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ABSTRACT OF THE DISSERTATION

Roots of Polynomial Congruences

By MATTHEW C. WELSH

Dissertation Director: Henryk Iwaniec

In this dissertation we derive and then investigate some consequences of a parametriza-

tion of the roots of polynomial congruences. To motivate the later chapters, we begin

in chapter two by reviewing known results, presented in our own style, about the roots

of the quadratic congruence µ2 ≡ −1 (mod m). We also review in chapter two appli-

cations of the parametrization to the equidistribution and well-spacing of these roots.

In chapter three we generalize this classical parametrization of the roots of a quadratic

congruence to the cubic congruence µ3 ≡ 2 (mod m). Several new phenomena are re-

vealed in our derivation, but a special case of the cubic parametrization is seen to be

roughly analogous to the quadratic case. We use this case to prove a spacing property

analogous to the well-spacing of the quadratic roots, but unfortunately between the

points
(
µ
m ,

µ2

m

)
instead of the µ

m themselves. In chapter four we consider this special

case for an arbitrary polynomial congruence of any degree, deriving a parametrization

for the roots of these congruences. And just as in chapter three, we are able to prove

a spacing property for certain points related to the roots. Finally, in chapter five we

return to the congruence µ3 ≡ 2 (mod m) to explore some of the new phenomena men-

tioned above with a view towards obtaining equidistribution and well-spacing results.

We unfortunately do not prove any concrete results in these directions.
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Chapter 1

Introduction

The study of the distribution of roots of quadratic congruences provides one of the

best applications of the spectral theory of automorphic forms on SL2(Z)\SL2(R) to

questions in arithmetic. The first result on the distribution of these roots came with no

reference to automorphic forms in [Hoo63], where it was incidentally proved that the

sequence { ν
m
∈ R/Z : ν2 +D ≡ 0 (mod m)

}
is equidistributed modulo 1. This equidistribution is of course equivalent to finding

cancellation in the following Weyl sum:

∑
m≤x

∑
f(v)≡0(m)

e

(
hν

m

)
, h ∈ Z,

with f a fixed quadratic polynomial. In fact strong bounds for this Weyl sum is really

what one needs for applications. For an example of such an application see [Iwa78],

where bounds for the above sum, and similar sums with m restricted to be divisible by

an integer d, are used to show that n2 + 1 is infinitely often a prime or product of two

primes.

In [Hoo63] the bound �h x3/4(log x)2 for the Weyl sum above (with h 6= 0, of

course) was proved using the Weil bound for Kloosterman sums. In retrospect one

could have already seen the relevance of the spectral theory of automorphic forms in

light of the appearance of a sum of Kloosterman sums. However the introduction of

this theory in [Byk87] came in a different package. Only for D > 0, [Byk87] proved the

bound �h x
2/3 log x for the Weyl sum, or �h x

1/2(log x)2 for a smooth version, which

is best possible. The proof proceeds by relating the smoothed version to a Poincaré

series on SL2(Z)\H, which was then estimated by its spectral expansion and, in the end,
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bounds on the Fourier coefficients of automorphic forms. Only a little later1 bounds of

the same strength where produced by a slightly different method in [Hej86] for specific

examples of D, all negative.

The strategy of [Byk87] matured in [DFI95], where the method was extended to

apply to the Weyl sum with m restricted to be divisible by an integer d. This restricted

Weyl sum was also related to a Poincaré series, but now for a congruence subgroup of

SL2(Z), and estimates were produced with enough uniformity in h and d to use in a

sieve idea coupled with bilinear forms techniques. The final result was a proof of the

equidistribution of the sequence{
ν

p
∈ R/Z : ν2 +D ≡ 0 (mod p)

}
,

where p is a prime number and D > 0.

In contrast to the previously mentioned results [Hoo63] and [Iwa78] that did not

use the spectral theory of automorphic forms, the method originating in [Byk87] did

not directly transform to Kloosterman sums. It was in [T0́0] that the restriction to

D > 0 was removed from the equidistribution of roots of quadratic congruences to prime

moduli in [DFI95] by doing exactly that: transforming the Weyl sum and then using

the spectral theory of automorphic forms to bound the resulting sum of Kloosterman

sums.

More recent years have seen significant development of the spectral theory of au-

tomorphic forms on SL3(Z)\SL3(R). For just a taste, one can see the Kuznetsov-like

trace formulae of [Li10], [But12], and [Blo13]. And while this spectral theory has seen

some great applications, one can see in addition [BBM17], to the author’s knowledge

direct applications to arithmetic have been limited. Although there is hope, see for

example the introduction to [But12] and the introduction to section 4.1 of [Ter88], that

the future will see applications of this theory to questions of a cubic nature in much the

same way that the spectral theory of SL2(Z)\SL2(R) has been so fruitful to questions

1Although our reference to [Byk87] dates to 1987, the original version was published in 1981 in
Russian.
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of a quadratic nature, the distribution of quadratic congruences being perhaps the best

example.

It was in this spirit that the author undertook the study of the distribution of cubic

congruences with the hope that we might see the application of the spectral theory

of SL3(Z)\SL3(R) to this question. But despite some encouraging results from our

investigations it seems to the author that this hope may have been premature.

Before continuing, we should remark that the equidistribution of the sequence{ ν
m
∈ R/Z : f(ν) ≡ 0 (mod m)

}
,

with f any irreducible, integral polynomial has been proven in [Hoo64]. But as men-

tioned before, the real interest in the equidistribution lies in strong bounds for the

Weyl sum, and the estimate obtained in [Hoo64], saving only a fraction of a power of

a logarithm, is far too weak for any applications along the lines of those in [Hoo63] or

[Iwa78]. For these applications, we imagine one would need at least a power savings.

We also remark that, for f(X) = X3 − 2, the setting in which we will concern

ourselves in chapters 3 and 5, [Hoo78] has touched on the Weyl sums∑
m≤x

∑
µ3≡2(m)

e

(
hµ

m

)
, h ∈ Z,

which we consider our ultimate goal, even though we do not make any concrete progress

towards a bound here. Indeed in [Hoo78] a parametrization of m and µ (mod m) with

µ3 ≡ 2 (mod m) is given, and we obtain this same parametrization in corollary 3.5 by

different means in section 3.2. Our method however reveals something more, namely

theorems 3.1 and 3.4.

Finally, we remark that some of the content of chapter 3, and also some of this

introduction, appeared in an earlier work by the author, [Wel18]. To be specific, corol-

lary 3.3, corollary 3.5, theorem 3.8, theorem 3.10, and theorem 3.11 were all proved

previously in [Wel18]. However, we do take a slightly different approach here, perhaps

most importantly by considering corollary 3.3 as a consequence of the more general

theorem 3.1. This theorem, theorem 3.1, takes a central role in chapter 5.

We start in chapter 2 by proving in our own way the parametrization of the roots of a
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quadratic congruence, specifically µ2 + 1 ≡ 0 (mod m). This parametrization, theorem

2.2, forms the foundation for all the results on the distribution of these roots mentioned

above. Differing only superficially from the classical derivation of the parametrization,

we first prove in section 2.1 a correspondence, theorem 2.1, between the roots, m and µ

(mod m), and ideals in Z[i]. This can be seen to be the same as the classical connection

between the roots of the congruence and binary quadratic forms with discriminant −4.

We then finish our derivation of the parametrization, theorem 2.2, in section 2.2 using

the fact that Z[i] has class number one, just as in the classical derivation that uses

the fact that all binary quadratic forms with discriminant −4 are SL2(Z) equivalent to

X2 + Y 2.

This parametrization of quadratic roots then leads to an approximation, given in

theorem 2.3, to µ
m within O

(
1
m

)
by a fraction with much smaller denominator, size

√
m. This approximation was a key step towards bounding the Weyl sum for the roots

in [Hoo63], [Iwa78], and [T0́0]: all the works where the Weyl sum was transformed

directly to a sum of Kloosterman sums. We outline this transformation in section 2.5.

In a different direction, the approximation given in theorem 2.3 is also used to

provide upper bounds for the number of the µ
m contained in short intervals, theorem

2.6. In a sense this is about the same as proving a lower bound for the space between

different µ
m , only a little weaker. This well-spacing point of view however is not essential

and leads to unnecessary difficulties, so in what follows we avoid it in preference to

upper bounding the number in short intervals. And we will, somewhat confusingly we

admit, refer to these upper bounds in short intervals as spacing results. We present a

consequence of this spacing property in theorem 2.5, namely a large sieve inequality for

the roots. Although the spacing property is not as refined as the equidistribution, this

large sieve has applications beyond what can be produced via bounds for the Weyl sum,

see for example [FI97] and [FI98]. This should be encouraging to us because although

we do not prove an equidistribution result for the roots of a cubic congruence, we do

obtain a somewhat analogous large sieve inequality for these cubic roots in chapter 3.

However we unfortunately do not have any applications at this time.

We emphasize that none of the results in chapter 2 are new, only our presentation is
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our own. The purpose of this chapter is rather to provide motivation for what follows

in chapter 3. As mentioned above, generalizing the situation of chapter 2, in particular

section 2.5 where the spectral theory of automorphic forms comes into play, to roots

of higher degree congruences was a primary motivation for the investigations here, a

motivation that is unfortunately still unrealized.

We begin our this generalization in chapter 3 by considering roots of the specific

cubic congruence µ3 ≡ 2 (mod m) in order to facilitate the exposition. The structure

of chapter 3 is similar to chapter 2. Just as in the quadratic case, we begin in section

3.1 by proving a correspondence between the roots and ideals in the cubic ring Z[21/3],

theorem 3.1. This correspondence differs from the quadratic correspondence in that

ideals no longer correspond to a single m and µ (mod m) satisfying µ3 ≡ 2 (mod m),

but rather a pair µ (mod m) and ν (mod n) of genuinely distinct roots of the con-

gruence. However, one can specialize to the case with n = 1, giving a correspondence

between ideals and roots µ (mod m) and, as it turns out, µ2 (mod m). This is the

content of corollary 3.3, and the associated corollary 3.2 gives a characterization of the

special ideals corresponding to the case n = 1: they are the ideals I such that Z[21/3]/I

is additively cyclic, or alternatively the ideals with only degree one prime factors, none

of which are conjugate.

These correspondences, theorem 3.1 and corollary 3.3, respectively give rise to the

parametrizations in theorem 3.4 and corollary 3.5, which are proved in section 3.2.

Theorem 3.4 gives a parametrization for both of the roots µ (mod m) and ν (mod n)

from the correspondence in theorem 3.1, while corollary 3.5 gives the parametrization

of µ (mod m) and µ2 (mod m). As mentioned previously, this latter parametrization

has been proved previously using ternary cubic forms in [Hoo78], although the author

found the derivation presented here without knowledge of this work. On the other hand,

the more general parametrization in theorem 3.4 is to the author’s knowledge new.

We continue in section 3.3 just as in chapter 2 by using the parametrization of

the roots to derive, via an LU decomposition, an approximation to the µ
m . The LU

decomposition also gives an expression for ν
n that typically leads to an approximation

when it is applied in the context of theorem 3.4, and it gives an approximation to µ2

m
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in the context of corollary 3.5. These approximations are given in theorems 3.7 and

3.8. In theorem 3.7 it is shown that the approximations to µ
m are all within O

(
1
m

)
and

have denominator of size m2/3n1/3, perhaps suggesting that it is best to assume n = 1.

For the remainder of chapter 3 we only consider this case, and we return to general n

in chapter 5.

In this special case with n = 1, there is another way to derive the approximations

to µ
m and µ2

m that is equivalent to the LU decomposition apart from the point of view.

We will find this point of view useful in the later sections of chapter 3. The alternative

derivation presented in section 3.3.2 manifests the approximation to the point
(
µ
m ,

µ2

m

)
as the intersection of two lines in R2. The utility of this point of view is revealed in the

following section, section 3.4, where we prove proposition 3.9 on the spacing between

torsion points in R2/Z2. When this proposition is applied to the approximations of

theorem 3.8, it yields theorem 3.10, a spacing property for the points
(
µ
m ,

µ2

m

)
. We

then close chapter 3 by deriving a 2-dimensional large sieve inequality, theorem 3.11,

almost as a corollary from theorem 3.10.

In both chapters 2 and 3 we used particular examples to facilitate the exposition, the

examples being µ2 ≡ −1 (mod m) and µ3 ≡ 2 (mod m). Apart from being concrete,

these examples have three key properties that aid our proofs: the associated rings Z[i]

and Z[21/3] are maximal, these rings are both principle ideal domains, and the units of

both rings are convenient to work with. In chapter 4 we both address these concerns and

generalize to higher degree, considering a general polynomial congruence, say of degree

d. However, we only generalize the aspects of chapter 3 that pertain to the special case

with n = 1 referred to above. We recall that corollary 3.2 says that the ideals with

n = 1 in theorem 3.1 are exactly the ideals I with Z[21/3]/I additively cyclic. For the

general congruence, we prove proposition 4.1 in section 4.1, which characterizes in a

similar way the ideals with cyclic quotient, and we prove a correspondence, theorem

4.2, between these ideals and the roots µ (mod m) of the congruence.

As in chapter 3, the general correspondence of theorem 4.2 is used to derive a

parametrization of the roots, with a few caveats. First, we remark that the proof of

theorem 4.2, in particular the proof of proposition 4.1, seems to depend crucially on the
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ambient ring being monogenic, Z[α] for a root α of the polynomial congruence under

consideration. This causes us no problems in principle since we are taking the point

of view that the polynomial, rather than the order, is the object of interest. However,

we do then run into the issue of ideals possibly being not invertible. While it would

be interesting to the author to characterize in simpler terms exactly the roots that

correspond via theorem 4.2 to non-invertible ideals, here we brush away the issue by

considering in the later sections of chapter 4 only those roots that do correspond to

invertible ideals.

A second issue is that the number of ideal classes of Z[α] will typically be greater

than one, but this also does not cause too much difficulty since we can simply consider

each ideal class separately when it comes to the question of spacing. We execute this

splitting in section 4.2, resulting in a parametrization of not only the root µ (mod m),

but also all of the µj (mod m), 1 ≤ j ≤ d−1. This parametrization is given in theorem

4.3.

We continue in section 4.3 as we did in chapters 2 and 3, finding an approximation

to the point
(
µ
m , . . .

µd−1

m

)
within O

(
1
m

)
, see theorem 4.4. Here we encounter another

a difficulty of the general setting. In chapters 2 and 3 we chose a specific fundamental

domain for the action of the units in the relevant ring in order to ensure a good error,

see proposition 3.6. This can be replicated easily as long as Q(α) has at least one real

embedding, but the author does not know how to make this work when Q(α) has no real

embeddings. Instead we sacrifice some concreteness in the approximation of theorem

4.4 in order to obtain the error bound.

The approximation, as it is in chapter 3, is a torsion point in Rd−1/Zd−1 with

torsion � m1−1/d. Since again the spacing between torsion points can be controlled

by the size of the coefficients of the integral lines containing the point, see proposition

4.5, which is proved in section 4.4, we derive the approximation as the intersection of

d − 1 co-dimension 1 hyper-planes in Rd−1. The lines passing through the point are

then realized as the intersections of subsets of d− 2 of these hyper-planes, which leads

to the well-spacing of the approximations and then to a spacing property, theorem 4.6,

of the points
(
µ
m , . . . ,

µd−1

m

)
themselves. We remark that this spacing property can be
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used to obtain a (d− 1)-dimensional large sieve inequality, quoted in theorem 4.7, but

we do not present a derivation here because the proof is so similar to that of section

3.5.

After achieving some success in generalizing the results on the roots of a quadratic

congruence outlined in chapter 2, we should appraise our results. And unfortunately

we must admit that they fall short in several ways. For example, the large sieve for

the roots of the congruence µ2 ≡ −1 (mod m), theorem 2.5, plays a key role in [FI97],

where it is used to establish level of distribution results for the sequence of integers of the

form a2 + b2 where b is restricted to be prime, for example. A main observation in this

application is that one needs an optimal level of distribution in order for sieve/bilinear

forms techniques to be able to capture primes, as is done in [FI97]. In turn, this

optimal level of distribution depends on the large sieve of theorem 2.5 exhibiting square

root cancellation on average. One might hope that the large sieve for roots of the

cubic congruence µ3 ≡ 2 (mod m), theorem 3.11, might be used to establish level of

distribution results for sequences of integers with the form a3 + 2b3 + 4c3 − 6abc with

some restrictions on b and c. Indeed one can obtain some results in this direction, but to

the author’s ability these results will not be optimal because the large sieve of theorem

3.11 does not exhibit square-root cancellation on average. On top of this weakness is

that level of distribution results for sequences of the form a3 + 2b3 with restrictions

on b would be far more attractive, and it would seem that one needs a 1-dimensional

large sieve for this. Even further, we have not yet even considered the question of

equidistribution of the roots!

We recall that in section 2.5 we outline a proof for the equidistribution of the µ
m for

the congruence µ2 ≡ −1 (mod m). The key in this proof is the transformation of the

Weyl sum for the µ
m into a sum of Kloosterman sums, which is achieved by first relating

the Weyl sum to a sort of Poincaré series for SL2(Z) via the parametrization and ap-

proximation of theorems 2.2 and 2.3. We remark that the fact that the parametrization

uses every coset in the quotient of SL2(Z) by lower triangular matrices is crucial for

making this translation. On the other hand, the parametrization of the cubic roots,

theorem 3.4, the cosets used form a small subset; indeed the Plücker coordinates of the
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used cosets satisfy an additional quadratic constraint in addition to the generic one.

In chapter 5, we take the step suggested by this observation: we parametrize those

cosets used in theorem 3.4 in a way that works naturally with the approximation in

theorem 3.7. The main tool for realizing this is the arithmetic of binary cubic forms,

discussed in section 5.1. The entrance of binary cubic forms is perhaps not surprising,

but unfortunately the situation is not nearly so simple as in the quadratic case. In fact

this point of view does not lead us to us to any concrete results here. Nevertheless, we

do discuss in section 5.3 an attempt at applying these ideas to transform the Weyl sum

for the roots of the congruence µ3 ≡ 2 (mod m). Before this we make a short digression

to estimate the number of ideals ordered by the corresponding m and n in theorem 3.1.

