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ABSTRACT OF THE DISSERTATION

Several problems in linear algebraic and additive

combinatorics

By DANIEL SCHEINERMAN

Dissertation Director: Swastik Kopparty

This thesis studies three problems in linear algebraic and additive combinatorics.

Our first result gives new upper bounds for the determinant of an n × n zero-

one matrix containing kn ones. Our results improve upon a result of Ryser for k =

o(n1/3). For fixed k ≥ 3 it was an open question [BR18] whether Hadamard’s inequality

could be exponentially improved. We answer this in the affirmative. Our approach

revolves around studying m × n matrices whose rows sum to k and bounding their

Gram determinants. For the class of n×n matrices whose rows sum to k we show that

Ryser’s result can be improved for k ≤
√
n/10. Our technique also allows us to give

upper bounds when these matrices are perturbed.

Our second result concerns a question in additive combinatorics. For a prime p > 2,

we say a nonempty set A ⊆ Fp is unique sum free (USF) if every element of the sumset

A+A can be written as a sum of two elements from A in at least two different ways. That

is for any s ∈ A+A there exist a, b, c, d with {a, b} 6= {c, d} such that s = a+ b = c+d.

If µ(p) is the size of the smallest USF set in Fp it is straightforward to show that

µ(p) = O(
√
p). Kopparty [Kop17] conjectured that µ(p) = Θ(

√
p). However, we show

constructively that µ(p) = O(log2 p).

Our third result concerns a graph theoretic problem on the Hamming cube, Qn. For
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a graph, G, we say a proper k-coloring of G is a fall k-coloring if each vertex is adjacent

to a vertex in each of the k − 1 other color classes. A result of Laskar and Lyle [LL09]

shows that for k 6= 3 and n sufficiently large Qn has a fall k-coloring. It is natural to

identify the Hamming cube, Qn, with the vector space Fn2 . In this context we may seek

fall k-colorings of Fn2 in which each color class is an affine subspace. Our main result

is that for even k and n sufficiently large there exist affine fall k-colorings of Fn2 . In

particular, we show these exist for the same range of values of n as in the construction

of Laskar and Lyle.
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Chapter 1

Introduction

This thesis addresses three combinatorial questions. Combinatorics is a broad field that

draws on a wide array of techniques. This thesis is no exception, however, the common

thread of the topics herein are linear algebra and additive combinatorics. The tools we

apply will, broadly speaking, come from linear algebra and graph theory.

1.1 Upper bounds for determinants of sparse zero-one matrices

Our first results, found in Chapter 2, regard the determinants of matrices of zeros and

ones. For integers 1 ≤ k ≤ n we consider three classes of zero-one matrices containing

kn ones:

S(n, k) = {A : A is n× n and the rows and columns of A sum to k}

R(n, k) = {A : A is n× n and the rows of A sum to k}

T (n, k) = {A : A is n× n and contains kn ones}.

We denote the maximum determinant over matrices in these three classes by

M(n, k) = max
A∈S(n,k)

det(A)

MR(n, k) = max
A∈R(n,k)

det(A)

MT (n, k) = max
A∈T (n,k)

det(A).

Clearly, S(n, k) ⊆ R(n, k) ⊆ T (n, k) and thus M(n, k) ≤ MR(n, k) ≤ MT (n, k). Since

the rows of a matrix in R(n, k) have norm
√
k, we have from Hadamard’s inequality

that MR(n, k) ≤ kn/2. Since the rows of A ∈ T (n, k) have average sum k applying

Hadamard’s inequality to the rows of A in conjunction with the AM-GM inequality
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gives the same upper bound: MT (n, k) ≤ kn/2. Ryser [Rys56] showed the following

improvement. Let λ = k(k − 1)/(n − 1). Then MT (n, k) ≤ k(k − λ)(n−1)/2. Further,

Ryser showed that this bound was tight if and only if A is the incidence matrix of

an (n, k, λ) combinatorial design. In this case we would have A ∈ S(n, k), so although

S(n, k) is a more constrained class than T (n, k), Ryser’s bound is tight even for M(n, k)

in many instances. Notice that if k <
√
n then λ < 1 and thus in particular λ is not

an integer so no (n, k, λ) combinatorial design exists. Thus we may hope to improve

Ryser’s result for k <
√
n. In particular, for fixed k we may seek upper bounds for the

quantities

lim sup
n→∞

M(n, k)1/n ≤ lim sup
n→∞

MR(n, k)1/n ≤ lim sup
n→∞

MT (n, k)1/n.

Hadamard’s inequality gives the upper bound
√
k for each, and, since λ→ 0 as n→∞,

Ryser’s result gives the same. However, for k = 2, Bruhn and Rautenbach [BR18]

show that lim supn→∞MR(n, 2)1/n ≤ 21/3 and lim supn→∞MT (n, 2)1/n ≤ 61/6. Note

that 21/3 < 61/6 <
√

2. Bruhn and Rautenbach ask: for k > 2 can Ryser’s theorem

be exponentially improved? We answer this question in the affirmative. We show

for k ≥ 2 that there exists a function ck <
√
k such that MT (n, k) ≤ cnk and thus

in particular lim supn→∞MT (n, k)1/n ≤ ck. For example, for k = 3 we show that

lim supn→∞MT (n, 3)1/n ≤ 241/6 ≈ 1.6984 <
√

3.

Our results stem from generalizing the class R(n, k) to rectangular matrices and

bounding their Gram determinants. We define

R(m,n, k) = {A : A is m× n and the rows of A sum to k},

and for any m × n matrix, A, we define Vol(A) =
√

det(AAT ). Our main tool is the

following generalization of Hadamard’s inequality. If any m×n matrix, A, is partitioned

into two horizontal blocks A1 and A2 with dimensions m1 × n and m2 × n respectively

(thus m1 + m2 = m) then Vol(A) ≤ Vol(A1) Vol(A2). Rather than considering the

rows of A ∈ R(m,n, k) individually we show that sets of size q > 1 will “overlap” and

have Gram determinants smaller than given by Hadamard’s inequality. Notice that

R(m,n, k) has a recursive structure; if we remove q rows from A the resulting matrix
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lies in R(m − q, n, k). Varying our strategy in selecting these sets of rows we will give

a few different bounds. Although T (n, k) does not have the same recursive structure

the following intuition will prove true: for A ∈ T (n, k) to have a large determinant it

cannot have too many rows not summing to k. Therefore, we will be able to apply

some of the results we develop for matrices in R(n, k) to matrices in T (n, k).

1.2 Unique sum free sets

Chapter 3 of this thesis regards a problem in additive combinatorics. For a prime

p > 2, we say a nonempty set A ⊆ Fp is unique sum free (USF) if every element of the

sumset A+A can be written as a sum of two elements from A in at least two different

ways. That is for any s ∈ A + A there exist a, b, c, d with {a, b} 6= {c, d} such that

s = a+ b = c+ d. Notice that finding large USF sets is trivial. Indeed, for p > 2 if we

take A = Fp this is a USF set. We are interested in how small a USF set can be. We

define for p > 2,

µ(p) = min{|A| : A ⊆ Fp is USF}.

A pigeon hole argument shows that µ(p) > log4 p and a linear algebraic argument

improves this lower bound to µ(p) > log2 p. For ε > 0, a random subset of Fp of

size p1/2+ε can be shown to be USF with high probability, so USF sets of size p1/2+ε

abound. Furthermore, let a = b√pc and let k be the largest integer so that ka < p.

Then A = {0, 1, 2, . . . , 2a, 3a, 4a, . . . , ka} taken as residues modulo p is easily seen to

be USF. Thus µ(p) = O(
√
p). Closing the gap between the lower bound log2 p and the

upper bound O(
√
p) was our goal. As we will show in Figure 3.1, a plot of p versus µ(p)

for small primes closely matches a plot of the curve 2
√
p. As such, Kopparty [Kop17]

conjectured that µ(p) = Θ(
√
p). However, the main result of Chapter 3 is a construction

demonstrating that µ(p) = O(log2 p).

Our construction has two main ingredients. The first is the observation that if A

is an arbitrary subset of Fp then B = A+ A has many non-unique sums. This follows

since if a, b, c, d ∈ A are distinct then s = a + b + c + d ∈ B + B and we can write

s as a sum of elements from B in (at least) two distinct ways s = (a + b) + (c + d)
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and s = (a + c) + (b + d). Notice that, in general, B will not be USF. For example,

the sum s = a + a + a + a can not, in general, be obtained in a manner distinct from

2a + 2a. However, if A has the property that 2a = b + c with b, c ∈ A and b 6= c then

s = (a + a) + (b + c) = (a + b) + (a + c) and we are in business. This is our second

ingredient. We of course have not resolved all the cases necessary to prove B is USF,

but these can be found in Chapter 3. A set A ⊆ Fp with the property that for any

a ∈ A there exist distinct b, c ∈ A such that 2a = b + c is called balanced [NQ08] and

the fact that there exist balanced sets of size O(log p) was originally shown in [Str76].

We will generalize the notion of balanced sets to sets with no unique triples (NUT).

We say A ⊆ Fp is NUT if for all a ∈ A there exist b, c, d ∈ A not all equal so that

3a = b + c + d. We generalize the result above to show that if A is NUT then B =

A+ A is USF. We will develop the notion of regular balanced and NUT sets and give

experimental evidence that small examples exist for infinitely many primes, p.

1.3 Affine fall k-colorings of the Hamming cube

Our final result, discussed in Chapter 4, regards coloring the Hamming cube, Qn. For

any simple graph, G, and integer, k, we say a proper k-coloring of G is a fall k-coloring

if every vertex in G is adjacent to a vertex in each of the other k − 1 color classes.

The question of for which k, n does Qn have a fall k-coloring originates in [DHH+00].

We note that if Vi is the i-th color class of a fall k-coloring that Vi is an independent

set since the coloring is proper and further that Vi is dominating since every vertex

not colored i is, by definition, adjacent to a vertex in Vi. So the color classes form an

independent dominating partition of the vertices. As such, some authors [GH13] refer

to fall k-colorings as idomatic partitions.

Since Qn is bipartite it is trivial to see that for n ≥ 2, Qn is fall 2-colorable. In

fact, it is straightforward to see that if k is a power of 2 then Qn has a fall k-coloring

for all n ≥ k − 1. It is known [LL09] that Qn does not have a fall 3-coloring for any n.

In [LL09], Laskar and Lyle show that for k 6= 3, if 2a−1 < k ≤ 2a then Qn has a fall

k-coloring for n ≥ 2a − 1. For example, Qn has a fall 20-coloring for n ≥ 31.
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It is natural to identify Qn with the vector space Fn2 . Denote by ei the i-th standard

basis vector. Then if u, v ∈ Fn2 we say u ∼ v if and only if u + v = ei for some i. In

this context, we may ask algebraic questions about the color classes. In particular we

are interested in colorings where each color class, Vi, is an affine subspace. We call

such colorings affine fall k-colorings. The construction of Laskar and Lyle does not give

affine fall k-colorings when k is not a power of 2. Our main result is that for even k

such that 2a−1 < k ≤ 2a, Qn has an affine fall k-coloring for n ≥ 2a − 1. Thus for even

k we can obtain the same minimum dimension as the construction of Laskar and Lyle,

but with the additional property that the color classes are affine subspaces.

Appropriate to the search for fall k-colorings, our result is based on trees. In partic-

ular, we construct an object similar to a parity decision tree [O’D14]. We construct a

full binary tree with k leaves that classifies the vectors in v ∈ Fn2 into k color classes. To

a decision node, t, we associate a vector h(t) and the node proceeds to its right or left

child depending on the parity of 〈h(t), v〉. For the class of decision trees we consider,

we show that our construction achieves the minimum possible dimension, n.

Computer experimentation and computation played a large role in each of the three

topics in this thesis. The primary tools used were Sage [S+17] and Julia [BKSE12].

The figures in this thesis were generated using Matplotlib [Hun07]. Within Julia,

the following packages were invaluable: Combinatorics, JuMP [DHL17], Memoize,

Nemo [FHHJ17] and PyPlot. Fundamental experiments that lead to Chapter 4 were

done using integer linear programming where the solver Gurobi [GO18] proved very

useful.
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Chapter 2

Upper bounds for determinants of sparse zero-one

matrices

2.1 Introduction

Hadamard’s maximum determinant problem [Had93] asks for each positive integer, n,

what is the largest possible determinant over all 2n
2

zero-one matrices of order n. The

problem is well studied [Syl67, Wil46, Rys56, BC72, Orr05, OS07] and open questions

remain. In this chapter we consider a sparse version of this question. For a parameter

k, we may consider the combinatorial class of n × n zero-one matrices containing kn

ones. We are interested in giving an upper bound on their determinants. There are

three natural (nested) classes of such matrices to consider.

Definition 2.1. Let 1 ≤ k ≤ n. We define the following three classes of zero-one

matrices.

S(n, k) = {A : A is n× n and the rows and columns of A sum to k}

R(n, k) = {A : A is n× n and the rows of A sum to k}

T (n, k) = {A : A is n× n and contains kn ones}.

We can ask a version of Hadamard’s maximum determinant problem for each of

these classes.

Definition 2.2.

M(n, k) = max
A∈S(n,k)

det(A)

MR(n, k) = max
A∈R(n,k)

det(A)

MT (n, k) = max
A∈T (n,k)

det(A).
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The notation S(n, k), M(n, k) can be found, for example, in [FvdD97, LLR99]. As

S(n, k) ⊆ R(n, k) ⊆ T (n, k) we have M(n, k) ≤ MR(n, k) ≤ MT (n, k). Note that

taking the absolute value of det(A) in Definition 2.2 does not alter the definition as for

each of the three classes of matrices swapping two rows (or columns) of A maintains

membership in the class and negates det(A).

We note as an aside that the related question of bounding the permanent of such

matrices has received considerable attention. If A is an n × n zero-one matrix with

rows summing to ri, then we can associate to A a bipartite graph, G, whose partition

classes are {u1, . . . , un} and {v1, . . . , vn} where ai,j = 1 precisely when ui ∼ vj . For

each i the degree of ui is ri. Then perm(A) counts the number of perfect matchings in

this bipartite graph. Minc [Min63] conjectured, and Bregman [Bre73] first showed the

following tight inequality:

perm(A) ≤
n∏
i=1

(ri!)
1/ri .

Schrijver [Sch78] gave a short proof of the Bregman-Minc inequality and a probabilistic

proof is given by Alon and Spencer [AS00].

Returning to bounding determinants, the easiest upper bound for MR(n, k) (and

thus M(n, k)) comes from Hadamard’s inequality [Had93] which gives MR(n, k) ≤ kn/2

since each row has norm exactly
√
k. IfA ∈ T (n, k) then its rows have average sum k and

so using the AM-GM inequality and Hadamard’s inequality the bound det(A) ≤ kn/2

still applies. Thus MT (n, k) ≤ kn/2. Ryser [Rys56] proved a strengthening of this

result. First we recall the definition of an (n, k, λ) combinatorial design [BJL85].

Definition 2.3. An (n, k, λ) combinatorial design is a collection of sets S1, . . . , Sn such

that
⋃
i Si = {1, . . . , n} and the following hold.

1. |Si| = k for i = 1, . . . , n.

2. For all i 6= j, |Si ∩ Sj | = λ.

3. For all i = 1, . . . , n, there are exactly k values of j such that i ∈ Sj.

We note that the third criterion follows from the previous, but mention it for em-

phasis. One can show that for such a design to exist we must have λ = k(k−1)/(n−1).

The incidence matrix of an (n, k, λ) combinatorial design is the n × n matrix, A, so
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that ai,j = 1 if i ∈ Sj and ai,j = 0 otherwise. Notice that the Gram matrix AAT is

independent of our choice of presentation. If In is the n×n identity matrix and Jn is the

n× n all ones matrix then AAT = (k− λ)In + λJn. Matrices of this type will reappear

throughout this chapter. Now we present Ryser’s result as it appears in [Rys56].

Theorem 2.4 (Ryser’s Theorem). Let A be an n× n zero-one matrix with a total of t

ones. Let k = t/n and λ = k(k − 1)/(n− 1). Then

det(A) ≤ k(k − λ)
1
2

(n−1)

with equality holding if and only if A is the incidence matrix of an (n, k, λ) combinatorial

design.

Thus we have MT (n, k) ≤ k(k − λ)
1
2

(n−1). Notice that when Theorem 2.4 is tight

we have A ∈ S(n, k) as the incidence matrix of an (n, k, λ) combinatorial design has

constant row and column sums. Thus in this case M(n, k),MR(n, k) and MT (n, k)

coincide. Note that if, for example, k = Θ(n) then λ = Θ(n) and Theorem 2.4 gives

a large improvement upon Hadamard’s inequality. However, if, for example, k is fixed

then λ is tending to zero and this gives a more modest improvement. We note that if

k ≤
√
n then λ < 1 and so λ is not an integer. Therefore, we may hope to improve

Theorem 2.4 for matrices that are sufficiently sparse. In particular, for fixed k we may

seek upper bounds for the quantities

lim sup
n→∞

M(n, k)1/n ≤ lim sup
n→∞

MR(n, k)1/n ≤ lim sup
n→∞

MT (n, k)1/n.

Hadamard’s inequality gives the upper bound
√
k for each, and, since λ→ 0 as n→∞,

Ryser’s result gives the same. Our main result is that for k = o(n1/3) we can improve

the bound given in Theorem 2.4. We show that for k ≥ 2, there exists ck <
√
k

depending only on k such that MT (n, k) ≤ cnk . Thus for k fixed we give an exponential

improvement to the bound given by Hadamard’s inequality. The existence of such a

ck <
√
k was only known for k = 2 [BR18]. More details for the case k = 2 can

be found in Section 2.2. Furthermore, if we restrict to studying MR(n, k) which the

majority of this chapter considers, we can give further improvements and, in particular,

for k <
√
n/10 we can improve the bound given in Theorem 2.4.
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We generalize the notions R(n, k) and MR(n, k) to non-square matrices.

Definition 2.5. Let R(m,n, k) be the set of m× n zero-one matrices whose rows sum

to k.

Definition 2.6. For any m×n real matrix, A, where m ≤ n, let Vol(A) =
√

det(AAT ).

The matrix AAT is called the Gram matrix of A and the quantity det(AAT ) is

known as the Gram determinant. See for example [HJ13]. If m = n we of course

have Vol(A) = | det(A)|. For any m × n real matrix, A, with m ≤ n, Vol(A) is the

volume of the parallelepiped formed by the rows of A. Gram’s inequality tells us that

det(AAT ) ≥ 0 with equality if and only if the rows of A are linearly dependent in

which case we consider the parallelepiped to be degenerate which is consistent with

zero volume.

Definition 2.7. Let MR(m,n, k) = maxA∈R(m,n,k) Vol(A).

We will repeatedly use the following generalization of Hadamard’s inequality. Let

A be an m × n real matrix. If A is partitioned into two horizontal blocks A1 and A2

with dimensions m1×n and m2×n respectively (thus m1 +m2 = m) then we have the

inequality

Vol(A) ≤ Vol(A1) Vol(A2). (2.1)

This follows, for example, by Fischer’s inequality applied to the Gram matrix

AAT =

A1A
T
1 A1A

T
2

A2A
T
1 A2A

T
2

 .

In developing bounds for MR(n, k) we show more general bounds for MR(m,n, k).

Our basic approach stems from the following. If A ∈ R(n, k) then it contains kn ones

and therefore the columns have average sum k. Thus there exists a collection of at

least k rows that share a column of ones. Thus there exists an k × n submatrix, A1,

of A that contains a column of ones. Due to the presence of a column of ones, the

rows of A1 are pairwise non-orthogonal. Intuitively, this suggests that the volume of

the parallelepiped spanned by those rows is noticeably smaller than what is implied by
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Hadamard’s inequality. We bound Vol(A1) and consider the remaining rows of A. Since

the row sums are constant the remaining rows form a matrix in R(n− k, n, k). We can

compute the column averages and iterate this process to give an improved bound.

