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ABSTRACT OF THE THESIS 

Comprehensive Damage Assessment and Analysis of Damage Mechanisms from 

Hurricane Harvey 

By SARA WENGROWSKI 

Thesis Director: 

Jie Gong 

 

 

 A combination of mobile data collection and new damage assessment methods 

with spatial analysis and machine learning algorithms were used to correlate structural 

characteristics with damage and iterate upon damage assessment protocols for further 

development. More specifically, data was collected using a mobile scanning vehicle, 

reducing volunteer exposure to the harsh post-disaster environment, collecting high 

volumes of panoramic and LiDAR imagery in a relatively short period of time. This new 

data collection method was deployed in Texas during Hurricane Harvey. Among many 

datasets collected by this method, the dataset used in this study consisted of almost purely 

wind-caused damage from Hurricane Harvey to 553 homes in southeast Texas. A damage 

assessment methodology was created, combining lessons learned and protocols from 

previous studies, to increase efficiency and include more external public sources of data 

for better damage analysis. Statistical analysis was combined with spatial analysis 

revealing structural components which can be expected to reduce or increase damage 
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from single-hazard wind damage. Spatial analysis indicated that damage rating was 

related to peak wind speed and explanatory regression revealed that the most significant 

variables to classification were: Age, Latitude, Metal Roofs, Distance to Coast, Total 

Area, Asphalt Roofs, Wood Siding, Stucco Siding, Two Story Buildings, and Building 

Value. Machine Learning classifiers were used improve the efficiency of damage 

assessments by indicating the multicollinearity and the feature importance of each 

variable. The variables with the highest feature importance include: Distance to Coast, 

Longitude, Single-Family, Age, Total Area, Wind Speed, and Single Story. These 

variables should be prioritized in future studies, while variables with low feature 

importance, such as Grade Level Entry, Intersecting or Overlapping Roofs, 10/12 Roof 

Pitch, Commercial uses, and Vinyl Siding, should be reconsidered in future damage 

assessments. 
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Chapter 1: Research Background 

 As coastal communities grow, the implications from hurricanes will affect large 

populations of people. Coastal communities are growing faster than non-coastal 

communities; about one in six people lives in a coastal county along the Gulf and 

Atlantic coasts in the United States (Friedland, 2012). These people carry a higher risk of 

being affected by tropical cyclones based on their location. Wealthier individuals are 

increasingly moving towards the coast, meaning that higher-valued property will be at 

risk to future natural disasters (Pielke, 2008). Between 2000 and 2004, the average cost 

for weather-related natural disasters was between $94 and $130 billion, globally. The 

average annual damage from hurricanes in the United States is about $10 billion (Pielke, 

2008). At the forefront of these damages are residential properties which were often 

designed at lower engineering standards than those of critical infrastructures.  

Designing stronger and more resilient residential homes is a topic that has been 

studied for decades. Yet, in recent hurricane events, we still saw the destruction of tens of 

thousands of residential properties. Consequently, for the vast majority of structural 

failures in recent hurricanes, current scientific knowledge is still inadequate and 

imprecise enough to specify with sufficient confidence why exactly an individual 

building performed as it did. Post-hurricane investigations identify factors that enhance or 

reduce damage. Often various stakeholders isolate single factors such as construction 

material (e.g., wood vs concrete or asphalt shingle vs metal roofing), laying the ground 

for blame, but we lack understanding as to what extent these various factors interplay in 

deciding the final damage state, nor do we know to what extent the combination of 
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known factors explain the high variability in building performance in hurricane-impacted 

communities.  

In the following, I briefly review known hurricane damage mechanisms, major 

damage assessment methodologies, and damage assessment analysis methods to highlight 

the advantages and limitations of each method with the hope to set the ground for my 

own research quests.  

1.1 Hurricane Damage to Residential Structures  

 Hurricane damage is often measured by the damage to residential structures so the 

combination of population movement and settlement towards coastal communities and 

expected impacts from climate change, predicting damage to residential structures is 

imperative towards protecting future lives and property (Burger, 2015; Friedland, 2012). 

Coastal communities are growing faster than non-coastal communities; about one in six 

people lives in a coastal county along the Gulf and Atlantic coasts in the United States 

(Friedland, 2012). These people carry a higher risk of being affected by tropical cyclones 

based on their location. Wealthier individuals are increasingly moving towards the coast, 

meaning that higher-valued property will be at risk to future natural disasters (Pielke, 

2008). The average annual damage from hurricanes in the United States is about $10 

billion (Pielke, 2008).  

 By understanding the factors which impact hurricane damage to residential 

structures communities, decision makers, and individuals can make better decisions to 

protect themselves and their assets from destruction caused by future hurricanes. 

Hurricane damage has been linked to failure of structural elements, natural systems, 
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social unpreparedness, and interdependencies between them (Adger, 2005; Burger, 2015; 

Kousky, 2014; Pielke, 2008; Shults, 2017). The impacts of a hurricane can be influential 

long after the initial tropical cyclone, by building more resilient communities the post-

storm recovery may be reduced in scale and quicker (Hyder, 2017; Logan, 2016; 

Mastaglio 2018; Shults, 2017; Walton, 2018; World Health Organization, 2013). 

1.2 Hurricane Damage Mechanisms 

 The Saffir Simpson scale predicts damage based on the wind speed over the 

duration of one minute at an elevation of about ten meters (Eamon, 2017). Although the 

Saffir-Simpson scale is used widely to describe the severity of a hurricane to the public, 

tropical cyclones can cause varying degrees of damage based on factors which are not 

captured by this scale. The most common damage mechanisms are: flooding, wind, 

debris, or any combination of them. Single-hazard events result in damage from one of 

the damage mechanisms, whereas multi-hazard events have damage from any 

combination of two or more damage mechanisms. Damage from multi-hazard events is 

not the linear combination of single-hazard damage, making damage prediction more 

difficult (Klima, 2012).    

1.2.1 Flooding & Surge Damage Mechanisms 

 Because an estimated 10% of the world’s population lives on the less than 2% of 

global land which is under 10 m elevation, it is important for coastal communities to 

understand risks of flooding (Burger, 2015). There are three primary means of flooding: 

storm surge, astronomical tides, and flooding from torrential rainfall.  

 Storm surge, especially in combination with tidal flooding, and wave action can 

pose a substantial threat to communities and the environment (Eamon, 2017). Storm 
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surges vary greatly depending on the local bathymetry, thus may not be the most 

effective method of communicating potential hurricane threats. It is important to consider 

the impact of storm surged, though, because flooding resulting from storm surge has 

killed more people in the United States than all other hurricane-related threats combined, 

since 1900 (Blake, 2007). 

 Single hazard storm surge destruction was found on the Bolivar Peninsula in 

Texas during Hurricane Ike in 2008. Wave action also amplified damage caused by the 

storm surge, in this example. A study was conducted on permanent wood-framed homes, 

using satellite imagery and aerial photos, used to determine if homes were still standing 

after Hurricane Ike (Kennedy et. al, 2011). Building elevation, in this case, was the 

primary indicator of damage in areas with large waves. The elevation difference between 

homes that were and were not damaged was as little as 0.5 feet. In areas with smaller 

waves, well-built homes at lower elevations also survived. Homes immediately adjacent 

to the Gulf of Mexico generally failed because of widespread erosion, causing foundation 

failure (Kennedy et. al, 2011). 

 Astronomical tides can produce regular issues in some low-lying areas from the 

combined effects of the rotation of the Earth and the gravitational forces of the moon. 

Storm tides are the combined flooding level of astronomical tides and storm surge, 

producing more damage than storm surge alone.  

 Tidal flooding combined with storm surge amplified the damage from Superstorm 

Sandy in parts of New York and New Jersey in October 2012 (Baquero-Duran, 2015; 

Burger, 2015; Hatzikyriakou, 2015; Lin, 2016; Sharkey, 2016; Xian, 2015). The factors 

which influenced the damage to structures from Superstorm Sandy include: distance to 
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the coast, elevation on structure above ground (the higher the structure, the less damage 

sustained, in general), and the age of the home (Xian, 2015).  Most of the surge damage 

from Sandy was generated near the shore and on the ocean-facing side of a structure. 

Foundations and exterior walls were particularly vulnerable to this form of damage 

(Xian, 2015). Soil scour and foundation-separation from structure were common methods 

of failure for structures from surge. Closed-foundations faced significant damage and 

exterior walls were susceptible to surge loads and impact from debris in the water 

(Baquero-Duran, 2015; Hatzikyriakou, 2015). Debris is often shielded by neighboring 

structures, so the success rate of a neighboring structure plays an important role in the 

damage sustained by an individual structure. Most exterior walls failed from hydrostatic 

loading from Superstorm Sandy than from impact loads from debris (Hatzikyriakou, 

2015).  

 Large and slow-moving tropical cyclones, like Hurricane Harvey in Southeast 

Texas, produce the most significant precipitation-related flooding. Since 1980, hurricanes 

in the Gulf of Mexico produced an estimated 20% more event precipitation, and the 

probability of extreme rainfall caused from tropical cyclones is expected to increase in 

the future (Wang, 2018). Hurricane Harvey is best known for the damage it caused in the 

Houston area from sever rainfall, about 51.88 inches of rain over a five-day period, 

setting a record for the continental United States (Kluger, 2017). In the greater Houston 

area, more than 70 fatalities were reported and over 100,000 homes were affected. More 

than 10,000 rescues were conducted by professional and volunteer rescuers (Sebastian, 

2017). 
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 Structural failures from flooding result in damage to foundations and lower 

members of structures. Although the location of flooding may be highly related to the 

distance from the coast and the amount of precipitation in an area, failure of structures is 

not easy to predict (Blake, 2007; Kennedy et. al, 2011; Xian, 2015). Complex geo-

technical mechanisms, causing soil scour and other foundation failure, impact the amount 

of damage sustained by a structure.  

1.2.2 Wind Damage Mechanism 

 There is significant variability in wind-caused damage, some of which is expected 

to be produced from small-scale tornadoes and eyewall mesovorticies (Wurman, 2018). 

Mesovorticies are small rotational features, sometimes occurring on the eyewall of an 

intense tropical cyclone, which have higher wind speeds than other parts of the storm. 

The complex nature of the wind patterns on a tropical cyclone can result in uncertainty in 

damage prediction.  

 Hurricane Andrew’s destruction in some locations was single-hazard wind 

damage, causing structural damage to roofs, roof shingles, and roof sheathing. Roof type 

played a role in the damage; hip-shaped roofs were less likely to sustain damage than 

gable roofs (Crandell, 1998; Egnew, 2018; van de Lindt, 2007). Damage to two-story 

homes was greater than that of single-story homes. There was also a correlation between 

more severe damage and the loss of a window or door (Crandell, 1998). Single-hazard 

wind damage was also found from Superstorm Sandy in New Jersey and New York. The 

attributes which had the most direct relationship with the damage were: the distance from 

the berm of the sand dunes to the dune crest, the number of stories, the front door 
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elevation, and the dune type (Xuan, 2016). The building envelope plays a very vital role 

in protecting a structure from wind damage (Norman, 2010).  

 Tornados can be analyzed to further understand single-hazard wind damage. 

Multinomial logistic regression models related damage levels with common building 

attributes, such as the year built, the living area, appraised value, and the number of 

stories, as well as non-physical attributes such as estimated peak wind speed for the 2011 

Joplin, MO tornado (Egnew, 2018). Newer homes, counterintuitively, had increased 

likelihood of damage (Egnew, 2018). A hypothesis for the relationship between new 

homes and damage is that there is a lack of code enforcement and a deterioration of 

construction quality in more recent decades (De Silva et. al 2008). Homes with lower 

value per area also had higher frequencies of tornado damage. The number of stories a 

home had also had a weak correlation with damage. Peak wind speed, although an 

estimate, was strongly correlated with wind damage (Egnew, 2018).    

 Wind damage primarily originates at the roofline, but wind damage is very 

stochastic making it challenging to estimate and predict.  

1.2.3 Debris Damage Mechanism 

 Both high speed winds and moving water can act as a medium for debris to travel 

through. Debris is difficult to predict because of its stochastic nature, but there are factors 

which may impact probability to debris damage. Debris can be shielded by neighboring 

structures but can also be created by nearby neighboring structures (Hatzikyriakou, 

2015). Debris can cause extremely high loading to concentrated areas, resulting in high 

rates of damage where debris is present.  
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1.2.4 Multi-Hazard Damage 

 The most common forms of hurricane damage consist of multiple hurricane 

hazards, though poorly understood. Structural damage caused by multi-hazard Hurricane 

Katrina in 2005 resulted in about 130,000 homes in Mississippi sustaining complete 

destruction or severe damage. The primary cause of component damage was tied to the 

failure of connections. Although high winds primarily damaged roofs and exterior 

structural components, storm surge and wave action posed a larger threat because the 

magnitude of the loading was much higher than wind loading (Eamon, 2017). Hurricane 

Katrina’s damage was more present in pre-cast concrete, light-framed wood structures, 

and bridges, whereas there was minimal structural damage to reinforced concrete, steel 

frames, and heavy timber (Eamon, 2017). Hurricane Katrina produced non-structural 

damage to facades and interior partitions, as well (Eamon, 2017). In most cases, multi-

hazard damage is influenced more by flooding and storm surge than wind, but also can 

aggregate the damage caused by high winds. To best prevent damage from multi-hazard 

events, homeowners should: seal all openings from wind and water, reinforce all 

windows and doors by using shutters or plywood, by implementing impact resistant glass, 

by using wind-rated and impact tested doors, and by bracing the garage, making sure that 

the exterior frame is secure, and through improvements to the roof such as roof straps, 

ring-shank nails for roof decking, sealed and storm-resistant shingles, and flashing on 

roof when the slope changes (Lankford, 2018).  