What we need for the transformations in 5.3 is an estimate, proposition 5.4, for the

number of ideals corresponding to a fixed µ (mod m) with control on the size of the

corresponding n. And although it is not entirely relevant to our purposes, we end up

computing the co-type zeta function for the ring Z[21/3], proposition 5.3. The co-type

zeta function here is built out of the invariant factors of the ideals in Z[21/3], and in

general it has been used to study the growth of subgroups, see for example [Pet07] and

[CKK17].
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Chapter 2

Roots of a quadratic congruence

The classic derivation of the parametrization of the roots of quadratic congruence µ2 ≡

−1 (mod m), theorem 2.2 below, proceeds by considering binary quadratic forms with

discriminant −4. It happens that all these forms are equivalent under the action of

SL2(Z), and in particular equivalent to the form X2 + Y 2. On the other hand, if we

have a solution to µ2 ≡ −1 (mod m), then the integral binary quadratic form

mX2 + 2µXY +
µ2 + 1

m
Y 2 (2.1)

has discriminant −4, and we note that every form with discriminant −4 can be written

this way. By the SL2(Z)-equivalence of this form to X2 + Y 2, there exists integers a,

b, u, and v with au+ bv = 1, or in other words there is a matrix a v

−b u

 ∈ SL2(Z), (2.2)

such that

(aX + vY )2 + (−bX + uY )2 = mX2 + 2µXY +
µ2 + 1

m
Y 2. (2.3)

Expanding the left side of (2.3) and equating coefficients, we obtain the parametrization

given in (2.9).

We remark that the matrix (2.2) used in this parametrization is not unique. For

one, we can multiply on the right by the matrices0 −1

1 0

 ,

−1 0

0 −1

 , and

 0 1

−1 0

 , (2.4)

which all stabilize the form X2 + Y 2, and the corresponding substitutions would still

satisfy (2.3). We can resolve this ambiguity by insisting that a > 0 and −a < b ≤ a.
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Secondly, we observe that multiplication of (2.2) on the left by matrices of the form1 0

∗ 1

 ∈ SL2(Z) (2.5)

shifts the resulting µ in (2.3) by a multiple of m – this can be seen from the parametriza-

tion (2.9) or from the action of the matrices (2.5) on the form (2.1).

This argument using binary quadratic forms can be generalized to derive the parametriza-

tion of the cubic congruence stated in corollary 3.5 using ternary cubic forms; this is

done in [Hoo78]. However, it is simpler and perhaps more illuminating to use ideals

in a cubic ring, in our case Z[21/3], to prove theorem 3.4, and so in this chapter we

will present an alternative proof of the quadratic parametrization, theorem 2.2, using

ideals in the quadratic ring Z[i]. Nevertheless the parallels between the two approaches

should be quite apparent in this quadratic setting.

We begin in section 2.1 with the proof of the following theorem:

Theorem 2.1. An ideal I ⊂ Z[i] has a unique basis {β1, β2} of the formβ1
β2

 =

mn 0

µn n

1

i

 (2.6)

where m,n > 0 and µ2 ≡ −1 (mod m), and, for uniqueness to hold, µ is considered as

a residue class (mod m).

Conversely, given any such m, n, and µ, the sublattice I of Z[i] with basis {β1, β2}

given by (2.6) is an ideal.

This theorem is the analogue of the classical connection between roots of the con-

gruence µ2 ≡ −1 (mod m) and binary quadratic forms of discriminant −4. In fact, one

can compute quite easily that the binary quadratic form (2.1) is, at least up to the sign

of µ, the norm-form associated to the ideal as stated in theorem 2.1. We remark that

n in the statement of this theorem plays no essential role as it simply acts as an overall

scaling of the ideal. That is n is simply the largest rational integer divisor of the ideal

I. In what follows we lose nothing in assuming that n = 1.

Just as in the classical proof, where the fact that all binary quadratic forms of

discriminant −4 are SL2(Z) equivalent to X2 + Y 2 lead to a parametrization of the
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roots of the quadratic congruence, the fact that all ideals in Z[i] are principle leads to

the following theorem:

Theorem 2.2. Let a and b be integers such that

gcd(a, b) = 1, (2.7)

so that there are integers u and v so that

au+ bv = 1. (2.8)

Then

m = a2 + b2

µ = av − bu
(2.9)

satisfy

µ2 ≡ −1 (mod m). (2.10)

Moreover, every m and µ satisfying (2.10) arises from (2.9), and in fact appears

uniquely if we assume, in addition to (2.7), that a > 0 and −a < b ≤ a.

This theorem is proved in the language of ideals in Z[i] in section 2.2. We remark

that, just as in the classical proof using binary quadratic forms, there is an ambiguity

here in the definition of u and v via the equation (2.8). But, as is elaborated in section

2.2, we will see that different choices of u and v satisfying (2.8) will simply give different

representatives of µ (mod m).

Our next theorem uses the parametrization to derive some statistical information

about the roots, it is as follows:

Theorem 2.3. Let m, µ, a, b, u, and v be as in theorem 2.2. Then

µ

m
=
v

a
+O

(
1

m

)
. (2.11)

In this theorem we have an approximation to the fraction µ
m by another fraction

with denominator of size
√
m, and to an error of size 1

m . We remark that Dirichlet’s

theorem on Diophantine approximation guarantees that most real numbers will have
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such an approximation, so the content of theorem 2.3 is really to give a formula for the

approximation in this situation. The utility of this approximation can be seen in two

applications that we turn to in sections 2.5 and 2.4.

Our first application concerns the distribution of the roots of the quadratic congru-

ence. The Weyl criterion for equidistribution modulo 1 tells us that the sequence of µ
m

(mod 1) with µ2 ≡ −1 (mod m) and ordered by the size of m is equidistributed if for

all non-zero integers h

1

M

∑
m≤M

∑
µ2≡−1(m)

e

(
hµ

m

)
→ 0 (2.12)

as M → ∞. We remark that the factor 1
M is the correct scaling because there are

asymptotically 3
2πM of the roots µ (mod m) with m ≤ M . Denoting by ρ(m) the

number of roots modulo m, we can see this fact quite easily by the calculation

∞∑
m=1

ρ(m)

ms
=

(
1 +

1

2s

) ∏
p≡1(4)

(
1 +

2p−s

1− p−s

)
=
L(s, χ4)

ζ(2s)
ζ(s), (2.13)

where χ4 is the primitive Dirichlet character modulo 4.

Ignoring the dependence on h for exposition, we state the following theorem of

Bykovskii [Byk87]1:

Theorem 2.4. Let f be a fixed smooth, compactly supported function on the positive

real numbers. We have for any real M > 0 and any nonzero integer h,

∑
m

f
(m
M

) ∑
µ2≡−1(m)

e

(
hµ

m

)
�M1/2(logM)2. (2.14)

In section 2.5 we outline the first steps of the proof of this theorem, following the

method of Toth, [T0́0]. Of particular relevance to us in this dissertation is the important

step in the proof in which the sum over the roots of the congruence is approximated by

a sum over cosets in SL2(Z) modulo triangular matrices, see (2.42) and (2.46), which

are consequences of theorems 2.2 and 2.3. In more concrete terms, we notice that in

the approximation given by theorem 2.3, a and v are more or less independent of each

other, that is v
a is an arbitrary fraction with the given size of denominator. Although

1Bykovskii actually proved the bound for an arbitrary quadratic congruence with negative discrim-
inant, and with uniformity in h.
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in the end quite sophisticated machinery is used to bound the resulting sum optimally,

specifically the spectral theory of automorphic forms, this simple observation at least

gives one optimism that a power-savings over the trivial bound might be found. That

the analogue of this observation does not seem to hold in quite the same way will haunt

us in the next chapters.

The other application we discuss is a large sieve inequality proved in [FI97]:

Theorem 2.5. For an arbitrary sequence of complex numbers αl,∑
M<m≤2M

∑
µ2≡−1(m)

∣∣∣∣ ∑
|k|≤K

αke

(
µl

m

) ∣∣∣∣2 � (M +K)
∑
|k|≤K

|αk|2 (2.15)

with absolute implied constant.

This large sieve inequality in [FI97] for a crucial step towards proving that there

are infinitely many primes of the form n2 + p2. In addition we should mention that

this large sieve, and the approximation given by theorem 2.3, was also crucially used in

[FI98] where it is proved that there are infinitely many primes of the form n2 + l4.

The large sieve inequality of theorem 2.5 is equivalent, at least morally, to the

following upper bound for the number of the fraction µ
m contained in a short interval:

Theorem 2.6. For any positive real number M , the number of fractions µ
m (mod 1)

with µ2 ≡ −1 (mod m) and M < m ≤ 2M in any interval of length 1
M is bounded by

an absolute constant.

While this upper bound is a less refined statistic than equidistribution, its power

comes from its validity at much smaller scales than we could expect equidistribution

to hold. Indeed the upper bound gives the correct result all the way down to scales of

size 1
M , the smallest possible because there are asymptotically 3

2πM roots with modulus

m ≤M . On the other hand, the bound given in theorem 2.4 suggests that one can only

expect equidistribution of the fractions in intervals of length at least M−1/2.

2.1 Correspondence between roots and ideals

In this section we prove theorem 2.1. We start by noticing that given a sublattice

I ⊂ Z[i], we can find a unique Z-basis {β1, β2} of I in Hermite normal form with
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respect to the basis {1, i} of Z[i], by which we meanβ1
β2

 =

a11 0

a21 a22

1

i

 (2.16)

where a11, a22 > 0 and 0 ≤ a21 < a11. The sublattice I will be an ideal of Z[i] if an only

if i, as the generator of the ring, maps I into itself, iI ⊂ I. In coordinates this means

that i acts by an integral matrix with respect to the basis (2.16). Explicitly, sinceiβ1
iβ2

 =

a11 0

a21 a22

 0 1

−1 0

a11 0

a21 a22

−1β1
β2

 , (2.17)

I will be an ideal of Z[i] if and only if

1

a11a22

a11 0

a21 a22

 0 1

−1 0

 a22 0

−a21 a11

 =

 −a21
a22

a11
a22

−a221+a
2
22

a11a22
a21
a22

 (2.18)

is an integral matrix.

From this integrality condition on the matrix (2.18), we see that for I to be an ideal,

it is necessary that a22 divides both a11 and a21. Writing a11 = ma22 and a21 = µa22,

the only remaining necessary condition for I to be an ideal is that

µ2 + 1 ≡ 0 (mod m). (2.19)

We close this short section by noticing first that these necessary conditions are also

sufficient. Indeed, given m and µ for which (2.19) holds, the above calculations shows

that the sublattice with basis given by (2.16) with a11 = mn, a21 = µn and a22 = n,

where n is an arbitrary integer, will be an ideal in Z[i]. Finally, we note that it is

necessary for the uniqueness of the Hermite normal form that 0 ≤ a21 < a11. The same

ambiguity occurs in picking a representative of µ modulo m.

2.2 Parametrization of the roots

For proving theorem 2.2, we will restrict our attention to the ideals I of theorem 2.1

with n = 1. We note that these ideals are exactly the ideals that are not divisible by

any rational integers.
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The key observation for the proof is that since Z[i] has class number one, every ideal

I has a generator α = a+bi. This generator is unique up to multiplication by the units,

{1, i,−1,−i}, so we choose a+ bi to be in a fundamental domain of the action of these

units, for example a > 0 and −a < b ≤ a2.

From the generator α, we get a natural basis for the ideal I, namely {α, αi}, which

is expressed as α

αi

 =

 a b

−b a

1

i

 . (2.20)

Now the parametrization is powered by the observation that the two bases (2.20) and

(2.6) are related by a matrix SL2(Z)3. That is, there exists a matrix γ ∈ SL2(Z) such

that m 0

µ 1

 = γ

 a b

−b a

 . (2.21)

From the second column of this matrix equation, we see that gamma must have the

form

γ =

a −b

v u

 (2.22)

for some integers u and v, which must satisfy au+ bv = 1 for γ to be in SL2(Z). The

existence of such u and v are guaranteed by gcd(a, b) = 1, which we note is the same

as the ideal I = (a+ bi) having no rational integer divisors.

The the integers u, v, and hence γ, are determined up to multiplication on the left

by matrices of the form 1 0

∗ 1

 . (2.23)

This change in γ, via (2.21), corresponds to multiplying the matrixm 0

µ 1

 (2.24)

2The exact choice of fundamental domain does not matter so much here, but in section 2.3 we will
see why this is a convenient choice.

3SL2(Z) rather than just GL2(Z) because we are assuming that m is positive in 2.6)
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on the left by matrices of the same form, (2.23). Clearly this changes µ by a multiple

of m, leaving µ (mod m) unchanged. Hence different choices of u and v satisfying

au + bv = 1 will simply correspond to different representatives of the residue class µ

(mod m).

2.3 Approximation and spacing of the roots

We now use the parametrization of theorem 2.2 to approximate µ
m by a fraction with

much smaller denominator, resulting in theorem 2.3. And since it is an easy consequence

of this theorem, at the end of this section we also prove the spacing property of the

roots, theorem 2.6.

Using (2.9) we write

µ

m
=
av − bu
a2 + b2

=
v

a
− b

a(a2 + b2)
(2.25)

by (2.8). Now, if we assume a > 0 and −a < b ≤ a, as we do in theorem 2.2, we see

that since a ≤
√
a2 + b2 =

√
m and b ≤ a,4

µ

m
=
v

a
+O

(
1

m

)
. (2.26)

So v
a is indeed an approximation to µ

m with a much smaller denominator. We note that

since all the v satisfying (2.8) are all ≡ −b (mod a), we have

µ

m
≡ − b

a
+O

(
1

m

)
(mod 1). (2.27)

Since we will want to generalize the expression (2.25) in the following chapters, let

us give another way of deriving the approximation that comes naturally from the way

we proved theorem 2.2. Recall that we have the relationm 0

µ 1

 =

a −b

v u

 a b

−b a

 . (2.28)

4For this approximation to hold is in fact the reason why we made this choice of fundamental domain
in section 2.2.
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Now performing an LU -decomposition on the first matrix on the right of (2.28) gives

the equationm
µ

 =

1 0

v
a 1

a −b

0 1
a

 a b

−b a

 =

1 0

v
a 1

a2 + b2

− b
a

 , (2.29)

which gives the expression (2.25).

Having the approximation (2.11), the proof of theorem 2.6 is almost immediate.

Indeed, for all the µ
m in an interval of length 1

M , the corresponding v
a will be all be

forced in an interval of length � 1
M . However, since a ≤

√
m and fractions with

denominator �M1/2 are spaced by � 1
M , there can be at most O(1) of the v

a in such

an interval. We see that the theorem then follows if we can appropriately bound the

multiplicity of v
a , which is to say that we need to rule out the possibility that a lot of

µ
m correspond to the same v

a .

To rule out this possibility, we recall first the fact that gcd(a, v) = 1 and a > 0, so

we can recover a and v from the fraction v
a . Second, we recall that b ≡ −v (mod a),

and so b, being restricted to −a < b ≤ a, is determined up to 2 possibilities. Now since

having a and b determines both m and µ (mod m), we see that a given v
a corresponds

to at most 2 of the µ
m , thus finishing the proof of theorem 2.6.

2.4 Large sieve inequality

The upper bound

∑
M<m≤2M

∑
µ2≡−1(m)

∣∣∣∣∣∣
∑
|k|≤K

αke

(
kµ

m

)∣∣∣∣∣∣
2

� (M +K)
∑
|k|≤K

|α|2 (2.30)

for an arbitrary sequence of complex numbers αk is equivalent by the duality principle,

see [IK04], to proving

∑
|k|≤K

∣∣∣∣∣∣
∑

M<m≤2M

∑
µ2≡−1(m)

βm,µe

(
kµ

m

)∣∣∣∣∣∣
2

� (M +K)
∑

M<m≤2M

∑
µ2≡−1(m)

|βm,µ|2, (2.31)

also for an arbitrary sequence of complex numbers βm,µ. Letting f be a smooth function

with compactly supported Fourier transform, f̂ ,

f̂(ξ) =

∫ ∞
−∞

f(x)e(ξx)dx, (2.32)
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and such that f(x) ≥ 1 if −1 ≤ x ≤ 1 and f(x) ≥ 05, the left side of (2.31) is

≤
∑
k

f

(
k

K

) ∣∣∣∣∣∣
∑

M<m≤2M

∑
µ2≡−1(m)

βm,µe

(
kµ

m

)∣∣∣∣∣∣
2

=
∑∑

M<m,m1<2M

∑∑
µ2≡−1(m)
µ21≡−1(m1)

βm,µβm1,µ1

∑
k

f

(
k

K

)
e

(
k

(
µ

m
− µ1
m1

))
.

(2.33)

We apply Poisson summation to the inner sum over k in (2.33) to obtain

∑
k

f

(
k

K

)
e

(
k

(
µ

m
− µ1
m1

))
= K

∑
k

f̂

(
K

(
k −

(
µ

m
− µ1
m1

)))
. (2.34)

Since f̂ has compact support, only those k satisfying∣∣∣∣k − ( µm − µ1
m1

)∣∣∣∣� 1

K
, (2.35)

so if K is sufficiently large at most one k will contribute, and even then only if∣∣∣∣∣∣∣∣ µm − µ1
m1

∣∣∣∣∣∣∣∣� 1

K
, (2.36)

where || · || denotes the distance to the nearest integer. Applying this we see that when

K is sufficiently large,

∑
k

f

(
k

K

)
e

(
k

(
µ

m
− µ1
m1

))
� K1

∣∣∣∣∣∣ µm− µ1
m1

∣∣∣∣∣∣� 1
K

. (2.37)

In fact, by adjusting the implied constants if necessary, this bound holds for all K.

Estimating (2.33) by (2.37), we see that the left side of (2.31) is

� K
∑∑
M<m≤2M
µ2≡−1(m)

∑∑
M<m1≤2M
µ21≡−1(m1)
µ1
m1
∈Im,µ

|βm,µβm1,µ1 |, (2.38)

where Im,µ is the interval of x in R/Z such that∣∣∣∣∣∣ µ
m
− x
∣∣∣∣∣∣� 1

K
, (2.39)

with the same implied constant as in (2.37).

5A re-scaling of f(x) =
(
sinx
x

)2
will do.
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Using the inequality 2|βm,µβm1,µ1 | ≤ |βm,µ|2+|βµ1,m1 |2 and exploiting the symmetry,

the right side of (2.38) is seen to be

≤ K
∑∑
M<m≤2M
µ2≡−1(m)

|βm,µ|2
∑∑

M<m1≤2M
µ21≡−1(m1)
µ1
m1
∈Im,µ

1. (2.40)

Since Im,µ has length O
(
1
K

)
, it can be covered by� M

K +1 intervals of length 1
M . Since

by theorem 2.6 there can be at most O(1) fractions µ1
m1

in each of these intervals, we

find that (2.40) is

� (M +K)
∑

M<m≤2M

∑
µ2≡−1(m)

|βm,µ|2, (2.41)

which establishes the bound (2.31) and proves theorem 2.5.

