased,

as in De�nition 2. The frequency domain equivalent of this aliasing is undersampling byL
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(see Property 2). The �at-window used at the previous step ensures that no peaks from the

signi�cant frequencies are lost due to the e�ective down-sampling in the frequency domain.

After this stage, an FFT of length B is employed.

(a) (b)

Figure 1.9: A frequency domain �at window. N = 1024; B = 16. (a) Time domain. (b)
Frequency domain. Shifted byN=2.

The permutation and the aliasing procedure e�ectively map the discrete signal frequen-

cies from the setSN , f 0; � ! N ; � � � ; (N � 1)� ! N g to SB , f 0; 2�
B ; � � � ; (B � 1)2�

B g, where

the �rst stage detection procedure �nds the signi�cant frequencies' peaks, and subsequently

their locations are reverse-mapped back intoSN to restore the frequency resolution. How-

ever, the reverse-mapping yields not only the true locations of the signi�cant frequencies,

but also L ambiguous locations for each frequency. To remove the ambiguity, multiple iter-

ations of Location with randomized permutation are performed. Finally, the second stage

detection procedure locates theK most signi�cant frequencies from the accumulated data

after running T iterations.

Simple and practical SFT is designed for1-D signal, which is not applicable for multidi-

mensional signal processing. Moreover, simple and practical SFT assumes that we know the

exact sparsity level,K , and thoseK frequenceis are all on the grid; those assumptions are

not practical in real-world radar signal processing. We address those problems in Chapter

2, where we propose the RSFT.
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Figure 1.10: Illustration of simple and practical SFT. The left part of the �gure shows the
main steps of the localization loop of the SFT algorithm, while the right part shows the
signal representations in the discrete frequency domain due to each step.



23

1.5.2 SO-SFT

Multidimensional SFT algorithms are investigated in [3, 1, 2]. The SO-SFT [3] follows the

subsampling-localization-estimation iteration, while the SFT algorithms of [1, 2] are one-

shot approaches. The idea behind those SFT algorithms is to reduce a multidimensional

DFT into a series of 1-D DFTs along slices extracted from the input multidimensional data.

SO-SFT achieves the sample and computational complexity lower bounds of all known SFT

algorithms, i.e., O(K ) and O(K logK ), respectively, by reducing a2-D DFT into 1-D DFTs

along a few columns and rows of a data matrix.

Let us consider the following2-D signal model, which is a superposition ofK 2-D complex

sinusoids, i.e.,

x(n) ,
X

(a;! )2 S

aej n T ! ; n , [n0; n1]T 2 X , [N0] � [N1]; (1.54)

whereN0; N1 denote the sample length of the two dimensions, respectively.(a; ! ) represents

a 2-D frequency whose amplitude isa with a 2 C; a 6= 0 and frequency is! , [! 0; ! 1]T ,

[2�m 0=N0; 2�m 1=N1]T with [m0; m1]T 2 X . The set S with jSj = K includes all the 2-D

frequencies. We assume that the signal is sparse in the frequency domain, i.e.,K << N ,

N0N1. We are interested in the recovery of all the frequencies from samples ofx(n).

In SO-SFT, in order to recoverS, 1-D DFTs are applied on a subset of columns and rows

of the data matrix. The N0-point DFT of the i -th, i 2 [N1] column of the data equals

ĉi (m) ,
1

N0

N0 � 1X

l=0

x(l; i )e� j 2�
N 0

ml

=
1

N0

X

(a;! )2 S

N0 � 1X

l=0

aej 2�
N 1

m1 i ej 2�
N 0

l (m0 � m)

=
X

(a;! )2 S

ae� j 2�
N 1

m1 i � (m � m0); m = 0 ; 1; � � � ; N0 � 1;

! = [2 �m 0=N0; 2�m 1=N1]T ; [m0; m1]T 2 X ;

(1.55)

where � (�) is the unit impulse function. Hence ĉi (m0) can be viewed as the summation of

modulated amplitudes of 2-D sinusoids whose row frequency indices equal tom0. Hence

ĉi (m); m = 0 ; 1; � � � N1 � 1 is a projection of the 2-D spectrum, x̂(m0; m1); [m0; m1]T 2 X ,



24

onto the column. Similarly, the N1-point DFT applied on a row of (1.54) is a projection of

the 2-D spectrum on the row.

Since the signal is sparse in the frequency domain, ifjĉi (m)j 6= 0 , with high probability,

there will be only one signi�cant frequency projected to the frequency bin ofm; in other

words, the frequency bin is 1̀-sparse', andĉi (m) is reduced toĉi (m) = ĉi (m0) = aej 2�
N 1

m1 i .

In such case,a = ĉ0(m0), and the other frequency component,m1, can be solved by the

OFDM-trick, i.e., m1 = � (ĉ1(m0)=ĉ0(m0)) N1
2� .

The contribution of the recovered sinusoids is removed from the signal, so that the

following processing can be applied on a sparser signal, which is easier to solve in the

subsequent processing.

A frequency bin that is not 1-sparse based on column processing might be1-sparse based

on row processing. Because the removal of sinusoids in the column (row) processing may

cause bins in the row (column) processing to be1-sparse, SO-SFT runs iteratively and

alternatively between columns and rows and the algorithm stops after a �nite number of

iterations. Such iterative recovery of frequencies is illustrated in Fig. 1.11.

SO-SFT succeeds with high probability only when the frequencies are very sparse, and

requires that either a row or a column of the DFT contains a1-sparse bin. However, in many

applications, the signal frequency exhibits a block sparsity pattern [38], i.e., the signi�cant

frequencies are clustered. In those cases, even when the signal is very sparse,1-sparse bin

may not exist; this is referred to as a `deadlock' case [3]. As shown in Fig. 1.12, neither

column nor row DFT yields a 1-sparse bin in the two cases, hence the frequencies, although

are su�ciently sparse, cannot be recovered. Such problem is addressed in Chapter 4, where

we propose the MARS-SFT. By projecting multidimensional frequencies to lines of random

slopes and o�sets extracted from the data cube, MARS-SFT could resolve the deadlocks

encountered by the SO-SFT. SO-SFT and MARS-SFT deals with ideal signals, i.e., noiseless

signals containing only on-grid frequencies. In Chapter 5, we propose the robust MARS-

SFT, which addresses noisy signals with o�-grid frequencies arising from real-world radar

signal processing applications.
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Figure 1.11: Illustration of SO-SFT [3]. Frequencies are recovered iteratively by alternatively
applying DFT along rows and columns of the data matrix.

Figure 1.12: Deadlock situations for SO-SFT
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1.6 Contribution of the Dissertation

1.6.1 SFT Algorithms that Address Real-World Multidimensional Signals

We propose multidimensional SFT algorithms that address real-world signals, which lay a

foundation for SFT-based radar signal processing. The proposed algorithms are summarized

in the following:

� In Chapter 2, we propose the RSFT to address multidimensional signals that contain

noise and o�-grid frequencies. The Neyman-Pearon (NP) detection is introduced in the

RSFT to achieve the optimal detection while requires less computation as compared

to the FFT-based approach. The tradeo� study in the context of the RSFT provides

an extra degree of freedom in system design to trade o� the computation with the

detection performance.

� In Chapter 4, we propose MARS-SFT. MARS-SFT iteratively recovers multidimen-

sional sparse frequencies by randomly projecting those frequencies into a1-D frequency

domain; such projection and recovery procedure has low sample and computation

complexity. The abundance of degrees of freedom in random projection enables the

MARS-SFT to e�ciently deal with less sparse scenario, and even cases where frequen-

cies are clustered. MARS-SFT achieves the sample and computation complexity lower

bounds of SFT algorithms, i.e.,O(K ) and O(K logK ), respectively forK -sparse ideal

signals (noiseless signals that only contain on-grid frequencies).

� Based on MARS-SFT, in Chapter 5, we propose the robust MARS-SFT, which handles

real-world noisy signals that contain o�-grid frequencies, while enjoys low-complexity

property of MARS-SFT.

Those works have been published in

� Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. �The robust sparse Fourier

transform (RSFT) and its application in radar signal processing.� IEEE Transactions

on Aerospace and Electronic Systems 53.6 (2017): 2735-2755.
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� Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. �Multidimensional Sparse

Fourier Transform Based on the Fourier Projection-Slice Theorem.� IEEE Transac-

tions on Signal Processing 67.1 (2019): 54-69.

� Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. �A practical high-dimensional

Sparse Fourier Transform.� 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2017.

� Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. �FPS-SFT: A multidimen-

sional sparse Fourier transform based on the Fourier projection-slice theorem.� 2018

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2018.

1.6.2 SFT-based Radar Signal Processing Frameworks for DBF and MIMO

Radars

Based on the proposed RSFT and robust MARS-SFT, in Chapters 3 and 5, we formu-

late SFT-based signal processing frameworks for modern digital beamforming (DBF) and

MIMO radars. Especially, we consider automotive radar and near range applications for the

following reasons:

� The low-complexity SFT-based radar processing is mostly bene�cial to radar appli-

cations of restricted hardware; automotive radars fall into such category due to their

small size and low cost.

� Compared to FFT-based processing, SFT-based processing involves tradeo� between

complexity and SNR. Generally, the more savings the SFT-based processing achieves,

the higher SNR the system requires. Automotive radars work at near range, which is

much easier to gain high SNR as compared to long-range radars; this allows SFT-based

processing to achieve high savings.