1.3 Past Damage Measurement 

 Damage ratings and economic losses are sometimes valued by the number of 

claims that FEMA receives, but most often by the amount of structural damage estimated 
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from a hurricane. Damage assessments estimate structural damage through questionnaires 

that diagnose whether a structure is safe, what the overall damage is, and/or damage to 

individual components. Damage can be measured in a damage assessment using a binary 

scale, discrete ratings, and/or continuous percentages.  In the past, damage assessments 

were surveys conducted by volunteers and structural professionals on-site.   

 A disadvantage of on-site surveys is that areas affected by natural disasters may 

have poor access routes, limited power, and scarce resources. These surveys must be 

conducted soon after a storm before re-construction efforts take place, this way accurate 

damage values are estimated, so there is little prior notice. The recovery begins almost 

immediately after a hurricane strikes, and damage may look altered after re-build begins. 

For example, tarps over roofs cover the amount of damage to a roof. Towns with higher 

income tend to rehabilitate quicker than towns with lower income (Baquero-Duran, 

2015). The quantity of on-site damage assessments is directly related to the number of 

volunteering assessors and their allotted time in a damage zone. The conditions for an 

assessor are not ideal and the process of assessing damaged property can be long and 

tedious. The use of less manual damage assessment techniques, such as using LiDAR or 

aerial surveys could remedy the disadvantageous nature of on-site assessments 

(Hatzikyriakou, 2015). Further inputting information from the physical damage 

assessment forms into a database is a tedious and time-consuming process which can 

introduce new errors into the data. Online forms can be used, if the internet is accessible 

on-location.  

 There is no universal damage assessment, and the lack of consistency in 

assessments can result in damage estimates that carry uncertainty. A system known as the 
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ATC-45 was created in 2004 to estimate the overall damage of a structure and subsequent 

components using ratings: “Minor/None,” “Moderate,” and “Severe” (ATC, 2004). This 

rating system is used to understand if a building is safe to enter. ATC-45 had the goal of 

determining whether a structure is safe to enter, but component-level damage is not 

recorded (ATC, 2004). Categorical rating systems, such as ATC-45, can be easy to 

collect, but do not yield much information for further analysis.  

 The United States Department of Housing and Urban Development also evaluated 

the damage resulting from Hurricane Andrew in 1992, based on a percentage scale of 

damage to certain structural components (U.S. Department of Housing and Urban 

Development, 1993). These ratings systems are not completely comprehensive and have 

not been adopted globally. The benefit of a percentage scale is that data is complete, but 

assessments which are comprised entirely of continuous scales can contain bias 

depending on the assessor and take much longer to quantify.  

 Damage assessments rarely consider damage to the interior of a structure, and 

water and wind intrusion into a structure can cause considerable damage.  In cases where 

the interior of a structure is considered in damage assessments, the damage is calculated 

based on empirical functions based on envelope damage or decided through expert 

opinion (Pita, 2012). To record damage information about the inside of a structure, 

assessors must expose themselves to potential hazards, longer damage assessments, and 

may require permission to enter a structure.  

 Although there is no universal damage assessment, most assessments share some 

characteristics in common. Structural damage assessments generally contain questions 

about the location of a structure, the address, the condition of the envelope of the home, 
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such as the roof, walls, and foundation, as well as questions about the materials used 

during the construction. An ideal assessment would also contain information about the 

overall physical appearance of the structure, pre-storm information, aerial photography of 

the structure, and exterior aspects of the structure (Norman, 2010). An assessment created 

by students from Princeton University included structural damage to the entire structure, 

a weighted sum of damage to each level of the building, and construction cost estimate to 

each structural component with damage (Owensby, 2013).  

 Resulting from the lack of consistency of damage assessments, communities may 

be underestimating the risk and damage associated with hurricanes and other natural 

disasters. For example, FEMA has historically underestimated the risk to structures near 

the shore when compared to structures further inland to storm surge (Xian, 2015). The 

National Oceanic and Atmospheric Administration’s National Climatic Data Center 

releases a Weather/Climate Disaster report, and this report converts insured losses to total 

direct losses which can result in an underestimation of average damage and loss from 

hurricanes (Smith, 2013). Being that risk perception is a major component of the 

evacuation decision process, it is important for risk and damage to be communicated with 

as much certainty as possible.   

1.4 Data-Science Analysis Approach 

 Damage assessments have, in previous studies, been analyzed using machine 

learning classifiers, text mining, statistical analysis, fragility curves, logistic regression, 

visual analysis after projecting data onto a map, and any combination of the mentioned 

methods (Crandell, 1998; Hatzikyriakou, 2015; Owensby, 2013; Salazar, 2015; van 
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Verseveld, 2015; Xuan, 2016). All these analysis techniques have their limitations, 

though.  

 Fragility curves are probability distributions representing the conditional 

probability that a structure will sustain or exceed damage at a given wind speed, modeled 

as lognormal distributions with two parameters, mean and variance (Subramanian, 2013). 

HAZUS utilizes fragility curves to estimate damage, but additional variables can be 

useful in improving the accuracy (Subramanian, 2013). Fragility curves can be useful for 

estimating damage, but they have their limitations because they only represent 

probabilistic distributions which do not simultaneously link multiple variables at once. 

Physical models also have their constraints. They are useful in holistically understanding 

damage to a specific structure but cannot be applied to other structures.   

 Machine learning models which combine classification trees and logistic 

regression had relatively high accuracy (75.2%) when predicting damage caused by 

Hurricane Ike at a scale of one-kilometer blocks (Salazar, 2015). Though accuracy of 

predictions is high, this study did not analyze structures at the scale of a single-structure. 

The benefit of single-structure analysis is that specific methods and materials in 

construction can be individually analyzed, and the data can be aggregated to any scale. 

Also, the combination of classification trees and logistic regression had a high accuracy 

value, but the training dataset used in was very large (Salazar, 2015). This study, in 

contrast, does not have access to a large dataset with single-hazard wind damage, so the 

combination of the specified machine learning models may not be as effective.  

 Vulnerability of structures from Superstorm Sandy in New Jersey were assessed 

using a combination of statistical models, fragility curves, and logistic regression models. 
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Statistical analysis was used as the primary means of determining significance of each 

building parameter (Hatzikyriakou, 2015). Component-based vulnerability curves were 

then made to predict component failure for a calculated vulnerability parameter. This 

combination of analysis methods underestimated damage in some areas and 

overestimated damage in other areas (Hatzikyriakou, 2015). This analysis was done 

primarily to predict damage caused by storm surge and flooding, which tends to be less 

stochastic than wind damage.  

 Linear regression was also used to predict degree of damage and loss ratio, given 

some parameters from a damage assessment in Ortley Beach, NJ from Superstorm Sandy 

(Owensby, 2013). The accuracy of this regression analysis was not very high, but it may 

have been a result of the relatively small dataset, the low number of input variables, and 

because the relationship between damage and independent variables tends not to be linear 

in nature, therefore a linear regression would not be the ideal method for analyzing this 

type of data (Owensby, 2013).  

 The rough set data mining theory was used to explore variable significance 

contributing to hurricane damage from Superstorm Sandy in New York and New Jersey 

(Xuan, 2016). Benefits of using this theory include: that it can be applied to incomplete 

datasets, datasets with variables which carry multicollinearity, and can reduce bias which 

is inherent in damage assessments based on the assessor. This study had a limited sample 

size of 74 homes, and low damage rates among studied homes. This analysis was also 

conducted on a single-hazard surge event, where damage tends to be less stochastic than 

that of wind damage, because it is highly correlated distance to the coast (Xuan, 2016). 
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The primary goal of this study was to understand the dominant factors which influence 

the survival of structures but did not indicate the intensity of damage (Xuan, 2016).  

 Some machine learning models, such as the Bayesian Belief Network (BBN), 

require significant damage data, which this project does not have access to (van 

Verseveld, 2015). The benefit of the BBN is that it can predict using several variables 

which are combined, producing probabilistic predictions which include uncertainty (van 

Verseveld, 2015). Similar benefits are found in other machine learning models and 

combinations of other machine learning approaches (Salazar, 2015). 

 Both spatial analysis and machine learning algorithms were used in this study to 

collect further information on factors impacting damage and to analyze the results of the 

damage assessment. The analysis of homes in this study are at an individual scale, so this 

data can be aggregated to any scale. 

 Spatial statistics and tools were used to identify variables that were missing from 

the damage assessment, as well as better understand the relationship space and scale has 

on pre- and post-storm variables. The Cluster and Outlier (Anselin Local Moran’s I) tool 

and the Exploratory Regression tool in ArcMap were applied to the dataset to better 

understand the spatial component of the data and to describe the variable significance, 

relationship, and adjusted R² value of dependent and independent variables (ESRI, 2018).  

 Supervised machine learning classifiers were optimized to predict damage to the 

entire structure and to individual structural components. The machine learning classifiers 

were used to build a correlation matrix and feature importance, which can be applied to 

improve future damage assessments.  
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1.5 Research Objectives 

 Given the above identified challenges in reducing hurricane damages to 

residential structures and research gaps in understanding hurricane damage mechanisms, 

this study has several research objectives.  

 The first objective is to test the feasibility of using remotely sensed imagery, 

including airborne and street-level imagery and other publicly available data sets such as 

Zillow, to conduct detailed damage assessment. 

 The second objective is to test whether a new damage assessment protocol can be 

developed based on the above data sources to provide robust pre- and post-storm datasets. 

In particular, this study applies information from public datasets to increase the quantity 

of pre-storm structural data, such as building location, age, area, and value. By 

implementing information that was previously collected, the time and resources used on 

each damage assessment is reduced. 

 The third objective is to use the unique data sets compiled using the above 

approach to identify dominant factors contributing to hurricane damage to residential 

structures. The study used a dataset with almost exclusive wind-damage, which 

eliminates the cross-contaminations by flood-induced damages.  

 The fourth objective is to test whether data science-based approaches can be used 

to develop hurricane damage models for residential structures. For this research, data 

analysis includes a combination of simple statistical analysis, data visualization, 

statistical analysis, and an optimization of machine learning classifiers. By combining 
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methods of data analysis used in previous studies, data analysis is expected to be more 

accurate and reduce limitations of previous studies. 

 The final objective is to identify building typologies or construction practices that 

have performed poorly during hurricane winds. 
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 To realize these research objectives, a unique data set collected from a heavily 

damage community during Hurricane Harvey is used. The details and uniqueness of this 

community and date assets are summarized in the following box: 

 

Key Allegro during Hurricane Harvey 

About 88% of the U.S.’s major hurricanes have hit either Texas or Florida (Jarrell et al., 2001). The 

projected average sea-level rise in Texas is expected to be 2.1 feet, and this increased sea-level is 

expected to amplify the impacts of hurricanes in this area (Kopp et. al 2014).  The most notable 

hurricane to have hit southeast Texas was Hurricane Harvey in August 2017. Hurricane Harvey was 

the first major hurricane, category 3 and above, since Hurricane Wilma, in 2005, to make landfall in 

the United States and is now tied with Hurricane Katrina as the most expensive hurricane in 

American history (Huber, 2018). 

 Hurricane Harvey made landfall near Rockport, Texas on August 25th, 2017 as a Category 4 

hurricane on the Saffir-Simpson scale.  Harvey’s maximum sustained wind speed was approximately 

212 km/hour (Sebastian, 2017). Though Harvey’s damage in the Houston area was unprecedented, it 

produced widespread damage in the Southeast Texas coastal area. Hurricane Harvey caused an 

estimated 300,000 homes to lose power and over 500,000 people to seek federal aid for damage from 

FEMA (Hyder, 2017; Kluger, 2017). An estimated 45,000 people sought refuge in shelters from the 

storm, which was originally predicted to be a category 1 or 2 hurricane with maximum rainfall of 

about 25 inches (Kluger, 2017). Over 45 schools suffered water damage, out of the total 350 schools 

in the area. There was no mandatory, large-scale evacuation ordered before or during Hurricane 

Harvey (Sebastian, 2017).  In 2010, it was stated that the most serious threat to Texas residents from 

a tropical cyclone was serious flooding, and Hurricane Harvey proved that this was a major risk 

(Roth, 2010). Hurricane Harvey made a second landfall near the Texas-Louisiana boarder after 

causing extensive damage to the Texas coast (Sebastian, 2017). 

 Damage assessments in this study focused on two communities which fall within Aransas 

County in Texas, in the greater area of Hurricane Harvey’s landfall. Near Port Aransas in Aransas 

County, the peak wind gusts of 212 km/hour were reported and the total water levels exceeded 2 

meters over their normal levels. Around the Aransas Wildlife Refuge, the storm tide reached about 

12 feet (Sebastian, 2017).  

 The study area utilized in analysis was comprised of the entirety of Key Allegro, a 

neighborhood located in Rockport, Texas. Key Allegro is very close to the location of Hurricane 

Harvey’s landfall, but surprisingly did not sustain damage as severe as its neighboring communities. 