2.5 Equidistribution

The parametrization of theorem 2.2 transforms the Weyl sum for the roots µ
m into∑

m

f
(m
M

) ∑
µ2≡−1(m)

e

(
hµ

m

)
=
∑∑
gcd(a,b)=1

g(a, b)f

(
a2 + b2

M

)
e

(
h
av − bu
a2 + b2

)
, (2.42)

where u and v are some choice of integers satisfying au+ bv = 1 and g(a, b) is a smooth

fundamental domain for the action of the units in Z[i] supported in a > 0, |b| ≤ 2a. To

be more specific, we mean that g(a, b) = 0 if a is non-positive or if |b| > 2a, and

g(a, b) + g(−b, a) + g(−a,−b) + g(b,−a) = 1. (2.43)

We note that such a g can be chosen so that away from the origin(
∂

∂y

)j
g(x, y)� 1

xj
. (2.44)

We remark that in the language of SL2(Z), the sum (2.42) can be written naturally

as a sum over cosets  a b

−v u

 ∈
1 0

∗ 1

 \SL2(Z). (2.45)

Now, applying the approximation, theorem 2.3, shows the Weyl sum (2.42) is

=
∑∑
gcd(a,b)=1

g(a, b)f

(
a2 + b2

M

)(
e

(
hb

a

)
+O

(
|h|
M

))

=
∑∑
gcd(a,b)=1

g(a, b)f

(
a2 + b2

M

)
e

(
hb

m

)
+O(|h|).

(2.46)
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This approximation shows that the oscillating part of the Weyl sum only depends on

the double coset,  a b

−b ∗

 ∈
1 0

∗ 1

 \SL2(Z)/

1 ∗

0 1

 . (2.47)

So, rearranging the terms in (2.46) by grouping them according the the double coset

gives ∑
a>0

∑
β(a)∗

e

(
hβ

a

) ∑
b≡β(a)

g(a, b)f

(
a2 + b2

M

)
. (2.48)

This arrangement is quite similar to how one computes the Fourier coefficients of a

Poincaré series, and just as one does in that setting we apply Poisson summation to

the b sum to obtain

=
∑
a>0

1

a

∑
β(a)∗

e

(
hβ

a

)∑
k

e

(
kβ

a

) ∞∫
−∞

g(a, x)f

(
a2 + x2

M

)
e

(
kx

a

)
dx. (2.49)

Again just as when one computes the Fourier coefficients of a Poincaré series, a sum of

Kloosterman sums is the result of the Poisson summation, explicitly

=
∑
k

∑
a>0

1

a
S(h, k; a)G(a, k,M), (2.50)

where

S(h, k; a) =
∑
β(a)∗

e

(
hβ + kβ

a

)
(2.51)

is a Kloosterman sum and

G(a, k,M) =

∞∫
−∞

g(a, x)f

(
a2 + x2

M

)
e

(
kx

a

)
dx. (2.52)

With little effort one can use the Weil bound for the Kloosterman sums, noticing

that only k �M ε, a�M1/2 contribute and G(a, k,M)�M1/2, to estimate this sum

of Kloosterman sums by � M3/4+ε.6 If we want to do better, one can use the spec-

tral theory of automorphic forms to find cancellation between the Kloosterman sums

themselves. The result is quite strong, both in terms of M , obtaining M1/2(logM)2,

but also in terms of uniformity in h.

6Of course one would want uniformity in h as well, but this is not our main point, so we do not
discuss this here.



22

Chapter 3

Roots of a cubic congruence

Our attempt to generalize the results of chapter 2 begins with the following analogue

of theorem 2.1:

Theorem 3.1. Let I ⊂ Z[21/3] be an ideal that is not divisible by any rational integers.

Then the unique basis {β1, β2, β3} of I in Hermite normal form can be written as
β1

β2

β3

 =


mn 0 0

−µn n 0

λ ν 1




1

21/3

22/3

 (3.1)

where m and n are positive integers, µ (mod m) and ν (mod n) satisfy

µ3 ≡ 2 (mod m)

ν3 ≡ 2 (mod n).

(3.2)

In addition gcd(m,n, 6) = 1 and

gcd(m,n, µ− ν) = 1. (3.3)

Conversely, given positive integers m and n, such that gcd(m,n, 6) = 1, with residue

classes µ (mod m) and ν (mod n) satisfying (3.2) together with (3.3), then there is a

unique value of λ (mod mn) so that the sublattice of Z[21/3] defined by (3.1) is an ideal

of Z[21/3].

Before discussing this theorem in more depth, we state corollaries 3.2 and 3.3. Corol-

lary 3.3 is simply theorem 3.1 in the special case when n = 1. Corollary 3.2 classifies the

ideals appearing in this special case: they are the ideals I such that Z[21/3] is additively

cyclic, which can also be stated as the ideals I that have only degree one prime factors,

none of which are conjugate.
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Corollary 3.2. Let I be an ideal in Z[21/3] and let l ∈ Z be so that 1
l I has no integer

divisors. Further, let m and n be the integers corresponding to 1
l I as in theorem 3.1.

Then mnl, nl, and l are the invariant factors of Z[21/3]/I.

Corollary 3.3. Let I be an ideal in Z[21/3] such that Z[21/3]/I is additively cyclic.

Then I has a unique basis {β1, β2, β3} such that
β1

β2

β3




m 0 0

−µ 1 0

−µ2 0 1




1

21/3

22/3

 (3.4)

where m > 0 and µ3 ≡ 2 (mod m), and, for uniqueness to hold, µ is considered as a

residue class modulo m. Conversely, given given an m > 0 and µ (mod m) such that

µ3 ≡ 2 (mod m), the lattice spanned by the basis {β1, β2, β3} of (3.4) is an ideal I of

Z[21/3] such that Z[21/3]/I is cyclic.

There are some readily apparent differences between this theorem and the quadratic

theorem 2.1. Perhaps most obviously, ideals in this cubic setting no longer correspond

roots of a cubic congruence, but rather pairs of roots satisfying a coprimality condition

(3.3). We interpret this condition as requiring µ and ν to be genuinely different since it

is equivalent to µ and ν being incongruent modulo all primes dividing both m and n.

We can illustrate this condition by considering some examples. A rational prime

p different from 2 and 3 either splits completely, factors as a degree one prime times

a degree two prime, or stays inert in Z[21/3]. As implied by either theorem 3.1 or

the Dedekind-Kummer theorems, these cases correspond exactly to whether µ3 ≡ 2

(mod p) has three, one, or zero solutions.

In the first case, we have three degree one prime ideals p1, p2 and p3 lying above p,

each one corresponding to a root µj of the congruence µ3 ≡ 2 (mod p). Indeed a basis

for pj is given by 
p 0 0

−µj 1 0

−µ2j 0 1




1

21/3

22/3

 . (3.5)
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If on the other hand p = p1p2, with p1 having degree one and p2 having degree two,

there is only one root of the congruence µ3 ≡ 2 (mod p). A basis for p1 has the same

form as in (3.5), while a basis for p2 is given by
p 0 0

0 p 0

µ2 µ 1




1

21/3

22/3

 . (3.6)

Finally, returning to the first case where pj are the three degree one prime ideals lying

above p, and µj are the corresponding roots, then a basis for p1p2 is given by
p 0 0

0 p 0

µ23 µ3 1




1

21/3

22/3

 . (3.7)

The fact that we used µ3 here is exactly because of the coprimality condition (3.3).

Indeed, we note that if we multiply p1p2 by p3, we obtain the rational integer p, which

does not appear in theorem 3.1. On the other hand, p21p2 does appear in theorem 3.1,

a basis for this ideal is 
p2 0 0

−µ1 p 0

∗ µ3 1




1

21/3

22/3

 . (3.8)

This last example, the basis for p21p2, also sheds light on the coprimality condition on

m and n, that gcd(m,n, 6) = 1. On the one hand, it is not surprising that this condition

is related to ramification in Z[21/3], and on the other hand, the above examples are

enough to convince oneself that products of this form, p21p2 and their higher-power

relatives are entirely responsible for common factors between m and n. Taking these

observations together, we note that there is only one prime lying above 3, which is a

unit multiple of the cube of this prime, and the same holds for 2. This shows that the

products of the above form made with primes of 2 and 3 will necessarily be divisible by

a rational integer, 2 or 3, and so does not appear in the correspondence of theorem 3.1.

These differences and complications aside, we can use theorem 3.1 to prove an

analogue of the parametrization of roots of a quadratic congruence, theorem 2.2 in a



25

very similar way that we used theorem 2.1. Indeed, the main idea is to relate two bases

of the same ideal by a matrix in SL3(Z), one basis given by theorem 3.1 and the other

given by a generator of the ideal, using that Z[21/3] has class number one. The result

is the following:

Theorem 3.4. Let α = a + b21/3 + c22/3 and α′ = A + B21/3 + C2/3 be integers in

Z[21/3] such that

gcd(a, b, c) = gcd(A,B,C) = 1, (3.9)

αα′ ∈ Z>0, (3.10)

and α in a fundamental domain for the action of the units on Z[21/3]. Let γ ∈ SL3(Z)

be a representative of the coset in
1 0 0

∗ 1 0

∗ ∗ 1

∖SL3(Z) (3.11)

with Plücker coordinates A, B, C and c, b, a. Then µ (mod m) and ν (mod n) defined

by 
mn 0 0

−µn n 0

∗ ν 1

 = γ


a b c

2c a b

2b 2c a

 (3.12)

will satisfy µ3 ≡ 2 (mod m) and ν3 ≡ 2 (mod n). In addition gcd(m,n, 6) = 1 and

gcd(m,n, µ − ν) = 1. Conversely, given such m, n, µ (mod m) and ν (mod n), there

will correspond unique α and α′ in the above way.

In the statement of this theorem, we are recalling that cosets in (3.11) are parametrized

by their Plücker coordinates. Here by a coset with coordinates A, B, C, c, b, and a we

mean that a representative of this coset γ satisfies

γ =


A B C

∗ ∗ ∗

∗ ∗ ∗

 , γ−1 =


∗ ∗ c

∗ ∗ b

∗ ∗ a

 , (3.13)



26

see [BFG88] for example. We recall in addition that A, B, C, c, b, and a are eligible

Plücker coordinates if and only if gcd(A,B,C) = gcd(a, b, c) = 1 and

cA+ bB + aC = 0. (3.14)

The coprimality condition is included in the statement of theorem 3.4, and we observe

that the requirement that αα′ ∈ Z is exactly that

bA+ aB + 2cC = 0

cA+ bB + aC = 0,

(3.15)

so we do indeed have admissible Plücker coordinates. However, we notice that in fact

A, B, C, c, b, and a satisfy an additional constraint, and so only special cosets in (3.11)

are used in parametrizing the roots of the cubic congruence. This is a major difference

from the quadratic setting of chapter 2, where the fact that every coset was used in the

parametrization played a large role in the proof of the equidistribution of the roots.

We will return to this later in chapter 5, for now we state a corollary of theorem 3.4

in the case of n = 1:

Corollary 3.5. Let (a, b, c) ∈ Z3 be in a fundamental domain for the action of the

units of Z[21/3] on Z3 identified with Z[21/3] via the basis {1, 21/3, 22/3}. Suppose that

gcd(a2 − 2bc, 2c2 − ab, b2 − ac) = 1, (3.16)

so that there are integers u, v, and w satisfying

(a2 − bc)u+ (2c2 − ab)v + (b2 − ac)w = 1. (3.17)

Then the integers

m = a3 + 2b3 + 4c3 − 6abc

µ = 2(b2 − ac)u+ (a2 − 2bc)v + (2c2 − ab)w
(3.18)

satisfy

µ3 ≡ 2 (mod m), (3.19)

and also the additional congruence

µ2 ≡ 2(2c2 − ab)u+ 2(b2 − ac)v + (a2 − 2bc)w (mod m). (3.20)
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We remark that different solutions u, v, and w to (3.17) will only give different repre-

sentatives of µ and/or µ2, and that every possible modulus m and root µ (mod m) of

X3 ≡ 2 (mod m) arises via (3.18).

As in chapter 2, we can use the parametrization to derive an approximation to

the roots, theorem 3.7. To prove this theorem, it is necessary to control the sizes of

the relevant parameters used in theorem 3.4. To this end we first prove the following

proposition:

Proposition 3.6. Let α = a + b21/3 + c22/3 ∈ Z[21/3] and α′ = A + B21/3 + C22/3 ∈

Z[21/3] satisfy the conditions of theorem 3.4. Then there is a choice of fundamental

domain, say D, for the action of the units in Z[21/3] such that α ∈ D implies that

a, b, c� N(α)1/3 = m1/3n2/3

A,B � N(α′)1/3 = m2/3n1/3

C � N(α′)1/3 = m2/3n1/3.

(3.21)

After restricting α to be in this fundamental domain, we can apply an LU decom-

position to the matrix γ of theorem 3.4, and, using proposition 3.6 to control the error

terms, the result is the following theorem:

Theorem 3.7. Let α = a+b21/3+c22/3 ∈ Z[21/3] and α′ = A+B21/3+C22/3 ∈ Z[21/3]

satisfy the conditions of theorem 3.4 with α ∈ D, where D is as in proposition 3.6.

Further, let µ (mod m) be one of the roots corresponding to α and α′ as in theorem

3.4. Then

µ

m
= −W

C
+O

(
1

m

)
(mod 1), (3.22)

where W is defined by the congruences

AW ≡ −b (mod C)

BW ≡ c (mod C).

(3.23)

We remark that these congruences have exactly one solution (mod C) because gcd(A,B,C) =

1 and Ac+Bb+ cC = 0.
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We observe that in light of proposition 3.6, we have here an approximation to µ
m to

within O
(
1
m

)
by a fraction with denominator of size m2/3n1/3. Even in the best case in

terms of the size of the denominator, n = 1, even this is far from optimal in the sense

of Dirichlet’s theorem on Diophantine approximation. There are many fractions with

denominator of size m2/3 inside an interval of length 1
m , so we have to ask what is the

significance of this particular fraction?

There are two distinct approaches that we will take towards answering this question.

One approach, which we will take up later in chapter 5 centers around the observation

that there are presumably many different approximations to µ
m , naively one for each n,

all contained within O
(
1
m

)
of µ

m . The other approach, which we will consider for the

remainder of this chapter, centers instead on the observation that in the case n = 1 we

also get, via corollary 3.5, an approximation to µ2

m . This is contained in the following

theorem:

Theorem 3.8. Let α = a + b21/3 + c22/3 ∈ Z[21/3 satisfy the conditions of corollary

3.5 with α ∈ D, where D is as in proposition 3.6. Further, let u, v, w be as in corollary

3.5 and µ (mod m) be the corresponding root. Then(
µ

m
,
µ2

m

)
=

(
bu− cv
b2 − ac

,
bv − au
b2 − ac

)
+O

(
1

m

)
(mod Z2), (3.24)

where the implied constant is absolute.

A first observation is that the approximation to the point
(
µ
m ,

µ2

m

)
is a pair of

fractions with the same denominator. We will call such a point in R2 a torsion point

because these are exactly the (representatives of) the torsion points in R2/Z2, the

denominator being the torsion.

Statistically speaking, disc of radius 1
m in R2 will probably have no more than

� 1 torsion points in R2/Z2 with torsion of size � m2/3. This is because there are

� m2 such torsion points, and we should expect them to be, roughly speaking, evenly

distributed between the m2 squares in R2/Z2 with side length 1
m . The problem is that

this spacing property does not always hold, for example a disk of radius 1
m centered on

an axis is really no different than an interval in the 1-dimensional setting. Proposition
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3.9 below characterizes in a sense this kind of exceptional circumstance; it states that

torsion points not contained in any integral line with small coefficients are well-spaced.

Proposition 3.9. Let Q be a positive real number and let
(
r
q ,

s
q

)
be a q-torsion point

in R2/Z2. Further, define the lattice Λ by

Λ =
{

(A,B) ∈ Z2 : Ar +Bs ∈ qZ
}
, (3.25)

which is a projection of the lattice of integral lines containing
(
r
q ,

s
q

)
. Then the distance

between
(
r
q ,

s
q

)
and any other torsion point with torsion ≤ Q is at least

1

qQ
min {||v|| : v ∈ Λ,v 6= 0} . (3.26)

Because the way we prove theorem 3.8 in section 3.3.2, which is only superficially

different from the way we prove theorem 3.7 in section 3.3.1, exhibits the approximation

to
(
µ
m ,

µ2

m

)
naturally as the intersection of two lines in R2, proposition 3.9 is easy to

apply in our setting. The result is the following theorem:

Theorem 3.10. For a positive real number M and any disc D ⊂ R2/Z2 of radius 1
M ,

we have

#

{(
µ

m
,
µ2

m

)
∈ D : M < m ≤ 2M, µ3 ≡ 2 (mod M)

}
� 1, (3.27)

where the implied constant is absolute.

We caution however, that a key step in the proof of this theorem is to show that

at most O(1) different roots of the congruence correspond to a given approximation.

Here the issue is handled without much difficultly, however when we consider the other

approach mentioned above in chapter 5, the analogous question is unfortunately still

unresolved.

Nevertheless, we finish the chapter in section 3.5 by using the spacing property to

derive a two dimensional large sieve inequality for the roots of the congruence:

Theorem 3.11. Let K and L be positive real numbers, and let αk,l be a sequence of
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complex numbers. Then

∑
M<m≤2M

∑
µ3≡2(m)

∣∣∣∣ ∑
|k|≤K

∑
|l|≤L

αk,le

(
kµ+ lµ2

m

) ∣∣∣∣2
� (M +K)(M + L)

∑
|k|≤K

∑
|l|≤L

|αk,l|2,
(3.28)

where the implied constant is absolute.

We note that the this inequality is optimal up to the implied constant when K and

L are at least M . Indeed, in this regime we can set

αk,l = e

(
−kµ0 − lµ20

m0

)
(3.29)

for one of the roots µ0 (mod m0), then the right side of (3.28) will be (KL)2, which is

the size of just a single term on the left. On the other hand, we note that by Cauchy’s

inequality, the left side of (3.28) is trivially

≤ KLM
∑
|k|≤K

∑
|l|≤L

|αk,l|2, (3.30)

so when KL ≤M , theorem 3.11 gives nothing nontrivial.

3.1 Correspondence between roots and ideals

The proof of theorem 3.1 will start in the same manner as the proof of theorem 2.1,

working with sub-lattices, later ideals, I in the cubic ring Z[21/3]. Fixing the Z-basis

{1, 21/3, 22/3} of Z[21/3], we pick, as we did in the quadratic setting, the unique Z-basis

{β1, β2, β3} of I in Hermite normal form. Here this means that
β1

β2

β3

 = A


1

21/3

22/3

 , (3.31)

with A an integer matrix of the form

A =


a11 0 0

a21 a22 0

a31 a32 a33

 (3.32)
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with a11, a22, a33 > 0 and 0 ≤ a21, a31 < a11, 0 ≤ a32 < a22.