This work has been published in

� Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. �RSFT: A realistic high

dimensional sparse Fourier transform and its application in radar signal processing.�
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MILCOM 2016-2016 IEEE Military Communications Conference. IEEE, 2016.

� Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. �MIMO-RSFT radar: A

reduced complexity MIMO radar based on the Sparse Fourier Transform.� 2017 IEEE

Radar Conference (RadarConf). IEEE, 2017.

� Wang, Shaogang, Vishal M. Patel, and Athina Petropulu. �Robust sparse Fourier

transform based on the Fourier projection-slice theorem.� 2018 IEEE Radar Confer-

ence (RadarConf18). IEEE, 2018.

1.6.3 Two-dimensional DBF Radar with Orthogonal Linear Arrays Based on

SFT and Deep Learning

In Chapter 6, we propose a new automotive radar architecture that achieves high resolution

in range, range rate, azimuth and elevation DOA estimation, while requires a smaller antenna

aperture and fewer reception channels as compared to conventional DBF planar arrays. The

receive aperture of the proposed radar is composed of two orthogonally-placed uniform linear

arrays (ULAs). In sparse scenarios, such radar architecture leverages the robust MARS-

SFT to implement an e�cient coarser beamforming for each ULA, while computes an high

resolution range-Doppler image (RDI) for each beam, where each scatterer from targets

can be resolved with high probability. Next, a deep-learning based method is employed to

match azimuthal and elevational radar beams that associate with the same targets; such

beam matching problem is converted to a image matching problem in the RDI domain.

Part of this work has been published in

� Wang, Shaogang, Chen, Honglei, Vishal M. Patel, and Athina Petropulu. �Two-

Dimensional beamforming automotive radar with orthogonal linear arrays.� 2019

IEEE Radar Conference (RadarConf19). IEEE, 2019.

1.7 Outline of the Dissertation

The dissertation is organized as follows.

In Chapter 2, based on simple and practical SFT introduced in Section 1.5.1, we propose
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the RSFT algorithm that addresses real-world multidimensional signal that contains noise

and o�-grid frequencies.

In Chapter 3, based on the proposed RSFT algorithm in Chapter 2, we formulated the

signal processing framework for DBF and MIMO radar.

In Chapter 4, we propose the MARS-SFT, which extends the SO-SFT introduced in

Section 1.5.2, and achieves the lower bounds of sample and computational complexity of

SFT in less sparse scenarios for ideal signals.

In Chapter 5, we propose the robust MARS-SFT, which extends the MARS-SFT to

handle noisy signals containing o�-grid frequencies; based on that, we investigated the ap-

plication of the robust MARS-SFT in automotive DBF radar signal processing.

In Chapter 6, we propose 2-D DBF automotive radar with orthogonal linear arrays; the

proposed radar architecture takes advantage of the robust MARS-SFT and deep learning,

and achieves high resolution in range, range rate, azimuth and elevation angular domains

with reduced hardware.

Finally, Chapter 7 contains conclusions and possible future research directions.

1.8 Notation

We use lower-case (upper-case) bold letters to denote vectors (matrices).(�)T and (�)H

respectively denote the transpose and conjugate transpose of a matrix or a vector, andx �

is the conjugate ofx. k � k is Euclidean norm for a vector. kW k1; kW k2 are the l1 and l2

norm of matrix W , respectively. [a]i is the i th element of vectora, while [A ]i;j is the (i; j )th

element of matrix A . All operations on indices in this dissertation are taken moduloN ,

denoted by[�]N . We useb�eto denote rounding to the nearest integer.[S] refers to the set of

indicesf 0; :::; S � 1g. The cardinality of set S is denoted asjSj. We usef 0; 1gB to denote the

set of B -dimensional binary vectors. We usediag(v ) to denote forming a diagonal matrix

from the vector v and useEf�g to denote expectation. The DFT of signalx is denoted as

x̂ . We denote the least common multiple ofN0; N1 as LCM( N0; N1).
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Chapter 2

Robust Sparse Fourier Transform

In this chapter, we propose the Robust Sparse Fourier Transform (RSFT), a tool that en-

ables the application of the Sparse Fourier Transform (SFT) to a real world, noisy setting.

The RSFT can accommodate o�-grid frequencies in the data. Furthermore, by incorporat-

ing Neyman-Pearson (NP) detection in the SFT stages, frequency detection in the RSFT

does not require knowledge of the exact sparsity of the signal and is robust to noise. We

analyze the asymptotic performance of the RSFT, and study the computational complexity

versus detection performance tradeo�. We show that by appropriate choice of the detection

thresholds, the optimal tradeo� can be achieved.

2.1 Introduction

Simple and practical SFT algorithm of [4] achieves a substantial computational reduction

of computing DFT compared with the FFT and meanwhile provides a robust frequency

localization based on the property of modular inverse that is less a�ected by the noise

compared with the SFT algorithms (e.g., [21, 5]), whose frequency localization relies on the

phase information. Such property of simple and practical SFT is attractive in the radar

application. However, simple and practical SFT has two main constraints:

� It assumes that the signi�cant frequencies contained in the signal are on the grid of

the N -point DFT, where N is the original input data length.

� The detection of the signi�cant frequencies in the two detection stages of simple and

practical SFT algorithm assumes the exact knowledge of the number of the signi�cant

frequencies,K .

In real-life radar applications, however, the signal frequencies that relate to the target
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parameters (e.g., rang, velocity and DOA) are typically o�-grid; also, the number of sig-

ni�cant frequencies, representing the number of the targets in the radar beam coverage, is

typically unknown and subject to change. The consequence of o�-grid frequencies is the

leakage to other frequency bins, which essentially reduces the sparsity of the signal. The

incomplete knowledge of the number of signi�cant frequencies makes the frequency detec-

tion di�cult. Also, the o�-grid frequencies further complicate frequency detection; when the

dynamic range of the signal frequencies is high, which is typical in the radar application, the

leakage from strong frequencies can mask weak frequencies; thus, even if the exact sparsity

of the signal was known a priori, it would not help the task of frequency detection.

We follow simple and practical SFT framework for frequency-domain sparse signal de-

tection and propose RSFT, which addresses the aforementioned limitations of simple and

practical SFT. RSFT employs apre-permutation window to reduce leakage from the o�-grid

frequencies, and NP detection to determine the detection thresholds for the signal frequen-

cies. We also extended the one-dimensional RSFT into multidimensional, which makes the

RSFT suitable for multidimensional signal processing applications.

The contributions in the context of the proposed RSFT are summarized as follows:

� The proposed RSFT algorithm does not need the frequencies to be on-grid. Also, it

does not require exact knowledge of the number of frequencies to be estimated. The

leakage due to o�-grid frequencies, which typically reduces the sparsity of the signal,

is controlled via a simple windowing operation.

� Frequency detection is put in an NP detection framework. Based on the signal model

and other design speci�cations, we provide (asymptotically) optimal thresholds for the

two detection stages of RSFT. Since the output of the �rst stage of detection serves

as the input of the second stage, the two stages are interconnected. The detection

thresholds are jointly found by formulating and solving a constrained optimization

problem. The objective function maximizes the probability of detection for the weak-

est frequency contained in the signal, and the constraints connect the probability of

detection and false alarm rate for both two stages.

� A quantitative measure of the computational complexity and detection performance
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tradeo� is provided, which can serve as a concrete design reference for RSFT-based

applications.

2.2 Signal Model and Overview of the RSFT Algorithm

We model a continuous-time signal as a superposition ofK sinusoids in additive white

noise. We sample the signal uniformly, both in I and Q channels, with a sampling frequency

above the Nyquist rate. We segment the obtained samples intoT consecutive equal length

segments, each containingN samples. We chooseN so that K << N . The sampled signal

over the time segments = 0 ; 1; � � � ; T � 1, can be expressed in vector form as

r s =
X

i 2 [K ]

bi;s v(! i ) + ns; (2.1)

where v(! i ) denotes for thei -th complex sinusoid with normalized frequency! i 2 [0; 2� ),

i.e.,

v (! i ) = [1 ej! i � � � ej (N � 1)! i ]T : (2.2)

We further assume that ! i is unknown, deterministic and remains constant during allT

segments, while the corresponding complex amplitude, i.e.,bi;s is a random variable. Here,

over the various segments,bi;s is taken to be independent, identically circularly symmetric

Gaussian distributed, i.e.,bi;s � CN (0; � 2
bi). The coe�cients of di�erent sinusoids are taken

to be independent. Thens represents noise, and is distributed asns � CN (0; � 2
n I ), where0

is an N -dimensional zero vector, andI 2 RN � N is the identity matrix. We also assume that

each sinusoid's amplitude and the noise are uncorrelated. The spacing of two neighboring

frequencies is assumed to be greater than� m � ! N , where � ! N , 2�=N , and � m 2 N

is the main-lobe broadening parameter due to a window that will be applied onr s. Let

SNR i = � 2
bi=� 2

n be the SNR of the i -th sinusoid. The worst case SNR, best case SNR

and dynamic range are respectively de�ned asSNRmin , min i 2 [K ](SNR i ); SNRmax ,

maxi 2 [K ](SNR i ); D , SNRmax =SNRmin .

Estimating the frequencies inr s is a classical spectral analysis problem. In non-parametric

techniques, this is done by employing the DFT [39]. The DFT of lengthN is a sampled

version of the Discrete-Time Fourier Transform of the signal, with sampling interval� ! N .