Key Allegro is of interest for this study because the damage from Hurricane Harvey was almost 

entirely caused by single-hazard wind damage. Key Allegro was purchased and developed in 1962, 

so homes in this area have a relatively uniform age (Jasinski, 2010). The oldest homes in Key 

Allegro were 57 years old in 2017, less than the length of two 30-year mortgages (Zillow, n.d.). 

Homes build around the same time are assumed to have similar building codes and regulations. 

Homeowners in this area are also wealthier than surrounding communities; the median household 

income in Key Allegro was $131,389 in 2017, compared to the median household income in 

Rockport of $57,958 (American Community Survey, 2017). The high median household income can 

be associated with high-value, upscale homes with luxury features, construction methods, and 

building materials.   
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1.6 Research Contributions 

 The combination of new data collection and damage assessment methods with 

spatial analysis and machine learning algorithms were used to correlate structural 

characteristics with damage and iterate upon damage assessment protocols for further 

development. Advances in data collection improved conditions and reduced on-site time 

for damage assessor volunteers. Damage assessment was performed completely off-site, 

utilizing data collected from a mobile scanning vehicle, previously collected data, and 

external data from Google Maps, Google Streetview, NOAA aerial imagery, Zillow, 

Geocodio, and ArcMap (ESRI, 2018; Geocodio, 2019; Google, n.d.; Google Streetview, 

n.d.; Guo, 2017; Kijewski-Correa, 2018; NOAA NGS, 2017; Vickery, 2017; Zillow, 

n.d.). Both pre- and post-storm information was collected for a comprehensive picture of 

factors influencing single-hazard wind hurricane damage. The damage assessment 

implements protocols and lessons learned from previous studies.  

 Once the dataset was compiled, spatial analysis was applied. The spatial analysis 

was the primary method for understanding the significance and relationship of building 

components with damage (ESRI, 2018). The spatial analysis indicated that age, wind 

speed, roof and wall cover determined the extent of most. This analysis also indicated 

that resiliency can be improved by implementing reinforced exterior roof and wall 

covering. Larger, more valuable homes, which tended to be close to the coast, had lower 

rates of damage- this could be a result of more-expensive building materials and 

construction practices on luxury structures. 

 Machine learning algorithms showed dependence between certain variables as 

well as variable importance of predicting damage. Both analyses can be used to iterate 
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upon the current damage assessment, reducing the number of features, therefore reducing 

time of assessment while preserving the robustness of the dataset. Future assessments 

should keep questions about distance to coast, location, building use, age, area, wind 

speed and other environmental factors, and number of stories. By reducing information 

about entry level and reducing the number of roof pitch, roof shape, and wall covering 

options in the damage assessment, time and other resources may be re-allocated for 

further analysis.    

1.7 Organizational Overview  

 Chapter 2 includes the research methods in this study. Methods of collecting 

damage data, conceptualizing the damage assessment, compiling the Hurricane Harvey 

dataset for Key Allegro, and proposed analysis approaches are included in Chapter 2. 

Chapter 3 discusses the results of the damage assessment, spatial analysis, and machine 

learning classifiers with their respective implications. Chapter 3 also includes an 

examination of international building codes and the impact that, if applied, newer 

building codes would have had on Hurricane Harvey damage in Key Allegro. Chapter 3 

will conclude with limitations of this study and future research opportunities. Chapter 4 

summarizes the main points, findings, and conclusions of this study.  
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Chapter 2: Research Methods 

  In this chapter, I discuss the methodology of this study, including data collection, 

data archiving, damage assessment, data analysis, iterative improvement of damage 

assessment, and the ideal community improvement (Figure 1). To collect the pre- and 

post-hurricane data, a mobile scanning vehicle collected imagery and spatial data – which 

was archived into the Rutgers-Harvey Portal, discussed in Section 2.1 (Guo, 2017). 

Additional post-disaster data collected by Kijewski-Correa, et. al was used in this study 

(Kijewski-Correa, 2018). Other public and private datasets were utilized for further data 

collection, including Google Maps, Google Street View, NOAA aerial imagery, Zillow, 

and Geocodio (ESRI, 2018; Geocodio, 2019; Google, n.d.; Google Streetview, n.d.; Guo, 

2017; Kijewski-Correa, 2018; NOAA NGS, 2017; Vickery, 2017; Zillow, n.d.). Data fell 

into three categories: imagery, building attributes, and geospatial attributes. Imagery 

information is assessed and converted to pre- and post-storm building attribute 

information. All this data is then input into the damage assessment, discussed in detail in 

Section 2.2 and Section 2.3. The damage assessments were then analyzed in three ways: 

simple statistical analysis, spatial analysis, and machine learning analysis. Information 

gathered from the data analysis can inform future decisions on damage assessment 

methodology and building more resilient communities.   
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2.1 Damage Data Collection and Archiving 

 Students from Rutgers University, accompanied by students from Princeton 

University and University of Texas at Austin, collected data in Port Aransas and 

Rockport, Texas. The volunteers utilized a mobile scanning vehicle, three days after the 

Hurricane Harvey, to document damage to residential structures caused by the storm. The 

mobile scanning device combined GPS ensembled equipment with a 360-degree 

panoramic camera and LiDAR scanners. Over 60,000 panoramic photos were taken 

during the reconnaissance effort (Guo, 2017; Rutgers Magazine, 2018). The photos taken 

during this exploration period were compiled and geo-located on a map, then linked with 

a pre-storm google street map and NOAA aerial photos from the post-storm study areas 

Figure 1: Overview of study methods, including data collection, data archiving, damage assessment, data analysis, damage 

assessment improvement iteration, and community improvement. 
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(Guo, 2017; NOAA NGS, 2017). The data compilation, geo-coding, and links were 

provided at the Rutgers-Iris Hurricane Harvey Portal (Guo, 2017). The portal allows the 

public to access imagery collected from the mobile scanning vehicle. The imagery is also 

linked to Google Street View, Google Maps, NOAA imagery, and the damage 

assessment in this study (Figure 2 & Figure 3) (Google, n.d.; Google Streetview, n.d.; 

Guo, 2017; NOAA NGS, 2017).  

 The mobile scanning vehicle is beneficial in several ways. The damage 

assessment process can be conducted after the initial survey, so assessors are not exposed 

to the harsh environment of a post-disaster area for a long period of time. The mobile 

scanning vehicle requires fewer volunteers to be on-site, reducing the need for a high 

volume of volunteers, especially when post-disaster assessments must be done very 

shortly after a natural disaster. The mobile scanning vehicle can utilize generators when 

power and resources are scares. The scanning vehicle is also beneficial to a team 

struggling with post-disaster resource limitations, allowing a survey team to cover large 

swaths of land without leaving the vehicle and in a shorter period than more traditional 

methods of damage assessment.  Once data is collected by the surveyors, utilizing the 

mobile scanning vehicle, data is processed, then structures are manually assessed off-site.    
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2.2 Damage Assessment Protocols 

 Though there are a few different damage assessment methodologies, as described 

in Chapter 1, a combination of different protocols was used in this study with the aim of 

Figure 2: Snapshot of the Rutgers-Iris Hurricane Harvey Portal zoomed to see Rockport, Texas. The circles 

indicate the number of panoramic photos collected in each area (Guo, 2017) 

Figure 3: Snapshot of the Rutgers-Iris Hurricane Harvey Portal, zoomed to Key Allegro. Notice the links at the 

top of the page, which lead visitors to Google Street View, Google Maps, NOAA aerial imagery, and Damage 

Assessment form (Guo, 2017). 
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optimizing time and detail of assessment data. Like the ATC-45, this assessment utilizes 

a categorical method of measuring overall building damage (ATC, 2004). Both the 

Princeton assessment and the HUD assessment utilize percentages to measure damage to 

a structure, this study incorporates this rating scale into data measurement, as well 

(Owensby, 2013; U.S. Department of Housing and Urban Development, 1993). The 

damage assessment in this study also applies some recommendations from Hudson 

(2010). The combination of previous studies is intended to reduce the amount of time 

required to conduct a damage assessment without reducing quality of data.  

 Pre-storm information such as building attributes, home value, square footage of 

the homes, location of home, distance to the coast, position in the peak wind fiend and 

year built were collected through use of Google Maps aerial imagery, Google Maps 

Street View, ArcMap, NOAA and Zillow, combined with imagery collected by Rutgers 

University (Figure 1) (ESRI, 2018; Geocodio, 2019; Google, n.d.; Google Streetview, 

n.d.; Guo, 2017; Kijewski-Correa, 2018; NOAA NGS, 2017; Vickery, 2017; Zillow, 

n.d.). Zillow provided information about home age, home value in July 2017, just before 

Hurricane Harvey, and the square footage of each home, when applicable (Figure 4 & 

Figure 5) (Zillow, n.d.). 
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Assessors were expected to reference the Rutgers-Iris Hurricane Harvey Portal imagery, 

Google Maps aerial imagery and Google Street view to collect information about pre-

storm features, such as location, number of stories, entry level, roof shape, roof slope, 

roof cover material, wall cover material, the percentage of openings, presence of a 

garage, entry door, full-sized windows, and ventilators, whether the structure was 

elevated and how the structure was elevated, and information about the presence of 

balconies, porches, and window protection (Figure 6 & Figure 7) (Google, n.d.; Google 

Streetview, n.d.; Guo, 2017).  

Figure 4: Screenshot of Zillow website. Includes, but is 

not limited to, home age, home area, home value history 

(Zillow, n.d.). 
Figure 5: Screenshot of home value history from 

Zillow (Zillow, n.d.). 
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ArcMap, in combination with Geocodio, was used to locate assessed buildings for 

mapping purposes. Esri ArcMap tools were also used to better understand pre- and post- 

Figure 6: Snapshot of Google Maps Imagery (Google, n.d.). 

Figure 7: Google Street View imagery example (Google Streetview, n.d.). 
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storm spatial characteristics, which are discussed in further detail in Section 2.4 (ESRI, 

2018; Geocodio, 2019). A complete list of all pre-storm physical building attributes and 

non-physical building attributes in Table 1 and Table 2, respectively. 

 Post-storm data was collected by using aerial imagery published by the National 

Oceanographic and Atmospheric administration after Hurricane Harvey (Figure 8), 

combined with the street view imagery collected by the mobile assessment vehicle 

(Figure 9) (Guo, 2017; NOAA NGS, 2017).  

 

Figure 8: Example of NOAA post-Hurricane Harvey imagery of Key Allegro (NOAA NGS, 

2017). 
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Assessors had the ability to assign a numerical value to the entire building’s damage, the 

damage mechanism (i.e. flooding, surge, wind, debris, or a combination), percentage 

value to roof cover damage, roof sheathing damage, roof framing damage, wall cover 

damage, wall sheathing damage, wall framing damage, window damage, and the 

presence of damage to the entry door, patio door, and garage door. The use of percentage 

associated with damage is intended to reduce the subjective nature of the damage 

assessment process. A complete list of all post-storm damage measurements is listed in 

Table 3. 

Table 1: Physical Building Attributes used for this study. 

Physical Pre-storm Building Attributes: 

Building Use (Commercial, Single Family, Multi-Family) 

Total Area 

Number of Stories (One, Two, Three Story, & Split Level) 

Entry Level (Grade Level, Level One) 

Figure 9: Example of panoramic imagery collected by the mobile scanning vehicle (Guo, 2017). 
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Attached Garage  

Attached Balcony 

Roof Shape (Hip, Box Gable, Open Gable, Dutch Gable, Flat, Hip and Valley, Intersecting, Cross 

Hipped, Combination) 

Roof Covering (Asphalt Shingles, Wooden Shingles, Metal Roof, Clay Tile, Concrete Tile, Tar) 

Roof Pitch (12/12, 10/12, 8/12, 6/12, 4/12, 2/12, Unknown Pitch) 

Hurricane Clips (Yes, No, Unknown) 

Wood Framed Roof 

Wall Cover (Vinyl, Stucco, Wood, Other) 

Opening Types (Entry Door, Garage Door, Full-Sized Windows, Ventilators) 

Percent Openings 

Window/Door Shutters or Panels  

Elevated 

Elevation Styles (Partially Elevated, Wet-Proofed, Dry-Proofed) 

 

Table 2: Non-Physical Building Attributes used for this study. 

Non-Physical Pre-storm Building Attributes: 

Address 

Latitude/Longitude 

Building Value 

Age 

Distance to Coast  

  

 The damage assessor manually inputted information, using a Google Form as the 

platform for the assessment. Google Forms was chosen for its user-friendliness and ease 

of conversion to a spreadsheet format. The Google Form platform was eventually 

replaced with a simple spreadsheet to reduce the time it took to fill-out an assessment, 
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and to increase the number of binary variables. For multiple-choice questions in excel, 

with multiple answers, Google Forms classified data differently based on the order of the 

answers. For the purposes of this project, that type of classification was not necessary. 

Some questions, originally multiple choice in Google Forms, were converted to a binary 

response in the spreadsheet, this choice was made for easier data processing. Future uses 

of this damage assessment should be conducted in Google Forms, because continual 

improvements to the form has been done throughout the completion of this project. See 

Appendix for full damage assessment form.  

Table 3: All Post-Storm Damage Measurements used in this study. 

