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ABSTRACT OF THE DISSERTATION

Topics in classical and quantum integrability
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Dissertation Director:

Joel L. Lebowitz and Emil A. Yuzbashyan

This Thesis is an amalgamation of research I conducted as a physics graduate student at

Rutgers University. Each chapter stands independently of the others with its own intro-

duction and set of references, though Chapters 4 and 5 treat the same subject and may be

read in succession. The chapters are presented roughly in reverse chronological order, so

that the first chapters are my most recent work.

The common threads of this research program are the statistical and dynamical proper-

ties of many body systems, both in and out of equilibrium. Save for Chapter 6, the works

are strongly associated with physical models called integrable, whose Hamiltonians have

a comparatively large number of conservation laws with respect to generic models. Using

numerical and analytical techniques, we shall explore the effects of integrability on a diverse

set of phenomena including far-from-equilibrium steady states in Chapter 2, heat conduc-

tivity in Chapter 3, and Hamiltonian level statistics in Chapters 4-5. We also characterize

these phenomena for systems that are not quite integrable, but are in certain ways close to

integrable.

The chapters in this Thesis are based on the following works:
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Chapter 1

Introduction

As is reflected in the wider world of many body theory, the various results found in these

chapters range from abstract mathematical constructions to concrete statements about

collective phenomena. On one end of this axis we develop the basis invariant construction

of ensembles of random matrices modelling quantum integrable models introduced in Ch. 4,

and the subsequent numerical study of the level statistics of these ensembles of Ch. 5.

Slightly less esoteric is the discussion of the location of the zeros of grand canonical partition

functions (Lee-Yang zeros) in Ch. 6, where we find connections between the distributions of

these zeros and bounds on macroscopic statistical properties. In Ch. 2, we lead a detailled

discussion into the far-from-equilibrium coherent phases of a large class of nonintegrable

superconducting models undergoing a sudden change in the system Hamiltonian, i.e., a

quantum quench. Important results here include an expanded taxonomy of steady states, a

long time scale associated with integrability breaking, and a physically motivated description

of the nonequilibrium phase transitions. Finally, Ch. 3 is a numerical study of the classic

problem of heat conductivity in a one-dimensional classical system. We find that the Toda

lattice, which is integrable, perturbed by an on-site harmonic pinning maintains a nearly

ballistic conductivity for rather large system sizes before true diffusive scaling appears.

It will now be useful to introduce each of these works individually.
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1.1 Consequences of integrability breaking in quench dynamics of pairing

Hamiltonians

We study the collisionless dynamics of two classes of nonintegrable pairing models. One is

a BCS model with separable energy-dependent interactions, the other – a 2D topological

superconductor with spin-orbit coupling and a band-splitting external field. The long-

time quantum quench dynamics at integrable points of these models are well understood.

Namely, the squared magnitude of the time-dependent order parameter ∆ptq can either

vanish (Phase I), reach a nonzero constant (Phase II), or periodically oscillate as an elliptic

function (Phase III). We demonstrate that nonintegrable models too exhibit some or all of

these nonequilibrium phases. Remarkably, elliptic periodic oscillations persist, even though

both their amplitude and functional form change drastically with integrability breaking.

Striking new phenomena accompany loss of integrability. First, an extremely long time

scale emerges in the relaxation to Phase III, such that short-time numerical simulations

risk erroneously classifying the asymptotic state. This time scale diverges near integrable

points. Second, an entirely new Phase IV of quasiperiodic oscillations of |∆| emerges in

the quantum quench phase diagrams of nonintegrable pairing models. As integrability

techniques do not apply for the models we study, we develop the concept of asymptotic self-

consistency and a linear stability analysis of the asymptotic phases. With the help of these

new tools, we determine the phase boundaries, characterize the asymptotic state, and clarify

the physical meaning of the quantum quench phase diagrams of BCS superconductors. We

also propose an explanation of these diagrams in terms of bifurcation theory.

Based on:

J. A. Scaramazza, P. Smacchia, and E. A. Yuzbashyan, Consequences of integrability

breaking in quench dynamics of pairing Hamiltonians, arXiv:1812.04410 (2018). Accepted

by Phys. Rev. B Jan. 2019.

https://arxiv.org/abs/1812.04410
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1.2 Nonequilibrium transport in the Toda chain with harmonic pinning

We investigate, via numerical simulation, heat transport in the nonequilibrium stationary

state (NESS) of the 1D classical Toda chain with an additional pinning potential, which

destroys momentum conservation. The NESS is produced by coupling the system, via

Langevin dynamics, to two reservoirs at different temperatures. To our surprise, we find

that when the pinning is harmonic, the transport is seemingly ballistic. We also find that

on a periodic ring with nonequilibrium initial conditions and no reservoirs, the energy

current oscillates without decay. Lastly, Poincaré sections of the 3-body case indicate that

for all tested initial conditions, the dynamics occur on a 3-dimensional manifold. These

observations suggest that the N -body Toda chain with harmonic pinning may be integrable.

Alternatively, and more likely, this would be an example of a nonintegrable system without

momentum conservation for which the heat flux is ballistic.*

Based on:

J. L. Lebowitz and J. A. Scaramazza, Ballistic Transport in the classical Toda chain

with harmonic pinning, arXiv:1801.07153 (2018).

A. Dhar, A. Kundu, J. L. Lebowitz and J. A. Scaramazza, Transport properties of the

classical Toda chain: effect of a pinning potential, arXiv:1812.11770 (2018). Submitted to

J. Stat. Phys. Jan. 2019.

*More recent work shows that the heat flux is indeed diffusive, but that this model’s

finite size effects are very strong. We shall refer to a recent paper by P. Di Cintio, S. Iubini,

S. Lepri and R. Livi, as well as the expanded version of this work by A. Dhar, A. Kunda,

J.L. Lebowitz and J.A. Scaramazza.

1.3 Rotationally invariant ensembles of integrable matrices

We construct ensembles of random integrable matrices with any prescribed number of non-

trivial integrals and formulate integrable matrix theory (IMT) – a counterpart of random

https://arxiv.org/abs/1801.07153
https://arxiv.org/abs/1812.11770
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matrix theory (RMT) for quantum integrable models. A type-M family of integrable ma-

trices consists of exactly N ´M independent commuting N ˆ N matrices linear in a real

parameter. We first develop a rotationally invariant parametrization of such matrices, pre-

viously only constructed in a preferred basis. For example, an arbitrary choice of a vector

and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher

types similarly involve a random vector and two matrices. The basis-independent formula-

tion allows us to derive the joint probability density for integrable matrices, similar to the

construction of Gaussian ensembles in the RMT.

Based on:

E. A. Yuzbashyan, B. S. Shastry and J. A. Scaramazza, Rotationally invariant ensembles

of integrable matrices, Phys. Rev. E 93, 052114 (2016).

1.4 Integrable matrix theory: Level statistics

We study level statistics in ensembles of integrable N ˆN matrices linear in a real param-

eter x. The matrix Hpxq is considered integrable if it has a prescribed number n ą 1 of

linearly independent commuting partners H ipxq (integrals of motion)
“

Hpxq, H ipxq
‰

“ 0,
“

H ipxq, Hjpxq
‰

= 0, for all x. In a recent work, we developed a basis-independent con-

struction of Hpxq for any n from which we derived the probability density function, thereby

determining how to choose a typical integrable matrix from the ensemble. Here, we find that

typical integrable matrices have Poisson statistics in the N Ñ8 limit provided n scales at

least as logN ; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur

at isolated coupling values x “ x0 or when correlations are introduced between typically

independent matrix parameters. However, level statistics cross over to Poisson at OpN´0.5q

deviations from these exceptions, indicating that non-Poissonian statistics characterize only

subsets of measure zero in the parameter space. Furthermore, we present strong numerical

evidence that ensembles of integrable matrices are stationary and ergodic with respect to

nearest neighbor level statistics.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.052114
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Based on:

J. A. Scaramazza, B. S. Shastry and E. A. Yuzbashyan, Integrable matrix theory: Level

statistics, Phys. Rev. E 94, 032106 (2016).

1.5 A note on Lee-Yang zeros in the negative half-plane

We obtain lower bounds on the inverse compressibility of systems whose Lee-Yang zeros

of the grand-canonical partition function lie in the left half of the complex fugacity plane.

This includes in particular systems whose zeros lie on the negative real axis such as the

monomer-dimer system on a lattice. We also study the virial expansion of the pressure in

powers of the density for such systems. We find no direct connection between the positivity

of the virial coefficients and the negativity of the L-Y zeros, and provide examples of either

one or both properties holding. An explicit calculation of the partition function of the

monomer-dimer system on 2 rows shows that there are at most a finite number of negative

virial coefficients in this case.

Based on:

J. L. Lebowitz and J. A. Scaramazza, A note on Lee-Yang zeros in the negative half-

plane, J. Phys.: Condens. Matter 28, 414004 (2016).

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032106
http://iopscience.iop.org/article/10.1088/0953-8984/28/41/414004
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Chapter 2

Consequences of integrability breaking in quench dynamics
of pairing Hamiltonians

1 Introduction

The past fifteen years have borne witness to impressive advances in the ability to ex-

perimentally control many-body systems where dissipative and decoherence effects are

strongly suppressed. Studies of cold atomic gases [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], solid

state pump-probe experiments [13, 11, 12, 14, 15] and quantum information processing

[16, 17, 18, 19, 20, 21, 22, 23] can now explore coherent many-body dynamics for long

time scales, paving the way for the characterization of new phenomena. In particular, cold

atomic gases with tunable interactions [24, 25, 27, 26, 28, 29] are an instrumental experimen-

tal tool in the quest to understand previously inaccessible aspects of far from equilibrium

many-body dynamics.

A major focus of recent theory and experiment has been the unitary time evolution

of a system, initially in the ground state, subject to a sudden perturbation [30, 31, 32].

This experimental protocol, known as a quantum quench, can induce long-lived states with

properties strikingly different from those of equilibrium states at similar energy scales. In

this work, we focus on the quench dynamics of various superconducting models, which is

a modern reformulation of the longstanding problem of nonequilibrium superconductivity

in the collisionless regime [33, 34, 35, 36]. A canonical result is that the infinitesimal

perturbation of a Bardeen-Cooper-Schrieffer (BCS) s-wave superconductor leads to power

law oscillatory relaxation of the order parameter amplitude |∆| to a constant value [35].
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Decades later, it was discovered that larger deviations could give rise to different dynam-

ical phases identified by the asymptotic behavior of the amplitude of the order parameter

[37, 38, 39, 40, 41, 42, 43, 44]. Consider the dynamics of ∆ after quenches of the coupling g

in various superconducting models. When the final coupling gf is small enough, ∆ vanishes

rapidly in time; this behavior characterizes what we call Phase I. For intermediate gf , |∆|

exhibits oscillatory power law decay to a nonzero constant (Phase II). For larger gf , |∆|

exhibits persistent periodic oscillations (Phase III) – a nonlinear manifestation of what is

known in the literature as the Higgs or amplitude mode [45, 46, 47, 48, 49, 50, 51, 52].

The exact quantum quench phase diagrams of the s-wave superconductor were eventually

constructed using a sophisticated analytical method that relies on the model’s integrability

[53]. It turns out that the integrable p ` ip topological superconductor exhibits the same

three phases, and similar analytical tools lead to the construction of its phase diagrams

[54]. Thus, there may appear to be some profound connection between integrability and

these three dynamical phases, but nonintegrable models also have Phases I and II [45,

40, 55, 56, 57] and Phase III-like behavior is thought to persist in some nonintegrable

models as well. On the other hand, the existence of Phase III in such models has not been

convincingly established beyond the linear regime and aspects of quench dynamics unique

to the nonintegrable case have not been explored.

Overall, the description of these nonequilibrium dynamical phases lacks a unifying mech-

anism applicable to finite quenches of nonintegrable pairing models. Here we present an

in-depth study of the nonequilibrium phases of various nonintegrable superconducting mod-

els with and without spin-orbit coupling. A common feature of models we consider is that

the order parameter takes the form of a single complex number. We establish that Phase III

persists when integrability is broken [58] and give strong numerical evidence that the per-

sistent oscillations are always elliptic, which generalizes the known behavior of integrable

models [37, 53, 54].
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Although the integrable and nonintegrable phenomenology are similar, we find that

integrability breaking has profound consequences. Unique to nonintegrable models is an

extremely long relaxation time scale τ which diverges as one approaches integrable points

and is most prominent in quenches to Phase III. One must analyze dynamics beyond τ to

truly observe Phase III, which has not been done in other studies. As illustrated in Fig. 2.1,

for t ă τ , |∆| may oscillate with several frequencies and a slowly evolving amplitude, both

of which undermine naive analyses restricted to t ă τ . One may incorrectly conclude from

the transient dynamics that the asymptotic nonequilibrium phase has several undamped

frequencies, or that |∆| is oscillating periodically while in fact the amplitude is still changing.

Nonintegrable Phase III oscillations further require comparatively more elaborate elliptic

functions to describe the oscillations.

To complicate the picture even further, certain quantum quenches of nonintegrable pair-

ing models genuinely do not fit into any of the Phases I, II and III. Here the asymptotic

|∆| is truly quasiperiodic, leading us to conclude that there are regions of quasiperiodicity

– a new Phase IV – in the quantum quench phase diagrams of these models.

Another consequence of integrability breaking arises in the analytical description of the

three nonequilibrium phases. In the integrable case, there is a dynamical reduction in the

number of degrees of freedom of the system [53, 54] such that Phases I, II and III correspond

to an effective classical spin Hamiltonian with 0, 1 and 2 spins, respectively. Phase III in the

general case, however, does not admit such a 2-spin representation. As a surrogate to this

analytical method, we propose a stability analysis of Phases I and II that applies generally

to finite quenches. The stability analysis is based on linearizing around the asymptotic

solutions to the equations of motion in each of the phases. We can then nonperturbatively

determine the phase I-II boundary as well as the phase II-III boundary in nonintegrable

pairing models. Finally, we return to Phase III and argue that the self-consistency condition

(gap equation) is responsible not only for the existence of persistent periodic oscillations of

|∆|, but also for selecting elliptic functions amongst all possible periodic functions.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Illustration of the large time scale τ that emerges in Phase III quenches gi Ñ gf
of nonintegrable pairing models. In all plots, the equilibrium gap corresponding to the initial
coupling gi is ∆0i “ 1.33ˆ10´3W, while that for the final coupling gf is ∆0f “ 0.4W, and we
took N “ 2ˆ 105 equally spaced single-particle energy levels on the interval r´W {2,W {2s.
The lines in the plots on the right are the local minima and maxima of the oscillations.
In terms of the single-particle level spacing δ, the evolution in the right column goes out
to tmax “ 0.94δ´1. In (a) and (b), we see that the persistent elliptic oscillations in the
integrable s-wave case stabilize after a small number of oscillations. In (c) and (d), the
amplitude of the oscillations takes roughly a thousand times longer to stop changing. In
(e) and (f), integrability is strongly broken and it is not even clear whether the oscillations
stabilize to a constant amplitude. The nonintegrable model used was the separable BCS
model (2.9) with fpεq from Eq. (2.23). The nearly integrable version uses γ “W, while the
far from integrable one has γ “ 1.33ˆ 10´2W.
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2 Models and pseudospin representation

In this paper, we consider quantum quenches in two types of nonintegrable pairing models

Ĥf “
ÿ

jλ

εj ĉ
:

jλĉjλ ´
1
g

∆̂:∆̂, ∆̂ ” g
ÿ

j

fj ĉjÓĉjÒ,

Ĥso “
ÿ

kab

„

pεkδab ´ hσ
z
abq ` αpkyσ

x
ab ´ kxσ

y
abq



ĉ:kaĉkb´

´
1
g

∆̂:∆̂, ∆̂ ” g
ÿ

k
ĉ´kÓĉkÒ.

(2.1)

The Hamiltonian Ĥf is a separable BCS Hamiltonian where the εj are N single-particle

energy levels, ĉ:jλ (ĉjλ) is a fermion creation (annihilation) operator for an electron with

energy εj and spin index λ, g ą 0 is the pairing interaction strength and fj ” fpεjq is a

generic function of εj . The Hamiltonian Ĥso describes a 2D topological spin-orbit coupled

superconductor with s-wave interactions [59, 60]. Here k “ pkx, kyq is a two-dimensional

momentum vector, σj are Pauli matrices, h is a Zeeman field and α is the Rashba spin-orbit

coupling. We will take the density of states to be constant for both models, which is the

case in 2D or at weak coupling, so that the single-particle energy levels are distributed

uniformly on an interval of length W , called the bandwidth.

Apart from certain choices of fpxq, the separable BCS Hamiltonian Ĥf is a toy model

for breaking integrability. The choice of f2pxq “ C1 ` C2x produces a quantum integrable

Hamiltonian [61, 62]; for example, fpxq “ 1 and fpxq “
?
x correspond to the s-wave [39]

and p ` ip [63, 64] BCS models, respectively. A notable nonintegrable case is the d ` id

model [65], where fpxq “ x. The spin-orbit Hamiltonian Ĥso, on the other hand, can be

realized with cold Fermi gases [66, 67, 68, 69, 70, 71, 72, 73, 74, 75].

As both Hamiltonians in Eq. (2.1) have infinite range interactions, the mean-field ap-

proximation is expected to be exact in the thermodynamic (N Ñ 8) limit. We therefore

replace 2-body operators as follows ĉ:ĉ:ĉĉ « xĉ:ĉ:yĉĉ` ĉ:ĉ:xĉĉy´xĉ:ĉ:yxĉĉy in the equations
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of motion. We also diagonalize the noninteracting part of Ĥso through a unitary transforma-

tion Uk which is detailed in Appendix A. Up to additive constants, the effective mean-field

Hamiltonians of Eq. (2.1) are

Ĥf “
ÿ

jλ“ÒÓ

εj ĉ
:

jλĉjλ ´
ÿ

j

fj

„

∆˚ĉjÓĉjÒ ` h.c.



,

Ĥso “
ÿ

kλ“˘
εkλâ

:

kλâkλ ´

ˆ

∆
2
ÿ

kλ
e´iθk

„

λ sinφkâ:kλâ
:

´kλ`

` cosφkâ:´kλâ
:

kλ̄



` h.c.

˙

(2.2)

The new parameters in Ĥso are

cosφk “
h

Rk
, sinφk “

αk

Rk
,

Rk “
a

h2 ` α2k2,

εkλ “ εk ´ λRk, λ “ ˘, λ̄ “ ´λ,

k “ kx ` i ky “ kei θk .

(2.3)

Note that both α “ 0 and h “ 0 correspond to integrable points of the spin-orbit model;

in both cases, Ĥso becomes a Hamiltonian for two bands of independent s-wave BCS mod-

els. Most importantly, the mean-field order parameters ∆ ” ∆ptq are defined in terms of

expectation values

∆ “ g
ÿ

j

fjxĉjÓĉjÒy,

∆ “
g

2
ÿ

kλ“˘
ei θk

„

λ sinφkxâ´kλâkλy ` cosφkxâkλâ´kλ̄y



,

(2.4)

for their respective models.

We will discuss the mean-field dynamics generated by Hamiltonians (2.2) in terms of

Anderson pseudospins ŝj “ pŝxj , ŝ
y
j , ŝ

z
j q which will allow for intuitive visualizations of the
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dynamics of different nonequilibrium phases. The transformation from fermions to pseu-

dospins is given by

ŝ´j “ ŝxj ´ i ŝ
y
j “ ĉjÓĉjÒ, ŝzj “

1
2pĉ

:

jÒĉjÒ ` ĉ
:

jÓĉjÓ ´ 1q. (2.5)

In the spin-orbit case the pseudospin representation requires an additional set of auxiliary

variables. For the sake of brevity, we relegate the derivations of the pseudospin equations

of motion to Appendix A and simply state them here.

In the mean-field equations of motion that follow, s “ xŝy are to be understood as

classical variables satisfying the angular momentum Poisson brackets tsaj , sbku “ ´δjkεabcscj .

In the separable BCS model, we have

9sj “ bj ˆ sj , bj “ p´2fj∆x,´2fj∆y, 2εjq, (2.6)

where self-consistency requires

∆ “ g
ÿ

j

fjs
´
j “ ∆x ´ i∆y. (2.7)

The spin-length sj “ 1{2 is conserved by Eqs. (2.6), which together with Eq. (2.7) are the

equations of motion of the following classical spin Hamiltonian:

Hf “
ÿ

j

2εjszj ´ g
ÿ

j,k

fjfks
`
j s
´
k

“
ÿ

j

2εjszj ´ |∆|2{g.
(2.8)

Note that without loss of generality, we can choose fj to be real and nonnegative as we

have done above. Indeed, let fj “ |fj |e´iθj be general complex numbers and

Hf “
ÿ

j

2εjszj ´ g
ÿ

j,k

fjf
˚
k s
`
j s
´
k . (2.9)
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We redefine the spins by making local rotations around the z-axis, s´j Ñ s´j e
´iθj . In terms

of the new spins the Hamiltonian becomes

Hf “
ÿ

j

2εjszj ´ g
ÿ

j,k

|fj ||fk|s
`
j s
´
k , (2.10)

and the order parameter is ∆ “
ř

j |fj |s
´
j . This transformation does not affect spin (angular

momentum) Poisson brackets and therefore the equations of motion retain their form. We

thus arrive at the same problem only with fj Ñ |fj |.

We use capital letters Skλ to denote the classical pseudospins in the spin-orbit model

and must introduce (see Appendix A) a set of auxiliary variables: the scalars Tk and vectors

Lk˘, where Lk` and Lk´ differ only in sign of the z-component. The equations of motion

are

9Skλ “ Bkλ ˆ Skλ `mk ˆ Lkλ ´mkTk,

9Lxkλ “ ´2εkLykλ `
my
k

2
“

Szk` ` S
z
k´

‰

`Bx
kλTk,

9Lykλ “ 2εkLxkλ ´
mx
k

2
“

Szk` ` S
z
k´

‰

`By
kλTk,

9Lzkλ “ ´2RkλTk `
mx
k

2
“

Sykλ ´ S
y

kλ̄

‰

´
my
k

2
“

Sxkλ ´ S
x
kλ̄
‰

,

9Tk “ 2RkLzk` ´Bx
k`L

x
k` ´B

y
k`L

y
k``

`
1
2mk ¨

“

Sk` ` Sk´
‰

,

(2.11)

where the momentum dependent fields Bkλ and mk are defined in terms of the order pa-

rameter ∆

∆ “
g

2
ÿ

kλ

“

sinφkS´kλ ` cosφkL´kλ
‰

“ ∆x ´ i∆y,

Bkλ “ p´2 sinφk∆x,´2 sinφk∆y, 2εkλq,

mk “ p´2 cosφk∆x,´2 cosφk∆y, 0q.

(2.12)
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The first of these equations is the self-consistency relationship for the spin-orbit model. The

equation for 9Skλ in Eq. (2.11) corrects an error in a previous paper [56], which is missing

the last term. For each k, there is a conserved quantity analogous to pseudospin length

N2
k “ 2T 2

k `
ÿ

λ

“

S2
kλ ` L2

kλ
‰

“
1
4 . (2.13)

Similar to Eq. (2.8), the classical spin-orbit Hamiltonian in pseudospin notation has a simple

and compact expression

Hso “
ÿ

kλ
2εkλSzkλ ´ 2|∆|2{g. (2.14)

Because of the simple relationship connecting Lk` to Lk´, each momentum vector k corre-

sponds to ten dynamical variables pSk`,Sk´,Lk`, Tkq constrained by Eq. (2.13). Note that

Tk and Lzkλ do not appear in (2.14), but as discussed in Appendix A, they are necessary

for the closure of the equations of motion. From now on we simplify notation to Lk ” Lk`

and define the 10-dimensional vector Γk ” pSk`,Sk´,Lk, Tkq.

Finally, the conservation of the total number of fermions Nf in each model corresponds

to the conservation of total z-component in the pseudospin language

Nf “
ÿ

j

p2szj ` 1q, (2.15)

for the separable BCS model and

Nf “
ÿ

kλ

ˆ

Szkλ `
1
2

˙

, (2.16)

for the spin-orbit model.
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3 Main results

The main purpose of this work is to compare the nonequilibrium phases of quenches from

the ground state of nonintegrable pairing Hamiltonians, such as those in Eq. (2.1), to

those of the integrable s-wave [53] and p-wave [54] models. Some qualitative aspects of

the primary phases are independent of integrability insofar as the squared modulus of the

order parameter ∆ may exhibit any of three distinct asymptotic behaviors in the continuum

limit: it can relax to zero (Phase I), relax to a nonzero constant value (Phase II), or display

persistent periodic elliptic oscillations (Phase III).

We first show the existence of these three phases in Sects. 5.1-5.3 through direct numer-

ical simulation of the dynamics. In Sect. 5.2 we present a stability analysis of the phases of

the separable BCS models which leads to conditions for nonequilibrium phase transitions.

The stability analysis applied to integrable cases reduces to the known results that relied on

exact solvability [54, 53]. Our analysis provides a physical explanation for the transitions

in terms of the frequencies of linearized perturbations δ∆ptq of the asymptotic ∆. The

transition from Phase I to Phase II occurs through an exponential instability characterized

by a pair of conjugate imaginary frequencies in the linearization spectrum, while that of

Phase II to III occurs either when small harmonic oscillations fail to dephase or when an

exponential instability occurs.

The appearance of some or all of Phases I-III in nonintegrable models suggests an under-

lying universality to quench dynamics, but we show that the story is less straightforward.

One the one hand, these phases are understood in the integrable cases [53, 54]. There is a

dynamical reduction of the number of effective degrees of freedom, so that at large times

the dynamics are governed by a Hamiltonian of the same form, but which has just a few

collective degrees of freedom. The three phases correspond to 0, 1 or 2 effective spins for

each phase, respectively. On the other hand, the nonintegrable dynamics admit no known
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analogous reduction because the 2-spin solutions to the equations of motion do not repro-

duce the observed asymptotic behavior of ∆ in Phase III. If such a reducing “flow” in time

of the Hamiltonian occurs in the nonintegrable case, then the form of the Hamiltonian itself

must change. For specifics on this latter point, see Appendix C.

Importantly, nonintegrable pairing models also display dynamics markedly different from

those in the main three phases. We illustrate this behavior with two examples in Sect. 7

– one for the spin-orbit Hamiltonian and one for a particle-hole symmetric separable BCS

Hamiltonian – where the magnitude of the order parameter oscillates quasiperiodically. We

interpret this observation as an indication of a new quasiperiodic phase (Phase IV) unique

to quantum quench phase diagrams of these models.

More subtle details of the dynamics in the main three phases change drastically once

integrability is broken. We show in Sect. 5.3 that nonintegrable models take an extremely

long time to relax to Phase III. This time scale is absent in the integrable case, yet it

diverges when one approaches the integrable limit. One must take this time scale into

account when studying Phase III on the basis of numerical simulation alone. For example,

in the weak coupling regime, the nonintegrable d ` id model may appear to quickly enter

Phase III [76] while in fact the minima of |∆| oscillations have not converged to a fixed

value. The further into the weak coupling regime one explores, the longer the relaxation

time. Quenches outside of weak coupling have faster dynamics, but exhibit behavior that

markedly contrasts with Phase III, and above a certain energy threshold the asymptotic

state collapses rapidly to Phase II. This long relaxation time is typical in the nonintegrable

case.

Despite these consequences of breaking integrability, our mixed strategy of simulation

and stability analysis applies to the two rather different classes of nonintegrable pairing

models found in Eq. (2.1). The separable BCS permits a standard Anderson pseudospin

representation and is a single band model, while the spin-orbit model requires an expanded

pseudospin representation, has multiple bands and a topological quantum phase transition.
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Yet both models have a single complex order parameter, which we believe is the essential

characteristic that leads to the three phases.

The self-consistency relationship (2.7) for the order parameter is central to both our

stability analysis of Phases I and II in Sect. 5.2 and our investigations of Phase III in Sect. 6.

In the former case, the frequencies of harmonic perturbations of a given nonequilibrium

phase are constrained by the self-consistency requirement. As for Phase III, we show in

Sect. 6 that there is always a periodic solution to the spin equations of motion when ∆ptq

is periodic, and that the general spin solution precesses around the periodic one. We then

argue through numerical examples that further imposing the self-consistency requirement

on ∆ptq selects elliptic functions amongst all possible periodic ∆ptq.

4 Ground state and quench protocol

In a quantum quench, we prepare the system in the ground state with an initial order

parameter ∆ “ ∆0e
´2iµt, which corresponds to system parameters such as the interaction

strength g, the equilibrium chemical potential µ, the magnetic field h and the spin-orbit

strength α. The amplitude ∆0 is constant in the ground state. At time t “ 0, we suddenly

change one of these parameters, which throws the system out of equilibrium. In the sepa-

rable BCS model we will consider quenches gi Ñ gf , but we will label the initial and final

states by the coordinates ∆0i ” ∆0pgiq and ∆0f ” ∆0pgf q. In the spin-orbit model, we will

consider quenches of the magnetic field hi Ñ hf . The fermion number Nf is fixed across

the quench in both cases, which implies that the equilibrium chemical potential µ changes

with h.

For a given ∆0 and µ, we express the ground state configuration of the separable BCS

model in a frame that rotates around the z-axis with frequency 2µ. We then orient each sj
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against the magnetic field bj , the z-component of which is shifted by 2µ,

s´j0 “
fj∆0
2Ej

, szj0 “ ´
εj ´ µ

2Ej
,

Ejp∆q ”
b

pεj ´ µq2 ` f2pεjq|∆|2.
(2.17)

The relationship between ∆0, g, Nf and µ obtains from the application of the definition of

∆ in (2.7) to (2.15) and the configuration in (2.17),

1
g
“

ÿ

j

f2
j

2Ej
, Nf “

ÿ

j

ˆ

1´ εj ´ µ

Ej

˙

(2.18)

We will assert without loss of generality that ∆0i is real in both models, which can always

be achieved by a time-independent rotation in the xy-plane in pseudospin space.

Unless otherwise stated, we will simplify the analysis of the separable BCS model by

restricting ourselves to cases where the order parameter ∆ remains real for all time, i.e.,

∆yptq “ 0. To achieve this, we will consider the particle-hole symmetric case where the

energies εj are symmetrically distributed around the chemical potential µ, which is set to

zero without loss of generality. We will also only consider even functions fpxq “ fp´xq.

Under these conditions, any initial spin configuration that satisfies the symmetry conditions

szpεjq “ ´szp´εjq, s`pεjq “ s´p´εjq, as does the ground state (2.17), will do so for all

time. This fact can be verified with the equations of motion (2.6) by considering time

derivatives of quantities such as szpεjq ` szp´εjq, which vanish under the aforementioned

assumptions. We will not use particle-hole symmetry in the d` id model, where fpxq “ x

and εj will be distributed on a positive interval. Further, Eqs. (2.6) and (2.7) are invariant

under the time-reversal transformation

szj ptq Ñ szj p´tq, s˘j ptq Ñ s¯j p´tq,

∆ptq Ñ ∆˚p´tq.

(2.19)

Since the initial conditions (2.17) at t “ 0 also have this property, it holds at all times.
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The ground state of the spin-orbit model is less obvious [56]

Sxkλ0 “
∆0 sinφk
Dk

„

∆2
0 ` ξ

2
kλ̄
` Ek`Ek´



,

Szkλ0 “ ´
1
Dk

„

ξkλpEk`Ek´ ` ξ
2
kλ̄
`∆2

0 sin2 φkq`

`∆2
0 cos2 φkξkλ̄



,

Lxk0 “
∆0 cosφk

Dk

„

∆2
0 ` ξk`ξk´ ` Ek`Ek´



,

Lzk0 “
1
Dk

„

2Rk∆2
0 cosφk sinφk



,

ξkpλq ” εkpλq ´ µ,

Ekλp∆q ”
„

ξ2
k `∆2 `R2

k ´ 2Rkλ
b

ξ2
k ` cos2 φk∆2

1{2
,

Dk ” 2Ek`Ek´pEk` ` Ek´q,

(2.20)

while Sykλ0 “ Lyk0 “ Tk0 “ 0. The corresponding self-consistent equation relating ∆0 to g

is

2
g
“

ÿ

kλ

Ek`Ek´ `∆2
0 ` sin2 φkξ

2
kλ ` cos2 φkξkλξkλ̄

2Ek`Ek´pEk` ` Ek´q
. (2.21)

The quantities 2Ejp∆q and 2Ekλp∆q in (2.17) and (2.20) are the excitation energies obtained

by diagonalization of the quadratic mean-field Hamiltonians in Eqs. (2.2) at a given ∆.

For given values of g, Nf , α and h, one can simultaneously solve Eq. (2.16) and Eq. (2.21)

using the ground state configurations to obtain the corresponding equilibrium chemical

potential µ and ground state gap ∆0. As the ground state is rotationally symmetric in

k, and the equations of motion preserve this symmetry, in our numerics we always replace

sums over momenta with sums over energies with a flat density of states
ř

k Ñ
ř

ε. The

level spacing δ is related to the number of spins N and the bandwidth W through

δ “
W

N ´ 1 . (2.22)
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Formally, in 2D this means N ´ 1 “ W
2πA, where A is the physical area of the system.

Fig. 2.2 shows an example of the relationship between different parameters for the spin-orbit

model.

5 Simulations of nonequilibrium phases and stability analysis

Now we numerically simulate the equations of motion (2.6) and (2.11) and plot the behavior

of ∆ptq for each of the three phases in Sects. 5.1 and 5.3. In Sect. 5.3, we also characterize

the long time scale of nonintegrable models in Phase III. In Sect. 5.2, we introduce a stability

analysis for Phases I and II that gives the conditions under which a nonequilibrium phase

transition occurs.

We will consider several integrability-breaking functions for fpεq, which appears in the

separable BCS equations of motion Eq. (2.6). All fpεq considered here will be even functions,

and as we discuss in Sect. 5.2, the particular form of fpεq affects which phases occur. With

this in mind, we consider the “Lorentzian” coupling [45]

florpε, γq “
γ

a

γ2 ` ε2
, (2.23)

the “sine” coupling,

fsinpε, γq “ 1` sin2pε{γq, (2.24)

and the “cube root” coupling,

fcubpε, γq “
pγ3 ` |ε|3q1{3

γ
. (2.25)

The parameter γ is fixed for any particular Hamiltonian, and it characterizes how strongly

integrability is broken. For γ ÁW , we have fpε, γq „ 1 in all three cases, which we consider

to be “nearly integrable”. For γ !W , integrability is strongly broken.
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Figure 2.2: Ground state order parameter ∆0, chemical potential µ and Egap “ Ek“0,` “

p
a

∆2
0 ` µ

2 ´ hq2 as functions of the external field h in the spin-orbit model. One simul-
taneously solves the fermion number equation (2.16) and the self-consistency relationship
Eq. (2.21) with the ground state configuration (2.20). The vanishing of Egap corresponds
to a topological quantum phase transition. The number of fermions is Nf “ 0.65N , where
N is the number of spins. We express energies in units of the bandwidth W , including the
spin-orbit coupling α2 “ 0.1W , the level spacing δ “ W {pN ´ 1q, and the BCS coupling
g “ 0.9δ. The Fermi energy in these units is εF “ W

2NNf “ 0.325W . These spin-orbit model
parameters remain the same for the remainder of this work, up to adjusting the value of N .
We do not consider a similar plot for the separable BCS model because in the particle-hole
symmetric case considered, the fermion number Nf “ N and thus µ “ 0.
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We control for finite size effects in our simulations by increasing N until ∆ptq in the

time window of interest no longer changes when N is doubled. In practice, we find that

finite size effects become significant at times t ą tfs, where

tfs «
1
δ
“
N ´ 1
W

, (2.26)

is the inverse single-particle level spacing, see also Ref. [53]. To observe the asymptotic

dynamics, N has to be sufficiently large, so that the relaxation time τ ă tfs.