33

A normalized frequency! i in r s corresponds to a DFT peak at indexk = [ b! i N
2� e]N . The

presence of a frequency in the DFT can be determined using an NP test [40]. The DFT

can be e�ectively computed by the FFT, whose complexity for N equal to a power of2

is O(N logN ). However, whenN is large, the computation of the FFT is still demanding

especially in a real-time processing scenarios.

To apply the SFT in a realistic scenario related to detection and estimation of multiple

frequencies, we propose the RSFT algorithm, which employs a pre-permutation windowing

procedure to suppress leakage from the o�-grid frequencies and leverages the NP criterion

in the two stages of detection to solve for the optimal thresholds. The RSFT algorithm is

summarized in Algorithm 1.

Algorithm 1 RSFT algorithm
Input: complex signalr s; s 2 [T]
Output: frequency locations of input signal,o 2 f 0; 1gN

1: procedure RSFT (r s)
2: Generate a set of permutation parameters� s; s 2 [T] randomly
3: �a  0
4: for s  0 to T � 1 do
5: Apply pre-permutation windowing: ys  Wr s

6: Apply permutation: ps  P � s ys

7: Apply �at-windowing: zs  Wp s

8: Aliasing: fs  Aliasing(zs)
9: Take B -point FFT: f̂s  FFT( fs)

10: First stage detection: c� s  NPdet1(jf̂sj2)
11: Reverse mapping:a� s  Reverse(c� s )
12: Accumulation: �a  �a + a� s

13: end for
14: Second stage detection:o  NPdet2(�a)
15: return o
16: end procedure

2.3 Leakage Suppression of O�-grid Frequencies

In real world applications, the signi�cant frequencies ! i are continuous and can take any

value in [0; 2� ). When �tting a grid on these frequencies, leakage occurs from o�-grid fre-

quencies, which can diminish the sparsity of the signal. Sparsity in the discrete frequency
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domain related to N -point DFT is here de�ned as follows. On applying some linear op-

erations (e.g., permutation and windowing), represented byL 2 CN � N , on the signal of

(2.1), the resulting spectrum equalsx = Efj cLr j2g 2 RN . Let [x ]i correspond to the peak of

the sinusoid with SNRmin , i.e., the weakest sinusoid. Sparsity is de�ned as the number of

entries in x, whose values are greater than or equal to[x ]i .

As the leakage due to strong frequency components can mask the contributions of weak

frequency components, it is di�cult to determine the frequency domain peaks after permu-

tation. This is illustrated in Figs. 2.1 (a) and (b), where the amplitude of a 1024-point

DFT of the signal before and after permutation, respectively, is shown. The original signal

contains two signi�cant frequencies located at! 1 � 1:8 and ! 2 � 4:2, and the former is

35dB stronger than the latter. The permutation does not alter the sparsity of the signal,

which equals to30. However, the originally concentrated leakage frequencies are shu�ed by

permutation, which makes it di�cult to detect weaker signi�cant frequencies. To address

this problem, we propose to multiply r point-wisely with a window w 2 CN before per-

mutation. We will refer to this step as pre-permutation windowing. Windowing suppresses

side-lobes, thus can con�ne the leakage within a small number of frequency bins, and thus

preserving sparsity to some extent. As shown in Figs. 2.1 (c) and (d), after multiplying the

signal before permutation with a Dolph-Chebyshev window[41] with77dB peak to side-lobe

ratio (PSR), the sparsity of the signal reduces from30 to 6.

After applying the pre-permutation window, the side-lobes of the strongest frequency

should be lower than the noise level by� w (e.g., � w = 20dB), so that their contribution to

the noise level can be neglected. Hence, the PSR of the pre-permutation windoww should

satisfy

pw = 10 log(N ) + 10 log(D) + 10 log(SNRmin ) + � w ; (2.3)

where the �rst term of the right side is due to the N -point DFT, and the unit of pw ; � w is

dB.

For a speci�c window, determining the PSR also determines the main-lobe broadening

parameter � m . Here, � m is de�ned as the number of points whose magnitudes are larger

than the maximum side-lobe level in the magnitude ofN -point DFT of the pre-permutation

window, i.e., jŵ j. The larger the PSR of a window, the larger the� m is. The DFT of
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a Dolph-Chebyshev window and its main-lobe broadening parameter� m corresponding to

various PSR are shown in Fig. 2.2.

(a) (b)

(c) (d)

Figure 2.1: The e�ect of pre-permutation windowing on sparsity of the signal in the discrete
frequency domain. The signal contains two signi�cant frequency components, one of which
is 35dB stronger than the other; SNRmin = � 8dB. A Dolph-Chebyshev window with
77dB PSR is applied. Windowed signal after permutation appears sparser in the frequency
domain as compared to the permuted signal without windowing. The spectrum is computed
via 1024-point DFT. (a) Spectrum of signal without windowing. (b) Spectrum of signal
without windowing after permutation with � s = 85. (c) Spectrum of windowed signal. (d)
Spectrum of windowed signal after permutation with � s = 85.
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(a) (b)

Figure 2.2: Pre-permutation window. (a) 1024-point DFT of a Dolph-Chebyshev win-
dow with 77dB PSR. (b) Main-lobe broadening parameter� m versus the PSR for Dolph-
Chebyshev windows with1024-points DFT.

2.4 NP Detection in the RSFT

In simple and practical SFT, detection of the signi�cant frequencies is needed in two stages.

If we know the number of the signi�cant frequencies and all frequencies are all on-grid, the

detection of the signal can be accomplished by �nding theK highest spectral amplitude

values. In reality, however, we do not have exact knowledge ofK . Moreover, even if we

knew K , due to the leakage caused by the o�-grid frequencies, theK highest spectral peaks

might not be correct representation of the signal frequencies. Finally, additive noise would

make signal detection even more di�cult.

In order to solve the detection problem, we propose to use NP detection in the two

detection stages of RSFT. The proposed detection scheme does not require knowledge of

K , but instead, it uses a bound of the signal sparsityK max . Speci�cally, the NP detection

problem related to the design of the RSFT parameters is described next.

We consider the signal model of (2.1). For the given data lengthN , number of iterations

T, SNR corresponding to the weakest frequencySNRmin , false alarm rate of each frequency

bin in the second stage detectionPfa , sparsity bound K max , reduced data lengthB , noise

variance � 2
n , and signal dynamic rangeD, we shall design the pre-permutation windoww,

�at-window �w , the thresholds
; � for the �rst and the second stage of detection, respectively,
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so that the probability of detection for the weakest frequency in the second stagePd is

maximized. We should note that assuming knowledge of noise variance, minimum SNR and

dynamic range is not a very restrictive assumption for real systems. For instance, in the

radar case,� 2
n corresponds to the receiver noise;SNRmin (SNRmax ) of the sinusoids can be

calculated by the smallest (largest) Radar Cross Section (RCS) of targets at the maximum

(minimum) detection range. The RCS and range speci�cations are among the most import

speci�cations of designing radar systems, and are usually provided.

Applying NP detection in the RSFT is not a straightforward extension of simple and

practical SFT, in that the two stages are inter-connected, thus need to be studied jointly.

In the following, we investigate the two stages of detection separately, then summarize the

solution into an optimization problem.

2.4.1 The First Stage Detection

The �rst stage detection is performed on each data segment. After pre-permutation win-

dowing, permutation and �at-windowing, the input signal can be expressed as

zs = WP � s Wr s; (2.4)

where� s 2 Sp , f 2k +1 jk 2 [N=2]g is the permutation parameter for the s-th data segment;

we assume that� s has an uniform random distribution. P � s 2 f 0; 1gN � N is the permutation

matrix; W = diag( w), W = diag( �w), where w; �w 2 CN are pre-permutation window and

�at-window, respectively. The �at-window �w is de�ned so that its passband has width

2�=B , and its time duration is N samples.

The time domain aliasing can be described as

fs =
L � 1X

i =0

W i P � s Wr s = V � s r s; (2.5)

where L = N=B ; W i is the i -th sub-matrix of W , which consists of the iB -th to the

(( i + 1) B � 1)-th rows of W ; and V � s =
P L � 1

i =0 W i P � s W .

The B -point DFT operation on the aliased data fs can be expressed as

f̂s = DV � s r s; (2.6)



38

where D 2 CB � B is the DFT matrix. For the k-th entry of f̂ , we have

[f̂s]k = uH
k V � s r s; k = 0 ; 1; � � � ; B � 1; (2.7)

where uk is the k-th column of D , i.e., uk = [1 e� jk 2�
B � � � e� jk (B � 1) 2�

B ]T .

Substituting (2.1) into (2.7), we get

[f̂s]k =
X

i 2 [K ]

bi;s uH
k V � s v(! i ) + uH

k V � s n: (2.8)

Since[f̂s]k is a linear combination of bi;s ; [n]j ; i 2 [K ]; j 2 [N ], it holds that

[f̂s]k � CN (0; � 2
fk ); (2.9)

where

� 2
fk =

X

i 2 [K ]

� 2
bi� (k; � s; ! i ) + � 2

n � (� s); (2.10)

and

� (k; � s; ! ) = juH
k V � s v(! )j2

� (� s) = kWP � s wk2:
(2.11)

It is easy to see that � 2
fk is summation of weighted variance due to each signal and noise

component, with �; � the corresponding weights.

Without loss of generality, let us assume that! m is the frequency corresponding to the

minimum SNR, i.e., SNRm � SNRmin . After pre-permutation windowing, permutation,

�at-windowing, aliasing and DFT, ! m is mapped to bin p, given in the following lemma.