Post-Storm Measurements: 

Damage Rating (0 None, 1 Minor, 2 Moderate, 3 Major, 4 Destroyed) 

Damage Mechanism (Flooding, Surge, Wind, Debris) 

Safe to Use (Yes/No) 

Roof Cover Damage (0-10) 

Roof Sheathing Damage (0-10)  

Roof Framing Damage (0-10) 

Wall Cover Damage (0-10) 

Wall Sheathing Damage (0-10) 

Wall Framing Damage (0-10) 

Window Damage 

Patio Door Damage 

Garage Door Damage 

Entry Door Damage 

 

 An overview of the relationship between the attributes in the damage assessment 

with resistance methods, loads, and failure is show in Figure 10. Damage assessment 
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attributes were also sub-categorized within their respective categories. Resistance 

methods include non-physical, external, and internal building attributes. The categories of 

loads include hazard loads, loads attributed to location, and features impacting the 

aerodynamics. There were four types of failure measured by the damage assessment: 

structural, roof, wall, and opening failure.  

 

 The scale of this study focuses on the individual level of homes, though this scale 

carries uncertainty of naturally stochastic wind currents and other stochastic factors 

affecting the wind resistive capacity of structures (Salazar, 2015). The benefits, though, 

of the individual structure approach is that is gives a better idea of the probability of 

damage to a specific home, the model is based on structures that share similar 

Figure 10: Illustrative summary of various factors found in the damage assessment and their contribution to different failure 

probabilities.  
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components and characteristics, and so future studies can aggregate the individual 

structure scale to any larger scale (Salazar, 2015).  

2.2.1 Damage Assessment Example 

 In this section, an example damage assessment will be performed for a home in 

Key Allegro. The Damage Assessment can be found, in the form of a Google Form, at 

https://goo.gl/forms/olxUkhY4gyevWCJU2. Once a home is chosen for assessment, the 

assessor is expected to locate the home from the Rutgers-Iris Hurricane Harvey Portal, 

Google Maps, NOAA Hurricane Harvey Imagery, Zillow, and Google Street View 

(Figure 11) (ESRI, 2018; Geocodio, 2019; Google, n.d.; Google Streetview, n.d.; Guo, 

2017; Kijewski-Correa, 2018; NOAA NGS, 2017; Vickery, 2017; Zillow, n.d.).  

 

Figure 11: Example of a single home being located on Google Maps (top left), Google Street View (top right), NOAA 

Hurricane Harvey Imagery (bottom left), and Rutgers-Iris Hurricane Harvey Portal (bottom right) (Google, n.d.; 

Google Streetview, n.d.; Guo, 2017; NOAA NGS, 2017). 

https://goo.gl/forms/olxUkhY4gyevWCJU2
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 The initial questions in the Damage Assessment form refer to the location of the 

home and photos of the home, if applicable (Figure 12). Google Maps can be the primary 

reference for this section, though Geocodio was used to identify the latitude and 

longitude of all homes for data analysis purposes (Google, n.d.; Geocodio, 2019).  

 

 The next section of the damage assessment, Building Basics, includes questions 

about the building use, the age, building value in July 2017, Total Area. Zillow should be 

the primary reference for these questions (Figure 13) (Zillow, n.d.). Building Basics also 

asks about the number of stories, entry level, attached garage, and balcony or porch. To 

answer these questions, a combination of the Rutgers-Iris Hurricane Harvey Portal and 

Google Street View imagery should be used (Figure 14) (Guo, 2017).  

Figure 12: Example of the location and photos portion of study damage assessment, filled-out using Google Maps. 
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 More questions about the building enveloped are asked in the next sections. A 

combination of Google Maps, Google Street View, and the Rutgers-Iris Hurricane 

Harvey Portal can be used to answer questions about: roof shape, roof covering, roof 

slope, roof framing material, hurricane clips, wall framing, wall covering, opening types, 

percent of openings, shutters or panels, elevation and elevation methods (Google, n.d.; 

Google Streetview, n.d.; Guo, 2017).  

Figure 13: Example of the "Building Basics" portion of the Damage Assessment, using Zillow to answer questions 

about building use, age, value, and area (Zillow, n.d.). 

Figure 14: Example of the "Building Basics" portion of the Damage Assessment, using Google Street View to answer 

questions about the pre-storm building attributes (Guo, 2017). 
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 The final sections in the damage assessment are about the amount of damage that 

the home may have sustained during the natural disaster: damage rating, damage 

mechanism, usability, roof damage, wall damage, and opening damage. The Rutgers-Iris 

Hurricane Harvey Portal is most useful during this section (Figure 15, Figure 17, & 

Figure 18), though NOAA post-storm imagery is also useful in determining damage, 

especially roof damage (Figure 16) (Guo, 2017; NOAA NGS, 2017).  

 

 

Figure 15: Damage Rating in the damage assessment can be based on the Rutgers-Iris Hurricane Harvey Portal, as in 

this example (Guo, 2017). 

Figure 16: Example of Roof Damage Ratings, using NOAA post-storm aerial imagery (NOAA NGS, 2017). 
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Figure 17: Wall damage was determined from imagery collected by Rutgers' mobile scanning vehicle (Guo, 2017). 

Figure 18: Damage to openings also used Rutgers-Iris Hurricane Harvey and Rutgers mobile scanning vehicle 

imagery, as in this example (Guo, 2017). 
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2.3 Data Compilation 

 Most raw data used in this study came in the form of panoramic imagery from the 

mobile scanning vehicle during the on-site data collection process (Guo, 2017). Other 

raw data was compiled from Zillow’s database, Google Maps, Google Streetview, and 

NOAA aerial photography (Google Maps, n.d.; Google Streetview, n.d.; NOAA NGS, 

2017; Zillow, n.d.).  

 Imagery was analyzed by a damage assessor, then converted to the damage 

assessment format – including pre- and post-storm information in Table 1, Table 2, and 

Table 3. Some data was missing after collection, mostly because of missing data in the 

Zillow database (Zillow, n.d.). To remedy the missing data, for proper analysis using 

machine learning algorithms, the missing values were filled with the average value for 

each respective attribute. Missing values were found in the following attributes: home 

value in July 2017, home age, and total area (sq. ft.). The average values for each 

attribute were $655,011, 39 years old (as of 2018), and 2580 square feet, respectively.  

 After primary classification, using machine learning algorithms, the accuracy of 

classifiers which predict damage on a scale from 0-10 (0-100%) was low. These values 

were converted to discrete categorical values, shown in Table 4, the goal of this 

conversion was to improve accuracy of classifiers by reducing the number of possible 

classes. 

Table 4: Conversion from 0-10 scale to discrete rating, used to increase accuracy of machine learning algorithms. 

Original 0-10 Scale Value(s) New Categorical Values 

0 0 

1-3 1 

3-6 2 
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6-9 3 

10 4 
 

  To further improve the accuracy of the dataset, the information was 

imported into ArcGIS for spatial analysis. Before importing the data, it was geocoded, 

using the Geocodio batch geocoding process in the WGS 1984 coordinate system 

(Geocodio, 2019). Variables such as, wind speed and distance to coastline were added to 

each attribute (ESRI, 2018; Vickery, 2017). These spatial characteristics have, in 

previous studies, been attributed to hurricane damage (Hatzikyriakou, 2015; Xuan, 2016). 

Geospatial analysis can also be achieved using tools in ArcGIS, which will be further 

discussed in Section 2.4.2 and Chapter 3 (ESRI, 2018).   

2.4 Analysis 

2.4.1 Statistical Analysis 

 Simple statistical analysis was performed on the data to get an idea of major 

patterns. Mean, median, mode, range, and histograms were made for all pre-storm 

attributes.  

2.4.2 Spatial Analysis 

 Spatial analysis can give a better understanding of data, especially with data that 

has a spatial component. Creating visuals using spatial components of the dataset can 

better communicate information, especially to the public and decision makers. ArcMap 

was used to add spatial components to this data, including the latitude, longitude, and 

distance to coastline. Some statistical analyses were projected onto maps of Key Allegro, 

for visualizing clusters or other spatial patterns of the data.  
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 Aside from pure visualization of data, spatial tools in ArcMap can be used to 

further understand clustering and outlier patters, as well as spatial regression. The 

exploratory regression analysis was created following the “Spatial Statistics: Simple 

Ways to Do More with Your Data” technical workshop by Lauren Bennett and Flora 

Vale. The technical workshop advises practitioners to utilize the “Exploratory 

Regression” tool in ArcMap, which tries combinations of variables to best describe a 

dependent variable using a properly specified model framework. This tool will iterate 

from one to, up to, five variables at once, providing information about each variable 

(Bennett, 2017, ESRI, 2018).  

 When this dataset was fed into the “Exploratory Regression” tool in ArcMap, 

with damage rating as a dependent variable, and all pre-storm data as the explanatory 

variables, there was no passing model, but there was information about variables with the 

highest adjusted R^2 values and a summary of variable significance. The results of the 

spatial statistics, clustering and outlier analysis, and exploratory regression will be further 

discussed in Chapter 3 (ESRI, 2018). 

2.4.3 Machine Learning Classifiers 

 Machine Learning approaches are useful in understanding which variables are 

most important to a model, which can be used to further improve predictions 

(Subramanian, 2013; Salazar, 2015). 

 Machine Learning approaches used in damage science fall into two main 

methods: regression and classification. Regression models have a dependent variable that 

is continuous, whereas classifiers have dependent variables which are discrete categories. 
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In the case of predicting damage, based on a discrete scale, a classifier will be used to 

place data into different predicted classes. For example, if damage states fall into 

categories, such as “no damage”, “minor”, “moderator”, “major”, and “destroyed”, then a 

classifier will be used to predict which category a dataset is most likely to be found 

(Figure 19). 

 

 Classifiers can also be unsupervised or supervised. In the case of an unsupervised 

model, the correct ‘classes’ are not known for the dataset. The machine learning 

algorithms are expected to classify data through clustering or other means of classifying. 

Pre-storm information and post-storm measurements are used to train the data, in this 

study, so a supervised machine learning classifier is used. When building a supervised 

machine learning model, some percentage of the dataset is given to the model, in 

combination with the proper classes. Once the model is built, testing data is fed into the 

classifier, and asked to predict the class of each data point. The predictions are then 

validated using the correct class prediction, producing an accuracy value for the 

classifier. Figure 20 illustrates the process of building and testing a supervised machine 

learning classifier. 

Figure 19: Overview of the classification process from pre-storm data to post-storm Damage Rating. 
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 Pre-storm data (Table 1 and Table 2) was input into classifiers, which classified a 

number of damage outputs, in Table 3. 70% of the pre-storm data was used as training 

data and the remaining 30% was used to validate the model and understand accuracy. For 

each post-storm prediction, five classifiers were compared and the one with the highest 

accuracy value was used for further analysis. The classifiers were as follows: Support 

Vector Machine (SVM), Decision Tree Classifier using Gini impurity to create nodes, 

Decision Tree Classifier using entropy to create nodes, Random Forest Classifier using 

Gini to create nodes, and a Random Forest Classifier using entropy to create nodes. By 

optimizing the mentioned classifiers by accuracy, we can combine these predictions to 

form a better understanding of damage predictions in the future.  

 The Support Vector Machine (SVM) classifier can be understood as plotting a 

dataset onto a n-dimensional coordinate system, where n is equal to the number of 

independent variables. After the data is plotted, the SVM classifier attempts to create a 

Data 

Testing 
Data

Training 
Data

Derive 
Model Estimate 

Accuracy 

Figure 20: Process of building and validating Machine 

Learning Classifiers. 
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(n-1)-dimensional plane separating the data into classes, the plane which has the largest 

gap between data in different classes is the one used by the model after it is trained.  

 The Decision Tree Classifier can also be visualized using an n-dimensional 

coordinate system, where n represents the number of independent variables. The decision 

tree draws a series of (n-1)-dimensional planes between datapoints based on questions 

which sub-divide the data. For example, in this dataset, a decision tree classifier may 

separate data by asking if the structure is single family. It would then draw a plane which 

ideally would divide the data into two distinct groups where all the members of one 

group are single family structures and all the members of the other group would not be 

single family structures. The Decision Tree Classifier would continue to ask questions, 

grouping the data until either data in each group are of a single class or some criteria is 

met. The Decision Tree Classifier decides which questions to ask by using a measure of 

uncertainty, this study utilizes Gini impurity and entropy. Basically, both Gini impurity 

and entropy measure the amount of information gained by asking one question or 

another. These values help the classifier when and what to ask to separate the data into 

the purest classes.  

 The Random Forest Classifier used in this study runs a Decision Tree Classifier 

onto sub-sets of the training data, then creates an aggregated model using prediction 

information from each Decision Tree Classifier. Both Gini impurity and entropy were 

also applied to the Random Forest Classifier.   

 These machine learning classifiers were used to build a correlation matrix, which 

describes how independent or dependent different variables are. The classifiers were also 

used to understand feature importance. The variable importance does not necessarily 
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show the magnitude nor the direction of the relationship these variables have with 

damage, unlike the exploratory regression, but it does tell us which variables were most 

important in creating the classifiers. Knowing the importance of each variable in building 

a classifier can help to make the damage assessment process more streamlined and 

efficient in the future. Feature importance is not a function of an SVM classifier, so the 

classifiers used to get feature importance were limited to the decision tree and random 

forest classifiers. Both the correlation matrix and the results of variable importance will 

be further discussed in Chapter 3. 
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Chapter 3: Results & Discussion 

3.1 Damage Assessment Efficiency Analysis 

 Previous studies have not mentioned the time taken to perform a single damage 

assessment. If the damage assessment in this study takes the same amount of time as a 

standard on-site damage assessment, this study would remain superior because of the 

ideal conditions to assessors. The amount of information collected for each damage 

assessment is also an important part of the damage assessment’s efficiency. Some 

assessments may be collecting less information, therefore taking less time to collect. A 

goal of this study is to optimize the amount of data collected while reducing the time of 

assessment as much as possible.  