5.1 Phases I and II

Figs. 2.3-2.5 contain examples of Phase I and Phase II quenches in both the separable BCS

and spin-orbit models. To heuristically understand the emergence of these two phases, one

can insert the prescribed behavior of ∆ into the equations of motion (2.6) and (2.11). This

examination of the asymptotic solutions to the equations of motion in each phase will be

important for the stability analyses of Sect. 5.2.

The following applies to the separable BCS models in the particle-hole symmetric limit,

but the analysis is analogous when this symmetry is broken and in the spin-orbit case. In

Phase I, we set ∆ to zero

9szj “ 0,

9sxj “ ´2εjsyj ,

9syj “ 2εjsxj .

(2.27)

The most general solution that conserves both s2
j “ 1{4 and the time-reversal symmetry
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(a)

(b)

Figure 2.3: Examples of Phase I quenches for separable BCS models. The equilibrium gaps
∆0i, ∆0f and integrability breaking parameter γ are given in units of the bandwidth W ,
and there are N “ 5 ˆ 104 (a) and N “ 2 ˆ 105 (b) spins. The initial rapid decay of ∆ is
shown, but out of caution one must simulate to longer times (still smaller than the inverse
level spacing) in order to verify that the phase is indeed stable.
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(a)

(b)

Figure 2.4: Quenches in the spin-orbit model that lead to (a) Phase I and (b) Phase II.
Here the number of single-particle energies is N “ 104, and all other parameters are the
same as given in the caption of Fig. 2.2.
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(a)

(b)

Figure 2.5: Examples of Phase II quenches for separable BCS models. In (a) N “ 2ˆ 105

spins, and the quench from ∆0i “ 0.15W is close to the Phase I-II boundary. In (b),
N “ 5ˆ 104. The oscillatory power law decay to a constant value takes a rather long time,
and we have verified out to tδ “ 2 in (a) and tδ “ 0.5 in (b) that the amplitude of the
oscillations is indeed decreasing to zero with power-law decay. In both plots, ∆0 and γ are
expressed in units of the bandwidth.
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(2.19) is

szj “ zj ,

sxj “ xj cosp2εjtq,

syj “ xj sinp2εjtq,

z2
j “ 1{4´ x2

j .

(2.28)

where zj is the Phase I steady state spin-profile. In order for (2.28) to make sense as

a solution to the actual equations of motion, Eq. (2.7) must hold, i.e., we must have that

∆ “ gf
ř

j fjs
´
j equals zero, which is called the self-consistency condition. Strictly speaking,

the solution (2.28) violates the self-consistency condition

∆ “ gf
ÿ

j

fjxj cosp2εjtq ‰ 0, (2.29)

but as the number of single-particle energies N goes to infinity, i.e., in the continuum limit

when the sum in Eq. (2.29) turns into an integral, ∆ from Eq. (2.29) vanishes through

dephasing for 1 ! t ! 1{δ “ pN ´ 1q{W . This description is invalid for t „ N{W . In this

sense, we refer to the solution (2.28) as asymptotically self-consistent, which is a concept

we will often use in the remainder of this paper.

Let us now replace ∆ with ∆8 ‰ 0 in Eq. (2.6) to examine the asymptotic solutions

corresponding to Phase II

9szj “ ´2fjsyj∆8,

9sxj “ ´2εjsyj ,

9syj “ 2εjsxj ` 2fjszj∆8.

(2.30)
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The solution which preserves spin length and the time-reversal symmetry is then

szj “ Zj ` ζj cospbjtq,

sxj “ ´
fj∆8

εj
Zj `

εj
fj∆8

ζj cospbjtq,

syj “
bj

2fj∆8

ζj sinpbjtq,
(2.31)

where Zj is the Phase II steady state spin profile, which, along with ∆8, determines the

other constants

bj “ 2
b

ε2
j ` f

2
j ∆2

8,

ζ2
j “

f2
j ∆2

8

b2j
´
f2
j ∆2

8

ε2
j

Z2
j .

(2.32)

The solution (2.31) must be asymptotically self-consistent, i.e., for N Ñ 8, limtÑ8∆ “

∆8, which implies

1 “ ´gf
ÿ

j

f2
j Zj

εj
, (2.33)

which is the nonequilibrium analogue of the ground state self-consistency requirement (2.18).

5.2 Stability analysis

Now we consider the stability of Phases I and II for the separable BCS model by linearizing

the equations of motion (2.27) and (2.30) about the asymptotic states given in (2.28) and

(2.31), respectively. The main result is Eq. (2.42), which is the equation for frequencies of

linearized perturbations to the asymptotic ∆ptq of either Phase I or Phase II. For Phase I,

the appearance of a complex conjugate pair of imaginary frequencies signals an exponential

instability. For Phase II, a solution ω0 to Eq. (2.42) may enter the band gap, or a complex

conjugate pair of frequencies may appear. The former case, which occurs in the integrable
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s-wave and p ` ip models, signifies a transition to Phase III because the linearized gap

δ∆ptq oscillates persistently, i.e., it does not dephase. In Appendix D, we show that the

nonequilibrium phase transitions predicted by this stability analysis both match and give

a physical interpretation to the results obtained in integrable models [53, 54] using tools

inextricably linked to exact solvability.

Although the final result (2.42) applies generally, we limit the discussion to the particle-

hole symmetric case to simplify the presentation. Let sj “ sj0 ` δsj , where sj0 is the

Phase I asymptotic solution from Eq. (2.28). Neglecting second and higher order terms, the

linearized equations for the spin components are

δ 9szj “ ´2fjsyj0δ∆

δ 9sxj “ ´2εjδsyj ,

δ 9syj “ 2εjδsxj ` 2fjzjδ∆,

δ∆ ” gf
ÿ

j

fjδs
x
j .

(2.34)

Expanding sjptq in Fourier components

δsjptq “
ÿ

ω

δrsjpωqe´iωt,

δ∆ “
ÿ

ω

δ r∆pωqe´iωt,
(2.35)

and using the Fourier space version of the self-consistency relation in Eq. (2.34), we find

the following equation for the allowable frequencies ω

1 “ 4gf
ÿ

j

f2
j εjzj

ω2 ´ 4ε2
j

. (2.36)

The following discussion uses particle-hole symmetry along with the empirical fact that

for quenches from the ground state, zjεj ă 0 in Phase I. Upon inspecting Eq. (2.36), one

determines that there are N{2 unique ω2
j , of which all but one lie between consecutive 4ε2

j .
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The remaining ω2
0 is less than the smallest 4ε2

j , and can therefore be negative. A negative

ω2
0 corresponds to a pair of conjugate imaginary frequencies, and therefore an exponential

instability in δsj . We thus determine the Phase I boundary in p∆0i,∆0f q space to be those

values for which ω2
0 passes through zero.

The stability analysis for Phase II follows a similar logic. Consider the linearized equa-

tions of motion

δ 9szj “ ´2fjsyj0δ∆´ 2fj∆8δs
y
j ,

δ 9sxj “ ´2εjδsyj ,

δ 9syj “ 2εjδsxj ` 2fjszj0δ∆` 2fj∆8δs
z
j ,

(2.37)

where now sj0 is the Phase II asymptotic solution from Eq. (2.31). Again changing to the

Fourier basis, we solve for δrsxj pωq and apply the self-consistency condition for δ r∆pωq, which

reads

δ r∆pωq
ˆ

1´ 4gf
ÿ

j

εjf
2
j Zj

ω2 ´ b2j

˙

“

“
2gf
ω

ÿ

j

εjf
2
j ζj

ˆ

δ r∆pω ` bjq
ω ` bj

`
δ r∆pω ´ bjq
ω ´ bj

˙

.

(2.38)

Although in principle Eq. (2.38) can be solved numerically with Zj and ∆8 as input, such an

approach is needlessly complex and obscures the mechanism by which Phase II gives way to

Phase III. The difficulty presented by Eq. (2.38) stems from the fact that we required exact

self-consistency. It turns out that relaxing this requirement to asymptotic self-consistency,

defined in Sect. 5.1, suffices to understand the Phase II-III transition.

We return to Eq. (2.37) and solve it in the time domain under the assumption δ∆ptq “

δ`e
´iω0t ` δ´e

iω0t. We neglect higher order harmonics because the Phase III oscillations

near the II-III boundary are small. Under this ansatz, δsxj ptq has six frequencies: ˘ω0 and

˘ω0 ˘ bj . If ω0 is a real frequency isolated from the continuum of bj defined in Eq. (2.32),

then the constant ∆8 of Phase II is “unstable” in the sense that oscillatory perturbations
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do not dephase. The self-consistent equation for this harmonic δ∆ptq is

1 “ 4gf
ÿ

j

f2
j εjZj

ω2
0 ´ b

2
j

`

`
2gf
ω0

ÿ

j

ˆ

eibjtf2
j εjζj

ω0 ´ bj
` rbj Ñ ´bjs

˙

.

(2.39)

This relation cannot hold for arbitrary t, but it will in the continuum limit if we require

ω2
0 ă b2min and tÑ8, which allows the harmonic ansatz to be asymptotically self-consistent

due to dephasing. Thus the equation for ω0, the frequency of a harmonic perturbation to

∆8 in Phase II, is

1 “ 4gf
ÿ

j

f2
j εjZj

ω2
0 ´ b

2
j

. (2.40)

Eq. (2.40) generalizes the small quench linearization method developed in Ref. [45], which

we recover by replacing Zj of Eq. (2.40) with the z-component spin profile of the gi ground

state. For the Lorentzian coupling, ω0 lies in the band gap for infinitesimal quenches, so

that linearized Phase III oscillations do not decay [45].

In order to understand whether the finite quench dynamics admit such an isolated ω0,

consider the implications of (2.40) combined with (2.33) for the ∆8 of Phase II. We find

ω2
0

4∆2
8

“
I1pω

2
0q

I2pω2
0q
,

I1pω
2
0q ” gf

ÿ

j

f4
j Zj

εjpω2
0 ´ b

2
j q
,

I2pω
2
0q ” gf

ÿ

j

f2
j Zj

εjpω2
0 ´ b

2
j q
.

(2.41)

It helps to analyze (2.41) under the simplifying assumption that Zj{εj ă 0, which holds

exactly for the integrable s-wave model, and is therefore applicable in the weak-coupling

regime (∆0i,∆0f ! W ) of the general separable case [53]. With this restriction, Eq. (2.40)

implies ω2
0 is real, while Eq. (2.41) requires ω2

0 ą 0, i.e., the allowed frequencies ω0 are



31

purely real. We now examine the effect of the function fj in determining whether solutions

ω2
0 to Eq. (2.41) are isolated from the b2j continuum.

If fj ă fp0q for all j and b2min “ 4∆2
8, then Eq. (2.41) has a solution 0 ă ω2

0 ă b2min,

and oscillations of δ∆ptq do not dephase. In this scenario, Phase III is the asymptotic state

due the presence of persistent periodic oscillations about the Phase II solution. If fj ă fp0q

for all j and b2min ă 4∆2
8, then the relationship between ω2

0 and b2min is not immediately

obvious from Eq. (2.41). The Lorentzian coupling, where fj “ γpγ2 ` ε2
j q
´1{2, allows for

both possibilities: If ∆8 ď γ, then b2min “ 4∆2
8 and Phase II is not the asymptotic state.

If ∆8 ą γ, then b2min “ 4γp2∆8 ´ γq, and we cannot characterize solutions to Eq. (2.41)

without detailed knowledge of Zj and ∆8.

If fj ě fp0q for all j, then b2min “ 4∆2
8 and we find that solutions ω2

0 to Eq. (2.41)

are not isolated from the b2j continuum. In this case, the harmonic ansatz for δ∆ptq is not

asymptotically self-consistent, and there are no persistent small oscillations about Phase II.

The integrable s-wave model is defined by fj “ fp0q “ 1, in which case ω2
0 “ 4∆2

8 is the

only solution to Eq. (2.41), which is not isolated. On the other hand, Phase III exists in the

s-wave case [53]. Therefore, fj ě fp0q does not imply that such models will always reach

Phase II. Indeed, the relaxation to Phase II is always accompanied by nonperturbative

oscillations which persist in the case of Phase III.

Thus, even under the simplifying assumptions of particle-hole symmetry and Zj{εj ă 0,

the stability analysis of Phase II reveals a variety of possible behaviors in the separable

BCS models. The nature of fpεq near ε “ 0 (the Fermi surface) is especially crucial to

determining whether oscillations fully dephase to Phase II – a statement which extends to

the non-particle-hole symmetric case in the weak coupling regime.

Upon relaxing the restriction Zj{εj ă 0, isolated solutions to Eq. (2.41) can have nonzero

imaginary part, thereby allowing for the possibility of exponential instabilities to Phase II

solutions (see Fig. 2.10). In the non-particle-hole symmetric case, ∆ptq “ ∆8e
´2iµ8t in

Phase II, and the equation for the frequencies of harmonic δ∆ptq can be expressed in the
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form

S2
2pω0q “

`

S1pω0q ´ 1
˘2
`
`

S1pω0q ´ 1
˘

S3pω0q,

S1pω0q ” 4gf
ÿ

j

rεjf
2
j Zj

ω2
0 ´

rb2j
,

S2pω0q ” 2gfω0
ÿ

j

f2
j Zj

ω2
0 ´

rb2j
,

S3pω0q ” 4gf∆2
8

ÿ

j

f4
j Zj

rεjpω2
0 ´

rb2j q
,

(2.42)

where

rεj ” εj ´ µ8, rbj ” 2
b

rε2
j ` f

2
j ∆2

8. (2.43)

The self-consistency equation for ∆ptq in Phase II has the same form as Eq. (2.33), with

the substitution εj Ñ rεj . In the particle-hole symmetric limit, S2pω0q “ 0 and the correct

solution to Eq. (2.42) solves Eq. (2.40). In the limit ∆8 Ñ 0, (2.42) is also the stability

equation for Phase I. In Appendix D, we show that the Phase I-II and Phase II-III transitions

given by (2.42) are identical to those obtained using exact solvability in the integrable s-wave

and p` ip models.

5.3 Phase III

Universality of elliptic oscillations

The asymptotic Phase III solution is significantly more complicated than its Phase I and

Phase II counterparts (2.28) and (2.31). We derive this solution in Sect. 6. Presently we

provide evidence that the asymptotic behavior of ∆ptq can always be described by Jacobi

elliptic functions. Consider first the particle-hole symmetric limit, for which we find

9∆2ptq “ P4r∆ptqs, as tÑ8, (2.44)
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Figure 2.6: The quench in the Lorentzian separable BCS model (blue dots) from Fig. 2.1 (c)
and (d) [γ “W ] and the corresponding elliptic function fit (solid red) from Eq. (2.46) with
a « 0.868205, ∆` « 0.941415, ∆´ « 0.501511, r∆` “

r∆˚
´ « 0.915740 ` 0.002407i and

t0 “ 2.801929. To obtain these parameters, we fit 9∆ to Eq. (2.44) and then shift by the
appropriate t0. If a fifth order polynomial is used instead of P4r∆ptqs, the coefficient of the
∆5 term is ´6.08 ˆ 10´5, providing further evidence that this asymptotic ∆ptq is indeed
an elliptic function. Although only a short time frame is shown, this fit works well for the
entire time interval from t∆0f “ 104, which is the time scale after which the oscillation
amplitude stabilizes, to the times shown. In this fitting procedure, ∆ is given in units of
∆0f “ 0.4W and time is measured in units of ∆´1

0f as pictured. In terms of the level spacing
δ “ 5ˆ 10´6W , the time domain pictured is 0.73125 ă tδ ă 0.731688.
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where P4r∆ptqs is a generic fourth-order polynomial in ∆ptq. Now parametrize P4r∆ptqs as

P4r∆ptqs “ ´a2p∆ptq ´∆`qp∆ptq ´∆´qˆ

ˆp∆ptq ` r∆`qp∆ptq ` r∆´q,

(2.45)

where the real coefficients ∆˘ are the maximum and minimum values of ∆ptq, while r∆˘

are either complex conjugate or independent real numbers. This parametrization leads to

the following solution for ∆ptq

∆ptq “
r∆`p∆` `

r∆´qdn2rabpt´ t0q,ms ´ r∆´p∆` `
r∆`q

∆` `
r∆` ´ p∆` `

r∆´qdn2rabpt´ t0q,ms
,

m ”
p∆` ´∆´qp

r∆` ´
r∆´q

p∆` `
r∆´qp∆´ `

r∆`q
,

b ”
1
2

b

p∆` `
r∆´qp∆´ `

r∆`q,

(2.46)

where dnrt,ms is the Jacobi-dn function. When particle-hole symmetry does not hold,

then one replaces ∆ptq with |∆ptq|2 in Eqs. (2.44)-(2.46). In Figs. 2.6 and 2.7 we show

that Phase III oscillations in separable BCS models satisfy Eq. (2.44) and Eq. (2.46), while

Fig. 2.8 shows the same for the spin-orbit model.

As a general rule of thumb, most spin-orbit quenches that superficially appear to relax

to Phase III really have not. Fig. 2.8 is the result of a thorough search of the parameter

space in order to find a true Phase III quench within a computationally achievable time.

On the one hand, the final field hf has to be large enough so as to nonperturbatively break

integrability, for small perturbations lead to long relaxation times. On the other hand, the

fields cannot be so large as to suppress the equilibrium gap ∆0 scale, which is the scale of

the oscillation frequency. The value of α must also break integrability nonperturbatively,

but a larger α also requires a larger number of spins to reach the thermodynamic limit.

Finally, it turns out that a smaller Fermi energy relative to the bandwidth promotes a

faster relaxation time. We discuss this Phase III relaxation time further in Sect. 5.3 in the

context of the separable BCS models.
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Figure 2.7: A Phase III quench in a fpεq “ expr´|ε|{γs separable BCS model (blue dots),
where γ “ 0.5W , N “ 2 ˆ 105, ∆0i “ 0.04W , ∆0f “ 0.8W . The corresponding elliptic
function fit (solid red) from Eq. (2.46) has a « 0.821896, ∆` « 1.075648, ∆´ « 0.566069,
r∆` “

r∆˚
´ « 0.010686 ` 1.327633i and t0 “ 2.131916. To obtain these parameters, we fit

9∆ to Eq. (2.44) and then shift by the appropriate t0. If a fifth order polynomial is used
instead of P4r∆s, the coefficient of the ∆5 term is 4.22ˆ 10´9. In this fitting procedure, ∆
is given in units of ∆0f and time is measured in units of ∆´1

0f as pictured. In terms of the
level spacing δ, the time domain pictured is 0.405 ă tδ ă 0.40525.
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Figure 2.8: A Phase III quench in the spin-orbit model (blue dots), where in units of the
bandwidth W : εF “ 0.1, α2 “ 0.9, gN “ 2.315999, hi “ 1.998980, hf “ 0.801020. These
parameters uniquely determine the initial and final equilibrium gaps and chemical potentials
through the use of Eq. (2.16) and Eq. (2.21). The energies εj are uniformly distributed in the
interval r0,W s, and the number of pseudospins is N “ 8ˆ 104. As particle-hole symmetry
does not hold, we fit Ω ” |∆|2 to the elliptic function definition in Eq. (2.46). The fit is
a « 0.776633, ∆` « 0.096608, ∆´ « 0.080316, r∆` “

r∆˚
´ « 0.873604 ` 0.883872i and

t0 “ 3.033272. The fit (solid red) is good for all t ą τ , where τ is the relaxation time
defined in Sect. 5.3. Here τ∆0f « 3050. In the fitting procedure, ∆ is given in units of ∆0f
and time is measured in units of ∆´1

0f as pictured. In terms of the level spacing δ, the time
domain pictured is 1.472 ă tδ ă 1.473, shortly after which finite size effects take over.
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For the integrable s-wave case it can be shown analytically [53] that r∆˘ “ ∆˘ and a “ 1,

which greatly simplifies P4r∆ptqs and ∆ptq Ñ ∆`dnr∆`pt ´ t0q, 1 ´
∆2
´

∆2
`

s. The mechanism

behind the emergence of the three phases in the s-wave Hamiltonian is a dynamical reduction

in the number of degrees of freedom. The Phase III asymptotic solution for ∆ptq is identical

with that of a 2-spin s-wave Hamiltonian, while Phases II and I correspond to 1-spin and

0-spin solutions, respectively. In Phase III, this technique does not work for the separable

BCS models. In Appendix C, we show that the 2-spin solution for these nonintegrable

models is identical to that of the integrable case, up to a rescaling of time, while the general

asymptotic solution that we observe is Eq. (2.46). Thus, if a reduction mechanism exists in

the nonintegrable cases, the form of the m-spin Hamiltonian must also change.

Relaxation time

In Sect. 5.2 we saw that there are examples of nonintegrable separable BCS models where

the constant ∆8 of Phase II is unstable to harmonic perturbations, and in Sect. 5.3 we

gave evidence that the Phase III oscillations of these models are elliptic functions. This

behavior is typical of integrable models as well, although the form of the elliptic functions

changes once integrability is broken. A more important difference, however, is that a long

relaxation time scale τ emerges before the system truly reaches Phase III.

Fig. 2.9 gives an example of the long relaxation time in the d ` id model, which is the

separable BCS model with fpεq “ ε. The initial dynamics at weak coupling seem to indicate

[76] that |∆ptq| oscillates with a single frequency reminiscent of Phase III. Upon closer

inspection, however, the amplitude of the oscillations slowly changes with no indication

of stabilizing. In Fig. 2.10, quenches at higher energies provide further evidence that the

long-time asymptotic state is difficult to determine based on the short-time dynamics.

Let us now explore the dependence of the relaxation time τ on ∆0i, ∆0f and γ in the

Lorentzian separable BCS model defined in Eq. (2.23). We define τ as the minimum time

after which the minimum of |∆ptq| oscillations stays within η “ 10´4 of its asymptotic value.
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(a) (b)

Figure 2.9: Example of a deceitful quench in the fpεq “ ε (d ` id) separable BCS model,
which at short times seems to enter Phase III on a similar time scale as the corresponding
integrable s-wave quench with the same parameters. Part (b) shows that minimum of the
d ` id |∆ptq| is actually evolving over the entire time scale considered, and it is not clear
what the asymptotic phase is. For both models, we used 4ˆ 104 single-particle energies εj
uniformly distributed on the interval r0,W s, ∆0f “ 0.00625W , ∆0i “ 0.05∆0f , εF “ 0.25W
[77]. In Fig. 2.10, we explore similar quenches in the d ` id model at larger energy scales,
where the dynamics are faster.

(a) (b)

Figure 2.10: Study of the long time dynamics of d ` id model quenches, continued from
Fig. 2.9. We keep the same parameters and the same ratio ∆0i{∆0f “ 0.05 while varying
∆0f . Pictured are the maxima and minima of oscillations of |∆|. Part (a) shows that
below a certain critical ∆0f „ 0.0845W , the amplitude of |∆| oscillations evolves over an
extremely long time scale. When ∆0f “ 0.05W , there are also multiple incommensurate
frequencies, and it is unclear whether the asymptotic state is Phase II, III, or something
else entirely. When ∆0f “ 0.075W , the decay in amplitude of |∆| resembles typical decays
to Phase II seen in other models (see Fig. 2.5). At ∆0f “ 0.1W , the system rapidly enters
Phase II at a smaller ∆8 than would be inferred from the other two cases, indicating that
we have crossed a transition point. Part (b) shows a quench at this transition point, where
the Phase II state seen for ∆0f “ 0.1W exhibits an exponential instability and moves to
an oscillatory state with unknown asymptotic behavior. The integrable s-wave BCS model,
fpεq “ 1, is deep in Phase III for all these values of ∆0f and ∆0i.
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(a) (b)

(c) (d)

Figure 2.11: Nonintegrable pairing models exhibit an extremely long relaxation time τ
when the asymptotic state is Phase III, which is most prominent in the evolution of the
minima of the oscillations of ∆ptq. Pictured is a study of τ as a function of ∆0f , at fixed
∆0i “ 10´3W (a,b), and τ as a function of ∆0i at fixed ∆0f “ 0.4W (c,d) in the Lorentzian
model at γ “ 0.8W in the particle-hole symmetric case. The time τ is not monotonic
in either case, but it is generally a decreasing function of the initial and final coupling
strengths gi and gf . In all plots, ∆0i and ∆0f are given in units of the bandwidth W. In
(a,b) 2.4ˆ 104 ą N ą 1.2ˆ 104 and in (c,d) N “ 8400.

This definition of τ and the precise value of η are somewhat arbitrary, but empirically we

find that the minima of |∆ptq| take longer to relax to the stationary value than the maxima.

Typically, the minimum will increase for a time until it begins to oscillate with decreasing

amplitude about a final value. Most importantly, this definition of τ delineates clearly the

difference between integrable and nonintegrable behavior. Fig. 2.11 shows the dependence

of τ on the values of ∆0i and ∆0f , with one or the other fixed. Generally speaking, we find

that quenches at lower energy scales increase τ .

More interesting is the dependence of τ on γ, the integrability-breaking parameter, at
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(a) (b)

(c) (d)

Figure 2.12: Study of the relaxation time τ , see Fig. 2.11, in the Lorentzian model as a
function of the integrability breaking parameter γ at fixed ∆0i “ .005W and ∆0f “ 0.6W ,
where γ “ 8 is the integrable s-wave model. For these quench parameters, both the
Lorentzian and s-wave models enter Phase III. Parts (a)-(c) show how the minimum of
∆ptq slowly evolves and reaches an asymptote, while part (d) gives τ near γ “ 0.4W , where
the minimum satisfies τmin∆0f « 89. This minimum is still greater than the relaxation
time of the s-wave case, where τ∆0f « 65. The relaxation time increases sharply away
from γ “ 0.4W , especially in the direction of decreasing gamma, where τ∆0f « 64500 at
γ “ 0.11W . In all plots, γ is given in units of the bandwidth W and N “ 5500.

fixed p∆0i,∆0f q. First, let us examine quenches that lead to Phase III in both the Lorentzian

and integrable s-wave models. Fig. 2.12 shows that τ has single minimum for γ „ 0.4W

and increases away from this point both as γ Ñ 0 and as γ Ñ8. In all cases, the relaxation

time of quenches in the integrable s-wave model, which is the γ Ñ8 limit of our separable

BCS Hamiltonians, is far smaller. We believe that the increase of τ as γ Ñ8 is indicative of

nonperturbative behavior of the dynamics in the vicinity of the integrable limit, see Sect. 8.

The behavior of fpεq as γ Ñ 0 is model dependent; in the case of the Lorentzian

model, the stability analysis of Sect. 5.2 indicates that Phase II is unstable to harmonic
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(a) (b)

Figure 2.13: Study of the relaxation time τ in the Lorentzian model as a function of the
integrability breaking parameter γ at fixed ∆0i “ 0.2W and ∆0f “ 0.6W . For these quench
parameters, the s-wave model enters Phase II, while the Lorentzian enters Phase III. Part
(a) shows how the minimum of ∆ptq slowly evolves and reaches an asymptote, while part
(b) gives τmin near γ “ 0.6W , where τmin∆0f « 175. The relaxation time increases away
from γ “ 0.6W in both directions. In all plots, γ is given in units of the bandwidth W and
N “ 2800.

perturbations if γ ą ∆8; otherwise, Phase II could be stable. We observe in Fig. 2.12 large

oscillations in the evolution of the minimum of ∆ptq at γ “ 0.2W , behavior which occurs

in the range 0.13W À γ À 0.26W For γ À 0.13W , the minima oscillations disappear and τ

begins to dramatically increase. Despite this qualitative change in the evolution of |∆ptq|,

down to at least γ “ 0.11W we still find that the system eventually enters Phase III with

a reduced amplitude of oscillation.

Fig. 2.13 is similar to Fig. 2.12, except we now choose ∆0i and ∆0f such that the (inte-

grable) s-wave model enters Phase II. The behavior of τ with respect to γ is qualitatively

similar, except there is no regime where the minimum of ∆ptq undergoes large oscillations.

The spin-orbit model also has a very long relaxation time to Phase III. In order to

observe this asymptotic state, as is shown in Fig. 2.8, one must carefully choose model and

quench parameters, otherwise τ is simply too large for our present numerical study.

6 Phase III asymptotic solution

We now explore the structure of the Phase III asymptotic state. First, we treat ∆ptq as a

periodic external driving and show that there is always a periodic solution for the classical
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pseudospins (and auxiliary functions in the spin-orbit model), and then we provide evidence

that the class of periodic ∆ptq that are also self-consistent are elliptic functions.

6.1 External driving

In the separable BCS model, the mean-field dynamics can be described alternatively by a

Gaussian wave function with complex Bogoliubov amplitudes ujptq and vjptq

|ψy “
ź

j

ru˚j ptq ` v
˚
j ptqĉ

:

jÒĉ
:

jÓs|0y, (2.47)

where normalization requires |vj |2 ` |uj |2 “ 1. The equations of motion for uptq and vptq

follow from the time-dependent Schrödinger equation i B
Bt |ψy “ Ĥ|ψy applied to (2.47) with

the mean-field Hamiltonian from (2.2),

i
d

dt

¨

˚

˝

ujptq

vjptq

˛

‹

‚

“

¨

˚

˝

εj fj∆

fj∆˚ ´εj

˛

‹

‚

¨

˚

˝

ujptq

vjptq

˛

‹

‚

, (2.48)

where we shifted the Hamiltonian by a constant Ĥ “ Ĥf ´
ř

j εj in order to make it

traceless. The mapping to the classical pseudospins is

s´j “ ujv
˚
j , szj “

|vj |
2 ´ |uj |

2

2 . (2.49)

We shall discuss the nature of the asymptotic Phase III ∆ptq in terms of vptq and uptq.

To do so, consider first Eq. (2.48) with a periodic ∆ptq “ ∆pt ` T q that is not necessarily

self-consistent, which decouples each pair of puj , vjq from all the others. The abstract form

of Eq. (2.48) is

i
d

dt

¨

˚

˝

u

v

˛

‹

‚

“ hptq

¨

˚

˝

u

v

˛

‹

‚

(2.50)
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with

hptq “

¨

˚

˝

A Bptq

B:ptq ´A

˛

‹

‚

, (2.51)

where u and v are m-dimensional vectors, A is a constant real symmetric m ˆm matrix,

Bptq is a complex m ˆ m matrix periodic in t with period T , and we dropped the index

j for simplicity. The forthcoming discussion is valid for all systems of this form, see also

Ref. [53]. For example, the spin-orbit dynamics admit such a representation with m “ 4,

while m “ 1 in the separable BCS model.

As hptq is periodic by assumption, the Floquet theorem applies. There are thus 2m

independent solutions ψiptq to Eq. (2.50) of the form

ψiptq “ eδit

¨

˚

˝

Uiptq

Viptq

˛

‹

‚

, i “ 1 . . . 2m, (2.52)

where the Uiptq and Viptq are periodic with the same period as hptq and the δi are complex

numbers known as Floquet exponents. The solutions ψiptq therefore have the property

ψipt` T q “ ρiψiptq, ρi ” eδiT , (2.53)

where the ρi are known as Floquet multipliers. Because hptq is Hermitian, Eq. (2.50)

conserves the norm of the solutions ψiptq, which implies |ρi| “ 1 and δi “ iνi for νi real.

Furthermore, the particular form of hptq implies that if ψ “ pu,vqT is a solution then so is

rψ “ pv˚,´u˚qT . This pairing of solutions implies that if δi is a Floquet exponent, then so

is ´δi. In Sect. 6.2, we will use this latter fact to prove that there is always a periodic spin

solution to Eq. (2.6) for a given periodic ∆ptq.

Before continuing, we note that the Phase III asymptotic ∆ptq is only periodic in the

particle-hole limit of the separable BCS model. In the general case, ∆ptq “ F ptqe´2iµ8t,

where F ptq is periodic. Nonetheless, we can still reduce this problem, where hptq is not
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periodic, to the periodic case by absorbing the phase 2µ8t in the following manner:

v1 “ v e´iµ8t,

u1 “ u eiµ8t,

A1 “ A´ µ81,

(2.54)

so that the time evolution of pu1,v1qT is described by Eq. (2.50) with periodic hptq of the

form given in Eq. (2.51) where A is replaced by A1. In terms of the pseudospin representation

of the dynamics, this transformation amounts to an overall time-dependent rotation about

the z-axis with frequency 2µ8.

6.2 Phase III spin solution in the separable BCS model

Now we draw our attention to the behavior of the spin solutions to the separable BCS

model for the periodic external ∆ptq considered in the previous section. The dimension of

the matrix hptq is now 2m “ 2 and there are two independent solutions to the Floquet

problem

ψ1jptq “ eiνjt

¨

˚

˝

Ujptq

Vjptq

˛

‹

‚

, ψ2jptq “ e´iνjt

¨

˚

˝

V ˚j ptq

´U˚j ptq

˛

‹

‚

,

where Ujptq and Vjptq are periodic and we restored the index j. Using ψ1jptq and Eq. (2.49),

we can construct a periodic spin solution σjptq [i.e., a periodic solution of Eq. (2.6) for the

given external ∆ptq that does not necessarily satisfy Eq. (2.7)],

σ´j ptq “ UjptqV
˚
j ptq,

σzj ptq “
|Vjptq|

2 ´ |Ujptq|
2

2 .

(2.55)

We will now show that the most general spin solution sjptq precesses about the periodic

solution σjptq with a variable angular velocity. First we write the general solution Ψjptq as
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a linear combination of ψ1jptq and ψ2jptq

Ψjptq “ cos θj2 ψ1jptq ` sin θj2 ψ2jptq. (2.56)

Although the coefficients of linear combination are in principle complex, we can drop the

constant overall phase of Ψjptq as well as absorb 1
2ˆthe remaining constant relative phase

into the definitions of Ujptq and Vjptq. Once again using (2.49), we now write Ψjptq in terms

of spin variables. It is helpful to first parametrize Ujptq and Vjptq as

Ujptq “ |Ujptq|e
i
2 rαjptq´2νjt´βjptqs,

Vjptq “ |Vjptq|e
i
2 rαjptq´2νjt`βjptqs,

(2.57)

whence

s´j “ cos θj σ´j ` sin θj
σ´j

|σ´j |

ˆ

σzj cosαj ´
i

2 sinαj
˙

,

szj “ cos θj σzj ´ sin θj |σ´j | cosαj .

(2.58)

Note that θj is the only time-independent quantity in Eq. (2.58). A geometric interpretation

of the motion of the general solution sjptq with respect to the periodic solution σjptq becomes

clear once we use Eq. (2.58) to express sjptq in the body coordinate system of σjptq. Let

ẑ1j “ σ̂j , while x̂1j lies along the line defined by the intersection of the plane spanned

by {ẑ1j , ẑj} and that perpendicular to ẑ1j . Finally, ŷ1j satisfies ŷ1j ¨ x̂1j “ ŷ1j ¨ ẑ1j “ 0 and

x̂1j ˆ ŷ1j “ ẑ1j . These definitions lead to

x̂1j “
2
|σ´j |

ˆ

σzjσ
x
j x̂j ` σzjσ

y
j ŷj ´ |σ

´
j |

2ẑj
˙

,

ŷ1j “ ´
σyj

|σ´j |
x̂j `

σxj

|σ´j |
ŷj .

(2.59)
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The general spin solution sjptq in this new coordinate system is then

sjptq “ cos θjσjptq ` sin θjσjKptq,

σjKptq ”
cosαjptq

2 x̂1j `
sinαjptq

2 ŷ1j ,
(2.60)

where σj ¨ σjK “ 0 and σjK is not periodic. We see from Eq. (2.60) that sjptq makes a

constant angle θj with the periodic solution and rotates about it with a variable angular

frequency 9αjptq. From Eq. (2.57) and the periodicity of Ujptq and Vjptq, we conclude that

αjptq ´ 2νjt is also periodic with the same period as the external ∆ptq driving the system.

