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In this work, we explore the fundamental problems associated with Photographic Steganog-

raphy, the process of discretely sending information camouflaged in natural images from

electronic display to camera. Broadly stated, the goals are minimizing the perceived

visual impact of adding a new message to an image, while simultaneously maximizing

the ability to accurately recover this message camera-side. This process is complicated

by the photometric and radiometric effects of cameras, electronic displays, and their

relative geometry and illumination conditions. In Chapter 2, we model these effects

jointly as a Camera-Display Transfer Function (CDTF) and introduce two online ra-

diometric calibration techniques to mitigate the effects of the CDTF. In Chapter 3,

we extend photographic steganography by modeling and predicting color shifts that

minimize perceptual impact and maximize accurate camera recovery. In Chapter 4,

we use deep convolutional neural networks to jointly learn a steganographic embedding

and recovery algorithm that requires no multi-frame synchronization, one of the most

significant practical barriers to success for photographic steganography. The proposed

techniques have all been implemented in real-time demos using consumer-grade displays
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and smartphone cameras. This body of work represents a fundamental contribution to

the field of camera-display communication and photographic steganography. Chapter 5

explores how computer vision techniques can be extended to monostatic radar for shape

recognition.
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Chapter 1

Introduction

This thesis describes photographic steganography, the process of imperceptibly encod-

ing messages into photos and video rendered on an electronic display that are decoded

using a camera. Several techniques are introduced to increase the accuracy of message

recovery, reduce obtrusive perceptual impact, and eliminate synchronization problems

between camera and display.

In Chapter 2, we present a novel method for communicating between a moving

camera and an electronic display by embedding and recovering hidden, dynamic infor-

mation within an image. A small intensity pattern is added to alternate frames of a

time-varying display. A handheld camera pointed at the display can receive not only the

display image, but also an underlying message. Differencing the camera-captured alter-

nate frames leaves the small intensity pattern, but results in errors due to photometric

effects that depend on camera pose. Detecting and robustly decoding the message re-

quires careful photometric modeling for message recovery. The key innovation of our

approach is an algorithm that performs simultaneous radiometric calibration and mes-

sage recovery in one convex optimization problem. By modeling the photometry of the

system using a camera-display transfer function (CDTF), we derive an optimal online

radiometric calibration (OORC) for robust computational messaging as demonstrated

with nine different commercial cameras and displays. The online radiometric calibra-

tion algorithms described in this chapter significantly reduces message recovery errors,

especially for low intensity messages and oblique camera angles [2].

In Chapter 3, we exploit human color metamers to send light-modulated messages

decipherable by cameras, but camouflaged to human vision. These time-varying mes-

sages are concealed in ordinary images and videos. Unlike previous methods which
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rely on visually obtrusive intensity modulation, embedding with color reduces visible

artifacts. The mismatch in human and camera spectral sensitivity creates a unique

opportunity for hidden messaging. Each color pixel in an electronic display image is

modified by shifting the base color along a particular color gradient. The challenge is

to find the set of color gradients that maximizes camera response and minimizes hu-

man response. Our approach does not require a priori measurement of these sensitivity

curves. We learn an ellipsoidal partitioning of the 6-dimensional space of base colors

and color gradients. This partitioning creates metamer sets defined by the base color of

each display pixel and the corresponding color gradient for message encoding. We sam-

ple from the learned metamer sets to find optimal color steps for arbitrary base colors.

Ordinary displays and cameras are used, so there is no need for high speed cameras or

displays. Our primary contribution is a method to map pixels in an arbitrary image to

metamer pairs for steganographic camera-display messaging. [3]

The initial work in Chapters 2 and 3 was based on a hand-designed mathemati-

cal framework, and suffered from the major problem of needing to know the reference

frame. Knowing the reference frame a priori is not practical in real world applications,

and sending the reference and embedded frame led to synchronization problems when

moving to video rates. In Chapter 4 of this thesis, we have a paradigm shift where we

develop a synchronization-free messaging method by learning the camera-display mes-

saging function and discovering the best embedding methodology using deep networks.

In Chapter 4, we introduce Light Field Messaging (LFM), a process of embedding,

transmitting, and receiving hidden information in video that is displayed on a screen

and captured by a handheld camera. The goal of the system is to minimize perceived

visual artifacts of the message embedding, while simultaneously maximizing the accu-

racy of message recovery on the camera side. LFM requires photographic steganog-

raphy for embedding messages that can be displayed and camera-captured. Unlike

digital steganography, the embedding requirements are significantly more challenging

due to the combined effect of the screen’s radiometric emittance function, the camera’s

sensitivity function, and the camera-display relative geometry. We devise and train

a network to jointly learn a deep embedding and recovery algorithm that requires no
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multi-frame synchronization. A key novel component is the camera display transfer

function (CDTF) to model the camera-display pipeline. To learn this CDTF we in-

troduce a dataset (Camera-Display 1M) of 1,000,000 camera-captured images collected

from 25 camera-display pairs. The result of this work is a high-performance real-time

LFM system using consumer-grade displays and smartphone cameras [4].

In Chapter 5, we apply modern machine learning techniques to radar signals. Radar

systems emit a time-varying signal and measure the response of a radar-reflecting sur-

face. In the case of narrowband, monostatic radar signal domain, all spatial information

is projected into a Radar Cross Section (RCS) scalar. We address the challenging prob-

lem of determining shape class using monostatic RCS estimates collected as a time

series from a rotating object tumbling with unknown motion parameters under de-

tectability limitations and signal noise. Previous shape classification methods have

relied on image-like synthetic aperture radar (SAR) or multistatic (multiview) radar

configurations with known geometry. Convolutional neural networks (CNNs) have revo-

lutionized learning tasks in the computer vision domain by leveraging images and video

rich with high-resolution 2D or 3D spatial information. We show that a feed-forward

CNN can be trained to successfully classify object shape using only noisy monostatic

RCS signals with unknown motion. We construct datasets containing over 100, 000

simulated RCS signals belonging to different shape classes. We introduce deep neural

network architectures that produce 2% classification error on testing data. We also in-

troduce a refinement network that transforms simulated signals to appear more realistic

and improve training utility. The results are a pioneering step toward the recognition

of more complex targets using narrowband, monostatic radar [5]. Chronologically, this

work on classifying radar cross section followed our initial steganography methods. The

subsequent experiences in deep learning for recognition, led to a rethinking of the the

problem of steganography and the development of the Light Field messaging in Chap-

ter 4.

Finally, Chapter 6 concludes with a discussion of solved and unsolved problems in

photographic steganography.
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Chapter 2

Optimal Radiometric Calibration for Camera-Display

Messaging

While traditional computer vision concentrates on objects that reflect environment

lighting (passive scenes), objects which emit light, such as electronic displays, are in-

creasingly common in modern scenes. Unlike passive scenes, active scenes can have

intentional information that must be detected and recovered. For example, displays

with QR codes [6] can be found in numerous locations such as shop windows and

billboards 2.1. However, QR-codes are very simple examples because the bold, static

pattern makes detection somewhat trivial. The problem is more challenging when the

codes are not visible markers, but are hidden within a displayed image. The displayed

image is a light field, and decoding the message is an interesting problem in photometric

modeling and computational photography. The paradigm has numerous applications

because the electronic display and the camera can act as a communication channel where

the display pixels are transmitters and the camera pixels are receivers. Unlike hidden

messaging in the digital domain, real-world camera-display messaging is a relatively

new area. The problem was introduced with intensity modulation and fixed camera

systems [7, 8, 9, 10, 11], and extended to moving cameras [12, 13, 14], high-frequency

modulation [15? ], and depth cameras [13]. In this chapter, we develop an optimal

method for sending and retrieving hidden time-varying messages using electronic dis-

plays and cameras which accounts for the characteristics of light emittance from the

display using radiometric calibration. The electronic display has two communication

channels: 1) the original display image such as advertising, maps, slides, or artwork; 2)

the transmission of hidden time-varying messages.

When light is emitted from a display, the resultant 3D light field has an intensity
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Figure 2.1: QR code on a Times Square electronic billboard. The high contrast black-
white pattern is relatively easy to detect, track and decode. However, consider the
more general task of encoding a message within an unknown and arbitrary image on an
electronic display. The detection, tracking and decoding problems become significantly
more challenging and interesting. Source: [2].

that depends on the angle of observation as well as the pixel value controlled by the

display. The emittance function of the electronic display is analogous to the BRDF

(bidirectional reflectance distribution function) of a surface. This function characterizes

the light radiating from a display pixel. It has a particular spectral shape that does not

match the spectral sensitivity curve of the camera. The effect of the display emittance

function, the spectral sensitivity of the camera and the camera viewing angle are all

components of our photometric model for image formation as shown in Figure 2.2. Our

approach does not require measurement or knowledge of the exact display emittance

function. Instead, we estimate the entire system transfer function as a camera-display

transfer function (CDTF) which determines the captured pixel value as a function of

the displayed pixel value. By using online frame-to-frame estimation of the CDTF, no

prior calibration is required and the method is independent of the particular choice of

display and camera.

Although watermarking literature has many hidden messaging methods, this area
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Display Light in Free 
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Figure 2.2: Image Formation Pipeline: The image Id is displayed by an electronic dis-
play with an emittance function 𝑒. The display is observed by a camera with sensitivity
𝑠 and radiometric response function 𝑓 . Source: [2].

typically ignores the physics of illumination. Display-camera messaging is fundamen-

tally different from watermarking because each pixel of the image is a light source that

propagates in free space. Therefore, representations and methods that act only in the

digital domain are not sufficient.

The problem of understanding the relationship between the displayed pixel and

the captured pixel is closely related to the area of traditional radiometric calibration

[16, 17, 18]. In these methods, a brightness transfer function characterizes the rela-

tionship between scene radiance and image pixel values. The characterization of this

function is done by measuring a range of scene radiances and the corresponding captured

image pixels. Our problem in camera-display messaging is similar but has important

key differences. The CDTF is more complex than standard radiometric calibration be-

cause the system consists of both a display and a camera, each device adding its own

nonlinearities. We can exploit the control of pixel intensities on the display and easily

capture the full range of input intensities. However, the display emittance function is

typically dependent on the display viewing angle. Therefore, the CDTF is dependent on

camera pose. In a moving camera system, the CDTF must be estimated per frame; that

is, an online CDTF estimation is needed. Furthermore, this function varies spatially

over the electronic display surface.

We show that the two-part problem of online radiometric calibration and accurate

message retrieval can be structured as an optimization problem. We present an ele-

gant problem formulation where the photometric modeling leads to physically-motivated
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(a) Difference image (b) Thresholding (c) Our method

Figure 2.3: Comparison of message recovery with a naive method and the proposed
optimal method (a) Difference of two consecutive frames in the captured sequence to
reveal the transmitted message. (b) Naive method: Threshold the difference image by
a constant (threshold 𝑇 = 5 for this example). (c) Optimal Method: Bits are classified
by a simultaneous radiometric calibration and message recovery. Source: [2].

kernel functions that are used with a support vector machine classifier. We show that

calibration and message bit classification can be done simultaneously and the result-

ing optimization algorithm operates in four dimensional space and is convex. The

algorithm is a novel method for online optimal radiometric calibration (OORC) that

enables accurate camera-display messaging. An example message recovery result is

shown in Figure 2.3. Our experimental results show that accuracy levels for message

recovery can improve from as low as 40-60% to higher than 90% using our approach

when compared to either no calibration, or sequential calibration followed message re-

covery. For evaluation of results, 9 different combinations of displays and cameras are

used with 15 different image sequences, for multiple embedded intensity values, and

multiple camera-display view angles.

The contributions of the chapter can be summarized as follows: 1) A new optimal

online radiometric calibration with simultaneous message recovery, cast as a convex op-

timization problem; 2) photometric model of the camera display transfer function; 3) the

use of ratex (radiometric textured calibration) patches to provide continual calibration

information as a practical method for online calibration; 4) the use of distribution-driven

intensity mapping as a practical method for visually non-disruptive online calibration.
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1 Related Work

Watermarking In developing a system where cameras and displays can communi-

cate under real world conditions, the initial expectation was that existing watermarking

techniques could be used directly. Certainly the work in this field is extensive and has

a long history with numerous surveys compiled [19, 20, 21, 22, 23, 24]. Surprisingly,

existing methods are not directly applicable to our problem. In the field of watermark-

ing, a fixed image or mark is embedded in an image often with the goal of identifying

fraudulent copies of a video, image or document. Existing work emphasizes almost

exclusively the digital domain and does not account for the effect of illumination in

the image formation process in real world scenes. In the digital domain, neglecting

the physics of illumination is quite reasonable; however, for camera-display messaging,

illumination plays a central role.

From a computer vision point of view, the imaging process can be divided into

two main components: photometry and geometry. The geometric aspects of image

formation have been addressed to some extent in the watermarking community, and

many techniques have been developed for robustness to geometric changes during the

imaging process such as scaling, rotations, translations and general homography trans-

formations [25, 26, 27, 28, 29, 21, 30]. However, the photometry of imaging has largely

been ignored. The rare mention of photometric effects [31, 32] in the watermarking

literature doesn’t define photometry with respect to illumination; instead photometric

effects are defined as “lossy compression, denoising, noise addition and lowpass filter-

ing”. In fact, photometric attacks are sometimes defined as jpeg compression [27].

Radiometric Calibration Ideally, we consider the pixel-values in a camera image

to be a measurement of light incident on the image plane sensor. It is well known

that the relationship is typically nonlinear. Radiometric calibration methods have been

developed to estimate the camera response function that converts irradiance to pixel

values. In measuring a camera response, a series of known brightness values are mea-

sured along with the corresponding pixel values. In general, having such ground truth



9

brightness is quite difficult. The classic method [17] uses multiple exposure values in-

stead. The light intensity on the sensor is a linear function of the time of exposure,

so known exposure times enables ground truth light intensity. This exposure-based

method is used in several radiometric calibration methods [16, 18, 17, 33, 34]. Our goal

for the display-camera system is related to radiometric calibration; the system converts

scene radiance to pixels (the camera), but also converts from pixel to scene radiance

(the display) so that the whole camera-display system is a function that maps a color

value at the display to a color value at the camera.

The camera response in radiometric calibration is either estimated as a full mapping

where iout is specified for every iin or as an analytic function 𝑔(iin). Several authors [16,

35, 36] use polynomials to model the radiometric response function. Similarly, we have

found that fourth order polynomials can be used for modeling the inverse display-

camera transfer function. The dependence on color is typically modeled by considering

each channel independently [16, 18, 17, 37]. Interestingly, although more complex

color models have been developed [38, 39, 40], we have found the independent channel

approach suitable for the display-camera representation where the optimality criterion

is accurate message recovery.

Existing radiometric calibration methods are developed for cameras, not camera-

display systems. Therefore, display emittance function is not part of these prior meth-

ods. However, for the camera-display transfer function, this component plays an impor-

tant role. We do not use the measured display emittance function explicitly, but since

the CDTF is view dependent and the camera can move, our approach is to perform

radiometric calibration per frame.

Other Methods for Camera-Display Communication Camera-display commu-

nications have precedent in the computer vision community, but existing methods differ

from our proposed approach. For example, researchers on the Bokode project [41] pre-

sented a system using an invisible message, however the message is a fixed symbol, not

a time-varying message. Invisible QR codes were addressed in [42], but these QR-codes
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are fixed. Similarly, traditional watermark approaches typically contained fixed mes-

sages. LCD-camera communications is presented in [8] with a time-varying message,

but the camera is in a fixed position with respect to the display. Consequently, the

electronic display is not detected, tracked or segmented from the background. Further-

more, the transmitted signal is not hidden in this work. Recent work has been done in

high speed visible light communications [43], but this work does not utilize existing dis-

plays and cameras and requires specialized hardware and LED devices. Time-of-flight

cameras have recently been used for phase-based communication [44], but these meth-

ods require special hardware. Interest in camera-display messaging is also shared in

the mobile communications domain. COBRA, RDCode, and Strata have developed 2D

barcode schemes designed to address the challenges of low-resolution and slow shutter

speeds typically present in smartphone cameras [45, 46, 47]. Likewise, Lightsync has

targeted synchronization challenges with low frequency cameras [48].