 The average damage assessment in this study takes about 10 minutes to fill-out, 

collecting a total of 74 different variables. Some questions in the assessment are designed 

to collect multiple variables at once, with 50 questions total in the damage assessment 

(including photo uploads). The average damage assessment question collects information 

on 1.48 variables, taking approximately 12 seconds per questions. 553 homes were 

analyzed during this study, totaling over 92 hours of assessment conducted.  

 A hybrid method of assessment may be considered in future studies, combining 

off-site assessment with external sources and on-site assessment. On-site assessors can 

collect post-storm damage information, such as damage rating, wall damage, and opening 

damage. NOAA aerial imagery should remain the main source for roof damage. Pre-

storm and building attribute information can be collected by off-site assessors, using this 

damage assessment methodology. The benefit of a Google Form platform for assessment 
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is that on- and off-site assessments can be conducted simultaneously, assuming on-site 

access to internet ,furthering increasing efficiency. If an on-site assessor can answer 

questions about damage, about 10 questions, this will reduce the amount of time per 

assessment by approximately 2 minutes per assessment, if on- and off-site assessors are 

working on the same home. If this method of assessment was used in this study, off-site 

damage assessments would have taken over 18 hours less time for the entire study area. 

 Damage assessments require continual improvement to be at their highest 

efficiency. The results of this study, primarily from machine learning classifiers, can be 

used to specify potential areas of further improvement. 

 Figure 21: Location of all surveyed homes in this study, Key Allegro, Rockport, Texas. 
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3.2 Descriptive Analysis and Results 

 Over 1,000 homes were assessed between Key Allegro and nearby community, 

Holiday Beach. 553 structures were used during analysis, found in Figure 21 (Kijewski-

Correa, 2018). Of the analyzed homes, 551 were single-family residential structures and 

2 were used for commercial purposes. Most homes were single level, and all structures 

were wood framed. The average home value was approximately $655,000 in July 2017, 

just before Hurricane Harvey struck (Figure 22). The most expensive home in the study 

area was $3.2 million in July 2017 (Zillow, n.d.). 

  

 The average age of the assessed homes was 42 years old, as of 2018 (Zillow, 

n.d.). Development on Key Allegro began in 1962, so the age of all homes on Key 

Allegro cannot exceed 57 years old (Jasinski, 2010). The relatively short time period that 

homes were developed in this area assures that building codes and regulations remain 

Figure 22: Histogram of building values in Key Allegro in July 2017, before Hurricane Harvey struck the area 

(Zillow, 2018). 
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relatively similar. The distribution of home-age can be found in a chart in Figure 23 

(Zillow, n.d.).  

 

 The area of a home influences the amount of damage that it will receive, this is 

evident during tornados and hurricanes alike (Egnew, 2018). The average area of the 

homes in the study area was 2580 square feet, with a range between 454 and 8942 square 

feet (Zillow, n.d.). Figure 24 illustrates the distribution of building area in the study 

region.  

Figure 23: Chart of the age of homes in study area, as of 2018 (Zillow, 2018). 
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 Roof shape is can impact damage, especially when the damage mechanism is 

wind (Crandell, 1998). Examples of common roof shapes are shown in Error! Reference s

ource not found.Figure 25, Figure 26, and Figure 27. Roof shapes vary in this study, 

with the highest frequency in combination and hip roofs (Figure 28). Combination roofs 

exhibit characteristic shapes of multiple roofs at once.  

Figure 24: Histogram of home area (sq. ft.) in study region. 

Figure 25: Example of Intersecting or Overlapping roof shape in Key Allegro. 
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 In addition to the roof shape, information about the roof slope was collected 

during the damage assessment process. Roof slope was not measured using the LiDAR 

imagery which was collected during the damage survey, and instead was estimated using 

Figure 26: Example of Dutch gable shaped roof in Key Allegro. 

Figure 27: Example of a Combination roof shape in Key Allegro. 

Figure 28: Roof shape distribution in study region. 
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the panoramic photos collected during the damage survey period. Most homes had a 

slope of either 6/12 or 4/12 (Figure 29).  

 

 The roof and wall covering can be the first line in defense against damage during 

a hurricane. Most structures in Key Allegro had asphalt shingles as roof cover (Figure 

30). Most homes utilized wood for siding, whether in panels or shingles (Figure 31). 

Wooden siding is a common wall covering in other coastal towns.  

Figure 29: Roof pitch distribution in study region. 
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 Wind damage during Hurricane Andrew illustrated the relationship between 

damage to openings and overall damage to a structure (Crandell, 1998; Egnew, 2018). To 

better understand the relationships between openings and hurricane damage, the damage 

Figure 30: Roof cover materials in study area. 

Figure 31: Wall cover materials in study area. 
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assessment in this study measured the percentage of openings, see Figure 32, on a 

structure and whether specific opening types are present.   

 

 Elevating a structure is a popular method of mitigating damage from flooding and 

storm surge. Past studies have indicated that elevating a structure can impact damage 

from hurricanes, and a goal of this study was to understand the relationship between wind 

damage and elevating a structure (Hatzikyriakou, 2015; Kennedy et. al, 2011; Norman, 

2010; Xian, 2015; Xuan, 2016). The results of the damage assessment indicate that most 

homes in Key Allegro were not elevated (Figure 33). 

Figure 32: Distribution of the percentage of openings on each structure in the study region. 
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 .  

 Figure 34 illustrates the methods of elevation: either wet-proofed, dry-proofed, 

and/or partially elevated. Wet-proofed homes are elevated and have an opening below 

them, allowing water to pass easily though without added lateral hydraulic loading 

(Figure 35).  

 

Figure 33: Distribution of elevated and not elevated homes in study region. 

Figure 34: Breakdown of the elevation structure of homes that were elevated, 

in the study region. 
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 Wet-proofed homes have a large pocket below the home, which could potentially 

lead to complex uplift forces during high velocity wind events. Homes that are partially 

elevated have a portion that is fully enclosed and a portion that is completely open. This 

partially-elevated- wet-proofed style is popular in the community of Key Allegro, where 

there is a walkthrough from the street to the lagoons behind most homes (Figure 36). Of 

the homes that were elevated, most homes were wet-proofed. 

 

Figure 35: Example of an elevated home using a wet-proofed method of elevation (Google Street View). 

Figure 36: Example of an elevated home that is wet-proofed but has a portion that is enclosed (Google 

Street View). 
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 Dry-proofing is an elevation method where the foundation is entirely enclosed, 

and the space is considered non-livable (Figure 37). Many dry-proofed homes use this 

area as a garage. Dry proofed homes are still elevated, so the building height could be 

detrimental to wind damage, but this could serve to be a good way to balance protection 

from wind and surge damage because the enclosure may reduce complex wind patterns 

and uplift forces. For a home to have dry-proofing and partially enclosed, most of the 

structure is fully enclosed. In these rare cases, there are small openings below the 

structure where there is an elevated deck, elevated main entrance, or there is a small 

garage opening that is not enclose though the remaining parts of the home are enclosed 

(Figure 38).  

 In contrast to the benefits for surge and flooding damage, elevated structures, 

especially those that are elevated using the wet-proof method, may cause complicated 

and/or uplift wind patterns. Elevated homes can be expected to have higher heights than 

non-elevated homes, which could result in more wind damage, as well. 

 
Figure 37: Example of a home that is elevated using the dry-proofing method (Google Street View). 
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3.3 Spatial Analysis and Results 

 To further understand the relationship between the data and space, some variables 

were projected onto maps in ArcMap (Figure 39, Figure 40, and Figure 41). Figure 39 

shows that highest concentration of high home values is found on the southernmost tip of 

Key Allegro (ESRI, 2018; Zillow, n.d.). These home values seem to be related to the 

home area and home age because high-area homes and newer homes appear to be 

concentrated on the southernmost tip of Key Allegro (Figure 40 & Figure 41). 

Figure 38: Example of a home which is elevated using a dry-proofed method, though there is a 

portion which is not fully enclosed (Google Street View). 
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Figure 39: Map of building value distribution in study area (Zillow, n.d.). 
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Figure 40: Map of the distribution of home area (sq. ft.) in study region (Zillow, n.d.). 
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 ArcMap was used to add spatial components to the data, including the latitude, 

longitude, and distance to coastline (Figure 42) (ESRI, 2018).  

Figure 41: Map of the distribution of home-ages in study area, as of 2018 (Zillow, n.d.). 
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 Using the ArcMap “Cluster and Outlier Analysis (Anselin Local Moran’s I)” 

spatial statistics tool, showing the clustering and outliers of the damage rating variable, 

the resulting map is shown below (Figure 43) (ESRI, 2018). There is a cluster of high 

damage toward the northernmost tip of the island and a cluster of low damage towards 

the southernmost tip of the island. Outliers of low damage can be found near the northern 

Figure 42: Distance to the coastline for all homes in the study area, with a line used to identify the shoreline 

(ESRI, 2018). 
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portion of the island, and outliers of high damage can also be found near the southern 

portion of Key Allegro. 

 The “High-High Cluster” indicates statistically significant clusters of high values, 

or higher damage; “Low-Low Cluster” indicated statistically significant clusters of low 

values, low damage. Similarly, “High-Low” and “Low-High” clusters indicate outliers in 

which high values are surrounded by low values, and outliers in which low values are 

surrounded by high values, respectively (Table 5). There are more clusters of low values 

damage ratings on the southern portion of the island, whereas the northern portion of Key 

Allegro has more clustering of high damage ratings. The clustering of higher damage 

near the northern portion of the community, may be of concern. Higher damage may lead 

to more debris, and the only point of entry into Key Allegro via the northernmost tip 

could be impacted by the debris. 

Table 5: Breakdown of results from Cluster and Outlier Analysis. 

 
High Low 

High Statistically significant clusters of 

high damage 

Low value outliers which are surrounded 

by high values of damage 

Low High value outliers which are 

surrounded by low values of damage 

Statistically significant clusters of low 

damage values 
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Figure 43: Map of study area using the ArcMap Cluster and Outlier Analysis (Anselin Local Moran’s I) spatial 

statistics tool (ESRI, 2018). 
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 The wind field of Hurricane Harvey plays an important role of the spatial 

relationships between variables (Vickery, 2017). First by converting the wind field grid 

data to a raster file, using the IDW Interpolation tool in ArcMap, then converting the 

IDW raster file into a contour field, we have usable data to visualize the impact of wind 

on the study area and the greater region (Figure 44 & Figure 45) (ESRI, 2018; Vickery, 

2017).  

 Figure 44: Map of greater Texas coast overlaid with Hurricane Harvey (Vickery, 2017). 
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 After overlaying the clustering analysis onto the wind fields, it is apparent that 

higher velocity winds swept through the northern  portion of the island, and the southern 

portion of the island found slightly smaller wind speeds (Figure 46) (Vickery, 2017). 

This same phenomenon is reflected when the wind field is overlaid with the damage 

ratings (Figure 47) (ESRI, 2017; Vickery, 2017). Wind speed appears to have been 

highly correlated with damage in this area during Hurricane Harvey. 

Figure 45: Map of greater Aransas County, TX overlaid with Hurricane Harvey wind field (Vickery, 2017). 
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Figure 46: Key Allegro damage ratings overlaid with Hurricane Harvey wind field. Note the damage ratings are 

higher on northern portion of the community, where wind speed was higher during Hurricane Harvey (ESRI, 2018; 

Vickery, 2017). 
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Figure 47: Key Allegro damage rating ArcMap Cluster and Outlier analysis (Anselin Local Moran’s I) 

overlaid with Hurricane Harvey wind field (ESRI, 2018; Vickery, 2017). 



67 

 

 

 The exploratory regression analysis was created following the “Spatial Statistics: 

Simple Ways to Do More with Your Data” technical workshop by Lauren Bennett and 

Flora Vale. The technical workshop advises practitioners to utilize the “Exploratory 

Regression” tool in ArcMap, which tries combinations of variables to best describe a 

dependent variable using a properly specified model framework. This tool will iterate 

from one to, up to, five variables at once, providing information about each independent 

variable and the relationship with the chosen dependent variable (Bennett, 2017).  

 When this dataset was fed into the “Exploratory Regression” tool in ArcMap, 

with damage rating as a dependent variable, and all pre-storm data as the explanatory 

variables, there was no passing model, but there was information about variables with the 

highest adjusted R² values, variable significance, and relationships between the 

independent and dependent variables (Table 6) (ESRI, 2017). Variable significance is 

used by this tool to describe the proportion of times where the variable was statistically 

significant. The relationship, whether positive or negative, is also measured. Variables 

which are strong predictors of the dependent variable will be consistently significant and 

the relationship will be stable. For example, the age of the home is a strong predictor 

because it was significant 100% of the time and had a positive relationship with building 

damage 100% of the time. Other significant variables include: latitude, metal roofs, 

distance to ocean, and total home area (Figure 48). All variables not included in Figure 

48 were not significant with Damage Rating used as the dependent variable. The latitude 

may be particularly significant because the wind field is shows stronger winds on the 

northern portion of the island, as previously discussed. 
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Table 6: Independent variables used in exploratory regression, including their respective variable type and the 

resulting % significance, % positive, and % negative (ESRI, 2018).  