6.3 Asymptotic self-consistency

Thus far, we have considered ∆ptq to be an external periodic driving that is not necessarily

self-consistent. We showed for any such external driving, there is a corresponding periodic

spin solution σjptq with the same period as ∆ptq. Furthermore, we derived in Eq. (2.60)

that the general spin solution sjptq precesses in a simple manner about σjptq. In the

true quench dynamics, however, ∆ptq must be self-consistent, and we now show that this

requirement implies that there always exists a set of constants θj , such that the following

integral equation holds for the asymptotic periodic ∆ptq:

∆ptq “ gf
ÿ

j

fjσ
´
j r∆ptqs cos θj , (2.61)

The notation σj “ σjr∆s emphasizes that the periodic spin solution is some complicated

nonlocal function of ∆ptq. An analogous expression to Eq. (2.61) exists for the spin-orbit

model.

Eq. (2.61) is simply asymptotic self-consistency, as introduced in Sect. 5, applied to the

Floquet problem studied in Sects. 6.1 and 6.2. To see this, suppose that we observe some

Phase III asymptotic periodic ∆ptq after a quench from the ground state of the separable
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BCS model, as discussed in Sect. 5.3. This ∆ptq is self-consistent by definition, i.e.,

∆ptq “ gf
ÿ

j

fjs
´
j ptq, (2.62)

which we write in terms of the underlying periodic spin solution σj by using Eq. (2.58)

∆ “ gf
ÿ

j

fj

ˆ

σ´j r∆s cos θj ` σ´jKr∆s sin θj
˙

,

σjK ”
σ´j

|σ´j |

ˆ

σzj cosαj ´
i

2 sinαj
˙

,

αjptq “ Ajptq ` 2νjt, Ajpt` T q “ Ajptq,

(2.63)

where νj is the imaginary part of the Floquet exponent as introduced in Eq. (2.52). As

in our analysis of self-consistency in Phases I and II, Eq. (2.63) cannot hold exactly, this

time because the sum over σ´jKr∆s is the only non-periodic term. Nonetheless, under the

reasonable assumption that νj`1´νj „ δ, where δ is the level spacing, the sum over σ´jKr∆s

dephases in N Ñ8 limit as tÑ8 (the N Ñ8 limit comes first), leading to Eq. (2.61).

6.4 Self-consistent solutions in the separable BCS model

We have seen that an asymptotically self-consistent periodic ∆ptq satisfies the functional

equation (2.61) in the separable BCS model. We now will give evidence that solutions to

Eq. (2.61) are elliptic functions. In order to generate such solutions, fix a period T and

write ∆ptq as a Fourier series

∆ptq “
8
ÿ

n“´8

cne
2πin t

T , (2.64)

which we truncate to some nmax, such that cn “ 0 if |n| ą nmax. In the particle-hole

symmetric limit, ∆ptq is a real quantity that satisfies ∆ptq “ ∆p´tq [see Eq. (2.19)], so that

cn is real and equals c´n.

For a fixed set of coefficients cn, we determine σxj r∆ptqs by solving the equations of
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motion (2.6) from t “ 0 to t “ T with ∆ptq given by (2.64). If the choice of cn produces a

self-consistent ∆ptq, then it will be equal to the quantity ∆compptq defined as

∆compptq “ gf
ÿ

j

fjσ
x
j r∆ptqs cos θj , (2.65)

for some set of θj . For most choices of cn, however, Eq. (2.65) will not hold. As both

∆ptq and ∆compptq are periodic functions of time with the same period, we define a distance

rptcnuq as

r2ptcnuq “

ż T

0

ˆ

∆compptq ´∆ptq
˙2
dt. (2.66)

A given ∆ptq is asymptotically self-consistent if and only if rptcnuq “ 0.

We now explore the results of this procedure for the Lorentzian coupling of the separable

BCS model for various values of the integrability breaking parameter γ. It turns out that this

procedure works when we fix cos θj “ 1, i.e., we find exactly (and not just asymptotically)

self-consistent solutions. In order to find such solutions, we start from the known values

of the Fourier coefficients of the s-wave (γ “ 8) solution, which are close to the Fourier

coefficients of the γ " 1 solutions. We then progressively lower γ while finding Fourier

coefficients that minimize rptcnuq. Typically we obtain values of r „ 10´12 ´ 10´11 before

declaring the solution self-consistent.

Fig. 2.14 gives of examples of such solutions at fixed ∆0f and period T . Notably, there

is a minimum γ “ γmin below which the amplitude of oscillation vanishes. As γ is increased

from this minimum, the amplitude of oscillations increases to a maximum and then decreases

to a nonzero limiting value as γ Ñ 8. Fig. 2.14 also shows the fast convergence of γmin as

a function of N for two examples of this procedure.

In Sect. 5.3, we argued through example quenches that the ∆ptq of Phase III are always

elliptic functions, i.e., they satisfy Eq. (2.44). We show in Fig. 2.15 that the exactly self-

consistent ∆ptq from Fig. 2.14 also satisfy Eq. (2.44) to a high degree of accuracy. The
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Floquet analysis of the equations of motion from Sect. 6.1 applies to any periodic ∆ptq.

From Fig. 2.15, we conclude that the self-consistency requirement (2.61) is essential to

selecting elliptic functions amongst all possible periodic functions.

7 Quasiperiodic Phase IV

Quenches that do not conform to Phases I-III are another intriguing consequence of inte-

grability breaking. We present two such examples in Figs. 2.16 and 2.17. Figs. 2.16a and

2.17a show a particle-hole symmetric quench of the separable BCS Hamiltonian with sine

coupling from Eq. (2.24). Figs. 2.16b and 2.17b depict a quench of the Zeeman field in

the spin-orbit model (2.14). The quasiperiodic behavior of ∆ptq in Fig. 2.16a sets in very

early on, as corroborated by Fig. 2.17a, and persists with no appreciable changes at least

until the times shown in the figure. Similarly, Fig. 2.16b is representative of the long-time

spin-orbit |∆ptq|2 as evidenced by Fig. 2.17b. Based on our preliminary analysis of the

Fourier spectrum of |∆ptq|2 for this quench and of the maximal Lyapunov exponent with

the method of local divergence rates [78], we believe that it too is quasiperiodic. However,

a more careful study is needed to unambigously distinguish between quasiperiodicity and

chaos in this case. Such a study is beyond the scope of the present paper, where we mainly

focus on the properties of Phases I-III.

Note that the simulation times in Figs. 2.16 and 2.17 are enormous compared to the

characteristic time of a single oscillation and even to typical Phase III relaxation times

τ∆0f „ 103 we observed in Sect. 5.3, cf. Fig. 2.12 and the caption to Fig. 2.8. Thus, both

of these examples do not belong to Phases I, II, or III. We therefore conclude that there are

regions of quasiperiodicity in the quantum quench phase diagrams of nonintegrable pairing

models, which we call Phase IV.
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8 Conclusion

The far-from-equilibrium steady states reached by nonintegrable pairing models after a

quantum quench admit a similar taxonomy as do the integrable cases. We have shown that

some or all of Phases I-III may occur in the separable BCS models and spin-orbit model

defined in Eq. (2.1). The persistent periodic oscillations characterizing Phase III are always

elliptic functions, regardless of whether the model is integrable. Moreover, we have devel-

oped a stability analysis of the three phases, summarized in Eq. (2.42), which generalizes

known results in the integrable cases and elucidates the mechanism of nonequilibrium phase

transitions using the language of linear analysis.

Despite these striking similarities, consequences accompany integrability breaking. As

argued in Sect. 5.2, some nonintegrable models may not exhibit all three phases. At the

same time, an entirely new quasiperiodic Phase IV emerges in certain models. Another key

byproduct of integrability breaking is the emergence of a new, extremely long relaxation

time scale τ when the asymptotic state either is or appears to be Phase III. For t ă τ , ∆ can

oscillate with more than one fundamental frequency and a slowly varying amplitude. This

time scale is a generic feature of nonintegrable models, and its existence renders short-time

analyses inadequate for determining the long-time dynamics. Moreover, τ diverges as we

approach integrable points (e.g., as γ´1 Ñ 0 in the separable pairing models of Sect. 5),

and it is often too large for the practical determination of the true asymptotic state.

While the squared modulus of ∆ptq [and ∆ptq itself in the particle-hole symmetric case]

is always an elliptic function in Phase III, its parametrization is more complicated in non-

integrable models. As a result, the reduction mechanism discussed in Appendix C, which

explains how Phase III manifests itself in the integrable models, does not apply to noninte-

grable models. Nonetheless, we demonstrated in Sect. 6 that the common structure of the

nonintegrable models implies the existence of a periodic solution to the classical pseudospin
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equations of motion if ∆ptq is taken to be a generic periodic external driving. Using nu-

merical examples, we argued that further requiring ∆ptq to be self-consistent selects elliptic

functions amongst all possible periodic functions.

It is instructive to discuss the BCS quench dynamics in terms of bifurcation theory

[79, 80, 81]. For example, consider the particle-hole symmetric separable BCS models with

real ∆. For fixed initial conditions (2.17) and any function ∆ptq with fixed ∆p0q, the

equations of motion (2.6) have a unique solution sjr∆ptqs ” srεj ,∆ptqs. Eq. (2.7) then

provides a closed nonlinear integral equation for ∆ptq [cf. Eq. (2.61)],

∆ptq “ gf

ż

dε sxrε,∆ptqs. (2.67)

Phase I is a fixed point, ∆ “ 0, of this equation [82], while Phase II corresponds to two fixed

points ∆8 and eiπ∆8 “ ´∆8. In Phase III we end up on one of two limit cycles related to

each other by a rotation by π around the z-axis [change of sign of ∆ptq]. The Phase I to II and

II to III transitions correspond to supercritical pitchfork and Hopf bifurcations, respectively,

in this language [83]. The same results apply to the spin-orbit model (2.14). We also note

that this quantum quench phase diagram is surprisingly similar to the nonequilibrium phase

diagram of two atomic condensates coupled to a heavily damped cavity mode [84, 85]. The

mean-field dynamics of the latter system are described by the driven-dissipative variant

of the Bloch equations (2.6) for two classical spins representing individual condensates.

Moreover, there are islands of quasiperiodicity in the phase diagram of the two coupled

condensates, where the dynamics are very similar to that shown in Figs. 2.16 and 2.17.

Bifurcation theory also offers a plausible explanation for the divergence of the relaxation

time τ near integrable points. Consider Phase III for an integrable pairing Hamiltonian,

such as the particle-hole symmetric s-wave BCS model. Suppose the corresponding limit

cycle loses stability as soon as integrability is broken and another limit cycle emerges as an

attractor. An example of such behavior is the transcritical bifurcation [79, 80, 81]. Because
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the instability is weak for weak integrability breaking and because the evolution starts near

the unstable limit cycle, the system takes a very long time τ to reach the attractor. The

weaker the integrability breaking, the closer we are to the bifurcation and the longer the

time τ .

An interesting open problem is to explore the newly discovered quasiperiodic Phase

IV. In particular, one needs to investigate the possibility that asymptotic oscillations of

|∆ptq| for certain quenches may be chaotic, rather than quasiperiodic, i.e., the potential

existence of a chaotic phase in addition to the quasiperiodic one. Let us also mention that

quasiperiodic |∆ptq| also occurs in integrable models, but only when the initial (pre-quench)

state is a highly excited state instead of the ground state [86].

In this paper, we employed reduced BCS Hamiltonians (2.1) to model pairing dynamics.

This description is valid only at times t ! Γ´1, where Γ is the highest among the rates

of processes such Hamiltonians neglect. These processes include pair-breaking collisions

[35, 36, 37, 53], three-body losses in ultracold gases [87], thermal fluctuations [88], etc. Thus,

to reach the asymptotic state before these effects influence the dynamics, we need Γ´1 " τ .

In Phases II and III, this requirement is much more stringent than Γ´1 " T∆ typically

quoted in the literature on collisionless pairing dynamics. Here T∆ is the characteristic

period of ∆ptq oscillations (T∆ is of the order of the inverse equilibrium gap ∆0f in our

separable BCS models). Another limitation is the parametric instability of Phase III with

respect to spontaneous eruptions of spatial inhomogeneities [89, 90, 91, 92]. To avoid this

instability, the system size has to be smaller than the superconducting coherence length.
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(a)

(b)

Figure 2.14: (a) Examples of exactly self-consistent, periodic ∆ptq’s for the Lorentzian
separable BCS equations of motion for different values of γ at fixed ∆0f “ 0.5W , period
T “ 225{W , and N “ 500. For these fixed parameters, below γmin „ 0.172W the only
exactly self-consistent, periodic ∆ptq is a constant in time equal to the equilibrium value.
(b) Convergence of γmin as a function N . In both plots, ∆0f and γ are given in units of W
and T in units of W´1.
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Figure 2.15: Evidence that the self-consistent periodic ∆ptq from Fig. 2.14 are elliptic
functions. Squared time derivatives 9∆ptq as a function of ∆ptq are given by solid blue
lines. These lines overlap strongly with the dashed lines, which are the fits to the defining
differential equation for elliptic functions Eq. (2.44). If a ∆5 coefficient is included in the
fits, it is several orders of magnitude smaller than those for the 4th order fit shown here,
providing strong evidence that 9∆2ptq is indeed a 4th order polynomial in ∆ptq. In this plot,
γ is given in units of W and ∆ in units of ∆0f
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(a)

(b)

Figure 2.16: Quenches of nonintegrable separable BCS and spin-orbit models that do not
conform to Phases I, II or III. This quasiperiodic dynamics of the order parameter emerge
early and persist for the entire time of the simulation, see also Fig. 2.17. Plot (a) is
the particle-hole symmetric separable BCS model with sine coupling from Eq. (2.24) and
N “ 4 ˆ 105 spins. In units of the bandwidth, the integrability breaking parameter is
γ “ 0.075, while ∆0i “ 0.05 and ∆0f “ 0.5. Part (b) is the spin-orbit model withN “ 2ˆ105

spins. In units of the bandwidth: εF “ 0.4, α2 “ 0.4, gN “ 2, hi “ 2, and hf “ 0.514256.
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(a)

(b)

Figure 2.17: Darker blue points are local minima and maxima of the oscillations for the
quenches from Fig. 2.16 for the entire time of the simulations. These plots suggest that
there are regions of quasiperiodicity (Phase IV) in the quantum quench phase diagrams
of nonintegrable pairing models. Part (a) is the same quench as in Fig. 2.16a, part (b)
corresponds to Fig. 2.16b. In terms of the inverse level spacing, the time evolution goes out
to tmax “ 0.625δ´1 in plot (a) and to tmax “ δ´1 in plot (b).



Appendix A

Mean-field equations of motion

The pseudospin equations of motion for the separable BCS model (2.6) obtain simply from

the Heisenberg equations of motion d
dtÂ “ i rĤ, Âs applied to the mean-field Ĥf in Eq. (2.2)

and the pseudospin operators ŝ defined in Eq. (2.5). The classical spin variables s are the

expectation values of the pseudospin operators s “ xŝy, and the time-dependent order

parameter ∆ is determined self-consistently according to Eq. (2.7).

The generalized pseudospin representation of Ĥso from Eq. (2.1) requires more work [56].

First, we diagonalize the kinetic part of Ĥso through the following unitary transformation

to new fermionic operators âk˘

Uk

¨

˚

˝

ĉkÒ

ĉkÓ

˛

‹

‚

“

¨

˚

˝

âk`

âk´

˛

‹

‚

Uk “

¨

˚

˝

cos φk2 ´i e´iθk sin φk
2

sin φk
2 i e´iθk cos φk2

˛

‹

‚

,

(A.1)

where k “ keiθk and φk is defined in terms of the model parameters in Eq. (2.3). One can

check that the new elementary excitation energies are εk˘ ” εk ¯Rk. Eq. (A.1) implies

ĉ´kÓĉkÒ “
´i eiθk

2

ˆ

sinφkpâ´k`âk` ´ â´k´âk´q`

` cosφkpâk´â´k` ` âk`â´k´q`

` âk`â´k´ ` â´k`âk´

˙

.

(A.2)

Upon summing over k, the last two terms in parentheses cancel with momenta of opposite

57
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sign. Therefore, the interaction term of (2.1) in this new basis becomes

g
ÿ

kk1
ĉ:kÒĉ

:

´kÓĉ´k1Óĉk1Ò “
1
g

∆̂:∆̂,

∆̂ ”
g

2
ÿ

kλ
eiθk

ˆ

λ sinφkâ´kλâkλ ` cosφkâkλâ´kλ̄

˙

,

(A.3)

and upon taking the mean-field approximation ĉ:ĉ:ĉĉ « xĉ:ĉ:yĉĉ` ĉ:ĉ:xĉĉy´ xĉ:ĉ:yxĉĉy, the

interaction term becomes

∆̂:∆̂ « ∆˚∆̂`∆∆̂: ´∆˚∆,

∆ ” x∆̂y.
(A.4)

Neglecting the constant term ∆˚∆{g, we arrive at the mean-field spin-orbit Hamiltonian

Ĥso in the â basis found in (2.2). Similar to the separable BCS model, we now search for

a set of quadratic fermionic operators whose equations of motion are closed. Define the

following operators

Ŝzkλ “
1
2
`

â:kλâkλ ` â
:

´kλâ´kλ ´ 1
˘

,

Ŝ´kλ “ ληkâ´kλâkλ,

L̂zkλ “ ´
λ

4
`

â:k`âk´ ` â
:

´k`â´k´`

` â:k´âk` ` â
:

´k´â´k`
˘

,

L̂´kλ “
ηk
2
`

âk`â´k´ ` âk´â´k`
˘

,

T̂k “
i

4
`

´ â:k`âk´ ´ â
:

´k`â´k´`

` â:k´âk` ` â
:

´k´â´k`
˘

,

(A.5)

where ηk “ ei θk “ ´η´k and, as usual, Ŝ´ “ Ŝx ´ i Ŝy and L̂´ “ L̂x ´ i L̂y.

One can check that Ŝkλ, L̂kλ and T̂k are Hermitian operators. There is reflection

symmetry in k-space: Â´kλ “ Âkλ for all operators Âkλ in (A.5), as well as the following

band symmetry for L̂kλ: L̂´k` “ L̂´k´ and L̂zk` “ ´L̂
z
k´.
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We apply the Heisenberg equations of motion to (A.5) and Ĥso from (2.2) and then take

expectation values to arrive at the generalized pseudospin equations of motion (2.11). The

time-dependent order parameter ∆ “ x∆̂y as a function of the new variables can be found

in Eq. (2.12). The factor ηk does not appear in Eq. (2.11), implying that the dynamics

preserve any radial symmetry found in the initial state. As all initial states considered in

this work are radially symmetric, one can opt to label the generalized pseudospin variables

by their single-particle energies rather than their momentum vector.



Appendix B

Integrable limit of spin-orbit quenches

The authors of Ref. [55] created a full nonequilibrium phase diagram of the spin-orbit model

for quenches of the magnetic field hi Ñ hf as a function of hi and hf . However, this phase

diagram needs to be revised by running simulations to much longer times t ą τ , which, in

particular, may modify the Phase II-III boundary [93]. The phase diagram of Ref. [55] is

also missing the quasiperiodic Phase IV discovered in the present work.

In Ref. [56], an attempt was made to analyze interaction and external field quenches

to the integrable limit hf “ 0, but mistakes led to an incorrect phase diagram for the

interaction quenches. Here we correct those mistakes and generate a correct phase diagram.

When the external field h is set to zero, Hso from (2.14) becomes equivalent to the

integrable s-wave model with a dispersion relation εkλ “
k2

2 ´ λαk. This becomes clear in

the equations of motion (2.11) with cosφk “ 0 and sinφk “ 1, where the spin degrees of

freedom Skλ decouple from the others and ∆ depends only on Skλ. In what follows, the

initial state of the system will be the ground state for some hi ě 0 given by (2.20), and the

Hamiltonian for t ě 0 is

H “
ÿ

kλ
2εkλSzkλ ´ 2|∆|2{gf ,

∆ “
gf
2
ÿ

kλ
S´kλ, εkλ “

k2

2 ´ λαk.

(B.1)

We use the integrability of H to construct the exact phase diagram using a technique

imported from Refs. [53] which we now summarize briefly. The analysis centers around a
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quantity Lpuq called the Lax vector (not to be confused with the variables Lkλ)

Lpuq “ ´ 2
gf

ẑ`
ÿ

kλ

Skλ
u´ εkλ

. (B.2)

The integrability of H follows from the fact that L2puq is conserved by the time evolution

for arbitrary u, which implies conservation of the 2N roots of L2puq, which we call uj .

As demonstrated in Ref. [53], each of the asymptotic nonequilibrium phases corresponds a

unique number of isolated complex pairs of uj in the continuum limit. Phase I corresponds

to zero isolated uj , Phase II corresponds to one pair, and Phase III corresponds to two

pairs. As the uj are constants of the motion, we can evaluate L2puq at t “ 0 to determine

the number of isolated pairs of uj and thus generate the phase diagram for a given hi.

Let us first start with the case when hi “ 0 and we quench the interaction gi Ñ gf . In

this case the ground state self-consistency relationship is

2
gi,f

“
ÿ

kλ

1
2Ekλ

, Ekλ “
b

pεkλ ´ µi,f q2 `∆2
0i,f . (B.3)

Using Eq. (B.3) along with the initial state given by Eq. (2.17), we find that the initial Lax

vector has the form

Lpuq “
ˆ

∆0iLxpuq, 0, pµi ´ uqLxpuq ´ rβ

˙

,

Lxpuq “
ÿ

kλ

1
2pu´ εkλqEkλ

, rβ ”
2
gf
´

2
gi
.

(B.4)

If gf “ gi, i.e., the zero quench, then rβ “ 0 and the only complex pair of roots is u˘ “

˘i∆0i ` µ. This is the degenerate Phase II case, where ∆ptq “ ∆0i identically. When

gf ‰ gi, L2puq “ 0 implies

ÿ

kλ

1
pu´ εkλq

a

pεkλ ´ µiq2 `∆2
0i
“ ´

2rβ
u´ µi ˘ i∆0i

. (B.5)
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We now construct the phase diagram shown in Fig. B.1 for the hi “ hf “ 0, gi Ñ gf

quenches in the spin-orbit model. As we will not utilize particle-hole symmetry, the chemical

potential µ must be calculated from the fermion number Eq. (2.16), which in the present

case reads

Nf “
ÿ

kλ

ˆ

´
εkλ ´ µ

2
a

pεkλ ´ µq2 `∆2
0i
`

1
2

˙

. (B.6)

In the continuum limit, we have the following translation from sums over kλ to integrals

over the continuum for arbitrary functions F pεkλq

ÿ

kλ
F pεkλq “

N

W

ż W´

´εb

F pxqναpxqdx,

ναpxq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

2?
1`x{εb

, ´εb ď x ď 0

2, 0 ď x ďW`

1´ 1?
1`x{εb

, W` ď x ďW´

,

εb ” α2{2, Wλ ”W ´ 2λ
a

εbW.

(B.7)

Thus, the spin-orbit coupling α at h “ 0 has the simple effect of introducing a peculiar den-

sity of states ναpxq to the s-wave problem. Let rB “ limNÑ8
rβ{N and n “ limNÑ8Nf{N ,

the latter of which is fixed for the entire phase diagram. For a given pair p∆0f ,∆0iq, we

first solve for pµf , µiq and then for rB through the following integral equations:

2n “
ż

X

ˆ

1´ x´ µi,f
b

px´ µi,f q2 `∆2
0i,f

˙

,

2 rB “
ż

X

ˆ

1
b

px´ µf q2 `∆2
0f

´
1

a

px´ µiq2 `∆2
0i

˙

,

ż

X
p¨q ”

1
W

ż W´

´εb

p¨qνpxqdx.

(B.8)
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We then use rB and µi as input for the following integral equation:

ż

X

1
pu´ xq

a

px´ µiq2 `∆2
0i
“ ´

2 rB
u´ µi ˘ i∆0i

, (B.9)

which we solve for u. The number of complex pairs of roots to Eq. (B.9) determines which

nonequilibrium phase the system enters.

Figure B.1: Phase diagram for interaction quenches gi Ñ gf in the integrable limit hf “
hi “ 0 of the spin-orbit model. Apart from the varying coupling constant g, the model
parameters are the same as found in Fig. 2.2. The black dotted lines ∆0i “ e˘π{2∆0f
indicate the weak coupling limit (∆ !W ) phase boundaries [53]. The thick blue lines mark
the true phase boundaries, which are characterized by the appearance of a new pair of
complex roots of Eq. (B.9) when passing from Phase I to Phase II or Phase II to Phase III.

Quenches from hi ‰ 0 to hf “ 0 still undergo integrable dynamics, except now the

initial state is no longer the s-wave ground state. We consider the behavior of the zeros

of L2puq with respect to hi in the continuum limit with the spin-orbit parameters given in

Fig. 2.2. The Lax vector is still as defined in Eq. (B.2), but we now enter the spin-orbit

ground state (2.20) into the equation L2pujq “ 0, which implies Lxpujq “ ˘i Lzpujq. The
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spin components of the hi ‰ 0 ground state are functions of the form Fλpεkq instead of

F pεkλq; we therefore do not use (B.7) for the continuum limit, but rather

ÿ

kλ
Fλpεkq “

N

W

ż W

0

ˆ

F`pxq ` F´pxq

˙

dx. (B.10)

The result of the root calculation is given in Fig. B.2, where we plot the absolute value of

the imaginary part of each root pair. For small hi, there is only one pair of complex roots,

i.e., the asymptotic phase is Phase II. At a certain critical hi, a second pair of complex

roots appears, and the system enters Phase III. For larger hi, the two pairs of roots merge

into one and the system reenters Phase II. Phase I does not occur in hf “ 0 quenches for

the parameters we used.
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Figure B.2: Behavior of the roots of L2puq for quenches from the ground state of hi ‰ 0 to
hf “ 0 in the continuum limit with spin-orbit parameters as given in Fig. 2.2. Each solid line
is the absolute value of the imaginary part of a pair of complex conjugate roots. Regions of
hi with one such line indicate that the asymptotic state is Phase II, while the region where
there are two separate lines indicate Phase III. The vertical dashed lines indicate various
critical values of hi where the system undergoes a phase transition or crossover. From left
to right, h1 “ 0.7813εF is the topological transition of the ground state, h2 “ 0.9938εF
is a Phase II-III transition, h3 “ 1.6625εF is the BCS-BEC crossover, and h4 “ 2.2938εF
is a Phase III-II transition which also appears to correspond to ∆0i “ 0 being the only
self-consistent initial equilibrium gap. These critical values of hi depend in general on the
various spin-orbit model parameters.



Appendix C

Integrability breaking forbids asymptotic reduction

An important property of the quench dynamics of integrable s and pp` ipq-wave Hamilto-

nians is the dynamical reduction in the number of degrees of freedom at t Ñ `8 in the

thermodynamic limit [53, 54]. In particular, Phase III in these models corresponds to the

motion of two collective classical spins S1 and S2 governed by a Hamiltonian of the same

form. The asymptotic order parameter ∆ptq in Phase III coincides with that of the 2-spin

problem. Further, there are special reduced solutions of equations of motion with the same

∆ptq that are of the form

sj “ αjS1 ` βjS2 ` ηj ẑ, (C.1)

where αj , βj and ηj are time-independent and ẑ is a unit vector along the z-axis. These

observations lead to an analytical expression for ∆ptq and, moreover, help to construct the

full asymptotic spin configuration in Phase III. We note also that, as we will see below, for

the s-wave BCS model in the particle-hole symmetric case, (C.1) is equivalent to the ansatz

of Ref. [37].

We will now show that the above reduction mechanism relies on integrability and breaks

down for nonintegrable separable BCS models. We will prove two independent statements:

(i) reduced solutions exist only when f2pxq “ C1 ` C2x, i.e. only when the Hamiltonian is

integrable [61, 62] and (ii) ∆ptq for a 2-spin separable BCS Hamiltonian with an arbitrary

choice of new ε1,2, f1,2 and g does not match the asymptotic ∆ptq we obtained in Sect. 5.3.

C.1 Existence of reduced solutions implies integrability and vice versa

We will follow the same steps as in the derivation of the 2-spin solutions in Ref. [53] and show

that it only works for special choices of fpxq. First, we treat the general non-particle-hole
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symmetric case.

Let

∆ “ Ωe´iΦ. (C.2)

The 2-spin (reduced) Hamiltonian is

Hred “
2
ÿ

j“1
2rεjSzj ´ rg

ÿ

j,k

rfj rfkS
´
j S

`
k “

“

2
ÿ

j“1
2rεjSzj ´

|∆|2

rg
,

(C.3)

where ∆ “ rgp rf1S
´
1 `

rf2S
´
2 q. We take both rfk to be nonzero, because otherwise the two

spins simply decouple and rotate uniformly around the z-axis.

Energy and Sz1 ` Sz2 are conserved. Since there are two conservation laws and two

degrees of freedom, Hred is integrable. For more than two spins, integrability persists only

for special choices of rfk. This fact alone already distinguishes the 2-spin problem from that

of a generic N -spin separable BCS Hamiltonian.

Conservation of energy and Sz1 ` S
z
2 read

2rε1S
z
1 ` 2rε2S

z
2 “ rE `

Ω2

rg
,

Sz1 ` S
z
2 “ const,

(C.4)

We need rε1 ‰ rε2 or |∆| will be constant. We use Eq. (C.4) to express Szk in terms of Ω2,

Szk “ rakΩ2 `rbk, k “ 1, 2; (C.5)

where rak and rbk are time-independent and ra1 “ ´ra2 ‰ 0. Furthermore, Eq. (C.1) implies

a similar expression for szj in terms of the order parameter amplitude,

szj “ ajΩ2 ` bj . (C.6)
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Conservation of the energy

E “
ÿ

j

2εjszj ´
|∆|2

g
, (C.7)

and of Jz “
ř

j s
z
j require

ÿ

j

aj “ 0,
ÿ

j

2εjaj “
1
g
. (C.8)

We write the Bloch equations for the separable BCS Hamiltonian as

9szj “ ´ifjps
´
j ∆˚ ´ s`j ∆q, (C.9)

9s´j “ ´2ifjszj∆´ 2iεjs´j . (C.10)

Since the equations of motion and Eqs. (C.5) and (C.6) for the reduced solution and the

2-spin problem have the same form, we can treat both of them simultaneously.

Substituting Eq. (C.6) into Eq. (C.9), we find

s´j e
iΦ ´ s`j e

´iΦ “ 2iaj
fj

9Ω. (C.11)

Next, we multiply Eq. (C.10) by eiΦ and add the resulting equation to its complex conjugate,

d

dt

´

s´j e
iΦ ` s`j e

´iΦ
¯

“
4ajεj
fj

9Ω´ 2aj
fj

9Φ 9Ω, (C.12)

where we made use of Eq. (C.11). Integrating and adding the resulting equation and

Eq. (C.11), we obtain

s´j e
iΦ “

2ajεj
fj

Ω´ aj
fj
A` i

aj
fj

9Ω` ajcj
fj

, (C.13)

where ajcj
fj

is the integration constant and A “
ş

dt 9Φ 9Ω. The self-consistency condition

∆ “ g
ř

j fjs
´
j , combined with Eq. (C.8), implies

ř

j ajcj “ 0.
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The analogous expressions for the 2-spin problem are

S´k e
iΦ “

2rakrεk
rfk

Ω´ rak
rfk
A` i

rak
rfk

9Ω` rakrck
rfk

, (C.14)

and ra1rc1 ` ra2rc2 “ ra1prc1 ´ rc2q “ 0. Therefore, rc1 “ rc2 and the last term in Eq. (C.14) can

be absorbed into A, which is defined up to a constant anyway, i.e.,

S´k e
iΦ “

2rakrεk
rfk

Ω´ rak
rfk
A` i

rak
rfk

9Ω. (C.15)

Since s´j is related to S´1 and S´2 via Eq. (C.1), this also eliminates the last term in

Eq. (C.13), i.e.,

s´j e
iΦ “

2ajεj
fj

Ω´ aj
fj
A` i

aj
fj

9Ω. (C.16)

Combining the conservation of the spin norm, s2
j “ ps

z
j q

2`|s´j |
2, with Eqs. (C.6) and (C.16),

we derive the following differential equation for Ω:

pajΩ2 ` bjq
2 `

p2ajεjΩ´ ajAq2 ` a2
j

9Ω2

f2
j

“ s2
j , (C.17)

or, equivalently,

9Ω2 ` f2
j Ω4 ` Ω2

ˆ

2fjbj
aj

` 4ε2
j

˙

´ 4εjAΩ

`A2 `
f2
j pb

2
j ´ s

2
j q

a2
j

“ 0.
(C.18)

This equation implies, among other things, that A is a function of Ω. Indeed, consider a

set of numbers xj , such that
ř

j xj “ 0. Multiplying Eq. (C.18) by xj and summing over j,

we find

AΩ “ λΩ4 ` 2µΩ2 ` κ, (C.19)
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where λ, µ and κ are real constants. Substituting this back into Eq. (C.18), we obtain

9w2

4 ` λ2w4 ` pf2
j ´ 4λξjqw3 `

ˆ

2fjbj
aj

` 2λκ` 4ξ2
j

˙

w2`

˜

f2
j pb

2
j ´ s

2
j q

a2
j

´ 4κξj

¸

w ` κ2 “ 0,
(C.20)

where w “ Ω2 and ξj “ εj ´ µ. These equations are consistent only when the coefficients

of powers of w are j-independent. In particular, we must have f2
j “ 4λξj ` const., i.e.,

f2
j “ C1 ` C2εj , (C.21)

where C1 and C2 are real constants. This is the most general form of fj for which the

separable BCS Hamiltonian (2.8) is known to be integrable [61, 62]. In particular, C2=0

corresponds to the s-wave and C1 “ 0 to the pp ` ipq-wave models. Conversely, when

Eq. (C.21) holds and the separable Hamiltonian is therefore integrable, the j-independence

of coefficients at w2 and w determines aj and bj , and Eq. (C.20) means that w “ |∆|2 is a

certain elliptic function of time.

C.2 Asymptotic ∆ptq does not match the 2-spin solution in nonintegrable cases

In Sect. 5.3 we numerically determined ∆ptq in two nonintegrable separable BCS Hamil-

tonians, see Eq. (2.46). Here we show that ∆ptq for the most general separable 2-spin

Hamiltonian (C.3) cannot match Eq. (2.46).

Since ∆ptq in Eq. (2.46) is real, we take ∆ in the 2-spin problem to be real as well,

though we do not a priori assume particle-hole symmetry in the 2-spin problem. All we

need is to specialize the derivation of the previous subsection to the case of real ∆. Then,
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the Bloch equations become

9Szj “ ´2 rfjSyj ∆,

9Sxj “ ´2rεjSyj ,

9Syj “ 2rεjSxj ` 2 rfjSzj∆.

(C.22)

Substituting Eq. (C.5) into the first two equations of motion, we obtain

Syk “ ´
rak
rfk

9∆, (C.23)

and

Sxk “
2rεkrak
rfk

∆`
rakrck
rfk

, (C.24)

where rakrck
rfk

is the integration constant. As before, the self-consistency condition rgp rf1S
´
1 `

rf2S
´
2 q “ ∆ together with ra1 “ ´ra2 imply rc1 “ rc2 ” rc, and the conservation of spin length

pSxk q
2 ` pSykq

2 ` pSzkq
2 “ S2

k yields

9∆2 ` p2rεk∆` rcq2 `

˜

rfk∆2 `
rbk rfk
rak

¸2

“
S2
k
rf2
k

ra2
k

. (C.25)

Equating the coefficients at different powers of ∆ for k “ 1 and 2, we find rcprε1´ rε2q “ 0 ñ

rc “ 0,

rf1 “ rf2 ” rf, (C.26)

and two more relationships that constrain rak and rbk. The constraint (C.26) is a consequence

of the requirement that ∆ be real. Now Eq. (C.25) is of the form

9∆2 “ ´ rf2p∆2 ´∆2
`qp∆2 ´∆2

´q. (C.27)

This is the same as the equation for the asymptotic ∆ptq for the integrable s-wave BCS

Hamiltonian in the particle-hole symmetric case up to rescaling ∆new “ rf∆. This is not
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surprising because rf1 “ rf2 “ rf and the factor of rf2 in Eq. (C.3) can be absorbed into

the coupling constant, rgnew “ rf2
rg resulting in an integrable s-wave BCS Hamiltonian for

two spins with ∆new “ rgnewpS
´
1 ` S´2 q “

rf∆. The solution of Eq. (C.27) is ∆ptq “

∆`dnr rf∆`pt´t0q, 1´
∆2
`

∆2
´

s. As we saw in Sect. 5.3, in the nonintegrable case we find instead

a more general differential equation Eq. (2.44) with the solution given by Eq. (2.46).