2 System Properties

In our proposed camera-display communication system, pixel values from the display

are inputs, while captured intensities from the camera are output. We denote the map-

ping from displayed intensities to captured ones as Camera-Display Transfer Function

(CDTF). In this section, we motivate the need for online radiometric calibration by

briefly analyzing factors that influence the CDTF.

Display Emittance Variation Displays vary widely in brightness, hue, white bal-

ance, contrast and many other parameters that will influence the appearance of light.

To affirm this hypothesis, an SLR camera with fixed parameters observes 3 displays and

models the CDTF for each one as shown in Figure 2.4. Although each display is tuned

to the same parameters, including contrast and RGB values, each display produces a

unique CDTF.

Observation Angles Electronic displays emit light with an angular dependence.

Consider the image of an electronic display captured by a camera from multiple angles
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Figure 2.4: Variance of Light Output among Displays. An SLR camera captured
a range of grayscale [0,255] intensity values produced by 3 different LCDs. These
3 CDTF curves highlight the difference in the light emittance function for different
displays. Source: [2].

as shown in Figure 4.7. More oblique observation angles yield lower captured pixel in-

tensities. Additionally, there is a nonlinear relationship between captured light intensity

and viewing angle.

3 Methods

3.1 Photometry of Display-Camera systems

The captured image ic from the camera viewing the electronic display image id can be

modeled using the image formation pipeline in Figure 2.2. First, consider a particular

pixel within the display image id with red, blue and green components given by 𝜌 =

(𝜌𝑟, 𝜌𝑔, 𝜌𝑏). The captured image ic at the camera has three color components (𝑖𝑟𝑐, 𝑖
𝑔
𝑐 , 𝑖𝑏𝑐),

however there is no one-to-one correspondence between the color channels of the camera

sensitivity function and the electronic display emittance function. When the monitor

displays the value (𝜌𝑟, 𝜌𝑔, 𝜌𝑏) at a pixel, it is emitting light in a manner governed

by its emittance function and modulated by 𝜌. The monitor emittance function e

is typically a function of the viewing angle 𝜃 = (𝜃𝑣, 𝜑𝑣) comprised of a polar and
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Figure 2.5: Influence of observation angles. Using the Nikon-Samsung pair, a
range of grayscale [0, 255] values were displayed and captured from a set of different
observation angles. As observation angle became more oblique, the camera-display
transfer function changes. Source: [2].

azimuthal component. For example, the emittance function of an LCD monitor has a

large decrease in intensity with polar angle (see Figure 2.6).

The emittance function has three components, i.e. e = (𝑒𝑟, 𝑒𝑔, 𝑒𝑏). Therefore the

emitted light i as a function of wavelength 𝜆 for a given pixel (𝑥, 𝑦) on the electronic

display is given by

𝑖(𝑥, 𝑦, 𝜆) = 𝜌𝑟𝑒𝑟(𝜆, 𝜃) + 𝜌𝑔𝑒𝑔(𝜆, 𝜃) + 𝜌𝑏𝑒𝑏(𝜆, 𝜃), (2.1)

or

𝑖(𝑥, 𝑦, 𝜆) = 𝜌𝑇e(𝜆,𝜃). (2.2)

Now consider the intensity of the light received by one pixel element at the camera

sensor. Let 𝑠𝑟(𝜆) denote the camera sensitivity function for the red component, then

the red pixel value 𝑖𝑟𝑐 can be expressed as

𝑖𝑟𝑐 ∝
∫︁
𝜆

[︀
𝜌𝑇e(𝜆,𝜃))

]︀
𝑠𝑟(𝜆)𝑑𝜆. (2.3)
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Figure 2.6: Histograms of intensities captured from a uniform display. Notice
as observation angle changes, so does the distribution of captured intensities illustrating
the angular variation of the display emittance function. Source: [2].

Notice that the sensitivity function of the camera has a dependence on wavelength that

is likely different than the emittance function of the monitor. That is, the interpretation

of “red” in the monitor is different from that of the camera. Notice that a sign of

proportionality is used in Equation 2.3 to specify that the pixel value is a linear function

of the intensity at the sensor, assuming a linear camera and display. This assumption

will be removed in Section 3.3.

Equation 2.3 can be written to consider all color components in the captured image

ic as

ic ∝
∫︁
𝜆

[︀
𝜌𝑇e(𝜆, 𝑏𝑚𝜃)

]︀
s(𝜆)𝑑𝜆. (2.4)

where s = (𝑠𝑟, 𝑠𝑔, 𝑠𝑏).

3.2 Message Structure

The pixel value 𝜌 is controllable by the electronic display driver, and so it provides a

mechanism for embedding information. We use two sequential frames in our approach.

We modify the monitor intensity by adding the value 𝜅 and transmit two consecutive

images, one with the added value 𝑖𝑒 and one image of original intensity 𝑖𝑜. To get a
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Figure 2.7: Message Embedding and Retrieval. Two sequential frames are sent, an
original frame and a frame with an embedded message image. Simple differencing is
not sufficient for message retrieval. Our method (OORC) is used to recover messages
accurately. Source: [2].

rectangular frontal-view message, a homography warp is applied to the images only after

pixel-wise frame subtraction. The recovered message depends on the display emittance

function and camera sensitivity function if the embedded message is done by adding 𝜅

as follows:

ie ∝
∫︁
𝜆

[︀
(𝜅+ 𝜌𝑇 )e(𝜆, 𝜃)

]︀
s(𝜆)𝑑𝜆. (2.5)

Recovery of the embedded signal leads to a difference equation

ie − io ∝
∫︁
𝜆
[(𝜅)e(𝜆, 𝜃)] s(𝜆)𝑑𝜆. (2.6)

The dependence on the properties of the display 𝑒 and the spectral sensitivity of the

camera 𝑠 remains. We use additive-based messaging, instead of ratio-based methods,

because this structure is convenient for convexity of the algorithm as described in

Section 3.3.

The main concept for message embedding is illustrated in Figure 2.7. In order

to convey many “bits” per image, we divide the image region into a series of block

components. Each block can convey a bit “1” or “0”. The blocks corresponding to a

“1” contain the added value 𝜅 typically set to 3 or 5 gray levels on the [0,255] scale,

while the zero blocks have no additive component (𝜅 = 0). The message is recovered by

sending the original frame followed by a frame with the embedded message and using
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the difference for message recovery. The message can also be added to the coarser scales

of a image pyramid decomposition [49], in order to better hide the message within the

display image content. The display can be tracked with existing methods [50]. This

message structure is decidedly very simple, so the methods presented here can be applied

to many message coding schemes.

When accounting for the nonlinearity in the camera and display, we rewrite Equa-

tion 2.4 to include the radiometric response function 𝑓 ,

ic = 𝑓

(︂∫︁
𝜆

[︀
𝜌𝑇e(𝜆,𝜃)

]︀
s(𝜆)𝑑𝜆

)︂
. (2.7)

More concisely,

ic = 𝑓 (id) , (2.8)

and the recovered display intensity is

id = 𝑓−1 (ic) = 𝑔 (ic) . (2.9)

We use polynomials to represent the radiometric inverse function 𝑔(i). The same inverse

function 𝑔 is used for all color channels. This simplification of the color problem is

justified by the accuracy of the empirical results. As the purpose of the calibration

algorithm is to explicitly deal with nonlinear responses, no gamma correction is needed.

3.3 Optimal Online Radiometric Calibration

The two goals of message recovery and calibration can be combined to a single problem.

While ideal radiometric calibration would provide a captured image that is a linear

function of the displayed image, we show that calibrating followed by message recovery

only gives a relatively small increase in message accuracy. However, if the two goals are

combined into a simultaneous problem we have two benefits: 1) the problem formulation

can be done in a convex optimization paradigm with a single global solution and 2) the

accuracy increases significantly.

Let 𝑔(i) be the inverse function that is modeled with a fourth order polynomial as
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follows

𝑔(i) = 𝑎4i
4 + 𝑎3i

3 + 𝑎2i
2 + 𝑎1i+ 𝑎0. (2.10)

Consider two images frames io, where io is the original frame and ie the image frame

with the embedded message. Since we are using an additive message embedding, we

wish to classify the message bits as either ones or zeros based on the difference image

io − ie.

Taking into account the radiometric calibration, we want to classify on the recovered

data 𝑔(io)− 𝑔(ie). We have found empirically that the inverse function can be modeled

by a fourth order polynomial, so that the function to be classified is

𝑔(io)− 𝑔(ie) =

𝑎4(io
4 − ie

4) + 𝑎3(io
3 − ie

3) + 𝑎2(io
2 − ie

2) + 𝑎1(io − ie).
(2.11)

In Equation 2.11, we see that the calibration problem has a physically motivated non-

linear mapping function. That is, we see that the original data (io, ie) can be placed

into a higher dimensional space using the nonlinear mapping function Φ which maps

from a two dimensional space to a four dimensional space as follows

Φ(io, ie) =[︁
(io

4 − ie
4) (io

3 − ie
3) (io

2 − ie
2) (io − ie)

]︁
.

(2.12)

In this four dimensional space we seek a separating hyperplane between the two classes

(one-bits and zero-bits). Our experimental results indicate that these are not separable

in lower dimensional space, but the movement to a higher dimensional space enables

the separation. Also, the form of that higher dimensional space is physically motivated

by the need for radiometric calibration. Therefore our problem becomes a support

vector machine classifier where the optimal support vector weights and the calibration

parameters are simultaneously estimated. That is, we estimate

w𝑇u+ b, (2.13)
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where, w ∈ R4, b are the separating hyperplane parameters, and u is the input feature

vector. Since we want to perform radiometric calibration, the four-dimensional input

is given

u =
[︁
𝑎4(io

4 − ie
4) 𝑎3(io

3 − ie
3) 𝑎2(io

2 − ie
2) 𝑎1(io − ie)

]︁𝑇
. (2.14)

Notice that the w𝑇u+ b is still linear in the coefficients of the inverse radiometric

function. These coefficients and the scale factor w are estimated simultaneously. We

arrive at the important observation that accounting for the CDTF preserves the con-

vexity of the overall optimization problem. The coefficients of the function 𝑔 are scaled

by w, so that calibration and classification can be done simultaneously, and convexity

of the SVM is preserved. We refer to this method as optimal online radiometric cal-

ibration (OORC) because it recovers radiometric parameters via convex optimization

for each frame.

Ratex Patches The standard problem of radiometric calibration is solved by varying

exposure so that a range of scene radiance can be measured. For CDTF calibration

in a single frame, patches are placed within the display image that have intensity

variation over the full range of display brightness values (a linear variation with pixel

values from 0 to 255). These radiometric textured calibration patches or ratex patches

are placed in inconspicuous regions of the display image such as an image corner.

The ratex patches are not used as part of the hidden message, but instead provide

training data in each frame for the OORC method of CDTF calibration and message

recovery. Figure 2.8 shows an example where ratex patches are placed in each of the

4 image corners. Consecutive frames of ratex patches toggle between message bit “1”

and message bit “0” to provide training data for both message bits.
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Figure 2.8: Radiometric calibration texture patches (ratex patches). Ratex patches
placed in corners and used for radiometric calibration and classification training.
Source: [2].

3.4 Hidden Ratex

We also introduce a method for radiometric calibration that employs visually non-

disruptive it hidden ratex mapping, since ratex patches can be visually obtrusive and

unattractive for applications. Rather than directly measuring the effect that the CDTF

has on known intensity values, we measure the effect on the image histogram. Instead

of using ratex patches that have a linear variation over the full intensity range, we

use display images with intensity values that are well-distributed over the full intensity

range. We estimate the CDTF by finding the mapping of the measured histogram

to the original histogram. For this approach to work, we need to know the initial

intensity histogram of an image before it passes through the CDTF. We perform as

simple intensity mapping (equalization) on every image before it is displayed, so the

initial intensity histogram is known and uniformly distributed. The camera-captured

image is intensity mapped to restore this distribution, after distortion by the CDTF.

The inverse CDTF is computed and corrected for in this approach and we refer to this

method as hidden ratex since no visible patches are used. The hidden ratex method is
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illustrated in Figure 2.9.
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Figure 2.9: From the display to the camera, the light signal is affected by display pho-
tometry, camera pose and camera radiometry. Hidden messages rely on small intensity
variations and are corrupted by this camera-display transfer function (CDTF). In each
pair of intensity histograms shown above, the left represents an image histogram before
passing through the CDTF, and the right represents the histogram after the CDTF.
Online Radiometric Calibration mitigates the distorting effects of the CDTF to enable
more accurate message recovery. Source: [2].
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4 Results

For empirical validation, 9 different combination of displays and cameras are used,

comprised of 3 displays: 1) LG M3204CCBA 32 inch, 2) Samsung SyncMaster 2494SW,

3) iMac (21.5 inch 2009); and 3 cameras: 1) Canon EOS Rebel XSi, 2) Nikon D70, 3)

Sony DSC-RX100. Fifteen 8-bit display images are used. From each display image,

we create a display video of 10 frames: 5 frames with the original display images

interleaved with 5 images of embedded time-varying messages. An embedded message

frame is followed by an original image frame to provide the temporal image pair 𝑖𝑒

and 𝑖𝑜. The display image does not change in the video, only the bits of the message

frames. Each message frame has 8 × 8 = 64 blocks used for message bits (with 5 bits

used for ratex patches for calibration and classification training data). Considering 5

display images, with 5 message frames and 59 bits per frame results in approximately

1500 message bits. The accuracy for each video is defined as the number of correctly

classified bits divided by the total bits embedded and is averaged over all testing videos.

The entire test set over all display-camera combinations is approximately 18,000 test

bits.

We evaluate 4 methods for embedded message recovery. Method 1 (Naive Threshold)

has no radiometric calibration, only the difference ie− io is used to recover the message

bit via thresholding. Method 2 (Two-step) is radiometric calibration using ratex patches

followed by thresholding the interframe difference ie− io for message recovery. Method

3 (OORC) is the optimal calibration where both radiometric calibration and message

recovery are done simultaneously. Method 4 Hidden Ratex is calibration using hidden

ratex intensity mapping followed by simple differencing for message recovery. The

methods we introduced here (Methods 2-4) demonstrate significant improvement over

naive thresholding. For methods 2 and 3, training data from pixels in the ratex patches

are used to train an SVM classifier. For method 4, no visible patches are needed. For

each of the 9 display-camera combinations, the accuracy of the 4 message recovery

methods was tested with 2 sets of experimental variables: 1) 0∘ frontal camera-display

view; 2) 45∘ oblique camera-display view; and: 1) embedded message intensity difference
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of 5; 2) embedded message intensity difference of 3. The results of these tests are can be

found in Tables 2.1, 2.2, 2.3, and 2.4. Notice that naive thresholding has low message

recover rates (as low as 47.5% for oblique views). Message recovery rates were highest for

the OORC method with recovery rates of 98-99% for most camera display combinations

even for oblique views. The hidden ratex method also maintained near 90% recognition

rates for oblique views and had the advantage of having no visible calibration patches.

Accuracy
(%)

Naive
Thresh-
old

Two-
step

OORC Hidden
Ratex

Canon-
iMac

72.94 75.67 99.17 89.63

Canon-
LG

58.94 84.94 98.44 95.74

Canon-
Samsung

48.44 64.89 99.39 89.91

Nikon-
iMac

60.17 75.50 95.17 90.00

Nikon-
LG

49.72 73.39 99.33 94.81

Nikon-
Samsung

47.22 72.89 95.00 89.54

Sony-
iMac

64.44 76.00 99.06 71.11

Sony-LG 56.11 75.61 98.56 90.93

Sony-
Samsung

47.50 79.11 98.89 87.80

Average 56.17 75.33 98.11 88.83

Table 2.1: This table shows our main result. Accuracy of embedded message recovery
and labeling with additive intensity 𝜅 = +3 on [0,255] and captured with 45∘ oblique
view. Low 𝜅 values are desirable (because they are less noticeable) but lead to larger er-
rors, especially at oblique views. Our calibration methods can greatly increase accuracy
(from 47-50% to over 90% ) in some cases.