Variable Variable Type % Significant %Negative %Positive 

Age 
Numerical - 
Continuous 100 0 100 

Latitude 
Numerical - 
Continuous 99.99 0 100 

Metal Roof Cover Categorial - Binary 99.98 100 0 

Distance to Coast 
Numerical - 
Continuous 99.54 100 0 

Total Area 
Numerical - 
Continuous 95.93 100 0 

Asphalt Roof Cover Categorial - Binary 94.27 0.11 99.89 

Wood Siding Wall Cover Categorial - Binary 93.08 0 100 

Stucco Siding Wall Cover Categorial - Binary 88.7 99.52 0.48 

Two Story Categorial - Binary 86.4 100 0 

Building Value 
Numerical - 
Continuous 85.08 99.56 0.44 

Single Story Categorial - Binary 79.15 100 0 

Grade Level Entry Categorial - Binary 77.58 0 100 

Level One Entry Categorial - Binary 77.58 0 100 

Elevated Categorial - Binary 67.63 3.98 96.02 

Open Gable Roof Shape Categorial - Binary 66.06 0 100 

Wet-proofed Foundation Categorial - Binary 59.21 0.06 99.94 

2/12 Roof Pitch Categorial - Binary 53.79 0 100 

Attached Garage Categorial - Binary 44.06 100 0 

Combination Roof Shape Categorial - Binary 36.52 100 0 

Garage Door Categorial - Binary 19.43 91.73 8.27 

Concrete Tile Roof Cover Categorial - Binary 17.17 0.71 99.29 

Unknown Roof Pitch Categorial - Binary 11.83 99.96 0.04 

Tar Roof Cover Categorial - Binary 11.81 97.63 2.37 

Partially Elevated Categorial - Binary 9.16 47.68 52.32 

Dry-proofed Foundation Categorial - Binary 4.7 32.98 67.02 

Clay Tile Roof Cover Categorial - Binary 4.67 65.93 34.07 

Vinyl Siding Wall Cover Categorial - Binary 4.15 70.25 29.75 

Balcony or Porch Categorial - Binary 0.8 93.78 6.22 

8/12 Roof Pitch Categorial - Binary 0.27 99.99 0.01 

Dutch Gable Roof Shape Categorial - Binary 0.2 97.56 2.44 

Hip Roof Shape Categorial - Binary 0.11 75.17 24.83 

Cross Hipped Roof Shape Categorial - Binary 0.1 0 100 

Entry Door Categorial - Binary 0.01 100 0 

Hip and Valley Roof Shape Categorial - Binary 0 99.49 0.51 

12/12 Roof Pitch Categorial - Binary 0 100 0 

Flat Roof Shape Categorial - Binary 0 5.37 94.63 

Split Level Categorial - Binary 0 6.22 93.78 
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Three Story Categorial - Binary 0 16.98 83.02 

Box Gable Roof Shape Categorial - Binary 0 17.88 82.12 

Intersection Roof Shape Categorial - Binary 0 97.17 2.83 
Wooden Shingles Roof 
Cover   Categorial - Binary 0 94.52 5.47 

10/12 Roof Pitch Categorial - Binary 0 48.05 51.95 

6/12 Roof Pitch Categorial - Binary 0 1.29 98.71 

4/12 Roof Pitch Categorial - Binary 0 12.96 87.04 

Hurricane Clips Categorial - Binary 0 4.23 95.77 

Unknown Hurricane Clips Categorial - Binary 0 95.77 4.23 

Other Siding Wall Cover Categorial - Binary 0 99.97 0.03 

Full-sized Windows Categorial - Binary 0 32.07 67.93 

Ventilators Categorial - Binary 0 0 100 

Percent Openings Numerical - Discrete 0 89.91 10.09 

Shutters or Panels Categorial - Binary 0 0.47 99.53 

 
Figure 48: Significance to Damage Rating according to Exploratory Regression in ArcMap. 
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 With the goal of understanding the relationship between categories of pre-storm 

variables and the damage rating, the exploratory regression tool was run, using the 

damage rating as the dependent variable (ESRI, 2018). Figure 49 illustrates all 

explanatory variables and their relationship with damage rating. During the explanatory 

regression, variables are not always either positive or negative, so the tool provides 

information about the percentage of time that each variable is either positive or negative. 

High consistency of the relationship with damage rating can show the stability of the 

variable.  

 Positive relationships with damage rating would suggest that presence of this 

variable would lead to higher levels of damage. Variables which consistently had a 

positive relationship with damage rating included: Age, Latitude, Wooden Siding, Grade 

Level Entry, Level One Entry, Open Gable roof shape, 2/12 Roof Pitch, Cross-Hipped 

Roof, Ventilators, Wet-Proofed Foundation, Asphalt Roof covering material, Shutters or 

Panels covering the windows and/or other openings, Concrete Tile roof covering 

material, 6/12 Roof pitch, and Elevated foundation.  

 These results indicate that the older homes received higher rates of damage. This 

confirms the results of previous studies (Owensby, 2013; Xian, 2015). Latitude may be 

highly related to wind speed in this study, so these results would suggest that homes with 

higher latitude, closer to the northernmost tip of the island, had higher rates of damage. 

Wind speed is highly correlated with wind damage during tornados, as well (Egnew, 

2018). Wooden siding, though popular in coastal communities, was not enough wall 

covering material to reduce overall structural damage. Both grade-level and level-one 

entry had a positive relationship with damage, indicating that the location of the entry 
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door does not reduce damage sustained from a single-hazard wind hurricane. Entry level, 

in the past, was positively related to damage from storm surge (Xuan, 2016). Open-gable 

roof shapes had previously received less damage than hip roofs, but the results of this 

exploratory regression indicate that gable-roofs consistently resulted in more damage 

than hip roofs, which had a mostly negative relationship with overall damage (Crandell, 

1998; Egnew, 2018). Although closed-foundations, i.e. dry-proofed elevated structures, 

performed positively during storm surge and flooding events, dry-proofed homes only 

performed slightly better than wet-proofed foundations in this study (Xian, 2016). 

Elevated structures, both wet- and dry-proofed, resulted in higher rates of damage than 

non-elevated structures. This is in direct disagreement with previous studies which 

indicated that elevated structures reduced damage from hurricanes, primarily in single-

hazard flooding events (Kennedy et. al, 2011; Xian, 2015). Another variable of interest is 

that the presence of shutters/panels over openings resulted in higher rates of damage, this 

is counterintuitive because reinforcing openings has previously been suggested to reduce 

multi-hazard damage (Eamon, 2017).  

 Variables which have a consistently negative relationship with damage rating 

include: steep roof pitch, presence of an Entry Door, Combination Roof shape, presence 

of an Attached Garage, Single Story, Two Story, Total Area, Distance to Coast, Metal 

Roof, Building Value, Stucco Siding, and Hip and Valley Roof shape. When a variable 

has a negative relationship with overall damage, this indicates that the presence of this 

variable would result in lower rates of damage.  

 Only seven homes in the study area had a roof pitch of 12/12, so perhaps that size 

of the dataset may be skewing the relationship between steep roof pitch and overall 
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damage. The same phenomena could be applied to the presence of an entry door and a 

garage door because most homes in Key Allegro have both an entry door and a garage 

door. The number of stories, both single and two-story, consistently had a negative 

relationship with damage rating. Previous studies have indicated that two story homes 

had a more positive relationship with wind damage than single stories (Crandell, 1998; 

Egnew, 2018; Xuan, 2016). Total area previously was positively related to damage, but 

this analysis suggested that home area had the opposite relationship with damage 

(Egnew, 2018). Distance to Coast, especially for multi-hazard hurricanes and single-

hazard flooding events, has previously had a positive relationship with damage (Kennedy 

et. al, 2011; Xuan, 2015). This study, in contrast, suggested that distance to coast has a 

negative relationship with wind damage. Perhaps, distance to coast is indirectly 

proportional to wind damage in this community – which would explain this 

counterintuitive relationship with damage. Building value, confirming previous studies, 

had a negative relationship with building damage (Egnew, 2018).  
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 To combine the information gained from the % significance and relationship with 

damage rating, a prediction factor was calculated (Figure 50). The prediction factor 

indicates the strength of each variable to predict damage rating, by combining the 

significance and the stability of the variable with damage rating, either positive or 

negative. The prediction factor is calculated by: 

Figure 49: Illustrates the percentage of time, during the exploratory regression in ArcMap, where 

each explanatory variable has either a positive or negative relationship with the Damage Rating. 
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Prediction Factor = % Significant * (% Positive - % Negative)/100. 

The prediction factor ranges from 100 to -100, where a prediction factor of 100 would 

indicate a variable which was significant to damage rating 100% of the time and always 

positive. A prediction factor of -100 means that the variable was significant to predicting 

damage rating 100% of the time but had a consistently negative relationship with damage 

rating. Where the absolute value of a prediction factor is high, these variables are strong 

predictors – meaning they are highly significant and have a consistent relationship with 

damage rating. Strong predictors of damage rating include: age, latitude, asphalt roof 

covering, wood siding, grade level and level one entry, open gable roof shape, and 

elevation, all having a positive relationship with damage rating. Highly significant 

variables with consistently negative relationships with damage rating include: metal roof 

covering material, distance to coast, total area, stucco siding, two story homes, and 

building value. After normalizing the prediction factor by the number of samples in each 

feature, the variables with the strongest prediction are: age, latitude, and asphalt roof 

covering with positive relationships with damage rating; distance to coast, total area, and 

building value with a negative relationship with damage rating (Figure 51). 
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Figure 50: Prediction factor combines the variable significance and the consistency of the relationship with 

damage rating. Variables where the absolute value of the prediction factor are high are strong predictors of 

damage rating. 
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Figure 51: Distribution of the prediction factor, after being normalized by the number of samples in each 

feature. 



77 

 

 

 The Explanatory Regression tool also pointed out the frequency of “perfect 

multicollinearity” in this dataset, or correlation between explanatory variables (ESRI, 

2018). Variables with the highest Variance Influence Factor (VIF) values, one measure of 

multicollinearity, include: Single Story, Two Story, Asphalt shingles, Metal roof 

covering, vinyl siding, stucco siding, and wood siding (Figure 52). For perfectly 

independent explanatory variables, the VIF value would be 1 – although some are close 

to 1, no pre-storm explanatory variables in this dataset are perfectly independent. More 

information about multi-collinearity will be discussed in Section 3.4.  

 

Figure 52: Variable Influence Factor (VIF), which measures multi-collinearity, for each variable when 

predicting Damage Rating. 
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 The following categories of variables were chosen for further analysis: number of 

stories, roof shape, roof covering, roof pitch, wall covering, elevation and type of 

elevation, and openings. For each of these categories of variables, an explanatory 

regression was run. The damage rating was used as the dependent variable and the 

independent variables were all the variables that fell into the respective category. No 

properly specified models were produced by these exploratory regressions, but other 

important information was gathered.  

 In the case of number of stories, both single and two story were significant most 

of the time, having a positive and negative relationship with damage rating 100% of the 

time, respectfully (Figure 53). It is intuitive to believe that the height of the home is 

negatively correlated with damage, primarily wind damage. Counter to this belief, three 

story homes are almost as likely to have a positive relationship as a negative relationship 

to damage rating (Figure 54). This may be caused by higher quality building materials, 

more wind protection, or different roof profiles on these taller and larger homes. 

 

Figure 53: Significance of variables from exploratory regression with Number of Stories as 

independent variables and Damage Rating as the dependent variable. 



79 

 

 

 

 Exploratory regression of roof shape indicated a relatively high significance 

between open gable roofs and damage rating (Figure 55), consistently having a positive 

relationship (Figure 56). Previous studies have indicated that hip roofs are more likely to 

sustain damage than gable roofs, but the results of this analysis show that open gable 

roofs had higher rates of damage and more significance than hip roofs for the damage 

rating (Crandell, 1998; Egnew, 2018).   

Figure 54: Relationship, whether positive or negative, of Number of Stories with Damage Rating. 
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Figure 55: Significance of Roof Shape variables in exploratory regression, when predicting 

Damage Rating. 

Figure 56: Relationship of Roof Shape variables with Damage Rating. 
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 In terms of roof covering material, all roof cover types were significant aside from 

wooden shingles and tar roofs (Figure 57). Metal roof covering had a negative 

relationship with damage rating and a high significance, meaning that homeowners 

should be encouraged to utilize metal roofs to protect damage from wind (Figure 58). 

Metal roofs may be beneficial as a protection measure against wind damage because, 

unlike tiled or shingled roofs, metal roofs are a solid component. Asphalt shingles, in 

contrast, have a high significance but a positive relationship with damage rating.  