Appendix D

The link between Lax constructions and the stability analysis

As mentioned above, the separable BCS model is integrable when f2
j “ C1εj ` C2. Two

important cases are the s-wave model where fj “ 1 and the p` ip model where fj “
?
εj .

In past work [53, 54], integrability has been exploited to determine the nonequilibrium

asymptotic phases through the use of Lax constructions. These techniques are useful for

constructing phase diagrams, but the physical interpretation of the phase transitions is

obscured by the use of exact solvability. We demonstrate here that the stability equation

Eq. (2.42), which applies to the nonintegrable cases as well, both predicts the same transition

points and clarifies the physical meaning of the Lax construction.

In the following, we will assume the quantities Zj , ∆8 and µ8 are given. They are

functions of the quench parameters ∆0i, ∆0f , the particle number Nf , and the Fermi energy

εF .

D.1 Lax norms

In the s-wave model, the Lax vector is [53]

Lspuq “ ´
ẑ
gf
`
ÿ

j

sj
u´ εj

, (D.1)
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while in the p` ip model its components are [54]

L`p puq “
ÿ

j

?
εjs

`
j

u´ εj
,

L´p puq “
ÿ

j

?
εjs

´
j

u´ εj
,

Lzppuq “
ÿ

j

εjs
´
j

u´ εj
´

1
gf
,

(D.2)

where u is a complex (spectral) parameter.

We focus on the norms of these quantities, defined as L2puq “ L2
xpuq`L

2
ypuq`L

2
ypuq in

the s-wave case and L2puq “ uL`puqL´puq ` rLzpuqs2 for p` ip. Integrability follows from

the fact that the L2puq and L2puq are conserved by the time evolution for arbitrary u, which

implies conservation of their roots uj . As demonstrated in Refs. [53] and [54] and discussed

in Appendix B, each of the asymptotic nonequilibrium phases corresponds a unique number

of isolated complex pairs of uj in the continuum limit. Phase I corresponds to zero isolated

uj , Phase II corresponds to one pair, and Phase III corresponds to two pairs.

The main result of this Appendix is that the roots of the Lax norm u and the frequencies

ω of δ∆ptq are related by u´ ur “ ˘1
2
a

ω2 ´ b2min, where ur is the real part of the root (cf.

Refs. [42, 53]), and bmin is the band edge in the frequency spectrum (bmin “ 0 in Phase I).

Thus, the new pair of complex conjugate Lax roots appears at the same time that ω emerges

into the band gap (i.e., ω2 ă b2min in Phase II and ω2 ă 0 in Phase I). Here and below in this

Appendix, we use the same notation u for the roots and for generic values of the spectral

parameter.

One may plug into the Lax norms the asymptotic spin solution (2.31) for Phase II, but

we shall use solutions that do not impose particle-hole symmetry. Letting rεj “ εj ´ µ8,



75

and noting that sums over the time-dependent terms dephase in the tÑ8 limit, we find

L2puq “

ˆ

´
1
gf
` σ1

˙2
`∆2

8σ
2
2,

σ1 ”
ÿ

j

Zj
u´ εj

, σ2 ”
ÿ

j

Zj
rεjpu´ εjq

,

L2puq “

ˆ

´
1
gf
` p1

˙2
` u∆2

8p
2
2

p1 ”
ÿ

j

εjZj
u´ εj

, p2 ”
ÿ

j

εjZj
rεjpu´ εjq

.

(D.3)

Eq. (D.3) reduces to the Phase I Lax norms when ∆8 “ 0 and by convention Zj Ñ zj . In

Phase II, Eq. (D.3) is supplemented by the self-consistency relationship

1 “ ´gf
ÿ

j

f2
j Zj

rεj
. (D.4)

D.2 Phase I-II transition

In the s-wave case, and in Phase I, we compare the stability equation Eq. (2.42) to the

vanishing of the Lax norm L2puq “ 0. After some algebra, Eqs. (2.42) and L2puq “ 0

become

1
gf
“

ÿ

j

zj

˘1
2ω0 ` µ8 ´ εj

, (D.5a)

1
gf
“

ÿ

j

zj
u´ εj

, (D.5b)

respectively. We argued in Sect. 5.2 that the Phase I-II transition occurs when a purely

imaginary pair of complex conjugate ω0 emerges as solutions to Eq. (D.5a), implying an

exponential instability to Phase I. The Lax construction stipulates that the same transition

occurs when an isolated pair of complex conjugate u solve Eq. (D.5b). In order for these

two methods to match, we must make the identification u´ µ8 “ ˘
1
2ω0, i.e., the real part

of the emergent Lax norm pair of roots must be µ8. We prove this is the case in Sect. D.4.
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The corresponding equations for Phase I in the p` ip model are

1
gf
“

ÿ

j

εjzj

˘1
2ω0 ` µ8 ´ εj

, (D.6a)

1
gf
“

ÿ

j

εjzj
u´ εj

, (D.6b)

and the same identification reconciles the two approaches.

D.3 Phase II-III transition

In Phase II, one applies the self-consistency relationship (D.4) to the Lax norms (D.3). In

the s-wave case, L2puq “ 0 becomes

0 “
“

pu´ µ8q
2 `∆2

8

‰

ˆ

ÿ

j

Zj
rεjpu´ εjq

˙2
, (D.7)

and we see the single pair of isolated conjugate roots are u˘ “ µ8 ˘ i∆8. The equation

for the second pair of isolated roots that would signal a transition to Phase III is therefore

0 “
ÿ

j

Zj
rεjpu´ εjq

. (D.8)

After applying Eq. (D.4) to the quantities Sjpω0q in the stability equation (2.42), we find

for the s-wave model

S1pωq ´ 1 “
ˆ

ω2

4∆2
8

´ 1
˙

S3pωq. (D.9)

This simplifies Eq. (2.42) to

0 “
ÿ

j

Zj
rεjp˘y ` µ8 ´ εjq

, y “
1
2
a

ω2 ´ 4∆2
8. (D.10)
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Matching (D.10) to (D.8), we make the correspondence u ´ µ8 “ ˘
1
2
a

ω2
0 ´ 4∆2

8. As we

discussed in Sect. 5.2, an ω0 emerging out of the continuum and into the band gap signals

the transition to Phase III. The band edge in the s-wave model is precisely 2∆8. We show

in Sect. D.4 that the new pair of conjugate Lax roots has real part µ8. Therefore, the two

approaches predict the same phase transition.

In the p` ip case, L2puq “ 0 couples with (D.4) to give

0 “
“

u∆2
8 ` pu´ µ8q

2‰
ˆ

ÿ

j

εjZj
rεjpu´ εjq

˙2
. (D.11)

The single pair of isolated roots of Phase II is then

u˘ “ uc ˘ i∆8

c

µ8 ´
∆2
8

4 ; uc ” µ8 ´
∆2
8

2 , (D.12)

and the emergent pair of conjugate roots solves

0 “
ÿ

j

εjZj
rεjpu´ εjq

. (D.13)

To show that the stability analysis reproduces Eq. (D.13), we will need two relations.

The first holds in general by applying the self-consistency relation (D.4) to the sums in

(2.42)

S1pωq ´ 1 “ ω2S4pωq ´ S3pωq,

S4pωq ” gf
ÿ

j

f2
j Zj

rεjpω2 ´rb2j q
,

(D.14)

while the second is specific to the p` ip model

S2pωq “ ´2ωµ8S4pωq `
ω

2∆2
8

S3pωq. (D.15)

We substitute Eqs. (D.14)-(D.15) into Eq. (2.42), which becomes a quadratic function of
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S3 and S4. The solution is

0 “
ÿ

j

Zj
rεjp˘y ` uc ´ εjq

, y “
1
2

b

ω2 ´B2
1 , (D.16)

where B1 “
a

4µ8∆2
8 ´∆4

8 is the band edge when uc ě 0. In this parameter range, we

identity u ´ uc “ ˘
1
2
a

ω2 ´B2
1 . We show in Sect. D.4 that the real part of the emergent

Lax roots is uc, and therefore the stability analysis and Lax constructions give the same

Phase II-III transition. When uc ă 0, the band edge is no longer B1, and we believe there

to be no Phase II-III transition in that case.

D.4 Real parts of Lax roots at the transitions

The equivalence between the Lax construction and the stability analysis relies on the fact

that the real parts of the emerging Lax roots are equal to µ8 at the Phase I-II transition in

both integrable models, µ8 at the Phase II-III transition in the s-wave model, and µ8´ ∆2
8

2

at the Phase II-III transition in the p` ip model. In other words, the emergent second pair

of isolated roots has the same real part as the first pair of isolated roots.

The Phase I-II transition real parts can be understood by a continuity argument. In

the s-wave model, Eq. (D.7) implies that the single pair of roots can be written as u˘ “

µ8 ˘ i∆8. As we approach the I-II boundary, ∆8 decreases continuously to zero, which

implies the real part of both roots at the boundary is µ8. In the p ` ip case, a similar

argument follows from Eq. (D.12).

s-wave, II-III

We use results from the spin reduction mechanism, discussed in Appendix C, of the s-wave

model to obtain the real parts of the Lax roots at the Phase II-III transition. This discussion

quotes several results directly from Sect. II B 3 of Ref. [53]. The isolated roots in Phase III
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of L2puq are given by the roots of the 2-spin spectral polynomial [53] Q4puq

Q4puq “
“

pu´ µq2 ´ ρ
‰2
´ κpu´ µq ´ χ. (D.17)

We determine the real parameters µ, ρ, κ and χ at the transition, which will then give the

roots of Q4puq. To do so, we use the differential equation and solution for the 2-spin ∆,

which is identical to that of the Phase III asymptotic ∆ of the many-body problem, which

we write as ∆ “ |∆|e´iΦ. Let w “ |∆|2 “ Λ2 ` h1, where h1 is a constant. The differential

equation for w is

0 “ 9w2 ` 4w3 ` 16ρw2 ` 16χw ` 4κ2, (D.18)

while the equation for the phase Φ is

9Φ “ 2µ´ κ

Λ2 ` h1
. (D.19)

Upon rewriting (D.18) as an equation for Λ, we find

9Λ2 “ ´pΛ2
` ´ Λ2qpΛ2

´ ´ Λ2q, (D.20)

where the constants Λ˘ are the maximum and minimum of the Λ oscillations which are

functions of the constants ρ, χ and κ. The solution of interest to Eq. (D.20) is

Λ “ Λ`dn
„

Λ`pt´ t0q, 1´
Λ2
´

Λ2
`



. (D.21)
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Near the II-III transition, the oscillations of Λ are small and it sufficient to keep only the

first harmonic of Eq. (D.21)

Λ « Λ0 ` δ cos
“

ω0pt´ t0q
‰

,

δ ! Λ0, ω0 « 2Λ0.

(D.22)

As we approach the II-III transition, ∆ Ñ ∆8e
´2iµ8t. Because |∆|2 “ Λ2 ` h1 has the

same frequency as Λ2, and the frequency of small oscillations of |∆|2 at the II-III transition

is 2∆8, we conclude Λ0 “ ∆8 and h1 “ 0. Using Eq. (D.19), we also find κ “ 0 and

µ “ µ8.

It remains to determine the constants ρ and χ, which we do by plugging (D.22) into

(D.18) and considering the Opδ0q and Opδq terms separately. The result is ρ “ ´∆2
8

2 and

χ “ ∆4
8

4 . The roots of the spectral polynomial Q4puq from Eq. (D.17) at the Phase II-III

transition therefore solve

0 “
„

pu´ µ8q
2 `

∆2
8

2

2
´

∆4
8

4 . (D.23)

One solution to (D.23) is u˘ “ µ8 ˘ i∆8, which is the single isolated pair characteristic

of Phase II. The other solution is a double root at u “ µ8, i.e., the new pair of roots that

emerges in Phase III has real part µ8.

p` ip, II-III

In order to prove that the Lax construction and stability analysis predict the same p ` ip

Phase II-III transition, we needed to assume that the real part of the emerging second pair

of roots equals that of the first pair of roots u˘ from (D.12). Using results from Ref. [54],

we now show that this is indeed the case.

For brevity, our derivation will use the conventions of Ref. [54], where the definitions

of some quantities differ by numerical factors. One redefines ε Ñ 2ε, 2G Ñ g,
?

2∆ Ñ ∆
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and u Ñ 2u in order to translate quantities from Ref. [54] to those in this work. While

some details of the derivation depend on such conventions, the conclusion does not. We also

assume uc ” Reru˘s ě 0, which is the parameter regime where we show the equivalence of

the Lax construction and stability analysis for the p` ip model.

Eq. (4.3) of Ref. [54] gives the isolated pair of roots in Phase II to be u˘ “ uc˘ 2iEmin,

where Emin is the minimum of the asymptotic dispersion relation [see text below Eq. (5.29)

in Ref. [54]]. According to Eq. (4.39) in Ref. [54] the frequency of small oscillations in Phase

III close to the Phase II-III boundary is

Ωc “

b

pur ´ ucq2 ` 4E2
min, (D.24)

where ur is the real part of the pair of roots absent in Phase II. The frequency Ωc should

match the frequency of dephasing oscillations in Phase II close to the boundary. The text

below Eq. (3.53) in Ref. [54] says that the latter frequency is

Ω “ 2Emin. (D.25)

Setting Ωc “ Ω, implies that on the Phase II-III boundary

ur “ uc. (D.26)
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Chapter 3

Nonequilibrium transport in the Toda chain with harmonic
pinning

1 Introduction

The transport of thermal energy in Hamiltonian systems is a problem of great theoretical

and practical interest [1, 2]. In its simplest form, one considers heat flow in the nonequilib-

rium stationary state (NESS) of a system in contact with two thermal reservoirs at different

temperatures. Very little is known rigorously about this problem except in the case of har-

monic crystals [3] or hard rods in 1D [4]. These models are special cases of the larger class of

integrable models, whose extensive numbers of conserved quantities are expected in general

to lead to ballistic heat transport [5, 6, 7, 8]. This means that if a system of length N (and

cross-section A) is put in contact with heat reservoirs at temperatures TL and TR, TL ą TR,

at its left and right ends, then the heat flow in the stationary state J would be (except for

boundary effects) independent of N . This is what is observed for the Toda lattice and it

stands in contrast to the case where we have dissipative transport satisfying Fourier’s law,

where J would be proportional to N´1.

In the absence of exact results, one has to rely on heuristics and simulations. A large

number of these have focused on 1D systems. These have led to the following commonly

accepted truths (CAT): Integrable systems such as the Toda chain [10, 9, 5], the Calogero-

Moser system, the harmonic chain, and hard rods have ballistic transport, i.e., J „ N0.

Nonlinear non-integrable systems such as Fermi-Pasta-Ulam (FPU) chains [11] or the di-

atomic Toda chain [12] have J „ N´α with α ă 1, for the momentum conserving case: the
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actual value of α depends on the system. When a nonintegrable system does not conserve

momentum due to pinning by a one body potential, the transport is diffusive, also called

“normal”, with α “ 1.

We find, via numerical simulations, that the Toda chain with harmonic pinning seem-

ingly has ballistic transport of heat. Because this system is generally believed to be noninte-

grable, either the prevailing wisdom about 1D transport needs modification or this system

is in fact integrable. In either case, the result is rather surprising and requires further

investigation. We note that the Poincaré sections of the 3-body case indicate that the dy-

namics take place on a 3-dimensional manifold for all tested initial conditions, indicating

that there are 3 conserved quantities in this case (the first two being the Hamiltonian itself

and a quantity corresponding to the harmonic motion of the center of mass). The surprising

transport properties that we observe are similar to another recent study of different aspects

of energy transport of the harmonically pinned Toda chain [13], which we briefly discuss at

the end of this work. We also note that when the pinning is done by a quartic potential,

then the heat transport is clearly not ballistic, although we cannot give clear evidence that

α “ 1. We suspect the transport is indeed diffusive, as quartic pinning is sufficient to induce

diffusive scaling in the harmonic chain [14].

2 The model

Consider a 1-dimensional chain of N ` 2 labeled particles, i.e., located on the lattice L “

t0, 1, ..., N,N ` 1u, with the following classical Hamiltonian H

H “

N`1
ÿ

i“0

„

p2
i

2 `
ν2

z
qzi ` V priq



, ri ” qi`1 ´ qi, z even. (2.1)

Here tqiu are the displacements of the particles, tpiu are their momenta, ν is the strength

of the one-body pinning potential and Vi ” V priq is the interaction potential. For periodic

boundary conditions VN`1 “ V pq0 ´ qN`1q while for fixed boundary conditions VN`1 “ 0
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and q0 “ qN`1 “ p0 “ pN`1 “ 0. When ν “ 0 and

Vi “
a

b
expr´bris, a, b ą 0, (2.2)

the system is the Toda chain [15], which is a well-known integrable model for both periodic

and fixed boundary conditions [16, 17]. Unless otherwise specified, Vi will refer to the Toda

interaction for the remainder of this work.

In this note, we numerically investigate the heat transport properties of the fixed bound-

ary Toda chain with the addition of an on-site harmonic potential, i.e., ν ‰ 0 and z “ 2. In

general, such a modification is expected to break the integrability of the ν “ 0 system when

the number of particles is greater than 2. Indeed, the only obvious conserved quantities

when ν ‰ 0 are H itself and the center of mass term hc

hc “
1
2

ˆN`1
ÿ

i“0
pi

˙2
`
ν2

2

ˆN`1
ÿ

i“0
qi

˙2
. (2.3)

We couple particles 1 and N of the chain to Langevin baths with a coupling constant µ,

which act as thermal reservoirs at temperatures TL and TR and induce a nonequilibrium

steady state (NESS). The infinitesimal generator of motion L is therefore

Lp¨q “ µB1,TLp¨q ` µBN,TRp¨q `Ap¨q,

Ap¨q “
N
ÿ

j“1
ppj`1 ´ pjqBrj`

`

N
ÿ

j“1
pV 1j ´ V

1
j´1 ´ ν

2qz´1
j qBpj ,

Bj,TL{Rp¨q “ ´pj Bpj ` T B
2
pj ,

j “ 1, N ; µ “ bath coupling,

(2.4)

where V 1j ”
dV prjq
drj

. For systems like Eq. (2.4), the integrability of the bulk dynamics plays a

central role in determining the transport properties [5], although in the quantum mechanical
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case this statement requires qualification [18]. The central quantity of interest is the average

heat current J , which in the NESS is given by

J “ xJjy “ ´

B

1
2ppj ` pj`1qV

1
j

F

, j P r2, N ´ 1s, (2.5)

where x¨y refers to the NESS average, which in simulations is computed by first allowing

the system sufficient time to relax to the NESS before time averaging. Also of interest is

the NESS temperature profile Tj

Tj “ xp
2
jy, j P r1, N s. (2.6)

In the following, we will give evidence that when z “ 2, J „ N0 and that Tj is independent

of j in the bulk, with a jump in Tj at the reservoirs. These two properties are only expected

to hold when the bulk dynamics are integrable. Indeed, because these bulk dynamics

are expected to be nonintegrable and break translational invariance, one would expect

J „ N´1 and Tj to be a continous curve interpolating between TL and TR. We then show

that when the pinning is anharmonic, e.g., z “ 4, then the system satisfies the ordinary

expectations. Spurred by the unexpected harmonic pinning result, we then give further

evidence of nondissipative behavior in this model. We caution that these numerical results

are restricted to small systems (N ď 400) and that further investigation is needed to

determine the precise transport properties of this model.

3 Nondissipative behavior

3.1 Ballistic transport

Consider the dynamics Eq. (2.4) for the Toda interaction Eq. (2.2) and z “ 2 (harmonic

pinning). We integrate Eq. (2.4) using a velocity Verlet algorithm adapted to include the

Langevin reservoirs [19]. In Fig. 3.1, we show the steady state temperature profiles for



96

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■

■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■

■ ■
■

■
■ ■ ■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■

■

▲

▲
▲▲▲▲▲▲▲▲▲

▲
▲▲▲

▲▲▲▲▲
▲▲

▲▲▲▲▲▲▲
▲
▲▲▲▲

▲
▲▲

▲▲▲▲▲▲
▲▲▲▲▲▲▲▲

▲
▲▲▲▲

▲▲▲▲
▲▲▲▲▲▲▲▲▲▲

▲▲
▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲

▲
▲
▲▲

▲

●

●●●●●
●
●●●

●●
●
●●●

●●
●●●●●●●●●●

●
●●●●

●●●●
●
●
●●●●●

●●●
●
●●●●●

●
●●
●●●●●●●●

●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●

●
●●●●

●●●●●
●
●●●●

●●
●●●●●●●●

●●
●
●
●●●●●●●

●●●
●
●
●●●●●

●●●●●●●●
●
●●●●●●●

●●
●
●●●●●●●●

●●●●●●●●●●●●●●
●
●●
●
●●
●
●
●●●●●

●

◆

◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆
◆◆◆◆
◆◆◆◆◆◆◆◆

◆◆◆◆
◆
◆◆◆
◆◆◆◆◆
◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆
◆◆
◆◆
◆◆◆◆◆◆◆◆

◆◆◆◆◆◆
◆◆◆◆◆◆

◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆
◆◆◆◆◆
◆
◆
◆◆
◆◆◆◆◆◆

◆
◆◆
◆◆◆
◆◆◆◆◆
◆
◆◆◆
◆◆◆◆◆◆

◆
◆◆
◆◆◆◆◆◆◆◆◆

◆◆
◆
◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆
◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆
◆◆
◆
◆
◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆
◆
◆◆◆◆◆◆◆

◆◆◆◆◆
◆◆◆◆◆◆◆

◆◆◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆

◆
◆◆◆◆◆◆◆

◆◆◆◆◆◆
◆◆◆◆
◆
◆
◆
◆
◆
◆◆◆◆◆◆

◆◆◆
◆◆

◆

▼

▼▼▼▼
▼▼
▼
▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼
▼▼▼▼
▼▼▼▼▼▼
▼
▼▼▼▼
▼
▼▼▼▼
▼
▼▼▼▼▼▼▼▼
▼
▼
▼
▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼
▼▼▼▼▼
▼
▼
▼▼▼
▼
▼▼▼▼
▼▼▼
▼
▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼
▼
▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼
▼
▼▼▼
▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼
▼
▼▼▼
▼
▼▼▼
▼
▼▼▼
▼▼▼▼
▼
▼▼
▼▼▼
▼
▼▼▼▼▼
▼
▼▼▼
▼▼
▼▼▼▼
▼
▼▼▼▼
▼
▼▼▼
▼
▼▼▼
▼▼▼▼▼▼▼▼▼▼
▼
▼▼▼▼▼
▼▼
▼▼
▼▼▼▼▼▼▼▼▼
▼▼
▼▼
▼▼▼▼▼▼▼
▼
▼▼
▼
▼▼▼▼
▼
▼▼▼▼▼▼▼▼▼▼▼▼

▼▼▼
▼▼
▼
▼
▼
▼▼▼▼▼
▼
▼▼▼▼▼▼
▼▼▼▼▼▼▼
▼
▼▼▼▼▼▼▼
▼
▼▼▼▼▼
▼▼▼▼
▼▼▼▼▼▼▼▼
▼▼
▼
▼▼▼▼▼▼
▼▼▼
▼▼▼▼▼▼▼
▼▼
▼▼
▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼
▼
▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼
▼▼
▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼
▼▼
▼▼▼▼▼
▼▼
▼▼▼▼▼▼▼▼▼▼
▼▼
▼
▼▼▼▼
▼▼▼▼▼▼
▼
▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼

▼
▼▼
▼▼▼
▼▼▼
▼▼
▼▼▼▼
▼
▼▼▼
▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼
▼▼▼▼▼
▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼
▼▼▼▼▼▼
▼
▼▼▼▼
▼▼
▼▼▼▼▼▼
▼▼▼
▼
▼▼
▼
▼▼
▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼
▼▼▼▼
▼▼▼▼▼
▼▼▼
▼▼▼▼▼
▼▼▼▼▼▼▼
▼
▼▼
▼
▼
▼
▼
▼▼▼
▼▼▼▼▼▼▼
▼
▼
▼
▼▼
▼
▼▼▼▼▼▼
▼▼▼▼▼
▼
▼▼
▼▼▼▼
▼▼▼▼▼▼▼▼▼▼
▼
▼▼▼
▼
▼▼
▼▼▼
▼
▼▼▼
▼▼▼▼
▼▼▼▼▼▼
▼▼▼▼
▼
▼▼▼▼
▼▼▼▼▼▼▼
▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼
▼
▼▼▼▼▼▼▼
▼
▼
▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼
▼▼▼▼▼▼
▼
▼▼
▼
▼▼▼▼
▼▼▼▼
▼▼
▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼

▼
▼
▼▼▼▼▼▼
▼▼▼▼▼

▼

■ N = 50
▲ N = 100
● N = 200
◆ N = 400
▼ N = 800

0.0 0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00

1.05

1.10

Figure 3.1: Temperature profiles (TL “ 1.1, TR “ 0.9) for the Toda chain with harmonic
pinning (a “ b “ µ “ ν “ 1, z “ 2). The j-th particle occupies position xj “ j{N . The
ratios of the bulk currents are J100{J50 “ 0.975, J200{J100 “ 1.001, J400{J200 “ 0.995, and
J800{J400 “ 0.991. We use the bulk current because its variance is reduced by averaging
over the chain.

several N as well as the corresponding steady state heat current profiles given by Eq. (2.5).

If we denote JBulk by the average of Eq. (2.5) over the entire bulk of the chain and JLpRq as

the steady-state averages of the energy flux from the left (right) Langevin baths, we have

JBulk “
1

N ´ 2

N´1
ÿ

j“2
xJjy,

JL “ µpTL ´ xp
2
1yq,

JR “ µpxp2
Ny ´ TRq.

(3.1)

We find numerically that the three currents from Eq. (3.1) agree quite closely.

The flat temperature profile and non-scaling current illustrated in Fig. 3.1 is expected for

the ν “ 0 (integrable) case, but it is entirely surprising for ν ‰ 0. Upon varying ν we found

that J is a decreasing function of ν, as expected for pinned chains [20]. We show a marked
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Figure 3.2: Temperature profiles and currents for the Toda chain with quartic pinning
(z “ 4), with all parameters the same as in Fig. 3.1. Note that with increasing N the
profile approaches a smooth curve between TL “ 1.1 and TR “ 0.9. The ratios of the bulk
currents are J100{J50 “ 0.597, J200{J100 “ 0.564, which hints that the system is starting to
demonstrate diffusive scaling for relatively small N .
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change in behavior in Fig. 3.2 for the Toda chain with quartic pinning (z “ 4). There, as

N increases, the temperature profiles approach a smooth curve interpolating between TL

and TR, and the current J roughly halves when N is doubled.

It may be possible to analytically determine whether or not the heat conductivity of the

harmonically pinned Toda chain is infinite using the methods developed in [21]. One can

exploit the known underlying integrability of the unpinned Toda chain in order to obtain

bounds on the conductivity when additional dynamics, such as pinning, are included. An

infinite heat conductivity would mean that the current scales as N´α for some α ě 0 that

is strictly less than 1, where α “ 0 is the ballistic case.

3.2 Persistent heat currents in the periodic chain

Consider now the dynamics of the system with Hamiltonian 2.1, z “ 2, and interaction 2.2

with periodic boundary conditions and no external driving. Given the observed ballistic

heat transport in the corresponding driven system, one expects any initial heat current to

propagate without dissipation in the periodic system. In Fig. 3.3, we observe such behavior

in a 200 particle system for times long enough for the current to propagate many times

around the chain. Similar nondissipative behavior in the harmonically pinned Toda chain

with open boundary was numerically observed in [22]. In that context, the Toda potential

Eq. (2.2) arises as an effective interaction between well-separated solitons of certain solutions

of the Gross-Pitaevskii PDE, which models solitons in Bose-Einstein condensates [23, 24].

When the Toda chain was placed in a harmonic trap (which is mathematically identical to

pinning each particle in the chain), a Toda soliton was observed to oscillate persistently like

the spheres of a Newton’s cradle. In diffusive systems, any initial current decays to thermal

noise as exemplified in Fig. 3.3 when the Toda chain is subject to quartic pinning (z = 4).



99

Figure 3.3: Initial and long time behavior of the persistent total current in the Toda chain
from Eq. (2.1) and Eq. (2.2) (a “ b “ 1) with harmonic pinning (top, z “ 2, ν “ 1) and
quartic pinning (bottom z “ 4, ν “ 1) and periodic boundary conditions, N “ 198. The
dominant frequency of the long time current in the harmonic case is very close to the value
of the pinning frequency. The dynamics were integrated with a timestep of dt “ 10´4, and
initial condition q0p0q “ ´1, p1p0q “ 1, q2p0q “ 1, with all other initial coordinates and
momenta zero. The same dynamics with dt “ 10´3 are nearly identical. Inserts: locally
averaged maxima and minima of the current for the harmonic (left) and quartic (right)
pinning cases for times t P r0, 8ˆ 104s. Note the decay of the current in the quartic pinning
case.
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3.3 Poincaré sections

The observations of Sec. 3.1 and Sec. 3.2 for z “ 2 sharply contradict the CAT about the

behavior for nonintegrable chains that break momentum conservation. On the other hand,

it is possible that the Toda chain with harmonic pinning is in fact integrable. Indeed,

the Calogero-Moser Hamiltonian remains integrable when harmonic pinning is added [25].

While it is highly unlikely that such a simple generalization of a well-known integrable model

would have escaped notice for decades, we present dynamical evidence that a higher conser-

vation law exists for 3 particle Toda chains with harmonic pinning. To do so, we construct

Poincaré sections of the open chain dynamics, where the end particles are free to move.

Each time the particle labeled “0” returns to its initial position, we record the momenta of

all three particles. If the system were nonintegrable, the dynamics of the 3-body case would

take place of a 4-dimensional manifold, for there are 6 degrees of freedom corresponding

to the positions and momenta, and the conserved Hamiltonian and the conserved term hc

from Eq. (2.3) reduce this number to 6 - 2 = 4. By recording sections when q0 “ q0p0q and

pj “ p for either j “ 0, 1 or 2, we therefore expect to obtain a 4 - 2 = 2 dimensional cross

section of the dynamics. For all initial conditions we tested, however, such cross sections

are 1-dimensional curves, indicating the presence of an additional conserved quantity. We

illustrate this point in Fig. 3.4. If there exists a third conserved quantity that Poisson

commutes with hc, the 3-body case is integrable.

We emphasize that the mere existence of initial conditions that constrain the dynamics

to lower dimensional manifolds is generic to nonintegrable models. If, however, all initial

conditions lead to such constrained dynamics, as is the case for Liouville integrability, then

it is quite likely that more conserved quantities exist. We tested several random initial

conditions for the 3-body case.

After an initial draft of this work, we became aware of a recent work [13] in which the

equipartition properties of an isolated Toda chain with harmonic pinning were studied. The

authors initially excited the low frequency harmonic modes and found that for intermediate
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Figure 3.4: Poincaré sections for the 3-body open Toda chain (a “ b “ 1) with harmonic
pinning (z “ 2, ν “ 1). The four images correspond to two different runs (top, bottom)
where the momenta pj were recorded each time q0ptq „ q0p0q (within a tolerance of δ “
0.001). Within each cross section is indicated which momentum is kept fixed and the
corresponding value. The tolerance of the fixed momentum is adjusted to allow enough
points to make the shape of the curves clear.
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times the energy distribution across all modes evolves very little, which also happens for

the integrable Toda chain. For very long times in the pinned chain, however, they find

that higher modes become excited. This observation is taken as evidence that the pinned

chain is not integrable, and that equipartition occurs only after extraordinarily long time

scales. If this were the case, it would account for the very small amount of dissipation we

observe with increasing N in Fig. 3.1, and the transport would not be ballistic. On the

other hand, the distribution of harmonic modes necessarily changes for any anharmonic

chain, integrable or not. Moreover, the authors of [13] note that despite the excitation of

higher harmonic modes, nothing close to equipartition over any time scale is observed in

the pinned chain.

If the harmonically pinned Toda chain is not integrable, recent developments in quan-

tum integrability may offer insight into possible mechanisms for our observations. In Bethe

ansatz solvable quantum models placed in external traps that break integrability, the un-

trapped integrability is responsible for a type of effective macroscopic integrability described

by generalized hydrodynamics [27]. For continuous quasiparticle distributions, generalized

hydrodynamics admits an infinity of conserved quantities for any external potential. Our

observations for the classical pinned Toda chain may have their origins in a similar mecha-

nism.
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Appendix A

Addendum

The original results of this work have been presented here, but in recent months the open-

ended questions regarding the quadratically-pinned Toda chain have been partially answered

[28, 29]. Ref. [28] found that the transport is indeed diffusive and the N-body chain nonin-

tegrable due to a positive Lyapunov exponent, although the finite size effects are unusually

strong and some solitonic-like excitations propagate well in the presence of the harmonic

potential. In Ref. [29], Abhishek Dhar and Aritra Kundu improved upon our simulations

presented here, and similarly found diffusive transport and a positive Lyapunov exponent.

It turns out that the diffusive behavior is much easier to see at high temperatures, leading

Ref. [29] to the conclusion that the seemingly-ballistic behavior is due to the quadratically

pinned Toda chain behaving like a pinned harmonic chain for small oscillations. Fig. A.1

shows an emergent slope for high temperature nonequilibrium simulations.
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Figure A.1: Temperature profiles (TL “ 21, TR “ 19) for the Toda chain with harmonic
pinning (a “ b “ µ “ 1, ν “ 2, z “ 2). The j-th particle occupies position xj “ j{N .
The ratios of the bulk currents are J100{J50 “ 0.915, J200{J100 “ 0.862, J400{J200 “ 0.812.
The emergence of a nonzero slope and clear dissipation of the current with system size
demonstrates that the transport is not ballistic.
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Chapter 4

Rotationally invariant ensembles of integrable matrices

1 Introduction

It is well established that random matrix theory (RMT) describes the universal features of

energy spectra of various quantum systems [1, 2, 3, 4, 5, 6]. RMT does not, however, capture

the typical behavior observed in exactly solvable many-body models, such as e.g. Poisson

level statistics [7, 8, 9, 10, 11, 12, 13]. Though there exist matrix ensembles (e.g. band

matrices [14, 15], or an invariant ensemble related to the thermodynamics of non-interacting

fermions [16]) that display this kind of behavior, it is desirable to have a formulation that is

both (i) basis-independent and (ii) stems from a well-defined notion of quantum integrability.

The purpose of the present work is an explicit construction of ensembles that have both

these properties, thereby bridging the gap and providing the missing ensemble – integrable

matrix theory (IMT) – for the analysis of quantum integrability.