5 Discussion

This chapter identifies many of the challenges associated with imperceptible camera-

display messaging. We jointly model the display emittance function, camera sensitivity

function, and radiometric effects of light in free space as the camera-display transfer

function (CDTF). We show that naive thresholding, while intuitively simple, is a poor
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Accuracy
(%)

Naive
Thresh-
old

Two-
step

OORC Hidden
Ratex

Canon-
iMac

85.56 83.06 96.44 91.57

Canon-
LG

86.39 90.94 98.67 94.07

Canon-
Samsung

87.94 87.78 98.94 91.30

Nikon-
iMac

84.06 84.00 96.50 90.27

Nikon-
LG

74.67 81.44 99.94 90.09

Nikon-
Samsung

77.33 86.06 98.00 91.57

Sony-
iMac

89.33 84.22 99.44 70.00

Sony-LG 87.61 95.39 99.72 80.74

Sony-
Samsung

80.00 83.78 96.26 84.54

Average 83.56 86.30 98.22 87.13

Table 2.2: Accuracy of embedded message recovery and labeling with additive intensity
𝜅 = +3 on [0,255] and captured at 0∘ frontal view.

choice because the variation of display intensity with camera pose is ignored. These

methods lead to lower message recovery rates, especially for oblique views (45∘) and

small intensity messages. We introduce two methods for online radiometric calibration

for camera-display messaging. The first method, Optimal Online Radiometric Calibra-

tion (OORC), yields the best message recovery accuracy, but requires visually obtrusive

ratex patches to be placed in the corners of the image. The second method, Hidden

Ratex, uses histogram equalization to outperform naive thresholding without visually

obtrusive ratex patches, but does not outperform OORC in terms of message recov-

ery accuracy. We demonstrate experimental results for nine different camera-display

combinations at frontal and 45∘ oblique viewing directions.

The results indicate a marked improvement in message recovery over naive thresh-

olding for camera-display messaging with our methods. Prior methods of digital water-

marking do not take into account the photometric effects of the camera-display transfer
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Accuracy
(%)

Naive
Thresh-
old

Two-
step

OORC Hidden
Ratex

Canon-
iMac

97.06 94.50 99.83 95.37

Canon-
LG

87.89 99.00 99.39 99.44

Canon-
Samsung

71.67 88.11 100.00 95.37

Nikon-
iMac

91.89 93.67 96.00 96.11

Nikon-
LG

81.56 95.11 99.94 98.88

Nikon-
Samsung

58.78 92.22 99.39 97.41

Sony-
iMac

92.28 92.00 99.72 80.37

Sony-LG 77.06 96.22 100.00 91.13

Sony-
Samsung

63.28 94.17 99.89 81.67

Average 80.16 93.89 99.35 93.71

Table 2.3: Accuracy of embedded message recovery and labeling with additive intensity
𝜅 = +5 on [0,255] and captured with 45∘ oblique perspective.

function and the resulting dependence on camera pose. Therefore these prior meth-

ods are likewise prone to error. Our experimental results show that hidden, dynamic

messages can be embedded in a display image and recovered robustly.
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Accuracy
(%)

Naive
Thresh-
old

Two-
step

OORC Hidden
Ratex

Canon-
iMac

95.28 96.61 99.00 95.74

Canon-
LG

97.11 99.72 97.17 97.59

Canon-
Samsung

97.39 97.33 98.94 94.35

Nikon-
iMac

98.39 99.17 99.22 96.11

Nikon-
LG

99.83 100.00 99.83 97.31

Nikon-
Samsung

96.33 97.44 98.56 95.74

Sony-
iMac

97.72 97.00 99.94 81.67

Sony-LG 99.39 100.00 100.00 90.74

Sony-
Samsung

92.50 92.33 98.06 90.28

Average 97.10 97.73 98.97 93.28

Table 2.4: Accuracy of embedded message recovery and labeling with additive inten-
sity 𝜅 = +5 on [0,255] and captured at 0∘ frontal view. The problem is relatively
straightforward for this case with frontal views and high 𝜅 value (5). The benefits of
radiometric calibration are much more apparent in Tables 2.1, 2.2,2.3, where errors are
larger when the 𝜅 value is decreased, and for oblique views.
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Chapter 3

Reading Between the Pixels: Photographic

Steganography for Camera-Display Communication

1 Introduction

Electronic displays, such as LCD monitors, are typically used only for human visual

observation. Research in the relatively new field of camera-display communication has

introduced a dual channel: a machine-readable communications channel operating in

parallel with the human-observable display. Time-varying messages can be embedded

in the on-screen images, but this task has significant challenges. The modulated signal

is an illumination field propagating in free-space, so prior methods of watermarking

for digital images are not directly applicable. The illumination field emitted by the

display and captured by the camera depends on the parameters of the radiometric

transfer function and sensitivity curves of both the display and camera. This camera-

display transfer function makes message recovery challenging, but it also presents an

opportunity for message embedding that is tuned to typical transfer functions.

A common method for camera-display messaging relies on intensity modulation

either for directly embedding bits or for embedding transformation coefficients [2, 15].

Human vision is generally very sensitive to intensity step edges, even when the step

size is small. For simple messaging, the display image can be modified by adding a

message image where “1” bit values are encoded in a block by a small intensity step

and “0” bit values are encoded by zero intensity step. The message frame is added

in alternative temporal frames so that sequential frame subtraction can be used to

decode the message. This method assumes that the display image is constant over

time intervals. Accurate message recovery is challenging because small intensity steps

are needed to hide the message, but large intensity steps are needed for a low-noise
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signal that can be accurately decoded by the camera. To avoid cross-talk between the

machine-readable and human-readable channels, other methods rely on infrared, high

speed equipment, or low-throughput encoding schemes.

Another approach to making the message imperceptible is to use high speed light

modulation so that the flicker fusion effect of human vision can temporally blur the

intensity variation [51]. In Nguyen et al., information is sent from display to camera

using high speed intensity modulation and adaptive codes that hide spacial modulation

in highly-textured areas of a carrier image. These methods provide a correct through-

put of 22 kbps while remaining hidden to the user. High speed displays and cameras

are commercially available, but the higher cost is prohibitive for ubiquity in electronic

signage and mobile display applications. Since this method is based on intensity mod-

ulation, it could easily be modified for color modulation, further reducing the amount

of noticeable flicker and further improving bit recovery rate.

Our approach uses color modulation that exploits the differences in human color

sensitivity versus camera color sensitivity. This allows us to accurately send and receive

camouflaged messages without specialized hardware. In a displayed image i, let the pixel

coordinate be denoted by w ∈ R3. Each image pixel i(w) has 3 color components,

i(w) ∈ R3. A color message image m is added to i such that our steganographically

embedded image e = i +m, and a pixel of the embedded message is given by e(w) =

i(w)+m(w). For “1” bits, the message m is a color shift added to i. The goal is to find

the best color shift 𝛿 ∈ R3. Let 𝛿 denoted the unit direction in color space, and ‖𝛿‖2

is the magnitude of the step-size. We seek a step 𝛿 to create a differential metamer

g = (i(w), i(w) + 𝛿) such that i(w) + 𝛿 is perceived to be the same color as i(w) by a

human observer but is camera-captured as a distinguishable color, where g ∈ R6.

Large sets of differential metamers can be generated given a small training set. Our

approach uses a 6-dimensional quadratic binary classifier, solved in a convex optimiza-

tion problem. Using training data with positive and negative examples, the algorithm

determines a set of separating ellipsoids in 6-dimensional space, an example of this is

shown in Figure 3.4. The interior of these ellipsoids contain 6-dimensional points g

where the first three components corresponds to a particular base color and the last
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three components provide the corresponding 𝛿 used for messaging. The interior of these

6-dimensional ellipsoids define approximate metamer sets that sufficiently provide mes-

sage hiding and recovery.

Differential Metamers

Traditionally, metamers are colors that have different spectral power distributions, but

appear identical to observers when integrated over the 3 cones sensitivities in the hu-

man eye (see Figure 3.2). We introduce the term differential metamers to define pairs

of color values programmed for sequential display that result in minimal visible change

for the human observer but are distinguishable colors when captured by a camera. This

process is illustrated in Figure 3.1. Many differential metamers exist even among 8-bit

color values, but finding the color values that yield both low human sensitivity and high

camera sensitivity is difficult because 2566 (over 2 × 1014) is the number of potential

metamer pairs to be tested for both camera-display sensitivity and human-display sen-

sitivity. Specific camera sensitivity curves combined with human vision parameters are

not be enough to model the differential metamer space. Display parameters indicating

the spectrum of light emission for each programmed color vector and the dependence

on radiometric observation parameters are also be needed to determine an analytical

model. Given the variations involved, we choose a data driven approach instead. We

show that this approach is straightforward and effective. We generate samples in 6D

space indicating base colors and color gradients for messaging. By observation of the

resulting messaging visibility (human and camera), these sample points are labeled as

“good” or “bad” for messaging. By sampling 2480 points, we train a set of ellipsoidal

binary classifiers that predict successful differential metamers where the base color val-

ues i fill the displayable color space. We perform the metamer set estimation in both

RGB and CIE 𝐿𝑎𝑏 color spaces.
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Figure 3.1: Differential Metamers are color pairs that are optimized to be identical
under human vision, but distinguishable by a camera. By modulating small per-pixel
changes within an image sequence, differential metamers can be used to embed hidden
messages. The embedded message is blended to reduce the spatial visibility without
disturbing camera recovery.

2 Background and Related Work

Metamers and Separating Ellipsoids Our approach to finding separating ellip-

soids in color space is motivated by two main factors. First, the problem of fitting a

separating ellipsoid to labeled data is a convex optimization problem [54] and therefore

is not affected by local minima. Second, human vision research has showed the utility

of ellipsoidal surface fitting for representing color difference thresholds. As early as

the 1940’s, human vision studies identified and quantified ellipsoidal representations

for the problem of understanding human sensitivity to small color differences [55, 52]

as illustrated in Figure 3.2. This ellipsoidal representation has been confirmed in nu-

merous studies in early vision literature [56, 57, 58]. Parametric surfaces were used to
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Figure 3.2: MacAdam ellipses for the CIE xy 1931 colorspace [52, 53]. The area within
these scaled-up ellipses represent metamers, or colors which cannot be distinguished.

find discriminating contours. The fitting typically used detection thresholds [59, 60] in

order to get just-noticeable-difference (JND) contours [61]. Our framework greatly sim-

plifies this process because no threshold values are measured. Instead, a set of learned

separating ellipsoids finds a discriminatory boundary between color pairs that are dif-

ferential metamers and those that are not. Metamer sets [62] are well described by

ellipsoids [52]. By extension, we have adopted discriminating ellipsoids to characterize

the space of differential metamers. In prior work that used color to embed informa-

tion [63] color gradients are used to watermark spatially varying microstructures into

images. The objective in this work is to embed watermarks that were difficult to see
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from a distance, but visible up close. This is different from our goal of finding pairs of

colors where no distinction can be made when viewed sequentially by humans, but the

difference can be robustly detected by a camera.

Camera-Display Communication Electronic displays such as televisions, com-

puter monitors, and projectors are traditionally used to display images, videos, and

text - all human readable scenes. These devices can also display camera-readable im-

ages such as QR-codes [2, 47, 45, 44, 64, 10, 65, 8, 15, 14, 11, 66, 7]. Within the past

5 years, extensive work has been done to expand the capabilities of camera display

messaging by increasing throughput.

PixNet introduced Orthogonal Frequency-Domain Multiplexing (OFDM) transmis-

sion algorithms to address the unique characteristics of the camera-display link, includ-

ing perspective distortion, blur, and sensitivity to ambient light [8]. While PixNet offer

impressive data throughput, it can only display machine-readable code and supports

no hybrid approach. Strata introduced distance-scalable coding schemes [47], prefer-

able in a mobile application, but also cannot display both human-readable and camera

readable images at the same time. Both of the aforementioned techniques encode bit

values with intensity. COBRA introduced a 2D color code [45], but also could only

display machine readable code.

Both Visual MIMO [2, 64, 10, 11, 66, 7] and HiLight [65] use intensity modulation

in human-readable images to embed a second machine-readable channel. However, it

is well known that human vision is extremely sensitive to temporal and spatial changes

in intensity. It has been shown that intensity changes, even with small magnitude are

likely to cause flicker and discomfort to a human observer. The amount of human visual

obtrusion had not been measured for either method.

Kaleido [67] and VRCodes [68] uses metamers to embed data in alternating pixel

values. These values, however, are not “true” metamers in the sense that two static

colors have different physical properties such as wavelength, but appear identical to

human viewers. Instead, Kaleido and VRCodes leverage flicker fusion to create tem-

porally blended colors hidden from human observers with high speed changes. This
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approach is constrained by the need for specialized high-speed displays and cameras.

VRCodes also leverages the rolling shutter camera typically found on mobile phones to

sample at frequencies above 60Hz. Unfortunately, this limits VRCode throughput to

only 1 bit per frame.

Kaleido [67] attempts to solve a different problem: embedding noise with flicker

fusion metamers to disrupt piracy via camera recording of videos, while preserving the

human-visible channel. While similar in intuition to the work presented in this chapter,

the goals are fundamentally different. We embed camera-sensitive information in this

invisible channel, while Kaleido only embeds camera-sensitive noise. And as stated

before, Kaleido requires specialized high-speed displays, while our method requires no

specialized hardware.

LED arrays have used modulated light to communicate [11, 69, 14]. Recently, LED-

based communication techniques have used color-shift keying for communication [70].

Methods exist to make this color-shift keying imperceptible to human observers [71],

but these applications do not require the imperceptible reproduction of high resolution

images.

In this work, we take a data driven approach to generating differential metamers

that have a small human sensitivity gradient, but large camera sensitivity gradient. We

show that differential metamers are effective for steganographically embedding messages

into high-quality images on electronic displays.

3 Photographic Steganography System Design

Embedding Steganographic Messages The message structure we employ is a

2D barcode grid, 16 blocks wide and 9 blocks tall, containing 144 bits in total. The

barcode spans the entire display area. To reduce the visible artifacts from sharp spatial

gradients, the block pattern is blended. The dimensions of the 2D barcode were chosen

empirically. With smaller blocks, more bits can be transmitted in a single image. But

as spatial redundancy is reduced, bit recovery errors will increase. Messages larger then

144 bits can be constructed by stringing together sequential 144-bit messages. For each

block, a color shift keys a “1” bit. No change to the base color keys a “0” bit.
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We represent a differential metamer as the 6-dimensional vector g separated into

two components g = [g𝑏 g𝑚]𝑇 where g𝑏 is the base color in 𝐿𝑎𝑏 space with g𝑏 ∈ R3

and g𝑚 is the optimal color shift 𝛿 ∈ R3 in the same color space.

The core problem is finding the optimal 𝛿 for an arbitrary pixel base color. We

denote G as a set of differential metamers. For each pixel coordinate w, we compute

the minimum distance between i(w) and g𝑏 for every member of G. We refer to the g

with the nearest g𝑏 as g
*, and g*

𝑚 provides the corresponding color shift for i(w). So if

i(w) belongs to a block keyed with a “1” bit, then e(w) = i(w) + 𝛿.

When the images i and e are rendered, they are transformed by the display’s spectral

emittance function 𝐷() which is unknown. When the images are displayed in a video

sequence, odd frames display the original image 𝐷(i), and even frames display the

steganographically embedded image 𝐷(e).

Recovering Steganographic Messages The two image frames are sequentially im-

aged by the camera. The displayed images are affected by light travel in free space

and are transformed by the camera’s spectral sensitivity function. Denote these two

unknown transformation functions 𝐹 () and 𝐶() respectively. The camera-captured im-

ages 𝐶(𝐹 (𝐷(i))) and 𝐶(𝐹 (𝐷(e))) are subtracted from each other. For each bit-block,

an average difference greater than some threshold corresponds to a “1”, and below that

threshold corresponds to a “0”. The threshold is calculated by reserving 4 of the 144

bits for calibration. The recovered message was then compared to the known message

to calculate BER (bit error rate). BER is the percentage of misclassified bits in each

144 bit message.