 Figure 57: Variable significance of Roof Cover, for exploratory regression of Damage Rating. 
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 Very shallow roof pitch had the highest significance with damage rating during 

exploratory regression (Figure 59). The roof pitch is expected to have a positive 

relationship with damage, because more steep roofs are expected to have more lateral 

loading from wind. Contrary to this expectation, and with very high significance, roofs 

with a 2/12 pitch have a consistently positive relationship with damage rating. Although, 

much less significant, roofs with a pitch of 8/12 most often have a negative relationship 

with damage rating. Factors outside of the roof pitch could explain these counterintuitive 

relationships between roof pitch and damage rating (Figure 60).  

Figure 58: Relationship between Roof Cover variables and Damage Rating during exploratory regression. 
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 Wall covering should mirror results of roof cover; wall coverings that have larger 

or more solid components are expected to perform better than smaller components when 

Figure 59: Significance of Roof Pitch with Damage Rating during exploratory regression analysis. 

Figure 60: Relationship between Roof Pitch and Damage Rating. 
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it comes to the impacts of wind damage (Figure 61 & Figure 62). Stucco has very high 

significance, but it did not always have a negative relationship with damage; instead two-

thirds of the time the relationship was negative, and the remaining homes indicated that 

stucco siding led to more damage. More consistently, wood siding has a high relative 

significance and always had a positive relationship with damage. In this area, much like 

many coastal communities, wood siding is a popular building attribute, but it may cause 

higher rates of wind damage during similar natural disasters. 

  
Figure 61: Percent significant during exploratory regression of Wall Covering materials to Damage Rating. 
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      Whether a home is elevated, especially in coastal communities, impacts expected 

damage to a home during a hurricane, especially when storm surge is a dominant damage 

mechanism (Hatzikyriakou, 2015; Kennedy et. al, 2011; Norman, 2010; Xian, 2015; 

Xuan, 2016). As expected, the exploratory regression tool gives highest significance on 

the Boolean variable indicating elevation (Figure 63). Elevation had a positive 

relationship with damage 100% of the time.  Wet-proofed homes had high significance 

and a positive relationship with damage rating. Dry-proofed elevation structure had a 

more negative relationship than the wet-proofed method of elevation (Figure 64). 

Although this relationship was mostly negative, it is not always negative. The most 

beneficial elevation structure, though the least significant in this group, are dry-proofed 

foundation types. Two thirds of the time this foundation type had a negative relationship 

with damage rating, whereas one third of the time the relationship was positive. If a 

homeowner in this area were to be exposed to a similar storm, the elevation, the more 

Figure 62: Relationship of Wall Covering Materials with Damage Rating. 
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closed the foundation (whether partially elevated or dry proofed) will lead to lower rates 

and intensities of damage.    

 

 

Figure 63: Binary elevation and Elevation Types and their significance in predicting Damage Rating in exploratory 

regression. 

Figure 64: Relationship between binary elevation and Elevation Types with Damage Rating in exploratory regression. 
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 The last category of specific analysis is of the relationship between openings and 

damage rating, this includes the percentage of openings and Boolean indicators of an 

entry door, garage door, full-sized windows, and ventilators. Wind has a habit of finding 

or creating openings on a structure, eventually causing lift or intrusion (Pita, 2012). 

Surprisingly, many of these attributes, including percentage of openings, have no 

significance in the exploratory regression (Figure 65). The attached garage was 

consistently significant and had a negative relationship with damage rating (Figure 66).  

 

Figure 65: Significance of Opening Types with Damage Rating. 
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 To better understand the damage mechanisms leading to the damage rating, an 

Exploratory Regression was done using post-storm damage variables as the independent 

variables and the damage rating as the dependent variable. This analysis showed that, for 

this storm in this area, Boolean wind damage, roof cover damage percentage, roof 

framing damage percentage, wall cover damage percentage and Boolean debris damage 

were the most significant variables describing the damage rating of the entire home. The 

significance of these variables indicate that the storm caused damage primarily through 

roof failure from high wind loads.     

3.4 Data Science based Analysis and Results 

 Classifiers can be used to create correlation matrixes, which give information 

about the independencies and dependencies of explanatory, of input, variables. Figure 67 

is the correlation matrix between all explanatory variables in this study. In blue are 

Figure 66: Relationship of Opening Types with Damage Rating. 
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variables that have a negative correlation with each other, and red indicates variables with 

a positive correlation. All variables have a perfect, positive correlation with themselves, 

as shown by the red line crossing through the correlation matrix.  

 

 There is relatively high multicollinearity between: Single Family and Commercial 

Structures, Single and Two Story, Grade and Level One Entry and Number of Stories, 

Hurricane Clips and Unknown Hurricane Clips, Wall Covering Types, Elevation and 

Elevation Types with Entry Level and Number of Stories, and Location with Distance to 

Figure 67: Correlation matrix from machine learning algorithms of all explanatory variables in this study. 
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Coast. All the variables with high multicollinearity fall in locations where one might 

expect them. For examples, in this dataset, if a home was not used as a single-family 

structure then it was used as a commercial structure – which is shown from the 

correlation matrix.  

 The classifiers also produced a feature importance factor. The variable importance 

does not necessarily show the magnitude nor the direction of the relationship these 

variables have with damage, unlike the exploratory regression, but it does tell us which 

variables were most important in creating the classifiers. Knowing the importance of each 

variable in building a classifier can help to make the damage assessment process more 

streamlined and efficient in the future. Feature importance is not a function of an SVM 

classifier, so the classifiers used to get feature importance were limited to the decision 

tree and random forest classifiers.  

 Figure 68 shows an aggregated picture of the variable’s importance's for an 

aggregation of all the different damage scenarios, see Table 3. The variables with the 

highest importance are: Distance to Coast, Longitude, Single Family Homes, Age, Total 

Area, Wind Speed, and Single Story (Table 7). These variables were mostly found using 

the spatial analyst tools in ArcMap and in Zillow’s databases. This information can help 

to improve future damage assessments, illustrating the importance of post-processing and 

virtual data collection.  

Table 7: Explanatory variables used in the classifications with their respective variable type. Overall feature 

importance indicates the feature importance when predicting all damage scenarios. 

Variable  Variable Type 
Overall Variable 
Significance 

Distance to Coast Numerical - Continuous 2.382215201 

Longitude Numerical - Continuous 1.671635939 
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Single Family Categorical - Binary 1.418693595 

Age Numerical - Continuous 1.292280779 

Total Area Numerical - Continuous 1.292209262 

Wind Speed Numerical - Continuous 1.101484053 

Single Story Categorical - Binary 0.86354205 

Shutters or Panels Categorical - Binary 0.309753847 

Clay Tile Roof Cover Categorical - Binary 0.290896522 

Dutch Gable Roof Shape Categorical - Binary 0.219384793 

Split Level Categorical - Binary 0.217191219 

Wood Wall Siding Categorical - Binary 0.212195319 

2/12 Roof Pitch Categorical - Binary 0.201871158 

Asphalt Shingles Roof Cover Categorical - Binary 0.184678167 

Wooden Shingles Roof Cover Categorical - Binary 0.176740021 

4/12 Roof Pitch Categorical - Binary 0.173888646 

Percent Openings Numerical - Discrete 0.170386203 

Partially Enclosed Foundation Categorical - Binary 0.16823294 

Balcony or Porch Categorical - Binary 0.164293464 

Two Story Categorical - Binary 0.151153096 

Garage Door Categorical - Binary 0.141774471 

Latitude Numerical - Continuous 0.139573308 

Flat Roof Shape Categorical - Binary 0.133898687 

Other Siding Wall Cover Categorical - Binary 0.128584979 

Elevated Categorical - Binary 0.121261959 

Attached Garage Categorical - Binary 0.12095177 

Full-Sized Windows Categorical - Binary 0.115895909 

6/12 Roof Pitch Categorical - Binary 0.112395733 

Open Gable Roof Shape Categorical - Binary 0.108210772 

Wet-Proofed Foundation Categorical - Binary 0.099784037 

Dry-Proofed Foundation Categorical - Binary 0.097701878 

Unknown Roof Pitch Categorical - Binary 0.097582432 

Combination Roof Shape Categorical - Binary 0.095443909 

Stucco Siding Wall Cover Categorical - Binary 0.09543365 

Box Gable Roof Shape Categorical - Binary 0.092297822 

8/12 Roof Pitch Categorical - Binary 0.08985484 

Hip Roof Shape Categorical - Binary 0.089465311 

Level One Entry Categorical - Binary 0.074515556 

Metal Roof Cover Categorical - Binary 0.069668542 

Three Story Categorical - Binary 0.049547502 

Hip & Valley Roof Shape Categorical - Binary 0.041852949 

Hurricane Clips Categorical - Binary 0.041730015 

Entry Door Categorical - Binary 0.04046085 

Concrete Tile Roof Cover Categorical - Binary 0.02794139 

Tar Roof Cover Categorical - Binary 0.02066302 

12/12 Roof Pitch Categorical - Binary 0.018236598 

Cross Hipped Roof Shape Categorical - Binary 0.015258822 



92 

 

 

Ventilators Categorical - Binary 0.015253934 

Unknown Hurricane Clips Categorical - Binary 0.014978474 

Building Value JUL17 Numerical - Continuous 0.014107745 

Vinyl Siding Wall Cover Categorical - Binary 0.01235482 

Commercial Categorical - Binary 0.006849936 

10/12 Roof Pitch Categorical - Binary 0.006288668 
Intersecting or Overlapping Roof 
Shape Categorical - Binary 0.00590367 

Grade Level Entry Categorical - Binary 0 

 

 

Figure 68: Aggregation of 

variable importance for all 

post-storm measurements, 

using decision tree and 

random forest  machine 

learning algorithms. 
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 The feature importance, when predicting the Damage Rating, utilized a Decision 

Tree Classifier with Gini impurity (Figure 69). The accuracy of this classifier was 

45.8%. Although the accuracy is quite low, it is expected because of the stochastic nature 

of wind-damage and the number of predictions (0-4). Most important features to this 

classifier were: Longitude, Distance to Coast, & Age.  

 

 

Figure 69: Variable importance when predicting the damage rating using the Decision Tree Classifier with Gini 

impurity. 
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 To understand the relationship between whether the structure is “Safe to Use?” 

and all explanatory variables, feature importance was applied to the classifier (Figure 

70). The classifier which had the highest accuracy was a Decision Tree Classifier which 

used entropy and had an accuracy of 88.55%. Most important features to this classifier 

were: Age & Distance to Coast. For damage assessments with the goal of understanding 

whether a home is safe to enter, such as the ATC-45 scale, both the Age and the Distance 

to the Coast should be added to the assessment (ATC, 2004).  

 

Figure 70: Variable importance when classifying whether a structure is "Safe to Use?", using a 

Decision Tree classifier which used entropy to build branches.  
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 Feature importance when classifying if wind was the damage mechanism, for 

buildings that received damage, optimized accuracy to 77.1% using a Decision Tree 

Classifier with entropy to build branches (Figure 71). The variables with the highest 

importance when building this classifier were: Total Area, Clay Tiles, Single Story, and 

Distance to Coast.  

 
Figure 71: Variable importance when classifying, on damaged homes, if the damage mechanism was wind. 
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 When classifying whether there was surge damage or debris damage, on homes 

that were damaged, the classifiers were optimized to a Decision Tree using Gini index 

and Random Forest using Gini index, respectively (Figure 72 & Figure 73). The surge 

classifier had an accuracy of 100% and the debris accuracy was 92.2%. Because both 

surge damage and debris were so rare in this dataset, the classifiers which were most 

accurate predicted that there was no debris nor surge damage at all.  

 
Figure 72: Variable importance when classifying the damage mechanism of storm surge. 
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 Roof damage classification was broken-down by damage to the roof covering, 

roof sheathing, and roof framing materials. To classify roof cover, a Random Forest 

classifier was used, with the Gini index. The accuracy of this classifier was 35.5%, and 

the most important explanatory variables were: Single Family, Wind Speed, Distance to 

Coast, and Total Area (Figure 74). The roof sheathing classifier was a Gini index 

Decision Tree classifier, with an accuracy of 56% (Figure 75). The roof framing 

classifier had an optimized accuracy of 72.9%, using a Random Forest Gini-index 

classifier (Figure 76).  

Figure 73: Variable importance when classifying debris as the damage mechanism. 



98 

 

  Figure 74: Variable importance when classifying roof cover damage. 
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Figure 75: Variable importance when classifying roof sheathing damage. 
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Figure 76: Variable importance when classifying roof framing damage. 
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 Like roof damage, wall damage was also broken down by wall cover, sheathing, 

and framing damage. Wall cover damage was classified using a Decision Tree classifier, 

using Gini index. The accuracy of the wall-cover-damage classifier was 61.4%, and the 

most important variables were: distance to coast, total area, longitude, and wind speed 

(Figure 77). Based on the correlation matrix, the distance to the coast, longitude, and 

wind speed have high multicollinearity, this indicates the very high importance of wind 

speed on wall cover damage. 

   
Figure 77: Variable Importance when classifying Wall Cover Material damage. 
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 To classify wall sheathing damage, a Random Forest classifier was used, with 

Gini index. This classifier had an accuracy of 81.3% and the most important variables 

were Single Family use, longitude, wind speed, and age (Figure 78). Like wall cover 

damage, it appears that wall sheathing damage uses wind speed, and other related factors, 

to predict damage. 

 Figure 78: Variable Importance when classifying for Wall Sheathing damage. 
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 Wall framing damage also was classified using a Gini-index, Random Forest 

classifier with an accuracy of 89.76%. The same variables which were most important for 

the wall sheathing classifier were also most important when classifying wall framing 

damage (Figure 79).   