Proceeding as we did in the section 2.1, we note that since 21/3 generates Z[21/3], I

being an ideal is equivalent to 21/3I being a sublattice of I. In other words, we need

21/3 to act by an integral matrix with respect to the basis (3.31). And since

21/3


1

21/3

22/3

 =


0 1 0

0 0 1

2 0 0




1

21/3

22/3

 , (3.33)

we see that I being an ideal is equivalent to

A


0 1 0

0 0 1

2 0 0

A−1 =


−a21
a22

a11
a22

0

− a221
a11a22

+ a21a32
a11a33

− a22a31
a11a33

a21
a22
− a32

a33
a22
a33

2a33a11
− a21a31

a11a22
+

a21a232
a11a22a33

− a31a32
a11a33

a31
a22
− a232

a22a33
a32
a33

 (3.34)

being an integer matrix.

From the (1, 2) and (2, 1) entries, we see that some necessary conditions for I to be

an ideal are that a33 | a22 and a22 | a11. Moreover, from the (1, 1) and (3, 3) entries,

a22 | a21 and a33 | a32. And finally, from the (3, 2) entry, a33 | a31. From these

conditions, we see that for I to be an ideal, it is necessary that we be able to re-write

A as

A =


a11 0 0

a21 a22 0

a31 a32 a33

 =


mna33 0 0

0 na33 0

0 0 a33




1 0 0

−µ 1 0

λ ν 1

 . (3.35)

With these substitutions, the matrix (3.34) becomes
µ m 0

− 1
m(µ2 + µν + λ) −(µ+ ν) n

1
mn(2 + λ(µ− ν)− µν2) 1

n(λ− ν2) ν

 . (3.36)

As in the quadratic case, we lose nothing by assuming a33 = 1 as it simply factors

out of I and does not appear in the integrality conditions of (3.36). And as in the

quadratic case, this assumption corresponds to the ideal I not being divisible by any

rational integers. Although in the quadratic setting, the role of a33 was n, here, working

with 3× 3 matrices, n plays a more significant role.
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From the (2, 1) and (3, 2) entries of (3.36), we see that for I to be an ideal, λ must

satisfy the two congruences

λ ≡ −µ2 − µν (mod m)

λ ≡ ν2 (mod n).

(3.37)

In order for these congruences to be consistent, we of course must have

µ2 + µν + ν2 ≡ 0 (mod gcd(m,n)). (3.38)

If (3.38) is satisfied, then solving (3.37) shows that λ will be of the form

λ = ν2
mm

gcd(m,n)
− (µ2 + µν)

nn

gcd(m,n)
+ κ

mn

gcd(m,n)
(mod mn), (3.39)

where κ is defined modulo gcd(m,n) and m, n are some choice of integers so that

mm+ nn = gcd(m,n). (3.40)

We remark that the choice of m and n are not unique, but all choices can be obtained

by respectively adding and subtracting ln
gcd(m,n) and lm

gcd(m,n) to some specific choice of

m and n, where l is an arbitrary integer. Hence a different choice of m and n will

correspond to adding lµ
2+µν+ν2

gcd(m,n) to κ.

Substituting (3.39) into the (3, 1) entry of the matrix (3.36) yields the following

necessary condition for I to be an ideal:

(ν3 − 2)
mm

gcd(m,n)
+ (µ3 − 2)

nn

gcd(m,n)
− κ(µ− ν)

mn

gcd(m,n)
≡ 0 (mod mn). (3.41)

We can rewrite the left side of (3.41) in two ways using (3.40), to either emphasis

divisibility by m or by n. First we can write it as

µ3 − 2− (µ− ν)
µ2 + µν + ν2

gcd(m,n)
mm− κ(µ− ν)

mn

gcd(m,n)
, (3.42)

which shows that µ3 ≡ 2 (mod m) is necessary for I to be an ideal. Second, we can

write the left side of (3.41) as

ν3 − 2 + (µ− ν)
µ2 + µν + ν2

gcd(m,n)
nn− κ(µ− ν)

mn

gcd(m,n)
, (3.43)

which shows that ν3 ≡ 2 (mod n) is also necessary.



33

Assuming the conditions µ3 ≡ 2 (mod m) and ν3 ≡ 2 (mod n), we can divide the

congruence (3.41) through by mn
gcd(m,n) to obtain the necessary condition

κ(µ− ν) ≡ µ3 − 2

m
n+

ν3 − 2

n
m (mod gcd(m,n)). (3.44)

We note that using different choices of m and n and applying the corresponding change

to κ discussed in the remark following (3.40) leaves the condition (3.44) unchanged.

Clearly (3.44) will have a unique solution in κ if and only if gcd(m,n, µ − ν) = 1,

which we, recalling the introduction to the chapter interpret, as µ and ν being genuinely

different roots of the cubic congruence since it is equivalent to µ not being congruent

to ν modulo all primes that divide both m and n. On the other hand, if I is an ideal

and there is a prime p dividing all of m, n, and µ− ν, then (3.38) implies that

3µ2 ≡ 0 (mod p). (3.45)

If p 6= 3, then (3.45) implies that µ ≡ 0 (mod p), which together with µ3 ≡ 2 (mod p)

shows that p = 2. This is the issue addressed in the introduction to this chapter, and

its resolution there followed from a consideration of the ramification type of 2 and 3 in

Z[21/3].

Let us now quickly discuss the sufficient conditions for a sublattice I of Z[21/3]

with basis matrix A as in (3.35) with respect to the basis {1, 21/3, 22/3} of Z[21/3],

thus finishing the proof of theorem 3.1. If µ (mod m) and ν (mod n) satisfy µ3 ≡ 2

(mod m) and ν3 ≡ 2 (mod n), then

µ3 − ν3 = (µ− ν)(µ2 + µν + ν2) ≡ 0 (mod gcd(m,n)). (3.46)

If in addition we assume that gcd(m,n, µ − ν) = 1, then (3.46) implies (3.38), and in

addition we can find a unique κ (mod gcd(m,n)) satisfying (3.44), for some specific

choice of m, n. Now since (3.38) is satisfied, setting λ as in (3.39) makes the matrix

(3.36) into an integral matrix. This finishes the proof of theorem 3.1.

We close this section by quickly proving corollaries 3.2 and 3.3. Corollary 3.2 follows

immediately from (3.35). Indeed, (3.35) shows that if I is an ideal, then the matrix A

can be brought into Smith normal form simply by multiplying on the right by a lower
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triangular matrix in SL3(Z). The invariant factors are then seen to be as claimed.

Corollary 3.3 is also very easy from what we have done. Under the assumption that I

is an ideal for which n = 1, we can take ν = 0, and then (3.37) shows immediately that

in this case λ ≡ −µ2 (mod m).

3.2 Parametrization of the roots

3.2.1 Proof of theorem 3.4

We start by proving theorem 3.4, and after we will see how to obtain corollary 3.5 from

it. The key observation that powers the parametrization is the same as in the quadratic

case: because Z[21/3] has class number one, every ideal I has a generator, which can

then be used to find a natural Z-basis. The main work involved in proving theorem 3.4

then is to compute the matrix in SL3(Z) that relates the basis obtained in terms of the

generator of the ideal to the basis in Hermite normal form that contains information

about the roots of the cubic congruences via theorem 3.1.

Suppose I ⊂ Z[21/3] is an ideal that is not divisible by any rational integer. Then,

as mentioned above, the fact that Z[21/3] has class number one implies that there is an

integer α = a+ b21/3 + c21/3 ∈ Z[21/3], unique up to multiplication by units, such that

I is generated by α. And since I = (α), we get the following natural basis of I,
α

α21/3

α22/3

 =


a b c

2c a b

2b 2c a




1

21/3

22/3

 . (3.47)

Having the two bases, (3.47) and the one from theorem 3.1, there must be a matrix

γ ∈ GL3(Z) such that 
mn 0 0

−µn n 0

∗ ν 1

 = γ


a b c

2c a b

2b 2c a

 . (3.48)

And actually, if we assume that the norm of α, which is of course the determinant of

the matrix in (3.47), is positive, then γ ∈ SL3(Z). We can ensure that N(α) > 0 by
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replacing α by −α if necessary, and in fact we will later choose α to be in a specific

fundamental domain for the units that satisfies this condition.

Immediately from (3.48) we see that the top row of γ must be orthogonal to the

second and third columns of the matrix in (3.47). That is if the top row of γ has

coefficients A, B, and C, then they must satisfy

gcd(A,B,C) = 1

cA+ bB + aC = 0

bA+ aB + 2cC = 0,

(3.49)

and these are in fact enough to determine A, B, and C up to an overall change in sign.

We observe that the orthogonality conditions are are equivalent to the product of α

and α′ = A+B21/3 + C22/3 being a rational integer. Indeed,

αα′ = (aA+ 2cB + 2bC) + (bA+ aB + 2cC)21/3 + (cA+ bB + aC)22/3. (3.50)

Moreover, we see that since mn > 0, A, B, and C are completely determined by the

requirement that αα′ be a positive, rational integer with α′ not divisible by any rational

integer.

From (3.48) we also see that the last column of γ−1 must be the same as the last

column of the matrix in (3.47) – in particular we have that gcd(a, b, c) = 1, which just

re-affirms that α is not divisible by any rational integer. Now this data, the first row

of γ and the last column of γ−1 is enough to determine the coset in
1 0 0

∗ 1 0

∗ ∗ 1

∖SL3(Z) (3.51)

containing γ, indeed A, B, C and c, b, a are exactly the Plücker coordinates of the

coset containing γ. Moreover, we see that since we want µ and ν to be considered as

residue classes modulo m and n, respectively, the matrix from theorem 3.1, that is the

matrix on the left of (3.48), is only defined up to multiplication on the left by matrices
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of the form 
1 0 0

∗ 1 0

∗ ∗ 1

 . (3.52)

In other words, given A, B, C and c, b, a satisfying the above requirements, any choice of

representative γ for the coset in (3.51) with these as its Plücker coordinates will satisfy

(3.48) for some integer representatives of µ (mod m) and ν (mod n). This finishes the

proof of theorem 3.4.

3.2.2 Proof of corollary 3.5

Corollary 3.5 is a relatively easy consequence of theorem 3.4 in the special case n = 1,

and hence ν = 0. Before specializing to this case, we note that in general we see from

the orthogonality conditions in (3.49) that the vector (A,B,C) must be proportional

to the cross-product of (c, b, a) and (b, a, 2c). That is,

(a2 − 2bc, 2c2 − ab, b2 − ac) = l(A,B,C) (3.53)

where

l = gcd(a2 − 2bc, 2c2 − ab, b2 − ac). (3.54)

We claim that in fact l = n. Indeed, we can write the determinant of the matrix in

(3.47) as

mn2 = a3 + 2b3 + 4c3 − 6abc = a(a2 − 2bc) + 2c(2c2 − ab) + 2b(b2 − ac), (3.55)

so substituting (3.54) and using the fact that

mn = aA+ 2cB + 2bC (3.56)

shows that l = n.

We now see that n = 1 is equivalent to gcd(a2 − 2bc, 2c2 − ab, b2 − ac) = 1, the

condition on a, b and c in corollary 3.5. Moreover, we recall from corollary 3.3 that in
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the case n = 1 we have λ = −µ2, and so (3.48) in this case takes the form
m 0 0

−µ 1 0

−µ2 0 1

 = γ


a b c

2c a b

2b 2c a

 . (3.57)

In contrast to section 3.2.1, γ is now considered as a coset in
1 0 0

∗ 1 0

∗ 0 1

 \SL3(Z). (3.58)

In fact we see that

γ−1 =


u b c

v a b

w 2c a

 (3.59)

where u, v, and w are integers so that

u(a2 − 2bc) + v(2c2 − ab) + w(2c2 − ab) = 1, (3.60)

which exist by the coprimality condition. Further we note that different choices of u, v

and w satisfying (3.60) give different representatives of the coset in (3.58), which in turn

give different representatives of µ and µ2 modulo m. The parametrization as stated in

corollary 3.5 now follows from explicitly calculating
m

−µ

−µ2

 = γ−1


a

2c

2b

 =


a2 − 2bc 2c2 − ab b2 − ac

bw − av au− cw cv − bu

2cv − aw bw − 2cu au− bv



a

2c

2b

 . (3.61)

3.3 Approximation of the roots

3.3.1 LU decomposition

We will perform a slight variation on the LU decomposition for the matrix γ as above.

The reason for doing a variation instead of a standard LU decomposition will be made
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clear in chapter 5. Setting

γ =


A B C

U V W

X Y Z

 , (3.62)

we first compute

γ =


1 0 0

W
C 1 0

Z
C −u

c 1



A B C

b
C − c

C 0

1
c 0 0

 , (3.63)

where we recall that

γ−1 =


u x c

v y b

w z a

 . (3.64)

The decomposition (3.63) is of course only valid if C and c are not zero 0. We will

ensure the condition C 6= 0 later in picking the fundamental domain for the action of

the units, but if c = 0, we can instead decompose

γ =


1 0 0

W
C 1 0

Z
C 0 1



A B C

b
C 0 0

y
C

x
C 0

 . (3.65)

In the first case, c 6= 0, applying the decomposition to the parametrization of theo-

rem 3.4 yields 
mn 0 0

−µn n 0

λ ν 0

 =


1 0 0

W
C 1 0

Z
C −u

c 1



mn 0 0

−B
Cn n 0

a
c

b
c 1

 , (3.66)

after recalling that (nA, nB, nC) = (a2 − 2bc, 2c2 − ab, b2 − ac). Similarly the decom-

position (3.65) yields in the case c = 0 that
mn 0 0

−µn n 0

λ ν 1

 =


1 0 0

W
C 1 0

Z
C 0 1



mn 0 0

−B
Cn n 0

y
C

x
C 1

 . (3.67)
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In either decomposition, we see that

µ

m
= −W

C
+

B

Cm
. (3.68)

Theorem 3.7 clearly follows from (3.68) once we show that B � C. And this clearly

follows from proposition 3.6, which will be proved in section 3.3.3.

3.3.2 Intersection of lines

Before finishing the proof of theorem 3.7 by proving proposition 3.6, we first prove

theorem 3.8, still assuming proposition 3.6. This theorem could be proved by doing an

LU decomposition, and in fact a close inspection of section 3.3.1 already gives what we

need. But instead, to obtain an approximation to µ
m in the case n = 1, we return to

the equation (3.48) with γ as in (3.59). We have
u b c

v a b

w 2c a




m 0 0

−µ 1 0

−µ2 0 1

 =


a b c

2c a b

2b 2c a

 . (3.69)

Examining this equality for the (1, 1) entry on the right-hand side, we obtain

u− b µ
m
− cµ

2

m
=

a

m
(3.70)

upon dividing by m. We expect, and will ensure later by picking α = a+ b21/3 + c22/3

in the fundamental domain given by proposition 3.6, that a � m1/3. Accordingly, we

expect the right hand side of (3.70) to be small, specifically� m−2/3. We can interpret

this geometrically as the point
(
µ
m ,

µ2

m

)
lying close to the line bX + cY = u.

Similarly, by inspecting the (2, 1) and (3, 1) entries of the right side of (3.69), we

expect that
(
µ
m ,

µ2

m

)
will also lie close to the lines aX + bY = v and 2cX + aY = w.

Now, if the triangle with sides these three lines has at least one corner, that is one of

the points(
bu− cv
b2 − ac

,
bv − au
b2 − ac

)
,

(
cv − au
2c2 − ab

,
2cu− bv
2c2 − ab

)
,

(
au− bv
a2 − 2bc

,
av − 2cu

a2 − 2bc

)
, (3.71)

with an angle which is not too small, then the point
(
µ
m ,

µ2

m

)
will be close to this corner.

In fact proposition 3.6 gives sufficient control on the angle to show that the first of these

is a good approximation.
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That said, we prove theorem 3.8 explicitly by solving for µ
m and µ2

m from one of the

pairs of the three equations coming from (3.69) above. We have

1

m

b c

a b

 µ

µ2

 =

u
v

− 1

m

 a

2c

 , (3.72)

so

1

m

 µ

µ2

 =
1

b2 − ac

bu− cv
bv − au

+
1

m(b2 − ac)

2c2 − ab

a2 − 2bc

 . (3.73)

Recalling that when n = 1, A = a2 − 2bc, B = 2c2 − ab, and C = b2 − ab, we see that

proposition 3.6 provides sufficient estimates to conclude theorem 3.8.

3.3.3 Fundamental domain

For β ∈ Q(21/3), let β(1) be the real embedding and β(j), j = 2, 3, be the complex

embeddings. And for C > 0 a constant to be determined, set

D1 =
{
β ∈ K : C|N(β)|1/3 < β(1) ≤ Cε(1)|N(β)|1/3

}
, (3.74)

where ε = 1 + 21/3 + 22/3 is the fundamental unit. D1 is clearly a fundamental domain

for the action of the units in Z[21/3].

For β ∈ Q(21/3), we have

|β(2)|2 = |β(2)β(3)| = |N(β)|
|β(1)|

, (3.75)

so for β ∈ D1, we have

|β(2)| ≤ C−1/2N(β)1/3. (3.76)

Hence

|Tr(β))| =
∣∣∣β(1) + β(2) + β(3)

∣∣∣ ≤ (ε(1)C + 2C−1/2)N(β)1/3, (3.77)

and

|Tr(β)| ≥ β(1) − 2
∣∣∣β(2)∣∣∣ ≥ (C − 2C−1/2)N(β)1/3. (3.78)

So picking C = 2, say, gives

|Tr(β)| � N(β)1/3 (3.79)

for β ∈ D1.
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We now define the fundamental domain for α by

D =
{
β ∈ Q(21/3) : 2−1/3β−1 ∈ D1

}
. (3.80)

By how D1 was defined, it is not hard to see that if α ∈ D, then all of the embeddings

satisfy |α(j)| � |N(α)|1/3 = m1/3n2/3. And since a, b, and c can be written as fixed

linear combinations of the embeddings, we have that a, b, and c are all � m1/3n2/3.

Now, since α′ = mn
α′ , we see that if α ∈ D, then 21/3α′ ∈ D1. So not only are the

embeddings of α′ all � |N(α′)|1/3 = m2/3n1/3, whence A, B, and C are all� m2/3n1/3,

but also from (3.79) we have C = 1
6Tr(21/3α′) � m2/3n1/3.