BER =
count( incorrectly classified bits )

count( all bits )
,

4 Learning New Differential Metamers

As stated in Section 1, differential metamers exist even among 8-bit color values. But

testing 2566 colors is expensive and undesirable. Our approach for generating an ex-

panded gamut of differential metamers relies on a training set of base colors i(w) and

color shift gradients 𝛿. Positive examples in this training set meet the criteria for
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embedding: no visible flicker and accurate camera recovery. Negative examples do

not meet the criteria for embedding: color pairs that are either visible when viewed

sequentially or not recoverable by the camera.

The data resides in 6-dimensional space R6. We choose the number of separating

ellipsoids 𝑘 empirically and cluster the positive examples into 𝑘 clusters in R6. For each

cluster, we use convex optimization to find the optimal ellipsoid that separates positive

from negative data. Sampling within the union of all separating ellipsoids reveals a

dense set of new differential metamers.

For each cluster 𝑘𝑖, the optimal separating ellipsoid is found. Each ellipsoid separates

the positive training examples in cluster 𝑘𝑖 from all negative training examples.

Collecting and Labeling Training Data

The set of 124 base colors are generated by uniformly sampling CIE 𝐿𝑎𝑏 space. For

each base color, 20 baricentrically sampled unit vectors are generated. In total, we now

have 2480 training examples.

The algorithm for finding differential metamers has three main components:

1. Cluster positive training examples into 𝑘 clusters.

2. For each cluster, find the optimal ellipsoid that separates positive and negative

data.

3. Sample within the union of all ellipsoids to find new differential metamers.

4.1 Clustering Training Data

A single ellipsoid does not reasonably represent the set of all differential metamers,

because color shift is dependent on base color. Therefore we define a separating ellipsoid

for each cluster of training data. The positive training points are clustered into 𝑘

clusters. The number of clusters is defined as 𝑘 = 50, which was chosen after empirical

evaluation and performing kernel density estimation.
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We compare the recovery error for several embedding algorithms across several step-

sizes. The magnitude of the color step size is defined as the L-2 Norm:

‖𝛿‖2 =
√︁

𝛿𝐿
2 + 𝛿𝑎

2 + 𝛿𝑏
2 (3.1)

Recovery error is defined as bit error rate (BER). A diverse set of 14 different images

were used to test BER as shown in Figure 4.4. The camera used is a Basler acA2040-

90uc-CVM4000, and the display used is an Acer S240HL IPS (in-plane switching) LCD

monitor.

A video sequence is generated. Odd frames consist of only a monochromatic image

of the base color. Even frames comprise the base color plus a 2D barcode grid corre-

sponding to a message. For these tests, the same checkerboard message is used every

time, since it maximizes spatial variation and is likely to be noticed by humans. Ex-

amples of this video sequence are shown in Figure 3.3. A camera views the 2480 image

sequences only once and attempts to recover the embedded messages. The camera is

fixed 0.5 meters from the display with a viewing angle normal to the image plane.

For each of the 2480 training examples, human participants were shown video se-

quences each containing a single color and with an embedded checkerboard pattern

alternating at 8Hz for 10 seconds. 8Hz was chosen because humans are particularly

sensitive to intensity changes at this frequency [72], and because it represents a reason-

able target for smartphone video capture rates. The participants were asked to indicate

if they could see the checkerboard pattern or not. Three participants were used for hu-

man vision evaluation. They were students between ages 19 and 24. One participant

wore glasses, and none had any color-blindness. The variance in their flicker labeling

was negligible.

Single-color, monochromatic images are used to isolate the exact behavior of each

color pair, and negating the cloaking effects of image content (e.g. texture) and pre-

venting participants from confusing the effects of other, nearby pixels. Relative contrast

may have an effect on visibility in real images, but this can be overcome by embedding

differential metamers only in a select subset of pixels, or by first clustering nearby pixels
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Figure 3.3: Monochromatic images with embedded barcode messages are used for dif-
ferential metamer training. Images like these are shown to human observers to test
whether they can see an embedded checkerboard. These same images are evaluated
with a camera-display pair to test if the message is robustly recoverable. The checker-
board is visible in the leftmost image and would be labeled a negative example, while
the checkerboard is not visible in the rightmost image and would be labeled a positive
example.

by differential metamer gradients and not embedding on the cluster borders. While an

evaluation of spatial obtrusiveness caused by relative contrast is interesting, it is outside

the scope of this chapter and left for future work.

Positive training examples are defined as ones whose color embedding were com-

pletely invisible to humans, but recoverable by camera with BER (bit error rate) = 0%.

All other examples were labeled negative training data. After labeling, 922 positive

and 1558 negative examples were used for training. Examples of positive and negative

pairs are shown in Figure 3.3

Learning 𝑘 Optimal Separating Ellipsoids

We have two sets of points in R6, {x1, ...xN} and {y1, ...yM}. The points xi represent

the base colors and modulation steps that satisfy the requirements for embedding: BER

= 0%, and no visible flicker. While the points yi do not satisfy both of these conditions.

We wish to find a function 𝑓 : R𝑛 → R that is positive on the first set, and negative

on the second, i.e.,

𝑓(xi) > 0, 𝑖 = 1, ..., 𝑁, 𝑓(yi) < 0, 𝑖 = 1, ...,𝑀. (3.2)

When these inequalities hold, we say that 𝑓 separates the two sets of points.
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Cluster of Training Data: Base Colors and Deltas in Lab color space

Figure 3.4: A separating ellipsoid and single cluster of positively labeled training data.
Visualizing 𝑘 6-dimensional ellipsoids is difficult, so the data has been projected down
to 2D 𝑎 𝑏 space (from 𝐿𝑎𝑏 color space). We show base colors and color shifts at the
same time. The solid circle represents the base colors i, and its respective line segments
represents the color shift gradients 𝛿. The color of each circle and line segment is the
actual base color. Notice how there is a general axis of color shift direction for the
data in this cluster. Since these are positive training examples, this indicates that
human viewers are relatively insensitive to these color shifts. This also indicates that
our camera is sensitive to these color shifts.

Quadratic Discrimination Since our data points cannot be separated by a 𝑁 -

dimensional hyperplane, we seek classification via nonlinear discrimination. As long

as the parameters that define 𝑓 are linear (or affine), the above inequality can still be

solved with convex optimization.

In this case, we choose 𝑓 to be quadratic and in homogeneous form:

𝑓(z) = z𝑇Pz+ q𝑇 z+ 𝑟, (3.3)
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Figure 3.5: Set of 14 images used to evaluate BER across several embedding algorithms
and message step-sizes.

where P ∈ S𝑛 (𝑃 is a symmetric 𝑛×𝑛matrix), q ∈ R𝑛, and 𝑟 ∈ R, with dimensionality

n = 6. Those parameters P, q, 𝑟 are bound by the following constraints:

xi
𝑇Pxi + q𝑇xi + 𝑟 > 0, 𝑖 = 1, ..., 𝑁

yi
𝑇Pyi + q𝑇yi + 𝑟 < 0, 𝑖 = 1, ...,𝑀

(3.4)

Next, we replace 0 with 𝜖, creating a separating band that is 2𝜖 wide:
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xi
𝑇Pxi + q𝑇xi + 𝑟 ≥ 𝜖, 𝑖 = 1, ..., 𝑁

yi
𝑇Pyi + q𝑇yi + 𝑟 ≤ −𝜖, 𝑖 = 1, ...,𝑀

(3.5)

Dividing out by 𝜖 and subsuming the scalar 1
𝜖 into P,q, 𝑟, you arrive at Eq. 3.6.

Following [54], we solve for the parameters P, q, 𝑟 by solving the non-strict feasibility

problem:

xi
𝑇Pxi + q𝑇xi + 𝑟 ≥ 1, 𝑖 = 1, ..., 𝑁

yi
𝑇Pyi + q𝑇yi + 𝑟 ≤ −1, 𝑖 = 1, ...,𝑀

(3.6)

The resulting separating surface {z | z𝑇Pz+ q𝑇 z+ 𝑟 = 0} is quadratic.

Separating Ellipsoids We can change the shape of our quadratic separating surface

by imposing additional constraints on the parameters P, q, and 𝑟. We form an ellipsoid

that contains all points xi, ...,xN but none of the points yi, ...,yM by requiring that

P ≺ 0, that is P is negative definite. We can use homogeneity in P, q, 𝑟 to express the

constraint P ≺ 0 as P ⪯ −I. We can then cast our quadratic discrimination problem

as the following semi-define programming (SDP) feasibility problem:

find P, q, 𝑟

subject to xi
𝑇Pxi + q𝑇xi + 𝑟 ≥ 1, 𝑖 = 1, ..., 𝑁

yi
𝑇Pyi + q𝑇yi + 𝑟 ≤ −1, 𝑖 = 1, ...,𝑀

P ⪯ −I

(3.7)

While technically correct, this optimization problem will fail if any of the training

points fall outside their classification boundaries. Following the development in [54] for

support vector classifiers, we relax our constraints by introducing non-negative vari-

ables 𝑢1, ..., 𝑢𝑁 and 𝑣1, ..., 𝑣𝑀 . With the relaxation variables 𝑢𝑖 and 𝑣𝑖 introduced, our
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inequalities become:

xi
𝑇Pxi + q𝑇xi + 𝑟 ≥ 1− 𝑢𝑖, 𝑖 = 1, ..., 𝑁

yi
𝑇Pyi + q𝑇yi + 𝑟 ≤ 𝑣𝑖 − 1, 𝑖 = 1, ...,𝑀

(3.8)

The relaxation variables 𝑢𝑖 and 𝑣𝑖 represent the distances of each point outside it’s

proper boundary. In the original problem, 𝑢 = 𝑣 = 0. We can think of 𝑢𝑖 as a measure

of how much each constraint xi
𝑇Pxi + q𝑇xi + 𝑟 ≥ 1 is being violated and that’s what

we want to minimize. A good heuristic is minimizing the sum of variables 𝑢𝑖 and 𝑣𝑖.

The separating ellipsoid defined by P, q, 𝑟 is found with the following optimization

problem:

minimize 1𝑇𝑢+ 1𝑇 𝑣

subject to xi
𝑇Pxi + q𝑇xi + 𝑟 ≥ 1− 𝑢𝑖, 𝑖 = 1, ..., 𝑁

yi
𝑇Pyi + q𝑇yi + 𝑟 ≤ 𝑣𝑖 − 1, 𝑖 = 1, ...,𝑀

P ⪯ −I

u ⪯ 0, v ⪯ 0

(3.9)

To solve this problem we used CVX, a package for specifying and solving convex pro-

grams [73, 74]. After each ellipsoid is solved, we test that the ellipsoid is populated

before accepting it.

Sampling Within Union of Ellipsoids Once 𝑘 optimal separating ellipsoids are

trained, the points inside the ellipsoids reflect desirable values for message embedding.

So to expand our gamut of differential metamers, we densely sample inside the ellipsoid

region for new points. G′ is the expanded set of newly generated differential metamers

g′. Newly sampled base colors are shown in Figure 3.6. Samples of differential metamer

pairs within an ellipsoid are illustrated in Figure 3.4.
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Figure 3.6: Six-dimensional differential metamers are projected down to 𝐿𝑎𝑏 space.
These differential metamers are generated by sampling within the separating ellipsoids.
Here, the entire 𝐿𝑎𝑏 space is collectively covered by several ellipsoids.

5 Experiments

We wish to evaluate the expanded set of differential metamers learned using the tech-

niques described in Section 4. For each of our embedding algorithms, a known message

was embedded into a pair of 2 images. A camera then sequentially captured the original

image, then the image with the embedded message pattern. Again, the camera was a

Basler acA2040-90uc-CVM4000, and the display was an Acer S240HL IPS LCD mon-

itor. The camera was stationed approximately 0.5 meters from the electronic display.

The camera had a fixed shutter speed, ISO sensitivity, aperture, and white balance.

Each algorithm was evaluated based on the accuracy of recovering each bit of the mes-

sage. A wide range of message step-sizes were tested. Message step-size refers to the

‖𝛿‖2, or 𝛿 magnitude in 8-bit pixel values. A diverse set of 14 host images was used,

shown in Figure 4.4.
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For the intensity-based approach, a uniform grayscale 𝛿 is applied to every pixel

representing a “1” bit. The random approach applies a 𝛿 in a random direction to

each pixel. The RGB differential metamers approach assigns a specialized 𝛿 value to

each pixel in the base image. The differential metamer ellipsoids are trained in RGB

space. Similarly, the Lab differential metamers approach assigns 𝛿 values from ellipsoids

trained in Lab space.

Evaluation of Clustering Methods

Clustering
Algorithm

Low
Exposure
Mean
Error

Low
Exposure
STD

High
Exposure
Mean
Error

High
Exposure
STD

Runtime
(sec)

𝑘-Means 30.41% 10.65% 24.16% 11.08% 0.0435

𝑘-Medoids 28.97% 10.89% 22.97% 9.92% 0.5813

Gaussian Mixture Models 27.33% 10.83% 22.72% 11.05% 0.0978

Hierarchical clustering 29.37% 11.42% 22.97% 11.64% 0.1299

Spectral clustering 34.52% 11.58% 24.70% 9.91% 0.1387

Table 3.1: Camera recovery error for various clustering methods (lower is better). Gaus-
sian Mixture Models (GMMs) produce results with the lowest average errors under both
exposure conditions with a small margin of success. In this case, GMMs provide an
adequate balance of runtime cost and performance.

A series of clustering algorithms were evaluated: kmeans, kmediods, Gaussian Mix-

ture Models, Hierarchical clustering, and Spectral clustering. Ellipsoids were trained

and learned using each of these clustering methods. The ellipsoids yielded differential

metamers used for steganographic embedding and recovery. This evaluation is per-

formed twice for each clustering algorithm under two different illumination conditions.

Once where the camera has fixed high-exposure settings, and once again with fixed

low-exposure settings.

The respective mean errors were 27.285%, 25.97%, 25.025%, 26.17%, and 29.61%.

The respective run times were 0.0435s, 0.5813s, 0.0978s, 0.1299s, and 0.1387s. Gaussian

Mixture Models (GMMs) yielded the lowest BER on average. Although the margin of

superiority is practically nothing, Gaussian mixture models are chosen as the best

balance of error and run-time. This study shows that the choice of clustering algorithm

has practically no effect on the BER.
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Embedding Algorithms

‖𝛿‖2 Intensity Random
𝑅𝐺𝐵
Differential
Metamers

𝐿𝑎𝑏
Differential
Metamers

1 50.69% 50.99% 50.45% 49.85%

2 47.92% 48.81% 42.06% 42.06%

3 43.85% 46.97% 36.11% 37.25%

4 37.00% 44.59% 29.02% 27.83%

5 34.52% 42.41% 22.42% 21.73%

6 23.41% 41.22% 19.84% 17.61%

7 18.70% 38.10% 15.53% 15.08%

8 13.49% 35.57% 13.84% 12.80%

9 09.97% 34.72% 12.50% 12.00%

10 09.13% 32.89% 11.01% 10.91%

Table 3.2: BER for various embedding schemes (lower is better). The red-shaded
cells indicate 𝛿 magnitudes where an blended message pattern is easily visible. The
green-shaded cells indicate optimal values where the blended message pattern is cam-
ouflaged from human vision, but in a good position to be camera-recovered. Differential
metamers generated with trained ellipsoids in CIE 𝐿𝑎𝑏 are especially effective because
both the BER is reduced and the threshold for acceptable step-size is increased. No-
tice that for a mid-range step-size of 5 or 6, the 𝐿𝑎𝑏 differential metamers significantly
outperform intensity modulation.

Regardless of method used or illumination condition, the standard deviation hovered

around 10% for all methods. This suggests that the recovery error results are largely

dependent on the base image used. This result has been verified empirically as well;

certain images produce better embedding results. The run time calculations took place

on an Intel 6700K processor with 32 GB of memory running Matlab 2015b.