This chapter is organized as follows. In Section 2.2, we give background on the

special case k = 2 where MR(n, k) is known up to a constant factor and is exponentially

smaller than 2n/2. We also give lower bounds for M(n, k). In Section 2.3, we give an

upper bound for MR(n, k) given by taking the rows in pairs. In Section 2.4, we improve

this bound by taking the rows in sets of size q ≤ k. In Section 2.5, we give, for small k,

our best bound for MR(n, k) by greedily selecting the rows for removal. In Section 2.6,

we establish some determinant inequalities we will need repeatedly. We use these to

prove a generalization of Ryser’s theorem for matrices in R(m,n, k). We also give

a counterexample to a conjecture of Li, Lin and Rodman [LLR99]. In Section 2.7,

we show that the bound found in Section 2.3 applies to MT (n, k) for integral k thus

answering a question of Bruhn and Rautenbach [BR18]. Furthermore, we generalize this

to MT (n, k̃) where k̃ is a rational number. In Section 2.8, we show that these techniques

give upper bounds for perturbations of matrices in R(n, k). We conclude with some

open questions. Several of the messier calculations are deferred to Section 2.10.

2.2 Special case k = 2 and lower bounds for MR(n, k)

In [BR18] Bruhn and Rautenbach study zero-one matrices with at most 2n ones. To

begin, they prove the following upper bound for MR(n, 2).

Theorem 2.8. If A is an n× n zero-one matrix, and each row of A contains at most

two ones then |det(A)| ≤ 2n/3.

Thus, in particular MR(n, 2) ≤ 2n/3. This gives an exponential improvement to the

bound given by Theorem 2.4. This can be seen to be tight up to a constant factor from

the following result found in [FvdD97].

Theorem 2.9. M(4, 2) = 2. For n 6= 4, if n = 3` or n = 3`+ 2 then M(n, 2) = 2`. If

n = 3`+ 1 then M(n, 2) = 2`−1.
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Furthermore, the following bound for MT (n, 2) is found in [BR18].

Theorem 2.10. MT (n, 2) ≤ 6n/6 ≈ 1.348n.

This gives an exponential improvement over the bound MT (n, 2) ≤ 2n/2 given by

Hadamard’s inequality. Bruhn and Rautenbach ask if a similar exponential improve-

ment holds for matrices with 3n ones. We answer this question in the affirmative in

Section 2.7.

Curiously, even for k = 2 we need not have M(n, k) = MR(n, k). From Theorem 2.9

we see that M(7, 2) = 2. However, MR(7, 2) = 4. For example, if

A =



1 1 0 0 0 0 0

0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 0 0 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 1


then det(A) = 4. Notice that the rows of A do indeed sum to 2 however not all columns

have sum 2. Thus A /∈ S(7, 2). So we pose the following question. For which values

of n, k is M(n, k) = MR(n, k)? Similarly, when do we have MR(n, k) = MT (n, k)? We

know from Theorem 2.4 that equality holds when λ = k(k− 1)/(n− 1) and there is an

(n, k, λ) combinatorial design.

Next we discuss lower bounds for M(n, k) (and thus MR(n, k) and MT (n, k)). The

theorem below follows from basic facts about projective planes which can be found for

example in [BJL85].

Theorem 2.11. Let ε > 0. For a prime power q, let k = q + 1. Then,

lim sup
n→∞

M(n, k)1/n ≥
√
k − 1

2
√
k

+O

(
1

k3/2−ε

)
.

Proof. Let k = q + 1 as given and let n = q2 + q + 1. Then there exists a projective

plane of order q. The incidence matrix, A, of this projective plane is an n × n matrix

with row and column sums equal to k. Thus, A ∈ S(n, k). This is a case where Ryser’s
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theorem is tight. We have λ = 1 and det(A) = M(n, k) = k(k− 1)(n−1)/2. Now for any

positive integer t let N = tn and form A(t) as the block diagonal matrix with t copies

of A along the diagonal. Then A(t) ∈ S(N, k) and we have

det(A(t)) = det(A)t

= kt(k − 1)t(n−1)/2

= kN/n(k − 1)(N−N/n)/2

=

(
k

1
k2−k+1 (k − 1)

1
2
− 1

2(k2−k+1)

)N
.

Thus,

lim sup
n→∞

M(n, k)1/n ≥ k
1

k2−k+1 (k − 1)
1
2
− 1

2(k2−k+1) := f(k).

We have

log(f(k)) =
log k

k2 − k + 1
+

(
1

2
− 1

k2 − k + 1

)
log(k − 1)

=
1

2
log(k − 1) +O

(
1

k2−ε

)
.

Note that
√

1− x = 1− x/2 +O(x2) and thus

√
k − 1 =

√
k

√
1− 1

k
=
√
k

(
1− 1

2k
+O

(
1

k2

))
=
√
k − 1

2
√
k

+O

(
1

k2

)
. (2.2)

Exponentiating log(f(k)) and using equation (2.2) we have

f(k) =
√
k − 1eO(1/k2−ε)

=

(√
k − 1

2
√
k

+O

(
1

k2

))(
1 +O

(
1

k2−ε

))
=
√
k − 1

2
√
k

+O

(
1

k3/2−ε

)
as desired.

As a consequence of Theorem 2.11, we cannot hope to find a general upper bound

for MR(n, k) of the form c
n/2
k with

√
k − ck = ω(1/

√
k). We have, for example, if

k = 3 then the construction via the Fano plane gives lim supn→∞M(n, 3)1/n ≥ 241/7 ≈

1.5746. If p = 151 which is prime, then let k = 152 and A the incidence matrix

of the projective plane of order p gives the lower bound lim supn→∞M(n, 152)1/n ≥

det(A)1/n ≈ 12.28955. In this case
√
k − 1

2
√
k
≈ 12.28827.
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2.3 Taking rows in pairs

The goal of this section is to prove the following theorem.

Theorem 2.12. For all positive integers m ≤ n and k ≤ n,

MR(m,n, k) ≤
(√

k2 − 1
)m

2
− n

2k
k

n
2k .

If m = n let ck =
(√

k2 − 1
) 1

2(1− 1
k )
k

1
2k . Then MR(n, k) ≤ cnk . Note that ck <

√
k.

Suppose that A ∈ R(m,n, k) and there are two rows r and s that overlap in a ones,

i.e. 〈r, s〉 = a where 〈·, ·〉 is the dot product. Then if we let A1 be the 2 × n matrix

formed by these rows we have

A1A
T
1 =

k a

a k


and thus

Vol(A1) =
√
k2 − a2 ≤

√
k2 − 1

which improves on just using Hadamard’s inequality for these rows. Hadamard’s in-

equality tells us that MR(m,n, k) ≤ km/2. We now use these ideas to prove Theo-

rem 2.12.

Proof of Theorem 2.12. Any A ∈ R(m,n, k) contains mk ones. If mk > n then by the

pigeon hole principle there is a column with at least two ones. Thus there exist rows r

and s such that 〈r, s〉 ≥ 1. Let A1 be the 2 × n submatrix consisting of rows r and s

and let A2 be the submatrix consisting of the remaining m− 2 rows. Then Vol(A1) ≤
√
k2 − 1. Note that A2 ∈ R(m − 2, n, k) and thus by equation (2.1), MR(m,n, k) ≤
√
k2 − 1MR(m− 2, n, k). Iterating this procedure t times we have

MR(m,n, k) ≤
(√

k2 − 1
)t
MR(m− 2t, n, k)

with the process halting once (m−2t)k ≤ n. Thus m−2t ≤ n/k. So MR(m−2t, n, k) ≤

k
n
2k by Hadamard’s inequality. Further t ≥ m

2
− n

2k
so we obtain

MR(m,n, k) ≤
(√

k2 − 1
)m

2
− n

2k
√
k
n/k

as desired. Substituting m = n gives the bound for MR(n, k).
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Recall that in Theorem 2.11 we showed the lower bound

lim sup
n→∞

MR(n, k)1/n ≥
√
k − 1

2
√
k

+O

(
1

k3/2−ε

)
.

Noting that (1−x2)1/4 = 1−x2/4+O(x4) it is straightforward to see that Theorem 2.12

improves the upper bound for lim supn→∞MR(n, k)1/n from
√
k to

lim sup
n→∞

MR(n, k)1/n ≤
√
k − 1

4k3/2
+O

(
1

k3

)
which leaves a sizable gap. We will close this gap to one of the form

lim sup
n→∞

MR(n, k)1/n ≤
√
k −Θ

(
1√
k

)
with an explicit constant in Section 2.4.

If k is not fixed with respect to n then Theorem 2.12 does not always give a bet-

ter bound for M(n, k) than Ryser’s theorem. However for k small it does. This is

summarized in Theorem 2.13.

Theorem 2.13. Let ck be defined as in Theorem 2.12 and λ = k(k − 1)/(n− 1) as in

Theorem 2.4. If k = o(n1/3) then for n sufficiently large, cnk < k(k − λ)(n−1)/2.

The proof of Theorem 2.13 is straightforward, but tedious. It can be found in Sec-

tion 2.10. We just sketch the heuristics here. The growth of cnk is, roughly,
√
k2 − 1

n/2
.

Ryser’s bound is, roughly, (k − λ)n/2. Since
√
k2 − 1 < k − 1

2k the result is achieved

provided k − 1
2k < k − λ and thus 1

2k > λ = k(k − 1)/n which holds when k = o(n1/3).

Example, k = 3

Let k = 3 and n = 1000. We give three bounds for MR(n, k).

1. Using Hadamard’s inequality MR(n, k) ≤ kn/2 = 3500 ≈ 3.64× 10238.

2. Ryser’s result has λ = 2/333 = 0.006 and gives the bound M(n, k) ≤ 3(3 −

λ)
1000−1

2 = 3(2.99399 . . .)499.5 ≈ 2.31× 10238.

3. Theorem 2.12 gives the bound cnk where ck ≈ 1.6984 <
√

3 and thus MR(n, k) ≤

cnk ≈ 1.08× 10230.
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2.4 Taking rows in sets of size q

In this section we generalize our approach in Section 2.3 to removing fromA ∈ R(m,n, k)

rows in sets of size q. If we have q rows that as a submatrix have a column of ones, that

is they share a one in a single common coordinate, then their Gram matrix will have

elements k on the diagonal and elements greater than or equal to one off the diagonal.

Thus we have the following definition.

Definition 2.14. Let Sn,a,k be the n× n matrix with diagonal elements equal to k and

off-diagonal elements equal to a. If In is the n× n identity matrix and Jn is the n× n

all ones matrix we can write Sn,a,k = aJn + (k − a)In.

Notice that if A is the incidence matrix of an (n, k, λ) combinatorial design then

AAT = Sn,λ,k. We will make use of the following lemma which will be proved in

Section 2.6.

Lemma 2.15. We have det(Sn,a,k) = (a(n − 1) + k)(k − a)n−1 and Sn,a,k is positive

definite if a < k. Further, for any positive definite n × n matrix A such that A has

diagonal elements k and A ≥ Sn,a,k coordinatewise we have det(A) ≤ det(Sn,a,k).

In particular, we will make use of the special case of Lemma 2.15 that det(Sq,1,k) =

(q + k − 1)(k − 1)q−1 which has maximum determinant over all q × q positive definite

matrices with diagonal elements k and non-diagonal elements at least one. This gen-

eralizes the trivial fact, used in Section 2.3, that if A =

k a

a k

 with a ≥ 1 then

det(A) ≤ k2 − 1.

Theorem 2.16. Let q be an integer with 1 ≤ q ≤ k. We have,

MR(m,n, k) ≤
(√

(q + k − 1)(k − 1)q−1
)m

q
−n

k
q−1
q
k

n(q−1)
2k .

If m = n, let

cq,k = (q + k − 1)
1
2q (1− q−1

k )(k − 1)
1
2

q−1
q (1− q−1

k )k
(q−1)
2k . (2.3)

Then MR(n, k) ≤ cnq,k.
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Proof. Suppose we have A ∈ R(m,n, k). The number of ones in A is mk. The average

number of ones in a column is mk/n. So if mk/n > q − 1 then there is some column

containing at least q ones. Let Rq be an arbitrary submatrix formed by taking q

rows that have a column of ones. Then RqR
T
q ≥ Sq,1,k coordinatewise with equality

if all other column sums of Rq are 0 or 1. Thus Lemma 2.15 tells us that Vol(Rq) ≤√
(q + k − 1)(k − 1)q−1. We remove these rows and iterate t times. So we have

MR(m,n, k) ≤
(√

(q + k − 1)(k − 1)q−1
)t
MR(m− qt, n, k)

where t must satisfy (m− qt)k/n > q − 1. Thus m− qt > n
k (q − 1) and t < m

q −
n
k
q−1
q .

Thus we have

MR(m,n, k) ≤
(√

(q + k − 1)(k − 1)q−1
)m

q
−n

k
q−1
q
k

n(q−1)
2k .

If we let m = n, then we have

MR(m,n, k) ≤
(
(q + k − 1)(k − 1)q−1

) n
2q (1− q−1

k )
k

n(q−1)
2k

= (q + k − 1)
n
2q (1− q−1

k )(k − 1)
n
2

q−1
q (1− q−1

k )k
n(q−1)

2k

= cnq,k

with cq,k as defined in equation (2.3).

Notice that ck as defined in Theorem 2.12 is equivalent to c2,k. In Theorem 2.32 in

Section 2.10 we show that, for large k, cq,k is minimized when q = sk where s ≈ 0.44. For

example, when k = 49, we computed cq,k for q = 1, 2, . . . , k. In this case c1,k =
√
k = 7.

To visualize we plotted q versus
√
k − cq,k. The peak of this graph tells us the optimal

choice of q. See Figure 2.1. In this case, the optimal choice of q is q∗ = argminq cq,k = 23

and we have q∗/k ≈ 0.47. We can calculate c23,49 ≈ 6.9931. The plot shows that, in

terms of a discrepancy from
√
k, using q = 23 versus the simpler approach using q = 2

outlined in Section 2.3 gives substantial improvement. Furthermore, we will show in

Theorem 2.33 that for a real number t ≈ 0.096,

csk,k =
√
k − t

2
√
k

+O

(
1

k3/2

)
. (2.4)
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Recall in Theorem 2.11 we showed that for ε > 0, and for p` a prime power, if k = p`+1

then

lim sup
n→∞

MR(n, k)1/n ≥
√
k − 1

2
√
k

+O

(
1

k3/2−ε

)
.

So there is a gap to be resolved.

Figure 2.1: q versus
√
k − cq,k for k = 49. The peak is at (23, 6.9931).

To visualize how quickly cq∗,k approaches
√
k − t

2
√
k

we plotted k versus cq∗,k for

k = 3, . . . , 20. See Figure 2.2. We overlay the curve t
2
√
k

to illustrate how quickly they

converge.

Example, k = 17

From Theorem 2.16 we have MR(n, 17) ≤ cnq,17. We give the following progressively

better upper bounds for lim supn→∞MR(n, 17)1/n.

1. Hadamard’s inequality gives c1,17 =
√

17 ≈ 4.1241.

2. Using q = 2 rows at a time we have c2,17 ≈ 4.1197.

3. For q ∈ [17], the minimum cq,17 occurs when q = 8. We have c8,17 ≈ 4.1111.
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Figure 2.2: k versus
√
k − cq∗,k for k = 3, . . . , 20. We draw in red the curve t

2
√
k

where

t ≈ 0.096 as given in Theorem 2.33.

In Section 2.5, we show that we can further improve our bound on lim supn→∞MR(n, 17)1/n.
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2.5 Greedily selecting rows for removal

In Sections 2.3 and 2.4 we chose a value q and, for as many iterations as possible,

removed rows in sets of size q. Then we used Hadamard’s inequality to bound the

remaining rows. In this section we vary the number of rows removed at a given iteration

by greedily selecting as many as possible so as to assure a column of ones in each

removal. The main result of this section is Theorem 2.17 below. As in the previous

sections, we show this bound for MR(n, k) by establishing a more general bound for

MR(m,n, k). This more general bound is given in Theorem 2.18. For constant k, the

bound in Theorem 2.17 is asymptotically better than that in Theorem 2.12 and one

can numerically check is better than Theorem 2.16 for k ≤ 27. See Theorem 2.35 in

Section 2.10. Experimentally, greedily selecting the rows gives a better bound than

Theorem 2.16 for all k, however, they are quite close and due to the uncertainty in

our estimates Theorem 2.17 does not give a better bound for all k. Perhaps a tighter

analysis will demonstrate the superiority of this approach for all k.

Theorem 2.17. Let

αk =

√
(2k − 1)!

(k − 1)!
(k − 1)

1
4

(k2−k)

and

βk =

(
k +

k

Hk
− 1

) 1
2

(Hk/k)

(k − 1)
1
2

(1−Hk/k)

where Hj =
∑j

i=1 1/i is the j-th harmonic number. Then MR(n, k) ≤ αkβnk .

Suppose we have A ∈ R(m,n, k). The number of ones in A is mk. Thus the

column averages are mk/n. Thus if we let r = dmk/ne we can find r rows that share

a column of ones and thus by Lemma 2.15 their volume is at most
√

det(Sr,1,k) =

(r + k − 1)1/2(k − 1)(r−1)/2. Recursively, we will then use the bound

MR(m,n, k) ≤ (r + k − 1)1/2(k − 1)(r−1)/2MR(m− r, n, k).

We will begin by removing r rows but, as the number of rows in A diminishes,

the number of rows we can remove at each iteration will ultimately diminish to one in

which case we are using Hadamard’s inequality. For example, if m = 100, n = 200 and
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k = 17 we will begin by removing d100 · 17/200e = 9 rows. We now have a matrix with

100 − 9 = 91 rows and next we greedily remove d(100 − 9) · 17/200e = 8 rows. The

sequence of removals, Q, in this case is

Q = (9, 8, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Let ai be the number of times i appears in Q. In the above example a9 = 1 and

a8 = 2. Let mr = m and for i < r let mi be the number of rows remaining just prior

to removing ai sets of i rows. Thus m0 = 0. As above we have

r =

⌈
mk

n

⌉
.

For i = 1, . . . , r we have

mi−1 = mi − iai.

For i ≤ r if we have mi−1 rows we just removed iai rows. Thus the column average is

at most i − 1. However, if we had mi−1 + i rows then the column average must have

exceeded i− 1 as we were able to remove i rows. Thus we have

mi−1k

n
≤ i− 1 <

(mi−1 + i)k

n
.

Rearranging, we have

(i− 1)n

k
− i < mi−1 ≤

(i− 1)n

k
(2.5)

We stress that a similar bound need not hold for mr = m as this does not arise from

just having removed sets of r + 1 rows. However, we will note momentarily that the

bound does hold for mr when m = n. For 2 ≤ i ≤ r we have

ai−1 =
mi−1 −mi−2

i− 1
. (2.6)

Taking the upper bound for mi−1 minus the lower bound for mi−2 from equation (2.5)

and substituting into equation (2.6) gives an upper bound for ai−1. Similarly we sub-

tract from the lower bound for mi−1 the upper bound for mi−2 to get a lower bound

for ai−1. We obtain

n

k(i− 1)
− i

i− 1
< ai−1 <

n

k(i− 1)
+ 1. (2.7)
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So we see that for i < r, the approximation ai ≈ n
ki is quite good. Finally, we seek a

bound for ar. We have

ar =
m−mr−1

r

<
m−

(
(r−1)n
k − r

)
r

=
1

r

(
m+

n

k

)
− n

k
+ 1

≤ 1

mk/n

(
m+

n

k

)
− n

k
+ 1

=
n2

k2m
+ 1

We note that if n|mk, for example when n = m then this approximation is quite precise

since r = mk/n. In the case m = n, we have r = k and ak ≤ n/k2 + 1 which is

consistent with equation (2.7).

Now that we have bounded ai for i = 1, . . . , r we can give an upper bound for

MR(m,n, k). We have

MR(m,n, k) ≤
r∏
i=1

(√
(i+ k − 1)(k − 1)i−1

)ai
=

(
r−1∏
i=1

(
(i+ k − 1)(k − 1)i−1

)ai/2)((r + k − 1)(k − 1)r−1
)ar/2

=

(
r−1∏
i=1

(i+ k − 1)ai/2

)(
(k − 1)

1
2

∑r−1
i=1 (i−1)ai

) (
(r + k − 1)(k − 1)r−1

) 1
2
ar

≤ Xr−1 · Yr−1 · Zr (2.8)

where

Xr =
r∏
i=1

(i+ k − 1)
1
2( n

ki
+1) (2.9)

Yr = (k − 1)
1
2

∑r
i=1(i−1)ai (2.10)

Zr =
(
(r + k − 1)(k − 1)r−1

) 1
2

(
n2

k2m
+1
)

(2.11)

Note that in the case m = n, we have r = k and the estimate ak ≤ n
k2

+ 1 agrees with

the bound ai ≤ n
ik + 1 and thus

MR(n, k) ≤ XkYk. (2.12)
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We begin by bounding Xr.