3.4 Spacing between the roots

We begin by proving proposition 3.9. Let
(
r
q ,

s
q

)
and

(
r1
q1
, s1q1

)
be representatives of

distinct torsion points in R2/Z2. Let AX + BY = C with A, B, C integers such

that gcd(A,B,C) = 1 be the equation of the line between the two. The coprimality

condition on the coefficients implies that

Z3 ∩Null


q q1

−r −r1

−s −s1

 = Z
(
C A B

)
. (3.81)

On the other hand the cross product of
(
q −r −s

)
and

(
q1 −r1 −s1

)
is in

this null space, so we can conclude that(
rs1 − r1s qs1 − q1s rq1 − r1q

)
= k

(
C A B

)
, (3.82)

for some integer k. Since the torsion points are distinct, we know that k 6= 0, so in fact

|k| ≥ 1. We have ∣∣∣∣rq − r1
q1

∣∣∣∣ =
|rq1 − r1q|

qq1
≥ |B|
qq1

, (3.83)

and similarly ∣∣∣∣sq − s1
q1

∣∣∣∣ ≥ |A|qq1 . (3.84)

From (3.83) and (3.84) we see that the size of |A| and |B| from lines AX + BY =

C passing through a representative of a torsion point control the spacing from this
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representative to a representative of any another torsion point. So fixing a torsion point,

we can lower bound the distance from it to any other torsion point by considering the

lattice of lines passing through it. Moreover, we observe that if AX + BY = C passes

through a representative
(
r
q ,

s
q

)
, then AX+BY = C+kA+ lB passes through another

representative
(
r
q + k, sq + l

)
, where k and l are integers. Hence the set of

(
A B

)
under consideration will not depend on the choice of representative.

Before applying this lemma to our approximations in theorem 3.8, we remark that

the set of all
(
A B

)
such that some fixed representative

(
r
q ,

s
q

)
lies on a line AX +

BY = C forms a sublattice of Z2. As mentioned previously, this lattice is independent

of the representative
(
r
q ,

s
q

)
chosen for the torsion point R2/Z2. And if this lattice,

properly oriented and normalized to have co-volume 1, does not lie too high in the cusp

of SL2(Z)\SL2(R), then the shortest vector in the lattice will have norm about the

square root of the co-volume.

Let’s consider the point
(
bu−cv
b2−ac ,

bv−au
b2−ac

)
, the approximation to

(
µ
m ,

µ2

m

)
given by

theorem 3.8. From the way it was constructed in section 3.3.2, as the intersection of

the lines bX + cY = u and aX + bY = v, we can see that the lattice discussed in the

previous paragraph contains

SpanZ

{(
b c

)
,
(
a b

)}
. (3.85)

To see that the lattice of lines containing the point is no bigger, we simply note that

the row vectors
(
u b c

)
and

(
v a b

)
can be completed by a third vector to make

a matrix in SL3(Z).

The co-volume of this lattice is b2 − ac, which we have forced by proposition 3.6 to

be � m2/3. Recalling that this proposition also ensures that a, b, and c are all � m1/3,

we also have

b2 − ac ≤
√

(b2 + c2)(a2 + b2)� m1/3
√
b2 + c2, (3.86)

so √
b2 + c2 � m1/3, (3.87)

and similarly √
a2 + b2 � m1/3. (3.88)
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Suppose we scale and rotate this lattice so that the vector
(
b c

)
becomes

(
1 0

)
,

thereby identifying the basis of the lattice with a point in the upper half-plane H, the

image of
(
a b

)
under this scaling and rotation. After this transformation, the co-

volume of the lattice is � 1, whence the point in H has height� 1 above the x-axis.

Moreover, since
√
a2 + b2 �

√
b2 + c2, the point also has distance � 1 from the origin.

As such, the point lies in a fixed, compact region of H, whence, even after quotienting

out by the action of SL2(Z) on the basis, the lattice lies in a fixed region, bounded

away from the cusp.

In accordance with the remarks above, we know that the shortest vector in the

lattice will have norm � square root of the co-volume, so here the shortest vector will

be � m1/3. Combining this with proposition 3.9 we have that the torsion point given

by the approximation of theorem 3.8 is spaced by at least 1
m1/3Q

from any other torsion

point with torsion ≤ Q.

We can now finish the proof of theorem 3.10, the spacing result for the set of points

S =

{(
µ

m
,
µ2

m

)
: µ3 ≡ 2 (mod m), M < m ≤ 2M

}
. (3.89)

First we show that we can recover the point
(
µ
m ,

µ2

m

)
up to O(1) possibilities from the

approximation in theorem 3.8. Given the approximation, we find the lattice of lines

containing it, which is (3.85). Clearly if we have the basis of the lattice as given in (3.85)

we can recover a, b, and c and hence m and µ (mod m). However, we do know that

this basis, properly normalized, lies in a fixed compact subset of SL2(R). And since

SL2(Z) acts discontinuously on SL2(R), the number of bases of our lattice contained

in this compact subset will be bounded, proving the claim.

Now, from the spacing property of the approximations, we see that around each

approximation there is a disc of radius � 1
M that contains no other approximation,

and so there are at most O(1) approximations in any disk of radius O
(

1
M

)
. And from

the above, each approximation can arise from at most O(1) points
(
µ
m ,

µ2

m

)
, so theorem

3.10 follows.
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3.5 Large sieve inequality

Utilizing the duality principle, we see that it is enough for theorem 3.11 to prove that

for any sequence of complex numbers bm,µ,

∑
k≤K

∑
l≤L

∣∣∣∣∣∣
∑

M<m≤2M

∑
µ3≡2(m)

bm,µe

(
kµ+ lµ2

m

)∣∣∣∣∣∣
2

� (M +K)(M + L)
∑

M<m≤2M

∑
µ3≡2(m)

|bm,µ|2.

(3.90)

Let f : R → R be a smooth function such that f(x) ≥ 0 for all x, f(x) ≥ 1 for

0 ≤ x ≤ 1, and f̂ , the Fourier transform of f , is compactly supported. Then the left

hand side of (3.90) is

≤
∑
k

f

(
k

K

)∑
l

f

(
l

L

) ∣∣∣∣∣∣
∑

M<m≤2M

∑
µ3≡2(m)

bm,µe

(
kµ+ lµ2

m

)∣∣∣∣∣∣
2

. (3.91)

Expanding out the square, (3.91) becomes

∑∑
M<m≤2M
µ3≡2(m)

∑∑
M<m1≤2M
µ31≡2(m1)

bm,µbm1,µ1B(m,µ,m1, µ1)B′(m,µ,m1, µ1), (3.92)

where

B(m,µ,m1, µ1) =
∑
k

f

(
k

K

)
e

(
k

(
µ

m
− µ1
m1

))
, (3.93)

and

B′(m,µ,m1, µ1) =
∑
l

f

(
l

L

)
e

(
l

(
µ2

m
− µ21
m1

))
. (3.94)

Applying Poisson summation to (3.93), we have

B(m,µ,m1, µ1) = K
∑
k

f̂

(
K

(
k −

(
µ

m
− µ1
m1

)))
. (3.95)

Now, by the compact support of f̂ , only k for which∣∣∣∣k − ( µm − µ1
m1

)∣∣∣∣� 1

K
(3.96)

will contribute to the sum in (3.95). If K � 1, then at most one k will appear, and

even then, only when ∣∣∣∣∣∣∣∣ µm − µ1
m1

∣∣∣∣∣∣∣∣� 1

K
, (3.97)
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where we use || · || to denote the distance to the nearest integer, which gives the metric

on R/Z. Hence for K � 1 we have

B(m,µ,m1, µ1)� K1
∣∣∣∣∣∣ µm− µ1

m1

∣∣∣∣∣∣� 1
K

. (3.98)

In fact, this bound clearly works for all K, perhaps by adjusting the implied constants.

By the same reasoning, we have the similar bound for B′,

B′(m,µ,m1, µ1)� L1∣∣∣∣∣∣∣∣µ2m − µ21
m1

∣∣∣∣∣∣∣∣� 1
L

. (3.99)

Denoting by Rm,µ the set of points (x, y) in R2/Z2 satisfying∣∣∣∣∣∣ µ
m
− x
∣∣∣∣∣∣� 1

K
,

∣∣∣∣∣∣∣∣µ2m − y
∣∣∣∣∣∣∣∣� 1

L
, (3.100)

with the same implied constants as in the indicator functions of (3.98) and (3.99), the

left hand side of (3.90) is

� KL
∑∑∑∑
M<m,m1≤2M

µ3≡2(m), µ31≡2(m1)(
µ1
m1

,
µ21
m2

)
∈Rm,µ

|bm,µbm1,µ1 |. (3.101)

Applying |bm,µbm1,µ1 | ≤ 1
2 |bm,µ|

2+ 1
2 |bm1,µ1 |2 and exploiting the symmetry between m,µ

and m1, µ1, we see that (3.101) is

≤ KL
∑

M<m≤2M

∑
µ3≡2(m)

|bm,µ|2
∑∑

M<m1≤2M, µ31≡2(m1)(
µ1
m1

,
µ21
m1

)
∈Rm,µ

1. (3.102)

We can cover the rectangle Rm,µ by �
(
M
K + 1

) (
M
L + 1

)
discs of radius 1

M , and in

each of these discs there are� 1 points
(
µ1
m1
,
µ21
m1

)
, according to theorem 3.10. We have

that (3.102) is then

� KL

(
M

K
+ 1

)(
M

L
+ 1

) ∑
M<m≤2M

∑
µ3≡2(m)

|bm,µ|2, (3.103)

from which (3.91), and hence theorem 3.11, follows.
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Chapter 4

Roots of general polynomial congruences

In this chapter we will be generalizing the results of chapter 3 to a general polynomial.

To be specific, we will be studying the roots of the congruence

F (X) = Xd − a1Xd−1 − · · · − ad ≡ 0 (mod m), (4.1)

where we will assume that d > 2. Just as the ring Z[21/3] was the main tool for studying

roots of the congruence X3 ≡ 2 (mod m), we will be considering the ring Z[α]. Here

α is a root of the polynomial F thought of as a vector in Rd with coordinates the real

embeddings and the real and imaginary parts of the complex embeddings.

We will only generalize the results of chapter 3 when n = 1, that is the ideals I for

which Z[21/3]/I is cyclic. We begin in this chapter by proving an analogue of corollary

3.2, which characterizes the special case that we will be working with in what follows.

Proposition 4.1. Let I be the sublattice of Z[α] with basis {β1, . . . , βd} given by

βi =

d∑
j=1

bijα
j−1, (4.2)

where the matrix B = (bij)1≤i,j≤d is in (lower triangular) Hermite normal form, so

bij = 0 if j > i and 0 ≤ bij < bjj. Then for I to be an ideal of Z[α], it is necessary that

bii divides bij and bjj for all 1 ≤ j ≤ i. In particular, if I is an ideal, then the bii are

the invariant factors of Z[α]/I.

Having this characterization of the ideals we will be working with, we prove the

following analogue of corollary 3.3:

Theorem 4.2. Let I ⊂ Z[α] be an ideal such that the quotient Z[α]/I is additively
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cyclic. Then I has a unique basis {β1, . . . , βd} of the form

β1

β2
...

βd


=



m 0 · · · 0

−µ 1 · · · 0

...
...

. . .
...

−µd−1 0 · · · 1





1

α

...

αd−1,


(4.3)

where m > 0 and µ is a residue class modulo m satisfying the polynomial congruence

(4.1). Conversely, given m > 1 and µ (mod m) satisfying (4.1), the sublattice I of

Z[α] given by the basis {β1, . . . , βd} as in (4.3) is an ideal such that Z[α]/I is cyclic.

Continuing as we did in chapters 2 and 3, we use this correspondence between certain

ideals and roots of the congruence to derive a parametrization. The idea is largely the

same, relating two bases for an ideal by a matrix in SLd(Z). But since we no longer

have that our ring Z[α] has class number one, the setup for the parametrization is more

complicated, it is as follows:

Theorem 4.3. Fix a complete system of representatives Il for the narrow class group

of Z[α]. For each l, fix bases {β1, . . . , βd} and {β1, . . . , βd} of Il and I−1l , respectively,

so that

sign det(β
(j)
i )1≤i≤d

1≤j≤d
= sign det(β

(j)
i )1≤i≤d

1≤j≤d
= sign det((α(j))i−1)1≤i≤d

1≤j≤d
. (4.4)

Define the integers bijk by

βiβj =

d∑
k=1

bijkα
k−1, (4.5)

and set

Bi = (bijk)1≤j≤d
1≤k≤d

, 1 ≤ i ≤ d. (4.6)

Let ci, 1 ≤ i ≤ d, be integers so that, with

C =
d∑
i=1

ciBi, (4.7)

the integers, say c′j, 1 ≤ j ≤ d, forming the first row of (detC)C−1 satisfy

gcd(c′1, . . . , c
′
d) = 1, (4.8)
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assume in addition that the ci are so that

γ =

d∑
i=1

ciβi (4.9)

is in a specific fundamental domain for the action on Q(α) of the positive norm units

in Z[α].

Let uj, 1 ≤ j ≤ d, be integers so that

d∑
j=1

ujc
′
j = 1, (4.10)

and denote the (j, k) entry of the matrix C by cjk. Then

m

µ

...

µd−1


=



u1 c12 · · · c1d

u2 c22 · · · c2d
...

...
. . .

...

ud cd2 · · · cdd



−1

c11

c21
...

cd1


(4.11)

parametrizes all the m and µ (mod m) satisfying F (µ) ≡ 0 (mod m) and corresponding

to invertible ideals via theorem 4.2. This parametrization is unique, noting that different

choices of the integers uj give different representatives of µ (mod m).

We remark that a weakness in the above parametrization is the absence of a char-

acterization of the roots µ (mod m) for which the corresponding ideal is invertible. We

imagine, although we do not do so here, that the theory of conductors would show that

there is fixed moduli m0 and roots µj (mod m0) so that the ideal corresponding to µ

(mod m) is invertible if and only if gcd(m,m0, µ − µj) = 1, which is to say that µ is

genuinely different from the roots µj (mod m0).

Nevertheless, we continue as in chapter 3 by finding an approximation to the points(
µ
m , . . . ,

µd−1

m

)
, at least those that appear in the parametrization in theorem 4.3.

Theorem 4.4. With the notation as in theorem 4.3, let Ci1 denote the (d−1)× (d−1)

sub-matrix obtained from C by removing the ith row and first column, and set ui to be

the vector (u1, . . . , ud) with the ith entry removed. Then for some i,
µ
m
...

µd−1

m

 = C−11i ui +O

(
1

m

)
(mod Zd−1). (4.12)
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We remark that a weakness of this theorem is that we do not specify, as we did in

chapters 2 and 3, what exactly the approximation is, instead just giving an option of

d points, at least one (although most likely all) of which is close to the point we are

trying to approximate. This defect can be remedied when Z[α] has at least one real

embedding by picking the fundamental domain for the action of the units appropriately,

but we do not outline how this is done here.

This approximation, combined with the following proposition about the spacing

between torsion points in Rd−1/Zd−1, the analogue of proposition 3.9, is used to derive

a spacing property, theorem 4.6 below.

Proposition 4.5. Let Q be a positive real number and let
(
r1
q , . . . ,

rd−1

q

)
be a q-torsion

point in Rd−1/Zd−1. Further, let Λ be the lattice in Rd−1 consisting of the (1, j) entries

of the Plücker coordinates of the integral lines containing
(
r1
q , . . . ,

rd−1

q

)
. Then Λ is

well-defined, and the distance between
(
r1
q , . . . ,

rd−1

q

)
and any distinct torsion point

with torsion ≤ Q is at least

1

qQ
min{||v|| : v ∈ Λ,v 6= 0}. (4.13)

This proposition uses heavily the Plücker coordinates of lines in Rd−1, or perhaps

really the corresponding projective space. We recall that the Plücker coordinates

of the line passing through points x and y in Rd−1 with homogeneous coordinates

(x0, x1, . . . , xd−1) and (y0, y1, . . . yd−1) are the
(
d
2

)
determinants of the 2×2 sub-matrices

of x0 x1 · · · xd−1

y0 y1 · · · yd−1

 . (4.14)

In the statement of proposition 4.5, we refer to the (1, j) Plücker coordinates, by which

we simply mean the determinants of the sub-matrix of (4.14) formed by the first and

jth column. We remark, and we will make use of later, the fact that we can dually

describe a line in Rd−1 as the intersection of d− 2 planes. If these planes are given by

equations uj +
∑d−1

j=1 cijXj = 0, 1 ≤ j ≤ d − 2, then the Plükcer coordinates can also
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be realized as the determinants of the sub-matrices of
u1 c11 · · · c1(d−1)
...

...
. . .

...

ud−2 c(d−2)1 · · · c(d−2)(d−1)

 (4.15)

obtained by removing two columns. Up to scaling and sign, the coordinates obtained

from the planes by removing the ith and jth column will be equal to the (i, j) coordinate

as described above from the point matrix (4.14).

Applied to the approximation in theorem 4.4, proposition 4.5 yields the following

theorem:

Theorem 4.6. Let M be a positive real number and let D be a disc in Rd−1/Zd−1

with radius 1
M . Then the number of

(
µ
m , . . . ,

µd−1

m

)
∈ D with F (µ) ≡ 0 (mod m) and

M < m ≤ 2M is bounded by a constant depending only on the polynomial F .

A key step in the proof of this theorem, similar to the proofs of theorems 2.6 and

theorem 3.10, is the fact that one can obtain the root µ (mod m) up to bounded

number of possibilities, the bound depending on the congruence. The proof of this fact

in this general setting is very similar to the proof in section 3.4. It is interesting to

note that in general recovering the root µ (mod m) from the lattice of lines passing the

approximation uses a linear independence argument that only works when d > 2, see the

end of section 4.4. While this appears strange at first, this lack of linear independence

is used crucially the proof of theorem 2.4, the equidistribution of the quadratic roots.

We close the introduction to this chapter by quoting the following consequence of

theorem 4.6, whose proof we will omit since it is essentially no different from the proof

of theorem 3.11.

Theorem 4.7. Let Kj, 1 ≤ j ≤ d − 1 be positive real numbers and let βk1···kd−1
be a

sequence of complex numbers. Then

∑
M<m≤2M

∑
F (µ)≡0(m)

∣∣∣∣∣∣
∑
|k1|≤K1

· · ·
∑

|kd−1|≤Kd−1

βk1···kd−1
e

(
k1µ+ · · · kd−1µd−1

m

)∣∣∣∣∣∣
2

� (M +K1) · · · (M +Kd−1)
∑
|k1|≤K1

· · ·
∑

|kd−1|≤Kd−1

|βk1···kd−1
|2.