6 Results

Table 4.1 shows the average message recovery for each embedding algorithm across a

variety of ‖𝛿‖2 values (step sizes). The red-shaded cells represent values for which the

‖𝛿‖2 is so large, the message pattern can be obviously detected by humans. Figure 3.7

illustrates these results graphically.

For small ‖𝛿‖2, the RGB and Lab differential metamer approaches greatly outper-

form the alternatives. Small step sizes are typically preferable because they are more

difficult for humans to see. With the differential metamer approach, larger step size can
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Figure 3.7: This graph compares message recovery across several embedding algorithms.
Regardless of embedding algorithm, as message step size (‖𝛿‖2) increases, message
recovery error decreases. However, large step size also means a more visually obtrusive
embedding. For an embedded message to be invisible, smaller step size are greatly
preferred. For small to mid-range ‖𝛿‖2, color embedding using differential metamers is
significantly better.

be used, facilitating more accurate camera recovery. The differential metamers trained

in 𝐿𝑎𝑏 space are most effective at reducing human detection with most robust message

recovery. Table 3.3 illustrates these results.

Although the mean error is high compared to perfect recovery, it can be functionally

reduced using error-correcting codes. The proposed color messaging framework is appli-

cable to more sophisticated photo-steganographic messaging systems. For the purposes

of this chapter, only the reduction in error due to color messaging is evaluated.

Transferring Learned Ellipsoids to New Hardware

The results presented thus far showcase the effectiveness of photographic steganography

using differential metamers trained on a single camera-display pair. But we want to
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Table 3.3: Message embedding with intensity vs differential metamers example. The
image in the first row contains a steganographic message pattern. Below that, the per-
pixel difference shows the ground truth of exactly the changes that were made to the
original image. The camera-recovered difference shows the difference measured after
the image has been displayed electronically, and captured by a camera. Notice that the
differences between ground truth and camera-captured are large. Embedding messages
with 𝐿𝑎𝑏 differential metamers is effective for many types of images, including slide or
sign type images, as is shown in (a). The example in (b) showcases a more challenging
natural image case, where intensity embedding fails in dark and highly textured areas of
the image. 𝐿𝑎𝑏 differential metamers are significantly more effective for robust message
embedding and recovery. In both (a) and (b), ‖𝛿‖2 = 5 for all algorithms.
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know how well our learned ellipsoids will transfer to a new camera-display pair. If

new differential metamers must be learned for every camera-display combination, the

applicability of our algorithm is limited. Table 3.4 features experimental results when

the camera-display pair used for photographic steganography is totally different from

the camera-display pair used for training. Although the illumination conditions and

imaging pipeline remain unchanged, the most significant aspects of the system have

been changed. When using different hardware, the BER increases by only 3.48%.

Using the same hardware, transferred differential metamers significantly outperform

intensity-based embedding. The differential metamers learned under certain hardware

conditions can be transferred for a small accuracy cost. Messages with error-correcting

codes tolerant of smaller signal-to-noise ratios (SNR) should be incorporated when

transferring learned differential metamers to new hardware.

7 Discussion

In this chapter, we present a color modulation method used to steganographically embed

messages into ordinary images and videos. We develop a data-driven approach to learn

a pixel mapping function that produces an optimal differential metamer pair for any

pixel value. These differential metamers are pairs of color values that minimize human

visual response, but maximize camera response. The key innovation is a novel color-

selection framework that leverages the mismatch between human spectral and camera

sensitivity curves. We refer to this task of camouflaged camera-display messaging as

photographic steganography.

We demonstrate the effectiveness of our differential metamer generation algorithm

with message embedding. The goal is to maximize throughput, minimize recovery error,

and camouflage the visible artifacts to humans. Although the BER results shown in

Table 4.1 are relatively large, message recovery can be significantly improved using

radiometric calibration methods, as discussed in [2].

The desirability of our approach stems from the creation of a communication side-

channel without using specialized hardware. Embedded information could be used to

grant access that is conditioned on close physical presence for security or convenience.
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Unlike NFC (near-field communications) which is commonly used for precise location

verification but has problems with network saturation for nodes in close proximity, bea-

cons using photographic steganography would ensure that users are facing a particular

direction. For example, users would not be able to access a networked projector un-

less they used photographic steganography to recover a dynamic access code embedded

in the projectors displayed images to prove that they are in the appropriate location.

Scenarios include those where users perform scavenger-hunt games in museums or use

outdoor electronic billboards for tickets/coupons/schedules. It is also easy to envision a

scenario where users install a smartphone application and have access to extra content

on live-broadcast videos.
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Table 3.4: Photographic Steganography using differential metamers learned with a dif-
ferent camera-display pair. An Acer Predator MNT XB271HUC IPS display and Basler
acA1300-30uc camera were used in experiment. However, the ellipsoids yielding differ-
ential metamers were trained using the aforementioned Basler acA2040-90uc-CVM4000
camera and Acer S240HL display. With ‖𝛿‖2 = 5, the recovered message has a BER of
22.92%, only 3.48% worse than the hardware used for training as shown in Table 3.3.
This example demonstrates that the ellipsoids learned can be robustly transferred be-
tween different hardware and still significantly outperform intensity-based embedding.
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Chapter 4

Light Field Messaging

1 Introduction

Figure 4.1: Goal of LFM (Light Field Messaging): embed a message within an image or
video, display the image/video on-screen, photograph it with a handheld camera, and
recover the hidden message. LFM significantly outperforms other synchronization-free
steganography techniques for camera-display messaging in message bit recovery error
(BER). Source: [4]. Our code and dataset are available here [75].

In Light Field Messaging (LFM), cameras receive hidden messages from electronic dis-

plays concealed within ordinary images and videos. There are many applications for

visually concealed information including interactive visual media, augmented reality,

road signage for self-driving cars, hidden tags for robotics, privacy-preserving com-

munication, and tagged digital artwork. When the hidden message is recovered from

on-screen images, the task has significant challenges and is fundamentally different

from the traditional task of steganography. The conversion of a digital image into a

light field depends on the characteristics of the electronic display such as the spectral

emittance function and spatial emitter pattern. Similarly, the transformation of light

field to image depends on the camera pose, sensitivity curves, spatial sampling, and

radiometric response. Our unique approach is to learn the entire pathway as a single

camera-display transfer function (CDTF) modeled by a supervised deep network. This

CDTF component is then used in a larger network that maximizes the accuracy of

the camera-recovered message, while minimizing the perceived artifacts in the observed
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Figure 4.2: Digital steganography methods such as Baluja [1] are not suitable for photo-
graphic steganography. The distorting effect of the light field transfer, as characterized
by the camera-display transfer function (CDTF), destroys the information stegano-
graphically encoded in carrier image pixels. We compare the digital steganography
methods introduced by Baluja (top) with our proposed photographic steganography
method (bottom). Unlike previous methods, the proposed method includes a model of
the CDTF within the training pipeline so that a learned steganographic function for
embedding and recovery is robust to CDTF distortion. Source: [4].

display image.

Electronic displays emit light in free space and capturing this light field has long

been a topic of interest in the computer vision and computer graphics community [76].

Since the camera must capture the signal from the light field, instead of a direct digital

path, we use the term light field messaging. When the display uses a hidden message

we use the term photographic steganography to indicate the both the hidden nature and

the recovery method using camera-based photography.

Steganography in prior years referred almost exclusively to the digital domain where

images are processed and transferred as digital signals [77]. The classic methods for dig-

ital steganography range from simple alteration of least significant intensity bits to more

sophisticated fixed-filter transform domain techniques [19]. Recent work has moved the

prior fixed filter approaches to incorporate modern deep learning [1]; but these meth-

ods are designed for digital steganography and fail completely for the task of light field
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messaging as illustrated in Figure 4.2.

In this chapter, we propose a single-shot end-to-end photographic steganography

algorithm for light field messaging. Our method is comprised of: a CDTF network to

model the camera and display without radiometric calibration; an embedding network

to optimally embed the message within an image; and a message recovery network to

retrieve the message on the camera side. A major advantage of our approach is single-

frame operation so that no temporal synchronization between camera and display is

needed, greatly increasing the practical utility of the method. Synchronization is a

major issue, and the results of Chapters 2 and 3 were done with pre-synchronized image

pairs, not video frames. We assume that properties of the camera hardware, display

hardware, and radiometry are not known beforehand. Instead, we develop a training

dataset Camera-Display 1M with over one million images and 25 camera-display pairs,

to train a neural network to learn the representative CDTF. This approach allows us

to train the embedding network independently from the representative CDTF. The

proposed photographic steganography algorithm learns which features are invariant

to CDTF distortion, while simultaneously preserving perceptual quality of the carrier

image.

The main contributions in this chapter are: 1) a photographic steganography al-

gorithm based on deep learning architectures; 2) development of a new paradigm for

camera-display imaging systems, CDTF-network; 3) Camera-Display 1M: a dataset of

1,000,000 camera-captured images from 25 camera-display pairs.

2 Related Work

Single vs. Dual Channel Light field messaging, also known as camera-display or

screen-camera communication, has been addressed by both the computer vision and

the communications literature. Early systems in the communications area concentrate

on the screen-camera transfer and do not seek to hide the signal in a display image [48,

78, 8, 45]. In computational photography, single channel systems have been developed

for structured light [79] that develop optimal patterns for projector-camera systems.
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In the computer vision community, the theme of communicating hidden information in

displayed images started with Visual MIMO [80, 64] and continued in other recent work

such as InFrame[81, 82, 83, 3] and DisCo [15]. In these dual-channel methods, consistent

with our approach, the display conveys information via human observation and the

hidden channel transmits independent information via camera-captured video. Prior

dual channel methods use fixed filter message embedding using either multiresolution

spatial embedding or temporal embedding that requires high frequency displays and

high-speed cameras to take advantage of human limitations in perceiving high frequency

changes [82, 15, 51].

Early Steganography The early work of classic image-processing steganography

can be divided into spatial and transform domain techniques. A simple and common

form of spatial domain image steganography involves altering the least significant bits

(LSBs) of carrier image pixels to encode a message [84]. Small variations in pixel values

are difficult to detect visually and can be used to store relatively large amounts of

information [85]. In practice, simple LSB steganography is not commonly used because

it is easy to detect and requires lossless image compression techniques [86]. More

sophisticated LSB methods can be used in conjunction with various image compression

techniques such as graphics interchange format (GIF) and JPEG for more complex

and difficult to detect steganography [84]. Transform domain techniques of traditional

steganography embed using fourier, wavelet, and discrete cosine tranforms [87, 86, 88,

89]. While there is a large body of work in the steganography literature, the methods

use fixed filters and these digital methods are not robust to the light transmission in

LFM.

From Fixed Filter to Deep Learning In recent years, a new class of image

steganography algorithms has emerged that utilize deep convolutional neural networks.

Pibre [93, 94] and Qian [95] demonstrate that deep learning using jointly learned

features and classifiers often outperform more established methods of steganalysis that

use hand selected image features. Structured neural learning approaches have been
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Figure 4.3: Our steganography model’s deep convolutional network architecture. 𝑅()
and 𝑇 () are both constructed with an identical architecture inspired by U-net for mul-
tiscale analysis [90] and Dense blocks for feature reuse [91]. The embedding function
𝐸() combines two images (carrier image and message) into one coded image. 𝐸() has a
siamese architecture [92] with separate network halves for carrier image and message.
The features for carrier image and message are shared at different scales to ultimately
produce a single coded image output. Each half of the siamese architecture of 𝐸() is
identical to 𝑅(). Source: [4].

explored that integrate classic image and transform domain steganography techniques,

such as LSB selection in a carrier image for a text-based message [96, 97].

For deep steganography, Baluja [1] uses deep feed-forward convolutional neural net-

works that can directly learn feature representations to embed a message image into a

carrier image. Rather than constraining the network to select pixels in a carrier im-

age suitable for embedding, the end-to-end steganography networks are trained with

constraints that preserve carrier and message image quality. Hayes devised a similar

steganography algorithm based on deep neural networks that utilizes adversarial learn-

ing to preserve the quality of the carrier image and limit steganalysis detection [98].

Deep learning approaches such as these have been extended to include video steganog-

raphy [99], high bits per pixel (BPP) embedding rates [100], resistance to JPEG com-

pression [101], and new deep learning architectures [102, 103]. While our algorithmic

approach also uses deep steganography, there is a significant key difference with prior

work: we assume our covert message will be electronically displayed, transmitted as

light in free space, and then camera-captured. That is, we address the problem of pho-

tographic steganopraphy for LFM that distinguishes our work from the prior methods
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(both classic and deep learning) that address digital steganography. Figure 4.2 demon-

strates the clear problem in using digital steganography for LFM: the message cannot

be retrieved accurately from the camera-captured image.

Uniqueness of our Approach Our work is distinct from prior work in that it

simultaneously enables: 1) free space light communication, i.e. light field messaging,

2) dual channel communication where the machine-readable message is hidden from

the human, 3) deeply learned embedding/recovery, 4) single-frame synchronization-free

methodology, and 5) ordinary display hardware with no high frequency requirements.

We are the first to explicitly model and measure the display-camera connection as

well as build a first-of-its-kind network and database for learning the coefficients of the

camera-display transfer function for use in experiments.

3 Methods

We define the terms message to refer to the covertly communicated payload, carrier to

refer to the image used to hide the message, and coded images to refer to the combined

carrier image and hidden message. Our approach has 3 main components:

∙ 𝐸(): a network that hides a message in a carrier image;

∙ 𝑅(): a network that recovers the message from the coded image;

∙ 𝑇 (): a network that simulates the distorting effects of camera-display transfer.

We denote the unaltered carrier image ic, the unaltered message im, the coded image

(carrier image containing the hidden message) i′c, and our recovered message i′m. 𝐿𝑐

and 𝐿𝑚 represent generic norm functions used for image and message loss, respectively.

We wish to learn the functions 𝐸() and 𝑅() such that:

minimize 𝐿𝑐(i
′
c − ic) + 𝐿𝑚(i′m − im)

subject to 𝐸(ic, im) = i′c

𝑅(i′c) = i′m

(4.1)
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In other words, our objective is to simultaneously minimize the distortions to the carrier

image and minimize message recovery error. However, this simple formulation will not

yield a solution to our problem. A naively trained steganography network will likely

learn an embedding function 𝐸() that encodes a message in carrier image LSBs [1].

LSB encoding will be overly distorted by the CDTF, yielding large message recovery

errors [2]. Instead, we introduce a third function 𝑇 () that simulates CDTF distortion.

If 𝑖𝑐 represents an unaltered carrier image, and i′c represents a coded image, let i′′c

represent a coded image that has passed through the CDTF approximated by 𝑇 (),

such that 𝑇 (i′c) = i′′c. Now we denote a new objective:

minimize 𝐿𝑐(i
′
c − ic) + 𝐿𝑚(i′m − im)

subject to 𝐸(ic, im) = i′c

𝑇 (i′c) = i′′c

𝑅(i′′c) = i′m

(4.2)

The CDTF function 𝑇 () must represent both the photometric and radiometric effects

of camera-display transfer [2]. This is accomplished by training 𝑇 () using a large dataset

of images electronically-displayed and then camera-captured using several combinations

of cameras and displays. This training procedure is detailed in Section 4. After 𝑇 ()

is trained, the steganography networks 𝐸() and 𝑅() are trained, using 𝑇 () as a fixed

constraint.

Network Architecture Recent trends in deep learning architectures have been to

go deeper [104], with more connections between layers [91], and operate at multiple

scales [90]. The proposed steganography networks draw heavily from the aforemen-

tioned architectures. The 3 networks 𝐸(), 𝑅(), and 𝑇 () all feature dense blocks with

feature maps at different scales in the shape of U-Net. Only 𝐸(), the network used

for embedding, features a siamese architecture [92]. One half of the network is directly

linked to the carrier image ic, while the other half is directly linked to the payload

image im, and produces a single output i′c. The outputs from each pair of blocks are

concatenated and passed to subsequent blocks. The network architecture can be seen
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in Fig 4.3. See the supplementary material for further details of network architecture

such as convolutional layer sizes.