Xr =

r∏
i=1

(i+ k − 1)
1
2( n

ki
+1)

=

√
(r + k − 1)!

(k − 1)!

(
r∏
i=1

(i+ k − 1)1/i

) n
2k

.

Let F (r, k) =
∏r
i=1(i + k − 1)1/i. Then log(F (r, k)) =

∑r
i=1

log(i+k−1)
i . Denote by

Hj =
∑j

i=1 1/i the j-th harmonic number. Since log is a concave function we have,

using Jensen’s inequality,∑r
i=1

log(i+k−1)
i∑r

i=1
1
i

≤ log

(∑r
i=1

i+k−1
i∑r

i=1
1
i

)

= log

(
r + (k − 1)Hr−1

Hr

)
= log

(
k +

r

Hr
− 1

)
and therefore

log(F (r, k)) ≤ log

(
k +

r

Hr
− 1

)
Hr.

So

F (r, k) ≤
(
k +

r

Hr
− 1

)Hr

.

Finally, we see that

Xr ≤

√
(r + k − 1)!

(k − 1)!

(
k +

r

Hr
− 1

)nHr
2k

.

Next, we study the second factor in equation (2.8). Let Tr =
∑r

i=1(i− 1)
(
n
ik + 1

)
.

Then Yr = (k − 1)Tr/2. We have

Tr =
r∑
i=1

n

k
− 1 + i− n

ik

= r
(n
k
− 1
)

+
r(r + 1)

2
− n

k
Hr

= (r −Hr)
n

k
+

1

2
(r2 − r).

Thus,

Yr = (k − 1)
n
2k

(r−Hr)(k − 1)
1
4

(r2−r).
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If we substitute our bound for Xr−1 and Yr−1 and Zr into equation (2.8) we obtain

the following theorem.

Theorem 2.18.

MR(m,n, k) ≤

√
(r + k − 2)!

(k − 1)!
(k − 1)

1
4

(r2−3r+2) ×

(
k +

r − 1

Hr−1
− 1

)nHr−1
2k

(k − 1)
n
2k

(r−Hr−1−1)
(
(r + k − 1)(k − 1)r−1

) 1
2

(
n2

k2m
+1
)

(2.13)

where we have arranged the terms that depend on r and k only in the first row and the

terms that depend on n and m in the second.

If we have a square matrix, m = n, then equation (2.12) gives us

MR(n, k) ≤ XkYk

≤

√
(2k − 1)!

(k − 1)!

(
k +

k

Hk
− 1

)nHk
2k

(k − 1)
n
2k

(k−Hk)(k − 1)
1
4

(k2−k)

=

√
(2k − 1)!

(k − 1)!
(k − 1)

1
4

(k2−k)

(k +
k

Hk
− 1

)Hk
2k

(k − 1)
1
2k

(k−Hk)

n

establishing Theorem 2.17 above.

Examples, k = 3 and k = 17

For k = 3 we have the following,

1. In Section 2.3 we saw c2,3 = 1.6984. So MR(n, 3) ≤ 1.6984n.

2. Theorem 2.17 tells us that α3 ≈ 21.91 and β3 = (40/11)11/3627/36 ≈ 1.6977 and

MR(n, 3) ≤ 21.91 × 1.6977n. In this case the strategy is, roughly, to use n/9

sets of three rows, n/6 sets of two rows, and apply Hadamard’s inequality to the

remaining n/3 rows.

For k = 17 we have the following progressively better upper bounds. These are visual-

ized in Figure 2.3.

1. lim supn→∞MR(n, 17) ≤ c2,17 ≈ 4.1197.

2. lim supn→∞MR(n, 17) ≤ c8,17 ≈ 4.1111.
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Figure 2.3: q versus
√
k − cq,k for k = 17. We draw a red line at height

√
k − βk to

show that, for k = 17, the greedy approach gives a better bound.

3. Using Theorem 2.17 we have lim supn→∞MR(n, 17) ≤ β17 ≈ 4.1104.

We note that for general k our bound for αk is quite large. Due to the uncertainty

of the ai, the product computed in equation (2.9) multiplies this uncertainty k times.

Our goal was to minimize βk and as we were interested in the case where k is constant.

However, for any given n we can compute a practical bound. For example, if k = 17 as

above and n = 1000 then we have MR(1000, 17) ≤ c1000
8,17 ≈ 9.0074× 10613. If we were to

just use the bound MR(1000, 17) ≤ α17β
1000
17 we would obtain MR(1000, 17) ≤ 3.7674×

10707 which is a worse bound. However, we can in this case exactly compute the ai.

These counts can be found in Table 2.1. They give the improved bound MR(1000, 17) ≤

9.3551× 10612.

q 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

aq 4 4 3 5 4 5 5 6 7 7 8 10 12 14 20 29 57

Table 2.1: Counts for greedy row removal for k = 17 and n = 1000.
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2.5.1 Dynamic programming

If A ∈ R(m,n, k) then as observed above we can find up to qmax = dmk/ne rows

to bound and remove. This suggests a recursive approach where the optimal q ∈

[qmax] is chosen and the program recurs on MR(m − q, n, k). Using memoization this

is easily implemented. To avoid overflow we minimize a bound for log(MR(m,n, k)).

Our intuition is that we should choose qmax at each iteration. We implemented this

algorithm using Julia [BKSE12] code. For all 3 ≤ k ≤ m ≤ n ≤ 100 the dynamic

algorithm selected rows greedily. For m = n = 1000 and k = 17 the dynamic algorithm

gave the same counts as in Table 2.1.

Memoized dynamic algorithm to bound log(MR(m,n, k))

1: procedure bound(m,n,k)
2: if m = 0 then
3: return 0
4: bestbound =∞
5: qmax = dmk/ne
6: for q = 1, . . . , qmax do
7: b = 1

2 log(q + k − a) + 1
2(q − a) log(k − 1) + BOUND(m− q, n, k)

8: if b < bestbound then
9: bestbound = b

10: return bestbound

2.6 A generalization of Ryser’s theorem for matrices in R(m,n, k)

In this section we state and establish some facts about the determinants of positive

definite matrices. We will use these to prove a generalization of Ryser’s theorem for

matrices in R(m,n, k). We begin with a little background on the notion of majorization

which will prove useful. These facts can be found in [MOA11].

If x = (x1, . . . , xn) ∈ Rn we let x[i] be the i-th largest component. Thus if we write

x in non-increasing order we have x↓ = (x[1], . . . , x[n]). Then we have the following

definition.

Definition 2.19. For x, y ∈ Rn, we say that x is majorized by y and write x ≺ y if

k∑
i=1

x[i] ≤
k∑
i=1

y[i], k = 1, . . . , n
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and
n∑
i=1

x[i] =

n∑
i=1

y[i].

Intuitively, we say x ≺ y means that x is “less spread out” than y.

Definition 2.20. A real-valued function φ on a set A ⊂ Rn is said to be Schur-convex

if whenever x, y ∈ A and a ≺ y we have φ(x) ≤ φ(y). We say φ is Schur-concave if

x ≺ y implies φ(x) ≥ φ(y).

Let A = Rn≥0. That is A is the set of vectors in Rn with non-negative coordinates.

If f : Rn≥0 → R is defined by f(x) =
∏n
i=1 xi then f is Schur-concave. This formalizes

the observation that if the elements of x are “less spread out” than those of y, then

their product is larger.

In [Olk14] the author proves the following:

Lemma 2.21. Let A be an n × n, positive definite matrix with diagonal elements

ai,i = 1. Let ā = 1
n(n−1)

∑
i 6=j ai,j be the average of the off-diagonal elements. Let Ã be

the n× n matrix such that ãi,i = 1 and ãi,j = ā for i 6= j. Then λ(Ã) ≺ λ(A) and thus

det(A) ≤ det(Ã).

Notice that, via a rescaling argument, the requirement ai,i = 1 can be replaced by

any constant on the diagonal. Recall that Sn,a,k is the n × n matrix with diagonal

elements k and off-diagonal elements a. We now restate and prove Lemma 2.15.

Lemma 2.15. We have det(Sn,a,k) = (a(n − 1) + k)(k − a)n−1 and Sn,a,k is positive

definite if a < k. Further, for any positive definite n × n matrix A such that A has

diagonal elements k and A ≥ Sn,a,k we have det(A) ≤ det(Sn,a,k).

Proof. To see det(Sn,a,k) = (a(n − 1) + k)(k − a)n−1 we find the eigenvalues. If u

is the all ones vector, then Sn,a,ku = (an + k − a)u thus Sn,a,k has the eigenvalue

an + k − a = a(n − 1) + k. Further if v is in the codimension one subspace of vectors

whose coordinates sum to zero then Sn,a,kv = (k−a)v and thus Sn,a,k has the eigenvalue

(k − a) with multiplicity n− 1. Thus det(Sn,a,k) = (a(n− 1) + k)(k − a)n−1. If a < k

all eigenvalues are positive.
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Next, fix n, k and let f(x) = det(Sn,x,k) = (x(n− 1) + k)(k − x)n−1. Then

d

dx
f(x) = (n− 1)(k − x)n−1 − (x(n− 1) + k)(n− 1)(k − x)n−2

= (n− 1)(k − x)n−2 [(k − x)− (x(n− 1) + k)]

= (n− 1)(k − x)n−2(−xn)

< 0

for all x < k. Thus f(x) is a decreasing function for x < k. If ā is the average of the

off-diagonal elements of A then we have Ã = Sn,ā,k and a ≤ ā. From Lemma 2.21 we

have det(A) ≤ det(Ã). Since det(Sn,x,k) is decreasing we have det(Ã) ≤ det(Sn,a,k).

Combining these two inequalities gives the result.

We use the above lemmas to prove, for A ∈ R(m,n, k), the following generalization

of Ryser’s theorem (Theorem 2.4).

Theorem 2.22. Let A ∈ R(m,n, k). Let µ = k
m−1

(
mk
n − 1

)
. Then

Vol(A) ≤ k
√
m

n
(k − µ)

m−1
2 . (2.14)

Notice that if m = n then µ = k(k − 1)/(n− 1) = λ and we recover Theorem 2.4.

Proof. Let A ∈ R(m,n, k) and consider the Gram matrix, AAT . We have Vol(A) =√
det(AAT ). The diagonal elements of AAT are all k. Let bj be the number of ones in

column j of A. We have
n∑
j=1

bj = mk

If there are bj ones in column j then the number of ordered pairs of distinct rows (r, s)

that overlap in these ones is 2
(bj

2

)
. So we have

∑
r,s∈rows(A)

r 6=s

〈r, s〉 =

n∑
j=1

2

(
bj
2

)

=

n∑
j=1

b2j −
n∑
j=1

bj

=

n∑
j=1

b2j −mk
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The sum of the squares of the bj is minimized when they are all equal. So we get the

lower bound ∑
r,s∈rows(A)

r 6=s

〈r, s〉 ≥ n
(
mk

n

)2

−mk = mk

(
mk

n
− 1

)

The average off-diagonal entry of AAT can then be bounded.

1

m(m− 1)

∑
r,s∈rows(A)

r 6=s

〈r, s〉 ≥ 1

m(m− 1)

(
mk

(
mk

n
− 1

))
=

k

m− 1

(
mk

n
− 1

)
= µ.

Notice that if m = n then µ = k(k − 1)/(n − 1) and thus µ = λ as in Theorem 2.4.

Also, notice that this only gives useful information if µ > 0 and thus m > n/k. This

is not surprising as otherwise mk < n and then we can arrange the rows orthogonally.

Thus, Lemma 2.15 gives us

det(A) ≤ det(Sm,µ,k)

= (µ(m− 1) + k)(k − µ)m−1

= k2m

n
(k − µ)m−1

Taking the square root gives equation (2.14).

2.6.1 Counterexample to a conjecture of Li, Lin and Rodman

Conjecture 4.8 of [LLR99] states that if λ = k(k − 1)/(n − 1) and A ∈ S(n, k) is

non-singular and the off-diagonal entries, x, of AAT and ATA satisfy |x− λ| < 1 then

|det(A)| = M(n, k). We give the following counterexample. Let n = 10 and k = 3. In
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this case λ = 3 · 2/9 = 2/3. First observe that M(10, 3) ≥ 48 since if

B =



0 1 0 0 0 1 0 0 1 0

0 0 0 0 0 1 1 1 0 0

1 0 0 0 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 1 0 0 0 0 1

1 0 1 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 1

0 0 1 1 0 0 1 0 0 0


then B ∈ S(10, 3) and det(B) = 48. Next, let

A =



0 1 0 0 0 0 0 1 1 0

0 0 0 0 1 1 1 0 0 0

1 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 1

0 1 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 1

1 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 1 0 0

1 0 1 0 0 0 1 0 0 0

0 1 1 0 1 0 0 0 0 0



.

We see A ∈ S(10, 3) and det(A) = 15 < M(10, 3). Further, we can check that the

off-diagonal entries of AAT and ATA are exclusively 0 and 1 which of course satisfy

|x− 2/3| < 1.

2.7 Matrices with kn ones

We generalize the class T (n, k) to rectangular matrices.
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Definition 2.23. Let T (m,n, k) be the set of m× n zero-one matrices containing km

ones.

Definition 2.24. Let MT (m,n, k) = maxA∈T (m,n,k) Vol(A).

Let A ∈ T (m,n, k). We can bound Vol(A) by applying Theorem 2.12 to the sub-

matrix formed by the rows summing to k and Hadamard’s inequality to the rows not

summing to k. To bound this latter product we develop a few lemmas.

Lemma 2.25. Let s be an integer and set r = 2s. Let S = Z \ {0} be the non-zero

integers. Let A = {x ∈ Sr :
∑r

i=1 xi = 0}. Let x = (1, . . . , 1,−1, . . . ,−1) ∈ A be such

that 1 and −1 each appears as a coordinate s times. Then for all y ∈ A, we have x ≺ y.

Proof. Suppose for the sake of contradiction there is y ∈ A such that x is not majorized

by y. Note that the cumulative sums of x are (1, 2, . . . , s, s−1, s−2, . . . , 1, 0). Without

loss of generality the coordinates of y are in descending order. Let j < r be such that∑j
i=1 xi >

∑j
i=1 yi. We have two cases:

1. j ≤ s

2. j > s

In the first case we have that
∑j

i=1 yi < j. Since the yi are non-increasing non-zero

integers, we must have yj < 0 which implies yk ≤ −1 for all k > j. However, then

the sum of the remaining coordinates is less than −s and so
∑r

i=1 yi < 0 which is a

contradiction.

In the second case let j′ = r − j. Then
∑j

i=1 yi < j′ which implies that yj ≤ −1.

But the sum of the remaining j′ coordinates is at most −j′ and thus we obtain the

same contradiction that
∑r

i=1 yi < 0.

It follows from Lemma 2.25 that for r even if

A =

{
x ∈ Zr+ :

r∑
i=1

xi = rk and xi 6= k, i ∈ [r]

}
(2.15)

then x = (k+ 1, . . . , k+ 1, k− 1, . . . , k− 1) with k+ 1 and k− 1 each appearing s = r/2

times is majorized by all y in A and thus
∏
i xi = (x + 1)r/2(x − 1)r/2 is maximal on

A. Note that if r is odd and A is given by equation (2.15) then there need not be
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a vector x ∈ A that is majorized by all y ∈ A. For example, let r = 5 and k = 3.

One can check that among the 15 non-negative integer vectors in (Z \ {3})5 summing

to 15, the maximum product is achieved uniquely by x = (5, 4, 2, 2, 2). However, if

y = (4, 4, 4, 2, 1) we see that x is not majorized by y. Indeed x has cumulative sums

(5, 9, 11, 13, 15) whereas y has cumulative sums (4, 8, 12, 14, 15). However, we do have

the following.

Lemma 2.26. Let r = 2s− 1 be a positive odd integer and let k be a positive integer.

Let A be as given in equation (2.15). Then

max
x∈A

(
r∏
i=1

xi

)
≤ (k − 1)s(k + 1)s−2(k + 2)

= (k − 1)r/2+1/2(k + 1)r/2−3/2(k + 2)

Proof. Let y ∈ A. Note that if yi < k − 1 and yj > k + 1 then, in the notation

of [MOA11], let Ti,j be the T-transformation such that if y′ = Ti,j(y), y′` = y` for

` /∈ {i, j} and y′i = yi + 1 and y′j = yj − 1. We have y′ ≺ y and thus
∏
y′i ≥

∏
yi.

Iterating these T-transformations we can assume that y has coordinates lying in {k −

2, k − 1, k + 1, k + 2} with at most one of k − 2 and k + 2 appearing (else we would

apply a T-transformation to reduce them). Suppose some yi = k − 2. Then we do not

have yj = k + 2 for any j and thus there must exist j, ` such that yj = y` = k + 1.

Perform the transformation (k + 1, k + 1, k − 2) → (k + 2, k − 1, k − 1). Note that

this transformation need not be majorizing, however it does increase the product as

(k + 2)(k − 1)2 − (k + 1)2(k − 2) = 4. If the coordinate k − 2 remains then apply a

T-transformation to (k + 2, k − 2) → (k + 1, k − 1). Iterating this procedure we can

assume that the coordinate k−2 does not appear and that the coordinate k+2 appears

precisely once. The product of the coordinates is then (k − 1)s(k + 1)s−2(k + 2).

Now we show that the bound for MR(m,n, k) given in Theorem 2.12 holds for

MT (m,n, k) when k is an integer.

Theorem 2.27. Let k ≥ 2 be an integer. Let

B(m,n, k) =
(√

k2 − 1
)m

2
− n

2k
k

n
2k (2.16)
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as in Theorem 2.12. Then MT (n, k) ≤ B(m,n, k). In particular, let

ck =
(√

k2 − 1
) 1

2(1− 1
k )
k

1
2k .

Then MT (n, k) ≤ cnk .

Proof. Let A ∈ T (m,n, k). We assume Vol(A) > 0 and so the row sums of A are

positive integers. Let r be the number of rows not summing to k. Denote their sums

by a1, . . . , ar. If we apply Hadamard’s inequality to these r rows not summing to k and

Theorem 2.12 to the rows summing to k we have

Vol(A) ≤

(
r∏
i=1

√
ai

)
B(m− r, n, k). (2.17)

If r is even then by Lemma 2.25 we have

r∏
i=1

ai ≤ (k − 1)r/2(k + 1)r/2.

If r is odd then by Lemma 2.26 we have

r∏
i=1

ai ≤ (k − 1)r/2+1/2(k + 1)r/2−3/2(k + 2).

Note that

(k − 1)r/2(k + 1)r/2 ≥ (k − 1)r/2+1/2(k + 1)r/2−3/2(k + 2)

holds provided

(k + 1)3 > (k − 1)(k + 2)2

which holds for all k > 0. Thus we have,

Vol(A) ≤

(
r∏
i=1

√
ai

)
B(m− r, n, k)

≤
√

(k − 1)r/2(k + 1)r/2B(m− r, n, k)

=
√
k2 − 1

r/2 (√
k2 − 1

)m−r
2
− n

2k
k

n
2k

=
(√

k2 − 1
)m

2
− n

2k
k

n
2k

= B(m,n, k)

as desired.
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The intuition behind this result is that if A ∈ T (n, k) has many rows not summing

to k then its determinant must be small. Thus A is “nearly” in R(n, k) and since we

can apply the same argument to the columns it is “nearly” in S(n, k). This suggests

the following conjecture.

Conjecture 2.28. For any integer k ≥ 2,

lim sup
n→∞

M(n, k)1/n = lim sup
n→∞

MR(n, k)1/n = lim sup
n→∞

MT (n, k)1/n.

Recall from Section 2.2 that lim sup
n→∞

M(n, 2)1/n = lim sup
n→∞

MR(n, 2)1/n = 21/3, and

lim sup
n→∞

MT (n, k)1/n ≤ 61/6. So this conjecture is open even for k = 2.

Example, k = 3

Recalling that c3 = 241/6 ≈ 1.6984 we have MT (n, 3) ≤ 1.6984n. Recall from Sec-

tion 2.2 that a construction based on the Fano plane gives the lower bound MT (n, 3) ≥

(241/7)n ≈ 1.5746n for infinitely many n. So lim supn→∞MT (n, 3)1/n ∈ [241/7, 241/6].

The authors of [BR18] conjecture that 241/7 is the true value. We echo this sentiment.