Lemma 1. For a complex sinusoid signal, i.e.,v (! ), after pre-permutation windowing,

permutation with � s, �at windowing, aliasing and B -point DFT, the highest amplitude of

signal spectrum appears in[B ] at location

p(!; � s) = [ b
B
N

[� s[b
!

� ! N
e]N ]N e]B : (2.12)

Please see the proof in Appendix A. A visualization of this process is shown in Fig. 2.3.

Due to the signal sparsity in the frequency domain, with high probability only ! m maps

to bin p. Also, due to the two stages of windowing, the side-lobes from the strong frequencies
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Figure 2.3: Windowing, permutation and aliasing. The frequency representation of the signal
from pre-permutation windowing to aliasing is presented. Only one signi�cant frequency is
shown for conciseness.
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will be below the noise level. Thus, the e�ect of leakage from other sinusoids can be ignored.

Then we can approximate the variance of[f̂ ]p as

� 2
fp � � 2

bm� (p; � s; ! m ) + � 2
n � (� s): (2.13)

In cases in which multiple frequencies are mapped to the same bin (collision), (2.13) gives a

underestimate of the variance. The probability of a collision occurring reduces asK << B .

The bin u 2 [B ], to which no signi�cant frequency is mapped, contains only noise, and

the corresponding variance for[f̂ ]u is

� 2
fu � � 2

n � (� s): (2.14)

Hence, the hypothesis test for the �rst stage detection on[f̂ ]j ; j = 0 ; 1; � � � ; B � 1 is

formulated as

� H 0: no signi�cant frequency is mapped to bin j .

� H 1: at least one signi�cant frequency is mapped to binj , whose SNR is at least

SNRmin .

The log likelihood ratio test (LLRT) is

log
Pf j jH 1(x)

Pf j jH 0(x)

H 1
?
H 0


 0: (2.15)

where Pf j jH 1(x) and Pf j jH 0(x) are the probability density function (PDF) of [f̂ ]j under H1

and H0 respectively, and
 0 is a threshold.

Substituting the PDF of [f̂ ]j under both hypothesis into (2.15), and after some manipu-

lations we get

j[f̂s]j j2
H 1
?
H 0


 0� log
� 2

f u
� 2

f p

1
� 2

f u
� 1

� 2
f p

: (2.16)

Hence, j[f̂ ]j j2 is a su�cient statistics for the �rst stage detection. Since [f̂ ]j has circu-

larly symmetric Gaussian distribution, j[f̂ ]j j2 is exponentially distributed with cumulative

distribution function (CDF)

Fj[f̂s ]j j2 (x; � 2) =

8
>><

>>:

1 � e
� x

� 2 ; x � 0

0; x < 0 ;
(2.17)
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where � 2 equals to � 2
f u

under H0, and � 2
f p

under H1.

Based on (2.17), in the �rst stage of detection, the false alarm rate on each ofB bins

and the probability of detection of the weakest sinusoid can be derived to be equal to

~Pfa (� s) = e
� 


� 2
n � ( � s ) ;

~Pd(! m ; � s) = ~P
� ( � s )

� ( p;! m ;� s ) SNR min + � ( � s )

fa ;
(2.18)

where 
 is the detection threshold. Both ~Pfa and ~Pd depend on the permutation� s.

Since � s 2 Sp has a uniform distribution, and jSpj = N=2, by taking expectation with

respect to � s of both sides of (2.18), we have

�Pfa =
2
N

X

� s 2 Sp

e
� 


� 2
n � ( � s ) ;

�Pd(! m ) =
2
N

X

� s 2 Sp

~P
� ( � s )

� ( p;! m ;� s ) SNR min + � ( � s )

fa :
(2.19)

2.4.2 The Second Stage Detection

Let c� s 2 f 0; 1gB denote the output of the �rst stage detection for the sth segment, with

permutation parameter � s. Each entry in c� s is a Bernoulli random variable, i.e., for j =

0; 1; � � � ; B � 1,

[c� s ]j �

8
>><

>>:

Bernoulli
�

~Pfa (� s)
�

; under H0;

Bernoulli
�

~Pd(! m ; � s)
�

; under H1:
(2.20)

Note that under H1, we assume that[c� s ]j corresponds to the weakest sinusoid. For the

other K � 1 co-existing sinusoids, since their SNR may be greater thanSNRmin , their

probability of detection may also be greater than ~Pd(! m ; � s) (see Lemma 3).

The reverse-mapping stage hashes thec� s 2 f 0; 1gB back to the a� s 2 f 0; 1gN . According

to De�nition 4, it holds that

[a� s ]i = [ c� s ]j ; i 2 [N ]; j 2 [B ]; i 2 R (j; � � 1
s ): (2.21)

After accumulation of T iterations, each entry in the accumulated output is summation

of T Bernoulli variables with di�erent success rate. De�ne �a as the accumulated output,

then for its i -th, i 2 [N ] entry, we have

[�a]i =
T � 1X

s=0

[a� s ]i =
X

i 2R (j;� � 1
s );s2 [T ]

[c� s ]j : (2.22)
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Note that in (2.22), each term inside the sum corresponds to a di�erent segment, i.e.,[c� s ]j

is from the s-th segment. Since� s is drawn randomly for each segment,j may take di�erent

values, and relates toi via a reverse-mapping. Fig. 2.4 gives a graphical illustration of the

mapping and reverse-mapping.

Now, the hypothesis test for the second stage detection on[�a]i ; i 2 [N ] is formulated as

� H0: no signi�cant frequency exists in bin i .

� H1: there exists a signi�cant frequency in bin i , whose SNR is at leastSNRmin .

In the following, we investigate the statistics of [�a]i under both hypothesis in an asymp-

totic senses. Before that however, we will take a closer look at the mapping and the reverse

mapping by providing the following properties.

Property 3. (Reversibility): Let j 2 [B ]; i; �; � � 1 2 [N ]. � and � � 1 satisfy Eq. (1.46).

If j = M (i; � ), then it holds that

i 2 R (j; � � 1): (2.23)

Property 4. (Distinctiveness): Let i; j 2 [B ]; i 6= j . If � � 1 2 [N ] and satis�es Eq.

(1.46), then it holds that

R(i; � � 1) \ R (j; � � 1) = ; : (2.24)

The proofs of those properties can be found in Appendices B and C. The two properties

simply reveal the following facts: a mapped location can be recovered by reverse mapping

(with ambiguities). Also, when applying reverse mapping to two distinct locations with the

same permutation parameter, the resulting locations are also distinct.

Under H1, assuming that [�a]i corresponds to them-th sinusoid, i.e., the weakest sinusoid,

then each term inside the sum of (2.22) has distribution[c� s ]j � Bernoulli
�

~Pd(! m ; � s)
�

; s 2

[T]. Then we present the following lemma.

Lemma 2. Under H1, and as T ! 1 ,

[�a]i � N (� a1(! m ); � 2
a1(! m )) ; (2.25)

where � a1(! m ) = T �Pd(! m ), � 2
a1(! m ) � T �Pd(! m )(1 � �Pd(! m )) .
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Figure 2.4: Mapping and reverse mapping. Due to the di�erent permutations, a signi�cant
frequency may be mapped into di�erent locations in each iteration of the �rst stage detection.
The detected frequencies, including the false alarms in the �rst stage, are reverse mapped
to the original discrete frequency set. The true location of the signi�cant frequency as well
as ambiguous frequencies are obtained. The occurrence on the true location grows steadily
during accumulation, provided that the SNR is high enough, and thus the true location
can be recovered in the second stage of detection with proper thresholding. However, false
alarms may also occur in the second stage detection, due to both ambiguous frequencies and
false alarms from the �rst stage of detection.
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Please see the proof in Appendix D.

The distribution of [�a]i under H0 is more complicated, and we have the following lemma.

Lemma 3. Under H0, and as T ! 1 ,

[�a]i � N (� a0(! m ); � 2
a0(! m )) ; (2.26)

where

� a0(! m ) = F � p �Pd(! m ) + ( T � F ) �Pfa ;

� 2
a0(! m ) � F � p �Pd(! m )(1 � � p �Pd(! m ))

+ ( T � F ) �Pfa (1 � �Pfa );

(2.27)

and F = T K� m
B ; � p 2 [1; 1

�Pd (! m ) ] is a calibration parameter of the probability of detection for

the other K � 1 co-existing sinusoids.

Please see the proof in Appendix E.

Remark 1. From Lemmas 2 and 3, we notice that for the second stage detection, the LLRT

is obtained based on two Normal distributions. The test statistic underH1 is �stable�, because

it only depends on �Pd(! m ). However, underH0, the distribution depends on the number of

co-existing sinusoidsK , as well as on each sinusoid's SNR. A largerK and higher SNR will

�push� the distribution under H0 closer to the distribution under H1, hence degrading the

detection performance.

A natural extension of Remark 1 is Remark 2, which gives the condition under which

the RSFT will reach its limit.

Remark 2. Assuming that Pd � Pfa , the RSFT will fail if K� m � B no matter how large

the SNRmin is.

Please see the proof in Appendix F.