We recently proposed a simple notion of an integrable matrix (quantum integrability)

that leads to an explicit construction of various classes of parameter-dependent commuting

matrices [17, 18, 19, 20, 21]. In this approach, we considerNˆN Hermitian matricesHpuq “

T `uV linear in a real parameter u. We call Hpuq integrable if it has at least one nontrivial

(other than a linear combination of itself and the identity matrix) commuting partner of

the form H̄puq “ T̄ ` uV̄ , i.e. rHpuq, H̄puqs “ 0 for all u. To appreciate the motivation

behind this definition, consider exactly solvable many-body models such as the 1D Hubbard

[22, 23, 24], XXZ spin chain [25, 26, 27, 28] or Gaudin magnets [29] in the presence of an

external magnetic field [30, 31, 32]. Suppose we specialize to a particular number of sites
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and fix all quantum numbers corresponding to parameter-independent symmetries (e.g.

number of spin up and down electrons, total momentum etc. in the case of the Hubbard

model). Such blocks are integrable matrices under our definition. Indeed, they are linear

in a real parameter (Hubbard U , anisotropy, the magnetic field) and all have at least one

nontrivial integral of motion linear in the parameter. The Gaudin model has as many linear

integrals as spins [30], while the Hubbard and XXZ models in general have at least one

such nontrivial linear integral in addition to more with polynomial parametric dependence

[33, 34, 35, 36].

Remarkably, it turns out that merely requiring the existence of commuting partners with

fixed parameter-dependence leads to a range of profound consequences. First, it implies a

categorization of integrable matrices according to the number of their integrals of motion.

We say that Hpuq belongs to a type-M integrable family if there are exactly n “ N ´M

linearly independent N ˆN Hermitian matrices [37] H ipuq “ T i ` uV i that commute with

Hpuq and among themselves at all u and have no common u-independent symmetry [38],

i.e. no Ω ‰ c1 such that rΩ, H ipuqs “ 0 for all i and u. A type-M family is therefore an

n-dimensional vector space, where H ipuq provide a basis, the general member of the family

being Hpuq “
ř

i diH
ipuq, where di are real numbers. The maximum possible value of n is

n “ N ´1 (type-1 or maximally commuting Hamiltonians), while a generic Hpuq (e.g. with

randomly generated T and V ) defines a trivial integrable family where n “ 1.

Let us briefly recount further consequences of the commutation requirement and related

developments. Integrable 3ˆ3 matrices first appear in Ref. [17]. Shastry constructed a class

of N ˆ N commuting matrices [18] in 2005, which are type-1 in the above classification.

Owusu et. al. [19] subsequently developed a transparent parametrization of type-1, an

exact solution for their energy spectra, proposed the above notion of an integrable matrix,

and proved that energy levels of any type-1 matrix cross at least once as functions of u.

Later work parametrized [20] all type-2, 3 and a subclass of type-M for any M ą 3. Let

us also note the Yang-Baxter formulation [21] and eigenstate localization properties [39] for
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Figure 1.1: The normalized level spacing distribution P psq of a single 20000ˆ 20000 real
symmetric integrable matrix Hpuq “ T ` uV at u “ 1. This matrix, whose construction
is detailed in Sect. 5, has exactly 297 nontrivial commuting partners (conservation laws)
linear in the parameter u and is therefore type-19703 by our classification. The solid curves
are a Poisson distribution P psq “ e´s and the Wigner surmise for real symmetric random
matrices P psq “ π

2 s e
´π

4 s
2 . Poisson level statistics, as shown here, are typical for the

invariant integrable matrices described in this work. Inset: Tails of the same curves.

type-1.

However, existing parametrizations are tied to a particular basis, which prevents an

unbiased choice of an integrable matrix and obscures the origin of the parameters. Recall

that the invariance of the probability distribution with respect to a change of basis is a key

requirement in RMT [2]. Similarly, a rotationally invariant formulation is necessary for a

proper construction of integrable matrix ensembles. Here we first derive such a formulation

and then obtain an appropriate probability distribution of random integrable matrices with

a given number of integrals of motion. In a follow-up work [40] we will study level statistics

of these ensembles as well as spectral statistics of individual integrable matrices, see Fig. 1.1

for an example.
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More specifically, consider type-1 matrices in the parametrization of Ref. [19]. Up to an

arbitrary shift by the identity matrix, a general real symmetric type-1 matrixHpuq “ T`uV

reads

Hpuq “
1
2
ÿ

k‰j

dk ´ dj
εk ´ εj

pγkγjpkj ´ γ
2
j pk ´ γ

2
kpjq ` u

N
ÿ

k“1
dkpk, (1.1)

where dk, εk, γk are 3N arbitrary real numbers, pkj “ |kyxj| ` |jyxk|, pk “ |kyxk|, and |ky

are the normalized eigenstates of V (shared by all V i). This expression immediately yields

kj-th matrix element of Hpuq in the basis where V is diagonal. Parameters εk and γk

specify the commuting family, while dk pick a particular matrix within the family. Note

that Hpuq “
ř

k dkH
kpuq, i.e. Hkpuq “ B

Bdk
Hpuq where rHjpuq, Hkpuqs “ 0, @j, k. The

question is, what is the natural choice of dk, εk, γk? More precisely, what is the probability

distribution function of these parameters? For example, we can take εk to be uncorrelated

random numbers or eigenvalues of a random matrix from the Gaussian unitary, orthogonal

or symplectic ensembles (GUE, GOE, or GSE). Moreover, it turns out that certain choices

drastically affect the level statistics, e.g. those where dk and εk are correlated [21, 40].

We will see below that each type-1 family is uniquely specified by a choice of a Hermitian

matrix E and a vector |γy, εk and γk in Eq. (1.1) being the eigenvalues of E and components

of |γy, respectively. On the same grounds as in RMT, an appropriate choice is therefore to

take E from the GUE (GOE for real symmetric, GSE for Hermitian quaternion-real matrices

[2]) and |γy to be an appropriate random vector. Note that this choice follows from either

rotational invariance of the distribution function combined with statistical independence

of the matrix elements or, alternatively, from maximizing the entropy of the distribution

[2]. Finally, dk are the eigenvalues of V and we will show that they are distributed as

GUE (GOE, GSE) eigenvalues uncorrelated with εk. Our construction of integrable matrix

ensembles for higher types (M ą 1) is restricted to the real symmetric case, is more complex

and involves the deformation of an auxiliary type-1 family. However, it ultimately amounts

to the same choice of |γy and two matrices from the GOE.
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2 Rotationally invariant construction of type-1 integrable matrix ensem-

bles

We start with certain preliminary considerations valid for all types. The defining commu-

tation requirement, rH ipuq, Hjpuqs “ 0 for all u, reduces to three u-independent relations

rV i, V js “ 0, rT i, V js “ rT j , V is, rT i, T js “ 0. (2.1)

The second of these relations is equivalent to

T i “W i ` rV i, Ss, rV i,W is “ 0, (2.2)

where S is an antihermitian matrix characteristic of the commuting (integrable) family.

Note that S is independent of the element in the family, i.e. for any Hpuq “ T ` uV in the

family, T and V are related through

T “WV ` rV, Ss, rV,WV s “ 0, (2.3)

with the same S.

Now we specialize to type-1. Since all T i commute, they share the same eigenstates |αky

and therefore

T i “
N
ÿ

k“1
tik|αkyxαk|. (2.4)

By definition of type-1, there are N ´ 1 linearly independent T i. Together with 1 “

ř

k |αkyxαk|, we have N independent linear equations for N unknown projectors |αkyxαk|

with a unique solution in terms of T i for each |αkyxαk|. Let |α1y ” |γy for notational

convenience. Thus,

|γyxγ| “ a01`
ÿ

i

aiT
i, (2.5)

where ai are real numbers (real scalars in the quaternion case).



113

Consider an element of the commuting family Λpuq “ a01`
ř

i aiH
ipuq. By construction

Λpuq “ |γyxγ| ` uE, (2.6)

where E is an N ˆ N Hermitian matrix with either complex, real, or quaternion real

entries. Moreover, E is nondegenerate, for any degeneracies [41] in E imply a u-independent

symmetry Ω (see Appendix A) contrary to the above definition of an integrable family.

Every type-1 integrable family thus contains such a Λpuq given by Eq. (2.6) with a rank

one T -part [42]. We will now show that the converse is also true. In other words, any Λpuq

(i.e. an arbitrary choice of a vector |γy and a nondegenerate Hermitian matrix E) uniquely

specifies a type-1 family.

We begin with an arbitrary Λpuq “ |γy xγ| ` uE from which we will construct a type-1

integrable family of matrices tH ipuquΛ. We require that Λpuq, henceforth known as the

“reduced Hamiltonian”, be an element of this putative family. Then Eq. (2.2) gives

|γyxγ| “WE ` rE,Ss, rE,WEs “ 0. (2.7)

Eq. (2.7) uniquely determines the matrix elements of S as a function of E and |γy. We then

consider Hpuq “ T `uV and impose rΛpuq, Hpuqs “ 0, @u, which implies (see Eq. (2.1) and

Eq. (2.2))

rV,Es “ 0.

T “W ` rV, Ss, rV,W s “ 0,

rT, |γy xγ|s “ 0.

(2.8)

The third equation implies |γy is an eigenstate of T . Via a non-essential shift of T by a

multiple of the identity we set the corresponding eigenvalue to zero, i.e. T |γy “ 0. We will

see that the choice of V in Eq. (2.8) uniquely specifies T , and therefore determines Hpuq.
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As E is nondegenerate, Λpuq has no permanent degeneracies (eigenvalues degenerate at all

u) and therefore any H ipuq and Hjpuq so constructed will satisfy rH ipuq, Hjpuqs “ 0, @u.

We have thus constructed a type-1 integrable family tH ipuquΛ from an arbitrary reduced

Hamiltonian Λpuq “ |γy xγ| ` uE. But from the considerations at the beginning of this

section, we know that all type-1 families contain a reduced matrix Λpuq. It follows that our

basis-independent construction, i.e. Eqs. (2.7-2.8), produces all type-1 matrices.

It is not immediately obvious from Eqs. (2.7-2.8) that a simple parametrization of ma-

trix elements follows. It is therefore helpful to select a preferred basis and write them in

components to demonstrate the feasibility of the construction. In the shared diagonal basis

of the matrices E and V , Eq. (2.7) implies

Sij “
γiγ

˚
j

εi ´ εj
, (2.9)

where E “ diagpε1, ε2, . . . , εN q and γi are the components of |γy. The components γj

are either complex, real, or quaternion real, corresponding to the three possibilites for the

Hermitian matrix E. Therefore γ˚j denotes complex conjugation in the first two cases and

quaternion conjugation in the third case. Let V “ diagpd1, d2, . . . , dN q, then Eq. (2.8) gives

Tij “ Hijpuq “ γiγ
˚
j

di ´ dj
εi ´ εj

, i ‰ j,

Tii ` uVii “ Hiipuq “ u di ´
ÿ

j‰i

|γj |
2di ´ dj
εi ´ εj

.

(2.10)

Now consider the eigenvalue equation Λpuq|ϕy “ uλ|ϕy for the reduced Hamiltonian,

|γyxγ|ϕy ` uE|ϕy “ uλ|ϕy, (2.11)
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where we introduced a factor of u for convenience. In components this yields

ϕk “
γk

upλ´ εkq
xγ|ϕy. (2.12)

The “self-consistency” condition
ř

k γ
˚
kϕk “ xγ|ϕy then implies an equation for λ

u “
N
ÿ

j“1

|γj |
2

λ´ εj
, (2.13)

This equation has N real roots λi for i “ 1, . . . , N that play a special role in the exact

solution (and the analysis of level crossings) of type-1 Hamiltonians [19]. In particular, the

eigenvalues ηi of Hpuq from Eq. (2.10) are

ηi “
N
ÿ

j“1

|γj |
2dj

λi ´ εj
“ xγ|V |iy , (2.14)

and the corresponding unnormalized eigenstates |iy according to Eq. (2.12) read

|iyk ” ϕ
piq
k “

γk
λi ´ εk

, (2.15)

Note that these are the components of |iy ” |ϕpiqy in the eigenbasis of V and that uλi are

the eigenvalues of the reduced Hamiltonian.

Finally, using Eqs. (2.7-2.8), one can show that if a family of commuting matrices Hjpuq

is Hermitian (real-symmetric, Hermitian quaternion-real) for all u, the corresponding ma-

trices E and V j are also Hermitian (real-symmetric, Hermitian quaternion-real) and the

vector |γy is complex (real, quaternion real) and vice versa. We will show next in Sect. 3

that these three choices correspond to selecting these objects from the GUE, GOE or GSE,

respectively. Recall that, physically speaking, GUE matrices break time reversal invariance.

GOE and GSE matrices are invariant under time reversal, while GSE matrices futhermore

break rotational invariance and represent systems with half-integer spin [1, 2].
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3 Probability density function of type-1 integrable ensemble

In Sect. 2, we found that any Hermitian type-1 integrable matrix is specified by the choice

of a vector |γy and two Hermitian matrices E and V satisfying rE, V s “ 0. Consider the

set of all type-1 N ˆ N matrices as a random ensemble H1
N puq with a probability density

function (PDF) P pγ,E, V q on the parameters |γy , E and V . The probability of obtaining

a matrix Hpuq P H1
N puq characterized by parameters in the region between pγ,E, V q and

pγ ` dγ,E ` dE, V ` dV q is P pγ,E, V q dγ dE dV , where

dγ “
N
ź

i“1
dRepγiq d Impγiq,

dV “
ź

jăi

dRepVijq d ImpVijq
ź

k

d Vkk.

(3.1)

Here we derive a basis-independent P pγ,E, V q in a manner similar to the construction of

the PDF of the Gaussian RMT ensembles [2]. As indicated in Eq. (3.1), we will restrict

our notation to complex Hermitian matrices. Matrices and vectors with quaternion entries

have four real numbers associated to each off-diagonal matrix element and to each vector

component. We find that the eigenvalues of E and V (the εi and di in Eq. (2.10)) come

from independent GUE, GOE or GSE eigenvalue distributions Ωpaq

Ωpaq9
ź

iăj

|ai ´ aj |
βe´

ř

k a
2
k , (3.2)

where β “ 2, 1 and 4 for the GUE, GOE, and GSE, respectively. The eigenvalue sets

are independent essentially because eigenvalues of a random matrix are independent of

the eigenvectors, and the rE, V s “ 0 requirement only constrains eigenvectors. The final

expression for P pγ,E, V q is Eq. (3.10), while the corresponding PDF for the parameters

from Eq. (2.10), denoted P pγ, ε, dq, is Eq. (3.11).

There are two approaches to this derivation, both of which give the same result. First,
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one can maximize the entropy functional [2, 45],

SrP s “ ´xlnpP qy “ ´
ż

X
P pγ,E, V q lnpP pγ,E, V qqdγ dE dV, (3.3)

subject to constrained averages, where the set X includes all parameter values such that

|γ|2 “ 1 and rE, V s “ 0. The constrained averages in this case are x1y “ 1, xTrE2y “

xTrV 2y “ α, α P R`. Alternatively, one may postulate that p|γy , E, V q are independent

objects, each with its own PDF given by known results from RMT [2, 3] before projecting

the product of these PDFs into the constrained space rE, V s “ 0. We use the latter strategy

in what follows.

As |γy is independent of E and V , we have

P pγ,E, V q “ P pγqP pE, V q. (3.4)

The function P pγq is well known in RMT [3]

P pγq9δ
`

1´ |γ|2
˘

, (3.5)

which is the only invariant P pγq that preserves the norm |γ| “ 1.

We now determine P pE, V q, which is the crux of the whole derivation. Consider the

PDF P0pA,Bq of two independent NˆN random matrices A and B from the GUE or GOE

P0pA,BqdAdB “ P0pAqP0pBqdAdB,

P0pAq9e
´TrA2

.

(3.6)

To project P0pA,Bq from Eq. (3.6) into the constrained space rA,Bs “ 0, it is convenient

to make a change of variables from the matrix elements Aij (respectively Bij) to the eigen-

values ai (bi) and functions f of eigenvectors qai (qbi ). It is well known that the Jacobian
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JpAij ; ai, fpqai qq of this transformation factorizes [2]

P0pA,Bq dAdB “ ΩpaqΩpbq da db dfpqaq dfpqbq,

Ωpaq9
ź

jăi

|ai ´ aj |
βe´TrA2

,

da “
ź

i

dai, dfpqaq “
ź

i

dfpqai q.

(3.7)

We will not specify the precise form of the function fpqaq. Also, by making the change of

variables tAiju Ñ tai, q
a
i u, we have implicitly selected a particular gauge of eigenvectors of

A (i.e. the eigenvectors have fixed phases).

If A and B are nondegenerate, rA,Bs “ 0 is equivalent to qai “ qbi , @i. If A or B

have degeneracies, there are many ways for the commutator to vanish, but Eq. (3.7) shows

P0pA,Bq itself vanishes for any degeneracies. Therefore, the probability PA,Bcomm that two

given matrices A and B commute is

PA,Bcomm “
ź

j

δ
´

fpqaj q ´ fpq
b
jq

¯

` pdegen. termsq . (3.8)

It follows that the measure P pE, V q dE dV for commuting matrices E and V is

P pE, V q dE dV9ΩpεqΩpvq
ź

j

δpqεj ´ q
v
j qˆ

dε dv dqε dfpqvq,

(3.9)

where εi (vi) are eigenvalues of E (V ). Thus

P pγ,E, V qdγ dE dV9δ
`

1´ |γ|2
˘

ΩpεqΩpvqˆ
ź

j

δpqεj ´ q
v
j q dγ dε dv dq

ε dfpqvq.
(3.10)

Now we integrate out the eigenvectors in order to obtain the joint PDF P pγ, ε, dq for the
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parameters appearing in Eq. (2.10)

P pγ, ε, dq9δ
`

1´ |γ|2
˘

ˆ

ź

iăj

|εi ´ εj |
β|di ´ dj |

βe´
ř

k ε
2
ke´

ř

k d
2
k ,

(3.11)

where we substituted vi Ñ di in order to be consistent with the notation in previous papers.

Eq. (3.11) is particularly significant because it allows one to study the level statistics of the

ensemble of NˆN type-1 integrable matrices H1
N , which according to numerical simulations

generally turn out to be Poisson [40].

4 Parameter shifts

Here we consider two parameter shifts that leave the commuting family invariant. The

second is useful in the rotationally invariant construction of type-M integrable matrices for

M ą 1 in Sect. 5. First, we can shift the parameter uÑ u´ u0 ” ru for some fixed u0 and

rewrite Hpuq “ T ` uV as

Hpuq “ rHpruq

“ T pu0q ` ruV,

(4.1)

where T pu0q “ T ` u0V . The relation between the new T -part and V must have the same

form as Eq. (2.2), i.e.

T pu0q “W pu0q ` rV, Spu0qs, rV,W pu0qs “ 0. (4.2)

In the present case Spu0q “ S, W pu0q “ W ` u0V . For type-1 matrices in particular

Eq. (2.7) only changes by a simple WE ÑWE ` u0E.

We can also redefine the parameter as x “ 1{u and (via multiplication by x) transfer
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the parameter dependence from V to T and then shift the new parameter xÑ x´ x0 ” rx

Hpxq “ xT ` V

“ rHprxq

“ rxT `Hpx0q,

(4.3)

where Hpx0q “ x0T `V becomes the new V -part. This transformation is more interesting,

and has consequences for our construction of type M ą 1 matrices.

Note that there is an asymmetry in transformation properties under shifts in u and x

introduced by our choice to express T through V in Eq. (2.2) rather than the other way

around. We have

T “W px0q ` rHpx0q, Spx0qs,

rHpx0q,W px0qs “ 0.
(4.4)

The x0-dependencies of W px0q and Spx0q are nontrivial. We see that the matrix T , and by

extension the whole commuting family, is characterized by a continuum of antihermitian

matrices Spx0q, corresponding to the shift freedom in x0. In particular Sp0q “ S, the

unshifted antihermitian matrix.

Specializing to type-1, we understand Spx0q better by examining the shifted reduced

Hamiltonian

Λpxq “ x |γy xγ| ` E

“ rΛprxq

“ rx |γy xγ| ` Λpx0q,

(4.5)
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from which Eq. (4.4) becomes

|γy xγ| “WΛpx0q ` rΛpx0q, Spx0qs,

rΛpx0q,WΛpx0qs “ 0.
(4.6)

As in Eq. (2.7), Eq. (4.6) is the defining equation for Spx0q, whose matrix elements obtain

most conveniently from the eigenbasis of Λpx0q.

The matrix Λpx0q “ x0 |γy xγ| ` E takes the role of E in Eq. (2.7). In particular,

Sijpx0q “
αiα

˚
j

λi ´ λj
, (4.7)

where λi are the eigenvalues of Λpx0q given by Eq. (2.13) with u Ñ 1{x0, and αi are the

components of |γy in the eigenbasis of Λpx0q.

5 Higher types

Integrable matrices Hpuq “ T ` uV of type M ě 1 have exactly n “ N ´M nontrivial lin-

early independent commuting partners for all u. The restriction on n for higher types tends

to complicate their parametrizations – most notably the matrix V is no longer arbitrary.

Previous work [20] developed a parametrization (in the eigenbasis of V ) called the “ansatz

type-M” construction, valid for all M ě 1. This construction is complete for M “ 1, 2

in the sense that one can fit any such integrable matrix into the ansatz construction. Nu-

merical work and parameter counting suggest that it is similarly complete for M “ 3, but

produces only a subset of measure zero among all type M ą 3 matrices. Finally, the type-

1 construction of Sect. 2 maps into the ansatz type-1 construction and vice versa. The
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parametrization of Ref. [20] reads

Hijpuq “ Tij “ γiγj
di ´ dj
εi ´ εj

Γi ` Γj
2 , i ‰ j,

Hiipuq “ uVii ` Tii

“ u di ´
ÿ

j‰i

γ2
j

di ´ dj
εi ´ εj

Γi ` Γj
2

Γj ` 1
Γi ` 1 ,

(5.1)

where the γi and εi are free real parameters, and the constrained di and Γi obey the following

equations with free parameters gi, Pi and x0

di “
1
x0

N´M
ÿ

j“1

gj
xj|jy

1
λj ´ εi

,

Γ2
i “ 1` 1

x0

N
ÿ

j“N´M`1

Pj
xj|jy

1
λj ´ εi

,

(5.2)

where λi and xi|iy are related to εi and γi through

1
x0
“

N
ÿ

j“1

γ2
j

λi ´ εj
,

xi|iy “
N
ÿ

j“1

γ2
j

pλi ´ εjq2
.

(5.3)

Note that λi and |iy are the eigenvalues and eigenstates, respectively, of a certain auxiliary

type-1 family, see Eqs. (2.13) and (2.15).

The signs of Γi are arbitrary [46] and each set of sign choices corresponds to a different

commuting family. The choice of x0, εi (equivalently λi), γi, and Pi [47] defines the com-

muting family while varying gi produces different matrices within a given family. Ref. [20]

proves that these equations indeed produce type-M integrable matrices and also determines

the eigenvalues of Hpuq.
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5.1 Rotationally invariant construction

Here we present a rotationally invariant formulation of the real symmetric ansatz construc-

tion of an N ˆN Hamiltonian Hpuq. We emphasize that unlike the type-1 case we do not

have a clear constructive way of motivating the final expressions other than the fact that

they reproduce the above basis-specific expressions.

We start with Eq. (5.1). Consider three mutually commuting real symmetric matrices

V , E and Γ. In their shared eigenbasis

V “ diagpd1, d2, . . . , dN q,

E “ diagpε1, ε2, . . . , εN q,

Γ “ diagpΓ1,Γ2, . . . ,ΓN q,

|γy “ pγ1, γ2, . . . , γN q.

(5.4)

Further, define an antisymmetric matrix SM through

WE ` rE,SM s “
Γ |γy xγ| ` |γy xγ|Γ

2 ,

rE,WEs “ 0.
(5.5)

The matrix T obeys

T “WV ` rV, SM s, rV,WV s “ 0, (5.6)

which is Eq. (2.3) with S Ñ SM . We then require that pΓ` 1q |γy be an eigenstate of T

T pΓ` 1q |γy “ 0, (5.7)
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where we set the corresponding eigenvalue to zero via a shift of T by a multiple of the iden-

tity. This equation replaces the type-1 equation T |γy “ t |γy. Basis-independent Eqs. (5.5-

5.7) are equivalent to Eq. (5.1).

The next step is to express the constraints (5.2) in a basis-independent form. To this

end we introduce an auxiliary type-1 family with the reduced Hamiltonian

Λ “ x0 |γy xγ| ` E, (5.8)

where we have elected to transfer the parameter dependence to the T -part as discussed in

Sect. 4. We consider this family at a fixed value of the parameter x “ x0, so we suppress

the dependence on x0 in the reduced Hamiltonian, Λpx0q Ñ Λ, as well as in other members

of the auxiliary type-1 family.

By construction di are the eigenvalues of V and Γ2
i ´ 1 are the eigenvalues of a matrix

Γ2´1 simultaneously diagonal with V . Multiplying both sides of Eq. (5.2) by γi and using

Eqs. (2.13) and (2.15), we see that Eq. (5.2) is equivalent to the following basis-independent

equations

V |γy “
1
x0

N´M
ÿ

j“1

gj
xj|jy

|jy ,

pΓ2 ´ 1q |γy “
1
x0

N
ÿ

j“N´M`1

Pj
xj|jy

|jy .

(5.9)

It remains to trace parameters gi and Pi to an object with known transformation proper-

ties under a change of basis. By construction, the matrices V and Γ2´1 are simultaneously

diagonal with V -parts of the auxiliary type-1 family. We can therefore complement them

to the corresponding members of this family as follows

H1 “ x0TV ` V, H2 “ x0TΓ ` Γ2 ´ 1, (5.10)

where TV and TΓ are given by Eq. (2.8). In particular, TV |γy “ TΓ |γy “ 0, so that Eq. (5.9)
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implies

H1 |γy “
1
x0

N´M
ÿ

j“1

gj
xj|jy

|jy ,

H2 |γy “
1
x0

N
ÿ

j“N´M`1

Pj
xj|jy

|jy .

(5.11)

Further, since |jy are eigenvectors of H1,2, upon multiplying each side of Eq. (5.11) by |iy xi|

we find

H1 |iy “ gi |iy , H2 |iy “ 0, 1 ď i ď N ´M,

H1 |iy “ 0, H2 |iy “ Pi |iy , N ´M ă i ď N,

(5.12)

where we used xγ|jy “ x´1
0 , which follows from Eqs. (2.13) and (2.15). Finally, Eq. (5.12)

implies

H1H2 “ 0. (5.13)

Define G ” H1 ` H2 to be a real symmetric matrix with N unconstrained eigenvalues

pg1, g2, . . . , gN´M , PN´M`1, . . . , PN q. In order to guarantee that Hpuq be real symmetric,

however, the numbers Pj and therefore the matrix G must be properly scaled so that the

right hand side of the second relation in Eq. (5.2) is nonnegative [47].

We have therefore derived a basis-independent formulation of Eqs. (5.1-5.3) in terms

of unconstrained (apart from the aforementioned scaling of G to ensure real Γ) quantities

pG,E, |γy , x0q. One works backwards from Eq. (5.13) to Eq. (5.5) to derive pΛ, V,Γ, T q in

order to construct ansatz type-M matrices Hpuq “ T ` uV . In fact, since Eq. (5.8) and

Eq. (5.10) imply rG,Λs “ 0, we find it more natural to select pΛ, G, |γy , x0q and from them

derive pE, V,Γ, T q. We have no definitive argument, however, that favors one procedure

over the other.

Let us now briefly recount the construction. Any real symmetric matrix G allows us to
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define two matrices H1 and H2 that satisfy Eq. (5.13)

G “ H1 `H2,

H1H2 “ 0,
(5.14)

where the type M “ rankpH2q, the number of non-zero eigenvalues of H2. Let Λ be a

real symmetric matrix satisfying rG,Λs “ 0. We derive E from Λ using Eq. (5.8), which

generates an auxiliary type-1 integrable family of which Λ is the reduced Hamiltonian.

Specifically, we obtain the type-1 antisymmetric matrix S through Eq. (2.7). The common

eigenvectors |iy of Λ, H1 and H2 are given by Eq. (2.15) in the eigenbasis of E.

The next step is to obtain V and Γ2 through Eq. (5.10). To do this we need matrices

TV and TΓ, for which it is helpful to use the second parameter shift discussed in Sect. 4.

We define the x0-dependent type-1 antisymmetric matrix Spx0q through Eq. (4.6). Then

TV and TΓ are obtained from

TV “W1px0q ` rH1, Spx0qs, rH1,W1px0qs “ 0,

TΓ “W2px0q ` rH2, Spx0qs, rH2,W2px0qs “ 0,

TV,Γ |γy “ 0,

(5.15)

which when combined with Eq. (5.10) determines V and Γ2. The final step is to determine

ansatz T through Eqs. (5.5-5.7). The choice of x0, |γy, Λ and H2 defines the ansatz type-M

commuting family, while the choice of H1 specifies a matrix within the family.

Setting x0 “ 0 seemingly simplifies the construction, because then we have V “ H1

and Γ2 ´ 1 “ H2 and we bypass the auxiliary type-1 step in the derivation. Despite this

simplication, x0 “ 0 actually produces type-1 integrable matrices Hpuq “ T ` uV with M -

fold degenerate V , which we prove in Appendix B. In this sense, ansatz type-M matrices

Hpuq “ T ` uV , for which V is generally non-degenerate, are deformations of degenerate

type-1 families with deformation parameter x0.
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5.2 Probability distribution function for ensembles of type-M ą 1 integrable

matrices

Despite being significantly more complex than type-1 matrices, ansatz type-M matrices

are similarly generated by the choice of two commuting random matrices G and Λ and

a random vector |γy. Therefore, the derivation for the probability density function from

Sect. 3, restricted to the GOE, also applies to ansatz matrices. Let ci, 1 ď i ď N be the N

eigenvalues of G and λi those of Λ. Using Eq. (3.11)

Papγ, c, λq9δ
`

1´ |γ|2
˘

ˆ

ź

iăj

|ci ´ cj ||λi ´ λj |e
´
ř

k c
2
ke´

ř

k λ
2
k

“ δ
`

1´ |γ|2
˘

P pcqP pλq,

(5.16)

where pc1, . . . , cN q “ pg1, . . . , gN´M , PN´M`1, . . . , PN q in order to connect Eq. (5.16) to

parameters appearing in Eqs. (5.1-5.3). As noted earlier, one may adopt the alternative

viewpoint of selecting the matrix pair pG,Eq instead of pG,Λq, where there is no commu-

tation restriction on G and E. The PDF from this standpoint is then

Pbpγ, c, εq9δ
`

1´ |γ|2
˘

ˆ

ź

iăj

|ci ´ cj ||εi ´ εj |e
´
ř

k c
2
ke´

ř

k ε
2
k

“ δ
`

1´ |γ|2
˘

P pcqP pεq,

(5.17)

where εi are the eigenvalues of E. To be clear, Eq. (5.17) and Eq. (5.16) are two different

PDFs for ansatz matrix parameters. To see this, we use Eq. (5.16) to write down the

corresponding Papγ, c, εq.

Papγ, c, εq “ δ
`

1´ |γ|2
˘

P pcqP pλpε, γqq

ˇ

ˇ

ˇ

ˇ

det Bλpε, γq
Bε

ˇ

ˇ

ˇ

ˇ

. (5.18)
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There is no a priori reason to expect the additional dependence on |γy to cancel out in

Eq. (5.18), much less for the resulting PDF to be equal to Eq. (5.17). It is interest-

ing to note that Ref. [44] shows that if εi are GOE or GUE distributed, then λi will

have the same characteristic level repulsion, though this fact alone is insufficient to prove

Papγ, c, εq “ Pbpγ, c, εq. We have no objective argument that prefers one distribution to the

other, although we view Papγ, c, λq as the more natural choice due to its closer relationship

to the type-1 case.

Lastly, we stress that in order for ansatz matrices Hpuq to be real symmetric, the pa-

rameters Γi in Eq. (5.1) must be real [47]. This requirement in turn places the restriction

on a given G that the corresponding Pi must be scaled. Therefore, PDFs Eq. (5.16) and

Eq. (5.17) are strictly speaking only correct for complex symmetric Hpuq and must be mod-

ified for real symmetric Hpuq. For example, one can write PRa pγ, c, λq “ Papγ, c, λqIpγ, c, λq

where Ipγ, c, λq is a binary indicator function for the condition Γi P R.

6 Discussion

We derived two basis-independent constructions of integrable matrices Hpuq “ T ` uV

that were previously parametrized in a preferred basis – that of V . All type-1 matrices

are constructed from Eqs. (2.7-2.8), while ansatz type-M ě 1 are given by Eqs. (5.5-5.9)

along with Eqs. (5.10-5.13). The primary significance in obtaining these basis-independent

constructions is that one may now speak of and study random ensembles of integrable

matrices in the same way that one studies ensembles of ordinary random matrices in random

matrix theory (RMT), for which unitary invariance is a theoretical cornerstone [2].

The two invariant constructions involve choosing a vector |γy and two matrices: E and

V such that rE, V s “ 0 for type-1, and Λ and G such that rΛ, Gs “ 0 for ansatz type-

M . We showed that the eigenvalues of E and V come from independent GUE, GOE or

GSE eigenvalue distributions. The eigenvalues of Λ and G, on the other hand come from

independent GOE distributions. This result is significant because Ref. [40] shows that
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correlations between these matrix pairs induce level repulsion in integrable matrices, which

generally have Poisson statistics.

It follows from the complete type-1 construction presented in Sect. 2 that if E, V and

|γy are selected from the GUE, GOE or GSE, then the corresponding integrable family

of matrices Hjpuq has the same time-reversal properties that define these three ensembles

(the “3-fold way” [1, 2]) for all u, and vice-versa. It is possible (though not yet proved)

that a similar statement is true for the natural mathematical and physical generalization of

these ensembles, initiated by Altland and Zirnbauer [48], that includes charge conjugation

(particle-hole) symmetry considerations as well. This “10-fold way” is useful in particular

for classifying topological insulators and superconductors [49].

Given the known success of RMT in describing generic (e.g. chaotic) quantum Hamil-

tonians, one can now also study quantum integrability through the lens of an integrable

ensemble theory – integrable matrix theory (IMT). More specifically, until now quantum

integrability was mainly studied through specific models satisfying some loose criteria of

integrability, whereas there now exists a new tool based on broad and rigorous definitions

to study entire classes of quantum integrable models at once. One immediate use of IMT is

the study of level statistics in integrable systems, a work soon to be released [40] by the au-

thors. Another recent development is the proof that the generalized Gibbs ensemble (GGE)

[45, 50, 51] is the correct density matrix for the long-time averages of observables evolving

with type-1 Hamiltonians [52]. An interesting question is how well the GGE works for

type M ą 1 matrices under different scalings of M with N . Other possibilities include the

characterization of localization [39] and the reversibility of unitary dynamics [53, 54, 55, 56]

generated by matrices in IMT.

There are two further open problems raised in this work that we have not solved. One

is the origin and motivation for the ansatz type-M construction found in Sect. 5, which

as it stands is verifiably correct but rather ad-hoc in appearance. There ought to be an

intuitive motivation for the construction as is the case for the clear and concise type-1
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approach found in Sect. 2. Another open problem is the complete invariant construction

of all type M ą 3 matrices, of which only a subset is covered by the ansatz. The reduced

Hamiltonian approach to the type-1 solution has an analogous generalization for type-M

which could conceivably cover all such matrices, but the details involve working out the

general constraints arising from the restricted linear independence of matrices in type-M

families, which are nontrivial.
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Appendix A

Degenerate E implies u-independent symmetry in type-1 matrices

In Sect. 2 we constructed N ˆ N type-1 families starting from a vector |γy and a matrix

E. The proof that this construction is exhaustive hinges on E being nondegenerate. We

show here that a degenerate E implies a common u-independent symmetry prohibited by

our definition of an integrable family [38, 41].

Suppose E has a two-fold degeneracy and consider Eq. (2.7) in the eigenbasis of E, so

that E “ diagpε, ε, ε3, . . . , εN q. We furthermore pick the degenerate subspace of E that

diagonalizes WE . The off-diagonal components of Eq. (2.7) read

γiγ
˚
j “ pεi ´ εjqSij , i ‰ j. (A.1)

This in particular implies that γ1γ
˚
2 “ 0 and S12 is arbitrary. Without a loss of generality

we let γ1 “ 0.