At the very least we do not believe our upper bound is tight. Recall that in Section 2.5

we showed a smaller upper bound for lim supn→∞MR(n, 3)1/n and we have conjectured

that these two values are the same.

In our proof of Theorem 2.27 we argued that a matrix in T (n, k) that has many

rows not summing to k must have determinant smaller than cnk . If we consider T (n, k̃)

for non-integer k̃ ∈ (k, k + 1) we can extend this reasoning to argue that if the rows of

a matrix in T (n, k̃) are not mostly of weight k and k + 1 in the appropriate ratio then

the determinant will be small. This is Theorem 2.29 below.

Theorem 2.29. Let k̃ > 1 be a rational number. Let k = bk̃c. Let γ = k̃ − k. Let

m1 = (1− γ)m and m2 = γm. Let B(m,n, k) be as given in equation (2.16). Then

MT (m,n, k̃) ≤ B(m1, n, k)1−γB(m2, n, k + 1)γ .

Consequently, let ck̃ = c1−γ
k cγk+1 <

√
k̃. Then MT (n, k̃) ≤ (ck̃)

n.

Proof. Let A ∈ T (m,n, k̃). Let mk be the number of rows of A summing to k and let

mk+1 be the number of rows of A summing to k + 1. Let A′ be the largest m′ × n
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submatrix of A such that the rows of A′ have sums lying in {k, k + 1} and the number

of ones in A′ is within one of k̃m′. Let r = m −m′ be the number of remaining rows.

We argue via strong induction on r. If r = 0 then A′ = A and A consists of only

rows summing to k and k + 1 and must be in the proportion 1 − γ : γ and the result

follows from Theorem 2.27. Now suppose r > 0 and inductively that the result holds

for smaller values of r. Let a1 . . . , ar be the sums of the rows not in A′. We bound

Vol(A) ≤ Vol(A′)
∏r
i=1

√
ai. Note that either k or k + 1 is excluded from the ai by the

maximality of A′. Further there is some ai /∈ {k, k+ 1} otherwise we would have r = 0.

So we have at least one of two cases

1. If the number of ones of B is at least k̃n then there exists ai ≤ k−1 and aj ≥ k+1.

2. If the number of ones of B is at most k̃n then there exists ai ≤ k and aj ≥ k+ 2.

Now we apply the reductions in the proof of Theorem 2.27 we can assume that if

we are in the first case that there is some ai = k − 1 and some aj = k + 1. We

have
√
aiaj =

√
k2 − 1. Noting that B(m1, n, k)1/m1 >

√
k2 − 1 for any m1 so we

see that gives a smaller bound using induction on r − 2. Similarly, in case two we

have
√
k(k + 2) =

√
(k + 1)2 − 1 < B(m2, n, k + 1)1/m2 and so adjoining these gives a

smaller bound using induction on r − 2.

Example, k̃ = 2.25

Let k̃ = 2.25 = 1.52. We hope to show that MT (n, k̃) is exponentially smaller than

1.5n. Indeed this is the case. We have c2 = 121/8, c3 = 241/6 and γ = 1/4. Then we

have ck̃ = c1−γ
2 cγ3 = 123/32241/24 ≈ 1.4411. So MT (n, 2.25) < 1.4411n.

2.8 Perturbations

The techniques in this chapter can be applied to perturbations of combinatorial matri-

ces. There are many different generalizations one might make. In this section we give

a small illustration.

Definition 2.30. For δ ∈ [0, 1), let Rδ(n, k) be the set of n × n matrices where each

row has exactly k non-zero elements each lying in the interval [1− δ, 1 + δ].
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We can think of a matrix in Rδ(n, k) as a perturbation of a matrix in R(n, k). If

A ∈ Rδ(n, k) then the rows have norms at most
√
k(1+δ). So Hadamard’s inequality tells

us that det(A) ≤ kn/2(1 + δ)n/2. The techniques in this chapter can be used to improve

this bound. We illustrate this with the following generalization of Theorem 2.12.

Theorem 2.31. If A ∈ Rδ(n, k), then det(A) ≤ dδ(k)n where

dδ(k) =
√
k2(1 + δ)2 − (1− δ)2

1
2

(1−1/k)
(k(1 + δ)2)

1
2k .

Proof. The proof is nearly identical to that of Theorem 2.12. If two rows have overlap-

ping nonzero entries their volume is at most

det

k(1 + δ) 1− δ

1− δ k(1 + δ)

 =
√
k2(1 + δ)2 − (1− δ)2

which is analogous to
√
k2 − 1 in the unperturbed case. Once we can no longer guar-

antee an overlapping pair of rows we apply Hadamard’s inequality which uses the max

row norm of k(1 + δ).

If δ = o(1/k2) then we will show in Theorem 2.36 in Section 2.10 that for k suf-

ficiently large, dδ(k) <
√
k so an inequality stronger than Hadamard applied to the

unperturbed matrix still holds. One can of course consider perturbations of the zero

elements as well. In each of these cases the techniques of Sections 2.4 and 2.5 can be

applied.

Example, k = 4, δ = 0.01

Let k = 4 and δ = 0.01 and suppose A ∈ Rδ(n, k).

1. We have
√
k(1 + δ) = 2.02. Thus Hadamard’s inequality implies det(A) ≤ 2.02n.

2. Using Theorem 2.31, we have det(A) ≤ dδ(k)n ≈ 1.9892n.

2.9 Conclusion and open questions

We summarize some of our results for various k in Table 2.2.
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k c1,k =
√
k c2,k q∗ cq∗,k αk βk

3.0 1.7321 1.6984 2 1.6984 21.91 1.6977
4.0 2.0 1.9759 3 1.9719 782.53 1.9702
5.0 2.2361 2.2179 3 2.2116 1.2591× 105 2.2097
6.0 2.4495 2.4352 4 2.4279 1.0075× 108 2.4257
7.0 2.6458 2.6341 4 2.6258 4.3557× 1011 2.6240
8.0 2.8284 2.8187 5 2.8103 1.0925× 1016 2.8083
9.0 3.0 2.9917 5 2.9828 1.6920× 1021 2.9812
10.0 3.1623 3.1551 5 3.1462 1.7105× 1027 3.1447

Table 2.2: A summary of bounds for k = 3, . . . , 10, q∗ is the optimal value of q that
minimizes cq,k for q = 1, . . . , k.

Since M(n, k) ≤MR(n, k), Theorem 2.11 shows for k one more than a prime power

that

lim sup
n→∞

MR(n, k)1/n ≥
√
k − 1

2
√
k

+O

(
1

k3/2−ε

)
.

From Theorem 2.33 we have that for a real number t ≈ 0.096,

lim sup
n→∞

MR(n, k)1/n ≤
√
k − t

2
√
k

+O

(
1

k3/2

)
.

Our main open question is resolving this gap.

Resolving the value of lim supn→∞MR(n, k)1/n for small k is also an interesting

question. We do not claim that the constants we have found are the best possible. For

example, we showed that lim supn→∞MR(n, 3)1/n ≤ β3 = (40/11)11/3627/36 ≈ 1.6977.

The Fano plane construction gives the lower bound lim supn→∞MR(n, 3)1/n ≥ 241/7 ≈

1.5746.

We can ask similar questions for M(n, k) and MT (n, k). In Conjecture 2.28 we

conjectured that

lim sup
n→∞

M(n, k)1/n = lim sup
n→∞

MR(n, k)1/n = lim sup
n→∞

MT (n, k)1/n

for all integers k. Recall that we know that for k = 2 the first equality holds, but

the second is open. Thus, resolving this conjecture even for small k would be quite

interesting.

We note one avenue through which our approach may be improved. For A ∈

R(m,n, k) let qmax be the maximal column sum of A. Then we can take the ap-

propriate qmax rows and bound their volume. In our approach we use the fact that the
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matrix resulting after the deletion of these rows lies in R(m − qmax, n, k). However,

we know the resulting matrix has a zero column since we have removed all the ones in

a maximal sum column. Thus we could recursively use an inequality for the volume

of R(m − qmax, n − 1, k). This smaller matrix has a larger density of ones and gives

a better bound. This is of course harder to analyze since the maximum column sum

depends on A.

For what values of n, k are any of M(n, k), MR(n, k) and MT (n, k) equal? For small

values of n and k we of course know the answer and if λ = k(k − 1)/(n− 1) and there

is an (n, k, λ) combinatorial design these are all equal. We observed in Section 2.2

that M(7, 2) 6= MR(7, 2). Are there certain values of k for which equality always

holds? The same questions apply to MR(n, k) and MT (n, k). Finally, we wonder for

Θ(n1/3) ≤ k <
√
n, a domain on which no (n, k, λ) combinatorial design exists how

much can Ryser’s bound be improved?

2.10 Calculations

Theorem 2.13. Let ck be defined as in Theorem 2.12 and λ = k(k − 1)/(n− 1) as in

Theorem 2.4. If k = o(n1/3) then for n sufficiently large, cnk < k(k − λ)(n−1)/2.

Proof. We want to show that((√
k2 − 1

) 1
2(1− 1

k )
k

1
2k

)n
< k(k − λ)

1
2

(n−1) =
k

k − λ
(k − λ)n/2. (2.18)

Raising both sides to the power 2k/n we obtain(√
k2 − 1

)k−1
k <

(
k

k − λ

)2k/n

(k − λ)k.

So it suffices to show (√
k2 − 1

)k−1
k < (k − λ)k.

Since
√
k2 − 1 < k − 1

2k , it suffices to show(
k − 1

2k

)k−1

k < (k − λ)k

which simplifies to (
1− 1

2k2

)k−1

< (1− λ/k)k.
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Taking logs,

(k − 1) log

(
1− 1

2k2

)
< k log(1− λ/k),

thus

(k − 1) log

(
− 1

2k2
+O

(
1

k4

))
< k

(
−λ
k

+O
(
(λ/k)2

))
= −λ+O

(
λ2

k

)
.

Thus it suffices to show that

1

2k2
� λ

k − 1
=

k

n− 1

which holds provided k = o(n1/3).

Next we show that for large k, cq,k is minimized when q ≈ 0.44k.

Theorem 2.32. Let

cq,k = (q + k − 1)
1
2q (1− q−1

k )(k − 1)
1
2

q−1
q (1− q−1

k )k
(q−1)
2k

as in Theorem 2.16. Let

q∗ = argminq=1,...,k ck,q.

Let s ≈ 0.4395 be the positive root of

s3 + s− log(1 + s)(s+ 1) = 0. (2.19)

Then lim
k→∞

q∗
k

= s.

Proof. We have

c2
q,k = (q + k − 1)

1
q (1− q−1

k )(k − 1)
q−1
q (1− q−1

k )k
(q−1)

k . (2.20)

Noting that the exponents in equation (2.20) sum to one we have

c2
q,k

k
=

(
1 +

q − 1

k

) 1
q (1− q−1

k )(
1− 1

k

) q−1
q (1− q−1

k )

Let s = (q − 1)/k. Since c2,k < c1,k we can assume q > 1 and thus s ∈ (0, 1). We have

c2
q,k

k
= (1 + s)

1−s
sk+1

(
1− 1

k

) 1−s
sk+1

sk

.
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Thus

G(s, k) := log

(
c2
q,k

k

)
=

1− s
sk + 1

(
log(1 + s) + sk log

(
1− 1

k

))
=

1− s
sk + 1

(
log(1 + s)− s+O

(
1

k

))
=

1− s
sk + 1

(log(1 + s)− s) +O

(
1

k2

)
Then,

d

ds
G(s, k) =

ks3 + ks+ 2s2 − log(1 + s)(ks+ k + s+ 1)

(ks+ 1)2(s+ 1)
+O

(
1

k3

)
and thus

(ks+ 1)2(s+ 1)

k

d

ds
G(s, k) = (s3 + s− log(1 + s)(s+ 1)) +O

(
1

k

)
.

So the value of s that, asymptotically, minimizes G(s, k) is the positive root of

equation (2.19).

Theorem 2.33. Let s ≈ 0.4395 be the positive root of s3 + s− log(1 + s)(s+ 1) = 0 as

in Theorem 2.32. Let

t = −(1− s)(log(1 + s)− s)
s

≈ 0.09591. (2.21)

Then

csk,k =
√
k − t

2
√
k

+O

(
1

k3/2

)
(2.22)

as stated in equation (2.4) in Section 2.4.

Proof. In the proof of Theorem 2.32 we showed that

log

(
c2
q,k

k

)
=

1− s
sk + 1

(log(1 + s)− s) +O

(
1

k2

)
.

Thus

log

(
c2
q,k

k

)
=

(1− s) (log(1 + s)− s)
s

1

k
+O

(
1

k2

)
= − t

k
+O

(
1

k2

)
.
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Thus
c2
q,k

k
= e−t/k

(
1 +O

(
1

k2

))
which simplifies to

c2
q,k = ke−t/k +O

(
1

k

)
= k − t+O

(
1

k

)
.

Noting that
√
k − t =

√
k
√

1− t/k =
√
k

(
1− t

2k
+O

(
1

k2

))
,

we have

cq,k =
√
k − t

2
√
k

+O

(
1

k3/2

)
as desired.

Next we show that for n sufficiently large, Theorem 2.16 gives an improved upper

bound for MR(n, k) compared to Ryser’s theorem for k <
√
n/10.

Theorem 2.34. Let cq,k be as given in Theorem 2.16. Let s ≈ 0.4395 be the positive

root of s3 + s− log(1 + s)(s+ 1) = 0 as in Theorem 2.32. For n sufficiently large and

k <
√
n/10 we have

cnsk,k < k(k − λ)(n−1)/2.

Proof. Let H(n, k) = k(k − λ)(n−1)/2 be Ryser’s bound. Then,

We can write Ryser’s bound as

H(n, k) = k(k − λ)(n−1)/2 =
k

k − λ
(k − λ)n/2

and thus

H(n, k)2/n

k
=

(
k

k − λ

)2/n k − λ
k

> 1− λ

k

= 1− k − 1

n− 1
.
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On the other hand, we showed in the proof of Theorem 2.33 that

c(sk, k)2/n

k
= 1− t

k
+O

(
1

k2

)
.

So we want

1− t

k
+O

(
1

k2

)
< 1− k − 1

n− 1
. (2.23)

Equation (2.23) holds trivially if k = o(n1/2) and if k = Θ(
√
n) then equation (2.23)

holds provided

t

k
>
k − 1

n− 1

which noting that t < 1/10 holds for k <
√
n/10 and n sufficiently large.

Next we show that for constant k, Theorem 2.17 gives a better asymptotic than

Theorem 2.12.

Theorem 2.35. Let

ck =
(√

k2 − 1
) 1

2(1− 1
k )
k

1
2k

as in Theorem 2.12 and

βk =

(
k +

k

Hk
− 1

) 1
2

(Hk/k)

(k − 1)
1
2

(1−Hk/k)

as in Theorem 2.17. Then βk < ck.

Proof. If we raise βk and ck to the power 2k and compare we want to show that(
k +

k

Hk
− 1

)Hk

(k − 1)k−Hk <
√
k2 − 1

k−1
k.

Rearranging, this is equivalent to(
1 +

1

Hk
− 1

k

)Hk

<

√
k2 − 1

k−1

(k − 1)k−Hk
. (2.24)

We see that for all k the left hand side of equation (2.24) is less than e. We use the
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inequality
√
k2 − 1 > k − 1/k to bound the right hand side.

√
k2 − 1

k−1

(k − 1)k−Hk
>

(
k − 1

k

)k−1

(k − 1)k−Hk

=

(
k − 1

k

k − 1

)k−Hk (
k − 1

k

)Hk−1

=

(
1 +

1

k

)k−Hk
(
k − 1

k

)Hk−1

> 1 · k = k

for k ≥ 4. Since 4 > e the result holds for k ≥ 4 and one can easily check that it holds

for k < 4.

Theorem 2.36. Let dδ(k) =
√
k2(1 + δ)2 − (1− δ)2

1
2

(1−1/k)
(k(1 + δ)2)

1
2k as in Theo-

rem 2.31. Then for δ = o(1/k2), dδ(k) <
√
k.

Proof. Raising both sides of the inequality dδ(k) <
√
k to the power 2k we find√

k2(1 + δ)2 − (1− δ)2
k−1

k(1 + δ)2 < kk

which we can simplify to(√
k2(1 + δ)2 − (1− δ)2

k

)k−1

<
1

(1 + δ)2
. (2.25)

We simplify and apply the inequality
√
a2 − b2 < a− b2

2a in the left hand side of equa-

tion (2.25) to obtain(√
k2(1 + δ)2 − (1− δ)2

k

)k−1

=
√

(1 + δ)2 − (1− δ)2/k2
k−1

≤
(

1 + δ − (1− δ)2

2k2(1 + δ)

)k−1

=

(
1− 1

2k2
+ o

(
1

k2

))k−1

= 1− 1

2k
+ o

(
1

k2

)
.

The right hand side of equation (2.25) is

1

(1 + δ)2
= 1− δ2 + o(δ2) = 1− o

(
1

k4

)
.

So we see the inequality holds.
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Chapter 3

Unique sum free sets

3.1 Introduction

Let p be a prime number. Let A ⊆ Fp be nonempty. We say that A is unique sum

free (USF) if every element of the sumset A + A can be written as a sum of two

elements from A in at least two different ways. That is for any s ∈ A + A there exist

a, b, c, d with {a, b} 6= {c, d} such that s = a + b = c + d. For example, if p = 13 then

A = {0, 1, 2, 3, 6, 8, 10} is a USF set in Fp. In this case A + A = Fp. We observe, for

example, that the sum 9 appears as 1+8 = 3+6 and the sum 0 appears as 0+0 = 3+10.

For p > 2 it is easy to find large USF sets, for example the entirety of Fp is USF for

p > 2, but the problem of finding small USF sets is more challenging and was posed by

Kopparty in [Kop17].

As motivation we give the following geometrical reformulation [Fra]. Consider p

points on a circle spaced uniformly (for example the p-th roots of unity). Color some

subset A of size n of the points orange. For any two orange points draw the line

connecting them. If the two points are the same, draw the tangent line to the circle at

that point. So we have drawn
(
n
2

)
+n distinct lines. Then A being USF is equivalent to

the statement that every line has a parallel. So we may interpret USF as “unique slope

free.” We would like to find as small a set of points as possible with this property.

Definition 3.1. Let G be an abelian group. Let A ⊆ G be nonempty. We say that A is

unique sum free (USF) if for all s ∈ A+A there exist a, b, c, d ∈ A with {a, b} 6= {c, d}

such that s = a+ b = c+ d.

As noted above we are mainly interested in the case G = Z/pZ. Since we will

often find it useful to scale our set multiplicatively, we will use the field structure of
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Z/pZ. Unless specified otherwise if we state a set A is USF we mean in a field Fp.

We caution the reader that a number of papers, e.g. [HS86, Jan07, NQ08], concern the

similar question of when a set A ⊆ Fp is such that for all s ∈ A + A, |{(a, b) ∈ A2 :

a+ b = s}| ≥ 2. In this case they count a+ b = b+a as distinct representations of a+ b

provided a 6= b. Thus in this case the question is if 2a has an alternative representation

as a sum of two elements from A for each a ∈ A. Such sets will be fundamental to our

results and will be discussed later.

Definition 3.2. For A ⊆ Fp and s ∈ A + A let νA(s) = |{(a, b) ∈ A2 : a + b = s}| be

the number of ordered representations of s as a sum of elements from A. Let ν(A) =

mins∈A+A νA(s).

Thus A is USF means that ν(A) ≥ 3. Using the nomenclature of [NQ08] we have

the following definition.

Definition 3.3. Let A ⊆ Fp be nonempty. We say that A is balanced if for all a ∈ A

there exist b, c ∈ A with b 6= c such that 2a = b+ c.

Thus A is balanced means that ν(A) ≥ 2. To avoid confusion we will maintain this

use of the word “representation.”

Definition 3.4. For s ∈ A + A we say that {{a, b} : a, b ∈ A, a + b = s} are the

set-representations of s.

Definition 3.5. Given a set A we say s ∈ A + A is unique if s has exactly one set-

representation.

For example if A = {1, 2, 3, 4, 5} ⊆ Z then 4 has two set-representations and 3 is a

unique sum. Thus definition 3.1 is consistent with the name unique sum free.

Definition 3.6. For any prime p let µ(p) = min{|A| : A is USF in Fp}. That is, µ(p)

is the minimal size of a USF subset of Fp. We adopt the convention µ(2) =∞.