2.4.3 The Optimization Problem

Based on the analysis of the two detection stages, the optimal probability of detection for

the weakest frequencyP �
d (! m ), and the optimal detection thresholds for the two stages, i.e.,


 � ; � � , can be found as the solution of the following optimization problem:
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Maximize f 
;�; �Pfa ; �Pd g Pd(! m )

Subject to

�Pfa =
2
N

X

� s 2 Sp

e
� 


� 2
n � ( � s ) (2.28a)

�Pd(! m ) =
2
N

X

� s 2 Sp

~P
� ( � s )

� ( p;! m ;� s ) SNR min + � ( � s )

fa (2.28b)

Pfa =
Z 1

�
ga0 (u)du (2.28c)

Pd =
Z 1

�
ga1 (u)du (2.28d)

0 � �Pfa ; �Pd; Pfa ; Pd � 1 (2.28e)


; � > 0; (2.28f)

where the �rst two constraints correspond to the detection for the �rst stage, while the

second two constraints correspond to the second stage of detection. Thega0 (u); ga1 (u) are

the asymptotic PDF of [�a]i under H0 and H1, respectively. We take the upper bounds of

the variances in both distributions.

To solve the problem of (2.28) we can use a brute force search for the �rst stage threshold


 within (0; 
 max ) with a reasonable step size, where
 max corresponds to a small value of

�Pfa in (2.28a), such as�Pfa = 10 � 10. Speci�cally, with 
 �xed, the �Pfa ; �Pd can be solved via

(2.28a) and (2.28b). Next, the second stage threshold� can be solved by (2.28c), and then

the Pd can be found by solving (2.28d). The largest value ofPd founded during the search

process, i.e.,P �
d , as well as the corresponding
 � ; � � are the solution of (2.28).

Remark 3. In Lemma 3, we set a parameter� p to calibrate the distribution of [�a]i under

H0. By setting � p as 1 or 1
�Pd (! m ) , we can get respectively the lower and upper bound ofP �

d

for the variation of SNR of other co-existing sinusoids. The upper bound of the sparsity

of the signal is K max , the optimal thresholds found by solving (2.28) provides the optimal

thresholds for the worst case. If the actual signal sparsity were less thanK max , Pfa would

be lower than the expected value, whilePd would be unchanged according to Remark 1.



46

By averaging out the permutation, asymptotically, P �
d does not depend on the permuta-

tion. However, it still depends on ! m , as described in the following lemma.

Lemma 4. The dependence ofP �
d on ! m is due to the o�-grid loss[41] from o�-grid frequen-

cies. P �
d attains its maximum when! m is on-grid, i.e. ! m = k� ! N ; k 2 [N ]. When ! m is

in the middle between two grid points, i.e.,! m = ( k + 1
2)� ! N , P �

d attains its minimum.

Please see the proof in Appendix G.

2.5 Computational Complexity Analysis

We analyze the computational complexity of the RSFT algorithm by counting the number

of operations in its main stages, which is shown in Table 2.1. The RSFT has complexity

equal to

O
�

T(N + B + B logB +
K� m N

B� p
) + N

�
: (2.29)

The FFT-based counterpart of the RSFT is the FFT-based Bartlett method followed

by an NP detection [40] (see Appendix M), whose complexity isO (TN (1 + log N ) + N ),

as shown in Table 2.2. Fig. 2.5 compares the RSFT's complexity to that of Bartlett's for

various B and K . One can see that the RSFT enabled savings are remarkable whenB

is chosen properly. Speci�cally, from Fig. 2.5 one can see, the lowest complexity forK

equals to 5; 50; 100 is achieved whenB equals to 32; 64; 128, respectively. Note that the

core operation in RSFT is still FFT-based, but on a reduced length. By leveraging the

existing high performance FFT libraries such as FFTW [42], the implementation of the

RSFT algorithm could be further improved.

Remark 4. The complexity of RSFT is linearly dependent onN; T; K; 1=� p and � m , hence it

is bene�cial to choose a pre-permutation window with a small� m , provided the attenuation of

the side-lobes is su�ciently large. We can also choose the optimalB from (2.29) to minimize

the computation. However, there are two additional constrains forB , one is B should be a

power of 2, the other isK� m � B , as stated in Remark 2.



47

Table 2.1: Computational Complexity of RSFT

Procedure Number of Operations
Pre-permutation windowing T N

Permutation T N
Flat windowing T N

Aliasing T B(N=B � 1)
FFT T B

2 logB
Square TB

First stage detection TB
Reverse-mapping T K� m N

B� p

Second stage detection N

Complexity O
�

T(N + B + B logB + K� m N
B� p

) + N
�

Table 2.2: Computational Complexity of the Bartlett Method

Procedure Number of Operations
Windowing TN

FFT T N
2 logN

Square TN
Detection N

Complexity O (TN (1 + log N ) + N )
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Figure 2.5: Comparison of complexity. N = 1024; T = 50; � m = 2 ; � p = 1 , B 2
f 8; 16; 32; 64; 128; 256; 512; 1024g.

2.6 Multidimensional Extensions

In this section, we elaborate the extension of the RSFT into multiple dimensions; this is

referred as multidimensional RSFT in the following. Compared to the multidimensional

FFT, the implementation of multidimensional RSF is not straightforward, since the RSFT

is not separable in each dimension due to the two stages of detection. The detection should

be carried out jointly in all the dimensions, while other operations are separable in each

dimension. In the following, we elaborate on multidimensional RSFT for the2-D case.

Windowing

In the pre-permutation windowing and the �at-windowing stages, the window for each di-

mension is designed separately. After that, the multidimensional window is generated by

combining each1-D window. For instance, in the 2-D case, assuming thatwx and wy are

the two windows in the x and y dimension, respectively, a2-D window can be computed as

W xy = wxw H
y : (2.30)
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Permutation

The permutation parameters are generated for each dimension in a random way according

to (1.46). Then, we carry the permutation on each dimension sequentially. An example for

the 2-D case is illustrated in Fig. 2.6.

(a) (b)

(c) (d)

Figure 2.6: Permutation and aliasing in 2-D. (a) Original 2-D data forms a 4 � 8 matrix.
(b) Permutation in x� dimension, � x = 3 . (c) Permutation in y� dimension, � y = 3 . After
permutation, data is divided into four 2� 4 sub-matrices. (d) Aliasing by adding sub-matrices
from (c).

Aliasing

The aliasing stage compresses the high-dimensional data into much smaller size. In2-D, as

shown in Fig. 2.6, a periodic extension of theNx � Ny data matrix is created with period Bx

in the x dimension andBy in the y dimension, with Bx << N x and By << N y , and the basic

period, i.e., Bx � By is extracted. Mathematically, [Y ]i ;j =
P N x

B x
� 1

u= 0
P N y

B y
� 1

v = 0 [X ]i+ B x u;j + B y v ,

where X 2 CN x � N y ; Y 2 CB x � B y are matrices before and after aliasing, respectively.
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First Stage Detection and Reverse-mapping

We carry �rst stage detection after taking the square of magnitude of high-dimensional

DFT on the aliased data. In the 2-D case, the �rst stage detection is applied by comparing

each data point of jŶ j2 2 RB x � B y with the �rst stage threshold, and for those passing the

thresholds, their indices, i.e.,(i; j ); i = 0 ; 1; � � � ; Bx � 1; j = 0 ; 1; � � � ; By � 1 are reverse-

mapped to the original space, i.e.,(u; v); u = 0 ; 1; � � � ; Nx � 1; v = 0 ; 1; � � � ; Ny � 1.

Accumulation and Second Stage Detection

As indicated in Algorithm 1, the loop from pre-permutation windowing to reverse-mapping is

repeated forT iterations with random permutation. The reverse-mapped frequency locations

are accumulated, which, in the 2-D case, formsA 2 NN x � N y , a matrix recording the

occurrences of each frequency. Finally, the second stage is applied onA , by comparing each

of its entry with the second stage detection threshold.

2.7 Numerical Results

In this section, we verify our theoretical �ndings via simulations. Unless stated otherwise, the

results refer to the following scenario: data lengthN = 1024, number of iterations T = 50,

sparsity bound K max = 16, reduced data length B = 128, SNR of the weakest signal

SNRmin = � 8dB, signal dynamic rangeD = 30dB, calibration parameter for probability

of detection of co-existing frequencies� p = 1= �Pd, false alarm rate Pfa = 10 � 6, location of

the weakest frequency! m = 64:5� ! N � 0:4, and noise variance� 2
n = 1 . The SNR of the

other three sinusoids is the same and larger thanSNRmin by the designated dynamic range

D. We adopt a Dolph-Chebyshev window with72dB PSNR for pre-permutation windowing.

The corresponding main-lobe broadening parameter� m of such window is set equal to5.

The �at window is created as follows. The N -point DFT of the Dolph-Chebyshev window

is convolved with a boxcar, whose width isN=B . A subsequent inverseN -point DFT is

applied to extract the time domain samples of the �at window.

Fig. 2.7 shows� (p; � s; ! m ); � (� s) (see respectively (2.11) and (2.12)), for all possible

values of the permutation parameter� s. Recall that � (p; � s; ! m ) and � (� s) are the weights
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for the variance of signal and noise component in the �rst stage detection, respectively.

Based on the �gure, one can see that� (p; � s; ! m ) is larger than � (� s) for all permutations.

Thus, due to the windowing, aliasing and DFT operations before the �rst stage of detection,

the gain of the signal component is always larger than the gain of the noise component (see

(2.13)).

With all the aforementioned parameters available, we are able to solve the optimal

probability of detection for the weakest signal, thresholds for the two stages of detec-

tion, i.e., P �
d ; 
 � ; � � , respectively, via (2.28). The solver executes a brute force search

of the �rst stage threshold 
 ; as suggested by Fig. 2.8, each value of
 corresponds to

a value of Pd, and the largest Pd corresponds toP �
d . The obtained optimal values are

P �
d � 0:52; 
 � � 6:5 � 10� 3; � � � 38:2.