(4.16)
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4.1 Correspondence between roots and ideals

In this section we prove theorem 4.2. We start with a sublattice I of the ring Z[α],

which has a unique basis {β1, . . . , βd} in Hermite normal form. This is to say that
β1
...

βd

 = B


1

...

αd−1

 (4.17)

where B = (bij) is lower-triangular and bij = 0 if j > i, with the diagonal entries bjj > 0

and 0 ≤ bij < bjj .

Just as in the cubic case in the previous chapters, the sublattice I being an ideal

is equivalent to a certain matrix being integral. Here the matrix is BAB−1 where A

is the matrix by which α acts, which is in rational canonical form. Explicitly we have

A = (aij) where

aij =


1 if 1 ≤ i ≤ d− 1, j = i+ 1

ad−j+1 if i = d

0 otherwise.

(4.18)

Letting B−1 = (b′ij), we observe that for 1 ≤ i ≤ d− 1, the (i, j) entry of BAB−1 is

i∑
k=j−1

bikb
′
(k+1)j , (4.19)

where for convenience we set bi0 = 0. In particular, the (i, i + 1) entry is simply

biib
′
(i+1)(i+1) = bii

b(i+1)(i+1)
. From this we see that for I to be an ideal, it is necessary to

have

b11 = m1b22 = m1m2b33 = · · · =
d∏
i=1

mi. (4.20)

The diagonal entries of BAB−1 are not much more difficult to compute due to the fact

that b′i(i−1) = − bi(i−1)

biib(i−1)(i−1)
. With this, the (i, i) entry is

bi(i−1)

bii
−

b(i+1)i

b(i+1)(i+1)
. (4.21)

Applied with i = 1, we see that for I to be an ideal, it is necessary that b21 = c21b22 for

some integer c21. Continuing inductively, we see that for all 2 ≤ i ≤ d, bi(i−1) = ci(i−1)bii

is necessary.
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Continuing this analysis by trying to obtain exactly the necessary and sufficient

conditions for I to be an ideal is a bit unwieldy, so we will instead focus on the analogue

of n = 1, that is corollary 3.3, in chapter 3. Our first step is to classify the ideals we

are interested in, proving proposition 4.1.

4.1.1 Proof of proposition 4.1

Our method will be to prove that bii divides bi(i−j) by first inducting on i and then on

j; the case j = 1 for arbitrary i has already been handled. Let j > 1 and assume the

divisibility condition for all smaller j and arbitrary i. Now the base case for inducting

on i is i = j+1 and to prove the divisibility here we consider the (j, 1) entry of BAB−1,

which is
j∑

k=1

bjkb
′
(k+1)1. (4.22)

Since

b′(k+1)1 = (−1)k

(
k+1∏
l=1

bll

)−1
det(brs) 2≤r≤k+1

1≤s≤min{k,r}
, (4.23)

we can apply the induction hypothesis for the brs to see that for k < j, b′(k+1)1 is a

fraction with denominator b11. And for k = j, we can perform a co-factor expansion

along the bottom row, noting that for s > 1 we can apply the induction hypothesis to

see that

b′(j+1)1 =
integer

b11
±

b(j+1)1

b11b(j+1)(j+1)
. (4.24)

Putting these facts into (4.22) and applying both the inductive hypothesis for k < j to

write bjk = cjkbjj and also the previously noted b11 = bjj
∏j−1
l=1 ml, to see that the (j, 1)

entry of BAB−1 has the form

integer∏j−1
l=1 ml

±
b(j+1)1

b(j+1)(j+1)

∏j−1
l=1 ml

. (4.25)

From this it is clearly necessary for b(j+1)(j+1) to divide b(j+1)1 – proving the base case

for this induction.

The general case for the induction on i > j + 1 follows similarly. We consider now

the (i− 1, i− j) entry of BAB−1, which is

i−1∑
k=i−j−1

b(i−1)kb
′
(k+1)(i−j). (4.26)
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Here we have

b′(k+1)(i−j) = (−1)i+j+k+1

 k+1∏
l=i−j

bll

−1 det(brs) i−j+1≤r≤k+1
i−j≤s≤min{r,k}

, (4.27)

except for the first term, k = i − j − 1, where clearly b′(i−j)(i−j) = b−1(i−j)(i−j). For all

except the last term, k = i−1, we can apply the j inductive hypothesis to see that each

b′(k+1)(i−j) is a fraction with denominator b(i−j)(i−j). Now, applying the j hypothesis

for all i − j − 1 < k < i − 1 and the i inductive hypothesis for k = i − j − 1, we see

that all terms in (4.26) are fractions with denominator
∏i−2
l=i−jml. For the last term,

we perform a co-factor expansion along the bottom row, r = k+ 1 = i of the matrix in

(4.27), applying the j inductive hypothesis to the entries with s > i − j to see, as we

did in the base case, that the (i− 1, i− j) entry of BAB−1 has the form

integer∏i−2
l=i−jml

±
bi(i−j)

bii
∏i−2
l=i−jml

. (4.28)

This shows that it is necessary that bii divides bi(i−j), thus completing the induction.

We finish the proof of the proposition by simply noting that because of the necessary

divisibility conditions, if I is an ideal, then the basis given by B can be made diagonal by

multiplying on the right by a (lower triangular) matrix in SLn(Z). Thus the remaining

diagonal entries, the mj , are the invariant factors of the quotient Z[α]/I.

4.1.2 Proof of theorem 4.2

To simplify the calculations, we will from now on assume that the quotient of Z[α] by I

is cyclic. If I is an ideal this assumption via proposition 4.1 implies that mj = 1 except

for j = 1. Let us set m1 = m. By our assumption that B is in Hermite normal form,

we also see that the cyclicity implies that all the off-diagonal entries in B are 0 outside

of the first column.
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With this simplifying assumption, we observe first that

b′ij =



1
m if i = j = 1

− bi1
m if i > 1, j = 1

1 if i = j > 1

0 otherwise.

(4.29)

And now, for 1 ≤ i ≤ d− 1, the (i, j) entry of BAB−1 will be

−b21 if i = j = 1

− 1
m(bi1b21 + b(i+1)1) if i > 1, j = 1

bi1 if j = 2

1 if i = j − 1 > 1

0 otherwise.

(4.30)

Only the second case of the above gives an integrality condition, which, setting b21 =

−µ, is satisfied if and only if

bi1 ≡ −µi−1 (mod m). (4.31)

for all 2 ≤ i ≤ n.

It remains to see the integrality conditions arising from the bottom row of BAB−1.

A relatively quick calculation shows that the (d, j) entry of BAB−1 is
− 1
m

(
bd1b21 − ad +

∑d
l=2 ad−l+1bl1

)
if j = 1

bd1 + ad−1 if j = 2

ad−j+1 if j > 2,

(4.32)

where we recall that αd = a1α
d−1 + · · · + ad. Substituting (4.31) into (4.32), we see

that the integrality conditions are satisfied if and only if µ is a root of the polynomial

congruence

µd ≡ a1µd−1 + · · ·+ ad (mod m). (4.33)

This concludes the proof of theorem 4.2.
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4.2 Parametrization of the roots

In this section we prove theorem 4.3. As mentioned in the statement of that theorem, we

will only consider the roots µ (mod m) that correspond, via theorem 4.2, to invertible

ideals. It would be nice to have a more concrete characterization of the µ (mod m) in

terms of m and µ themselves, but we unfortunately have not yet been able to do this.

Let us recall the notation from the set up for theorem 4.3. Fix a complete system of

representative ideals Il, for the narrow class group of Z[α], and that {βkl : k = 1, . . . , d}

is a basis for Il. Furthermore, let us denote by {βkl : k = 1, . . . , d} a basis for the

inverse, I−1l , and we assume that the order of the βkl and βkl is so that

sign det(β
(j)
i )1≤i≤d

1≤j≤d
= sign det(β

(j)
i )1≤i≤d

1≤j≤d
= sign det((α(j))i−1)1≤i≤d

1≤j≤d
. (4.34)

And since βilβjl ∈ Z[α], there are integers bijkl so that

βilβjl =
d∑

k=1

bijklα
k−1. (4.35)

Now every every ideal I ⊂ Z[α] is equivalent to exactly one of the Il, so there is

also a γ ∈ I−1l with positive norm, unique up to multiplication by the positive-norm

units in Z[α], such that I = γIl. As in the previous chapter, this γ gives rise to a basis,

{γβil : i = 1, . . . , d} for I. Now, since

γ =

d∑
i=1

ciβil, (4.36)

we observe that the jth basis vector of I can be expressed as

γβjl =
d∑
i=1

d∑
k=1

cibijklα
k−1. (4.37)

This shows that 

γβ1l

γβ2l
...

γβdl


= C



1

α

...

αd−1


(4.38)

where the (j, k) entry of C is

cij =
d∑
i=1

cibijkl. (4.39)
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We remark that C is a linear combination of d fixed matrices,

C =

d∑
i=1

ciBi, (4.40)

and each collection of the fixed matrices Bi a narrow ideal class of Z[α].

Since they come from two different bases of the same ideal I, the matrix B, which

contains the root µ (mod m) of the polynomial congruence, and the matrix C must be

related by a matrix in GLd(Z), in fact a matrix in SLd(Z) because of the sign conditions

m > 0 and (4.34). This is to say that CB = C for some C ∈ SLn(Z). Here the shape

of C is easy to determine since B only differs from the identity in the first column; we

see that C agrees with C on all but the first column. Moreover, this first column of C,

the entries of which we denote by uj , is determined up to multiplication on the right

by matrices of the form 

1 0 · · · 0

∗ 1 · · · 0

...
...

. . .
...

∗ 0 · · · 1


(4.41)

by the requirement that detC = 1.

We remark first that the existence of integers making this determinant condition

hold is equivalent to the determinants of the d sub-matrices, which we denote by Cj , of

C formed by the last d− 1 columns being coprime. Taken with the correct sign, these

determinants also form the first row of C
−1

of (detC)C−1, and we denote them by c′j ,

j = 1, . . . , d. The second remark is, by recalling the equation CB = C, the ambiguity in

the first column of C is actually the same ambiguity that arises by considering the µj in

the first column of B as residue classes modulo m – different choices for representatives

of these residues corresponds exactly to the different choices of the first column of C.

This is enough to prove theorem 4.3.

4.3 Approximations to the roots

In the statement of theorem 4.4, we make a statement that for some i, referring to a

row to be removed from the matrix C, we obtain a good approximation to the point
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(
µ
m , . . . ,

µd−1

m

)
. For sake of exposition, however, we will show below only the manip-

ulations necessary if i = 1 was the case. Since unlike in chapters 2 and 3, the author

does not know how to pick a fundamental domain so that i = 1, or some other fixed

value, always gives the approximation, we instead at the end of this section see why

some i will give an approximation, and leave it to the reader to imagine the necessary

calculations for general i 6= 1.

We start by rearranging the first column of the matrix equation CB = C to see that
c22 · · · c2d
...

. . .
...

cd2 · · · cdd




µ
m
...

µd−1

m

 =


u2
...

ud

− 1

m


c21
...

cd1

 . (4.42)

Now, supposing we can pick γ in a fundamental domain in such a way that cij � m1/d,

and we shall do so below, we can interpret these equations as the vector
(
µ
m , . . . ,

µd−1

m

)
∈

Rd−1/Zd−1 being close to the d−1 planes cj2X1+ · · ·+cjdXd−1 = uj , 2 ≤ j ≤ d. Under

the condition that

det(cij)2≤i≤d
2≤j≤d

� m1−1/d (4.43)

we will see that the vector in fact lies close to the intersection of these d − 1 planes,

this is the content of theorem 4.4.

From (4.42) all that needs to be proved is that
c22 · · · c2d
...

. . .
...

cd2 · · · cdd


−1

c21
...

cd1

� 1. (4.44)

To see this, we rearrange the first column of the equation CC−1 = I to obtain
c22 · · · c2d
...

. . .
...

cd2 · · · cdd



c′21
...

c′d1

 = − c′1
detC


c21
...

cd1

 , (4.45)

where the c′ij are the entries of C−1, and we recall that c1j =
c′j

detC are the entries of
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the first row. Now, (4.45) shows that
c22 · · · c2d
...

. . .
...

cd2 · · · cdd


−1

c21
...

cd1

 = −detC

c′1


c′21
...

c′d1

 , (4.46)

so to prove (4.44) it will suffices to have c′1 � m1−1/d and detCc′j1 � m1−1/d.

Since detCc′j1 is a polynomial of degree d−1 in the ci defining γ, the second required

bound follows from ci � m1/d, which we show below. The author however does not

know how to ensure the first bound, so instead we will show that at least one of the c′i

will be� m1−1/d. Then redoing the above with the ith instead of the first row removed

will give the desired approximation.

We obtain the desired bounds for the ci and the c′i by first noticing that the ci are

fixed linear combinations of the embeddings of γ, and the c′i are fixed linear combinations

of the embeddings of N(γ)γ−1. This last fact follows by rewriting (4.38) as

C−1


β1l
...

βdl

 =


γ−1

...

γ−1αd−1

 , (4.47)

so from the first row we see that

γ−1 =
1

detC

d∑
j=1

c′jβjl, (4.48)

and we note that also from (4.38), detC = N(Il)N(γ).

Now we can easily pick γ to be in a fundamental domain for the action of the

positive norm units in such a way that the embeddings of γ are all � m1/d, and whence

the embeddings of N(γ)γ−1 are all � m1−1/d, recalling that N(γ) = m/N(Il), Il being

fixed. Once this is done the bounds for the ci and one of the c′j follows from the

observations of the previous paragraph.

This fundamental domain can be seen from Dirichlet’s unit theorem. In the loga-

rithmic embedding of Z[α] into Rd, the units cut out a rank d− 1 lattice on the plane

orthogonal to the vector (1, 1, . . . , 1), and the positive norm units of course cut out a

finite index sub-lattice. Now a fundamental domain for the action of the units can be
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taken to be the region that projects, parallel to (1, 1, . . . , 1), onto a fundamental paral-

lelopiped of this lattice. Then it is clear that the γ for which this logarithmic embedding

lies in this region, the logarithmic embedding differs from a constant vector by at most

O(1). Exponentiating this estimate gives the desired bounds for the embeddings of γ.

4.4 Spacing between the roots

Definition 4.8. For a positive integer q, a q-torsion point in Rd−1 is a vector x such

that qx ∈ Zd−1 but q′x /∈ Zd−1 for any q′ < q.

In light of this definition, every torsion point has the form

x =

(
r1
q
, . . . ,

rd−1
q

)
(4.49)

where rj are integers such that gcd(q, r1, . . . , rd−1) = 1. Accordingly, we can iden-

tify a torsion points in Rd−1 with vectors r = (q, r1, . . . , rd−1) ∈ Zd having coprime

coordinates.

Now, given two torsion points x and x′, we consider the Plücker coordinates of the

line containing both. These coordinates are the
(
d
2

)
quantities formed by taking 2 × 2

determinants from the matrix q r1 · · · rd−1

q′ r′1 · · · r′d−1

 . (4.50)

The d− 1 of these that include the first column, say

s1j = det

q rj

q′ r′j

 , (4.51)

control the distance between x and x′. Indeed,

||x− x′|| = 1

qq′
(
s211 + · · ·+ s21d−1

)1/2
. (4.52)

Fixing a torsion point x, we can lower bound the distance between x and any other

torsion point by considering the lattice of lines with integral valued Plücker coordinates

pass through x – or rather the projection of this lattice onto the d − 1 dimensional

space spanned by the coordinates having the form of s1j in (4.51). We remark that the
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Plücker coordinates of two lines cannot in general be added to obtain the coordinates

of a third line because the eligible coordinates are subject to a system of quadratic

equations, the Plücker relations. However the coordinates corresponding to the lines

passing through a fixed point does form a linear subspace. These observations are the

content of proposition 4.5.

For our purposes, the torsion point will be the point on the right side of (4.12),

assuming as we did in the previous section that the i giving the approximation to(
µ
m , . . . ,

µd−1

m

)
is i = 1, namely


c22 · · · c2d
...

. . .
...

cd2 · · · cdd


−1

u2
...

ud

 , (4.53)

which has torsion c′1. This gives our torsion point as the intersection of the d−1 planes

cj2X1 + · · ·+ cjdXd−1 = uj , (4.54)

2 ≤ j ≤ d, and so it is more natural to consider the lines passing through our point

dually: as the intersection of sets of d − 2 hyper-planes containing the point. The

Plücker coordinates of the line can be determined naturally from this dual perspective

as well. For example, the Plücker coordinates of one line are given, at least up to order

and sign, by the determinants from the d− 2× d− 2 minors of the matrix
−u3 c32 · · · c3d

...
...

. . .
...

−ud cd2 · · · cdd

 . (4.55)

Moreover, this, together with the other d − 2 lines obtained by removing rows other

than the row corresponding to the j = 2 plane in (4.54), form a basis for the lattice of

lines containing the torsion point.

We observe that the d− 1 determinants of the minors formed by removing the first

column along with another are exactly the s1j coordinates, see (4.51), used to determine

the spacing. We note that this basis does not depend on the choice of uj , and so does

not depend on the choice of representative of the torsion point modulo Zd−1. Hence a
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basis of the lattice used in proposition 4.5 to lower bound the spacing is given by the

columns of

c′1


c22 · · · c2d
...

. . .
...

cd2 · · · cdd


−1

, (4.56)

which we denote by c1j , 1 ≤ j ≤ d− 1.

We prove the following lemma for the case i = 1 giving the approximation of theorem

4.4, and we leave it to the reader to imagine the similar proofs for general i.

Lemma 4.9. If c′1 � m1−1/n, then the matrix (4.56) normalized by c
′(d−2)/(d−1)
1 to

have determinant 1 lies in a fixed compact set in SLd−1(R), and hence the smallest

vector in the lattice with basis {c11, . . . , c1(d−2)} has size � c
′(d−2)/(d−1)
1 � m1−2/d.

Proof. It is easy to see that the determinant of the matrix (4.56) is c′d−21 , and so by

Hadamard’s inequality

c′d−21 ≤ ||c11|| · · · ||c1(d−1)||. (4.57)

On the other hand, since each of the c1j have coordinates polynomials of degree d− 2

in the ci, which we recall are� m1/d, we have ||c1j || � m(d−2)/d. Replacing all but one

of the ||c1j || in (4.57) by this bound, we have that, under the hypothesis c′1 � m1−1/d,

m(d−1)(d−2)/d � ||c1j ||m(d−2)2/d � m(d−1)(d−2)/d, (4.58)

so ||c1j || � m1−2/d � c
′(d−2)/(d−1)
1 . These estimates are enough to show that upon

normalizing so that the determinant is 1, the resulting matrix is in a compact subset

of SLd−1(R).