In this introduction we will give some simple lower and upper bounds for µ(p).

These will be improved in subsequent sections. Observe that if A is USF then so is

uA+ b where u, b ∈ Fp and u is a unit. We formalize this observation in the following

definition.
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Definition 3.7. We say a property, P, of subsets of Fp is affine invariant if P holds

for A if and only if P holds for uA+ b for all u ∈ F∗p and b ∈ Fp.

So USF is an affine invariant property. In studying USF sets it is useful to note

that although arithmetic progressions (APs) have lots of additive structure they do not

yield small examples of USF sets. Notice that if A ⊆ Z is a finite set of integers then A

cannot be USF as if a = min(A) then 2a has no set-representations other than a + a.

If A ⊆ Fp is an arithmetic progression of length k then there exist u, b ∈ Fp so that

uA+ b = {0, 1, . . . , k− 1}. If k < p/2 then although uA+ b ⊆ Fp since it lies in [0, p/2]

addition behaves as in Z and thus we can think of it as a set of integers and thus is

not USF. So if A is an arithmetic progression and USF we must have |A| > p/2. We

mention arithmetic progressions in part because they demonstrate the delicacy of this

problem. If A = {1, . . . , k} then notice that A+A = {2, 3, . . . , 2k} with |A+A| = 2k−1

and the only elements of A + A that are unique sums are {2, 3, 2k − 1, 2k}. Thus as

k grows the proportion of unique sums goes to zero. Nonetheless, such a set does not

seem to be in any way “close” to USF. In fact we see next that we cannot hope to

construct a constant sized USF set.

Theorem 3.8. Let A ⊆ Fp be a set of size n with n < log4 p. Then there exists u ∈ F∗p

and b ∈ Fp so that uA+ b ⊆ [0, bp/2c − 1].

Proof. Let A = {a1, a2, . . . , an}. Apply an arbitrary ordering to A and thus associate

to A a vector v = (a1, . . . , an) ∈ Fnp . Partition Fnp into a grid with 4n boxes. For

example the box containing the origin is {0, 1, 2, . . . , bp/4c}n. The width of a box in

any dimension is one of bp/4c and dp/4e. Consider the multiples of v: v, 2v, 3v, . . . (p−

1)v, pv = ~0. Since p > 4n there is a box containing two vectors iv, jv. Then if we take

(j− i) ·v this lies in a box whose width is at most 2(dp/4e−1)+1 = 2dp/4e−1 ≤ bp/2c.

Thus we set u = j − i and uA lies in an interval of width at most bp/2c. Translating

by an appropriate b gives the result.

Corollary 3.9. If A is USF then |A| > log4 p. Thus, µ(p) > log4 p.

This result was unknown to us when we initially studied this problem, however it
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appears in [Str76] who was studying a related problem that we will discuss subsequently.

This result inspires the study of the affine diameter of a set. If A ⊆ Fp, we can

identify it as a set of integers by taking representatives in [0, p − 1]. Then diam(A) =

max(A)−min(A). Then let

mn = max
|A|=n

min
α 6=0,β

diam(αA− β) (3.1)

So we have shown in Theorem 3.8 that if n = log4 p then mn < n/2. Bounding mn is

studied in detail in [Lev00].

We next want to give an upper bound for µ(p). It is an elementary exercise to show

that for any ε > 0, a random subset of size p1/2+ε will be USF with high probability.

However, this can be easily improved to O(
√
p).

Theorem 3.10. For any prime p > 2, µ(p) ≤ 2
√

2
√
p+O(1).

Proof. For some positive integer a > 1, let A = {0, 1, 2, . . . , 2a − 1, 2a, 3a, 4a, . . . , ka}

where k is such that ka < p < (k + 1)a. We can think of the elements of A as residues

in Fp. Then A + A = Fp and if s = ca + r with 0 ≤ r < a then s = ca + r =

(c− 1)a+ (a+ r). So A is USF. We have |A| ≤ 2a+ p/a. Thus we let a =
[√

p/2
]

and

have |A| = 2
√

2
√
p+O(1).

This construction finds a USF set for which every element of Fp is set-represented

at least twice. Since a set of size n has
(
n
2

)
+ n = n2/2 + O(n) candidate sums, the

smallest set such that every element of Fp is set-represented at least twice has size at

least 2
√
p. This inspires the following question. What is the smallest value c such that

for p sufficiently larger there exists a USF set A ⊆ Fp with |A| < c
√
p + o(

√
p) and

A+A = Fp? We have shown that c ≤ 2
√

2.

Thus far we have shown log4(p) < µ(p) < O(
√
p). Resolving this large gap is our

goal. Kopparty [Kop17] conjectured that µ(p) = Θ(
√
p). For the first few odd primes

the values of µ(p) can be found in Table 3.1. A plot of µ(p) for the first few primes looks

much like a plot of 2
√
p. See Figure 3.1. These data and other experiments seemed to

bolster the conjecture that µ(p) = Θ(
√
p). However, as we will see this conjecture is

false. Our main result is that µ(p) = O(log2 p).
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p µ(p) minimal USF set

3 3 {0, 1, 2}
5 4 {0, 1, 2, 3}
7 5 {0, 1, 2, 3, 4}
11 7 {0, 1, 2, 3, 4, 5, 6}
13 7 {0, 1, 2, 3, 6, 8, 10}
17 8 {0, 1, 2, 4, 10, 12, 13, 14}
19 9 {0, 1, 2, 3, 4, 5, 9, 12, 15}
23 10 {0, 1, 2, 3, 4, 5, 6, 9, 18, 19}
29 11 {0, 1, 2, 3, 4, 5, 6, 12, 13, 17, 20}
31 11 {0, 1, 2, 3, 4, 6, 8, 11, 13, 21, 23}
37 12 {0, 1, 2, 3, 4, 5, 6, 10, 20, 21, 30, 32}
41 13 {0, 1, 2, 3, 4, 5, 7, 9, 21, 23, 31, 32, 36}
43 13 {0, 1, 2, 3, 4, 5, 6, 9, 14, 28, 29, 30, 33}
47 13 {0, 1, 2, 3, 4, 17, 27, 28, 34, 37, 39, 44, 45}
53 14 {0, 1, 2, 3, 4, 8, 9, 13, 14, 25, 33, 35, 41, 45}
59 15 {0, 1, 2, 3, 4, 5, 9, 10, 16, 25, 27, 32, 42, 44, 48}

Table 3.1: µ(p) and an example minimal USF set for primes p = 3, . . . , 59.

Figure 3.1: A plot of µ(p) for primes p = 3, . . . , 59. The curve drawn is 2
√
p.
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3.2 Constructing small USF sets

Our construction has two important ingredients. One main idea is that if A is an

arbitrary subset of Fp then B = A+A has many non-unique sums. This follows since if

a, b, c, d ∈ A are distinct then s = a+ b+ c+ d ∈ B+B and we can write s as a sum of

elements from B in two distinct ways s = (a+b)+(c+d) and s = (a+c)+(b+d). This

of course does not yield a USF set for arbitrary A. For example, the sum a+ a+ a+ a

can not, in general, be obtained in a manner distinct from 2a+2a. However, the second

ingredient we need is the notion of balanced sets given in Definition 3.3. We will show

in Lemma 3.11 that if A is balanced then A+A is USF.

Lemma 3.11. Let p > 2 be a prime. Let A ⊆ Fp be balanced. Let B = A + A. Then

B is a USF set.

Proof. Consider an element s ∈ B + B. We can write s as a 4-sum of elements of A.

There are five cases. Below a, b, c, d are unique elements of Fp.

1. s = a + b + c + d. In this case s = (a + b) + (c + d) = (a + c) + (b + d) are two

distinct set-representations of s. Notice that we cannot have a+ b = a+ c as then

b = c, nor can we have a+ b = b+ d as then a = d.

2. s = a + b + c + c. In this case s = (a + b) + (c + c) = (a + c) + (b + c) are two

distinct set-representations of s.

3. s = a + a + b + b. In this case s = (a + a) + (b + b) = (a + b) + (a + b) are two

distinct set-representations of s.

Note that to this point we have not yet used the fact that A is balanced.

4. s = a+ a+ a+ b. In this case we note that 2a = a1 + a2 with a1 6= a2. Then we

can write s = (a + a) + (a + b) = (a + a1) + (a2 + b). We note that we cannot

have a + a = a + a1 so this demonstrates two distinct set-representations unless

a + b = a + a1 in which case a1 = b. In this case, we have the alternative set-

representation s = (a+a2)+(b+b). Notice that a2 +b 6= a+a2 and a2 +b 6= b+b.
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5. s = a+ a+ a+ a. In this case we note that 2a = a1 + a2 with a1 6= a2. Then we

have s = (a+a)+(a+a) = (a+a1)+(a+a2) as two distinct set-representations.

Note that we needed p > 2 above so that if 2a = a1+a2 are distinct set-representations

we cannot have a1 = a2. Lemma 3.11 tells us that if A is a balanced set then there

exists a USF set of size at most |A+ A|. Note that for an arbitrary set A of size n we

have |A+A| ≤
(
n
2

)
+ n. However for a balanced set we know that the doubles have an

alternative representation and thus if A is a balanced set of size n, |A+A| ≤
(
n
2

)
.

Definition 3.12. For a prime p let α(p) be the minimal size of a balanced subset of

Fp.

Thus Lemma 3.11 tells us that for p > 2, µ(p) = O(α(p)2). More precisely, we

have µ(p) ≤
(
α(p)

2

)
≤ α(p)2/2. Note that there do not exist any USF subsets of F2

and thus µ(2) = ∞. However, we have α(2) = 2 as {0, 1} is balanced. In the proof of

Lemma 3.11 we used the fact that if a + a = b + c and {a} 6= {b, c} then b and c are

distinct. This is of course true once p > 2. Notice that balanced is an affine invariant

property. Furthermore, much like USF sets there are no finite balanced sets of integers.

So Theorem 3.8 applies to balanced sets. That is

α(p) > log4 p.

Table 3.2 gives α(p) and an example of a balanced set of size α(p) for primes p ≤ 61.

To establish a simple example where α(p) is small let p = 2q−1 be a Mersenne prime.

Consider the polynomial −2+x+x2 ∈ Fp[x]. We can factor −2+x+x2 = (x−1)(x+2)

so it has roots 1,−2 ∈ Fp. We note that 2 has order q in F∗p. Thus −2 has order 2q in

F∗p. Let A = 〈−2〉 = {(−2)i : i ∈ [2q]} be the multiplicative subgroup of F∗p generated

by −2. Note that A is balanced: for any i, we have 2ai = ai+1 + ai+2 with exponents

taken modulo 2q. So for p a Mersenne prime we have α(p) < 2 log2 p + 1 and indeed

there is a small balanced set which is a multiplicative subgroup. Thus there is a USF

set of size O(q2) = O(log2 p).
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p α(p) minimal balanced set

2 2 {0, 1}
3 3 {0, 1, 2}
5 4 {0, 1, 2, 3}
7 5 {0, 1, 2, 3, 4}
11 5 {0, 1, 2, 4, 7}
13 6 {0, 1, 2, 3, 5, 8}
17 6 {0, 1, 2, 3, 6, 11}
19 6 {0, 1, 2, 4, 7, 12}
23 7 {0, 1, 2, 3, 4, 8, 15}
29 7 {0, 1, 2, 3, 6, 10, 19}
31 7 {0, 1, 2, 3, 6, 11, 20}
37 7 {0, 1, 2, 4, 7, 13, 24}
41 8 {0, 1, 2, 3, 4, 8, 15, 26}
43 7 {0, 1, 2, 4, 12, 23, 39}
47 8 {0, 1, 2, 3, 5, 9, 27, 38}
53 8 {0, 1, 2, 3, 5, 10, 30, 43}
59 8 {0, 1, 2, 3, 6, 27, 44, 53}
61 8 {0, 1, 2, 3, 6, 11, 33, 50}

Table 3.2: α(p) and an example minimal balanced set for primes p = 2, . . . , 61.

The following construction of a balanced set is due to Straus [Str76]. Straus was

trying to construct sets A ⊆ Fp so that there were no unique differences. He noted that if

he constructed a symmetrical set, i.e., A = −A, then if a 6= b we have a−b = (−b)−(−a)

and thus the remaining challenge is to find another representation for a − (−a) = 2a.

If this exists, i.e. 2a = b − c then since A is symmetrical, −c ∈ A and thus b + (−c)

is a distinct set representative for 2a. So we see that a symmetrical set has no unique

differences if and only if it is balanced. Straus gave the construction

A = {±[p/2],±[p/4], . . . ,±[p/2i], . . . ,±1, 0}.

Observe that |A| < 2 log2 p + 1. The set A is clearly symmetrical. For i > 1,

2[p/2i] = [p/2i−1] + ε where ε ∈ {0,−1}. Next 2[p/2] = p−1 = 0 + (−1). By symmetry

the doubles of the negatives are twice set-represented as well. Thus Straus established

that

α(p) < 2 log2 p+ 1

which is the same bound achieved by the subgroup construction for Mersenne primes.

Thus, using Lemma 3.11 and the construction of Straus we have established that µ(p)
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is well short of Θ(
√
p).

Theorem 3.13. For prime p ≥ 2, µ(p) ≤ O(log2 p).

In Section 3.1 we gave a lower bound µ(p) > log4 p based on an argument that a

set smaller than size log4 p had an affine mapping to lie in [0, p/2]. Since no balanced

set can lie in [0, p/2] the argument shows that α(p) > log4 p. Thus we have log4 p <

α(p) < 2 log2 p+ 1. We will discuss improved lower and upper bounds for balanced sets

in Section 3.4. For the moment, observe that the constructions we have highlighted

of balanced sets grow quadratically under addition. For example, if p = 2q − 1 is a

Mersenne prime and A = 〈−2〉 then B := {1, 2, 4, . . . , 2q−1} ⊆ A and we see that

|B + B| = Ω(q2) = Ω(|A|2). The same is easily seen to hold for the more general

construction of Straus.

Next, we relax the notion of balanced to obtain a larger class of USF sets.

Definition 3.14. We say a nonempty set A ⊆ Fp is NUT (no unique triples) if for

each a ∈ A there exists b, c, d ∈ A with b, c, d not all equal such that 3a = b+ c+ d.

We note that a balanced set is NUT as if 2a = b+ c with b 6= c then 3a = a+ b+ c

and a, b, c are not all equal. Note that the property NUT (like balanced and USF) is

an affine invariant property.

Definition 3.15. For any prime p let β(p) = min{|A| : A is NUT}.

Since all balanced sets are NUT, we have β(p) ≤ α(p). Table 3.3 gives β(p) and an

example of a NUT set of size β(p) for primes p ≤ 61.

Lemma 3.16. Let p > 2 be a prime and A ⊆ Fp be a NUT set. Let B = A+A. Then

B is a USF set.

Proof. Notice that the result is trivial if p = 3, so we can assume p > 3 and thus for

x, y ∈ Fp, 3x = 3y implies x = y. As in the proof of Lemma 3.11 we consider an element

element s ∈ B + B. We write s as a 4-sum of elements of A. The first three cases are

identical to before and do not require any special structure on A. The final two NUT

cases require discussion.
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p β(p) minimal NUT set

2 2 {0, 1}
3 2 {0, 1}
5 3 {0, 1, 2}
7 3 {0, 1, 3}
11 4 {0, 1, 2, 5}
13 4 {0, 1, 2, 6}
17 4 {0, 1, 3, 7}
19 4 {0, 1, 3, 8}
23 5 {0, 1, 2, 4, 11}
29 5 {0, 1, 2, 5, 12}
31 5 {0, 1, 2, 5, 13}
37 5 {0, 1, 3, 7, 15}
41 5 {0, 1, 2, 6, 29}
43 5 {0, 1, 3, 7, 18}
47 5 {0, 1, 3, 7, 20}
53 5 {0, 1, 3, 8, 37}
59 6 {0, 1, 2, 3, 20, 28}
61 5 {0, 1, 3, 21, 55}

Table 3.3: β(p) and an example minimal NUT set for primes p = 2, . . . , 61.

4. s = a+ a+ a+ b. In this case we note that 3a = a1 + a2 + a3 with a1, a2, a3 not

all equal. If a1, a2 and a3 are distinct then s is a sum of at least three distinct

elements, so we are in either case (1) or case (2) of Lemma 3.11. If the ai are not

distinct then, without loss of generality, a2 = a3. If b 6= a1 and b 6= a2 then we

have three distinct elements and are fine. If not, we have two subcases:

(a) If b = a1 then s = a1 + a1 + a2 + a2 which is case (3) of Lemma 3.11.

(b) If b = a2 then we show that s = (a + a) + (a + a2) = (a1 + a2) + (a2 + a2)

gives two distinct set-representations. We first note that a + a2 6= a2 + a2

since a 6= a2. Next we note that a+ a 6= a2 + a2 again since a 6= a2.

5. s = a+ a+ a+ a. As before, 3a = a1 + a2 + a3 with a1, a2, a3 not all equal. If the

ai are distinct then s is the sum of at least three distinct elements and are fine. If

two of the ai are equal, we have without loss of generality, a2 = a3. Again a 6= a1

and a 6= a2. Thus we still have at least three distinct elements.

In analogy with the construction of Straus we have the following construction of a
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NUT set. Let p be a prime. Then let

A = {±[p/3],±[p/9], . . . ,±[p/3i], . . . ,±1, 0}.

It is straightforward to see thatA is NUT. This construction shows that β(p) < 2 log3 p+

1.

3.3 Lower bounds for balanced and NUT sets

In Section 3.1 we gave Theorem 3.8 which showed that a set smaller than size log4 p had

an affine mapping to lie in [0, p/2]. Thus we have shown µ(p) and α(p) must be at least

log4 p. Notice that a similar argument shows that if |A| < log6 p then we can find an

affine mapping to the interval [0, p/3] and thus β(p) > log6 p. In [BDS76] the authors

show that α(p) > log2 p and adapting their approach we can show that β(p) > log3 p.

Our attempts to further adapt these arguments to give an improved lower bound for

USF sets inspired Chapter 2.

To begin let A = {a1, . . . , an} be a balanced set. We can associate to A a digraph, G,

whose vertices are [n] and for each i we consider some equation of the form 2ai = aj+ak,

j 6= k, and add directed edges i→ j and i→ k. We note that at least one equation of

this form must exist since A is balanced. If more than one exists then we have a choice

and thus there may be more than one digraph we can associate to a balanced set, A.

Similarly, if A is NUT then we construct a (possibly multi) digraph G as follows. If

2ai = aj + ak we add edges as before and if no such representation exists then we have

3ai = aj + ak + a` where i /∈ {j, k, `}, and we add (possibly multi) edges i → j, i → k

and i → `. Note that we have avoided loops since if 3ai = ai + aj + ak this simplifies

to 2ai = aj + ak. We independently developed this approach and made several of the

following conclusions, but it seems to have originated in [BDS76] and was rediscovered

in [NQ08].

The first key observation is that if A is a minimal, under inclusion, balanced (re-

spectively NUT) set then an associated digraph, G, is strongly connected. This is true

regardless of the choice of G. This follows as if there existed a proper subset of vertices,

U , with no outgoing edges then B = {ai : i ∈ U} would be balanced (respectively
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NUT) and a proper subset of A. Next, let M be the adjacency matrix of G, i.e. mi,j

is the number of directed edges from i to j. Let D be the degree matrix of G. That is,

D is a diagonal matrix with di,i equal to the out-degree of vertex i. Then, in analogy

with the case for simple graphs, let L = D −M be the Laplacian matrix of G. If A

is balanced then L has diagonal elements equal to 2. If A is NUT then the diagonal

elements are either 2 or 3.

Recalling that n = |A|, we next want to show that rankQ(L) = n − 1. Suppose

x ∈ Rn is not a multiple of the all ones vector and Lx = 0. Then U = {i : xi = min(x)}

is a proper subset of the vertices of G. Since G is strongly connected there exists an

edge i → j with i ∈ U and j /∈ U . Then we have either 2xi = xj + xk for some k or

3xi = xj + xk + x` for some k, ` but in either case as xi < xj we have a contradiction

to the minimality of xi. Thus rankR(L) = n − 1 and consequently rankQ(L) = n − 1.