Perceptual Loss Broadly, our photographic steganography method has 2 goals: 1)

maximize message recovery; and 2) minimize carrier image distortion. For coded image

fidelity, our objective function uses the 𝐿2-norm to measure the difference between ic

and i′c. In prior work, photo-realistic image generation using deep neural networks

was accomplished with perceptual loss metrics in training [105, 106, 107]. The validity

of these perceptual loss metrics have been well established [108]. As is common when

training neural networks that produce images as output [109], our perceptual loss metric

also includes quality loss. Quality loss is calculated by passing ic and i′c through a

trained neural network for object recognition, in this case VGG [110], and minimizing

the difference of feature maps at several depths [111].

Single Frame Advantage Previous photographic steganography methods such as

Visual MIMO [3, 2, 51] and DisCo [15] rely on temporal processing to isolate carrier

image content (static) from message content (dynamic). Synchronization issues make

this approach difficult in practice. Each display is operating at a frequency indepen-

dent from each camera and there is no synchronization between camera and display.

Even when a camera and display begin in-phase and at complementary frequencies,

small changes in operating frequency, lag from computational load, screen-tearing, and

rolling-shutter can all cause the system to quickly fall out of sync. The advantage of

using a single frame for embedding is that the temporal synchronization problem is

avoided.

3.1 Camera-Display 1M Dataset

We present Camera-Display 1M, a dataset containing over 1 million images collected

using 25 camera-display pairs. Images from the MSCOCO 2014 training and validation

dataset [112] were displayed on five electronic displays, and then photographed using

five digital cameras. The five electronic displays used are the Samsung 2494SJ, Acer
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S240ML, Insignia NS-40D40SNA14, Acer Predator XB271HU, and Dell 1707FPt. The

five cameras used are the Pixel 2 smartphone, Basler acA2040-90uc, Logitech c920 web-

cam, iPhone 8 smartphone, and Basler acA1300-30uc. The chosen hardware represents

a spectrum of common cameras and displays. To achieve a set of 1M images, 120,000

images of MSCOCO were chosen at random. Each camera-captured image is cropped,

warped to frontal view, and aligned with its original. The measurement process was

semi-automated and required software control of all cameras and displays. The time-

consuming acquisition process has produced a comprehensive dataset that will be made

publicly available [75] along with the trained CDTF network parameters. See Figure 4.4

for examples of how different hardware in the imaging pipeline significantly alters the

appearance of the same images.
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Figure 4.4: Camera-Display 1M examples: Our dataset contains over 1 million images
collected from 25 camera-display pairs. Each column corresponds to a different camera-
display pair (5 of 25 are shown). Camera properties (spectral sensitivity, radiometric
function, spatial sensor pattern) and display properties (spatial emitter pattern, spec-
tral emittance function) cause the same image to appear significantly different when
displayed and captured using different camera-display hardware. Source: [4]. (Best
viewed as zoomed-in PDF.)
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3.2 Training 𝑇 ()

The network 𝑇 () is trained using 1,000,000 image pairs, iCOCO representing the original

image and iCDTF representing the same image displayed and camera-captured. These

images used for training are MS-COCO images [112] that are rendered on an electronic

display and then camera-captured using 25 camera-display pairs. The objective of

𝑇 () is to simulate CDTF distortion by outputting iCDTF given iCOCO as input. The

objective function we wish to minimize is:

𝑇𝑙𝑜𝑠𝑠 =||iCOCO − iCDTF||2+

𝜆𝑇 * ||VGG(iCOCO)− 𝑉 𝐺𝐺(iCDTF)||1.
(4.3)

We include a perceptual loss regularizer for 𝑇 () to preserve the visual quality of the

network output i′′c. The perceptual loss weight 𝜆𝑇 is 0.001. 𝑇 () is trained for 2 epochs

using the Adam optimizer with a learning rate of 0.001, 𝛽 = (0.9, 0.999), and no weight

decay [113]. Total training time was 7 days.

3.3 Training 𝐸() and 𝑅()

The networks 𝐸() and 𝑅() are trained simultaneously using 123,287 images from MS-

COCO [112] for ic, and 123,287 messages for im. The objective of 𝐸() is to produce

a coded image i′c that is visually similar to ic, and encodes all the information from

im such that it is robust to CDTF distortion. The objective of 𝑅() is to recover all

information in im despite CDTF distortion. When training 𝐸() and 𝑅() with 𝑇 (), our

goal is to satisfy Equation 4.2. 𝑇 () is pretrained and placed in the training loop for

𝐸() and 𝑅(). The output of 𝐸(), passes through 𝑇 () before becoming the input to 𝑅().

As 𝐸() and 𝑅() are trained and updated through backpropagation, the pretrained 𝑇 ()

network remains static. The objective functions we wish to minimize are:

𝐸𝑙𝑜𝑠𝑠 =||ic − i′c||2+

𝜆𝐸 * ||𝑉 𝐺𝐺(ic)− 𝑉 𝐺𝐺(i′c)||1.

𝑅𝑙𝑜𝑠𝑠 =𝜑 * ||im − i′m||1

(4.4)
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Again here, we include a perceptual loss regularizer for 𝐸() to preserve the visual

quality of the network output i′c. The perceptual loss weight 𝜆𝐸 is 0.001, and the

message weight 𝜑 = 128. 𝐸() and 𝑅() are trained for 3 epochs using the Adam optimizer

with a learning rate of 0.001, 𝛽 = (0.9, 0.999), and no weight decay [113, 114]. Total

training time was 18 hours. The networks 𝐸(), 𝑅(), and 𝑇 () were all trained using

PyTorch 0.3.0 with an Nvidia Titan X (Maxwell) compute card [115].

4 Experiments and Results

To study the efficacy of our approach, we constructed a benchmark with 1000 images,

1000 messages, and 5 camera-display pairs. The images are from the MSCOCO 2014

test dataset, and each message contained 1024 bits. Two videos were generated, each

containing 1000 coded images embedded using a trained LFM network, one trained

with 𝑇 () and one without. As shown in Table 4.1, the proposed LFM algorithm trained

with 𝑇 () achieved 7.3737% BER, or 92.6263% correctly recovered bits on average for

frontally photographed displays. The same algorithm achieved 14.0809% BER when

camera and display were aligned at a 45 deg angle. The example in Figure 4.5 illustrates

the differences between coded images i′c generated with and without the CDTF network

𝑇 () in the training pipeline. All BER results in this chapter are generated without any

error correcting codes or radiometric calibration between cameras and displays.
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Table 4.1: BER for various camera-display pairs (lower is better). One thousand ran-
domly generated 32× 32 (1024-bit) messages were embedded into one thousand previ-
ously unused MSCOCO images. Message recovery was evaluated using 5 cameras and
5 displays. The distances between camera and display range from 23cm to 4.3 meters.
The table shows the mean BER for each camera-display pair. While 0% BER would be
a perfectly recovered message, 50% BER corresponds to randomly classified bits. Each
device was operated with its default manufacturer settings for normal use.



62

LFM Trained Without 𝑇 () LFM Trained With 𝑇 ()

Encoded Image

Residual (𝑖′𝑐 − 𝑖𝑐)

Recovered Message

46.39% BER 1.17% BER

Figure 4.5: Coded images generated using the same carrier image and message, pro-
duced with two otherwise identical steganography architectures: Left: trained without
the CDTF; Right: trained with 𝑇 () to model CDTF. The per-pixel changes (ic−ic′) in
the two middle images are multiplied ×50 for visibility. Notice the significant changes
to coded image appearance that our photographic steganography model learns that
anticipate the CDTF (right). This experiment was performed using the Pixel 2 camera
and Acer Predator XB271HU display. Source: [4].
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𝜆𝑇 = 0 𝜆𝑇 = 0.001 𝜆𝑇 = 0.01

Figure 4.6: Examples of coded images generated by our photographic steganography
model with various perceptual loss weights in training. As the perceptual quality metric
𝜆𝑇 is increased, the image becomes sharper and has fewer color shift errors. If 𝜆𝑇 is
too large, BER increases, as is the case when 𝜆𝑇 = 0.01. Source: [4]. (Best viewed as
zoomed-in PDF)

We wish to understand the effects of perceptual loss in our steganography model.

In particular, we examine the effects of 𝜆𝑇 by varying its weight in the loss function

during training. Figure 4.6 features an ablation study of the effects of perceptual

loss. Figure 4.7 features an example of the same image and message camera-captured

at different angles. The LFM algorithm trained without 𝑇 () is analogous to digital

steganography deep learning techniques, and was unable to successfully recover coded

messages even when frontally viewed, the simplest case. Figure 4.5 illustrates the

difference that the inclusion of 𝑇 () in LFM training makes. Without 𝑇 (), the message

is encoded as small per-pixel changes that are near-uniform across the image. With

𝑇 (), the message is encoded as patches where the magnitude of pixel changes varies

spatially. We show an empirical sensitivity analysis of camera exposure settings in

Figure 4.8. Our LFM method is robust to overexposure and underexposure, provided

pixels are not in saturation.
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30∘ 45∘

Camera-Captured Encoded Image

Frontally Warped

Recovered Message

2.73% BER 11.72% BER

Figure 4.7: Camera display angle has a significant effect on message recovery. This
experiment was performed using the Pixel 2 camera and Samsung 2494SJ display. Our
LFM method performs well for oblique views, but experiences a steep dropoff in BER
as the camera-display angle increases. Source: [4].
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Camera-Captured Image Recovered Message

Overexposed

7.42% BER

Auto-exposed

0.78% BER

Underexposed

0.29% BER

Figure 4.8: Our approach is robust to modifications of camera exposure, yielding low
BER for multiple settings. Underexposure performs better than overexposure because
the message cannot be recovered from the saturated snow pixels in the overexposed
image. This experiment was performed using the Pixel 2 camera and Acer Predator
XB271HU display. Source: [4].
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Finially, we motivate the need for photographic steganography with a comparison

to existing methods. Are existing synchronization-free steganography algorithms such

as Baluja [1] sufficient for photographic message transfer? As shown in Figure 4.2,

even simple binary messages are not stably transmitted photographically using existing

methods. Our CDTF simulation function 𝑇 () is trained with 25 camera-display pairs,

but we want to know how well 𝑇 () generalizes to new camera-display pairs. Using the

1000-image, 1024-bit test dataset, we test two additional cameras and two additional

displays. We create coded images using various embedding algorithms and measure

message recovery accuracy for each of the four camera-display pairs. Table 4.2 shows

that LFM trained with 𝑇 () significantly outperforms existing methods, even when cam-

era and display are at a 45∘ angle.

5 Discussion

In this chapter, we extend deep learning methods for digital steganography into the pho-

tographic domain for LFM where coded images are transmitted through light, allowing

users to scan televisions and electronic signage with their cameras without an internet

connection. This process of photographic steganography is more difficult than digital

steganography because radiometric effects from the camera-display transfer function

(CDTF) drastically alter image appearance [2]. We jointly model these effects as a

camera-display transfer function (CDTF) trained with over one million images. The

resulting system provided embedded messages that are not detectable to the eye and

recoverable with high accuracy.

Our LFM algorithm significantly outperforms existing deep-learning and fixed-filter

steganography approaches, yielding the best BER scores for every camera-display com-

bination tested. Our approach is robust to camera exposure settings and camera-display

angle, with LFM at 45∘ outperforming all other methods at 0∘ camera-display viewing

angles. Along with our LFM algorithm, we introduce Camera-Display 1M, a dataset of

1,000,000 image pairs generated with 25 camera-display pairs. Our contributions open

up exciting avenues for new applications and learning-based approaches to photographic

steganography.
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Table 4.2: Generalization to new camera-display pairs: Our LFM model generalizes
to new camera and display hardware, outperforming traditional fixed-filter Discrete
Cosine Transform (DCT) [116] and deep-learning-based [1] steganography approaches.
Here, we show BER for 1000 1024-bit messages transmitted with 4 new camera-display
pairs that were not in the training set.
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Chapter 5

Deep CNNs as a Method to Classify Rotating Objects

based on Monostatic Radar Cross Section

1 Introduction

When illuminated with a narrowband radar signal, an object reflects incident energy

and the reflectance depends on the object’s geometry and material properties. The

amount of energy that is reflected directly back toward the source of illumination is a

function of its monostatic RCS (Radar Cross Section). As an object changes orientation,

the RCS changes as well. We wish to classify the 3D shape of objects based only on a

time series of monostatic RCS as the object moves according to force-free rigid body

motion. Our set of target objects includes right circular cones, right circular cylinders,

rectangular planes, spheroids, and trapezoidal prisms. The target object set varies in

size with respect to a geometric parameter for each class (e.g. radius and height variation

for cylinders). The chosen geometric properties in the test set are selected by radar

wavelength so that each object is modeled as a Perfect Electrical Conductor (PEC).

Labelled data, i.e. RCS of known objects, are required to train and test our supervised

classifier. We create a large dataset of geometric objects and their corresponding RCS

time-series signals.

To simulate real-world conditions, the input signals for testing are corrupted by

Gaussian noise and Swerling dropout. The Swerling Model [117] is a standard method

for determining the detectability of an object based on SNR and waveform characteris-

tics. The instantaneous probability of detecting each object at at given time is explicitly

included in order to make the performance closer to real world operation. If the Signal

to Noise Ratio (SNR) at a given time point is too small, a real-world radar system may

be unable to separate the object from noise and will therefore be unable to detect the
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Figure 5.1: Our goal is to correctly predict object shape family from a noisy monostatic
RCS signal. RCS is highly sensitive to motion, and the rotation rates and viewing angles
are unknown to the classifier. For example, objects may be rotating very fast or very
slow about multiple axes. These signals contain added white Gaussian noise and a
Swerling detection model, where the probability of detection is smaller for lower RCS
values results in missing data points. A convolutional neural network (CNN) is used
to learn the separating features that accurately recognize each object class overcoming
the challenge of noisy data, missing data and unknown trajectories. Source: [5].

object and estimate its RCS.

A subset of the generated signals are used to train a feed-forward convolutional

neural network classifier. We employ an end-to-end learning architecture, where signal

features and the classifier are jointly solved for. The inputs are a series of RCS samples

over time as the object rotates through free space. These objects belong to one of four

shape families, illustrated in Figure 5.2. When the rotation is simple and follows a

known path (as shown in Figure 5.3, top row), the problem is trivial. However, the

problem becomes substantially more difficult when the motion parameters are unknown

(see Figure 5.3, bottom row). Examples of the difficulty of the goal are illustrated in

Figure 5.1.

In this work, we successfully classify the shape family for rotating objects with

unknown roll rates, tumble rates, and unknown initial orientations. We train deep
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Figure 5.2: The four shape families correspond to four target classes in our classifier.
Each shape class has a range of geometric parameters and motion parameters. The
parameter ranges are listed under each shape. 𝜆 is wavelength of the incident radar
signal. Source: [5].

Cone Cylinder Plate

Figure 5.3: There is tremendous variation among the cone, cylinder, and plate RCS
signals on the top row. Those signals have rotation about a fixed axis at a relatively
slow speed and zero noise. The bottom row features 2 more realistic cone, cylinder,
and plate RCS signals. The salient features present in the top examples are now gone.
Source: [5].

neural network classifiers that return the probability of each signal belonging to each

shape family. The deep learning training and testing is implemented using PyTorch, a

machine learning and optimization library for the Python programming language [115].

The SVM and Decision Tree algorithms are implemented using the SciPy library for

the Python programming language [118]. To our knowledge, our methods are the

first application of deep learning for object shape classification using monostatic radar

signals.
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2 Related Work

Producing an accurate representation of a target object’s narrowband monostatic RCS

is a challenging problem. Radar specific properties such as wavelength and sampling

rate, as well as object-specific properties such as surface material, shape, and motion

may dramatically influence the resulting RCS time series. In this application, the ob-

jects under investigation are geometrically simple, convex shapes with uniform material

construction. The incident energy wave is assumed to be a simple plane wave. The

environment is not modeled, except for the addition of Gaussian noise. Due to these

constraints, the physical optics (PO) approximation is appropriate to produce realistic

returns. Open source RCS signal generation tools such as the Matlab toolbox PO-

Facets are readily available [119] and have been used to approximate RCS of aircraft

models [120].