 Figure 79: Variable Importance when classifying for Wall Framing damage. 
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 The last series of damage measurements which were classified focused on 

damage to openings, including window damage, patio door damage, garage door damage, 

and entry door damage. Window damage was predicted using a Random Forest classifier, 

using Gini index to build branches. This classifier had an accuracy of 68.67%. The 

variables which were most important to window damage included, but were not limited 

to: single family use, longitude, age, and total area (Figure 80). 

 
Figure 80: Variable Importance from Random Forest classifier, predicting window damage. 
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 Variable importance of patio door damage indicates that the most important 

variables when classifying damage were: single family use, age, distance to coast, and 

total area (Figure 81). To classify patio door damage, an entropy-based Random Forest 

classifier was used, with an accuracy of 95.18%. 

 
Figure 81: Variable Importance when predicting damage to a patio door. 
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 A Random Forest classifier using entropy to build branches was used to predict 

damage to the garage door, when present. The accuracy of this classifier was 87.35% and 

the most important variables were: single family use, total area, age, and distance to coast 

(Figure 82).  

 

 

Figure 82: Variable Importance when predicting damage to a garage door. 
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 The final classifier of damage was done on entry door damage, using a Random 

Forest classifier with entropy. Single story, age, longitude, and wind speed were among 

the most important variables to this classifier, whose accuracy was 88.55% (Figure 83).  

 Figure 83: Variable Importance when classifying damage to the entry door. 
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3.5 Recommendations on Improvement 

 The results of analysis reveal two primary methods of further development: 

building communities more resilient through structural improvements, including building 

codes and zoning ordinances, and increasing efficiency of damage assessments without 

limiting data collection capacity.  

 Although some of the variables are difficult to alter without re-building a home 

entirely, such as home age, area, and location, community members in Key Allegro can 

rebuild their homes and community to be more resilient to similar storms in the future. 

Metal roof covering decreased overall damage, whereas asphalt roofs increased overall 

damage in this study area. Wood siding also received more damage than stucco siding. 

Buildings with higher value also had lower rates of damage- this may indicate that 

advanced building materials and construction techniques are beneficial in a hurricane. 

Wet-proofed, elevated foundations only performed slightly better than dry-proof, 

elevated  and partially enclosed foundations.   

 Two methods for incorporating these findings into regular building practice is to 

change the local zoning ordinance or the international building code, if applicable. The 

City of Rockport adopted its Code of Ordinance in December 2018 and the Rockport 

Comprehensive/Master Plan is currently being updated with support from Texas A&M 

College of Architecture (Nira, 2018; Rockport City Charter, 2018). The Rockport Code 

of Ordinance has an article dedicated to Flood Damage Prevention, though it does not 

have an article on wind damage prevention (Rockport City Charter, 2018). The 

International Building Code also has a section of Flood-resistant Construction, though 

there is no such section for Wind-resistance (International Code Council, 2015). Because 
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of the scale of reach of the Rockport City Comprehensive/Master Plan and the Code of 

Ordinance, it may be easier to alter than the much larger scale building code.  

 The International Building Code is updated and released every three years, the 

most recent edition having been released in 2018 (International Code Council, 2018). 

Hurricane Harvey struck the study area in 2017, so the most updated building code would 

have been 2015. The 2015 International Building Code includes subsections on Wind 

design within the Building Planning chapter (International Code Council, 2015, R301.2). 

The provisions of this code appear to be reliant on the wind exposure determined by the 

jurisdiction and the Ultimate Design Wind Speed Map, indicating that Rockport should 

design for wind speeds of 150 mph, indicating the 7% probability of wind speed 

exceedance in 50 years (International Code Council, 2015, Figure R301.2(4)A). The 

Code also suggests that structures be designed in accordance with the AF&PA Wood 

Framed Construction Manual (WFCM), ICC Standard for Residential Construction in 

High-Wind Regions (ICC 600), ASCE Minimum Design Loads for Buildings and Other 

Structures (ASCE 7), AISI  Standard for Cold-Formed Steel Framing—Prescriptive 

Method For One- and Two-Family Dwellings (AISI S230), and the International 

Building Code(International Code Council, 2015, R301.2.1.1). 

 The 2015 International Building Code has subsections on compliance for “Wind 

resistance of asphalt shingles” and wind resistance for photovoltaic shingles 

(International Code Council, 2015, R905.2.4.1; International Code Council, 2015, 

R905.16.7). For photovoltaic shingles, there is a subsection on high-wind speed and the 

underlayment requirements. In areas exposed to winds of 140 mph or higher, such as Key 

Allegro during Hurricane Harvey, homes are required to install the underlayment with 
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corrosion-resistance fasteners, in a specific pattern, with specific spacing (International 

Code Council, 2015, R905.16.4.2). Further wind protection requirements are related to 

the installation of photovoltaic systems, requiring panels or modules to be installed to 

resist the component and cladding loads (International Code Council, 2015, R907.2).  

 Changes made to the International Building Code in the 2018 version include 

updated wind speed maps and new wind speed terminology (International Code Council, 

2018, 1609). For risk category II structures, including residential structure, a separate 

wind speed map was created, requiring Rockport to design for wind speed of 160 mph 

(International Code Council, 2018, Figure 1609.3(1)). Perhaps, if homes in Key Allegro 

were designed to the 2018 International Building Code standards, there would have been 

less damage to homes from single-hazard wind damage.  

 The next method for applying findings from this study would be to further iterate 

upon damage assessment protocols with the goal of reducing time of assessments, lessen 

the amount of time volunteers must spend on-site, and improve the overall data collected 

using the damage assessment. The machine learning classifiers can help to identify 

variables that can be most useful for future damage prediction. The results of the 

optimized machine learning classifiers in this study indicate that the features which were 

most useful for classification were: distance to coast, longitude, single-family use, age, 

total area, wind speed, and single story. Future damage assessments should therefore 

include questions about land topography, distance to coast, location, structural use, age, 

area, wind speed and other indicators of the hazard, and the number of stories. While the 

features with the lowest importance were: grade level entry, intersecting or overlapping 

roofs, 10/12 roof pitch, commercial uses, and vinyl Siding. Future damage assessments, 
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according to these results, should reconsider using entry level, many specific roof shapes, 

specific roof slopes, uses that are not residential, or specific siding materials. Previous 

studies, in contrast, have indicated that some of these factors had very high correlation 

with damage (Crandell, 1998; Egnew, 2018; Xuan, 2016). This would indicate that future 

research should continuously be iterating on damage assessment methodology.  

3.6 Limitations and Future Studies 

 This study was limited to the dataset, specifically chosen for the pure-nature of 

the damage mechanism. The dataset used in this study was limited to mostly single-story 

wood-framed residential structures, in relatively small numbers. The small size of the 

dataset may have limited the accuracy of the spatial and machine learning classifiers. 

Exploratory Regression in ArcMap was not run with all independent variables predicting 

all post-storm measurements. When using the exploratory regression tool with damage 

rating as the dependent variable and all pre-storm variables as the explanatory features, 

the exploratory regression tool took over 8 hours to process.  

 There are also limitations of relying on imagery for damage assessment, such as 

the presence of trees or dense shrubbery. In some cases, pre-storm imagery was taken 

during the growing season, so some buildings are covered by plants or shadows. This 

study relies heavily on imagery and data from external sources – so data relies on the 

continuation of this external data collection. For example, the United States federal 

government shut down during the data collection period, which resulted in limited access 

to NOAA aerial. For on-site team, collecting all necessary information, this would not 

have been a factor affecting their data. In the case of this study, each external source 

provides a significant amount of important information.  
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 The questions asked in a damage assessment should continuously evolve based on 

the usefulness of that information. Because time and resources are often limited, 

optimizing the questions which are being asked while collecting all possible information 

will build the best dataset with the smallest amount of time. Results of the optimized 

Machine Learning classifiers, specifically feature importance, indicate that future damage 

assessments should prioritize distance to coast, latitude and longitude, building-use, age, 

area, wind speed, and number of stories. If time is constrained in future studies, these 

variables should consistently be included in assessments. Aside from altering the 

questions asked during the damage assessment, the assessment should be more 

automated. Ideally pre- and post-storm data collection and processing would be achieved 

using machine learning algorithms and computer vision application. 

 Future studies utilizing this damage assessment protocol, damage collection and 

assessment processes, should consider multi-hazard events in locations where multi-

hazard damage was found. In addition to the data collected in this study, one may 

consider utilizing similar data collected in neighboring communities, to diversify the 

building styles, home value, and demographic population being affected. Although the 

amount of time taken to assess more buildings is longer, increasing the amount of homes 

in the dataset may improve accuracy. Larger datasets are ideal for statistical and machine 

learning accuracy, so combining datasets from past and future studies may improve the 

accuracy of results of similar analyses.  

 If time is not constrained, future studies may consider running exploratory 

regression to describe different damage scenarios, for example, to predict window 

damage, roof cover damage, etc. Data collected by the mobile scanning vehicle also 
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included LiDAR data, which was not used in this study. LiDAR can be used to improve 

accuracy of damage assessment measurements, reducing inherent bias and inaccuracy of 

estimating pre- and post-storm values.   

 Hurricanes and other natural disasters have impact that goes far beyond structural 

implications. Future studies should consider the impacts of hurricanes on social, 

economic, and natural systems, along with the structural impacts. Improvements to any of 

these systems may affect others because they are highly interdependent. 
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Chapter 4: Conclusion 

4.1 Conclusion 

 This study combines advances in post-hurricane data collection and damage 

assessment protocol with spatial analysis that links building attributes with single-hazard 

wind damage and machine learning classifiers which can be used to further improve 

damage assessments. The overall goal is to reduce time required to collect data, assess 

building damage, and improve analysis which will improve resiliency of communities 

from risks of future hurricanes and other natural disasters.  

 Through utilization of a mobile scanning vehicle to collect damage data, more 

comprehensive information can be collected, including panoramic photos, LiDAR, and 

aerial imagery. The mobile nature of this data collection reduces exposure to harsh post-

disaster environments to volunteers, reduces required time and other resources to collect 

information, and decreases the number of volunteers to collect enough data. This method 

of data collection adds time to the post-processing activities, which include the damage 

assessment.  

 The damage assessment methodology combined suggestions from results of 

previous studies and the protocols employed by previous studies. This allowed the 

damage assessments in this study to reduce the amount of time taken to collect 

information without compromising the robustness of the data. This damage assessment 

utilized virtual and public datasets to provide pre-storm information, in combination with 

post-storm data collected by the mobile scanning vehicle.   
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 553 structures were assessed and analyzed in Key Allegro, a community in 

Rockport, Texas, the location of the first landfall of Hurricane Harvey in the United 

States in July 2017. Homes in this community have a relatively consistent age, assumed 

to result in similar building codes, building materials, and construction practices. This 

data was also almost entirely pure single-hazard wind damage.  

 Clustering and Outlier spatial analysis indicated that damage rating was related to 

peak wind speed, indicating a cluster of high-value damage rating on the northernmost tip 

of the island. Explanatory regression, in ArcMap, also showed that the most significant 

variables were: Age, Latitude, Metal Roofs, Distance to Coast, Total Area, Asphalt 

Roofs, Wood Siding, Stucco Siding, Two Story Buildings, and Building Value. Age, 

Latitude, Asphalt Roof, and Wood Siding have consistently positive relationships with 

damage rating. These relationships are consistent with previous studies (Crandell, 1998; 

Eamon, 2017; Egnew 2018; Lankford, 2018; Xian, 2015).  Variables with consistently 

negative relationships with damage rating include: Metal Roofs, Distance to Coast, Total 

Area, Stucco Siding, Two Story Buildings, and Building Value. Reinforced exterior 

facades, such as metal roofs and stucco siding have been related to lower rates of damage 

in the past (Lankford, 2018). Home value has also been negatively correlated with 

damage in the past (Egnew, 2018). In contrast to the exploratory regression results, 

though, distance to the coast and total home area have been positively correlated with 

damage in past studies (Egnew, 2018; Kennedy et. al, 2011; Xian, 2015). Similarly, two-

story homes are expected to have more damage from wind, because of the high elevation, 

than single-story homes (Crandell, 1998; Egnew, 2018; Xuan, 2016). Inconsistencies 

with past studies may be related to the small size of the dataset or unintended 
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dependencies between variables, such as the relationship between wind speed and 

distance to the coast.  

 The machine learning algorithms used in this study indicate that some variables in 

the damage assessment were not entirely independent and carried inherent multi-

collinearity. Variables which are highly correlated can be removed, reducing the amount 

of time spent to conduct a damage assessment. Further improvements to the damage 

assessment protocol can be found through utilization of machine learning classifiers, 

optimized by accuracy when validated against a testing dataset, to understand the 

importance of each variable when classifying damage rating. The variables with the 

highest feature importance include: Distance to Coast, Longitude, Single-Family, Age, 

Total Area, Wind Speed, and Single Story. These variables should be prioritized in future 

studies, while variables with low feature importance, such as Grade Level Entry, 

Intersecting or Overlapping Roofs, 10/12 Roof Pitch, Commercial uses, and Vinyl 

Siding, should not be included in future damage assessments. By removing low-value 

questions in a damage assessment, the amount of time taken to assess homes is reduced 

and enough information is still collected in the process.  
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