Now we turn our attention to Hpuq “ T `uV , where in this basis V “ diagpd1, . . . , dN q.

Note that by definition of type-1 linear independence, for any integrable family there exists

an Hpuq such that the matrix V is nondegenerate (this is the typical case, but it suffices that

there exist one such matrix). Looking again at off-diagonal components, through Eq. (2.8)

we find

Hij “ Tij “ pdi ´ djqSij , i ‰ j. (A.2)

At this point, we can almost see that Hpuq is block-diagonal, since any S1j “ 0 for j ‰ 2.
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In fact, we can visualize Hpuq through the following helpful schematic

Hpuq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ ˆ 0 0 . . . 0

ˆ ˆ ˆ ˆ . . . ˆ

0 ˆ ˆ ˆ . . . ˆ

0 ˆ ˆ ˆ . . . ˆ

. . . . . . . . .

0 ˆ ˆ ˆ . . . ˆ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where ˆ represents possibly non-zero matrix elements. To show that Hpuq is indeed block-

diagonal, we consider the eigenvalue equation

T |γy “ t |γy , (A.3)

which is true by construction of Λpuq. Since γ1 “ 0, the first component of Eq. (A.3)

combined with Eq. (A.2) implies

ÿ

j‰1
pd1 ´ djqS1jγj “ 0, (A.4)

and S1j “ 0 for j ‰ 2 reduces this to

pd1 ´ d2qS12γ2 “ 0. (A.5)

As V is nondegenerate, Eq. (A.5) requires either S12 “ 0 or γ2 “ 0. In the first case, Hpuq
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is of the form

Hpuq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ 0 0 0 . . . 0

0 ˆ ˆ ˆ . . . ˆ

0 ˆ ˆ ˆ . . . ˆ

0 ˆ ˆ ˆ . . . ˆ

. . . . . . . . .

0 ˆ ˆ ˆ . . . ˆ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

while in the second case S2j “ 0, j ‰ 1, from Eq. (A.1) and

Hpuq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ ˆ 0 0 . . . 0

ˆ ˆ 0 0 . . . 0

0 0 ˆ ˆ . . . ˆ

0 0 ˆ ˆ . . . ˆ

. . . . . . . . .

0 0 ˆ ˆ . . . ˆ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Either way, each member of the family Hpuq reduces to two such blocks indicating a u-

independent symmetry. For example, Ω made of two similar blocks that are different mul-

tiples of identity commutes with Hpuq.
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Ansatz matrices at x0 “ 0 are type-1

Here we prove that ansatz type-M matrices Hpuq “ T ` uV become type-1 at x0 “ 0,

which is most clearly seen in the eigenbasis of V . We first review the construction of ansatz

matrices Hpuq at x0 “ 0. We then construct a particular type-1 family of matrices H̄puq

through Eqs. (2.7-2.8) and show that rHpuq, H̄puqs “ 0, @u.

We first consider ansatz type-M matrices Hpuq “ T `uV . At x0 “ 0, Eq. (5.10) implies

that V “ H1 and Γ2 ´ 1 “ H2, so that [46]

V “ diagpd1, d2, . . . , dN q,

“ diagpg1, g2, . . . , gN´M , 0, . . . , 0q,

Γ “ diagpΓ1,Γ2, . . . ,ΓN q,

“ diagp1, 1, . . . , 1,˘
a

1` PN´M`1, . . . ,˘
a

1` PN q,

E “ diagpε1, ε2, . . . , εN q.

(B.1)

We note also that E “ Λ at x0 “ 0 by Eq. (5.8). Recall that E arises in the ansatz con-

struction from an auxiliary type-1 problem, so E is nondegenerate without loss of generality

(see Appendix A).

With Eq. (B.1) in mind, we also rewrite Eqs. (5.5-5.7), the defining equations for the

ansatz antisymmetric matrix SM and for ansatz T , which are true at any x0

T “WV ` rV, SM s, rV,WV s “ 0,

T
1
2pΓ` 1q |γy “ 0,

(B.2)
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where SM follows from

ΩE ` rE,SM s “
Γ |γy xγ| ` |γy xγ|Γ

2 , rE,ΩEs “ 0. (B.3)

We now prove that ansatz type-M Hpuq “ T`uV constructed with Eq. (B.1) are in fact

type-1 matrices. Consider a type-1 integrable matrix H̄puq “ T̄ ` uV̄ family constructed

through the methods of Sect. 2, with the substitution |γy Ñ 1
2pΓ ` 1q |γy ” |γ̄y. This

particular type-1 family is unrelated to the auxiliary type-1 family appearing in the ansatz

construction. In the following, bars X̄ will indicate quantities X that involve the type-1

integrable matrix family. We have

V̄ “ diagpd̄1, d̄2, . . . , d̄N q

|γ̄y xγ̄| “ W̄E ` rE, S̄s, rE, W̄Es “ 0,

T̄ “ W̄V̄ ` rV̄ , S̄s, rV̄ , W̄V̄ s “ 0,

T̄ |γ̄y “ 0,

(B.4)

where E is the same as in Eq. (B.3), and therefore rE, V̄ s “ 0. In particular, the reduced

Hamiltonian Λ̄puq (see Eq. (2.6)) of this type-1 family is

Λ̄puq “ |γ̄y xγ̄| ` uE. (B.5)

Recall that by construction,

rΛ̄puq, H̄puqs “ 0, @. (B.6)

Therefore, it suffices to show rΛ̄puq, Hpuqs “ 0, @u, which combined with the non-degeneracy

of Λ̄puq implies rH̄puq, Hpuqs “ 0, @u.
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To this end, consider the commutator rΛ̄puq, Hpuqs

rΛ̄puq, Hpuqs “

“ r|γ̄y xγ̄| , T s ` u prE, T s ` r|γ̄y xγ̄| , V sq ` u2rE, V s.

(B.7)

The first term in Eq. (B.7) vanishes by Eq. (B.2), and the third term in Eq. (B.7) vanishes

by construction. We then have

rΛ̄puq, Hpuqs “ u prE, T s ` r|γ̄y xγ̄| , V sq . (B.8)

Eq. (B.8) is true for all x0, but in order for its r.h.s. to vanish, we must have (see Eqs. (2.1-

2.2))

T “ ΩV ` rV, ss, rV,ΩV s “ 0,

|γ̄y xγ̄| “ Ω̄E ` rE, ss, rE,ΩEs “ 0,
(B.9)

where s is an antisymmetric matrix. Eq. (B.9) is not true for general x0, but we can show

it is true at x0 “ 0. From Eq. (B.2) and Eq. (B.4) we actually have

T “WV ` rV, SM s, rV,WV s “ 0,

|γ̄y xγ̄| “ W̄E ` rE, S̄s, rE, W̄Es “ 0.
(B.10)

We now show that at x0 “ 0, rV, SM s “ rV, S̄s, so that s “ S̄ in Eq. (B.9). This last step

will complete the proof that rHpuq, H̄puqs “ 0. Consider the matrix elements SM,ij and S̄ij
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in the eigenbasis of V , which obtain from Eq. (B.3) and Eq. (B.4)

SM,ij “
γipΓi ` 1qγjpΓj ` 1q

4
1

εi ´ εj

´
γipΓi ´ 1qγjpΓj ´ 1qq

4
1

εi ´ εj
,

S̄ij “
γipΓi ` 1qγjpΓj ` 1q

4
1

εi ´ εj
,

(B.11)

but at x0 “ 0, Eq. (B.1) is true and therefore many Γi “ 1. More precisely, we find

SM,ij “ S̄ij , if i ď N ´M, OR j ď N ´M,

SM,ij ‰ S̄ij , otherwise.
(B.12)

Now using Eq. (B.1) again, we see that di ´ dj “ 0 if SM,ij ‰ S̄ij , where di is the i-th

diagonal entry of the diagonal matrix V . Therefore rV, SM s “ rV, S̄s at x0 “ 0, which

implies Eq. (B.9) holds with s “ S̄, and therefore rΛ̄puq, Hpuqs “ 0, @u. It follows that

rH̄puq, Hpuqs “ 0, @u and Hpuq is type-1 at x0 “ 0.
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Chapter 5

Integrable matrix theory: Level statistics

1 Introduction

It is generally believed that the energy levels of integrable systems [1] follow a Poisson

distribution [2, 3, 4, 5, 6, 7, 8]. For example, the probability that a normalized spacing

between adjacent levels lies between s and s ` ds is expected to be P psqds “ e´sds. In

contrast, chaotic systems exhibit Wigner-Dyson statistics, with level repulsion P psq9s2 or s

at small s. Moreover, level statistics are often used as a litmus test for quantum integrability

even though there are integrable models that fail this test, e.g. the reduced BCS model

[5] (which is a particular linear combination of commuting Gaudin Hamiltonians). In this

work, we quantify when and why Poisson statistics occur in quantum integrable models,

while also characterizing exceptional (non-Poisson) behavior.

Poisson statistics have been numerically verified on a case-by-case basis for some quan-

tum integrable systems, including the Hubbard [2] and Heisenberg [2, 3] models. On the

other hand, general or analytic results on the spectra of quantum integrable models are

lacking, in part due to the absence of a generally accepted unambiguous notion of quantum

integrability, [9, 10] and in part because existing results usually apply to isolated models

instead of members of statistical ensembles like random matrices [11]. Notably, Berry and

Tabor showed [4] that level statistics in semiclassical integrable models are always Poisso-

nian as long as the energy Epn1, n2, . . . q is not a linear function of the quantum numbers

n1, n2, . . . , i.e., the system cannot be represented as a collection of decoupled harmonic

oscillators. As integrability is destroyed by perturbing the Hamiltonian, the statistics are
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expected to cross over from Poisson to Wigner-Dyson at perturbation strengths as small as

the inverse system size [3].

Random matrix theory (RMT) [11, 12] captures level repulsion and other universal

features of eigenvalue statistics in generic (non-integrable) Hamiltonians (see, e.g., Fig. 1.1).

We recently proposed an integrable matrix theory [13] (IMT) to describe eigenvalue statistics

of integrable models. This theory is based on a rigorous notion of quantum integrability and

provides ensembles of integrable matrix Hamiltonians with any given number of integrals of

motion (see below). It is similar to RMT in that both are ensemble theories equipped with

rotationally invariant probability density functions. An important difference is that random

matrices do not represent realistic many-body models, while integrable ones correspond to

actual integrable Hamiltonians. We therefore have access not only to typical features, but

also to exceptional cases and are in a position to make definitive statements about the

statistics of quantum integrable models. Here, we study the nearest-neighbor level spacing

distributions of the IMT ensembles.

The approach of Refs. [10, 13, 16, 17, 14, 15, 18] to quantum integrability operates

with N ˆ N Hermitian matrices linear in a real parameter x. A matrix Hpxq “ xT ` V

is called integrable [16, 17, 19] if it has a commuting partner rHpxq “ x rT ` rV other than a

linear combination of itself and the identity matrix and if Hpxq and rHpxq have no common

x-independent symmetry, i.e., no Ω ‰ c1 such that rΩ, Hpxqs “ rΩ, rHpxqs “ 0. Fixing the

parameter-dependence makes the existence of commuting partners a nontrivial condition,

so that only a subset of measure zero among all Hermitian matrices of the form xT `V are

integrable [17].

Further, integrable matrices fall into different classes (types) according to the number

of independent integrals of motion. We say that Hpxq is a type-M integrable matrix if

there are precisely n “ N ´M ą 1 linearly independent N ˆ N Hermitian matrices [20]
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H ipxq “ xT i ` V i with no common x-independent symmetry such that

“

Hpxq, H ipxq
‰

“ 0, rH ipxq, Hjpxqs “ 0, (1.1)

for all x and i, j “ 1, . . . , n. A type-M family of integrable matrices (integrable family) is

an n-dimensional vector space [20], where H ipxq provide a basis. The general member of

the family is

Hpxq “
n
ÿ

i“1
diH

ipxq, (1.2)

where di are real numbers. The maximum possible value of n is n “ N ´ 1, corresponding

to type-1 or maximally commuting Hamiltonians.

Examples of well-known many-body Hamiltonians that fit into this definition of integra-

bility are the Gaudin, 1D Hubbard and XXZ models, where x corresponds to the external

magnetic field, Hubbard U and the anisotropy, respectively. Note, however, that these

models have various x-independent symmetries, such as the z component of the total spin,

total momentum, etc. Taken at a given number of spins or sites, they break down into sec-

tors (matrix blocks) characterized by certain parameter-independent symmetry quantum

numbers. Such blocks are integrable matrices according to our definition. For instance,

the 1D Hubbard model on six sites with three spin up and three spin down electrons is a

direct sum of integrable matrices of various types [17]. Sectors of Gaudin magnets, where

the z-component of the total spin differs by one from its maximum or minimum value (one

spin flip), or, equivalently, the one Cooper pair sector of the BCS model are type-1 [16],

while other sectors are integrable matrices of higher types.

Prior work [16, 17, 15, 18, 10] constructed all type-1, 2, 3 integrable matrices and a

certain subclass of arbitrary type-M , determined exact eigenvalues and eigenfunctions of

these matrices, investigated the number of level crossings as a function of size and type,

and showed that type-1 integrable families satisfy the Yang-Baxter equation. This work is

a continuation of Ref. [13] where we formulated a rotationally invariant parametrization of
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Figure 1.1: The level spacing distribution of a 4000ˆ 4000 random real symmetric matrix
with entries chosen as independent random numbers from a normal distribution of mean
0 and off-diagonal variance 1/2 (diagonal variance of 1). Such a matrix belongs to the
Gaussian orthogonal ensemble (GOE) of real symmetric matrices, studied in random matrix
theory (RMT). The main feature of the spacing distribution here is its vanishing for small
spacings, also known as level repulsion. The smooth curve is the Wigner surmise P psq “
π
2 se

´π
4 s

2 . See the integrable matrix case in Fig. 1.2.

integrable matrices and derived an appropriate probability density function (PDF) for the

parameters, i.e., for ensembles of integrable matrices of any given type. The derivation is

similar to that in the RMT and is based on either maximizing the entropy of the PDF or,

equivalently, postulating statistical independence of independent parameters and rotational

invariance of the PDF. Here, we use the results of Ref. [13] to generate and study numerically

and analytically level spacing distributions in ensembles of integrable matrices of various

types as well as in individual matrices.

Our main results are as follows. For a generic choice of parameters, the level statistics

of integrable matrices Hpxq are Poissonian in the limit of the Hilbert space size N Ñ 8
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Figure 1.2: The level spacing distribution for a 4000 ˆ 4000 real symmetric integrable
matrix Hpxq “ xT ` V at x “ 1. This particular matrix is a sum of 200 linearly indepen-
dent matrices that commute for all values of the real parameter x. Note that the spacing
distribution is maximized at s “ 0, a feature known as level clustering. The smooth curve
is a Poisson distribution, which is theorized to be typical of integrable matrices. Compare
to the generic real symmetric matrix case in Fig. 1.1.
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if the number of conservation laws n scales at least as logN , see Fig. 1.2 for an example.

Exceptions to Poisson statistics fall into two categories. First, it is always possible to con-

struct an integrable matrix that has any desired level spacing distribution at a given isolated

value, x “ x0, of the coupling (or external field) parameter. For a typical type-1 matrix

there is always a single value of x where the statistics are Wigner-Dyson. The distribution

quickly crosses back over, however, to Poisson at deviations from x0 of size δx „ N´0.5,

with the crossover centered at δx „ N´1. Second, one obtains non-Poissonian distributions

by introducing correlations among the ordinarily independent parameters characterizing an

integrable matrix Hpxq; the reduced BCS model falls into this category. The statistics again

revert to Poisson at OpN´0.5q deviations from such correlations. We also show numerically

that as N Ñ 8, integrable matrix ensembles satisfy two distinct definitions of ergodicity

with respect to the nearest-neighbor spacing distribution P psq. Not only are the statistics

of a single matrix representative of the entire ensemble, but the statistics of the j-th bulk

spacing across the ensemble are independent of j.

In Sect. 2, we present numerical results on the level statistics of type-1 matrices, defined

to be integrable matrices Hpxq with the maximum number nmax “ N´1 of linearly indepen-

dent commuting partners. Section 3 contains numerical results for integrable matrices with

n ď nmax. We present our analytical justification of numerical results using perturbation

theory in Sect. 4. Finally, we give numerical results on ergodicity in Sect. 5.

2 Level statistics of type-1 integrable matrices

2.1 Type-1 families, primary parametrization

Although our definition of integrable matrices encompasses the general Hermitian case, we

restrict our focus in this work to real symmetric matrices. We begin with type-1 integrable

NˆN families which contain N´1 nontrivial commuting partners in addition to the scaled

identity pc1x` c2q1. Such matrices are the simplest to construct, for the parametrization of

type-M integrable families increases in complexity with M . Results on these higher types
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are deferred to Sect. 3.

We first summarize the essential points of the basis-independent type-1 construction

of Ref. [13] in order to arrive at the parametrization of Eq. (2.2) useful for numerical

calculations. By considering linear combinations of the N ´ 1 basis matrices, defined in

Eq. (1.2), and the identity, one can prove that every type-1 family contains a particular

integrable matrix Λpxq with rank-1 T -part

Λpxq “ x |γy xγ| ` E, (2.1)

i.e., rHpxq,Λpxqs “ 0 for all x and any Hpxq “ xT `V in the family. There is an additional

restriction rV,Es “ 0, which follows from Opx0q term in the commutator. It can be shown

that the matrices E and V and the vector |γy completely determine a given type-1 matrix

Hpxq “ xT ` V modulo an additive constant proportional to the scaled identity.

If we consider any type-1 Hpxq in the shared eigenbasis of E and V , we find that the

matrix elements of Hpxq can be parametrized in terms of the N eigenvalues εi of E, the N

eigenvalues di of V , and the N vector components γi of |γy. Statistical arguments borrowed

from RMT in Ref. [13] identify the εi and di as two independent sets of eigenvalues drawn

from the Gaussian orthogonal ensemble. The γi are drawn from a δp1´ |γ|2q distribution.

With these parameters, any N ˆ N type-1 integrable matrix Hpxq “ xT ` V can be

constructed in the following way:

rHpxqsij “ xγiγj
di ´ dj
εi ´ εj

, i ‰ j,

rHpxqsjj “ dj ´ x
ÿ

k‰j

γ2
k

dj ´ dk
εj ´ εk

.

(2.2)

We call Eq. (2.2) the “primary” parametrization, which is given specifically in the basis

where V is diagonal and can be transformed into any other basis by an orthogonal trans-

formation. Note that the quantities dj act as coefficients of linear combination of basis
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matrices H ipxq defined by setting dj “ δij in Eq. (2.2). Explicitly, nonzero matrix elements

of H ipxq are

rH ipxqsij “ rH
ipxqsji “ x

γiγj
εi ´ εj

, j ‰ i,

rH ipxqsjj “ ´x
γ2
i

εi ´ εj
, j ‰ i,

rH ipxqsii “ 1´ x
ÿ

k‰i

γ2
k

εi ´ εk
.

(2.3)

and

Hpxq “
N
ÿ

i“1
diH

ipxq. (2.4)

From Eq. (2.4) we see that the εi and γi uniquely identify a type-1 commuting family

whereas the choice of di produces a given member of the family.

To describe the spectrum of Hpxq, we introduce an additional N parameters λj “ λjpxq

determined by the following equation [16]:

1
x
“

N
ÿ

k“1

γ2
k

λj ´ εk
. (2.5)

One can graphically verify that for any non-degenerate choice of εk there are N real solutions

λj to Eq.(2.5) that interlace the εk. The N eigenvectors vpxq and eigenvalues ηpxq of Hpxq

are labeled by λj and take the form

rvλj pxqsk “
γk

λj ´ εk
, ηλj pxq “ x

N
ÿ

i“1

diγ
2
i

λj ´ εi
. (2.6)

The components of the (unnormalized) eigenvectors vλj pxq are independent of the choice of

di in Eq. (2.4), and are thus common to any member of the family defined by εk and γk.

2.2 Universality of Poisson statistics

Equipped with parametrizations of integrable matrix ensembles based on the number of

commuting partners in a family, we can quantitatively outline both the origin and the

robustness of Poisson statistics in these ensembles. We first explore the latter with numerical
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tests of the statistics of integrable matrices in Sects. 2.3 - 3.3. For clarity of exposition, the

numerical results of Sects. 2.3, 2.4 and 2.5 are demonstrated strictly for type-1 matrices.

In Sect. 3, we show that the same results apply generally to a construction of higher type

integrable matrix families that by definition contain fewer than the maximum number of

conservation laws. We present analytical considerations of numerical results in Sect. 4.

We emphasize that regardless of the choice of parameters we find Poisson level statistics

in the overwhelming majority of cases, even near isolated points in parameter space with

non-Poissonian statistics. For example, the least biased choice for di in Sect. 2.1 enforces

GOE statistics at x “ 0 since Hp0q “ V ; by effecting a shift x Ñ x ` x0, the equivalent

invariant statement is that each type-1 matrix has a parameter value x0 such that Hpx0q

has Wigner-Dyson statistics. Another exception to Poisson statistics is when di and εi are

correlated so that di “ fpεiq, a smooth function at least over almost the entire range of

εi. Nonetheless, as soon as we deviate from x0 or fpεiq, the results of Sects. 2.3 and 2.4

show that statistics quickly revert to Poisson at deviations scaling as δ „ N´0.5 in the limit

N Ñ8.

Generally, we find that random linear superpositions of basis matrices within a given in-

tegrable family are crucial for obtaining Poisson level statistics. Basis matrices themselves,

defined in Eq. (2.4) for the primary type-1 construction and in Eq. (3.5) for more general

integrable matrices, show non-Poissonian statistics with strong level repulsion. Such repul-

sion washes away, however, for Hpxq that are random linear combinations of sufficiently

many basis matrices. We see this behavior in Sect. 2.5 for all type-1 matrices, i.e., indepen-

dent of the number m of basis matrices (conservation laws) in linear combination as long

as m ą OplogNq.

We fit all spacing distributions P psq to the Brody function [21] P ps, ωq, where ω is the

Brody parameter

P ps, ωq “ apωqsωe´bpωqs
ω`1

. (2.7)

The distribution in Eq. (2.7) has unit mean and norm with appropriate choices of constants
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apωq and bpωq. It interpolates between a Poisson distribution P psq “ e´s at ω “ 0 and the

Wigner surmise P psq “ π
2 se

´π
4 s

2 at ω “ 1, and hence is a convenient fitting function. The

Brody parameter ω can take all values ω ą ´1, which means it also can detect enhanced

level clustering or repulsion.

Note, however, that the Wigner surmise is not the exact nearest neighbor spacing dis-

tribution of GOE matrices. One may therefore expect our numerics to produce an ω ‰ 1

for GOE matrices. Fig. 2.2, where ω « .956, shows that this is indeed the case. The

exact distribution P psq can be found in Ref. [11] and was originally derived by Gaudin in

terms of a Fredholm determinant [22]. Using Ref. [23] and a few lines of Mathematica code,

we find that the same fitting procedure used for numerically generated matrices produces

ω « 0.957. Note that it is important to exclude P p0q “ 0 in the fitting procedure for

numerically generated finite-sized matrices.

2.3 Crossover in coupling parameter x

Here, we show that even if the statistics are non-Poissonian at a given coupling value x “ x0

(we set x0 “ 0), level clustering is restored at small deviations from x0. For any N , the

matrices T and V each have eigenvalues that mostly lie on an Op1q interval centered about

zero. We consider the primary type-1 construction encountered in Eq. (2.2) and explore

the level statistics of large matrices. In Fig. 2.1, we see qualitatively how the statistics

change with x when N “ 4000. We find Poisson statistics at x „ 1 until a crossover to level

repulsion begins near x “ N´0.5 and ends near x “ N´1.5.

To verify that the crossover scaling inferred from Fig. 2.1 is correct for all N " 1, in

Fig. 2.2 we plot how the Brody parameter ω (see Eq. (2.7)) evolves with x for various choices

of N . It turns out that ωpx,Nq can be fit to a relatively simple function, for any N " 1

ωpx,Nq “ α´ β tanh
ˆ

logN x´X0
Z

˙

. (2.8)

The numbers pα, β,X0, Zq are fit parameters and take the values p0.482, 0.474,´1.04, 0.157q
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Figure 2.1: Crossover in coupling x of the level statistics of type-1 integrable N ˆ N
matrices Hpxq “ xT `V , N “ 4000. See Sect. 2.1 for their parametrization. V is a random
matrix so that Hpx “ 0q has level repulsion. Each distribution contains the levels statistics
of a single matrix Hpxq at a given value of x. Note that some level repulsion has set in by
x “ N´1. Each numerical distribution is fit to the Brody function P ps, ωq from Eq. (2.7);
for couplings x “

`

1, N´1, N´1.5˘ the fits give ω “ p0.01, 0.30, 0.94q, respectively. The
solid lines are reference plots of a Poisson distribution P psq “ e´s and the Wigner Surmise
P psq “ π

2 se
´π

4 s
2 . See Fig. 2.2 for more on this crossover.
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Figure 2.2: Crossover in level statistics with variation of coupling parameter x in type-1
integrable N ˆ N matrices Hpxq “ xT ` V , quantified by the Brody parameter ωpx,Nq
from Eq. (2.7). The two important limits are ω “ 0 for Poisson statistics and ω “ 1 for
random matrix (Wigner-Dyson) statistics. Each plotted value ωpx,Nq is computed for the
combined level spacing distribution of several matrices from the ensemble. We extract the
crossover scale by fitting ωpx,Nq to Eq. (2.8) (solid curve) to all curves simultaneously,
where most notably X0 „ ´1 for all N investigated, indicating that crossovers to Poisson
statistics are centered at that value for integrable matrices Hpxq when Hpx “ 0q has level
repulsion. The middle of the crossover is indicated by a vertical line.

in Fig. 2.2. Most important is that for any N " 1 we find X0 „ ´1, which solidifies our

claim that the crossover occurs between x „ N´1.5 and x „ N´0.5. Analytical arguments

explaining this scaling are given in Sect. 4.

2.4 Correlations between matrix parameters

In the eigenbasis of V , our parametrization of integrable N ˆN matrices is given in terms

of about 3N independent parameters (up to a change of basis). Through an explicit con-

struction of the probability density function of integrable matrices obtained through basis-

independent considerations, Ref. [13] shows that for a typical integrable matrix, di and εi
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are indeed uncorrelated. We see in this section that if correlations are introduced between εi

and di, the statistics become non-Poissonian. Small perturbations about these correlations,

however, bring the statistics immediately back to Poisson. In this section, x “ 1 for all

matrices considered.

Continuing with type-1 matrices in the primary parametrization, Eq. (2.2), we recall

that the eigenvalues ηλj of such a matrix Hpxq “ xT ` V are given by Eq. (2.6),where

the λj “ λjpxq are obtained from Eq. (2.5). As we saw in Sect. 2.3, a typical choice of

parameters will produce Poisson statistics, but this changes if we let di be some smooth

function of εi. The simplest case is shown in Fig. 2.3 for which di “ εi. As discussed in

Refs. [13, 17], Hpxq for this choice of parameters describes a sector of the reduced BCS

model and, independently, a short range impurity in a weakly chaotic metallic quantum dot

studied in Refs. [24, 25].

The level repulsion for this case can be understood by a simple manipulation of Eq. (2.6)

when di “ εi:

ηλj “ x
N
ÿ

i“1

εiγ
2
i ` λjγ

2
i ´ λjγ

2
i

λj ´ εi

“ ´x
N
ÿ

i“1
γ2
i ` λj ,

(2.9)

where we used Eq. (2.5). Then when di “ εi the eigenvalues of Hpxq are just the λj up to

an additive constant. For the case when εi are random matrix eigenvalues, Ref. [24] derives

the joint probability density of the set tεi, λju and Ref. [25] demonstrates that the λj are

subject to the same level repulsion as the εi. Note also that Eq. (2.5) implies λj lie between

consecutive εi and therefore the eigenvalues in Eq. (2.9) can have no crossings at any finite x.

Numerically, we have found that λj exhibit level repulsion for any choice of εi (see Fig. 2.4).

Fig. 2.3 also shows the level repulsion induced when di “
ř4
k“1Akhkpεiq, where hkpεiq is

the k-th order Hermite polynomial and Ak are independent random numbers drawn from

a normal distribution. In this case, the level repulsion is mitigated relative to the case of
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Figure 2.3: Level statistics of two N ˆ N type-1 integrable matrices Hpxq “ xT ` V ,
x “ 1 and N “ 4000, when correlations are introduced between dj and εj (see Eqs. (2.2,
2.6), and then Eq. (2.9) for an example). Note that in contrast to Fig. 2.1, these inte-
grable matrices exhibit level repulsion even for x “ 1. Each of the two curves is generated
from a single matrix. One numerical curve corresponds to the case when di “ εi and
the other is when di “

ř4
k“1Akhkpεiq, where hkpzq is the k-th order Hermite polynomial

and pA1, A2, A3, A4q “ p2.3, 2.16,´1.46, 0.51q, chosen randomly. Note that the polynomial
dependence weakens the level repulsion as compared to the linear case. If higher order
polynomials are included, the level repulsion eventually gives way to Poisson statistics. The
solid curve is the Wigner surmise P psq “ π

2 se
´π

4 s
2 . See Fig. 2.5 for more on this behavior.
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Figure 2.4: Illustrating that conclusions drawn about correlations between di (eigenvalues
of V ) and εi (eigenvalues of E) are independent of the particular choice of εi. Pictured
are four numerically generated nearest-neighbor spacing distributions P psq for 5000ˆ 5000
type-1 matrices, x “ 1, when the di and εi are either from a random matrix (GOE) or are
independently and identically distributed numbers (i.i.d.) from a normal distribution. Each
curve represents the level statistics of a single matrix chosen from the type-1 ensemble. Level
repulsion survives in the two cases where di and εi are correlated (V “ E), even though
the overall shape of P psq depends on whether E’s eigenvalues are GOE or i.i.d. numbers.
The solid curves are the usual Poisson distribution P psq “ e´s and the Wigner surmise
P psq “ π

2 se
´π

4 s
2 . We do not include plots for different choices of γi, which do not affect the

general character of the results.
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linear correlation. Sums to higher orders of hkpεiq (or any higher order polynomial) will

eventually bring the statistics back to Poisson.

We now investigate the stability of induced level repulsion in Hpxq when correlations

between di and εi are broken. In Fig. 2.5, we let di “ εip1 ` δDiq where Di is an Op1q

random number from a normal distribution and δ is a number controlling the size of the

perturbation. The crossover to Poisson statistics as δ increases is very similar to that in

Fig. 2.2, which shows the crossover with x. In fact, we can fit the Brody parameter ωpδ,Nq

to

ωpδ,Nq “ α´ β tanh
ˆ

logN δ ´X0
Z

˙

. (2.10)

Note that Eq. (2.10) is just Eq. (2.8) with the substitution x Ñ δ. We find that the

crossover occurs over the range N´1.5 À δ À N´0.5, indicating that any perturbation to

correlations will immediately destroy level repulsion as N Ñ 8. In particular, Fig. 2.5

gives pα, β,X0, Zq “ p0.479, 0.474,´1.03, 0.169q for linear correlations. This scaling is not

restricted to the case di “ εi, as seen in Fig. 2.6 where we again consider di “
ř4
k“1Akhkpεiq

and find a similar crossover with pα, β,X0, Zq “ p0.237, 0.233,´0.914, 0.206q.

2.5 Basis matrices: how many conservation laws?

Here we demonstrate that in order to obtain Poisson statistics, the number m of linearly

independent conservation laws contained in an NˆN integrable type-1 matrix can be much

less than N . Consider a combination of m basis matrices H ipxq defined in Sect. 2.1

Hpxq “
m
ÿ

i“1
diH

ipxq, m ď N ´ 1. (2.11)

From the sum in Eq. (2.11), we can determine the number m needed to obtain Poisson

statistics. Individual basis matrices H ipxq will exhibit level repulsion, and it is only when an

integrable matrix is formed from an uncorrelated (w.r.t. εi, see Sect. 2.4) linear combination

of sufficiently many of them will we observe Poisson statistics. Level repulsion in this
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Figure 2.5: Variation in the Brody parameter ωpδ,Nq when di “ εip1 ` δDiq in the level
statistics of N ˆ N type-1 integrable matrices Hpxq for various N , x “ 1. The number δ
is a parameter controlling the size of the perturbation from correlation, and Di is an Op1q
random number from a normal distribution. Note that the crossover in δ is very similar to
that in x shown in Fig. 2.2. The numerical curves are fit to the function ωpδ,Nq given in
Eq. (2.10) (solid curve), with a crossover centered at X0 „ ´1, indicating that crossovers to
Poisson statistics are centered at that value. Each plotted value ωpδ,Nq is computed for the
combined level spacing distribution of several matrices from the ensemble. A vertical line
indicates the center of the crossover on the plot. For a similar plot for nonlinear functions
dipεiq see Fig. 2.6.
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Figure 2.6: Variation in the Brody parameter ωpδ,Nq when di “
ř4
k“1Akhkpεiqp1` δDiq

in the level statistics of N ˆN type-1 integrable matrices Hpx “ 1q for various N . Here δ
quantifies the deviation from the point δ “ 0 where the parameters di and εi defining the
matrices are correlated, Di and Ak are Op1q random numbers from a normal distribution,
hkpzq is the k-th order Hermite polynomial. Each ωpδ,Nq is computed for the combined
level spacing distribution of several matrices from the ensemble. The crossover in δ is very
similar to that in x in Fig. 2.2 and in δ for linear correlations in Fig. 2.5. Because the
correlations are nonlinear, the level repulsion is diminished in comparison to previous cases.
Despite this, the crossover still demonstrates the same scaling – fitting the data to ωpδ,Nq
given in Eq. (2.10) (solid curve), with a crossover centered at X0 „ ´1 (vertical line), shows
that δ9N´0.5 is enough for statistics to revert to Poisson.
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case can be qualitatively understood by reasoning that a basis matrix only “contains”

one nontrivial conservation law, itself. More concretely, we see from Eq. (2.6) that the

eigenvalues of H ipxq are xγ2
i pλj ´ εiq

´1, i.e., they are simple, mostly smooth functions of

λj , which exhibit level repulsion.

Fig. 2.7 quantifies how many basis matrices m (i.e., conservation laws) are needed for

Poisson statistics as a function of N , the matrix size. We find numerically that the plots

of the Brody parameter ω (see Eq. (2.7)) vs. the number m of basis matrices in linear

combination can be fit to a simple function

ωpm,Nq “ a exp
„

´
b

logN m



, (2.12)

where a and b are real constants. The fact that for different values of N we find that b „ 1

supports the notion that we need only about logN conservation laws in order to induce

Poisson statistics. We make this claim with caution because we only have data for 500 ď

N ď 4000, a range over which logN does not vary significantly. More precisely, Fig. 2.7

shows that having m “ Op1q conservation laws is insufficient for inducing Poisson statistics,

and that a useful upper bound on the lowest m necessary for Poisson statistics is mmin ă

OpNαq where 0 ă α ă 0.20. We obtain the factor of 0.20 by rewriting Eq. (2.12) assuming

the decay constant has power law dependence on N instead of logarithmic dependence

ωpm,Nq “ a exp
”

´
c

Nα
m
ı

. (2.13)

Numerically we found that the parameter b in Eq. (2.12) satisifies 1.07 ď b ď 1.21 when

500 ď N ď 4000. By matching exponents between Eq. (2.13) and Eq. (2.12) for pb1, N1q “

p1.21, 500q and pb2, N2q “ p1.07, 4000q, we find a maximum exponent α “ 0.198.