A powerful new class of supervised machine learning algorithms called convolutional

neural networks (CNNs) leverage optimization to learn complex latent features for

robust classification. This family of algorithms is called deep learning when networks

contain many convolutional layers. In 2012, a convolutional neural network significantly

outperformed all other algorithms on the object classification dataset ImageNet [121]

and CNNs have become the algorithm of choice for image recognition in computer

vision [110, 122, 123, 104, 124].

Traditional neural networks have been used for radar classification tasks for decades,

often derived from architectures developed for speech recognition such as the time-

delay neural network [125, 126]. Early work on neural networks for processing radar

signals were applied to identifying the number and type of radar emitters in a simu-

lated multisource environment [127]. Pulse-train radar signal classification and source

identification remains a topic of active research [128, 129]. Another recent challenge

for neural networks in radar is the identification of radar jamming signals [130, 131].

Traditional neural networks have been applied to: SAR imagery for ground terrain clas-

sification [132] and crop classification [133]; microwave radar for classifying pedestrians
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Figure 5.4: The POFacets library was used to generate RCS signals from geometric
shape models. Generalized Euler motion, additive Gaussian noise, and Swerling 2
dropout are then incorporated to generate the final signal. Source: [5].

and vehicles [134]; doppler radar for identify human breathing [135]; ground penetrat-

ing radar for the classification of geological structures [136]; forward scattering radar

for identifying very small marine targets [137].

While traditional neural networks have been used widely in radar classification

tasks, modern deep learning and CNNs are beginning to take hold in recent appli-

cations [138, 139, 140, 141, 142]. The success of the 2D CNNs on standard color images

has translated well into radar applications. While most deep learning networks are

designed for 2D imagery and can be directly applied to radar-based imagery, however,

the RCS time series signals in our work are one-dimensional signals. In fields such as

natural language processing [143] and medical applications [144], 1D CNNs have pro-

vided successful classification. In this work, we leverage successful deep networks for

2D image recognition, but adapt the networks to the 1D monostatic RCS signals.

Multi-static radar systems utilize a set of receivers and transmitters to create mul-

tiple 1D RCS signals of a target object. In prior work, multistatic RCS signals are

classified individually using CNNs [138, 145] and the average of multiple CNNs [146]

for multistatic contextual target signatures. The monostatic system addressed in our

work contains a single collocated receiver-transmitter pair, compared to multistatic

systems which have one or more spatially separated receivers and transmitters. The
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classification problem of monostatic RCS signals is particularly challenging since the

signals do not contain contextual information from multiple sources.

3 Generating RCS Signals

The first step in RCS classification is generating 3D models of our target objects.

The parameters of these objects are listed in Figure 5.2. 128 geometric models were

generated, each corresponding to one of four shape classes in the primary experiments.

For each of the 3D models, POFacets is used to generate narrowband monostatic RCS

values. In the case of monostatic radar, we assume that the radar source and receiver

are at the same location. The radar frequency is kept constant. It is important to note

that in the physical optics model, RCS behavior depends only on the size of the object

in wavelengths. Thus we can arbitrarily set the chosen frequency to 0.3𝐺𝐻𝑧 while

preserving the general behavior of any wavelength. Since the 3D model parameters

are scaled by wavelength, this allowed for unit shape size parameters. POFacets is

used to generate narrowband monostatic RCS responses, sensitive to object rotation

parameterized by 𝜃 and 𝜑. The mapping is done by specifying an angular sweep from

0∘ to 180∘ at high sampling intervals of 0.1∘. Symmetry about the shapes allows us to

simulate to a maximum rotation of 180∘.

3.1 Generalized Euler Motion

Once an RCS map had been generated, a motion path is drawn over the surface and the

map is be interpolated. The target objects are assigned tumble, roll, and initial rotation

angle. The initial conditions are then propagated following the physics of rigid body

motion in the presence of no external forces (free motion). A quaternion model is used

to generate the motion path parameterized by 𝜃 and 𝜑 over the precomputed 2D RCS

map. The roll and tumble parameters are bound by the values described in Figure 5.2.

For each shape class, the center of mass and moment of inertia are calculated and used

for the simulation of realistic, geometry-dependent object motion.
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Figure 5.5: Swerling detectability is an important parameter in our model. As the
RCS SNR decreased, so does the probability of detection. According to the above
graph, SNRs of 25𝑑𝐵 and 15𝑑𝐵 provide almost no dropped measurements. But for
SNR = 5𝑑𝐵, the probability of detection drops significantly, to roughly 50%. The RCS
measurements with the lowest magnitude have a greater likelihood of being dropped to
0. Although Swerling dropout did have a major effect on our results, it often preserves
larger RCS values in the time series signal, and the larger RCS values are expected to
play a more substantial role in feature selection. Source: [5].

3.2 Randomizations in Motion Parameters

It would be relatively easy to classify RCS signals from objects at integer-valued roll,

tumble, and viewing angle. To make the problem more realistic and challenging, ran-

domizations were applied to the values of each parameter. A random variable 𝑥 with

𝜇 = 1 and 𝜎 = 0.5 was multiplied with the viewing angle (𝜃 and 𝜑), tumble rate,

and rotation rate for each signal. The random variation allows for the construction

of a database where the same 2D RCS map could be used to generate multiple sig-

nals. The ability to scale motion parameters with random jitter allowed the creation a

nearly equal number of signals between the four classes, even though there were more
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Parameters A4 B4

Number of classes 4 4
Tumble rate (rad/sec*max) 0.015, 0.1, 0.5 0.015, 0.1, 0.5, 1
Roll rate (rad/sec*max) 0.015, 0.1, 0.5 0.015, 0.1, 0.5, 1
Signal to noise ratio (dB) 25, 15 25, 15, 5
Viewing vector angle (degrees) 0, 20 0, 20, 40, 60
Swerling model 2 2
Probability of false alarm 0.0001 0.0001
Number of pulses 10 10
Signal length (samples) 501 501
Number of signals 121,320 363,960

Table 5.1: Generation parameters for A4 and B4 datasets

3D models created for plates. CNN performance is generally improved when there are

equal number of training examples in all classes.

3.3 Update Rate, Swerling, Gaussian Noise, Gradients, and Pyramids

A realistic radar model has a finite update rate. The number of samples as an object

rotates are related to the update rate (in Hz) and the rotation rates (in radians/second).

In this study the kinematic bounds of the objects are defined in radians/update, thus the

performance of a highly sampled signal that rotates quickly is the same as as if it were

rotating more slowly with a corresponding decrease in radar update rate. The motion

parameters are specified in radians per update. The radar update rate is arbitrarily

set to 1 Hz. To simulate realistic distortions of each RCS value, Gaussian noise and a

Swerling detectability model are incorporated into each RCS signal. The addition of

Gaussian noise transforms the RCS from a truth value to an estimate. The specific

parameters can be found in Table 5.1.

To summarize, the objects under test have complex motion with tumble, roll, and

variable viewing angles, yielding complex time series of RCS estimates. The signals are

noisy and have missing data points. Each RCS signal dataset contains variable values

for each of the aforementioned parameters. Therefore, the same classifier is expected

to correctly label RCS signals from objects moving at highly varied speeds in highly

varied motion paths with different amounts of noise.
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4 Experiments

Two datasets are created using the methods described. One is used for training, and

the other for evaluation/testing. The parameters used to create these dataset are listed

in Table 5.1. The datasets in this chapter are named A4 and B4 respectively because

they both contain four classes but have different parameter values.

All experiments were run on a Ubuntu 16.04 machine with 32GB of RAM, a Xeon

E5-1620 v4 @ 3.5GHz x 8 CPU, a Samsung 860 EVO SSD, and a Nvidia Titan X

(Maxwell edition) GPU. The PyTorch and SciPy library versions used for training and

evaluation are 0.1 and 1.1 respectively.

4.1 Residual Network

Our 1D residual network architecture is inspired from He et al. [104]. Two-dimensional

3×3 convolutional filters were replaced by one-dimensional 3×1, 5×1, and 7×1 filters,

but the original block module structure and skip connections are maintained. See

Figure 5.6 for a detailed view of the 18-layer network architecture. The residual network

was run over 30 epochs and updated using the Adam [114] optimizer with a learning

rate of 0.001. Unlike the original implementation of ResNet, batch normalization is

done during training to avoid overfitting. The batch size for training is 128 signals for

all models except for the 152-layer residual network due to GPU memory constraints

and is instead run with a batch size of 32 signals. The learning rate is decayed by

70% if the current validation accuracy does not improve compared to the average of

the previous five validation accuracies. The network with the lowest validation error is

saved and used to evaluate the test data. The 18-layer residual network requires five

minutes to train while the 152-layer residual network requires nearly three hours to

train. The time required to evaluate a signal with the listed hardware is on the order

of tens of microseconds, allowing real time signal classification.



77

Figure 5.6: An 18-layer convolutional network is trained to analyze a noisy RCS signal.
The architecture is strongly inspired by ResNet [104]. Skip connections are shown as
curved arrows. Unlike ResNet, batch normalization is incorporated into the model.
Source: [5].
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Cone Cylinder Plate Sphere Trapezoidal Prism

Train (#) 24,201 25,189 29,041 19,311 2,258
Test (#) 1,871 2,038 2,214 1,623 254
Train (%) 24.2 25.2 29.0 19.3 2.3
Test (%) 23.4 25.4 27.3 20.3 3.2
Models 11 12 30 5 1

Table 5.2: The number of each respective model in the A5 dataset.

4.2 Expanding the A4 Dataset

In secondary tests we expand our four class dataset to include a new trapezoidal prism

class. We augment the dataset to answer the question of how our model performance

would be affected by the addition of a smaller class of signals. This object is selected

such that it closely resembles one of the original classes, i.e. the plate class. One

trapezoidal prism class model was created. The new dataset distribution is recorded in

Table 5.2. The number of signals for the new class is significantly lower than the other

classes. We call this dataset A5 because is contains the same motion parameters as A4

but has an extra shape class.

4.3 Siamese Network

Our initial hypothesis was that our residual network would misclassify signals belonging

to the class with the fewest instances, confusing them with one of the larger classes. If

we assume one class will be confused, the loss function will be minimized by misclas-

sifying signals in the smallest class. In order to test our hypothesis, we compare the

performance of the residual network with a siamese network. A siamese network con-

sists of two feature extractor modules, each outputting a lower dimensional, compared

to the original input, feature vector. The goal of our siamese network is to cluster sig-

nals from the same class in close proximity while moving signals from different classes

farther apart in feature space. This network is chosen such that the smaller class is less

likely to be grouped with another class. The feature extractor modules share the same

parameter so that the output vectors can be compared symmetrically. The 18-layer

residual networks are used as the feature extractors in the siamese architecture. As

with our other trained CNNs, the siamese network is trained using the Adam optimizer
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with batch sizes of 128 signals for 30 epochs. The learning rate was also initialized and

adjusted congruently. The comparator or loss function requires a margin hyperparam-

eter to separate signals of different classes:

𝐿 =
𝑁∑︁
𝑖

𝑦𝑖 · ‖𝑥𝑖1 − 𝑥𝑖2‖22 + (1− 𝑦𝑖) ·𝑚𝑎𝑥(0,𝑚− ‖𝑥𝑖1 − 𝑥𝑖2‖22) (5.1)

The loss function encourages signals in feature space synthesized from the same type

of model to converge while forcing signals in feature space belonging to different models

farther apart. A CNN generates a fixed length feature representation of the input signal

from learned feature extractors. The similarity between feature representations of two

signals, 𝑥1 and 𝑥2, is measured with the 𝐿2 distance metric. The binary label 𝑦 = 1 if

the signals are from the same shape primitive model then, and 𝑦 = 0 if the signals are

not from the same primitive. Signals from the same shape primitives are forced closer

in feature space. Whereas, signals from different shape primitives are forced apart if

the distance between the feature representations are closer then the margin 𝑚. Since

the network requires two signals, evaluation is computed by measuring the similarity

between a test signal and a set of signals from the training dataset. Several methods

were attempted as classifiers but ultimately a nearest neighbor classifier performed

with the greatest accuracy. An input signal first passes through the feature extractor

network to produce the corresponding test signal feature vector. The test feature vector

is compared to a set of training feature vectors. The most similar feature vector to the

test feature vector assigns its label to the test vector. Other methods such as a 𝑘-nearest

neighbor with 𝑘 > 1and a support vector machine (SVM) were also used but did not

perform as well.
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Figure 5.7: Two signals are fed into two CNNs with shared parameters. The output
feature vectors are compared via the Siamese network loss function 5.1. The target
label is equal to one if the two signals belong to the same class and zero otherwise.
Source: [5].
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4.4 Robustness Test

In order for the classifier to be utilized in real-world applications, it must make accurate

predictions on signals with previously unseen distortions. Signal distortions such as

occlusion, saturation, and clutter can affect monostatic RCS signals. Occlusion, in this

work, is defined as zeroing a subset of a signal’s RCS values. Clutter is defined as random

amplitude spikes at random locations within a signal. Saturation or clipping is a hard

cutoff at a set threshold that limits a signal’s amplitude. Subsampling is the removal

of a random contiguous section of a signal. Occlusion differs from subsampling because

occluded signals have the same number of samples after the distortion is applied unlike

signal subsampling. As a robustness test, the network is trained on dataset A4 which

only contains signals distorted by noise and Swerling dropout. The trained network

then evaluates a test set of the A4 dataset that is distorted by one of the previously

mentioned distortions. The degree of distortion is varied in each test, e.g. the test

signals are saturated to 75% of their maximum amplitude. The residual architecture

can receive signals of various dimensions as its input because of an average pooling

layer before the end of the feature extractor module. Subsampling is implemented by

circularly shifting the signal by a random integer and then setting the last 𝑛 elements

to zero.

4.5 Refiner Network

This section is inspired by the work done by Shrivastava et al. [147], where the authors

train a refiner network to make generated images appear more realistic. This network

resembles a generative adversarial network (GAN) [122] where a generating network

tries to create “realistic” data and a discriminator network decides whether the data is

real or fake. The generator network iteratively improves the generated image while the

discriminator network learns to more accurately discern the real and fake data apart.

Instead of generating data from a noise distribution, as with the classic GAN example,

a refiner network converts simulated data into data that more resembles the realistic

data. In this work we use a refiner network to make our simulated RCS signals look
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Figure 5.8: The refiner network and the discriminator work in a similar adversarial
manner as a generative adversarial network. The refiner optimizes the simulated signals
to look more like the unlabeled realistic data while the discriminator tries to distinguish
the difference between the refined and realistic signals. Source: [5].

like simulated signals with added noise. The refiner network maintains the structure

of our signal while adding features to make it appear more like the signals with noise.

The parameters used for the simulated dataset are similar to A4 dataset except that

no noise is added to the signal and rotation and roll rates are decreased.

The refiner network is a 3-layer CNN that takes a simulated signal as input and

outputs a refined signal of the same size. The discriminator network is a 5-layer CNN

that receives the refined signal as input and outputs a vector probability map. The

probability map determines which parts of the input signal appear realistic to the

discriminator. The refiner and discriminator networks have separate loss functions and

are trained iteratively. The refiner network’s loss function is a combination of the

distance between the input signal and the generated signal and the likelihood that the

discriminator believes that the refined signal is real. The discriminator network’s loss

function is a combination of the likelihood that the discriminator believes that the

refined signal is real and the likelihood that the discriminator is unsure that the real

data is real. Both networks are trained for 50 epochs with the Adam optimizer. For

each epoch the refiner network is trained twice while the discriminator is only trained

once.
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Figure 5.9: The result of the refiner network is shown above. The refiner network
takes the signal in (a) as input and returns the signal in (b). It learns to make this
transformation by observing signals with noise like the signal in (c). Source: [5].

5 Results

In this section we explore the performance of our trained CNNs on our generated

datasets. We also compare different architecture performance using an augmented

dataset, investigate the robustness of our classifier, and explore improving our simulated

data post-generation.