Next if x ∈ Fnp is such that xi = ai we see that over Fp we have Lx = 0. Since x is not a

multiple of the all ones vector we have rankFp(L) ≤ n−2. Thus L has a (n−1)×(n−1)

submatrix with non-zero determinant and p divides this determinant. For 1 ≤ i, j ≤ n

let Li,j be the (n− 1)× (n− 1) submatrix formed by deleting row i and column j. By

the directed matrix tree theorem [Cha82], det(Li,j) is the number of oriented spanning

trees rooted at i and is independent of j. We have established there exists some i so

that p|det(Li,i) and thus

p ≤ det(Li,i). (3.2)

Now if A is balanced note that Li,i has 2 on the diagonal and each row has at

most two −1’s off the diagonal. We begin by noting that if we apply the Gershgorin

circle theorem we get the bound det(Li,i) ≤ 4n−1 and obtain n > log4 p + 1. If we

apply Hadamard’s inequality [Had93] then as
√

22 + (−1)2 + (−1)2 =
√

6 we have

n > log√6 p + 1. However, in [Sch78], Schinzel proved the following upper bound for

the determinant of real matrices:

det(A) ≤
n∏
i=1

max


∑

1≤j≤n
ai,j>0

ai,j ,
∑

1≤j≤n
ai,j<0

ai,j

 . (3.3)
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Applying equation (3.3) to Li,i we have p < 2n−1 and thus n > log2 p + 1. So

α(p) > log2 p+ 1.

If A is NUT then the above argument goes through except that Li,i has diagonal en-

tries at most 3 and applying equation (3.3) shows that β(p) > log3 p+1. We summarize

this in Theorem 3.17 below.

Theorem 3.17. For all primes p,

α(p) > log2 p+ 1

and

β(p) > log3 p+ 1.

3.4 Tight bounds for balanced sets and improved bounds for NUT

sets

In Section 3.1, we described a construction due to Straus [Str76] that showed α(p) <

2 log2 p + 1. In the same paper, Straus gave a more complicated construction of a

symmetrical balanced set that showed for any ε > 0 and p sufficiently large,

α(p) < (2 + ε) log3 p+ 1.

In [BDS76], this upper bound was improved to α(p) ≤ (2+o(1)) log3 p. Both these con-

structions were symmetrical since their goal was to find sets with no unique differences.

In [Ned09] the authors show via algorithmic construction that

α(p) < (1 + o(1)) log2 p. (3.4)

The same authors in [Ned12] use an improved form of Schinzel’s inequality found

in [JN80] to modestly improve the lower bound for balanced sets to α(p) > log2 p +

1 + log2(4/3) ≈ log2 p+ 1.41. Together with equation (3.4) this establishes pretty tight

bounds for balanced sets. Using equation (3.4) and the fact that for any balanced set

A, |A+A| ≤ 1
2 |A|

2 we have
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Theorem 3.18. For prime p > 2, µ(p) < (1/2 + o(1)) log2
2 p.

In [Jan07] the authors study a generalized notion of balanced. If v = (v1, . . . , vk) ∈

Fkp is a vector of coefficients and A ⊆ Fp one can ask when for all (a1, . . . , ak) ∈ Ak

whether
∑k

i=1 viai has multiple representations as a v-weighted sum. For example

if v = (1, 1) then this describes balanced sets. Again, we stress that they consider

a+ b = b+ a as distinct representations. They define

Definition 3.19. For v ∈ Fkp Let f(v, p) be the size of the minimal, nonempty, set

A ⊆ Fp such that for all (a1, . . . , ak) ∈ Ak, the sum
∑k

i=1 viai has at least two repre-

sentations.

They prove the following theorem by generalizing the construction in [Str76].

Theorem 3.20. Let v ∈ Fkp. For all ε > 0, k ≥ 2 and every prime p > pε we have

f(v, p) <

(
1 + ε

log(2k − 1)

)
log p+ 3. (3.5)

Equation (3.20) applied to v = (1, 1, 1) shows the following:

Corollary 3.21. For all ε > 0 and p sufficiently large, β(p) <
(

2+ε
log 5

)
log p+ 3.

Note that 2/ log 5 < 1/ log 2, thus for p sufficiently large we have β(p) < α(p). Thus

we can improve Theorem 3.18 to the following.

Theorem 3.22. For all ε > 0 and p sufficiently large, µ(p) <
(

2+ε
log2 5

)
log2 p+O(log p).

We suspect that, as with balanced sets, the lower bound for NUT sets should be close

to tight and thus we suspect Theorem 3.22 can be improved to µ(p) < (1+ε) log2
3 p. We

will give some experimental evidence for this and discuss the notion of regular balanced

and NUT sets in Section 3.5.
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3.5 Regular balanced and NUT sets

As noted in Section 3.3, to a balanced or NUT set A of size n we can associate a digraph

G. In the case of balanced sets, such digraphs are 2-out regular. For a NUT set we

can associated a digraph G for which each vertex has out-degree 2 or 3. We contrast

the following two constructions. In Section 3.2 we gave the construction of balanced

set A = {±[p/2],±[p/4], . . . ,±[p/2i], . . . ,±1, 0}. We noted that 2[p/2i] = [p/2i−1] + ε

where ε ∈ {0,−1}. We can associate a digraph to this construction. Observe that the

vertices corresponding to −1, 0, 1 ∈ Fp together have larger average in-degree than the

other vertices. Certainly, we do not expect that we can associate a digraph to this set

where all the in-degrees are the same. On the other hand, in Section 3.2, we gave for

a Mersenne prime p = 2q − 1 the construction A = 〈−2〉. If we write A = {a1, . . . , an}

where ai = (−2)i and n = 2q then we observed that 2ai = ai+1 + ai+2 with indices

modulo n. Thus we can associate a digraph G on vertices [n] where i → i + 1 and

i → i + 2 again taking vertices modulo n. This digraph is 2-regular. This inspires the

following definition.

Definition 3.23. We say a balanced set, A ⊆ Fp is regular if there is an associated

digraph, G, which is 2-regular.

Definition 3.24. We say a NUT set, A ⊆ Fp is regular if there is an associated digraph,

G, which is 3-regular.

We of course have the same lower bounds for regular balanced and regular NUT sets

as established previously. The goal of this section is to provide experimental evidence

that these lower bounds are close to tight even for this constrained class of sets.

3.5.1 Circulant matrices and balanced and NUT subgroups

Definition 3.25. We say a digraph, G, on vertices [n] is circulant if there exists a set

S ⊆ [n − 1] such that i → i + s if and only if s ∈ S. The sum is taken modulo n. We

denote this graph Cn(S).

It is straightforward to see that Cn(S) is strongly connected if and only if gcd(S) and
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n are relatively prime. Note that the construction of a balanced set from a Mersenne

prime, p = 2q − 1, can be associated to the circulant digraph C2q({1, 2}). Furthermore,

note that the balanced set was a multiplicative subgroup.

Lemma 3.26. Let A be a subgroup of F∗p of size n. Then A is balanced if and only if

A has a generator g which is the root of −2 + xi + xd with 1 ≤ i < d < n. In this case

we can associate to A the digraph Cn({i, d}).

Proof. If g is a root of −2 + xi + xd with order n > d then A = 〈g〉 has order n and

if a = gj ∈ A then 2a = gj+i + gj+d with exponents taken modulo n. Now if A is a

subgroup of F∗p of size n which is balanced, then 1 ∈ A is twice set-represented. This

means 2 = gi + gd for some 1 ≤ i < d < k. This of course means g is a root of

−2 + xi + xd.

In order to allow for NUT sets with sums of the form 3a = 2b + c we extend our

notions to multi-digraphs.

Definition 3.27. Let n be a positive integer. Let S be a multiset of elements from [n].

We say a multi-digraph, G, on vertices [n] is multi-circulant if for all i ∈ [n], the edge

i→ i+ s has multiplicity equal to the multiplicity of s in S.

When it is clear that S is a multiset, we will expand our notation and denote this

graph Cn(S) as in the case of simple digraphs. The proof of the following lemma is

nearly identical to the proof of Lemma 3.26.

Lemma 3.28. Let A be a subgroup of F∗p of size n. Then A is NUT if and only if A

has a generator g which is the root of −3 + xi + xj + xd with 1 ≤ i ≤ j ≤ d < n and

i, j, d not all equal. We can associate to A the digraph Cn({i, j, d}).

Lemmas 3.26 and Theorem 3.17 combine to imply the following. Let f(x) = −2 +

xi+xd with 1 ≤ i < d. Let g(x) = xn−1 with n < log2 p. Then h(x) = gcd(f(x), g(x))

has no roots in Fp except for 1. This follows for if h(x) had a non-trivial root in Fp it

would generate a balanced subgroup of size less than log2 p contradicting Theorem 3.17.

Similarly we cannot have f(x) = −3 +xi+xj +xd with 1 ≤ i ≤ j ≤ d < n not all equal

and g(x) = xn − 1 with n < log3 p have any non-trivial roots in common.
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Let A be a minimal balanced (respectively NUT) set in Fp. Let G be an associated

digraph (possibly a multi-graph if A is NUT). We observed in Section 3.3 that if G

is strongly connected and L is the Laplacian matrix of G then rankQ(L) = n − 1 and

rankFp(L) ≤ n− 2. In the case that A is a balanced subgroup of F∗p we can associate a

circulant digraph, G. The Laplacian matrix, L, is a circulant matrix. That is each row

is a cyclic rotation of the previous row. The number of oriented spanning trees rooted

at any vertex is independent of the choice of vertex by symmetry and equal to det(L1,1).

The number of oriented spanning trees in circulant digraphs is well studied. See for

example [LPW01, McK83]. It is shown in [LPW01] that amongst all 2-regular circulant

digraphs, the digraph with the maximal number of oriented spanning trees is Cn({1, 2})

which has rooted at any given vertex
⌊

2n+1
3

⌋
oriented spanning trees. See [Slob]. We

can similarly find regular balanced NUT sets.

Example

Let f(x) = −3 + 2x+x2 = (x− 1)(x+ 3). A root of f in Fp generates a NUT subgroup

A = {a1, . . . , an} where 3ai = 2ai+1 + ai+2. So we seek a prime for which the element

−3 has small multiplicative order. For example, 371 − 1 = 2p where p is the 112-bit

prime 3754733257489862401973357979128773. Then A = 〈−3〉 is a 142 element regular

NUT subgroup. Thus µ(p) ≤
(

142
2

)
= 10011.

3.5.2 Experimentally finding small regular balanced and NUT sets

Ideally we would like for a given prime p to be able to show that there exists small

regular balanced and NUT subsets. In this case small means close to log2 p and log3 p

respectively. Short of this goal we will give experimental evidence that for a given n

there exist regular balanced, respectively NUT sets of size n for primes close to 2n

respectively, 3n. We define the following.

Definition 3.29. We say a permutation π ∈ Sn is a ménage permutation if for all

i ∈ [n], π(i) /∈ {i, i+ 1} with indices taken modulo n.

Thus a ménage permutation is a derangement with the added requirement that
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π(i) 6= i + 1. These arise in studying the famous ménage problem [Li15, KR46].

In [KR46], it is shown that the number of such permutations is asymptotic to n!/e2.

Definition 3.30. We say an n × n matrix, M , is a ménage matrix if there exists a

ménage permutation π ∈ Sn such that for all i, mi,i = 2, mi,i+1 = mi,π(i) = −1. All

other entries in M are zero.

Thus if M is an order n ménage matrix it is the Laplacian matrix of the digraph,

G, on vertices [n] where i→ i+ 1 and i→ π(i) for each i. The fact that the digraph is

2-regular follows from the definition of ménage permutations. Further, since i→ i+ 1

for all i, G contains a directed Hamiltonian cycle and thus is strongly connected. By

the regularity of G the number of oriented spanning trees at any vertex is the same and

thus the determinant of any (n−1)×(n−1) submatrix is the same. So let t = det(M1,1).

So if a prime p divides t then a nontrivial solution to Mx = 0 gives a candidate regular

balanced subset in Fp. Note that we do not immediately have A = {xi : i ∈ [n]} as a

regular balanced set since we may have xi = xj . However, if every coordinate appears

at most twice A will be balanced.

Definition 3.31. For x ∈ Fkp let U(x) = {xi : i ∈ n} be the set containing the

coordinates of x.

We use “U” because we have “uniqued” the coordinates of x.

Theorem 3.32. Let L be the Laplacian matrix of a digraph for which all vertices have

out-degree two. For a prime p, let x ∈ Fnp be such that Lx = 0. Suppose that each

a ∈ Fp appears at most twice as a coordinate of x. Then U(x) is balanced.

Proof. Suppose some element, a, appears as a coordinate twice in x. It suffices to show

that we can remove that coordinate and doubles are still covered. Without loss of

generality, a = x1 = x2. For i > 2, xi 6= a. We need to show that we can remove x2 and

still have non unique doubles. We have two cases. Case one: If we remove x2 can we

still represent 2x1 as a sum in a different way? If 2x1 = x2+xd with d > 2 then xd = x1,

but then x1 appears at least three times. So 2x1 = xi + xd with i, d > 2. So removing

x2 does not prevent covering 2a. Case two: If we remove x2 can we still represent 2xi
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for i ≥ 3 as a sum in a different way? It suffices to check that 2x3 is covered. We cannot

have 2x3 = x1 + x2 as then x3 = x1 = x2. So suppose 2x3 = x2 + xd. But x1 = x2. So

2x3 = x1 + xd. So removing x2 does not prevent covering 2x3.

A similar statement holds for NUT sets.

Theorem 3.33. Let L be the Laplacian matrix of a digraph for which all vertices have

out-degree 2 or 3. For a prime p > 3, let x ∈ Fnp be such that Lx = 0. Suppose that

each a ∈ Fp appears at most twice as a coordinate of x. Then U(x) is NUT.

Proof. Suppose without loss of generality that a = x1 = x2. We showed in the proof

of Theorem 3.32 that removing x2 does not cause equations of the form 2xi = xj + xk

to fail. If we have 3xi = xj + xk + x` and xj = xk = a then 3xi = 2x1 + x` satisfies

the requirement in Definition 3.24. If we have 3xi = 2xj + xk with j 6= k and xj = xk

then 3xi = 3xj which, as p > 3, implies xi = xj = xk so the element appears three

times.

Note that if M is a ménage permutation and Mx = 0 in Fp it is not necessarily the

case that U(x) is a regular balanced set since uniquing may have destroyed regularity.

However, as noted if the coordinates of x are distinct then they do form a regular

balanced set.

In [Bal10] generalizations of ménage permutations are studied. We can extend the

relationship described above.

Definition 3.34. We say π ∈ Sn is a ménage-3 permutation if for all i ∈ [n], π(i) /∈

{i, i+ 1, i+ 2} with indices taken modulo n. We say an n×n matrix, M , is a ménage-

3 matrix if there exists a ménage-3 permutation π ∈ Sn such that for all i, mi,i = 2 and

mi,i+1 = mi,i+2 = mi,π(i) = −1. All other entries in M are zero.

We employed the following experimental approach to finding small regular balanced

sets. We chose a value n and for several iterations i = 1, 2, .. we chooseM to be a random

ménage matrix of order n. We did this by choosing the accompanying ménage permu-

tation uniformly at random. We compute ti = det(M1,1). This gives us a sequence

t1, t2, . . . of integers which from Schinzel’s inequality given in equation (3.3) are at most
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2n−1. We would like to find the largest prime dividing this list. As n increases, factoring

all the ti is quickly infeasible. However, since we are interested in the largest prime

dividing this list this is unnecessary. Under the hopefully mild assumption that these

numbers behave like “random” integers if we have Ω(n) such numbers a large prime

should divide one of them. So for each ti we employed a few iterations of the Pollard

rho algorithm [Pol75] to prune off small primes. Once Pollard rho found no more prime

factors if a pseudoprimality test said the remaining factor was prime we recorded it.

Ultimately, we chose the largest such prime we found and solved the resulting system

of equations to test for uniqueness. In so doing we were able to find very large primes

with small regular balanced sets. An analogous approach using ménage-3 matrices

found large primes with small regular NUT sets. See Table 3.4 and Table 3.5 for some

results for n = 100, 200, 1000, 2000, 4000 of regular balanced (respectively NUT) sets for

which the size of the corresponding field is close to 2n (respectively 3n). For example,

we found when n = 4000 that for a prime p ≈ 2.721×101904 there is a regular balanced

NUT set in Fp of size n = 4000. In this case log3 p/4000 ≈ 0.997878.

For completeness we give an example of a large balanced NUT set found via com-

puter experimentation. The smallest example given in Table 3.5 is for n = 100 and p =

12233463100534492502733507254619486556974809503. Since A is given as a solution to

Lx = 0 where L is a ménage-3 matrix it suffices to give the ménage-3 permutation, π,

and the interested reader can compute A for themselves and confirm that it is indeed a

regular NUT set. We note that for this particular L the rank over Fp is n−2 and thus up

to affine transformation the resulting NUT set is unique. Writing π in one-line notation,

i.e. π(1), π(2), . . . we have π = (14, 55, 46, 7, 15, 23, 17, 72, 99, 1, 25, 73, 18, 71, 41, 93, 29, 7

5, 52, 83, 57, 45, 95, 12, 68, 90, 96, 84, 94, 38, 50, 24, 79, 6, 98, 92, 4, 78, 66, 26, 60, 51, 91, 33, 6

9, 21, 89, 28, 9, 77, 54, 32, 87, 58, 88, 5, 16, 61, 35, 43, 31, 27, 82, 85, 53, 76, 47, 100, 74, 40, 36,

42, 81, 3, 39, 86, 80, 37, 30, 67, 49, 19, 97, 44, 64, 10, 8, 48, 2, 20, 13, 63, 11, 62, 70, 65, 59, 22, 5

6, 34).

The experimental evidence above suggests the following conjectures.

Conjecture 3.35. For all ε > 0, there are infinitely many primes, p, such that there

exists a regular balanced set A ⊆ Fp with |A| < (1 + ε) log2 p.
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n p approximation log2 p/n

100 1.036× 1027 0.897441
200 1.329× 1057 0.948807
1000 1.524× 10296 0.983899
2000 7.064× 10596 0.991345
4000 2.942× 101197 0.994476

Table 3.4: Regular balanced sets

n p approximation log3 p/n

100 1.223× 1046 0.96595
200 2.734× 1093 0.979174
1000 3.072× 10474 0.99448
2000 1.411× 10951 0.996759
4000 2.721× 101904 0.997878

Table 3.5: Regular NUT sets

Conjecture 3.36. For all ε > 0, there are infinitely many primes, p, such that there

exists a regular NUT set A ⊆ Fp with |A| < (1 + ε) log3 p.

To give a sense of the distribution of det(M1,1) for random ménage and ménage-

3 matrices we performed the following experiment. We set n = 20 and for 107 random

trials we computed det(M1,1) for random ménage and ménage-3 matrices. We nor-

malized these values by dividing by 2n−1 and 3n−1 for ménage and ménage 3 matrices

respectively. A histogram of results can be found in Figures 3.2 and 3.3. Given that

the number of ménage matrices is asymptotic to n!/e2 � 2n and the histograms do

not show any artifacts we strengthen Conjectures 3.35 and 3.36 to Conjectures 3.37

and 3.38 below.

Conjecture 3.37. For all ε > 0, for p sufficiently large, there exists a regular balanced

set A ⊆ Fp with |A| < (1 + ε) log2 p.

Conjecture 3.38. For all ε > 0, for p sufficiently large, there exists a regular NUT

set A ⊆ Fp with |A| < (1 + ε) log3 p.
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Figure 3.2: A histogram of det(M1,1)/2n−1 for n = 20 for 107 random ménage matrices,
M .

Figure 3.3: A histogram of det(M1,1)/3n−1 for n = 20 for 107 random ménage-3 matri-
ces, M .
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3.6 USF sets in Z/nZ for composite n

We can extend our definition of µ to composite n.

Definition 3.39. If n ≥ 2 is a positive integer let µ(n) be the minimum size of a USF

set in Z/nZ. We set µ(1) = µ(2) =∞.

The first few values of µ(n) for n ≥ 3 can be found in Table 3.6.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

µ(n) 3 4 4 3 5 4 3 4 7 3 7 5 3 4 8 3 9 4

Table 3.6: µ(n) for small n.

As Z/nZ is a subgroup of Z/mnZ, it is clear that for any m,n ∈ N that µ(mn) ≤

min(µ(m), µ(n)). Experimentally, we seem to have equality in this statement. So we

make the following conjecture.