Clearly then the (normalized) lattice with this basis lies in a compact subset of

SLd−1(Z)\SLd−1(R), and so does not approach the cusp in any direction. This shows

that the smallest vector in the lattice has size � the (d− 1)th root of the determinant,

finishing the proof of the lemma.

Having this lemma, the proof of theorem 4.6 is almost finished. Indeed, for each of

the points
(
µ
m , . . . ,

µd−1

m

)
contained in a ball of radius 1

M , all the approximations given
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by theorem 4.4 will be contained in a ball of radius O( 1
M ). However, by lemma 4.9 and

proposition 4.5, each of these approximations will be spaced by at least

� 1

M2(d−1)/dM
(d−2)/d =

1

M
(4.59)

from any other distinct torsion point, so there can be at most � 1 of these approxima-

tions in this ball. The theorem is then proved if we can show that at most � 1 of the

points
(
µ
m , . . . ,

µd−1

m

)
can correspond to a given one of the approximations.

We start by noting that a torsion point in Rd−1/Zd−1 determines the lattice of

integral lines containing it, and because SLd−1(Z) acts discontinuously on SLd−1(R),

the number of bases of the lattice lying in the compact set of lemma 4.9 will be bounded

by a constant that depends only on the compact set. For each one of these bases, there

are d candidates, one for each of the possible i giving the approximation of theorem

4.4. Further, we need to test each of the narrow ideal classes, but once this is done, we

claim that the basis of the lattice determines the ci and whence the m and µ (mod m);

this would show that the number is indeed bounded by a constant depending only on

the congruence.

To see this final step, we recall that the matrix C is a linear combination of matrices

Bi depending on the ideal class, and the coefficients are exactly the ci. So, for the

example we have been working with, the question of recovering the ci from the matrix

(4.56) is a question about the linear independence of the corresponding (d− 1)× (d−

1) sub-matrices of the Bi. Denoting these sub-matrices by B1i, suppose there were

numbers ci so that

d∑
i=1

ciB1i =


0 · · · 0

...
. . .

...

0 · · · 0

 . (4.60)

From the definition of the Bi, see the statement of theorem 4.3, this means that the

corresponding γ =
∑
ciβi satisfies

γβj ∈ Z, 2 ≤ j ≤ d. (4.61)

However, for a fixed γ, the set of points β ∈ Z[α] for which γβ ∈ Z forms a line. On the

other hand, since the βj span a full rank lattice, at most one of them can lie on such a
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line. This is a clearly a contradiction when d > 2, the setting which we are considering

here.
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Chapter 5

Future directions

This chapter diverges slightly from the previous chapters in that we do not reach a

desired goal, but rather present a few hopefully interesting observations and calculations

that have unfortunately not lead the author to any concrete results. In section 5.1 we

describe a connection between the roots of the cubic congruence µ3 ≡ 2 (mod m) and

the binary cubic form X3 − 2Y 3. We begin with the following proposition:

Proposition 5.1. Pairs of α = a + b21/3 + c22/3, α′ = A + B21/3 + C22/3 ∈ Z[21/3]

such that αα′ ∈ Z are naturally parametrized by integral matrices b c

B C

 , (5.1)

with non-zero determinant, typically not ±1, such that the image of X3 − 2Y 3 under

the action of the matrix is an integral binary cubic form.

Moreover, such matrices corresponding to α and α′ not divisible by any rational

integers are decomposed uniquely as b c

B C

 =

dg2 kg

0 g

 b′ c′

B′ C ′

 (5.2)

where  b′ c′

B′ C ′

 ∈
1 ∗

0 1

 \SL2(Z), (5.3)

gcd(dg, k) = 1 and B′3 − 2C ′3 ≡ 0 (mod d).

We recall in this proposition that the matrix (5.1) acts on a binary cubic form

F (X,Y ) as

F (X,Y ) 7→ 1

bC − cB
F (bX +BY, cX + CY ) , (5.4)
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so the integrality condition in proposition 5.1 is non-trivial. Of course the reason why

we are interested in the α and α′ as in the proposition is exactly because they are used

to parametrize the roots of the cubic congruence in theorem 3.4. A deficiency in that

was noted in chapter three was that the cosets used in parametrizing the roots were

not arbitrary because their Plücker coordinates satisfied an additional constraint, see

(3.15). A consequence of this is that in the approximation −W
C to the root µ

m given by

theorem 3.7, W and C are tied together in a complicated way. The following proposition

is an attempt to explicate this connection.

Proposition 5.2. Suppose α = a+b21/3+c22/3 and α′ = A+B21/3+C21/3 correspond

to the roots µ (mod m) and ν (mod n) as in theorem 3.4, and that b, c, B, and C

correspond to α and α′ as in proposition 5.1. With the decomposition (5.2), we have

m = − 1

bC − bC
(
B3 − 2C3

)
= −1

d

(
B′3 − 2C ′3

)
n =

1

bC − cB
(
b3 − 2c3

)
=

1

d

(
(dgb′ + kB)3 − 2(dgc′ + kC ′)3

)
A =

1

d

(
(b′B′2 − 2c′C ′2)dg + (B′3 − 2C ′3)k

)
W ≡ dgc′2 ≡ mB (mod C),

(5.5)

where −W
C is the approximation to µ

m and m is the multiplicative inverse of m modulo

C ′.

We remark that in the last line of (5.5) we see that the approximation to µ
m can also

be written as −mB
C . That this approximates µ

m can in fact be seen directly from the

above propositions in a way quite different than how we proved theorem 3.7 in section

3.3. Indeed, from the first line of (5.5) we have

− dm = B′3 − 2C ′3 ≡ 0 (mod m), (5.6)

so because gcd(B′, C ′) = 1 implies gcd(m,C ′) = 1 we have

B′C ′ ≡ µ (mod m) (5.7)

where

mm+ C ′C ′ = 1. (5.8)
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Rearranging the above, we have

µ

m
≡ B′C ′

m
= −mB

′

C ′
− B′

C ′m
(mod 1), (5.9)

which gives the approximation when B′ � C ′.

In section 5.2 we count ideals in Z[21/3] according to the corresponding m and n in

theorem 3.1. Although it is a bit of a digression we first prove the following proposition,

which computes the co-type zeta function for Z[21/3]:

Proposition 5.3. Let

ζZ[21/3](s1, s2, s3) =
∑

06=I⊂Z[21/3]

d1(I)−s1d2(I)−s2d3(I)−s3 , (5.10)

where d1(I), d2(I), and d3(I) are the invariant factors of Z[21/3]/I, ordered so that

d3(I) | d2(I) | d1(I). We have

ζZ[21/3](s1, s2, s3) =

= (1 + 2−s1 + 2−s1−s2)(1 + 3−s1 + 3−s1−s2)ζ(s1 + s2 + s3)

×
∏
p∈P1

(
1 + 2p−s1 + 2p−s1−s2 + p−2s1−s2

(1− p−s1)(1− p−s1−s2)

) ∏
p∈P2

(
1− p−2s1−s2

(1− p−s1)(1− p−s1−s2)

)
,

(5.11)

where ζ(s) is the Riemann zeta function.

After proving this proposition in section 5.2.1, we move on in section 5.2.2 to prove

the following:

Proposition 5.4. Let φ be a fixed smooth, compactly supported function on (0,∞).

Then for a real number N ≥ 1 and a root µ (mod m) of µ3 ≡ 2 (mod m) with

gcd(m, 6) = 1, we have

∑
06=I⊂Z[21/3]
d-I,∀d∈Z

m(I)=m,µ(I)=µ

φ

(
n(I)

N

)
= Kg(m)N

∞∫
0

φ(x)dx+O(τ(m)N1/2+ε) (5.12)

where for and ideal I we denote by m(I), µ(I), and n(I) the corresponding m, µ, and

n given by theorem 3.1, g(m) is an arithmetic function given by

g(m) =
∏
p|m
p∈P1

(
1− 1

p+ 2

) ∏
p|m
p∈P2

(
1− 1

p

)
, (5.13)
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and K is a constant,

K =
2π

9
√

3
log(1 + 21/3 + 22/3)

×
∏
p∈P1

(
1− 3

p2
+

2

p3

) ∏
p∈P2

(
1− 1

p2

) ∏
p∈P3

(
1− 1

p3

)
≈ 0.507396.

(5.14)

Roughly speaking proposition 5.4 says that a given root µ (mod m) shows up via

theorem 3.1 in roughly N ideals with norm mn2, with n � N . This allows us to see the

comments following theorem 3.7 in a different light. Since each approximation −W
C is

within O
(
1
m

)
, and by proposition 3.6 C � m2/3N1/3, we see that there can be at most

� 1

m

(
m2/3N1/3

)2
= m1/3N2/3 (5.15)

distinct approximations. On the other hand since each root µ (mod m) occurs in

roughly N ideals, we have N approximations −W
C , not necessarily distinct. In fact, the

above shows that when N is large compared to m, the multiplicity of each −W
C is at

least N1/3m−1/3, and it seems reasonable, although the author has not been able to

prove, that this is also roughly an upper bound for the multiplicity when N is larger

than m.

Proposition 5.2 gives some insight into this multiplicity issue. Indeed, we see that m

and the approximation −W
C are independent of the k in the decomposition (5.2). And,

inspecting either the expression for n or the expression for A in (5.5), we see that if

n � N , A� m2/3N1/3, then k is restricted to be in an interval of length m−1/3N1/3. It

is clear that this k gives multiplicity to the approximations −W
C , and it seems plausible

to the author that it is essentially the only source of multiplicity. We remark that if

this was proven, then a 1 dimensional spacing property and large sieve for the roots of

cubic congruences would follow easily from (5.15).

We end the chapter and dissertation in section 5.3 with a miscellaneous calculation

applying the results of the previous sections in this chapter to transform the Weyl sum

of the µ
m . The main ideas are first to sum over ideals instead of the roots, which,

from proposition 5.4, weights each root µ (mod m) by about g(m)N . Second, the sum

over ideals is replaced by a sum over the matrices as in proposition 5.1. Finally, we
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execute Poisson summation on the variable k in the decomposition (5.2), exploiting the

independence of the approximation from k. The result from these transformations is a

situation close to how the proof of equidistribution in the quadratic case began. But

unfortunately the author does not know how to proceed in the cubic case because the

sum is still contaminated by the restriction that d divides B′3 − 2C ′3. We note that

we can interpret the quadratic case as only using d = 1, a tremendously simplified

situation. A counting argument shows that an analogous simplification cannot hold in

the cubic setting simply because there are far more roots of cubic congruences than

there are numbers represented by a binary cubic form.

5.1 Connection to binary cubic forms

In chapter 3 our point of view had been given α, that is the generator of the ideal I, one

can find α′, which is then used to construct the matrix γ need to parametrize the roots

µ (mod m) and ν (mod n). We recall that α′ = A + B21/3 + C22/3 was determined

from α = a+ b21/3 + c22/3 with gcd(a, b, c) by the requirements

αα′ ∈ Z>0, gcd(A,B,C) = 1. (5.16)

However it is clear that one could equally well determine α from α′ by the exact same

requirements; the map taking α to α′ is an involution. This suggests looking for a more

symmetric way to parametrize the roots of our cubic congruence, and indeed we note

that the orthogonality requirements in (3.49) can be written asB b

C c

a
A

 = −

2cC

bB

 , (5.17)

so b, c, B, and C together can be used to determine a and A! The big question, however,

is the following: how are we to describe the b, c, B, and C for which (5.17) has integer

solutions a and A? It turns out that binary cubic forms will be our main tool in this

regard.

We start with the following definition from Delone and Faddeev, [DF64].

Definition 5.5. For a binary cubic form f(X,Y ) = aX3 + bX2Y + cXY 2 + dY 3, the

left and right roots of f are, respectively, the roots of f(X, a) and f(d,−Y ).
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The significance of this definition for us is contained in the following lemma,

Lemma 5.6. The α and α′ related to an ideal I as in the above are the left and right

roots of the binary cubic form

f(X,Y ) = nX3 − 3aX2Y + 3AXY 2 −mY 3. (5.18)

Proof. Given α, the set of points βZ[21/3] such that αβ ∈ Z forms a line in Z[21/3], so

picking α′ as above, in particular having gcd(A,B,C) = 1, generates this line. Now,

suppose

α3 − 3aα2 + a1α−mn2 = 0 (5.19)

is the minimal polynomial of α. Note that we are using the fact that 3a is the trace of

α. Then, from the remark above about the definition of α′, we have

α2 − 3aα+ a1 = nα′. (5.20)

And similarly, if

α′3 − 3Aα′2 +A1α
′ −m2n = 0 (5.21)

is the minimal polynomial of α′, then

α′2 − 3Aα′ +A1 = mα. (5.22)

Note that we have used the fact that the norm of α′ is m2n; this follows from αα′ = mn

by taking norms.

Putting this together, we have the multiplication table

αα′ = mn

α2 = −a1 + 3aα+ nα′

α′2 = −A1 +mα+ 3Aα′,

(5.23)

which shows that together with 1, α and α′ generate a cubic ring. According to the

Delone-Faddeev correspondence, [DF64], α and α′ are the left and right roots of the

binary cubic form (5.18).

In terms of the binary cubic form (5.18), determining a and A from b, c, B, and C

is related to expressing f by its Lagrange resolvent. We have the following lemma from

[DF64]:
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Lemma 5.7 (Delone-Faddeev, 1964). With f(X,Y ) as above, we have

f(X,Y ) =
1

3∆

(
(ξ1X + ξ2Y )3 − (η1X + η2Y )3

)
, (5.24)

where

ξ1 = α(1) + ωα(2) + ω2α(3)

ξ2 = α′(1) + ωα′(2) + ω2α′(3)

η1 = α(1) + ω2α(2) + ωα(3)

η2 = α′(1) + ω2α′(2) + ωα′(3)

∆ = det

ξ1 η1

ξ2 η2

 ,

(5.25)

α(j), α′(j) are the embeddings of α and α′, and ω 6= 1 is a cube root of unity.

Since a quick calculation shows that a choice of order for the embeddings and a

choice of cube root of unity gives

ξ1 = 3
3
√

2b

ξ2 = 3
3
√

2B

η1 = 3
3
√

2c

η2 = 3
3
√

2C,

(5.26)

we see from (5.24) we see that given a fixed binary cubic form, for us

f0(X,Y ) = X3 − 2Y 3 (5.27)

will be particularly useful, the action of a matrix

β =

 b c

B C

 (5.28)

is given by

fβ(X,Y ) =
1

bC − cB
f0(bX +BY, cX + CY )

=
1

bC − cB
((b3 − 2c3)X3 + 3(b2B − 2c2C)X2Y

+ 3(bB2 − 2cC2)XY 2 + (B3 − 2C3)Y 3).

(5.29)
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Comparing (5.18) with (5.24) and applying (5.29), we now see that a pair α and α′

used in the parametrization of the roots of our cubic congruence give rise to a matrix

(5.28) that maps the binary cubic form f0 into an integral binary cubic form. This is

summarized in proposition 5.1.

To prove proposition 5.2, we make a few more observations regarding the matrices

(5.28). To start, we let

γ =


A B C

U V W

X Y Z

 (5.30)

and

γ−1 =


u x c

v y b

w z a

 , (5.31)

where γ ∈ SL3(Z) is the matrix used in the parametrization of the roots of the congru-

ence, theorem 3.4.

Setting g = gcd(B,C), we observe by taking determinants of minors that g | c and

g | x. Moreover, by multiplying by γ−1 in (4.9) and examining the (1, 2) entry, we see

that nx ≡ b (mod c) – this shows that g | b and hence g | gcd(b, c). Now again by

taking minors we see that gcd(b, c) | C and also gcd(b, c) | W . And rearranging (4.9)

by taking inverses as
n 0 0

µn mn 0

∗ −νmn mn2

 γ =


a2 − 2bc 2c2 − ab b2 − ac

2(b2 − ac) a2 − 2bc 2c2 − ab

2(2c2 − ab) 2(b2 − ac) a2 − 2bc

 , (5.32)

we use (3.53) with the fact that there l = n to see that mW ≡ B (mod C), from which

gcd(b, c) | B and hence g = gcd(b, c) as well.

Equating coefficients in (5.18) and (5.29), we have

g3 | bB2 − 2cC2 = A(bC − cB). (5.33)

Since gcd(A,B,C) = gcd(A, g) = 1 we must have bC − cB = dg3 for some integer d.
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Accordingly, the matrix (5.28) decomposes as b c

B C

 =

g 0

0 g

dg k

0 1

 b′ c′

B′ C ′

 , (5.34)

where k is an integer, gB′ = B, gC ′ = C, and b′, c′ are some choice of integers so

that b′C ′ − c′B′ = 1, different choices corresponding to translates of the variable k by

a multiple of dg. We note that having gcd(b, c) = 1 in this notation is equivalent to

gcd(dg, k) = 1. Moreover such a decomposition is unique for a specific choice of b′ and

c′.

With

β′ =

 b′ c′

B′ C ′

 , (5.35)

we have

fβ(X,Y ) =
1

d
fβ′(dgX, kX + Y ), (5.36)

where

fβ′(X,Y ) = (b′X+B′Y )3−2(c′X+C ′Y )3 = n′X3−3a′X2Y +3A′XY 2−m′Y 3, (5.37)

say. Explicitly, we have

n =
1

d
(n′d3g3 − 3a′d2g2 + 3A′dgk2 −m′k3)

a =
1

d
(a′d2g2 − 2A′dgk +m′k2)

A =
1

d
(A′dg −m′k)

m =
1

d
m′.

(5.38)

From these equations, we see that the only divisibility condition is that d | m′, or

B′3 − 2C ′3 ≡ 0 (mod d). (5.39)

Proposition 5.2 apart from the last line of (5.5) follows from what we have done. To

see this last line we recall that W (mod C) is defined by the following

BW ≡ c (mod C)

AW ≡ −b (mod C).