5.1 Classification on A4 and B4 Datasets

Several residual networks with layer depths shown in Figure 5.10 are trained as de-

scribed in the experiments section, on both A4 and B4 datasets. Best performance is

achieved using the 152-layer residual networks, with classification error scores of 2.5%

and 2.0% on datasets A4 and B4 respectively, as shown in Figure 5.10. While the

general trend implies that deeper networks perform better, this is not always true. The
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Figure 5.10: Several residual networks of different lengths are evaluated on both the A4
and B4 datasets. As the number of layers in the architecture increases the test error
on either dataset decreases but only achieves marginal improvement past a depth of 18
layers. Source: [5].

101-layer network performs slightly worse than the 50-layer and 152-layer networks for

both the A4 dataset (2.9% vs. 3.0% vs 2.5% for A4) and the B4 dataset (2.1% vs.

2.2% vs. 2.0%). Since all of these networks were trained with the same data, hyper-

parameters, and appropriately scaled architecture for the given depths, it is difficult

to explain this fluctuation in test performance. Test performance saturates for the 18-

layer network, and performance changes only slightly for larger networks. As network

size increases, so does the ability to learn more complex features. But larger networks

also have a propensity to overfit if the dataset used for training is not sufficiently large

and representative of the distribution of each class. When overfitting occurs, train-

ing accuracy will continue to improve while test accuracy continues to degrade. Since

Figure 5.10 features test error, and the A4 and B4 datasets are sufficiently large, the

networks are likely not overfit, but at saturation for test accuracy given the complexity

of useful signal features. Likely, the small deviations in test performance stem from
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Figure 5.11: The confusion matrices for all siamese networks and the single residual
network. Confusion matrices starting from the left to the right belong to the single
network, the siamese network with nearest neighbor, siamese network with k nearest
neighbor, and siamese network with support vector machine. The classes are enu-
merated as (0) cone, (1) cylinder, (2) plate, (3) spheroid, and (4) trapezoidal prism.
Source: [5].

each network converging on different local minima in the optimization plane. Initial

conditions and when training is stopped may have effects on which minima a network

is likely to converge on.

Models trained on the B4 dataset perform better than models trained on the A4

dataset across all network depths. As a baseline, a neural network and non-residual

convolutional neural network were trained and evaluated on the A4 dataset with the

corresponding test errors, 29.5% and 6.1%. The neural network contains six layers,

dropout, and non-linear layers. Increasing the number of layers in the neural network

did not significantly improve results. The non-residual convolutional neural network

contained 18 layers and is trained with the same training parameters described in the

experiments section. When the number of layers in the non-residual convolutional

network was increased, performance plateaued and then began to degrade.

Our classification results for the residual networks may appear counter-intuitive at

first glance, since CNNs typically perform worse on datasets that have more variation.

Datasets with more variation are simply more difficult to learn because the CNN will

have to learn specific filters to deal with that variation. Not only does the B4 dataset

contain more signals but it contains faster roll and tumble rates. The faster roll and

tumble rates for our signals actually increases the amount of information per sample

because the models we use to generate our signals have large distinct edges and smooth
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SVM DT 1L-CNN RN18 RN152

Original 0.557 0.485 0.898 0.968 0.975
SS 0.863 0.849 - - -
TR 0.707 0.607 - - -

TR+SS 0.742 0.828 - - -

Table 5.3: Accuracy performance of support vector machine (SVM), decision tree (DT),
single-layer convolutional neural network (CNN), and residual network (RN) algorithms
on the A4 dataset. The leftmost column represents the signal features that were used by
each classification algorithm. Common signal statistics (SS) represents feature vectors
comprised of the mean, standard deviation, and extremum of a signal. Transform
representations (TR) represent feature vectors comprised of coefficients from the Fourier
and Wavelet transforms of a signal. Since convolutional neural networks learn a feature
representation, only the original signals are used as input.

surfaces. If instead the models used had rough surfaces and less distinct edges, infor-

mation would be lost by increasing the roll and tumble rates. The B4 dataset also

contains signals with lower SNR rates and more varied viewing angles, which decrease

the amount of information within the signals. Regardless of the size of the network,

test performance on the B4 dataset was greater than on the A4 dataset. It was for this

reason that the A4 dataset was selected to create new datasets and to further train/test

our models. If a more difficult dataset is used, then there will be a clearer distinction

between the results of more advanced networks.

In addition to neural networks, we assess the performance of other machine learn-

ing classification algorithms such as support vector machines (SVM) and decision trees

(DT) on the A4 dataset. The SVM algorithm utilizes the radial basis function kernel

with a gamma value equal to reciprocal of the number of input features. Multiple one-

against-one classifiers are aggregated to form the final SVM classifier. As for the DT,

the Gini criterion is used to measure the quality of the split in the tree and decision

nodes are randomly chosen to be further split. The minimum number of samples to be a

leaf node is set to five, and the minimum number of samples required to split a decision

node is two. Unlike deep learning algorithms, features must be manually crafted for the

SVM and DT classifiers to attain optimal performance. For comparison the SVM and

DT classifiers are trained and evaluated on the complete length signals from the A4

dataset and achieve accuracies of 55.7% and 48.5% respectively, as shown in Table 5.3.
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Figure 5.12: A single residual network’s performance on the A5 test dataset is compared
to the performance of three Siamese networks with various classification layers. ANN
stands for artificial neural network, NN is nearest neighbor, kNN is k nearest neighbor,
and SVM stands for support vector machine. Source: [5].

Common signal statistics (SS) such as minimum and maximum are combined with low

order cumulants [148] to form a representation of the RCS signals. This representation

improves upon the previous the accuracy of the classifiers to 86.3% and 84.9%. Follow-

ing the work of Byl [149] and Zhang [150], more complex descriptive features such as

Fourier Transform frequency responses and Wavelet Transform coefficients are used to

represent the signals. Specifically, the Fast Fourier Transform generates frequency coef-

ficients and the Discrete Wavelet Transform (DWT) symmetrically pads signals during

the transform in order to avoid inaccurate calculation of the DWT. The first 50 coeffi-

cients from each transform are concatenated to form the feature vector representation.

This method, which we call transform representations (TR), is combined with the SS

features to achieve accuracies of 74.2% and 82.8%. For reference our one layer CNN

(1L-CNN) has a test accuracy of 89.8% on the A4 dataset, Figure 5.10.
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5.2 Classification on A5 Dataset

The siamese network structure has been used on a variety of tasks such as signature

matching and facial identification with high performance [151, 152]. This type of net-

work performs most effectively when the number of classes in a dataset is large and

the number of data per class if relatively low. The architecture’s unique comparator

function forces input from the same class to cluster in high dimensional space and

input from different classes to be farther apart in high dimensional space. The loss

function for a typical CNN classifier is the negative log likelihood function which does

not contain any constraint on how far apart the output vectors of the feature extractor

module are. The A5 dataset contains the same set of parameters as A4 but includes

an additional geometric model of trapezoidal prism. The additional class contains only

one model and makes up a small portion of the total signals in the A5 dataset.

The A5 dataset is a superset of the A4 dataset, but augmented with an additional

and easily-confused shape class. The results of this experiment are shown in Table 5.4.

The single residual network outperforms all types of the siamese networks in terms of

overall accuracy as shown in Figure 5.12. Initially it appears that the lack of clustering

term in the objective function does not reduce performance on the A5 dataset, however

the CNN could maintain high accuracy even while misclassifying all of the signals in the

newest class. To further investigate this result the precision, recall, and the F1-score

of each class is calculated and shown in Table 5.4. The siamese networks with the

k-nearest neighbor and support vector machine classifiers misclassified the trapezoidal

prism class in every case. The single residual network and the siamese network with

the nearest neighbor classifier were both able to correctly classify the trapezoidal prism

class a majority of the time.

In Table 5.4 we can see that the F1-score for the trapezoidal class is greater in the

single network section than the siamese network section. Overall the average F1-score

across classes is 0.948 and 0.956 for the single network and siamese network respectively.

If we weigh the F1-score by the number of signals per class there is an even larger

difference in performance. The weighted F1-score of the single network and siamese
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Figure 5.13: Three different classifier modules are compared after a CNN feature ex-
tractor of varied depths. The nearest neighbor classifier achieves the highest overall
accuracy consistently across all architectures tested. Source: [5].

network are 0.947 and 0.959 respectively. It appears that the single network showed high

performance on the trapezoidal prism class because it misclassified more of the signals

in the cone class. The siamese network with the nearest neighbor classifier performs

well because the feature extractor module is better able to separate the clusters for each

class. Intuitively we expect the k nearest neighbor and support vector machine classifiers

to outperform the nearest neighbor classifier, but our results in Figure 5.13 suggest

otherwise. The dimensionality of the output vector from the feature extractor module

may be a potential reason that the nearest neighbor classifier performs better. As the

number of dimensions increase, the k nearest neighbor algorithm tends to perform worse

due to the increasing space in between points.

5.3 Robustness Metric Performance

A CNN classifier’s ability to handle noisy input data can be evaluated in multiple ways,

such as testing on a novel set of data with distortions seen in the training data or testing
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Single Network Siamese Network+NN

Class Precision Recall F1-Score Precision Recall F1-Score

Cone 0.94 0.89 0.91 0.92 0.95 0.94
Cylinder 0.96 0.96 0.96 0.95 0.94 0.95
Plate 0.94 0.97 0.95 0.99 0.96 0.98
Spheroid 0.98 1.00 0.99 0.98 1.00 0.99
Trapezoidal Prism 0.93 0.94 0.93 0.95 0.89 0.92

Table 5.4: Accuracy performance comparison between a single residual network and a
siamese network with a NN classifier on the A5 dataset

on a novel set of data with distortions unseen in the training data. Monostatic radar

signals can have a variety of distortions in real applications such as signal occlusion,

clutter, sensor saturation, subsampling, or a combination of several. Since generating

a dataset with every combination of signal distortions is unwieldy, we instead decide to

evaluate our system’s robustness to distortions by evaluating our model on data with

distortions not seen in the training data. The results shown in Figure 5.14 are the F1-

score per class from a single 18-layer residual network. However, the robustness results

for networks with more layers is nearly identical and not presented. The evaluation set

was generated via the method described in the experiments section.

The network performs remarkably well on signals that have been occluded by even

75% of the total signal, even though no dropout layers are used to train the model.

Occlusion may not affect our network significantly because the rotation rates used in

our dataset generation are relatively large and occasionally the shape model is rotat-

ing several times within the full window of sampling. Even if the signal is occluded

significantly, some signals with high rotation rates may contain enough information

for classification. However signals generated with slower rotation rate parameters do

not appear to complete rotations multiple times within a full window. For these cases

the CNN is able to discern the object within a limited viewing window. The CNN is

however very sensitive to signal clutter, accuracy-per-class drops as soon as clutter is

introduced. Clutter in this work is the addition of random peaks in a signal and CNNs

are sensitive to slight distortions to input data. This distortion is similar to the dis-

tortion created by adversarial attacks such as FGSM [153], except that we are adding

distortions with random amplitudes at random locations. Most CNNs are not robust
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to adversarial attacks and it appears that clutter approximates an adversarial attack

in this domain. The CNN is resilient to signal saturation up to roughly 15%, then

performance decreases significantly soon after. Signals with heavy saturation begin to

appear indistinguishable from each other, and the filters that the CNN uses to detect

features cannot distinguish between each class. The rise in F1-score of some of the

classes seems to be an artifact of the dataset instead of a feature of the network. The

final distortion is subsampling the input signal. This measure is similar to the occlusion

distortion but the number of total samples in the signal do not change in the occlusion

distortion. The results of subsampling show that the CNN can use signals with lengths

as small as 25 samples as input and achieve a reasonable F1-score. The performance

halves when input size is 5% of its original length. The siamese network evaluated with

the robustness metric is not included because the previously mentioned siamese testing

method compares an input signal to a subset of the training data. Since the training

data does not contain the distortions of the evaluation data, unsurprisingly, the siamese

network performs very poorly.

5.4 Classification on Refined Dataset

In order to compare the difference between the simulated dataset and the refined dataset

we train separate three layered convolutional neural networks. The network’s perfor-

mance was evaluated by classifying simulated signals with added white Gaussian noise.

The simulated signals with added noise were also used as “real” data in the refiner

network training. Overall the model’s performance on the evaluation dataset is greater

when the model is trained using the refined dataset by 3.5%. The accuracy of the

network trained on the simulated subset A4 dataset is 86.7%, while the accuracy of the

network trained on the refined dataset was 90.2%.

No simulator can perfectly model the all of the nuances and variables that are

required to create real data. Therefore training a CNN on simulated data typically does

not perform well on real data. This does not mean that networks should be trained

with only real data because representative real data is difficult and expensive to obtain.

Real data is also potentially biased in terms of only representing certain occurrences and
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Figure 5.14: The single 18 layered residual network’s robustness performance is shown
for several novel distortions. This benchmark is a way to compare a network robustness
to realistic signal distortions found RCS systems. Signal occlusion, clutter, saturation,
and subsampling are the realistic distortions used for this benchmark. Source: [5].

typically few variables are able to be controlled when creating real datasets. Simulated

data is useful because very large datasets can be generated easily. Adjustments can be

made one variable at a time and all parameters used to create that data is known at

every timestep. The generative CNN called the refiner network described in Section 4

makes simulated data appear more like real data, shown in Figure 5.9. Using the refined

data to train a small network on a subset of our A4 dataset results in a 3.5% accuracy

improvement over training using the equivalent simulated data. For that test the only

“realistic” feature added to the “real” data was noise. In Figure 5.9 we see that the

refined signal seemingly adds noise to the simulated signal but maintains the structural

elements of the signal.



93

Figure 5.15: Some examples of signals pre and post refinement. The structure of the
signal is maintained but pseudo noise is added to the original signal from the refiner
network. Source: [5].

6 Discussion

To the best of our knowledge, we are the first to train convolutional neural networks

to classify object shape from monostatic radar signals. We expand upon the MATLAB

library POFacets to generate large datasets with a variety of selected parameters. Re-

alistic motion, added noise, and Swerling dropout enhance the initial simulation gener-

ation. Utilizing the latest in deep learning architecture we create a 1D residual network

capable of achieving test error results as low as 2-2.5% on our generated datasets. Our

A4 dataset is augmented with an additional test and then evaluated with a siamese

network architecture. The siamese CNN does perform as well in terms of accuracy but

surpasses the performance of the single residual network in terms of average F1-score.

The robustness of our CNN is then evaluated on signals with previously unseen realistic

distortions. The single residual network performs well on signals with occlusion and

subsampling but performs poorly on signals with clutter and saturation. We explored

increasing the quality of the simulated signals using a state of the art refiner network.

Deep learning models trained on the refined signals outperform models trained on the

original simulated data.
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Chapter 6

Conclusion

Camera-display communication and photographic steganography is a challenging prob-

lem with many interesting applications. In Chapter 2, we introduce the Camera-Display

Transfer Function (CDTF) and propose two methods for online radiometric calibration.

The presence of the CDTF is what distinguishes digital steganography from photo-

graphic steganography, a significantly more challenging problem. Chapter 3 proposes

how a new class of color pairs called differential metamers can simultaneously reduce

message recovery errors and visual obtrusiveness in photographic steganography. In

Chapter 4, we construct a dataset of one million image pairs and use deep learning

methods to model the CDTF for 25 camera-display pairs. We then learn a message em-

bedding and recovery algorithm based on spacial gradients that requires no multi-frame

synchronization between camera and display, a major practical barrier to real-world im-

plementation. Finally, Chapter 5 extends computer vision techniques to the monostatic

radar domain, where object shape is recognized from a noisy time-series signal.

What are the remaining problems associated with photographic steganography?

Currently, the assumption is made that the boundaries of an imaged electronic display

are known, but this problem has not been solved without tagging the physical display

with fiducial markers or preprocessing the content images for feature extraction. The

2D barcode message structure used in this thesis is simple, but could be improved for

robust message recovery under a variety of imaging situations. No formal study has

been made quantifying the relationship between the robustness of message recovery and

visual obtrusiveness. There are a number of compression algorithms used in various

video codecs. Currently, there are no photographic steganography methods that are

explicitly robust to each of these methods.
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