Conjecture 3.40. For all n > 1, µ(n) = minp|n µ(p).

The analogous statement holds for balanced sets. In [NQ08], the authors extend α

to the integers and prove the following theorem.

Theorem 3.41. Let n > 1. We have α(n) = minp|n α(p).

Their main tool is the following lemma.

Lemma 3.42. Let m|n and let S be a balanced set modulo n that is minimal under

inclusion. Then S mod m is balanced or consists of a single point.

We note that the analogous statement is not true for USF sets. Let n = 22 and

A = {0, 1, 2, 6, 9, 11, 12, 13, 17, 20}. One can check that A is USF in Z/nZ and is a

minimal USF set under inclusion. Note that µ(22) = µ(11) = 7 so A is not minimal.

We can write A = B ∪ (B + 11) where B = {0, 1, 2, 6, 9}. So A mod 11 = B and B is

not USF in Z/11Z.

3.7 Unique Differences, Products and Quotients

We have already remarked, but we reiterate that the question of when a set is unique

difference free (UDF) was studied in [Str76]. To establish notation we will let µ−(p) be



66

the size of the smallest UDF set in Fp. We have observed that µ−(p) = O(log p). We

motivated our study of USF sets with a geometrical example and sets with no unique

differences have a similar geometric motivation. Suppose we have p uniformly spaced

points on a circle. Let A be a subset of these points. For every pair of points draw the

line segment connecting them. Then A being UDF is equivalent to the statement that

for every line segment there is another line segment of the same length. Thus we can

interpret UDF as “unique distance free.”

Definition 3.43. We call a nonempty set A ⊆ Fp unique product free (UPF) if every

element of its product set is at least twice covered. That is for all t ∈ A · A there exist

a, b, c, d with {a, b} 6= {c, d} such that t = ab = cd.

It is straightforward to see that if A is UPF then A∪{0} is UPF and also if B∪{0}

is UPF then B is UPF. So we can safely ignore the element 0. In the case of quotients

we just require 0 not to be present.

Definition 3.44. We call a nonempty set A ⊆ F∗p unique quotient free (UQF) if every

element of its quotient set is at least twice covered. That is for all t ∈ A/A there exist

a, b, c, d with {a, b} 6= {c, d} such that t = a/b = c/d.

Definition 3.45. For any prime p, let µ∗(n) be the minimal size of a UPF subset of

Fp and let µ∗−(n) be the minimal size of a UQF subset of Fp.

Let A be a UPF set. As observed above we can remove the element 0 if present and

preserve the UPF property. Thus a minimal UPF set does not contain 0. Since F∗p is a

cyclic group of order p−1, the set A corresponds to a USF set in Z/(p−1)Z. Similarly,

a UQF set in Fp corresponds to a UDF set in Z/(p− 1)Z. Thus we have

µ∗(p) = µ(p− 1)

and

µ∗−(p) = µ−(p− 1).
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3.8 Conclusion and Main Open Questions

We have shown that µ(p) = O(log2 p) disproving the conjecture that µ(p) = Θ(
√
p).

We have the lower bound µ(p) = Ω(log p). Resolving this gap is an open question. We

conjectured in Section 3.5 that regular balanced and NUT sets exist of size close to log2 p

and log3 p respectively. Finally, for composite n our main open question is to resolve

Conjecture 3.40. That is, for all positive integers, n, do we have µ(n) = minp|n µ(p)?



68

Chapter 4

Affine fall k-colorings of the Hamming cube

This chapter is joint work with Keith Frankston.

4.1 Introduction and Background

Let G be a simple graph. That is an undirected graph without loops or multiple edges.

We denote the vertices of G by V (G) and the edges by E(G).

Definition 4.1. For a positive integer k, a k-coloring of G is a function C : V (G)→ S

where |S| = k.

Clearly, the number of k-colorings for a graph on n vertices is kn.

Definition 4.2. A coloring C : V (G) → S is proper if for all u, v ∈ V (G) if u ∼ v

then C(u) 6= C(v).

The following terminology originated in [DHH+00].

Definition 4.3. We say a k-coloring C : V (G)→ S is a fall k-coloring if C is a proper

k-coloring and for every vertex v and for every color j 6= C(v) there exists a vertex u

such that u ∼ v and C(u) = j.

That is every vertex is adjacent to a vertex in each of the other k − 1 color classes.

Equivalently, C : V (G)→ S is a fall k-coloring if |S| = k and for all v, {C(u) : u ∼ v} =

S \ {C(v)}. The name is seasonally inspired, as each vertex has a maximally colorful

view. Indeed [DHH+00] has the following definition.

Definition 4.4. We say a vertex, v, in a k-coloring is colorful if it is adjacent to at

least one vertex in each of the other color classes.
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In this chapter the graph of interest is the Hamming cube of dimension n (sometimes

called n-cube or cube graph) which we denote by Qn. This is the graph whose vertices

are the 2n bit strings of length n and two vertices are adjacent if and only if they differ

in exactly one bit.

If C : V (G) → [k] is a k-coloring we denote by Vi = {v ∈ V (G) : C(v) = i} the

i-th color class. Notice that for a proper coloring each color class, Vi, is an independent

set. If C is a fall k-coloring then notice that Vi is a dominating set because if u /∈ Vi

then by Definition 4.3 there must be some v ∈ Vi such that u ∼ v. Thus the Vi are

independent, dominating and partition V (G). Consequently, some authors call fall k-

colorings “idomatic partitions” [GH13]. Since our main construction will be a coloring

scheme based on trees it seems natural to use the “fall” terminology. Figure 4.1 shows

a fall 4-coloring of Q3.

Figure 4.1: An affine fall 4-coloring of Q3. Note that vertices of the same color are
antipodal.

As an aside, we mention that the similar question of finding the domatic number of

graphs, in particular the Hamming cube is well studied [Zel82, Zel91, Sloa, HHW88].

Here we set τ(n) to be the size of the largest domatic partition of Qn, i.e. the maximum

number of sets, Vi, such that the Vi partition V (Qn) and each Vi is dominating. These

sets need not be independent. Zelinka [Zel82] showed that if n = 2a or n = 2a − 1



70

then τ(Qn) = 2a. Other values are mostly open [Sloa]. For example it is known that

τ(Q10) ∈ {8, 9}, but which of these values is correct is an open question.

In [DHH+00] it was asked for which k do there exist Qn with fall k-colorings? This

question was answered by Laskar and Lyle in [LL09] who proved the following theorem.

Theorem 4.5. If k = 3 then for any n, Qn is not fall k-colorable. For k 6= 3, let a be

the smallest integer such that k ≤ 2a. Then for n ≥ 2a − 1 there is a fall k-coloring of

Qn.

There is a natural identification of Qn with the vector space Fn2 . Let e1, . . . , en be

the standard basis vectors for Fn2 . If u, v ∈ Fn2 then we say u ∼ v if and only if there

exists some ei so that x+ ei = y. In this context, we may ask algebraic questions about

the color classes. In particular we are interested in colorings where each color class, Vi,

is an affine subspace.

Definition 4.6. We call a coloring C : Fn2 → S affine if for each i ∈ S, the color class

Vi is an affine subspace of Fn2 .

We note that if k is a power of 2 then constructing affine fall k-colorings of Qn is

straightforward.

Theorem 4.7. If k = 2a and n ≥ k − 1 then there is an affine fall k-coloring of Qn.

Proof. Let ei be the i-th standard basis vector of Fn2 . Construct a linear function

φ : Fn2 → Fa2 by ensuring that φ({e1, . . . , en}) = Fa2 \ {0}. This is achievable provided

n ≥ k−1 = 2a−1. Extend by linearity to define φ. Note that φ gives a proper coloring

as if u, v ∈ Fn2 and u ∼ v we have some i such that u+ ei = v and φ(v) = φ(u+ ei) =

φ(u) + φ(ei) 6= φ(u) as φ(ei) 6= 0. Furthermore, for any v ∈ Fn2 if C(v) = x ∈ Fa2, let

y ∈ Fa2 be any color such that y 6= x. Then x + y 6= 0 and thus there is some i such

that φ(ei) = x + y. Then let u = v + ei and we see that u is a neighbor of v and

φ(v) = φ(u+ ei) = φ(u) + φ(ei) = x+ (x+ y) = y. Thus, φ is an affine fall k-coloring

of Fn2 .

In fact for k = 2a and n ≥ k − 1, the linear map φ : Fn2 → Fa2 given in the proof of

Theorem 4.7 shows we can give a affine k-coloring of Fn2 such that each of the 2a color
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classes are parallel. For example, in Figure 4.1 each of the color classes, Vi, has size two

and therefore are trivially dimension one affine subspaces. However, note that they are

parallel. For each class Vi = {u, v}, u and v are antipodal. That is u+ v = (1, 1, 1).

When k is not a power of 2, the construction of Laskar and Lyle does not give an

affine fall k-coloring. Our main result is that for k even and the same range of values

of n as in Theorem 4.5 that Qn has an affine fall k-coloring.

4.1.1 Recoloring graphs and a note about the case k = 3

This line of research began in an attempt to understand the properties of the recoloring

graph of Qn. At the time we were unaware of the result of Laskar and Lyle. For

any graph G, and integer k, the k-recoloring graph, Rk(G), is the simple graph whose

vertices are proper k-colorings of G and colorings C1 and C2 are adjacent if and only if

there is exactly one vertex on which they disagree. A fundamental question is whether

Rk(G) is connected. If so one can walk from any proper k-coloring, C1, to any other

proper k-coloring, C2, by changing the color at one vertex at a time preserving a

proper coloring at each step. A fall k-coloring of Qn gives an isolated vertex (coloring)

of Rk(Qn) since no vertex of Qn can be recolored without colliding with a neighboring

color class. Theorem 4.7 shows that if k is a power of 2 and n is sufficiently large,

Rk(Qn) contains an isolated vertex. For k = 3, however, not only do fall 3-colorings of

Qn not exist for any n, but for all n, R3(Qn) is connected [Gal03]. The result of Laskar

and Lyle shows that for any k 6= 3 and n sufficiently large, Rk(Qn) contains an isolated

vertex and therefore is not connected.

4.1.2 Integer linear programming and the special case k = 5

The results in this chapter were greatly aided by computer experimentation. In par-

ticular, the discovery of an affine fall 6-coloring of F7
2 motivated further investigation

and generalizations. Fall k-colorings of Qn can be modeled as solutions to an integer

linear program (ILP). The following ILP was implemented using the Julia [BKSE12]

programming language using the package JuMP [DHL17]. Through an academic license

we used the solver Gurobi [GO18] to discover several colorings and eliminate others.
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Let k and n be integers. We describe how the question of if there exists a fall

k-coloring of Qn can be modeled as a binary ILP. Define k2n binary variables, x[v, i],

where v ∈ Qn and i ∈ [k] to indicate

x[v, i] =


1, if v is colored i and

0, otherwise.

We need to ensure that each vertex is assigned exactly one color. For each v ∈ Qn we

have the linear constraint
k∑
i=1

x[v, i] = 1.

To ensure that the coloring is proper we have for each u, v with u ∼ v and for each

i ∈ [k],

x[u, i] + x[v, i] ≤ 1.

Finally, we want to ensure each vertex is colorful. Let d be the Hamming distance

metric. That is for u, v ∈ Qn, d(u, v) is the number of bits at which they differ or,

equivalently, the length of the shortest path from u to v. The fall k-coloring constraint

is equivalent to the constraint that in each Hamming ball of radius one, each color

appears at least once. Thus for each v ∈ Qn and each i ∈ [k] we have the constraint∑
d(u,v)≤1

x[u, i] ≥ 1.

In this case there is no objective function that the solver seeks to optimize. Rather it

just checks if the ILP is feasible.

Theorem 4.5 shows that for k = 5 there is a fall k-coloring of Qn for n ≥ 7. The fact

that there is a fall 5-coloring of Q6 was, we believe, previously unknown and discovered

via our ILP implementation. To give a compact representation, if we order the 64

vertices of Q6 lexicographically then the corresponding colors are

2, 1, 3, 4, 4, 2, 1, 5, 1, 5, 5, 2, 3, 4, 2, 3, 1, 3, 2, 5, 5, 4, 3, 2, 4, 2, 3, 1, 2, 1, 4, 5,

5, 4, 1, 2, 1, 3, 2, 4, 2, 3, 4, 5, 5, 2, 3, 1, 3, 2, 4, 3, 2, 5, 5, 1, 5, 1, 2, 4, 4, 3, 1, 2.

Note that this coloring is not affine. Indeed via ILP methods we know that there is no

affine fall 5-coloring of Q6.
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4.2 Machinery

To begin we give a simple lower bound on the size of the color classes of a fall k-coloring.

Lemma 4.8. For any fall k-coloring of Qn each color class Vi must satisfy |Vi| ≥

2n/(n+ 1).

Proof. As Vi is a dominating set each of the remaining 2n − |Vi| vertices must be

adjacent to at least one vertex in Vi. Since Qn is n-regular we have |Vi|n ≥ 2n − |Vi|

which simplifies to |Vi| ≥ 2n/(n+ 1).

If δ(G) is the minimum degree of a vertex of G it is clear that for G to have a fall

k-coloring, we must have k ≤ δ(G) + 1. Otherwise the minimal degree vertex cannot

be colorful. Thus for Qn the largest possible k for which Qn conceivably has a fall

k-coloring is k = n+ 1.

Lemma 4.9. Let k ≥ 2 and let n = k − 1. Then Qn has a fall k-coloring if and only

if k is a power of 2.

Proof. Suppose Qn has a fall k-coloring where k = n + 1. Then by Lemma 4.8, |Vi| ≥

2n/(n+ 1) = 2n/k for all i. So each color class is at least as large as the average size of

the color classes. Thus |Vi| = 2n/k for all i. So k divides 2n and thus k is a power of 2.

Conversely, if k = 2a we have already observed in Theorem 4.7 that there there is a

linear map that gives an fall k-coloring provided n ≥ k − 1.

Our main result is that there are affine fall k-colorings for k even and n sufficiently

large.

Theorem 4.10. Let k ≥ 2 be even. Let 2a be the smallest power of 2 such that 2a ≥ k.

Then if n ≥ 2a − 1 there is an affine fall k-coloring of Qn.

To prove Theorem 4.10, we give a construction using an object similar to a parity

decision tree [O’D14]. In our case we give a decision tree that uses parity to determine

which branch to proceed along, however, each leaf is assigned a different value. Thus if

the decision tree has k leaves it will give a k-coloring of Qn.
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Definition 4.11. A parity coloring tree (PCT) is a tuple (T, k, n, h, C) where:

• T is a full binary decision tree. We call the non-leaves “decision nodes.” The

nodes of T are labelled with binary strings. The root of T is given the null string

and for any decision node labelled t, its right child is labeled t0 and its left child

is labelled t1. That is we append a 0 or a 1 depending on if the decision is to

progress to the right or the left respectively.

• k is the number of leaves of T .

• n is the dimension on which the PCT classifies vectors.

• h is a function from the decision nodes of T to Fn2 .

• C is the resulting coloring function. If L is the set of leaves of T then C : Fn2 → L.

Let 〈·, ·〉 be the dot product. If t ∈ T is a decision node then we associate the decision

vector h(t) ∈ Fn2 . For any v ∈ Fn2 to be classified if 〈h(t), v〉 = 0 then the decision node

goes to child t0 and otherwise to t1.

In Figure 4.2 is a PCT that gives the affine fall 4-coloring of Q3 shown in Fig-

ure 4.1. The decision nodes are in white and are labelled with their decision vec-

tor. Let (T, k, n, h, C) be this PCT. To illustrate, suppose we wish to color the vector

(1, 1, 1) ∈ F3
2. Let r be the root of T . It is a decision node and we see that h(r) = (0, 1, 1).

We can compute 〈(0, 1, 1), (1, 1, 1)〉 = 0. Thus we proceed to the right child which we

denote with the binary string 0. We see that h(0) = (1, 0, 1). Thus we compute

〈(1, 0, 1), (1, 1, 1)〉 = 0. So we proceed to the right child which is the leaf 00 which we

depict in orange. Thus (1, 1, 1) is given the color 00 depicted in orange and we see that

in Figure 4.1 the vertex (1, 1, 1) is indeed orange. One can check that, for example,

v = (0, 0, 0) would also be colored orange. Thus C((1, 1, 1)) = C((0, 0, 0)) = 00.

Definition 4.12. If T is a rooted tree and v ∈ T is a decision node, let T |v be the

subtree with root v containing v and all its descendants.

Definition 4.13. For a PCT (T, k, n, h, C) and any t ∈ T let S be the sequence of

decision nodes along the path from the root down to t. Let m be the height of t. If t is

a decision node then the length of S is m + 1 and if t is a leaf the length of S is m.

Define the decision set, D(t), to be the set of decision vectors {h(v) : v ∈ S}. Define
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Figure 4.2: A PCT that gives the affine fall 4-coloring of Q3 shown in Figure 4.1. The
decision nodes are in white and are labelled by their decision vector. For example, the
decision vector of the root is (0, 1, 1).

the decision matrix, Dt to be the m× n matrix whose i-th row is the decision vector of

the i-th element of S.

Thus the decision set of any leaf ` ∈ T are the vectors considered when classifying a

vertex in Qn that reaches `. For example, in the PCT depicted in Figure 4.2, let ` = 00

be the rightmost leaf. We see that D(`) = {(0, 1, 1), (1, 0, 1)} and

D` =

0 1 1

1 0 1

 .

In fact, for this example, we see that Dt is the same matrix for each of the two decision

nodes below the root and and the four leaves.

Definition 4.14. For a PCT (T, k, n, h, C) and ` ∈ T a leaf. We define the color class

V` = {v ∈ Fn2 : C(v) = `}.

For any leaf ` ∈ T we can identify ` with an element of Fm2 where m is the height

of `. With this identification, we see that C(v) = ` precisely when D`v = `. Thus we
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have V` = {v ∈ Fn2 : D`v = `}. So it is clear that the color classes of a PCT are affine

subspaces.

Definition 4.15. We say a PCT (T, k, n, h, C) is degenerate if there is some color class

that is unobtainable. That is there is some leaf ` such that C(v) 6= ` for all v ∈ Fn2 .

Equivalently, the PCT is degenerate if C is not onto the leaves of T . Otherwise we say

the PCT is non-degenerate.

Lemma 4.16. For a PCT (T, k, n, h, C), if ` is a leaf at a height m and D(`) is linearly

independent then |V`| = 2n−m. Furthermore, if D(`) is linearly dependent then C is

not onto. Thus a PCT is degenerate if and only if for for some leaf `, D(`) is linearly

dependent.

Proof. Suppose ` is a leaf at height m and D(`) is linearly independent. Then as

V` = {v ∈ Fn2 : D`v = `}, we have |V`| = 2n−m.

Next, suppose D(`) is linearly dependent. Let t be the vertex of minimum height

on the path from the root r to ` for which h(t) is a linear combination of its ancestors

decision vectors. Then for any v that we are classifying that reaches t, 〈v, h(t)〉 is

uniquely determined. So some of t’s descendants are unreachable.

Definition 4.17. We say a PCT (T, k, n, h, C) contains a zero column if for some leaf

` ∈ T the matrix D` contains a zero column.

Equivalently, the PCT contains a zero column if for some leaf ` ∈ T all vectors in

the decision set D(`) are zero at a particular coordinate.

Theorem 4.18. A PCT (T, k, n, h, C) gives a proper k-coloring using all k colors if

and only if it is non-degenerate and does not contain a zero column.

Proof. We showed in Lemma 4.16 that all k colors are used if and only if it is non-

degenerate. Next, suppose that the PCT contains a zero column. Then for some leaf `

and coordinate i, h(v)i = 0 for all ancestors v of `. Suppose u ∈ Fn2 is colored ` by the

PCT. Then, C(u+ei) = C(u) and the coloring is not proper. Conversely, if the coloring

is improper then there is some u colored ` such that for some i ∈ [n], C(u+ ei) = C(u).
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But then 〈h(v), u〉 = 〈h(v), u+ ei〉 for all ancestors v which implies 〈h(v), ei〉 = 0 for all

ancestors v and thus there is a a zero column at coordinate i.

Definition 4.19. We say a PCT (T, k, n, h, C) is autumnal if C is a fall k-coloring of

Fn2 .