The basis matrices H ipxq contained in any integrable Hpxq are linearly independent

conservation laws. The observed dependence of P psq on the number m of basis matrices

in linear combination is reminiscent of the early work of Rosenzweig and Porter [26] (RP)
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Figure 2.7: The Brody parameter ωpm,Nq (see Eq. (2.7)) vs. number m of type-1 basis ma-
trices H ipxq in linear combination Hpxq “

řm
i“1 diH

ipxq for various N , x “ 1. The fits pre-
sume exponential decay and are expressed in terms of two parameters pa, bq from Eq. (2.12).
For N “ p500, 1000, 2000, 4000q we find the decay constant b “ p1.15, 1.07, 1.14, 1.21q, indi-
cating that we only need mmin « logN conservation laws for Poisson statistics to emerge.
Figs. 3.2 and 3.3 show similar plots for higher types. Each plotted ωpm,Nq is computed
for the combined level spacing distribution of several matrices from the ensemble.
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on the nearest neighbor spacing distribution of superpositions of independent spectra. Al-

though the spectra of basis matrices H ipxq are not strictly independent and are added

together instead of superposed (“superposed” here means “combined into a single list”),

we see the same qualitative behavior as described by RP: a single basis matrix has level

repulsion, but a sufficiently large number combined have Poisson statistics. In the case of m

independent, superposed spectra with vanishing P p0q that contribute equally to the mean

level density, the value Pmp0q of the superposed spectrum is given by the RP result

Pmp0q “ 1´ 1
m
. (2.14)

We see in Fig. (2.8) that Pmp0q for m basis matrices in linearly combination differs from the

RP result for small m, as expected, but asymptotically approaches Eq. (2.14) for large m

and large N . Thus it seems reasonable to conceptually understand the emergence of Poisson

level statistics in integrable matrices Hpxq as arising from the existence of conservation laws,

whose spectra are statistically independent for large m and N .

Integrable matrix spectra are similar in structure to those of semiclassically integrable

models studied by Berry and Tabor [4]. Such spectra are also sums (or simple functions)

of rigid spectra, and they have Poisson nearest-neighbor level statistics in the semiclassical

limit.

Berry’s work [27] on semiclassical models shows that longer range spectral statistics of

integrable and chaotic models deviate from the predictions of the Poisson ensemble [28] and

Gaussian random matrix theory, respectively. Similar behavior occurs in purely quantum

systems [29]. An example of such a long range statistic is Σ2pLq, the spectral variance of

the average number of eigenvalues contained in an interval of length L. For independent

random numbers with unit mean spacing in an infinitely large spectrum, Σ2pLq “ L. For

a given Hamiltonian, Σ2pLq will eventually saturate [30] at some Lmax, which depends on

the system’s classical periodic orbits and the energy scale.
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Figure 2.8: Plot of numerically generated Pmp0.025q for linear combinations of m type-1
basis matrices, Eq. (2.11), for N “ 100 and N “ 2000 at x “ 1. The solid curve gives
the Rosenzweig-Porter prediction of Pmp0q “ 1´ 1{m for superpositions of m independent
random matrix spectra. Physically, the RP curve represents Pmp0q for the combined spec-
tra of m blocks of different (parameter-independent) quantum numbers of a Hamiltonian.
We note that although different mechanisms are involved in the RP and integrable matrix
approach to Poisson statistics, the behavior of P p0q is similar. This gives heuristic jus-
tification to why the existence of parameter-dependent conservation laws in Hpxq implies
Poisson statistics. The sub-Poisson behavior for N “ 100 is a finite-size effect.
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We find no evidence of saturation of Σ2pLq in type-1 matrices on the ensemble average.

Because we work with finite-size spectra, we compare numerically generated Σ2pLq to the

corresponding Poisson ensemble averaged result for lists of R independent numbers with

unit mean spacing and periodic boundary conditions

Σ2
pR,Lq “ L

ˆ

1´ L

R

˙

. (2.15)

The overline indicates an average over the Poisson ensemble. Because numerical unfolding

(see Appendix A) introduces spurious effects in long range spectral observables, we instead

average over small regions containing R “ 2
?
N eigenvalues in the centers of NˆN matrices

where the level density is approximately constant. As seen in Fig. 2.9, the spectral variance

of type-1 matrices satisfies Eq. (2.15), even at relatively small N .

While there is no saturation on the ensemble average, Σ2pR,Lq in the Poisson ensemble

has large fluctuations for L „ R{2. Figs. 2.10 and 2.11 show how individual members of

the Poisson ensemble and individual type-1 matrices can both exhibit saturation to values

of Σ2pR,Lq much smaller than Eq. (2.15) and have a spectral variance greatly exceeding

Eq. (2.15). Type-M matrices, whose construction is detailed in the next section, exhibit

similar behavior in Σ2pR,Lq for small M , but we have not quantified how precisely Σ2pR,Lq

changes with increasing M .

Recent work by Prakash and Pandey [31] shows that a two particle non-interacting em-

bedded matrix ensemble [32] exhibits saturation of Σ2pLq on the ensemble average. Embed-

ded matrix ensembles model the structure of many body systems by constructing eigenen-

ergies out of random k-body interactions between m particles, k ă m. Ref. [31] contains

an extended discussion of saturation and helpful references. We do not pursue spectral

variance further in this work.
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Figure 2.9: Ensemble averaged number variance Σ2
pR,Lq in N ˆ N type-1 matrices

Hpxq “ xT ` V at x “ 1 for N “ 100 and N “ 1000. In order to achieve a constant
mean level spacing normalized to unity, we selected the middle R “ 2

?
N eigenvalues from

each matrix and used periodic boundary conditions on the list of eigenvalues. The results
are in excellent agreement with the Poisson ensemble predictions (solid curves), given by
Eq. (2.15). There is no saturation on the ensemble average. We averaged over 104 matrices
for N “ 100 and 500 matrices for N “ 1000.
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Figure 2.10: Deviations from the Poisson ensemble average Eq. (2.15) (solid curve) of
number variance Σ2

p200, Lq from of two members of the Poisson ensemble. Shown are the
number variances of two different lists of 200 independent numbers from a flat distribution
in order to illustrate the large fluctuations of long-range spectral observables in the Poisson
ensemble. See Fig. 2.11 for similar behavior in type-1 spectra.
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Figure 2.11: Deviations from the Poisson ensemble average Eq. (2.15) (solid curve) of
number variance Σ2

p64, Lq from of two members of the N “ 1000 type-1 ensemble. Shown
are the number variances of two matrices used in the ensemble average of Fig. 2.9. The
saturation observed in the more rigid of the two spectra is reminiscent of that seen in
members of the Poisson ensemble, see Fig. 2.10.
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3 Statistics of integrable matrices of higher types

3.1 Ansatz type-M families

We do not yet have a method for directly generalizing the type-1 primary parametrization

from Sect. 2.1 to higher type matrices that by definition have fewer commuting partners.

Instead, we present another parametrization that produces a subset of integrable families of

any type M ě 1. The construction is in terms of 3N`1 real parameters so that in choosing

values for them one obtains a matrix Hpxq “ xT `V with a desired number n of nontrivial

commuting partners (n “ N ´M) and no parameter-independent symmetries. As in the

type-1 primary parametrization, the parameters can be traced back to eigenvalues of two

commuting constant random matrices and a random vector.

Here we present the results; more details can be found in Ref. [17] while the rotationally

invariant construction is given in Ref. [13]. Again in the diagonal basis of V , the most

general member of an ansatz type-M commuting family is

rH pxqsij “ xγiγj

ˆ

di ´ dj
εi ´ εj

˙

Γi ` Γj
2 , i ‰ j,

rH pxqsii “

“ di ´ x
ÿ

j‰i

γ2
j

ˆ

di ´ dj
εi ´ εj

˙

1
2
pΓi ` Γjq pΓj ` 1q

Γi ` 1 ,

(3.1)

where

xi|iy ”
N
ÿ

j“1

γ2
j

pλi ´ εjq2
,

di “
1
x0

N´M
ÿ

j“1

gj
xj|jy

1
λj ´ εi

,

Γi “ ˘

g

f

f

e1` 1
x0

N
ÿ

j“N´M`1

Pj
xj|jy

1
λj ´ εi

.

(3.2)
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This parametrization gives all type-1, 2, and 3 integrable matrices and only a subset of such

for higher types. We call matrices obtained by this construction ansatz type-M as opposed

to all type-M , these two notions being equivalent for M “ 1, 2, 3.

Basis-independent considerations from Ref. [13] identify λi as eigenvalues of a matrix

Λ selected from the GOE and γi as selected from a δp1 ´ |γ|2q distribution, as was the

case for the primary parametrization of type-1 matrices in Sect. 2.1. One may alternatively

select the εi as eigenvalues of a GOE matrix E and from them derive the λi. We find

that this choice has no effect on the statistics. Unique to the ansatz parametrization are

the (N ´M) parameters gi and M parameters Pi. Ref. [13] identifies these parameters as

eigenvalues selected from an N ˆ N GOE matrix G [33] satisfying rG,Λs “ 0. The sign

of Γi can be chosen arbitrarily for each i and each set of sign choices corresponds to a

different commuting family. The λi by construction are solutions of the following equation

with arbitrary (but fixed) real x0 ‰ 0:

fpλiq ”
N
ÿ

j“1

γ2
j

λi ´ εj
´

1
x0
“ 0,

F pεiq ”
N
ÿ

j“1

1
xj|jy

1
λj ´ εi

´ x0 “ 0.
(3.3)

The second line of Eq. (3.3) follows from the first by writing both the partial fraction

decomposition and factorized form of F pzq “ 1{fpzq and matching residues. Eqs. (3.2) and

(3.3) mean that ansatz type-M matrices are written in terms of an auxiliary primary type-1

problem with parameter x0 and (unnormalized) eigenstates |iy, see Eq. (2.5) and Ref. [13].

Note the important distinction between x and x0 – namely that x is free but x0 is fixed for

a given family of commuting matrices.

Due to the square root in the expression for Γi, Eq. (3.2), a given set of Pi will typically

result in a complex set of Γi. The matrix Hpxq will subsequently be complex symmetric,

rather than real, although it will still satisfy all requirements of integrability. Because

in this work we study the eigenvalues of real symmetric integrable matrices, we elect to
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reparametrize Γi in a way that guarantees they be real without awkwardly scaling each set

of Pi

Γi “ ˘

g

f

f

e

śN
j“1pφj ´ εiq

śN
k“1pλk ´ εiq

, (3.4)

where the M φj are real parameters such that (upon ordering εj and λj for argument’s

sake) εj ă φj ă λj if x0 ą 0 and λj ă φj ă εj if x0 ă 0. The resulting Γi are real-valued.

As there is no existing basis-independent interpretation for φj , we simply choose them from

a uniform distribution on their allowed intervals. We find that the choice of φi or Pi to

generate the Γj has a numerically undetectable effect on the eigenvalue statistics.

Varying parameters gj produces different matrices within the same commuting family,

while varying the remaining parameters γi, λi, φi, x0 generates sets of matrices from different

families. A natural way to choose a basis for the ansatz type-M commuting family is to

define the n “ N ´M nontrivial Hkpxq such that gj “ δkj in Eq. (3.2) for 1 ď j ď N ´M .

In other words,

Hkpxq “ xT k ` V k is given by Eq. p3.1q with

di Ñ dki “
1
x0

1
xk|ky

1
λk ´ εi

.

(3.5)

for k “ 1, . . . , N ´M . In particular,

V k “ Diagpdk1, dk2, . . . , dkN q (3.6)

A general member of the commuting family is

Hpxq “
N´M
ÿ

k“1
gkH

kpxq. (3.7)

up to a multiple of the identity trivial to the study of level spacing statistics.

Ansatz type-M families have an exact solution in terms of a single equation similar to

Eq. (2.5) given in Ref. [17], which has slight differences in notation as compared to here.
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To study level statistics of ansatz matrices, we numerically diagonalize them rather than

use the computationally cumbersome exact solution.

A fundamental difference between ansatz type-M matrices and the primary type-1

parametrization is that the eigenvalues of the matrix V in the former are heavily constrained

by Eq. (3.2), while in the latter they are free parameters. In particular, as explained in

Ref. [13] the primary type-1 V is selected from the GOE, while the ansatz V is a certain

primary type-1 matrix evaluated at x “ ´x0, i.e.,

V px0q “ ´x0TH1 `H1, (3.8)

where H1 has N ´M arbitrary eigenvalues gi and M eigenvalues equal to zero. By the

results of Sect. 2, ansatz V “ V px0q will typically have Poisson statistics. The resolution to

this apparent disconnect between the two parametrizations is that for |x0| ! 1, V px0q will

have the eigenvalue statistics of H1. We argue in Ref. [13] that the N ´M gi are a subset

of eigenvalues of an N ˆN matrix from the GOE, so that for M not too large and x0 ! 1

we obtain Wigner-Dyson statistics in ansatz V .

We then forgo studying crossovers in the coupling x of level statistics of ansatz type-M

matrices Hpxq “ xT ` V because ansatz V have Poisson statistics for typical parameter

choices. Instead, we focus on the behavior of the statistics with respect to parameter

correlations, the number M and the number of basis matrices. In all numerical work on

ansatz matrices we set x0 “ 1, as this is a typical coupling value for the auxiliary type-1

problem.

3.2 Correlations in ansatz parameters

Building on the results of Sect. 2.4, here we explore effects of parameter correlations on the

statistics in general type-M ansatz matrices. Introducing correlations between di and εi in

this case is more complicated than in Sect. 2.4 because the di here are not all independent.

Fortunately, Eq. (3.2) admits a simple way to produce such correlations. As an example,
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consider the case when gj “ λj

di “
1
x0

N´M
ÿ

j“1

λj ´ εi ` εi
xj|jy

1
λj ´ εi

“
1
x0
εi

˜

N´M
ÿ

j“1

1
xj|jy

1
λj ´ εi

¸

` pconstq

“ εi

˜

1´ 1
x0

M
ÿ

j“1

1
xj|jy

1
λj ´ εi

¸

` pconstq,

(3.9)

where the second part of Eq. (3.3) was used. The sums in the third line of Eq. (3.9) introduce

a randomizing factor that has a weak effect for small M but that destroys the correlation

between di and εi at intermediate values of M . Fig. 3.1 shows the now familiar level

statistics crossover in δ for ansatz matrices of different size and type with gk “ λkp1`δGkq,

where Gk is an Op1q random number chosen from a normal distribution and δ a parameter

controlling the size of the perturbation. Just as in Sect. 2.4, the crossover to Poisson

statistics is centered about δ „ N´1. More generally, we can induce level repulsion in

ansatz type-M matrices if M ! N when gk “ fpλkq, a smooth function of λk.

3.3 Basis matrices: ansatz higher types

We now generalize the type-1 results of Sect. 2.5 to apply to all ansatz type-M matrices.

Recall that a general ansatz type-M matrix Hpxq “ xT ` V can be written as a linear

combination of basis matrices Hkpxq for which gi “ δik (see Eq. (3.7)).

We see again in Figs. 3.2 and 3.3 that Poisson statistics emerge for relatively small linear

combinations of basis matrices. Denoting m as the number of conservation laws contained

in a linear combination, i.e.,

Hpxq “
m
ÿ

i“1
gkH

kpxq, m ď N ´M, (3.10)
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Figure 3.1: Variation in the Brody parameter ωpδ,Nq when gi “ λip1 ` δGiq in the level
statistics of N ˆ N ansatz type-M integrable matrices Hpx “ 1q, Eq. (3.1), for various
N and M . Ordered pairs in the legend indicate size and type pN,Mq of the matrices, δ
controls the strength of the perturbation from the point δ “ 0 where the parameters gi
and λi defining these integrable matrices are correlated, and Gi is an Op1q random number
from a normal distribution. The crossover in δ for small M is similar to the primary type-1
crossovers in δ and x seen in Figs. 2.2,2.5 and 2.6. For larger M , correlations cannot be
introduced by this method, see Eq. (3.9). Despite type-M matrices having fewer than the
maximum number of conservation laws, the crossover still demonstrates the scaling given
in Eq. (2.10) (solid curves) with a crossover centered around X0 „ ´1 (vertical line). As
before, deviations from correlation of size δ9N´0.5 are enough for the statistics to become
Poisson. Each plotted value ωpδ,Nq is computed for the combined level spacing distribution
of several matrices from the ensemble. For the case of correlations in ansatz matrices, we
choose all Γk ą 0 in order to avoid pathological statistics in Hpxq.
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we investigate the Brody parameter ωpm,Nq from Eq. (2.12). In Fig. 3.2, N “ 500, ωpm,Nq

decays to zero as a function of m in nearly the same way for M “ 470 as for M “ 20. It

is only for very large M , such as M “ 497, that level clustering is forbidden, and this only

because we can use a maximum of 3 nontrivial basis matrices. Similar behavior emerges for

N “ 2000 in Fig. 3.3. For all N and M tested we find b „ 1 (with precise values given in

the captions). Therefore, we can estimate a similar bound as in Sect. 2.5 for the minimum

number of conservation laws needed for Poisson level statistics, namely mmin ă OpNαq

where 0 ă α ă 0.25, obtained from the M “ N{2 cases. Since m cannot exceed the total

number of conservation laws n “ N ´M for type-M matrices, this provides a lower bound

nmin “ mmin ă OpNαq consistent with mmin « logN .

4 Analytical results: perturbation theory

Some of the numerical observations found in Sects. 2 and 3 can be understood using

perturbation theory in the parameter x. We restrict our analysis to the primary type-1

parametrization because our arguments for this case are much more transparent than for

the ansatz construction. The analysis for ansatz matrices is similar.

The eigenvalues ηmpxq of Hpxq to first order in x are given by the second equation in

Eq. (2.2), where we set constant |γj |2 “ N´1 for clarity and to achieve proper scaling for

large N

ηmpxq « dm ´
x

N

ÿ

j‰m

ˆ

dm ´ dj
εm ´ εj

˙

. (4.1)

The first term comes from V , which has a Wigner-Dyson P psq, and the second term from

T , which is determined by the integrability condition and whose level statistics we do not

control. Let us estimate the x at which the two terms in Eq. (4.1) become comparable.

Note that dk and εk both lie on Op1q intervals so that T and V scale in the same way for

large N . Suppose εk are ordered as ε1 ă ε2 ă ¨ ¨ ¨ ă εN . When dk and εk are uncorrelated

dm ´ dj is Op1q when j is close to m, i.e., when pεm ´ εjq “ OpN´1q. The second term in
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Figure 3.2: Graph of the Brody parameter ωpm,Nq given by Eq. (2.7) vs. number m
of ansatz type-M basis matrices Hkpxq, see Eq. (3.5), contained in linear combination
Hpxq “

řm
k“1 gkH

kpxq for N “ 500, x “ 1. The fits presume exponential decay and are
expressed in terms of two parameters pa, bq from Eq. (2.12). For M “ p250, 480q we find the
decay constant b “ p1.13, 1.04q, indicating that we only need mmin « logN conservation
laws for Poisson statistics to emerge, independent of type. We do not observe Poisson
statistics for M “ 497 because the maximum number of nontrivial basis matrices is 3 in
this case, and we see that we need at least „ 15 conservation laws for Poisson statistics
to start emerging for N “ 500. See Fig. 3.3 for a similar plot for N “ 2000 and Fig. 2.7
for the same concept in type-1 matrices. Each plotted value ωpm,Nq is computed for the
combined level spacing distribution of several matrices from the ensemble.
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Figure 3.3: Brody parameter ωpm,Nq (see Eq. (2.7)) vs. number m of ansatz type-M
basis matrices Hkpxq, see Eq. (3.5), contained in linear combination Hpxq “

řm
k“1 gkH

kpxq
for N “ 2000, x “ 1. The fits presume exponential decay and are expressed in terms of
two parameters pa, bq from Eq. (2.12). For M “ p1000, 1980q we find the decay constant
b “ p0.99, 1.03q, indicating that we only need mmin « logN conservation laws for Poisson
statistics to emerge, independent of type. We do not observe Poisson statistics for M “ 1997
because the maximum number of nontrivial basis matrices is 3 in this case, and we see
that we need at least „ 20 conservation laws for Poisson statistics to start emerging for
N “ 2000. See Fig. 3.2 for a similar plot for N “ 500 and Fig. 2.7 for the same concept in
type-1 matrices. Each plotted value ωpm,Nq is computed for the combined level spacing
distribution of several matrices from the ensemble.
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Eq. (4.1) is then xcm lnN , where cm “ Op1q is a random number only weakly correlated

with dm. We performed simple numerical tests that confirm this scaling argument.

If we now order dm, cm in general will not be ordered, i.e., if dm`1 ą dm is the closest

level to dm and therefore pdm`1 ´ dmq “ OpN´1q, the corresponding difference pcm`1 ´

cmq “ Op1q. The contributions to level-spacings from the two terms in Eq. (4.1) become

comparable for x “ xc « 1{pN lnNq. It makes sense that the second term introduces a

trend towards a Poisson distribution because it is a (nonlinear) superposition of εk and

dk – eigenvalues of two uncorrelated random matrices. Thus, we expect a crossover from

Wigner-Dyson to Poisson statistics near x “ xc. In our numerics we observe a crossover

over the range N´1.5 À x À N´0.5 centered about xc „ N´1 likely because we do not reach

large enough N to detect the log component of the crossover.

This argument breaks down when dk “ fpεkq, since in this case pdm ´ djq “ OpN´1q

when pεm ´ εjq “ OpN´1q. The two terms in Eq. (4.1) become comparable only at x “

Op1q; moreover, the second term no longer trends towards Poisson statistics. Relaxing the

correlation between dk and εk with dk “ fpεkqp1 ` δDkq, Dk “ Op1q, and going through

the same argument, one expects a crossover to Poisson statistics at δ “ Op1{N lnNq when

x “ Op1q.

The level repulsion observed in basis matrices is a consequence of the level repulsion

implicit in the parameters λi, independent of the choice of εi, see the text below Eq. (2.9)

and Fig. 2.4. Indeed, basis matrices H ipxq in the primary type-1 parametrization, Eq. (2.2),

have eigenvalues ηijpxq “ xγ2
i pλj ´ εiq

´1, which is a smooth function of λj except near εi.

The ηijpxq therefore inherit the level repulsion of the λj . Analogous reasoning applies to

ansatz basis matrices.

5 Ergodicity in integrable matrix ensembles

The discussion and figures in this section make frequent reference to the “primary” con-

struction of type-1 integrable matrices and the “ansatz” construction of type-M integrable
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matrices. These parametrizations are introduced in Sect. 2.1 and Sect. 3.1, respectively.

Ensemble averages are taken with respect to the probability distributions for integrable

matrices introduced in Ref. [13].

One of the goals of this work is to determine the extent to which ensembles of integrable

matrices are “ergodic.” Intuitively, an ensemble is called ergodic if a single randomly selected

member has properties that are typical of the entire ensemble. Bohigas and Gianonni [34]

expound the subject in generality for random matrices, and here we focus numerically on

the meaning of ergodicity with regards to the nearest-neighbor level spacing distribution of

integrable matrices. Rigorous results on ergodicty for Gaussian ensembles and the Poisson

ensemble were derived by Pandey [35].

We distinguish between three separate ways of generating nearest-neighbor eigenvalue

spacing distributions for N ˆ N integrable matrix ensembles. We call Pi,N,Rpsq the level

spacing distribution, normalized to unity, of the i-th member of the ensemble obtained

from a spectral region R containing many eigenvalues (infinitely many as N Ñ 8). The

normalized distribution of spacings in R from all matrices in the ensemble is called PN,Rpsq.

A third way to characterize spacing statistics is through the normalized distribution of the

j-th eigenvalue spacing of all matrices in the ensemble, which we call pN,jpsq. Both the

regions R and the numbers j are stipulated to be far from the edges of the spectrum. In

general, Pi,N,Rpsq, PN,Rpsq and pN,jpsq are distinct distributions. Conceptually, PN,Rpsq and

pN,jpsq are ensemble properties while Pi,N,Rpsq characterizes the spectrum of an individual

matrix. In the following definitions, we assume that the spacing distributions converge to a

well-defined limit as N Ñ8, unlike known pathological examples such as the semiclassical

spacing distribution of a harmonic chain [4]. This assumption is supported numerically.

We now describe a precise notion [35] of ergodicity that characterizes the limiting be-

havior of Pi,N,Rpsq, PN,Rpsq and pN,jpsq as N Ñ 8. First, we must determine whether
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Figure 5.1: Demonstrating the stationary property Eq. (5.1) in type-1 N ˆ N matrices
Hpxq, x “ 1 in the primary parametrization. The four numerical curves show the statistics
pN,jpsq for pN, jq = p10, 3q, p10, 5q, p80, 10q and p80, 40q, each containing 105 eigenvalue
spacings. The statistics are nearly independent of j for N “ 10, and for N “ 80 there is no
perceptible difference between j “ 10 and j “ 40. The solid line is a Poisson distribution
ppsq “ e´s. Stationarity is shown to hold also for type-M ansatz matrices in Fig. 5.2.

pN,jpsq is asymptotically stationary, i.e., independent of j

lim
NÑ8

pN,jpsq “ ppsq. (5.1)

In the case of type-1 matrices in the primary parametrization, we see in Fig. 5.1 that the

graphs of two different p10,jpsq closely resemble those of two different p80,jpsq, the latter

of which are clearly Poisson. The same is true for ansatz matrices of any type, but the

convergence to a Poisson distribution does not become apparent until N “ 300 as in Fig. 5.2.

We conclude that Eq. (5.1) is true for integrable matrices.

We now turn to the notion of spectral averaging, i.e., the function Pi,N,Rpsq. If Eq. (5.1)
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Figure 5.2: Demonstrating the stationarity property Eq. (5.1) in ansatz type-150 N ˆN
matrices Hpxq, x “ 1 and N “ 300. The two numerical curves show the statistics pN,jpsq for
pN, jq = p300, 150q and p300, 20q, each containing „ 104 eigenvalue spacings. The statistics
are nearly independent of j, although higher N would be needed in order for the differences
to disappear. The solid line is a Poisson distribution ppsq “ e´s.
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holds, the ensemble averaged Pi,N,Rpsq, called PN,Rpsq, satisfies

lim
NÑ8

PN,Rpsq “ ppsq, (5.2)

independent of the region R. In practice, we numerically unfold the spectrum (see Ap-

pendix A) in order to take into account any effects a non-stationary mean level spacing can

have on Pi,N,Rpsq, which characterizes fluctuations about the mean level spacing. In this

work, we say integrable matrices are spectrally stationary if

lim
NÑ8

Pi,N,Rpsq “ Pipsq, (5.3)

and ergodic with respect to nearest neighbor level statistics if

Pipsq “ ppsq. (5.4)

Two points are to be made about Eq. (5.3) and Eq. (5.4). First, Eq. (5.3) is similar in

spirit to, but not implied by, Eq. (5.1). Figs. 5.3-5.6 show for various integrable matrices,

basis matrices included, that the level statistics from a single large matrix, Pi,N,Rpsq, do

not depend on the spectral region R used.

Second, the limiting distribution is independent of the index i, which means that a

single matrix’s spacing distribution is typical of the ensemble. In rigorous work on Gaus-

sian ensembles [35], this is proved by showing the ensemble averaged variance of Pi,N,Rpsq

vanishes as N Ñ 8. In this work, we compare numerically generated graphs of spectral

spacing distributions to ensemble averaged ones for large N . By comparing Figs. 5.7, 5.8

to Figs. 5.3, 5.4, we see that for large N , Pi,N,Rpsq Ñ ppsq.

The properties of stationarity and ergodicity are useful if they set in quickly for small

N , because smaller matrices are more accessible both analytically and computationally. A

classic example in Gaussian random matrix theory is the Wigner surmise, derived from 2ˆ2
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Figure 5.3: Demonstrating spectral stationarity Eq. (5.3) in type-1 matrices. Shown are
the level statistics Pi,N,Rpsq of a single (i-th member of the ensemble) type-1 integrable
matrix Hpxq, x “ 1 and N “ 20000, for different regions R of its spectrum containing
4000 eigenvalues each. The inset shows the density of states of this matrix and indicates
which numerical curve corresponds to which region R. The distributions Pi,N,Rpsq shown
are independent of R, indicating that type-1 matrix spectra are stationary with respect to
nearest neighbor level statistics. Noting that these distributions are Poisson, Pi,N,Rpsq « e´s

(solid curve) and comparing to Fig. 5.7 which gives PN 1,Rpsq « e´s for N 1 “ 2000, we see
that ergodicity, Eq. (5.4), is satisfied for type-1 integrable matrices.
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Figure 5.4: Level statistics Pi,N,Rpsq of a single integrable matrix Hpxq, x “ 1, N “ 20000
and M “ 10000, for different regions R of its spectrum (the subscript i indicates Hpxq is
the i-th matrix in the ensemble) containing 4000 eigenvalues each. Inset: the density of
states of Hpxq showing the correspondence between the distributions and regions R. The
distributions Pi,N,Rpsq are independent of R, indicating that type-M matrix spectra are
stationary with respect to nearest neighbor level statistics, i.e., Eq. (5.3) holds. Noting that
these distributions are Poisson, Pi,N,Rpsq « e´s (solid curve) and comparing to Fig. 5.8
which gives PN 1,Rpsq « e´s for N 1 “ 2000 M 1 “ 1000, we verify the ergodic property,
Eq. (5.4).
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Figure 5.5: Demonstrating spectral stationarity, Eq. (5.3), in level statistics of primary
type-1 basis matrices (defined in Sect. 2.1). Shown are the level statistics Pi,N,Rpsq of a
single type-1 integrable basis matrix, x “ 1 and N “ 20000, for different regions R of its
spectrum (the subscript i indicates Hpxq is the i-th matrix in the ensemble). Each spectral
region R contains 4000 eigenvalues. The inset shows the density of states of this matrix and
indicates which numerical curve corresponds to which region R. The distributions Pi,N,Rpsq
shown are independent of R, indicating that type-1 basis matrix spectra are stationary with
respect to level statistics. Even though there is a band gap, the level statistics on either
side of the gap are the same. The solid curve is the Wigner surmise P psq “ π

2 se
´π

4 s
2 .
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Figure 5.6: Demonstrating spectral stationarity, Eq. (5.3) in level statistics of ansatz basis
matrices (defined in Sect. 3.1). Shown are the level statistics Pi,N,Rpsq of a single type-10000
integrable ansatz basis matrix, x “ 1 and N “ 20000, for different regions R of its spectrum
(the subscript i indicates Hpxq is the i-th matrix in the ensemble). The inset shows the
density of states of this matrix and indicates which numerical curve corresponds to which
region R. The distributions Pi,N,Rpsq shown are independent of R, indicating that type-M
basis matrix spectra are stationary with respect to level statistics. Even though there is a
band gap, the level statistics on either side of the gap are the same. The solid curve is the
Wigner surmise P psq “ π

2 se
´π

4 s
2 . Regions I - III use 4000 eigenvalues apiece, while region

IV uses only 3000 and gets to within 1% of the spectrums edge.
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Figure 5.7: Demonstrating ergodicity Eq. (5.4) in type-1 matrices (continuing from
Fig. 5.3). A plot of ln PN,Rpsq, N “ 2000 for 100 type-1 matrices in the primary
parametrization. We do not specify the spectral region R because Fig. 5.3 shows that
the statistics are independent of R. The solid line is fpsq “ ´s, indicating that PN,Rpsq is
indeed Poisson for N “ 2000 type-1 matrices.
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Figure 5.8: Demonstrating ergodicity Eq. (5.4) in type-M ansatz matrices (continuing from
Fig. 5.4). A plot of ln PN,Rpsq, N “ 2000 for 100 type M “ 1000 matrices in the ansatz
parametrization. We do not specify the spectral region R because Fig. 5.4 shows that the
statistics are independent of R. The solid line is fpsq “ ´s, indicating that PN,Rpsq is
indeed Poisson for N “ 2000 type-1000 matrices. Inset: Log-log plot of the same data.
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Figure 5.9: Plot of the statistics p3,2psq, the second spacing of 106 type-1 integrable matrices
Hpxq of size N “ 3 with x “ 1. The distribution is not Poisson (solid line) and actually
has a power law tail (see Fig. 5.10 for more on the tail). In order to observe the limit ppsq
of type-1 integrable matrices, defined in Eq. (5.1), we need to go to larger N as in Fig. 5.1.

matrices (see Fig. 1.1), which is extremely useful for characterizing ppsq in the GOE.

We have seen that the nearest neighbor level statistics of integrable matrices Hpxq are

generally stationary and ergodic, but the property does not set in for small N as quickly

as it does for Gaussian random matrices. As an example, Figs. 5.9, 5.10 show p3,2psq, the

distribution of the second eigenvalue spacing for N “ 3, M “ 1. This distribution differs

markedly from a Poisson distribution, especially in the small s and large s regions. For

small s there is slight level repulsion and for large s Fig. 5.10 shows that the decay of p3,2psq

is a power law. Numerical data generated in Sects. 2 and 3 used both Pi,N,Rpsq and PN,Rpsq

to represent level statistics of integrable matrices. The results of this section show that for

large N , it is valid to treat these two distinct distributions as equal.
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Figure 5.10: Log-log plot of the tail of the distribution p3,2psq shown in Fig. 5.9, the
statistics of the second spacing of 106 primary type-1 integrable matrices Hpxq of size
N “ 3 with x “ 1. The linear fit fpzq “ ´3.15z ` 0.02 shows that this portion of the tail
of the distribution p3,2psq follows a power law s´α with exponent α « 3.15. Because the
distribution pN,jpsq transitions to Poisson for large N , as evidenced by Fig. 5.1 for type-1
primary matrices and Fig. 5.2 for type-M ansatz matrices, we conclude that exponential
behavior in the far tail of pN,jpsq likely emerges only in the limit N Ñ8.
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6 Conclusion

Just as ensemble averages in ordinary RMT are used to predict the average behavior of

generic quantum systems, there now exists an analogous ensemble theory- integrable matrix

theory - which we have used to firmly establish the source of Poisson statistics and exceptions

in quantum integrable models.

The goal of this work was to demonstrate two properties of ensembles of type-M inte-

grable N ˆN matrices linear in a coupling parameter Hpxq “ xT ` V as N Ñ8:

1) The nearest neighbor spacing distribution P psq is Poisson, P psq “ e´s, for generic

choices of parameters for almost all M . There are cases of level repulsion, but they corre-

spond to sets of measure zero in parameter space.

2) Integrable matrix ensembles are both stationary and ergodic with respect to nearest

neighbor level statistics as defined in Sect. 5. It remains to show whether this ergodicity

extends to longer range spectral statistics, such as the number variance Σ2pLq.

We find that integrable N ˆ N matrices Hpxq have Poisson statistics as long as the

number of conservation laws exceeds nmin « logN (or at most nmin ă N0.25). Basis-

independent considerations require (for type-1) GOE statistics at a fixed x0, but we find

that Poisson statistics return at deviations δx „ N´0.5. Correlations between otherwise

independent parameters also induce level repulsion, but Poisson statistics again return at

OpN´0.5q deviations from such correlations. In both cases the crossover occurs roughly over

the range N´1.5 À δ À N´0.5.

Some parameter choices produce matrices that correspond to sectors of certain known

quantum integrable models, although general parameter choices do not map to known mod-

els. Most important is that, in addition to the linearity in x condition, the ensembles of

matrices studied in this work are only constrained by symmetry requirements just like the

Gaussian random matrix ensembles. The only difference here is that in the integrable case

there are many more symmetries, and they are parameter dependent. We therefore expect
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our results to apply generally to quantum integrable models with coupling parameters.

Although we justified the numerical results to a certain degree using perturbation the-

ory, an analytic justification for Poisson statistics for integrable matrices is still lacking.

Given the relatively simple construction of integrable matrices through basis-independent

relations (i.e., matrix equations) involving familiar RMT quantities such as GOE matrices

and random vectors [13], we surmise that an analytic demonstration of our numerical results

might be feasible – especially in the type-1 case, see, e.g., the discussion below Eq. (2.9)

and Refs. [25, 24].