Figure 2.7: The values of� (p; � s; ! m ); � (� s) with respect to all possible values of the per-
mutation parameter � s.

To verify the e�ectiveness of the detection with the optimal thresholds, we simulate the

speci�ed signal and visualize the two stages of detection. The spectrum of the simulated

signal after pre-permutation windowing is shown in Fig. 2.9 (a). Figs. 2.9 (b) and (c) show
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Figure 2.8: Solving for P �
d via a brute force searching of
 2 (0; 0:1), with a step size

� 
 = 5 � 10� 4.

that the thresholding with 
 � ; � � respectively in the two detection stages. The locations

of the detected frequencies from (c) coincide with the ground truth locations in (a), which

means that the detection is e�ective. Fig. 2.9 (d) shows the ROC curves corresponding to the

two stages of detection, respectively. Compared to the �rst stage, the detection performance

of the second stage improves signi�cantly, which is due to the e�ective accumulation stage

in RSFT.

2.7.1 Improvement of Signal Sparsity by Pre-permutation Windowing

Here we verify the e�ectiveness of the pre-permutation window in improving the sparsity

level in the discrete frequency domain. In Fig. 2.1, we visualize the improvement of the

sparsity by applying a pre-permutation window on a signal that contains two signi�cant

frequencies. In Table 2.3, we show the improvement of the sparsity by pre-permutation

windowing on a signal containingK = 4 signi�cant frequencies with various dynamic range

valuesD. The PSR of the pre-permutation window varies with di�erent values of D , which
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(a) (b)

(c) (d)

Figure 2.9: The two stages of detection.K = K max = 16: (a) Signal spectrum after pre-
permutation windowing. The magenta dot denotes the amplitude of! m . (b) First stage
detection. (c) Second stage detection. Data and threshold are normalized byT. (d) ROC
curves of the two detection stages.
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is calculated by (2.3), with � w = 20dB. One can see that for signals with high dynamic

range, the improvement of the sparsity after permutation (SAP) compared to the sparsity

before permutation (SBP) is signi�cant.

Table 2.3: E�ect of Pre-permutation Window.

D ( dB) PSR ( dB) SBP SAP
0 42 4 4
10 52 7 7
20 62 16 13
30 72 46 16
40 82 127 16
50 92 168 20

2.7.2 The E�ect of Signal Sparsity and SNR of the Co-existing Frequencies on

Detection Performance

According to Remarks 1 and 3, the sparsityK , the SNR of co-existing frequencies, and

the dynamic range of signalD a�ect the detection performance for the weakest frequency.

Larger values ofK and D imply lower Pd(! m ). We verify those remarks by visualizing the

PDFs of two competing distributions in the second stage of detection for various values of

K and D. In Fig. 2.10 (a), by �xing D , the PDF ga0(u) under the null hypothesisH0 in the

second stage is evaluated for di�erent values ofK . In Fig. 2.10 (b), ga0(u) is calculated for

di�erent values of D with �xed K . In all cases, the change of the PDF under the alternative

hypothesisH1, i.e., ga1(u), is minor, sincega1(u) is not directly a�ected by the co-existing

frequencies. From these �gures, one can see that large values ofK and D will cause ga0(u)

to move closer toga1(u), resulting in the degradation of detection performance.

Fig. 2.10 (a) also shows that the detection is e�ective for unknownK , when K � K max .

A smaller K causesga0(u) to depart from ga1(u). However, since the threshold� � , which

is designed for theK max case, does not change, the actual false alarm ratePfa deceases,

while Pd(! m ) does not change. Using the thresholds calculated forK max = 16 and all

other parameters the same as those used in Fig. 2.9, we test a simulated signal withK = 4

signi�cant frequencies to show the detection performance whenK < K max . The thresholding

in the second stage detection is visualized in Fig. 2.10 (d). Compared to Fig. 2.9 (c), where
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K = K max = 16, the noise �oor is much lower, hence the false alarm rate is reduced.

The detection performance related to di�erent values of the sparsity boundK max is

also shown in Fig. 2.10 (c), in the form of ROC curves; the ROC curves show that, with

other parameters �xed, asK max increases, the detection performance degrades, which is as

expected.

(a) (b)

(c) (d)

Figure 2.10: The e�ect of sparsity and SNR of co-existing frequencies on detection perfor-
mance. (a) ChangingK for D = 30dB; � p = 1= �Pd(! m ). (b) Changing D for K = K max =
10; � p = 1 when D = 0dB, � p = 1= �Pd(! m ) when D = 30dB and 50dB. (c) ROC curves for
various K max values. (d) The second stage detection whenK = 4 ; K max = 16.

2.7.3 The E�ect of Frequency Locations on Detection Performance

We verify the dependence ofP �
d (! m ) on the frequency location! m , and quantify the detec-

tion performance due to the o�-grid loss. Fig. 2.11 (a) shows thatP �
d �uctuates periodically

as ! m varies within [0; 4� ! N ). As expected from Lemma 4,P �
d attains its maximum and
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minimum when ! m is at the grid points and in the middle between the two neighboring grid

points, respectively. As a result, the detection performance, as characterized by the ROC

curves, also varies as! m varies (see Fig 2.11 (b)). According to Fig. 2.11 (a), the varia-

tion of P �
d (! m ) due to di�erent locations of ! m is within 8%. To guarantee the detection

performance, a conservative design would assume that the unknown! m is located at the

mid-point between grid points.

(a) (b)

Figure 2.11: The e�ect of frequency locations on detection performance. (a) The �uctuation
of P �

d due to di�erent locations of the frequency is mainly caused by the o�-grid loss. (b)
ROC curves with respect to di�erent locations of the frequency.

2.7.4 The Trade-o� between Complexity and Detection Performance

In Section 2.5 we have investigated the computational complexity of RSFT, from which one

can see that a smaller value ofB plays a central role in reduction of complexity. However,

such reduction of complexity comes at the cost of detection performance degradation. In

Fig. 2.12 we show the ROC curves with respect to di�erent choice ofB , from where one

can see thatB a�ects the detection performance signi�cantly. A large B provides better

detection performance. In applying the RSFT in real-world systems, the variation ofB

provides a degree of freedom to trade o� complexity and detection performance.

2.7.5 Comparison of RSFT and SFT

We compare RSFT and SFT in terms of their performance in localizing the signi�cant

frequencies. Clearly, since we only measure the localization error, thè2-norm metric used
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Figure 2.12: The e�ect of the reduced lengthB on detection performance whenK max = 4 .
A large B provides a better detection performance.

in the SFT literature for computing the approximation error between the original and the

recovered signal is not a good metric. The averagè1 and `1 norm between the ground truth

frequency locations and the estimated values, which are typically used in harmonic analysis

literature (e.g., [29, 43]), are also not good metrics for our problem due to the following

reasons: 1) the estimated frequencies typically do not exactly match the ground truth due

to the grid; 2) a cluster of frequencies might appear in the vicinity of the true location of

any signi�cant frequency due to leakage and windowing; 3) there might be miss detections;

and 4) there might be false alarms. In light of the above observations, we propose a metric

for the localization error, de�ned as follows:

lerr (L ) ,
1
P

X

!̂ i 2 Sl

1
L i

X

~! l 2 Si (L )

j !̂ i � ~! l j + Cmdn=N + Cfa m=N; (2.31)

where the �rst, second and third terms on the right side represent the averaged̀1 distance

between the ground truth and the localized frequencies, the cost of miss detection, and the

cost of false alarm, respectively. Speci�cally, for each true discretized frequencŷ! i = b! i N
2� e 2

Sl , we look at the averagè 1 error between!̂ i and all detected frequencies~! l 2 Si (L ) (with
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L i = jSi (L )j) that fall in the L-neighborhood of !̂ i . P represents the number of detected

true frequencies (P � K ). We consider the average of all errors corresponding to all true

frequencies. Missed frequencies contribute to the error via the termCmdn=N , where Cmd

is the cost parameter for miss detection andn is the number of missed true frequencies.

Similarly, the false alarm frequencies contribute via the termCfa m=N , where Cfa is the

cost parameter for false alarm andm is the number of false frequencies. A false frequency

appears outside theL-neighborhood of eacĥ! i .

The localization error comparison of the RSFT and the SFT is shown in Fig. 2.13,

where the error is obtained by averaging100 Monte Carlo runs. In each run, the signal is

generated based on4 randomly located signi�cant frequencies, and the RSFT is employed

to obtain the frequency setSRSF T
e and the corresponding localization errorlRSF T

err . For the

SFT-based processing, we need to determine the number of peaks to count in the two stages

of detection, i.e., p1 and p2. Since these numbers are unknown, we test di�erent values of

p1; p2 and compute the correspondinglSF T
err . The results are shown in Figs. 2.13 (a) and

(b). The error components averaged̀ 1 distance, cost of miss detection and cost of false

alarm are also displayed. We observe that, while �xingL , as p1; p2 are increased, the cost

of the averaged`1 distance increases and the cost of miss detection decreases as expected.

For a �xed p2 (p1), there exist an optimal range for p1 (p2), which leads to a lower lSF T
err .