Notice that if the PCT (T, k, n, h, C) is autumnal then by appending a one to each

decision vector we see that there is an autumnal PCT for the same value of k and

dimension n+ 1. Thus there exists an autumnal PCT for all higher dimensions. From

Theorem 4.18, we see that for a PCT to be autumnal it is necessary that it be non-

degenerate and not contain a zero column. However, these are insufficient. It does

not follow from these criterion alone that each color class is dominating. The following

terminology will be useful.

Definition 4.20. For a PCT (T, k, n, h, C) and decision node t ∈ T , let (T, k, n, h, C)|t

be a PCT (T ′, k′, n′, h′, C ′) as follows:

• T ′ = T |t

• k′ is the number of leaves of T |t

• n′ = n, i.e. the new PCT still colors vertices in Fn2

• If U is the set of decision nodes in T |t then h′ = h|U . That is h′ is the restriction

of h to decision nodes in T |t.

• C ′ is the resulting coloring function. The domain of C ′ is Fn2 and the range is a

subset (possibly proper) of the leaves of T |t.

We call (T, k, n, h, C)|t a sub-PCT of the original.

Definition 4.21. Given a PCT (T, k, n, h, C) and a set of coordinates I ⊆ [n], we say

the PCT is move anywhere (MA) on I if for all u ∈ Fn2 , |{C(u+ei) : i ∈ I}\{C(u)}| =

k − 1. That is from any u colored C(u) in the directions specified by I it has adjacent

to it all k− 1 other colors. If we say a PCT is move anywhere without specifying a set

I, we assume that I = [n].

Thus, a PCT is autumnal if and only if it is proper and MA.
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Definition 4.22. Given a PCT (T, k, n, h, C) and a set of coordinates I ⊆ [n], we say

the PCT is reach anywhere (RA) on I if for all u ∈ Fn2 , |{C(u+ei) : i ∈ I}| = k. That

is from any u ∈ Fn2 , its neighbors in the directions specified by I exhibit all k colors.

Clearly if a PCT is RA then it does not give a proper coloring. However, it will be a

useful property for sub-PCTs to have. To illustrate the above two definitions consider

the PCT depicted in Figure 4.2. Denote this PCT by P . We have already observed

that P is autumnal and therefore proper and MA. As an example of the MA property

observe as before that C((0, 0, 0)) = 00. If `′ is any leaf other than 00 then there is some

ei such that C(ei) = `′. For example, if `′ = 10 then note that C(e2) = 10. Further,

consider the decision node t = 0 which is the right child of the root. Let P0 be the

sub-PCT rooted at t. This sub-PCT contains one decision node, t, and two leaves ` and

`′. Observe that P is MA on {3} and RA on {2, 3}. Let C0 be the coloring function of

P0. Then if C0(v) = ` we see that C0(v + e3) = `′ and vice versa. So we see that P0 is

MA on {3}. Next to see that P is RA on {2, 3}, observe that C0(v + e2) = C0(v) for

all v ∈ F3
2 and as before adding e3 switches color classes.

Theorem 4.23. Let (T, k, n, h, C) be a PCT and I ⊆ [n] a set of coordinates. Let

r be the root of T and let r0 and r1 be its right and left children respectively. Define

coordinate sets

I0 = {i : h(r)i = 0} ∩ I

and

I1 = {i : h(r)i = 1} ∩ I.

The PCT is MA on I if the following four conditions hold:

(1) The PCT (T, k, n, h, C)|r0 is MA on I0 ∩ I.

(2) The PCT (T, k, n, h, C)|r1 is MA on I0 ∩ I.

(3) The PCT (T, k, n, h, C)|r0 is RA on I1 ∩ I.

(4) The PCT (T, k, n, h, C)|r1 is RA on I1 ∩ I.

The PCT is RA on I if the following four conditions hold:

(a) The PCT (T, k, n, h, C)|r0 is RA on I0 ∩ I.

(b) The PCT (T, k, n, h, C)|r1 is RA on I0 ∩ I.
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(c) The PCT (T, k, n, h, C)|r0 is RA on I1 ∩ I.

(d) The PCT (T, k, n, h, C)|r1 is RA on I1 ∩ I.

Proof. First we show the PCT is MA on I provided conditions (1)-(4) hold. For any

u ∈ Fn2 we have C(u) = ` where ` is a leaf of T . Let `′ be any leaf of T with `′ 6= `. We

have four cases.

1. ` ∈ T |r0 and `′ ∈ T |r0 . Using condition (1) we see that (T, k, n, h, C)|r0 is MA on

I0 ∩ I. Let C ′ be the restricted coloring function. Since the sub-PCT is MA on

I0 ∩ I there exists i ∈ I0 ∩ I such that C ′(u + ei) = `′. Note that for the root r,

h(r)i = 0 since i ∈ I0. Therefore 〈u, h(r)〉 = 〈u + ei, h(r)〉 and so changing this

bit does not affect the behavior at the root. Thus C(u+ ei) = `′.

2. ` ∈ T |r1 and `′ ∈ T |r1 . Using condition (2) we see that (T, k, n, h, C)|r1 is MA

on I0 ∩ I. Let C ′ be the restricted coloring function. As in case one, since the

sub-PCT of interest is MA, there exists i ∈ I0 ∩ I such that C ′(u + ei) = `′.

Since i ∈ I0 changing this bit does not change the behavior at the root and thus

C(u+ ei) = `′.

3. ` ∈ T |r1 and `′ ∈ T |r0 . Using condition (3) we see that (T, k, n, h, C)|r0 is RA on

I1 ∩ I. Let C ′ be the restricted coloring function. Then there exists i ∈ I1 ∩ I

such that C ′(u+ ei) = `′. As ` and `′ are in different subtrees below the root we

need for 〈h(r), u〉 6= 〈h(r), u+ ei〉 which is true since i ∈ I1. Thus C(u+ ei) = `′.

4. ` ∈ T |r0 and `′ ∈ T |r1 . Using condition (4) we see that (T, k, n, h, C)|r1 is RA on

I1 ∩ I. Let C ′ be the restricted coloring function. As in case three, there exists

i ∈ I1 ∩ I such that C ′(u + ei) = `′. As ` and `′ are in different subtrees below

the root we need for 〈h(r), u〉 6= 〈h(r), u + ei〉 which is true since i ∈ I1. Thus

C(u+ ei) = `′.

Next, we show the PCT is RA on I provided (a)-(d) hold. For any u ∈ Fn2 we have

C(u) = ` where ` is a leaf of T . Let `′ be any leaf of T possibly equal to `. We have

four cases.

1. ` ∈ T |r0 and `′ ∈ T |r0 . Using condition (a) we see that (T, k, n, h, C)|r0 is RA

on I0 ∩ I. Let C ′ be the restricted coloring function. Since the sub-PCT is RA
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on I0 ∩ I there exists i ∈ I0 ∩ I such that C ′(u + ei) = `′. Since i ∈ I0 we have

C(u+ ei) = `′.

2. ` ∈ T |r1 and `′ ∈ T |r1 . Using condition (b) we see that (T, k, n, h, C)|r1 is RA on

I0 ∩ I. Let C ′ be the restricted coloring function. There exists i ∈ I0 ∩ I such

that C ′(u+ ei) = `′. Since i ∈ I0 we have C(u+ ei) = `′.

3. ` ∈ T |r1 and `′ ∈ T |r0 . Using condition (c) we see that (T, k, n, h, C)|r0 is RA

on I1 ∩ I. Let C ′ be the restricted coloring function. As the sub-PCT is RA on

I1 ∩ I there exists i ∈ I1 ∩ I such that C ′(u+ ei) = `′. As ` and `′ are in different

subtrees below the root we need for 〈h(r), u〉 6= 〈h(r), u + ei〉 which is true since

i ∈ I1. Thus C(u+ ei) = `′.

4. ` ∈ T |r0 and `′ ∈ T |r1 . Using condition (d) we see that (T, k, n, h, C)|r1 is RA on

I1 ∩ I. Let C ′ be the restricted coloring function. As in case three, there exists

i ∈ I1 ∩ I such that C ′(u + ei) = `′. As ` and `′ are in different subtrees below

the root we need for 〈h(r), u〉 6= 〈h(r), u + ei〉 which is true since i ∈ I1. Thus

C(u+ ei) = `′.

Let P = (T, k, n, h, C) be the PCT depicted in Figure 4.2. If r is the root of T then

as h(r) = (0, 1, 1), we see that I0 = {1} and I1 = {2, 3}. Let P0 be the sub-PCT rooted

at the right child of the root and P1 be the sub-PCT rooted at the left child. From

Theorem 4.23 the fact that this PCT is MA on {1, 2, 3} follows from the easy to check

facts:

1. P0 is MA on {1}.

2. P1 is MA on{1}.

3. P0 is RA on {2, 3}.

4. P1 is RA on {2, 3}.

Next we give a lower bound for the dimension at which a PCT can be autumnal.

Theorem 4.24. Let 2a be the smallest power of 2 such that 2a ≥ k. Then if a PCT

(T, k, n, h, C) is autumnal we must have n ≥ 2a − 1.

Proof. We have 2a−1 < k ≤ 2a. The height of T must be at least a, for otherwise T
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would have at most 2a−1 < k leaves. Since the PCT is autumnal in particular it is

non-degenerate. If a leaf ` is a distance at least a from the root it determines a color

class of size |V`| ≤ 2n−a. From Lemma 4.8 we have that |V`| ≥ 2n/(n+ 1). Thus,

2n

2a
≤ |V`| ≤

2n

n+ 1

which implies n ≥ 2a − 1 as desired.

In Section 4.3 we will show that this lower bound is achievable for even k.

4.3 Construction

Let k be a positive, even integer. Let 2a be the smallest power of 2 such that k ≤ 2a.

We begin by noting that there is a canonical labelled binary tree with k leaves of height

a. We label the root by the empty string and if k is a power of 2 then the tree is the

complete binary tree of height a where the right and left child of node t are labelled t0

and t1 respectively. We can write k = 2a−1 + b where b ≤ 2a−1. Then below the right

child of the root we put the complete binary tree of height a− 1 prepending the string

0 to all its nodes and, recursively, below the left child of the root we put the canonical

binary tree with b leaves prepending the string 1 to all its nodes. For example if k = 6

then as 6 = 4 + 2 we put the complete tree of height two below the right child of the

root and the complete tree of height one below the left. See Figure 4.3.

The following notation will be useful.

Definition 4.25. For integers 0 ≤ i < a let alt(i, a) be the vector in F2a
2 which is

the concatenation of 2i blocks, B, of the form B = (0, . . . , 0, 1, . . . , 1) where 0 appears

2a−i−1 times as does 1.

For example we have

alt(0, 3) = (0, 0, 0, 0, 1, 1, 1, 1)

alt(1, 3) = (0, 0, 1, 1, 0, 0, 1, 1)

alt(2, 3) = (0, 1, 0, 1, 0, 1, 0, 1).
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Figure 4.3: The canonical binary tree with k = 6 leaves.

Definition 4.26. For a positive, even integer k, let CONSTRUCTION0(k) be the PCT

(T, k, n, h, C) defined as follows. Let 2a be the smallest power of 2 so that k ≤ 2a. Let

n = 2a. Let T be the canonical tree with k leaves. For each decision node, t, let m be

the height of t. Then set h(t) = alt(m,n).

Since alt(m,n)1 = 0 for all m < n it is easy to see that CONSTRUCTION0(k) will

have a column of zeros. Although this precludes the coloring being proper it does allow

the PCT to be RA as shown in Lemma 4.28. The following notation will be useful.

Definition 4.27. Given a PCT (T, k, n, h, C) and a nonempty set of coordinates I ⊆ [n]

we define (T, k, n, h, C) ∩ I to be the PCT (T ′, k′, n′, h′, C ′) where

• T ′ = T

• k′ = k

• n = |I|

• h′ is the projection of h onto the coordinates of I

• C ′ is the resulting coloring function

Intuitively for a PCT P and set of coordinates I, P ∩ I is the PCT given by only

considering the coordinates of I.
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Lemma 4.28. For k even and positive, let CONSTRUCTION0(k) = (T, k, n, h, C).

This PCT is RA.

Proof. Let 2a−1 < k ≤ 2a. Let r be the root of T and I0 = {i : h(r)i = 0} and

I1 = {i : h(r)i = 1}. Observe that (T, k, n, h, C) has the following recursive structure

• (T, k, n, h, C)|r0 ∩ I0 = CONSTRUCTION0(2a−1)

• (T, k, n, h, C)|r0 ∩ I1 = CONSTRUCTION0(2a−1)

• (T, k, n, h, C)|r1 ∩ I0 = CONSTRUCTION0(k − 2a−1)

• (T, k, n, h, C)|r1 ∩ I1 = CONSTRUCTION0(k − 2a−1)

If each of these sub-PCTs are RA then, by Theorem 4.23, the original PCT is RA. Thus

the fact that CONSTRUCTION0(k) is RA follows by strong induction on k provided

we demonstrate the base case k = 2. Note that CONSTRUCTION0(2) consists of a

tree with one decision node, the root, r. We have n = 2 and h(r) = (0, 1). There are

two leaves ` and `′ and for any v ∈ F2
2 we have C(v+ e1) = C(v) and C(v+ e2) 6= C(v).

So CONSTRUCTION0(2) is indeed RA.

Definition 4.29. For a PCT (T, k, n, h, C) we call a node t ∈ T a twig if either of its

children is a leaf.

Definition 4.30. For integers 0 ≤ i < a define altfill(i, a) as in Definition 4.25 except

that we set the leftmost block to be all ones.

For example,

altfill(1, 3) = (1, 1, 1, 1, 0, 0, 1, 1)

altfill(2, 3) = (1, 1, 0, 1, 0, 1, 0, 1).

We use these notions to tweak CONSTRUCTION0(k) so as to remove the zero

columns.

Definition 4.31. For a positive, even integer k, let CONSTRUCTION1(k) be the PCT

(T, k, n, h, C) defined as follows. Let 2a be the smallest power of 2 so that k ≤ 2a. Let

n = 2a. Let T be the canonical tree with k leaves. For each decision node, t, let m be the

height of t. If t is a twig, then set h(t) = altfill(m,n). Otherwise set h(t) = alt(m,n).
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Lemma 4.32. For k even and positive, let CONSTRUCTION1(k) = (T, k, n, h, C).

Let 2a−1 < k ≤ 2a. Let r be the root of T and I0 = {i : h(r)i = 0} and I1 =

{i : h(r)i = 1}. This PCT is MA and has the following recursive structure:

1. (T, k, n, h, C)|r0 ∩ I0 = CONSTRUCTION1(2a−1)

2. (T, k, n, h, C)|r1 ∩ I0 = CONSTRUCTION1(k − 2a−1)

3. (T, k, n, h, C)|r0 ∩ I1 = CONSTRUCTION0(2a−1)

4. (T, k, n, h, C)|r1 ∩ I1 = CONSTRUCTION0(k − 2a−1).

Furthermore, CONSTRUCTION1(k) contains no zero column and as such gives a

proper coloring. Finally, for any decision node, t ∈ T , the decision matrix, Dt, contains

a column of the form (0, 0, . . . , 0, 1). Thus for any t ∈ T , D(t) is linearly independent.

So the PCT is non-degenerate. Thus CONSTRUCTION1(k) is autumnal.

Proof. First we show that CONSTRUCTION1(k) is MA. The recursive structure follows

from the definition. As in the proof of Lemma 4.28, the fact that CONSTRUCTION1(k)

is MA follows from Theorem 4.23 provided that the first two sub-PCTs are MA and the

latter two are RA. We have already shown in Lemma 4.28 that the latter two PCTs are

RA. The fact that the first two sub-PCTs are are MA follows by by strong induction

on k provided we demonstrate the base case k = 2. Note that CONSTRUCTION1(2)

consists of a tree with one decision node, the root, r. We have n = 2 and h(r) = (1, 1).

There are two leaves ` and `′ and for any v ∈ F2
2 we have C(v + e1) 6= C(v). Thus

CONSTRUCTION1(2) is indeed MA.

The fact that CONSTRUCTION1(k) contains no zero column follows from the def-

inition. In CONSTRUCTION0(k) the only columns of zeros occurred in the leftmost

blocks which we have set to one in each twig. Finally, for any decision node, t, of height

m observe that the leftmost block B, of alt(m,n) of its decision vector is either of the

form B = (0, . . . , 0, 1 . . . , 1) if t is not a twig or all ones if it is a twig. For any ancestor,

t′, with height m′ < m we have blocks at least twice as large and thus all zeros for the

coordinates of B. Thus Dt contains a column of the form (0, . . . , 0, 1).

Note that CONSTRUCTION1(2) illuminates an inefficiency in this construction.

It would have sufficed to have n = 1 and for the root, r, to have h(r) = (1). In
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general, columns one and two of CONSTRUCTION1(k) are the same. That is, if

CONSTRUCTION1(k) = (T, k, n, h, C) then for all decision nodes, t, h(t)1 = h(t)2.

We can remove this redundancy by deleting the leftmost column which will give us a

construction of dimension n = 2a − 1 as desired.

Definition 4.33. Let CONSTRUCTION(k) be the dimension n = 2a − 1 construction

derived from deleting the leftmost column in CONSTRUCTION1(k).

See Figure 4.4 for an illustration of CONSTRUCTION(6). Note that removing

an identical column does not affect the properties of being MA, RA, proper or non-

degenerate. Thus we have the following lemma.

Figure 4.4: CONSTRUCTION(6). The decision nodes are drawn in white. For each
decision node, t, we have shown h(t). The leaves are shown in orange.

Lemma 4.34. Let k be even with 2a−1 < k ≤ 2a. Then we have n = 2a − 1 and

CONSTRUCTION(k) = (T, k, n, h, C) is autumnal. Thus C is an affine fall k-coloring

of Fn2 .

We see that Theorem 4.10 follows immediately from Lemma 4.34. In Figure 4.5 we
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give an illustration of CONSTRUCTION(14). Next we see that a PCT can only be

autumnal for even k.

Figure 4.5: The decision nodes of CONSTRUCTION(14) which gives an affine fall 14-
coloring of Q15. To avoid clutter, leaves are not drawn. Thus each of the seven apparent
leaves in this diagram are in fact twigs and have as children two leaves. In each decision
node, t, we have shown h(t).

Theorem 4.35. For any autumnal PCT each twig must have as children two leaves.

In particular, any PCT with k leaves where k is odd is not autumnal.

Proof. Suppose for the sake of contradiction that the PCT (T, k, n, h, C) is autumnal

and there is some twig, t, with children `, a leaf, and t′, a decision node. Let `1 and

`2 be any distinct leaves that are descendants of t′. As an example where `1 and `2

are children of t′ see Figure 4.6. If the PCT is autumnal then there exists v ∈ Fn2

such that C(v) = `1 and an index i such that C(v + ei) = `2. Consider the m × n

decision matrix, Dt′ . Column i of Dt′ must be (0, . . . , 0, 1). If any of the first m′ − 1

coordinates is nonzero then C(v+ei) 6= `2 as the decision process will not reach t′. The

final coordinate must be one so that C(v + ei) 6= C(v). However, this means there is a

column of zeros in coordinate i for Dt. In particular, for any u such that C(u) = ` we

would have C(u+ei) = ` and the coloring would not be proper. This is a contradiction.
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Thus if the PCT is autumnal each twig has as children two leaves and the number of

leaves must be even.

Theorem 4.35 has the following immediate corollary.

Corollary 4.36. For any coloring given by an autumnal PCT, each color class has a

parallel.

Figure 4.6: A twig, t, with children ` and t′ that are a leaf and a decision node respec-
tively.
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4.4 Conclusion and open questions

We have shown that for any positive, even integer k that there exists an affine fall

k-coloring of Qn for n ≥ 2a − 1 where 2a is the smallest power of 2 such that k ≤ 2a.

Furthermore, for our method of construction, parity coloring trees, our construction

achieves the minimum possible dimension. We have not, however, shown that for

2a−1 < k ≤ 2a that n = 2a − 1 is the minimum dimension for which an affine fall

k-coloring of Qn exists. We know this statement holds for k a power of 2 and, by

ILP solving, for k = 6. But for other values of k we leave this as an open question.

Furthermore, we have shown for k odd that parity coloring trees cannot give an affine

fall k-coloring. Recall that for k = 3 there are no fall k-colorings of Qn for any n. For

k > 3, we make the following conjecture.

Conjecture 4.37. Let k > 3 be an odd, positive integer. For all n, there is no affine

fall k-coloring of Qn.

We do not know if Conjecture 4.37 holds even for k = 5.
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