(5.40)
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The first equation is equivalent to

W ≡ −dgc′2 (mod C ′), (5.41)

so then putting (5.38) into the second line of (5.40) gives

A′g(−dgc′2)−mk(−dgc′2 + lC ′) ≡ −dg2b′ − kgB′ (mod C). (5.42)

Now

mdc′2 ≡ −B′3c′2 ≡ −B′ (mod C ′), (5.43)

so the above simplifies to

−A′dg2c′2 −mklC ′ ≡ −dg2b′ (mod C). (5.44)

Since also

A′c′2 ≡ b′B′2c′2 ≡ b′ (mod C ′), (5.45)

(5.44) becomes

− dg2b′ −mklC ′ ≡ −dg2b′ (mod C), (5.46)

so l ≡ 0, whence

W ≡ −dgc′2 (mod C). (5.47)

Finally, to complete the last line of (5.5), we note that since

d ≡ −mB′3 (mod C ′), (5.48)

where m is the inverse of m modulo C ′, we have

W ≡ mB (mod C). (5.49)

5.2 Ideal and root counts

5.2.1 Co-type zeta function

For an ideal I ⊂ Z[21/3], we let d1(I), d2(I), and d3(I) denote the invariant factors.

That is

Z[21/3]/I ∼= Z/d1(I)Z⊕ Z/d2(I)Z⊕ Z/d3(I)Z (5.50)
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with d3(I) | d2(I) | d2(I). In the study of subgroup growth, a lot of attention has

been paid to certain zeta functions associated to the invariant factors, see [Pet07] and

[CKK17]. In our situation, counting ideals in the ring Z[21/3], we define the co-type

zeta function as

ζZ[21/3](s1, s2, s3) =
∑

06=I⊂Z[21/3]

d1(I)−s1d2(I)−s2d3(I)−s3 , (5.51)

where the sum is of course over ideals I.

In the language of theorem 3.1 and corollary 3.2, we see that d3(I) is the largest

integer divisor of I, and, applying the theorem to I/d3(I), we have m = d1(I)/d2(I),

n = d2(I)/d3(I). We have

ζZ[21/3](s1, s2, s3) =
∑

0 6=I⊂Z[21/3]

m(I)−s1n(I)−s1−s2d3(I)−s1−s2−s3

= ζ(s1 + s2 + s3)
∑

0 6=I⊂Z[21/3]
d-I,∀d∈Z

m(I)−s1n(I)−s1−s2 ,
(5.52)

where ζ(s) is the Riemann zeta function. We apply theorem 3.1 to arrange this sum as

ζZ[21/3](s1, s2, s3) =
∑

gcd(m,6)=1

∑
µ3≡2(m)

m−s1
∑
n≥1

∑
ν3≡2(n)

gcd(m,n,µ−ν)=1

n−s1−s2

+
∑

gcd(m,6)=2

∑
µ3≡2(m)

m−s1
∑

gcd(n,2)=1

∑
ν3≡2(n)

gcd(m,n,µ−ν)=1

n−s1−s2

+
∑

gcd(m,6)=3

∑
µ3≡2(m)

m−s1
∑

gcd(n,3)=1

∑
ν3≡2(n)

gcd(m,n,µ−ν)=1

n−s1−s2

+
∑

gcd(m,6)=6

∑
µ3≡2(m)

m−s1
∑

gcd(n,6)=1

∑
ν3≡2(n)

gcd(m,n,µ−ν)=1

n−s1−s2

= S1 + S2 + S3 + S4,

(5.53)

say. Starting with S1, we have

S1 =
∑

gcd(m,6)=1

∑
µ3≡2(m)

m−s1(1 + 2−s1−s2)(1 + 3−s1−s2)

×
∏
p|m
p∈P1

(
1 +

2p−s1−s2

1− p−s1−s2

) ∏
p-m
p∈P1

(
1 +

3p−s1−s2

1− p−s1−s2

) ∏
p-m
p∈P2

(
1 +

p−s1−s2

1− p−s1−s2

)
,

(5.54)
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where P1 is the set of primes in Z that split completely in Z[21/3] and P2 is the set of

those that factor into a degree 1 times a degree 2 prime; neither P1 nor P2 contain 2

or 3. Explicitly, we have P2 is the set of all primes other than 2 that are ≡ 2 (mod 3),

and P1 is the set of all primes that can be represented by the binary quadratic form

X2 + 27Y 2.

We arrange this as

S1 = (1 + 2−s1−s2)(1 + 3−s1−s2)
∏
p∈P1

(
1 +

3p−s1−s2

1− p−s1−s2

) ∏
p∈P2

(
1

1− p−s1−s2

)

×
∑

gcd(m,6)=1

∑
µ3≡2(m)

m−s1
∏
p|m
p∈P1

(
1 + p−s1−s2

1 + 2p−s1−s2

) ∏
p|m
p∈P2

(
1− p−s1−s2

)

= (1 + 2−s1−s2)(1 + 3−s1−s2)

×
∏
p∈P1

(
1 + 2p−s1 + 2p−s1−s2 + p−2s1−s2

(1− p−s1)(1− p−s1−s2)

) ∏
p∈P2

(
1− p−2s1−s2

(1− p−s1)(1− p−s1−s2)

)
.

(5.55)

Similar calculations show that

S2 = 2−s1(1 + 3−s1−s2)

×
∏
p∈P1

(
1 + 2p−s1 + 2p−s1−s2 + p−2s1−s2

(1− p−s1)(1− p−s1−s2)

) ∏
p∈P2

(
1− p−2s1−s2

(1− p−s1)(1− p−s1−s2)

)
S3 = 3−s1(1 + 2−s1−s2)

×
∏
p∈P1

(
1 + 2p−s1 + 2p−s1−s2 + p−2s1−s2

(1− p−s1)(1− p−s1−s2)

) ∏
p∈P2

(
1− p−2s1−s2

(1− p−s1)(1− p−s1−s2)

)

S4 = 6−s1
∏
p∈P1

(
1 + 2p−s1 + 2p−s1−s2 + p−2s1−s2

(1− p−s1)(1− p−s1−s2)

) ∏
p∈P2

(
1− p−2s1−s2

(1− p−s1)(1− p−s1−s2)

)
.

(5.56)

Putting these into (5.53), we obtain

ζZ[21/3](s1, s2, s3) =

= (1 + 2−s1 + 2−s1−s2)(1 + 3−s1 + 3−s1−s2)ζ(s1 + s2 + s3)

×
∏
p∈P1

(
1 + 2p−s1 + 2p−s1−s2 + p−2s1−s2

(1− p−s1)(1− p−s1−s2)

) ∏
p∈P2

(
1− p−2s1−s2

(1− p−s1)(1− p−s1−s2)

)
.

(5.57)
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5.2.2 Number of n for a given µ (mod m)

For a fixed m and µ (mod m), we will want to count the number of n and ν (mod n) to

which, together with m and µ (mod m), correspond to an ideal as in theorem 3.1. Let

φ be a smooth function, compactly supported in the interval (0,∞), which has Mellin

transform

φ̂(s) =

∫ ∞
0

φ(x)xs−1dx, (5.58)

which by integration by parts is � (1 + |s|)−j for any j > 0. The quantity we would

like to estimate is the following sum over ideals I,

G(m,µ,N) =
∑

06=I⊂Z[21/3]
d-I∀d∈Z

m(I)=m,µ(I)=µ

φ

(
n(I)

N

)
(5.59)

where N is a positive real number. If gcd(m, 6) = 1, which we will assume from here

on, we have by theorem 3.1

G(m,µ,N) =
∑
n≥1

∑
ν3≡2(n)

gcd(m,n,µ−ν)=1

φ
( n
N

)
. (5.60)

Applying Mellin inversion, we have

G(m,N) =
1

2πi

∫
Re(s)=2

(∑
n≥1

∑
ν3≡2(n)

gcd(m,n,µ−ν)=1

n−s

)
N sφ̂(s)ds

=
1

2πi

∫
Re(s)=2

(
(1 + 2−s)(1 + 3−s)

∏
p|m
p∈P1

(
1 +

2p−s

1− p−s

) ∏
p-m
p∈P1

(
1 +

3p−s

1− p−s

)

×
∏
p-m
p∈P2

(
1

1− p−s

))
N sφ̂(s)ds.

=
1

2πi

∫
Re(s)=2

( ∏
p|m
p∈P1

(
1 + p−s

1 + 2p−s

) ∏
p|m
p∈P2

(
1− p−s

))

×(1 + 2−s)(1 + 3−s)
∏
p∈P1

(
1 +

3p−s

1− p−s

) ∏
p∈P2

(
1

1− p−s

)
N sφ̂(s)ds.

(5.61)

Now in order to be explicit as possible we will relate the Euler product in this last

line of (5.61), which not surprisingly the Dirichlet series for counting the roots of ν3 ≡ 2
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(mod n), to the Dedekind zeta function of Z[21/3]. We have the following

D(s) =
∑
n≥

1

ns
#{ν (mod n) : ν3 ≡ 2 (mod n)}

= (1 + 2−s)(1 + 3−s)
∏
p∈P1

(
1 +

3p−s

1− p−s

) ∏
p∈P2

(
1

1− p−s

)
= (1− 2−2s)(1− 3−2s)( ∏

p∈P1

(
1− 3p−2s + 2p−3s

) ∏
p∈P2

(
1− p−2s

) ∏
p∈P3

(
1− p−3s

))
ζZ[21/3](s).

(5.62)

The Euler product in the last line of (5.62) clearly converges absolutely and uniformly

in Re(s) ≥ 1
2 + ε, and so D(s) inherits the properties of the Dedekind zeta function

ζZ[21/3](s) in this region: D(s) is meromorphic in Re(s) > 1
2 with a simple pole at s = 1.

Because of the rapid decay of φ̂ we can shift the contour in (5.61) to Re(s) = 1
2 + ε,

picking up the residue at s = 1, to obtain

G(m,µ,N) = g(m) (Ress=1D(s)) φ̂(1)N +Oε

(
τ(m)N1/2+ε

)
, (5.63)

where

g(m) =
∏
p|m
p∈P1

(
1− 1

p+ 2

) ∏
p|m
p∈P2

(
1− 1

p

)
, (5.64)

We note that g(m) satisfies (log logm)−1 � g(m)� 1 and, for explicitness,

Ress=1D(s) =
2

3

∏
p∈P1

(
1− 3

p2
+

2

p3

) ∏
p∈P2

(
1− 1

p2

) ∏
p∈P3

(
1− 1

p3

)
× π

3
√

3
log(1 + 21/3 + 22/3)

≈ 0.507396

(5.65)

by the class number formula.

5.3 A transformation for a variant of the Weyl sum

With φ a smooth, compactly supported function on (0,∞) and M , N positive real

numbers, we begin with the following sum over ideals,

S(M,N) =
∑

06=I⊂Z[21/3]
d-I∀d∈Z

gcd(m(I),6)=1

φ

(
m(I)

M

)
φ

(
n(I)

N

)
e

(
hµ(I)

m(I)

)
, (5.66)
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where h is a nonzero integer. We first arrange S(M,N) as

S(M,N) =
∑

gcd(m,6)=1

φ
(m
M

) ∑
µ3≡2(m)

e

(
hµ

m

) ∑
06=I⊂Z[21/3]
d-I∀d∈Z

m(I)=m,µ(I)=µ

φ

(
n(I)

N

)
. (5.67)

By proposition 5.4, we can evaluate the inner sum to obtain

S(M,N) = constant·φ̂(1)N
∑

gcd(m,6)=1

g(m)φ
(m
M

) ∑
µ3≡2(m)

e

(
hµ

m

)
+O

(
MN1/2(MN)ε

)
,

(5.68)

which yields∑
gcd(m,6)=1

g(m)φ
(m
M

) ∑
µ3≡2(m)

e

(
hµ

m

)
=

constant

φ̂(1)N
S(M,N) +O

(
MN−1/2(MN)ε

)
.

(5.69)

The left side of (5.69) is clearly a slight variant of the Weyl sum for the roots µ (mod m)

since the factor g(m) is of little significance. We will attempt to estimate this variant

of the Weyl sum by transforming S(M,N) using the connection to binary cubic forms

outlined in section 5.1.

To this end, we replace the sum over ideals I in S(M,N) by a sum over α′ =

A + B21/3 + C22/3 ∈ Z[21/3], as in the parametrization of theorem 3.4. Of course we

need to handle the redundancy in α caused by the units, and instead of sharply cutting

α to be in a fundamental domain we introduce a smooth function Ψ(A,B,C), which

we will take to be1

Ψ(A,B,C) = ψ

(
A+B21/3 + C22/3

|A3 + 2B3 + 4C3 − 6ABC|1/3

)
(5.70)

with ψ given by the following lemma.

Lemma 5.8. There is a fixed smooth function ψ(x) compactly supported in the interval(
3
2 , 10

)
, say, such that for all x ∈ (0,∞),

∞∑
j=−∞

ψ(εjx) = 1, (5.71)

where ε = 1 + 21/3 + 22/3 is the fundamental unit in Z[21/3]. Moreover, we have

ψ(j)(x)� 1 for all j.

1In the argument of ψ we are confusing for the moment 21/3 with its real embedding.
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Proof. We let ψ1 be a smooth function supported in
(
3
2 , 10

)
that is strictly positive in

the interval (2, 2ε)), which comes from the fundamental domain used in proposition 3.6.

The shows that for any x,
∞∑

j=−∞
ψ1(ε

jx) > 0. (5.72)

Now, setting

ψ(x) =

 ∞∑
j=−∞

ψ1(ε
jx)

−1 ψ1(x), (5.73)

we see that ψ satisfies (5.71), and also the estimates for the derivatives since only a

bounded number of j will contribute to the sum in the denominator of (5.73).

With this Ψ, applying the calculations in section 5.1 yields

S(M,N) =
∑∑∑
gcd(A,B,C)=1

gcd
(
B3−2C3

bC−cB ,6
)
=1

φ

(
B3 − 2C3

(bC − cB)M

)
φ

(
− b3 − 2c3

(bC − cB)N

)

×e
(
−hW

C

)
Ψ(A,B,C) +O(|h|N),

(5.74)

where we have used the approximation µ
m = −W

C + O
(

1
M

)
of theorem 3.7. We recall

that α = a+b21/3+c22/3 is determined from α′ by the requirement that gcd(a, b, c) = 1

and αα′ ∈ Z>0, and we also recall that U (mod C) is determined by

AW ≡ −b (mod C)

BW ≡ c (mod c).

(5.75)

Again applying the calculations in section 5.1, we replace the sum over A, B, and

C by a sum over b, c, B and C. Recalling that the eligible of these are all written

uniquely as  b c

B C

 =

dg2 kg

0 g

 b′ c′

B′ C ′

 (5.76)

where  b′ c′

B′ C ′

 ∈
1 ∗

0 1

 \SL2(Z) (5.77)

is a fixed representative, d | B′3 − 2C ′3, gcd(k, dg) = 1, and

gcd

(
B′3 − 2C ′3

d
, 6

)
= 1. (5.78)
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We remark that different choices of the representative (5.77) shift k by a multiple of

dg. With this parametrization, we have

A = g
(
b′B′2 − 2c′C ′2

)
− kB

′3 − 2C ′3

d

W ≡ −dgc′2 (mod gC ′).,

(5.79)

and so

S(M,N) =
∑∑

B′,C′�M2/3N1/3

gcd(B′,C′)=1

∑
d|B′3−2C′3

gcd
(
B′3−2C′3

d
,6
)
=1

e

(
h
dc′2

C ′

)
(5.80)

×
∑

gB′,gC′�M2/3N1/3

∑
gcd(k,dg)=1

φ

(
B′3 − 2C ′3

dM

)

× φ
(

(dgb′ + kB′)3 − 2(dgc′ + kC ′)3

dN

)
×Ψ

(
g
(
b′B′2 − 2c′C ′2

)
− kB

′3 − 2C ′3

d
, gB′, gC ′

)
+O (|h|N) .

(5.81)

We break the sum over k into arithmetic progressions k ≡ κ (mod dg) and apply

Poisson summation to each to obtain

S(M,N) =
∑∑

B′,C′�M2/3N1/3

gcd(B′,C′)=1

∑
d|B′3−2C′3

gcd
(
B′3−2C′3

d
,6
)
=1

e

(
h
dc′2

C ′

)
φ

(
B′3 − 2C ′3

dM

)
(5.82)

×
∑

gB′�M2/3N1/3

gC′�M2/3N1/3

1

dg

∑
κ(dg)∗

∑
k

e

(
kκ

dg

)

∞∫
−∞

φ

(
(dgb′ + xB′)3 − 2(dgc′ + xC ′)3

dN

)

×Ψ

(
g
(
b′B′2 − 2c′C ′2

)
− xB

′3 − 2C ′3

d
, gB′, gC ′

)
e

(
−kx
dg

)
dx

+O (|h|N) .
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We can bring the sum over κ to the inside and evaluate the Ramanujan sum, obtaining

S(M,N) =
∑∑

B′,C′�M2/3N1/3

gcd(B′,C′)=1

∑
d|B′3−2C′3

gcd
(
B′3−2C′3

d
,6
)
=1

e

(
h
dc′2

C ′

)
φ

(
B′3 − 2C ′3

dM

)
(5.83)

×
∑

gB′�M2/3N1/3

gC′�M2/3N1/3

1

dg

∑
f |dg

µ

(
dg

f

)
f

∑
k≡0(f)

∞∫
−∞

φ

(
(dgb′ + xB′)3 − 2(dgc′ + xC ′)3

dN

)

×Ψ

(
g
(
b′B′2 − 2c′C ′2

)
− xB

′3 − 2C ′3

d
, gB′, gC ′

)
e

(
−kx
dg

)
dx

+O (|h|N) .

We note that from proposition 3.6, Ψ restricts A to be in an interval of length M2/3N1/3,

which corresponds to x in the integral of (5.83) being restricted to an interval of length

M−1/3N1/3. Hence M−1/3N1/3 serves as an upper bound for this integral, and integra-

tion by parts an arbitrary number of times shows that, after replacing k ← df , only k

for which

k � dg

f

M1/3

N1/3
(MN)ε (5.84)

will contribute. It follows that M−1/3N1/3 times right side of (5.84) serves as an upper

bound for the sum over all non-zero k, and the total contribution is then seen to be no

more than M4/3N2/3(MN)ε, which we note is smaller than the trivial bound when N

is larger than M . We have

S(M,N) =
∑∑

B′,C′�M2/3N1/3

gcd(B′,C′)=1

∑
d|B′3−2C′3

gcd
(
B′3−2C′3

d
,6
)
=1

e

(
h
dc′2

C ′

)
φ

(
B′3 − 2C ′3

dM

)
(5.85)

×
∑

gB′�M2/3N1/3

gC′�M2/3N1/3

ϕ(dg)

dg

∞∫
−∞

φ

(
(dgb′ + xB′)3 − 2(dgc′ + xC ′)3

dN

)

×Ψ

(
g
(
b′B′2 − 2c′C ′2

)
− xB

′3 − 2C ′3

d
, gB′, gC ′

)
dx

+O
(
|h|N +M4/3N2/3(MN)ε

)
.
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