However, the lowest lSF T
err is still larger than lRSF T

err calculated for the same setting. The

lerr is in�uenced by the half width of the vicinity window L. In Figs. 2.13 (c) and (d), we

show that lRSF T
err is stable whenL exceeds2. For lSF T

err , as L increases, the cost from the

false alarm decreases, while the averaged̀1 distance increases. This is mainly due to the

frequency leakage in the vicinity of a strong frequency.

2.7.6 The Variance and Its Upper Bound for [�a]i

The random variable under test in the second stage detection is[�a]i ; i 2 [N ]. For solving

(2.28), we approximate the variances of[�a]i under both hypotheses by their upper bounds.

In this section, we show via simulations that the actual variances are close to their upper

bounds. Hence, we study the variance underH1, i.e., � 2
a1(! m ). The case for� 2

a0(! m ) can

be similarly studied. As shown in (2), the discrepancy of� 2
a1(! m ) from its upper bound
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(a) (b)

(c) (d)

Figure 2.13: Comparison of localization error for RSFT and SFT.B = 256; Cmd = Cfa = 1 .
The localization error may be decomposed into averaged̀1 distance, cost of miss detection
and cost of false alarm. (a) The impact ofp1 on lSF T

err when p2 = 20; L = 6 . (b) The impact
of p2 on lSF T

err when p1 = 40; L = 6 . (c) The impact of L on lRSF T
err when p1 = 40; p2 = 20.

(d) The impact of L on lSF T
err when p1 = 40; p2 = 20.



60

is due to the ~Pd's dependence on� s, which is caused by� and � 's dependence on� s (see

Fig. 2.7). Monte Carlo simulations, presented in Fig. 2.14 indicate that the normalized

approximation error, i.e., T �Pd (! m )(1 � �Pd (! m )) � � 2
a1 (! m )

� 2
a1 (! m ) decreases asT grows, since a largerT

causes the di�erence of~Pd(! m ; � s) between di�erent permutations to average out. Moreover,

even for a smallT , such asT = 10, one can see that the error is as small as about1:6%,

which means the approximation is reasonable.

Figure 2.14: Normalized approximation error between the actual variance� 2
a1(! m ) and its

upper bound, versus number of iterations.

2.7.7 SNR Loss due to RSFT as Compared with the FFT-based Method

The counterpart of the RSFT-based signal processing is the FFT-based Bartlett method

followed by an NP detection procedure [39, 40] (see Algorithm 2 for details). To compare

the two methods, in Section M we derive the relationship between thePd and the Pfa for

the Bartlett method using the same signal model as that of the RSFT.

As compared with the FFT-based Bartlett method, the reduction of complexity of RSFT

is achieved at a cost of degradation of detection performance; such degradation can be
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compensated by increasing the SNR of the weakest sinusoid, i.e.,SNRmin . The tradeo�

between complexity andSNRmin involves the reduced data length,B . Typically, a smaller

B yields lower computational complexity and requires a largerSNRmin ; this is shown in

Fig. 2.15 for di�erent sparsity level, K . A small K requires a lowerSNRmin . The case for

the FFT-based Bartlett method to achieve the same detection performance as that of RSFT

is also shown. WhenB = 128; K = 5 , the computation savings of RSFT as compared with

the Bartlett method is approximately 7dB, meanwhile, theSNRmin required by the former

is approximately 11dB greater than the latter.

Note that when B = N , the complexity of the RSFT is greater than that of the Bartlett

method, also, the detection performance of former is worse than the latter. This is due to

the two stages of windowing in RSFT degrade the SNR. Hence, in the case ofB = N , one

would adopt the FFT-based, rather than RSFT-based processing.

Figure 2.15: Worst case SNR and complexity tradeo�. N = 1024; T = 50; D = 0dB; B =
f 8; 16; 32; 64; 128; 256; 512; 1024g; Pd = 0 :9; Pfa = 10 � 6; K = f 5; 10; 100g; ! m = � ! N =2.
The red dot shows the performance of the Bartlett method.
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2.7.8 Characterize the Detection Performance for K Targets

We use therecall and precision [44] to quantify the detection performance; those metrics

are widely used in the detection of multiple objects . The recall is de�ned as the ratio of

the number of true positives to the number of frequencies existed in the signal, i.e.,K . The

precision is de�ned as the ratio of the number of true positives to the number of detected

frequencies. The higher the recall and the precision, the better performance of the system.

In Fig. 2.16, we show the recall and precision versus SNR for di�erentK . For a �xed

K value, we compute thePd for di�erent SNR when Pfa = 10 � 2 using (36) of [36]; here,

we use a relatively largePfa for the purpose of visualization. Based on this, the recall and

precision can be predicted, i.e., the recall should be the same toPd, while the precision can

be computed as

P =
PdK

PdK + ( N � K )Pfa
: (2.32)

We compare the predicted recall and precision values with the experimental results. For the

experiments, we generate signals containingK signi�cant frequencies at various SNR values.

The locations of the frequencies are random, and we guarantee that the spacing between two

frequencies are large enough so that the RSFT can resolve. We use the computed optimal

thresholds to detect the frequencies. After detection, due to windowing, each continuous-

valued frequency may be represented by a cluster of frequencies. We extract the center

location of each cluster and compare it with the ground truth location. A detection is

regarded as a true positive if the center location of the cluster is within� 1 neighboring

bins of the ground truth location. The center locations of clusters which do not fall into

the neighborhood of any ground truth locations are regarded as false alarms. Fig. 2.16

shows that, as expected, the recall and precision become larger as SNR grows. The recall

for K = 5 is always greater than that the cases whenK = 50 for a same SNR due to that

the Pd of the former is always greater than the latter. On the other hand, the precision

of the former is worse than that of the latter, which can be explained by (2.32). While

the recall calculated from experiments matches well with the predicted values, the precision

calculated from experiments are slightly better than the predicted results, which suggests

the number of actual false alarms are smaller than expected.
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Figure 2.16: Recall and precision versus SNR for di�erentK . Pfa = 10 � 2; D = 0dB; T =
50; N = 1024; B = 256; K = K max .

2.8 Summary

We have proposed a robust version of the simple and practical SFT algorithm, i.e., RSFT.

RSFT employs a pre-permutation window and NP detection to address the o�-grid fre-

quency and frequency detection problems arising in the application of SFT in real-world

situations. We have shown that the RSFT is robust in detecting frequencies when exact

knowledge of signal sparsity is not available. The optimal design of parameters in RSFT

have been analyzed, and the tradeo� between detection performance and computational

complexity has been investigated. Such analysis has revealed that RSFT could provide an

extra degree of freedom in design to trade o� the system's ability to detect weak signals

and complexity. Some interesting properties of the RSFT have also been revealed by our

analysis. In particular, the performance of detection not only relies on the frequency under

examination, but also depends on other co-existing signi�cant frequencies. This is because

the co-existing frequencies generate ambiguity locations in the reverse-mapping procedure,

which raises the noise �oor in the second stage detection.
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Chapter 3

RSFT-based DBF and MIMO Radar Signal Processing

Conventional radar signal processing employs multidimensional Discrete Fourier Transform

(DFT) to compute frequencies that are related to target parameters including range, range

rate and Direction of Arrival (DOA). The DFT is usually implemented by the Fast Fourier

Transform (FFT). The sample and computational complexity of the FFT is O(N ) and

O(N logN ), respectively, whereN is the number of samples. For modern Digital Beam-

forming (DBF) and Multiple-Input Multiple-Output (MIMO) radar systems, N is large due

to increasing of the dimension of processing and increased resolution in each dimension. Fur-

thermore, some radar systems such as automotive radars have highly constrained hardware

due to limited size and the low-cost requirement. Hence, the real-time signal processing of

those radar systems remains a challenging problem. This motivates us to employ SFT-based

radar signal processing to reduce the complexity of radar signal processing.

In Chapter 2, we proposed the Robust Sparse Fourier Rransform (RSFT), which en-

joys low computational complexity as compared with the conventional FFT-based method,

while addresses noisy signals containing o�-grid frequencies. In this chapter, we formulate

RSFT based radar signal processing frameworks for DBF radars using (linear) Frequency

Modulation Continuous Waveform (FMCW), and MIMO radars using pulse-compression

waveforms. To this end, the radar signal processing schemes are designed to support the

application of RSFT, and the proper pre-processing is adopted to sparsify signals in cases

when signals are not naturally sparse in a speci�c domain.
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3.1 RSFT-based DBF Radar

3.1.1 Conventional Signal Processing of DBF Radar

A DBF radar can see targets everywhere at anytime. Unlike a traditional phased array radar

which has to steer its beams, in DBF radars, a broad transmitting beam pattern is achieved

by an omni-directional transmitter and multiple narrow beams are formed simultaneously

after receiving the re�ected signal. The beam pattern of an DBF radar is shown in Fig. 1.5

with a Uniform Linear Array (ULA) con�guration.

Near range DBF radars are important both in military and civilian vehicular applica-

tions. In military applications, for instance, such kind of radars are well suited in active

protection systems [45], allowing sensors on a vehicle to detect and locate the warheads of

a closely �red rocket-propelled grenade within milliseconds. In addition to its wide angle

coverage, high precision of measurement and all-weather operation render the DBF radar

an ideal sensor for active protection system. In civilian applications, DBF radars play a

more and more important role in Automotive Driver Assistance Systems (ADAS) and self-

driving applications, where the radar o�ers high precision measurement in range, range rate,

and DOA domains; this provides important information of surroundings to the perception

systems of ADAS and self-driving systems [46, 11, 47].