It is interesting to note that many-body localized [36] (MBL) systems are also expected

to display Poisson level statistics [37, 38], and there exist random matrix ensembles which

model localization and its statistical signatures [39, 40]. Such ensembles are basis dependent,

which is natural because localization is a basis-dependent property. The commutation

requirements of integrable systems, however, are basis independent, and therefore so is the

accompanying integrable matrix theory. A priori, many-body localization and integrability

are two independent concepts [41]. Despite this fact, integrable matrices do exhibit a

parameter-dependent localization property [43] in which almost all eigenstates of the matrix

Hpxq “ xT ` V are localized in the basis of V for all values of x. The stability of this

property when a random matrix perturbation is added to Hpxq, including the possibility of

a multifractal phase accompanying the localized and delocalized regimes [40], is the subject

of future study.
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Appendix A

Unfolding spectra

The eigenvalue spacing distributions P psq, Ppsq and ppsq (see Sect. 5 for definitions) con-

sidered in the level statistics data in this work characterize the fluctuations of spacings

about their local means. Unfortunately, a non-constant density of states renders the actual

spacings inadequate for measuring these fluctuations. Unfolding the spectrum of a matrix

refers to the replacement of the actual eigenvalues ηj with a new set of numbers with unit

mean spacing, but that preserve the character of local fluctuations.

We employ a simple method that essentially approximates the inverse density of states

(i.e., mean level spacing) of a given matrix through linear interpolations. First, we write

the eigenvalues ηj in increasing order, and express the j-th eigenvalue ηj in terms of the

actual spacings Sk

ηj “ η1 `
j´1
ÿ

k“0
Sk. (A.1)

No unfolding has taken place as of yet, i.e., this is an exact expression. Now we postulate

that we can write the kth spacing Sk as the product of a smoothly varying local mean

spacing sk and an Op1q fluctuating number ρk “ 1` δk

ηj “ η1 `
j´1
ÿ

k“0
skp1` δkq

“ η1 `
j´1
ÿ

k“0
skρk.

(A.2)

Note that the ρk have the form of fluctuating numbers with unit mean; they will therefore

serve as our unfolded spacings. By their definition we can write them as

ρk “
ηk`1 ´ ηk

sk
. (A.3)

195
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Therefore, if we calculate the smoothly varying mean level spacings sk from the given

data, we can easily find the unfolded spacings. The ambiguity in our particular unfolding

procedure lies in the calculation of sk because its definition involves choosing how many

spacings over which to average, a quantity we call 2r

sk “
ηk`r ´ ηk´r

2r . (A.4)

It is important to realize that sk is just the inverse of the density of states. The parameter

r is arbitrary except that it must satisfy two conditions:

1) r must be large enough to contain many eigenvalues, which is necessary in order for

sk to be a smooth function of k.

2) r cannot be too large or else sk will actually smooth over features in the true inverse

density of states.

In practice we have chosen r to be the floor function of the square root of the maximum

number of eigenvalue spacings ν taken from each matrix. To avoid edge effects we have

selected ν “ 0.8N . Then r “
X?

0.8N
\

. Here are some typical values of r used in this paper

N “ 500, r “ 22,

N “ 1000, r “ 31,

N “ 2000, r “ 44.

(A.5)

Such a choice of r grows with N but also is small compared with N . In other words, we

satisfy the requirement 1 ! r ! N as N Ñ8.

For even the best choices of r, our unfolding method can still fail if the inverse density

of states varies too quickly or has singularities. Such a situation arises for example in small

linear combinations of basis matrices (defined in Eq. (2.4) and Eq. (3.7)) for any type.

Consider, for example, the insets of Figs. 5.5 and 5.6 that show the densities of state of
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integrable basis matrices. The large portions of the spectra where the density of states

Dpηq drops to zero is typical of small linear combinations of basis matrices. This behavior

is generic for basis matrices of all types, and it can be understood by first considering the

expression for the eigenvalues of a type-1 basis matrix (in the primary parametrization)

where dk “ δk,q

ηj “
γ2
q

λj ´ εq
. (A.6)

As both the λj and εj have finite support, ηj in this case will only approach within a finite

distance of zero.

An analogous argument exists for basis matrices in the ansatz parametrization for any

type. For linear combinations of a small number of basis matrices, such gaps may overlap,

but a mean level spacing sk will still be ill-defined in many parts of the spectrum. As the

number of basis matrices in the linear combination increases, the gaps smooth out until sk

is well-defined everywhere.

Given such gaps in spectra, no choice of r will give the consistent level statistics. This

can be seen numerically by varying r and observing that P psq is strongly dependent on r.

We must then avoid regions of the spectrum where 1{Dpηq is poorly behaved.

The difficulty in this task is to automate it so that we can unfold many matrices in

succession without having to examine each one by hand. Our solution is to notice that if

there are a small number of spacings in the spectrum that are many times the local mean

spacing, the standard deviation of the set of actual spacings will be large. If the standard

deviation (normalized by the mean) of the actual spacings is near unity, we can be sure

that there are no huge jumps such as the ones in Figs. 5.5 and 5.6.

With these considerations, here is our unfolding algorithm:

(1) Calculate SD “
Standard Deviation

Mean of the middle p80% ` 2rq of the spectrum’s

actual spacings. If SD ă 1.2, unfold this region of the spectrum with r “
X?

0.8N
\

and

continue to next matrix. If not, continue to step (2).

(2) Shift the region of the spectrum in question to the right by 10 eigenvalues.
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(3) If ηmax ą η0.9N , use 10 fewer spacings AND restart ηmin “ η0.1N

(4) Calculate SD. If SD ą 1.2, repeat back to step (2). If SD ă 1.2 unfold this region

of the spectrum with r “
X?

0.8N
\

and continue to next matrix.

This procedure allows for fewer than 0.8N of the spacings to be used, but we are guar-

anteed to only investigate regions of the spectrum where the mean level spacing accurately

represents the size of a typical spacing. Once a sufficiently large number of basis matrices

are used in linear combination, the entire middle 80% of the spectrum behaves smoothly

and the procedure given above terminates at step (1) for each matrix. The choice of a

maximum SD of 1.2 is somewhat arbitrary, and in some parts of this work we used 1.5 in

order to increase computation speed (i.e., keep more eigenvalue spacings per matrix). Apart

from slight differences in distributions, our results are unaffected by this arbitrariness.

The unfolding procedure used in this paper assumes that the level statistics are the

same in all regions of the spectrum, excluding the edges. Although in principle a Hermitian

matrix can have different spectral statistics in different parts of its spectrum, we numerically

showed in Sect. 5 that the statistics are the same in all parts of the spectrum of integrable

matrices Hpuq, i.e., they are translationally invariant.
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Chapter 6

A note on Lee-Yang Zeros in the negative half-plane

1 Introduction

The zeros of the grand canonical partition function (GPF) Ξpz,Λq, of equilibrium systems

in a region Λ at fugacity z, continue to be of interest [1] sixty years after their importance

for identifying phase transitions was described by Lee and Yang [2], [3]. It turns out that

in some simple models, the L-Y zeros are confined to the negative half z-plane, or even the

negative real z-axis [4]- [10]. For example, Heilmann [11] showed that antiferromagnetic

Ising models with pair interactions on line graphs (including, e.g., complete graphs) have

L-Y zeros confined to the negative z-axis, which is a kind of antiferromagnetic analog to the

circle theorem. For more recent work along this direction see [12] and references therein.

Another recent study of an antiferromagnetic Ising-Heisenberg model on a diamond

chain found that the nature of the distribution of L-Y zeros corresponds to distinct quantum

ground states [13]. In the model considered, one ferrimagnetic phase corresponds to the

L-Y zeros confined to the negative z-axis, while another ferrimagnetic phase corresponds

to the L-Y zeros being both on the negative axis and on the unit circle. It was also shown

recently that when the zeros of the GPF all lie in the left half of the complex z-plane, the

system satisfies a local central limit theorem [14], [15].

In this note we obtain some new results for the thermodynamic properties of systems

with L-Y zeros confined to the negative half z-plane. We also discuss the relation between

the location of the zeros and the sign of the virial coefficients of such systems. Along the

way, we obtain an exact expression for the limiting behavior of the GPF for all systems
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with hard cores in the limit z Ñ8, Λ finite.

2 General properties of L-Y zeros

For systems with superstable [16] Hamiltonians, which includes all systems with hard cores

and interactions decaying fast enough, as well as ideal fermions, Ξpz,Λq, Λ Ă Rd (or Λ Ă Zd),

can be written as a product over its roots, zα ” ´1{ηα [16]

Ξpz,Λq “
Nm
ź

α“1
p1` ηαzq , 1 ď Nm ď 8, (2.1)

where Nm “ NmpΛq is the maximum number of particles that can be contained in Λ. We

shall restrict ourselves here to systems with NmpΛq ă 8 and write Nm “ ρm|Λ|, where |Λ| is

the volume of Λ (or the number of lattice sites), without explicitly indicating the dependence

of ρm on Λ. The roots of Ξpz,Λq are either negative or come in complex conjugate pairs

and depend on Λ, the inverse temperature β, and the interactions - dependencies which we

will not write out explicitly1.

The pressure ppz,Λq is given by

ppz,Λq “ ln rΞpz,Λqs
|Λ| “

1
|Λ|

Nm
ÿ

α“1
ln p1` ηαzq

“ ρm

B

lnp1` ηzq
F

.

(2.2)

The angular brackets indicate an average over the ηα: xfpz, ηqy ” 1
Nm

řNm
α“1 fpz, ηαq. Ex-

panding Eq. (2.2) in powers of z, we obtain the Mayer fugacity expansion [17]

ppz,Λq “
8
ÿ

j“1
bjpΛqzj , (2.3)

1The zeros will also depend for finite systems on the boundary conditions. This dependence disappears
in the thermodynamic limit as can be seen by taking limits in Eq. (2.4) as is done in Eq. (2.5).
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where the bjpΛq are given by

bjpΛq “
p´1qj`1

j
ρmmjpΛq, (2.4)

with mjpΛq ” xηjy, the j-th moment of the ηα’s.

Restricting our attention to regular [16] pair potentials φprq, where r is the particle

separation, the bjpΛq are given by the Mayer cluster integrals [18]. For example, the second

cluster integral b2pΛq is given by

b2pΛq “
1

2|Λ|

ż

Λ
d r2

ż

Λ
pe´βφpr12q ´ 1qd r1,

lim
ΛÑRd

b2pΛq “
1
2

ż

Rd
pe´βφprq ´ 1qd r.

(2.5)

For lattice systems, the integral is replaced by a sum.

The average density in the grand canonical ensemble is given by

ρpz,Λq “ z
dppz,Λq
dz

“ ρm

B

η z

1` η z

F

“

8
ÿ

j“1
j bjpΛqzj .

(2.6)

The virial expansion is then obtained by eliminating z between Eq. (2.3) and Eq. (2.6) and

writing

ppρ,Λq ” ppzpρ,Λq,Λq “
8
ÿ

j“1
BjpΛqρj . (2.7)

The relation between the BjpΛq and bipΛq, i ď j was derived in [19], but we will not make

use of that here. We also do not consider the direct derivation of the virial expansion from

the canonical partition function given in [20]. The latter differs from Eq. (2.7) by terms

which vanish in the thermodynamic limit Λ Ñ RdpZdq. The rate of approach to equality

between the different ensembles may depend on z (see below).
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The |ηα|’s all lie in the range

|zmpΛq|´1 ď |ηαpΛq| ď |z0pΛq|´1, (2.8)

where z0pΛq (zmpΛq) are the zeros of Ξpz,Λq with the smallest (largest) absolute value.

Note that |z0pΛq| “ RpΛq, the radius of convergence of the fugacity series Eq. (2.3). There

is a simple lower bound to RpΛq uniform in |Λ| [17], [21], [22] (for positive potentials it is

RpΛq ě 1
2e|b2pΛq|). Thus the |ηαpΛq| remain bounded above when |Λ| Ñ 8, but can approach

zero in this limit. This fact and Eq. (2.4) ensures that there exists a limiting distribution

for the ηα’s in the thermodynamic limit, i.e. xfpzqy Ñ
ş

fpz, ηqνpηqdη.

The radius of convergence R of the power series in z, obtained by interchanging the

sum in Eq. (2.3) and the limit Λ Ñ Rd satisfies R ě limΛÑRd RpΛq [17] with equality when

φprq ě 0. There is also a lower bound for the radius of convergence RpΛq of the virial

expansion [23], satisfying RpΛq ď R, where R is the radius of convergence of the series

Eq. (2.7) when BjpΛq is replaced with Bj “ limΛÑRd BjpΛq.

3 Results for L-Y zeros in the negative half plane

It follows from Eq. (2.4) that if the zeros all lie on the negative z-axis, the bjpΛq alternate

in sign. This alternation of signs also holds if φprq ě 0 [24] although φprq ě 0 is not a

necessary condition for the zeros to be on the negative z-axis [6]. If φprq is negative over

any finite range, however, then there exists a β˚ sufficiently large (i.e. a sufficiently low

temperature) such that the alternation in sign does not hold. Therefore the L-Y zeros can

only stay on the negative real z-axis for all temperatures if φprq ě 0.

Let ηα “ xα ` i yα. Combining complex conjugate pairs in Eq. (2.6) leads to

ρpz,Λq “ ρm

ˆ

1´
B

npzq

F˙

, (3.1)



208

where the dependence of nαpzq on ηα is given by

nαpzq ”
1` xαz

p1` xαzq2 ` y2
αz

2 . (3.2)

The fluctuation in particle number is given by differentiating Eq. (3.1)

z
dρpz,Λq
dz

“
1
|Λ|

´

N2pz,Λq ´N2
pz,Λq

¯

, (3.3)

where an overbar ¨ indicates the ensemble average over the grand canonical measure. We

now write Eq. (3.3) in terms of averages over ηα

z
dρpz,Λq
dz

“ ρpz,Λq
ˆ

1´ ρpz,Λq
ρm

˙

´

ˆ

V pz,Λq ´W pz,Λq
˙

, (3.4)

where V pz,Λq and W pz,Λq are variances

V pz,Λq “ ρm

B

`

npzq ´
@

npzq
D˘2

F

ě 0,

W pz,Λq “ ρm

B

m2pzq

F

ě 0,

mαpzq ”
yαz

p1` xαzq2 ` y2
αz

2 .

(3.5)

where xmpzqy “ 0 by symmetry of the L-Y zeros about the negative z-axis2.

When the L-Y zeros are in the negative half plane, i.e. xα ě 0, it is helpful to rewrite

Eq. (3.4) in the form

z
dρpz,Λq
dz

“ 2ρpz,Λq
ˆ

1´ ρpz,Λq
ρm

˙

´ 2V pz,Λq ´Apz,Λq,

Apz,Λq “ ρm

B

x z

p1` x zq2 ` y2z2

F

ě 0 if xα ě 0.
(3.6)

It follows from Eq. (3.6) that when the L-Y zeros are restricted to the negative half z-plane,

2Note that the quantity V pz, Λq ´W pz, Λq in Eq. (3.4) is a measure of the difference in variance of the
L-Y zeros along the real and imaginary directions.
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there is a lower bound on the inverse compressibility

dppρ,Λq
dρ

”
ρpz,Λq
z dρpz,Λqdz

ě
1
2

1
p1´ ρ{ρmq

, xα ě 0. (3.7)

When the zeros all lie on the negative z-axis, yα “ 0, xα “ ηα ě 0, and W pz,Λq in Eq. (3.4)

vanishes. We therefore obtain

dppρ,Λq
dρ

ě
1

1´ ρ{ρm
, ηα ě 0. (3.8)

Furthermore, differentiating ρpz,Λq with respect to z when ηα ě 0 we find

dkρpz,Λq
dzk

“ p´1qk`1ρm

B

ηk

p1` η zqk`1

F

, k ě 1, ηα ě 0, (3.9)

which alternates in sign with k.

The inequality Eq. (3.8) becomes an equality for the ideal lattice gas, when the only

interaction is the hard core exclusion preventing the occupancy of any lattice site by more

than one particle. In that case ρm “ 1, Ξpz,Λq “ p1 ` zq|Λ|, and all the L-Y zeroes are

located at z “ ´1, i.e. ηα “ 1 for all α. Therefore V pz,Λq “ 0 and ppρ,Λq “ ´ lnp1´ ρq.

While Eqs. (3.7-3.9) remain valid in the thermodynamic limit, where ppρq is the same

for all ensembles, including the grand canonical and canonical ensembles, the same is not

true of the limiting equality

lim
zÑ8

ˆ

1´ ρpz,Λq
ρmpΛq

˙

dppz,Λq{dz
dρpz,Λq{dz “ 1, NmpΛq ă 8. (3.10)

Eq. (3.10) follows from the fact that for finite NmpΛq, the |ηα|’s are bounded away from zero,

and is valid independent of the location of the L-Y zeros. Note, however, that Eq. (3.10)

may fail if the thermodyamic limit is taken before z Ñ 8 or when one uses the canonical

ensemble definition of the pressure. Such is the case for the lattice systems with extended
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hard cores discussed in Sect. 4.1.

Another (more interesting) way of writing Eq. (3.10), using Eq. (3.3), is

lim
zÑ8

#

NmpΛq ´Npz,Λq
N2pz,Λq ´N2

pz,Λq

+

Npz,Λq
NmpΛq

“ 1, NmpΛq ă 8, (3.11)

where both the numerator and the denominator vanish as z Ñ 8. Eq. (3.11) also can

be obtained by keeping only the terms proportional to zNm´1 and zNm in the GPF when

z Ñ8 at fixed Λ.

4 The virial expansion

The thermodynamic properties of a gas are determined at small densities by the virial ex-

pansion (VE) of the pressure ppρ,Λq in powers of the density ρ given in Eq. (2.7). The low

order terms in the expansion can be readily computed for classical systems with pair inter-

actions φprq [18]. This can be done analytically or numerically in terms of the irreducible

Mayer cluster integrals [25]. In practice one only computes Bj “ limΛÑRdpZdqBjpΛq.

For the system of hard spheres (HS) in Rd, which is the paradigm model for representing

the effective strong repulsion between atoms at short distances, the Bj are known in d “ 3

for j ď 12 [26], with high accuracy for j ď 11 (Boltzmann had computed the first four). In

d “ 2, the Bj are known for j ď 10 [27]. In d “ 1, p “ ρ
1´ρ a , where a “ ρ´1

m is the diameter

of the hard rods, so that Bj “ aj´1, for all j. Remarkably, all known Bj for d “ 1, 2, 3 are

positive, which has led to the speculation that in fact all Bj in d “ 2, 3 are positive. It is

known, however, that this is false in d “ 5, so that it is now generally expected that there

will be negative Bj in d “ 3, but perhaps not in d “ 2.

The physical interest in the positivity of the Bj lies in the fact that one would like

to extrapolate from the low density regime, well described by the first few terms in the

virial expansion, to obtain information about ppρq “ limΛÑRd ppρ,Λq at higher densities,

including possibly about the fluid-solid transition in d “ 3. Based on numerical simulations
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(Monte Carlo or Molecular Dynamics), one expects this transition to occur at a density

of ρf « .49{v where v “ π{6 a3 is the actual volume occupied by a sphere with diameter

a. The extrapolations of the pressure to higher densities take many forms and are in very

good agreement with the machine results for ρ À ρf [28]- [31]; in particular, see Ref. [31]

and references there for highly accurate results. Some even give very high accuracy results

for the metastable extension between ρf and the random close-packing density ρr « .64{v,

a region which may also contain a transition from metastable fluid to glass [32, 33, 34].

In many of these (approximate) extrapolations, the radius of convergence R of the virial

expansion is determined by a singularity at some positive value of the density ρ̃ “ R, with

ρ̃ ą ρf in d “ 3 [29]- [31]. This will certainly hold when all Bj , or all but a finite number

of them, are positive, but need not be the case otherwise. In fact, for hard hexagons on a

triangular lattice R is determined by a singularity of ppρq at ρ1, with ρ1 complex [35] and

smaller in modulus than the disorder-order transition ρd [36], |ρ1| ă ρd. If this were true

also for hard spheres in d ě 2 it would limit the utility of extrapolating the virial expansion

beyond the rarified-gas phase.

Here we consider the relation between the signs of the Bj and the location of the Lee-

Yang zeros in the complex z-plane. All the previously known examples of almost all positive

(i.e. a finite number of negative) Bj were for systems for which all the L-Y zeros lie on the

negative z-axis. This behavior fits in with the conjecture by Federbush, et al., that all the

Bj for the monomer-dimer system on regular lattices are positive [37], since there the L-Y

zeros are indeed on the negative z-axis [9]. Systems with strictly negative L-Y zeros do not

have any phase transition, but this does not rule out the possibility that a system with a

phase transition has almost all Bj ě 0.

In fact, we do not find a direct connection between the negativity of the L-Y zeros and

the possibility of almost all positive virial coefficients, and indeed we find models that have

only the former property, only the latter, or both. This negative result leaves open the

positivity of almost all positive virial coefficients for hard spheres in d “ 2 or d “ 3 (R
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could even be larger than the close packing density). There does seem, however, to be some

connection between the proximity of L-Y zeros to the negative axis and the positivity of

virial coefficients (see examples below) for which we have no complete explanation at the

present time. For example, in terms of the moments mj “ xη
jy introduced in Eq. (2.4), the

first few Bj are

B1 “ 1 “ ρmm1,

B2 “
ρm
2 m2,

B3 “ ρ2
mm

2
2 ´

2
3ρmm3.

(4.1)

It follows that B2 ą 0 iff xx2y ą xy2y, where the xα and yα are defined in Sect. 3 as the real

and imaginary parts of the negative inverse L-Y zeros ηα, respectively.

4.1 Hard core lattice gases in 1D

(i) Consider a 1D lattice of N sites separated by unit distance (the lattice length is L “ N)

with the pair potential upxijq, (xij “ |i´ j|)

upxijq “ 0 if xij ě q,

upxijq “ 8 if xij ă q.

(4.2)

The integer q, q ě 1, is called the “exclusion factor” (q “ 1 is the ideal lattice gas and q “ 2

is isomorphic to the 1D monomer-dimer problem). Using the canonical ensemble, it was

shown in Ref. [3] that for LÑ8

ppρq “ ln
ˆ

1` ρ

1´ ρ{ρm

˙

“ ´ lnp1´ ρ{ρmq ` lnp1´ ρ{ρm ` ρq,
(4.3)

where ρm “ 1{q. Note that limρÑρmp1 ´ ρ{ρmq
dppρq
dρ “ 1{ρm ‰ 1 for q ą 1, which gives an

example of Eq. (3.10) failing when the thermodynamic limit is taken before letting z Ñ8.
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Expanding Eq. (4.3) we see that

Bj “
1´ p1´ ρmqj

ρjm j
ą 0, @j, (4.4)

which agrees with the finite-L grand canonical virial coefficients from Eq. (2.7) only in the

thermodynamic limit. If we introduce the lattice constant δ and take the continuum limit

q δ Ñ a as q Ñ 8, the problem reduces to that of hard rods of length a on a line with

pressure

ppρq “
ρ

1´ ρ{ρm
. (4.5)

where ρm “ 1{a. The L-Y zeros of the lattice model are on the negative real axis [7], as are

those of the continuum model [5]. Note however the change in the nature of the singularity

as ρÑ ρm, with the divergence in the continuum case much stronger than in the lattice.

One can also derive the distribution of the L-Y zeros when L Ñ 8 for the q-exclusion

models. The equation of state, Eq. (4.3), gives zppq

zppq “ pep ´ 1qeppq´1q, (4.6)

Upon using the Lagrange inversion formula to obtain the moments defined in Eq. (2.4),

mj “ xη
jy, we find

m
rqs
j “ lim

ΛÑ8
m
rqs
j pΛq “

ˆ

j q

j

˙

, j ě 0. (4.7)

For q “ 1, the mr1sj “ 1 are moments of a delta function δpη´ 1q, which corresponds to the

ideal lattice gas. The authors of Ref. [38] consider a more general set of binomial sequences

m
rt,rs
j “

`

tj`r
j

˘

. They find that the mrt,rsj are moments of a probability density function

ht,rpηq with support on a domain Dt Ď r0, ttpt´ 1q1´t. Here we have t “ q P N, r “ 0, and
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hq,0pηq can be written in terms of the Meijer G-function [38]. This permits, for some q, to

express the limiting density of the ηα’s in terms of elementary functions. For example, for

q “ 2

h2,0pηq “
1

π
a

ηp4´ ηq
, η P p0, 4q, (4.8)

as also derived in [7]. The density h3,0pηq also has a simple expression in terms of elemen-

tary functions for η P p0, 27{4q, which also diverges at the endpoints. The support of these

divergences imply that the L-Y zeros of these two models reach infinity in the thermody-

namic limit and that there is an accumulation of zeros near the smallest magnitude L-Y

zero z0.

(ii) The next model we consider is a lattice consisting of two rows in which particles

exclude their nearest neighbor sites: two horizontal and one vertical. Using open boundary

conditions Ξ2N pzq can be obtained using a transfer matrix M

Ξ2N pzq “ u ¨MN´1 ¨ vT2 ,

u “ p1, 1, 1q , v2 “ p1, z, zq ,

M “

ˆ 1 1 1
z 0 z
z z 0

˙

.

(4.9)

The fugacity z, as a function of pressure p in the N Ñ8 limit, is given by

zppq “ e2p tanh p. (4.10)

To locate the L-Y zeros of this model in the thermodynamic limit, we first diagonalize the

matrix M and expand Ξ2N pzq in terms of the eigenvalues. A necessary condition for Ξ2N pzq

to vanish as N Ñ 8 is |λ`pzq| “ |λ´pzq|, where λ˘pzq “ 1
2
`

˘
?
z2 ` 6z ` 1` z ` 1

˘

. The

only z that satisfy this relation are real and negative. Therefore, as N Ñ8, the L-Y zeros

lie on the negative z-axis.
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To locate the singularities in the ρ plane, we get ppρq from Eq. (4.10)

ppρq “ ´ρm ln
ˆ

1´ ρ

ρm

˙

` ρm ln

¨

˝

ρ

ρm
`

d

1´ 2 ρ

ρm
` 2

ˆ

ρ

ρm

˙2
˛

‚. (4.11)

where ρm “ 1{2. The nearest singularities of ppρq occur at the square-root singularity in

Eq. (4.11), i.e. at ρ˘ “ 1
4p1 ˘ iq. Thus there are an infinite number of negative virial

coefficients. Though we limited our analysis to the 2-row case, [8] studies the location of

the L-Y zeros of a nearest neighbor exclusion model wound on a cylinder of circumference

k and infinite height. It is found that for k ą 2, the L-Y zeros move off the negative real

axis.

(iii) The 2-row monomer-dimer system is considered in Appendix A. We prove that it

has almost all Bj ě 0. This is not as strong as what Federbush, et al conjecture, but it

goes in that direction [37].

4.2 Square well interactions

In all examples so far, systems with positive virial coefficients also have all L-Y zeros on the

negative z-axis. Next we give an example where almost all (possibly all) virial coefficients

are positive, but the L-Y zeros are off axis. Consider the 1D lattice gas with a nearest

neighbor pair potential ε. This system is isomorphic to the 1D Ising model with nearest

neighbor interactions. The equation of state in the thermodynamic limit is (see [10], for

example)

ppρq “ ´ lnr1´ ρs ` ln
«

1´
1´ 2αρ´

a

1´ 4αp1´ ρqρ
2p1´ αq

ff

α “ 1´ e´ε.

(4.12)

For α ě 0, the system is ferromagnetic and the L-Y zeros lie on a circle in the complex plane

by the well-known L-Y circle theorem [3]. When α ă 0 the system is antiferromagnetic and

the L-Y zeros are on the negative real axis with a known distribution [10].
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The virial coefficients Bj , however, are almost all positive over a range of both positive

and negative potentials. The power series of the first logarithm in Eq. (4.12) has all positive

coefficients and a radius of convergence of R1 “ ρm “ 1. If the series expansion of the

second logarithm in Eq. (4.12) has a radius of convergence R2 ą R1, then it follows that its

coefficients will eventually be smaller in magnitude than those of the first logarithm, and

only a finite number of virial coefficients can be negative.

All singularities in the second logarithm occur when the square root in Eq. (4.12) van-

ishes. One finds

R2 “ R2pαq,

“ inf̆

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

˜

1˘
c

1´ 1
α

¸ˇ

ˇ

ˇ

ˇ

ˇ

.

(4.13)

Note that for all α ă 1, R2 occurs at a complex value of ρ. For |α| ! 1, R2 ą R1

and the virial coefficients are almost all positive. As we increase the magnitude of α, R2

decreases until it falls below R1, at which point there are an infinite number of negative

virial coefficients. Only when α “ 1, the hard core limit, does R2 occur at a positive value

of ρ. Defining α˚ by R2pα
˚q “ R1, we find

α˚ “ ´
1
8 , α ă 0,

α˚ “
1
4 , α ą 0. (4.14)

Eq. (4.14) shows that there is a range of positive and negative interactions over which all

but a finite number of virial coefficients are positive, i.e.

´ ln 9
8 ă ε ă ln 4

3 . (4.15)

With numerical expansions of the equation of state Eq. (4.12), we find that within the range
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of Eq. (4.15) (including the endpoints), there are in fact no negative virial coefficients up

to Opρ2000q.
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Appendix A

Virial coefficients for the 2-row monomer-dimer problem

Heilmann and Lieb [9] proved that monomer-dimer (MD) systems have all L-Y zeros on the

negative real axis of the dimer fugacity z. It is conjectured in [37] that the virial coefficients

are always positive for MD systems on regular lattices. We prove here that this is indeed

the case for the 2-row infinite square lattice (more precisely, we prove that only a finite

number of coefficients can be negative).

We use a standard transfer matrix formalism to obtain the grand partition function on

a 2 ˆ N lattice with open boundary conditions. Any configuration of the system has one

of five right-end states, corresponding to either no dimers, a single vertical dimer, a single

horizontal dimer in the first or second row, or two horizontal dimers occupying both lattice

sites on the far right-end of the lattice. Let vN be the vector whose j-th component is the

GPF for configurations on a 2ˆN lattice restricted to having the j-th right-end state. The

total GPF ΞN pzq is then

ΞN pzq “ u ¨ vTN

“ u ¨MN´1 ¨ vT1 ,
(A.1)

where

v1 “ p1, z, 0, 0, 0q ,

u “ p1, 1, 1, 1, 1q ,
(A.2)

and the transfer matrix M is

M “

¨

˝

1 1 1 1 1
z z z z z
z 0 0 z 0
z 0 z 0 0
z2 0 0 0 0

˛

‚. (A.3)

218
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For z ą 0, one can verify that M2 has strictly positive entries, which implies by the Perron-

Frobenious theorem that there is a unique, real, largest modulus eigenvalue of M for z ą 0.

Let λmpzq be the largest eigenvalue of M for z ě 0, then

ppzq “ lim
NÑ8

1
2N ln ΞN pzq,

“
1
2 lnλmpzq, z ě 0.

(A.4)

The characteristic polynomial P pz, λq of M satisfies the equation

P pz, λq “ ´λpλ` zqpλ3 ´ p1` 2zqλ2 ´ zλ` z3q “ 0, (A.5)

which implies that λmpzq is the largest solution of

λ3 ´ p1` 2zqλ2 ´ zλ` z3 “ 0. (A.6)

To analyze the series ppρq “
ř8
j“1Bjρ

j , where ρ is the dimer density, we make a helpful

change of variables to tpzq ” z
λmpzq

. Using Eq. (A.6), we find

for t P r0, φ´1q :

zptq “
tp1` tq

p1´ tqpφ´1 ´ tqpφ` tq
,

pptq “ ρm ln
ˆ

1` t
p1´ tqpφ´1 ´ tqpφ` tq

˙

,

ρptq “ ρm

ˆ

1´ p1´ t
2qpφ´1 ´ tqpφ` tq

P4ptq

˙

,

P4ptq ” 1` 2t´ 2t2 ´ 2t3 ´ t4.

(A.7)

where φ is the golden mean, φ “ p1 `
?

5q{2 « 1.6108, and ρm “ 1{2 is the maximum

density.

Let t1,2 be the two real roots of the polynomial P4ptq, where t1 « ´.394 and t2 « .784.

On T “ pt1, t2q, ρptq is a strictly increasing function, with ρptq Ñ ´8 as t Ñ t1 and
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Figure A.1: The function τpρq plotted on the horizontal axis. Note that τpρq is a bijection
from R to T « p´.394, .784q.

ρptq Ñ 8 as tÑ t2, so that we may define τpρq to be the particular inverse function of ρptq

which takes values in T. τpρq is then a bijection from R to T (see Fig. A.1), with τpρptqq “ t

for t P T. This definition of τpρq allows us to define ppρq on ρ P p´8, ρmq

ppρq “ ´ρm ln p1´ ρ{ρmq ` ρm ln
ˆ

p1` τpρqq2

P4pτpρqq

˙

,

“ ´ρm ln p1´ ρ{ρmq ` fpρq, ρ P p´8, ρmq .

(A.8)

We now analytically continue ppρq from the domain ρ P p´8, ρmq into the complex plane in

order to determine the location of its finite-ρ singularities. In particular, the first logarithm

in Eq. (A.8) is singular only at ρm or |ρ| Ñ 8. This term has all positive expansion

coefficients about ρ “ 0 and a radius of convergence of R1 “ ρm. We will show that fpρq is

analytic inside a disk of radius R2 ą R1. This implies that asymptotically the coefficients

in the expansion of fpρq are smaller in magnitude than those coming from the first term,

and therefore there are at most a finite number of negative virial coefficients.

The singularities of the second logarithm in Eq. (A.8) occur either where τpρq is singular

or where fpρq diverges. To discuss both of these possibilities it is convenient to define a
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single-valued “physical” branch of τpρq in an appropriately cut complex ρ plane. We begin

with τpρq defined on the entire real axis (see Fig. A.1) and real analytic there. All possible

singularities (branch points) t˚ of τpρq may be found by solving dρptq
dt

ˇ

ˇ

t˚
“ 0; using Mathe-

matica to get numerical values, we find six solutions of this equation, with corresponding

branch points in the ρ plane given by 0.313˘ 0.536 i, 0.497˘ 0.121 i, 0.438, and 1.039. We

now introduce four cuts in the ρ plane, one beginning at each of the complex branch points

and extending radially to 8. The physical branch of τpρq is defined in this plane by analytic

continuation from the real axis, and is single valued. Note that we do not need to consider

the two real branch points since this physical branch is known to be analytic on the real

axis; these branch points lie on other sheets of τpρq.

The singularities we must consider in determining R2, the radius of convergence of the

power series for fpρq in powers of ρ, are thus the four complex branch points defined above

and the points where fpρq diverges. For the latter, we note that fpρq diverges if τpρq “ ´1.

Using Eq. (A.7), however, we see that τpρq “ ´1 implies that ρ “ ρm, and we know that on

the physical branch, τpρmq “ φ´1 ‰ ´1; thus this singularity cannot occur on the physical

branch. The only other way that fpρq diverges is if P4pτpρqq “ 0. Here we again use

Eq. (A.7) and we see that |ρptq| “ 8 if P4ptq “ 0; these singularities occur at 8 in the ρ

plane and cannot affect the value of R2.

Since each of the complex branch points of τpρq has absolute value greater than ρm, we

conclude that R2 ą R1. It follows that for j Ñ8, the Bj are dominated by those obtained

from the first logarithm in Eq. (A.8). Hence, there are at most a finite number of negative

virial coefficients in the virial expansion.

The solution of the finite periodic 2-row lattice (not detailed here) yields the first N ´ 1

infinite lattice virial coefficients exactly (see [39] for example). Numerically we checked the

first 200 virial coefficients are positive, and we believe that the proven finite number of

negative coefficients is indeed zero.
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