In order to achieve high range resolution and cover near range, in the aforementioned

applications, the DBF radar usually utilizes the FMCW waveform, as introduced in Section

1.2. Let us assume that the transmit waveform is grouped into bursts, with each burst

contains M Repetition Intervals (RIs). Mathematically, the transmitted waveform can be

expressed as

s(t; v) = A cos(2� (f c(t � vTp) + �� (t � vTp)2); (3.1)

where Tp is the RI, v 2 [M ] denotes thev-th RI, A is amplitude of the signal, f c is the

carrier frequency and� is the chirp rate. Furthermore, without loss of generality, we assume

that the initial phase of the signal is zero.

Upon reception, a de-chirp process is implemented by mixing the received signal with

the transmitted signal, followed by a low-pass �lter. The received signal is a delayed version

of the transmitted one, hence by mixing the two signals, the range information of the targets
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is linearly encoded in the di�erence of the frequencies. Hence in thes-th, s 2 [T] burst, for

the i -th, i 2 [N ] receiving channel (corresponding to anN -element ULA of half-wavelength

element-wise spacing), the de-chirped signal of thev-th RI is expressed as

r i;s (t) =
K � 1X

k0

a[k](s) cos
�

2� (( f [k]
r + f [k]

d )( t � vTp) + i� sin � [k]
�

+ n(t); (3.2)

which is a superposition ofK sinusoids (corresponding toK targets) and additive noisen(t).

For the k-th sinusoid, a[k](s) represents its amplitude, which can be modeled as a Gaussian

random process. More speci�cally, the amplitude is assumed to be static within a burst,

and independent between bursts. This assumption is consistent with the Swerling-I target

model [9], which represents a slow �uctuation of the target RCS.f [k]
r ; f [k]

d are the frequency

components respect to target's range and velocity respectively, i.e.,

f [k]
r =

2�r [k]
t

c
;

f [k]
d =

2v[k]
t

�
;

(3.3)

where r [k]
t ; v[k]

t ; c are the k-th target's range, velocity and speed of wave propagation respec-

tively. After analog-to-digital (AD) conversion, the received signal of each channel becomes

R samples within each RI, with each sample representing a range bin.

The DOA of the k-th target, i.e., � [k] is de�ned as the angle between the line of sight

(from the array center to the target) and the array normal. Assuming that the element

wise spacing is�= 2, under the narrow-band signal assumption,� [k] will cause an increase of

phase at the neighboring array element equal to� sin � [k]. We omit the constant phase term

in each sinusoids of (3.2), since they are irrelevant to the performance of the algorithm.

After AD conversion of each receiving channel, we can use the processing scheme shown

in Fig. 3.1 to detect the targets as well as estimate their range, velocity and DOA. More

speci�cally, grid-based versions off [k]
r ; f [k]

d ; � sin � [k] can be calculated by applying a three

dimensional (3-D) FFT on the windowed data cube [11], and then, after accumulation of

T iterations (a di�erent burst of signal is processed in each iteration), the NP detection

procedure can be performed.
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Figure 3.1: Conventional FFT-based processing scheme for FMCW DBF radars.

3.1.2 RSFT-based DBF Radar Signal Processing

The RSFT algorithm is suitable for reducing the computational complexity of the DBF

radar using FMCW for the following reasons:

� The number of targets is usually much smaller than the number of resolution cells

in 3-D range, Doppler and DOA space, which implies that the signal is sparse after

proper translation.

� With a ULA and digitization of each received element, the signal is uniformly sampled

both in spatial and temporal domain.

� The short range coverage implies that moderate high SNR is easy to achieve as com-

pared with long range radars.

The RSFT-based DBF radar processing architecture is shown in Fig. 3.2. Compared

to the conventional processing in Fig. 3.1, the3-D FFT is replaced with a 3-D RSFT, in

which the aliasing procedure reduces the data cube size fromR � N � M to B � C � D ,

with B < R; C < N; D < M . The 3-D FFT operated on the smaller data cube could reduce

the computation time signi�cantly.

Based on the radar architecture described by Fig. 1.2, we verify the feasibility of the

RSFT-based DBF radar processing and compare it to simple and practical SFT based pro-

cessing via simulations. The main parameters of the system are listed in Table 3.1. The
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Figure 3.2: RSFT-based processing scheme for the DBF radar.

design of the system can guarantee non-ambiguous measurements of the target's range and

velocity, assuming the maximum range and velocity are less than1:5km and 300m=s, re-

spectively.

We generate signals from4 targets according to (3.2). The range, velocity and DOA

of targets can be arbitrarily chosen within the unambiguous space, which implies that the

corresponding frequency components do not necessarily lie on the grid. The targets' para-

meters used in the simulation are listed in Table 3.2. For targets3 and 4, we use the same

range and velocity values but set their DOA to be4� apart; this is close to the theoretical

angular resolution after windowing for the Bartlett beamforming. To compare RSFT and

simple and practical SFT for di�erent scenarios, we adopt two sets of SNR for targets. For

the �rst set, we use the same SNR, i.e.,� 10dB for di�erent targets, while for the second set,

we assign di�erent SNR values to di�erent targets, which is closer to a realistic scenario.

Simple and practical SFT is a1-D algorithm. In order to use it for reconstructing targets

in the 3-D space, we extend it along the lines of the multidimensional RSFT, as described
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Table 3.1: DBF radar parameters

Parameter Symbol Value
Number of range bins R 2048

Number of receiving channels N 64
Number of RI M 32
Wave length � 0:03m

Wave propagation speed c 3 � 108m=s
Bandwidth Bw 150MHz

Repetition interval Tp 5 � 10� 5s
Maximum range Rmax 1:5 � 103m

Chirp rate � 3 � 1012Hz=s
Sampling frequency (IQ) f s 41MHz

Reduced data length in range B 128
Reduced data length in DOA C 32

Reduced data length in velocity D 16

Table 3.2: Target Parameters

Target Range ( m) Velocity ( m=s) DOA ( � ) SNR (dB)
1 1000 100 30 � 10=0
2 500 50 0 � 10= � 10
3 350 240 � 16 � 10= � 20
4 350 240 � 20 � 10= � 20

in Section 2.6. For simple and practical SFT, due to existence of the large number of

peaks from leakage, even if the exact number of targets is known, it is still not clear how

one can determine the number of peaks to be counted. Hence, in the implementation of

simple and practical SFT in the experiment, we gradually increase the number of peaks

that are counted until all the targets are recovered. This is not realistic in real-world radar

applications because we will never know that if all the targets within radar coverage are

detected. On the other hand, the RSFT can do e�ective detection by knowing the SNR

of the weakest frequency, dynamic range, noise variance and a sparsity bound. Typically,

these parameters can be found in the design speci�cations or from the �eld test of the radar.

For the case of the same SNR setting, all the targets are recovered after around20 peaks

are counted in simple and practical SFT. For the second SNR setting, simple and practical

SFT needs to count nearly200 peaks to recover the weakest targets (Targets3 and 4).

Figs. 3.3 and 3.4 show the target reconstruction results for the two settings, respectively.

The former shows that both simple and practical SFT and RSFT can perfectly recover all
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the targets that have the same SNR. From targets3 and 4 we can see that simple and

practical SFT based method achieves a better resolution than its RSFT counterpart, which

is expected since the former does not require a pre-permutation window. Such reduction in

resolution is common and usually inevitable in many DFT-based applications that utilize the

windowing technique to reduce frequency leakage; the reduction is usually minor and can be

compensated by a proper system level design. For example, to compensate for the resolution

reduction in the range domain, one can extend the bandwidth of the waveform to a desired

level. In the second scenario, simple and practical SFT based method shows the side-lobes of

the stronger targets, while the RSFT-based method only recovers the (extended) main-lobes

of all the targets.

The simulation shows that the RSFT-based approach is better than its simple and practi-

cal SFT counterpart for a realistic scenario, within which the signal has a reasonable dynamic

range. We should emphasize that in a real radar system, determining the number of peaks

to be counted for simple and practical SFT based method lacks a theoretical foundation,

while the thresholding approach in the RSFT is consistent with the conventional FFT-based

processing, both of which are based on the Neyman-Pearson criterion.

3.2 RSFT-based MIMO Radar

As introduced in Section 1.4, MIMO radars employ multiple transmit and multiple receive

antennas to simultaneously form multiple beams. Compared to DBF radars, collocated

MIMO radars [14, 16] enjoys improved parameter identi�ability due to he increased degree

of freedom in transmission.

The MIMO radar's wide angle coverage shown in Fig.1.5 is achieved by multiple chan-

nels for transmitting and receiving. During the transmission, a set of mutually orthogonal

waveforms are transmitted by each array element with an omni-directional beam pattern;

after the signal is received from each digitized receiving channel, multiple narrow beams are

formed in the Digital Signal Processor (DSP) using beamforming methods.

The implementation of MIMO radars usually involves high cost, which is mainly due to:

1) the large number of transmit and receive Radio Frequency (RF) channels; and 2) the high
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Figure 3.3: Target reconstruction via 3-D simple and practical SFT and RSFT; all tar-
gets have the same SNR. Both simple and practical SFT and RSFT based methods can
reconstruct all the targets, while simple and practical SFT has better resolution.

Figure 3.4: Target reconstruction via3-D simple and practical SFT and RSFT with di�erent
SNR for the 4 Targets. Simple and practical SFT based processing recovers the side-lobes of
the stronger targets, while the RSFT-based method only recovers the main-lobes of targets.


